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Preface 

THIS BOOK collects together papers given at a NATO Advanced Research Workshop held at Il 

Ciocco (Lucca), Italy, from the 9th to the 15th April, 1989. It sets out to present the current 
state of understanding of the principles governing the way fluxes and concentrations are 
maintained and controlled in metabolic systems. Although this is a topic that has held the 
interest of biochemists for many years, it is only quite recently that the methods of analysing 
the kinetics of multi-enzyme pathways developed over the past two decades have come to be 
widely discussed or applied experimentally. Many biochemists remain sceptical that the new 
methods offer a real advance (except in complexity) over the landmark discoveries of the 
1950s and 1960s relating to inhibition of enzymes at branch-points by the end products of 
metabolic pathways, and the interpretation of allosteric effects and cooperativity. 

Even those who have become convinced that the classical ideas provide only the starting 
point for understanding metabolic control have been by no means unanimous in their assess
ment of the direction in which one should advance. In this book we have tried to include all of 
the current points of view, including the view that the classical theories tell us all that we need 
to know. We have not seen it as our role as editors to paper over the cracks that exist and to 
pretend that we can speak to the world with one voice. Nonetheless, at the Workshop that this 
book records we did try to resolve some of the controversies that were apparent, for example, 
in the pages of Trends in Biochemical Sciences in 1987, and we hope that some progress 
towards such resolution may be evident in the book. 

The Prologue is based on a paper written by Daniel Atkinson without any intention of 
publication but circulated before the Workshop in the hope of stimulating discussion and 
focussing the attention of participants on some issues that he believed needed to be addressed. 
It proved highly successful in doing this, and stimulated a number of additional discussion 
papers, all of which are also included in the Prologue. We emphasize that this part of the book 
was written before any of the other chapters and that it has not been edited to take account of 
anything that may have been written later. 

The next part of the book is concerned with general aspects of metabolic control analysis, 
including discussion of historical and philosophical aspects as well as description of the 
somewhat different approaches that have developed in Europe and the USA, which cannot yet 
be considered to have reached a synthesis. This is followed by several chapters dealing with 
the mathematical basis of control analysis. 

Enzymes possessing two forms with different catalytic activity that can be interconverted 
by covalent modification reactions form a special category of enzymes that need to be studied 

in relation to metabolic control. The number of experimental examples of these continues to 
grow rapidly, and we include several chapters discussing their different aspects. 

These are followed by some chapters dealing with methods that have been developed for 
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applying the ideas of control analysis to experimental systems. These methods will, we hope, 

help to dispel the idea that metabolic control analysis is an abstract subject with little relation

ship to "real" biochemistry. Control-pattern analysis, discussed in the last chapter of this 

section, may perhaps in time come to provide the same degree of intuitive understanding of 

metabolic control that the method of King and Altman has given to enzyme mechanisms. 

Direct "channelling" of intermediates from one enzyme to the next in a pathway, other 

kinds of interactions between enzymes, failure of rates to be strictly proportional to enzyme 

concentrations, and the fact that real systems do not always operate in the steady state, are all 

complications that need to be considered before any simple theory of metabolic control can be 

accepted as providing the whole story. To some degree these complications overlap; in other 

respects they are quite distinct: we have found it convenient to group together the chapters 

discussing these various ways in which nature makes real systems more complicated than one 

might have hoped. 
Although in most of these earlier chapters there are sufficient references to experimental 

systems to show that metabolic control analysis is more than a preserve of pure theory isolated 

from the real world, the relation between metabolic control analysis and "wet" biochemistry 

becomes more evident in the final group of chapters in the book. Here it will be seen that the 

ideas of control analysis are now being applied to all of the classical problems that have 

engaged the attention of biochemists - erythrocyte metabolism, photosynthesis, amino acid 

metabolism, and so on. Even gene expression is included, a topic that many of us might have 

thought too difficult to be yet accommodated in a mathematical treatment of metabolic control. 

The range of applications will certainly increase in the years to come, and we suspect that it 

will eventually be thought odd that biochemists could ever have thought that these problems 

could be addressed without the aid of control analysis. 

Readers who see any merit in the lay-out of this book may like to know that it was printed 

in its entirety from camera-ready copy prepared on an Apple LaserWriter II NT driven by an 

Apple Macintosh Plus computer: the text was edited using WriteNow for Macintosh (version 

2.0, T/Maker Company, Mountain View), and the mathematical expressions were laid out 

with Expressionist (version 2.0, Allan Bonadio Associates, San Francisco). 

We are very grateful to the Scientific Affairs Division of NATO for the grant that made 

possible the Workshop on which this book is based, and to Dr Craig Sinclair, the Director of 

the Advanced Research Workshop programme, for his help and encouragement in the 

organization. Additional financial support provided by various other bodies was also much 

appreciated, as it enabled the participation of several scientists who would otherwise have 

been unable to attend the Workshop. In this connection, we thank Dr Paolo Fasella, for a 

grant from the Commission of the European Communities; Dr Minor S. Coon, for travel 

grants from the International Union of Biochemistry and the American Society for Bio

chemistry and Molecular Biology; and Dr Christopher I. Pogson, for a grant from the 

Wellcome Foundation Ltd. 
Many participants in the Workshop have commented to us afterwards how much they 

enjoyed the time that they spent at II Ciocco. A major part of the credit for this must go to Mr 

Bruno Giannasi and his staff, who went far beyond mere obligation in ensuring that everyone 

was well provided for. We thank them most sincerely. If only we could have had as much 

success in planning the weather on the half-day excursion ... 
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We are grateful to Jacques Ricard for suggesting the Workshop in the first place, and to 
him and the other the members of the Organizing Committee - Albert Goldbeter, Tamas 
Keleti and Hans Westerhoff- for many useful suggestions and other invaluable help, and to 
Brigitte Gontero for all of her assistance as Meeting Secretary- before, during and after the 
Workshop. We also thank the many authors who delivered their text in machine-readable 
form, thereby reducing the amount of retyping that we had to do. For the chapters that did 
need to be retyped, we thank Mme Monique Payan for her highly professional work. 

We record with great sorrow that Tamas Keleti died suddenly during the period in which 
the book was in preparation. Many will remember him for his tireless efforts on behalf of 
enzymology in Hungary; he will be sadly missed, not only by his colleagues there, but also by 
many enzymologists around the world, and especially by our daughter Isadora. 

Athel Cornish-Bowden 
Maria Luz C:irdenas 
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Prologue 

What Should a Theory of Metabolic 
Control Offer to the Experimenter? 

DANIEL E. ATKINSON 

IN HIS PREPARATIONS for this symposium, Athel Cornish-Bowden mentioned a desire to 
present control theory to experimentalists in such a way as to persuade them that their 
subject could advance more rapidly with more attention to theoretical ideas. He is also 
inviting some experimentalists to indicate what they think a useful theory should offer, and 
has asked me to attempt to assess in the final chapter the extent to which the others have 
offered experimentalists a workable approach to metabolic control. 

I applaud this attempt to bring theorists and experimentalists together not only 
physically but intellectually. However, I remember all too well previous meetings of this 
kind that I have attended, in which theorists and experimentalists talked past each other with 
little or no effective interaction. I am concerned that there might not be much for me to say 
at the end except to deplore the fact that we had once again done so. 

In an attempt to avoid finding myself in that unhappy situation, I am setting fonh here 
some of the points that experimentalists wish theorists would consider. I hope that our 
chances of meaningful interaction will be enhanced if some participants consider these 
points in advance. 

Firstly, and encompassing many of the other points, what experimentalists desire from 
theorists is relevance. Many model builders appear to believe that control theory is a discrete 
area of imponance in itself, and that it is unnecessary, if not intellectually demeaning, to 
take the features of actual systems into account in the design of the models. However, even 
if an autonomous body of concepts does exist, those concepts are of no use to people dealing 
with an actual experimental or engineering system until they are adapted to relate to specific 
features of the system. A steam engine, an internal-combustion piston engine, a Wankel 
rotary internal combustion engine, a gas or water turbine, and an electric motor all generate 
power and transmit it by way of a rotating shaft. There may be some rarified level of control 
theory that applies to all of them. But a theory that ignores the existence of valves, an 

Daniel E. Atkinson • Department of Chemistry and Biochemistry, University of California, Los Angeles, 
California 90024, USA 
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4 D. E. Atkinson 

ignition system, and mechanisms for introduction of fuel into the cylinders will not be of any 
practical value to a design engineer who works on piston engines. Similarly, models that 
ignore the properties of enzymes cannot be helpful to experimental biochemists. 

Enzymes are saturable. Their effective kinetic orders change with the degree of satura
tion. Most enzymes are non-regulatory in the usual sense, and their behaviour is adequately 
described by the familiar Michaelis equation. In such cases, the momentary kinetic order 
equals 1 - v/V max- Regulatory enzymes typically have higher, but still variable, kinetic 
orders. Some of the more mathematically-oriented models ignore the fact that all real 
metabolic reactions are catalysed by enzymes, and assume reactions of invariant kinetic 
order one. Since regulation is necessarily a kinetic phenomenon, models that begin with 
incorrect assumptions as to the kinetic nature of the reactions cannot be useful. 

Consideration of the patterns of metabolic conversions seems to indicate clearly that 
metabolic control is effected in large part by changes in the properties of enzymes that 
compete for substrates at branchpoints. On the basis of known metabolic patterns and the 
behaviour of specific enzymes in kinetic studies in vitro, it seems to be well established that 
the outcomes of such competitions at branchpoints are regulated by changes in the affinities 
of the enzymes for the branchpoint metabolite. No model that does not incorporate those 
aspects of real metabolic systems is likely to have sufficient relevance to be potentially 
useful to experimentalists or to contribute to understanding of metabolic control. 

Designers of mathematical models tend to aim for generality. Some describe their 
models as capable of dealing with all possible situations, and it is even claimed by some 
workers that they begin from first principles. Such aims are illusory and unattainable, and 
they may lead model designers away from concern with real properties of real systems. 

It has been clear for 130 years, since publication of The Origin of Species, that there are 
no general principles, of the type sought by some model builders, in biology. The properties 
6f organisms have been determined historically by selection of beneficial changes from 
among the vast range of choices made available by random mutation. It is totally and 
unequivocally impossible to predict the consequences of a lopg evolutionary history from 
first principles, or indeed from any mathematical, physical, or chemical principles whatever. 
Chemical and physical considerations constrain the possibilities - metabolic processes, like 
all others, must entail a decrease in Gibbs free energy if they occur at constant temperature 
and pressure, for example - but they cannot lead to specific predictions. The strange 
sequence of reactions by which glucose is oxidized to carbon dioxide in typical living cells, 
by way of phosphorylated intermediates and a series of di- and tricarboxylic acids, is a 
consequence of evolutionary history and could not, even in principle, be predicted. The same 
considerations apply to the use of the ATP-ADP-AMP pool as the primary transducer of 
metabolic energy, and to thousands of other features of metabolism. Mechanisms of 
correlation and control have evolved along with the sequences themselves, and hence are 
also shaped by the blind trial-and-error processes of evolution. Each enzyme has evolved 
independently (although in most cases probably by modification from a pre-existing 
enzyme), and both its catalytic activities and its regulatory characteristics are consequences 
of its own history rather than features imposed by a grand design. The evolution of each 
enzyme was guided and constrained by the evolving properties of many others, but such 
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influences were exerted by functional selection of the whole organism rather than by any 
general integrating plan. Models, if they are to be potentially useful in the study of metabolic 
regulation, must follow that same pattern of building up from actual functional relationships 
rather than attempting to impose a system that is derived from cogitation and based on what 
are taken to be basic principles. 

I think that the most important thing that experimentalists have to say to theorists is to 
urge them to accept the universe rather than redesign it: 

Specific Comments 

Kaeser & Bums (1973), Heinrich & Rapoport (1974) and their colleagues deserve much 
credit for emphasizing that enzymes interact in the cell, and that pathways must be 
considered as functional units. However, they do not emphasize what is possibly the most 
functionally important type of such interactions, that between the initial enzymes of different 
pathways that compete for common metabolites. Nor does this model incorporate the fact 
that most regulatory modifications of enzyme action involve changes in the affinities of 
enzymes for substrates rather than in catalytic activities or maximal velocities. Similar 
comments apply to the other major models. Incorporation of those features of real enzymes 
into models would vastly increase the likelihood that they could prove useful to 
experimentalists. 

More disturbing to experimentalists than models that seem to be irrelevant because of 
inappropriate assumptions are those that reach specific conclusions about regulation, 
purportedly on the basis of rigorous analysis, that are self-evidently incorrect. Two recent 
examples will be offered as illustrations. 

Crabtree & Newsholme (1987) maintain that the first enzyme of a metabolic sequence 
must be saturated with its substrate. That surprising conclusion is based on the argument that 
the concentration of the initial substrate of the sequence will fall continuously, and that 
saturation of the first enzyme is a means by which flux through the sequence can be 
independent of that concentration change. The fact that all of us have survived for decades 
rather than hours is convincing evidence that concentrations of initial reactants (or any 
others) do not fall continuously. Metabolism is a quasi-steady-state system. Compounds, 
such as glycogen and fats, that are cyclically stored and depleted in response to varying rates 
of supply and demand for energy are insoluble, so that their chemical activities do not 
change as they are generated or degraded. (The location of phosphorylase in the glycogen 
granule probably eliminates even the small effect that might be thought to result from a 
decrease in the surface area of the glycogen particle that is available to the enzyme.) Not 
only is the premise on which the conclusion is based invalid, the conclusion flies in the face 
of nearly all of our knowledge of metabolic organization. As well be discussed later, it 
seems to be well established that the degree of saturation of the first enzyme is the most 
important determinant of the flux through most metabolic pathways. 

A recent short paper (Sauro & Fell, 1987) points out that variation in the amount of an 
enzyme that exhibits zero-order kinetics would control the rate of the sequence in which it 
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Figure 1. Rate as a function of substrate con
centration for a hypothetical enzyme of kinetic 
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Figure 2. Rate as a function of substrate con
centration for a hypothetical enzyme of kinetic 
order infinity. 

occurred, and that variation of the activity of an enzyme that exhibited infinite cooperativity 
(kinetic order infinitely large) would not have any effect on flux. In their words, the flux 
control coefficient for the enzyme tends to 1 as the kinetic order approaches zero and tends 
to zero as the order approaches infinity. They say that they arrived at this conclusion by use 
of the rigorous theory of Kaeser & Burns ( 1973 ), implemented in a computer model using a 
special simulator language, and note that they could alternatively have supplied a formal 
mathematical proof. 

Neither of those approaches was necessary, however. The conclusions are intuitively 
evident, and can be supported as rigorously by a simple graphical argument as by formal 
mathematical analysis or computer models. The rate-vs-concentration curves for the (unat
tainable) boundary conditions of kinetic order zero and of order infinity are shown in Figs. 1 
and 2. Zero order (Fig. 1) means that the velocity of the reaction is equal at all finite 
concentrations of substrate (it must, of course, be zero at zero concentration). An infinitely 
high order (Fig. 2) means that the concentration of substrate is equal at all rates of reaction. 
The So.s value and the saturating concentration are identical in this extreme case. The rate 
will increase or decrease in such a way as to hold the substrate concentration invariant. It 
follows that the rate of a reaction catalysed by an enzyme of zero kinetic order will depend 
only on the catalytic activity of the enzyme. If a sequence with no branches or additional 
points of input is at steady state, the rate of each reaction is equal to the system flux; thus the 
amount (or catalytic activity) of a zero-order enzyme would uniquely determine flux. (That 
would be nearly true also for a real enzyme that was nearly saturated, since the kinetic order 
of a real enzymic reaction approaches zero as the velocity of the reaction approaches V max·) 
A large change in the amount of an enzyme of infinite kinetic order (Fig. 2) would not affect 
the rate of the reaction at all (as long as V max exceeded the flux). Thus such changes could 
not affect flux through the sequence; the flux control coefficient of the enzyme, as defined by 
Burns et al. (1985), would be zero. For enzymes of high kinetic order, the actual order 
changes sharply with small changes in rate; if the order were infinite, the change would be 
abrupt. If the amount of the enzyme were reduced continuously, there would be a point at 
which the potential rate of supply of substrate exceeded the V max of the enzyme, and at that 
point the kinetic order would change instantaneously to zero and the flux control coefficient 
would jump from zero to 1. 
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Figure 4. Rate as a function of substrate con
centration for a hypothetical enzyme of kinetic 
order infinity with the affinity of the enzyme 
for substrate modulated by a negative modifier 
metabolite or effector. a, rate in absence of 
modifier; b, rate in presence of modifier. 

From those simple kinetic considerations, Sauro & Fell (1987) point out correctly that 

enzymes that display positive cooperativity cannot simultaneously have high flux control 

coefficients as defined. They further assume that this means that such enzymes cannot 

control fluxes through sequences. They note that this conclusion is in complete contrast to 

the traditional point of view, according to which allosteric enzymes, which usually possess 

cooperative kinetics, are the sites of highest flux control. 

This example illustrates how the use of erroneous assumptions can lead to egregiously 

erroneous conclusions. The conclusion that an enzyme with high kinetic order could not 
have an important effect on flux would be valid if the enzyme were regulated by modulation 
of its maximal velocity (Fig. 3). A 50% decrease in V max• from a to b, would have no 
effect on flux, as long as the new value of V max exceeded the flux allowed by other 
components of the sequence. 

However, as far as I know, no enzyme that catalyses a reaction of high kinetic order has 

been observed to be regulated by modulation of V max· They all respond to modifiers by 

changes in the value of S0.5, the concentration of substrate at which the reaction velocity is 

half of that at saturating concentration. (For reasons of logical consistency and dimensional 

accuracy, the symbol Km is not appropriate for enzymes with kinetic orders either larger or 

smaller than 1.) If the S0.5 value of the hypothetical infinitely cooperative enzyme is 

increased by a factor of 2 (from a tobin Fig. 4), the reaction will stop completely. If the 

sequence were sealed off from either gains or losses from or to the outside, and if this 
enzyme catalysed a reaction late in the sequence, as assumed by Sauro & Fell (1987), the 

concentration of substrate would merely build up to the new value of S0.5, after which the 
enzyme would again have no effect on flux. But no known metabolic sequence is like that. 
Enzymes with high-order kinetics are always, as far as I know, immediately at branch points 
(or are one step away from a branchpoint and are linked to the branchpoint by a reaction that 

is in equilibrium, so that in effect the regulatory enzyme is at the branchpoint even in such 

cases). If the concentration is at a value between the vertical parts of curves a and bin Fig. 

4, it is obvious that a small change in S0.5 can cause the flux to change from zero to V max· 

Rather than the step function illustrated in Figs. 3 and 4, real regulatory enzymes exhibit 

sigmoid curves of rate as a function of substrate concentration, as in Fig. 5. The orders are 
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Figure 5. Rate as a function of substrate con
centration for an enzyme that binds substrate 
with a high degree of cooperativity to four 
catalytic sites, with the affinity of the enzyme 
for substrate modulated by a negative modifier 
metabolite or effector. a, rate in absence of 
modifier; b, rate in presence of modifier. 
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typically between 2 and 4; the curves of Fig. 5 are calculated for fourth-order reactions. It is 
evident that small changes in S0_5 can still cause very large changes in reaction rate in such 
cases. Although the flux control coefficient as defined by Burns et al. (1985) is low for such 
enzymes (since a change in amount of enzyme would have little effect on flux), the flux of 
the sequence is probably controlled almost entirely by modulation of the S0_5 value for the 
first enzyme. The flux control coefficient of an enzyme, defined in terms of changes in V max 

or amount of enzyme, is almost entirely unrelated to its regulatory importance- that is, to 
the extent to which it actually controls flux. Sauro & Fell's erroneous conclusion resulted 
from their assumption that flux control coefficients as defined in the model are measures of 
the extent of control. Since very few enzymes are modulated by change in V max or catalytic 
activity, which is the parameter on which flux control coefficients are based, an enzyme 
might have a flux control coefficient close to zero but still exert nearly 100% of the control 
of the flux through the sequence. That indeed is probably the usual situation for nearly all 
enzymes of regulatory importance. It is noteworthy that high kinetic order, the feature that 
allows an enzyme to function as a powerful and sensitive determinant of flux when its S0_5 

is modulated, is the same property that causes an enzyme to have a low value of the flux 
control coefficient of Burns et al. (1985), which is based on the assumption that V max is the 
modulated parameter. 

A kinetic order of zero, or some low finite value, would be useful for stabilizing rates at 
the expense of wide excursions in concentrations. A high kinetic order is useful for minimiz
ing changes in concentrations while allowing for large fluctuations in flux. Since the need in 
metabolism, as well as the observable reality of metabolic regulation, is for velocities to be 
regulatable over wide ranges, as in the transition between rest and heavy exercise, while 
concentrations are stabilized closely to avoid disruptions of related sequences, it is obvious 
why regulatory enzymes in general are characterized by high kinetic orders. 

Because they are located at the beginnings of sequences (that is, at branchpoints) and 
because they are regulated by modulation of S0_5 rather than V max• high-order enzymes are 
the main control elements of metabolic sequences. The fact that the erroneous conclusion of 
Sauro & Fell (1987) was reached with the aid of the model of Kaeser & Burns (1973) 
illustrates the fundamental differences between the assumptions of that model and the 
characteristics of real metabolic regulatory systems. The assumption that all enzyme 
modulations are equivalent to changes in amount of enzyme sharply differentiates that 
model, and also many others, from actual metabolic systems. 
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Kaeser & Bums (1973) and other theorists are correct in pointing out that there is no 

underlying chemical necessity that one reaction in a sequence should exert primary kinetic 

control. On the other hand, there is no difficulty in designing a chemical system in which 

kinetic control will be concentrated at one reaction. That appears to be the situation in the 

evolutionarily-designed sequences of metabolism. Highly-sensitive partitioning at branch

points determines the rates of initial reactions and thus the fluxes through pathways. If the 

enzymes that catalyse later steps are present at levels assuring that their V max values will 

exceed the highest flux that is permitted by the first enzyme, effective kinetic control will 
reside exclusively at the branchpoint. 

Because it is short and clearly written, the paper of Sauro & Fell (1987) illustrates 

especially well three features that experimentalists would strongly urge theorists to avoid: 

1. Unnecessarily complicated treatment of essentially simple concepts. 

2. Careless choice of assumptions, which result in conclusions that are not valid. 

3. An intellectual value system within which it seems self-evident that a few hours of 

mathematical doodling by a theorist can invalidate any amount of work and thought by 

experimentalists. 

Being human, experimentalists are likely to be put off by feature 3 - not so much because 

of the claim that they are wrong as by the implication that their work is so trivial that it 

would not be worth a few minutes of a theorist's time to consider whether it might perhaps 

have some validity. Being busy and, in most cases, out of practice mathematically, they are 
likely to be prevented by feature 1 from ploughing through elaborate models. But of course 

it is feature 2 that can constitute an insuperable bar to useful interaction between theorists 

and experimentalists. Models that lead to grossly erroneous conclusions can neither aid 

experimentalists in planning experiments nor contribute to better understanding of metabolic 

regulation by anyone. 
As a point for discussion, one could suggest that mathematical models have not as yet 

contributed either to experimental design in metabolic biochemistry or to understanding of 

metabolic regulation. Some participants may disagree with that statement. Others will con

sider it to be irrelevant to their interests, which have no room for consideration of actual 

systems. But for those, of whom I am one, who share the hope of the organizers of this 

Symposium that a common ground can be found between theorists and experimentalists, the 
present situation is discouraging. As yet, there has been little apparent interest on either side 

in building bridges. Improvement will depend on the realization that both experimentalists 
and theorists have something to offer. Theorists can supply a stronger mathematical orienta

tion and presumably an inclination toward broad interpretations. Experimentalists can 

supply information on the actual properties of enzymes and on the organization of metabol

ism, without which models can be only interesting mathematical diversions. It is to be hoped 

that at some time collaborations between theorists and experimentalists, with intellectual 

input from both, will lead to experimental tests whose results can feed back and contribute to 
the evolution of more relevant models that will actually lead to increased understanding of 
the mechanisms of metabolic regulation. 
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Design of Models that are Relevant to Metabolic Regulation 

I will end by listing some of the conclusions from experimental work on metabolism and on 
regulatory enzymes that seem to me to be most directly relevant to the design of models for 
metabolic regulation. 

Metabolism is a complex network, and regulation must logically be focussed on branch
points. Most biosynthetic sequences and most regulatory segments of the major catabolic 
sequences appear to be regulated in large part by modulation of the S0.5 value of an enzyme 
of high kinetic order that catalyses the first step of the sequence or segment. Such steps are, 
of course, at branchpoints. When the branchpoint is one at which a relatively low-flux 
branch, such as a biosynthetic sequence, diverges from a mainstream high-flux sequence 
such as glycolysis or the citrate cycle, the concentration of the branch-point metabolite will 
probably not be affected significantly by the drain into the biosynthetic branch, so the situa
tion is illustrated approximately by Fig. 5. If the concentration of substrate is in the range 
between about 1 and 1.5, it can be seen that a 2-fold change in S0.5 (illustrated by the curves 
of Fig 5) can cause the flux through the biosynthetic sequence to vary by a factor much 
larger than 2. In contrast, a 2-fold change in V max could not alter the flux by more than a 
factor of 2. Enzymes with high kinetic orders with respect to substrate, and with their 
affinities for substrate (the reciprocal of S0.5) modulated by appropriate metabolic signals, 
would appear to offer the greatest possible sensitivity of control in response to small signals, 
and that is the kind of control that has evolved for most sequences. It is evident from our 
discussion in connection with the paper of Sauro & Fell (1987) that V max control of an 
enzyme with high kinetic order would be ineffective, so it is not surprising that enzymes 
with such features have not evolved. 

When the metabolic context of a branchpoint is such that the fluxes through the two 
branches are approximately equal, as when a biosynthetic sequence forks, the situation is 
more complex. The simplest such case is illustrated in Fig. 6. If the initial properties of the 
competing enzymes are represented by curves a and b, the branch that is initiated by 
reaction a will obtain most of the branchpoint metabolite and its flux will be much larger 
than that of the other branch. If the S05 value of enzyme a is increased four-fold (curve 
a*) by the action of a modifier, the flux through the branch initiated by reaction b will be 

Figure 6. Effect of modulation of S0.5 on the competi
tion between two enzymes for a common substrate. 
The figure shows rate as a function of substrate con
centration for two enzymes, a and b. The S0.5 value 
for b is twice that for a. In consequence, the rate of 
the reaction catalysed by enzyme a is much greater 
than that of the reaction catalysed by enzyme b at 
substrate concentrations where neither enzyme is satur
ated. When S0.5 for enzyme a is increased four-fold 
by a modifier metabolite (curve a* ), the rate of the 
reaction catalysed by enzyme b will be much greater 
than that of the reaction catalysed by enzyme a. 
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much larger than that through the branch initiated by reaction a. The ratio of fluxes through 

the branches may change by a factor of well over 100. 
The concentration of the branchpoint metabolite is likely to change in response to 

changes in affinities of the competing enzymes. That may either increase or decrease the 
sensitivity of the partitioning, depending on the relative values of the parameters of the 
system. In addition, in some cases the affinities of the two enzymes will vary in opposite 
directions in response to the same metabolic situation; that will obviously greatly increase 
the sensitivity of the system. If two fourth-order enzymes compete for a common substrate, a 
2-fold increase in the S0.5 value for one and a 2-fold decrease in the S05 of the other can 
also change the ratio of fluxes through the two branches by a factor well over 100. Changes 
of such magnitudes are common in metabolism; it would be difficult to explain how they 
could be generated in systems in which V max was the modulated parameter. 

In general, the rate of an enzyme-catalysed reaction could be controlled by changes in 
the amount of the enzyme, by modulation of the catalytic constant, the turnover number, or 
Vmax (which are equivalent terms that relate to the rate of catalysis by a filled site), or by a 
change in the fraction of the catalytic sites that are occupied by substrate. Control by 
modulation of V max is rare. There are changes in the amounts of enzymes in cells, but such 
changes appear usually to be related to the need for enough enzyme to meet maximal needs, 
and not to contribute directly to moment-by-moment regulation of fluxes. 

Nearly all metabolic regulation appears to be exerted by control of the degree of satura
tion of enzymes - the fraction of catalytic sites that bear substrate molecules. The ratio of 
filled to empty sites is, in the generalized Michaelis-type treatment that is probably a good 
approximation for the great majority of enzymes, equal to (S!S0.5)h, and the fraction of 
sites filled is [S*)h/(1 +(S*)h], where S* = S!S0.5 and h (the Hill coefficient) is a 
measure of the number of sites and the degree of cooperativity of binding. In the laboratory, 
workers usually control the degree of saturation by varying S, the concentration of the 
substrate. The degree of saturation of regulatory enzymes in the functioning cell appears to 

be controlled primarily by modulation of S0.5• It appears to an experimentalist that models, 
if they are to contribute to understanding of metabolic regulation, should reflect that fact. 
Modification of models to incorporate more realistic control mechanisms based on modula
tion of S0 .5 values would offer much more potential aid to experimentalists in designing 
experiments and thinking about the meaning of their results than can the present models. 

Discussion 1 

JEAN-PIERRE MAZAT 

I should like to begin by answering the last statement in Atkinsons's introduction: for me, 
the most important thing that theoreticians have to say to experimentalists is to urge them to 
work out themselves the theory they need. Control theory provides a good example of this, 
being developed initially by Kaeser, a geneticist, to explain results from genetics, and 

1EDITORS' NOTE. The points raised in the Discussion are considered by Atkinson at the end of Chapter 36. 
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subsequently exploited by bioenergeticists to resolve conflicting results from different 
laboratories concerned with oxidative phosphorylation. 

The reproach to theoreticians about "redesigning the universe" is an old one, and in 
many cases I believe it to be unfair, being put forward by some people as a way of avoiding 
discussion of new theoretical concepts, sometimes difficult ones. There are, of course, many 
unrealistic theoretical developements, just as there is much irrelevant experimental work. In 
both cases, however, I think the only reasonable attitude is to ignore them; other attitudes 
lead to a great waste of time. 

I now comment on the three Commandments that Atkinson believes theoreticians must 
obey when working with experimentalists : 

1. I completely agree with point 1. As a teacher, I have always thought that simple 
concepts can be illustrated by examples from real life, and I have tried to do that with 
control theory (Mazat, 1988)]. But what is a "simple treatment"? Is matrix algebra 
simple, for example? A mathematician would certainly say yes, but a biochemist 
working with mitochondria might well think (wrongly) that the mathematician's matrix 
is much more complicated than the mitochondrial matrix! 

This emphasizes another point : for theoreticians and biologists to work together they 
must speak the same language, or at least try to understand what the other says. For this 
reason I believe there is a need for "cross teaching", i.e. teaching of mathematics to 
biologists and biology to theoreticians. The Societe Fran~aise de Biologie Theorique has 
tried to foster this for the past eight years, with the next school to be held in 1990 during 
three weeks at Solignac (near Limoges). Several such schools have been held already; 
they have promoted many collaborations between theoreticians and experimentalists. 

2. I disagree with point 2. First, it can be useful to arrive at an invalid conclusion as, 
properly interpreted, this provides a way of identifying and discarding a bad choice of 
assumptions. This is a way in which theoretical modelling can be used. Second, the 
experimentalists' assumptions are not always clear even for themselves, let alone their 
readers. They are rarely written down, whereas for theoretical work the assumptions 
have to be explicit, and sometimes this is the first time they are made explicit. At that 
point a need arises for thorough discussion between theoretician and experimentalist: 
what are the basic assumptions of the experimental work? what is its history? why was 
the particular work done? in the way in which it was done? ... This is not an easy 
discussion, nor always a pleasant one. 

3. Of course, I agree with point 3. 

I disagree completely with the remark beginning "As a point for discussion ... ". Figs 5 
and 6 of Atkinson's paper were drawn by computer, and this must have been done on the 
basis of a model to provide the equations; I would guess that the model of Monad et al. 
(1965) was used. Models of this sort, beginning with that of Hill (191 0), have been of great 
help for explaining the experimental results obtained with regulatory enzymes: the existence 
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of oligomers, conformational changes, cooperativity, etc. They have predicted experimental 
behaviour that has been tested experimentally. 

I would like to give some examples of applications of control theory that have illumin
ated experimental results in metabolism. One is its application in genetics to explain the vast 
occurence of recessive mutations in genes coding for the enzymes involved in intermediary 
metabolism [see the beautiful paper of Kaeser & Bums (1981) on the molecular basis of 
dominance]. This is the first simple explanation of this long standing riddle; they show that 
"the observation of almost universal recessivity of Mendelian mutants, far from constituting 
a problem requiring an evolutionary explanation, is seen to be a necessary consequence of 
the summation theorem". 

Another example is provided by the application of control theory to the control of 
oxidative phosphorylation. Before the work of Groen et al. (1982) in Amsterdam there was 
no agreement among workers about which step (supposedly unique) controlled oxidative 
phosphorylation in mitochondria. Applying the theory of Kaeser & Bums (1973) and of 
Heinrich & Rapoport (1974) they showed that the control of this system could depend on 
several steps and also on the particular steady state being studied. One can say that this 
application changed the way in which we now view mitochondrial metabolism. 

There are many other applications of metabolic control theory, and there are also, I 
believe, other theories that have been of great value for interpreting experimental results. I 
hope that I have shown that one does not have to be as pessimistic as Atkinson in the domain 
of relationships between theoreticians and experimentalists. These relationships are not easy, 
but when they succeed they can change the way in which we view the experimental world. 
This is especially true of metabolic networks, where the great number of variables and para
meters involved prevents the use of intuitive reasoning. 

DAVID A. FELL and HERBERT M. SAURO 

Atkinson's working paper presents an artificial dichotomy between experimentalists and 
theorists. Darwin (1903) noted "About thirty years ago there was much talk that geologists 
ought only to observe and not to theorize ... How odd it is that anyone should not see that all 
observation must be for or against some view if it is to be of service!" We doubt that 
anyone nowadays would argue against Darwin that there is a significant role in science for 
pure observation uncontaminated by any theory or hypothesis, and in one major school of 
the philosophy of science (Popper, 1959), the essential characteristic of science is to perform 
experiments that could potentially falsify a hypothesis. 

Atkinson himself uses model and hypothesis to describe the features of "actual systems" 
that theorists must take into account for their studies to have relevance for experimentalists. 
For example, he states: "Most enzymes are non-regulatory in the usual sense, and their 
behaviour is adequately described by the familiar Michaelis equation". Yet the Michaelis
Menten equation itself is a model; it is derived for the simplest reaction scheme sufficient for 
the purpose and is solved, approximately, for the case of a single-substrate enzyme acting in 
the absence of product. Since some three quarters of enzymes have two or more substrates, 
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and all are reacting in the presence of their products when in a metabolic pathway, it is clear 
that recommending the use of the Michaelis-Menten equation as a model of an enzyme in a 
pathway involves some subjective judgement about what is "adequate description". An 
example of an error arising from the incorrect application of the Michaelis-Menten model in 
interpretation of experimental observations was shown by Bosca & Corredor (1984). They 
concluded that glycolysis must be regulated below phosphofructokinase because the con
centration of fructose 1,6-bisphosphate in certain cells is much higher than the Km of 
aldolase towards this substrate. This implication that aldolase is saturated ignores the 
concentration of the two products of the aldolase reaction and the equilibrium constant, 
which are such that neither is the enzyme saturated with its substrate, nor are its kinetics 
rectangular hyperbolic with respect to substrate. 

Atkinson also charges theorists variously with using oversimplified models at one 
extreme and hard reductionism at the other. A model is only useful if it can represent some 
significant feature of the real system but is simpler to understand and manipulate. Thus it 
might be useful to construct a model of metabolism using linear kinetics to investigate 
whether a particular phenomenon can be exhibited by such a model, or whether the intrinsic 
non-linearity of enzymic catalysis plays an indispensable role. Any model must represent a 
compromise between extreme abstraction, giving a poor approximation to the real system, 
and over-elaboration, giving greater generality and realism in its application at the expense 
of comprehensibility. This, however, is a problem for us all, as "experimentalists" use 
models in their explanations just as "theorists" do, as we attempted to illustrate in the 
previous paragraph; it is just less obvious in the former case as the models are often verbal 
rather than mathematical, and their development is less formal. Our common concern is to 
decide which models are useful, and which are unhelpful or misleading. 

One of Atkinson's specific criticisms is directed at our abstract (Sauro & Fell, 1987): its 
conclusions could have been reached by an alternative route. We cannot contest this, 
because it is invariably the case that different formalisms can be applied to a particular 
problem and yet yield compatible results. However, different routes to the same explanation 
may differ in their rigour, or their comprehensibility for a particular audience. We would 
suggest that whilst his approach has some heuristic value, it lacks the rigour that he claims. 
A significant difficulty with his analysis is that it attempts to define the range of behaviour of 
metabolic systems at steady state by describing the extremes. However, the infinitely 
cooperative system (Fig. 2) cannot give rise to a steady state in a pathway for a flux value 
less than the V max• and therefore its validity as a model of steady-state behaviour is 
uncertain. 

However, our major point is that his claim that our conclusions were in error and that 
the theory of Kaeser & Bums (1973) has limited relevance to real systems is based on a 
complete misrepresentation of the basis and applicability of metabolic control analysis. His 
argument is based on repeated assertions and implications that the uses of flux control 
coefficients are limited to their formal definition, i.e. that as they are defined as the response 
of a metabolic flux to variations in an enzyme activity (in other words, to its V max>• they can 
only be used to determine the response of flux to factors that affect the V max- Even if this 
were true, it would still allow metabolic control analysis to apply to regulation by induction 
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and repression of gene expression and by covalent modification of enzyme activity, which 
are both ignored by Atkinson when he attributes most regulation to modulation of S0_5 

values of branch-point enzymes. However, the flux control coefficient is a component of the 
"response coefficient" described by Kaeser & Bums (1973; see also Kaeser & Porteous, 
1987): the response of a system flux J to an effector Q acting on enzyme i is the flux 
control coefficient of enzyme i on J times the elasticity coefficient for the rate of enzyme i 
with respect to the metabolite Q, i.e. 

This is true whatever the functional form of the effect of Q on enzyme i; in other words, it is 
true when Q acts as a K-system effector of "i", and therefore applies to changes in S0 .5 

(Fig. 4). [The use of the response coefficient for changes in "K" parameters has been 
illustrated by Westerhoff & Kell (1987.)] The equation shows that however strong the effect 
of Q on" i", it can have no effect on the flux through the system if C{ is zero, since R6 will 
necessarily be zero. In this sense, therefore, Atkinson's statement that "an enzyme might 
have a flux control coefficient close to zero but still exert 100% of the control of the flux 
through the sequence" cannot be true for realistic values of ~ If he can give a quantitative 
definition by which "100% of the control" can be objectively measured, we are prepared to 
determine the control coefficients for any model system that he can propose that is claimed 
to exhibit this property along with a very low flux control coefficient, and to report the 
results to the meeting. 

In summary, our position is that metabolic control analysis already contains the features 
that Atkinson seeks: its applicability is not affected by the functional form of enzyme 
kinetics (i.e. it works whether the kinetics are linear, Michaelian, sigmoidal or of some other 
form, because of the general nature of the definition of the elasticity coefficient); it can be 
used to describe the response of systems containing K-system feedback loops, and it is 
applicable to branched and cyclic systems. We hope to illustrate this in our own contribu
tions to the symposium (see Chapter 9). 

MARK SALTER and RICHARD G. KNOWLES 

Although we found the Atkinson's working paper stimulating, we believe that he has failed 
to appreciate two very important points concerning regulation and control theory; and 
because of this we believe the major part of the arguments are flawed. 

Regulability versus control coefficient. It is an unfortunate fact that the nomenclature in 
the literature generally is unclear with regard to the meanings of regulation, regulability and 
control, and this has led to considerable confusion. Perhaps it would be less confusing if the 
term "control" was used to denote control coefficients, "regulability" to denote the degree to 
which enzyme activity can be changed by any effector; and the "regulatory importance" of 
an enzyme would be a property derived from these two factors together, and would therefore 
define an enzyme to change pathway flux (or a metabolite in that pathway). The regulatory 
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importance of an enzyme is therefore a combination of both its control coefficient and its 
regulability, as has been emphasized previously by Crabtree & Newsholme (1985), by 
ourselves (Salter et al., 1986) and by others. The importance of this point in relation to 
Atkinson's paper will be discussed below. 

V max versus "activity under pathway conditions" (v). Although one of the originating 
papers of control theory emphasized control coefficients as related to changes in V max of the 
enzyme under study, other work then and since has used the more general expression 
relating changes in flux (or metabolite concentrations) to changes in v, where v is the net 
activity of the isolated enzyme under the original pathway conditions (i.e. the substrates, 
products and effectors at their concentrations found experimentally). Expressing control 
coefficients as a function of v rather than v max allows for the fact that pathway fluxes (or 
metabolites) can be modulated by changes in either Km or V max of an enzyme. 

Implications/or Atkinson's paper. Atkinson concludes that the control theory should 
take into account changes in S0 .5• In fact, with the use of v the present theory already takes 
changes of S0 .5 into account. The example given in Fig. 6 shows an enzyme (ala*) of low 
control coefficient but with very high regulability (although S0.5 only changes 2-fold the v 
at S = 1.25 changes approximately 100-fold). Because of the consequent regulatory 
importance of this enzyme, the paper concludes that the flux control coefficient of this 
enzyme "is almost entirely unrelated to its regulatory importance", implying that the flux 
control coefficient is not a useful piece of information. However, as discussed above, 
determination of the regulatory importance of an enzyme requires knowledge of both the 
regulability and the control coefficient and also the way in which the control coefficient 
changes over the range of regulation. For example, if an enzyme had a flux control 
coefficient of 0.0001 then a 100-fold increase in v would not produce a significant change 
in pathway flux; a 100-fold decrease in v might have a significant effect, but only if the 
control coefficient of the regulated enzyme increased by an amount that allowed the change 
in v to significantly decrease flux (or a pathway metabolite). 

Other points. I. The theoretical infinite kinetic models used in the paper are so divorced 
from real systems as to be unhelpful: they imply that a certain concentration of S the enzyme 
will be infinitely regulable. It is illogical to extrapolate from a model of infinite kinetic order 
to a system of finite kinetic order. 

2. Atkinson states that the flux control coefficient of an enzyme of high kinetic order 
situated at a branch point would have a low flux control coefficient. This is not necessarily 
the case, as one may see by examining a system in which enzyme a carries 100% of the flux 
into a branch out of which enzyme b carries 99% of the flux and enzyme c carries 1%. If b 

was far from saturation then c would have a high flux control coefficient for its own flux. 
Atkinson also states that the flux through this enzyme would probably only be "controlled" 
(in our terms, regulated) by modulation of S0.5 of the same enzyme. 

Again, this is not necessarily true. If c is followed in linear sequence by enzyme d, and 
changes in the v of d (for example by altering either its Km or its V max) changed the 
concentration of the metabolic intermediate between c and d in a range where this 
intermediate had a significant inhibitory effect on c, then d could have a large flux control 
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coefficient and could therefore (given significant regulability) regulate the pathway c-d. 
It would seem from our comments above that the way to advance the quantification of 

"regulatory importance" would be to formulate a theory combining control coefficients and 

regulability of enzymes. At present this would appear to be difficult to attain, given that it 

would first be necessary to formulate a theory describing how control coefficients change 

with changes in v. 

ATHEL CORNISH-BOWDEN 

I think the suggestion of Drs. Salter and Knowles about the distinctions to be made between 

regulation, regulability and control is a very valuable one, and believe that if it were 

widely adopted it might help to resolve some of the confusion that currently exists in control 

theory. Studying control would then involve measuring and reporting control coefficients 

(logically enough), whereas studying regulability would involve elasticity coefficients. In 

time, one might suggest that regulability coefficient would prove a more evocative (and 

therefore more comprehensible) term than elasticity coefficient, but such a short time after 

the latter became common it is probably premature to propose a replacement. In general, the 

suggestions made by Drs. Salter and Knowles have the great merits that they do not conflict 
(as far as I can see) either with existing usage or with the meanings that one might attach to 

the terms if one came upon them out of context with no precon-ceptions about what they 

might mean. 
Finally, I agree very much with their view that we need to develop a theory, and indeed 

a measure, of regulatory importance that combines in some way the ideas of control 

coefficients and regulability. This might be very helpful in resolving the paradox whereby 

the effect of feedback inhibition of an enzyme is to decrease its flux control coefficient for 
the flux through its own pathway. One might hope that a measure of regulatory importance 

would be increased by the occurrence of allosteric inhibition. I suspect that confusion 

between control coefficients and regulatory importance is the source of some of the resist

ance many biochemists still have towards adopting the ideas of metabolic control theory. 

JAN-HENDRIK S. HOFMEYR 

I read Atkinson's pre-conference working paper with great interest since I, like many other 

biochemists, have always found his papers and especially his book Cellular Energy 

Metabolism and its Regulation (Atkinson, 1977) particularly lucid and thought-provoking. I 

have now received a copy of his recent book Dynamic Models in Biochemistry (Atkinson 

et al., 1988) and am glad that I waited for that before writing my answer. Besides being an 
extremely useful and creative book it has also given me a better idea of how Atkinson views 

the control of metabolism. Although I agree wholeheartedly with many of his statements, I 

do have reservations about others. These comments address some these not already dealt 

with by other contributors to this Prologue. 
It seems as if there still exist two schools of thought about metabolic control, let us call 
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them the "old" and the "new" school for want of better words and without implying that 
either is all correct or all wrong. Let us say that the old school is embodied in what one 
would read about metabolic regulation in a general biochemistry textbook and the new, for 
instance, in the writings of Kaeser & Burns (1973), Heinrich & Rapoport (1974), and 
Savageau (1976). Crabtree & Newsholme (1985), also influential writers on metabolic 
regulation, would stand (perhaps uncomfortably) with one foot in each camp. In a sense 
Atkinson seems to embrace the old school, although his is a particularly well informed view 
of metabolic regulation. I, on the other hand, subscribe to the new school, but would not for 
a moment disregard the basic common sense in a lot of Atkinson's statements and intuitions. 
Let me immediately say that the two schools are by no means incompatible and we should 
strive to combine their strongest features into a coherent whole. (Note that I do not 
distinguish between theorists and experimentalists, a distinction that, in my view, does not 
contribute much to the debate. To my knowledge most of the workers seriously interested in 
metabolic control use both theory and experiment.) 

Much of the misunderstanding that exists between the two schools seems to me to be of 
a semantic nature, and, sadly, because the old school seems not to have really made the 
effort to understand what the new school is saying. I shall try to clarify a few of the semantic 
matters and general misunderstandings in the hope that we shall be able to discuss really 
important things at the workshop and not waste time quibbling about the meanings of words. 
For those who do not want to wade through my arguments, the points I wish to make can be 
summed up as follows: 

1. It is misleading to talk of the "model" of Kaeser & Burns (1973). They did not propose a 
new model of metabolic processes, but rather developed a quantitative language to talk 
about the properties of the basic kinetic model of metabolism that has been in use for 
decades, the same model that Atkinson uses. 

2. Whereas the old school tends to use the word "control" in a general way (in much the 
same way as we use it in everyday language), it has acquired a specific meaning in the 
framework of the new school. This has evidently caused much confusion. 

3. Although in most publications the definition of control coefficients is based on the 
measured response of a flux or concentration to change in enzyme concentration, a 
more general definition in terms of a change in local rate is less confusing in that it 
does not lead to the idea that control analysis only considers changes in V max and not 
changes in, for example, S05• 

Metabolic models 

In the working paper Atkinson often uses the word "model", but his use of the word is rather 
loose and I suspect that this may cause confusion. He does, however, raise important 
questions such as: What aspects of real metabolic systems should a model include to make it 
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relevant? Do we lose, in the quest for generality, our concern with real properties of real 

systems? He talks about the "model" used by Kaeser & Bums (1973) and how this purported 

model does not include control of enzyme action through modification of affinity for 

substrate, but supposes that all enzyme modulations are equivalent to changes in the amount 

of enzyme. I do not intend philosophizing about models and modelling, but clearly all of this 

needs comment. 
First, although Atkinson claims pie-in-the-sky status for models built from so-called first 

principles, both his and our own models must clearly be based on something. Let us find 

common ground between the two schools. Surely both basically view metabolic systems as 
networks of enzyme-catalysed reactions and transport steps linked to each other by mass 

action (the product of one step being the substrate of the next). There are, of course, other 

mechanisms of metabolite-enzyme and enzyme-enzyme interaction, a common one being 

the regulatory loop (a metabolite that is neither a substrate, product nor a cofactor interacts 

with an enzyme and changes its activity). For the sake of simplicity both schools usually 

assume "free pool" status for the intermediary metabolites, i.e. there are no diffusion 

gradients within the system (the chemical engineer's well-stirred reactor) and the metabol

ites are not channelled. This view leads naturally to what I would call the basic kinetic 
model of metabolism: the rate at which the concentration Si of an intermediary metabolite 

changes is the sum of the rates vi that synthesize that metabolite minus the sum of the rates 
that consume it. For a system with n enzymes the basic kinetic model can be represented 

mathematically as a system of differential equations, one for each of m metabolites: 

dS· " -' = L, CijVj fori= 1 ... m 
dt j=l 

The coefficients cij refer to the stoichiometry of metabolite participation in a reaction (nega

tive for substrates, positive for products and zero for non-participants) and therefore define 

the mass-action network structure of the system. Both schools usually consider the steady 
state as a starting point: each differential equation equals zero while each individual vi has 
a finite value and therefore the net rate of consumption of each metabolite equals the net rate 

of production; the metabolite concentration is time-invariant; the terminal metabolites are 
regarded as clamped by the environment of the system. In its simplest form the model 
assumes that the steady state is both dyrutmically stable (after a perturbation in any of the 

variable metabolites the system relaxes to the same steady state) and structurally stable 
(after a perturbation in one of the parameters the system relaxes to a closely neighbouring 

steady state). 
Although many readers may find the above obvious, it is important for my argument. I 

shall assume that both schools use the basic kinetic model as a point of departure. When we 

discuss the relevance of various metabolic models we usually argue about modification of 

the basic model, most often assumptions made about the rate equations, i.e. the equations 

that replace vi in the model. While it is true that a model that uses only first-order rate 

equations can give only limited information about the behaviour of a real metabolic system, 

it is a useful first· approximation, if only because it is mathematically more tractable. Atkin-
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son seems to think so himself, as in his new book (Atkinson et al., 1988) his first digital 

experiment on the kinetics of sequential reactions is done on exactly such a model and, in 

the process, a few extremely important principles about the behaviour of the concentrations 

and fluxes in such systems are discovered. Of course, this is only a first step and the next 

step must include saturation properties, variable kinetic orders, etc. In general, both the new 

and old school accept and apply the above, and both would criticize models that try to 
explain metabolic behaviour solely on the basis of limiting assumptions. For example, I 
think that most of us would disagree with Newsholme's insistence that the first enzyme of a 

pathway has to be irreversible and saturated as a precondition for the existence of a steady 
state (Crabtree & Newsholme, 1985). At the same time we would agree on the irrelevance of 

some of the metabolic models that have been analysed in the literature, where no account is 

taken of the real properties of enzymes. 
I am not sure whether Atkinson regards the basic kinetic model as too general, but 

without any further assumptions about the reversibility, distance from equilibrium, degree of 

saturation or form of the rate equation, that is the model on which the theory of the new 

school is based - the theory is a set of mathematical consequences of a specific type of 

differential analysis of the basic kinetic model. Control analysis and biochemical systems 

theory provide mathematical languages for making quantitative statements about the behavi

our of a metabolic system. Far from compromising their usefulness for the sake of general

ity, these frameworks provide for the natural inclusion of real enzyme properties; they do 
not make prior assumptions that limit the properties of the model (an intrinsic problem of 
some old-school models, where, for instance, first steps are often defined as irreversible and 

rate-limiting and therefore assumes one of the very things that should be under investiga

tion). Any structure is allowed (linear chains, branched chains, loops and moiety-conserved 

cycles) and, in principle, any molecular interaction can occur. To say that "nor does this 

model, I believe, incorporate the fact that most regulatory modifications of enzyme action 

involve changes in the affinity of enzymes for substrates rather than in catalytic activities" is 

to underrate the theory (more about this later). 
So, while I would agree that the aim for generality may be taken too far, a basic 

metabolic model and the language for describing its behaviour must be general enough to 

allow for the inclusion of all of the real properties of the functional units of metabolism. I 

believe that the frameworks of the new school fulfil this criterion and, at the same time, are 

not so general that no meaningful statements can be made about the behaviour of specific 

metabolic models. Nonetheless, I agree with Atkinson that when we choose to build and 
study a specific model on the basis of the basic model we should try to incorporate our 

present knowledge about real enzymes, real metabolic structures, real regulatory mechan
isms, which enzymes are sensitive to feedback, where they usually occur, etc. 

To my mind the actual debate about metabolic models is the one that has being going on 

in the new school, that is, the discussion of how valid the basic kinetic model really is. More 
and more instances are found of supramolecular associations between enzymes and 

channelling of intermediate metabolites, so that the assumption that these metabolites exhibit 

free-pool behaviour may be too limiting. Does this invalidate the frameworks of control 

analysis and biochemical systems theory? If not, how should it cater for these phenomena? 
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Are all metabolites channelled? Surely, if the energy charge, NAD+fNADH or NADP+J 
NADPH ratios play an important metabolic role, many enzymes in different pathways must 
be able to sense their concentrations. Should not at least branch-point metabolites and 
intermediate metabolites that have feed-back or feed-forward effects on distant enzymes 
exist as free pools? I hope that these are some of the matters that wlll be discussed at the 
workshop. 

Momentary Kinetic Orders 

In his arguments about metabolic behaviour Atkinson often uses the idea of variable kinetic 
order. He states, quite correctly, that enzymes are saturable and that their effective kinetic 
orders change with the degree of saturation. He continues by arguing for a distinction 
between, on the one hand, "non-regulatory" enzymes that would usually obey Michaelis
Menten kinetics and have a momentary kinetic order described by 1 - v/V max (varying 
between 1 and 0) and, other the other hand, "regulatory" enzymes, that "typically have 
higher, but still variable, kinetic orders". Is this so? If we agree that momentary kinetic order 
is defined by dlnv/dlnS then only the irreversible Michaelis-Menten rate equation would 
lead to 1 - v/V max as a description of momentary kinetic order. If, however, metabolic 
reactions are regarded as reversible in principle [and, in an argument for the acceptance of 
Km as a measure of affinity, Atkinson (1977) makes a strong case for this in his book] then 
the momentary kinetic orders of an enzyme with a reversible Michaelis-Menten rate 
equation are [1/(1 - r/Keq)](1 - v/Vr) for substrate and [-(r/Keq)/(1 - r/Keq)l(l - v/Vr) for 
product, where r is the mass action ratio, v the net reaction rate and Vr and Vr the forward 
and reverse limiting reaction velocities. These kinetic orders approach oo and -oo respectively 
as the reaction approaches equilibrium. Would this make them "regulatory" enzymes? Is this 
classification useful? I leave the argument open. 

Regulation and Control 

What do we mean when we say that a biochemical system is "controlled" or "regulated"? In 
the old school this seems to imply the existence of a "regulatory enzyme" or an enzyme with 
"regulatory importance", e.g. an allosteric enzyme or an enzyme subject to a specific 
regulatory mechanism of some sort. This I take to be the "usual sense" when I read that 
"most enzymes are non-regulatory in the usual sense". This statement that only regulatory 
enzymes typically have variable kinetic orders greater than one I have already discussed. 
Nowhere could I find a description of how "regulatory importance" could be subjected to 
quantitative scrutiny which would allow for variation in regulatory power as the metabolic 
state changes. It seems that, in the old school, an enzyme can only be regarded as potentially 
regulatory if a mechanism exists whereby a metabolite other than the substrates and 
products can influence the rate of that enzyme. By definition, an enzyme is therefore either 
regulatory or not. Atkinson ( 1977) himself pointed that this view is too limited: some 
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enzymes that show a U-type response have evolved without the development of a separate 
modifier site. 

I have found that the old school view still prevails: On various occasions I have asked 
either colleagues or students whether the flux in a linear chain of enzymes without a 
feedback loop is controlled or not. The answer invariably was negative. However, consider 
the following: A biochemist is confronted by a new organism that takes up a metabolite and 
transforms it in some way into an excreted metabolite; the rate of transformation (flux) is 
measured as the rate of production of end-product. When the end-product is already present 
in the medium the flux is decreased. We would say that the level of end-product "controls" 
the flux, and would suspect some inhibitory mechanism, perhaps allosteric feedback in 
which the binding of end-product lowers the affinity of the first enzyme for its substrate. 
However, a chain of "non-regulatory" enzymes (without a feedback loop) could produce 
exactly the same qualitative picture. All that is necessary is that each enzyme is sensitive 
towards the concentration of its own product. If the concentration of final product rises, all 
the intermediate concentrations rise and the flux will decrease, albeit to a lesser degree than 
for allosteric feedback. In a similar system where the affinities of the enzyme towards their 
products are higher, the flux will be more sensitive towards an increase in final product, and 
will therefore decrease more for a given change in the final metabolite (in all the above I 
consider small changes). Now, if an experimentalist studies the last mentioned two (non
allosteric) cases, without having any knowledge of whether there is a feedback loop or not, 
would he not conclude that in the second system the flux is "controlled" more effectively? 
Of course the existence of a feedback loop increases the potential for control of both flux 
and concentrations tremendously, but should the concept of control regulation be linked 
solely to specific molecular mechanisms ? 

The new school, on the other hand, uses these words in a much broader but rigorously 
defined way. All enzymes and various other system parameters can potentially contribute 
towards control, whether it be control of a flux or of a metabolite concentration. Here the 
distinction between a parameter and a variable of the system becomes important because 
control is now defined and quantified as the percentage change in a variable (flux or 
concentration) resulting from a 1% change in a parameter (such as concentration of end
product, enzyme concentration, affinity towards substrate, product or effector, etc). A 
change in any parameter can potentially affect, for instance, a flux. So, although both the old 
and the new school would have to do the same experiments to identify the specific 
mechanisms in which metabolites and enzymes communicate and interact with each other 
in, for instance, the above hypothetical system, the new school can at least make quantitative 
statements about the effectiveness of control by end-product without falling about trying to 
decide whether the word "control" is applicable or not. 

Note what, by adopting the broader use of the terms, we have lost nothing but the 
special category of "regulatory enzymes". But in the process we do not relegate these 
enzymes to some lesser category, since we still have a quantitative way in defining their 
undoubted importance in the behaviour of a pathway. In the broader definition a concept 
such as allosteric feedback is essentially only a description of an extra mechanism for 
molecular communication; important, yes, but not a prerequisite for the existence of control. 
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The broader definition, however, now admits and allows one to quantifiy the regulatory 
importance of other enzymes; more recent experiments show clearly that they can play such 

a role. The same applies to many transport mechanisms, which can fulfil an important 
regulatory function. 

Having written this, I have a sneaking suspicion that the old school will still not be 
satisfied. I sympathize with that, and, risking the wrath of my colleagues, I wonder whether 
most of the confusion about "to control or not to control" could have been forestalled by not 

opting for the "control" in "control coefficient". You may ask what's in a name, but I find it 
a pity that we could not retain the terms "sensitivity coefficient" (although, having opened 

this old can of worms I dread banishment to the North Pole). It makes more sense to me to 
say a flux is sensitive to a parameter instead of saying that it is controlled by the parameter 

- "controlled" easily takes on an ali-or-none guise. Control analysis is, after all, the 

analysis of the behavioural response of a metabolic state to perturbation in a parameter, 
taking into account all the interactions in the system, "regulatory" or not. I am aware of the 
history of the current nomenclature, but still feel that I have inherited a rather cumbersome 

and potentially confusing terminology. 

The Usefulness of the Concepts and Constructs of Control Analysis 

While Atkinson acknowledges some contributions of the new school to our present under
standing of the behaviour and control of metabolism, his main criticism seems to be based 
on his claim that the theory does not incorporate many of the observed properties of real 
systems; most important, that it does not allow for enzymes to be controlled by changes in 
the S0.5 values for their substrates, but only by changes in limiting velocity (or enzyme 
concentration) since this is the parameter on which control coefficients are based. I agree 

with neither claim nor criticism and would like to show that, by not making any assumptions 
besides those implicit in the basic kinetic model, control analysis allows for the inclusion of 

all the realistic enzyme properties mentioned. The only real limitation lies in the type of 
mathematical analysis that is employed, namely a differential analysis that accurately 

describes only the effects of small changes in parameters on the steady-state fluxes and 

concentrations. However, this limitation is forced on us by the inherently non-linear nature 

of enzyme behaviour. 
If Atkinson's claim were true, it would be important since "very few enzymes are 

modulated by changes in V max or catalytic activity"; in contrast, enzymes are controlled 
rather by changes in S05 • This may be so, but the statement that "the flux-control coefficient 
of an enzyme is almost entirely unrelated to its regulatory importance- that is to the extent 
to which it actually controls flux" indicates the extent of this misunderstanding. Since its 

introduction, the concept of control coefficient has often been misunderstood, both with 
regard to what it measures and what it can be used for. The problem, one that has even 
plagued "believers", is that in most publications by the new school control coefficients 
quantify a systemic response to a modulation in enzyme concentration. This is quite valid 
while the kinetic order with respect to enzyme concentration is one (which it usually is), but 
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this definition is obviously prone to misinterpretation and could have led to the type of claim 
by Atkinson. 

In general, a flux-control coefficient simply measures the percentage change in a 
metabolic variable such as flux or concentration when a 1% change is made in the local rate 
of any reaction i; formally it would be defined as dlnJ ldlnvi (note that I specifically do not 
consider a 1% change in enzyme concentration), and such a generalized control coefficient 
was defined some years ago (Kaeser & Bums, 1973; Heinrich et al., 1977). This is a 
practical definition in the sense that it tells the investigator that he must in some way 

modulate the local rate of a reaction and then measure the response; the definition does not 
prescribe how the reaction rate should be modulated in real systems. Now think of a 
computer-modelling situation: what is the simplest way a modeller can modulate a local 
reaction rate? One can multiply any rate equation by an arbitrary constant, say a, which if it 
is assigned a value of unity does not change the value of the rate v. A generalized control 
coefficient would then equal the percentage change in a flux or concentration in response to 
a 1% change in a. The introduction of the a parameter is useful for explaining the meaning 
of a generalized control coefficient but it does not, of course, exist and cannot be 
manipulated experimentally. Generally, however, enzyme concentration shares with a the 
property of being a multiplier in the rate equation and it is for this reason that it has crept 
into the definition of control coefficient. I shall, however, stick to my general definition. 

The first important point is that one can consider any mechanism for changing a local 
enzyme rate (be it by a modulation of enzyme concentration, kcat• S0_5 or any other enzyme 
parameter) and define a control coefficient that quantifies the effect. Let us consider an 
enzyme i, the S0_5 of which is sensitive to an external effector, X, that is under our control. 
We can modulate the concentration of X, measure the change in flux and express the 
response as follows (this type of coefficient that quantifies a response towards an external 
clamped concentration is often called a response coefficient RJ,. to distinguish it from 
enzyme control coefficients): 

ci _ dinJ 
x-dlnX 

The so-called "combined response property" of control analysis then gives the relationship 
between this flux-response coefficient and the generalized flux-control coefficient of step i 
is as follows: 

J J i Rx=Ci£x 

where £~ is the elasticity coefficient of local rate i with respect to a modulation in X under 
the prevailing steady-state conditions. We could even break the elasticity coefficient down 
into the product of two terms: 

i ainv ainSo.s 
Ex=---X---

dlnSo.s a1nx 

the first of which shows how sensitive the rate is to a change in So.s and the second how 
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sensitive S0.5 is to a change in X. The combined response equation clearly shows that the 
final effect of a modulation in X depends both on the value of the generalized control 
coefficient (which describes the degree to which a specific step in the reaction sequence 
limits the flux) and the elasticity of that step itself towards a change in X. Furthermore, 
since R{ and £~ are measurable, the generalized control coefficient C( can be calculated. 
The summation or connectivity equations of control analysis are generally valid if 
generalized control coefficients are used, and the generalized control coefficients in any such 
equation can be replaced by the quotient of a pair of linked systemic and local coefficients 

J . 
such as Rxl£'x.. 

In the same way one could write for a modulation in enzyme concentration Ei: 

C J. -CJ"i &- i c.e 

The value of Ek is usually equal to unity (here the generalized control coefficient is equal to 
the coefficient based on enzyme concentration). It is obvious that the relative flux-responses 
to changes in X and Ei will depend on the values of the elasticities; if £~ > E};. the flux will 
be more responsive to changes in X (this will be the case if the enzyme is highly sensitive to 
changes in S0.5, which in tum is sensitive to changes in X). Far from being unimportant, the 
control coefficient Cli is central to the whole matter; if it is very small then a modulation in 
neither enzyme concentration nor So.s (via a change in X) will have much effect on the 
flux. Therefore, in reasoning about the metabolic effects of a modulation in any enzyme 
parameter (including S0.5), both the immediate local effect of the modulation (elasticity 
coefficie!J.t) and the systemic effects caused by the modulation in local rate (generalized 
control coefficient) must be taken into account. 

Atkinson's Discussion of the Paper by Sauro & Fell (1987) 

I would like to add some of my own comments, both on the original paper and on 
Atkinson's criticism. My main problem with the paper is that it uses deductions based on a 
specific (and in a certain sense, an unrealistic) metabolic model to draw general conclusions 
about metabolic control. However, and here I disagree with Atkinson, the fact that the 
framework of Kaeser & Burns (1973) was used to reach these conclusions does not 
invalidate the framework itself or make it less useful (the fact that we can make dubious 
statements in English does not lead us to doubt the usefulness of the language). 

The problem with the metabolic model used by Sauro & Fell (1987) is that the last 
enzyme in their pathway was chosen as the one to bind its substrate cooperatively. As both 
they and Atkinson show, the presence of a downstream enzyme that displays positive 
cooperativity will transfer flux-control (in the sense of Kaeser and Burns) upstream, away 
from that enzyme. Even if the S0.5 is changed, the flux will be unaffected since the substrate 
concentration will change so as to cancel the effect on the flux. However, if Sauro & Fell 
(1987) had chosen the first enzyme as cooperative (the natural choice if one takes the pattern 
usually found in nature into account) and used the following rate equation: 
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the flux-control coefficient would have been 1 (the enzyme is insensitive to changes in its 
own product concentration and therefore isolated from the rest of enzymes in the chain; 
changes in any of the downstream rates cannot affect the rate through the first reaction). 
Therefore their conclusion that positively cooperative enzymes cannot simultaneously have 
a high flux-control coefficient as defined by Bums et al. (1985) depends on their specific 
model and is not generally true. 

Atkinson, however, accepts their conclusion when he argues that "although the flux 
control coefficient as defined by Bums et al. (1985), is low for such enzymes [here the first 
enzyme in the pathway] (since a change in amount of enzyme would have little effect on the 
flux), the flux of the sequence is probably controlled almost entirely by modulation of the 
So.s for the first enzyme". Now, the first enzyme in this specific pathway can have a flux
control coefficient less than one only when it is sensitive to changes in the concentration of 
its own product i.e. when it is reversible or product-inhibited. But, Atkinson's whole 
argument is based on the properties of an irreversible enzyme (which, as I have shown, will 
have a flux-control coefficient equal to one). The more sensitive the first enzyme in this 
system is towards the concentration of its own product, the smaller its flux-control 
coefficient and the smaller the effect on the flux of a modulation in S0_5. So, it remains true 
that allosteric enzymes that are modulated by changes in S0_5 are not necessarily efficient 
flux-controllers; they must still have a high enough flux-control coefficient for the mechan
ism to be effective. This again illustrates the importance of the combined response property 
in our reasoning about metabolic behaviour. 

Despite my disagreement with some of his ideas, I admire the forthright way in which 
Atkinson has set them out; I was forced to consider again many things that I take for granted 
in my thinking about metabolic behaviour and control. In the spirit of his own recommenda
tions above I would like to put forward three features the new school would like the old 
school to consider: 

1. The behaviour of metabolic systems is often more complicated than one thinks; while 
striving for simplicity is important, one should be beware of "essentially simple 
concepts" that could lead you up the garden path. 

2. Assumptions should always be carefully considered and stated explicitly (Atkinson's 
and Mazat's rule). 

3. Spending a few hours to really grasp (and doodle with) a fruitful mathematical frame
work could, besides enhancing one's understanding of the behaviour of metabolic 
systems, point out the gaps in and even invalidate a part of a century's work and thought 
by experimentalists. 
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Part I 

GENERAL ASPECTS OF 
CONTROL THEORY 



Chapter 1 

The Nature and Role of Theory in 
Metabolic Control 

ATHEL CORNISH-BOWDEN 

CURRENT discussion of metabolic control is dominated by the theory developed from the 
landmark papers of Kaeser & Bums (1973), and Heinrich & Rapopon (1974), which built on 
earlier work of Higgins (1963, 1965). Although the main ideas in this theory have become 
much more widely accepted by biochemists as a whole in the past few years, acceptance is 
far from universal, and criticisms have come from various directions. Some of these are set 
out and discussed in other chapters of this book, but in order to form a judgement, whether 
about the usefulness of metabolic control theory for analysing real metabolic systems or 
about its status as a special case of biochemical systems theory (Savageau, 1969ab, 1970, 
1976), as it is categorized by Savageau et al. (1987 ab, 1989), one needs to have a general 
view of what a scientific theory is and what role it has to play in science, particularly in 
experimental science. In this introductory chapter, therefore, I plan to discuss these 
questions, with the hope of providing a context in which the claims of metabolic control 
theory as a legitimate theory can be discussed. Elsewhere (Cornish-Bowden, 1989) I have 
discussed the criticisms of metabolic control theory made by Savageau and his colleagues 
(Savageau et al., 1987 ab) in a specific way, and will not repeat the arguments in detail 
here; rather I shall use metabolic control as a context for discussing in general what a theory 
ought to be and what it should offer. 

Does Biochemistry need Theories? 

Biochemists have long been suspicious of theory, doubting whether it can substitute for 
serious experimentation. And, of course, it cannot; no piece of biochemical knowledge has 
ever been produced by pure thought uncontaminated by any information about the real 
world. Atkinson emphasizes this point in the Prologue and in Chapter 36 of this book, and 
Crick ( 1989) has recently commented that "it is virtually impossible for a theorist, by 
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thought alone, to arrive at the correct solution to a set of biological problems. Because they 
have evolved by natural selection, the mechanisms involved are usually too accidental and 
too intricate." 

Equally, however, one may doubt whether any significant advances in our understanding 
of metabolic systems have come from pure experimentation uncontaminated by a theoretical 
framework within which the observations can be interpreted. Indeed, it is likely that the 
second misconception about how knowledge advances is more damaging than the first, 
because the theoreticians who work in complete isolation from any experimental informa
tion are few in number and they consume few resources, whereas experimentalists who work 
with a completely open (perhaps empty) mind are distressingly common and they do 
consume resources. 

Nonetheless, it does not follow than just any theory is useful, and one needs to be able to 

recognize the characteristics of a model that allow it to provide a framework for interpreting 
nature. If it is too general, so that it can accommodate absolutely any new piece of know
ledge without requiring any modification, then it cannot be falsified and is not scientific 
according to the philosophy of science associated with Popper (1959). On the other hand, if 
it is too rigid, so that it cannot accommodate even a slight change to the body of experi
mental facts without major revision, it is hardly useful either. We must also allow some 
degree of fuzziness in the criteria for falsification: if a few facts are not exactly consistent 
with our basic theory, we should certainly note them as matters that need to be properly 
explained eventually, but we should not feel obliged to discard the theory immediately if no 
better one is available, and if the facts that cannot be accommodated represent rare or special 
circumstances. 

The discovery of fructose 2,6-bisphosphate by van Schaftingen & Hers (1980) illustrates 
the point very well. Before this regulator of various enzymes was discovered there were 
many facts about the control of phosphofructokinase (in particular) that were inconsistent 
with the ideas of the control of glycolysis that had been accumulating for many years; as a 
result all extant theories were not merely falsifiable but were, in fact, falsified. This 
falsification could, of course, be taken as a pointer to the existence of an unknown regulator, 
but on an extreme interpretation it could have been taken to require the whole of current 
ideas of glycolysis and its regulation to be rejected. If they had been rejected, the result 
would hardly have been to clear the way for the rapid discovery of fructose 2,6-bisphosphate 
but rather to have left the whole field of research without any context in which experiments 
could be planned and analysed. With the hindsight of our current knowledge of fructose 2,6-
bisphosphate we can argue that the earlier ideas were not so much wrong as incomplete. The 
proper response to a falsifying experiment, therefore, is neither to reject the theory nor to 
ignore the experiment; rather we should retain the theory as a basis for discussion until a 
better one becomes available, but we should simultaneously regard the conflicting experi
ment as something that must in due course be accommodated. The role of falsifiability is not 
so much to destroy theories at a moment's notice as to impose on the theoretician the need to 
consider which types of result would require the theory to be discarded and which would 
merely need to be noted for attention later. 

One may note in passing the view often ascribed to Popper (1959) that Darwin's theory 
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of evolution by natural selection is not falsifiable and hence not scientific. Although this 

criticism is not directly related to metabolic control, we cannot simply ignore it, because it 

implies that anyone committed to the theory of evolution by natural selection (as are 

virtually all biologists, with, of course, some reservations about points of detail) has no 

choice but to reject Popper's view of what is scientific. This would be unfortunate, both 

because Popper has withdrawn the criticism (something that appears to be known by few of 

the people who quote it), and because it is anyway based on a failure to appreciate the kinds 

of experiments that one can easily do that would falsify the theory of evolution if it were 

false, as discussed, for example by Penny et a/.(1982). Suffice it to note here that one can 

accept the importance of falsifiability as a criterion of what is scientific without having to 

reject the theory of evolution. 
However, one can accept falsifiability as a criterion without regarding it as the only 

possible criterion, and without agreeing that theories that are not falsifiable have no value in 

science. Suppose that the theory of evolution were indeed unfalsifiable: would it then have 

no value in biology? Many of us would still agree with Dobzhansky (1973) that "nothing in 

biology makes sense except in the light of evolution", and if so it is surely clear that a theory 

that allows us to rationalize a huge body of otherwise disorganized knowledge is of great 

value even if it makes no predictions whatsoever. For a full and masterly discussion of this 

in relation to evolution one may refer to Dobzhansky et al. (1977). This is perhaps no more 

than a specific instance of the fact that insofar as working scientists are conscious of philo

sophy at all in their daily work, the philosophy that guides them is that of William of 

Ockham, not that of Popper: they will prefer the theory that introduces the fewest number of 

assumptions, regardless of whether it is falsifiable. 

Terminology 

The ideas of Kaeser & Bums (1973), Heinrich & Rapoport (1974), Savageau (1969ab, 

1970, 1976), and Crabtree & Newsholme (1987), not to mention theories of enzyme 

cooperativity [reviewed in Ricard & Cornish-Bowden (1987)] and a host of ad hoc pro

posals td do with the control of specific systems and pathways, can all be generally 

categorized as theories of metabolic control. Why then should one limit the term "metabolic 

control theory" to the body of theory developed from the papers of Kaeser & Bums (1973) 

and Heinrich & Rapoport (1974), which is introduced in this book by Porteous, in Chapter 

3? The primary justification is one of convenience: this is the way in which the term has 

come to be used by many workers in the field, including most of the contributors to this 

volume, and it does little harm provided that one remembers that it is not the only con

ceivable theory to have a claim to the name. Similarly, it is convenient to use the term 

"biochemical systems theory" to refer to the ideas of Savageau (1969ab, 1970, 1976; see 

also Chapters 4 and 5 in this book, by Savageau and Voit respectively), and I shall follow 

this usage in this chapter, although, again, there are other theories that could conceivably be 

known by the same name. 
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One may note in other chapters of this book a growing tendency to prefer the term 
"me.tabolic control analysis", on the basis that what it (and, equally, biochemical systems 
theory) offer is not so much a theory of how real systems behave as a mathematical method 
for analysing how they behave. This is an important distinction, but it seems to me to be an 
exaggeration to argue that there is no theoretical content in the two approaches. 

Falsifiability and F a/sification 

The supposed unfalsifiability of the theory of evolution is equally characteristic of cosmo
logy, and can be answered in much the same way. Curiously, however, the cosmologists 
have not had to suffer to the same extent the suggestion that they are working in metaphysics 
rather than science. The concerns of the "creation scientists" with evolution can hardly 
provide the whole explanation for this discrimination, because cosmology is no less 
important in theological arguments than evolution, and, indeed, cosmology deals with an 
even longer time scale than evolutionary biology. Perhaps it is simply a manifestation of the 
disdain that some physical scientists have for biologists, so that people feel it is safer, and 
less obviously absurd, to accuse biologists of working outside science, than to make the 
same accusation of physicists. 

Even if falsifiability - the capability of being tested - is essential in science, actual 
falsification plays a much greater role in engineering than in science. where it is a crucial 
test of the validity of a model. To design a bridge or an aircraft wing, it is useful but not by 
any means essential to have a good understanding of the stresses that will cause it to fail. 
What is essential in this case is reliability, not comprehensibility: an equation that accurately 
predicts the behaviour over the whole range of conditions of use is far more useful, even if it 
is a purely empirical equation with no theoretical base at all, than an equation that faithfully 
reflects the best available theory but deviates appreciably from the actual behaviour. Of 
course, one always hopes that a good theory will lead to better models, and this is, of course, 
the belief that sustains many academic attempts at rational drug design. In the words of 
Leonid Brezhnev [as quoted by Rich (1977)], "there is nothing more practical than a good 
theory". 

To appreciate the difference between modelling and understanding, ·between engineering 
and science, one may compare different equations for expressing the .behaviour of enzymes 
that deviate from Michaelis-Menten kinetics. On the one hand the Hill equation (Hill, 1910): 

(1) 

in which v is the rate of reaction at a ligand (substrate) concentration x and V, K and h 
are parameters, is simple to write, easy to use, and gives an excellent prediction of the 
actual behaviour of many enzymes over the whole range of interest. The equation of Monod 
et al. ( 1965): 

v/V = [Lc(1 + cx/KR)3 + (1 + cx/K~]xiKR 
L(1 + cx/KR)4 + (1 + cx/KR)4 

(2) 
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in which v and x have the same meanings as in the Hill equation and V, L, c and KR are 
parameters, is much more complex in appearance, and it contains four adjustable parameters 
instead of three. Yet it is hardly better than the Hill equation at fitting real data, even at best, 

and sometimes gives a very poor fit to data that fit the Hill equation well. In what circum

stances, then, might we nonetheless prefer to use the equation of Monod et al. 'l From the 
point of view of modelling, there are very few such circumstances: we should clearly prefer 

the simpler equation if it fits real data just as well or better. If our objective is to understand 
the physical basis of the deviations from Michaelis-Menten kinetics, however, we cannot 
achieve this understanding on the basis of an empirical equation that is not derived from a 
physical model. We must then use equations derived from our hypotheses about the 

underlying mechanism. If these fail to fit, as they well may, we must search for a physical 

model that gives equations that do fit; we cannot simply retreat to an equation such as the 

Hill equation that tells us nothing about the mechanism. 
The Hill equation is also useful to illustrate the different levels at which one may seek 

to understand a phenomenon. One can study metabolic control not only at the level of 
enzyme mechanisms, but also at the level of interplay between all of the enzymes in a 

pathway. In the latter case, we may reasonably decide to take the behaviour of each 
individual enzyme as given, and study only the effects due to simultaneous action of several 
or many enzymes. For this purpose the Hill equation is very useful, normally more useful 

than mechanism-based alternatives. 

Objectives: Understanding, or Prediction 

In the effort to understand the kinetics of multi-enzyme systems, there have been two 
fundamentally different approaches that have differed not so much in the detailed assump
tions that they have made (though these do differ as well, within both approaches). One 
group of workers, who include not only the believers in rate-limiting steps, metabolic 
bottlenecks, key enzymes, etc., but also the adherents of metabolic control theory, are 
primarily concerned with understanding what happens in the living cell. If their under
standing allows them to become effective modellers of metabolism in the computer, or to 
design efficient fermentation systems, that is an attractive bonus but it is not the primary 

objective. Others, however, have been interested in setting up computer models of metabolic 

systems or developing equations that allow them to predict how complex systems will 
behave in different conditions. This approach was pioneered by Garfinkel & Hess (1964) 
many years ago in the first computer models of metabolism, and has been followed in the 

development of biochemical systems theory and in other systems (e.g. Liao & Lightfoot, 

1987) that seek to define the behaviour of large complex systems over a finite range of 
conditions. 

It is my impression that some of the controversies that have arisen over metabolic 
control theory and biochemical systems theory have their origins in failure to appreciate that 

the objectives are not identical. If each theory is judged by the extent to which it meets the 
objectives of the other one cannot be surprised if each turns out to be inferior to the other. It 
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may be, of course, that I have misinterpreted the aims of the originators of metabolic control 
theory and biochemical systems theory, but it seems to me that the former are primarily 
concerned with understanding why real systems behave as they do, whereas the latter are 
more interested in developing models that accurately reproduce the behaviour of real 
systems. 

Originality and Triviality in Theory 

An aspect of theory that seems to have been discussed hardly at all in the biological litera
ture is the question of what constitutes originality. This is hardly worth discussing at all in 
relation to experimental biology because in some sense almost any research can be regarded 
as original, even if consists of no more than repeating on Drosophila pseudoobscura a 
series of experiments previously done on Drosophila melanogaster. If one believes that 
research is uncontaminated by any preconceptions, i.e. any theoretical base, one can hardly 
say that this kind of experimentation is any less original than any other. 

However, when one comes to consider theory, especially theory that has a strong 
mathematical content, one runs the risk of going to the opposite extreme and denying that 
any analysis of a system at all can be original. The model of Monod et al. for cooperativity 
in a tetrameric protein [shown in eqn. (2) above] is mathematically no more than a special 
case of the Adair equation for a tetramer: 

v/V = Ktx + 3KtKzx2 + 3KtKzKJX3 + K1K2K~4X4 
1 + 4Ktx + 6KtKzx2 + 4KtKzKJX3 + KtKzK~4X4 

(3) 

in which Kt ... K4 are constants and the other symbols have the same significance as in eqn. 
(2). That eqn. (2) is a special case of eqn. (3) may be seen by defining the new parameters as 
follows: 

Kt 1 +Lc (4) 
KR(l +L) 

Kz 1 +Lc2 (5) 
KR(1 +Lc) 

K3 = 1 +Lc3 
KR(1 +Lc2) 

(6) 

K4= 1 +Lc4 
KR(l +Lc3) 

(7) 

The only physical restriction on the values allowed to the parameters in these equations is 
that they must all be positive and finite. But it is evident from eqns. ( 4-7) that if this is true 
of Land c then it must also be true of the Adair constants K1 ... K4 . Thus eqn (2) predicts 
nothing that is not also predicted by eqn. (3), or, in words, the model of Monod et al. (1965) 
adds nothing to what was already contained in the model of Adair (1925ab) published 40 
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years earlier. Equally the model of Koshland et al. (1966) adds nothing to the model of 
Adair, in common with other models of cooperativity in oligomeric proteins published in the 
1960s and 1970s. 

Must we conclude, therefore, that these models are simply rediscoveries of the work of 
Adair and that they have no right to be regarded as original contributions to knowledge? If 
we must, is there any reason to regard Adair as the source of all theory about protein 
behaviour? After all, eqn. (3) is no more than a rational function of a kind thoroughly 
studied in earlier centuries. In a sense, all mathematics is wholly contained within its set of 
axioms, and thus no mathematical research, and no theory that is in essence no more than 
applied mathematics, introduces anything new. If I correctly understand Gross (1988; 
quoting Yang, 1977), many mathematicians do not even regard the introduction of novel 
axioms as original work: they see themselves as doing no more than giving expression to 
"natural" ideas that were there all the time waiting to be revealed. 

It might seem that we have reached a stage in which the whole idea of originality has 
neither point nor meaning. Yet clearly scientists do attach both meaning and point to the idea 
of originality, and my reductio ad absurdum does not do justice to the way originality is 
actually perceived. The papers of Monod et al. (1965) and of Koshland et al. (1966), and 
especially the arguments about which of them embodied the "truth", did more to stimulate 
experimental research in the 1960s and 1970s than even the most careful reading of Adair's 
papers, let alone an 18th century treatise on algebra, could have done; we can hardly doubt, 
therefore, that experimentalists saw something original and interesting in these papers. 

I believe that the search for more general ways of expressing existing models, well 
illustrated in protein chemistry by numerous efforts (mostly now consigned to a well merited 
oblivion) to develop models of cooperativity that include the models of Monod et al. (1965) 
and Koshland et at. (1966) as special cases, rarely provides the road to a better under
standing. Probably there are exceptions, but I cannot immediately recall any. 

I suggest, on the contrary, that we ought not to ask what Monod et al. (1965) added to 
the model of Adair, but what they subtracted from it: in other words, what did they remove 
from the universe of conceivable ways in which a tetrameric protein could behave within the 
constraints imposed by thermodynamics, in order to arrive at a postulated universe of ways 
in which real tetrameric proteins do behave? If this is accepted as a valid criterion of origin
ality, it is obvious that we cannot dismiss a theory on the grounds that it is a special case of a 
theory that was developed earlier. On the contrary, we have to interpret original theory as 
theory that reveals novel special cases that are sufficiently interesting to stimulate efforts to 
build on them or falsify them. Indeed, it seems to me that consideration of originality leads 
inevitably back to falsifiability: if a theory is so general that it is hard to conceive of a way 
of falsifying it, then it is hardly within the domain of science. To make it more scientific, 
therefore, one must subtract from it, not add to it; move towards the more special, not 
towards the more general. 

As well as originality, we commonly demand of a contribution to knowledge that it 
should not be trivial or obvious, but in practice this is very difficult, even for the author of 
the contribution, to judge. Slater (1988) has recently described his thoughts when he first 
conceived of the chemical hypothesis of energy transduction by analogy with the reaction 
catalysed by glyceraldehyde 3-phosphate dehydrogenase. Was the idea worth proceeding 
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with, or was it too trivial even to report? With the perspective of thirty years we might well 
categorize this hypothesis as mistaken, or even as misconceived, but hardly as trivial. My 
own view is that apparent triviality is one of the possible criteria for judging the importance 

of a new idea, and that many of the most important advances have seemed so trivial as to be 
hardly worth saying, once, of course, they have been said. Certainly, if I may inject a 

personal note, the advances made by others that have impressed me most have not been the 
ones that seemed very difficult to understand, let alone difficult to have made myself, but the 

ones that have provoked the immediate response "why didn't I think of that?". For example, 
at one time I was interested in coupled enzyme reactions in the context of assay systems. In 

publishing our work (Storer & Cornish-Bowden, 1974) I was aware that some of the same 
considerations applied to multi-enzyme metabolic processes, but even after the opportunity 
to reflect on this for seven years, it still came as a revelation (Easterby, 1981) to learn that a 
fairly simple extension to the calculation of the time required for a two-enzyme system to 

reach 99% of its steady-state flux could lead to a highly useful way of thinking about transi
tion times for cellular processes. [More recent work in the area of transition times is 
described by Easterby in Chapter 23.] 

Of course, sometimes ideas seem to be trivial and obvious because they are indeed 

trivial and obvious, and one should certainly ask the question; it would be absurd to claim 

that apparent triviality is an infallible indicator of importance. However, before dismissing 
an idea as being an obvious extension of existing knowledge, one should enquire why, if its 
usefulness is not in question, it was not previously pointed out; why its importance was not 
recognized. In this connection one can hardly do better than to read Feynman's entertaining 
discussion of the proposition that "mathematicians only prove things that are obvious" 
(Feynman, 1985). 

Priority in Scientific Discovery 

Much of the bitterness that accompanies arguments about scientific theories has its basis in 
fears that one's discoveries will be attributed to others. One cannot simply dismiss priority 

disputes as being irrelevant to the march of science, because one can hardly doubt that hopes 
for recognition and fame provide a powerful motivation for undertaking research in the first 
place. One can, however, insist that priority disputes are primarily of interest to those 
involved in them, and can try to avoid allowing time at conferences and pages of journals to 

be wasted on them. 

Those who feel that their contributions have been set aside or ignored are usually willing 

to imply base motives to their opponents, but in reality forgetfulness, failure to read the 
literature properly and other examples of inefficiency rather than deliberate malice are often 
to blame. Moreover, it is only too easy, when one makes a novel observation but then sees it 

published by another group before one has written it up, to convince oneself that this 
publication never happened or that it only hinted at the observation. I shall give an example 

from my own experience, but I do not believe that I am unique. Some time in 1971, I 
became convinced that the kinetic data of Parry & Walker (1967) for hexokinase D ("gluco-
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kinase") from rat liver indicated that this enzyme displayed positive cooperativity with 
respect to glucose. Although the original authors had not reached the same conclusion, it 
seemed only mildly interesting in 1971 because there was not at that time any reason to 

think that it was a monomeric enzyme. Thus it was not until several years later that a paper 
from our laboratory appeared that described the cooperativity (Storer & Cornish-Bowden, 
1976), by which time Niemeyer et al. (1975) had reported the same observation; we had 
also become convinced that the enzyme was monomeric, so that its cooperativity was much 
less ordinary than it had seemed. After 13 years I cannot remember exactly what was in our 
minds when we wrote the 1976 paper: I do not believe that we deliberately set out to 
denigrate the observations of Niemeyer et al., but we nonetheless referred to a report that 
"glucokinase exhibits a sigmoidal saturation function" (a point made several times in their 
paper) as simply one of three examples of "slight deviations from Michaelis-Menten kinetics 
observed by earlier workers". Partly, no doubt, we were anxious to avoid encouraging the 
referees to believe that we were doing no more than confirming a known result, but I think 
we were also unready to admit to ourselves, let alone to the world, that something we had 
believed since 1971 had been published by a group in Chile before we were ready to publish 
it ourselves. That no lasting bitterness was created by this example, may be seen from the 
fact that the second author of the 1975 paper is also the co-editor of this book, not to 
mention a closer and more long-term relationship. 

Implications for Metabolic Control Theory 

Many of those now interested in metabolic control theory "know" without wasting their time 
with arguments of the sort that I have been discussing that they are dealing with an import
ant and original contribution to metabolic control. Moreover, I have deliberately refrained 
here from relating the arguments too directly to metabolic control theory, not with the idea 
of making them more abstruse and boring, but with the object of avoiding for the moment a 
controversy that is raised by more expert voices elsewhere in this symposium, and with the 
object also of showing that there is nothing special about the claims of metabolic control 
theory: if we apply the same criteria of originality that would apply to theories in other 
branches of knowledge then we will, I believe, conclude that metabolic control theory is a 
valid theory. 

There are, however, other questions that need to be answered satisfactorily before 
accepting that metabolic control theory is the theory that should underlie discussion of 
metabolic control. The experimentalist will certainly want to know whether it makes 
assumptions about the way metabolic systems behave that correspond with reality: in the 
Prologue of this book Atkinson suggests that it is found wanting in this respect, but his 
arguments are questioned by Fell and Sauro later in the Prologue. If it does make reasonable 
assumptions, does it set out a protocol for study real systems that will allow experiments to 
give a better understanding of how they are controlled in the cell? Regardless of one's 
answers to these questions, one should also ask them in relation to alternative theories to 
explain metabolic control: do biochemical systems theory, or the traditional ideas of rate-
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limiting steps and key enzymes, or the modified version of these ideas advocated by Crab
tree & Newsholme (1987), or any other theory, provide better or more satisfying answers? 
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Chapter 2 

History and Original Thoughts on the 
Control Theoretic Approach 

JOSEPH HIGGINS 

I HAVE BEEN asked to present some historical background on the early theory of metabolic 
control; I am pleased to do so. I guess I was asked to do this because to some, at least, I am 
considered a grandfather of the field. I am not sure how I came to be a grandfather without 
ever being a father. Yet let that be, for I accept the accolade with sincere appreciation even 
though I think it partly, if not wholly, apocryphal. But if there are grandfathers, there must 
also be great-grandfathers and even great-great-grandfathers lurking in the woods. So with 
no small concern about the validity of such terms, I shall nevertheless address this history in 
those terms. Hopefully some grandchildren will be reading too. But let me note at the outset 
that I am not a scientific historian and that I present this history from a rather personal view. 

The Great-grandfather and the Development of Reflection Coefficients 

To my mind at least, one of those great-grandfathers is Britton Chance, my mentor. His en
couragement, guidance and intellectual transfer were a major part of my scientific develop
ment and thinking. But his contributions to the field of metabolic regulation, both direct and 
indirect, go far beyond me. They can be found in the use of computer models to represent 
and study metabolic pathways and in the language we use to describe and think about these 
systems in terms of feedback and control properties (a semi-electronic language). His formal 
training was in Electrical Engineering (BA) and in Physical Chemistry (PhD) at the 
University of Pennsylvania. His thesis is a classic paper (Chance, 1943), for in that paper he 
set the tone for years to come, not only for his own research, but for that of many others, 
including myself. In his thesis, Chance demonstrated, using the peroxidase reaction and 
spectrographic methods, that the Michaelis-Menten enzyme-substrate complex really exist
ed; he made a further application of rapid reaction techniques in biochemistry, and he used 
the MIT (Massachusetts Institute of Technology) mechanical differential analyser to solve 
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the non-linear differential equations of the reactions and to compare the experimental and 
theoretical results, and from those studies he derived a simple method for determining one of 
the rate constants. Although no one of these techniques was entirely new at the time, his 
paper presents the first serious integration of experimental and theoretical studies with the 
use of an analogue computer. 

His postdoctoral studies were with F. J. W. Roughton and H. Theorell, where he further 
developed the rapid flow methods and their application. But more important to the field of 
metabolic control, he spent the war years at the MIT Radiation Laboratories where many of 
the principles of electronic control theory were developed (Chance et al., 1949). 

In 1948, he became the director of the Elridge Reeves Johnson Foundation (the JF), 

which was affiliated with the University of Pennsylvania. Among the many rare and remark
able things that Chance has done, he chose to hire scientifically oriented high school 
graduates as potential technicians. Scholarships were very few in those days and this 
provided those students with a means to attend college at night at the reduced cost offered by 
the University for its employees. I was one of those students. 

It was a time of few free hours - going to work during the day and to school at night 
(which included Saturdays as well). Yet it was the most remarkable of times. As under
graduates, we mingled with graduate students, post-doctoral fellows and junior and senior 
scientists. There were usually lunch-time seminars, often by visiting scientists, to the point 
that many who were at the JF during the 1950s and 1960s still salivate when they attend 
seminars. Chance brought in not only pure experimentalists, but physicists and mathema
ticians as well. Although his own interest is primarily experimental, he was (and is) 
uncommon in promoting and encouraging the development and application of mathematics 
to the fields of biochemistry and biophysics. And by generously giving credit when due, he 
promoted our scientific careers as well. 

My formal studies were in physics, with a minor in mathematics. But the JF atmosphere 
was such that anyone could learn as much or more informally. Chance initiated the develop
ment of the first fully electronic analogue computer in 1949. I arrived in June 1949 and 
started as an electronics technician and gradually learned the theory of electronic design 
(Chance et at., 1951 ). After its completion, I became the computer operator. Chance would 
set particular problems for study, but allowed all of us a rather free rein in the actual study 
and analysis of the problem. In addition, there was ample time to play with the computer, 
study the results and develop the mathematics. The specific studies began with the 
peroxidase system (Chance & Higgins, 1952) and later a mass action model of oxidative 
phosphorylation. I obtained my BA in 1954 and spent a year at Harvard studying physics. I 
returned to the JF in 1955 and was joined by another graduate student, William Holmes, in 
the computer and mathematical studies of these systems (Chance et at., 1955). At Chance's 
suggestion we studied and developed the crossover theorem (Chance et al., 1958), one of 
the earliest tools for analysing the regulation of oxidative-phosphorylation. 

At about the same time, Chance initiated the development of a digital computer program 
for the simulation of metabolic pathways on the recently developed Univac digital computer, 
which was a vacuum tube computer that had to be programmed in machine language as no 
compilers had yet been developed (Garfinkel eta/., 1961). One of the earliest applications 
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was the study of metabolic control between glycolysis and oxidative phosphorylation using a 
simplified model of 22 metabolic reactions (Chance et al., 1959). 

My formal studies continued in physics where I concentrated on thermodynamics and 

statistical mechanics. But my thesis research was based on computer and mathematical 
studies of certain types of non-enzymatic and enzymatic sequences. In particular: 

AxE1xEixE3xQ 
Type II: P Ei E2 Ej B 

where the last is a model for oxidative phosphorylation, and a funher generalization of the 
type II sequence which allowed additional intermediates in each cycle. On the computer, I 
studied the kinetics of the intermediates and the substrate (which was consumed). For the 
type I system there is an initial transient state in the formation of ES complexes but this is 
followed by a slowly changing "steady state" region which very nearly obeys the ordinary 

steady state relationships between substrate and intermediate concentrations. 

Based on the proportionality of the ES complexes, a closer analysis led me to consider 

the relative change in the ES complexes (in particular /lp/p;). And as I was dealing with 
small changes, I investigated the small relative changes in the various complexes, the 
substrate and the rate. My view at the time was that the relative changes in any particular 
variable was related to, or as I put it, reflected by the relative changes in some other 
variable. Thus, if x andy are the variables, then the change in y relative to the change in x 
is given by the following expression: 

dy = xRyA. dx 
y X 

where xt was defined as the finite reflection coefficient. In the limit as dx and dy become 
small we replace the d by differentials and write 

x = dy/y = dlny =.I.. dy =Lim% change iny 
Ry dx/x d lnx Y dx %-->0 % change in x 

and where dx and dy can be replaced by their time derivatives dx/dt and dy/dt. 
The reflection coefficient was clearly closely related to the ordinary derivative (dy/dx), 

and it was easy to realize that it satisfied many of the same properties. Thus 

dy = 1/ dx and XRy = 1/ 
dx /cty YRx 
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dz- dz dy 
dx - dy · dx and XRz = XRy • XRz 

with obvious extensions to other rules of the differential and partial differential calculus. It is 
important to note that the definition of the reflection coefficient was generic, just as the 
ordinary derivatives, and could likewise be applied to any two variables. There are also 
differences which attracted me to the study of relection coefficients. For one thing, the 
reflection coefficient is dimensionless, regardless of the different dimensions of the 
variables; the ordinary derivative is not. In retrospect, I should have chosen some other term 
such as "reflective derivative" to emphasize that it is a derivative. But then again, Newton 
had his fluxions. 

A second feature is that the reflection coefficient simplified the results for many 
functions which arise in the analysis of biochemical reactions. Thus, for a type I system as 
follows: 

(1) 

If s, q, p 1 and p2 represent the concentrations of S, E (free), ES1 and E2 respectively and 
e = q + p1 + p2 then the rate is given by the following expression: 

(2) 

The ordinary derivative yields 

dv- VKm K while SRv = __ m_ 
ds- (s +Km)2 s +Km 

(3) 

so that the reflection coefficient yields simpler results as to the number of parameters and the 
degree of equation. 

Further, at the time I was particularly interested in finding ways to use the experimental 
data to determine the chemical mechanism involved, or at least to eliminate the number of 
possibilities. And in that regard, the reflection coefficient appeared particularly useful. For 
the type I system [eqn. (3)], one finds that 

(4) 

Thus if the concentrations and rates can be measured then, at least in principle, these 
equations can be tested. These equations tend to be unique to the type I system; the type II 
system yields quite different and easily distinguishable results. The results for a simple 
sequence of non-enzymatic reaction, the type 0 system, 

(5) 



2: Origins of the Control Theoretic Approach 45 

gives 
SoRv = 1 and SiRsi = 1 for all i and j (6) 

where s; represents the concentration of S;. 
It should also be noted that the relative changes are a form of differentials and thus the 

equations giving values of the reflection coefficients represent a set of differential equations. 
They can be integrated. The eqns. (6), with the additional condition that e = q+p1 +p2 , can 
be integrated to yield the original steady-state equation. The V and K m come in as the 
constants of integration. It would of course be useless to rederive the equations we started 
with but in principle, at least, and in actual fact, reflection coefficient relations can be 
established by experiment or indirect theories. Those relations can be integrated to yield 
direct relations between the variables. 

The complete development of reflection coefficients as wen as other theorems are 
published in my thesis (Higgins, 1959) and many of these results are reported in later 
publications (Higgins, 1961, 1963 ). 

The Development of Control Theory 

Lurking in the woods here are not only great-grandfathers but great-great-grandfathers. First, 
I should note that I am not a great believer in the idea that the so-caned "new theory" of 
control is the end-all for either the experimentalist or the theoretician. Second, I have a great 
respect for the so-called "old theory". So I shall begin there. 

Let me begin by quoting Burton (1937): "The principle of the 'master reaction' is that 
the 'slowest' of the reactions in a process which involves a chain of reactions determines the 
rate of the whole. This generalization was made by Blackman (1905) who stated it as an 
axiom, evidently believing it to be self evident, that when a process is conditioned as to its 
rapidity by a number of separate factors, the rate of the process is limited by the pace of the 
slowest factor. The principle was developed by Putter (1914) and should be known as the 
Blackman-Putter principle". [Speaking of fatherly relations, at the time of these papers, 
Burton was at the Johnson Foundation, and Chance was wen aware of his work (Chance et 
al., 1962)] 

But Burton goes on to analyse the experiments of Crozier (1924). Crozier had concluded 
the existence of master reactions by the temperature dependence of various in vivo 
processes over a range of species. He found that many species had the same activation 
energy for similar reactions and concluded that they were probably governed by the same 
master reaction. Burton (1937) argued against Crozier's results and even the existence of 
any "Master Reaction" on theoretical grounds. Burton concludes that "True master reactions 
may wen be in operation, but there is at present no means of proving their existence". 

However, in a later paper, Burton (1939) analyses a sequence of three isomeric reactions 
(a type 0 system). He discusses the conditions needed for a steady state (stationary state) to 

be achieved; i.e. the necessity of a source and sink. He does not actuany solve the steady 
state rate equations but notes that by a complicated proof it can be shown that the rate is less 
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dependent on any particular rate constant as that rate constant becomes larger. And that the 

converse is also true; the lower the value of a rate constant and "hence the 'slower' the 

reaction it governs, the greater its influence on the whole system, is connected with the well

known 'Principle of the Master Reaction"'. He discusses this only for the simplest system. It 
should be noted that he uses a real "water-bottle" flow model as an analogue; probably, the 

first use of an "analogue computer" in the field of biochemistry. In any case, he seems at that 

point to have accepted the principle of a Master Reaction. But the quotation marks he puts 

around the "slower" leaves no doubt as to his questions about what that means. Certainly, he 

must be acknowledged as one of the early investigators in the field of metabolic control. 

A complete solution for the rate of a fully reversible system of pseudo-first order 
reactions was developed by Christiansen (1935) and Hammett (1937). Morales (1947) 

includes a single, irreversible Michaelis-Menten enzyme in such a sequence and argues 

against Burton's (1937) critique of the Master-Reaction principle. He shows that a master 

reaction can exist under certain conditions. I note that Burton (1939) seems already to have 
changed his mind or at least was vacillating. 

I think it is fair to say that the theoreticians of that time were in something of a quandary 
and indecisive as to whether a Master Reaction could exist under realistic conditions. All the 

simplified theoretical models which yielded a Master Reaction seemed to require that 

reaction to be an irreversible step in the sequence (and without any feedback such as product 

inhibition). In retrospect, that requirement was more of a necessity in solving the equations 

and has little to do with the existence, or lack thereof, of a Master Reaction. In addition, the 

link between fast and slow reactions and Master-Reactions was theoretically unclear as was 
the definition of a fast or slow reaction itself. 

But whatever the quandaries the theoreticians were having, the experimentalists were 
setting the concepts into stone, or so it appears even as judged by the arguments of this 
meeting and certainly by numerous textbooks of that time and now. Being at the JF, I had 

ample opportunity to learn the experimentalists' beliefs at first hand. Perhaps I overstate, but 

the concept was that the first reaction of any sequence or at the beginning of a branch point 

was an irreversible reaction (unaffected by its products). This was the so-called "committed" 

step and it was also the "rate-limiting" reaction. It was also the slowest reaction (whatever 

that meant). Krebs had an additional point concerning the near-equilibrium reactions which 

he and his students had spent much time investigating as an experimental analytical tool; he 

felt that such reactions were necessarily fast and therefore could not be rate controlling. 

I became involved in these problems in 1963, after I returned from my post-doctoral 

studies. The experimentalists had discovered oscillating reactions that were linked to glyco
lysis (Chance et al., 1964), and I became involved with the feedback and control properties 

of that system (Higgins, 1964, 1967). I should note that I had not preconceived notions of 
metabolic control; I learned the experimentalists view at first hand (I had not read the papers 
I cited above regarding prior studies of the master reaction at that time - in fact, I did not 

read them until I prepared this paper). Perhaps I was lucky to approach the problem with an 

open mind. But, the experimentalist's view was quite clear- although glucose utilization 

begins with hexokinase (a rate-limiting reaction), the products (glucose 6-phosphate and 

fructose 6-phosphate) can go to glycogen or into the pentose-phosphate shunt. The first 
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committed step of glycolysis (to pyruvate) begins with phosphofructokinase, which is also 
rate limiting. 

I did not set out to destroy that view. Rather, I wanted to examine the concepts and to 
find a way to pull them together. Although I understood what experimentalists meant by a 
"rate-limiting reaction", it annoyed me no end since in a stationary state all the rates are 
equal. I also wanted to understand more precisely the definition of fast and slow reactions 
and to related that to the rate-limiting and near-equilibrium reactions. And finally I wanted 
to analyse the system in terms of feedback regulation, control characteristics and the general 
dynamics of the system. The latter concepts come primarily from electronics and were 
already being recognized in metabolic systems in the late 1950s. The discovery that hexo
kinase is allosterically regulated by its product (glucose 6-phosphate) gives one cause to 
wonder whether that is a master reaction since the conditions for a definite master reaction 
are violated; similarly for phosphofructokinase. Moreover, gluconeogenesis from lactate 
begins with the reversible reaction of lactate dehydrogenase; and there are many other path
ways which begin with reversible reactions. 

I presented my results at a colloquium on metabolic control held at the Johnson Founda
tion on May 20, 1965. It was a gathering of many great experimentalists and thinkers in the 
field of metabolic regulation. I believe I was the only pure theoretician there. In some 
respects, I felt like I was bringing coals to Newcastle, for Krebs could hardly be surprised to 
find that his intuitive thoughts regarding near-equilibrium reactions could be proved 
theoretically. And although I tried to present concepts rather than mathematics in my paper, 
I am sure many of the experimentalists could not wait for my talk to end. From their 
perspective I was saying nothing. What I did was to present them a method for determining 
the "rate-limiting" reaction and I told them that any reaction in a sequence might be rate 
controlling but that a sequence could also have all reactions with equal control. But nothing I 
said need have altered their own perceptions of how particular metabolic pathways were 
regulated per se. 

I believe I had solved most of the problems I presented myself. And in retrospect, I think 
I have given a basic solution to the quandaries of past biomathematicians as regards a 
definition of fast and slow reactions and their relation to the master-reaction. In defining the 
control strength of a reaction by dlnvfdlne, where e is the enzyme concentration I felt I had 
provided a useful method which experimentalists might apply to cellular extracts or that 
theoreticians could use, in analysing metabolic theory. 

Many of my thoughts were related to electronic theory, especially the role of feedback 
theory and electronic control theory. And some of these thoughts had already invaded the 
thoughts of a few experimentalists. Thus, at that metabolic control symposium (1965), Hess 
notes that he has evidence showing that fructose 1,6-bisphosphate is a "feed-forward" activ
ator of pyruvate kinase. In the same discussion, Bucker notes that he has evid~nce that there 
are two Master-reactions in muscle glycolysis, one at phosphofructokinase and the other at 
pyruvate kinase. I note these remarks because they show both a growing knowledge of 
feedback (or feed-forward) principles of electronics in the field of biochemistry, and as well 
even the concept that there could be two master-reactions in the same sequence. 

Although I thought my theory was sound, I had no great vision that the experimentalists 
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would apply it the next day. In fact, being at the JF had given me the opportunity to suggest 
experiments to some of my colleagues; the general reaction was usually a chant: "Chain 
Higgins to the (lab) bench". I think that many experimentalists are now thinking the same 
thing, like "Chain all these theoreticians to the bench". 

How did I Envisage the Future of Control Theory? 

First of all, I did not anticipate any immediate future for control theory as I presented it at 
that time (1965). I was fully aware of the experimental difficulties in its application even to 
cellular extracts, let alone in vivo. The only realistic approach at present seems to be that of 
Barbara Wright (see Chapter 27 of this book), which in principle establishes a computer 
model of the in vivo system using control theory to analyse that system. But even that 
method is fraught with many pitfalls. 

From the theoretical viewpoint, I had no intention of extending the theory to any purely 
theoretical model system. Perhaps I had heard too much of "Chain Higgins to the bench". As 
it happened, I was an associate editor of the European Journal of Biochemistry in the 1970s 
and I received the paper of Heinrich & Rapoport (1974) for review. First I kicked myself for 
having missed these very obvious summation theorems. But after some mental reflections, I 
was very pleased that someone, or anyone, had picked up on my concepts and thoughts. 

Now, for the first time in my life, I am witness to a symposium where the number of 
theoreticians outweigh the number of experimentalists; where all those theoreticians are 
focussed on the same problem, and where even the experimentalists have their own old and 
new thoughts on metabolic control. To the theoreticians I should say that we have a long 
way to go in establishing a viable theory that experimentalists can easily apply. But I am 
also convinced that the theoretical foundations of current control theory is well founded, 
even if not the end-all. 

From an electronics viewpoint the current control theory would be considered "small 
signal" analysis. Much work needs to be done to develop a theory for large signal changes as 
occur in glycolysis. Certainly, my original paper (Higgins, 1965) was concerned with 
control in the large as well as control in the small and with the role of feedback (or feed
forward) in determining the regulatory properties of a system. And in later papers, I analysed 
the properties of oscillatory reactions, which cannot be purely treated by small signal 
analysis because they represent limit cycles (Higgins, 1967) and the existence of multiple 
stationary states (Higgins, 1966) in rather simple feedback systems wherein the transfer 
between stationary states requires large signal analysis. 

Let me summarize by saying that I believe this symposium to be an important milestone 
in the link between experimental and theoretical metabolic control. I believe that we have 
made some significant inroads into bringing the two together, but we are hardly there yet. To 
me, one of the most important aspects of this meeting is the gathering together of so many 
theoreticians, all focussed on the same problem. That is a rare thing in biochemistry and I 
doubt that it has ever been duplicated in the past. I can only hope that it continues. 
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Chapter 3 

Control Analysis: a Theory that Works 

JOHN W. PORTEOUS 

METABOLIC MAPS of the early 1950s showed enzymes interacting only with their immedi
ate substrates, products and coenzymes. How a cell resisted marked changes in its flux rates 
in response to changes in concentrations of external substrates (even when none of its 
enzymes was saturated), or responded to changes in the concentrations of external effectors 
(e.g. hormones) was a mystery. 

It is not then surprising that part of the mystery was assumed to be solved by the discov
ery in 1956 of feedback inhibition of the activity of an early enzyme in a metabolic pathway 
by a late metabolite in the pathway, the subsequent isolation of numerous enzymes exhibit
ing cooperative and allosteric responses, and the publication of several mechanisms (see 
Cornish-Bowden, 1979) to account for these responses. The further discovery of hormone
initiated covalent modification of enzyme activity, and of interconvertible enzyme cascades, 
encouraged the view that metabolic control was beginning to be understood. The discovery 
of the lac operon in Escherichia coli (the prototype of many such mechanisms) showed 
that mechanisms existed for modifying the concentration rather than the activity of some 
enzymes; and again encouraged the view that metabolic regulation occurred via special 
mechanisms. Molecular biology has provided its own array of alleged control mechanisms. 
Upstream promoters, repressor proteins and DNA methylases (for example) are each said to 
control gene expression; and controversies about the relative merits of claims for control of 
polypeptide synthesis at the transcriptional and translational levels continue unabated. 
Molecular biologists rarely link these proximal events in gene expression to their effect on 
the phenotype of the intact metabolizing system; their views on metabolic control thus 
become divorced from those of geneticists (their closest academic allies), physiologists and 
a growing number of biochemists. 

Aside from these many mechanisms, which are now widely assumed to be uniquely 
important in metabolic control, other distinct notions are simultaneously favoured. "Cross
over" of the concentrations of metabolites is still said to indicate a site of control even 
though the idea, as an unambiguous criterion, has been discredited (Heinrich & Rapoport, 
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1974b; Heinrich et al., 1977). It is also still held that only at steps "far from equilibrium" 
could control occur, conversely that control cannot occur at steps close to equilibrium. It is 
noticeable that "far" and "close" are never defined. This notion is based on false reasoning. 
Some authors discard all the above mechanisms and notions; they maintain that the 
concentration ratios of certain coenzymes (e.g. NAD+/NADH) control metabolism. Such 
metabolite concentration ratios are free variables in a metabolic system. This notion is there
fore false; one variable cannot be said to control another variable -they are both dependent 
on the parameters of the system. 

What is Wrong with these Traditional Views of Metabolic Control? 

First, no consensus identification of the nature or location of metabolic control has emerged 
from three decades of research along traditional lines. Second, there is nothing in the tradi
tional treatments which will predict, even very approximately, the magnitude of any one 
system response in the intact metabolic system when any of the alleged mechanism operates; 
in other words, there is no means of ranking the relative importance of the various alleged 
controlling mechanisms when two or more operate simultaneously. Third, any relationship 
between control of flux rates and metabolite concentrations is absent. Fourth, no formal 
distinction is drawn between events within a system which play a role in metabolic control 
and events in the environment which might affect intracellular metabolic control. Fifth, 
insufficient account is taken of possible pleiotropic effects of any one alleged controlling 
mechanism. 

It seems reasonable to reassess the usefulness of traditional views on metabolic control. 
A dispassionate view of the multitude of claims is that they share two faults: 

1. Each claim about the site of metabolic control is related to just one small niche of a 
metabolic system; in the extreme, the niche contains just one enzyme with kinetic 
properties necessarily elucidated in the enzymologist's cuvette. The interactions of the 
niche components, via intermediate metabolites, with all the catalysts of the rest of the 
system are not taken into account. 

2. Each claim is stated in terms that fail to relate the magnitude of the response of a 
system variable (e.g. a flux rate or the concentration of an internal metabolite) to a 
change in the magnitude of a parameter of the system (e.g. an enzyme activity or 
concentration) or to a change in magnitude of an external (environmental) parameter. 

These two criticisms do not mean that we should cease to work on isolated components of a 
system, still less that we should ignore the findings of enzymologists. On the contrary, the 
enzymologist's observations are invaluable; they alert us to the range of responses which an 
enzyme could make (under defined conditions) to small finite changes in concentration of 
anyone of several molecules and ions with which it interacts so as to modify its activity. 
Without that information it would be difficult to make progress. The danger lies in using that 
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information alone in attempting to understand metabolic control. For an excellent example 

of the wide range of responses which can occur under different constraining conditions (and 

the possible danger of discarding observations which do not fit current ideas on control), see 

Cardenas & Cornish-Bowden (1989; also Chapter 14 of this book). 

Developing the Theory of Control Analysis 

Control analysis is concerned with metabolic systems as we currently understand them; it 

recognizes (by studying metabolic maps) that every enzyme is flanked by and interacts with 

at least one substrate and at least one product in all metabolic systems, no matter how 

complex they may be. Because enzyme and carrier activities depend on the same kind of 

initial concentration-dependent non-covalent interaction between the catalyst and its sub
strates, they are treated alike; for simplicity of presentation, enzymes alone are mentioned in 

the following text. For typographical convenience only, reaction steps are taken to involve 

only single substrates and single products; the algebraic statements would be more complex, 

but keep the same form, if multiple substrates and products were allowed. Changes in 

enzyme concentrations and changes in enzyme specific activities are allowed for, no matter 

how they may be brought about (Kaeser & Burns, 1973; Heinrich & Rapoport, 1974ab, 

1975; Heinrich eta/., 1977); so too are non-catalysed diffusions of solutes (Kaeser, 1983; 
also Heinrich in Chapter 28 of this book) within a cell compartment or across a membrane. 

Control analysis shows that control of fluxes and metabolite concentrations is a systemic 

function (and not an inherent property of individual enzymes) and is necessarily distributed 

among all catalysts of the system; it is designed to enable the experimentalist to measure 
this distribution of control among the catalysts of the system under defined environmental 

conditions. If any of the traditional notions about metabolic control turned out to be true, 

control analysis would confirm this by measurement rather than by teleological argument or 

intuition. To enhance understanding of the operation of a metabolic system, events at each 

local catalysed step in a system are related to the global or systemic functions of the system. 

Explicit account is taken of the effect of changes in concentration of components of the 
environment surrounding the system on the control of any specified function of the system. 

The treatment is restricted to stationary or expanding steady-state systems (i.e. to those 

systems with which the majority of experimentalists are currently concerned). Treatment of 

oscillations is excluded; so too (in the present account) is exploration of the transients that 

connect the movement of a system from one steady state to another (but see Acerenza et al., 
1989, as well as Chapters 23-26 of this book). 

The Specific Assumptions of Control Analysis 

Only four assumptions are made in this introductory account: 

1. The system can attain and, for the duration of an experiment, does maintain a stationary 
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or expanding steady state. (This condition can be met by almost all systems currently 
investigated). 

2. Each catalysed step (a chemical transformation by an enzyme or a solute translocation 
by a carrier) may show a linear or nonlinear response of its rate to successive, small, 
finite changes in the concentration of any one of the participating metabolites; each step 
(catalysed or not) is taken to be potentially reversible and made display any form of 
kinetics. Equations describing the kinetics of each step, or sets of steps, are, however, 
not required and are not used; the theoretical constructs of control analysis, as described 
here, depend on our knowledge of the metabolic structure of biological systems and not 
on any mathematical descriptions of the kinetics of individual steps or sets of steps. 

3. Each catalysed step is of first order in catalyst concentration, i.e. there is an additive 
relationship between enzyme concentration and enzyme activity. There is then an exact 
equivalence between catalyst concentration and catalyst activity. (See the note following 
the next paragraph). Some critics of control analysis seem to think that it deals only with 
changes in enzyme concentration: this assumption, however, makes it possible to treat 
changes in enzyme concentration and changes in enzyme activity in equivalent terms, no 
matter how either change is brought about. 

4. Each catalysed step shows independence from all other catalysed steps, i.e. there are no 
direct interactions between any one enzyme and another (or others) that could affect the 
kinetics of any one member of such a complex of enzymes. [These simplifying 
assumptions (3-4) have now been eliminated, as described by Kaeser et al. in Chapter 
20 of this book; cf. Heinrich et al. (1977), and Giersch and co-workers in Chapter 30) 
but are retained for the present account]. 

Model, Theory and Experiment 

Enzymology constructs a model, typically showing a non-covalent interaction between 
enzyme and substrates, followed by catalytic formation of products and release of free 
enzyme. On this basis, equations are derived that are intended to mimic the experimentally 
observed kinetics of the enzyme-catalysed reaction; if theory (the model with its equation) 
and experiment are in close accord, the model and equation are taken (at least as a working 
hypothesis) to be sound. 

Control analysis also proceeds from a model, via "thought experiments", to experi
mental testing. The model for control analysis (e.g. Schemes 1 and 2) is based on examina
tion of metabolic maps; it asserts that reactions occur at each step in the map and that each 
reaction is coupled to the preceding and succeeding steps by the intermediate metabolites 
that are common to each pair of steps. The theory is developed from two different observa
tions: first, the enzymologist's ad hoc observation that, for an individual reaction step, the 
catalysed steady-state reaction rate (the dependent variable) responds (usually nonlinearly) 
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to successive small finite changes in concentration of any one metabolite of this step (a 
parameter of the enzymologist's reaction mixture) when each other component of the 
reaction mixture is held at a constant concentration (the parameter that is changed may be 
the concentration of a substrate, product, coenzyme, effector, etc of the individual reaction 
step). Changing the enzyme concentration (also a parameter in the enzymologist's reaction 
mixture) often results in a proportional change in the catalysed rate. Second, the geneticist's 
and cell biologist's ad hoc observation (Kaeser & Bums, 1981) that successive small finite 
changes in any one enzyme concentration (a parameter in a system of enzymes) results in a 
nonlinear response in a system variable (e.g. a metabolic flux or a metabolite concentration 
in the system). The first of these two observations is thus concerned with individual steps in 
a metabolic system, the second with the behaviour of the whole system. 

Control analysis therefore defines two different indices of responsiveness. The first (the 
elasticity coefficient), is a measure of the responsiveness of an individual step (a local 
reaction rate) to a small finite change in any one of the participating metabolites. The second 
(the control coefficient), is a measure of the responsiveness of a system function (e.g. a 
metabolite concentration within the system or a flux through pan or all of the system) to 
small finite changes in a system parameter (an enzyme concentration or activity). 

Definitions 

Elasticity Coefficients. Fig. 1 shows typical plots of the response of reaction rate v to 
discrete <,:hanges in the concentration of one substrate Sa or Sb. Enzymologists derive 
equations to mimic such plots and define the plots in terms such as v, Sa, Sb, V (limiting 
rate) and Km (Michaelis constant). This is legitimate but not obligatory. We can instead 
extract the necessary information (for measuring responsiveness) by drawing the tangential 
slope on any such plot at any point corresponding to the current value of Sa or Sb; the 
absolute value of the slope will depend on the units chosen for the measurements. Units of 
measurements are eliminated by scaling the slope by the factor S/v (at the current values of 
Sand v) to yield a dimensionless elasticity coefficient (E) defined (for the rate vj of the jth 
reaction and its substrate concentration S;) as follows: 

Figure 1. Typical plots are shown of the reaction rate v 
against the initial concentration S • or S b of one sub
strate in an enzymologist's reaction, all other components 
of the reaction mixture being kept constant in each ca~e. 
Each plot represents the response of reaction rate (the 
dependent variable) to a change in one parameter (in these 
examples a single substrate concentration). The tangential 
slope at any given value of S • or Sb is a measure of the 
responsiveness of v to small changes in s. or Sb. Similar 
plots can be constructed showing the response of the 
forward reaction rate v to changes of the concentration of 
each of the products of the reaction: for normal kinetics, 
such plots would show negative slopes with respect to 
increases in product concentration. 

vclLl' ' ' 
' ' 

' ' I 
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(1) 

The first mode of expressing E~ in eqn. (1) shows the tangential slope scaled by SJvj; thus, 
if the complete rate equation for a given step is known, all the elasticity coefficients at this 
step can be obtained by scaling the appropriate ·partial differentials of the rate equation. The 
second mode expresses the elasticity coefficient as the fractional change in the variable 
divided by the fractional change in the perturbing parameter; the third mode is the equivalent 
logarithmic form. 

It is conve':lient to abbreviate the formal notation (E~) for a metabolite elasticity 
coefficient to e: . Note that definitions are necessarily stated as partial derivatives with 
infinitesimal changes denoted by a. In experimental practice small finite changes, denoted by 
ll, would be used. Given the value of~. one may calculate from eqn. (1) the fractional 
response of the individual reaction rate vj to a known fractional change in the concentration 
Si. For any one reaction step vj there will be as many elasticity coefficients as there are 
metabolites (substrates, products, coenzymes, effectors, etc) which are involved in that 
reaction. The value of any e may be positive or negative, greater than or less than 1 (Fig. 1). 
It may be determined experimentally in the same way that values of V or Km are determin
ed but, for use in intact metabolic systems, such determinations must be carried out under 
conditions to which the enzyme would be exposed in vivo. The notation for the elasticity 

coefficient for enzyme E; on its own reaction is E:!4 [= 1 by assumption 3 above]. 

Control Coefficients. A plot of the response of the flux, through a system of enzymes, to 
successive finite changes in the concentration of any one enzyme is non-linear (Kaeser & 
Burns, 1981). A flux control coefficient C is therefore defined in the same mathematical 
form as an elasticity coefficient but obviously has a completely different role to play in 
understanding system behaviour; it is concerned with a systemic function, not a local 
reaction rate: 

(2) 

So long as it clear from the context that a flux control coefficient is meant, cg can be 
abbreviated to ct Given the value of C;k. it is then possible to calculate the fractional 
response of the particular flux Jk to a fractional change in the concentration or activity of the 
particular named enzyme E;. For any one flux Jk there will as many flux control coef
ficients as there are enzymes and carriers in the whole metabolic system. The value of any 
one flux control coefficient may be positive or negative, greater or smaller than 1.0. The 
value of any such coefficient may be determined by direct experiment on the intact system, 
i.e. by varying one particular enzyme concentration or activity by small fractional incre
ments or decrements (using any means available) and measuring the consequential fractional 
change in the chosen flux. Examples of this direct and of alternative indirect determinations 
of flux control coefficients will be found in publications quoted later in this chapter. 
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Metabolite control coefficients cl are defined in analogous fashion. For any one meta
bolite concentration S there will be as many such coefficients are there are enzymes and 
carriers in the system. 

A Model Metabolic System 

Metabolic control analysis proceeds stepwise from simple to more complex situations, con
sidering first unbranched pathways, then branched pathways then conserved-moiety cyclic 
pathways. The very simplest unbranched pathway (Scheme 1) is modelled initially. Three 
elasticity coefficients are associated (as indicated) with each of the three catalysed steps of 
the model system. This minimal system comprises an external initial substrate X0 and a final 
external product X3; their concentrations X0 and X3 are kept constant despite the flux J 
through the pathway (this is commonly achieved in experimental practice in a number of 
well-known ways). These concentrations are then external parameters. The enzyme con
centrations £ 1, £ 2 , £ 3 are internal parameters of the system; they could be varied (in 
concentration or activity) by direct intervention of the experimenter; in contrast, S1 and S2 , 

the concentrations of the internal metabolites, are dependent variables - they cannot be 
altered other than by altering an external or internal parameter. Note that X0 and X3 are 
necessarily kept constant if we wish to discover and measure the response of the system to a 
change in any one of its internal parameters. 

Scheme 1 

The next four sections are concerned with the effects of changes occurring within such a 
system and within larger, more complex systems related to it. 

Are Flux Control Coefficients Related to Elasticity Coefficients? 

The three flux control coefficients of Scheme 1 are given by the following equations: 

(3) 

{4) 

(5) 
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Derivation of these equations employs the same kind of arguments used by Kaeser & Bums 
(1973: Appendix B), Kaeser (1983: divided pathways), Fell & Sauro (1985), and Hofmeyr 
etal. (1986; Appendix C). 

One must avoid being misled by the presence of minus signs in these equations: in 
ordinary circumstances (when considering concentration ranges where substrate inhibition 
and product activation are not evident) all of the products of elasticities, and hence all of 
the flux control control coefficients, are positive. This is because each product elasticity 
coefficient(£} and ~) is negative whereas all other (substrate) elasticity coefficients are 
positive under these circumstances. 

Because X0 and X 3 were defined as external parameters that are held constant, it 
follows that fJXofXo = l)X3/X3 = 0 by definition, and in consequence ~ and ~ do not 
appear in any of eqns.(3-5); furthermore, because all ~e = 1 (Assumption 3, above), the 
enzyme elasticities do not appear explicitly in these equations. All the other elasticity 
coefficients of Scheme 1 appear in each denominator term. Furthermore, the three denomin
ators are identical, whereas each numerator is unique to a particular flux control coefficient 
and is one of the denominator terms. It follows that each flux control coefficient will be 
different in magnitude (i.e. each enzyme of the system will exert a different, quantifiable, 
degree of control over the flux). 

It is immediately obvious that the flux control coefficient (a measure of the control 
exerted by any one enzyme on a given flux) is not a unique property of that enzyme; it is a 
systemic property determined by the responsiveness of each catalysed step (measured by the 
magnitude of the associated elasticity coefficients) to any small, finite, changes in the 
concentrations of the molecules which participate in that step (included is any change in the 
concentration, or the equivalent change in activity, of the enzyme). The magnitude of each 
metabolite elasticity coefficient varies if the metabolite concentrations change substantially 
(Fig. 1). It follows that the magnitudes of individual flux control coefficients [eqns. (3-5)] 
may also change when the same metabolic system is examined under markedly different 
experimental conditions. There are, however, constraints upon such changes in the flux (and 
metabolite) control coefficients. 

The Summation and Connectivity Properties 

The sum of three numerator terms of eqns. (3-5) equals the common denominator; that is, 
the sum of the three flux control coefficients is 1.0. If Scheme 1 were expanded by inserting 
one more enzyme and one more internal metabolite, there would then be four flux control 
coefficients; the denominators of the right hand side of four equations would now each 
contain four terms (each containing three elasticities) but each unique numerator term would 
still be one of the four denominator terms. The sum of the four flux control coefficients 
would again be 1.0. This flux control summation property applies to all metabolic systems, 
no matter how complex they may be; it follows that if, as conditions change, one or more 
flux control coefficients increase in magnitude, another or others must decrease so as to 
satisfy the summation property which is expressed as follows: 
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Eqn. (2) above shows that a large value for a flux control coefficient would be expected 

when the fractional flux response is large for a small fractional change in a given enzyme 

concentration or activity. The challenge to the experimenter is to discover which enzymes in 

a given system possess large and which possess small flux control coefficients, so dis
covering which enzymes are more and which less important in controlling that particular 
flux under defined experimental conditions. 

The corresponding summation property of the metabolic control coefficients, which 
likewise applies a metabolic system of any complexity (Heinrich & Rapoport, 1975; 
Heinrich, Rapoport & Rapoport, 1977), is expressed as follows: 

If eqn. (3) is divided by eqn. (4), and eqn. (4) in tum is divided by eqn. (5) the following 

ratios are found: 

That is, the ratio of the flux control coefficients for two adjacent enzymes is inversely 
proportional to the ratio of the elasticity coefficients for the two enzymes with respect to 
their common intermediate metabolite (see Scheme 1 above). (As with the earlier equations 

one should not be misled by the minus signs: both el and ~ are normally negative, so both 
quantities in parentheses are positive, and all of the ratios in these equations are positive). 
The general statement of this relationship is called the flux control connectivity property: 

II 

L Clr.~ = 0 
i=l 

The elasticity coefficients in this summation include those for any allosteric effectors. The 

general formulation allows also for the instance where one metabolite interacts with more 

than two enzymes (e.g. at a branch point in a metabolic pathway or in a feedback loop). The 
flux control connectivity property of a metabolic system explains how it comes about that 
the magnitudes of the flux control coefficients will redistribute if any one of them changes. 
The corresponding general formulation for the metabolite control connectivity property 
(Westerhoff & Chen, 1984) is as follows: 

II 

L c~ .. e~ = -~ 
i=l 

where 5mk is the Kronecker symbol and equals 1 if m = k and 0 if m :1:- k; m and k refer 
to any of the independently variable internal metabolites of the system. The summation is 

(as before) over all n enzymes of the system. See Giersch (1988ab) for further discussion 
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of the summation and connectivity properties. In Chapter 19 of this book Hofmeyr describes 
a systematic diagrammatic representation of the connectivities within any metabolic 
structure. 

Is There a General Relationship Between Flux and Metabolite Control Coefficients? 

Heinrich & Rapoport (1974a, 1975) demonstrated a complex but precise relationship 
between flux control coefficients and metabolite control coefficients. It will not be 
reproduced here but it is important in again emphasizing the co-ordinated interactions within 
a metabolic system; the relationship also has practical applications (Rapoport et al., 1974; 
Rapoport et al., 1976, Wanders et al., 1984). 

Extension of Control Analysis to Branched Pathways, Loops and Moiety-conserved Cycles 

There is not space here to deal with these extensions. The original papers on branched 
pathways (Kaeser, 1983; Fell & Sauro, 1985, Sauro, Small & Fell, 1987; Westerhoff & Kell, 
1987; Giersch 1988 ac; Small & Fell, 1989) should be consulted. The essential points are as 
follows: 

1. The simplest branched pathway consists of three unbranched segments joined at a 
metabolite which interacts with three rather than two adjacent enzymes. A model system 
might therefore show an input flux leading to the formation of the "branch point" 
metabolite and two output fluxes which consume this metabolite; any one of these three 
fluxes may be defined as the reference flux. 

2. Sets of equations like eqns. (3-5) above (one set in respect of each reference flux) can 
still be written but some of the elasticity coefficients must now be scaled by a factor a or 
1 - a, where a is the proportion of an input flux that appears in one of two output fluxes 
beyond the branch point. 

3. The partitioning ratio of the two output fluxes a/(1 - a) is a systemic characteristic [Fell 
& Sauro, 1985; their eqn. (A4)] -not a function of the "branch-point" enzymes alone. 
(This observation contradicts a widespread but unproved contention in traditional views 
on metabolic control: see Atkinson in Chapter 36 of this book). 

4. Negative control coefficients are generated when branching of pathways occurs. 

5. The summation and connectivity properties still apply. 

Similarly, the original papers on metabolic loops and conserved-moiety cycles should be 
consulted (Fell & Sauro, 1985; Sorribas & Bartrons, 1986; Hofmeyr et al., 1986; Small & 
Fell, 1987; Small & Fell, 1989). Again, the summation and connectivity properties still 
apply but some additional properties of metabolic loops and conserved-moiety cycles 
emerge [particular care is required in distinguishing between non-conserved-moiety cycles 

and conserved-moiety cycles. Derr (1986) refers to the Krebs cycle as a typical example of a 
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moiety-conserved cycle; this is unlikely ever to be true because citrate, a-oxoglutarate, suc
cinate and oxaloacetate may enter, and exit from, the cycle independently of each other and 
conceivably at rates not very different from the cycling rate (see Hofmeyr et al., 1986)]. 

Fell and colleagues have devised matrix algebraic methods that greatly simplify the 
calculation of flux and metabolite control coefficients from elasticity coefficients (see 
Chapter 9 of this book). The utility of these matrix solutions for control coefficients depends, 
of course, on the availability of reliable estimates of all the relevant elasticity coefficients. 

External, Independently Variable (Parametric) Effectors 

The whole of the treatment thus far has been concerned with defining an experimentally 
accessible index of the relative importance of individual enzymes (the control coefficients) 
in controlling a systemic function such as a flux or a metabolite concentration; and with 
demonstrating the connection between the responsiveness of local events (measured by the 
magnitude of elasticity coefficients) and the responsiveness of the whole system (measured 
by the magnitude of the control coefficients). Scheme 1 served as the elementary model. 
During the "thought experiments" described in the preceding sections, nothing was said or 
implied about the means by which the concentration or activity of any one enzyme was 
modulated; the treatment was thus entirely general. We can therefore next ask how the 
system would respond to modulation of any one enzyme activity by an external agent. 
Scheme 2 illustrates the same metabolic Scheme 1 (without showing the internal elasticity 
coefficients) but with the addition of an external effector, e.g. an inhibitor lx. The concentra
tion of lx is set or changed by the experimenter, or by the activity of an effectively 
independent system; it is not affected by the activity of the present system and is therefore a 
parameter (Kaeser & Bums, 1973) or an independent variable. 

Scheme2 

It is now necessary to define a special kind of elasticity coefficient [a kappa elasticity 
coefficient, originally called the controllability coefficient and symbolized K (Kaeser & 
Bums, 1973)]: 

(6) 

The kappa elasticity coefficient is defined in the same manner as other elasticity coefficients 
but has a special role to play; it provides a measure of responsiveness of a named internal 
reaction rate ( v2) to a small finite change in the concentration of a specified external or 
independently variable effector Clx). Kappa elasticities do not contribute to the magnitude 
of flux or metabolite control coefficients; they do not appear in equations such as eqns. (3-
5) above. 
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It is also necessary to define a special kind of system coefficient called a response 
coefficient R, which does not contribute to the summation property and does not particip
ate in the connectivity property: 

(7) 

The response coefficient is defined in the same way as a control coefficient but again plays a 
special role; it provides a measure of the responsiveness of a flux (e.g. J in Scheme 2) 
within or through a system to small finite changes in an external parameter such as the 
concentration I x of an effector; i.e. it measures the effect of a change in concentration of this 
effector on a system property (e.g. a flux) when the effector interacts with one particular 
enzyme in the system. The magnitude of any response coefficient can be shown to be the 
product of the current value of the flux control coefficient for the enzyme and the kappa 
elasticity coefficient for that enzyme with respect to the effector [Kaeser & Bums, 1973; see 
Kaeser & Porteous (1987) for a restatement using the current notation and terminology, that 
of Bums et al. (1985) ]: 

(8) 

Substituting in eqn (7), it follows that a measured fractional change in the flux J would 
be the product of three factors: 

(9) 

Because the concentration of the external substrate X0 of Scheme 2 is a parameter (by 
definition), a fractional change in a particular flux J consequent on a small finite change in 
X0 (with all other parameters kept constant) would also be the product of three factors: 

(10) 

Eqns (6-10) apply irrespective of the nature of the effector or the complexity of the system 
involved; it is only necessary that the concentration of the effector (I x or X0 in this 
example) be independent of the activity of the system under investigation. Interaction by the 
external effector could be with any one of the enzymes or carriers within the system 
(including those or on within the cell surface membrane). See Groen et al. (1982), Hofmeyr 
et al. (1986) and Cardenas & Cornish-Bowden (1989; also Chapter 14 in this book) for 
examples of the application of these equations. 

Control Analysis in Experimental Practice 

Table 1 lists techniques in common use for varying the activity or concentration of selected 
enzymes and carriers within intact metabolic systems. Table 2 lists groups of papers in 
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Table 1. Methods available for modulating the activity or concentration 

of selected enzymes in metabolic systems 

Method used 

1. Change gene dose 
2. Select mutant for "structural" gene; site-specific 

mutation 
3. Select mutant for ''regulator" gene 

4. Introduce plasmid carrying 
(a) a structural gene or 
(b) expressing anti-sense mRNA 

5. Add single enzyme to cell-free enzyme system 

Resulting changel 

Concentration of expressed enzyme 
Activity of expressed enzyme 

Concentration(s) of expressed enzyme(s) 

Concentration(s) of expressed enzyme(s) 

(a) increased or 
(b) decreased 

Concentration of one enzyme 

6. Change concentration of external (parametric) effector2 Activity or concentration of (internal) 
enzyme 

7. Change concentration of external inducer, 

structural gene(s) expressed or not2 

Concentrations of corresponding enzymes 

1 Changes in enzyme concentration are effectively changes in enzyme activity 
2 If method 6 or 7 is employed, eqns. (6-9) in the text necessarily apply. These equations may also be applicable elsewhere, 

provided the modulating effector is independent of the system and thus involves a kappa elasticity (Hofmeyr et al., 1986; 
Cardenas & Cornish-Bowden, 1989). Eqns. (6-9) do not therefore apply to the modulations employed in methods 1-5 of 
this Table. 

Table 2. Publications in which Control Analysis has been used 

System 

Glycolysis 
in erythrocytes 

in yeast 
in liver extract 

Gluconeogenesis in hepatocytes 
Amino acid metabolism in hepatocytes 

De novo purine biosynthesis in human T -cells 

Respiration in hepatocyte and yeast mitochondria 

Citrulline synthesis in hepatocyte mitochondria 

Arginine synthesis in Neurospora crassa 
Photosynthetic C02 fixation 

mRNA translation in reticulocytes 

Bacterial growth 

Expression of the genome 

1 References to CHAPTERS are to this book 

References 1 

Rapoport et al., 1974, 1976; Rapoport & Heinrich, 

1975; Heinrich, 1985; CHAPTER 28 

Brindle, 1988 
Torres et al., 1986, 1988; CHAPTER 18 

Groen et al., 1983, 1986; CHAPTER 6 

Salter et al., 1986; CHAPTER 32 
Smith et al. in CHAPTER 33 
Groen et al., 1982; Tager et al., 1983; Gellerich et al., 
1983; Wanders et a/.,1984; Holness et al., 1984; 

Bohnensack, 1985; Westerhoff, 1985; Mazat et al., 
1986; Pryor et al., 1987; Westerhoff et a/.,1987; 

Moreno-Scmchez et al., 1988; Brand et al., 1988 

Wanders et al, 1984 
Flint et al., 1981 
Woodrow, 1986; Kruckeberg et al., 1989; Stitt et al. in 

CHAPTER31 

Heinrich & Rapoport, 1980 
Dean et al., 1986; CHAPTER 34; Westerhoff & van 

Dam, 1987 
Westerhoff et al. in CHAPTER 35 
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which control analysis has been applied. Examples from most groups are fully discussed 
elsewhere in this book. A few general comments are in place. Several examples are now 
available showing that: 

1. A set of flux or metabolite control coefficients can be obtained for all or most of the 
enzymes (and any carriers) in common pathways; 

2. The magnitudes of these coefficients change (subject to the constraint of the summation 
property) if experimental conditions vary substantially; 

3. Some steps close to equilibrium exert measurable control on system activity and some 
steps far from equilibrium do not necessarily exert much control; 

4. Genetic manipulations leading to substantial under-production or marked over-produc
tion of a single enzyme do not necessarily have any detectable effect on some fluxes to 
product formation, or even on cell growth; 

5. When elasticity coefficients are also measured, it is possible to understand how it comes 
about that some steps possess large and others small control coefficients. 

These last demonstrations are particularly satisfying because one of the aims of control 
analysis (Kaeser & Burns, 1973; see also Kaeser & Porteous, 1983) was to understand 
system functions in terms of events at all the local steps in the system. 

These are remarkable achievements and entirely in line with the predictions of control 
analysis; they suggest that it is time to abandon the traditional descriptive approach to 
metabolic control and especially the dichotomies implied by such terms as regulatory and 
non-regulatory enzymes, reversible and irreversible reactions (usually but erroneously stated 
as reversible and irreversible enzymes).lt is, of course, not reasonable to expect every detail 
of these pioneering results to remain unchallenged. For example, Groen et al. (1982) 
claimed that at low respiration rates the proton leak alone controlled respiration by non
phosphorylating mitochondria; it is now clear that control under these circumstances is 
shared between the proton leak and the respiratory chain (Brand et al., 1988). 

Conditions for the Use of Inhibitors in Control Analysis 

In each of these successful applications of control analysis, the experimentalists have 
necessarily modulated a parameter of the system under investigation. One such modulation 
technique involves titrating a particular enzyme within the system with an inhibitor of 
proved characteristics. Any such approach requires particular attention to all three limita
tions of the method (Kaeser & Bums, 1973): (1) The concentration of the inhibitor at the 
point of action must be known; if the external concentration is all that can be measured, then 
the internal concentration should be some known function of this internal concentration. (2) 
The inhibitor must be specific to one enzyme only. (3) Its inhibition kinetics must be proved 
for that enzyme. 
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In Chapter 29 of this book, Berry and colleagues argue that control analysis proved 

unsatisfactory in the analysis of their inhibition experiments. However, they provide no 

evidence that each of the inhibitors they employed was specific to a single enzyme in their 

system. If they were not specific, that control analysis failed in their hands would be readily 

explained: condition (2) would not be satisfied. There is, furthermore, no indication that the 

concentration of rotenone at the points of inhibition was known in their experiments. Nor is 

it clear that the inhibitors used by them were proved to be iireversible inhibitors of the 

individual enzymes particular to their experimental system; if they were not, even if one 

assumes that all other conditions for the use of inhibitors in control analysis were satisfied, 

the equation they used for obtaining the magnitude of the flux control coefficient from the 

inhibition data would be inappropriate (see Derr, 1986). 
One further aspect of the use of inhibitors in control analysis has perhaps not been 

realized or sufficiently emphasized in the past. If the inhibition plot is sigmoid, and if the 
descending, non-linear, part of the plot reaches zero flux or approaches it closely, then it is 

legitimate (Groen et al., 1982) to extrapolate this near-linear part of the plot onto the 

inhibitor concentration axis to obtain an estimate of /max• the concentration of inhibitor 
required to inhibit the enzyme completely. If, on the contrary, an inverted hyperbolic plot is 

obtained (Berry and co-workers in Chapter 29 of this book, Fig. 1 ), the tangent to the plot at 

1 = 0 will give an estimate of d!/(1. But to extrapolate this same tangent onto the inhibitor 

concentration axis will inevitably give a flux control coefficient of 1.0; this inevitability 

arises from the geometry of the plot and the tangent at 1 = 0, rather than from the inhibition 

of the enzyme and the consequential effects on a given system flux. This inevitability will 

arise (in any experimental system) for every enzyme that exhibits such an inverted 

hyperbolic plot if the formula Ck =liTVlX(df/a[)/1 (Groen eta/., 1982; Derr, 1986) is applied 
and 1 max estimated in this incorrect manner. Berry and colleagues are thus not justified in 
suggesting that their results reveal a paradox in control analysis. Their alternative conclusion 

"that the enzymes of the pathway must be highly channelled" seems insecure on the 

evidence available. 
Analogous objections can be made to their conclusion from Fig. 2 of Chapter 29 that 

"the flux control coefficient for ATP synthase is 0". To obtain a reasonable estimate of the 

initial slope aJ /(1 of these plots, many more plotting points would be required close to 1 = 0. 

It is more likely that the flux control coefficient for ATP synthase had a very small positive 

value. On present evidence from this figure it would be unwise to claim more than that this 

flux control coefficient approached zero. It is, in any case, inappropriate to conclude "that an 

excess of ATP synthase is present": this confuses the terminology and concepts of tradition

al views on metabolic control with those of control analysis (Kaeser & Bums, 1973, 1981; 

Heinrich et al., 1977). 

Other Systematic Treatments of Metabolic Control 

The approach to control analysis described here is due to Kaeser and his collaborators. A 

mathematically more complex but more generalized approach to control analysis was used 

by the Berlin group (for a review see Heinrich eta/., 1977) and applied to several aspects of 
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human erythrocyte behaviour (see Chapter 28 by Heinrich in this book). Westerhoff (1985) 
and Westerhoff & van Dam (1987) have pioneered the translation of the kinetic approach to 
control analysis into an energetic approach. Savageau, starting in 1969, has published a long 
series of papers on biochemical systems theory (based on his power-law approximation) 
describing the behaviour of a range of model systems and comparing model behaviour with 
thatofbiological systems [see Savageau (1976), as well as Chapters 4 and 5 in this book]. 
Reder and Mazat (see Chapters 7 and 8 in this book) have described a structural approach 

to the behaviour of metabolic systems. 
In Chapter 6 of this book Groen and Westerhoff make a systematic comparison between 

several of these methods, applying them in turn to the control of gluconeogenesis in rat 
hepatocytes, and showing that despite variations in emphasis, language and symbolism, they 
actually embody essentially the same mathematical ideas and lead to entirely compatible 
results. Which of them gives most insight into the operation of biological insight, which is 
most suited to computer modelling, and which is most readily applied to bench experiments 
should become clearer from the chapters that follow, particularly those in Section VI. 
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Chapter4 

Biochemical Systems Theory: 
Alternative Views of Metabolic Control 

MICHAEL A. SA V AGEAU 

AN APPROPRIATE language or formalism for the analysis of complex biochemical systems 
has been sought for several decades. The necessity for such a formalism results from the 
large number of interacting components in biochemical systems and the complex nonlinear 
character of these interactions. The Power-Law Formalism (Savageau, 1969b) is an 
example of such a language that underlies several recent attempts to develop an understand
ing of integrated biochemical systems. This formalism provides the basis for a theory, which 
is called Biochemical Systems Theory. Several different strategies of representation are 
possible within Biochemical Systems Theory. Among these, the "S-system" representation 
is the most useful, as judged by a variety of objective criteria (Sorribas & Savageau, 
1989abc). This chapter first describes the predominant features of the S-system representa
tion. The mathematical form of the S-system is deduced from the biochemical network in a 
straightforward fashion. The parameters of the S-system- rate constants and kinetic orders 
- are readily related to experimental data. The steady-state behaviour is characterized by a 
set of linear algebraic equations that can be solved symbolically or numerically. The 
differential equations that characterize the dynamic behaviour can be solved with very 
efficient numerical techniques. Methods for making well-controlled comparisons of alterna
tive designs have been developed and applied to several classes of biochemical systems. In 
many cases these applications have led to more specialized theories with strong predictive 
capabilities. Specific predictions of these theories have been confirmed by experimental 
results from a number of independent laboratories. This chapter presents detailed compari
sons between the S-system representation and other variants within Biochemical Systems 
Theory. These comparisons are made on the basis of objective criteria that characterize the 
efficiency, power, clarity and scope of each representation. Two of the variants within 
Biochemical Systems Theory are intimately related to other approaches for analysing 
biochemical systems, namely the Metabolic Control Theory of Kaeser & Bums (1973) and 
of Heinrich & Rapoport (1974) and the Flux-Oriented Theory of Crabtree & Newsholme 
(1987). It is hoped that the comparisons presented here will result in a deeper understanding 
of the relationships between these variants. 

Michael A. Savagcau • Deparunent of Microbiology and Immunology, The University of Michigan, Ann 
Arbor, Michigan 48109-0620, USA 

Control of Metabolic Processes 
Edited by A. Cornish-Bowden and M. L. Cardenas 
Plenum Press, New York, 1990 

69 



70 M. A. Savageau 

Background 

The explosive growth of molecular biology in the past 30 years is often referred to as "The 
Biological Revolution". As a result of this intensely focussed activity we are now in the 
position of knowing a great deal about the molecular constituents for a number of the 
simpler organisms - a number of viruses and the common bacterium Escherichia coli in 
particular. In the case of E. coli we now know on the order of 80 percent of all its genes and 
proteins. It is easy to perceive that in the next few years we will know all of the molecular 
elements of this organism. This is testimony to the power and efficiency of the reductionist 
approach. We have learned a tremendous amount in the past several decades, primarily 
because of this approach; it is clearly an essential tool. One need only look around to see 
how the world view of molecular biology permeates the biological disciplines, courses, and 
indeed the daily newspapers. 

Any respectable reductionist is also a reconstructionist. By this I mean that if you ask a 
reductionist what his or her objective is, you will find that it is to reduce complex systems to 
their elemental units in order to characterize them, and once this is accomplished, to use this 
knowledge for reconstructing an understanding of the intact entity with which the 
investigation started. The problem is that the reconstructionist phase of this program is 
seldom carried out. This is due in part to preoccupation with the task of elucidating the 
molecular elements. There is still much to be done in this regard, and there are still great 
rewards for pursuing this task as long as the reductionist paradigm remains dominant in 
biology. 

Paradoxically, it is at the very height of its success that the weaknesses of this paradigm 
are becoming increasingly apparent. It is now obvious that, as noted above, we shall soon 
have the complete parts catalogue for some organisms. Yet, by comparison, we still know 
relatively little about the integrated system, what makes it a living cell, or how it will 
respond to novel environments and to specific changes in its molecular constitution. In 
short, our knowledge is still fragmented and descriptive; we have almost no under
standing of the "design principles" that govern biological systems. The reasons for this 
failure of reconstruction are more fundamental than preoccupation with other tasks. The 
reductionist paradigm itself is inherently unable to deal with these issues; a radically 
different and complementary "systems" approach is required. To see why this is so one need 
only look to the knowledge of the cell that has been revealed by advances in molecular 
biology. 

Cellular components exhibit interactions that are associative rather than additive. These 
give rise to heterogeneous systems with rather complex nonlinearities, which account for 
most of the interesting properties of living cells. Associative interactions also produce rich 
hierarchical networks that are strongly coupled and highly organized. This structure must be 
taken into account if one is to understand the integrated behaviour of the cell. The network 
of interactions in a typical cell is characterized by thousands of variables and poses an 
enormous book-keeping problem that requires the aid of systematic methods that can only 
be provided by mathematics. 
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Table 1. Roots of the Power-Law Formalism 

Kinetics Biology 

1638 Galileo 

1838 Rameaux and Sarrus 
1847 Bergmann 

1867 Guldberg and Waage 1864 Spencer 
1902 Brown 
1903 Henri 
1913 Michaelis and Menten 1917 Thompson 
1923 Hill 
1925 Briggs and Haldane 

1956 Umbarger 
1957 Dalziel 
1958 Alberty 

Mathematical Formalisms 

1932 Huxley, Teissier 

1950 Needham 

1960 Bertalanffy 

Networks 

1637 Descartes 
1687 Newton, Leibniz 
1736Euler 
1750 Laplace 
1822 Fourier 

1858 Cayley 
1860 Kirchhoff 

1945 Bode 
1948 Mason 
1953 Hearon 
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An appropriate language or formalism with which to analyse complex biochemical systems 
has been sought for several decades. The only formalisms known to be capable of dealing 
with the distinctive characteristics of complex biochemical systems are mathematical. Two 
well-known mathematical formalisms that frequently have been used for analysis of bio
chemical systems are the Linear Formalism and the Michaelis-Menten Formalism. 

The Linear Formalism is among the best understood and developed mathematical 
structures. A linearized description of a biochemical system can be efficiently treated 
mathematically in many different ways, even when there are hundreds of system compon
ents. It is a general symbolic formalism ~aranteed to be valid at least over some restricted 
range of the concentration variables. However, the variables in biochemical systems vary 
over ranges wide enough to produce highly nonlinear behaviour and therefore the Linear 
Formalism, which cannot represent known nonlinear properties of biochemical systems, is 
inappropriate. 

The Michaelis-Menten Formalism, on the other hand, approximates many individual 
reactions reasonably well in vitro. Descriptions in this formalism are readily utilized as long 
as only one enzyme or a system of very few enzymes is being studied. However, under 
physiological conditions, each enzyme is not isolated, but interacts with other enzymes and 
structures embedded in an intricate network of reactions. The Michaelis-Menten Formalism 
does not produce a systematically structured approach for analysis of such complex systems. 
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The central assumptions of this formalism restrict its application to systems with independ
ent rates that are linear functions of enzyme levels and activities. Moreover, the resulting 
formalism leads to ad hoc mathematical descriptions that are not easy to study analytically 
when there are large numbers of reactions. 

A third formalism that differs significantly from these two is the Power-Law Formal
ism (Savageau, 1969ab; 1970; 1971ab; 1972). Its roots are in chemical and biochemical 
kinetics, organismal biology, and network theory (including sensitivity theory and Bode 
analysis). Relevant landmarks in these areas are summarized in Table 1. This formalism 
represents the interactions of a system in a structured fashion that facilitates analysis, and yet 
it retains the essential character of the underlying nonlinear processes. This formalism 
provided the basis for a theory of intact biochemical systems, which is now called 
Biochemical Systems Theory. 

Component Representation within Biochemical Systems Theory 

In Biochemical Systems Theory, all functional relationships, including rate laws, conserva
tion relations, and other constraints are represented by a Taylor series in a logarithmic 
coordinate system. The conditions necessary for the existence of a valid Taylor series are 
well known (Thomas & Finney, 1982) and generally applicable to biochemical systems of 
interest. Each term in such a series brings about a progressively better approximation to the 
actual function, and at each stage the error in the representation can be measured. Approxi
mation by the first two terms of the Taylor's series is particularly simple, and corresponds to 
the best linear representation in the logarithmic coordinate system. 

Estimation of the parameter values reduces to the well-known procedure of linear 
regression (Savageau, 1972). In its simplest graphical interpretation, one determines the rate 
of a particular process with all the variables affecting the process held constant at their 
nominal steady-state values in situ. Then one systematically fixes one of the variables at 
different values about its nominal steady state and again determines the corresponding rate. 
When plotted in logarithmic coordinates the data might appear as shown in Fig. 1. An 
appropriate linear regression gives the best straight line passing through the nominal 

9 
Figure 1. Estimation of component parameter > 
values in Biochemical Systems Theory. The 
points represent experimental data and the curve > 
is the best straight line through the nominal 
operating value Xi = Xjo. 

X j I X jO 
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operating point tangent to the experimentally-determined curve. The equation of this straight 
line is given by 

log Vi= log<Xi + gijlogXj (1) 

The slope g ij corresponds to the conventional kinetic order and the intercept IXj to the 
conventional rate constant of chemical and biochemical kinetics. When this equation is con
verted to Cartesian coordinates by exponentiation, one obtains the power-law representation: 

~·-aJ(8ii ,- j (2) 

In general there are several variables affecting any given process, and the above procedure 
must be repeated for each of them. The above equations then become 

and 

where 

and 

log Vi= log <Xi+ L gijlogXj 
j 

vj=a.ITxr 
j 

<Xi = v iO II xfi• 
j 

(3) 

(4) 

(5) 

(6) 

Thus, there are two types of fundamental parameters in the power-law representation
kinetic orders and rate constants- each has a well-defined mathematical definition and a 
straightforward graphical interpretation (Savageau 1969b, 1971a, 1972). 

System Representations within Biochemical Systems Theory 

Although there were at least four obvious variants within Biochemical Systems Theory that 
were recognized from the beginning (see Voit & Savageau, 1987), and it is now clear that 
there are many more (Sorribas & Savageau, 1989c), comparisons on the basis of the 
operations characteristic of each variant have never been published. In this section we shall 
make such comparisons among the more important variants within Biochemical Systems 
Theory. The principal distinctions, as summarized in Fig. 2, are manifested at three levels. 
First, the Power-Law Formalism that underlies all of these approaches can be either made 
explicit or left implicit. Second, one can choose to aggregate elementary fluxes into net 
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Explicit Implicit 

I 
Pools 

12 
I 

Reactions 
I 

Pools 
I 

Reactions 

1 3 
n eqs. 

13 
n eqs. 

js 
r+b eqs. 

110 
r eqs. n eqs. n eqs. 

TTT:TTT 
Figure 2. Variants within Biochemical Systems Theory (BST). See text for discussion and Sorribas & 
Savageau (1989abc) for additional detail. S-SYS = S-System; GMA = Generalized Mass Action; FOT = 
Flux-Oriented Theory; MCT =Metabolic Control Theory. 

fluxes through pools or enzyme-catalysed reactions. Third, the systemic representation be 
formulated with minimal assumptions and the optimal number of equations known from 
network theory, or with more restrictive assumptions and more highly redundant equations. 
These distinctions in turn imply differences in the clarity, efficiency, power, and scope of the 
variants considered. To make the comparisons specific let us examine the system repre
sented in Fig. 3, and to keep it simple let us follow only one of the equations through the 
major steps in the analysis of each variant. 

Explicit S-System Representation within Biochemical Systems Theory. The major steps in 
this case are the following [see Sorribas & Savageau (1989a) for the full details]: 

I. Formulate the component representations as described in the previous section. 

2. Write Kirchhoff's node equation for each dependent variable of the system. 

Figure 3. Enzyme-enzyme interactions and 
channelling of metabolic flux. X4 and X 5 are X3 -.===~ Xg + Xo 

1 
x4 x1 ~ x2 

independent metabolite concentrations; X 1 
and X2 are dependent metabolite concentra
tions; X6, X9 and X0 are concentrations of 
"free" enzyme; X3 is the concentration of the 
multienzyme complex; X7= X3 + X9 is the 
total concentration of the first enzyme; and 
X8 = X3 + X0 is the total concentration of 

~ 
the second enzyme. 

x6 

x5 
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(7) 

3. Aggregate elementary fluxes into net fluxes through pools, which allows the above 
equation to be written as 

(8) 

4. Each net rate law is replaced by the corresponding component representation in the 
Power-Law Formalism to generate the system representation. There is one power law 
for each variable that affects the rate law in question. 

dX2 _ a.']}{K21xKnx873xK"'xg'JI) Jl2Xhnx~v~ dt- 1 2 3 4 0 - 2 5 "'6 (9) 

With a little practice, this system representation in the Power-Law Formalism can be 
written immediately by inspection of the system diagram (e.g. Fig. 3). The system of 
differential equations then can be used to predict the dynamic behaviour of the system 
within a local region about its nominal operating point (Savageau, 1970; Voit et al., 
1989). 

5. The equations characterizing the steady-state behaviour are obtained by setting the time 
derivatives to zero and transforming the resulting nonlinear algebraic equations into a 
set of linear algebraic equations. 

6. The steady-state equations can be solved explicitly for each dependent variable 

3 8 

y;= L Mijhj+ L Luryk fori= 1,2,3 (11) 
j=l k=4 

provided lA I= a 33(a11a 22 + g21h12) "# 0. This solution allows one to predict the 
steady-state value of each dependent variable in terms of the values of the independent 
variables, kinetic orders, and rate constants (Savageau, 1969b). 

7. Specific systemic responses also can be selected for emphasis by appropriate logarith
mic differentiation with respect to change in an independent variable [e.g. Logarithmic 
Gain L(X2, X6)], a rate-constant parameter [e.g. Rate-Constant Sensitivity S(X2, [32 )], 

or a kinetic-order parameter [e.g. Kinetic-Order Sensitivity S(X2, h22)] (Savageau, 
197Iab). 

(12) 

8. Step 7 can be repeated as often as desired or until all of the possibilities are exhausted. 
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Within the framework of the Power-Law Formalism the steady-state analysis using the 
explicit S-system representation is complete. Systemic properties are directly related to 
component properties in the nominal steady state by a simple matrix equation (Savageau, 

1971b): 

[L) = -[A];}[A); (13) 

where the elements of [L] are the logarithmic gains (or response coefficients in Metabolic 
Control Theory) and the elements of [A] are the kinetic orders (or elasticities in Metabolic 
Control Theory) for the component reactions of the system. The subscripts d and i refer to 
kinetic orders with respect to dependent and independent variables respectively. This 
equation can be rewritten in a variety of manifestations as shown in Table 2 (Savageau & 
Sorribas, 1989). The influence of every independent concentration variable and every para
meter value on every dependent variable of the system is accounted for. These influences are 
determined not only for the nominal steady state, but for all steady states in the local neigh
bourhood. The dynamic responses of the system within the local neighbourhood of the 
steady state also can be characterized. 

Table 2. Complete Characterization of the Nominal Steady State 
within Biochemical Systems Theory 1 

Flux Variables 

Systemic Properties 

[L(V, X)] 

[S(V, 13)1 
[S(V, a)] 

(S(V, h);h} 

(S(V, g)/g) 

Component Properties 

[G~- [G]d[A]j1 [A], 

[GUAV 
[II- [GJiAV 
[G]d[A]/®y] 

[l]®y]- [G]iA]/®y] 

1See Savageau & Sorribas (1989). 

Concentration Variables 

Systemic Properties 

[L(X, X)] 

[S(X, f3)] 

[S(X, a)] 

(S(X, h);h} 

(S(X, g)/g) 

Component Properties 

-lAVfAJ, 

fAV 

-fAV 

lAV®yl 

- fAV®yl 

Explicit Generalized-Mass-Action Representation within Biochemical Systems Theory. One 
of the obvious variants within Biochemical Systems Theory corresponds to aggregation of 
elementary fluxes into net fluxes through reactions and yields the Generalized-Mass-Action 
representation within Biochemical Systems Theory. The major steps in the analysis accord
ing to this variant are the following [see Sorribas & Savageau (1989b) for details]: 

1. Formulate the component representations as described in the previous section. 

2. Write Kirchhoff's node equation for each dependent variable of the system. 
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~2 = Vt2 + V42- V25 (14) 

3. Aggregate elementary fluxes into net fluxes through reactions, which is actually 
assumed in the above notation, and then rewrite eqn. (14) using the convention adopted 
in Biochemical Systems Theory: 

~2 = V21 + v22- v_2 (15) 

4. Each net rate law is replaced by the corresponding component representation in the 
Power-Law Formalism to generate the system representation. There is one power law 
for each variable that affects the rate law in question. 

(16) 

With a little practice, this system representation in the Power-Law Formalism can be 
written by inspection of the system diagram (e.g. Fig. 3). The system of differential 
equations then can be used to predict the dynamic behaviour of the system within a local 
region about its nominal operating point. 

5. The nonlinear algebraic equations characterizing the steady-state behaviour are obtained 
by setting the time derivatives to zero. 

(17) 

In general, there is no explicit steady-state solution for this system of nonlinear 
equations. A different approach to characterizing the steady state must be followed at 
this point. 

6. Specific systemic responses can be defined by explicit differentiation of the above 
equations with respect to an independent variable, a rate-constant parameter, or a 
kinetic-order parameter. For example, differentiation with respect to the enzyme level 
x6 yields the following equation. 

gm (~;~ ~~~}~~} + [ g221 (~~) + g222(~~) -h22 ](~~}~~} 
+ [ g231 (~~) + g232(~~~ )](~~)~:} = h26 

(18) 

The relative derivatives are recognized as the set of logarithmic gains with respect to X6 

and, since the coefficients preceding the logarithmic gains are readily seen to be the 
corresponding kinetic orders in the S-system representation, the equation can be written 
more simply as 
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(20) 

7. Specific systemic responses can be detennined by solving the linear equations obtained 
in the previous step. For example, 

(21) 

8. Steps 6 and 7 can be repeated as often as desired or until all of the possibilities are 
exhausted. 

Comparison of Explicit S-System and Explicit Generalized-Mass-Action Representations. 
Note that the systemic factors- logarithmic gains [e.g. L(X2, X6)], rate-constant sensi
tivities [e.g. S(X2, p2 )], and kinetic-order sensitivities [e.g .. S(X2, h22)] - obtained with 
the explicit Generalized-Mass-Action variant are identical to the corresponding systemic 
factors obtained with the explicit S-system variant of Biochemical Systems Theory. Thus, 
they produce the same characterization of the nominal steady state. Because there is no 
explicit steady-state solution with the Generalized-Mass-Action representation, it is necess
ary to reverse the order of the operations in steps 6 and 7. This results in loss of information 
about the system and has important implications for predictions of behaviour away from the 
nominal steady state. One cannot obtain the systemic behaviour explicitly. In many cases 
one can predict systemic behaviour for numerically characterized systems; but, as demonstr
ated elsewhere (Sorribas & Savageau, 1989b), these predictions are generally less accurate 
than those made with the S-system representation. The analysis with the Generalized-Mass
Action representation also tends to be less efficient because one must repeatedly differentiate 
the set of steady-state equations and solve the resulting linear system, whereas with the S
system representation one solves a linear system once1 and then differentiates the result once 
for each systemic factor of interest. 

Explicit Representation within F lux-0 riented Theory. The Flux -Oriented Theory of Crab
tree & Newsholme (1987) uses an explicit representation that can be considered a special 
case of the explicit Generalized-Mass-Action variant within Biochemical Systems Theory 
(see Sorribas & Savageau, 1989b, for details). In order to develop a deeper appreciation for 
the different approaches and how they relate to the general framework provided by the 
Power-Law Formalism, it is important to recall the principal differences between Flux
Oriented Theory and the explicit Generalized-Mass-Action variant. First, Flux-Oriented 

1Perhaps it should be emphasized that solution of the linear system is the most time-consuming step in the 
mathematical analysis and that the difficulty of solution increases markedly with increasing number of 
variables in the system. Typically, solution time increases as a cubic or even factorial function of the number of 
variables, depending on the method of solution. Consequently, it is advisable to minimize the number of 
variables in the representation, especially when dealing with large biochemical systems. In contrast to the 
difficulty of solution by matrix inversion, the effort necessary to define aggregate parameters before solution 
and then to substitute those definitions back into the resulting solution is negligible. 



4: Biochemical Systems Theory: Alternative Views of Metabolic Control 79 

Theory differs in the use of a non-standard matrix notation that makes analysis and inter
pretation somewhat more difficult, at least for larger systems. Second, it makes a number of 

restrictive assumptions -linear and independent variation in rates with variation in enzyme 

levels, reactions not in equilibrium, etc. - that cannot be considered generally valid. Third, 

it formulates the system representation in a non-optimal fashion that increases the difficulty 

of solving the resulting equations. 
In particular, it is instructive to compare the enumeration of equations for the explicit 

Generalized-Mass-Action variant within Biochemical Systems Theory, which uses the 

standard enumeration in well-developed network theories, to that in Flux-Oriented Theory. 

In general, the combination of rate laws and Kirchhoff's flux laws for a given system will 

generate r + n equations in r + n variables, where r is the number of reactions and n is 
the number of dependent concentrations. In presenting Flux-Oriented Theory, Crabtree & 
Newsholme (1987) define bas the number of branch points in the system and have reduced 
the above numbers to r + b equations in r + b unknowns by using Kirchhoff's flux 
equations at the simpler, non-branching, nodes of the system to eliminate one of a pair of 

equivalent flux variables. These numbers are reduced still further- to the minimum, n 
equations in n unknowns - in the explicit Generalized-Mass-Action variant within 

Biochemical Systems Theory by substituting the appropriate rate laws into Kirchhoff's flux 

equation for each dependent concentration variable. This is standard technique in network 

theory (see also the previous footnote). 
For the system in Fig. 3, one can assume equilibrium for the enzyme-enzyme associa

tion/dissociation and eliminate these processes from consideration in steady state, and then 

r = 4, n = 2 and b = 1. The full system is 6th order, the partially reduced system in Flux

Oriented Theory is 5th order, and the fully reduced system in the explicit Generalized-Mass

Action variant is 2nd order. Thus, the explicit Generalized-Mass-Action variant within 
Biochemical Systems Theory, when compared with the special case of Flux-Oriented 

Theory, makes less restrictive assumptions, uses a more efficient reduction of the initial r + 
n equations, and provides a more systematic representation for analysis of the system. 

Implicit Generalized-Mass-Action Representation within Biochemical Systems Theory. In 

contrast to the previous variants, which develop the component representation within the 

Power-Law Formalism first and then use it explicitly, another class of variants uses the 

Power-Law Formalism implicitly. As an example of this class let us consider the implicit 

Generalized-Mass-Action representation within Biochemical Systems Theory. The major 

steps in the analysis according to this variant are the following [see Sorribas & Savageau 

(1989b) for details]. 

1. Write Kirchhoff's node equation for each dependent variable of the system. 

dX2 - = V12 + V42 - V25 
dt 

(22) 

2. Aggregate elementary fluxes into net fluxes through reactions, and rewrite the above 
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equation as 

(23) 

3. The nonlinear algebraic equations characterizing the steady-state behaviour are obtained 
by setting the time derivatives to zero: 

(24) 

In this form of the steady-state equations no explicit steady-state solution is possible; 
nor can a steady-state solution be obtained numerically without specifying some explicit 
form for the rate laws. A different approach to characterizing the steady state must be 
followed at this point. 

4. Implicit logarithmic differentiation of each rate law with respect to each X variable, 
while holding all other X variables fixed, defines one class of component parameters 
within Biochemical Systems Theory - the kinetic orders. 

5. Implicit logarithmic differentiation of each X variable with respect to a specific 
independent X variable, while holding all other independent X variables fixed, defines 
one class of systemic properties within Biochemical Systems Theory - the logarithmic 
gains. 

6. The sequential execution of steps 4 and 5 in the chain rule of differentiation leads to an 
implicit systemic representation within Biochemical Systems Theory. For example, diff
erentiation with respect to the independent variable X6 yields the following equation: 

av12 x 1 v12 ax1x6 av12 x 2 v12 ax2x6 av12 x 3 v12 ax3x6 -----+-----+-----
axl VJ2 V25 dX{;X1 dX2 VJ2 V25 dX{;X2 dX3 VJ2 V25 dX{;X3 

av42 x 2 v42 ax2x6 dv42 x3 v42 ax3x6 av25 x 2 ax2x6 _ av25 x 6 + +-------------
ax2 V42 V25 dX(,X2 ()X3 V42 V25 dX(,X3 ()X2 V25 dX(,X2 dX(, V25 

(25) 

The logarithmic or relative derivatives of the rate laws with respect to the X variables 
are recognized as the appropriate kinetic orders, and the logarithmic derivatives of the 
X variables with respect to X6 are identified as the set of logarithmic gains. 

Since the coefficients preceding the logarithmic gains are readily seen to be the corres
ponding kinetic orders in the S-system representation, the equation can be written more 
simply as 

(27) 

7. Specific systemic responses, i.e. logarithmic gains, can be determined by solving the 
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linear equations obtained in the previous step. For example, 

(28) 

8. Steps 4, 5, 6, and 7 can be repeated as often as desired or until one exhausts the 
possibilities. 

Comparison of Implicit Generalized-Mass-Action with Explicit S-System and Explicit 
Generalized-Mass-Action Representations. Note that the systemic properties- logarithmic 
gains [e.g. L(X2, X6)] - obtained with the implicit Generalized-Mass-Action variant are 
identical to the corresponding systemic properties obtained with the explicit S-system and 
explicit Generalized-Mass-Action variants within Biochemical Systems Theory. That is, the 
implicit Generalized-Mass-Action representation leads to the same characterization of the 
nominal steady state with respect to changes in the independent variables. However, because 
there is no explicit steady-state solution with the implicit Generalized-Mass-Action repre
sentation, it is necessary to reorder the steps in the analysis, which results in loss of informa
tion about the system. The loss is more profound in this case than it is in the case of the 
explicit Generalized-Mass-Action representation. Determination of systemic properties in
volving rate constants and kinetic orders requires that the underlying formalism be explicit; 
hence, these properties cannot be obtained by an implicit approach. An implicit approach 
allows neither an explicit symbolic solution nor a numerical solution of the systemic 
behaviour in terms of the underlying parameters and independent variables. As a con
sequence one cannot determine the dynamic behaviour of the system, nor can one determine 
the steady-state behaviour away from the nominal operating point, which is in contrast to the 
situation with explicit approaches. 

The partial analysis possible with the implicit Generalized-Mass-Action representation 
tends to be less efficient because one must repeatedly differentiate the set of steady-state 
equations and solve the resulting linear system, whereas with the explicit S-system 
representation one solves a linear system once and then differentiates the result once for 
each systemic property of interest (see also the previous footnote). Moreover, differentiation 
in the implicit approach is more complicated, and one must be careful to distinguish the 
different kinds of differentiation that are involved; this is due to a re-derivation of the 
component representation by logarithmic differentiation each time one carries out an 
implicit analysis. In the explicit use of the Power-Law Formalism, the differentiation steps 
used to derive the component representation have been given in general and need not be 
repeated for each analysis, and thus these differentiation steps are well separated from the 
subsequent differentiation steps used to emphasize specific systemic responses. 

Implicit Representation within Metabolic Control Theory. Metabolic Control Theory is 
based on a particular set of constraint equations, called summation and connectivity 
theorems (see Kaeser & Bums, 1973; Heinrich & Rapoport, 1974; Kaeser & Porteous, 1987 
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and references therein; also Chapter 3 by Porteous in this book), that on the surface might 
appear to be quite different from those of the other variants discussed above. However, it has 
been shown that, from a fundamental point of view, Metabolic Control Theory is a special 
case of the implicit Generalized-Mass-Action variant within Biochemical Systems Theory 
(Savageau et al., 1987ab; Sorribas & Savageau, 1989bc; Savageau & Sorribas, 1989). 
The most difficult point to understand from the perspective of Metabolic Control Theory 
seems to be the relationship between the summation and connectivity theorems and the 
general framework of the Power-Law Formalism. Recent efforts aimed at developing a more 
general basis for Metabolic Control Theory [see Chapters 7 (Reder), 8 (Mazat and Reder), 
11 (Canela, Cascante and Franco), 30 (Giersch, Steffen and Uimmel), and others in this 
book] provide additional perspectives within Metabolic Control Theory that may make it 
easier to discern this relationship. 

In particular, a generalization that removes some of the restrictions of Metabolic Control 
Theory has been presented by Cascante et al. (1989ab). These authors base their approach 
on sensitivity theory rather than the summation and connectivity theorems of Metabolic 
Control Theory, but continue to leave the Power-Law Formalism implicit. It is clear from 
this approach that Metabolic Control Theory, when properly generalized, is a special case of 
the implicit Generalized-Mass-Action variant within Biochemical Systems Theory. The 
approach of Cascante et al. (1989ab) includes the generalization presented by Kaeser, 
Sauro and Acerenza in Chapter 20 of this book. The latter approach also removes some of 
the restrictions inherent in Metabolic Control Theory, although it continues to be based on 
summation and connectivity theorems, as well as implicit use of the Power-Law Formalism. 
One of the restrictions that remain in this case is the requirement that the reaction rates be 
independent of one another. 

The generalized relationships between systemic and component properties presented in 
these recent papers are equivalent to eqn. (13), which was obtained using the explicit S
system representation (Savageau, 1971b). However, the derivation of this equation (for 
additional details, see Sorribas & Savageau, 1989a) does not require the assumption that 
reaction rates be independent of one another, and therefore eqn. (13) is valid even under 
conditions where the summation and connectivity relationships are invalid (see also Sorribas 
& Savageau, 1989b). 

Metabolic Control Theory also formulates the system representation in a non-optimal 
fashion that increases the difficulty of solving the resulting equations. This can be seen by 
contrasting the enumeration of equations in the implicit Generalized-Mass-Action variant 
with that in Metabolic Control Theory. Since the implicit Generalized-Mass-Action variant 
is closely related to the explicit Generalized-Mass-Action variant, the implicit representation 
also involves n equations in n unknowns. On the other hand, solution in Metabolic Control 
Theory involves the summation and connectivity relationships, which implies r equations in 
r unknowns, where r is the number of reactions and r > n [e.g. see Fell & Sauro (1985)]. 
Thus, the size of the system that must be solved simultaneously is larger than the minimum 
n determined by standard criteria from network topology. For the case in Fig. 3, the 
difference is r = 4 versus n = 2, provided one eliminates the enzyme-enzyme interactions 
and assumes that X3, X9 , and X0 are linearly independent enzyme activities so that 
Metabolic Control Theory can be applied (see also the footnote above). 
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Summary of Comparisons. The results of detailed comparisons based on objective criteria 
show that all of the approaches examined (and many others that cannot be considered here: 
see Voit & Savageau, 1987; Sorribas & Savageau, 1989c; also Chapter 5 by Voit in this 
book) can be considered variants within Biochemical Systems Theory. In no case does any 
variant provide more information than is provided by the S-system representation. The 
other variants may provide an alternative view of control in metabolic systems, but they do 
not provide a separate theory. All of the variants are similar to the extent that they involve 
the same experimental measurements, the same definitions of component parameters and 
systemic properties, the same steps in the analysis, and the same results when applied to the 
same situation. Their differences are manifested at three levels, as indicated in Fig. 2. 
Differences at each of these levels have many implications, some of which are summarized 
in Table 3. The inclusiveness or scope of each of these variants - which for the most part 
parallels their power, efficiency, and clarity- is readily apparent. 

Table 3. Summary of Results 

Variants of Biochemical Systems Theory 

Features of the theory Implicit Explicit 

MCfl GMA2 S·System FOT3 GMA2 S-System 

Least restrictive assumptions 
Systematic notation 
Efficient reduction of equation set 
Effect of independent variables on steady state 
Effect of kinetic orders on steady state 
Effect of rate constants on steady state 
Component & systemic derivatives unmixed 
Full power-law notation 
Efficient solution of systemic properties 
Efficient numerical solution of steady states 
Efficient numerical solution of dynamics 
Wide range of accuracy 
Explicit steady-state solutions 

± 

+ 

+ 
+ 
+ 
+ 

IMelabolic Control Theory; 'Generalized Mass Action; 3Flux-Oriented Theory 

Applications 

+ 
+ 
+ 
+ + 

+ 

+ 

± 

+ 
+ 
+ 
+ 
+ 
+ 
+ 
+ 
± 
± 
± 
± 

+ 
+ 
+ 
+ 
+ 
+ 
+ 
+ 
+ 
+ 
+ 
+ 
+ 

If one were to identify the most outstanding characteristic of the explicit S-system repre
sentation within Biochemical Systems Theory, it would be its ability to yield explicit steady
state solutions in symbolic form (Savageau, 1969b). Such solutions are rare for complex 
nonlinear systems, but when they exist, important consequences follow. The existence of 
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symbolic solutions for different systems being compared allows one to equate specific 
systemic responses while exploring the implications of alternative values for their compon
ent parameters. This provides the mathematical equivalent of a "well-controlled" experiment 
(Savageau, 1972, 1976; Irvine & Savageau, 1985). Such analyses with symbolic solutions 
often lead to very general conclusions that are valid for entire classes of systems, independ
ent of the particular numerical values associated with the parameters of specific systems 
(e.g. see Savageau, 1976; Savageau & Voit, 1987). Such analyses have succeeded where 
others requiring numerical values have not, because numerical values often are unknown 
and in some cases are difficult or impractical to obtain experimentally. Although symbolic 
analysis generally is more difficult, the rewards are correspondingly greater. 

Table 4. Applications that have used the Explicit S-System 
representation of Biochemical Systems Theory 1 

Applications in Biology 
Unbranched biosynthetic pathways 
Branched biosynthetic pathways 
Amphibolic pathways 
Cascade mechanisms 
Inducible operons 
Repressible operons 
Gene circuits 

Applications in Other Areas 
Dynamical systems 
Numerical analysis 
Chemical kinetics 

1For references see Savageau & Voit (1987) 

Growth 
Development 
Regeneration 
Immune networks 
Fermentation 
Epidemiology 
Population dynamics 

Economics 
Statistics 

Biochemical Systems Theory also has been applied to many specific systems. From the 
begirtning it has been used to predict cellular and organismal responses to change in en
vironmental conditions and in underlying molecular determinants, and to elucidate the 
design principles of biological systems. The utility of the S-system representation within 
Biochemical Systems Theory has been recognized and applied in many other areas as well, 
including a number of areas outside biology (Table 4 ). In many cases these applications 
have led to more specialized theories with strong predictive capabilities (e.g. see Savageau 
& Voit, 1987; Savageau, 1989). A more detailed review of applications is outside the scope 
of this chapter; the interested reader is encouraged to consult some of the recent reviews 
cited above. 

Recent Developments within Biochemical Systems Theory 

Like any other mathematical representation of phenomena in the real world, the variants of 
Biochemical Systems Theory have their limitations. The most significant may be the 
problem of accuracy and the problem of dynamic solution. In the remainder of this section I 
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shall comment briefly on these issues and on emerging opportunities for advancements 

within the Power-Law Formalism that address these limitations. A more detailed treatment 
of the accuracy question in given by Voit in Chapter 5 of this book. 

The S-System is a Canonical Nonlinear Representation. The first and most characteristic 
limitation of Biochemical Systems Theory, like that of all local representations, is the range 
of variation in concentration over which the representation is valid. Although this range is 
broader for the explicit S-system variant within Biochemical Systems Theory than for other 
well-known local representations (Voit & Savageau, 1987), and although it is comparable to 
the ranges that are exhibited experimentally in biochemical systems (Sorribas & Savageau, 
1989a ), it nonetheless is a potential problem for some systems. For instance, if the response 
of a system is non-monotonic over a given range of variation, a single power-law 
representation may not be satisfactory. 

What are the alternatives when one encounters a situation like this? One obvious choice 
is to fall back on a more complex nonlinear strategy, such as representation by rational 
functions. This may provide acceptable numerical descriptions for specific systems, but its 
limitations for revealing more general, class-specific properties of biochemical systems are 
well known. Another choice, for which there is ample precedent, is "piecewise representa
tion". One can subdivide the actual range of operation into smaller ranges within which the 
behaviour is monotonic and represented accurately by separate power-law functions. This is 
a straightforward analogy to the well-known methods for piecewise linear representation. 
Again, this may lead to acceptable numerical descriptions for specific systems, but by 
introducing an ad hoc subdivision into the theory one loses its coherent and general 
characteristics. 

An alternative to these ad hoc approaches has recently become available as a result of 
developments within the Power-Law Formalism itself (see Savageau & Voit, 1987). It is 
now possible to remain within the Power-Law Formalism, and by introducing additional 
variables, improve the range of representation or in fact achieve an exact representation for 
the nonlinear functions likely to be encountered in any biochemical system. In essence, one 
can recast a nonlinear system exactly as an S-system, which is now seen to be a canonical 
nonlinear representation. This approach has the advantage of staying within a unified 
theoretical framework. It also means that the powerful methods already developed to solve 
differential equations in the Power-Law Formalism can be applied here as well. 

ESSYNS -State-of-the-Art Programs for Analysis of Biochemical Systems. The second 
major limitation, following these problems of accurate representation, is in the methods for 
solving the full dynamic problem in Biochemical Systems Theory. Unlike the steady-state 
solution, which is straightforward because it represents a linear problem when transformed 
into logarithmic coordinates, the dynamic solution involves nonlinear differential equations. 
Dynamics are a fundamental problem for any realistic nonlinear formalism. In general, one 
cannot obtain dynamic solutions except for specific numerical cases and, even for these, the 
available methods are often unsatisfactory in terms of reliability, accuracy, and efficiency 
(Press eta/., 1986). Recent developments within the Power-Law Formalism have led to 
significant advances in methods for numerical solution of nonlinear dynamics as well (Irvine 
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& Savageau, 1990). As a result dynamic solutions can now be obtained one to two orders of 
magnitude faster and with greater reliability and accuracy (Irvine & Savage au, 1990) than is 

possible with other methods. 
This is routinely accomplished with a menu-driven user-friendly program that has been 

under development since the late 1960s (see Irvine & Savageau, 1990). The current version, 
called ESSYNS (for Evaluation and Simulation of Synergistic Systems), runs on an IBM PC, 

AT, PS/2 or a compatible computer. The program includes state-of-the-art methods for 
solving differential equations (Irvine & Savageau, 1990), the complete steady-state analysis 
described above, graphical presentation and analysis, as well as data management facilities 
(Voit et al., 1989). fuformation about how to obtain this and other programs may be found 
in Appendix B to this book. 

Conclusions 

The Power-Law Formalism does not simply refer to the common power-law function, which 
has been used in biology since the time of Galileo, but to a formal mathematical structure 
that has been systematically elaborated over the past 20 years. Like other formal mathe
matical languages (e.g. the Linear Formalism) it includes precise definitions, systematic 
notation, strategies for representation, strategies for determination of accuracy, strategies for 
estimation of parameter values, existence theorems, methods of analytical solution, and 
methods of computer-assisted analysis. This formalism provides the basis for Biochemical 
Systems Theory. Different forms of representation within this theory were recognized from 
the beginning. However, once the advantages of aggregation into net rate laws for synthesis 
and degradation (S-system representation) were discovered, this became the focus for most 
of the early work. Others have chosen to focus on different variants within Biochemical 
Systems Theory. As the evidence presented in this chapter demonstrates, the explicit S
system variant has obvious advantages since there is some loss of information, accuracy, 
efficiency, and simplicity with each of the other variants. 

Methods for making well-controlled comparisons of alternative designs have been deve
loped within Biochemical Systems Theory and applied to several classes of biochemical 
systems including metabolic pathways, metabolic control mechanisms, cascade mechanisms, 
molecular mechanisms of gene expression, regulatory gene circuits, network regulation of 
the immune response, and plant growth. In many cases these applications have led to more 
specialized theories with strong predictive capabilities; examples include a theory of design 
for metabolic control mechanisms, a demand theory of gene regulation, and a theory of gene 
circuits. Specific predictions of these theories have been confirmed by experimental results 
from a number of independent laboratories. 

Finally, recent developments within Biochemical Systems Theory have led to significant 
advances in the state of the art for computer-assisted analysis of biochemical systems and to 

the discovery that the explicit S-system representation provides a canonical nonlinear form 
into which rather arbitrary nonlinear functions can be recast exactly. These developments 
demonstrate the potential for further growth of Biochemical Systems Theory and the under
lying Power-Law Formalism on which it is based. 
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Chapter 5 

Comparison of Accuracy of Alternative 
Models for Biochemical Pathways 

EBERHARD 0. VOlT 

DURING the past two decades, three new theories have been developed for the 
representation and analysis of biochemical phenomena: Biochemical Systems Theory, 
originated by Savageau (1969ab, 1970, 1971, 1972), Metabolic Control Theory, originated 
by Kaeser & Burns (1973) and Heinrich & Rapoport (1974, 1975), and the theory originated 
by Crabtree & Newsho1me (1978, 1985, 1987), which I shall call Flux-Oriented Theory (cf. 

Sorribas & Savageau, 1989b). All three theories have the ultimate goal to yield insight into 
the function and regulation of biochemical systems. In particular, they all intend to answer 
the question of how component and global properties are related to each other or, in other 
words, how the function of an integrated biochemical system can be deduced from kinetic 
observations of the component parts. Comparisons on the basis of the underlying theory 
(Savageau, Voit & Irvine, 1987 ab ), of results from application to the same systems 
(Sorribas & Savageau, 1989abc), and of the specific operations involved in the execution of 
an analysis (as described by Savageau in Chapter 4 of this book) all have shown that these 
three theories are related variants based on the Power-Law Formalism, even though some 
of the specific aims and applications of each approach may appear to be different. 

One major distinction between Biochemical Systems Theory on the one hand and 
Metabolic Control Theory and Flux-Oriented Theory on the other hand is the strategy of 
aggregation by which branch-points of biochemical networks are represented. In Bio
chemical Systems Theory the fluxes entering a metabolic pool through each of a set of 
converging reactions are aggregated to form the net rate of production of that metabolite; 
similarly, the fluxes leaving a metabolic pool through each of a set of diverging reactions are 
aggregated to form the net rate of removal of that metabolite. By contrast, in Metabolic 
Control Theory and Flux-Oriented Theory forward and reverse fluxes through each reaction 
are aggregated to form the net rate of conversion for that reaction. The strategy of aggrega
tion emphasized in Biochemical Systems Theory leads to a mathematical representation 
involving the difference between two products of power-law functions, which is known as 
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Figure 1. In Cartesian coordinates, the power-law 
representation (P) is clear! y more appropriate than the 
linear representation (L) when a hyperbolic rate law 
(V) is studied over a wide range of concentrations. 
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an S-system. The strategy of aggregation in Metabolic Control Theory and Flux-Oriented 
Theory leads to a mathematical representation involving sums and differences of products of 
power-law functions, which is known as a Generalized Mass Action system. 

In this chapter I shall examine the consequences of this difference for the accuracy of 
representation of biochemical systems. First, a brief review of the importance of accuracy 
will be given. Second, the accuracy of alternative representations for simple diverging and 
converging pathways will be compared. Third, I shall consider an unbranched amphibolic 
pathway. Finally, I shall show how the previous results for simpler systems translateinto 
similar differences in accuracy for more complicated networks. The results show that the 
strategy of aggregating fluxes into two net rates, one for production and one for removal, 
yields more accurate representations than the alternative strategy involving power-law 
functions or linear representations. 

Importance of Accuracy 

Linear representations are typically the simplest. They can be derived in a straightforward 
fashion, and many powerful methods are available for characterizing most aspects of linear 
systems. Hence, one must ask whether it is really necessary to employ a more complex 
formalism for representing biochemical systems. The central issue is accuracy. 

Figure 2. Linear (top curve) and power-law 
(middle curve) representations of individual rates 
of Michaelis-Menten type (bottom curve) both 
produce quite accurate dynamic responses to 
penurbations. 
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One would have to admit that linear models are often not very accurate representations 
of nonlinear phenomena (cf. Fig. 1). However, if only infinitesimal changes at steady state 
are of interest, then the accuracy of a linear model is sufficient and, in fact, no worse than 
that of any other representation. This is guaranteed by Taylor's theorem. Even for 
appreciable perturbations about the operating point, linear representations of individual 
reaction rates can be quite accurate and, thus, linear representations in many cases can be 
considered appropriate (cf. Fig. 2). 

Nevertheless, the representation selected for Biochemical Systems Theory, Metabolic 
Control Theory and Flux-Oriented Theory is based on the relative derivative, which corres
ponds to linearization in a logarithmic space and, thus, to a non-linear representation. In 
Metabolic Control Theory and Flux-Oriented Theory, the linear representation in logarith
mic space was motivated solely by the fact that relative derivatives are independent of scale. 
Furthermore, since these two theories only consider infinitesimal changes at steady state, 
questions of accuracy and dynamics were never asked. Biochemical Systems Theory, on the 
other hand, was developed to represent dynamical aspects as well as to facilitate the analysis 
of steady-state properties, and, hence, the question of accuracy had to be addressed from the 
beginning. 

Among the various representations within the Power-Law Formalism, which result from 
different strategies for aggregating fluxes, the S-system was selected for development of 
Biochemical Systems Theory because it has a number of advantages over other representa
tions. For example, this form allows direct analytical evaluation of steady-state properties 
such as existence and local stability of a steady state (Savageau, 1969b, 1975). Unlike 
linear representations, which also permit direct analytical evaluation, this non-linear 
approach is general enough to capture global features typical of biological systems, such as 
saturation, synergism, and stable oscillations. 

It also wa<; observed from the beginning that this representation produces results that are 
accurate over quite a wide range of variation in the system variables. This original impres
sion was investigated during the development of Biochemical Systems Theory in different 
ways (e.g., Savageau, 1969b, 1972; 1976; 1979; Voit & Savageau, 1987; Sorribas & 
Savageau, 1989abc) and led to a growing body of evidence confirming that the Power-Law 
Formalism represents both steady-state and dynamical aspects of biological systems with 

surprising accuracy. 
It is obvious that accuracy of representation is crucial for dynamical behaviour. But even 

if one is not explicitly interested in the dynamical aspects of a system, the question of 
accuracy must be addressed. Infinitesimal changes cannot be measured experimentally, and 
consequently, validation of any analysis must involve perturbations that are larger than the 
experimental error with which one can make a measurement. This is an intrinsic problem 
that is often side-stepped with the argument that the experimental perturbations are "small". 
However, in most cases no criterion is presented to decide whether "small" is small enough. 
Furthermore, even for small perturbations that are well within the normal ranges of bio
chemical systems accuracy of representation can be critical. If the system is sensitive to 
small variations in some of its parameter values and the mathematical representation does 
not capture the system behaviour with sufficient accuracy, even small perturbations can lead 

to considerably distorted results. 
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Since accuracy is of fundamental importance for the analysis of dynamical responses, as 
well as for experimental characterization of steady-state behaviour, it is necessary to 
evaluate the accuracy of alternative representations for biochemical pathways. In what 
follows I shall consider linear representations and power-law representations that are based 
on either S-systems (that are the focus of Biochemical Systems Theory) or Generalized 
Mass Action systems (that underlie Metabolic Control Theory and Flux-Oriented Theory). 

The comparisons will focus on pathways described with Michaelis-Menten rate laws. 
However, because of the properties of the power-law approximation qualitatively similar 
results can be expected for other hyperbolic rate laws. The results may not apply to every 
other imaginable rate law, but the same types of comparisons have been performed for Hill 
rate laws, which are sigmoid and thus essentially different from Michaelis-Menten kinetics, 
and have yielded qualitatively similar results to those obtained here for Michaelis-Menten 
rate laws (cf. Voit & Savageau, 1987). 

Comparison of S-system and Generalized Mass Action Representations for Branched 
Pathways 

In this section, accuracy of representation will be determined for simple pathways composed 
of essentially irreversible reactions, which may be considered the fundamental components 
of more complex biochemical systems. Unbranched chains of such reactions are represented 
in exactly the same way by S-systems and Generalized Mass Action-systems and thus with 
respect to accuracy these two representations are equal. The differences show up when one 
considers diverging and converging pathways, for which the paradigms are illustrated in 
Figs. 3-4. 

Figure 3. Simple diverging pathway. Figure 4. Simple converging pathway. 

In the S-system representation all fluxes diverging from a node are aggregated to give a 
single net rate of loss for the branch-point metabolite, whereas in the Generalized Mass 
Action representation the fluxes are aggregated to give a separate rate of loss through each 
reaction. Similarly, in the S-system representation all fluxes converging to a node are 
aggregated to give a single net rate of production for the branch-point metabolite, whereas in 
the Generalized Mass Action representation production is described as a sum of separate 
rates derived by aggregation of fluxes through each reaction. 
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To the uninitiated, the fonn of aggregation found in the S-system representation some
times seems unnatural because the representations for two processes are mathematically 
combined into one. The major argument is that there is deviation of mass balance at a 
branching node as soon as the system moves from the steady-state operating point: For 
instance, in a diverging pathway the sum of the two power laws representing synthesis of the 
products is different from the aggregated power-law tenn representing degradation of the 
branch-point substrate. While this is a correct observation, one has to recall that all 
representations of biochemical pathways are approximations with associated errors, and one 
has to take into account the advantages as well as the disadvantages of each representation to 
make a balanced assessment. 

Comparing S-system representations with Generalized Mass Action system representa
tions, one can enumerate several factors that counteract the initial concern with aggregation 
into net fluxes through pools. (i) One should note first that at the steady-state operating point 
the two representations give identical results, and mass balance as well as the individual 
fluxes themselves are accurately represented; thus, over the range of interest expressed in 
Metabolic Control Theory, the strategy of aggregation is not an issue. (ii) In the analysis of 
behaviour away fonn the steady-state operating value, the aggregated tenn can always be 
disaggregated, and no infonnation concerning the individual fluxes is lost (cf. Sorribas & 
Savageau, 1989a). (iii) The aggregate rate of synthesis or degradation is no more difficult to 
measure experimentally than the individual rates of synthesis or degradation: one simply 
measures the change in concentration of the branch-point metabolite as one would for a 
metabolite that is not at a branch-point. (iv) The aggregation leading to the S-system 
representation allows general analytical evaluations, whereas that leading to the Generalized 
Mass Action representation allows only numerical evaluations; obviously, specific numerical 
results seldom provide the insight, generality, and power of prediction that analytical 
solutions offer. (v) Finally, we shall see in the following sections that the aggregation 
strategy associated with the S-system improves the accuracy of representation. That is, 
although there are deviations from mass balance at the branch-points, the individual fluxes 
and concentrations themselves are typically represented with greater accuracy. 

Diverging Pathways. In a diverging pathway (Fig. 3), the branch-point substrate X is 
utilized via two different routes. Represented with Michaelis-Menten rate laws, the rate of 
utilization is 

V=Vt+V2= VmaxtX + vmax2x 
Kmt +X Krra. +X 

with V max and Km representing maximum velocity and Michaelis parameter, respectively. 
The corresponding S-system representation, designated by the subscript s, is based on the 
total rate V and consists of a single tenn: 
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where the kinetic order h is defined as the logarithmic derivative of V at an operating point 

Xo: 

The rate constant is defined as 

~ = V(X o}X <)" 

The analogous Generalized Mass Action representation, designated by the subscript GMA, is 

based on individual approximation of v1 and v2 and reads as follows: 

where the kinetic orders g1 and g2 are defined as the logarithmic derivatives of v1 and v2 

with respect to X at an operating point Xo: 

gl = (dVt )(K_) = Kmt . ax Vt Kmt +Xo' 

The rate constants are defined as follows: 

At first glance, Vs might seem to be a special case of VaMA with~= a1, h = g1 and a2 

= 0, and one might be tempted to conclude that V GMA must be the better representation 
since the parameters ~and g2 could be adjusted to improve the representation. However, 

the parameters in V GMA cannot be chosen freely; they are uniquely derived as logarithmic 

derivatives of v1 and v2 as shown above. Both V s and V GMA are computed from the same 

Figure S. Accuracy of alternative 
representations of the diverging 
pathway of Fig. 3 (see Text for 
details). 
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rate laws v1 and v2 , and the seemingly larger number of degrees of freedom in VGMA does 
not help to improve the representation. In fact, V GMA leads to an inferior representation. 
This is demonstrated best when V, V8, and VGMA are represented in logarithmic coordin
ates. There, all three representations have the operating point Xo in common, V typically is 
concave downward, V s is a straight line with slope h, and V GMA is concave upward (Fig. 
5). That is, at the operating point, Vs and VGMA are exactly the same, but Vs is closer to V 
for all other concentrations and thus more accurate. Only if Km1 and Kmz differ by several 
orders of magnitude can mathematical examples be constructed where V GMA yields a more 
accurate representation [cf. discussion of these rare cases in Voit & Savageau (1987)]. Both 

power-law representations, V s and V GMA, are superior to the linear approximation, V L 

(Fig. 5). 
Converging Pathways. The rate of product formation from a set of converging 

pathways (Fig. 4) is described within the framework of Michaelis-Menten kinetics as 

This equation has an appearance similar to that for diverging pathways. However, two 
variables are involved now, which makes the comparison between S-system and Generaliz
ed Mass Action representations considerably more difficult. The two representations in this 
case are 

As in the previous case of diverging pathways, the kinetic orders in both representations 
are defined as relative derivatives with respect to X1 and X2 • In the S-system representa
tion, these derivatives are computed from the total rate V, whereas in the Generalized Mass 
Action representation they are derived from the individual rates v1 and v2. 

The straightforward way of comparing accuracy of V s and V GMA would be to analyse 

the relative or absolute differences between V and V s or V and V GMA as functions of X 1 

and X2. However, the complex results of such analyses do not yield much insight, and a 
different approach is required. 

Two methods seem appropriate (cf. Voit & Savageau, 1987). In one method, one studies 
the domain of points (Xt> X2 ) for which the reference V and either of the power-law 
representations Vs or VGMA differ by at most a given amount, for instance, 5% or 10%. 
Such comparisons demonstrate that V s is virtually always more accurate than V GMA. Fig. 6 
shows an example for such a comparison when the error tolerance is 5%: the domain of 
accurate representation of V GMA is completely contained within the domain of V s; V GMA 

is only more accurate than V s for some irrelevant combinations of concentrations that 
cannot be shown with the resolution of Fig. 6. The superiority of V s is qualitatively 
independent of the particular error tolerance selected and largely unaffected by the choice of 
Kmt and Kmz· Fig. 6 also shows the domain of validity for the linear representation VL. 
This domain is contained within the domains of either power-law representation, and thus 
the linear representation is least accurate. 
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Figure 6. Accuracy of alternative representations of 
!he converging pathway of Fig. 4 (see Text for 
details). The S-system representation W ,1) has !he 
widest range of validity; !he ranges of Generalized 
Mass Action (\ \ ~ and linear (Ill) representations are 
smaller. The error tolerance is 5%; other error 
tolerances produce qualitatively similar pictures. 
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Another type of comparison between alternative representations is based on the assump
tion that perturbations from the operating point occur in all directions with the same 
probability. One compares the average error for a given extent of perturbation and studies 
for which combinations of concentrations X1 and X2 either representation is more accurate. 
This type of analysis again shows that aggregation at the level of enzyme-catalysed reactions 
improves accuracy, since for all relevant concentrations the average error is smaller when 
one uses Vs rather fhan VaMA (for details see Voit & Savageau, 1987). Again, both power
law representations are more accurate than the linear representation. 

It is noted that the two methods of comparison are very different in character. The first 
one, similar to the analysis of diverging pathways, shows general superiority, at every 
relevant point. In particular, no randomness of perturbations is addressed; Vs is simply more 
accurate than V GMA in the entire relevant domain. The second type of comparison is based 
on the statistical argument that the direction of a perturbation from the operating point is 
unpredictable and thus considered random. One could argue which of the two types of 
comparison is more appropriate. However, since V s is superior in both cases, there is 
actually no need for such a discussion I. 

The result for both diverging and converging pathways is that the strategy of 
aggregation leading to the S-system representation improves accuracy over that leading to 
the Generalized Mass Action representation. This may be surprising since intuitively one 
might surmise that approximating the individual rates and subsequently summing their 
representations would be a better strategy then summing the individual rates and then 
approximating the result. However, power-law representations typically overestimate hyper
bolically shaped functions and underestimate the summation function. The Generalized 
Mass Action representation uses the power-law representation only for the rates, whereas the 
S-system representation uses the power-law representation for both the rates and their 

1The recent criticism of these comparisons in Cornish-Bowden (1989), in my opinion, is not justified. He has 
suggested !hat one should minimize maximum errors. This appears to be inappropriate since all three 
representations deviate from !he Michaelis-Menten rate law by arbitrarily large amounts if one considers the 
complete range of substrate concentrations. Minimizing !he maximum error under these conditions obviously is 
irrelevant, and one would again have to define relevant ranges over which !he substrates were allowed to vary 
and in which one would minimize !he maximum error. 
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Figure 7. Simple amphibolic pathway. XI x2:;::::::!: ... Xn-1 Xn ~ 

summation. Thus, the latter approach is superior because it allows for cancellation of errors 
rather than their accumulation. This can be seen clearly when one examines accuracy in 
more complex integrated biochemical systems. 

Accuracy of Representation for Integrated Pathways 

In the previous section, comparisons involving the fundamental components of biochemical 
systems showed that the S-system representation is more accurate than the Generalized 
Mass Action representation, and on this basis one could argue that the S-system approach 
would be the superior strategy for any biochemical system. However, the validity of such a 
generalization is difficult to assess with mathematical rigour. As an alternative to 
mathematical proof, one can look at representative systems to gain experience with 
competing strategies for representation. Sorribas & Savageau (1989abc) have studied irt 
detail two types of biochemical systems and compared representations based on different 
aggregation strategies. One type of system is an amphibolic pathway that raises the 
immediate question of whether and how one should aggregate fluxes, the other type of 
system involves enzyme-enzyme interactions. In the following, I shall review some of their 
results that are concerned with accuracy of representation. 

Aggregation in Amphibolic Pathways. Some biochemical pathways cannot be con
sidered essentially irreversible. As a matter of fact, the flux through some reactions changes 
direction under physiological conditions, and the question arises as to how accurately 
alternative aggregation strategies represent the behaviour of such pathways. Sorribas and 
Savageau (1989c) have investigated alternative strategies for representing amphibolic 
pathways of the type shown in Fig. 7. 

The "irreversible" strategy involves aggregation of forward and reverse fluxes through 
each reaction (Fig. 8); this strategy has been selected in Metabolic Control Theory. The 
"reversible" strategy, in contrast, involves aggregation of incoming fluxes separately from 
outgoing fluxes for each metabolite (Fig. 9). 

Sorribas and Savageau found that both strategies produce the same steady-state 
behaviour for the metabolite concentrations, and one could be tempted to disregard all 
further considerations if only the steady-state behaviour of the concentration variables is of 
interest. However, they found very different results for the behaviour of the flux in the 
system. Only the reversible strategy is capable of accurately representing the flux at or near 
thermodynamic equilibrium. 

Figure 8. "Irreversible" strategy of aggregation. 
Two heavy arrows are aggregated into one term 
and two light arrows are aggregated into one term. 

Figure 9. "Reversible" strategy of aggregation. 
Two heavy arrows are aggregated into one term 
and two light arrows are aggregated into one term. 
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Representations based on the irreversible strategy are extremely inaccurate and sensitive 
to changes in parameter values when the operating point is near equilibrium. Under these 
conditions one can obtain distorted results that deviate arbitrarily far from the correct results; 
the equilibrium point itself is a singularity and the system cannot be represented at this point. 
The implications of these results for the analysis of experimental data are clear; the response 
of a biochemical pathway to a realistic perturbation can be very different from the response 
to a theoretical, infinitesimal perturbation and the comparison between theory and experi
ment may be meaningless. Even when the operating point is far from equilibrium, the 
irreversible strategy leads to inferior representations, and the reversible strategy is always 
more accurate. These considerations unambiguously demonstrate that the accuracy of the 
reversible strategy is superior to that of the irreversible strategy in representing amphibolic 
pathways; other advantages are discussed at length in Sorribas & Savageau (1989c ). 

Enzyme-enzyme interactions. Sorribas & Savageau (1989ab) compared in detail 
several strategies for the representation of enzyme-enzyme interactions in a biochemical 
system. In particular, they compared and discussed various systemic representations and 
modes of analysis within Biochemical Systems Theory, Flux-Oriented Theory and 
Metabolic Control Theory. 

Among their findings are comparative results on the accuracy of representation. The 
most important result may be that the Power-Law Formalism leads to impressively large 
ranges of variation within which the actual reference data and the power-law representations 
differ by less than a given error tolerance. For the particular biochemical system they inves
tigated, the S-system representation of Biochemical Systems Theory yielded an average 
range of 20 fold variation within which the reference and power-law representations differed 
by less than 5%. The corresponding Generalized Mass Action representation within Bio
chemical Systems Theory produced an average range of about 15-fold. There is considerable 
evidence that these ranges are large enough to include variations typically observed in 
normal metabolic systems, and even many pathologic systems. For many metabolites the 
empirically determined ranges typically are measured in percent and only seldom exceed a 
few multiples of the norm [cf. collections of normal and pathological metabolic values, e.g. 
in Geigy (1960) or Wallach (1978)]. Thus, the ranges of valid power-law representation (e.g. 
with a maximum error of 5%) are sufficient to account for much of the relevant steady-state 
behaviour of biochemical systems. Sorribas & Savageau (1989ab) also compared the 
accuracy of representations based on S-systems or Generalized Mass Action systems with 
regard to their response to various perturbations. Their results support the conclusion that 
both power-law representations accurately capture the dynamic behaviour within the stated 
error tolerance, with the S-system representation outperforming the Generalized Mass 
Action representation by a small margin. 

Conclusion 

Biochemical Systems Theory as well as Metabolic Control Theory and Flux-Oriented 
Theory are based on logarithmic derivatives, which correspond directly or implicitly to the 
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Power-Law Formalism. In Biochemical Systems Theory, the power-law approach was 
selected with the explicitly stated intent to replace insufficiently accurate linear representa
tions, while still allowing for analytical evaluations of steady-state characteristics. 
Representing the dynamics of biochemical systems also was of concern from the very 
beginning. For each of these objectives, the question of accuracy had to be addressed and 
this led to various analyses of the accuracy of power-law representations. In Metabolic 
Control Theory, questions of accuracy have not been an explicit issue, because only 
properties of a fixed steady-state have been targeted and all dynamical aspects have been 
excluded. 

Considering that the ultimate goal is to understand metabolic networks in vivo, the 
restriction to steady-state characteristics is difficult to understand since such systems are 
constantly exposed to quite large "perturbations" that derive from the organism's changing 
metabolic demands, diet, disease, or drug treatment. Obviously, normal metabolism 
responds to these frequent changes in an organized fashion. Understanding pathologic as 
well as normal metabolic regulation seems to require consideration of large "perturbations" 
in external or independent variables and alterations in the structure of the metabolic network 
itself, not just infinitesimal changes. 

In discussing the merits of alternative representations for biochemical networks, Bio
chemical Systems Theory has been considered by some to be problematic since the S
system representation is "only" an approximation that lacks exactness. Given that all 
mathematical representations of biochemical systems are approximations and that the exact 
mathematical forms are unknown, one should not dismiss approximations per se. Rather, 
one should select from alternative approximations the one that seems most appropriate 
according to objective criteria. Like any other approximation, the S-system representation is 
a compromise between the conflicting goals of generality, accuracy, and mathematical 
tractability. 

The feature that distinguishes the S -system from the Generalized Mass Action 
representation is the strategy of aggregation used in generating the systemic descriptions. 
The S-system representation leads to deviations from mass balance at branch-points, which 
may be considered a disadvantage, but in my opinion this is more than compensated by a 
number of significant advantages that are realized with this strategy. In particular, the 
available evidence reviewed above indicates that the concentrations and fluxes in metabolic 
networks are more accurately represented with S-systems than with Generalized Mass 
Action systems. Even if one is only interested in steady-state aspects of biochemical 
systems, one must be concerned with accuracy of representation, since numerical results 
from a model are typically compared with experimentally measured responses that are not 
infinitesimal. In many cases, finite experimental perturbations may affect a metabolic system 
almost like an infinitesimal perturbation. However, if a system at a given operating point is 
sensitive to parameter variations, even very small perturbations can evoke responses that are 
significantly different from those corresponding to infinitesimal changes. This is most 
evident in the study of amphibolic pathways by Sorribas and Savageau (1989c), where it 
was demonstrated that an inappropriate representation can generate grossly distorted results 
in response to a very small perturbation. 
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In summary, the results presented here and elsewhere (Voit & Savageau, 1987; Sorribas 
& Savageau, I989abc) show that the power-law representations that underlie Biochemical 
Systems Theory, Metabolic Control Theory and Flux-Oriented Theory accurately reflect 
Michaelis-Menten and Hill kinetics over wide variations in the substrate concentration. They 
are almost always more accurate than linear representations. Furthermore, the results suggest 
that the S-system variant of the Power-Law Formalism (Biochemical Systems Theory) 
typically produces more accurate representations than the Generalized Mass Action variants 
that underlie Flux-Oriented Theory and Metabolic Control Theory. Thus, the aggregation 
strategy that leads to the S-system representation is the strategy of choice when one 
considers the advantages of accuracy as well as the other advantages that have been dis
cussed by Savageau in Chapter 4 of this book. 
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Chapter6 

Modem Control Theories: 
a Consumers' Test 

ALBERT K. GROEN and HANS V. WESTERHOFF 

DuRING THE LAST decades several theoretical frameworks have been developed for a 
quantitative approach to studies of control of metabolism. Two important theories are 
biochemical systems theory developed by Savageau (1969) and metabolic control analysis 
formulated independently by Kaeser & Burns (1973) and Heinrich & Rapoport (1974). 
Crabtree & Newsholme (1985, 1987) have combined aspects of these two theories in their 
treatment of control of metabolism. (This theory has been called flux-oriented theory by 
Savageau and colleagues, for example in Chapters 4 and 5 of this book, but no name is in 
general use). So far application of the theories to experimental practice has been relatively 
rare. To our knowledge, only control analysis has been applied to some extent by workers 
outside the group of the originators of the theories. This does not necessarily imply that 
control analysis is better than the other two theories. It does, however, suggest that control 
analysis is easier to understand for the mathematically untrained. 

In this chapter a consumers' test of the three theories will be presented. We shall use the 
metabolic pathway of gluconeogenesis from lactate as test pathway. This pathway was 
chosen because detailed knowledge of intermediate concentrations at different gluconeo
genic fluxes is present. Furthermore, the fluxes of the different segments of the pathway 
have been determined and the interaction of the pathway with other metabolic pathways in 
the cell has been established (Hue, 1981). The three theories will be compared on their 
ability to answer the following questions: 

(1) Which steps exert significant control on pathway flux? 
(2) What is the control by the enzymes on metabolite concentrations? 
(3) What is the underlying mechanism for the control the enzymes exert? 
(4) Which regulatory mechanism is most important for pathway control under physiological 

conditions? 
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Figure 2. Titration of rat liver parenchymal cells 
with lactate and pyruvate in the presence of 
oleate. Rat liver cells (260 mg dry wt.) were 
perifused with different concentrations of lactate 
and pyruvate in the presence of 0.1 mM oleate as 
indicated in the figure. L/P, lactate/ pyruvate. 

The reactions involved in gluconeogenesis from lactate are given in Fig. 1. The gluco
neogenic pathway contains five non-equilibrium steps under intracellular conditions, i.e. 
pyruvate carboxylase (reaction 2 in the scheme), transport of oxaloacetate from the 
mitochondria to the cytosol (reaction 3), phosphoenolpyruvate carboxykinase (reaction 4), 
fructose 1,6-bisphosphatase (reaction 7) and glucose-6-phosphatase (reaction 8). There are 
three substrate cycles that can be active: the phosphoenolpyruvate cycle, the fructose-6-
phosphate/fructose-1,6-bisphosphate cycle and the glucose/glucose-6-phosphate cycle. The 
pathway is linked to other important metabolic pathways in the cell via the cytosolic and 
mitochondrial ATP/ADP ratio and the cytosolic and mitochondrial redox level. A pre
requisite for a quantitative study of the control structure of a metabolic pathway is that the 
pathway can be studied under steady state conditions. We have studied control of gluco
neogenesis under steady state conditions by incubating isolated rat hepatocytes in a peri
fusion system (Van der Meer & Tager, 1976). In such a system there is a continuous inflow 
and outflow of medium, which makes it possible to keep the concentrations of substrates and 
products constant. Furthermore, different steady states can be obtained with one preparation 
of cells and during the experiment aliquots of the cell suspension can be taken for the 
determination of intracellular metabolites. 
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Figure 3. Simplified scheme of gluconeogenesis 
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A typical experiment is shown in Fig. 2. Cells were perifused with lactate and pyruvate 
in a constant concentration ratio of 10 in the presence of 0.1 mM oleate. Under these 
conditions the redox level is clamped. Upon increasing the lactate and pyruvate concentra
tions new steady-state rates of glucose synthesis (J glucose) are obtained. Also given is the 
rate of lactate utilization (Jlactate). Since 211actate is under all conditions almost equal to 
J glucose• no carbon flows into other pathways. Under the conditions used there was no 
activity of the fructose-6-phosphate/fructose-1 ,6-bisphosphate cycle and the glucose/ 
glucose-6-phosphate cycle. These cycles could therefore be ignored. To simplify the treat
ment further we have grouped reactions into the four important segments of the pathway. As 
shown in Fig. 3, the first segment is composed of the reactions between cytosolic pyruvate 
and phosphoenolpyruvate, the second segment is formed by pyruvate kinase. The third seg
ment includes the reactions between phosphoenolpyruvate and glyceraldehyde-3-phosphate. 
The reactions between glyceraldehyde-3-phosphate and glucose constitute the fourth seg
ment. We assumed that the triose phosphate isomerase reaction is in equilibrium. 

Application of Metabolic Control Analysis 

Metabolic control analysis is concerned with the relationships between control coefficients 
C that express the response of the whole system to a perturbation and elasticity coefficients 
E that express the responses of individual enzymes to their substrates etc. The terminology 
and symbolism are derived from an agreement among several groups (Bums et al., 1985), 
and as the basic ideas and definitions are fully set out in Chapter 3 of this book by Porteous, 
they will not be repeated here. Metabolic control analysis uses several basic equations from 
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which the control coefficients can be calculated, namely (i) the summation theorems for 

flux control and concentration control coefficients: 

" " L Ck,=1; I cz=o (1) 
i=1 i=1 

(ii) the connectivity theorems for flux control coefficients: 

" I, c{~=o (2) 
i=1 

and for concentration control coefficients: 

" L ct·~=-liJ< (3) 
i=1 

where llJ< = 1 if j = k and 0 if j =t- k, and (iii) the branching theorems for flux control 

coefficients: 

1z ·:L ct + It · L ct = o (4) 
lranc h 1 lranc h2 

for concentration control coefficients for the pathway intermediates [not including initial 
substrate(s) and end product(s)]: 

1z ·:Lei:+ 11 ·:Lct=o (5) 
lranc h 1 lranc h 2 

and for flux ratio control coefficients: 

Iz-Lci,JJ. +it ·I eft·= it (6) 
lranc h 1 lranc h 2 

For the gluconeogenic pathway simplified as shown in Fig. 3 the equations are summarized 
by the following matrix equation [Fell & Sauro, 1985, Sauro et al., 1987, Westerhoff & 
Kell, 1987]: 

c{• cPEP cGAP cNI. 

[ I 

- 1 - 1 1 

c{• cPEP cf?AP cNI. E}>EP EPEP EPEP - 2 - 2 2 

c{• cPEP c?AP cNI. - ]:]1 0 £k - 3 - 3 3 

cf• cPEP c?" cNI. 0 - 4 - 4 4 

In this and other equations, PEP and GAP represent phosphoenolpyruvate and glyceralde
hyde-3-phosphate respectively. 
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When the elasticity coefficients and the flux through the different pathway segments can 

be determined, all control coefficients can be calculated. The gluconeogenic flux can be 

determined simply by measuring the amount of glucose produced. The pyruvate kinase flux 

12 was determined by addition of glucagon. This hormone fully inhibits pyruvate kinase, 

hence 12 can be calculated from the glucagon-induced stimulation of gluconeogenic flux, 

14 (see Groen et al., 1983 for a discussion). Of course, 11 is equal to 12 + 14 (we here 

calculate 14 in terms of C 3 equivalents). The elasticity coefficients of segment 2 and 4 to 

phosphoenolpyruvate and glyceraldehyde-3-phosphate respectively could be determined 

straightforwardly, since these segments are far from equilibrium and not inhibited by 

product. Therefore these elasticity coefficients can be calculated from simple plots of rate 

against substrate concentration. The slopes of the double logarithmic plots in Fig. 4 give the 

values for the elasticity coefficients directly. Note that these plots are linear for a wide range 

of metabolite concentrations. The reactions in segment 3 are close to equilibrium. Therefore 

the elasticity coefficients of segment 3 to phosphoenolpyruvate and glyceraldehyde-3-

phosphate could be calculated from the ratio between the combined mass-action ratio and 

the combined equilibrium constant for these reactions (r/K""l.) using the following equations 

(see Groen et al., 1982) 

Ek= 1 
1-r/K""l. 

(8) 

and 

~= -r/K""l 
1- rJK""l 

(9) 

The elasticity coefficient of segment 1 towards phosphoenolpyruvate was more difficult 

to determine. Since the magnitude of this elasticity coefficient did not significantly effect the 

calculated control distribution we have assumed it to be equivalent to the elasticity coef

ficient to pyruvate carboxylase with respect to mitochondrial oxaloacetate. This will over

estimate the value of the actual elasticity coefficient somewhat. The values for the elasticity 

coefficients and fluxes through the pathway segments are listed in Table 1. 

By inverting the matrix containing the values of the elasticity coefficients and the flux 

ratios, the control distribution in the gluconeogenic pathway as given by control analysis is 

obtained. Hence the control distribution is as follows: 

Table 1. Values for elasticity coefficients of path-
way segments and the pathway fluxes. Cells were Parameter 

Pathway segment 

perifused as described in the legend to Fig. 2. The 2 3 4 

elasticity coefficients and fluxes are given for the 
condition with saturating concentrations of lactate EpEP -0.04 3.5 2.04 0 

and pyruvate. It should be noted that / 4 is counted EGAP 0 0 -1.05 1.20 
in terms of C 3 equivalents. J 15.3 4.5 10.8 10.8 
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Figure 4. Relationship between the rate of glucose formation and the concentration of gluconeogenic 
intermediates. Rat-liver cells (280-300 mg dry weight) from starved rats were perifused with different 
concentrations of lactate and pyruvate in the presence of 0.1 mM oleate. In each steady state of glucose 
formation a sample of the cell suspension was taken for the determination of intracellular phosphoenolpyruvate 
and dihydroxyacetone phosphate. Pyruvate was assayed in the perifusate. 

C'4 CPEP (GAP C'·P4 

Segment 1 
[ 0.59 

0.54 0.49 1.31] Segment2 -0.17 -0.16 -0.15 0.62 (10) 
Segment3 0.31 -0.20 0.26 -1.03 

Segment4 0.27 -0.18 -0.61 -0.90 
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Control of gluconeogenic flux (1 4) is distributed among the different pathway segments. 
Pyruvate kinase (segment 2) of course exerts negative control both on gluconeogenic flux 
and on the concentrations of phosphoenolpyruvate and glyceraldehyde-3-phosphate. Sur
prisingly, the near-equilibrium enzymes between phosphoenolpyruvate and glyceraldehyde-
3-phosphate also exert flux control, even more so than the non-equilibrium enzymes in 
segment 4. This is due to the higher concentration control coefficient of segment 3 to 
phosphoenolpyruvate in combination with a very high elasticity coefficient of pyruvate 
kinase to phosphoenolpyruvate. 

The control coefficients in the final c<_>lumn of the matrix of control coefficients found by 
this method are of interest because they relate to the extent of substrate cycling. Not 
surprisingly, an increased activity of pyruvate kinase and a decreased activity of segments 3 
and 4 enhance cycling relative to gluconeogenic flux. A priori it was not as clear that an in
creased activity of segment 1 enhances cycling more than gluconeogenesis. Clearly at these 
high concentrations of pyruvate, pyruvate kinase functions as an overflow control system. 

We have also calculated the control distribution in the gluconeogenic pathway at lower 
concentrations of lactate and pyruvate. In Fig. 5 the flux control coefficients of the four 
segments on gluconeogenic flux is plotted as a function of the flux. The flux was varied by 
titrating lactate and pyruvate keeping their ratio constant (Fig. 2). There is gradual shift of 
flux control to the first segment as flux decreases. It turns out that this is due to the decrease 
in pyruvate kinase flux at the lower lactate and pyruvate concentrations. Pyruvate kinase also 
influences the distribution of concentration control to a considerable extent (Fig. 6). The first 
pathway segment has a relatively high concentration control coefficient at all fluxes. Pyruv
ate kinase has a low concentration control coefficient on both intermediates because of its 
very high elasticity coefficient to phosphoenolpyruvate. This very high elasticity coefficient 
leads to a buffering of the concentrations of phosphoenolpyruvate and glyceraldehyde-3-
phosphate. This is best demonstrated by the concentration control coefficient of segment 4 

120 
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Figure 6. Relationship between gluconeogenic flux and the concentration control coefficients of four 
gluconeogenic pathway segments on the concentration of phosphoenolpyruvate (A) and dihydroxyacetone 
phosphate (B). For experimental details see the legend to Fig. 4. The concentration control coefficients were 
calculated as described in the text. 

on phosphoenolpyruvate. At low gluconeogenic flux pyruvate kinase flux is almost 7A!ro 
(Groen et al., 1983); because of the allosteric kinetics of pyruvate kinase to phosphoenol
pyruvate the elasticity coefficient of the enzyme to this substrate is low. Then the concentra
tion control coefficient of segment 4 on phosphoenolpyruvate is relatively high. At increas
ing flux, hence increasing the elasticity coefficient of pyruvate kinase to phosphoenol-
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pyruvate, the concentration control coefficient of segment 4 on phosphoenolpyruvate 
decreases, showing the buffering effect of pyruvate kinase on the concentration control 
coefficient of phosphoenolpyruvate. 

fu the calculation presented above we have used the summation theorems. This implies 
that we have assumed that all reactions involved in the conversion of lactate have been 
included. The question arises whether this assumption is correct. Although we have clamped 
the redox level it was not possible to keep the ATP/ADP ratio in the cells constant. 
Therefore ATP producing and utilizing reactions could exert control on gluconeogenesis. 
Indeed we have shown that gluconeogenic flux is controlled to some extent by the adenine 
nucleotide translocator (Groen et al., 1986). To obtain the real values of the control 
coefficients some of them, i.e. one for each branch point, have to be determined by direct 
experimental measurement. For the gluconeogenic pathway it turns out that the amount of 
negative "external" control almost compensates the amount of positive "external" control so 
that the actual values of the control coefficients do not change to a great extent (Groen et 
al., 1986). Summarizing, by using control analysis flux control coefficients and 
concentration control coefficients can be calculated in a relatively simple way. Although 
application of the matrix method has greatly simplified the actual calculation of the control 
coefficients, the deeper understanding in the mechanisms underlying control by enzymes 
provided by inspection of the separate connectivity relations is lost when this method is 
used. Calculation of control coefficients does not reveal directly which step is most import
ant for dynamic pathway control under physiological conditions. For instance, pyruvate 
kinase exerts only little control on flux and concentrations of metabolites. Yet it plays a 
central role in control of gluconeogenesis. This role becomes clear only after careful scrutiny 
of the relations between elasticity, concentration control and flux control coefficients. 

The Matrix Method of Heinrich and Rapoport 

A matrix method for calculation of concentration control coefficients was already 
published by Heinrich and Rapoport in 1975. They have applied this method to glycolysis in 
erythrocytes (Rapoport et al., 1976). However, presumably because they have failed to 
explain in detail how the calculation procedures should be carried out the method has not 
been applied by others. 

This method focusses on the net production rates of metabolites rather than on net 
reaction rates (fluxes). These are denoted as/;. i.e., the net production flux of metabolite i. 
At steady state all/; values are zero. After transitions between steady states, as caused by 
parameter changes, the change in /; must of course also be zero. This can be expressed as 
follows: 

(11) 

where 

(12) 
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and 

(13) 

Because/; is zero the regular elasticity coefficients in which the logarithm of /; is taken 

could not be used in these equations. Note that c1> and 11 are analogues of the absolute 

elasticity coefficients of Westerhoff & van Dam (1987). 
Rewriting eqn. ( 11) in matrix form one obtains: 

(14) 

Here [C] is the m x n matrix of concentration control coefficients (with respect to 

enzyme changes), [ 111 is the m x m matrix of 11 coefficients and [ c1>] is the m x n matrix of c1> 

coefficients, where m and n are the number of freely variable metabolites and the number 

of enzymes respectively. 
For the gluconeogenic pathway given in Fig. 3, fPEP andfaAP correspond to the net 

rates of synthesis of phosphoenolpyruvate and glyceraldehyde-3-phosphate respectively: 

(15) 

(16) 

We denote the change off PEP with the logarithm of the activity of enzyme 1 by c~>tEP [cf. eqn. 

(13)]. Using eqns. (13) and (16), we find for this coefficient: 

and analogously, for the whole set of c1> values: 

[$] = $1 cjl2 '1'3 $4 = Vl [ 
PEP PEP ... fEP PEP ] [ 

c!>F tn,GAP (fjGAP c!>ru' 0 
-Vz -VJ 
0 V3 

0 ] =[ 15.3 -4.5 -10.8 0 ] (17) 
-V4 0 0 10.8 -10.8 

Similarly we denote the change of /PEP with the concentration of phosphoenolpyruvate 
by 11~1!1!. as defined by eqn. (12). For this coefficient we find: 

~1!1! _ dv1 dv2 dv3 1 d d 
'11 - dln[PEP] dln[PEP] dln[PEP] VlEPEP- Vz PEP- VJ PEP 

and similarly, for the other coefficients: 

[ '11~1!1! '11~] [Vl£k-Vz£k-VJ~ -VJ~ ] [ -3839 11.34 ['11]= = = . 
'11~ '11~ V3~PEP V3~- V4~ 22.03 -24.3 

(18) 

Written in matrix form, eqn. (11) reads for this case: 
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The meaning of this equation can be understood by considering the upper left element of 
the resulting matrix. This element represents the effect of a change in the activity of enzyme 
1 on the production rate of phosphoenolpyruvate (/PEP). Because in transitions between 
steady states, there cannot be a change in net production rate of any metabolite, this effect 
must be nil. The effect consists of the increase in /PEP caused by changes in the phospho
enolpyruvate and glyceraldehyde-3-phosphate concentrations (two terms arising in the 
product of the two matrices on the left) and the increase in /PEP due to the direct effect of the 
increase in enzyme 1 through the increase in v1. As indicated by eqn. (14), eqn. (19) can be 

solved for the matrix of control coefficients: 

[C] = 1 2 3 4 = 0.54 -0.16 -0.20 -0.18 [ 
CPEP CPEP CPEP CPEP ] 

cfW' c:r cf<P c,f"'' [ 0.49 -0.1s 0.26 -0.61 J 
(20) 

The flux control coefficients can be calculated from the concentration control coefficients by 
using the relation of Heinrich et al. (1977) that connects the control coefficients to the 
elasticity coefficients: 

(21) 

where Oir = 1 if i = r and otherwise 0. For instance for the control exerted by enzyme 1 on 
the flux through segment 4 we find: 

CJ.- CGAP £4 -0 59 1 - 1 ' GAP- • (22) 

Compared with the matrix method of the previous section, we find that this one has the 
advantage that the matrix that has to be inverted is smaller, i.e., m x m, where m is the 
number of metabolites, rather than n x n,where n is the number of enzymes. Especially 
with highly branched pathways and if matrix inversion has to be done without computer 
assistance, this may be an advantage. A disadvantage of this method is that after matrix 
inversion only the concentration control coefficients are known. For the flux control coef
ficients additional calculations have to be made. The method provides little information 
about the mechanism by means of which the enzymes exert control. 

Application of the Control Theory of Crabtree & Newsholme 

The basic equations in the control theory (flux-oriented theory in the terminology of Sava
geau and Voit in Chapters 4 and 5 respectively) of Crabtree & Newsholme (1987) are as 
follows: 

n 

dlnli = dlnEi + L ~·dlnSj 
j=1 

(23) 
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n 

tj·J;-dlnJj = L. 1·Jrdlnlj (24) 
j=l 

where t is the stoicheiometry between the ftuxes. To avoid confusion we have used the 
nomenclature proposed by Burns et al. (1985). 

Eqn. (23) corresponds to eqn. (21) multiplied by dlnEi. This is the equation relating ftux 
control coefficients to concentration control coefficients and elasticity coefficients developed 
by Heinrich et al. (1977). 

When applied to the gluconeogenic pathway given in Fig. 3 and written in matrix nota
tion the equation is as follows: 

dlnEt 1 0 0 -£k 0 dlnlt 

dlnE2 0 1 0 -4.., 0 dlnh 

dlnE3 = 0 0 1 -ik ~ dlnl) (25) 

dlnE4 0 0 1 0 4 dln[PEP] 

0 -Jl ]2 J4 0 0 dln[GAP] 

The above equation can be understood by doing the following thought experiment: Activate 
E1 by a certain fraction. This will cause a change in the ftux through the enzyme by dlnEt 
minus a secondary effect on this ftux caused by changes in metabolites that affect v 1• The 
latter change equals Ek.dln[PEP]. This consideration gives the first row of eqn. (25). Similar 
considerations give the next three rows. The bottom row reflects the fact that the sum of the 
change in ftuxes at. the branch point must equal 0. 

Inversion of the matrix of coefficients generates directly the values for all control 
coefficients in the pathway. Compared to control analysis this method is even more straight
forward. In addition it has the advantage that the control coefficients with respect to all 
pathway ftuxes are calculated in a single procedure. When applied to gluconeogenesis at 
saturating concentrations of lactate and pyruvate (see Fig. 3) the following control matrix is 
obtained: 

cg cg cg cf!4 0.98 0.01 O.Dl 0.01 

ch E! c~z E2 cg c~z E4 1.90 0.44 -0.72 -0.63 

cJ3 ch cg cJ3 = 0.59 -0.17 0.31 0.27 (26) E! E2 E4 
Clr CIJ; Cl!;' CJ!' 0.54 -0.16 -0.20 -0.18 

cr cr c~ cr 0.49 -0.15 0.26 -0.61 

The values for the ftux control coefficients on gluconeogenic flux and the concentration 
control coefficients are identical to those calculated by control analysis. The differences in 
the control structure within the different segments of the pathway are nicely uncovered in 
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this control matrix. Clearly the first segment is an uncontrolled pathway whereas control is 
distributed in the other pathway segments. An essential prerequisite when applying this 
method is that elasticity coefficients of all the effectors of enzyme activity have to be 
included in the equations. Crabtree & Newsholme (1987) have chosen to differentiate 
between different types of enzyme regulators. Again we have simplified the treatment by 
ignoring the possible influence of, for instance, the ATP/ADP ratio. The consequences of 
such a simplification for the control distribution are not as transparent as in the case of 
control analysis. This is due to the lack of the connectivity theorems. It could be that the lack 
of information about mechanisms for control generated by the treatment of Crabtree & 
Newsholme (1985, 1987) has led them to introduce a new class of very confusing qualitative 
terms such as totally exterTUll or partially interTUll regulators. 

Summarizing, by using the control theory of Crabtree & Newsholme (1987) control 
coefficients can be calculated in an extremely simple way. The method has the advantage 
that control coefficients on all fluxes are obtained simultaneously. It has the disadvantage 
that very little information is obtained about the mechanism by which control is exerted. 

Application of Biochemical Systems Theory 

As discussed in detail by Savageau and Voit in Chapters 4 and 5 respectively of this book, 
there are several ways in which biochemical systems theory can be used to describe 
biochemical systems. In one, the generalized mass-action system, the rate of every enzyme 
catalysed reaction is approximated by a difference between power laws. In another, the S
system representation, the net production rate of each metabolite Ui in eqns. (12) and (27)] 
is approximated by such a difference. The reactions producing and the reactions consuming 
that metabolite are then represented by single power laws. Using the latter approach, the 
basic equation is as follows (Savageau, 1976): 

dX n+m n+m 

fi= d/=aci1Xf"-13iiTx;• 
j=l j=l 

n 

IXi = v.oiT Xjj" 
j=l 

n 

J3i = VjQ IT xplrv 
j=l 

(27) 

(28) 

(29) 

where subscript 0 refers to any reference state. In case X; is not at a branch point, the first 
term on the right hand side of eqn. (27) can be interpreted as an approximation to the net rate 
of the reaction producing Xi• the second term approximating the net rate of the reaction 
consuming Xi. In this interpretation gij corresponds to the elasticity coefficient of the 
former reaction with respect to metabolite Xj• whereas hij is equal to the elasticity 
coefficient of the consuming reaction with respect to any metabolite Xj. If Xi is at a branch 
point in the pathway, as is phosphoenolpyruvate in our case, either or both terms on the right 
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hand side of eqn. (27) describe the sum of the rates of two (or more) enzyme catalysed 

reactions. Then the g and h values can no longer be identified as elasticity coefficients in 

the usual sense. They are closer to the "overall elasticity coefficients" (Westerhoff et al., 
1984) describing the combined elasticity of a part of a metabolic pathway. Since one is often 
more interested in the effect of the molecular elasticity coefficients on the control distribu
tion, this is a disadvantage. However, it is still possible to express the g and h values as 
elasticity coefficients and enzyme parameters. We shall illustrate this by elaborating our 
pathway in somewhat more detail. The biochemical systems theory (S-system) equations 

for the gluconeogenic pathway in Fig. 3 are as follows: 

Note that in biochemical systems theory a and g are used for the rate constant and 
exponents respectively of the synthetic reactions, whereas [3 and h are used as rate constants 
and exponents respectively in the degradative reactions. 

The corresponding integral description in the generalization of metabolic control theory 

is as follows: 

VI=k{PEP]i- (32) 

v2 =k2{PEP]i- (33) 

V3 =k3{PEP]'"'-·[GAP]fh.. (34) 

VF~·[GAP] 
£1w. 

(35) 

This is the integral equivalent of the metabolic control theory description, which, like bio

chemical systems theory, is strictly valid in the limit of infinitesimal changes around an 
operating point. Note that we use k; for the rate constant of the reaction catalysed by a 
single enzyme j. The first term on the right-hand side of eqn. (30) is identical to v1, the first 
term on the right-hand side of eqn. (31) is v3 and the second term on the right-hand side of 

eqn. (31) is v4 . Thus aPEP• Uc;AP and ~GAP are proportional to the activities of enzyme 1, 
segment 3 and segment 4 respectively. Furthermore, we identify: 

gppp,PEP = E~EP; gPEP,GAP = 0; gGAP,PEP =~PEP; gGAP,GAP = ~; 

hGAP,PEP = 0; ~.GAP= ~AP 
(36) 

The second term on the right hand side of eqn. 30 constitutes more of an identification 
problem, because it represents a sum of reaction rates, i.e. of v2 and v3. 
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The correspondence relations between the two descriptions are found by requiring that 
in the standard state the two descriptions are equal both (i) with respect to the predicted rate 

and (ii) with respect to the predicted dependence of the rate on the concentrations of the 
metabolites. Condition (i) gives the following relationship (where the concentrations are 
those in the reference state): 

f3m, = -=k2--=· [_PE_P.::.....)il'llP_+ --=k3--=· [_PE_P.::.....tl'llP--=--[G_AP--=-]tk_ 
[PEP]hPF.P.PEP. [ GAP]hPEP.GAP 

(37) 

Condition (ii) implies two more equations for the derivatives of the logarithms of this 
equation with respect to the concentrations of phosphoenolpyruvate and glyceraldehyde-3-
phosphate respectively, again at the reference state: 

v_z • ~EP + VJ · E~pp 
= Vl = 2.47 (38) 

(39) 

In the steady state eqns. (30) and (31) are both equal to zero. Division by their right-hand 
terms and taking logarithms, leads to the following, written as a matrix equation: 

with 

= [AJl [ ln[PEP] ] [ In(~) ] 

ln[GAP] In(~) 

[A] = [ gi'H'I'H' - /tppp .PEP 

gG\Pj'IP- hCN'j'IP 

gi'BP'l'-~ ] = [ -2.51 

g GIP(JN' - hGIP(JN' 2. 04 

0.741 J 
-2.25 

(40) 

(41) 

The elements of the inverse matrix, which we shall call [A]-1, give the control coef
ficients corresponding to the control exened by the a and 13 values on the concentrations of 
phosphoenolpyruvate and glyceraldehyde-3-phosphate. However, these control coefficients 
do not directly correspond to the control coefficients with respect to the various enzyme 
activities. We can find these latter ones by realizing that: 

C!'EP = dln[PEP] = dln[PEP] . dln(~) + dln[PEP] dln(~) 
I dlnEj dln(~) dlnEj dln(~) dlnEj 

(42) 

The Clln(a/13)/alnEi values can be evaluated from the correspondences discussed above 
between the a and 13 values and the enzyme activities. The dependence of In (acwi13G\P) is the 
simplest: 0, 0, 1, and -1 for enzymes 1, 2, 3, and 4, respectively. The dependence of 
1n(am/13HP) on enzymes 1 and 4 is also simple: 1 and 0, respectively. However, its depend
ence on the other two enzymes is more complex, as follows, from eqn. (37): 
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and 

dIn (am/1\w) 
dln£2 

-a3· [PEP~· [GAP]fk 
-----=:--=----=----=~--=-----=-- = -v:Y( Y2 + v3) 
a2 · [PEP]dw + llJ· [PEPfFilP · [GAP)Ek 

The total result can be formulated as follows: 

[C] = -[AJl[D] 

where [D] contains all these terms connecting the din (afp) values to the dlnEi values: 

[D] =[ ~ 
-0.294 

0 

-0.706 

1 

[C] is the matrix of concentration control coefficients also given in eqn. (20). 

(43) 

(44) 

(45) 

(46) 

Using eqn. 41, we have calculated [A]-1 and from our flux ratios we have calculated [D] 

with eqn. ( 46). Thus we found [C], with values indistinguishable from those in eqn. (20). We 

see that, as in the matrix method of Heinrich et al. (1977) we here only obtain the con

centration control coefficients. Also here the matrix that must be inverted is small. Indeed, 

this method is virtually identical to the method of Heinrich et al. (1977): matrix [A] is 
identical to the matrix [ TJ] except that its upper row is smaller by a factor v1, whereas matrix 

[D] differs from matrix [~] merely in that its first row is a factor v1 smaller. As 

disadvantages of these methods, we see (i) the necessity to derive the correspondences 

between the g and h values and the elasticity coefficients at branch points [eqns. (37-39)], 

(ii) the possibility that users fail to notice that control coefficients with respect to the a and f3 
values do not directly correspond to the control coefficients with respect to enzyme 

activities, and (iii) the extra necessity to convert the former to the latter (by deriving matrix 
[D]). Perhaps it is possible to define a simple algorithm to find matrix [D] and the conver
sion rules defined by eqns. (37-39). This would certainly improve the user friendliness of the 

biochemical systems theory method. 

Concluding Remarks 

In this chapter we have compared four different methods for quantifying control in a meta

bolic pathway. The methods were applied to the pathway of gluconeogenesis from lactate. 

All methods require the same type and amount of experimental data. As noted by other 

authors on the basis of theoretical analyses (Reder in Chapter 7 and Canela, Cascante and 

Franco in Chapter 11 of this book), we find that the four methods produce different sets of 

control coefficients. The methods of Savageau (1976) and Heinrich et al. (1977) only give 
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the concentration control coefficients. The matrix method of Fell & Sauro (1987) and 
Westerhoff & Kell (1987) also generates the control coefficients on the main pathway flux 
and on a flux ratio. The matrix method of Crabtree & Newsholme produces the control 
coefficients for all fluxes and metabolite concentrations and may therefore be advantageous. 
Of course, these differences are minor, because in each case the remaining control coef
ficients can readily be calculated through additional simple relationships. The numerical 
values obtained were identical for all four methods. 

We encountered considerable difficulties when trying to find out how the methods of 
Savageau (1976) and Heinrich et al. (1977) have to be applied to a real metabolic pathway. 
This was due to the complexity of the mathematical formulation in which they have been 
framed. Also, both methods complicate matters somewhat by requiring extra elasticity-like 
coefficients. In addition, the method of Savageau primarily produces control coefficients 
with respect to non-molecular properties (complex combinations of enzyme properties rather 
than single enzyme properties). This problem can be mastered by the introduction of an 
extra matrix into the equations. 

We are satisfied to note that the four calculation methods are simply somewhat different 
ways of achieving the same end. Suggestions that there are inherent conflicts between the 
methods appear to be void. 

If one is solely interested in obtaining the control coefficients of enzymes on fluxes or 
concentrations of metabolites we recommend the use of the method of Crabtree & News
holme (1987) or the method of Fell & Sauro (1985, 1987) and Westerhoff & Kell (1987), as 
relatively straightforward recipes for filling in the necessary matrices are given. We have a 
slight preference for the latter method, because it remains closest to the summation and 
connectivity theorems, which give much insight in the basis for metabolic control distribu
tion. None of the four methods treated here provides a straightforward answer to the fourth 
control question asked in the introduction, i.e. which regulatory mechanism is most import
ant for pathway control under physiological conditions? We realize that we have not applied 
biochemical systems theory to its full potential. In contrast to metabolic control theory, bio
chemical systems theory can be used to obtain information about the dynamic behaviour of a 
metabolic pathway. In a future study we will evaluate what extra information about the 
control structure of a metabolic pathway can be obtained by application of biochemical 
systems theory. 
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Chapter 7 

The Structural Approach to Metabolic 
Control Analysis I: Theoretical Aspects 

CHRISTINE REDER 

lN THE STUDY of a biochemical system, it is interesting to emphasize its invariants, i.e. the 
characteristics or properties that depend neither on the state of its environment nor on its 
internal state, but only on its structure. The models used in metabolic control theory, or more 
generally in biochemical kinetic theory, can be constructed in two steps: defining first the 
stoicheiometric reaction scheme, and giving then the expressions of the rate functions of 
each of the reactions. As the reaction scheme is generally supposed not to depend on the 
state of the system, it is natural to define the structural properties of a model as those that 
depend only on this scheme, and not on the rate functions. Then the study of the structural 
properties of a model can be used into two different ways: either to test directly the reaction 
network on which a model is based, or to use the network structure of a model, assuming it 
to be valid, to calculate coefficients that cannot be measured experimentally. This can be 
done without making any assumptions about the rate functions or about the state of the 
system. In this paper, we will explain in the context of a simple example how the structural 
properties of the control coefficients can be constructed, and also how the elasticity 
coefficients can be calculated from the control coefficients, providing that their structural 
properties are satisfied. [These results ar~ presented and proved in a general framework in 
Reder (1988)]. 

The Model and its First Structural Property: the Conservation Relationships 

We suppose that the state of a biochemical system is entirely described by several quantities, 
classified into internal variables and external parameters. We assume that the internal 
variables are the concentrations x 1 , x 2 , ... x m of some metabolites X1 , X2, ... Xm 

(respectively). We define the concentration vector x as follows: 
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Liberation, 33405 Talence Cedex, France 
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To construct the model, we first write the stoicheiometric reaction scheme, ignoring the 
"external" metabolites whose concentrations are fixed external parameters (shown below as 

•); we arbitrarily number the r reactions that constitute the scheme and assign them arbitr

ary directions. For the example we want to study here, m is equal to 3, r to 4 and the 

reaction scheme is as follows: 

4. 

To this scheme we associate the scheme matrix N of m rows and r columns whose coef

ficient at column j and row i is the signed stoicheiometric coefficient of the metabolite Xi 

in the reaction j; hence 

[ 
1 -1 -1 OJ 

N = 1 0 -1 1 
-1 0 1 -1 

The rate of change of the concentration xi of the metabolite Xi is the sum of the r 
reaction rates, each weighted by the corresponding stoicheiometric coefficient of Xi. Using 

vi to denote the rate of the reaction j and v to denote the rate vector, this hypothesis can be 

expressed as: 

dx=Nv 
dt 

where the rate vector v is a function of the concentration vector x and of the external 

parameter vector p. We get here: 

~~~J-[ 1 -1-1 OJ[~~=~=] 
2 - 1 0 -1 1 VJ(X; Jl) 

X3 -1 0 1 -1 ( . Jl) 
V4 X, 

Note that for any choice of the rate function v, one has: 
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which means that the quantity (~ + x3) remains constant. This linear conservation 
relationship is structural, as a consequence of a property of the scheme matrix N: the sum of 
its two last rows is indeed zero. 

More generally, one can construct all the structural linear conservation relationships as 
follows: suppose that the first m0 rows of N are independent, and that the (m - m0) others 
are linear combinations of these first m0 rows. The matrix N can then be decomposed as 

where all the rows of N R are independent and the matrix L has the following form: 

L=[ ~ l 
where 11110 denotes the identity matrix of size m0• The structural conservation relationships 
are linear combinations of the (m - m0) independent relationships described by the matrix 
equality 

For the example, the decomposition of N is as follows: 

[ 
1 -1 -1 0 l [ 
1 0 -1 1 = 
-1 0 1 -1 

N = 
The matrix Lo is as follows: 

1 0 
0 1 

0 -1 
L 

][ : 

L0 = [0 -1] 

-1 -1 01 ] 
0 -1 

and the unique conservation relationship is (~ + x3) =constant. 

Control Coefficients 

Suppose that ci' is a steady-state concentration vector of a system for the value af of the 
external parameter vector. Variations of this steady state can be induced by perturbations 
both of the external parameters and of the internal state itself. The first type of perturbation 
acts on the rate function v. The second type of perturbation can be easily understood from 
the following example: adding some quantity of X2 or X3 metabolite the "total concentra
tion"(~+ x3) will be modified, and hence the steady state of the system will also vary; on 
the other hand one can anticipate that by adding any quantity of X 1 metabolite nothing will 
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change, provided of course that one waits until a steady state is reached again. 
We will now explain with the example how one can associate these two types of 

perturbations with two types of "control coefficients". Suppose for simplicity that there are 
as many external parameters A.t as the number r of reactions, and that A.t acts specifically 
on the rate function V,~;. For the values 1..~, ~. ~. 1..~ of the external parameters, ci' is a steady
state concentration vector if 

[ 
1 -1 -1 0] 

Nv= 1 0 -1 1 
-1 0 1 -1 

Yl(a"; ~") 

ll2(a"; ~ 

V3(a"; ~ 

V4(a"; A~ 

One can suppose that for every parameter vector 1 sufficiently close to 1° and from every 
initial concentration state x sufficiently close to ci', the internal state of the system will reach 
asymptotically a steady state denoted by o(x; 1). The steady-state flux function F is defined 
in a natural way as follows: 

F (x; 1) = v( o(x: 1); 1) 

With perturbations of the external parameters one can associate the classical (but simpli

fied) control coefficient matrices rand C: 

• r is the m-row r-column matrix whose coefficient at row i and column k represents 
the control of the step k on the steady-state concentration of the metabolite Xi, and is 
defined as follows: 

e C is the r-row r-colurnn matrix whose coefficient at row i and column k represents 
the control ofthe step k on the steady-state flux Fi, and is defined as follows: 

all the partial derivatives being calculated at the point (ci'; 1°). 

We can also define matrices Dzes and D~ to represent the variations of the steady state 
or steady-state fluxes induced by perturbations of the internal state ci': 

e Dzes is an m-row m- column matrix whose coefficient at row i and column k repre
sents the variation of the steady-state concentration of the metabolite Xi induced by a 
perturbation of the concentration of Xk: 
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• D~ is an r-row m-column matrix whose coefficient at row i and column k represents 
the variation of the steady-state flux Fi induced by a perturbation of the concentration of 
Xk: 

Structural Properties of the Control Matrices 

We have already detailed elsewhere (Reder, 1986, 1988) how these four control matrices 
can be calculated from NR, L and the elasticity matrix Dxv. We want here to point out the 
structural properties of the control matrices and how they can be used. Recall that these 
properties only depend on the scheme matrix N, and not on the rate function v; in particular, 
they do not depend on the elasticity coefficients. 

We need to introduce the matrix K, whose columns constitute a basis of the kernel of 
NR; we may choose in our case: 

K =[ ~ i l 
0 -1 

Suppose now that cf1 is a non-singular steady state for the external parameter value 1° 
[this mathematical hypothesis is not very strong, as shown in Reder (1986, 1988)1; one can 
prove that all the structural properties of the matrices r, C , D 7!1 and D ~ are consequences 
of the following: 

• (a) [-Lo lm-mJ r=O, rK=O and rank (r) = m-mo 

• (b) NRC=O and CK=K 

• (C) [-Lo 1m-mol DJ!S=[-Lo 1m-mol and DJ!SL =0 

• (d) NRD~=O and D~L=O 

Let us translate and comment on the properties (a) of the control matrix r of our 
example. In this case, r is a 3-row 4-column matrix. The first property of (a) becomes: 

[O l]r=o 

and shows that the two last rows of r are opposite. This property reflects the fact that the 
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"total concentration" (x2+x3) does not change when one perturbs any external parameter. 

From the second (a)-property we get the generalized "summation relationships" between 

the concentration control coefficients, which are discussed in Mazat & Reder (1988) and 

Reder (1988): 

r[ ~ l]=o 
0 -1 

The third column of r is then the opposite of the first one, and the last column is the sum of 
the two first ones. Hence, the matrix has necessarily the following form: 

[
a 13 :-a a+J3] 

r= -~-~-j -Y y+o 
-y -o y -y-o 

Therefore, only four coefficients of r, for example a, 13, y and li, suffice to calculate all the 
others. The rank condition of (a) is more technical, and associated with the non-singularity 
of fi'; it is equivalent to the invertibility of the 2 by 2 matrix composed by the coefficients a, 
13, y and 8. We will use this property in the last section of this paper. 

Properties ( b-d) could be commented on in the same way. They can also be expressed 

as relationships between the rows or the columns of the matrices C, D t' and D ~. Their use 
reduces the number of independent coefficients of these matrices. We can summarize these 

properties as follows: 

[ a b 
1-a 1+a+b 

l c- c a -c 1+c+d 
- a-c b-d 1-a+c a+b- c-d 

-c -d c -1-c-d 

¥~[~ 
t 

,~] ~ 

1-~ 

n,F ~[ ~ 
f }. l g 

f-g 
-g -g 

Notice that in these two last matrices the first column is zero: this means that if the internal 
state of the system is perturbed by adding a quantity of the X 1 metabolite, the system returns 

to the steady state in which it was before the perturbation. Notice also that the two last 

columns of DtJor D~ are equal: this means that adding the X2 or X3 metabolite affects the 

steady state in the same way; we could have expected this as the parameter important for 

defining the steady state is the "total concentration" (Xz + x3 ). 
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Computation of the Elasticity Matrix from the Control Matrices 

It is well known that the four control matrices r, C, Dza and D~ can be calculated from the 
scheme matrix N and the elasticity matrix Dxv, i.e. the matrix whose coefficient at row i 
and column j is: 

Conversely, if r, C, Dza and D~ are matrices that satisfy the structural properties (a-d) of 
the last section, it can be proved that there exists a rate function v such that these matrices 
are the four control matrices associated to a steady state of the system. Moreover, the 
associated elasticity matrix Dxv is entirely determined from these control matrices; it is 
actually the unique r-row m-column matrix solution of: 

Let us apply this result to our model reaction scheme. For a choice of coefficients (a., ~. y, B), 

(a, b, c, d), (t, 1;), (f, g), let r, C, Dzaand D~ be the matrices defined in the previous 
section. They are the four control matrices associated with the scheme matrix N and the 
elasticity matrix Dx v, and this elasticity matrix can be calculated solving the system 

indicated above. This system can be simplified, as the columns of the matrices r or Dza are 
not independent; it can be reduced to the following: 

Dxv[ ~ : : ]=[ a~l /l ~ ] 
a-b c-d f-g 

-r -B 1-s -c -d -g 

This system can be solved for any choice of the coefficients, provided that (a.B- !tf) is non
zero; but this condition is precisely the rank property imposed on r from structural condition 
(a). 

This calculation of the elasticity coefficients from the control coefficients is maybe not 
of great interest from an experimental point of view. Nevertheless, it ensures that all the 
structural properties of the control matrices can actually be derived from the (a-d) proper
ties described in the previous section. 
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ChapterS 

The Structural Approach to Metabolic 
Control Analysis II: Geometrical Aspects 

JEAN-PIERRE MAZAT, CHRISTINE REDER and T. LETELLIER 

IN THE GENERAL framework of metabolic control theory (Kaeser & Bums, 1973; Heinrich & 
Rapoport, 197 4 ), Reder ( 1986, 1988) has described a general method that provides a way of 
analysing the sensitivity of a metabolic system to perturbation of the environment or of its 
internal state. This method extends and generalizes the matrix method proposed by Fell & 

Sauro (1985) and Westerhoff & Chen (1984). 
One of the most important ideas of the method is to keep apart what belongs to the 

structure of the network and what belongs to the velocity functions of the individual steps. 
We shall describe here some geometrical aspects of the method and to illustrate them with 
simple examples. 

Definitions and Notation 

The structure of the metabolic network is expressed as a matrix N, the columns of which are 
the stoicheiometric coefficients of the reactions of the network. We will initially suppose 
that the rank of the N matrix is maximum. In this case, there is no conservation relation
ships between the concentrations xi. We shall see in Example 3 (Fig. 1) how to approach the 
general case where this supposition does not hold. 

With this definition, the evolution of the metabolite concentrations xi (1 s; i s; m) can 
be written as follows: 

dx =N·V 
dt 

(1) 

where V represents the column of the r rates vi(Xj. m), x the column of the m metabolite 
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concentrations .x;, and m the set of external parameters (enzyme concentrations, inhibitors 
that are not metabolites of the network, Km, etc.). In Fig. 1 we give some examples of the 
construction of the matrix N. These examples will be studied in the remainder of the chapter. 

Metabolic Network 

Example 1 

Example2 

Example3 

Matrix N 

Reactir 1 !Reaction 2 

N = [ 1 -1] -- X1 

Reaction 1 Reaction 2 

I I J Reaction 3 

N = [ 1 -1 -11 --x1 

[-1 
0 1 ] N = 6 -1 0 (Rank 2) 
1 -1 

Sum of the rows = 0 <=> 
x 1+x 2+x 3= constant 

Figure 1. Examples of metabolic networks and their associated N matrices. 

The Steady State 

Let Jlo be a set of external parameters. Let 0"0 be a steady state of the system for this value 
Jl.o of the parameters, so that: 

N· V{ [O"o(Jlo)], ~} = 0 (2) 

Let Jo be the column of steady-state fluxes, i. e. 

Jo = V{[O"o(Jlo)], ~} (3) 

Eqn. (2) implies that 

Joe Ker(N) (4) 

where Ker(N) is the kernel of N, i.e. the vector space: 

Ker(N) = {wE R'/Nw = 0} 

On the other hand 
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Jo e t){Jlo) (5) 

where ~(~0) denotes the set of rate vectors associated with the value ~o of the parameters: 

Ker(~ Ker(N) 

Figure 2. Example I from Fig. 1. 

In the r-dimensional space of the rates, the steady states (if any) are situated at the inter
section of the subset Ker(N) and ~(J.to). This point is illustrated in Fig. 2A, where we use 
Example 1. In this example, the vectors 

[~~] of Ker(N) are defmed by [ 1 -1 ] [~~] = 0, i.e. v1 - v2 = 0 

In the rate plane, Ker(N) is the first bisectrix. ~(~) is defined by the fact that in the 
metabolic pathway, the x1 value is the same for v1 and v2 , i.e. by eliminating x1 between 
the rate equations of v1 and v2 • In order to illustrate that point, we have chosen two very 
simple rate equations: 

Elimination of x1 gives the equation of J(Xo. k1, ~): 

This is represented in Fig. 2B. 

Perturbation of the Steady State 

Let us explain the determination of the control coefficient matrix for Example 1. A control 
coefficient correlates a change in a flux with a change in the rates. A perturbation of the rates 
can be defined in Example 1 by a vector: 
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The change in the fluxes are also defined by a vector: 

&!=[ ~~ ] 

Let us recall that the fluxes 11 and 12 are defined by 11 = v1 and 12 = v2 at steady state. 

The control coefficient matrix C' is the matrix that couples the two vectors: 

aJ =C'ov (6) 

The change in the rate will shift the space t}(XQ, k1, "-2) [ '(}(~) for the sake of simplicity) 

to a new space: t}(x' 0, k' 1, k' 2) [ t}(J.L'o) for the sake of simplicity). As the perturbations are 
small these spaces can be locally identified with their tangents (Fig. 3). 

Vz Ker(N) = {Vt= v~ 

Figure 3. Penurbation of the steady 
slale of Fig. 2B (Example I of Fig. I) ]z 

The new steady state will be at the intersection of the new space t}(J.L'o) (or its tangent) 

always with Ker(N) so that oJ appears as the projection of ov on Ker(N) in the direction of 

the tangent to the space t}(J.L'0). This is a general property and has two important con
sequences which come from two well-known properties of the projections (Fig. 4). First, if 

we take a perturbation vector ov in the space on which we project, here Ker(N), we obtain 
the identity; this will give us structural relationships (and in particular the summation 

relationships). Second, if we take a perturbation vector ov in the direction of the projection 
we will obtain zero; this will give us the connectivity relationships. 

Let us apply these concepts to Example 1. A vector of the space on which we project is, 

for hlstance, the vector [ : ] and a vector of the tangent spacds obviously [ E ] = [ ~} so 

that we can write: 
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Null application in the 
direction of the projection Connectivity Relationships 

Structural Relationships 

Figure 4. The matrix of the flux control coefficients is the matrix of a projection. 

[ Cn c12 ] [ 1 E1] =[ 1 o] 
C21 c22 1 E1 1 o 

C' X B' = A' 

In this example the two rows of the C' matrix are identical because J1 = h 

133 

(7) 

We can use now eqn. (7) in two different ways. First it allows us to calculate, 
numerically or formally, the control coefficients C' by inverting the matrix B' (when this is 
possible; we shall treat in Example 3 the case where this is not possible): C' =A' B'-1. In our 
case, we obtain the following well-known result: 

[ 
E'2 

B'-1 =-1- 1 
Eo2 ..t1 1 1 -t., - (8) 

so that: 

(9) 

Eqn. (7) also allows automatic derivation of the structural (summation) and connectivity 
relationships. By multiplying the first row of C' by the first column of B' we obtain the 
classical summation relationship: 

Cn ·1 +C21 ·1 =0 (10) 

and by multiplying the first row of C' by the second column of B' we obtain the classical 
connectivity relationship: 

C o1 C o2 0 11 ·E 1 + 21 • E 1 = (11) 

Other Examples 

Example 2 and its N matrix are described in Fig. 1. The control coefficient matrix is as 
follows: 
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Figure S. Representation of Ker(N) and 
t')(~Jo) for Example 2 
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[en c12 C13] 
C' = C'21 C'22 C'23 

C'31 C'32 C'33 

Contrary to the previous case the rows are not identical. We shall first determine the kernel 
of N, Ker(N). A vector in Ker(N) is such that: 

(12) 

Eqn. (12) is the equation of a plane (dimension = 2). A parametric representation of this 
plane is: 

It appears in grey in Fig. 5. Two independent vecto<S of the plane are [ i ] and [ ~ J On the 

other hand the space of the allowable rate (by elimination of x1) has a dimension equal to I. 
To see this we have chosen the following very simple rate equations: 

~(llo) is then a straight line intersecting Ker(N) at the steady state. The tangent plane to 

~()I.) is given by the vector: [ :i l In that case eqn. (7) becomes' 
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Cnll
1 1 

e'i 1 [ 1 1 
C23 1 o e'i = 1 o 
C33 ,3 o 1 

0 1 £1 

~] 
C' X B' = A' 

As previously, one can now (i) invert the B' matrix in order to obtain C', and (ii) make the 
formal products to obtain the structural and the connectivity relationships. For instance: 

Row 1 x Column 1: 

Row 1 x Column 2: 

C~1 + C~2 = 1 

C~1 + c~3 = 1 

which leads to aC 11 + C 12 = a 

which leads to (1- a)Cu + Cn = (1 -a) 

where Cij = C'ij ·vjlFi corresponds to the logarithmic derivatives. The sum of these two 
relations gives the well known summation relationship: 

Cn + C12 + Cn = 1 

The other structural relationships can be deduced in the same way. 
We can now write the connectivity relationships as follows: 

Row 1 x Column 3: 

which is equivalent to 

C• .1 c' .2 c· ,3 0 u£ 1 + 1i' 1 + 1# 1 = 

Cud+ C12£l + Cn£{ = 0 

withe'~=~- v;/xj(logarithmic derivatives). Two other relationships can be deduced in the 
same way. 

Example] 

The metabolic network of Example 3 and the associated matrix N are described in Fig.1. As 
indicated in this figure, the sum of the rows of the matrix N is equal to zero; this indicates a 
conservation relationship between concentrations of the metabolites: 

x1 + x2 + X3 = constant 

Eqn. (7) does not allow calculation of the control coefficients because the matrix B' is no 
longer invertible. We are led (see Reder, 1986, 1988) to extract from N a matrix NR of 
maximum rank, here 2 (number of rows minus number of relationships between the rows). 
For example, we can take the two first rows of the matrix N as NR: 

N =[-1 0 1] 
R 1 -1 0 
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We then define the matrix L0 such that the last row of N is equal to LoNR: 

This is always possible as the last row is a linear combination of the previous ones. We 
obtain: 

Lo=[-1 -I] 

Thus, we can write N = LN R with L = [ ~ ~ ]· In our example, the kernel of N is defined 
-1 -1 

by: 

[ -: -~ ~ l [ ~~ l = [ ~ ]• i.e. Vi = V2 = V3 
0 1 -1 V3 0 

Figure 6. Representation of Ker(N) and 
'6(~) for Example 3 

[ 
1 l 

The dimension of Ker(N) is 1 (see Fig. 6) and a vector in this vector space is ~ J We 

define the matrix E' of the elasticities: 

One can define now the matrix C' as the matrix of a projection on Ker( NR) = Ker(N) in the 

direction of the tangent space of 'I'}(Jlo). 

The manifold 'I'}(Jlo) depends on the three variables Xi, x2 and x 3 bound by the relation-
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ship x1 + xz + x3 = constant. 1'}(~) is thus a surface of dimension 2. Two independent 
vectors of its tangent plane are obtained by the product: 

Thus we can now write: 

C' X 

[ 

d1 d1 d1 d1 l "-1-"-3 "-2-.:.3 

E'L = d -E'~ E'~ - E'~ 
.,.3 .,.3 .,.3 .,.3 
L1 -.:,3 L2 -.:,3 

[K E'·L ] =[K 0 0] (13) 

where K represents a basis of Ker(N). As we did previously, we can use this equality either 
to calculate the matrix C', i.e. the flux control coefficients or to derive the formal structural 
and connectivity relationships. For instance: 

Row 1 x Column 1 (Summation relationship): 

Cu + C12 + C13 = 1. which leads to Cu + C12 + C13 = 1 

Row 1 x Column 2 (Connectivity relationship): 

Cu(e'l- e'~ + Cn(E'j- E~ + C'13 (E'j- e3:Y = 0, which leads to 

C ( s1 1 S3 t) 0 ll -Et --E3 +· · · = 
Vt Vt 

(14) 

where the definitions of the Cij and of the ~ are as above (logarithmic derivatives) 

Conclusions 

The method for which we have described some geometrical aspects by means of some 
examples provides a way to determine the control coefficients from the elasticity coef
ficients, and to derive the structural (summation and others) and connectivity relationships. 
This method generalizes the previous known methods. It can be applied to any metabolic 
system: for instance, there can be conservation relationships, the external parameters can act 
in any manner on the reaction rates (in particular, the parameters do not have to act 
specifically on one reaction rate). It requires knowledge of the rates and metabolite con-
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centrations at the steady state and of the partial derivatives of the rates with respect to the 
metabolite concentrations: 

The general equation allowing the determination of the control coefficients or of the various 
relationships is the eqn. (13), which is derived from the fact that the control coefficient 
matrix C' is a projection matrix on the kernel of N in the direction of the tangent space to 
f)(~). a basis of which is given by the columns of the matrix E'L. There is an equivalent 
equation for the control coefficient matrix of the substrate I:' (see Reder, 1986, 1988). 

This method is of course equivalent to the method given by Fell & Sauro (1985) and of 
Sauro et al. (1987) in some particular cases. It generalizes this method to all cases and gives 
its mathematical basis. 

It should be pointed out, in relation to Example 3, that the usual definitions of the 
control coefficients and of the elasticities with logarithmic derivatives lead to complex 
relationships involving the rate and the metabolite concentrations values at the steady state 

[eqn. (14)]. This is not the case when the direct derivatives are used (C' and e'). Concerning 
Example 2 it should also pointed out that with this definition there twice as many structural 
relationships between the C' as there are summation relationships with the C. In simple 
cases (Example 1) both definitions give the same relationships (and have the same values) 
but this is not a general relationship and we pose the question of whether the traditional 
definitions should be maintained. 

Note: A computer program allowing automatic derivation of the flux and metabolite 
control coefficients and the literal structural and connectivity relationships has been deve
loped in our laboratory. Further information may be found in Appendix B of this book. 

Acknowledgements: This work was supported by the CNRS (ATP Biologie-Mathematiques) and by the 
Universites Bordeaux I and Bordeaux II. 
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Chapter9 

Control Coefficients and the Matrix Method 

DAVID A. FELL, HERBERT M. SAURO and J. RANKIN SMALL 

WHEN WE DEVELOPED the matrix method (Fell & Sauro, 1985), we were aiming to find a 

quick route for the evaluation of flux control coefficients in terms of elasticities, either 

algebraically for the general case, or numerically in specific instances where the values of 

the elasticities were known. Our starting points were the summation and connectivity 

theorems for flux control coefficients of Kaeser & Bums (1973), as these seemed to offer a 

route to the answer using less information about the pathway than the method of Heinrich & 

Rapoport (1974). Kaeser & Bums (1973) had derived these relationships for a general 

metabolic system, though the specific example treated in their paper was a linear pathway. 

Their methods of deriving expressions for flux control coefficients could be applied to other 

pathways [for example, a branched pathway: Kaeser (1983)], but on a case by case argument 

from first principles. 

The basis of our method was a set of simple rules for writing a matrix equation that 

could be solved for the flux control coefficients by standard algebraic or computational 

procedures. Although the linear metabolic pathway is simple to treat, it can serve as an 

introduction to the method. To be more specific, consider the analysis of the pathway of 
serine biosynthesis in rabbit liver (Fell & Snell, 1988): 

1 2 
3-phosphoglycerate --+ phosphoserine ~ serine + inorganic phosphate 

Here 3-phosphoglycerate can be considered as a source, as it is produced and degraded in 

carbohydrate metabolism, which is many times more active than this anabolic pathway. 

Serine can be considered a sink in this instance, as its concentration in liver varies relatively 

little (LaBaume et al., 1987). The first step shown is actually two separate enzymic steps 

that cannot be resolved in our analysis because the concentration of the intermediate 

(phosphohydroxypyruvate) is immeasurably low, but this does not matter greatly as the 

overall step shown is close to equilibrium (LaBaume eta/., 1987). We have, with the flux 
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through the pathway designated J (where J = 11 = J2, since the flux is the same through 
both steps), and phosphoserine abbreviated SerP: 

c{ +C{ = 1 (Summation theorem) 

ell cJz 0 1 f.Sa:P + 2 f.Sa:P = (Connectivity theorem) 

The matrix method involves writing this as follows: 

or 
E·C=M 

which has the solution: 

or 
C = E-l·M 

For rabbit liver under normal conditions, the measured mass-action ratio of the first step 
(LaBaume etal., 1987) can be used to calculate eL,..p to be -1.43 (Fell & Snell, 1988). The 
second elasticity, eLrp. can be calculated, from the kinetic rate law describing rat liver 
phosphoserine phosphatase at the measured intracellular levels of phosphoserine and serine, 
to be 0.041 (Fell & Snell, 1988). Substituting these values in the equations above gives C{ = 
0.03 and c{ = 0.97. This simple example is of interest because it shows a pathway where the 
first two enzymes (combined here as step 1) are close to equilibrium, and the final step is 
subject to feedback inhibition by the end-product of the pathway, serine. The uncompetitive 
inhibition of the phosphatase by serine is strong, with eLr = -0.65. The effect of serine on the 
pathway flux can therefore be calculated as the response coefficient (Kaeser & Burns, 1973 ): 

R~ = c{eLr = -0.63 

There is no difficulty in generalizing this procedure to any length of linear pathway, in the 
following manner: 

1. Create a matrix with as many columns as reactions, n. Each reaction is associated with 
a particular column. 

2. In each position of the first row enter a 1 to represent the summation theorem. 
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3. For each of the n- 1 variable metabolites, write a row of the matrix to represent each of 
the connectivity relationships. Each position on the row represents the effect of the 
metabolite associated with the row on the reaction associated with the column. If the 
metabolite has an effect, whether as substrate, product, or effector, an elasticity term is 
entered; otherwise (as is most often the case) a zero is entered. 

This generates the matrix E, which is inverted to obtain the flux control coefficients in the 
first column of the inverse. [The other columns of the inverse contain the concentration 
control coefficients, as described for example in Sauro et al. (1987). However we shall not 
deal with these here.] 

The process of matrix inversion can be carried out according to a set of simple rules to 
be found in any linear algebra text book. Computer programs exist to perform the inversion 
symbolically (e.g. general symbolic algebra packages such as REDUCE (Hearn, 1985), or a 
simple Pascal program by Fell and Sauro), and for numerical solutions, functions and 
subroutines are widely available for most computer systems in most languages. However, 
there are other "recipes" for obtaining these solutions that are essentially related to the 
inversion of the matrix E (e.g Hofmeyr, 1986a, Giersch, 1988c). 

The problem of extending our method to a branched pathway was that each branch point 
adds a reaction without adding a variable metabolite, so the simple procedure above does not 
generate enough rows in the E matrix (which must have as many rows as columns for the 
equations to be soluble). The case of three enzymes forming a single branch point about one 
metabolite had been solved by Kaeser (1983). We generalized Kaeser's approach to show 
that there was a general constraint on the flux control coefficients in branched pathways: the 
branch point theorem (Fell & Sauro, 1985). For a system of n reactions and m metabolites, 
we proposed that the fourth step in writing the E matrix would be to write a row containing 
the coefficients of each of the ( n- m -1) branch point equations, which with the summation 
theorem row and the m connectivity theorem rows gives a square matrix. The terms that 
appear in the branch point rows correspond to fractional fluxes in the branches, and this is 
the only stage at which fluxes appear in the matrix method. Our solution to the branch point 
problem was derived for a specific pathway geometry, and is therefore open to the criticism 
that it does not guarantee the existence of an appropriate set of branch point relationships for 
every possible pathway configuration. The rigorous justification of our solution is provided 
by Reder's (1986, 1988) demonstration that the branch-point relationships are, like the 
summation theorem, derived from the structural properties of the pathway, in that together 
they form a basis (multiplied by a scaling matrix) of the null space of the stoicheiometry 
matrix of any metabolic system that has a steady state. As the number of independent 
vectors required to form a basis for this null space is of necessity the number of reactions 
(columns) minus the number of independent metabolites (rows), we can be sure that, 
whatever the structure, there do exist sufficient branch point equations to form a square E 
matrix. In a pathway with multiple branches, a set of independent branch point equations 
must be selected, and (for the purposes of our method) none of these must have a non-zero 
coefficient for the flux control coefficients of enzymes carrying the selected reference flux. 
Fortunately this abstract requirement can be visualized on the map of the reaction pathway: 
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Figure 1. A hypothetical pathway with multiple 
branches. (a) The complete pathway, in which X0, 

X4 and X6 are external pools. (b) The two 
independent routes traced by the two branch-point 
equations given in the text. 
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(b) 

Xz 

/~ 
·········l>X X ····--··-)> 

1~/5 
x3 

the set of independent relationships must trace routes between external pools (regardless of 
the actual reaction direction) such that every reaction, except those in the limb containing 
the reference flux, appears in at least one route, and no route is duplicated. Thus the pathway 
shown as Fig. la, with 7 reactions and 4 independent metabolites, needs two branch-point 
equations, and a possible choice for these corresponds to the two routes shown as Fig. lb. 
The form of the equations, and their relationship to choice of reference flux and branch 
distribution coefficients (Sauro et al., 1987; Westerhoff & Kell, 1987) is described in Small 
& Fell (1989). The result is as follows: 

Note that the pathway in Fig. 1 also illustrates the fact that the endpoint of a route for a 
branch point equation can be a reconvergence of two arms of a branch to reconstitute the 
reference flux, instead of an external pool. This is equivalent to a substrate cycle structure, 
which emphasizes that there is no significant difference between such cycles and branched 
structures as far as their treatment in the matrix method is concerned. However, we did 
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Figure 2. A hypothetical conserved cycle structure. X0 and X4 are external 
pools. The total concentrations of X 1, X2 and X 3 must remain constant. 
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distinguish the two cases in our original paper (Fell & Sauro, 1985), since the biochemical 
significance of the two can be different. 

The other major problem in implementing the matrix method arises from the existence 
of conservation relationships, that is, constraints on the total amount of a group of 
metabolites that contain a moiety which is not connected to an external pool. Thus, although 
the system as a whole is open, the total amount of the conserved moiety remains constant on 
the time scale of the experiment. In these cases, there appear to be more metabolites than 
required to provide the rows of the E matrix. We pointed out (Fell & Sauro, 1985) that the 
usual form of the connectivity theorem cannot be applied to metabolites belonging to a 
conserved group, but a modified form could be derived. For each conservation relationship, 
the number of metabolites for which a row is entered in the E matrix is one less than the 
number of metabolites in the group, and the connectivity relationships that are used each 
involve the elasticities of one of these metabolites and scaled elasticities of the metabolite 
that does not contribute a row. Again, it could be argued that our derivation of the modified 
connectivity relationship was specific to particular configurations of metabolic pathway 
However, the same modified connectivity relationships arise from the general analysis of 
Reder (1988; also Reder & Mazat, 1988). Here they are linked to analysis of the stoicheio
metry matrix of the system, since the existence of conservation relationships corresponds to 
lack of independence between the rows of the stoicheiometry matrix. In difficult cases, 
unambiguous diagnosis of the conservation relationships can be achieved by reduction, or 
rank analysis, of the stoicheiometry matrix (Hofmeyr, 1986ab; Reder, 1988). Details of the 
writing of the modified connectivity relationships for conserved metabolites, and the best 
form of the relationship to use when concentration control coefficients are being determined 
as well, are given in our papers (Fell & Sauro, 1985; Sauro et al., 1987). As a brief 
example, consider the hypothetical system shown in Fig. 2. The E matrix for this pathway is 
written, according to our rules, as: 

1 1 1 

e} -E~Xt 
x3 

E3 e3Xt 1- 3-
X3 

ei ~-~X2 3X2 -E3-
X3 X3 

This leads to the same expressions for the control coefficients as obtained for analysis of this 
system by Reder & Mazat (1988). The point we wish to emphasize here is that it is only in 
the scaling factors for elasticities associated with these conserved metabolites that metabol-
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ite concentrations explicitly appear in the matrix method, and then only the concentrations of 
these conserved metabolites. 

Apart from our matrix method (Fell & Sauro, 1985), other derivations of matrix 
expressions for control coefficients have been developed within the sphere of metabolic 
control analysis (e.g. Reder, 1988; Giersch, 1988abc; Westerhoff & Chen, 1984; Cascante 
et a/.,1989; Crabtree & Newsholme, 1987), and there has been continued exposition of the 
corresponding methodology in biochemical systems theory (Savageau et al., 1987). What 
can we now perceive as the limitations of our matrix method, and does it have any continu
ing role? Firstly, the limitations: 

1. The proof of the matrix method may not be considered completely rigorous as it is based 
on arguments derived from consideration of specimen pathway structures. Here the 
works of Reder (1988) and Cascante et al. (1989) are relevant as they show that equa
tions of the form generated by the matrix method can be derived without consideration 
of the specific structure of the pathway. 

2. As more complex pathways are considered, the treatment of conservation relationships 
and branch points by the rules of the matrix method becomes more difficult (e.g. Small 
& Fell, 1989). Furthermore, the identification of the conservation relationships is not 
integrated with the matrix method, but is a separate stage (Hofmeyr, 1986ab). 

3. The process still involves matrix inversion and multiplication, and this is a barrier for 
many life scientists, even though computer programs are readily available to carry out 
these procedures. Furthermore, this algebra can be performed by the same simple 
"recipes" in every case. 

Some of the continuing advantages of the matrix method are as follows: 

1. It is a "minimalist" approach, in the sense that it requires only a limited set of metabolite 
concentrations, some stoicheiometric coefficients, and relative fluxes in branched path
ways. Other more rigorous approaches develop equations that include all stoicheio
metric coefficients, concentrations and reaction velocities, even though the majority of 
these will cancel out in the final expressions. Setting up an analysis by the matrix 
method therefore identifies the quantities that will have to be known or measured 
experimentally. 

2. Most experimental applications of control analysis to date have been on small systems 
of simple structure, for which the matrix method is fast and easy to use. 

3. Even if expressions for the control coefficients are derived by the more rigorous 
approaches cited previously, the rules of the matrix method, coupled with the theorems 
of Kaeser & Burns (1973), offer a physical interpretation of the terms in the equations. 

4. In those cases where it may prove to be necessary, it is relatively simple to modify the 
matrix method to take account of enzyme-enzyme interaction and other sources of non-
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Figure 3. The branched pathway analysed by 
Savageau et al. (1987). The numbers on the arrows 
correspond to the numbering of the enzymes used 
by these authors in their metabolic control analysis. 
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linearity between the rate of a reaction and the amount of an enzyme, as discussed in 

Chapter 20 of this book by Kaeser, Sauro and Acerenza. 

For the future, we consider that one way to minimize the disadvantages of the matrix method 

would be to develop computer programs that will generate and evaluate the expressions for 

the control coefficients from a simple description of the pathway. Thus the details of the 

mathematics would be hidden from the user. Such programs are being developed by David 
Fell in Oxford and Jean-Pierre Mazat in Bordeaux. (See also Appendix B in this book). 

The Matrix Method and Biochemical Systems Theory 

Chapters 4 and 5 of this book, by Savageau and Voit respectively, are concerned with 
biochemical systems theory and with metabolic control analysis, which they see as a special 
case of biochemical systems theory. Earlier, in the course of a comparison between bio

chemical systems theory and metabolic control analysis, they undertook the analysis of a 

branched pathway (Fig. 3) by both techniques (Savageau et al., 1987). We wish to draw 

attention to some other aspects of that comparison. The biochemical systems theory 

approach to this analysis involves writing the matrix A of power law coefficients thus: 

g10 -hn (g12 - h12) (g13 - h13) 

g21 (g22- h22) 0 

0 g31 0 

There are three dependent concentration variables and five enzymic reactions, but in the 

biochemical systems theory representation, the three metabolites imply six rate parameters 

(three a and three 13 parameters). Therefore one of these is redundant (131). (There are also 

grounds for objecting to the definition of a "parameter" of undefinable and inconstant 

dimensions; see Cornish-Bowden, 1989). In addition, there are eight interactions of the 

metabolites with the enzymes (as substrates or effectors), but 11 power-law indices in A2, so 
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three of these are redundant (h11, h12 and h13). The matrix of sensitivities of concentra
tions to the a. rate parameters, s& is (Savageau et al., 1987): 

(8n 0 hn) l-1 
(833- h33) 

From this, we can derive the matrix expression for the sensitivity of the three fluxes in the 
system to the three a. rate parameters as: 

(gn o hn) l-1 
(833- h33) 

The corresponding analysis in metabolic control analysis can be carried out extremely 
simply using the matrix method by forming the matrices C, E and Mas before, where: 

cl Cf' cf2 cf• CJ,fJ, 
1 

ci cf' cf2 cf• d,;J, 
2 

C= cj c;' c;2 c;• CJ,fJ, 
3 

cl cf' cf2 cf• CJ,fJ, 
4 

cJ Cf' c!2 cf• CJ,fJ, 
5 

1 1 1 1 

0 0 0 e1 £~ 

E= ~ ~ 0 £1 0 

£~ 0 £~ 0 £~ 

0 h_1 h h_1 h 
]1 ]1 It It 

r 1 0 

0 0 

JJ 0 -1 0 0 
M= 0 0 -1 0 

0 0 0 -1 
0 0 0 0 

Now it is clear that the effect of a change in the activity of enzyme 1, 2 or 3 can be 
expressed in the biochemical systems theory version as a change in the rate parameters a.1, 

liz and 13J, so that for the variable Y (either a flux or a concentration), we would expect: 

S(Y, a1) = C[; S(Y, fu) = CJ, and S(Y, fh) = Cj 
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At the operating point of the power-law approximation of biochemical systems theory, 
where the power-law exponents are instantaneously equivalent to the elasticities as describ
ed by Savageau et al. ( 1987), we find that the identical expressions are obtained as expected 
from the solutions to the matrix equations given above. This was noted by Savageau et al., 
but they then claimed that the biochemical systems theory analysis was superior because it 
had the supposed benefits (Voit & Savageau, 1987) of being based on an aggregated power
law representation, whereas the metabolic control analysis was equivalent to a supposedly 
inferior separate power-law representation. This is an odd claim given the algebraic (and 
consequently, numerical) identity between the two results. In fact, it is false because the 
representation of the pathway in biochemical systems theory is not properly aggregated; 
aggregation would result in loss of information about the fluxes in the two branches; this is 
true for the representation of the consumption of X 1 in their analysis (as represented by the 
parameters 131 and h11), but the aggregation is nullified by the representation of the fluxes 
through X2 and X3, which causes 131 and h11 to become dependent parameters of those 
describing the two separate fluxes. 

A consequence of the existence of these dependent parameters in the biochemical 
systems theory representation not pursued to its conclusion by Savageau et al. (1987) is the 
relationship between the two analyses if the effects of a change in enzyme 4 or 5 is 
considered. In their representation, a change in the activity of enzyme 4 causes a propor
tional change in the value of~, but also some change in the dependent parameter 131, so that 
the total sensitivity to a change in ~ is given by: 

' dln~t 
S (Y, a2) =S(Y, a2) +S(Y, ~t)alna2 

From Savageau et al. (1987) we have: 

Consequently: 

iHnPt _h 
a1na2-1t 

and similarly for cf Thus there is not in general a one-to-one correspondence between 
control coefficients and sensitivities, even in a linear pathway, and as a result the expression 
of the relationship between the summation theorem of metabolic control analysis and its 
equivalent in biochemical systems theory has never been given completely correctly by 
Savageau and his group. More important, it shows that biochemical systems theory is not 
constructed so as to give easily the enzyme-centred control coefficients of metabolic control 
analysis. 
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Chapter 10 

Performance Indices in Metabolic 
Systems: a Criterion for Evaluating 
Effectiveness in Metabolic Regulation 

MARTA CASCANTE, RAFAEL FRANCO and ENRIC I. CANELA 

A METABOLIC pathway is a dynamic system consisting of a set of level variables (con

centrations of internal metabolites) with associated input and output fluxes (enzymic rates, 

and transport across membrane or combination of them). Furthermore, there must be at least 

one source metabolite or first metabolite and at least one final product. The pathway occurs 

in a viscous medium, sometimes heterogeneous with different diffusion rates in likely 

spatially organized clusters. Moreover, there are signals which, without matter transfer, 

communicate information from one point of the pathway to another. These signals make 

metabolic pathways self-regulated and are designed to give response to microenvironment 
changes of source metabolite or final product concentrations. 

At present, there is increasing interest in analysing metabolic pathways as a whole, 

considering as fundamental aspects their quantitative evaluation and the optimality of the 

different regulatory mechanisms. Several approaches have been devised for these purposes 

(Savageau, 1969, 1976, 1987; Kaeser & Bums, 1973; Heinrich & Rapoport, 1974, 1975; 

Crabtree & Newsholme, 1978, 1985, 1987; Westerhoff & Chen, 1984; Fell & Sauro, 1985; 

Sauro et al., 1987; Voit & Savageau, 1987; Cascante et al., 1989ab). On the other hand, 
quantitative analysis and optimality of self-regulated or externally regulated systems have 
been studied in many fields of science and technology by means of control theory (Barnet & 

Cameron, 1985) and sensitivity analysis (Tomovic & Vukobratovic, 1972; Frank, 1978; 

Rabitz et al., 1983). In general, control theory and sensitivity analysis have been used to 
deal with linear systems, but a metabolic pathway consists of a network of enzyme reactions 

following non-linear rate equations, and, consequently, much of this information cannot be 

directly applied to this kind of systems. Therefore, to be operative, control theory and sensi

tivity analysis could be adapted to the characteristics of metabolic systems, introducing new 
definitions only when strictly necessary, and avoiding the redefinition of old concepts. 

Marta Cascante, Rafael Franco and Enric I. Canela • Depanament de Bioqufmica i Fisiologfa, Universitat 
de Barcelona, Martf i Franqu~ 1, 08028 Barcelona, Catalunya, Spain 

Control of Metabolic Processes 
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A key aspect in studying a metabolic pathway as a whole is to know how a perturbation 
in a parameter (i.e. any component of the system other than an internal metabolite: for 
instance, concentrations of final products, source substrates, enzymes, etc.) affects the 
response of the complete system. For this purpose an effectiveness criterion should be used. 
Control theory and sensitivity analysis employ different performance indices, although they 
are not necessarily valid for biochemical systems as performance indices are defined accord
ing to the interests of the system user. The aim of this work is to propound an a priori 
performance index adequate to be used in classical approaches used for analysing metabolic 
systems. 

Theory 

A performance index is a scalar (H) that provides a measure by which the performance of 
the system can be judged. Performance indices are in general arbitrary and depend on the 
interests of the user. For perturbations of an initial steady state SS0 at time to leading to 
another final steady state SS 1 at time t1 the performance index can be defined in various 
ways [see Tomovic & Vukobratovic (1972), Frank (1978), Rabitz et al. (1983) for details], 
for example: 

Minimum time: The system changes from the initial to the final state in the shortest possible 
time, and 

(1) 

Terminal control: The final steady state is as near as possible to the previous steady state: 

H = [X(tl}- X(to}ftM][X(tl}- X(to}] (2) 

where X(t1) and X (to) represent the concentrations at final and initial steady states 
respectively. [M] could be the identity matrix; however, other values for some element 
would be used; in this case the corresponding internal metabolite would be more or less 
weighted using some subjective criterion. 

Optimal track: The aim of this index is to measure the closeness of the trajectories followed 
by the metabolites to the initial steady state through the interval t0 :s; t :s; t1: 

11( 

H = [X(t1}- X(to}ftM][X(tl}- X(to}]dt 
0 

(3) 

The criteria defined for control theory and sensitivity analysis can only be employed 
after the final steady state is reached, as the indices can only be calculated at t1• Therefore, 



10: Performance Indices in Metabolic Systems 151 

lie) 
(d) I 

P, 
E, x, E2 x2 E3 

12 
Full scheme 
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they are not suitable as a priori criteria, especially taking into account that metabolic 
equations are non-linear. For small perturbations, with a final steady state very close to the 
initial one, a performance index with respect to an infinitesimal change in a parameter e can 
be defined a priori according to the following formula: 

H = [R]1"[M][R] (4) 

where [R]T is the vector [R1 ... Ri ..• R,.], Ri = dlnxddlne and [M] is a real symmetric 
positive semi-definite weighting matrix. This performance index would be a measure of the 

resistance to change of the concentrations of internal metabolites. However, for metabolic 

systems other considerations would be taken into account. 

Results 

The system of an unbranched chain illustrated in Scheme 1 is completely defined by the 
following equations: 

(5) 

(6) 

where vi is the rate of the reaction catalysed by Ei. Under steady-state conditions v1 = v2 

= v3 = J, the flux for the system, and X 1. = X 2 = 0. 
We can speak of perturbations when we change one of the external metabolites of the 

system, P1 or P2• Then we can use the relative sensitivity coefficients as a quantitative 

measure of the effect of a perturbation: 

(7) 
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The matrix of relative sensitivity coefficients can be written as follows (Cascante et al., 
1989a): 

(8) 

which expresses the relationship between the following matrices. The matrix of response 
coefficients, [R] is as follows: 

The matrix of elasticities, defined by Ej = din vi, is as follows: 
dlnXj 

[<] = r : 
0 

which has inverse as follows: 

(9) 

(10) 

(11) 

where D = Eir1- ~r1 +E{~ is the determinant of matrix [E]. Finally, the matrix of special 

elasticities, defined by "Ej =dlnv;ldlnPj, is as follows: 

[ 
"£ l "£! l [ "Ej] = "Ey "E~ 
"Et "E~ 

(12) 

For this system we can define the following performance indices (see Theory): 

(13) 

Considering equivalent those systems having the same flux, matrix [E) and identical 
constants "E} > 0 and "E~ < 0, we have a set of equivalent systems differing in the values of 
the other terms of the special elasticity matrix. Using simple algebra we have found that the 
system with the lowest performance index among this set is that with all of the special 
elasticities for PI equal, i.e. PI affects the three enzymes equally, and the same for P2. 

In general, systems in vivo are simpler, and so many combined feedback and feed-
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forward effects do not coexist. The above general pathway can be divided into the more 

restricted cases of feedback and feedforward control, illustrated in the lower two panels of 

Scheme 1. In each of these cases we have calculated the corresponding performance index 
and the appropriate special elasticity that minimizes this index, with the following results: 

Case (a): Feedback control of E 1 by P 2: 

"E! = "E~[E~(£~- £~)+ (-£t + el}Ei) 
(£~ - E~r + (£~r 

Case (b): Feedback control of E2 by P2: 

"[2 _ "E~[(E~X-E~) + (-£~ + El}(-El}] 
2 -- ( 3}2 ( 1)2 

-£2 + -£1 

Case (c): Feedforward control of E2 by P 1: 

Case (d): Feedforward control of E2 by P 1: 

"[3 _ "El[ £~(£~- £~) + (-£t + el)E~] 
1 - (E~y + (-Et + Ew 

(14) 

(15) 

(16) 

(17) 

(18) 

(19) 

(20) 

(21) 

In real systems the sets of special elasticities are not in general optimal for minimizing 

these performance indices. For example, we have numerically evaluated performance 
indices in some simulated cases, selecting the feedback control cases (a, band a+b), and 
assuming that enzymes follow the Michaelis-Menten equation with competitive product 
inhibition: 
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Table 1. Parameter Values and Performance Indices for an Unbranched Pathway* 

Enzyme I Enzyme2 Enzyme3 x. x, J 
(mM) (mM) (moi/L) HI H, H, v Km K; Kp, v Km K; Kp, v Km Ki 

No inhibition I I 2 1.35 I 1.5 1.11 I I 0.8067 1.227 0.4161 0.234 56 0.00077 
Case (a) I 0.5 I 1.35 I 1.5 1.11 I 0.7935 1.213 0.4129 0.072 48 0.()()021 
Case (b) I I 2 1.35 0.5 0.75 I 1.11 I 0.8148 1.224 0.4154 0.296 52 0.00079 
Case(a+b) I 0.5 0.75 I 1.35 0.5 0.75 I 1.11 I I 0.8016 1.209 0.4122 0.026 47 0.00008 

"The pontmd« values apply to the model dtown in Sc:beme 1. tmd tho perfontiiiiCO iodiceo ore 4efined in tho text. The Vllhu• of H2 tmd H, wore oblllinod by porturbina 
the value of P1upwa'd by S'11. In theoriainallteldy stllcthcconcentnrtions wereX1 =0.80ll mM.,X1 = 1.200mM and the 8.ux wu/ =0.4166 mol/1... 

(22) 

In cases (a, band a+b) the competitive inhibition term includes the ratio P2/Kp2 in the 
corresponding rate equation. The values for the parameters are shown in Table 1, and the 
concentrations are P1 = 1 mM, X1 = 0.8 mM, X2 = 1.2 mM, P2 = 1 mM. These constants 
and metabolite concentrations lead to an identical matrix [E] in all three cases (a, b and 
a+b}, and the flux is always the same. The matrix [E] is as follows: 

(E)= [ 
1 
1 
1 

0.166 
-0.692 

0 
o.~o8] 
-0.625 

and the matrix of special elasticities for the control case is as follows: 

[ 
0.583 0 l [ 0.583 -0.208] [ 0.583 -0.208] (t<E) = 0 -0.192 , 0 0 or 0 -0.192 

0 -0.3125 a 0 -0.3125 b 0 -0.3125 a+b 

where the subscripts a, b and a+b indicate the cases of feedback inhibition referred to. 

(23) 

(24) 

In order to evaluate the utility of the proposed performance index H 1, it was calculated 
in all of the above cases and compared with the minimum-time performance index H2 and 
the terminal-control performance index H3 (with [M] taken as the identity matrix). The two 
last ones were calculated by perturbing the final metabolite P2 by 5% and applying eqns. 
(1-2) after the steady state was reached. The results are shown in the right-hand part of 
Table 1. 

Discussion 

The performance index defined by us in this work is easily applicable to any system in an a 
priori form. This index is quadratic, and provides a useful tool for weighting the peaks in 
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metabolite concentration that occur in the transition between steady states. This index, in the 
examples analysed, has a behaviour similar to that of terminal-control index. Probably this 
analogy would be lost if the system were unstable or if the variation of [R] with respect to 
the perturbation were important. It should be noted that [R] is not a constant, but depends on 
the metabolite concentrations. A controversial point of view with respect to the proposed 
performance index is the fact that in our approach the degree of flux modification is 
neglected. 

It should be stressed that if the performance indices of a metabolic pathway are defined 
suitably they could be an excellent measure of the regulatory properties of the system. If by 
regulating we mean "buffering", i.e., to give minimal responses to modifications in external 
parameters, a well regulated system will be one whose internal metabolite concentrations are 
most insensitive to parameter modifications. This implies low values of [R] but also no 
sharp temporal peaks, i.e. accumulation of neither internal metabolites nor external effectors. 
The index defined here can be applied to all metabolic pathways. Between the simplest 
sequence having the minimum number of enzymic steps and a living organism there are 
many possible system models. A practical solution is to consider systems having as source 
metabolites or external products those that we wish to perturb. In this way these products 
will be considered as system parameters. Then, a more homogeneous treatment would be 
achieved. In general, this procedure presents no problems from a theoretical point of view as 
the number of steps can be reduced or increased according to the researcher's requirements. 
A different case would be the laboratory manipulation of the system, where there are 
experimental limitations. Furthermore, we should not lose sight of the fact that in living 
organisms only a relatively few products are external metabolites, and small systems are 
only laboratory simplifications. If we define the system so that the metabolite we would like 
to modify is an external effector, the regulatory properties should be defined considering that 
(i) flux is important and internal metabolite concentrations are of minor importance; or (ii) 
internal metabolite concentrations are of maximum importance and they should have 
minimum change. Then performance indices should involve both ideas. Generally, analysis 
of efficiency of regulatory systems is carried out focussing the interest on the performance 
for constant output; i.e. considering how the enzyme feedback system can maintain constant 
the value of the concentration of its final product when the concentrations of external 
metabolites change. The importance of performance indices becomes clear in contemplating 
the idea that feedback control is not necessarily responsible for homeostatic control, and that 
many constraint conditions are required for the system to have specific regulatory features. 

It is interesting to consider a living organism as a system having a set of performance
indices for a set of source metabolites. Two different organisms of the same species could 
exist but with different internal metabolite concentrations because of having different para
meters (e.g. enzyme concentrations or kinetic properties). Both organisms would have 
similar properties (internal metabolites and fluxes) but the index H would be different. The 
organism having the higher value of H could be worse regulated and could be less resistant 
to environmental changes; it would fail under some extreme conditions and would not 
survive. Accordingly, the H values would be a good measure of resistance to conditions of 
stress. 
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Chapter 11 

Practical Determination of Control 
Coefficients in Metabolic Pathways 

ENRIC I. CANELA, MARTA CASCANTE 
and RAFAEL FRANCO 

h IS OBVIOUS, not only for people working in metabolic control, that theory and practice 
can share common objectives but rarely share common roads, and it is often very difficult to 
put together in the same road theorists and experimentalists. In our opinion, metabolic 
control theories have also illustrated the difficulties in putting together these two disciplines: 
the hard nomenclature given by some control theories that is not easy for "test-tube" workers 
to follow; and the difficulties in directly measuring fluxes, intermediate concentrations or 
elasticity coefficients- terms introduced and popularized by metabolic control theory. In a 
given metabolic pathway, control of flux is exerted by the enzymes of the system. The direct 
calculation of flux sensitivities a lnl{HnE;, where J denotes a particular flux and E; the 
concentration of an enzyme, implies calculation of flux before and after a small addition of 
enzyme.This is often extremely difficult to achieve. With this regard indirect methods exist 
by which local properties (elasticity or special elasticity coefficients) are calculated first. 
Then control coefficients are calculated by using the equations corresponding to the 
theorems of metabolic control theory. 

Global and Local Properties 

For a given system global properties are defined that depend on the way individual 
enzymatic steps are arranged together. In contrast, local properties are defined for each 
component (enzyme) of the system. The flux control coefficients and concentration control 
coefficients are are global properties defined, respectively, as follows: 

1 i:HnJ s ()InS; 
c£j =()In£.; Ce; =()In£. 

1 1 
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where J is the flux of the system, S; the concentration of any internal metabolite and S the 
concentration of any enzyme. If we extend the approach the the effect of an external effector 
with concentration XP we have the response coefficients for flux and concentrations, which 
are defined respectively as follows: 

The substrate and enzyme elasticities are local properties, defined respectively as follows: 

If we extend the approach to the effect of an external effector we have the kappa 
elasticities, which are defined as follows: 

For the experimental calculation of global properties the complete system has to be studied, 
but for the experimental calculation of local properties isolated enzymes can be used. Flux 
control coefficients are a measure of how one global property, flux, varies when one 
independent variable of the system (enzyme concentration) varies. When genetic manipula
tion is possible one can measure this relationship directly (see below). When such a study is 
not possible the calculation of the local properties for the enzymes of the system should be 
the alternative. Fortunately, some relationships between global and local properties have 
been encountered since metabolic control theory was enunciated, derived from the theorems 
of this theory. More concretely, the first relationships were derived from the connectivity 
theorem: 

" 2, ClE~~ = 0 
i=l 

which constitutes a set of equations by which if local properties (elasticities) are known, 
some global properties can be easily calculated. The theorems of metabolic control theory 
were first expressed by Fell & Sauro (1985) in matrix terms by calculating the flux control 
coefficients of enzymes in a metabolic pathway from their elasticities. In subsequent studies, 
Sauro eta/. (1987), Fell et al (1988) and Small & Fell (1989) extended the matrix algebra 
to include other global properties such as the concentration control coefficients. The 
development of matrix algebra relating local and global properties is valuable even for 
experimentalists. Henceforth they should calculate coefficients that are easier to obtain 
experimentally, irrespective of whether they constitute local or global properties. The 
remaining coefficients will be calculated using matrix algebra. The most feasible relation-
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ship between elasticities and control coefficients is that given by Cascante et al. (1988, 
198 9ab ). From a study of general sensitivity applied to metabolic processes we have 
developed a "logical" matrix algebra in an a priori form. The equation that represents this 
development 1 is simply given by 

[ Matrix of ] [Matrix of local properties: ]-1 [Matrix of local properties: ] 
global properties = substrate elasticities · enzyme elasticities 

{1) 

The matrix of global properties consists either of flux or of concentration control 
coefficients. The matrix of enzyme elasticities is simply the identity matrix when velocities 
are homogeneous functions with respect to enzyme concentrations (v = kE).When this 
occurs, it follows from eqn. (1) that the theorems of metabolic control theory are obtained in 
an a posteriori form. Since Fell and coworkers developed the algebra from the theorems, 
we think that it would be considered as a posteriori algebra. Our algebra summarized in 
eqn. (1) can be applied to any system. For a linear chain: 

Xo S1 ••.... Sn-1 

and assuming that velocities are proportional to enzyme concentrations, eqn. (1) can be 
written explicitly as follows: 

c{ ct 1 E1 

r cr' C~' 
-E1 - n 

-El En 

C~· C~· 
- n 

(2) 

Experimental Methods for Calculating Control Coefficients 

We will address this chapter to the experimental calculation of control coefficients. How
ever, we should not forget an indirect way to proceed by which mathematical models 
mimicking the kinetic properties of the systemic enzymes are built, which many successful 
studies leading to the determination of control coefficients in a variety of pathways have 
used, totally or partially (Rapoport eta/., 1974, 1976; Heinrich & Rapoport, 1983; Brumen 
& Heinrich, 1984; LaPorte eta/., 1984; Walsh & Koshland, 1984; Werner & Heinrich, 
1985; Groen eta/., 1986, Sorribas & Bartrons, 1986; Canela eta/., 1987; Torres et al., 
1988b; Fell & Snell, 1988, Fell eta/., 1988). 

Genetic handling. Control coefficients are easily obtained by direct construction of 

twe arc grateful to Dr H. Sauro for pointing out the existence of the enzyme-enzyme interactions problem at 
the meeting organized by J.-P. Mazat and C. Reder in Bordeaux in 1987 (see Mazat & Reder, 1988). As a 
consequence we realized that our algebra could deal with such a problem very easily. 
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Figure 1. Flux variation with respect to enzyme concentration: a genetic approach using Neurospora 
heterokaryons. Redrawn from Kaeser & Bums ( 1981) with permission. 

plots of flux against enzyme activity (Fig. 1). To our knowledge this is the best way to do it. 
However, these kind of plots as that given by Kaeser & Bums (1981) can be only obtained 
by genetic handling, i.e. by means of suitable mutants bearing different activity for an 
enzyme of the pathway studied (Flint et al., 1980; Flint et al., 1981, Middleton et al., 
1983; Stuart et al., 1986). This procedure is feasible for microorganisms. In animal cells 
variations of enzyme activity can be achieved by modifying the metabolic states of the cell. 
Thus, Salter et al. (1986; see also Chapter 32 of this book) have quantified the flux control 
coefficients for the enzymes of aromatic amino acid metabolism in rat liver. In a complete 
study they induced different metabolic states by pretreating rats in various ways: 
adrenalectomy, starvation, chronic diabetes, etc. (Fig. 2). 

Using genetic procedures one can be sure of which enzyme activity is changing. In 
contrast, by the method employed by Salter et al. (1986) one might expect that after a given 
treatment more than one enzyme might vary. The importance of this fact in bias in final 
results remains to be determined; depending upon the metabolism studied it can be minimal 
or it can have be relatively important. 

Enzyme titration. This method developed recently by Melendez-Hevia and coworkers 
has been applied to various metabolic systems (Torres et al., 1986; Torres et al., 1988) and 
is fully described in Chapter 18 of this book. It requires the external addition of the enzymes 
of the pathway. These enzymes can be supplied by companies or purified by biochemists. 
When this is possible the method can be very reliable. Unfortunately sometimes it is difficult 
to obtain isolated enzymes for the pathway of interest. 
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Figure 2. Flux variation with respect to 
tryptophan 2,3-dioxygenase activity: a 
metabolic approach in rat liver. The figure 
shows the flux through tryptophan 2,3-
dioxygenase from cells pre-treated in 
various ways: A, adrenolectomized; B, 
control; C, starved for 24 hours; D, control 
(cells made at 16:30 h); E, held overnight 
in the laboratory; F, chronic diabetic plus 
insulin; G, chronic diabetic; H, pre-treated 
with dimethasone phosphate; I, separate 
cell preparations. Redrawn from Salter et 
al. (1986) with permission. 
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The combined response coefficients method. This is the method which has been by far 

the most used. Results with it for control in mitochondrial respiration (Groen et al., 
1982ab; Wanders et al., 1984; Mazat et al., 1986), citrulline synthesis (Wanders et al., 
1983; Wanders et al., 1984a) and gluconeogenesis (Groen et al., 1986) constitute a clear 

example of how experimentation can lead to the understanding of how control is exerted in 

complex pathways. For a given external effector, such as an inhibitor modulating the activity 

of Ei, the following relationship applies: 

d.J. ldl = C· (OVj_ 41) 
J IT I Vi// 

Thus, the control coefficient can be obtained by taking the limit at I = 0: 
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The numerator of this expression can be determined from the initial slope of the flux 
inhibition curve and the denominator can be calculated by knowing the kinetics of the 
enzyme with respect to the inhibitor. Note that irreversible inhibitors, when possible, are 
preferable because then the following equation applies: 

C, =- d.JI dl 
I j --

Imax 

where I max is the amount of inhibitor required for complete inhibition of the enzyme. 
Carboxyatractyloside, an irreversible inhibitor of the adenine nucleotide translocator, has 
been used in studies of the control of mitochondrial respiration (Groen et al., 1982ab; 
Tager et al., 1983; Wanders et al., 1984b; Mazat et al., 1986). Norvaline, a inhibitor of 
ornithine transcarbamoylase, competitive with respect to ornithine, has been used to study 
the control exerted by the enzymatic steps leading to the synthesis of citrulline in mito
chondria (Wanders et al., 1983; 1984a). 

It should be emphasized again that this method has been used more than others requiring 
experimental effort. However for applying the method to the control study of a given 
pathway care must be taken with respect to the inhibitor used. Such an inhibitor must affect 
only one enzyme of the pathway, and it should pass cellular membranes freely; otherwise 
one cannot be sure of the actual concentration of the inhibitor, for example, inside mito
chondria Finally the inhibitor must not be metabolized within the cell. All of this makes it 
extremely difficult to obtain suitable inhibitors of the kind needed for control studies. 

Indirect calculation of elasticities. As mentioned above, elasticities can be determined 
from the rate laws of the enzymes. For experimental calculation of elasticities, Kaeser & 
Bums (1979) proposed a method by which two steady states are considered, differing, for 
instance, in the flux through the first step catalysed by E1. For the two steady states a and b 
we have 

Thus, if we are able to measure the variations of the flux J and of the concentrations S 1 and 
S2, we have a set of two equations in two unknown elasticities. Combining this method with 
the use of specific inhibitors Wanders et al. (1983) calculated the control of the steps of 
citrulline synthesis. Groen et al. (1986) used this method with others (one more direct and 
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one more theoretical) for calculating elasticities when studying the control of gluconeo

genesis in rat liver cells. 3-Mercaptopicolinic acid has been used to calculate the elasticity of 

oxaloacetate transport across the mitochondrial membrane (Groen et al., 1986). 

Direct calculation of elasticities. Direct calculation of elasticity coefficients is very 

simple with the isolated enzymes. But the problem is to test the enzyme in vitro but in the 

appropriate conditions, which are those in vivo. It is preferable to obtain elasticities by 

leaving the enzymes within the pathway, but this is very difficult to achieve. 

A direct calculation of the elasticity coefficient of pyruvate kinase with respect to phos

phoenolpyruvate was reported by Groen et al. (1986). They assumed that only the con

centration of phosphoenolpyruvate changes when the cytosolic redox state varies in presence 

of glucagon. Also, inhibitors can be used to modify an enzyme activity and thus calculating 

elasticities if the concentration of the intermediate can be measured in the different steady 

states (with and without the inhibitor). Norvaline and malonate have been used by Wanders 

et al. (1983, 1984a) to calculate, respectively, elasticity of carbamoylphosphate synthetase 

and of ornithine transcarbamoylase with respect to carbamoyl phosphate. In this chapter we 

provide a method for direct calculation of elasticity coefficients. 

Methods 

Metabolism. The pathway studied has been that leading to uric acid from purine bases 

(Fig. 3). Steps 1 and 3 are catalysed by xanthine oxidase (EC 1.1.3.22) and step 2 by guanine 

aminohydrolase (EC 3.5.4.3). Application of the matrix algebra of Cascante et al. (1989ab) 

to this pathway lead to the following relationships: 

r
h/lt hilt 

1 0 

0 1 

(E) 

ch 
g aminobydrolase 

cJ3 
g aminobydrolase 

cxanlhine 
g aminohydrolase 

[C) 

Uric acid 

(3) 

[H] 

Figure 3. Scheme of the final part of purine catabolism. Enzymes: reactions 1 and 3, xanthine oxidase (EC 
1.1.3.22); reaction 2, guanine aminohydrolase (EC 3.5.4.3). The rate equations for the three enzymes as used in 
our theoretical model were as follows: v1 = 4.0 x 10·7[xanthine]2/(1.2 x 10·10 + l.l[xanthine]2 + 
0.9[hypoxanthine]2 2.0 x 1Q·5[uric acid]); l'2 = 1.8 x 1Q·1[guanine]/(5.0 x lQ-5 +[guanine] + 0.5[xanthine]); 

\3 = 4.0 x I0·7[hypoxanthine]2/(1.2 x 10·10 + 1.1 [xanthine]2 + 0.9[hypoxanthine]2 2.0 x IQ-5[uric acid]). 
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cit _ lb)ci. lh)ci, 
x oxidase - Vt x oxidase + Vt x oxidase (5) 

cit _ lb)ciz lb)ci. g aminohydrolase - Vt g aminohydrolase + Vt g aminohydrolase (6) 

rJ,U, JYJ, ~:-l RI2 RI2 R~a 1 "E~ypo .. Dihine ~:......<!..a] bypoxllllhine sumine 

R fiP.xiDibine Rf:.m,. Rh = "E~ypoxllllhine "E:....m. 't:n.acid (7) 1 0 -£,.,- uric acid 

0 1 -£~.,- R:;,~ ... R Xllld)ine R Xllllhine "E~ypoxllllhine "E ~....m. 't~ acid , ...... uric acid 

[£] [R] [ICe] 

(8) 

After experimental calculation of elasticities, flux and concentration control coefficients will 
be calculated by solving these equations. 

Calculation of elasticities. Elasticities defined as above under Local and Global 
Properties were calculated before (v1, v2 and v3) and after (v'1, v'2 and v'3) the addition 
of a small amount of the corresponding intermediate. Thus, a given elasticity or special 
elasticity is calculated as follows: 

£!. = (v; -Vi)(~) 
1 !lS· v, 

J 
(9) 

the intermediate (Sj) being guanine, hypoxanthine, xanthine or uric acid. 

Measurement of velocities. Velocities were calculated by measuring at each time the 
exact concentrations of all the metabolites of the system. For this purpose absorbance at 
various wavelengths in the uv region was measured. We used a diode array 8450 A Hewlett
Packard spectrophotometer. Absorbance was measured at 1 nm intervals in the range 240-
300 nm, and the spectra of hypoxanthine, xanthine, guanine and uric acid in this range are 
shown in Fig. 4. These spectra, corresponding to samples of known concentration, are stored 
as standards in the memory of the spectrophotometer. For a given mixture the multicompon
ent analysis subroutine of the apparatus calculates the actual concentration of each metabol
ite. The mathematical technique used is a weighted least-squares regression that produces a 
solution for as many simultaneous equations as there are data points within the wavelength 
range specified for the analysis. After performing such calculations at various times it is 
possible to obtain the velocities for each of the steps indicated in Fig. 3. In the case of llon
linear relationships between concentration and time, a second degree polynomial function 
was adjusted by non-linear regression and the velocity was calculated by differentiation at 
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0.0 t::::==============iC::::=~;;;;;z:===d 
240 260 280 300 

Wavelength (nm) 

Figure 4. Spectra of xanthine, hypoxanthine, guanine and uric acid. The concentration of each compound was 
50 ).IM. 

zero time. The system, initially being in steady state, was constructed by adding suitable 
amounts of metabolites and of commercial enzymes: xanthine oxidase and guanine amino
hydrolase (Boehringer Mannheim). By the previous procedure it was verified that concentra
tion of xanthine did not vary with time. In these control conditions v1, v 2 and v 3 were 
calculated. Obviously, v2 + v3 = vl. 

Method of Simulation in a Theoretical Model. The dynamic behaviour of the pathway 
displayed in Fig. 3 has been simulated by using the equations obtained in our laboratory for 
isolated enzymes, and using a numerical method of resolution of differential equations (see 
Franco & Canela, 1984, and Canela eta/., 1986). The equations are given in the legend to 
Fig. 3. Simulated elasticities were calculated for xanthine oxidase and guanine amino
hydrolase as follows: the change in velocities through 11,12 and 13 has been calculated by 
simulating the dynamic behaviour after changing the concentration of the corresponding 
metabolite. Our experimental conditions (see below) have been used to perform this simula
tion. Elasticities were then calculated by applying eqn. (9). 

Results 

As a preliminary finding we should emphasize that if we are able to experimentally calculate 
the actual velocities through h, 12 and 13 , after changing by 10% the corresponding 
metabolite concentration, errors in determining elasticities are negligible. Another question 
arises when we consider that the experimentally encountered velocity is not the true velocity 
at zero time. Then we have performed simulations in order to assess how great is the 
experimental error in determining elasticities by our method (see below). 

Experimental system. Our experimental steady state had the following characteristics 
(Fig. 3): [xanthine]= 19.2~~M; flux through v1 = 0.110 11moVs; flux through v2 = 0.038 
11moVs; flux through v3 = 0.072 11moVs. At time zero the concentrations of external effectors 
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Figure 5. Graphical procedure for 
calculating elasticities: a practical 
example. The concentrations of 
xanthine were 19.2 J.LM (line A) 
and 15.3 J.LM (line B); the other 
concentrations were the same for 
both lines: [hypoxanthine]= 9.59 
J.LM, [guanine]= 14.9 J.LM, [uric 
acid]= 7.68 J.LM. The rates were 
A, 13.2 ± 0.3 nM/s and B, 11.5 ± 
0.4 nM/s, from which one may 
calculate the elasticity as [ ( 13.2 -
11.5)/(19.2- 15.3)](19.2/13.2) = 
0.63. 

E. I. Canela, M. Cascante and R. Franco 

A 
10.5 

10.0 

9.5 

9.0 

8.5 

8.0 

7.5 

t(s) 
7.0 L---r----r----.---.-----.----,.----.----

0 30 60 90 120 150 180 

were as follows: [hypoxanthine] = 9.6 J.LM; [guanine]= 14.9 jlM; [uric acid]= 7.7 J.LM. 
Elasticities with respect to xanthine were obtained by decreasing by 10% the xanthine 

concentration and measuring the new velocity in each reaction (v1 ',v2' and v3 '). The new 
concentration of xanthine was 17.3 J.LM at zero time. Similarly, special elasticities with 
respect to hypoxanthine, guanine and uric acid were obtained, by decreasing by 10% the 
concentration of the corresponding compound and measuring the new velocities in each 
reaction (v1',v2' and v3'). The new concentrations at time zero for hypoxanthine, guanine 
and uric acid were respectively 8.6, 13.4 and 6.9 jlM. 

Elasticities. The three elasticities with respect to xanthine and the nine special 
elasticities with respect to external metabolites were then calculated by applying eqn. (9). In 
Fig. 5 a graphical procedure is indicated for calculating Eianthine . Results are indicated in 
Table 1, and are compared with those obtained by simulation. Though qualitatively similar, 
elasticities with respect to xanthine differ in magnitude between our experimental model and 
the theoretical one. In the real case it seems that xanthine has more influence over guanine 
aminohydrolase than expected by our theoretical rate law for this enzyme. The effect of 
xanthine over the two steps catalysed by xanthine oxidase is more difficult to explain. The 
special elasticities show the same sort of behaviour comparing experimental and theoretical 
models: qualitative agreement but disagreement in magnitude (Table 1 ). The high special 
elasticity of guanine aminohydrolase with respect to hypoxanthine, which theoretically 
should be zero, is remarkable. This indicates that the concentration of hypoxanthine should 
be included in the theoretical rate law for guanine aminohydrolase. Comparing the true 
elasticities and special elasticities of our theoretical model with those obtained by simulation 
(time= 20 arbitrary units) we found that "systematic experimental errors" are very low. The 
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only exception is the value for "f~ypoxanthine. which changes from -0.326 (real value for the 
theoretical model) to -0.000483, and this can even be made positive by extending the time of 
simulation. This is explained by taking into consideration the accumulation of xanthine, 
which is also a substrate of xanthine oxidase, after perturbing the initial steady state by 
increasing the hypoxanthine concentration. 

Control coefficients. Control coefficients were calculated from the elasticities by 
employing eqns. (3-6). Flux control coefficients for the main flux 11 are, as expected from 
comparing the elasticity values, different for the experimental and theoretical models (Table 
1). However, in both cases xanthine oxidase has far more control than guanine amino
hydrolase. Also, as expected after inspecting the pathway, the flux control coefficient of flux 
h with respect to xanthine oxidase is higher than one whereas that of 13 with respect to 
guanine aminohydrolase is negative. Notwithstanding this, the sum of the two control 
coefficients is unity. The concentration control coefficient of xanthine with respect to 
xanthine oxidase is negative and that with respect to guanine aminohydrolase is positive. 
The values are similar for both the theoretical and the experimental models. With respect to 
the response control coefficients for fluxes and for xanthine, we have the same qualitative 
response in both theoretical and experimental models (Table 1 ). It should be noted that, as 
the values differ when comparing the theoretical model with the experimental model where
as the values for the simulated model are very close to the theoretical actual values, we can 
conclude that our experimentally obtained results are likely to be very close to reality. 

From the results shown above, it is clear that the pathway studied has a high inertia to 
change either the flux control coefficients or the xanthine concentration control coefficients 
with respect to xanthine oxidase or guanine aminohydrolase. Thus, if the results of Table 1 
are analysed carefully it is remarkable that even a relatively high change in the values of 
some elasticities does not lead to appreciable variation in these control coefficients. 
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IN METABOLIC CONTROL 



Chapter 12 

Zero-order Ultrasensitivity in 
Interconvertible Enzyme Systems 

ALBERT GOLDBETER and DANIEL E. KOSI-IT..,AND, JR. 

How TO GENERATE thresholds is an important question in cellular metabolism as well as in 
other fields of biology. Thresholds are essential if large changes in response are to be elicited 
by relatively small changes in stimulus, i.e. substrate or effector in the case of enzymes 
(Koshland et al., 1982). An important role is nevertheless retained in metabolic systems by 
other reactions in the pathway since these will determine whether any abrupt change is 
propagated beyond the threshold-generating step. Control of flux indeed appears to be 
distributed over the various steps of a pathway (Kaeser & Bums, 1973; Westerhoff et al., 
1984). The reversible shutting down of the flux above a suprathreshold stimulation should, 
however, prove a most efficient way of generating sharp transitions under steady-state 
conditions. 

The most common thresholds in biochemical systems are produced by allosteric 
enzymes whose dose-response curves are characterized by Hill coefficients larger than unity 
(Monad et al., 1965; Koshland et al., 1966). These curves, however, are moderately steep, 
as most Hill coefficients rarely exceed the value of 2 or 3. Sharper thresholds occur in ali-or
none transitions associated with bistability, when a system abruptly switches between two 
stable steady states which coexist under the same conditions. Such a situation has been 
observed in several biochemical reactions (Degn, 1968; Naparstek et al., 1973; Eschrich et 
al., 1973) as a result of substrate inhibition or activation of an enzyme by a reaction product 
in the presence of a constant amount of substrate (the latter type of regulation can also give 
rise to oscillatory behaviour once the substrate level is allowed to vary). 

Sharp threshold phenomena may also originate from covalent modification. This result 
could be of wide significance, given the ubiquitous role of covalent modification in normal 
and pathological cellular processes (Krebs & Beavo, 1979; Nestler & Greengard, 1984; 
Cohen, 1983; Hunter, 1987). The purpose of this chapter is to concisely review the various 
aspects of steep transitions that can occur in the dynamics of interconvertible enzyme 
systems. 

Alben Goldbeter • Facultt! des Sciences, Universitt! Libre de Bruxelles, Campus Plaine, C.P. 231, B-1050 
Brussels, Belgium + Daniel E. Koshland, Jr. • Department of Biochemistry, University of California, 
Berkeley, California 94720, USA 

Control of Metabolic Processes 
Edited by A. Cornish-Bowden and M. !.. Cirdena' 
Plenum Press, New York, 1990 

173 



174 

Figure 1. Monocyclic system of 
covalent modification (a) and 
transition of the target protein W 
into its modified form W* as a 
function of the ratio of maximum 
rates V1tv2 of the converter 
enzymes E1 and E2 (b). The 
curves are established for two 
values of the reduced Michaelis 
constants K1 = Kml/WT' K2 = 
K~T, where WT= W+W* 
(redrawn from Goldbeter & 
Koshland, 1981). 
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Zero-order ultrasensitivity in covalent modification 

A conspicuous difference between regulation of enzyme activity by allosteric transitions and 
by covalent modification is that the latter requires the continuous expenditure of energy. 
Interconvenible enzyme systems are further characterized by the fact that one enzyme (a 
kinase, in the case of phosphorylation) catalyses the covalent modification of a protein 
substrate while another enzyme (a phosphatase, in the case of dephosphorylation) catalyses 
the reverse process; the two catalytic activities are generally, but not necessarily, carried by 
distinct enzymes. Therefore, in the presence of non limiting amounts of appropriate 
cofactors, interconvertible enzyme systems evolve to a nonequilibrium steady state. 

One wishes to determine how the amount of protein modified at steady state will vary 
when the ratio of modification versus demodification rates increases. To facilitate the 
following discussion, we shall focus on the particular, most common ca~e. i.e. protein phos
phorylation. All results presented below hold, however, for other cases of covalent modifica
tion such as methylation, ADP-ribosylation, etc. for which the convener enzymes differ 
from the kinase and phosphatase associated with reversible phosphorylation. 

The basic interconvenible enzyme system is represented in Fig. 1a. It consists in a 
protein W that is phosphorylated into W* by a protein kinase (enzyme E 1) and dephos
phorylated by a phosphatase (E2). The kinetic analysis of interconvertible enzyme systems 
has been pioneered by Stadtman & Chock (1977, 1978; Chock & Stadtman, 1977). An 
alternative approach followed by Goldbeter & Koshland (1981) rests on the expression of 
the amount of protein modified at steady state as a function of the ratio V 1 /V2 of phos
phorylation versus dephosphorylation rates (see Fig. 1a), where V1 and V 2 denote the 
maximum values of the modification and demodification rates that can be reached in the 
presence of a given amount of effector or in its absence. 
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Rather than incorporating into the expression of VI/V2 the regulatory effect exerted by 

an activator of E 1 and/or an inhibitor of E2 so that W* is given from the outset as a 

complicated function of the effector concentration, our approach consists in two successive 

stages. First, the variation of W* is expressed as a function of V1/V2; in a second stage, 

the dependence of VI/V2 on the level of some effector J controlling the converter enzymes 
is determined. Combining the two informations eventually yields the dependence of W* as a 

function of effector J. This two-step method has the advantage of clarifying the respective 

contributions made to the overall sensitivity by the covalent modification reactions and by 

the control exerted by the effector on the two converter enzymes. 

When the complexes formed by the kinase and phosphatase with the target protein can 

be neglected, e.g. at large values of the target protein concentration WT, the steady-state 
fraction of modified protein, denoted W*, is given as a function of the ratio VI/V2 by the 
solution of a second-degree equation in the form of eqn. (1) (see Goldbeter & Koshland, 

1981): 

(1) 

with 

where K1 and K2 are the Michaelis constants Kmi, Km2 of the modifying enzymes EI and 
E2, divided by the total amount of target protein WT (see Fig. 1a). At this stage, we do not 

yet specify how the ratio VI/V2 is controlled by the effector (see section 4 below). 
A striking result of this analysis is that the steady-state fraction of modified protein 

varies in a very steep manner with the ratio VI/V2 when KI and/or K2 are much lower 
than unity, i.e. in conditions where the kinase and/or the phosphatase become saturated by 

their substrate (Fig. 1b). Accordingly, eqn. (1) indicates that in the limit of vanishingly 

small values of KI = K2, W * tends to zero when VI < V 2, and towards unity when 

VI> V2. 
The advantage of expressing W* in terms of VI/V2 becomes apparent in conditions 

where the converter enzymes are far from saturation by the substrate. Then, K1 and K2 are 

much larger than unity and W* is given by eqn. (2) (Goldbeter & Koshland, 1981): 

(2) 

This expression shows that the curve of W* versus VI/V2 will acquire the form of the 
traditional hyperbolic curve obtained for the saturation or velocity of Michaelis-Menten 

enzymes as a function of the substrate concentration (in semi-logarithmic plot, as in Fig. 1b, 

such curve has the appearance of a shallow sigmoid). 
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Therefore, V 1 tv2 is the natural parameter to use for comparing covalent modification 
kinetics with that of Michaelian or allosteric enzymes. When expressing W* as a function of 
V1tv2, the modification curve varies from hyperbolic to sharply sigmoidal as the values of 
Kml and Km2 are progressively reduced with respect to W T' i.e. as the converter enzymes 
pass from the domain of first-order into that of zero-order kinetics (Fig. 1b). Hence the 
name of zero-order ultrasensitivity given to this phenomenon (Goldbeter & Koshland, 
1981 ), any response sharper than Michaelian being referred to as ultrasensitive. It should be 
emphasized that the modification curve becomes steeper than Michaelian even before the 
modifying enzymes are saturated by their substrate (see Fig. 2). The steepness becomes 
more pronounced as the converter enzymes move deeper into the zero-order kinetic domain. 

Clearly, thus, interconvertible systems are capable of generating threshold phenomena in 
physiological responses, in view of the fact that covalent modification is often associated 
with the activation or inactivation of a specific enzyme (Krebs & Beavo, 1979; Nestler & 
Greengard, 1984; Cohen, 1983; Hunter, 1987) or DNA-binding protein (Magasanik, 1988). 
A similar mode of regulation extends to receptors and ion channels (Lefkowitz & Caron, 
1986; Levitan, 1985). 

To compare the steepness of the modification transition with that of velocity curves 
generated by allosteric enzymes, it is useful to define a measure of the steepness of response 
curves as a function of a given stimulus. Such a measure, for allosteric enzymes, is given by 
the cooperativity index Rs = S0_9/S0_1 which is equal to the ratio of substrate (effector) 
concentrations yielding, respectively, 90% and 10% of the maximal saturation or velocity 
{Taketa & Pogell, 1965). The link between Rs and the Hill coefficient n8 is given by eqn. 
(3): 

Rs = 811/nH (3) 

The smaller Rs the steeper the response curve (for example, Rs = 9 and 3 for n8 = 2 and 4 
respectively); Rs approaches unity- the transition tends to become vertical- when n8 
goes to infinity. 

A similar measure for interconvertible enzyme systems is provided by the coefficient 
Ry defined by eqn. (4) as the ratio of the value of V1/V2 yielding 90% of protein modified 
at steady state, divided by the value of V1/V2 yielding W*=0.1 (Goldbeter & Koshland, 
1981): 

(4) 

An analytical expression for Ry can readily be obtained from the expression that yields the 
value of V1/V2 corresponding to a particular value of W* at steady state (Goldbeter & 
Koshland, 1981). 

The relative steepness of response curves generated by allosteric enzymes and by 
enzymes subjected to covalent modification is shown in Fig. 2. The cooperativity index Rs 
is given as a function of the Hill coefficient characterizing positive cooperativity of the 
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Figure 2. Comparison of sensitivity in 
covalent modification (Rv) and allosteric 
regulation (Rs ); the sensitivity indices 
are defined in the text (redrawn from 
Goldbeter & Koshland, 1981). 
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allosteric enzyme, while the corresponding index Rv for the interconvertible enzyme system 
is given as a function of the reduced Michaelis constants of the modifying enzymes, K 1 and 
K2 (the effect of unequal Michaelis constants is also shown). 

The figure indicates that for K1 = K2 = 1 already, the steepness of the transition curve 
for covalent modification approaches that of an allosteric enzyme whose Hill coefficient 
equals 2. For K1 = K 2 = IQ-2, the steepness in covalent modification corresponds to Hill 
coefficients larger than 12. Steeper curves corresponding to even larger Hill coefficients can 
be generated with lower values of K1 and K2 . Conditions favouring maximum steepness 
have also been investigated by Cardenas & Cornish-Bowden (1989; see also Chapter 14 of 
this book) in a recent analysis of the monocyclic system of covalent modification. 

In the above treatment, W* was obtained as a function of V1/V2 by solving a second
degree equation. The latter transforms into a third-degree equation when the concentration 
of enzyme-substrate complexes ceases to be negligible with respect to that of the target 
protein, or in the presence of significant inhibition of converter enzymes by their products 
(Goldbeter & Koshland, 1981). On the other hand, the equation for W* is of the fourth 
degree when the kinase also acts on a second target protein which competes for the same 
free enzyme; zero-order ultrasensitivity also occurs in these conditions but the threshold 
value of (V1/V2) for the substrate W is modified by the presence of the second substrate. 

Have the theoretical predictions on zero-order ultrasensitivity been confirmed by experi
mental observations? So far, only three enzyme systems have been investigated. These are 
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isocitrate dehydrogenase in E. coli (LaPorte & Koshland, 1983), a synthetic nonapeptide 
(Shacter et al., 1984a), and glycogen phosphorylase (Meinke et al., 1986; see also 
Chapter 15 by Edstrom and others in this book). In all instances, a steady-state modification 
curve steeper than Michaelian has been obtained, but the increase in steepness resulting from 
an increased amount of target protein has only been demonstrated in the first and last of 
these interconvertible systems, by comparison of covalent modification at different substrate 
concentrations. 

One reason why experimental support has not been obtained on a larger scale has to do 
with the type of experiment that needs to be performed in vitro. While in vivo the two 
converter enzymes are generally present simultaneously, in vitro, few experiments on 
covalent modification are performed in the presence of the two converter enzymes. Thus, the 
kinetics of phosphorylation is usually determined in the presence of the kinase, while 
dephosphorylation is studied in the sole presence of phosphatase. Although these steps are 
essential for a thorough characterization of the kinetics of each converter enzyme, it is 
important to realize that threshold phenomena will only arise in the simultaneous presence 
of both enzymes, even though the kinase and the phosphatase might individually possess 
Michaelian behaviour. Therefore, to demonstrate steep transitions, experiments must neces
sarily be of the sort exemplified by the studies on ultrasensitivity in covalent modification 
mentioned above. These were performed with varying amounts of target protein in the 
presence of the two converter enzymes. 

Propagation of Ultrasensitivity in Enzyme Cascades 

A peculiar feature of biochemical systems regulated by covalent modification is that they 
often are organized in cascades: the protein modified in one cycle catalyses the modification 
of another protein in a second cycle, and this second modified protein may in tum be 
involved as converter enzyme in yet another cycle of covalent modification ... This type of 
multicyclic cascade organization is well exemplified by glycogen metabolism (Cohen, 1983) 
and by the regulation of glutamine synthetase (Rhee et al., 1989; see also Chapter 13 by 
Chock, Rhee and Stadtman, and others in this book). The latter system provides a beautiful 
example, since interconvertible cascades are implicated in nitrogen metabolism both at the 
levels of enzyme and genetic regulation (Magasanik, 1988; Rhee et al., 1989). 

The question arises as to whether the amplification gained through zero-order ultra
sensitivity in one cycle of a cascade can be propagated and further enhanced in subsequent 
cycles. A detailed analysis (Goldbeter & Koshland, 1982) shows that such a phenomenon is 
indeed possible: in the bicyclic cascade of Fig. 3a, an effector J activates enzyme E1 of the 
first cycle; as a result, W is transformed into W* as J increases. Given that W* catalyses the 
transformation of Z into Z*, Z* will also rise with J. It can be seen from Fig. 3b that the 
transition curve for Z* can be steeper than that obtained for W*. Moreover, for the 
parameter values considered, the rise in Z* precedes the increase in W*. Therefore, in these 
conditions, the transition from Z to Z* takes place with increased sensitivity on several 

counts: it occurs at lower values of the effector, over a smaller range of J values, and the 
rise in Z* may be faster than that in W*. The acceleration and the occurrence of the 



12: Zero-order Ultrasensitivity in lnterconvertible Enzyme Systems 

Figure 3. Bicyclic cascade of covalent modi
fication (a) where the product of the first cycle, 
W*, catalyses the modification of the second 
target protein Z into Z*. The modification transi
tion is shown in (b) for the two target proteins, 
as a function of an effector J that activates 
enzyme E 1; the curves are established for three 
values of the reduced Michaelis constants of the 
second cycle (redrawn from Goldbeter & Kosh
land, 1982). 
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(b) 

transition at lower and lower effector levels were emphasized by Stadtman & Chock (1977, 
1978; Chock & Stadtman, 1977) in their analysis of multicyclic cascades; sensitivity 
amplification due to the zero-order effect was not obtained in that analysis, given that it was 
restricted to the situation in which converter enzymes possess first-order kinetics. 

The situation illustrated in Fig. 3b is, however, not generic. The enhancement of sensi
tivity in interconvertible enzyme cascades depends on the kinetic parameters that character
ize converter enzymes in each cycle of the cascade. Thus, the sensitivity gained in one cycle 
will be reduced or even lost, and thereby transformed into subsensitivity, by subsequent 
cycles if the kinetic parameters of the latter are outside the range producing zero-order 
ultrasensitivity (Goldbeter & Koshland, 1982). 

Interplay between Multi-step and Zero-order Ultrasensitivity 

Until now, not much has been said about the manner in which a given effector controls the 
ratio of modification rates VtfV2 which determines the value of W* attained at steady state. 
In the simplest case illustrated by the action of cyclic AMP on a protein kinase, the effector 
activates enzyme E 1 and thereby increases V1 (mechanism 1). Alternatively, the ratio 
VtfV2 may rise due to the (competitive or non-competitive) inhibition of E2 by J 
(mechanism II). A third possibility is that of dual control in which J activates E1 and inhibits 
~ (mechanism III). An important consequence of the latter type of control is that even if the 
two regulations proceed in a non-cooperative manner, their concomitance can by itself result 
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in increased sensitivity. To underline the fact that such amplification originates from the 
multiple controls exerted by a given effector, this phenomenon was termed multi-step 
ultrasensitivity (Koshland et al., 1982; Goldbeter & Koshland, 1984). 

An effector activating a kinase and inhibiting a phosphatase in a Michaelian manner can 
already produce maximal ultrasensitivity equivalent to that of an allosteric enzyme 
characterized by a Hill coefficient of 2. Multi-step ultrasensitivity is favoured when the 
phosphatase is inhibited before the kinase becomes activated as the effector increases 
(Goldbeter & Koshland, 1984). A similar condition for optimal amplification was also noted 
by Cardenas & Cornish-Bowden (1989). 

Dual control of converter enzymes in one or more cycles of an interconvertible enzyme 
cascade can further increase the amplification provided by zero-order ultrasensitivity. The 
phenomenon can also give rise to staircase transitions when the effector level progressively 
increases (Goldbeter & Koshland, 1984). This occurs, for example, in the bicyclic cascade 
of Fig. 3a when the thresholds for the modification transitions of the successive target 
proteins are well separated as a function of the effector level, with W* being turned on 
before Z*. 

Energy Expenditure at Steady State in lnterconvertible Enzyme Systems 

Characteristic of regulation by covalent modification is the continuous expenditure of energy 
required to maintain a particular fraction of modified protein at steady state. How does this 
energy expenditure vary with the value of W*? A comparative analysis indicates (Goldbeter 
& Koshland, 1987) that the variation of ATP consumption markedly depends on the mode of 
control of the converter enzymes by the effector J whose increase brings about the rise in 
W*. 

Fig. 4 shows how the energy expenditure at steady state changes with W* when the 
converter enzymes are controlled according to one of the three mechanisms l-ID discussed 
in the preceding section. The curve takes the form of an increasing or decreasing hyperbola, 
depending on whether the rise in VtfV2 is brought about by activation of the kinase or 
inhibition of the phosphatase; the two curves become linear when the unregulated enzyme of 
the pair (the phosphatase in mechanism I and the kinase in mechanism II) functions in the 
first-order kinetic domain. Finally, a bell-shaped curve is obtained for energy expenditure as 

Figure 4. Energy expenditure at steady state as a 
function of the fraction of modified protein in the 
monocyclic system of Fig.la, when the rise in the 
ratio V1tV2 is brought about by an increase in V1 
(I), a decrease in V 2 (II), or both effects (III) 
(redrawn from Goldbeter & Koshland, 1987). 
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a function of W* when the converter enzymes are controlled according to the dual mechan
ism ill in which the effector activates the kinase and inhibits the phosphatase (Goldbeter & 
Koshland, 1987). 

These results account for the finding of Shacter et al. (1984b) that energy expenditure 
increases linearly with the fraction of nonapeptide phosphorylated at steady state: in this 
system, indeed, the increase in phosphorylation is achieved through activation of the kinase 
by cyclic AMP (mechanism 1), while the phosphatase operates with first-order kinetics. The 
theoretical analysis (Fig. 4; also Goldbeter & Koshland, 1987) indicates, however, that the 
situation of a linear increase in A TP consumption should not hold for all converter enzyme 
systems. 

Evaluation of the A TP consumed in the many reactions controlled by covalent modifica
tion shows that the cumulated energy expended in this manner is far from being negligible 
with respect to the total ATP flux (Goldbeter & Koshland, 1987). Curve III in Fig. 4 
indicates that dual control of the two converter enzymes by the same effector provides a 
particularly effective mode of control which allows both for increased sensitivity and 
reduced energy expenditure at steady state, when the fraction of target protein reversibly 
varies from a low to a high value in response to changed conditions. 

Concluding Remarks 

Together, the above results indicate that covalent modification provides a most sensitive 
mode of metabolic control. Thresholds associated with zero-order ultrasensitivity indeed 
allow the amplification of small changes in some effector concentration. This sensitivity 
amplification can be propagated in interconvertible enzyme cascades, and further enhanced 
when the effector regulates the two converter enzymes in a monocyclic system of covalent 
modification, or several converter enzymes in more than one cycle of a cascade. Further
more, cascades allows for rate and magnitude amplification, since under suitable conditions 
successive cycles of covalent modification will be turned on more and more rapidly, at lower 
and lower values of the effector concentration. The analysis of interconvertible enzyme 
systems permits to determine both the conditions that must be satisfied to optimize the 
sensitivity of this mode of control, and the amount of energy that must be expended to 
maintain a given level of protein modified at steady state. 
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Chapter 13 

Metabolic Control by the Cyclic Cascade 
Mechanism: a Study of E. coli Glutamine 
Synthetase 

P. BOON CHOCK, SUE GOO RHEE and EARL R. STADTMAN 

THE CYCLIC CASCADE model was developed through detailed studies on the regulation of 
Escherichia coli glutamine synthetase. This enzyme catalyses the biosynthesis of glutamine 
and since the amide nitrogen atom of glutamine is a preferred nitrogen source for the 
biosynthesis of virtually all amino acids, purine and pyrimidine nucleotides, NAD and 
glucosamine-6-phosphate, it is rigorously regulated in bacteria which synthesize their own 
amino acids. [For reviews, see Stadtman & Ginsburg (1974), Stadtman & Chock (1978), 
Chock et al., (1980), Rhee et al., (1985).] 

Cyclic Cascade Regulation of Glutamine Synthetase Activity 

Extensive investigation on the regulation of the E. coli glutamine synthetase revealed that in 
addition to cumulative feedback control, the activity of the dodecameric enzyme is mainly 
regulated by covalent interconversion of the enzyme. The latter involved a bicyclic cascade 
which is comprised of two protein nucleotidylation cycles. On one cycle, glutamine 
synthetase is reversibly adenylylated at Tyr-397 on each subunit. On the other cycle, a 
regulatory protein Pn is uridylylated and deuridylylated at a specific tyrosine residue of each 
Pn subunit (see the upper two cycles of Fig. 1). 

The adenylylation and deadenylylation of glutamine synthetase are catalysed at separate 
sites (designated in Fig. 1 as AT a and ATd, respectively) on a single adenylyltransferase with 
molecular mass 110 kDa. The adenylylation reaction involves the covalent attachment of the 
adenylyl moiety from ATP to the hydroxyl group of Tyr-397 via a phosphodiester linkage. 
Since glutamine synthetase contains twelve identical subunits and the adenylylated subunits 
are catalytically inactive under most physiological conditions, the specific activity of 
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Figure 1. The cyclic cascade of 
glutamine synthetase regulation. 
Interrelationship between the 
uridylylation cycle, the adenylyla
tion cycle, and the phosphorylation 
cycle; the reciprocal controls of these 
interconversions by L-glutamine (Gin) 
and a-ketoglutarate (a-KG) are shown; 
9 indicates stimulation, 0 indicates 
inhibition. Abbreviations: OS, 
glutamine synthetase; Pn, regulatory 
protein, AT • and AT d• adenylyl
transferase activity that catalyses the 
adenylylation and deadenylylation 
reaction, respectively; UTd, uridylyl
removing enzyme or deuridylylation 
enzyme; UT •• uridylyltransferase; 
NR1, glnG product (also known as 
NTRC); NRmc: and NRnP, glnL 
product (also known as NTRB) cata
lysing phosphorylation and dephos
phorylation respectively of NR1• 
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glutamine synthetase is almost inversely proportional to the average number n of adenylyl
ated subunits per dodecamer (Stadtman eta/., 1968). Although the adenylylation process is 
reversible (Mantel & Holzer, 1970), under physiological conditions, the adenylyl group is 
removed from glutamine synthetase by site AT d catalysed phosphorolysis of the adenylyl-
0-tyrosyl bond to yield ADP and the deadenylylated glutamine synthetase (Anderson & 
Stadtman, 1970). Since the sites AT a and ATd are both located in a single polypeptide, with
out proper control these two reactions would be intimately coupled and glutamine synthetase 
would undergo senseless cycling between its adenylylated and deadenylylated forms. The 
net result of this cycling is simply phosphorolysis of ATP to form ADP and inorganic pyro
phosphate. Such futile cycling is prevented by the linkage of the adenylylation cycle with 
another nucleotidylation cycle in which a regulatory protein, Pu. for the adenylylation/ 
deadenylylation reaction undergoes interconversion between its uridylylated and deuridylyl
atedforms. 

The uridylylation and deuridylylation of Pn are catalysed at separate catalytic sites (de
signated in Fig. 1 as UT u and UTd, respectively) on another bifunctional enzyme, uridylyl 
transferase, with a molecular mass of 95 kDa (Garcia & Rhee, 1983; Brown et al., 1971). 
The uridylylation of P11 involves the phosphodiester linkage of the uridylyl moiety from 
UTP to the hydroxyl group of a specific tyrosyl residue in each of the four identical subunits 
of molecular mass 11 kDa. The deuridylylation is the hydrolytic cleavage of the uridylyl-0-
tyrosyl bond to form UMP and the unmodified Pn. Since a single polypeptide catalyses both 
uridylylation and deuridylylation of Pu. strict regulation is needed. Otherwise, the two 
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reactions would couple and result in cyclic interconversion of P11 between its uridylylated 
and deuridylylated forms, with concomitant hydrolysis of UTP to UMP and inorganic pyro
phosphate. This potential futile cycle is prevented by the regulation of Pn interconversion by 
metabolites. 

The uridylylation cycle and the adenylylation cycle are coupled due to the facts that the 
unmodified form of Pn stimulates the activity of AT a for adenylylating glutamine 
synthetase, whereas the uridylylated form of Pn is required to activate the site AT d activity 
(Brown et al., 1971). This cascade functions under normal physiological conditions as a 
dynamic processing unit in which the interconvertible proteins undergo continual modifica
tion and demodification. For any given metabolic condition, a steady state of fractional 
modification of the interconvertible enzymes will be established. Thus, the fractional modi
fication of Pn and of glutamine synthetase are determined by the concentrations of various 
metabolites that can influence the activities of the converter enzymes, namely, sites AT a, 

AT d• UT 0 , and UTd (Stadtman et al., 1979). In fact, about 40 metabolites have been shown 
to affect one or more of these enzymes (Stadtman & Chock, 1978). Among them, a
ketoglutarate and glutamine play a dominant role in the regulation of glutamine synthetase 
(Stadtman & Ginsburg, 1974; Stadtman & Chock, 1978; Rhee et al., 1978). As depicted in 
Fig. 1, glutamine stimulates the adenylylation of glutamine synthetase and the deuridylyla
tion of Pu(UMP) n• whereas it inhibits the deadenylylation of glutamine synthetase-(AMP)n 
and the uridylylation of Pn. Conversely, a-ketoglutarate inhibits the adenylylation of 
glutamine synthetase, but it stimulates the deadenylylation of glutamine synthetase-(AMP)n 
and the uridylylation of Pn. In other words, the activity of site AT a which leads to the 
inactivation of glutamine synthetase is stimulated by glutamine and inhibited by a-keto
glutarate, whereas the activities of site AT d and site UT u which lead to the reactivation of 
glutamine synthetase are stimulated by a-ketoglutarate and inhibited by glutamine. The site 
UT d activity which initiates the inactivation cascade of glutamine synthetase is stimulated 
by glutamine but not inhibited by a-ketoglutarate. The beauty of these reciprocal effects of 
glutamine and a-ketoglutarate can be fully appreciated if one considers that a-ketoglutarate 
is a precursor of glutamine and therefore the ratio of glutamine to a-ketoglutarate will vary 
in response to variations in the levels of ammonia. Consequently, the specific activity of 
glutamine synthetase will vary rapidly in response to the availability of ammonia as shown 
in in vitro and in vivo experiments (Senior, 1975; Rhee et al., 1978; Mura et al., 1981). 

The mechanism by which the bifunctional converter enzyme, adenylyltransferase, cata
lyses the adenylylation and deadenylylation in the presence of allosteric effectors glutamine 
and a- ketoglutarate has been deduced from steady-state kinetic data (Rhee et al., 1988, 
1989). The effects of glutamine on the adenylylation reaction are to enhance the affinities of 
ATP and Pn by about 20- and 10-fold, respectively, and to increase the catalytic rate 
constant by about 20-fold. Pn increases the affinities of glutamine synthetase and glutamine 
by 13- and 10-fold, respectively. In the deadenylylation reaction, P11(UMP)n is required and 
it also enhances the affinities of a-ketoglutarate and A TP, an activator, by about 20- and 8-
fold respectively. ATP and a-ketoglutarate enhance each other's binding affinity by a factor 
of 140 and a-ketoglutarate increases the affinity of glutamine synthetase( AMP) n by about 
22-fold. The inhibition of the adenylylation and deadenylylation reactions by glutamine and 
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a-ketoglutarate derives from the fact that these two effectors decrease each other's binding 
affinity by a factor of 0.02. In the case of uridylylation, UTP binds to uridylyltransferase 
prior to Pu and the allosteric effector A TP enhances the affinity of a-ketoglutarate by about 
10-fold. The maximum velocity for the reaction is activated 21-fold by a-ketoglutarate. 
Glutamine enhances the affinity of P11(UMP) by 4-fold while it functions as an uncom
petitive inhibitor with respect to Pn. It is interesting to note that glutamine and a-keto
glutarate do not affect each other's binding to the uridylyltransferase and a-ketoglutarate 
does not inhibit the deuridylylation reaction. 

The efficiency of a multicyclic cascade system can be further enhanced by a pyramidal 
relationship for the concentration of the enzymes participating in the cascade. Under these 
conditions, the enzyme concentrations in the first cycle are lower than those in the next 
cycle, and the concentration of the converter enzyme is lower than that of the interconvert
ible enzyme it catalyses. It is worth noting that this pyramidal relationship exists in the 
bicyclic cascade of glutamine synthetase. The relative concentrations of glutamine synthet
ase (subunit), P11, adenylyltransferase and uridylyltransferase were found to exist in a ratio 
of 411 : 42 : 2.6 : 1.0 for E. coli Kl2 grown under derepressed growth conditions (Rhee et 
al., 1989). 

The Cyclic Cascade Model 

It is evident that the analysis of biological cyclic cascades is extremely complex. However, 
the results of the in-depth investigation on the cyclic cascade that regulates the activity of 
glutamine synthetase allows one to formulate a simplified model which contains only the 
essential features of the interconvertible enzyme systems. Fig. 2 depicts a monocyclic 
cascade of the model discussed. It consists of a forward and a reverse cascade. In the 
forward cascade, an inactive converter enzyme, Ei• is activated by an allosteric effector e1 to 
its active state, Ea. Ea then catalyses the conversion of an interconvertible enzyme, I, from its 
unmodified form, o-I, to its modified form, m-1. In the regeneration cascade, the inactive 
converter enzyme, Ri• is activated by an allosteric effector, e2 . This activated converter 
enzyme, Ra. then catalyses the conversion of the modified interconvertible enzyme to its 
original form, o-1. Dynamic coupling of these forward and reverse cascades leads to a 
steady-state in which there is cyclic interconversion between o-I and m-1, and the concomit
ant hydrolysis of ATP to ADP and inorganic phosphate. The monocyclic cascade is 
extended to multicyclic cascade when one form of the interconvertible enzyme function as a 

Figure 2. Schematic representation of a monocyclic cascade: K1, K20 

Kif andKir, are dissociation constants for e1 from E •• e2 from R •• o-I·E. 
and m-I•R. respectively; kif and k1, are specific rate constants for the 
reaction designated. 
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converter enzyme for the next interconvertible enzyme and so on (Stadtman & Chock, 
1977b; Chock & Stadtman, 1977). 

In the theoretical analysis, it has been ascertained that the covalent modification of 
enzymes does not function simply as an on-off switch for various metabolic pathways, but 
rather that it is part of a dynamic process in which the fractional activities of the inter
convertible enzymes can be varied progressively over a wide range (Stadtman & Chock, 
1977b; 1978). This concept derived from the observation that the adenylylation of gluta
mine synthetase is not an ali-or-none process; instead, a steady-state is established and its 
level is modulated by the concentration of effectors involved (Segal et al., 1974). Similar 
observations have been reported for the mammalian pyruvate dehydrogenase complex (Pettit 
et al., 1975). Furthermore, the ATP concentration is maintained in excess relative to the 
enzymes involved and at a fairly constant level. Other assumptions used include (i) the 
formation of the enzyme-enzyme and enzyme-effector complexes proceed via a rapid 
equilibrium mechanism, (ii) the concentration of the enzyme-enzyme complex is negligible 
compared to the concentrations of the active and inactive enzymes; and (iii) the concentra
tions of the allosteric effectors are maintained at constant levels for any metabolic state. 
With these assumptions, relatively simple equations can be derived to quantitate the 
behaviour of cyclic cascades. 

Quantitative analyses of cyclic cascades, revealed (Chock et al., 1980; Stadtman & 
Chock, 1977b, 1978; Chock & Stadtman, 1977) the following features: 

1. They are endowed with an enormous capacity for signal amplification. As a con
sequence, they can respond effectively to concentrations of primary effector (such as e1 

in Fig. 2) well below the dissociation constant of the effector-enzyme complex; 

2. They can modulate the amplitude of the maximal response that an interconvertible 
enzyme can accomplish even at saturating concentrations of allosteric effectors; 

3. They can enhance the sensitivity of modification of the interconvertible enzyme to 
changes in the concentrations of allosteric effectors (i.e. they are capable of eliciting 
apparent positive and negative cooperativity in response to increasing concentrations of 
allosteric effectors); 

4. They serve as biological integrators that can sense simultaneous fluctuations in the 
intracellular concentrations of numerous metabolites and adjust the specific activity of 
the interconvertible enzymes accordingly; 

5. They are highly flexible with respect to allosteric regulation and are capable of exhibit
ing a variety of responses to primary allosteric stimuli; 

6. They serve as rate amplifiers and therefore are capable of responding extremely rapidly 
to changes in metabolite levels (Chock & Stadtman, 1979; Stadtman & Chock, 1979). 
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Signal Amplification 

This is a time-independent parameter defined (Stadtman & Chock, 1977b; 1978) as the 
ratio of the concentration of the primary allosteric effector required to attain a 50% activa
tion of the converter enzyme to the concentration required to produce 50% modification of 
the interconvertible enzyme. This property derives from the fact that the signals (allosteric 
effectors) exert their effects on the target interconvertible enzymes through the catalytic 
actions of converter enzymes. Quantitatively, signal amplification is a multiplicative func
tion of the kinetic parameters required to describe the cyclic cascade. As a result, small 
changes in several parameters can lead to enormous gains in signal amplification. Further
more, because the number of parameters needed to describe the cascade increases with 
increasing numbers of cycles, the signal amplification potential of the last interconvertible 
enzyme in a multicyclic cascade increases exponentially with the number of cycles in the 
cascade. Thus, under certain conditions, it is feasible to attain an 800-fold signal amplifica
tion in the adenylylation/deadenylylation cascade of glutamine synthetase reconstituted in 
vitro (Rhee et al., 1978). Moreover, experiments with permeabilized E. coli cells demon
strated that the bicyclic cascade of glutamine synthetase possesses higher signal amplifica
tion than the monocyclic cascade (Mura et al., 1988). It should be pointed out that in 
unidirectional cascades, signal amplification is infinite because with sufficient time and 
ATP, all of the unmodified interconvertible enzyme will be converted to its modified form in 
response to any level of allosteric effector. Furthermore, it is noteworthy that the signal 
amplification described here is different from catalytic amplification, which is solely a 
function of the relative concentrations and catalytic efficiencies of the converter and inter
convertible enzymes in the cascade. In many cascades, there exists a pyramidal increase in 
the concentrations of the cascade enzymes; that is, the concentration of the converter 
enzyme is significantly lower than that of its interconvertible enzyme substrate. Therefore, 
they also possess a high catalytic amplification potential. 

Amplitude 

Amplitude is defined (Stadtman & Chock, 1978) as the maximal value of fractional 
modification of the interconvertible enzyme attainable with saturating concentrations of an 
effector. By changing the magnitude of the cascade parameters, the amplitude can change 
smoothly from nearly 100% to almost 0%. Therefore, even at saturating levels of an 
allosteric effector, interconvertible enzymes do not function as on-off switches. 

Sensitivity 

Cyclic cascades can generate either apparent positive or negative cooperative responses of 
fractional modification (i.e. enzymic activity) of the interconvertible enzyme to increasing 
concentrations of an allosteric effector (Stadtman & Chock, 1987). These apparent coopera-
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tivities can be attained from the synergistic or antagonistic effects that a single allosteric 
effector exerts on two or more steps in the cascade. Therefore, a sigmoidal response need 
not reflect positive cooperativity in the binding of an effector to multiple binding sites on the 
converter enzyme. Instead, it can be accomplished when an effector activates the forward 
converter enzyme and inactivates the reverse converter enzyme, or vice versa. Consequently, 
an effective way for obtaining high sensitivity is to have both forward and reverse converter 
enzyme activities combined in a single polypeptide such that binding of one effector can 
activate one activity while inactivating the other activity. Four such bifunctional enzymes 
involved in cyclic cascade systems have been isolated and characterized. They are the 
uridylyltransferase/uridylyl-removing enzyme activities that catalyse the uridylylation/ 
deuridylylation of the P11 regulatory protein (Garcia & Rhee, 1983), the adenylyltransferase 
that catalyses the adenylylation/deadenylylation of glutamine synthetase (Caban & Gins
burg, 1976; Rhee et al., 1978), a protein kinase/phosphatase that catalyses the phosphoryla
tion and dephosphorylation of isocitrate dehydrogenase in E. coli (LaPorte & Koshland, 
1982), and the 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase that catalyses the syn
thesis and breakdown of fructose-2,6-bisphosphate (El-Maghrabi et al., 1982; Van Schaft
ingen et al., 1982). Conditions for maximizing a high sensitivity exerted by an effector to 
activate the forward and inhibit the reverse converter enzymic activities has also been 
reported (Cardenas & Cornish-Bowden, 1989; see also Chapter 14 in this book). In addition, 
a sigmoidal response can be achieved by a monocyclic cascade in which the type II regulat
ory subunit of cAMP-dependent protein kinase inhibits the MgATP-dependent protein 
phosphatase (Jurgensen et al., 1985). An apparent cooperative response can also occur 
when the converter enzymes are saturated by their interconvertible enzyme substrates 
(Goldbeter & Koshland, 1981; Shacter et al., 1984). 

Flexibility and Biological Integration 

There are two aspects of flexibility that need to be considered when discussing the properties 
of cyclic cascades; namely, the flexibility for generating various allosteric control patterns 
and the flexibility in regulation by multiple metabolites. The scheme shown in Fig. 2 
illustrates just one of many variations that can be derived by changing the nature of the 
interactions between the allosteric effectors, e 1 and e 2, and the converter enzymes, E and R 
(Stadtman & Chock, 1977b). Analysis of various mechanistic schemes shows that cyclic 
cascade can generate an array of regulatory patterns of fractional modification of the 
interconvertible enzyme in response to increasing effector concentration. These patterns 
differ with respect to their amplitude, signal amplification and sensitivity. In addition, the 
fact that a minimum of two converter enzymes and one interconvertible enzyme is needed 
to form a single interconvertible cycle, and each enzyme can be a separate target for one or 
more allosteric effectors, cyclic cascades provide a high degree of flexibility for metabolic 
input. Through allosteric interactions with the cascade enzymes, fluctuations in the 
concentration of numerous metabolites lead to automatic adjustments in the activities of the 
converter enzymes that determine the steady-state levels of fractional modification (specific 
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activity) of the interconvertible enzymes. In essence, cyclic cascades serve as biological 
integrators that can sense changes in the concentrations of innumerable metabolites and 
modulate the activities of pertinent enzymes accordingly. 

Rate Amplification 

Kinetic analysis of multicyclic cascades revealed that the rate of covalent modification of the 
last interconvertible enzyme in the cascade is a multiplicative function of the rate constants 
of all the reactions that lead to the formation of the modified enzyme (Stadtman & Chock, 
1979). Therefore, following an initial lag period, cyclic cascades can function as rate 
amplifiers to generate an almost explosive increase in catalytic activity of the target 
interconvertible enzyme in response to stimuli. This rate amplification potential increases 
with the number of cycles in the cascade. The extent of the rate amplification is further 
enhanced if the multicyclic cascade involved possesses a pyramidal relationship with respect 
to the concentrations of its interconvertible enzymes. Moreover, if the converter and 
interconvertible enzymes are topographically positioned close to each other, an even greater 
rate of response is possible. It has been shown that multicyclic cascades can respond to 
primary stimuli within the millisecond range. Experimentally, Danforth et al. (1962) 
demonstrated that phosphorylation of phosphorylase b in response to electrical stimulation 
of frog sartorius muscle at 30°C can be accomplished with a half-time of 700 ms. 

Energy Consumption 

As shown in Figs. 1 and 2, for each complete cycle of a covalent modification/demodifica
tion cascade, one equivalent of nucleoside triphosphate is consumed. The capacity of a 
cyclic cascade system to maintain a steady-state is dependent on a constant supply of meta
bolic energy (ATP in most cases) to drive the modification reactions. It should be pointed 
out that the concentration of ATP in vivo is maintained at fairly constant levels ( 4-5 mM) 
which are several orders of magnitude greater than the concentrations of the enzymes 
involved in the cascades. In the absence of adequate donor molecules, the interconvertible 
proteins would be converted completely to the unmodified forms. Thus, the constant A TP 
flux through the cyclic cascade is the energy required to maintain the operation of cyclic 
cascades in vivo. 

The rate of A TP consumption is determined by all the kinetic parameters needed to 
describe the cyclic cascade (Stadtman & Chock, 1977 b; Shacter et al., 1984; Goldbeter & 
Koshland, 1987; also Chapter 12 in this book). To estimate the ATP turnover in a cyclic 
cascade in vivo, literature values were used to calculate the ATP consumption rate for the 
phosphorylation of hepatic pyruvate kinase and of skeletal muscle glycogen phosphorylase. 
The resultant values were compared to a reported A TP turnover rate of 2 M/min for liver 
(Lipmann, 1981). This reported high value is an error, however (Meinke et al., 1986). The 
ATP turnover rate in mammalian cells was estimated to be about 1-10 mM/min (see 
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Goldbeter & Koshland, 1987). With this consideration, the amount of energy required for 
covalent interconversion of enzyme is not negligible. It is therefore not surprising that many 
of the cyclic cascades are operated in a transient manner in response to stimuli. In addition, 
synchronous control of the forward and reverse converter enzymes and lowering of the 
steady-state rate for the modification/ demodification reactions would also minimize energy 
consumption. 

Covalent Interconversion versus Single Allosteric Control 

Metabolic regulation by cyclic cascades involves both covalent modification of enzymes/ 
proteins and allosteric interactions between effectors and enzymes. In view of the complex
ity of reversible covalent modification systems, one may wonder whether allosteric interac
tions between metabolites and enzymes alone could produce the regulatory properties of 
cyclic cascades. For example, consider signal amplification. In order for it to be physio
logically significant, the following conditions have to be met: 

1. A minimal concentration of metabolites should be required to initiate the biological 
response(s) within a reasonable time frame; 

2. The reaction(s) induced by the metabolites must be catalytic such that one effector can 
activate more than one target enzyme molecule. 

The first condition can be fulfilled either by the cyclic cascade mechanism or by very tight 
binding between the allosteric effector and the target enzyme. Because the rate of effector 
binding is limited by the diffusion rate of the reactants, high affinity can be achieved only by 
slowing down the off-rate for the enzyme-bound effector. However, tight binding would 
reduce the temporal efficiency of the control process. It should be emphasized that in a 
cyclic cascade, only a small fraction of converter enzyme need be activated to obtain signi
ficant modification of the interconvertible enzyme, so tight binding of a metabolite to the 
converter enzyme is not essential for signal amplification. In order to achieve a catalytic 
effect with a simple allosteric model, the effector would first have to bind to the target 
enzyme, induce an active conformation, and then dissociate from the active enzyme which 
would have to remain in the active conformation. However, to make the system regulatable, 
the active enzyme would have to be able to relax back to its inactive form. This type of 
mechanism is thermodynamically unfavourable (D. Astumian and P. B. Chock, unpublished 
results). In addition, in the absence of catalytic intermediates, there will be no rate amplifica
tion. Furthermore, the capacity for allosteric interactions in cascade systems is significantly 
enhanced relative to a simple allosteric model because there are more proteins involved in a 
cyclic cascade. On the other hand, of course, the apparent cooperativity which provides the 
sensitivity observed in cyclic cascades can be obtained by allosteric interactions alone, 
particularly if the enzyme involved contains multiple subunits. Therefore, signal amplifica
tion and rate amplification cannot be easily achieved without invoking reversible covalent 
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Figure 3. Relationship between various genes that 
regulate and code for glutamine synthetase and 
their respective products in regulating the trans
cription of glutamine synthetase: glnF, glnG and 
glnL are also known as ntrA, ntr and ntrB 
respectively. P1, P2, P3 and CRP represent pro
moters, I, 2, and 3 and cyclic AMP receptor 
protein, respectively. 9 indicates stimulation. 

P. B. Chock, S. G. Rhee and E. R. Stadtman 

modification, while other regulatory properties of cyclic cascade can be accomplished but 
with less regulatory efficiency. 

Bicyclic Cascade and Transcriptional Regulation of E. coli Glutamine Synthetase 

The synthesis of glutamine synthetase is regulated in response to the availability of nitrogen 
and carbon source. E. coli cultures grown on limited nitrogen and excess glucose medium 
exhibit a high level of deadenylylated glutamine synthetase. In the presence of excess 
nitrogen in glucose-limited culture, glutamine synthetase level is repressed and fully 
adenylylated. The mechanisms for this transcriptional regulation are depicted in Figs. 1 and 
3 (for review see Magasanik, 1982; Kustu et al., 1986; Keener et al., 1987). In this aspect, 
several gene products such as glnG, glnL (both are members of the gin operon) and an 
unlinked gene glnF are known to be involved (see Fig. 3). The ginA gene, which encodes 
glutamine synthetase, is transcribed from two promoters. The major nitrogen regulated 
promoter, P2, lies closest to the structural information. To activate transcription from this 
promoter, both glnF and glnG products are required. A second promoter, P 1, lies upstream 
of the nitrogen-regulated promoter. Transcription from the upstream promoter is activated 
by the cyclic-AMP receptor protein bound to its ligand and does not require either the glnF 
or the glnG products. The product of glnF is a new a subunit of RNA polymerase, a54, 

which confers a different promoter specificity on the core form of RNA polymerase from 
that conferred by the most abundant a subunit, a10 (Hirschman et al., 1985; Ninfa et al., 
1987). 

The linkage of the transcriptional regulation of glutamine synthetase to the bicyclic 
cascade is derived from the fact that the unmodified Pn facilitates the dephosphorylation of 
the glnG product, NR, which is catalysed by the glnL product, NR11. The phosphorylated 
form of glnG product can stimulate transcription at the ginA promoter, P2; while the 
unmodified form of NR 1 is incapable of activating transcription. The glnL product, NR11, 

appears to have both protein kinase and protein phosphatase activities for the interconver
sion of NR1• Recently, Keener & Kustu (1988) showed that in Salmonella typhimurium 
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activation of transcription through P2 promoter required RNA polymerase containing a54 

and phosphorylated NRI. They also demonstrated that the kinase (NRuK) that catalyses this 

phosphorylation is a dimeric enzyme and. it can undergo autophosphorylation. The . 

maximum extent of phosphorylation is about 1 mol per mol of NR I dimer. The phos

phorylated NRI is capable of undergoing autodephosphorylation. In the presence of NRn. P11 

and ATP, the rate of dephosphorylation of NRI is enhanced by a factor of 4. Based on the 

data presented, it appears either that (i) NR u-regulated dephosphorylation of NR 1 phosphate 

can be derived from NR 11 to function as an effector to enhance the autodephosphorylation of 

NRI phosphate, or (ii) NRn acts as a phosphatase. However, the overall results suggest that 

NR n is a bifunctional enzyme and that the role of P11 and A TP is to exert a synergistic effect 

for the affinity between NR I phosphate and NR 11• 

In view of the observations that Pn inhibits the transcription of glutamine synthetase 

indirectly (see Fig. 3), the bicyclic cascade of glutamine synthetase, which initially was 

thought to modulate only the activity of the enzyme, is, in fact, tightly coupled to the 

transcriptional regulation of glutamine synthetase. As a consequence, fluctuation in intra

cellular concentrations of glutamine and a-ketoglutarate can be sensed by their effects on 

Uf u and UT d activities, through which the signal is transmitted to both regulatory systems 

for adjusting both the concentration and activity of glutamine synthetase in the cells. 

Concluding Remarks 

The cyclic cascade model, derived mainly from data based upon detailed studies of 

glutamine synthetase, is applicable to all covalent interconvertible enzyme systems. It 

reveals many regulatory advantages such as signal amplification, rate amplification, sensitiv

ity, and flexibility. This regulatory mechanism makes use of both covalent modification and 

allosteric interactions. By means of allosteric interactions with one or more enzymes, cyclic 
cascades can continuously monitor fluctuations in the concentrations of a multitude of 

metabolites and adjust the specific activities of the target enzymes in response to biological 

requirements. Thus, they serve as biological integrators. Although a cyclic cascade modul

ates the specific activity of the interconvertible enzyme smoothly and continuously over a 

wide range of conditions, it can under extreme physiological situations serve as an on-off 
switch to tum on or off the activity of an interconvertible enzyme. The energy for maintain

ing such an efficient regulatory mechanism is the consumption of A TP and other energy-rich 

donor molecules. In view of the unique properties of cyclic cascades, it is not surprising that 

a large number of key enzymes are regulated by this mechanism, both on their activities and 

their biosynthesis. 
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Chapter 14 

Properties Needed for the Enzymes of an 
Interconvertible Cascade to Generate a 
Highly Sensitive Response 

MARIA LUZ CARDENAS and ATHEL CORNISH-BOWDEN 

ONE OF THE important problems in biology is how to produce a sufficiently sensitive 
response to a signal. An essential point in metabolic control is thus the sensitivity in the 
response of a pathway to an effector. Consequently the understanding of the mechanisms 
that allow a high degree of sensitivity should constitute a major goal of any theory of meta
bolic control. Cooperativity in the response of an enzyme to an effector is undoubtedly an 
important mechanism, but it appears insufficient as the degree of cooperativity of enzymes is 
never very high (Hill coefficients less than 4 in nearly all cases). Thus even an effector that 
acts on a step with a flux control coefficient close to unity would only be able to switch on 
and off the pathway flux (say between 10% and 90% of full activity) if its concentration 
increases at least three-fold. Even a Hill coefficient as high as 6, rarely seen in nature, would 
only lower this ratio to two-fold. Furthermore, as flux control coefficients in reality are 
usually less than unity, the sensitivity of the pathway to the effector is decreased 
accordingly. 

An alternative mechanism in nature that may permit a more sensitive response than is 
possible for the response of a single enzyme to an effector is the interconvertible enzyme 
cascade (reviewed in Stadtman & Chock, 1978; Chock et al., 1980). However, this does 
not automatically provide a more sensitive response than direct interaction, as the degree of 
sensitivity is a function of the kinetic properties of the enzymes catalysing the 
interconversion (Cardenas & Cornish-Bowden, 1989). Although there has been some 
investigation of the properties that the enzymes catalysing the conversion reactions must 
have if the cascade is to generate a very sensitive response (Goldbeter & Koshland, 1981, 
1984; Fell & Small, 1986), there has been little emphasis on the fact that the cascade per se 
does not guarantee a more sensitive response to an effector than is possible for a single 
enzyme. This is not a trivial point, because cascades with the sort of properties often implicit 
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Figure 1. Activation of a target reaction by an effector. An effector G, whose concentration is a function of the 
metabolic state of the cell, stimulates the production of Y either directly or indirectly through a cascade. (a) 

MonLJcyClic interconvertible cascade. A target enzyme catalysing the conversion from X to Y .exists in a 

catalytically active state E. and in an inactive state Eb. These two forms can be interconverted by the action of 
two modifier enzymes, E 1 and E 2• G has no direct effect on the target enzyme, but controls its activity 
indirectly by activating E1 or inhibiting E2, or both. The asymmetrical appearance of the scheme derives from 
(and emphasizes) the fact that the actions of G on the two enzymes E1 and E2 are different. (b) Direct 
activation. G acts as an allosteric activator of the target enzyme. 

in discussions generate a less sensitive response to effectors than the same effectors might 

have if they acted directly on a single enzyme (Cardenas & Cornish-Bowden, 1989). Here 

we shall develop briefly these ideas and we shall apply them to an experimental system. 

Model of a Monocyclic Enzyme Crucade 

Reversible covalent modification of proteins is a major mechanism of cellular regulation, in 

both prokaryotic and eukaryotic cells (reviews in Chock et al., 1980; Cohen, 1982; 

Niemeyer & Cardenas, 1986; also Chapter 13 in this book by Chock, Rhee and Stadtman). 

In accordance with cellular requirements, an interconvertible protein is shifted between 

covalently modified and unmodified form~ by two converter enzymes that catalyse opposing 

reactions. Such systems, in which one enzyme modifies another enzyme or protein, have 

been defined as cascade systems (Stadtman, 1970). The term cascade is sometimes taken to 

imply the existence of two or more distinct interconvertible enzymes; Goldbeter & Koshland 

(1981, 1982, 1984, 1987), for example, refer to monocyclic systems not as cascades but as 

covalent modification systems. It is also arguable whether any reversible systems ought to 

be called cascades, even qualified by an adjective emphasizing the cyclic character, as they 

differ in important respects from classical irreversible cascades, such as that involved in 

blood clotting. Despite these reservations, we shall use in this chapter the terminology that 

is best established in the literature (Stadtman & Chock, 1977; Chock & Stadtman, 1977), in 

which cascades embrace all covalent modification systems, and the terms monocyclic, 
bicyclic and multicyclic define the number of distinct interconvertible enzymes that make 

up each one. 



14: Conditions for a Cascade to Generate a Highly Sensitive Response 197 

We have systematically examined the response of a monocyclic cascade to an allosteric 

effector G. This model is illustrated in Fig. 1, and consists of a single interconvertible 

enzyme existing in two states Eb and Ea with different degrees of catalytic activity, (E. being 

the more active form and Eb the less active or completely inactive one), the interconversion 

reactions being catalysed by two modifier enzymes E 1 and E2, one or both activated or 

inhibited by G. We have determined the kinetic parameters needed by such a system to 

generate a highly sensitive response. One can pose several questions in relation to the kinetic 

parame~rs of E 1 and E2 and their effects on the sensitivity of the cascade to the effector G. 

One must consider, for example, the type of inhibition, the type of activation, the degree of 

saturation, etc. Some of these questions have been considered previously (as discussed by 

Goldbeter and Koshland in Chapter 12 of this book). In relation to the inhibition of E2 by G, 

for example, one ought to consider whether maximum sensitivity is provided by competitive 

inhibition, affecting the apparent value of V!Km, (a specific effect); by uncompetitive 

inhibition, affecting the apparent value of V (a catalytic effect) or by mixed inhibition, 

affecting both. The same type of questions apply to the activation of E1• Another important 

point is the relationship between the concentrations of G bringing about the activation and 

the inhibition: ought both enzymes E 1 and E2 to have similar affinities for the effector G, as 

intuition might suggest? Ought the effector to act on both modifier enzymes or it is sufficient 

to act on one? If it acts on one only, does it matter which one? 

Quantifying the Sensitivity of a Response 

We have used two indexes to express the sensitivity properties of the cascade, the response 

coefficient (Burns et al., 1985) and the cooperativity index of Taketa & Pogell (1965). The 

former derives from an agreement by several groups to express the degree of sensitivity of a 

system property f to an external parameter g by the response coefficient defined as the 

partial derivative alnf/()lng and symbolized by R{ (Burns eta/., 1985; Kaeser & Porteous, 

1987; see also numerous chapters in this book, especially Chapter 3 by Porteous). It thus 

expresses the fractional response of an output variable f to a fractional change in an input 

variable g. For simplicity we shall consider the activity of the target enzyme as the output 

variable, effectively regarding the target reaction from X toY as a one-step pathway. This is, 

of course, an oversimplification, and in reality the response coefficient for the flux will need 

to be adjusted in accordance with the flux control coefficient of the target enzyme (Fell & 

Small, 1986; Kaeser & Porteous, 1987). 

The cooperativity index of Taketa & Pogell (1965) corresponds to the ratio of g values 

needed for obtaining 10% and 90% of the maximal possible value of f. However, as it is 

useful to restrict the term cooperativity to the behaviour of a single protein, we shall use the 

term sensitivity for the corresponding property of a multienzyme system, which can occur 

in such a system even if no individual enzyme in it displays cooperativity. Accordingly, we 

shall use the name sensitivity index for the index of Taketa & Pogell, with the symbol r0 . 

In this context we note that the use by Goldbeter & Koshland (1981, 1984, 1987) of the term 

"response coefficient" and a symbol similar to R { for the index of Taketa & Pogell conflicts 

with the agreed terminology (Burns et al., 1985). 
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Modifier Enzymes Subject to Specificity Effects only 

A monocyclic cascade may produce less sensitivity to an effector than one would have with 
direct interaction between effector and target reaction, and indeed must do so if one makes 

the simplest assumptions. Suppose that the modifier enzymes are susceptible only to effects 
on the apparent values of their specificity constants; that both have the same limiting rate V; 

and that E 1 has no activity when G is not bound to it (E1 inactive, E1 G active) and E2 has no 
activity when G is bound (E2 active, E2G inactive). The crucial assumption here is the 
restriction to specificity effects (Cardenas & Cornish-Bowden, 1989); the others just 
simplify the analysis. With all these assumptions the rates v1 (Eb to Ea) and v2 (Ea to Eb) of 
the interconversion reactions in Fig. 1, catalysed by E 1G and Ez respectively, are given by: 

VI = Veb 
K~!(l +Kalg)+eb 

(1) 

(2) 

where g is the concentration of G, and ea and eb are the total concentrations of Ea and Eb 
respectively. The specific activation constant of E1 is K a and the specific (competitive) 
inhibition constant of E2 is K i. In addition K ~1 and K m 2 are the Michaelis constants for 
fully activated E 1 and uninhibited E2 respectively (here and elsewhere in this paper primes 
are used for parameters that refer to enzyme forms with G bound). 

The fraction I of target enzyme in the active state will be as follows: 

I __ e_a _____ _.____ __ _ 
- Ca + eb - K' (1 + K I ) 

1 + ml a g 
Km2(l + g/Ki 

(3) 

and we shall examine the effect that G has on this fraction via the cascade with the effect 
that it might have if it acted directly on the target enzyme. Thus we have examined the 
response coefficient in both cases. If G acted directly as a specific activator of a target 
enzyme E0 , catalysing the reaction X toY, without the intermediacy of a cascade, the rate v 
of the reaction catalysed by E0 at a concentration x of its substrate X would be given by 
eqn. (4). 

v V~x (4) 
K:00(1 + Kill.)/g)+ x 

in which V~, K:OO and Kill.) are constants. Partial differentiation of eqn. (4) with respect tog 
shows that the response coefficient has a value that approaches 1 at low values of g: 

Rv _ dlnv _ ------'~--
g - dlng- 1 + (g/Kill.))(l +X IK:OO) 

In the case of the cascade the response coefficient is as follows: 

(5) 
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(6) 

In this case the response coefficient cannot exceed 2. Thus, in the numerator of eqn. (6) the 
first term represents the effect of G on E1 and the second represents its effect on E2: each has 
a limiting value of 1.0, which means that the limiting value of the numerator is 2.0. On the 
other hand, the denominator will be always bigger than 1.0, meaning that in optimal 
conditions the response coefficient cannot exceed 2 for a monocyclic cascade with the 

specified properties. Moreover, it will only be more than 1.0 if G affects both modifier 
enzymes and not necessarily even then; if it affects only one of these enzymes, G will 

always produce a less sensitive response than one would have with direct interaction. To 
obtain a value bigger than 1, not only must both enzymes be affected, but the activation 
constant Ka must be large compared with the inhibition constant, i.e. E2 must be capable of 
being strongly inhibited by G at concentrations where the activation of E1 is still slight; and 
it is also necessary that K :n1 be large compared with Krra. 

Introduction of cooperative interactions between G and the modifier enzymes does not 

alter the general conclusion that if only specificity effects operate a cascade does not 
necessarily produce a greater degree of sensitivity to an effector- and may produce less -

than one could expect from direct interaction (with the same degree of cooperativity) 
between effector and target reaction (Cardenas & Cornish-Bowden, 1989). 

At the other extreme, there are conditions in which an enormous sensitivity, almost 

infinite for practical purposes, can be obtained with the monocyclic cascade. This will be 

seen in the next section. 

General Model: Catalytic and Specific Effects 

A very general model having the following characteristics has been analysed: 

1. The two modifier enzymes in the cascade may have different limiting velocities (V~ ::t:. 

V2). 

2. The effector G may modify the apparent values of catalytic as well as specificity 
constants; i.e. in the case of inhibition it may have uncompetitive as well as competitive 

effects, and similarly for activation. 

3. The inhibition and the activation are not necessarily complete, but can be hyperbolic, i.e. 

the enzymes may have some activity in the absence of activator or when saturated with 

inhibitor. In other words the enzyme species E1 and E2G can be partially active. 

Some time ago, one of us studied the effect of an uncompetitive inhibitor on fluxes and 
concentrations within a pathway. It turned out that although for isolated enzymes there is not 
much difference between the effects of competitive and uncompetitive inhibitors under the 
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ordinary conditions of enzyme assay in vitro, the difference can become infinite in the 

extreme case of a constant flux and, in any case extremely large in the more realistic case in 

which both fluxes and concentrations can vary in response to the concentration of an 

external inhibitor (Cornish-Bowden, 1986). These drastic consequences of catalytic effects 
on fluxes led us to consider catalytic effects in cascades. Go1dbeter & Koshland (1984) had 

earlier reported that classical noncompetitive inhibition of ~ by the effector gave a higher 
sensitivity than just competitive inhibition, an observation that suggests also that one ought 

to analyse the importance of catalytic effects. As we shall see, addition of catalytic effects to 

the model is crucial for the production of high sensitivity. On the other hand, the other 

characteristics (unequal limiting velocities and hyperbolic effects) do not have major 

consequences, but they make the model more realistic. 
With this general model, eqns. (1-2) for the rate of the two modification reactions must 

be replaced by eqns. (7-8): 

VI= (Vi+ V1Ka1/g)eb 
K:n1 (1 + Km /g)+ eb(1 + Ka1 /g) 

(7) 

v2 = Cv2 + v;g!Km)ea 
Km2(1 +g/ Km)+ ea(l + g !Km) 

(8) 

Unprimed symbols V and K m refer to the limiting rates and Michaelis constants 

respectively ofE1 or~ (according to the numerical subscript) in the absence of effector G, 

whereas the corresponding primed symbols refer to the enzyme with effector bound to it. 

The effector constants Km, Km, K01 and Km refer to dissociation of G from E1G, E2G, 
E1~G and E2f.aG respectively. The general model generates more complex equations that 

bring the model out of the range of simple algebraic analysis, and so instead of estimating 

the sensitivity through the response coefficient we studied the sensitivity by numerical 

simulation, looking for the parameters that will give the smallest possible value of the sensi

tivity index r G· As eqns. (7-8) contain three concentrations and ten parameters, implying 

exploration in 13 dimensions, we reduced the dimensionality to nine by considering 

appropriate ratios of parameters, and by considering not the whole range off values, but the 
two values 0.1 and 0.9, i.e.the values that define the variation of G concentration needed to 
vary the target reaction from a level of low activity, 10% of the limit, to one of high activity, 
90% of the limit. 

Conditions Necessary for Very High Sensitivity 

Details of the dimensionless parameters and the numerical simulation can be found in 

Cardenas & Cornish-Bowden (1989). A very important point is that a value of ra as small 

as 1.0053 was found by the simulation, although the parameters allowed for the individual 

enzymes were highly constrained to be well within the range of the known behaviour of 

enzymes. Such a small value of r G corresponds in practical terms to virtually infinite 
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sensitivity: an increase in only 0.5% of effector concentration is sufficient to bring the 

proportion of the target enzyme in the active state from 10% to 90%. This corresponds to a 

Hill coefficient of around 800 (calculated as log81/Jog1.0053 ~ 

The importance of maintaining each ratio of parameters at or near its best value was 

examined and, the dependence of the cooperativity index r0 on the individual parameter 

ratios was established. If all the other parameters are optimized the ratio V2/V~ has a barely 
perceptible effect 1 on the value of r 0 . 

The sensitivity implied by the value of r 0 of 1.0053 is too enormous to be of any real 

physiological value, and might well be deleterious as it would generate great problems of 

instability. We have therefore estimated the less stringent conditions that will give a value of 

r0 lower than 1.55, corresponding approximately to a Hill coefficient of 10 - still very 

large by the standard of cooperativity observed with individual enzymes. The important 

point is to emphasize that in principle a monocyclic cascade has the potentiality for 

generating as much sensitivity as the system requires, and accordingly may constitute an 

adequate mechanism for switching pathways on and off. Equally, however, cascades not 

only have the potential to function as on/off mechanisms for metabolic pathways that require 

such switching, but also for allowing the fractional activities of the interconvertible enzymes 

to be varied progressively over a wide range, as emphasized by Chock, Rhee and Stadtman 

in Chapter 13 of this book: this appeared to be the case of the adenylylation of glutamine 

synthetase (Segal et al., 1974) and the phosphorylation of the mammalian pyruvate 

dehydrogenase complex (Pettit et al., 1975). What will happen in each particular case 

depends on the kinetic parameters of the converter enzymes and of the effectors involved. 

Summary of the Conditions for High Sensitivity 

In general the conditions for obtaining a very high sensitivity are as follows: 

1. Catalytic rather than specific effects. The ratio of catalytic and specific activation 

constants for El> K~ 1/KG1, must be as large as possible (at least 0.055 for obtaining a 

Hill coefficient of 10) and likewise the ratio of catalytic ("uncompetitive") and specific 

("competitive") inhibition constants for E2, K~'lfKG2. must be as small as possible, no 

greater than 17.5. Note that the model can tolerate substantial degrees of specific 

activation of E 1 or inhibition of E2 (0.055 is not particularly large nor 17.5 particularly 

small), but it is better if the catalytic components predominate. This is an important 

point because even catalytic components appear trivial or pass unnoticed in studies of 

the isolated modifier enzymes may be crucial for generating an adequate response. 

1The apparent conflict between this result and that reported by Goldbeter and Koshland in Chapter 12 is an 
artifact of different definitions of V: here we refer to actual limiting rates, and our observation that the 
sensitivity of the system hardly depends at all on the values of V' t and V2 simply means that any change in 
these parameters can be compensated almost fully by an appropriate change in effector concentration. By 
contrast, Goldbeter and Koshland use V for the apparent limiting rates, i.e. parameters that already take 
account of effector concentration. 
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2. Activation weaker than inhibition. The ratio of the mean activation constant of E 1 and 
mean inhibition constant of E2 must be as large as possible. Thus the mean activation 
constant divided by the mean inhibition constant, ~<KGl + K~1 )[(1/K02) + {1/K~)], 
must be no less than 0.01 for obtaining a Hill coefficient of about 10. (The harmonic 
mean of inhibition constants has been used in this parameter because it gives a more 
realistic measure of "average" behaviour than the arithmetic mean, whereas the reverse 
is true for activation ). Ideally E 1 should not be appreciably activated at the effector 
concentrations at which E2 begins to be appreciably inhibited, though a large departure 
from this ideal can be tolerated. This condition is further analysed afterwards. 

3. Modifier enzymes near saturation. The scaled Michaelis constants for fully activated E1, 

K'ro1/(ea+ eb), and for fully uninhibited E2, Km21(ea + eb), must both be as small as 
possible, and in any event less than 1.75, for obtaining a Hill coefficient of 10, i.e. both 
modifier enzymes should operate at more than 36% saturation [0.36 = 1/{1 + 1.75)]. This 
agrees with the idea of "zero-order ultrasensitivity" emphasized by Goldbeter & 
Koshland (1981, 1982, 1984; also Chapter 12 of this book), though the term zero-order 
normally implies a state rather closer to saturation than 36%. 

Non-Linear Inhibition or Activation 

If all the other parameters are optimized it is of little importance whether the activation of E1 
and inhibition of E2 are "linear". However, non-linearities in the activation and inhibition 
greatly decrease the tolerance for the ratio V2/V~. Thus, if unactivated E1 and maximally 
inhibited E2 have negligible activity, i.e. v;tv2 = O.Dl, the ratio V21V~ has little effect on the 
degree of sensitivity. On the other hand, if V 1/V~ = O.Dl, i.e., if unactivated E1 has 1% 
activity, which in practice might not be detected in experiments with the isolated enzyme, 
decreasing V21V~ below 0.03 causes a steep decrease in sensitivity2• The bigger the 
magnitude of the non-linearity, the bigger will be the effect of variations in the ratio V 21Vi 
on the sensitivity. For further details see Cardenas & Cornish-Bowden (1989). 

Effector Modifying only one Enzyme 

As we discussed earlier, a monocyclic cascade in which the modifier enzymes are subject 
only to specific effects, and in which the effector acts on only one of them, will always 
produce a less sensitive response than one would have with direct interaction. In contrast, 
this is not the case if the effector produces catalytic effects. Thus a very high degree of 
sensitivity, with ra = 1.091, corresponding to a Hill coefficient of about 50, is now possible 
even if G interacts with only one enzyme of the cascade. Although the same minimal value 

2In Cirdenas & Cornish-Bowden (1989) there is an typographical error such that this condition is given as 
VLtV1 = 0.01 instead of Vi/Vi= 0.01. 
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of ra is obtained whichever of the two enzymes responds to G, the effect on the target 

enzyme is not equivalent in the two cases. Thus the two functions representing the 

dependence on g of the fraction of target enzyme in the active state (e.) generate curves 

that are highly unsymmetrical. Either curve may be transformed into the other by translation 

and rotation through 180° about the half-conversion point. In the case where the effector 

only inhibits the enzyme E2 (no-activation curve) the curve is very steep at low values of e. 
and much less steep at high values, whereas the opposite is true of the curve where there is 

no inhibition and G activates the enzyme E1 (no-inhibition curve). Further details are in 

Cardenas & Cornish-Bowden (1989). So, although the minimum value of ra is the same in 
both cases, to increase e. 10-fold from 5 to 50% requires an increase in g of only 1.3% for 
the no-activation curve, whereas it requires an 18% increase for the no-inhibition curve. 

Consequently, if only one of the converter enzymes is affected by the effector, the inhibition 

of~ is much more important physiologically than the activation of E1, as it allows a larger 

response coefficient at low concentrations of the target enzyme in active state. Thus if only 
one enzyme is affected in a real system, most probably this will be the one that is inhibited. 

Activation Weaker than Inhibition 

As was mentioned earlier, one of the conditions for obtaining a very high sensitivity is that 

the activation ought to be weaker than the inhibition. This point deserves further discussion, 

as it is a very important one, possibly the most important result obtained in this study. Fig. 2 
illustrates this condition. It can be seen that the concentration of G for producing 50% 
inhibition of the modifier enzyme E2 is much lower than that for 50% activation of E1. Thus 

the corresponding curves of the dependence of the fraction of E1 and E2 in the active state 

on the concentration of G, are widely apart. This result is striking, as intuitively one would 

expect that the concentration of G that produces a significant inhibition of one would also 
produce significant activation of the other; Fig. 2, however, shows that this expectation is 
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Figure 2. Proportions of the different enzymes of the cascade in the active state as a function of effector 
concentration. The simulation was made with the more general model assuming the optimum value for each 
ratio of parameters. The three curves show the fractions of modifier enzyme E1 ( • - • - • - ), modifier enzyme 
Ez ( --- ), and target enzyme E, ( -) in the active state. 
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not true if the system is to respond with high sensitivity to G. Furthennore, the separation in 

the two curves has an important experimental implication: before deciding that G has no 

effect on E 1, one has to explore a wide range of concentrations, and not simply dismiss the 

activation ofE1 as non-existent or physiologically unimportant on the basis that there is no 

activation ofE1 at concentrations where the other converter enzyme is greatly inhibited. In 

the case of a bicyclic cascade Goldbeter & Koshland (1984) mention that the multi-step 

effect is optimized when the constant for activation of the forward step (E1) is greater than 

the constant for inhibition of the reverse step (E2), which increases the generality of our 

conclusion. 
Another important point to notice in Fig. 2 is that the steep response of the target 

enzyme is produced in a range of concentrations of G where there is very little activity of E 1 

and E2, that is, the fraction of interconvertible enzyme in the active state increases 

dramatically at an effector concentration in which both converter enzymes are almost 

without activity. In this context it is interesting to note that in the case of a bicyclic cascade 

the fraction of the active fonn of the interconvertible enzyme of the second cycle increases 

abruptly at an effector concentration at which the fraction of the interconvertible enzyme of 

the first cycle (equivalent to E 1 in our symbols) in an active fonn is also very small 

(Goldbeter & Koshland, 1984; see also Fig. 3 of Chapter 12 in this book). 

Application to an Experimental System: the Effect of Okadaic Acid 

Muscle contraction provides an interesting experimental system for testing the ideas about a 

monocyclic cascade developed above. The degree of tension of the muscle fibre depends on 

the degree of phosphorylation of the light chains of myosin, which can exist in two states, 

phosphorylated and non-phosphorylated, the phosphorylation being catalysed by a protein 

kinase and the dephosphorylation being catalysed by a protein phosphatase. Thus any factor 

that stimulates the kinase or inhibits the phosphatase will stimulate muscle contraction. 

In recent years it has been found that the toxin okadaic acid produces strong contractile 

effects on vascular and intestinal smooth muscles (Shibata et al., 1982; Takai et al., 1987; 

Bialojan et al., 1988) and on heart muscle (Kodama et al., 1986). Okadaic acid 

(C44H660 13) is a polyether derivative of a monocarboxylic fatty acid that has been isolated 

from black marine sponges (Tachibana et al., 1981 ); it has been very well studied because it 

appears to be the causative agent of diarrhoeic shell-fish poisoning (Murata et al., 1982) and 

a very potent tumour promoter (Suganuma et al., 1988). Because of its effect on muscle 

contraction it was suspected that it could affect the degree of phosphorylation of myosin by 

inhibiting the protein phosphatase, stimulating the protein kinase, or both. Takai et al., 
(1987) in a very interesting work studied the effect of okadaic acid on fibre contraction and 

the effect on the protein phosphatase and the protein kinase, and found that it strongly 

inhibits myosin phosphatase and enhances tension development, whereas the kinase activity 

was unaffected. Fig. 3 illustrates some of its results. It can be seen that the maximal effect on 

fibre tension is obtained at an okadaic acid concentration of 5-10 ~M. They consider that this 

value is in good agreement with the fact that the inhibition of the protein phosphatase is 

almost complete at that concentration. Although this is true, it is evident on examining Fig. 3 
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Figure 3. Effect of okadaic acid 
on the fibre tension ( -- ) in 
taenia coli muscle, and on the 
protein phosphatase activity in the 
taenia coli extract ( --- ). 
Various concentrations of okadaic 
acid were applied at a constant 
Ca2+ concentration of 1.5 J.1 M. 
Adapted from Takai et al (1987). 
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that there is very little fibre tension at concentrations of okadaic acid an order of magnitude 

lower (0.5 JlM) or even smaller, although the phosphatase activity is still greatly inhibited. 
At first sight this result could be interpreted as indicating that the two processes are 
independent, but if one considers the results presented in Fig. 2 it becomes evident that what 
has been obtained by Takai and colleagues is what one ought to expect if the system is going 
to give a high sensitivity to okadaic acid. These authors also studied the effect of 5 JlM 
okadaic acid on protein kinase at different calcium concentrations, and found no activating 

effect on the kinase although the phosphatase is almost completely inhibited at this 
concentration, concluding that okadaic acid does not affect protein kinase. 

The response of fibre contraction to okadaic acid shows higher cooperativity than the 

response of the protein phosphatase inhibition, but the degree of cooperativity is not as high 
as one might expect. A reason for the rather low cooperativity may be that the calcium 
concentration present in the experiment allows a rather high protein kinase activity (about 
50% of the maximal kinase activity). Our analysis suggests that at a lower calcium 
concentration, i.e. 0.7 mM, at which very little activity of the myosin light chain kinase is 

detected, a much higher sensitivity could be obtained. In guinea pig taenia coli fibre the 
calcium concentrations in conditions of relaxation is 0.1 mM (Brading, 1981 ), it is quite 
possible that when okadaic acid reaches the fibre in vivo the calcium concentration could be 
considerably lower than 1.5 mM, and consequently the system may be expected to respond 
with a higher sensitivity than that obtained by Takai et a/. (1987). In fact Bialojan eta/. 
(1988) show results that are compatible with the idea that at a lower calcium concentration 

the sensitivity in the response of the fibre to contraction by okadaic acid is higher. 
This group has also studied the kinetics of the inhibition of different protein 

phosphatases by okadaic acid (Bialojan & Takai, 1988). From their careful and detailed 

kinetic study it was possible for us to calculate the inhibition constants. Thus, from the data 
shown in Table 2 of their paper, we have calculated the inhibition constants Km (specific 
effects) and K~ (catalytic effects) from the following equations: 

(9) 
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Table 1. Inhibition constants of different protein phosphatases for okadaic acid 

Inhibition constants1 Idealized activation constants2 

Protein phosphatase Substrate of a putative protein kinase 
K;,nM Ki,nM withKa= K~. nM 

Type2A 
Phosphorylated 

0.93 4.9 160 myosin light chain 

Type2A Phosphorylase 1.09 1.09 110 

Polycation- Phosphorylated 
66 452 12000 modulated myosin light chain 

Type I 
Phosphorylated 

200 200 20000 myosin light chain 

1 The inhibition constants were calculated from Table 2 ofBialojan & Takai (1988) by means of eqns. (9-10). 
2 The activation constants were calculated assuming that they were equal to one another and to 100 times the harmonic 

mean of the inhibition constants (see text). 

Kapp = K 1 + i /Ki 
m m • (10) 

I+ i/Ki 

It can be seen in Table I that in all cases there is a mixed type of inhibition (catalytic as well 
as specific effects), in agreement with what one ought to expect, and that the ratio Ki /Ki. 
corresponding to K'm_!Km in relation to the model shown in Fig. I, varies between 1.0 and 
6.9: as this is less than 17.5 it is within the range that permits a Hill coefficient as high as 10 
if the other conditions for high sensitivity are also met. 

On the basis of these calculated inhibition constants we have estimated what the 
activation constants, assuming (for want of other information) them to be equal, i.e. that 
there are catalytic and specific effects of equal magnitude, would have to be to satisfy the 
condition that the activation ought to be weaker than the inhibition by a factor of about 100. 
The resulting values, shown in Table 1, are so large that it is quite possible that even if there 
was activation of protein kinase by okadaic acid this activation would not have been noticed 
because of insufficiently high concentrations of okadaic acid. 

Recently it has been shown that okadaic acid rapidly stimulates protein phosphorylation 
not only in muscle cells but in several different types of intact cells and behaves like a 
specific protein phosphatase inhibitor in a variety of metabolic processes (Haystead et al., 
1989). On the other hand it appears to have no effect on protein kinases, at least at con
centrations where the phosphatases are well inhibited. Consequently it has been assumed 
that the whole of the physiological effect of okadaic acid is due to inhibition of phospha
tases. However, our analysis of the characteristics necessary for an interconvertible enzyme 
cascade to generate a highly sensitive response to an effector suggests that the potent effect 
of okadaic acid on phosphorylation could arise because of, not in spite of, a very weak 
capacity to activate the corresponding kinases. 
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Chapter 15 

Regulation of Muscle Glycogenolysis 

RONALD D. EDSTROM, MARILYN H. MEINKE, 
MARY E. GURNACK, DAVID M. STEINHORN, 
XIURU YANG, RUI YANG and D. FENNELL EVANS 

DURING MUSCLE contraction, a significant part of the energy used is derived from glycogen. 
The rate of glucose 1-phosphate production from glycogen is determined by the fraction of 

glycogen phosphorylase in the phosphorylated, active, a form (Madsen, 1986). The 

fractions of phosphorylase in the a and b (dephospho-, inactive) forms depend on the two 

enzymes, phosphorylase kinase and protein phosphatase-1, which in tum are influenced by 

other enzymes and regulatory factors, all of which form an integrated, multienzyme glyco

genolytic complex (Fig. 1) (Hallenbeck & Walsh, 1986). In this report we describe three 

experimental approaches to the study of regulation of this complex. 

Most previous investigations described kinetic and thermodynamic characteristics of 

isolated enzymes. By piecing together the individual reactions, the traditional cascade 

scheme was developed. With higher levels of organization this approach fails to describe 

adequately the observed behaviour (Hallenbeck & Walsh, 1986). Many of the properties of 

multienzyme systems are not evident by extrapolation from the parameters of the isolated 

enzymes and may be better explained by considering the entire set of coupled interactions 

(Shacter et al., 1984; Srere, 1987; Cox & Edstrom, 1982; Cox et al., 1987). On the other 

hand, due to the complexity of these enzyme systems in muscle, it is not possible to deduce 

the interactions of the enzymes through in vivo studies. In order to bridge that gap, we have 

developed an in vitro system that allows the phosphorylase a-b cycle to be studied as a 

steady-state system (Meinke et al., 1986). This steady-state experimental system can be 

used to investigate the sensitivity to changes in signal level, response rate and energy 

required for regulation (Goldbeter & Koshland, 1987). 

The glycogenolytic system has been described in isolated glycogen particles that contain 

all of the enzymes of glycogen degradation and synthesis (Dombradi et al., 1984; Meyer et 
al., 1970; Heilmeyer et al., 1970; Haschke et al., 1970). Phosphorylase kinase and protein 
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Figure 1. The regulation of muscle glycogenolysis is conducted by a complex network of signal pathways. The 
hormonal and neuronal stimuli are coordinated with the energy utilization of muscle contraction. 

phosphatase-! are organized within the isolated particles so as to allow their access to a 
specific set of protein components (Gruppuso & Brautigan, 1988). At that level of complex
ity, and with the contaminating activities present in the system isolated from muscle, it is not 
possible to control the multiple interactions at the individual enzyme level. To overcome 
these handicaps we have synthesized an artificial particle containing glycogen, phosphoryl
ase and phosphorylase kinase. The other enzymes of glycogen metabolism and regulation 
can also be incorporated into the synthetic particles. 

Some aspects of the architecture of the glycogenolytic complex can be deduced by 
indirect methods such as chemical crosslinking or analysis of the kinetics of glucose !
phosphate release. Examination of the glycogenolytic complex by microscopic techniques 
provides an additional set of parameters to help describe the regulatory process. Direct 
observation of two of the enzymes of the glycogenolytic system has now been achieved by 
scanning tunnelling microscopy (Edstrom et al., 1989). Structural features of the protein 
molecules can be discerned and their aggregation states observed. 

Zero-order Ultransensitivity 

Activation of phosphorylase kinase by cAMP-dependent protein kinase is not an isolated 
event in vivo. The combined actions of phosphorylase kinase, cAMP-dependent protein 
kinase, phosphorylase, phosphorylase phosphatase and glycogen represent the minimum 
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Figure 2. The mole fraction of phosphorylase in the a form increases during the incubation of phosphorylase 
b with phosphorylase kinase and protein phosphatase-! in the presence of ATP. A steady state is reached 
when the accumulated phosphorylase a is hydrolysed by the phosphatase as rapidly as it is formed by the 
kinase. Phosphorylase concentrations were 1 11M (o) and 70~LM (e). Maintenance of ATP level is also shown 
(t.). 

physiologically relevant system. Our experiments show that it is possible to assemble a 
system in which phosphorylase a and b are interconverted by phosphorylase kinase and 
phosphorylase phosphatase (Meinke et al., 1986). The system operates in a cyclic, steady
state fashion where the level of phosphorylase a depends on the relative rates of the two 
converter enzymes. Their rates in tum are dependent on a variety of modulators such as 
cAMP-dependent protein kinase, calmodulin and Ca2+. 

Steady-state reactions were established with phosphorylase concentrations of 1, 20 and 
70 11M. Phosphorylase kinase : phosphorylase phosphatase ratios were varied over a range of 
0.1 to 10. Reactions were started with only phosphorylase b and were sampled for 
increasing phosphorylase a. Typical results are shown in Fig 2; in every case the steady 
steady state was reached within 60 min. Samples were analysed by high-performance liquid 
chromatography for adenine nucleotide content and tested at all times; only ADP and ATP 
were present, with the ATP/ADP ratio varying between 10 and 20. The absence of AMP 
precludes the possibility of spurious results due to activation of phosphorylase b by AMP. 

The steady-state mole fraction of phosphorylase a is shown as a function of the normal
ized Vkinase/V phosphatase ratio in Fig 3. The lines drawn for each set of points are based on 
the parameters derived from the best fit of the data to the steady-state equation (Goldbeter & 
Koshland, 1981 ). The expression relates mole fraction of phosphorylase a to the ratio of the 
kinase and the phosphatase rates and the total phosphorylase concentration. Each data point 
represents the average of 3 to 9 separate steady-state incubations. The Vkinase/Vphosphatase 

ratios have been normalized to cause all three sets of data to cross at the same point. K m 

values derived from the data fitting are presented in Table 1 together with the Km values 
from initial rate studies. Also shown in Table 1 are the response coefficients, Rv, defined as 
follows: 
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Figure 3. Demonstration of zero-order ultra
sensitivity. As the concentration of phosphorylase 
increases from 1 (e) to 20 (•) to 70 J.iM ( &), the 
sensitivity of the steady-state cycle to changes in 
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The most responsive circumstance would require the smallest change in the Vkinasel 
Vphosphatase ratio to go from 10 %to 90 % activated. For a maximally responsive system, R. 
would approach 1.0, while for a system with no enhanced sensitivity R. = 81. In the final 

column in Table 1 are listed the values of h', pseudo Hill coefficients, for the steady-state 

systems at the three substrate concentrations. Hill coefficients describe the sensitivity of a 

cooperative system to changes in effector concentration. A pseudo Hill coefficient can be 

calculated to describe the sensitivity of the zero-order system to changes in ratios of 

converter enzymes and it can be defined as: h' =log 81/log R •. The pseudo Hill coefficient 

from the data at 70 ~ phosphorylase (2.35) is comparable to true Hill coefficients found 

experimentally, such as for the binding of oxygen to haemoglobin with h = 2.8 (Edelstein, 

1971), or the binding of NAD+ to glyceraldehyde 3-phosphate dehydrogenase with h = 2.3 
(Kirschner et al., 1971 ). Zero-order ultrasensitivity affords the phosphorylase system a 
degree of sensitivity similar to that found with classical cooperative enzymes. 

Table 1. Kinetic parameters derived from 
steady-state reactions 

Type of Experiment Km(~ R. 
Kinase Phosphatase 

Steady-state 1 at I ~M 16 13 73 
at20 ~M 16 22 26 
at 70 ~M 22 II 6.5 

Initial Rate I 30 16 

h' 

1.0 
1.4 
24 

I The values of Km obtained in the steady-state experiments were 
derived from fitting the experimental data to the steady-state equation 
(Goldbeter & Koshland, 1981 ). Km values from initial rate studies 
were based on measuring reaction velocities as a function of substrate 
concentrations and fitting the data to the Michaelis-Menten equation. 

Table 2. Comparison of Isolated 
and Synthetic Particles 

From muscle Synthetic 
Weight % Molar ratio Weight Ill Molar ratio 

Sepharose 38 
Concanavalin A 12 0.06 
Glycogen 70 I 35 I 
Phosphorylase 25 36 10 27 
Phosphorylase kinase 0.6 5 
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Synthetic Glycogenolytic Particles 

In skeletal muscle, phosphorylase and its two converter enzymes, phosphorylase kinase and 
protein phosphatase-!, are present in a glycogen particle complex. The other enzymes in 
these particles include branching and debranching activities, glycogen synthase and a Ca2+ 
dependent ATPase from sarcoplasmic reticulum. We have prepared a synthetic glycogen 
particle that binds phosphorylase and phosphorylase kinase and allows comparison of the 
kinetic behaviour of particle-bound enzymes with soluble forms. 

Agarose beads (Sepharose 4B-200) were derivatized with concanavalin A and then 
treated with rabbit-liver glycogen, which bound to the concanavalin A. Phosphorylase and 
phosphorylase kinase both have specific binding sites for glycogen and could be bound to 
the glycogen impregnated beads. The composition of the synthetic particles is similar to 
glycogen particles isolated from skeletal muscle (Table 2). The diagram (Fig. 4) shows the 
preparation route for the particles. The two types shown at the bottom are both able to give a 
glycogenolytic response when exposed to HOP032·. 

Soluble and particle-bound phosphorylase b behave differently towards the allosteric 
effector 5'-AMP (Fig 5). Phosphorylase b is much more sensitive to the nucleotide in the 
soluble state; it is fully activated by 0.2 mM 5'-AMP, whereas the particulate form of the 
enzyme requires at least 1 mM 5'-AMP for maximal activity, which was only 50% of that 
seen with soluble enzyme. Activation of phosphorylase b by phosphorylase kinase in 
solution and in enzyme-impregnated beads was compared at the same concentrations of both 
enzymes (Fig 6). The enzymes in the glycogen particle had in a lower activation rate for 
phosphorylase b. This must have been due to an impaired mobility of the glycogen bound 
phosphorylase kinase and its reduced accessibility to the similarly constrained phosphoryl
ase b. 

CON A -
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PHOSPHORYLASE 
a 

ACTIVE GLYCOGENOLYTIC 
PARTICLES YIELD GLC-IP 
IN THE PRESENCE OF HPO; 

PHOSPHORYLASE b 

PHOSPHORYLASE 

KINA~E ~ 

ATP 

5' -AMP 

Figure 4. The active synthetic glycogenolytic particles can be obtained by three routes: directly with pre
formed phosphorylase a or by activation of phosphorylase b with either phosphorylase kinase or 5'-AMP. 
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more susceptible to activation by 
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The synthetic particles offer several experimental advantages over the glycogen-protein 
complexes isolated from muscle tissue (Meyer et al., 1970; Entman et al., 1980; Hallen
beck & Walsh, 1986). The synthetic particle system eliminates contaminating activities, 
particularly a very active Ca2+.dependent ATPase that prevents studies requiring mainten
ance of significant ATP concentrations (Heitmeyer et al., 1970). Another advantage of the 
synthetic particles is the complete freedom in choosing which components to add in their 
assembly. Kinetic studies require manipulation of the relative amounts of enzymes and 
regulatory factors. These synthetic particles are an approximate model for the muscle 
glycogen particles, which will allow studies of the interactions of the various enzymes and 
other elements of the signal transduction pathway in glycogenolysis. 

Scanning Tunnelling Microscopy 

Scanning tunnelling microscopy provides direct visualization of individual molecules of 
phosphorylase kinase and glycogen phosphorylase (Edstrom et al., 1989). Phosphorylase 
kinase from rabbit skeletal muscle has an M r of 1.3 x 1()6 with four types of subunits, each 
occurring in four copies- (cx!tfS)4 (Pickett-Gies & Walsh, 1986). Electron microscopy and 
chemical crosslinking studies of the molecule indicate that it is a dimer of octamers 
a2JiiY2~h (Fitzgerald & Carlson, 1984; Trempe et al., 1986). Glycogen phosphorylase can 

Figure 6. Activation of phosphorylase b (4 mg/mL) 
by phosphorylase kinase (3 Jlg/mL) was compared 
between the soluble system (0) and the particle bound 
reaction ( • ). 
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Figure 7. A single phosphorylase kinase molecule resting on the graphite surface. The Nanoscope 1 (Digital 
Instruments, Inc.) scanning tunnelling microscope was used. 

occur as dimers or tetramers of identical subunits each having an M r of 97 400. More highly 
aggregated forms also are known to exist (Chignell et al., 1968). Its molecular structure has 
been resolved by X-ray crystallography to 0.19 nm with unit cell dimensions of 12.85 x 

11.63 nm (Sprang et al., 1988). The dimer has been reported to have the molecular 
dimensions 11.0 x 6.5 x 5.5 nm (Chignell etal., 1968; Puchwein eta/., 1970). 

1n scanning tunnelling microscopy, a sample placed on an atomically fiat graphite 
surface is scanned by a wire probe attached to a computer-driven ceramic piezo-electric 
device (Hansma & Tersoff, 1987). A small voltage is maintained between the probe and the 
surface which results in a tunnelling current over the short distance between them (==1 nm). 
As an object on the surface is encountered, an image is generated based on the vertical 
distance the probe moves to maintain a constant tunnelling current. A typical image of phos
phorylase kinase is shown in Fig. 7. The butterfly-shaped molecule is approximately 24 nm 
across the "wings" and about 21 nm in the front-to-back dimension. The central portion of 
the molecule between the lobes appears to be depressed with respect to the outer areas. 
Glycogen phosphorylase molecules have also been examined by scanning tunnelling micro
scopy and found in a variety of aggregation states, including dirners and tetramers as well as 
both large condensed and linear aggregates. A small portion of a 710 nm linear aggregate is 
shown in Fig 8. The width of the chain was 10.7 nm and it had a periodic pattern along the 
chain with a repeat distance of 5.6 ± 0.33 nm. Details of protein shape and subunit organiza
tion are clearly visible. 

The images of phosphorylase b are consistent with the measurements based on X-ray 
crystallography, X-ray scattering and electron microscopy (Chignell et al., 1968; Puchwein 
et al., 1970). The ability to visualize protein molecules such as phosphorylase kinase and 
phosphorylase b and its aggregates suggest that scanning tunnelling microscopy can make a 
major contribution to protein chemistry and our understanding of multi-protein complexes. 
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Figure 8. A chain of phosphorylase b molecules. The chain was II nm wide and Fourier analysis indicated a 
major periodicity of 5.7 nm. 

Discussion 

The three experimental approaches described here are designed to investigate the regulatory 
network of glycogenolysis as a system. Studying the separate enzymes and effectors of a 
regulatory system will not provide sufficient information to describe the regulatory proper
ties of the system. Nevertheless, it is only possible to study regulatory systems well when 
extensive information on the properties of the individual components is available, as is the 
case with glycogenolysis. Substantial theoretical work has begun on the relationships of 
regulatory cascades and networks (Stadtman & Chock, 1978; Goldbeter & Koshland, 1981; 
Cardenas & Cornish-Bowden, 1989; see also Chapters 12-14 in this book). Those studies 
will provide the basis for construction of a set of models to be tested experimentally. 

The amplification provided by zero-order ultrasensitivity must play an important role in 
muscle glycogenolysis. With Km values near 20 J.1M for both the kinase and the phosphatase 
and a 70 J.1M bulk concentration of phosphorylase in muscle, the zero-order effect would be 
quite pronounced. In fact, in muscle, the phosphorylase is confined to the 2% of the tissue 
space occupied by glycogen particles. That compartmentation increases the local concentra
tion of phosphorylase to 3.5 mM. At that concentration, zero-order ultrasensitivity would 
result in a pseudo Hill coefficient of 38, indicating that this regulatory step is much more 
sensitive than any allosterically controlled enzyme. Preliminary examination of some of the 
other steps in the glycogenolytic regulatory network show that such amplification is not to 
be expected throughout. This is not surprising, as there may not be much more than a ten
fold amplification of the system between the Ca 2+ or cAMP input signals and the change in 
phosphorylase a (Chasiotis, 1983). 

An additional consideration for studying regulatory systems of this sort is that many will 
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be found to be spatially organized systems. Certainly in the case of glycogenolysis most of 
the enzymes in the regulatory network are bound in the glycogen particle. Imaging of mole
cular complexes by scanning tunnelling microscopy will help us understand the architecture 
of these regulatory systems. Future theoretical work is needed to translate our present 
solution models into kinetic descriptions of enzymes in the solid or gel state. There are many 
challenges for both theoreticians and experimentalists in this new and interesting area of 
biochemistry. 
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Part IV 

METHODS OF APPLYING CONTROL 
ANALYSIS TO REAL SYSTEMS 



Chapter 16 

Methodology for Simulation of Metabolic 
Pathways and Calculation of Control 
Coefficients 

PEDRO MENDES, JOAO MONIZ BARRETO, 
ANA V AZ GOMES and ANA PONCES FREIRE 

THE MAIN advantage of metabolic control theory is that it is not necessary to consider 
enzyme kinetic mechanisms for an experimental analysis of real biochemical systems. 
Control coefficients can be directly determined by measuring the system response to a small 

perturbation of some external parameter. This can be accomplished without any knowledge 
of the kinetic model; the only requirement is that the system response may be measured. 

If a system is to be simulated a model is needed that relates responses to perturbations. 

To be realistic this model should take account of the time dimension, either implicitly or 

explicitly. In both cases rate equations must be considered; the only difference is that in the 

latter case these rate equations are integrated whereas in the former they are assumed to be 

equal to a determined value that results in a set of algebraic equations. The integration of the 

rate equations provides the knowledge of the dynamic behaviour of the model. 

Method 

Control coefficients are determined experimentally making small perturbations on the 

system and measuring its response. In simulation, this approach can also be used but as it is 
error prone (small is not infinitesimal!) it is much better to do it from the elasticities using 
either the matrix method (Fell & Sauro, 1985; Sauro et al., 1987; see also Chapter 9 by 
Fell, Sauro and Small in this book) or control-pattern analysis (Hofmeyr, 1989; see also 
Chapter 19 by Hofmeyr in this book). The elasticity coefficients could also be determined by 

the perturbation/response method, as in experiment, but again this carries some error; a 
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much better way is to use the local rate equations: elasticity functions are then obtained by 
differentiation. 

At this point elasticity, control and combined response coefficients can all be calculated 
for sets of metabolite concentrations, which are the variables of the elasticity functions. As 
these coefficients are only defined for steady state, the concentrations must belong to a 
steady state of the model considered. 

The determination of steady state concentrations must be based on a kinetic model and 
can be done by one of two procedures: a finite value for the steady state is considered such 
that the rate equations form a system of algebraic equations with the metabolite steady-state 
concentrations as solution. Otherwise initial values are attributed to the metabolite concentr
ations and the rate equations form a system of differential equations that can be integrated 
along the reaction time to obtain the metabolite steady state concentrations. 

The kinetic models can take a macroscopic or microscopic form. If each reaction is 
taken as a whole the model is macroscopic and there are as many equations as there are 
metabolites (including source and sink). These equations should represent the properties of 
each reaction and could be, for example, of the Henri-Michaelis-Menten type. If the detailed 
molecular mechanism is considered the model is microscopic and the reaction intermediates 
are taken into account by the model. In microscopic models there are as many equations as 
chemical species, which can be a large number even for small systems. In both cases the 
mathematical model is a system of differential equations, generally non-linear. An example 
will be examined in the Discussion showing the differences between these approaches. 

The external parameters have not yet been mentioned because they depend on which 
type of model is used. In microscopic models these will be concentrations of external 
effectors and enzymes, together with first-order and pseudo-first-order kinetic constants; in 
macroscopic models kinetic constants take a more elaborate form (such as V, Km for 
hyperbolic enzymes). Parameters must be defined before any simulation is carried out. 

With all the calculations already described some other useful physical quantities can be 
obtained, for instance flux, mass action ratios and transition times (Easterby, 1981; see also 
Chapter 23 by Easterby in this book). 

Discussion 

A major problem in simulating metabolic pathways lies in knowing the values of the elastic
ity coefficients. Simulation could be done varying the elasticity coefficients and calculating 
control coefficients. If this is done over a wide range of values the results may be 
informative but unrealistic for concrete models. The internal metabolite concentrations are 
constrained by the solution of a system of differential equations, and so are the elasticity 
coefficients. As the elasticities for a metabolite are functions of the same variable, its con
centration, it seems very obscure to treat them as independent. Treating the elasticities as 
independent variables is acceptable if the aim is to study their effect on control coefficients. 
If one wants to simulate a model then this can no longer be an acceptable procedure. The 
objective of simulation is to correlate experimental results with some model and so it must 
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mass action ratios 

Figure 1. Schematic representation of methodology 

be made through that model. Kaeser & Bums (1979) have pointed out that a major 
advantage of metabolic control theory is that analysis can be made independently of kinetic 
models. This only applies to experimental approaches, as in simulation one is specifically 
concerned with a model. The interaction of simulation and experimental results can be very 
useful to the understanding of specific problems. 

The central problem in the proposed methodology for simulation, which is illustrated 
schematically in Fig. 1, is the determination of steady-state concentrations. Different pro
cedures have been described above. The integration of the differential equations along the 
reaction time seems to be the most advantageous as it provides a great deal of information. It 
provides not only the concentration vector but also allows one to follow the reaction 
progress. However some caution is appropriate, as this procedure involves two approxima
tions: (a) the asymptotic nature of steady states makes them impossible to attain in finite 
time (although they can be approached arbitrarily closely); (b) the integration of differential 
equations (generally non-linear) is accomplished by numerical methods. The rate equations 
that are usually considered for biochemical reactions are non-linear and stiff. This is a 
technical problem that cannot be forgotten and specific numerical methods must be used. 
These can be the Gear method (probably the best) or Runge-Kutta semi-implicit methods 
(Kubicek & Marek, 1983; Hayashi & Sakamoto, 1986). 

The choice between microscopic and macroscopic kinetic models should be made 
according to the pathway considered. Microscopic models should be chosen as they provide 
more information than macroscopic. However they may be almost impossible to use as the 
number of equations can be extremely large. Macroscopic models are then very useful as 
they are mathematically simpler. It is very important that the rate equations considered in 
macroscopic models describe the relevant properties of the real system. An example 
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Xo +El ' I' E 1X 0 

E 1X 0 011 ) E 1S1 

Macroscopic model E 1S1 !I I' Sl+El 

si +Ez • ., EzS1 

EzS1 • ., EzXz 

EzXz !I jiXz+Ez 
Scheme 1. Two-enzyme linear pathway: 
Macroscopic and microscopic models. Microscopic model 

showing the differences of micro and macroscopic kinetic models is considered. Scheme 1 
shows a small two-enzyme linear pathway. In the macroscopic approach there are three 
differential equations (one for each metabolite) whereas in the microscopic there are nine 
(one for each chemical species). The differential equations describing the variation of S1 

with time would be as follows, first with a macroscopic approach: 

V{xo _ V!S1 
Kfn, Kin, 

1 +_!Q_+JL 
Kfn, Kin, 

and second with a microscopic approach: 

v~, _ V2X2 
Kfn2 Kinz 

l+JL+~ 
Kfn2 Kinz 

If the macroscopic model were to be chosen, there would be no information about the 
enzyme-metabolite complexes but it would certainly be faster to solve the system of 
equations. On the other hand, if the microscopic model is to be used, then rate equations for 
the overall enzyme reactions must be derived so that the elasticity functions could be 
obtained by differentiation. The derivation of rate equations from the molecular mechanism 
could be done by the method of King & Altman (1956), or other. This example clearly 
shows the advantages and disadvantages of both approaches. A choice should be made 
according to the topology of the model. 
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Chapter 17 

Regulatory Responses and Control Analysis: 
Assessment of the Relative Importance of 
Internal Effectors 

HERBERT M. SAURO 

WHAT DO WE MEAN by regulation? The term is not well defined and we use it perhaps a 
little too easily when we come to talk about metabolism and its "regulation". If we were to 
ask n biochemists we would probably get m (greater or less than n) answers, somewhat 
related, but different. As may be demonstrated by comparing the views expr~ssed in 
different chapters of this book, there is no universally agreed definition nor, in consequence, 
any quantitative measure (however defined). 

If we said that by regulation we meant some sort of response of metabolism to a change 
in an external influence then most people would probably agree. How the change comes 
about and whether there are different kinds of response, though, is another matter. I think 
part of the answer lies with our failure to ask definite questions that demand a quantitative 
approach. Given a regulatory response, i.e. given that there have been small changes to 
concentrations of substrates, effectors, products, etc., as a result of some external stimulus, 
can we assess the contributions that each of these changes makes to the the change in flux at 
a particular step? In order to try to answer such a question, we need a suitable quantitative 
framework, for example metabolic control analysis. 

In control analysis, we have at our disposal three types of coefficients for examining 
metabolic pathways, elasticities, control coefficients and response coefficients. Porteous 
discusses these coefficients generally in Chapter 3 of this book. Here I shall consider them in 
the specific context of their role in answering the question that I have just posed. 

The Elasticity Coefficient: £s = ~; · f 
The elasticity coefficient may be regarded as the "basic building block" of metabolic control 
analysis. It constitutes the property of an isolated enzyme responding to changes in the con-
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centrations of its substrates, products, effectors or anything that might affect it (collectively 
termed effectors). It measures the response of the rate (the "local rate") of the reaction to 
changes in one of the potential effectors of the enzyme. With it there comes a very important 
concept, namely the idea of a local rate (not to be confused with the flux, which will be 
considered later). The local rate is the rate of the reaction of the isolated step with all 
effector concentrations held constant (clamped) at the values they have in the system. The 
local rate, v, is usually represented by one of the familiar rate expressions (such as the 
Michaelis equation or a more complex formulation) and may involve more than one 
molecular participant together with one or more parameters. In general, 

We shall consider a change in the local rate, brought about by a change in one of the 
effector concentrations or one of the parameters associated with the enzyme. It must be clear 
then that if a particular reaction is affected by, say, three different effectors (e.g. the 
substrate, product and an inhibitor) then we can define three different concentration elastic
ity coefficients, depending on which effector concentration we change. Additionally, the 
change in local rate can be brought about by a change in one of the parameters, say E, k1, 

10_, etc.). 
The elasticity coefficients are dimensionless numbers and represent potential responses 

in the system. The larger in magnitude, then, the more sensitive is the local rate to actual 
changes in the effector concentration. Moreover, the value can be positive or negative. 
Could the elasticities be candidates for the measure of the regulatory importance of a step? 
As elasticities are local properties, whereas a regulatory response involves the whole system, 
the values of of individual elasticities would clearly not be suitable candidates. On the other 
hand we might feel that if a certain effector has a large elasticity for a particular step then 
that step might be more significant to the regulatory event than other steps. We will keep this 
last point in mind. 

The Control Coefficients: C! =:: · J and C~ = ~: · f 
The control coefficients, in contrast to the elasticity coefficients, are true system properties. 
The indicate how the system flux, J, or a metabolite concentration, S, is affected by 
changes in the local rate of a particular reaction when the change is brought about by a 
parameter change. The system flux is equal to the local rate in magnitude when the latter is 
measured under the conditions prevailing in the system. Conceptually, however, the flux is 
quite different from the local rate because fluxes are determined by the whole system 
whereas local rates are determined at one step only with the concentrations of all potential 
effectors held constant. This distinction is important, because when we come to make a 
change in local rate and observe the change in flux the two changes will not necessarily be 
equal. 

It is important to remember that it does not matter how the local rate change is brought 
about. It might be a hormone change, a change in gene expression or a change in apparent 
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Km. Whatever it is, it does not matter at this stage of the argument. Thus the value of a 
control coefficient, C! or cJ, will not depend on which particular parameter we choose to 
modulate. 

Some workers (e.g. Crabtree & Newsholme, 1987; see also Atkinson in Chapter 36 of 
this book) have suggested that control coefficients are not appropriate, but they do in fact 
turn out to be central to the system view of metabolism. However, although the control 
coefficients are the central systemic properties they are not by themselves suitable candid
ates for measuring a metabolic regulation event as they do not reveal explicitly the role of 
the effectors in the regulatory response. 

. a1 P s as P 
Response Coeffinents: R£ = ap · J and Rp = ap · S 

Finally we come to the response coefficients. We use these to connect our pathway with the 
external world. They tell us how sensitive a system flux or a metabolite level is to changes in 
an external influence. We are obviously much closer to our goal of finding a coefficient that 
tells us something about regulation, for not only does it tell us what happens to the system 
but also what external influence induced the change. Here we also find an intimate 
relationship between elasticity coefficients and control coefficients. It is fairly easy to show 
(Kaeser & Burns, 1973) that for some external effector I the product of the elasticity 
coefficient for I multiplied by the control coefficient of the step is the response coefficient. 
For example, 

R J vcJ I = EJ v 

Even armed with the response coefficient, however, there still seems to be something 
missing and a feeling that there must be more to regulation. In particular, what of the role, if 
any, of internal effectors? There appears to be a whole network of internal effectors in 
metabolism. It is an assessment of how important such internal effectors are in contributing 
to a regulatory response that I now wish to make. 

The Partitioned Regulatory Coefficient 

Let us consider a particular example, in this case a simple linear chain with all steps 
reversible, thus: 

X0 and X5 are clamped external metabolites with a net flux from left to right such that 
enzymes to the left and right of a step are termed upstream and downstream respectively. 
Let us consider a parameter change at the fifth step such that the local rate of this step is 
increased. The perturbation that results now ripples outwards, in this case upstream, causing 
changes in the metabolite levels all the way up to S 1 and in consequence a change ultimately 
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to the system flux. The degree to which the parameter change influences the flux and 
metabolite levels is given by the control coefficients. Assuming (to simplify the argument, 
but without losing generality in the conclusions) normal kinetics for each of the enzymes, 
i.e. that an increase in substrate concentration increases the local rate whereas an increase in 
product concentration lowers it, then, once the system settles down and reaches its new 
steady state we will find all metabolite concentrations to be lower, i.e. 

for all S. If we closely examine one step, say the second, we will observe three changes. 
Two of these will be lower values of S1 and S2 and the third will be a higher flux through 
the step. We can completely account for the higher flux through this step by the changes in 
S1 and S2 • In fact, we can go further and examine how much either changes in S1 and S2 

have contributed to the change in the flux. The decrease in S 1 will tend to lower the flux 
whereas the decrease in S2 will tend to increase it. Obviously, therefore, the decrease in S2 

must have made a larger impact than the decrease in S1 otherwise the flux would not have 
risen. To quantify this, let us consider the fractional change in net flux, '61/1 at step 2, and 
partition it into the two contributing (but opposite) changes to the local rate changes 
originating from S1 and S2 , namely: 

The first term on the right is that contribution made by the change in S1 and the second is 
the contribution made by the change in S2• The changes in the substrate concentrations can 
be obtained from the concentration control coefficients, since 

The partition can thus be rewritten as follows: 

We now have each contribution in terms of the original local rate change '6v5!v5• Finally, 
by dividing throughout by 'OJ/I and using the definition of the flux control coefficient, we 
arrive at the following result: 

The two terms on the right-hand side, which are again dimensionless numbers, are examples 
of what we shall term the partitioned regulatory coefficient. This compound coefficient is 
almost identical to what was originally termed the conditional elasticity and first put for
ward by Holzhutter eta/. (1985). I use the term regulatory coefficient to emphasize that it 
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is a system property and not simply an elasticity, and qualify it as partitioned because we 
have partitioned the different effects on the step The partitioned regulatory coefficients 
reveal quantitatively all the factors that contribute to the net response, namely the effects of 
the two changes in sl and s2 on the local rates (the two elasticity coefficients for v2), the 
sensitivity of S1 and S2 to the perturbation at step 5 (the two concentration control 
coefficients, and the effect on the flux (the flux control coefficient). I shall denote them 
symbolically by 

Their values tell us, for a particular perturbation, what contribution the effectors around a 
particular step make in changing the flux through that step. Their relative magnitudes will 
depend on the site of perturbation. In general, perturbations upstream or downstream of a 
step will elicit different values for the regulatory coefficients. Intuitively this seems quite 
reasonable, since depending on where the pathway is perturbed we should get a different 
response. 

In the example of the linear chain, it was noted that S2 must make a larger contribution 
than S1 in changing the flux at the step. This is easily verified as follows. Since we know 
that S1 must make a negative contribution and S2 a positive contribution, the partitioned 
regulatory coefficient for S1 must be negative and that for S2 must be positive, but since 
the sum of the coefficients must equal 1 the coefficient for S2 must in that case be greater 
than 1. In fact, the coefficient for s2 will always be greater (in absolute terms) than that for 
S1 if we make the perturbation downstream from step 2. This example illustrates the 
importance of changes in product concentration in bringing about a regulatory response, an 
effect often ignored. 

Feedback Systems 

Discussion frequently centres on the role of negative feedback, as in the following 
scheme: 

In such an instance we could assess the contribution the feedback makes to changing the flux 
at that step compared with the other effectors that might act on the flux, i.e. the substrate and 
product of the enzyme. The partitioning will now take the following form: 

in which 

represents the feedback inhibition. 
It is often assumed (without much evidence) that the feedback "regulates the flux". By 
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obtaining the magnitudes of the above coefficients, however, we can establish whether the 
third term is indeed the dominant one in this sum. Only then can we see the relative effects 
of the three effectors. It is by no means necessary that the negative-feedback term be 
dominant compared with the signal path along the main spine of the pathway. On the other 
hand, there may be a buffering effect along the pathway that could render the main pathway 
signal weaker compared with the direct feedback route. The degree to which this might be 
significant, however, will depend on the three elasticity coefficient coefficients for S2 , S3 

and S4 on v2 . The summation of partitioned regulatory coefficients to unity implies that it is 
in principle possible to discover "missing effectors". The experimental determination of the 
values of the partitioned regulatory coefficients, based on certain structural assumptions 
about the pathway, will be found not to have a sum of unity if an important structural 
interaction is not included. Thus, in the last example, if the feedback partitioned regulatory 
coefficient is significantly different from zero its exclusion would cause the sum of the 
remaining two terms to deviate from unity. 

It is, however, important to point out that this analysis is currently confined to the effects 
of small changes around a steady state. Analysis of large changes, i.e. induced large-scale 
transitions between two steady states, is invariably intractable mathematically. In general we 
must resort to numerical simulation to study such cases. 

We may sum up by saying that the partitioning of the overall response into the contribu
tions of each of the potential effectors gives a quantitative insight into the overall regulation. 
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Chapter 18 

Determination of Control Coefficients 
by Shortening and Enzyme Titration of 
Metabolic Pathways 

ENRIQUE MELENDEZ-HEVIA and NESTOR V. TORRES 

THE GENERAL AIM of flux control analysis (Kaeser & Burns, 1973; Heinrich & Rapoport, 
1974) is to determine control distribution of a certain metabolic process among its different 
steps in vivo, for given physiological conditions. The relative importance of each step 
(enzyme or carrier) is quantified by its control coefficient, which expresses the fractional 
change produced in the selected flux, as a consequence of an infinitesimal fractional change 
in the enzyme activity. To obtain quantitative values of these control coefficients, experi
mental access to flux assay and modulation of enzyme activity are necessary. Normally these 
two requirements pose certain problems that are difficult to solve. In vivo, flux measure
ment is often not easy as all metabolic processes are interconnected. Usually, only in the 
processes that produce a metabolic end product, such as C02 or urea, or absorb an external 
substrate, such as glucose or amino acids, can flux in vivo be easily measured. The problem 
can become simplified in unicellular organisms, as their metabolic interactions are obviously 
simpler, but in any case nobody thinks that control analysis should be restricted to this type 
of organism. Even in the cases where the metabolic pathway implies a waste end-product or 
an external precursor, control analysis obliges us to define a precise metabolic pathway 
(which can involve branching) defined by ·one or several "external" substrates and products. 
The definition of these limits of the metabolic system is arbitrary (examples: glycolysis, 
pentose phosphate pathway, Krebs cycle etc). Therefore, the problem is not only the flux 
assay in vivo, but the delimitation of the metabolic pathway and the way of managing its 
function in vivo experimentally as well, a problem that is aggravated by the complexity of 
both organisms and metabolic pathways. The other problem is to obtain the modulation in 
vivo of all the enzymes (or at least some of them) implicated in the process. This can be 
done through genetic modulation or by means of specific inhibitors, but these two methods 
cannot always be used. However, if we transfer our problems to the field of experimentation 
in vitro, many of the problems mentioned can be solved. The method described here deals 
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with the use of systems in vitro to study the distribution of control in metabolic pathways. 
We describe the general principles of application, which are based on familiar concepts and 
procedures of classical enzymology, although used to control analysis in whole systems. We 
shall give a general design and criticize its different features, in order to comment on the 
possibilities of its application to different types of systems. The method was first described 
by us (Torres et al., 1985) and subsequently applied by our group to the control distribution 
in the first steps of rat-liver glycolysis under different physiological conditions (Mateo et 
al., 1989; Torres et al., 1988ab). Furthermore, on the basis of this method, a practical 
exercise has been proposed for initiating students in control analysis (Torres et al., 1988c). 

General Description of the Method 

This method is based on obtaining a soluble cellular fraction in which activities of all 
enzymes of the metabolic pathway studied are in the same proportion as they occur in the 
whole system in vivo. In these conditions the reaction velocity the system in vitro through 
all the enzymes is less than that in vivo, by the same factor, but the concentrations of all 
intermediate pools will be the same as in the whole system in vivo. In vitro assays can 
include the whole pathway, with all the enzymes being coupled, or it can be shortened in 
several segments, each with a certain number of enzymes of the sequence. In every case flux 
can be measured by driving the end-product towards an appropriate substance by means of 
auxiliary enzymes, in the same way that enzyme activity assays are currently carried out. 
Then, the activity of each enzyme can be modulated by means of enzyme titration of the 
system in different series of experiments; thus, by assaying the flux, an empirical function 
that relates the flux with each enzyme activity of the system is obtained, and it allows 
determination of flux control coefficients. The values of these control coefficients are not the 
same as the whole system in vivo; they will be greater, since the system in vitro has fewer 
enzymes and in both cases the summation property must be satisfied; however, as will be 
shown below, a known relationship exists between them that will allow us to calculate them. 

Methodology 

Definition of the Metabolic Pathway. This is not a trivial step in the research. The metabolic 
pathway (we should say the "model" of metabolic pathway) is an abstraction to which we 
are habituated by textbooks. We must make sure that this model agrees as well as possible 
with physiological reality; this decision includes the organism, the cellular fraction where it 
occurs and a set of given physiological conditions. In our study, the design of the model is 
based on the choice of "external" substrates, products and effectors, and in the flux of 
transformation whose control we want to study. Although it is assumed that the fragment of 
metabolism that we have defined as the "metabolic pathway" has a physiological meaning in 
itself in vivo, its definition is in fact arbitrary; therefore, its relationship with other 
metabolic processes can generate certain problems that we shall discuss below. 

Information about the System. The set of experimental protocols mentioned in this section 
are not really specific of the control analysis; therefore we will not take too long over their 
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description. They are necessary to design the specific experimentation of control analysis, 
and to process results properly: 

(a) Assay of concentrations of all the substrates, effectors and intermediate metabolites in 
the original situation in vivo. It must be demonstrated that dilution of the system from 
conditions in vivo to the conditions for working in vitro by a given dilution factor ex 
produces a loss of activity in each enzyme by the same factor ex. 

(b) Kinetic study of all the enzymes of the system, in order to obtain their kinetic para
meters (V max- Km, etc), and also the knowledge of possible feed-back (and feed
forward) effects of intermediate metabolites and external substrates, products, and 
effectors, at concentrations previously determined. Existence of enzyme-enzyme inter
actions in the pathway should also be known (see Kaeser, Sauro and Acerenza in 
Chapter 20 of this book). 

Shortening of the Pathway. This point includes two parts: the first is the design of the 
shortening and the second is the experimental implementation of it in vitro. 

(a) Design of the shortened segments of the pathway. Every segment of the whole pathway 
that will be assayed in vitro is a subsystem defined by the specific external substrates, 
products and effectors of this segment (Scheme 1 ). In certain cases, in accordance with 
the features of the pathway and experimental possibilities, assay of the whole pathway 
without shortening could be possible. If shortening is necessary, two consecutive 
segments must always include at least one common enzyme, as shown in Scheme 1. 

E1 E2 E 3 * 
X0 i::::::J S1 ~ S, -i::::t S3 =::> Auxiliary enzymes: flux assayed 

3 cc: = 0) 
Enzyme titration: I;c;,' = 1 

i==l 

6 

Enzyme titration: I;c;,' = 1 
i =3 

E6 E1 E, E9 
s, t::::::::J s. ~ s1 t::::::::J s, ...~:::::t ~ ==:> * 

9 
Enzyme titration: I;c;,' = 1 

i~ 

Scheme 1. Design of the shortening and enzyme-titration of a whole metabolic pathway. Each asterisk(*) has 
the meaning indicated for the first three-enzyme fragment, i.e. the flux for each fragment is measured after 
adding sufficient auxiliary enzymes for their flux control coefficients to be negligible. 
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Every shortened segment is isolated by buffering the external substrates and effectors at 
appropriate concentration and removing the end-product by means of auxiliary enzymes; 
these must have enough activity so that the concentration of end product be virtually 
zero, the last reaction of the segment being irreversible. Flux through the shortened 
pathway is assayed by driving the end product with the auxiliary enzymes up to a 
measurable substance (continuous recording of a substance such as NADH is very 
convenient). Since the end-product is removed in the in vitro systems, the shortening 
point must be chosen where no feed-back interactions occur or where their importance is 
negligible, and we must ensure, for the same reason, that all feedback and feedforward 
loops are included in the same shortened segment. All these considerations, as well as 
experimental possibilities for buffering the different substrates and effectors, and for 
measuring the fluxes will lead to the more convenient design of experimental procedure. 

(b) Experimental systems in vitro. Assays are carried out with a soluble extract of the 
biological system, removing the cellular fractions that do not intervene in the metabolic 
pathway. Assay of flux in each segment is similar to classical assays in enzymology, for 
determination of enzyme activities in tissue extracts: incubation of the extract with 
substrates and effectors of the enzyme, and addition of auxiliary enzymes to the extract, 
for coupling the end-product with other reactions to give a measurable substance. This is 
a similar assay, but here the system includes several enzymes, whose coupled activity is 
assayed. Provided the steady state of the system is obtained, we have basal values of 
flux and activity of each enzyme; these basal values represent the point where control 
coefficients will be calculated. 

Enzyme Titration. Having the system in vitro at steady state, it is now titrated with several 
quantities of each enzyme, around to the basal conditions, in different series of experiments; 
by assaying the flux and knowing the total activity of each enzyme in every experiment, we 
will obtain a curve that relates the flux through the system to each enzyme activity (basal 
plus added), the other enzymes being at their basal values. From these curves and basal 
values, control coefficients of the system in vitro can be obtained directly. Enzyme titration 
can be carried out with enzymes from any biological source (normally commercial enzymes 
will be used). The only condition for using them is to have a function that relates the two 
different enzyme activities (those of our system and the commercial ones), normalizing their 
kinetic parameters so that their activities can be additive. In the case of Michaelis-Menten 
kinetics and in conditions of low saturation, activity is given by V max1Km, since velocity is 
proportional to this. This expression is, however, not valid if enzymes have a significant 
degree of saturation. Then additional experimentation is needed to obtain a function that 
relates the two activities. Enzyme titration can also by done by removing a certain amount of 
each enzyme by means of antibodies. 

Calculation of Flux Control Coefficients 

Titration curves express an empirical relationship between enzyme activity and flux of the 
shortened pathway in the steady state. In a number of cases described in the literature 
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(Kaeser & Bums, 1973; Torres et al, 1986; Salter et al., 1986; Torres et al, 1988ab) these 
relationship have been shown to be hyperbolic. Kaeser & Burns (1973) have described a 
kinetic model of a metabolic pathway that has an explicit solution and accounts for this 
hyperbolic relationship. The model is based in two hypotheses: all the enzymes have 
reversible Michaelis-Menten kinetics and all the enzymes are in conditions of low satura
tion. This model can be extended to the case where the first enzyme is significantly saturated 
(Torres, 1985). This hyperbolic relationship can be described as follows: 

1= Q{·ei 

Q~+ei 
(1) 

where J is the flux, ei the enzyme activity and Q{ and Q~ are parameters of the system that 
include all kinetic and thermodynamic information with the exception of ei. Making the 
partial derivative of eqn. (1) with respect to ei and multiplying by the scaling factor we 
obtain the following expression: 

1 _ aJ ei _ Q{-lo Ce;--·----
dei J Q{ 

(2) 

whereJ0 is the basal flux (without addition of titration enzymes). In our experiments we 
have calculated flux control coefficients by means of eqn. (2). Note that Q{ has a clear 
physical meaning: it is the maximum flux for the pathway, obtained when the activity of Ei 
tends to infinity, i. e. the flux through the system after addition of sufficient enzyme Ei so 
that it in no way limits the flux, at basal activities of the others. The value of Q{ is easily 
obtained from the experimental data by inverting eqn. (1), in a plot similar to the 
Lineweaver-Burk or other similar plots. These equations and calculations have also been 
used by Salter et al. (1986) to process hyperbolic results. It must be observed that the 
hyperbolic relationship between flux and enzyme activity is not a necessary condition to 
carry out the method of shortening-enzyme titration described here. In general, calculation 
of flux control coefficients from enzyme titration curves is based in the empirical function 
J(ei), and any function can be useful for this. 

Real Values of the Flux Control Coefficients 

The value of each control coefficient determined in vitro by this procedure is not the same 
as that of the whole system, but greater, since in every shortened segment fewer enzymes 
participate in the summation property. This is, in fact, an advantage of the method, since the 
increased magnitude of control coefficients makes them easier to measure. However, a 
relationship that allows their calculation exists among them: as dilution of the system has 
maintained the ratios of activity between all the enzymes, and every shortened pathway has 
been reproduced in vitro with the same concentrations of external substrates and effectors, 
the flux ]vitro of every system in vitro will be related to the flux ]vivo of the whole system 



236 E. Melendez-Hevia and N. V. Torres 

in vivo according to ]vivo= a.Jvitro (where a is the dilution factor). Thus, it follows from the 

summation theorem for intermediate pools that in the diluted system all intermediate pools 
are at the same concentrations as those that occur in vivo. This means that the elasticity of 
each enzyme for any intermediate has the same value in the two systems; then, by applying 
the connectivity theorem of flux to both systems we have, for any two consecutive enzymes 
E1 and E2, connected by the intermediate S, that C1 vivo;c1 vitro = C2 vivo;c2 vitro, where 

C; is any control coefficient of the whole system in vivo or of the shortened system in 
vitro, as indicated. Application of the same argument to other enzymes of the same segment 
gives the following relationship: 

and for the general case: 

cvivo cvivo cvivo 
_I -=-2 -=-3 -=· .. 
q•itro C:f.itro c:,itro 

cvivo cyitro 
-'-=-'
cvivo cvitro 

J J 

(3) 

(4) 

This relationship asserts that the ratio between any two flux control coefficients of the 
system in vitro is the same as that of its corresponding one in vivo. Enzymes Ei and Ej do 
not have to be consecutive in the pathway. A complete relationship can be obtained for all 
the enzymes of the system by overlapping the different shortened segments of the pathway 
(see Scheme 1). This method does not give, in principle, the absolute values of flux control 
coefficients, but a relationship among them all. This information is nevertheless important, 
as it gives the hierarchy in control distribution among the enzymes of the pathway. Absolute 
values of the coefficients can be obtained from direct knowledge of only one of them by 
whatever method. Nevertheless, in the next section we shall discuss some other approaches 
to this. 

Metabolic Relationships of the Pathway with Others 

As has been mentioned above, the definition of our metabolic pathway is not a trivial step in 
the research and we must emphasi7~ this. For reproducing a metabolic pathway in vitro the 
system should include a number of simplified systems that simulate the other cellular 
processes mainly interacting with it. [An instance of such procedure has been given by 
Groen et al. (1982) in the study of the control of mitochondrial respiration: they included 
hexokinase in their experimental system to account for ATP depletion by the system; 
processes that consume ATP. In that work the control coefficient of hexokinase was also 
determined and it represents the influence of all these processes in controlling mitochondrial 
respiration]. Therefore, inclusion of reactions like this in our system has two advantages: our 
metabolic pathway, although isolated, is less artificial since it is not totally disconnected 

from other metabolic processes, and we can also know the influence of such processes in its 
control. In that case, if the system has been precisely designed, application of the summation 
theorem to the whole system give us another equation that determines eqns. (3) and then the 
absolute values of all control coefficients can be directly obtained. 



18: Shortening of Metabolic Pathways and Enzyme Titration 237 

Results Obtained by Applying this Method 

Control of rat liver glycolysis has been analysed by our group by using the method proposed 
here. First experiments on total rat-liver glycolysis, from glucose to lactate and glycerol
phosphate in vitro (Melendez-Hevia et al., 1984) showed that addition of hexokinase and 
phosphofructokinase enhanced the flux of production of both lactate and glycerol phosphate. 
Then, in order to analyse this fact precisely, the method of shortening and enzyme titration 
was then designed and flux control distribution in the common pathway through the three 
first enzymes was then quantified (Torres et al., 1986). A more complicated system of rat 
liver glycolysis, including the convergent branching from glycogen (which involves a 
shortened pathway of five enzymes) was also analysed (Torres et al., 1988a), and the effect 
of different physiological conditions on the control of this pathway has been studied (Torres 
et al., 1988b). In all these results many different aspects of the theory have been 
demonstrated, and furthermore, some new properties for particular pathway structures have 
been found that have allowed their theoretical exploration and the discovery of new 
theorems (see Torres et al., 1988a; Melendez-Hevia et al., 1990). In all cases, the 
methodology here presented has proved to be a useful tool for the study of metabolic 
systems. 

Concluding Remarks 

It can be seen that the method here proposed uses current procedures that are in normal use 
by most laboratories. This could allow many groups to use it without special difficulties, 
since no complicated techniques are in principle necessary for its application. Other tools 
available now or in the future will give more possibilities to this method. It should be noted 
that the method here proposed is not a "close-formula", but the principles of a general 
methodology, which must be adapted in each case in accordance with the peculiar features 
of the pathway studied. In the application of this method some specific problems can arise 
(those concerning the abstraction of the defined metabolic pathway will not be negligible). 
In the present paper we have considered some of these problems and proposed solutions. We 
think that the imagination of every group will be able to solve these or other ones not 
considered by us. 
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Chapter 19 

Control-Pattern Analysis of 
Metabolic Systems 

JAN-HENDRIK S. HOFMEYR 

How DO FLUXES and metabolite concentrations, the variables of metabolic systems, 
respond to a change in some system parameter, such as an enzyme concentration or the 
affinity of an enzyme towards one of its effectors? Can such systemic behaviour be 
explained purely in terms of local enzymic properties? These fundamental questions about 
metabolic behaviour have been successfully addressed by metabolic control analysis (Kaeser 
& Bums, 1973; Heinrich & Rapoport, 1974; also in numerous chapters of this book) and 
biochemical systems theory (Savageau, 1969abc, 1976; also in Chapters 4 and 5 of this 
book by Savageau and Voit respectively). In the language of metabolic control analysis the 
answer amounts to expressing control coefficients, which quantify global systemic be
haviour, in terms of elasticity coefficients, which describe local enzymic behaviour. Similar 
coefficients are defined in biochemical systems theory. It is immaterial whether one derives 
these expressions from the summation and connectivity relationships of metabolic control 
analysis or the power law equations of biochemical systems theory. In metabolic control 
analysis, several methods of solution involving matrix algebra have been developed (Fell & 
Sauro, 1985; Sauro et al., 1987; Small & Fell, 1989; Westerhoff & Kell, 1986) and they 
allow for the analysis of flux and concentration control in metabolic pathways containing 
linear, branched, looped and moiety-conserved structures. These methods are eminently 
suitable for numerical control analysis, but can be tedious for obtaining the algebraic 
solution. 

Unfortunately, many biochemists still tend to shy away from the application of the 
concepts and methods of control analysis and biochemical systems theory in their research 
and teaching. In my experience this is mainly the result of unfamiliarity and unease with the 
mathematical techniques required in the application of these frameworks. This chapter 
describes a non-algebraic method, called "control-pattern analysis", that solves the problem 
of expressing control coefficients in terms of elasticity coefficients by tracing "control 
patterns" directly on the metabolic diagram according to a simple set of rules (Hofmeyr, 
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Figure 1. The example metabolic diagram of a four-enzyme linear pathway with a feedback loop. Enzymes are 
identified by boxes in unidirectional arrows which show the direction of the steady-state flux. All reactions are 
regarded as reversible in principle. X-metabolites are constant (external); $-metabolites are variable (internal). 
No $-metabolites should be shown more than once. Any regulatory loop (feedback and feedforward loop) is 
depicted by a line connecting the enzyme to the metabolite. 

1989). Each control pattern of an enzyme can be translated into one of the terms in the 
expression for a specific control coefficient of that enzyme. Control-pattern analysis is 
analogous to the well-known method of King & Altman (1956) used in enzyme kinetics to 
derive steady-state enzymic rate equations. I shall show that control-pattern analysis not 
only generates the expressions for control coefficients, but that it also affords insight into the 
behaviour of metabolic systems in steady state. 

The Method of Control Pattern Analysis 

The summary of control-pattern analysis of linear pathways with regulatory loops described 
in this paper serves only to provide a basic idea of the procedure. A full description with 
examples can be found elsewhere (Hofmeyr, 1989), while control-pattern analysis of more 
complex systems with branches, loops and moiety-conserved cycles will follow. 

A simple hypothetical metabolic pathway with one feedback loop (Fig. 1) serves as an 
example for introducing the procedure. The conventions used in drawing the metabolic 
diagram are explained in the legend to Fig. 1. In this linear pathway there is only one flux, 
which is numerically equal to the net rate of each of the four enzyme reactions. The set of 
special terms and diagrammatical entities that are associated with control-pattern analysis 
are depicted in Fig. 2. 

The primary aim of control-pattern analysis is to obtain expressions for the flux-control 
coefficients in terms of elasticity coefficients. For the metabolic pathway in Fig. 1 the 
expressions for the flux-control coefficients are as follows: 

(1) 

(2) 

Reference Loop Loop nck Modulated 
metabolite enzyme metabolite enzyme 

Figure 2. Entities in the diagrammatic repre- S3 _JX4 sentation of metabolic pathways and control Xo 
patterns (an S 1-control pattern of E4 serves 

I as an example). 

Excluded Regulatory Balloons Variable External 
enzyme loop metabolite metabolite 

(S) (X) 
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(3) 

(4) 

whereas the expressions for, e.g., the 51-control coefficients are as follows: 

(5) 

(6) 

(7) 

(8) 

where I is defmed as follows: 

(9) 

S2-control and S3-control coefficients are expressed similarly. Note that all control 
coefficients share the same denominator I. which is the sum of all numerator terms in the 
flux-control coefficients [eqns. (1-4)]. The flux or the metabolite concentration that is 
referred to by the superscript of a control coefficient will be called the reference flux or the 
reference metabolite respectively. The subscript refers to an enzyme which will be called 
the modulated emyme, i.e. the enzyme the activity of which is considered to be altered by a 
small amount. 

The general strategy of control-pattern analysis is first to determine the numerator of the 
flux-control coefficient (the flux-control numerator) of each enzyme in the pathway. Each 
term in the numerator with its associated sign corresponds to a diagrammatical "flux-control 
pattern". The numerators of flux-control coefficients are summed to form the denominator of 
the flux-control and concentration-control coefficients (the control denominator). The ratio 
of flux-control numerator to control denominator forms the expression for each flux-control 
coefficient. The numerators of the concentration-control coefficients (the concentration
control numerators) also correspond to a sum of "concentration-control patterns", deter
mined by a procedure similar to that for flux-control numerators. The ratio of concentration
control numerator to the previously determined control-denominator forms the expression 
for each concentration-control coefficient. 

The flux-control patterns for each enzyme (Fig. 3) are found by (i) defining the enzyme 
as the modulated enzyme by emphasizing the box around its identifier; (ii) drawing balloons 
around pairs of enzymes and S-metabolites that are connected with a diagram line, such that 
every S-metabolite occurs in one balloon; each balloon represents the elasticity coefficient of 
the enzyme for the metabolite; there are three types of balloons: substrate balloons contain 
an enzyme and its substrate, product balloons an enzyme and its product, and loop balloons 
an enzyme and its internal effector [the rules for drawing balloons follow from the properties 
of the control-matrix equation (Hofmeyr, 1989)]; (iii) tracing aflux-control path from the 
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Figure 3. Flux-control patterns of all the enzymes in the example diagram. The flux-control path for each 
control pattern is shown on the right as a dotted arrow. This path runs on the diagram lines through consecutive 
balloons and shows one way in which the effects of an enzyme modulation can be transmitted through the 
pathway. To trace a flux-control path, start at the modulated enzyme and move into the end of an adjacent 
balloon that is connected directly to the modulated enzyme by a diagram line. Follow this balloon to its other 
end and move into a next directly connected balloon, following it to its end. Repeat this until the path comes to 
a dead end either at an X-metabolite or by having looped back onto itself. The path may fork at an enzyme, but 
it must not cross or retrace itself. IT the path ends before all balloons have been traversed, start again at the 
modulated enzyme (or at an enzyme where a fork in the path is possible) and proceed in the opposite direction 
until the path stops. 

modulated enzyme through consecutive directly adjacent balloons (see Fig. 3); (iv) using the 
flux-control path to detennine the sign that precedes the product of elasticity coefficients that 
represents the flux-control pattern. This step comprises ticking all product balloons and 
those loop balloons in which the loop metabolite lies upstream from the enzyme that 
immediately precedes it in the flux-control path. An uneven number of ticks gives a- sign, 
an even number a+ sign. 

The balloons in concentration-control patterns are drawn in the same way as for flux
control patterns (Fig. 4 shows all the S1-control patterns), except that the metabolite 
referred to by the concentration-control coefficient (the reference metabolite) is identified by 
drawing a circle around it. The reference metabolite must not appear in a balloon; therefore, 
one enzyme will necessarily fall outside a balloon - this enzyme is called the excluded 
enzyme. Each concentration-control pattern is composed of part of a flux-control pattern of 
the modulated enzyme and part of a flux-control pattern of the excluded enzyme. These 
partial patterns connect to opposite sides of the reference metabolite, and, together with their 
associated partial flux-control paths and (ticked or unticked) balloons, can be mapped 
directly onto each other to form the concentration-control pattern. The control path from 
modulated enzyme to reference metabolite is called the concentration-control path. In 
detennining the pattern sign one extra ticking rule is used: the reference metabolite must be 
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Figure 4. S1-control patterns of all !.he emymes in !.he example diagram. 1be concentration-<:<>ntrol palh for 
each coniTOI pattern is shown on !.he right as a solid arrow. Other conlrol palhs are shown as dolled arrows. The 
boxed E indicates !.he cX'Ciudcd enzyme. 

ticked if it lies upstream from the enzyme that immediately precedes it in the concentration
control path. Fig. 5 explains the above procedure diagrammatically. 

A Physical Interpretation of Control Pallerns 

Control-pattern analysis has been designed in such a way that it not only generates the 
expressions for control coefficients in terms of elasticity coefficients, but also provides the 
means by which the events that follow a modulation of enzyme activity can be described in 
physical terms. 

Consider the flux-control pattern -e:le:M for~ (pattern 2 in Fig. 3). In the absence of 
unusual kinetic features, elasticities towards substrates are positive, while those towards 
products are negative, i.e. an increase in substrate concentration increases the reaction rate, 
while an increase in product concentration decreases the rate. Therefore this fl ux-control 
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Figure 5. Control paths in S1-control patterns I (A) and 8 (B, opposite) in Fig. 4. Each part of A and B shows: 
(I) the concentration-control pattern; (2) the two flux-control patterns which correspond partially to the 
concentration-control pattern (the dotted balloons do not fit);_ (3) the partial flux-control paths in the 
corresponding parts of the patterns (dotted arrows); (4) the combination of the partial flux-control paths from 
(3) to form the control paths in the concentration-control pattern. The path from the modulated enzyme to the 
reference metabolite (solid arrow) is extended into the circle to indicate the concentration-control path; the 
dotted arrows form other control paths from the modulated enzyme or the excluded enzyme (boxed E). 

pattern must be positive under normal conditions (the product of two positive substrate 
elasticities, q and £~, and one negative product elasticity, eL is preceded by a minus sign). 

Note that the sign part of the pattern is taken into account when deciding whether a flux
control pattern is denoted positive or negative. 

A positive flux-control pattern for E2 implies that the flux, J, is increased via that 
pattern when the activity of E2 is increased; this means equal fractional increases in the net 
steady-state rates of all enzymes in this pathway. By analysing the flux-control pattern for E2 

as a "chain of local effects" that flows along the flux-control path after modulation of this 
enzyme, one can show that these changes must occur under normal conditions. An increase 

in the activity of~ will decrease Sl• which, in turn, Will increase the local rate Yt. S2 (the 
product of~) will increase, with a subsequent increase in the local rate v3 . The change in 
v3 increases v4 through an increase in S3 . Qualitatively, this change of local effects can be 
symbolized as iv2 -!.S1 iv1 and iv2 iS2 iv3 iS3 iv4 , where up-arrows show an increase in 
a rate or concentration, and down-arrows a decrease. Since all rates increase, the flux-control 
pattern for E2 is positive. In the same way, the flux-control patterns for E1 and E3 are 
positive; the chain of local effects for E 1 is iv1 iS1 iv2 iS2 iv3 iS3 iv4, and those for E3 

iv3 iS3 iv4 and iv3 LS2 iv2 .J..S1 iv1. The chain of local effects along a flux-control path 
therefore shows how the effects of an enzyme modulation are propagated through the 
pathway and is used as an aid to understanding why a control pattern is positive or negative. 

Now consider the flux-control patterns of E4, the enzyme downstream from the loop 
(patterns 4 and 5 in Fig. 3). There are two ways of pairing enzymes and metabolites in 
balloons. S3 can be linked to either E3 or, via the feedback loop, to E2; both lead to valid 
flux-control patterns in which all metabolites are paired with enzymes. Under normal 
conditions -Elqe~ is positive (the chain of local effects is iv4 LS3 iv3LS2 iv2LS1 iv1). 

When the regulatory loop is inhibitory(~< 0), the pattern EjE~~ is positive: iv4 causes a 
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decrease in S3, thereby relieving the inhibition of E2 by S3 and causing an increase in v2 
(the chain of local effects is iv4J..S3 iv2J..S1 iv1 and iv2 iS2 iv3). The net positive effect 
on the metabolic flux of a modulation in E4 is clearly the result of a superimposition of two 
separate positive flux-control patterns. 

If the feedback loop is activatory (~ > 0}, flux-control pattern el~~ for E4 is negative; 
the chain of local effects is iv 4 J..S3J..v2 iS1 J..v1 and J.. v2 J..S2J..v3. It is clear that positive 
feedback could lead to a negative cf. The final effect of an increase in the activity of E4 
would depend on the relative magnitudes of the positive flux-control pattern ( -£~~~) and the 
negative flux-control pattern Cele~~). However, while the numerator may become negative if 
the activatory loop pattern dominates the chain pattern, the denominator must remain 
positive if the steady state is to remain stable. This is a general truism: if the denominator of 
any set of control coefficients (as determined by control-pattern analysis) becomes negative, 
those control coefficients describe an unstable steady state; if the denominator is zero, the 
steady state does not exist (Hofmeyr, 1986). 

Just as flux-control patterns have a positive or a negative effect on a flux, depending on 
the values of the elasticity coefficients, concentration-control patterns also act to either 
increase or decrease the concentration of the reference metabolite. Consider, for example, 
the eight S1-control patterns in Fig. 4. If substrate balloons represent positive elasticities, 
product balloons negative elasticities and the feedback loop is inhibitory (~ < 0}, the four 
patterns of E1 are all positive. As required by the summation property of concentration
control coefficients, which states that the set of control coefficients for any one metabolite 
must sum to zero (Westerhoff & Chen, 1984), the remaining four patterns, one each for E2 
and E3 and two for E4, are the negative counterparts of the four S 1-control patterns of E1• A 
chain of local effects can be followed along the concentration-control path just as in flux
control paths. For instance, in the negative S1-control patterns of E4 (7 and 8 in Fig. 4) the 
chains are iv4 J..S3 iv3J..S2 iv2J..S1 and iv4J..S3 iv2J..S1 respectively. 

Although all the S1-control patterns of E1 (the enzyme that lies upstream from S 1) are 
positive, and all the S1-control patterns of the other enzymes (which lie downstream from 
S1) are negative, this is not always so. As as exercise you could write the three S2-control 
patterns of E4 and analyse them. The -el~ and q~ patterns are negative, while, if the 
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feedback loop is inhibitory, the E}Ej pattern iS positive. Thus, whether Cf is positive Or 
negative depends on the relative magnitude of the three patterns. 

The concept of a chain of local effects provides a way of explaining the logical basis of 
the procedure for determining the sign of any control pattern. The ticking rules ensure that, 
as the chain of local effects is followed along any control path, the elasticities are given such 
values that all the rates increase. This means that all flux-control patterns are forced to be 
positive, while the positive or negative nature of concentration-control patterns depends only 
on the position of this metabolite relative to the enzyme that precedes it in the concentration
control path. If there are balloons in a concentration-control pattern that can only be 
accommodated in control paths other than the concentration-control path, the ticking rules 
ensure that all of these balloons are given such values that they cannot change the control
pattern sign. Of course, once the correct sign for a control pattern has been determined, any 
elasticity value can be considered, so that the expressions for control coefficients can be 
used to analyse the effects of, for example, substrate inhibition or feedback activation. 

Control Patterns in more Complex Pathways 

Control-pattern analysis also treats complex metabolic pathways that contain branches, 
loops and moiety-conserved cycles. The basic procedure remains the same, but a few extra 
rules must be applied (Hofmeyr, 1986). 

In branched pathways, where there is more than one flux, a reference flux must be 
chosen. In a flux-control pattern, every enzyme in the reference flux must either occur in a 
balloon or it must be the modulated enzyme. Any other flux may contain only one excluded 
enzyme. The flux-control path connects the modulated enzyme to the reference flux. 
Furthermore, each pattern is weighted by that flux or product of fluxes in which there is no 
excluded enzyme; since the reference flux weights all flux-control patterns it cancels. Fig. 6 
shows the flux-control patterns of two enzymes in a branched pathway: E1, which lies in the 
reference flux fa, has four patterns, while E3 and E5, which lie in Jb and Jc respectively, 
have two patterns each. There is one extra ticking rule for determining the sign of a pattern: 
if, in any control path, fluxes converge at or diverge from a branchpoint metabolite, the 
balloon in which it occurs is ticked, irrespective of whether it has been ticked before. For 
example, if the direction of Jb in fa-control patterns 1 and 2 of E1 is reversed, both ~ and 
E1 become product balloons and are ticked; ~ is ticked again since fa and J b converge at 

s2. 
Metabolic loops are formed when branches reconverge. All the rules for branched 

systems apply, but the flux-control path(s) depend on whether loop fluxes or non-loop fluxes 
are chosen as reference (Hofmeyr, 1986). This aspect will not be illustrated here. 

Moiety-conserved cycles (Hofmeyr et al., 1986) are formed when a set of reactions 
interconvert different forms of a chemical moiety, while the sum of the concentrations of 
these forms remains constant; a common example is the NAD+/NADH cycle. Control 
patterns of enzymes in pathways containing such cycles are found according to the rules for 
linear systems. There will always be one cycle metabolite that cannot be accommodated in a 
balloon. The concentration of this metabolite, expressed as a fraction of the sum of the 
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Figure 6. Flux-control patterns in a branched pathway. There are three fluxes (J.,Jb and 1.) of which J, has 
been chosen as the reference flux. The I.-control patterns of an enzyme that lies in the reference flux (E1) and 
two enzymes that lie in other fluxes(~ and E5) are shown. Note that each pattern is weighted by the flux (other 
than the reference flux) in which there are no excluded enzymes. 

concentrations of cycle metabolites, weights the product of elasticities that represents the 
control-pattern. Fig. 7 shows the E1 and E3 flux-control patterns in a pathway that contains a 
3-member moiety-conserved cycle. 

Conclusion 

The advantages of control-pattern analysis are many: it is as general as any of the algebraic 
methods for obtaining the expressions for control coefficients, but no algebra is required in 
its application; the type of metabolic diagram on which control patterns are traced is familiar 
to all biochemists; furthermore, each control pattern can be understood in physical terms as a 
chain of local effects following the modulation of an enzyme activity, the final response 
being a superimposition of the individual chains of effect. In such a way the complex set of 
events that follow an activity modulation can be dissected into individual positive or 
negative patterns in which the systemic role of every link or effect between metabolites and 
enzymes is clear 

At present, the technique of control-pattern analysis can treat pathways subject to the 
following restrictions: (i) no intermediary metabolite may be repeated on the metabolic 
diagram; (ii) only combinations of four metabolic structures are allowed, namely linear 
chains, branched chains, metabolic loops (futile loops and parallel loops) and moiety
conserved cycles; (iii) enzyme concentrations are regarded as constant; variable metabolites 
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Figure 7. Flux-control patterns in a pathway that contains a moiety-conserved cycle. The top three patterns are 
those of a non-cycle enzyme (E1), while the bottom three are those of a cycle enzyme (E3). Note that each 
pattern is weighted by a mole fraction, e.g. M2, where M 2 = S.f(S2+S3+S4). The mole-fraction weight is 
always that of the cycle metabolite that does not occur inside a balloon. 

exhibit free pool behaviour. Enzyme-enzyme interactions, subunit association-dissociation, 

channelling of intermediary metabolites, enzyme cascades and repression-induction fall out

side the scope of the method at present. However, an enzyme cascade or a channelled part of 

the pathway could be lumped into a single "conversion unit" with elasticity coefficients 

towards variable metabolites on either side of the unit, after which it can be treated in the 

normal way. Within these restrictions control-pattern analysis is a powerful conceptual tool 

for understanding the relationship between local and systemic properties of most types of 

metabolic pathway, without the need for possibly unfamiliar algebra. 
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Chapter 20 

Control Analysis of Systems with 
Enzyme-Enzyme Interactions 

HENRIK KACSER, HERBERT M. SAURO and LUIS ACERENZA 

THE CLASSICAL approach to control analysis has made two fundamental assumptions: the 
first is that all enzymes are independently acting catalysts, and the second is that the reaction 
rate of an isolated enzyme is first-order with respect to enzyme concentration. The first 
assumption, that of independence, implies that no direct interactions between enzymes 
affect their catalytic activities (other than that which occurs indirectly through the common 
substrate or effector pools). This assumption would be invalid, for example, if dynamic 
enzyme-complex formation affected the kinetic parameters of the constituent enzymes. The 
second assumption, that of additivity, based on classical enzymology, would not apply if, 
for example, an enzyme oligomer-monomer equilibrium existed for a single reaction step, or 
if the enzyme were partitioned between free and membrane-bound forms, the membrane 
being present in fixed amount, with different activities of the two forms. 

The control coefficients can be defined, quite generally, as system responses with 
respect to changes in the "local rate" v of a reaction step (without specifying the parameters 
responsible for the change). The coefficients are defined as follows: 

(1) 

where Jj is any one flux in the system and Sj any one metabolite. The summation and 
connectivity theorems (Kaeser & Burns, 1973, 1979; Heinrich & Rapoport, 1974; Kaeser, 
1983; Westerhoff & Chen, 1984) then follow directly: 

n n 

Summation theorems: I, C[f= 1; I, C~f= 0 (2a) 
i=l i=l 
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m m 

Connectivity theorems: L c~~ = 0; L C~ei = -~ (2h) 
i=l i=l 

where r,j/c = 1 for j = k and 0 for j * k. The summation over all n enzymes in the system 
constitutes a constraint on the values of individual coefficients. The connectivity theorems 

relate the coefficients of them enzymes that interact with a given metabolite S1c (which 
may be a substrate, product or other effector of the enzymes), to the metabolite elasticity 

coefficients e1 These are defined for any rate, "isolated" from the rest of the system, as 

follows: 

(3) 

i.e. the scaled or normalized partial derivative of a "local" rate equation with respect to any 

one of the concentrations of the molecules that participate in the reaction. The rate equation 
can be of any form and is not restricted to simple mechanisms. Even if unknown, the 

metabolite elasticities can be determined empirically (Kaeser & Bums, 1979). There are as 

many elasticity coefficients for any one rate as there are participating molecules in the rate 

equation. All the elasticity coefficients of all the rates in the system, when defined for the 

steady state, represent the potential response of the isolated rates to perturbations transmitted 

via metabolite movements. The matrix of all the elasticities jointly generates the "system" 

responses, i.e. the control coefficients ct: and ~(Kaeser & Bums, 1973; Kaeser, 1983, Fell 

& Sauro, 1985), and each control coefficient can be expressed in terms of different functions 

of the metabolite elasticities (see, e.g., Kaeser & Porteous, 1987, or Chapter 3 by Porteous in 

this book). Subsequent to the establishment of the above theorems (Kaeser & Bums, 1973; 

Heinrich & Rapoport, 1974), it has become quite clear that one can start with apparently 
quite different descriptions (although the same basic kinetic model) and use different 
conceptual routes. All such approaches (Savageau, 1976; Reder, 1988; Giersch, 1988ab, 

Cascante et al., 1989; also numerous chapters in this book) lead, however, to exactly the 

same conclusions as the theorems of eqns. (2) 1• It is these agreed properties of biochemical 

systems that form the starting point of further developments in our work. 

Parameter Elasticity Coefficients 

The theorems as formulated in eqns. (2) are valid irrespective of any interactions between 

enzymes that may obtain, since the coefficients are defined in eqns. ( 1) without specifying 

how the changes may be brought about. To effect a change in the local rate, a parameter 

directly involved in the rate equation for the step must be modulated. The relationship 
between rate and parameter is given by 

1The ultimate priority claim, however, must go to Leonhard Euler (1707 -1783), who established the propenies 
of homogeneous functions of degree 1, the equivalent of the summation theorems (see Giersch, 1988 ab; also 
Chapter 30 by Giersch, Uimmel and Steffen in this book). 
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(4) 

where it is useful to designate the elasticity coefficient with respect to any parameter p in 
the rate equation (Km, E, Ki etc.) by the syrnbol1t: 

· p· (ov·) 
xJ = i op; 'Pk· PI 

(5) 

and hence is defined (and measurable), again, for the "isolated" condition. When the 
parameter considered is the enzyme concentration Ej, 

(Sa) 

Additivity: Effects at a Single Step, j = i 

If we consider the enzyme whose concentration Ei occurs in its "own" rate equation, the 1t 

elasticity is as follows 

(5b) 

Clearly, if the rate is proportional to enzyme concentration, 

rr; = 1 (Additivity) (6) 

For non-proportionality, 

(Non-additivity) (7) 

Independence: Interactions between Steps, j -:t: i 

For all enzymes acting independently, no effects of changes in any enzyme concentrations 
Ej affect any rate vi and therefore 

~=0 (Independence) (8) 

If any kinetically significant interactions do take place, then for these 

(Non-independence) (9) 
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Effects on the Summation and Connectivity Theorems 

With additivity and independence assumptions, each control coefficient Cv can be replaced 
by C E• with E replacing v: 

(10) 

and the theorems are exactly the same as for coefficients Cv, i.e eqns. (2), with E replacing 
v everywhere. 

These are the formulations of the theorems most frequently encountered in both 
theoretical and experimental publications on control analysis. Additivity and independence 
are the normal assumptions based on "solution chemistry" and metabolic map "reconstruc
tion". In vivo, however, these assumptions must not be taken for granted, and there is 
increasing evidence that, not infrequently, the assumptions may be violated. We must 
therefore enquire how non-additivity and non-independence, defined above, will affect the 
theorems and modify the control distribution. 

The IT Matrix 

Taking non-additivity first, as the simpler problem, it can be shown (Kaeser et al., 1990) 

that if, at any step, we have non-proportionality of rate with enzyme concentration, the CE 
and Cv coefficients are unequal, but we have the following relationship 

(11) 

for flux or concentration control coefficients. 
As a result, if modulation of enzyme concentrations is carried out, the summation 

theorems, which apply to Cv coefficients, must be modified from 

n n 

L C[{= 1; L C~f= 0 (12) 
i=l i=l 

[cf. eqns. (2)] to 

n n 

L C~= 1 + Dev1; L C~= 0 + Dev2 (13) 
i=l i=l 

where Dev1 and Dev2 represent the deviations from the behaviour with additivity. A 
knowledge of the 1t values involved, however, would yield: 

(14) 
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allowing for any or all of the steps to have non-unit nj values. Similarly, 

n 

L czfni =o (15) 
i=l 

As an example one can consider the case where the enzyme consists of various homo
oligomers. For instance, a monomer-dimer system will be governed by an equilibrium 
constant K = [dimer]/[monomer]2, so that, if the activity (per unit site) on the dimer is 
different from that of the monomer, enzyme modulation would shift the equilibrium between 
the two forms, and non-additivity (nj :;t:1) would result. A number of such cases are discussed 
in Kaeser eta/. (1990). 

Turning now to the association of different enzymes to form complexes (Srere, 1987; 
see also Chapters 21-22 by Keleti and Ovacti respectively in this book), it will be possible 
that such association affects the kinetic properties of the constituent parts. This implies that 
the particular ~ :;t: 0 and that the enzymes act non-independently in their catalytic functions. 
Again, modulation of one enzyme concentration would affect not only its own activity but 
also that of its associated enzyme in that the concentration of the complex (and hence the net 
activity) would change. The formulations for such cases are more complex than for the non
additive case, but both types of enzyme-enzyme interactions can be quantified by a n matrix 
that pre-multiplies the elasticity matrix (Fell & Sauro, 1985; Sauro et al., 1987; Sauro & 
Kaeser, 1990; Sauro & Small, unpublished work). This n matrix contains all the possible 
non-additive and non-independent n terms. The diagonal entries comprise the non-additive nj 
terms and the non-diagonal entries the non-independent~ terms. 

The relationships between Cv and CE are given in matrix notation by 

(16) 

As the theorems of eqns. (2) apply to coefficients Cv, a new, more general set is given for 
coefficients CE, in which [1] represents a unit vector: 

Flux summation theorem: [cJJn-1[1] = 1 
(17) 

Concentration summation theorem: [ CSJn-1[1] = 0 

Similar transformations apply to the connectivity theorems. 
Thus if there are interactions in the system we can modify the experimentally found C E 

by their respective 1t elasticities to give Cv values to which the various theorems apply. The 
n values themselves are experimentally accessible. Thus, the non-additive n of eqn. (5b) can 
be written as follows: 

· Cllnv· 
1tl = Clln~i 
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so the slope of a plot of log v against log E will give a non-unit value if there is non

proportionality. The slope will vary with the absolute value of Ei and the value relevant to 

the in vivo condition must be chosen. 
Similarly, for non-independence, "isolated" enzyme pairs will have to be investigated 

for the deviation from independence expectations. 

"Channelling" 

The above analysis is clearly relevant to the problem of "channelling" (discussed in 

Chapters 21 and 22 of this book by Keleti and Ovadi respectively), which deals with the 

possible effects of certain enzyme-enzyme interactions. The kinetic approach in such 

publications compares rates calculated from model equations with experimentally obtained 

values of such rates. Control analysis, on the other hand, asks whether xi and ~ are or are not 

significantly different from 1 and 0 respectively at the operating point of the system. If they 

are not, then the control distribution is unaffected even if there is a mechanism that could 
affect the system under different conditions. If they do differ from the additivity and 

independence expectations, such experimentally discovered values could form the basis of 

other detailed work concerning the mechanism. 

It should be noted that the present analysis (as indeed all prior publications on this 

subject, Kaeser & Bums, 1973; 1979; Kaeser, 1983; Fell & Sauro, 1985; Sauro et al., 1987; 

Reder, 1988; Giersch, 1988) are independent of kinetic mechanisms. Thus control coef

ficients, elasticity coefficients and response coefficients are algebraically or operationally 

defined by partial derivatives or modulation procedures respectively, whatever the kinetic 

equations of the reactions or those of the system might be. Indeed these coefficients are, in 

principle, experimentally accessible without any knowledge of the underlying mechanisms. 

Where kinetic formulations are used, they are either by way of example or as the next best 

thing to their non-mechanistic estimation. The same applies to the xi and ~ elasticities 

discussed in this chapter. They are defined as partial derivatives of the rate, vi, with respect 

to Ei or ~ or as responses of the measured isolated rate to changes in these concentrations 

at the operating point. 
This model- and mechanism-independent approach should be contrasted with the 

attempts to derive relationships based on known (or assumed) kinetic formulations, often of 

a rather simplified kind. While it would be wrong to dismiss these approaches as providing 

no insight, they do suffer from the disadvantage of depending (a) on complete knowledge 

of a mechanism and (b) on the precision of the parameters used. Both of these may tum out 

to be unreliable. Many of the controversies between kineticists arise from differences in 

interpretation of kinetic results, often obtained under different conditions. In contrast, the 

values of coefficients obtained in vivo and used in control analysis are independent of 

assumptions but suffer, of course, from problems of experimental errors. Both approaches 

coincide in the necessity to have structural information (metabolic map, effector loops, 

etc.). This constitutes a "model" of some kind and is basic to any analytical approach. 

Finally, it must be quite clear that the philosophies underlying the two approaches are 
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quite different. Kinetic studies attempt to discover mechanism (see, e.g., Ovadi in Chapter 
22 of this book), whereas control analysis does not, but attempts to describe quantitatively 
the control distribution in terms of the responses of the constitutive parts (see also Chapter 

17 by Sauro in this book). Much misunderstanding has been generated by a failure to 

appreciate these fundamental differences. 
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Chapter 21 

Coupled Reactions and Channelling: their 
Role in the Control of Metabolism 

TAMAS KELETI 

CoNTROL analysis was developed for describing the regulatory properties of metabolic 
pathways (Savageau, 1972, 1976; Kaeser & Bums, 1973, 1979; Kaeser, 1983; Heinrich & 
Rapoport, 1973, 1974ab, 1983; Heinrich et al., 1977). The more effective the control, the 
more elastic the metabolic pathway, i.e. more able to respond to changes in external 
conditions. Kaeser (1983) has suggested the idea of "molecular democracy" to characterize 
each enzyme in a metabolic process as an autonomous entity and the control as a sort of 
linear superposition of the effects of the individual enzymes. The milieu of this "molecular 
society" is a bulk aqueous solution with non-interacting enzymes and non-compartmental
ized metabolites homogeneously dispersed therein. The links in such a metabolic network 
are the intermediate metabolite pools. 

However, there is now abundant evidence that the majority of cellular metabolism is 
spatially organized in membrane-adsorbed enzyme clusters, static and dynamic multienzyme 
complexes, enzyme arrays attached to the cytomatrix (Masters, 1981; Clegg, 1984; 
Friedrich, 1984; Welch, 1985; Damjanovich et al., 1986; Welch & Clegg, 1986; Srivastava 
& Bernhard, 1986, 1987; Srere, 1987; Keleti & Ovadi, 1988; Keleti et al., 1989a). Con
sequently, cell metabolism is more likely controlled by "supramolecular socialism" (Welch 
& Keleti, 1987) where the "cytosociological" behaviour of the enzymes is manifested in the 
evolutionarily governed formation of multienzyme systems (Welch & Keleti, 1981). 

In our institute several enzyme-pairs catalysing subsequent coupled reactions have been 
investigated to study the possibility of complex formation, interaction and intermediate 
channelling. The results are summarized in Table 1. For similar results in other laboratories, 
we refer to recent reviews (Friedrich, 1984; Srivastava & Bernhard, 1986; Srere, 1987; 
Keleti & Ovadi, 1988; Keleti et al., 1989a). More detail about channelling and its 
implications may be found in Chapter 22 by Ovadi in this book. To introduce the concept of 
organized enzyme systems into the original metabolic control analysis defined for non
interacting enzymes in bulk medium, we begin with the treatment of the kinetic power. 
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Table 1. Methods for detecting complex formation between enzymes 

Method 

Kinetic 

Thermodynamic 
Chemical 

Physico-chemical 

Isotope-kinetic 

Location near and 
interaction with 
membranes 

Enzymes 

Aldolase I glyceraldehyde 3-phosphate dehydrogenase 

Aldolase I glycerophosphate dehydrogenase 
Aspartate aminotransferase I glutamate dehydrogenase 
Phosphofructokinase I fructose bisphosphatase 
Aldolase I phosphofructokinase I calmodulin 

2-Phosphoglycerate mutase ly-enolase 
Aldolase I glyceraldehyde 3-phosphate dehydrogenase 
Aldolase I glyceraldehyde 3-phosphate dehydrogenase 
Aldolase I triose phosphate isomerase 
Aldolase I glyceraldehyde 3-phosphate dehydrogenase 

Aldolase I glycerophosphate dehydrogenase 

Aspartate aminotransferase I glutamate dehydrogenase 
Citrate synthase I malate dehydrogenase 
2-Phosphoglycerate mutase ly-enolase 
Aldolase I glyceraldehyde 3-phosphate dehydrogenase 

Aldolase I triose phosphate isomerase 

Aldolase I glyceraldehyde 3-phosphate dehydrogenase 

Compartmentalization Aldolase I glyceraldehyde 3-phosphate dehydrogenase 
of intermediates 

Pre-lytic protein release Aldolase I glyceraldehyde 3-phosphate dehydrogenase 

Mathematical modelling Aldolase I glycerophosphate dehydrogenase 
Coupled reaction within Aldolase I glycerophosphate dehydrogenase 

a single co-crystal 

The Kinetic Power: a Reappraisal 

The rate of the simplest enzyme reaction: 

kt kz 
E + S ¢:::::::} ES -t E + P 

k_l 
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in which E is the enzyme, S is the substrate, P is the product, and k 1, k_ 1 and k2 are rate 
constants, is described by the Michaelis-Menten equation (Michaelis & Menten, 1913; cf. 
Keleti, 1981): 

v = V max(S]!(Km + [S]) (1) 
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where Vmax=k2[Eh is the maximal velocity, [Eh is the total enzyme concentration and 

Km = (k_1 + k2)/k1 is the Michaelis constant. This equation is usually analysed by one of 
its linearizations, most frequently that of Lineweaver & Burk (1934; cf. Keleti, 1986): 

1/v = (Kn/V max)(1/[S]) + 1/V max (2) 

A straight line in the second quadrant with a positive intercept on the ordinate is 

characterized by two independent quantities: its intercept on the ordinate and its slope. 

Unfortunately, for about 50 years the intercept on the ordinate and its ratio with the 

reciprocal slope (i.e. the intercept of the extrapolation of the straight line on the abscissa, 

equal to -1/Km) were thus considered as independent variables. However, Cleland (1975, 

1977) and Northrop (1983) drew attention to the fact that it is Vmax and Vmax!Km that are 

really the independent kinetic parameters in enzyme action. 
In the 1970s k21Km (the apparent second order rate constant), termed the catalytic 

power or specificity constant, was considered the proper parameter for describing an 
enzyme's efficiency and thus as the central parameter in enzyme kinetics (Fersht, 1977; 

Welch & Keleti, 1981). However, we have more recently placed primacy on the metabolic 
conversion of substrate to product per se, within the context of enzymic activity in situ . To 

this end, we have defined the kinetic power, kr = V maJKm• which encompasses all factors 

which bear upon the conversion of free substrate to free product within the cell (Keleti & 
Welch, 1984; Keleti, 1988). Consequently, the linearized rate equation may be written: 

1/v = (1/kr)(l/[S]) + 1/Vmax (3) 

or in the form of the Hanes (1932) plot to have dimensions as time (cf. Cornish-Bowden, 
1987): 

[S]/v = 1/kr + [S]/V max (4) 

From the definition of the kinetic power the following result is obtained by taking its 
reciprocal (Keleti & Welch,1984): 

1/kr = Kn/V max =KJV max+ llki[Er] (5) 

where Ks = k_1/k1 is the dissociation constant of the ES complex. 

Consequently, kr depends on the equilibrium dissociation constant of the ES complex, 

the maximal catalytical capacity (V max) and the diffusion-controlled rate constant for ES 
formation. 

Kinetic Power of Allosteric Enzymes 

Let us assume an enzyme with a single substrate to be allosteric and to follow the symmetry 
model (Monod et al., 1965). Since, from eqn. (5) 
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(6) 

(where Ka is the association constant of ES complex) if Ka, i is the ac;sociation constant of 
enzyme-substrate complex on the ith subunit (i =1 ... 4 in a tetramer) 

K (Ki rvi)l(Ki-1 rvi-1) a,i = R + Ln.T I' R + Ln.T (7) 

where KR is the association constant of the ES complex in the R state and Kr is the same in 
the T state. Lis the allosteric equilibrium constant of the step Er ¢:) ER, i.e. L = [Er]/[ER], 
where ER and Er are the free enzyme in R and T state respectively. Consequently 

1l 

1/kr= {L [(Kk- 1 +lK~- 1)/(Kk +IK~)1Vmax + n(l/k1[E]r)}/n (8) 
i=1 

In the case of the tetrahedral sequential model (Koshland et al., 1966) assuming the 
subunits to exist in con formation A in the absence and B in the presence of bound substrate, 
the association constants of ES are 

(9) 

for the four subunits, where Kb is the association constant of S with the B conformation of 
subunits, Kc is the equilibrium constant of the conversion of the subunit in conformation A 
to conformation B, Kct is the subunit interaction factor between subunits in forms A and B 
and Ke that between a pair of B subunits. In this case 

1l 

1/kr = (2, (l!Ka,;Vmax) + n(l/k1[E]r)]/n 
i=1 

where Ka,i (i=l ... 4 for a tetramer) are the association constants defined in eqns. (9). 

Kinetic Power of Enzymes Catalysing Two-substrate Reactions 

Let us assume a simplified general reaction mechanism with two substrates: 

k1 kz 
E+A+B ~=>EAB--+ E+P+Q 

k.t 

(10) 
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assuming kl.A and k1,8 to be the second-order rate constants of the association of EA and 

EB, respectively, kz to be the first-order rate constant of the decomposition of EAB into 

products and free enzyme. V max is k2 [E]r and k.J,A and k.1,8 are the first-order rate 

constants of the dissociation of EA and EB, respectively, into free substrates and enzyme. 

We denote the respective Michaelis and dissociation constants with Km.A, Km.B• Ks,A• 
Ks,B· In random mechanisms we assume the elementary steps EA+B ¢'> EAB and EB+A ¢'> 

EAB to be very rapid in both directions as compared to the others. In the case of ordered 

mechanisms k1,8 and k.1,8 are the association and dissociation rate constants, respectively, 

of B on the EA complex. In this case the steps E+B ¢'> EB and EB+A ¢'> EAB are obviously 

lacking and the step EA+B ¢'> EAB is not considered to be very rapid as compared to the 

others. 

We define the kinetic power of the enzyme catalysing the reaction of substrates A and B 

as: 

kr ,A,B = V maxi[(Km,A + Km,s)/2] (11) 

i. e. the kinetic power is the ratio of maximal velocity and the average Michaelis constant. 

The individual Michaelis constants are defined as Km,A = (k_ 1,A + kz)/k 1,A, and Km.B = 
(k.1,8 +kz)lku,). 

From eqn. ( 11) it follows that: 

kr ,A,B = V max/[(Ks,A + k2fkt,A + Ks,B + kvkt,B)/2] 

= 2kt,Akt,Bk2[E]T/[kt,Akt,B(Ks,A + Ks,B) + k2(kt,A + kt,s)] 
(12) 

where Ks,A = k_ 1.A/k1.A, Ks,B = k.1,slk1.B. 
It is obvious that in general case the kinetic power is the function of the ratios of 

dissociation and decomposition of the central complex and its formation. 

(13) 

If k1.A = k1.B = k0 , where k0 is the diffusion rate constant, then 

1/kr.A.B = (Ks,A + Ks,s)/2k2[Eh + 1/ko[E]T (14) 

which is identical with the reciprocal of the kinetic power of one-substrate reactions (cf. 
Keleti & Welch, 1984) using average dissociation constant. Eqn. (14) is true if and only if 

the binding of both substrates to the enzyme is diffusion-limited. We can transform eqn. (14) 

into 

1/kr .A.B = (1/ko[E]T)[(K.t.A + K.t,s)l2k2 + 1] (15) 

and if k.J,A "' k. 1,s"' k2, which is adequate to the evolutionary "compromise" condition 

for a simple enzyme function (Knowles, 1976; Brocklehurst, 1977) 
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kr,A,B = ko[E]r/2 (16) 

Eqn. (16) shows the evolutionary maximum of kinetic power for a two-substrate enzyme 
in the conditions defined above to be equal to half of the diffusion-controlled rate constant, 
identically with the evolutionary maximum of kinetic power for a single-substrate enzyme 
(Keleti & Welch, 1984). 

Kinetic Power and Transient Time 

The kinetic power is a key parameter not only in the catalysis of individual enzymes but also 
in the overall behaviour of multienzyme systems. For a two-enzyme coupled reaction such 

as 

where S is the substrate of the first enzyme, I is the intermediate, i. e. the product of the first 
and the substrate of the second enzyme and P is the product of the second enzyme, the 
steady-state transient time in the general case (Bartha & Keleti, 1969; Easterby, 1981, 1986; 
Keleti, 1984) is: 

(17) 

where k2,2, Km,2 and 1/kr;;. are the first-order rate constant of product formation, the 
Michaelis constant and the kinetic power for the second enzyme, respectively. In the 
limiting case when [E:2.h « Km,2 (Hess & Wurster, 1970; Easterby, 1973; Welch, 1977b), 
this reduces to 

(18) 

(Keleti & Welch, 1984; Keleti & Yertessy, 1986; Welch eta/., 1988). 
For a sequence of n irreversible enzyme reactions rate-limited by an initial governing 

step with the subsequent enzyme steps subsaturated ([Sj] « Km): 

(Welch et al., 1988). 

n n 

't= :L. 'ti= :L. 1tkr.i 
i= I i= I 

(19) 

The smaller the transient time, the more efficient the metabolic pathway of which the 
given enzymes are part. 

Control in Homogeneous Enzyme Systems 

Assuming a chain of unsaturated but reversible enzymes carrying out the overall conversion 
of external substrate X 1 to an external product X2 via successive intermediary metabolites 
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it follows (Kaeser & Bums, 1973) by using the term of kinetic power (Keleti & Vertessy, 
1986, Welch et al., 1988) that the overall flux, F, for this system is: 

F =([X 1l- LX2l/Keq,1Keq.2 · · · Keq,.)/(1/kr,I + 1/kr:l.Keq,I + 1/kr.~eq.IKeq:l. + · · ·) (20) 

where Keq,I is the equilibrium constant between pools X1 and S 1, Keq,2 is that between 
pools S 1 and S2, etc. 

The factor describing the response of the overall rate to an infinitesimal change in 
enzyme concentration is the control coefficient (Kaeser & Bums, 1973, Heinrich & 
Rapoport, 1974a). We suggest that the kinetic power is the most appropriate variable for 
this coefficient (Keleti & Vertessy, 1986, Cornish-Bowden, 1987, Welch et al., 1988).We 
can therefore define the coefficient as: 

(21) 

Following the procedures of Kaeser & Bums (1973, 1979) but using the kinetic power 
as variable (Keleti & Vertessy,1986; Welch eta/., 1988), we find for the system in Scheme 
1: 

F 
Cr,l = (1/kr,I)/D 

(22) 

where 

(23) 

The elasticity coefficient is defined (Kaeser & Bums, 1973, 1979; Heinrich & Rapoport, 
1974a; Heinrich et at., 1977) as follows: 

v av/v {av) 
Es = aS/S = (S/v \as (24) 

where vis the velocity of the enzyme reaction and Sis the concentration of substrate. 
In the case of Michaelis-Menten kinetics (single enzyme-substrate complex and rate

determining irreversible elementary step of product formation) 

(25) 

(Crabtree & Newsholme, 1985, Keleti & Yertessy, 1986). 
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For a reversible Michaelis-Menten enzyme reaction of the form: 

E + S ~ ES ~ EP ~ E + P 

the elasticity coefficient, by using the kinetic power as variable, will have the following form 
(Westerhoff eta/., 1984; Welch eta/., 1988): 

where k~ k:., V~. vriiiiX are the kinetic power and maximal velocity, respectively, for the 
forward (f) and reverse (r) directions. 

Control in Heterogeneous Enzyme Systems 

The structural flux-control coefficient for an organized multienzyme system (Welch eta/., 
1988) is as follows: 

where 

CF = ~ A(alnF) r.s £.J prs dlmt 
r=l r 

n, 

1e, = II <Xi,r and 
j = 1 

f3rs = dln1tr 
dln1ts 

(27) 

The ai,r denote all (dimensionless) extrinsic factors arising in the organized state 
(Keleti, 1975; Welch, 1977a; Welch & Keleti, 1981). 

We consider that the system is composed of m enzyme-catalysed reactions, and n, are 
the number of factors bearing upon the kinetic power of the rth reaction. In this case the 
kinetic .power is: 

"' kr, =k;,n Cli,r (r = 1, 2, ... m) 
• i=l 

(28) 

where k*r,r is the intrinsic kinetic power (Welch eta/., 1988). 
In the case of dynamically interacting systems we do not know whether the given 

enzyme system is physically organized in the cell. Thus, we must write an apparent control 
coefficient (Welch eta/., 1988): 

(29) 

where superscripts c and b denote the organized (channelled) and bulk-solution com
ponents of flux control, respectively. 
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Control of Metabolism in "Near-equilibrium" 

If the catalytic capacity of an enzyme in the cell is much higher than that of the other 
enzymes which react with the same substrates, then it will bring its own reaction partners 
very close to thermodynamic equilibrium. This is called "near-equilibrium relation" (Holzer 
eta/., 1956; Bucher & Klingenberg, 1958; Hohorst eta/., 1959; Veech eta/., 1969; Krebs 
& Veech, 1969; Veech eta/., 1970). Since the kinetic requirements for a near-equilibrium 
relation are not too restrictive it can be expected that whole pathways may consist of them 
(Reich, 1976). If we assume the whole metabolic pathway in near-equilibrium, the Keq 
values defined originally as equilibrium constant between their pools will be simply the 
thermodynamic equilibrium constants of the reversible reactions catalysed by the corres
ponding enzymes Ei. Since Keq according to the Haldane relation is equal to k{IJ? (Keleti 
& Welch, 1984), we will have for the equation of the flux: 

n n 

F = ([XtliJ k~,i- [XiJIJ k~)!Dc (30) 
i=l j=l 

where 

The use of the kinetic power reveals the specific feature of the parameters of metabolic 
control even in near-equilibrium conditions. The flux depends only on the concentration of 
the first substrate and last product in the whole pathway and on the kinetic power of all 
enzymes. The control coefficients depend only on the kinetic powers (Keleti, 1989). 

Conclusion 

Using the kinetic power as key parameter all equations and parameters of the metabolic 
control receive a simple form independently of whether the metabolic pathway takes part in 
homogeneous bulk medium with non-interacting enzymes or in heterogeneous interacting 
enzyme systems. The equations reflect the velocities of the enzymes, the flux of the whole 
pathway, the parameters of the metabolic control if the flux governs the metabolic pathway 
or if the metabolic pathway is in "near-equilibrium". 

Since 1/kr for the second enzyme of a coupled system is equal to 't, the transient time of 
the coupled reaction (Keleti & Vertessy, 1986; Welch et at., 1988; Keleti & Ovlidi, 1988; 
Keleti, 1988; Ovlidi etal., 1989) all reactions that reflect 1/kr of the second enzyme of a 
coupled reaction is relevant for the transient time. This means that the reciprocal of kinetic 
power reflects the transient time for a second enzyme of Michaelis-Menten type, for an 
allosteric enzyme that follows the Monod-Wyman-Changeux or Koshland-Nemethy-Filmer 
model, as well as for enzymes with two substrates. 
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Chapter 22 

Channelling and Channel Efficiency: 
Theory and Analytical Implications 

JUDITOVADI 

CHANNELLING of metabolites in a reaction sequence is accepted as the phenomenon where 
the reaction product of one enzyme is transferred directly to another enzyme as its substrate 
via transient enzyme-enzyme interactions (Srivastava & Bernhard, 1986, 1987). According 
to the Srivastava-Bernhard hypothesis such a "one-encounter-type metabolite transfer" can 
occur if the heterologous enzyme complex associates and dissociates during every catalytic 
turnover of enzymes. Alternatively, an intermediate can be also channelled if its liberation 
from the active site of one enzyme is followed by direct transfer to the active site of the next 
enzyme in the sequence without diffusing into the bulk solution (Srere, 1987; Welch, 1985, 
Keleti & Ovadi, 1988, and references therein; see also Chapter 21 by Keleti in this book). 
Both mechanisms of intermediate transfer may result in physiological advantages to an 
organism, such as (i) segregation of competing pathways by microcompartmentation of 
intermediates, (ii) reduction of the time required to reach the steady state, and (iii) enhance
ment of metabolite flux by providing high local metabolite concentrations. A new descrip
tion of the channelling effect has been elaborated (Tompa et al., 1987) based on inherent 
parameters such as channel efficiency and intermediate lifetime. These inherent parameters, 
together with the analytical implications, will be discussed in this chapter. In addition, some 
examples will be presented to illustrate how the mechanism of intermediate transfer in 
interacting enzyme systems can be determined and how dynamic channelling complexes of 
enzymes can be specifically modulated. 

Theoretical Considerations 

Channelling of metabolites is often suggested to play an important role in metabolic 
economy and efficiency. The kinetic method for its detection and analysis is based upon 
measuring the time required for attaining the steady-state flux in consecutive reactions 
catalysed by functionally interacting enzymes (Hess & Wurster, 1970; Easterby, 1981, 1984; 
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Keleti & Ovadi, 1988, and references therein; see also Chapter 23 by Easterby in this book). 
This transient time deduced from the steady-state flux can be expressed as a function of the 
lifetime of the intermediate substrate; thus its reduction can be explained even if no changes 
in the kinetic parameters of the individual reactions occur and no physical barrier prevents 
the diffusion of intermediate into the bulk phase (Tompa et al., 1987). 

If the enzymes E 1 and E2 catalyse consecutive conversion of the initial substrate S to the 
final product P via formation of intermediate I, then the lifetime of the intermediate 
includes the times required for release from E1, diffusion, association to and conversion by 
~- The sum of these times for all molecules yields a characteristic lifetime of the whole 
population. Obviously, the fraction a of molecules that will be converted within E 1~ 
enzyme complex has a shorter lifetime ( <t'>) than that of the non-channelled molecules 
(< t> ), since the average distance between active centres is shorter within a heterologous 
enzyme complex than between separated enzyme molecules. The channel efficiency a can 
be defined as the probability that an intermediate is converted within the generating 
complex. If the generation of the intermediate proceeds at a constant rate v and E2 is 
subsaturated by I, then the concentration of I at steady-state [1 88 ] for partially complexed 
enzyme systems is as follows (Tompa et al., 1987): 

[155]= v/[Edtotad a[Complex]<t'> + ([Edrree + { 1 - a }[Complex])<t>} 

Since [P] = vt - [I88] at steady-state by extrapolating the linear part of the progress curve of 
product formation, its intercept on the time axis is the apparent transient time (-capp ), which 
is characteristic for channelling effect in a certain partially complexed enzyme system: 

'tapp= l/[EJl10taJ{a[Complex]<t'> + ([Edrree + {1- a}[Complex])<t>} 

where <t> is a concentration-dependent parameter (Km,21kca1,2[~]). whereas <t'> is con
centration independent, being an inherent property of the enzyme complexes. By measuring 
-capp at various enzyme concentrations to ensure different degree of complexation, the 
channel efficiency and lifetime of the channelled intermediates can be experimentally 
determined. In general, a varies between 0 and 1, such that < t'> < -capp < < t> 

The decrease in transient time in interacting enzyme system may be due either to the 
presence of physical barrier on the out-diffusion of intermediate or to the mere juxtaposition 
of the sequential active sites. Any alteration in the interacting system relating either to the 
diffusional process or to the kinetic parameters, will manifest in changes of a, <t'> and <t>. 

For the determination of these inherent parameters the -capp value should be determined 
from the steady-state velocity of the coupled reaction at various enzyme concentrations 
ensuring different degree of complexation and the linearized formula can be used (cf. Tompa 
eta/., 1987). To illustrate the applicability of the approach the experimental data for the 
aspartate aminotransferase/glutamate dehydrogenase interacting system are shown in Fig.1 
together with the model used for calculation of theoretical curves (Fig. lA). Fig. 1 c shows 
that the transformation of Fig. lB yields points conforming to a straight line only if an 
appropriate dissociation constant is employed. 
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Figure 1. Modelling of the aspartate aminotransferase (AA T) I glutamate dehydrogenase (GDH) interacting 
system. A. Reaction scheme, in which KG= a-ketoglutarate. B. Relation between the reciprocal transient time, 
~ (s) and the concentration of glutamate dehydrogenase (M). The solutions of enzymes at a constant ratio of 
aspartate aminotransferase/glutamate dehydrogenase 0.088 preincubat.ed for 30 min in EDTA, 0.05M Tris/HCl, 
pH 7.5, at 25 °C were mixed. The theoretical curve was computed assuming the model with the following 
parameters: (a) Km,GDH = 0.8 mM, kcat = 17 s -1, Kd = 8.6 ~M ; (b) the same except Kd = 0.86 ~M. For other 
experimental conditions see Salerno eta/. (1982). C. Linearization of transient time, ~•PP for the aspartate 
aminotransferase 1 glutamate dehydrogenase system according to the following equation: (~app[Edtotai
[Ed-J/[AAT-GDH]= a<t'>+(1- a)<t>. Data are taken from Fig.1B, assuming Kd= 8.6 ~M (o) or Kd= 0.86 
~M (+). 

For the study of enzyme-enzyme interactions most of the studies required measurements 
of kinetic parameters as functions of enzyme concentration. Even if it can be done in a wide 
range of protein concentration the subunit-subunit interactions of oligomeric enzymes at 
relatively high concentrations may perturb the heterologous interactions (Keleti et al., 
I977) . Our simple kinetic approach, which is suitable for identifying the mechanism of 
intermediate transfer in interacting enzyme systems, overcomes these difficulties (Ovadi, 
I986; Orosz et al., I988; Ovadi et al., I989). The approach is based on the comparison of 
macroscopic kinetic parameters determined under interacting and non-interacting conditions. 
The relation of the transient time 'taw for the coupled reaction and the pseudo-first-order rate 
constants measured in the absence(~) and presence of E 1 (kE2(E1)) are indicative of the 
mechanism in interacting enzyme system (cf.Table I). If the interaction of the two enzymes 
induces alterations in the ternary or quaternary structure of the enzymes without producing 
channelling of the intermediate the relationship described in line 2 of Table I is fulfilled. If 
the intermediate produced endogenously by the E 1 Ez complex is channelled between the 
two enzymes the transient time is reduced with respect to that measured in a non-interacting 
system. This relationship may result from either steric hindrance which impedes the 
diffusion of intermediate into the bulk solution (Table I, line 4) or simply from the juxta
position of active sites of the enzymes in complexed form (Table 1, line 3). The latter case, 
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Table 1. Relationships of the microscopic and macroscopic kinetic parameters in enzyme systems 

Type of interaction Macroscopic parameters Microscopic Examples' 
E, ~ parameters 

Non-interacting VE1 = V 1/tapp = kEiEI) = kE2 a= 0; <t'> = 0 GAPDH/TPI 

Interaction with VE1 > V 
conformational changes 

1/tapp = kEiEI) > kE2 0 <a< 1; <t'> < <t> PFKIFBPase 

Leaky channel VE1 =V 1/tapp > kEiEI) = kE2 0 <a< 1; <t'> < <t> Aldolase I GAPDH 

Partial channel VE1 = V 1/tapp > kE2 > kEiEI) 0 <a< 1; <t'> < <t> Aldolase I GPDH 

Perfect channel VE1 = V 1/tapp ~ oo; k£:z(E I) ~ 0 a= 1; <t'> = 0 AATIGluDH 

'Abbreviations: GAPDH, glyceraldehyde 3-phosphate dehydrogenase; TPI, triose phosphate isomerase; PFK, phospho
fructokinase; FBPase, fructose 1,6-bisphosphatase; GPDH, glycerol phosphate dehydrogenase; AAT, aspartate amino
transferase; GluDH, glutamate dehydrogenase 

which can be considered as a special one, we denoted leaky channel. If the escape of the 
intermediate from the complex is prevented the mechanism is denoted as a perfect channel 
(Table 1, line 5) where a= 1 and <t'> =0. 

If this kinetic approach is combined with the isotope dilution technique the sensitivity of 
the identification of the mechanism of intermediate transfer is enormously enhanced. In this 
special experiment the initial substrate of the consecutive reactions is radioactive (S *) and 
unlabelled intermediate is added to the reaction mixture. The relative specific radioactivity r 
of the end product P* at a given time t is measured and compared with those calculated 
according to the various mechanisms (lines 1-5 of Table 1) (Orosz & Ovacti, 1987). 

Scheme 1. Use of radioactive label (*) 
to measure the extent of channelling 
from a substrate S to a product P via an 
intermediate I* that may be able to ex
change with unlabelled intermediate I. 

~I* p 

S* P* 

~ 
~v 

In dynamically interacting enzyme systems the kinetic parameters one measures are 
composite functions of those for the processes catalysed by the complexed and by the 
separated enzymes. The use of the aforementioned, however, requires no knowledge of the 
dissociation constant of enzyme complex for identifying the mechanism of interaction since 
the enzyme concentrations used experimentally are the same independently of whether 
coupled or separate reactions are analysed. However, if the dissociation constant of the 
enzyme complex is known, then the extent of the channel can be deduced by applying the 
following equations derived for Scheme 1: 

[P*] vt- (1 -13)v/[k'(1 - e-k'1)] 
Tchannel = = ------'----'----=---'-----_.:..o;---

[P*] + [P] vt- (1 -13)v/[k'(l - e-k't)] + [lo](l - e-k'1) 
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where 13 = [Edboundii.Edtotal and k' = k[~l&eeii.E 2]total. Therefore, in a dynamically 
complexed enzyme system the value of the measured relative specific radioactivity is 
characteristic of the extent, or perfecmess, of the "channel", since 

r non-interacting ~ r measured~ r channel 

Experimental Analysis of Intermediate Channelling 

These kinetic approaches have been used to identify the mechanism of intermediate transfer 
in aldolase/glycerol phosphate dehydrogenase and aldolase/glyceraldehyde 3-phosphat~ 
dehydrogenase enzyme systems where the complex formation between the enzyme couples 
has been demonstrated (Vertessy & Ovadi, 1987; Orosz & Ovadi, 1987). The relationships 
of the kinetic parameters, given in line 4 of Table 1, indicate that the binding of exogenous 
intermediate (dihydroxyacetone phosphate) to the glycerol phosphate dehydrogenase is 
impeded probably due to steric hindrance, whereas the endogenous intermediate produced 
by aldolase has direct access to the dehydrogenase within the complex. In fact, we have 
found that the pseudo-first-order rate constant measured in the presence of non-functioning 
aldolase is lower than that measured in the absence of aldolase due to an apparent increase in 
Km value of exogenous intermediate for dehydrogenase (Vertessy & Ovadi, 1987). Very 
recently Chock & Gutfreund (1988) reported that the aldolase is an inhibitor for the 
dehydrogenase-catalysed reaction since the apparent Km of dihydroxyacetone phosphate is 
increased in the presence of aldolase. However, they interpreted these results in a different 
way; the increase was attributed to the binding of dihydroxyacetone phosphate to aldolase 
which reduced the free concentration of the triose phosphate. Unfortunately, these authors 
did not indicate what concentrations of aldolase and substrate were applied in their 
experiments. Nevertheless, since the apparent Km value for glycerol phosphate dehydro
genase is of the order of mM, an aldolase concentration comparable to this value should have 
been applied to have an observable effect on the apparent K m value due to its triose 
phosphate binding. Such a high enzyme concentration is hardly realizable in practice. In our 
experiments the concentration of aldolase was 15 J.l.M or lower; therefore, the segregation of 
the substrate by non-functioning aldolase could be excluded. The idea of an active-site
directed interaction between aldolase and glycerol phosphate dehydrogenase is consonant 
with the suggestion of Srivastava & Bernhard (1986), who observed direct transfer of the 
intermediate substrate from aldolase to glycerol phosphate dehydrogenase using different 
kinetic approaches. 

Another system that has been the subject of detailed investigations in several 
laboratories is the aldolase/glyceraldehyde 3-phosphate dehydrogenase system (Ovadi & 
Keleti, 1978; Ovadi et al., 1978; Patthy & Vas, 1978; Kvassman et al., 1988; Grazi & 

Trombetta, 1980; Orosz & Ovadi, 1987). We have found that the exogenous intermediate, 
glyceraldehyde 3-phosphate has the same probability to bind to the free dehydrogenase as to 
the complexed one (cf. line 3 of Table 1). However, the endogenous aldehyde form of 
glyceraldehyde 3-phosphate liberated at the active site of aldolase is transferred directly, at 
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least partially, within the heterologous enzyme complex due to the proximity effect. Thus 
the hydration in the bulk medium of the aldehyde form generated by aldolase before it 

reaches the active site of glyceraldehyde 3-phosphate dehydrogenase is prevented. Recent 
data of Kvassman et al. (1988) were consistent with ours reported ten years earlier. 
However, the result of their theoretical analysis have been interpreted to be compatible with 
a free-diffusion mechanism for the transfer of glyceraldehyde 3-phosphate. In fact, the rate 
of the enzymatic conversion of glyceraldehyde 3-phosphate in their experiments was much 
higher than the hydration rate of aldehyde form of glyceraldehyde 3-phosphate since they 
applied a high excess of dehydrogenase. Under our experimental conditions the rate of the 
enzymatic reaction catalysed by the dehydrogenase was slower than that of the aldehyde
diol interconversion, therefore, the unfavourable aldehyde-diol conversion of glyceraldehyde 
3-phosphate, at least partly, would have occurred if the substrate were to mix with the bulk 
medium. The channelling of aldehyde form of triose phosphate in the coupled reaction cata
lysed by aldolase and glyceraldehyde 3-phosphate dehydrogenase has been clearly demons
trated using the isotope dilution technique as well (Orosz & Ovacti, 1987). Moreover, the 
precise mechanism of intermediate transfer could be identified as a "leaky channel", which 
refers to a situation when the exogenous intermediate binds to the complexed dehydrogenase 
with the same probability as to the free one. This finding indicates that the active site of 
dehydrogenase in its complexed form may not be blocked by aldolase. 

Specific Modulation of Channelling Enzyme Complex 

The effect of metabolites on the dynamically interacting aldolase/glycerol phosphate 
dehydrogenase and aldolase/glyceraldehyde 3-phosphate dehydrogenase systems have been 
investigated using kinetic and physico-chemical approaches. Kinetics of aldolase-catalysed 
conversion of fructose phosphates was analysed by coupling the aldolase reaction to the 
metabolically sequential enzymes, glyceraldehyde 3-phosphate dehydrogenase (unpublished 
work) or glycerol phosphate dehydrogenase under interacting and non-interacting conditions 
(unpublished work). At low enzyme concentrations polyethylene glycol was added to 
promote complex formation of aldolase and glycerol phosphate dehydrogenase or glycer
aldehyde 3-phosphate dehydrogenase resulting in a significant increase in Km of fructose 1, 
6-bisphosphate and no change in kcat· Gel-chromatographic and fluorescence measurements 
showed positive modulation of the interaction of aldolase with either of the dehydrogenases 
by fructose 1 ,6-bisphosphate. While the presence of fructose 1 ,6-bisphosphate increased the 
affinity of aldolase to dehydrogenases, the presence of neither fructose !-phosphate nor 
dihydroxyacetone phosphate affected the dissociation constant of the heterologous enzyme 
complexes. We have concluded that the site for the binding of C-6 phosphate group of the 
substrate on aldolase is likely to be involved directly or indirectly in the interactions. Since 
there are several similarities in the interaction of aldolase with glyceraldehyde 3-phosphate 
dehydrogenase and glycerol phosphate dehydrogenase we suggested that their binding 
involves similar mechanism and their binding sites on aldolase might overlap. Therefore, we 

suggested that fructose bisphosphate modulates the formation of channelling complex 
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between aldolase and dehydrogenases. Obviously, the effect of metabolite levels and the 
alternative enzyme assemblies may mutually act upon each other. Therefore, any effect 
which influences the specificity of enzyme interactions may result in an alteration of 
substrate level, consequently, the flux of metabolic pathways (Ovadi, 1988). 

Calmodulin as a Fine Modulator of Dynamic Enzyme Associations 

Since phosphofructokinase and aldolase have been recognized as new target enzymes for 
calmodulin (Mayr, 1984; Orosz et al., 1988ab) and calmodulin affects their catalytic 
properties at the concentration which is expected to exists in muscle cell (Mayr, 1984; Orosz 
et al., 1988a), calmodulin may be expected to act as modulator protein on dynamic 
enzyme associations. 

Macromolecular interactions of phosphofructokinase with functionally related enzymes 
seem to be important at physiological concentrations where this enzyme has sensitivity to 
allosteric effectors fundamentally different from that in diluted form (Bosca et al., 1983). 
We presented evidence for the interaction of phosphofructokinase and fructose bisphosphat
ase at physiological concentrations with a concomitant activation of phosphofructokinase 
and inhibition of fructose bisphosphatase (Ovadi et al., 1986). This type of interaction may 
be identified as an interaction inducing conformational changes (Table 1, line 2). Another 
metabolically related enzyme, aldolase, reduces the rate and extent of inactivation of kinase 
due to its dissociation on dilution, probably because it binds to the "nascent" dimer of the 
kinase keeping it in a partially active conformational state (Orosz et al., 1988a). The effect 
of calmodulin on the concentration-dependent interaction of phosphofructokinase with al
dolase has been analysed by means of a covalently attached fluorescent probe, gel penetra
tion experiments and using a kinetic approach. We demonstrated that calmodulin perturbs 
both the homologous and the heterologous interactions in the phosphofructokinase/aldolase 
system, and elaborated a molecular model describing this effect (Orosz et al., 1987). This 
model of the phosphofructokinase/aldolase/calmodulin interacting system rests upon the 
following observations: (i) the active tetrameric phosphofructokinase dissociates into 
inactive dimers followed by slow conformational changes; (ii) the binding of aldolase to the 
dimeric phosphofructokinase results in a partially active dimeric phosphofructokinase; (iii) 
calmodulin induces a shift from active tetrameric phosphofructokinase toward inactive 
dimers by binding preferentially to the conformationally changed dimeric kinase; (iv) 
calmodulin also binds to aldolase causing a significant decrease in the kcat value of aldolase; 
(v) formation of a ternary protein complex phosphofructokinase-calmodulin-aldolase can be 
excluded; (vi) anti-calmodulin drugs eliminate the calmodulin-mediated inhibition of kinase. 
We considered all the equilibria between the enzyme pairs according to Scheme 2 and the 
equilibrium constants and the specific values of the enzymatic activity, gel penetration 
volume and anisotropy for enzyme species were determined experimentally. The values of 
activity, gel penetration volume and anisotropy from the three different types of experiments 
for the partially complexed protein systems were measured and calculated assuming the 
model (Scheme 2). The fact that the values of the calculated and measured parameters show 
good agreement suggests the validity of the proposed model, although more complex 
mechanisms cannot be excluded. 
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K1 K2 PFK tctmnc:r C II' PFKdimer C ~ PFKdimcr" 

_.:tT-j~._ 
Ks 

aldolase-calmodulin 

Scheme 2. Molecular model for interaction in the phosphofructokinase (PFK) I aldolase I calmodulin system. 
Relationships between the concentrations are shown below; for any parameter the measured value is the sum of 
the values for the individual PFK-containing species, weighted according to the concentration of that species 
divided by the total PFK concentration in dimer units. 

Kt = [PF'KrumerJ21[P~tranerl 
K2 = [PFKdimer]I[PFKdimer•l 
K3 = [aldolaserre.J[PFKdimer,treeli[PFKdimer,bounJ 
K 4 = [ calmodulilltreel [PFKdimer* ,ere.JI[PFKdimer• ,boon~ 
Ks = [aldolaserre.J[calmodulinere.JI[aldolasecabnodulin·boundl 

[PFK]total in dimers = 2[PFKtell'llnerl + [PFKdimer,freel + [PFKdimer*,freel 
+ [PFKdimer,bou~ + [PFKdimer*,boundl 

[aldolase]IOtal in tetramer = [aldolaser,e.J + [PFKdimer,boun~ + [aldolasecalmodulin-boundl 
[calmodulin]10tal = [calmoduli!Jr,e.J + 2[PFKdimer*,bouodl + 2[aldolasecalmodulin-boundl 

Speculation about the Physiological Relevance of our Data 

In muscle cells the physiological concentration of glycerol phosphate dehydrogenase is low 
in comparison to those of aldolase and glyceraldehyde 3-phosphate dehydrogenase (Srere, 
1967). Consequently, only a small fraction of aldolase may be complexed by glycerol 
phosphate dehydrogenase which implies the modulating effect of fructose 1,6-bisphosphate 
on the interaction of aldolase and glyceraldehyde 3-phosphate dehydrogenase being relevant 
at physiological enzyme concentrations unless the the control of lipid synthesis is consider
ed. Since glyceraldehyde 3-phosphate dehydrogenase preferentially interacts with the 
substrate-bound aldolase, the metabolic conversion of fructose 1 ,6-bisphosphate may be 
performed within the confines of the two-enzyme complex. This has been shown in vitro to 
be more efficient catalytically, as the unfavourable conversion of the aldehyde form of 
glyceraldehyde 3-phosphate into diol is avoided; the nascent aldehyde, emerging from the 
active site of aldolase, is immediately available for dehydrogenase without being released 
into the bulk solution. Therefore, the metabolic flux of fructose 1 ,6-bisphosphate specifically 
to 1,3-bisphosphoglycerate might be modulated by the very presence of the former. fructose 
1,6-bisphosphate, a product of the central regulatory enzyme phosphofructokinase, is a 
positive effector of the second stage of glycolysis, acting, for example, via feed-forward 
(allosteric) activation of the enzyme pyruvate kinase and via enhancement of enzyme 
associations with cytoskeletal elements (Masters, 1981). Cellular conditions favour the 
binding of aldolase to dimeric phosphofructokinase, enhancing the catalytic efficiency of 



22: Channelling and Channel Efficiency 279 

phosphofructokinase in vivo, which may be quite different from those determined for tetra

merle phosphofructokinase. The inactivation kinetics of phosphofructokinase is also strongly 

influenced by the enzyme concentration itself, and its associations with other proteins or 

cytoskeletal elements of the cell which in tum is controlled by fructose 1,6-bisphosphate. In 

response to a burst of activity of phosphofructokinase under physiological stress in muscle, 

fructose 1, 6-bisphosphate facilitates its own conversion towards ATP production by 

selectively enhancing the formation of channelling enzyme complex between aldolase and 

glyceraldehyde 3-phosphate dehydrogenase. Calmodulin may control the ability of phospho

fructokinase to produce fructose 1,6-bisphosphate in a Ca2+-dependent manner. 
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Chapter 23 

Temporal Analysis of the 
Transition between Steady States 

JOHN S. EASTERBY 

MOST STUDIES of metabolic control have concentrated on defining pathway flux and its 
determinants. In particular the fine-control of enzyme activity and the homeostatic mainten
ance of steady states has been a focus of attention. In the cell many changes are more 
dramatic and involve large changes of flux. Much less attention has been given to the 
equally important topic of the time-scale on which such changes, and metabolic processes 
generally, operate. A full description of regulation of a system must include such temporal 
analysis. It is insufficient to ask of a pathway, cell or organism "How fast does it go?", it is 
also necessary to ask "How long does it take to get there?". This temporal responsiveness 
sets the time-scale on which metabolism operates and is best described by the pathway 
transition or transient time, 't. The reluctance to study pathway dynamics probably arises 
partly from a mistaken belief that real-time measurements or a detailed knowledge of path
way kinetics is necessary. Either way the experimentation would be difficult. 

The study of pathway transients developed, almost by accident, out of a related interest 
in the optimization of coupled or consecutive enzyme reactions. This area of investigation 
was initiated by McClure (1969) with a description of the kinetic behaviour of a two-enzyme 
system in which the first enzyme was severely rate-limiting and the single intermediate was 
convened to a measurable product by a single coupling enzyme. The two-enzyme system 
was later extended to three (Barwell & Hess, 1970) and finally developed to describe a 
system containing an unlimited number of coupling enzymes (Easterby, 1973). In all of 
these studies the rate-limiting nature of the first enzyme of the series ensured that the 
intermediate concentrations in the sequence were low and the coupling enzymes followed 
pseudo-first-order kinetics with respect to the intermediates. In all cases the steady-state 
production of end-product by the system was preceded by a lag period during which the 
intermediates of the sequence were accumulating to their steady-state levels. If the steady
state asymptote to the progress curve in product formation was projected to the time axis, it 
intercepted at the lag or transient time. In the case of a two-enzyme system, at least 4.6 
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transient times must elapse before the intermediate concentration and the rate of product 
formation approach their steady-state values to within 1% (Fig. 1 of Easterby, 1973). For 
progressively longer sequences this time is proportionately decreased until in the case of 
very long sequences the system obeys a step function and enters the steady state immediate
ly on reaching the transient time (Easterby, 1984). 

This simple system was never intended to represent the behaviour of metabolic path
ways, but it did indicate some principles which might apply more generally to pathways. 
Firstly the transient time for the sequence was found, rather surprisingly, to be independent 
of the initial, rate-limiting enzyme. Secondly associated with each secondary or coupling 
enzyme in the sequence was a transient time corresponding to the reciprocal of the pseudo
first-order rate constant for the reaction catalysed and therefore corresponding also to the 
mean lifetime or turnover time of the intermediate. Thirdly, these transient times were addit
ive and the total transient was their sum. Fourthly the intercept on the ordinate axis (Fig. 1) 
corresponded to the negative sum of the steady-state intermediate concentrations of the 
sequence. 

Figure 1. Relationship between product 
concentration and time in a coupled enzyme 
system. Substrate S is converted to end
product P through several intermediates. The 
initial enzyme of the sequence is assumed to 
determine the flux. The steady-state asymptote 
to the progress curve intersects the time axis at 
the transient or transition time, 't. The ordinate 
axis is intersected at the negative sum of the 
intermediate concentrations. The line drawn 
parallel to the steady-state asymptote and 
passing through the origin represents the 
hypothetical time-<:ourse if no intermediates 
were involved. The displacement of this line 
from the asymptote, along the product axis, is 
equal to the sum of steady-state intermediate 
concentrations, irrespective of the kinetic 
mechanisms of the enzymes involved. 

[P) 

time-> .. ··· · ·· · ··~ 't 

~ negative sum of intermediate concentrations 

S ---> ---> ---> Intermediates--->---> ---> P 

The transient times associated with individual enzymes in this sequence were given by 
the KrrfV ratios. This suggested that not only enzymes with low activity but also those with 
low affinity for their substrates could generate appreciable transient times and the term 
"time-limiting enzyme" was coined to describe them (Easterby, 1973; Heinrich & Rapoport, 
1975). If such an enzyme were to follow a branch point in a pathway, then it could 
determine the distribution of flux between branches as it would only enter its steady state if 
the feeder pathway were sustained for a sufficient length of time. Almost immediately such 
an enzyme was discovered in the arom complex of Neurospora. This was shikimate kinase 
and was a member of what was thought to be a multienzyme complex but is now known to 
be a multifunctional protein (Welch & Gaertner, 1976). The conclusions drawn from the 
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model system were subsequently applied to several other pathways and multienzyme com
plexes, but always with a certain danger in view of the very restricted original model. 

A Generalization of the Description of the Transient 

It soon became clear that the coupled en~yme model was a special case of a much more 
general approach to pathway transience. It can be seen from Fig. 1 that, had there been no 
intermediates present in the pathway, then the progress curve for product formation would 
have followed a straight line with slope equal to the steady-state rate and passing through the 
origin. The difference between this line and the actual progress curve in product formation is 
clearly equal to the concentration of accumulated intermediates, irrespective of the kinetic 
description of the model. Thus the transient time can be deduced from a consideration of 
mass conservation without the need to model the system. The outcome is that associated 
with each intermediate is a transient given by: 

't = [I],Jj (l) 

where [I]88 represents the steady-state concentration of intermediate and 1 the steady-state 
flux. As before the overall transient is a simple sum of the individual intermediate transients. 
Thus the same basic interpretation of transience which was applied to the earlier pseudo
first-order model was shown to obtain and indicated the value of even a simple kinetic 
model in the development of a general approach. This general theory was first stated by 
Easterby (1981) but had also been recognized in a more limited form by Bartha & Keleti 
(1979). The difference between this description of the transient and that for the coupled 
reaction model was that it was now seen generally that the transient was associated with 
intermediates, not enzymes. The transient time was the time required to generate the pools of 
intermediates. It was also associated with individual enzymes in the simple model as the 
reactions considered were irreversible. Thus transient times are generally associated with 
intermediates. They are additive in determining the overall pathway transient. They are not 
determined by a single enzyme but are dependent on all enzymes in the pathway up to the 
next irreversible step (Easterby, 1981). 

This may be summarized as follows: 

(2) 

" " 
't = L. (llil.JJ) = L. 'ti (3) 

i=l i=l 

where Ii signifies the ith of n intermediates in the pathway. 
This approach to the analysis of pathway transient times has the striking advantage for 

the experimentalist of being independent of any prior assumption of a kinetic model to 

describe the pathway. Simple measurement of intermediate concentrations and fluxes serves 
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to identify the time scale on which the pathway operates and the contributions of individual 
steps to that time-scale. 

So far no comment has been made as to what constitutes a pathway. For the purpose of 
this analysis the pathway may be rather broadly defined. The flux across the initial boundary 
must be constant with time and the final boundary may be placed anywhere. The end
product constitutes the sum of all material crossing the final boundary. In measuring the 
transient time it is assumed that initially no intermediate is present and the flux is zero, thus 
the transient time is associated with the establishment of the pathway from rest. Of course 
this is an unrealistic view of what happens in the cell where passage between steady states 
rather than their establishment from rest is the more common occurrence. However, such a 
situation can be accommodated very easily. It turns out that the transient times are functions 
of state and are independent of the route by which the steady state was reached. It is there
fore easy to show that the time required for a transition between steady states can be 
described in terms of the transient times associated with the establishment of each steady 
state from rest. Thus the transient time for a transition from steady state A to steady state B 
is given by: 

(4) 

where tA and ts represent the transients associated with the establishment of steady states A 
and B from rest and hand ls are their respective fluxes. 

Variation in the Rate of Input to the Pathway 

The description of the pathway so far given assumes that the initial reaction or boundary 
involves a constant rate of input. In general this will mean that the initial step is flux 
generating. This restriction may be lifted if allowance is made for variation in the rate of 
input. This generates an additional transient time given by the definite integral: 

(5) 

where vis the rate of input and V88 represents the steady-state input rate (ie. the steady-state 
flux). This term therefore allows for variation of the rate of input (Easterby, 1986). This 
variation arises either from substrate depletion or feedback on the initial boundary of the 
system. Substrate depletion is easily overcome experimentally but feedback is more of a 
problem. However, in practice the magnitude of this transient is likely to be small compared 
to the general pathway transient. Where it is necessary to consider it, the only answer may 
be to resort to computer simulation (Easterby, 1986). In the case of negative feedback the 
transient will be negative and will reduce the overall transient time. One function of negative 
feedback may be to accelerate the attainment of the steady state in this way. Apparent over 
capacity of some enzymes may be necessary in order to ensure a rapid transition between 
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steady states with the final flux being determined by feedback. If both substrate depletion 
and feedback on the initial boundary are absent then this transient reduces to the character

istic time of the initial enzyme and again will usually be correspondingly small and 

negligible. 

Kinetic Models for the Determination of Transient Times 

The discussion so far has centred on how transient times are measured experimentally, 
namely from fluxes and pool sizes and the theory does not constitute a model of pathway 
behaviour. It is often useful to have a kinetic model of how the steady-state pool sizes and 
fluxes are determined. Given such models it is possible to compare theory with experiment. 
A model in this context merely means some function which will adequately represent the 

transformation/removal of an intermediate within the pathway during the steady state. The 
approach is therefore almost phenomenological in the sense that the function does not 

require great generality but must merely represent the enzyme's rate adequately under the 

restricted steady-state conditions being considered. Functions are of the following form: 

d[l] dt= Vss- f([l], x,y, Z· • ·) =0 (6) 

where x, y, z ... etc are any modulators of enzyme activity. These functions are generally 
fairly simple where irreversible conversion of the intermediate is involved. They become 
complex where reversible processes are involved (Easterby, 1981, 1985). Some common 

cases are as follows: 

(a) Conversion of intermediate follows pseudo-first-order kinetics: 

t =Krr/V (7) 

(b) Conversion follows Michaelis-Menten kinetics: 

t = Krr/(V- 1) (8) 

A closer examination of systems of this sort shows that if enzyme capacity exceeds flux by a 
factor of more than two, then first order behaviour gives a reasonable representation of 
transient response, even for enzymes obeying Michaelis-Menten kinetics (Easterby, 1981). 

(c) Conversion follows the Hill equation: 

(9) 

Here h represents the Hill coefficient and S0.5 the substrate concentration for half-maximal 
rate. In this case, if the enzyme is highly cooperative, then t is determined by S0.5 and flux 

and is independent of the enzyme's capacity. 
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In all of these analyses it has been assumed that the transient time is due to the accumul
ation of free intermediate pools within the pathway. In practice enzyme-bound intermediates 
might also contribute to the transient. In this case 't for a Michaelis-Menten enzyme is given 
by: 

(10) 

where [E] 1 represents the total enzyme concentration and kca1 its catalytic constant; the first 
term in these expressions represents the contribution of enzyme-bound intermediate. The 
conclusion is that the contribution of enzyme-bound intermediate to the transient is only 
significant when enzyme concentration approaches Km; in other words it will generally be 
insignificant. A complete description of the transient would, of course, have to take into 
account variation in the rate of input. The complete description is therefore as follows: 

't=_l_ tctv +I -~-+~ iv,. " ( K ) 
Vss 0 i= 1 kcat,i V; - Vss 

(11) 

the first term representing the variation in flux, the second the mean lifetimes of enzyme
substrate complexes and the third the lifetimes of the pools of free intermediates. 

One use of modelling of this sort is to identify diffusional restrictions or substrate 
channelling within experimental systems. The transients so far described have been derived 
on the assumption that both enzymes and substrates are present in a system where free 
diffusion can occur. If measured transients correspond to theoretical values then one may 
assume that this is a valid assumption. If transients are greater than those expected on the 
basis of theory then some form of diffusional restriction, owing perhaps to high intracellular 
viscosity, may be occurring. Conversely if the transient times are smaller than expected 
substrate or intermediate channelling is indicated. 

The Analysis of Substrate Channelling 

In recent times much attention has been directed to substrate channelling within multi
enzyme complexes and multifunctional proteins. By this process, intermediates in the reac
tion chain are thought to be transferred directly between enzymes of the complex without the 
need for diffusion into the bulk medium. Thus it might be envisaged that at least three pools 
of intermediate exist within the pathway. One of these would occupy the bulk medium, a 
second would correspond to enzyme-bound intermediate and the third to intermediate trapp
ed or channelled within the complex but not directly associated with enzyme active sites. 
The system described is thus a "leaky" one in that not all intermediate is retained within the 
complex, some is allowed to enter the bulk medium and must diffuse back to the complex if 
it is to be converted through to product. Such a system has three possible advantages. Firstly 
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the existence of the multienzyme complex may serve to isolate the reactions and intermedi
ates of a pathway. Secondly coordinated regulation of enzymes within the complex may be 
possible (Welch & Gaertner, 1976; Nicholson et al., 1987). Thirdly a minimization of the 
transient time for the pathway may occur thus obviating the need for the accumulation of 
intermediates. The concentration of intermediate seen by enzymes of the complex is greater 
than if free diffusion were allowed and therefore, according to the mass conservation 
principle, less material and time is wasted in generating unwanted intermediate pools. 
Channelling offers no flux advantage as flux is still determined by the initial rate of input to 
the pathway. 

It is clear that channelling can be analysed in terms of the transient times involved. 
Channelling leads to a reduction in the sizes of intermediate pools and therefore to the 
associated transient times. At an empirical level the advantage gained from channelling can 
be assessed by comparing the measured transient for the complex with that derived from a 
consideration of free solution kinetics as detailed previously. However, in order to gain a 
better insight into the mechanism, advantages and potential need or usefulness of channell
i~g, a model is required. Fig. 2 contains what may be regarded as the minimum model con
sistent with a realistic view of the channelling process. Here channelling of intermediate I to 
a single enzyme E within a multienzyme complex or multifunctional protein is considered. 
To keep the model relatively simple it is assumed that the release of the intermediate from 
the preceding enzyme is irreversible with proportion a being channelled and 1 - a being 
released into free solution. Thus the channel is "leaky" and a represents the efficiency of 
channelling. a will be in the range 0 to 1. It is assumed that no direct exchange of any 
significant extent occurs between channelled and free intermediate as this would essentially 
abolish the channel. However, some exchange must be contemplated through the enzyme 
complex, EI, if the intermediate released into the bulk medium is ever to return to the path
way and be converted to end-product. Thus we must allow both ends of the channel to be 
somewhat "leaky". As usual the transient time for this system is given simply by the sum of 
enzyme-bound and free intermediate concentrations divided by the steady-state flux and can 
be determined without recourse to the solution of differential equations. The descriptions of 
the transient times derived for the scheme are given in Fig. 2. 

lc~k, 
k..,~ k 

':lf-rEI~P 
lp 

't = (1 - a.)'tp + a.'t(:, where 

'tp =-1-+ KmF + Koc=_1_+ KmF + Kop/~ 
kcat V - Vo kcat V - Vo 

'tc = _1_ + Kme + Kop = _1_ + KmFI~ + Kop 
kcat V - Vo kcat V - VO 

Figure 2. A model of substrate channelling within multienzyme complexes and multifunctional proteins. Ic 
represents channelled intermediate, IF intermediate released into free solution and v0 represents the steady
state flux. 'tp and 'tc are the transient times associated with the routes involving complete release and complete 
channelling of intermediate respectively (ie. a = 0 and a = 1). KmF and Kmc are the Michaelis constants of 
intermediate associated with these routes and KIF and K oc the corresponding dissociation constants of 
intermediate from the enzyme into free solution and into the interior of the enzyme complex respectively. The 
channelling efficiency a represents the fraction of intermediate channelled; the channelling advantage ~ the 
factor by whichKm andK0 are reduced within the complex and Vthe maximum velocity of enzyme E. 
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There are two ways of defining the efficiency. This may be based either on the 
distribution of flux, a, or on the distribution of intermediate between the complex and free 
solution. These are not the same and it is clear that the advantage in reduction of inter
mediate pool size comes from the distribution of intermediate and is related to the transient 
time. The distribution of flux is important in so far as it contributes towards the determina
tion of pool size. 

From the equations of Fig. 2 it can be seen that the total transient time is a linear 
combination of the transient times associated with the two extreme routes. Namely total 
channeling (a = 1) and total release of intermediate into free solution (a = 0). Each transient 
is weighted by the flux through the corresponding route. The same result was found by 
Ovadi et al. (1989) but here a more complex model is considered and the contributing 
transient times are correspondingly more complicated. The transient associated with the 
channelling route, 'tc, comprises terms attributable to enzyme-substrate complex, channelled 
intermediate and intermediate released from the enzyme-substrate complex into the bulk 
medium. It will be noticed that even with complete channelling, intermediate may still enter 
the bulk medium by this route and its concentration will be determined by the dissociation 
constant of the enzyme-substrate complex. The transient for the completely unchannelled 
route, 'tp, is analogous to 'tc but now intermediate may be released into the "interior" of the 
complex by dissociation. 

The single most important kinetic consequence of channelling is the increased concentr
ation of intermediate seen by the enzyme. This will manifest itself in a reduction in transient 
time and an apparent reduction in Km. The reduction in Km will result principally from an 
increase in the on constant for the formation of EI complex, owing to the increased 
probability of an encounter between enzyme and intermediate. The dissociation constant of 
the complex will be similarly reduced. In Fig. 2, the factor by which Km is reduced in the 
complex compared to free solution has been called p, the channelling advantage. Assuming 
that the improved access to intermediate is the main consequence of complex formation and 
other aspects of kinetic behaviour are unaltered then the dissociation constant will be 
reduced by the same factor. Thus the description of the transients can be simplified and 
expressed in terms of the free solution Km and dissociation constant (Fig. 2). 

Two quantities now describe the channelling process. The channelling efficiency, 
representing the division of flux, and the channelling advantage, representing the increased 
accessibility or binding of intermediate to the enzyme. Analysis of the equations of Fig. 2 
leads to the following conclusions: 

1. There is a lower limiting value to the transient time. This is reached at high protein 
concentration and is equal to 1/kcat> the mean lifetime of intermediate in the EI 
complex. Therefore, even with 100% channelling and high channelling advantage, no 
kinetic advantage is received from channelling at high protein concentration as the 
transient time is the same as for the free solution case. By high protein concentration we 
mean concentrations comparable to Km. 

2. For 'tc and 'tp to be distinguishable and a reduction in transient time to be seen, KmF 
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must be much greater than K0 p. This equivalent to saying kcat must be much greater 
than the off constant of the EI complex (kcat >> k_r). Thus enzymes exhibiting rapid
equilibrium kinetic mechanisms in free solution make poor candidates for channelling. 

Returning to Fig. 2, while the channelling efficiency will be in the range 0-1, channell
ing advantage will generally be greater than unity. As it approaches infinity we have the 
situation in which there is no pool of intermediate internal to the complex but the inter
mediate is transferred directly between enzyme active centres. 

The channelling efficiency in this system is given by: 

KmF + KDFj~- (r- Vkcat)(V- vo) 
0. = ------''---------,-;---

(KmF- Kop)(l- Y~> 
(12) 

Various simplifications to this expression are possible if channelling is efficient. That is to 
say if 13 is large or KmF >> K0 p. It should then be possible to evaluate the transients for the 
channelled and un-channelled routes. Alternatively, if a can be assessed by isotopic means, 13 

becomes accessible. In the simplest case where 13 is large and KmF is much greater than 
K0 p, a is given by: 

(X= 1- (t- Vkca1)(V- Vo) 
KmF 

(13) 

In the foregoing account I hope to have shown that a simple study of intermediate 
concentrations and fluxes can provide considerable information on the time domain and 
dynamics of metabolic processes. Such quantities should be readily accessible to measure
ment by the experimentalist. 

Unification of Flux and Temporal Control Theories 

Temporal control and flux control within pathways deal in the same quantities, namely pool 
sizes and fluxes. It may be readily shown that these control processes are related through the 
control coefficients. A temporal control coefficient may be defined such that: 

(14) 

where ~S represents the sum of intermediate pools and J represents the flux. 
A summation property also applies to the temporal control coefficients: 

n 

L C(h=-1 (15) 
i=l 

This reflects the fact that the transient decreases as the enzyme concentrations within the 
pathway increase. This topic is developed more fully by Acerenza in Chapter 25 of this 
book. 
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Chapter 24 

Sensing of Chemical Signals by Enzymes 

JACQUES RICARD, JEAN BUC, NICOLAS KELLERSHOHN 
and JEAN-MICHEL SOULIE 

LIVING SYSTEMS are able to sense the intensity of chemical signals originating from the 
external milieu and are able to detect whether this intensity increases or decreases. Chemo
taxis of bacteria represents a striking example of these sensory properties defined at a rather 
simple level (Koshland, 1979, 1980ab, 1981). Bound enzyme systems in which diffusion is 

a limiting process may also display these sensory properties (Engasser & Horvath, 1974, 
1976; Ricard, 1987). This implies that the system possesses a memory and that its response 

is different depending on whether the concentration of a ligand increases or decreases. In 
other words the response of the system is sensitive to its history. Nucleic acids may display 
metastable secondary structures upon their titration and therefore may exhibit hysteresis 
effects (Revzin et al., 1973, Neumann, 1973, Schneider, 1976). 

The aim of this chapter is to show that isolated enzymes in free solution may exhibit 
apparent multiple steady states and behave as true biosensors. A more detailed account of 
these ideas has been published elsewhere (Ricard et al.,1988ab, Sou1ie et al., 1988). 

Sensing Chemical Signals and the Existence of Meta-Steady States 

If one neglects product inhibition, and if there is a large excess of a substrate over the 

enzyme concentration, the equation that describes the progress curve of product appearance 

assumes the following form: 

_!!1 =a+ Vsst + i. 'ljl;e-Ait 
[Elt [Elt i= 1 

(1) 

where [P] is the product concentration at time t, [E]1 the total enzyme concentration, V 88 the 
steady-state rate, 'I'; and 'A; collections of rate constants and ligand concentrations 
equivalent to relaxation amplitudes and time constants; a is a collection of rate constants and 
ligand concentrations, and may take positive or negative values depending on whether the 

reaction displays a burst or a lag. The numerical values of V 88 and 'A; do not depend on 
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whether the concentration of a ligand is decreased or increased, but those of a and "'i do. 
This means that the numerical values of these parameters depend on the history of the 
system. 

Classical enzyme kinetics implicitly postulates that as the product v88ti[E]1 becomes sig
nificant the exponential terms of eqn. (1) may be neglected. This means that the transient 
phase is well separated in time from the steady-state phase. But if this is not so and if, for in
stance, the nth transient is extremely slow, one has the following approximate relationship: 

e-A..t "' 1 - Ant 

Eqn. (1) may thus be rewritten as follows: 

[P] n-1 [Elt =a+ 'Vn + (rilt- An'Vn )t + ~ 'lfie-Nt 

(2) 

(3) 

and the steady state that can be measured is only apparent. For reasons that will appear later, 
it is called the meta-steady state. The corresponding meta-steady-state rate v;. is expressed 
as follows: 

(4) 

From this expression, it becomes obvious that the meta-steady-state rate depends on the 

history of the system, as "'" depends on this history. 
An enzyme mechanistic device that may generate this type of behaviour is the occurr

ence of a "slow" conformational transition of the enzyme. In this context "slow" means slow 
by comparison with the other reaction steps. The simplest model that displays this type of 
conformational transition is the mnemonical model (Ricard et al., 1974). In this model it is 
postulated that the enzyme retains, or recalls, for a while the conformation stabilized by the 
last product of the reaction sequence before "slowly" relapsing to the other conformation. A 
number of enzymes have been shown to display this type of behaviour (Neet & Ainslie 
1980; Cornish-Bowden & Cardenas 1987). For a one-substrate one-product monomeric 
enzyme, this situation is depicted in Fig. 1. 

Thus the free enzyme exists under two metastable states and this may generate the type 
of behaviour predicted by eqns. (3-4). The evolution with time of the ES complex for such a 
simple system is shown in Fig. 2, which shows the existence of two meta-steady states of 
this complex that are different from the real steady state. These meta-steady states rely on 
the existence of metastable states of the enzyme. 

Meta-steady-state rates display two unique properties: first, even with a simple one-

Figure 1. The simple mnemonical model used to simulate 
hysteresis of the meta-steady state. S is the substrate, P a 
product, and Q the product that stabilizes the rhombus 
conformation. 
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4 2 0 
log(time) s 

Figure 2. The existence of meta-steady state during the approach to the steady state. The model simulated is 
that of Fig. l. The two progress curves 1 and 2 show the existence of a meta-steady state of the enzyme
substrate complex before the real steady state is reached. The numerical values of the rate constants, used for 
simulation are as follows: k1 = 10, k_1 = 105, k2 = 2, k-2 = 1, k3 = 1, k_3 = 5 x 10..s. The product Q is 
assumed to be absent in a pre-incubation mixture for curve 1 and to be present for curve 2 at a concentration 
such that K4[QJ equals lOS. The product is then assumed to be chased away immediately before the reaction is 
started. No product is thus present at time zero of the reaction, but this reaction is initiated with different 
concentrations of the two free enzyme forms for curves 1 and 2. The steady-state concentration of ES 
corresponds to the dashed line and the two meta-steady states to the dotted lines. 

substrate one-product monomeric enzyme the product may behave as an activator; second, 

the meta-steady-state rate assumes different values for the same concentration of the product 

depending on whether this product concentration is reached after an increase or after a 

decrease of concentration. These properties are illustrated by computer in Fig. 3. 
If the real steady-state rate were measured, neither of these two surprising properties 

would be found. The existence of two different meta-steady-state rates for the same ligand 

concentration is due to two initial positions of the enzyme equilibrium, depending on 

whether the actual concentration of the product is reached after a decrease or an increase of 

an initial product concentration. 

Figure 3. Hysteresis of the meta
steady-state rate of the reaction. 
The values of the rate and equi
librium constants are: k 1 = I, k_1 

= 10·3, k2 = 104, k_2 = 5 x 10·2 , 

k3 = 20, k_3 =I, k = J03,K4 = 
4 x 103• The arrow-heads indicate 
the direction of the concentration 
change. 

··. 

~ .·=· •• ••• .. .. . .... 
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Figure 4. The sensing potential II. At constant final chemical 
potential of the ligand Q a positive or a negative force diJ. 
generates a difference of potential of an enzyme species (the 
circle in this figure). 

The Sensing Potential 

The existence of hysteresis (that is the existence of two different values of the meta-steady
state rate for the same product concentration) of the meta-steady-state rate implies that the 

various enzyme species that appear during the reaction sequence should also display hyster
esis. Expressed in more rigorous thermodynamic terms, this means that applying a positive 
or a negative force, ~1.1. at constant chemical potential of the ligand, should result in two 

different values of the chemical potential of the same enzyme species. This is depicted in 
Fig. 4. The difference of chemical potential of the same enzyme species, depending on 

whether the force applied is positive or negative, may be called the sensing potential II and 

defined as follows: 

(5) 

where J..lr and 1.1r are the chemical potentials of an enzyme species obtained upon applying a 
positive and a negative force, respectively. A positive or a negative value of this potential 
means that the system is able to sense the direction of a change of a chemical signal. The 

value of the potential II expresses the ability of the system to act as a biosensor. 
The sensing potential of an enzyme species is a function of both the force (positive or 

negative) and of the chemical potential of the ligand. Of particular interest is the dependence 
of this potential with respect to the potential of the ligand Q. As a rule , the sensing potential 

of any of the enzyme species depends on the potential of Q. This means that for certain 

concentrations of Q the system is unable to sense the direction of a concentration change, 
whereas for other concentrations the sensitivity of the system to the direction of the 
concentration change is maximum. An example of the variation of the sensing potential of 
one of the free enzyme form (the "circle" form) as a function of the potential of Q is shown 
in Fig. 5. 

Hysteresis of Chloroplast Fructose 1,6-Bisphosphatase 

Chloroplast fructose 1,6-bisphosphatase is a tetramer made up of apparently identical sub
units. It plays a key role in the regulation of the Benson-Calvin cycle. In its oxidized state at 
pH 7.5 it is nearly totally devoid of activity. It may, however, regain full activity if it is 
incubated with low concentrations of fructose 2,6-bisphosphate. 

If the inactive oxidized enzyme is incubated with a reaction mixture containing the 
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Figure 5. Variation of the sensing 
potential of an enzyme species as a 
function of the reduced chemical 
potential of the ligand Q. The values 
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substrate (fructose 1,6-bisphosphate) and the analogue (fructose 2,6-bisphosphate) it de

velops a quite significant activity after a slow lag. In a second experiment the enzyme is 

preincubated with fructose 2,6-bisphosphate in the presence of magnesium, and then these 

ligands are chased away by dilution, the enzyme is mixed with the same reaction medium as 

in the previous experiment. Under these conditions the reaction displays no lag (Fig. 6). The 

enzyme thus retains the conformation stabilized by fructose 2,6-bisphosphate after chasing 

this ligand away, and this conformation is the active one. 

Since the enzyme may retain the conformation stabilized by fructose 2,6-bisphosphate, 

the meta-steady state of this reaction should display a hysteresis loop. This may be shown by 

incubating oxidized inactive fructose bisphosphatase with fructose 2,6-bisphosphate and 

magnesium. These ligands are chased away and the apparent steady-state rate (the meta

steady-state rate) is measured in the presence of the concentration of fructose 2,6-bisphos

phate immediately higher or lower than the concentration used for the pre-incubation. One 

may observe that the meta-steady-state rate of the reaction is different depending on the 

enzyme has been pre-incubated at a higher or a lower concentration of fructose 2,6-bis

phosphate. This hysteresis cycle is shown in Fig. 7. 

Figure 6. Memory effects of fructose bis
phosphatase. The progress curve of reaction 
is monitored in the presence of 0.37 mM 
fructose 2,6-bisphosphate and 2.7 mM mag
nesium. In the case of the upper curve (o), 
the enzyme has been pre-incubated (prior to 
the assay) for 6 hours with 2.7 mM mag
nesium and 1 mM fructose 2,6-bisphosphate. 
These ligands are then chased away by 
dilution. In the case of the lower curve (e), 
the enzyme has been incubated for the same 
time with 2.7 mM magnesium, in the absence 
of fructose 2,6-bisphosphate which is then 
chased away by dilution before the assay. 
The reaction mixture is thus the same for 
both assays. 

2000 
Time (1>.) 

4000 
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Figure 7. Hysteresis loop of meta-steady
state rate of fructose bisphosphatase reaction 
as a function of fructose 2,6-bisphosphate 
concentration. The enzyme is incubated with 
2.7 mM magnesium and various concentra
tions of fructose 2,6-bisphosphate before it is 
assayed in the presence of an immediately 
inferior (O) or superior (e) concentration of 
fructose 2,6-bisphosphate. The meta-steady
state rate is estimated over the first 15 min of 
the reaction. 
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Concluding remarks 

The result that some conformational transitions of enzymes may result in a hysteresis loop of 
the apparent steady-state velocity, opens new vistas on the molecular mechanisms of 
enzyme regulation. It implies that a single enzyme in free solution may sense the direction 
of variation of a chemical signal and not only its intensity. 

Chloroplast fructose bisphosphatase certainly plays a major role in chloroplast carbon 
metabolism and displays this kind of dynamic behaviour. It is tempting to speculate that this 
situation is not unique in metabolic control. 
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Chapter 25 

Temporal Aspects of the Control of 
Metabolic Processes 

LUIS ACERENZA 

A MErABOLIC system can be defined as composed of metabolites that are interconverted by 
enzyme reactions. The change of each metabolite concentration with time ( dS;/dt) depends 
on the balance between the rates vj of production and consumption of the metabolite: 

dS· ~ 
d/ = ~ nijVj, i = 1, · · · , m (1) 

J 

in which nij is the stoicheiometric coefficient of S i in the reaction j and m is the number of 
metabolites. 

Metabolic control analysis as proposed by Kaeser & Bums (1973) and Heinrich & 
Rapoport (1974) studies the case where the metabolite concentrations are constant in time 
(dS;Idt = 0 for all i), i.e. the steady state. Most of the contributions to the field, including 
most of the work described in other chapters of this book, deal with this particular case. 
Metabolic control analysis of the steady state is principally concerned with the effects of 
small changes in parameters (concentrations of enzymes, external effectors, etc.) on the 
steady-state values of the variables (metabolite concentrations and fluxes). In operational 
terms, this aspect of metabolism may be described by the following basic recipe: "Measure 
the steady-state value of the variable (reference state). Modify one parameter by a small 
relative amount. Wait until the system settles to a new steady state. Measure the final steady
state value of the variable." The quantitative description is summarized by the control coef
ficient (Bums et al., 1985): 

(2) 

where llY/Y is the small relative change in the steady-state value of a particular variable Y 
induced by the small relative change 1l p /p in the parameter p, when all the other 
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parameters are maintained at their reference values. In the basic recipe of steady-state 
control analysis the time is considered implicitly. After the change in a parameter we assume 
that the system will reach a new steady state. This is an asymptotic state, and therefore we 
need, in theory, an infinite time to attain it. In practice we wait a "long enough" but finite 
period of time to reach a good approximation of the new steady-state value. To estimate 
what is "long enough" one needs to know the order of magnitude of the relaxation time of 
the variable to the new steady state, but a detailed knowledge of the instantaneous values of 
the variable during the transition is not required .. 

The steady-state treatment is a good description for answering some questions, but there 
are many biological phenomena at different structural levels of organization where the 
steady-state assumption is not a good approximation. At the molecular level, metabolic 
systems may exhibit temporal behaviour that ranges from simple monotonic transients to 
oscillations and deterministic chaos (Higgins, 1967; Higgins et al., 1973; Kohn et al., 
1979; Easterby, 1981; Decroly & Goldbeter, 1982; Kohn & Chiang, 1982; Markus et at., 
1984; Pachot & Demongeot, 1987; Mizraji et al., 1988; see also Chapter 26 by Markus and 
Hess in this book). To study the effect of parameters on different variables of a time
dependent metabolic system, control analysis should be extended. We recently developed 
the basic definitions and relationships to analyse some control features of the instantaneous 
values of metabolite concentrations of metabolic concentrations and fluxes (Acerenza et al., 
1989). Here I shall outline some aspects of this work, and use them to analyse some control 
properties of time-invariant variables of time-dependent systems. 

Returning to eqn. (1), describing the metabolic system, the solutions of this system of 
differential equations are the values that each Si can take in time. From these values and the 
rate equations, the instantaneous fluxes ~ can be calculated. These time courses depend on 
the values of the parameters. Then, considering a reference time course (generated by a set 
of reference parameters), we may pose the following question: how are the reference values 
of a variable modified when one or more parameters are changed at the initial time? In what 
follows I am interested in one particular change of the parameters. I shall study the case 
where all the enzyme concentrations are simultaneously altered from their reference values 
by the same factor a. I shall call this simultaneous change of parameters the coordinate
control operation. If Ej are the reference values of the enzyme concentrations, the values 
after the coordinate-control operation are as follows: 

(3) 

I shall use the subscript a to indicate the value of a parameter or variable after the 
coordinate-control operation. From now on, I assume that the rates vj are proportional to the 
corresponding total enzyme concentrations: 

(4) 

where/j is a function of some metabolite concentrations and parameters, but not of enzyme 
concentrations and time. Under this hypothesis, if we apply the coordinate-control operation 
the new rates are given by: 
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Vj,a=avj (5) 

and, combining eqns. (1) and (5), the system of differential equations that describes the new 
situation is as follows: 

dS; a "" . 1 -d · = £... nijVj, z = , · · · , m 
'ta . 

1 

(6) 

where 'ta =at ... As the right-hand sides of eqns. (1) and (6) are identical, the only effect of 
the coordinate-control operation is to produce a change in the time scale given by 

't= at (7) 

Therefore, the solutions of eqns. (1) and (6), S;(t) and S; ... (J .. ) respectively, are identical if 
'ta and tare numerically equal. Since 'ta =at .. [eqn. (7)], this condition is fulfilled when 

ta.=t/a (8) 

This means that if for a time t the metabolite concentrations obtained from eqns. (1) have 
certain values, the solutions of eqns. (6) exhibit the same values at a time t/o:. 

S;,a(tla) =S;(t) (9) 

For the fluxes, we obtain 

(10) 

When the system approaches a stable steady state, the variables attain approximately 
constant values in time, and eqns. (9-10) take the following forms: 

s~· =s~· t,a 1 

(11) 

p• =w~· ;.a 1 

where the superscript ss denotes steady-state values. The results given in eqns. (9-11) are 
illustrated in Fig. 1 with a simple example. As an immediate consequence of the change in 
time scale, if one plots the metabolite concentration after the coordinate control operation 
against time multiplied by a, the resulting curve should coincide with the reference curve. A 
similar procedure is used as a test for inactivation of an enzyme during assay (Selwyn, 1965; 
see also Cornish-Bowden, 1979). 

In time-dependent systems there are variables which, although having the dimen
sions of time, have time-invariant values, for example relaxation time, period of oscillation, 
etc. These time-invariant variables that characterize the time course of the metabolite 

s 
Scheme 1. Model used to obtain the results shown in Fig. I. 
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Figure 1. Effect of the coordinate-control operation on the instantaneous values of (a) metabolite 
concentration and (b) flux. The model used is shown in Scheme 1, and the rate laws for the two steps are as 
follows: v1 = V1(X0 -S!K1) and v2 = V2(S-X2/K2), with X0 = 1, X2 = 0.1, K 1 =I, K2 = 1. For the 
reference curve (dashed), V1 = 0.2 and V2 = 5, whereas for the curve after the coordinate-control operation 
(continuous), V 1 = 0.4 and V 2 = 10, i.e. in this case a = 2. The reference values of the metabolite 
concentration and flux 1 at time t (arbitrarily chosen) areS, and 1, respectively. After the coordinate control 
operation (doubling both V1 and V2 at time zero) we obtain the same value of the metabolite concentration, 
S,, at time t/2 (Fig. 1 a), but at the same time the flux has twice its reference value (Fig. 1 b). 
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E1 E 2 E3 E 4 
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Scheme 2. Model used to obtain the results shown in Fig. 2. 

concentrations, T, satisfy eqn. (8), i.e. 

Ta. =T/a. (12) 

This is shown for a particular example in Fig. 2, where the variable T is the period of oscill
ation. Eqn. (12) may be used as the starting point for obtaining the summation relationship 
for changes in the variable T with the enzyme concentrations Ej. The result is as follows: 

L,cE=-1 (13) 
j 

T E- (JI' where c - ~ (14) Ei-TaE-
~ 

The general summation relationship given by eqn. (13) has previously been given for 
particular definitions of transition time (Heinrich & Rapoport, 1975; Torres et al., 1989; 
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Figure 2. Effect of the coordinate-control operation on the period of oscillation. For the model shown in 
Scheme 2, the rate law for the first step is v1 = VoXJ(X0 + K0 [1 + L(I + SjKJ]}, and for the other three 
it is vi = VSJ(K + S;), fori = I, 2, 3, with parameters X0 = 5, K0 = 0.02, K; = 0.2, L = 10, K = 5. The 
reference values (dashed curve) of the maximum rates are V0 =50 and V = 5. After the coordinate-control 
operation (continuous line) we use V0 = 100 and V = 10 (a = 2). One may see from the plots that doubling all 
the maximum rates causes the period T to decrease to half its reference value, T a = T/2. Numerical 
simulations were carried out using the program SCAMP (Sauro, 1986). 
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Melendez-Hevia et al., 1990). The same relationship applies to the period of oscillation. 
One quantitative measure for characterizing chaotic behaviour is the Lyapunov exponent A. 
(see Chapter 26 by Markus and Hess in this book): this quantity has the dimensions of 
inverse of time, and it may be shown that its reciprocall/A. satisfies eqns. (12-13). 

Eqns. (9-13) are some of the consequences of the effect that the coordinate-control 
operation has on the variables of the metabolic system. In their derivation, some assump
tions were made (see Acerenza et al., 1989). One of the most important is that all the rate 
laws are proportional to the corresponding enzyme concentrations. If the deviations from 
this assumption are significant (see Chapter 20 by Kaeser, Sauro and Acerenza in this book), 
the equations obtained are not fulfilled. The departures from the expected results may give 
some information about the control properties of the system. For example if we apply the 
coordinate-control operation (with a small a) to an oscillatory system (see Chapter 26 by 
Markus and Hess), and we find that the period does not satisfy eqn. (12), then we may 
conclude that there are deviations from the assumed hypothesis that contribute significantly 
to the control of the period. This operation may be applied relatively easily to a biological 
extract. Therefore, the coordinate-control operation may be used as a simple experimental 
strategy to gain some insight into the control features of metabolic systems. 

Acknowledgements: I wish to thank Dr H. Kaeser for continuous encouragement and critical discussion, and 
the Commission of the European Communities for financial support. 

REFERENCES 

Acerenza, L., Sauro, H. M. & Kaeser, H. (1989) J. Theor. Bioi. 137,423-444 
Bums, J. A., Cornish-Bowden, A., Groen, A. K., Heinrich, R., Kaeser, H., Porteous, J. W., Rapoport, 

S. M., Rapoport, T. A., Stucki, J. W., Tager, J. M., Wanders, R. J. A. & Westerhoff, H. V. 
(1985) Trends Biochem. Sci.10, 16 

Cornish-Bowden, A. (1979) Fundamentals of Enzyme Kinetics, pp. 49-51, Butterworths, London 
and Boston 

Decroly, 0. & Goldbeter, A. (1982) Proc. Nat/. Acad. Sci. USA 79, 6917-6921 
Easterby, J. S. (1981) Biochem.J. 199, 155-161 
Heinrich, R. & Rapoport, T. A. (1974) Eur. J. Biochem. 42, 89-95 
Heinrich, R. & Rapoport, T. A. (1975) BioSystems 7, 130-136 
Higgins, J. (1967) Ind. Eng. Chem. 59, 19-62 
Higgins, J., Frenkel, R., Hulme, E., Lucas, A. & Rangazas, G. (1973) in Biological and Biochemical 

Oscillators (Chance, B., Pye, E. K., Ghosh, A.M. & Hess, B., eds.), pp. 127-175, Academic 
Press, New York 

Kaeser, H. & Burns, J. A. (1973) Symp. Soc. Exp. Biol. 27, 65-104 
Kohn, M. C., Whitley, L. M. & Garfinkel, D. (1979) J. Theor. Biol. 76,437-452 
Kohn, M. C. & Chiang, E. (1982) J. Theor. Biol. 98, 109-126 
Markus, M., Kuschmitz, D. & Hess, B. (1984) FEBS Lett.172, 235-238 
Melendez-Hevia, E., Torres, N. V., Sicilia, J. & Kaeser, H. (1990) Biochem. J. 265, 195-202 
Mizraji, E., Acerenza, L. & Hernandez, J. (1988) BioSystems 22, 11-17 
Pachot, P. & Demongeot, J. (1987) in Controle du Metabolisme Cellulaire (Mazat, J.-P. & Reder, 

C., eds.), pp. 121-137 
Sauro, H. M. (1986) PhD Thesis, Oxford Polytechnic 
Selwyn, M. J. (1965) Biochim. Biophys. Acta 105, 193-195 
Torres, N. V., Souto, R. & Melendez-Hevia, E. (1989) Biochem. J. 260, 763-769 



Chapter 26 

Control of Metabolic Oscillations: 
Unpredictability, Critical Slowing Down, 
Optimal Stability and Hysteresis 

MARIO MARKUS and BENNO HESS 

CoNTROL ANALYSIS can be divided into three main areas. The first deals with systems in 
the steady state and is discussed in most of the contributions to the present volume. The 
second deals with time-dependent sensitivity coefficients of the first and second order 
(Larter eta/., 1984; Edelson & Rabitz, 1985), sensitivity densities (Larter et a/., 1983, 
1984 ), as well as control and elasticity coefficients (Kohn et al., 1979; see also Chapter 25 
by Acerenza in this book). The third is concerned with time-independent coefficients of 
time-dependent (oscillatory) processes, such as period sensitivities (Larter et al., 1984; 
Edelson & Rabitz, 1985) or control coefficients, as discussed by Acerenza in Chapter 25 of 
this book. We shall deal with this third area in the present contribution. 

To achieve a theoretical understanding of our experimental observations and the 
capability of making predictions for experimental falsification or verification, we need to 
know the number of independent variables that specify the state of the system at any given 
time (phase space dimension llp). This dimension nP is equal to the number of autonomous 
first order differential equations that describe all observable dynamic processes. It is well 
known that 12p may be much lower than the total number of variables (in our case chemical 
concentrations) involved in the system. A classical example was given by the meteorologist 
Eward Lorenz, who showed that the dynamic properties of the complicated Navier-Stokes 
equations for fluid flow can in some cases be described by a truncated system with nP = 3 
(see, e.g., Schuster, 1984). In the following section we show experimentally that 12p = 3 also 
for glycolytic oscillations. This result makes legitimate a model with three homogeneous 
first-order differential equations based on detailed kinetic measurements. Below we shall 
present and compare results obtained from this model and experiments. 
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Figure 1. Experimental setup for the measurement of glycolytic oscillations under oscillatory substrate (C: 
cuvette, HB: heath bath, MS: magnetic stirrer, Sy: syringe, LG: light guides, HF, PF and SF: filters, ID: iris 
diaphragm, LS:light source, PM: photomultiplier). 

How many Independent Variables are there? 

For several years measurements of chaotic oscillations have been used as an experimental 
tool for the determination of the phase space dimension 'i> (L'vov et al., 1981; Malraison 
et al., 1983; Markus & Hess, 1985). The idea behind this is that chaos is an autonomous 
generator of fluctuations, and that these fluctuations fill up the system phase space as time 
proceeds. The dimension of this space is nP and it can be determined by reconstructing 
trajectories in spaces with increasing dimensions nr (nr = 2, 3, 4 ... ) from the measured 
oscillations. Different procedures for the reconstruction of attractors have been proposed 
(Packard eta/., 1980). 

The oscillations for the present work were obtained by monitoring the fluorescence F of 
NADH during a sinusoidal glucose input flux Vin = Vin +A sin (C%t}. The materials and 
methods are those given by Markus et al. (1985a). A scheme of the experimental set up is 
shown in Fig. 1. Fig. 2 shows examples of measured chaotic oscillations. Further experi
mental results can be found in previous papers (Markus etal., 1984, l985ab). 

We reconstructed trajectories with n. = 2 by plotting F(t) against F(t + t), where tis 
a fixed time delay, and trajectories with n. = 3 by rotating the F(t)- F(t + t) plane around 
the F(t) axis with angular frequency roe. Higher-dimensional spaces were constructed using 
F(t + 2t) and F(t + 3t) as additional coordinates. Fig. 3 shows an example of a 
reconstructed attractor with rz. = 3. 
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F 30min 

Figure 2. Four measurements of chaotic oscillations (F: NADH fluorescence of the glycolysing yeast extract, 

V in: glucose input flux). 

From the reconstructed trajectories we determined the maximum Lyapunov exponent 

'-max as a global parameter characterizing the chaotic signal. This quantity is given by 

(1) 

Here ttot is the total observation time, which is divided into N equal intervals. L(tk _ 1) and 

L' (tk) are the distances between points of nearby trajectories at times tk _ 1 and tk (Wolf 

et al., 1985). !..max quantifies the degree of unpredictability of the chaotic process. In fact, 

F(t) 

F(t+T)cos(wetl 

Figure 3. Attractor reconstructed from a measured chaotic oscillatory train. 
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Table 1. Lyapunov exponents (min-1) for different 
experiments and phase space dimensions 

"r: 2 3 4 5 

Experiment I 0.35 0.15 0.14 0.16 
Experiment 2 0.28 0.10 0.12 0.12 
Experiment 3 0.65 0.39 0.42 0.40 
Experiment 4 0.74 031 0.30 0.33 

any uncertainty in the initial conditions grows in proportion to exp(A.maxt) in the time 
average. 

Table 1 gives the value of A.max for four experiments, 11r ranging from 2 to 5. The table 
reveals that the value of Amax saturates (within numerical errors) for 11r :2: 3, indicating that a 
three-dimensional space is sufficient to embed the trajectories. This result is consistent with 
a previous work where it was shown that the information dimension determined from 
measurements also saturates for 11r :2: 3 (Markus & Hess, 1985a). We have never observed 
any oscillations that need a higher embedding dimension. In general, the highest embedding 
dimension is an upper bound for llp· Thus, in our case, 11r :2: 3. On the other hand, chaos can 
only exist in continuous systems for 11r :2: 3. Thus, we easily conclude 1Zp = 3 from our 
measurements. It should be kept in mind, however, that in other systems the highest 
embedding dimension (upper bound for llp) may be higher than 3. In such cases, 1Zp is 
obtained using additional diagnostic tools, like the determination of condition-probability
densities by slicing the attractors with hypersheets, as described by Packard et al. (1980). 

Our experimental result 1Zp = 3 legitimizes the use of a model with three phase 
variables. The following theoretical results were obtained from such a three-variable model, 
the parameters ofwhich were derived from detailed kinetic measurements (Markus & Hess, 
1984; Hess & Markus, 1985ab ). In accordance with previous investigations (Markus et al., 
1985b) we scale the time here by assuming a maximum rate for pyruvate kinase of 1.4 
mM/min. 

Figure 4. Period T 0 of autonomous glycolytic 
oscillations versus total magnesium concentration. 
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Experimental versus Theoretical Results 

Control of Autonomous Oscillations. The autonomous oscillation period, i.e. the period at 
constant glucose input flux, was determined theoretically and experimentally as a function of 
total magnesium concentration. The results are shown in Fig. 4. In the experiments, [Mg]101 

was varied by adding magnesium to the reaction mixture. For drawing the crosses in Fig. 4, 
we assumed that [Mg] tot = 5 mM in the yeast extract without magnesium addition. The plot 
is double-logarithmic allowing the straighforward determination of the control coefficient : 

cTo - ()InTo 
Mg - ()Jn[Mg]tot 

where we have used the nomenclature of Bums et al. (1985). 

(2) 

The experimental value C~ = -1 unveils the control of magnesium, which had been 

neglected in previous models (e.g. by Boiteux et al., 1975). The model considered here 
includes magnesium by taking into account its effect on the sink enzyme pyruvate kinase in 
accordance with kinetic measurements (Markus et al., 1980; Boiteux et al., 1983). 

Entrainment, Quasiperiodicity and Unpredictability. Measurements of entrainment of 
glycolysis by a periodic input flux were first reported by Boiteux et al. (1975) who 
observed multiplication of the input period by factors 1, 2 and 3. Later on, also multiplica
tion of the input period by factors 4, 5, 7 and 9 as well as quasiperiodicity (frequency 
mixing) and chaos (unpredictability) were found (Markus et al., 1984, 1985ab; Hess & 

Markus, 1987). 
Fig. 5a summarizes all our experiments results obtained upon variation of the dimen

sionless quantities Win and mJro0 , where m0 = 2Jt{f 0 is the frequency of the autonomous 
oscillations. Each cross on the figure corresponds to one measured oscillatory train. For 
comparison, Fig. 5 b shows the results obtained from our model (Markus & Hess, 1984 ). In 
Figs. 5a and 5b, the numbers indicate the periodic-multiplication-factor. Chaos is reached 
by three classical routes : (a) Period-doubling cascades (the so-called Feigenbaum route) 

starting from a period-multiplication-factor 2, e.g. at constant AlVin and increasing m Jro0 

(arrow pointing to the right on fig. 5b); (b) intermittency (the so-called Manneville-Pomeau 
route) starting from a period-multiplication factor of 3, e.g. at constant AN in and decreasing 
mJro0 (arrow pointing to the left on Fig. 5b); and (c) breakdown of a torus (the so-called 
Ruelle-Takens route) starting from quasiperiodicity, e.g. at constant mJro0 and increasing 
Win (arrow pointing upwards on Fig. 5b). 

Critical Slowing Down and Optimal Stability. We showed above how the degree of 
unpredictability of a chaotic process can be quantified by the maximum Lyapunov exponent 

).max· For a periodic process, l.max can be determined after a slight perturbation of the 
trajectory. One then obtains negative values of l.max• indicating that small perturbations 
decay proportionally to exp(l.maxt). For simulated periodic oscillations, Amax can readily be 
calculated by linear perturbation analysis (see Hess & Markus, 1984 ); results are shown in 
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Figure 6. (a) Theoretical time of relaxation 't to glycolytic oscillations after small, exponentially decaying 
perturbations. (b) Theoretical times of relaxation 't to glycolytic oscillations after changing from constant to 

oscillatory glucose input flux. (c) Experimental values oft (t1 andt:z correspond to the experiments shown in 

Fig. 7) 

Fig. 6a, where we have plotted the relaxation time 't = A..nax-1 versus roJro0 at constant Win 
= 1. The figure shows singularities ( 't ~ co) which correspond to the so-called "critical 

slowing down" (Heinrichs & Schneider, 1981) and occur at bifurcation points. Here, critical 

slowing down occurs at the transitions of period-multiplication factors from 1 to 2, and from 

2 to 4. In the vicinity of critical slowing down, the control coefficients 

(3) 

attain arbitrarily high absolute values. For example, C~roo = 25 at the point indicated by an 
arrow in Fig. 6a (Note that the plots in Fig. 6 are double logarithmic, so that the control 

coefficients can be readily obtained by the slopes of the curves). Besides singularities, Fig. 

6a shows minima of 't. At these minima. relaxation of the system after a perturbation is 

extremely fast, and the relaxation time is relatively insensitive to a change in the external 

condition roJro0 (optimal stability). 
In contrast to model systems, it is extremely difficult to obtain 't experimentally in 

oscillating glycolysis, since a decay - small enough to be described by linear perturbation 

analysis, and thus comparable to the theoretical results shown in Fig. 6a - is easily 

overshadowed by noise or systematic drifts. Therefore, we introduce a modified relaxation 

time t for large (in general non-exponentially decaying) perturbations. 
We define t as the length of the time interval [ta, te], where Vin = Vin = const. (i.e. 
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-j1o min 1-

Figure 7. Long (upper, ~1 ) and short (lower,~) times of relaxation to entrained oscillations. 

A = 0) for t < ta, F has minimum at t = ta, V in = Vin + Acos[ roe(t - ta)l for t 2! ta, and 
te is the time at which F reaches its first maximum such that the period deviates less than 
10% from its final value. In other words, ~ indicates how fast the system recovers from an 
infinitely long perturbation given by vin = vin = const. 

In contrast to t, the modified relaxation time ~ is easily accessible experimentally, as 
illustrated in Fig. 7. This figure shows a long and a short modified relaxation time (~1 and 
~). ~1 occurs near critical slowing down, whereas~ occurs near optimal stability. In both 
cases, the system relaxes towards entrainment by the fundamental frequency (period
multiplication factor of 1 ). 

Theoretically, ~was determined from our model (Markus & Hess, 1984) by considering 

that the phosphoenolpyruvate concentration displays a dynamic behaviour analogous to that 
of [NAD], which is indicated by the measured F max- F because of the conservation of 
[NADH] + [NAD+] (Markus et al., 1985a). We thus determined ~theoretically from the 
time evolution of the phosphoenolpyruvate concentration applying the rule stated above for 
F(t), except that we considered minima and maxima of the phosphoenolpyruvate con
centration instead of maxima and minima respectively of F. Fig. 6b shows the theoretically 
calculated t versus roefro0 for the same conditions as Fig. 6a. Comparison of Figs. 6a and 
6b shows that ~ displays (in a somewhat distorted fashion) the main properties of 't. The 
experimentally determined ~are shown in Fig. 6c. This figure shows both optimal stability 
and critical slowing down and is comparable to the theoretical predictions of Fig. 6b. 

Non-uniqueness of Control: Hysteresis. Metabolic control may depend on the previous 
history of a system (hysteresis). For oscillating systems, this phenomenon has been 
demonstrated theoretically with different models (Decroly & Goldbeter, 1982; Markus & 
Hess, 1984). Hysteresis implies the existence of two or more dynamic modes for the same 
set of external conditions. The existence of two, three and four modes is called birhythmic
ity, trirhythrnicity and tetrarhythmicity respectively. 

Experimentally, we found birhythmicity in glycolytic oscillations at constant glucose 
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Figure 8. Switching from mode I to mode 2 by a transitory doubling of the glucose input flux Vin (upper), 
and switching from mode 2 to mode I by a transitory shut-off of the input flux (lower). The conditions for 
mode I and mode 2 in the upper and in the lower curves are identical (birhythmicity). Input flux for both 
modes: V;0 =0.22 mM/min = const. 

input flux (A = 0), as shown in Fig. 8. In this figure, mode 1 (the commonly observed mode, 
which is characterized by equally large maxima of F) and mode 2 (a mode that had been 
reported by Hess, 1966, and is characterized by alternating small and large maxima of F) 

exist for the same external conditions. Mode 1 is obtained here by increasing V;0 from 0 to 
0.22 mM/min, while mode 2 is obtained by reaching V;0 = 0.22 mM/min from larger values. 
Switching between coexisting modes has been described theoretically (Markus & Hess, 
1984 ). In the present experimental work, the coexisting modes could be switched into one 
another as shown in Fig. 8. In the upper part of this figure, mode 1 is switched into mode 2 
by doubling V;0 temporarily. In the lower part of Fig. 8, mode 2 is switched into mode 1 by 
temporarily suppressing the glucose input. Concerning the length of observation times, we 
found here that mode 1 is as long lived as the oscillatory extract, but mode 2 never remains 
longer than 12 oscillatory maxima, ending with an abrupt transition into mode 1. In view of 
such an abrupt transition, we assume that the basin of attraction of mode 2 in phase space is 
extremely small, so that fluctuations or a small systematic drift drive the system from the 
attractor of mode 2 into the basin of mode 1, where it rapidly relaxes to the corresponding 
attractor (see Markus & Hess, 1985b, 1986). 

Conclusions 

We have shown that the interplay between experiments and quantitative modelling can lead 
to considerable insight in the control of dynamic metabolic processes. 
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There has been much discussion about whether chaotic biochemical oscillations are 
physiological, pathological or just an exotic in vitro curiosity. Here, we do not engage in 

this discussion, but deal with chaos as a valuable tool for the determination of the number 
12p of independent variables that describe the system. A quantitative model with this 12p is 
in excellent agreement with experimental results, in particular, we measured period-control 
by magnesium, as well as entrainment, quasi-periodicity, chaos, critical slowing down and 

optimal stability under conditions close to those predicted by the model. 

In the present work, hysteresis was found experimentally for constant input flux. 

However, our model predicts this phenomenon for oscillatory input. The model of Decroly 

& Goldbeter (1982) predicts hysteresis at constant input, but requires two positive enzymic 

feedback loops, and it is questionable if such an assumption is applicable to glycolysis. This 

point is open to further research. 
It is interesting that hysteresis has also been found for a single enzyme which exists 

under different conformations that slowly isomerize during turnover (see Chapter 24 by 

Ricard eta/. in this book). Such an enzyme behaves as a biosensor that is able to detect both 
a concentration and the direction of concentration change. Functionally, this phenomenon is 
comparable to the behaviour of glycolysis as described here, and it may be of general 
biological significance (Hess & Markus, 1985ab; Ricard & Buc, 1988). It should be kept in 
mind that sensing of change through glycolysis is possible in spite of our observation that 

one of the coexisting modes breaks down after a number of oscillations. 
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Chapter 27 

A New Method for Estimating Enzyme 
Activity and Control Coefficients in vivo 

BARBARA E. WRIGHT and KATHY R. ALBE 

AN UNDERSTANDING of metabolism in vivo must, of course, be based upon a systems 
analysis that includes an examination of the role and relationships of all the variables 
involved. These include the concentrations of substrates, products, and effectors as well as 
enzyme kinetic mechanisms, constants and enzyme activity. Current research in areas such 
as biochemical differentiation, aging, biotechnology, etc., is focussed primarily on the regu
lation of metabolism by enzyme activity. In fact, metabolites are generally nwre important 
than enzymes in controlling reaction rates. As we shall be discussing the citric acid cycle it 
is appropriate to quote Krebs (1957): "The average half-life of the acids in the tricarboxylic 
acid cycle ... is a few seconds. The amounts of enzyme in the tissue are sufficient to deal 
with the intermediates as soon as they arise: in other words, the amount of available 
substrate is the factor limiting the rate at which the intermediary step proceeds." And yet, the 
recent literature on metabolic regulation in vivo describes the role of metabolites by such 
passive and mysterious words as "elasticity," while enzymes are given credit as the force 
behind "control coefficients." Reactions are often referred to by the name of the enzyme 
catalyst, and the rate of a reaction in vivo is often equated with the activity of the enzyme. 
Some of this prejudice stems from in vitro studies, in which enzymes must be diluted to the 
point at which they limit the rate of the reaction being measured, while substrates must be 
present at levels greatly exceeding their in vivo concentration. 

We find some of the definitions currently in use confusing. With all due respect to the 
other contributors to this book, we are going to be simple-minded and even-handed in 
dealing with enzymes and metabolites. We shall first name the stimulus and then the 
response; that is, we shall speak of enzyme on flux coefficients, enzyme on metabolite 
coefficients, and metabolite on flux coefficients. 

A theory must, of course, originate with experimental observations. It is an extrapolation 
- a generalization or prediction about the probable behaviour of a system based upon the 
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previous behaviour of a similar system. Subsequent experiments may falsify the hypothesis 
or strengthen it, by demonstrating its predictive value. As we understand it, two generaliza
tions have been proposed as applicable to all metabolic systems in vivo, under steady state 
conditions, regardless of their complexity. First, the sum of the coefficients of all enzymes 
on flux through the system is one; and second, the sum of the coefficients of all enzymes on 
each metabolite is zero (Kaeser & Burns, 1973; Heinrich & Rapoport, 1974). These 
"summation properties" are based upon the theoretical analysis of relatively simple systems. 
They have rarely been tested in complex metabolic systems in vivo under steady state 
conditions. In fact, a major problem lies in the difficulty of testing these theories. There are 
very few specific, non-invasive techniques with which to probe metabolism in vivo. 
Realistic dynamic models may come very close to being valid test systems. Our analysis of 
the citric acid cycle and carbohydrate metabolism in Dictyostelium indicates that, in our 
highly data-based model systems, the so called "summation properties" do not hold. We 
have found that the sum of the coefficients of all enzymes on flux can vary from 0.2 to 2.0, 
and that these coefficients are a function of the ratio of enzyme activity to flux through the 
system, and the range of enzyme activity values chosen with which to calculate these 
coefficients. 

In Dictyostelium, endogenous protein is used as an energy source. The amino acid 
composition of the protein being used does not change, suggesting that all protein species, 
including most enzymes, are degraded (Wright & Butler, 1987). In fact, about half the 
enzymes studied in this system are subject to rapid proteolytic inactivation in extracts, in the 
absence of stabilizing substrates or protease inhibitors (Wright & Dahlberg, 1968). We know 
a lot about flux through and into the citric acid cycle (Kelly et al., 1919ab ). Knowing the 
rate of protein degradation and the pathways by which specific amino acids are converted to 
specific cycle intermediates, we can calculate flux into the cycle at specific points. From 0 2 
consumption, we can calculate flux through the cycle. To confirm these and other rate 
determinations, we have constructed steady state models, based on specific radioactivity 
data; these models also provide information on intra- and extra-mitochondrial metabolic 
compartments. With a specific radioactivity curve-matching program, we modelled data 
obtained under steady state conditions from exposing cells to tracer levels of radioactive 
amino acids and determining the specific radioactivity of citric acid cycle intermediates with 
time (Kelly eta/., 1979ab ). The configuration, fluxes, and metabolite concentrations in this 
model were used in the construction of a more complex steady state model which includes 
enzyme mechanisms and constants. The program used for constructing this model is called 
METASIM (Wright & Kelly, 1981). We have excluded the extra-mitochondrial pools in this 
model, which is shown in Fig. 1. All of the enzymes catalysing the reactions which are 
encircled have been purified from Dictyostelium and characterized. Flux through the cycle 
is between 2 and 3 J.!mol min-1 mi-l mitochondrial volume. As flux through this system is 
cyclic, choosing the most representative reaction is somewhat arbitrary. We chose reactions 
13 and 3 for a number of our tables. 

The Dictyostelium system is unusual in that endogenous protein is used as the energy 
source. In a system using only amino acids as the source of cycle intermediates, more amino 
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@) 
ASP + 2KG1 - OAAt + GLU 

@ 
ALA + 2KG1- PYR + GLU 

Figure 1. A steady state model of the citric acid cycle in Dictyostelium 

acids are converted to four- and five-carbon intennediates than to the two-carbon units of 
acetyl-CoA. For the citrate synthase reaction to operate and maintain steady state levels of 
cycle intennediates in this system, the flux of acetyl-CoA into the cycle must equal that of 
oxaloacetate. Therefore, a pathway is required which converts "excess" four- or five-carbon 
intennediates to acetyl-CoA. This requirement is met by malic enzyme (reaction 6), in 
which malate is decarboxylated to yield pyruvate which is in tum decarboxylated to fonn 
acetyl-CoA via the pyruvate dehydrogenase complex. This pathway has been shown to 
occur in Dictyostelium, and both of these enzymes have been purified and kinetically 
characterized (Kelleher et al., 1979; Butler et al., 1985). Malic enzyme is allosteric, being 
positively affected by aspartate, glutamate, succinate and fumarate. Note the differences in 
metabolite concentrations in this system: acetyl CoA is 0.06 mM, and oxaloacetate is 0.0025 
mM. The competition for malate between oxaloacetate and acetyl CoA synthesis is critical in 
the balance between these two substrates of citrate synthesis. Of all the cycle intennediates, 
succinate is present at the highest concentration: 0.8 mM. The amino acids included in our 
analysis are present at levels at least an order of magnitude higher than that of most of the 
cycle intermediates. The role of the transaminases, catalysing reactions 15 and 16, is 
complex, as indicated by the dashed lines. 

The METASIM program contains 25 different enzyme mechanisms. Input for the model 
in Fig. 1 includes flux, metabolite concentrations, appropriate enzyme mechanisms and 
constants for each reaction. For example, the kinetic expression for the rate v of the reaction 
catalysed by isocitrate dehydrogenase is that for dead-end competitive inhibition: 
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V maxlisocitrate ][NAD+] 
v=------------------~==~~~~~~~-------------------

KNAD•[isocitrate] + Kisocitrate( 1 + [NADH]/KNADij[NAD+] + [isocitrate ][NAD+] 

The V max for this enzyme in crude extracts was determined and found to be 5.0 mM/min, 

based on mitochondrial volume. Using this value in the equation, together with the kinetic 

constants and known concentrations of isocitrate, NAD+ and NADH, the rate is calculated to 

be 0.04 mM/rnin. However, the rate determined in vivo is 2.2 mM/min. Such discrepancies 

have been found for most of the enzymes which have been purified and characterized in the 

citric acid cycle and in carbohydrate metabolism. In Table 1, the rate calculated using V max 

is compared to the rate determined in vivo for 23 reactions in the citric acid cycle and 

carbohydrate models. In general, rates based on V max exceed rates determined directly in 
vivo, that is, more enzyme activity is assayed in vitro than is active in vivo. The two 

striking exceptions are 2-oxoglutarate dehydrogenase and pyruvate dehydrogenase, both of 

which are membrane-bound enzyme complexes, which might be expected to have low 

recoveries and to fall apart in the preparation of cell extracts. There are a number of possible 

explanations for observing excess enzyme in vitro. Protein is used as an energy source in 

this system and can be used under nutritional stress in many systems, including our own. 

Table 1. A comparison of reaction rates determined in vivo with rates 
calculated from V max values measured with the isolated enzymes 

Enzyme Rate in vivo Calculated rate Ratio 

Isocitrate dehydrogenase 2.20 0.04 0.02 
Glutamate dehydrogenase 0.38 0.98 2.6 
2-0xoglutarate dehydrogenase 2.49 0.0014 0.00056 
Malic enzyme 1.00 1.71 1.8 
Succinate dehydrogenase 2.88 187.8 65.2 
Malate dehydrogenase 2.01 12.4 6.2 
Citrate synthase 2.20 145.7 66.2 
Pyruvate dehydrogenase 1.64 0.0074 0.0045 
Aspartate transaminase 0.18 0.48 2.7 
Alanine transaminase .{).10 .{).16 1.6 
Glycogen phosphorylase .{).20 .{).16 0.8 
Glucokinase O.Dl 0.08 8.0 
UDPglucose pyrophosphorylase 0.22 0.37 1.7 
Glycogen synthase 0.13 0.83 6.4 
Trehalose 6-phosphate synthase 0.009 O.Dl 1.1 
Glucose 6-phosphate dehydrogenase 0.001 1.0 1000.0 
6-Phosphogluconate dehydrogenase 0.0009 0.009 10.0 
Phosphoglucose isomerase 0.03 6.2 206.0 
Uridine phosphorylase O.Dl 0.35 35.0 
5'-AMP nucleotidase 0.02 2.4 120.0 
Glucose 6-phosphatase O.Dl 0.006 6.0 
Phosphofructokinase O.Dl 0.53 53.0 
Cell wall glycogen synthase 0.02 0.006 0.3 
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Table 2. Effects of enzyme activities from 0.5 to 2 times their 

model values on the fluxes through the reactions they catalyse 

Enzyme 
Flux control Vvivo VvivJflux 
coefficient (rnM/rnin) 

Glutamate dehydrogenase 0.99 25 65 
Aspartate transaminase 0.87 7.8 43.1 
Succinate dehydrogenase 0.69 33 1.1 
Alanine transaminase 0.66 52 52.0 
Malic enzyme 0.58 2.8 28.0 

Malate dehydrogenase 0.18 97.0 48.2 
Citrate synthase 0.14 9.1 4.1 
2-0xoglutarate dehydrogenase 0.07 7800.0 3153.0 
Fumarase 0 26.0 9.3 
Pyruvate dehydrogenase 0 275.0 168.0 
Isocitrate dehydrogenase 0 298.0 135.0 
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Due to the general vulnerability of most proteins to proteolytic attack, excessive enzyme 

protein concentrations may be essential in order to ensure adequate catalytic activity in times 

of stress. Another explanation may be that a large fraction of enzyme activity assayed in 

vitro in dilute solution is actually inactive in vivo, or unavailable to substrate, due to 

enzyme-bound product or inhibitor. For example, in muscle, a substantial part of glycer

aldehyde-3-phosphate dehydrogenase exists bound to 3-phosphoglycerate (Bloch et al., 
1971). Enzymes have also been found to serve structural roles (Wistow et al., 1987). 

The observation that more enzyme activity is assayed in vitro than is active in vivo 

could also reflect some kind of "channelling." For example, enzymes may exist in high local 

concentrations in vivo, serving as a "buffer" to trap and maximally utilize limiting sub

strates. If so, all active sites may not be occupied by substrate. However, in dilute cell 

extracts and in the presence of saturating substrate levels, all active sites would be assayed 

and V max would exceed enzyme activity in vivo. In any event, regardless of the underlying 

reasons, it would seem unwise to make the leap of faith that in vitro enzyme activities are 

applicable to metabolism in vivo. Our observations cast serious doubt upon this assumption. 

In view of the fact that V max values do not accurately reflect enzyme activity in vivo, we 

calculate this activity as the only unknown in each enzyme kinetic expression. For example, 

V max was calculated for isocitrate dehydrogenase, knowing the reaction rate, kinetic const

ants and metabolite concentrations. This value, herel called Vvivo• was 298 mM/min. The 

term V vivo is used to distinguish this calculated value from the experimentally measured 

value, V max· These V vivo values are used to determine enzyme on flux and enzyme on 

metabolite coefficients. The coefficient is the slope obtained by plotting changes in the 

logarithm of the rate or metabolite concentration against changes in the logarithm of the 

enzyme activity or metabolite concentration. An example is given in Table 2, in which 

coefficients are given for the effect of each enzyme on the rate of the reaction it catalyses. 

1The abbreviated symbol Vv is used in the figures and was used in previous publications. 



322 B. E. Wright and K. R. Albe 

Table 3. Effect of V vivJflux on flux control coefficients 

Enzyme Vvivo [Substrate I Flux vvivJftux Flux control 

(mM/min) (roM) (mM/min) coefficient 

Fumarase 26.0 0.04 2.8 9.3 0 
2.8 0.7 2.3 1.2 055 

Succinate dehydrogenase 3.28 0.8 2.88 1.1 0.69 
16.4 0.04 3.89 4.2 0 

They are rank-ordered, from the highest to the lowest coefficients. Two relationships are 

shown for each enzyme, in an attempt to explain these differences in flux coefficients: The 

enzyme activity or V vivo values for each enzyme, and the ratio of enzyme activity to 

reaction rate, which Atkinson discusses in the Prologue of this book. We find that this ratio 

is important, but clearly not the only critical variable which determines the magnitude of the 

enzyme flux coefficients. 

Table 3 examines the effect of the VvivJflux ratio on these coefficients for one zero flux 

coefficient enzyme, fumarase, and one high coefficient enzyme, succinate dehydrogenase. 

When V vivo was lowered in the first case, the substrate concentrations rose to unphysio

logical levels. Lowering the V vivo value to approximate the reaction rate for this enzyme 

resulted in a change in the flux coefficients form zero to a significant value. Increasing the 

Vvivo value for a high coefficient enzyme, succinate dehydrogenase, decreased the substrate 

level and lowered the flux coefficient to zero. As might be anticipated, the ratio of VvivJflux 

also affects the sum of the coefficients of all enzymes on cycle flux. In the case of another 

zero coefficient enzyme, isocitrate dehydrogenase, using a V vivo of 2.0, we did a complete 

Table 4. Effect of V vivo for isocitrate dehydro
genase on the sum of flux control coefficients 

Affected reaction Sum of control coefficients 

High activity I 

I 0.98 
2 0.46 
3 0.71 
5 0.49 
6 0.60 

11 0.34 
13 0.35 

1Vvivo = 298 mM/min, [isocitrate] = O.QI mM 
2Vvivo = 2.0mM/min, [isocitrate) = 2.0 mM 

Low activity2 

1.05 
0.47 
0.87 
0.65 
1.10 
0.10 
0.61 

Table 5. Effect of enzyme activity range on 
the sum of flux control coefficients 

Affected reaction Sum of control coefficients 

Low range! Highrange2 

1 1.12 
2 1.65 
3 1.32 
5 1.54 
6 1.26 

11 2.04 
13 2.04 

1Range from 30% 10 100% of the model value 
2Range from 50% 10 200% of the model value 

0.98 
0.46 
0.71 
0.49 
0.60 
0.34 
0.35 
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enzyme flux analysis for seven reactions, as shown in Table 4. The physiological model 
{Vvivo = 298) is shown for comparison. All but one value in the low Vvivo model are higher 
than in the physiological model, because reaction 13 (catalysed by isocitrate dehydrogenase) 
now contributes to the summed values. That is, the enzyme flux coefficient for this reaction 
has changed from zero to a positive value for most of the reactions. 

As these data suggest, an important variable affecting enzyme flux coefficients is the 
range of enzyme activities chosen with which to calculate these coefficients. This is shown 
in Table 5. The coefficient for the effect of each enzyme on cycle flux was determined using 
two different ranges of enzyme activities: from 30% to 100% of the value in the model and 
from 50% to 200%. The sum of all the enzyme flux coefficients for seven cycle reactions is 
shown. As the Vvivo values all exceed the cycle flux, the lower range gives the higher 
coefficients. This range brings the vvivo values closer to the cycle flux, and hence affects it 
more than the values used in the high range. Depending on the range used, the sum of the 
coefficients ("summation property") varies from 0.3 to 2.0. 

It now becomes interesting to see which enzymes are most affected by the range chosen 
for calculating coefficients. In Table 6, four enzymes are compared. We examined one range 
below and two ranges above the model value. The effect of the range on the coefficient for 
the rate of the reaction catalysed is shown in the second column, and the sums of the flux 
control coefficients for reactions 13 and 3 are shown in the last two columns. These reac
tions were chosen as the simplest to represent flux through the cycle. The coefficients for 
aspartate transaminase are not affected by using different ranges, but the other enzyme 
coefficients are affected. In general, the higher the range, the lower the coefficient. In Fig. 2, 
the three ranges used for malic enzyme are shown graphically. The actual fluxes for the 
same three reactions are plotted as a function of Vvivo values for malic enzyme (flux 6). The 
effect on reaction 13, catalysed by isocitrate dehydrogenase, is interesting in that it is 
initially positive but becomes negative in the higher ranges. 

Table 6. Effect of enzyme activity range flux control coefficients 

Enzyme Range of Vvivo Flux control coefficient Sum of flux control coefficients 
(% of model value) for own reaction Step 13 Step 3 

Malate dehydrogenase 70 to 100 0.34 0.76 0.73 
100 to 130 0.26 0.67 0.73 
150 to 200 0.12 0.25 0.69 

Malic enzyme 70 to 100 0.78 1.04 0.79 
100 to 130 0.63 0.41 0.73 
150 to 200 0.48 0.28 0.69 

Aspartate transaminase 70 to 100 0.95 0.36 0.71 
100 to 130 0.94 0.34 0.71 
150 to 200 0.80 0.35 0.71 

Succinate dehydrogenase 70 to 100 0.90 058 0.92 
100 to 130 0.73 0.44 0.75 
150 to 200 O.o? -0.09 0.09 
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Figure 2. The fluxes for three reactions as a function of Vvivo values for malic enzyme (reaction 6). 

In Fig. 3, the mechanisms underlying the range effect in the case of malic enzyme are 
illustrated. The low range values are shown in dashed line boxes and the high range is 
shown below them. The low range has less effect on the rate of the reaction; hence, less 
malate is used and malate levels are higher, while pyruvate and acetyl CoA levels are lower 
in the lower range than in the high range. The opposite is true for oxaloacetate, however, 
because malate levels are higher in the low range. As oxaloacetate is more rate-limiting than 
acetyl CoA, the rate of citrate synthesis is higher in the low range than it is in the high range. 
Consequently, the sum of the coefficients of enzymes on cycle flux are also higher in the low 
range. Thus, the rate of citrate synt_hesis actually undergoes a discontinuous change: it 
decreases in the high compared to the low range, because of the behaviour of the oxalo
acetate pool. 

In Table 7, we examine the compensatory effects of using different combinations of 
ranges for calculating coefficients for malic enzyme (reaction 6) and malate dehydrogenase 
(reaction 5). All possible combinations for these two enzymes were used and the sum of the 
resulting coefficients for seven reactions calculated. Note that some of the combinations give 
several values above unity, like the first two combinations; some give all values near unity, 
such as combinations 3 and 4; and some give several values that are quite low, like the last 
combination, with values of 0.17 and 0.18. 

In Table 8, using two enzyme activity ranges, the sum of the coefficients of all enzymes 
on selected metabolites is shown. They clearly do not sum to zero. As with the sum of the 
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Figure 3. The effect of changes in the activity of malic enzyme on reaction rates and metabolite levels in the 
citric acid cycle. A low and a high range of enzyme activities were used. 

coefficients of all enzymes on flux, the lowest range gives the highest coefficients. 
As mentioned earlier, we wanted to be even-handed by also giving credit to metabolites 

in controlling flux and metabolite levels. As Krebs pointed out, metabolite availability 
controls cycle activity much more than enzyme activity. The mechanisms underlying 
metabolite effects are every bit as important as the mechanisms underlying enzyme effects. 
In Fig. 4, the role of one of the most interesting metabolites, malate, is analysed. Because of 
the mechanisms and kinetic constants for malate dehydrogenase and malic enzyme, higher 

Table 7. Effect of ranges for malic enzyme and malate dehydrogenase 
on the sum of control coefficients for cycle flux 

Malic Malate Sum of flux control coefficients for reaction ... 
enzyme dehydrogenase 2 3 5 6 11 13 

70 to 100 70 to 100 0.96 150 0.81 0.92 0.96 1.44 1.45 
100 to 130 1.02 1.16 0.81 0.84 0.87 135 1.36 
150to200 0.96 1.15 0.77 0.70 0.77 0.93 0.94 

100 to 130 70to 100 0.99 0.86 0.75 0.73 0.81 0.81 0.82 
100 to 130 1.05 052 0.75 0.65 0.72 0.72 0.73 
150 to 200 0.99 051 0.71 051 0.62 0.30 0.31 

150 to 200 70to 100 0.97 0.75 0.71 054 0.66 0.68 0.69 
100 to 130 1.03 0.41 0.71 0.46 057 059 0.60 
150 to 200 0.97 0.40 0.67 0.32 0.47 0.17 0.18 
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Table 8. Effect of enzyme activity range 
on the sum of concentration control 
coefficients for individual metabolites, 
summed over all enzymes 

Metabolite 30% to 100% 50%to200% 

Oxaloacetate 2.64 1.03 
Acetyl CoA 351 -1.26 
Pyruvate 3.70 -2.07 
Glutamate 1.72 -0.03 
Citrate 131 -0.62 
2-0xoglutarate 2.85 -1.59 
Succinate 221 -1.31 
Malate 0.98 -053 

malate levels affect the rate of oxaloacetate synthesis somewhat more than the rate of pyruv
ate synthesis. The oxaloacetate levels increase from 0.0026 to 0.0031 mM (about 20% ). As 
oxaloacetate is much more rate-limiting than acetyl-CoA in this bimolecular reaction, the 
rate of citrate synthesis increases: the coefficient is 0.69. This decreases the concentration of 

acetyl-CoA, which is an inhibitor of the pyruvate dehydrogenase complex. Hence, the rate of 

conversion of pyruvate to acetyl-CoA increases, resulting in decreased pyruvate levels, in 

spite of a positive coefficient for the rate of pyruvate formation from increased malate levels. 
In summary, we found that V max values for the well-characterized enzymes in this 

model could not be used, as they were incompatible with much more reliable data. Our 
results cast doubt upon the relevance of using in vitro enzyme activities for testing theories 
about the regulation of metabolism in vivo. It is highly unlikely that the relative activities of 
a series of enzymes in a cell extract is comparable to their relative activities in vivo. 
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Figure 4. The effect of changes in the concentration of malate on reaction rates and metabolite levels in the 
citric acid cycle. The malate concentration was varied from 0.216 mM to 0.243 mM. 
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As V max values were not a reliable indication of enzyme activity in vivo, we calculated 
this activity and called it V vivo to distinguish it from V max- Using V vivo values, we 
calculated coefficients for the effect of each enzyme on the rate of its own reaction and 
found that the enzymes catalysing reactions 2, 4, 8, and 13 have zero or near zero coeffici
ents; that is, these enzymes are not rate-limiting to cycle flux, and contribute nothing to flux 
control in this system. The rates of these reactions are controlled by substrate availability 
and end product inhibition. Enzymes with high flux coefficients catalyse reactions 1, 3, and 
6. Changes in their activity have a strong effect on cycle flux. Critical variables affecting 
these coefficients and the summed coefficients on cycle flux are the ratio of VvivJrate and 
the range of enzyme activity values used to calculate the coefficients. Depending upon these 
variables, the sum of the coefficients of all enzymes on cycle flux varies from 0.2 to 2.0. The 
sum of the coefficients of all enzymes on each metabolite varies from -2.1 to 3.7. We 
therefore question the applicability of the "summation property" to realistically complex 
metabolic systems. 

The results of this analysis raise a number of questions: Did we do it correctly from the 
theorist's point of view? If so, why don't their generalizations apply to our system? What 
experimental systems are valid for testing these theories? What questions do we want to ask? 
Coefficients per se are not very revealing. We believe most biochemists would be much 
more intrigued and enlightened by a series of "mechanism maps" describing in detail the 
reasons for the effects of each enzyme and each metabolite on the system. This is the level 
of mechanism which is exciting form our point of view. Exceptions to generalizations must 
not be suppressed or dismissed, as they hold the key to fascinating new insights into the 
ingenuity of living systems. Ockham has said that "Entities are not to be multiplied without 
necessity." However, when trying to understand the intricacies of metabolism in vivo it may 
well be necessary to multiply and integrate a great many entities. Clinging to oversimplified 
interpretations may interfere with a search for new relevant variables and delay our 
recognition of the complexity of the problem. 

In conclusion, it is generally felt that enzymes must exert most of the control in 
metabolism because they contain so much information. However, it took other kinds of 
information to characterize these enzymes. Under the quasi-steady-state conditions of living 
cells, enzymes serve as part of a static structural framework - as catalysts to be 
manipulated by the environment. The dynamics of metabolic regulation at any point in time 
resides in the information inherent in the ever-changing patterns of available metabolites. 
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ADDENDUM 

On our return from the workshop recorded in this volume we explored the basis for our 

failure to obtain the (mathematically inevitable) summed flux coefficients of unity in the 

analysis of the citric acid cycle model. We believe we have now resolved the problem, and 

are indebted to a number of colleagues for helpful suggestions and offers of assistance. In 

particular we wish to thank Joe Higgins, David Fell, Athel Cornish-Bowden and Rafael 

Franco. 
We had not anticipated how stringent the steady-state requirement is for being able to 

test the "summation properties", nor how small the perturbations must be. We established a 

"steady state" of less than 5% changes in any flux or metabolite level prior to our analysis of 

the citric acid cycle model. This seemed reasonable, as conditions in vivo are always quasi

steady-state, and in all likelihood such a large metabolic network is undergoing changes in 

excess of 5% over the time period involved. Perturbations of 10% also seemed reasonable, 

as experimental perturbations of this order are typically necessary to measure significant 

effects, and in vitro systems used to verify the flux "summation property" imply changes in 
flux and enzyme activitiues in excess of 10% [A. K. Groen et al. (1982), J. Bioi. Chern. 
257, 2754; N. V. Torres et al. (1986) Biochem. J. 234, 169; R. J. Middleton & H. Kaeser 

(1983) Genetics 105, 633]. 
We have now examined two models which are in steady state to within 0.01%: the 

original 20-reaction model with six external inputs (Fig. 1) and a short linear series of three 

reactions (dead-end competitive inhibition, uni uni and mass action) with one external input 

to the first metabolite pool. After a 1% perturbation of the input flux to the latter model, 9 

minutes were required to again reach steady state to within 0.01 %; 30 minutes were required 

after a 6% perturbation: the sum of flux control coefficients was then 1.000. It was not 

possible to reach a new steady state after perturbation of the large 20-reaction model. Even a 

0.01% change in the enzyme activity (V vivo> of reaction 5 perturbed the system to the extent 
that a new steady state was not reached within 30 minutes. Longer time periods were not 

explored. Thus, using our MEfASIM program it is not theoretically possible to examine such 

a large metabolic network with respect to summed flux control coefficients. 

We conclude that, even in a four-reaction system, a steady state with an accuracy to 

0.01% must be achieved to test the flux control "summation property" and that perturbations 

must be of the order of 1% or less. We are puzzled about the implications of these conclu

sions, based on completely defined computer models, to the in vitro investigations referred 

to above. It is difficult to imagine that such precise steady state conditions could be estab

lished in vitro, or that such small perturbations could be made or measured accurately. 



Chapter 28 

Metabolic Control Analysis: Principles 
and Application to the Erythrocyte 

REINHART HEINRICH 

h WAS PROPOSED (Heinrich & Rapoport, 1974a) to use as quantitative measures of 
metabolic control the following coefficients: 

a1ns~· 
C~= ap alnvj 

ap 
(la,b) 

where the notations are as follows: Jk, steady-state fluxes; S;, steady-state concentrations; 
vj, rates of isolated reactions; p, any kinetic parameter that affects primarily only one 
reaction j, i.e. av tfap = 0 for k :t:. j. It can be proved that the values of the control 
coefficients do not depend on the way in which the enzyme activities are changed, i.e. they 
are independent of the parameters that enter eqns. (la,b). 

If the reaction rates vj are linearly dependent on the enzyme concentration, i.e. if 

dv/vj ~ dE/Ej and if there is no enzyme-enzyme interaction one may use the following 
definitions instead of eqns. (1 a,b): 

(2a,b) 

(Kaeser & Bums, 1973). The relative changes of steady state fluxes and steady-state meta
bolite concentrations after changes of system parameters may be characterized by response 
coefficients: 

(3a,b) 
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Scheme I. A simple linear pathway. 

The response coefficient for the steady state flux (R/•) corresponds to the "control 
strength" defined by Higgins (1965). Control coefficients and response coefficients are 
related by the following formulas: 

which contain the following elasticity coefficients: 

vi_ Cllnvj 
EjJ- Cllnp 

(4a,b) 

(5) 

The possibility to factorize the total response into systemic coefficients ( C~, C,f) that are 
independent of the special choice of the perturbation parameter and a term ( E"p) depending 
on the kinetic parameters of only one enzyme is the reason why it is useful to consider 
control coefficients and elasticity coefficients separately. 

A Simple Example: Control of Linear Enzymatic Chains 

The dynamic behaviour of a linear enzymatic pathway (Scheme 1) is governed by the 
following differential equations: 

dS· 
Cif=Vi-Vi+l (6) 

with the side conditions S0 = P1 =constant, Sn+I = P2 =constant. If all reactions follow 
the reversible form of the Michaelis-Menten equation: 

(7) 

one gets under steady state conditions (dSjdt = 0, vi = f) the following nonlinear equation 
for the steady state flux J: 

IIi K~(V'" -J) *' K IIi K~(V'" -J) pz=PI J J -1 L __ l_ J J 

j=l K/{Vj +J) 1=1 Vt -J j=l K/(Vj +f) 
(8) 

This may be rearranged into a polynomial equation for J, the degree of this equation 
corresponding to the number of reactions within the chain. 

To arrive at explicit solutions, one may introduce the approximation that for all enzymes 
the concentrations of substrates and products are well below the corresponding Michaelis 
constants: 
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(9) 

with ki = VtiKt, k_i = Vj/Kj, qi = /q/k.i. Using eqn. (6) the following formulas are derived 
for the steady-state flux and for the metabolite concentrations: 

J 

n+l 

Ptll qj-P2 
j=l 

n+l n+l 

L. .1 II qj 
1=1 /q j=l+l 

For the control coefficients, the following formulas are obtained: 

(lOa,b) 

forj~i 
(lla,b) 

forj>i 

with the characteristic times -r:i = 1/(ki + k_i). An inspection of eqns. (11a,b) shows that the 
control coefficients of very fast enzymes (with short relaxation times) become negligibly 
small. However, the control coefficients do not only depend on the characteristic times but 
also on the equilibrium constants as well as on the position of the enzyme within the chain. 
Only for the case that all the equilibrium constants are equal to one, the distribution of 
control coefficients corresponds to the distribution of the characteristic times. In another 
case, where the equilibrium constant of one enzyme is much greater than of all others the 
control coefficients of reactions behind the quasi-irreversible step become negligible small. 

From eqns. (11 a,b), it immediately follows that the sum of flux control coefficients is 
equal to one while for a given metabolite the sum of the concentration control coefficients is 
equal to zero. It could be shown that these summation relationships are generally valid 
irrespective of the stoicheiometry of the network and of the linear or nonlinear character of 
the kinetic equations ( cf. below). 

Calculation of Control Coefficients and Theorems of Control Analysis 

Control coefficients may be calculated on the basis of elasticity coefficients. This may be 
shown by implicit differentiation of the system equations: 

(12) 

with respect to a system parameter p which affects primarily only the rate of one reaction 
vm (Heinrich & Rapoport, 1974b, 1975). Notations in eqn. (12) are as follows: r, number of 
reactions; n, number of metabolites; aij, stoicheiometric coefficients. From eqn. (12) one 
gets the following under steady-state conditions (dSi/dt = 0): 
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~ ~ _J)VjOSk . OVm _ 
£.. £.. alJas a +auna--0 
j=l k=l k 'P 'P 

Using the following abbreviation, 

r dv· r v· 
m;.t=La;j-1 =Laii~el 

j=l ask j=l sk 

R. Heinrich 

(13) 

(14) 

where m;k are the elements of the Jacobi-matrix M, eqn. (13) may be written as follows: 

(15) 

If the Jacobi-matrix is regular, i.e. the system does not contain conservation quantities and 
the solution of eqn. (12) with respect to the steady state concentrations is isolated, one 
obtains the following from eqn. (15): 

v·dSJa n v· 
c!;; = ~--'P-=-L m;l akJ ~ 

7 s; avJap k= 1 S; 
(16) 

where m;l are the elements of the inverse of the Jacobi-matrix. Using eqns. (15-16) for the 
calculation of the concentration control coefficients one must know besides of the elasticity 
coefficients the fluxes and the metabolite concentrations within the reference state. 

The flux control coefficients may be derived from the concentration control coefficients 
using the following formula: 

n 

C~"=l>ki+ L E~C~ (17) 
i=l 

(Heinrich & Rapoport, 1974b, 1975). The calculation method described above was general
ized by consideration of systems containing conservation quantities (Reder, 1986, 1988). 

Using eqns. (12) and (14), one obtains from eqns. (16) and (17) by summation 

r r 

"'cs-o· £..i Vj-' L C,f= 1 (18a,b) 
j=l j=l 

(Summation theorems: Kaeser & Bums, 1973; Heinrich & Rapoport, 1974a). Multiplica
tion of (16) with the elasticity coefficient yields the following after summation, taking eqn. 
(14) into account: 

r r 

L. C.f1=o; L Cvi"1=-I>Ai (19a,b) 
j=l j=l 

(Connectivity theorems: Kaeser & Bums, 1973; Westerhoff & Chen, 1984). Recently, Reder 
(1986, 1988) showed that eqns. (19a,b) are special cases of generalized summation 
theorems. 
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Formulas (12-19) show that the validity of the theorems of control analysis is not 
restricted to cases where the reaction rates are proportional to the enzyme concentrations. 
This was until recently a controversial point [cf. Discussion Forum in Trends Biochem. Sci. 
12, 216-224 (1987)]. There is not even any need that all reactions are catalysed by enzymes. 
The theorems are applicable to all systems that can be described by the set of eqns. (12) 

provided the general definitions (1a,b) of control coefficients are used. 

Time-dependent control coefficients. Usually, control analysis is applied to characterize the 
changes of system variables after perturbation of system parameters for t ~ oo, i.e. for full 
relaxation of the system. However, very often the transition to the true steady state cannot be 
observed due to the slowness of some reactions. It is, therefore, worthwhile to define time
dependent control coefficients that characterize the response of the system variables for 
finite time intervals after a small parameter perturbation. With p~ p + 8p at t = 0 
(()vJ'dp = 0 for k "* m), and si~ Si + 8Si(t\ where p and Si are the parameter value 
and steady-state concentrations, respectively, for t < 0) one gets the following result from 
the system equations, eqns. (12), in a linear approximation: 

(20) 

Using the definition 

(21) 

eqn. (20) may be rewritten as follows: 

(22) 

with mil, defined as in eqn. (14), (cf. Heinrich, 1985). The time-independent solution of eqn. 
(22) yields the usual control coefficients given in formula (16). For finite times eqn. (22) 

may be solved by standard techniques for linear differential equation systems. Since C~(t=O) 
= 0 one obtains by summation of eqn. (22) with respect to index m the result that also the 
time-dependent control coefficients fulfil the summation theorem (18a) for all times t > 0 
(provided the steady state considered is stable). 

Eqn. (22) may also be used to derive a connectivity theorem for time dependent control 
coefficients. One obtains 

f. C~(t)E2 =~k f. bkm(e'A..t- 1)b~i 
j=l 1 m=l 

(23) 

in which l..m are the eigenvalues of the Jacobi-matrix and the columns of the matrix B = 

{bkm} are the corresponding eigenvectors; b~i are the elements of the matrix B-1. If the 
steady state is stable (Re l..rn< 0 for all m) the right hand side converges fort~ oo, i.e. one 
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obtains the usual connectivity theorem, eqn. (19b). Eqns. (22-23) together with similar 
equations for time-dependent flux control coefficients may be useful for the determination of 
control coefficients in quasi-steady states. 

Mathematical Models of Erythrocyte Metabolism 

Early models of erythrocyte metabolism (Rapoport et al., 1974, 1976; Heinrich et al., 
1977) were based on reaction schemes that include the glycolytic enzymes transforming 
glucose to lactate with a net production of ATP. Furthermore, non-glycolytic ATP-consum
ing processes were taken into account as well as the 2,3-bisphosphoglycerate bypass, which 
is typical for erythrocytes. The glycolytic pathway includes slow and very fast reaction 
steps. This separation of time constants (time hierarchy) allowed the application of the 
quasi-steady-state approximation, leading to simplifications of the model as described 
below. For models of erythrocyte glycolysis the steady-state solutions show the following 
properties: 

1. There exists a critical parameter value (bifurcation point) for the kinetic constant of non

glycolytic ATP-consuming processes kATPase· For kATPase greater than a critical value 
there is only the trivial solution with an A TP concentration of zero and glycolytic flux of 

zero. 

2. There exists a certain region for the parameter kATPase where unstable steady states 
exist. 

3. For low values of kATPase the ATP concentration is rather insensitive to variations of the 
kinetic constants of A TP-consuming processes. These properties of the steady state 
solutions were found also in skeleton models of glycolysis (Selkov, 1975). The model of 
erythrocyte metabolism has recently been extended by incorporation of the pentose
phosphate pathway (Schuster et al., 1988). 

Fig. 1 shows the reaction scheme of a metabolic-osmotic model of erythrocyte energy 
metabolism (Brumen & Heinrich, 1984); Werner & Heinrich, 1985). The previous models 
were extended by inclusion of transmembrane fluxes of sodium, potassium, chloride and 
lactate. The model contains two different non-glycolytic ATP-consuming processes, the 
Na/K-ATPase and a non-ion-transport ATPase. Two situations are considered: (1) the "open 
system" with fixed composition of the external medium, in which the intracellular variables 
may attain a stationary in vivo state, and (2) the "closed system" with a finite extracellular 
volume (in vitro state). 

In this metabolic osmotic model the set of system variables contains the cellular volume 
(V;) and the transmembrane potential (t.'¥). The set of parameters is enlarged by quantities 
characterizing the osmotic action of haemoglobin and the electric charges of haemoglobin 
and other compounds. Further system parameters are the permeabilities of ions. 

The system equations for this model consist of a coupled set of non-linear parameter 
dependent differential equations and algebraic constraints (algebro-differential equations). 
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Figure 1. Reaction scheme for the metabolic osmotic model of human erythrocytes. 
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The differential equations for the concentrations (S.) of the glycolytic intermediates are 
derived from the stoicheiometry of the system and th~ kinetic equations of the reactions: 

(24) 

in which vp is the cellular volume in the reference state. This equation takes into account 
that the concentrations are changed not only by the reactions (vk) but also by variations of 
the cell volume (V). For the reaction rates vk nonlinear functions derived from the kinetic 
properties of the isolated enzymes are used. 

Differential equations are also used to describe the transmembrane transport of sodium 
and potassium. Taking into account that Na/K-ATPase carries 3 mol sodium outwards and 2 
mol potassium inwards mol A TP degraded the time-dependent changes of the cellular cation 
concentration are governed by the following differential equations: 

~~NatV;} = VNa, passive - 3VNa/K-A TPase v. I 

j_~dd KtV;) = VK, passive+ 2vNa/K-ATPase 
yO t 

I 

(25a) 

(25b) 
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The passive fluxes depend on the transmembrane potential. In the present model they are 
described by Goldman's flux equation (Goldman, 1943). Application of the quasi-steady
state approximation to the fast transport processes of the anions chloride and lactate leads to 
equilibrium distributions for internal and external concentrations: 

Cl;; =Clj/r; Lactate.;= Lactatej/r (26) 

in which r = exp(F t.'I'/RT. The equilibrium assumption is also applied to calculate the 
relationship between intra- and extracellular pH: 

pHe=pHi -logr (27) 

Under in vitro conditions, the total volume consisting of the cellular volume (Vi) and 
the plasma volume (Ve) is time-independent. A conservation equation for the volume is 
used to express the extracellular volume as a function of the intracellular volume. Other 
conservation equations result from the fact that under in vitro conditions the total contents 
of the permeable ions chloride, sodium and potassium within the cell and the extracellular 
compartment are constant. For any substance X this conservation equation reads as follows: 

(28) 

where xf and X2 denote respectively the internal and external concentrations under standard 
conditions. Further algebraic constraints are obtained from the electroneutrality conditions 
for the intra- and extracellular compartments as well as from the condition of osmotic equi
librium of the cell with the surrounding medium (for details see Werner & Heinrich, 1985). 

The steady state solution of eqns. (24-28) constitutes the reference state of the model 
(in vivo state, Ve ---) oo ). It was used as the starting point for the calculation of time
dependent states. It was proved that the in vivo state is always stable. In contrast to the 
energy metabolism of some other cells, glycolysis of erythrocytes does not show self
sustained oscillations (limit cycles). This prediction is confirmed by experimental data. 

The model equations were used to calculate time-dependent variations of all system 
variables under blood preservation conditions (for 37°C). Here, a stationary state cannot be 
maintained as the cell and the surrounding plasma constitute a closed system. The accumu
lation of lactate is accompanied by a lowering of the extracellular and intracellular pH. Since 
phosphofructokinase is inhibited by hydrogen ions, drastic influences on the metabolic state 
are observed. The decrease of the ATP concentration affects the transport processes and the 
osmotic state of erythrocytes. The results presented in Figs. 2-4 were obtained by numerical 
integration (cf. Werner & Heinrich, 1985). Under blood preservation conditions the glyco
lytic rate is strongly diminished which leads to a breakdown of the concentrations of 2,3-bis
phosphoglycerate, ATP and other glycolytic compounds (Fig. 2). Due to the lowering of the 
ATP concentration the ATP-consuming Na/K-ATPase can no longer maintain the concentr
ation gradient of K+ and Na+ across the cellular membrane. The concentrations of these ions 
undergo a transition to an equilibrium-state (Donnan-state) that is characterized by a passive 
distribution of all permeable ions (Fig. 3). The redistribution of ions and the changes of the 
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Figure 2. Breakdown of the concentration of 
ATP and 2,3-bisphosphoglycerate (2,3P2G) 
under blood preservation conditions. 

M 
N 

0 
E 100 
E 
·-~ ::.:: 
• _ _; so 

0 z 

10 20 30 40 so 
time (d) 

Figure 3. Time-dependent changes of intra
cellular K+ and Na + concentrations under 
blood preservation conditions. 

pH-dependent charges of haemoglobin and 2,3-bisphosphoglycerate, lead to strong varia
tions of the intracellular pH and of the transmembrane potential (Fig. 4 ). The transmembrane 
potential changes from -9 mV in vivo state to about 9 mV in the Donnan-state (cf. Brumen 
et al. , 1979; Glaser et al., 1980). 

Control Coefficients of Erythrocyte Glycolysis 

On the basis of the system equations of the metabolic-osmotic model control coefficients for 
the in vivo stage were calculated. Table 1 lists the control coefficients for the glycolytic rate 
and for the A TP concentration. Furthermore, the model allows the calculation of control 
coefficients for the cellular volume (last column in Table 1). Obviously, in this metabolic 
osmotic model the system variables are not only affected by the activity of the enzymes but 
also by the rates of active and passive transport processes. The corresponding control 
coefficients are included in Table 1. 

As for other complex systems, positive as well as negative control coefficients are 
obtained. Among all the enzymes considered in the model the activity of the hexokinase/ 

Figure 4. Time-dependent changes of the intracellular 
pH (a) and of the transmembrane potential (b) under 
blood preservation conditions. 
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Table 1. Control coefficients of 
the metabolic osmotic model of Reaction (vi) ctj c;w c~ 
human erythrocytes for glycolytic 

Hexokinase +phosphofructokinase 1.13 -0.09 0.68 flux (J), ATP concentration and 
internal volume (V) for the" in Bisphosphoglycerate mutase 0.31 -0.22 0.19 
viw" steady state Bisphosphoglycerate phosphatase -0.30 0.24 -0.39 

Phosphoglycerate kinase -0.31 0.22 -0.19 
Na/KATPase -0.05 0.03 -0.06 
ATPase 0.16 -0.11 -021 
Passive K + transport -4.19 2.93 -4.83 
Passive Na+ transport 4.30 -3.00 4.81 

Sums 1.00 0.00 0.00 

phosphofructokinase system exerts the most significant control on the glycolytic flux. This 
corresponds to results obtained in earlier models of erythrocyte metabolism (Rapoport et 
a/., 1974, 1976; Heinrich et al., 1977). The hexokinase/phosphofructokinase system has a 
high control coefficient also for the cellular volume. The control coefficients of glycolytic 
enzymes for the ATP-concentration are rather small. This homeostasis of the steady-state 
level of the ATP-concentration results from regulatory couplings, mainly from the A TP
inhibition of the phosphofructokinase, but also from the 2,3-bisphosphoglycerate bypass, 
which is switched off at increasing A TP-consumption. The separate control effects of the 
cation leak permeabilities are enormous. They are obviously exerted by affecting the cell 
cation content which is followed by corresponding changes of the cellular volume and the 
metabolite concentrations. The simultaneous control of both permeabilities is very small 
since their control coefficients are of opposite sign. A detailed discussion of the control 
coefficients for the metabolic osmotic model of erythrocytes may be found in Brumen & 
Heinrich (1984). 

Simplification of Metabolic Models 

Metabolic pathways contain a high number of interrelated reactions with complicated kinetic 
properties. Realistic models of such systems consist, therefore, of many differential equa
tions. They depend in a nonlinear manner on the variables and parameters that prevents ana
lytic solutions. One may ask whether it is possible to simplify the mathematical treatment. 

Very often a model simplification can be achieved by application of the quasi-steady 
state approximation which is mathematically based on Tikhonov's theorem (Tikhonov, 
1948). In many cases it may be applied in the following way. Let us consider the case that 
the vector v = (v1 ... vr)T of the reaction rates may be subdivided into two vectors u = (u1 

... ur)T and w = (w1 ... wr)T containing the rates of slow and very fast reversible reactions, 
respectively. This implies a subdivision of the matrix A = { aij} into the stoicheiometric 
matrices AO>= ( a&l)l and A (2) = ( aij2>J of the slow and fast subsystems, respectively. Then 
the system equations may be reformulated as follows: 

(29) 
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In eqn. (29) the rates of the fast reactions are normalized by a small parameter J.l. such 

that w = ~J.-w. Before going to the limit J.l. ~ 0 it is necessary to derive from eqn. (29) a 

maximal number of differential equations that do not contain the small parameter J.l.. For that 

one may introduce pool variables Y = (Y1 ••• Y v)T that are linear combinations of the 

original variables S = (S1 ••• Sn)T 

n 
Y; = L tjjSj; i = 1 ... v 

j=l 

The transformation matrix T = { t;j} must fulfil the following condition: 

(30) 

(31) 

According to eqns. (29-31) the slow pool variables represent the conservation quantities 

of the fast subsystem. Their number ( v) depends on the rank of the stoicheiometric matrix 

A (2) ( v = n - a 2; a2 = rank A (2); for details see Schauer & Heinrich, 1983; Schuster & 

Schuster, 1989). In the limit J.l. ~ 0 one has to solve instead of the original differential eqns. 

(29) the following system of algebro-differential equations: 

dY n ~ 
_i = ~ ~ t .. aP>uk· i = 1· .. v dt LJ LJ IJ jk ' 

j=l k=l 

(32a) 

0= f. a;~)~ i=1···n (32b) 
k=p+l 

For the calculation of the transformation matrix T a general method was proposed (Schauer 

& Heinrich, 1983). 

If for the fast subsystem a generalized "Wegscheider condition" is fulfilled (Schuster & 

Schuster, 1989) eqns. (32b) imply that the fast reversible reactions are in equilibrium, i.e. 

(33) 

In many cases the algebro-differential eqns. (32ab) are much easier to solve than the 

original system, eqn. (29). This holds, in particular, if eqn. (33) can be applied, i.e. if in a 

long time scale all fast reactions may be considered to be in equilibrium. In such a case only 

the equilibrium constants of these reactions enter the model (reduction of the number of 

parameters). Furthermore, the speed of the integration is enhanced since the remaining 

differential eqns. (32a) for the slow pool variables are less stiff than the original eqns. (29). 

Theoretical Analysis of the Structural Design of Metabolic Pathways 

In contrast to chemical systems the biochemical reaction networks are the result of natural 

selection where the contemporary metabolic systems have been developed by a stepwise 

improvement of the functioning of the different subsystems of the cell. Certainly, this 

development did not lead to a "global optimal state". However, it is an experimental fact that 
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a change of the kinetic parameters of enzymes by mutations in contemporary metabolic 
systems mostly results in a worse biological function. From this, one may conclude that with 
respect to present-day metabolic systems, we are confronted at least with a "local optimum". 
It seems, therefore, to be a meaningful task to explain the structural design of metabolic 
networks on the basis of optimality principles. Such a theoretical analysis may be considered 
to be complementary to the classical approach of modelling. Simulation models explored in 
biochemistry over more then 20 years cannot provide rules for understanding the functional 
organization of metabolic systems, i.e. questions as: "Why has the Michaelis-constant of a 
given enzyme just this value rather than another?"; "Why is this enzyme allosterically 
inhibited by that end product?"; "Why is this enzyme much slower than another?" or "Why 
do we find this and not another distribution of control coefficients?" remain unanswered. 

It was proposed to calculate kinetic parameters of metabolic pathways on the basis of 
the assumption that during evolution some performance function <I> was optimized (Waley, 
1964; Chemavskij et al., 1976; Reich, 1984, 1985; Heinrich & Holzhiitter, 1985; Heinrich 
et al., 1987; see also Chapter 10 of this book, by Cascante, Franco and Canela, which is 
devoted to consideration of performance indices). Obviously, any performance function 
should depend on the physical properties characterizing metabolic systems, i.e. on the 
metabolite concentrations and the fluxes. On the basis of the system equations, the variables 
S1 andlk may be expressed by the kinetic parameters. One may write, therefore, 

<!> = <I>(S, J) = cp*(p) (34) 

The crucial point is to identify systemic properties that may serve as relevant performance 
functions. Metabolic networks represent open nonequilibrium systems and no cell could 
survive if there would be only vanishing fluxes. Therefore, it may be assumed that metabolic 
fluxes were targets of optimization during evolution. Of course, many other performance 
function could be of importance (see below). Naturally, any optimization has to be 

performed under consideration of side conditions Xi = Xi(S, J, p) = X *i(P) ::; Xi· For 
example, the total concentration of enzymes within a cell cannot exceed an upper limit. This 
holds true also for the total concentration of internal metabolites due to the limited solvent 
capacity of the cell (Atkinson, 1969). Under certain conditions such constraints can be taken 
into account using the method of Lagrange multipliers (Heinrich & Holzhiitter, 1985; 
Heinrich et al., 1987). 

Let us consider here the most simple example, the optimization of the flux through a 
linear enzymatic chain. The starting point is eqn. (lOa) for the steady-state flux as a 
function of the kinetic constants k1 and the equilibrium constants q1. If this expression for 
the flux is used as performance function (<I> = 1) and if it is maximized under the side 
condition that the total concentration of enzymes cannot exceed an upper limit one arrives at 
the following variational equation for the optimal distribution of the first order kinetic 
constants: 

n+l n+l k 
L Ej = L if=xo 
j=l j=l 1 

(35) 
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where A. is a Lagrange multiplier. For a;= a. one gets from consideration of eqn. (lOa) the 

following distribution of kinetic parameters: 

(36) 

The optimal values ~ depend on the equilibrium constants, which must be considered as 
fixed quantities during evolution. For the case that all equilibrium constants are greater than 
one eqn. (36) predicts a decrease of kinetic constants toward the end of the chain. 

Optimal states of linear enzymatic chains were calculated also under more general 
assumptions using nonlinear kinetic equations for the individual reaction steps and by con

sideration of constraints for the total concentrations of intermediates (Heinrich et al., 1987). 
Using the optimal parameter values one may calculate also the corresponding distribution of 

control coefficients. In the simplest case where the steady state flux is maximized under the 
side condition of a fixed sum of enzyme concentrations the variational eqn. (35) leads (for 

a.j = a.,j = 1 ... n + 1) directly to the result that within the optimal state the distribution of 
control coefficients corresponds to the distribution of the kinetic constants: 

(37) 

Eqn. (37) reflects a rather surprising result. For qj > 1 U = 1 ... n + 1) the fast enzymes at 
the beginning of the chain and not the slow enzymes at the end have high flux control 
coefficients. This conclusion underlines the fact that the values of control coefficients are 
strongly dependent on the position of the enzyme within the metabolic network. 

The optimization method may be extended to branched metabolic pathways with more 
than one steady state flux. One may identify generally r - a different steady state fluxes, 

where r is the total number of reactions and a is the rank of the stoicheiometric matrix A~ 
As long as the stoicheiometry of the pathway is considered to be fixed only r - a steady
state fluxes can be independently optimized. It may be argued, therefore, that the number 
r - a is closely related to the number of different biological functions that are fulfilled by the 
metabolic network. 

Optimization of fluxes does not lead to a strong separation of time constants. However, 
separated time constants are typically for all metabolic systems. In glycolysis of erythro
cytes, for example, the relaxation times of the reactions differ by more than four orders of 
magnitude. The slowest processes have relaxation times of several hours and there are many 
reactions with relaxation times much shorter than one second. The evolutionary meaning of 

such a strong separation of time constants is still unclear. Probably, time hierarchy is related 

to the stability of metabolic networks. The hypothesis was formulated that evolution toward 
systems with separated time constants allowed simple dynamic behaviour despite increasing 
structural complexity (Heinrich et al., 1977; Heinrich & Sonntag, 1982). This hypothesis is 

supported by results of recent calculations using optimization procedures (Schuster & 
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Heinrich, 1987). As performance functions the real parts of the eigenvalues of the Jacobi

matrix were used. Minimization of the largest eigenvalue (i.e. optimization of stability) 

under the side condition of fixed steady state fluxes and fixed total concentrations of inter

mediates yields optimal parameter distributions showing strong separation of time constants. 

In the optimal state there are always a small number of slow reactions with high control 

coefficients and a great number of very fast reactions that exert no control. 
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Chapter 29 

Constraints in the Application of Control 
Analysis to the Study of Metabolism in 
Hepatocytes 

MICHAEL N. BERRY, ROLAND B. GREGORY, ANTHONY R. 
GRIVELL, DEBRA C. HENLY, JOHN W. PHILLIPS, 
PATRICIA G. WALLACE and G. RICKEY WELCH 

IN RECENT YEARS it has been argued that quantitative methods are essential for providing 
new insights into the nature of the living state (Kaeser, 1983 ). A number of mathematical 
approaches have evolved to meet these demands for quantitative methodologies (Heinrich & 
Rapoport, 1974; Savageau, 1976; Kaeser & Bums, 1979), and of these, control analysis has 
perhaps attracted the greatest attention. Although its advent has been greeted enthusiastically 
by many theorists, who see it as an ideal way to quantify the regulatory role of the enzymes 
of a metabolic pathway, but this analytical method has not yet been widely embraced by 
experimentalists, because of the difficulties encountered in applying it to complex cellular 
systems. The work that we shall report in this chapter will illustrate some of these diffi
culties. The cell system we have used for our studies is the isolated hepatocyte preparation, 
and we shall present some representative examples from the many hundreds of experiments 
we have performed in this area. 

Measurement of Flux Control Coefficients in Intact Hepatocytes 

One approach to measuring flux control coefficients is to vary the amount of the various 
enzymes within a metabolic pathway. While there is a possibility of altering enzyme levels 
in bacteria or yeast by use of mutant species, it is extremely difficult to manipulate 
mammalian cells in this way. Accordingly, first Tager and colleagues (Groen et al., 1982; 
Duszynski et al., 1982) and then others (e. g. Pryor et al., 1987) have adopted a more 
feasible procedure in which they make use of graded concentrations of specific inhibitors to 
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Figure 1. The effect of rotenone on (a) respiration and (b) gluconeogenesis. Hepatocytes from fasted rats were 
incubated with 10 mM lactate, 1 mM pyruvate and 2 mM palmitate for 35 min at 37°C as described previously 
(Berry eta/., 1983). Rates of total oxygen consumption 10 and gluconeogenesis ]glucose are expressed in 
llJI!Ol min·1 g·1. 

reduce the activity of the enzyme under study. This technique has been successfully used to 
demonstrate the importance of the adenine nucleotide translocase in the control of mito
chondrial respiration, both for the isolated organelle (Groen eta/., 1982) and for the intact 
hepatocyte (Duszynski eta/., 1982). Althou.gh few suitable agents are available, there are a 
number of inhibitors of oxidative phosphorylation or gluconeogenesis that lend themselves 
to whole cell work. 

A good example is the irreversible inhibitor of NADH dehydrogenase, rotenone. 
Titration curves for this inhibitor, obtained by techniques published in a number of papers 
(Berry & Friend, 1969; Berry eta/., 1983, 1987, 1988ab), are provided in Fig. 1, where the 
influence of rotenone on respiration and gluconeogenesis is set out for hepatocytes obtained 
from fasted rats and incubated in the presence of lactate and palmitate. Rotenone at a 
concentration less than 5 ~M inhibits gluconeogenesis totally and concomitantly abolishes 
all the extra oxygen uptake associated with lactate addition. Calculation of the respiratory 

control coefficient according to Duszynskiet at. (1982) yields a value of 1. This is the 

inevitable outcome of performing the calculation in circumstances where the degree of 

inhibition of flux, at low doses of inhibitor, is a linear function of the inhibitor concentration, 
and where the maximal inhibitor concentration is determined by an extrapolation technique. 

Not all our titrations give such a result, but it is a frequent observation particularly when 
examining the effects of inhibitors on the gluconeogenic pathway. Thus by means of specific 
inhibitors we have found flux control coefficients with respect to glucose synthesis of 1, not 
just for NADH dehydrogenase, but also for enolase [fluoride (Biicher, 1955)], phospho
enolpyruvate carboxykinase [mercaptopicolinate (DiTullio eta/.,1974)] and the aspartate 
shuttle [aminooxyacetate (Meijer et at., 1978)]. Since the summation theorem (Kaeser & 
Bums, 1979) predicts that the sum of the flux control coefficients for the enzymes of a 
metabolic pathway must equal 1, these results seem paradoxical. One possibility is that we 
are not applying the method of control analysis correctly. A more positive interpretation is 
that the enzymes of the pathways under study must be so organized as to behave like a 
multi-enzyme complex, or to put it another way, flux must be highly "channelled". 

In Fig. 2 we show a titration using the irreversible inhibitor of A TP synthase, oligo-
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Figure 2. The effect of oligomycin on (a) respiration (10 ) and (b) gluconeogenesis (Jglucosel· Hepatocytes 
were incubated as described in Fig I. 

mycin. It is noteworthy that significant inhibition of oxygen uptake or gluconeogenesis does 
not occur until the oligomycin concentration reaches 0.41.l.M. This could reasonably be inter
preted as indicating that an excess of A TP synthase is present under these circumstances; in 
other words the flux control coefficient for A TP synthesis is 0. This conclusion could be 
challenged, however, on the basis that in the intact cell other binding proteins might exist 
that would prevent oligomycin from reaching its target till a sufficiently high level of the 
inhibitor has been added. We can discount this possibility by noting that if ATP-dependent 
oxygen uptake is stimulated still further by addition of ammonia and ornithine to induce urea 
synthesis, the hepatocyte is capable of a much greater rate of A TP synthesis (Table 1 ). This 
would appear to confirm that the synthase is not limiting when the demand for A TP comes 
only from gluconeogenesis. 

We have extended this study by examining the consequences of a double inhibitor 
titration (Kell, 1986) in which we have added to the hepatocytes amounts of oligomycin 
sufficient to bring about significant inhibition of respiration, and observed the additional 
effects of rotenone in this system. The results are unexpected (Fig. 3) in that low 
concentrations of rotenone invariably reduce further the oligomycin-inhibited rate of 
respiration and gluconeogenesis. Yet it is apparent from the rotenone titration curve in the 
absence of oligomycin that in the presence of these low concentrations of rotenone the 
hepatocytes retain sufficient respiratory capacity, that an additive effect of oligomycin and 
rotenone would not be anticipated. Indeed, these findings strongly support the argument for 
channelling of oxidative phosphorylation advanced by Kell (1986). In the context of control 

Table 1. A TP requirements in 
hepatocytes metabolizing various 
substrates. 

Cells were incubated for 40 min at 37°C 
(Berry et a/., 1983) at the following 
initial concentrations: pyruvate, 1 mM; 
lactate, 10mM; palmitate, 2 mM; 
ornithine, 2 mM; ammonium chloride 
12mM. It is assumed that 6 mol A TP are 
required to synthesize 1 mol glucose from 
lactate, and 3 mol A TP to synthesize 1 
mol urea from ammonia. 

Substrate 

Lactate, pyruvate 

Palmitate, lactate, pyruvate 

Palmitate, lactate, pyruvate, 
ornithine, ammonia 

J(h 1 glucose ]urea 

!'mol (g wet wt.)·1 min·1 

3.7 0.6 

5.5 1.2 

6.8 0.9 2.3 

ATP 
required 

!LmoV!Lmol 

3.6 

7.2 

12.1 



346 M. N. Berry and others 

7 1.5 b a 

'" '" 
6 .E 

.E 5 
~ '"' 1.0 • 

'"' 4 ~ 0 <> 
" • 

~ 3 " <> • E • 
" • ::l.. 

" <> 
::l.. " " 0.5 • 0 0 

2 .. .. 0 0 0 :Jl " 0 
.. .. .. 0 ~ -., g 0 0 ~ 

c; .. -., .. II 
0 0 

0 0.25 0.50 0.75 1.00 0 0.25 0.50 0.75 1.00 
[Rotenone] ( JLM) [Rotenone] ( JLM) 

Figure 3 .The effect of rotenone and oligomycin on (a) respiration (J 0 ) and (b) gluconeogenesis (1 81ucose>. 
Hepatocytes from fasted rats were incubated with 10 mM lactate, 1 mM pyruvate and 2 mM palmitate in the 
presence of various rotenone concentrations as indicated on the axis and oligomycin concentrations as follows: 
0 J.lM (e), 0.3 J.lM ( 0), 0.4 J.lM (T), 0.5 J.lM (D), 0.6 J.lM (.A.). 

analysis, it will be noted that according to the linear nature of the rotenone-inhibition curves, 

NADH dehydrogenase continues to show a flux control coefficient of 1 for respiration and 

gluconeogenesis, regardless of the degree of inhibition of flux brought about by the action of 

oligomycin on A TP synthase. 
It might reasonably be expected that since NADH dehydrogenase activity further limits 

respiration that has already been depressed by oligomycin, the activity of this enzyme would 

necessarily constrain any stimulation of respiration brought about by A TP-demand, un
coupling agents or ionophores. Yet from Table I it is apparent that substantial stimulation of 

hepatocyte respiration can be achieved when the demand for ATP is increased. Moreover, 

under appropriate conditions (e.g. by exposing cells to valinomycin in the presence of ade

quate substrate) rates of oxygen uptake as high as 14 IJ.mol g-1 min -1 can be achieved. How 

then can NADH dehydrogenase exert significant control at much lower respiratory rates? 

We are obliged to conclude that either the analytical approach is incorrect, or alternatively 

that factors other than the actual amount of enzyme present are having a major influence on 

flux control. What these factors are does not seem to be readily revealed by control analysis. 

We have also run into difficulties in endeavouring to apply the principles of control 

analysis to assessment of the regulatory role of the adenine nucleotide translocase. By means 
of control analysis (Duszynski et al., 1982; Groen et al., 1982) it was determined that the 

translocase exerts a considerable degree of control on respiratory and gluconeogenic flux in 

the presence of lactate. In contrast we have found a flux control coefficient of 0 at the 

considerably greater rates of respiration and gluconeogenesis that result when hepatocytes 

are incubated with lactate and palmitate in combination (results not shown, but similar to 

those in Fig. 2). It is by no means clear how to reconcile these discrepant findings, each 

based on the same technique. 
It may be that the approach adopted by Groen et al. (1982) is not always suitable for 

cells as complex as hepatocytes and that other techniques should be attempted. One method 
is to derive flux control coefficients from elasticity coefficients rather than to measure them 

directly. Again, the question must be raised as to whether this can be achieved in our 

experimental system. There does not appear to be any certainty that the quantitative effects 



29: Control Analysis applied to Metabolism in Hepatocytes 347 

of a substrate or an effector on an isolated enzyme in vitro will be reproduced in vivo, since 
it is not feasible to mimic exactly intracellular conditions in an in vitro system. Moreover, 
the measured concentration of a metabolite in vivo may be very different from its activity, 
due to compartmentation or to binding to intracellular components. Control analysis is 
theoretically able to deal with circumstances where multiple effectors are present, provided 
that for any given set of measurements all variables but one are held constant during the 
analysis. Twenty years of experience with the isolated hepatocyte preparation suggests that 
its inherent biological variability under physiological experimental conditions will not pro
vide the degree of constancy required to meet such demands. 

Control analysis and related approaches seem much better suited to deal with homo
geneous solutions. Yet in recent years a wide body of opinion has developed that cellular 
organization plays a paramount role in metabolic regulation, and that enzyme-enzyme and 
enzyme-membrane interactions are of key importance in controlling flux (Masters, 1981; 
Kurganov, 1985; Welch & Clegg, 1986). As a consequence of these interactions, a change in 
the properties of one enzyme of a pathway can be expected to bring about significant 
changes in the properties of other associated enzymes. Can control analysis take into account 
such interactions which are so extremely difficult to emulate and analyse in vitro? 

Glucose-Lactate Interactions 

Another type of experiment that we interpret in terms of thermodynamic rather than kinetic 
control is illustrated in Fig. 4. Hepatocytes from fasted rats are incubated in various con
centrations of glucose from 0 to 80 mM in the absence of inhibitors. No lactate is formed 
when glucose is not added, and in fact very little is produced when 10 mM glucose is 
present. With amounts of added glucose between 20 and 80 mM the initial rate of lactate 
production rises as a function of glucose concentration, reaching over 2 JllllOl g-l min -l at the 
highest glucose concentration. We conclude from discussions with Maria Luz Cardenas, and 
our own subsequent measurements of hexokinase D ("glucokinase") activity in hepatocytes 
from fasted rats that the initial rates of lactate formation over the glucose range employed 

Figure 4. The effects of increasing glucose 
concentration on lactate formation. Hepato
cytes from fasted rats were incubated with 10 
mM(e),20mM (+),40mM (T) and 80 mM 
<•> glucose. NaF at 3 mM was also present in 
incubations containing 20 mM ( 0) and 40 
mM ( V) glucose. 

8 

20 40 60 80 100 
Incubation Period (min) 
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reflect the high Km (about 1 OmM in our unpublished studies) of this enzyme (see also 
Bontemps eta/.,1918). 

This overall control of glycolytic flux by glucose concentration was unexpected and 
warranted further study. Accordingly, we examined the effects of addition to the system of 
3mM sodium fluoride. This glycolytic inhibitor reduced lactate flux by two-thirds, yet, as 
Fig. 4 shows, the glucose concentration still played a key role in determining the rate of 
glycolysis. Measurement of glycolytic intermediates revealed a three-fold elevation of 
fructose 1,6-bisphosphate and 3-phosphoglycerate in the presence of fluoride, but no other 
differences were detected. It is difficult to envisage how the flux through an inhibited 
enzyme can be enhanced by an increase in the activity of another enzyme catalysing a 
reaction in the pathway some six steps removed from the site of inhibition, particularly when 
concentrations of metabolic intermediates along the pathway remain unchanged. The pattern 
seems to us more easily explained by channelling than by the diffusion and random collision 
of metabolites required by current formulations of control analysis. 

There is another element to these studies on hepatocyte glucose metabolism, which 
provides even more of an interpretative challenge. It can be seen from Fig. 4 that the rates of 
lactate formation are not linear, but gradually decline over a period of time, reaching a 
steady-state after about one hour. It must be emphasized that isotope studies show conclus
ively that the decline in lactate accumulation is not due to the removal oflactate through the 
mitochondrial oxidation of pyruvate, but rather to a reduction of glycolytic flux. It is 
noteworthy that the final steady-state concentration of lactate in the medium, like the initial 
rate of lactate accumulation, is a function of the initial glucose concentration. Indeed, for 
concentrations of added glucose between 20 and 80 mM, the steady-state (maximum) 
concentration for lactate can be expressed according to the following equation: 

[glucose] = K[lactate F 

where K is found to range from 2 to 4 mM-1 in different experiments. 
Since the hepatocyte is capable of synthesizing glucose from lactate as well as generat

ing lactate from glucose, it was important to determine whether or not these relationships 
reflected a balance between glycolysis and gluconeogenesis. This was achieved by inhibiting 
the hepatocytes with potent inhibitors of gluconeogenesis, such as mercaptopicolinate. 
Addition of mercaptopicolinate did not enhance the rate of lactate accumulation nor elevate 
the final steady-state level reached (data not shown). Hence it can be inferred that the steady 
state achieved is a consequence of the glycolytic system operating alone. Nevertheless, the 
gluconeogenic process can play a part as is demonstrated in Fig. 5. In this experiment 
various amounts of lactate were added to the medium in conjunction with glucose, but the 
ultimate steady-state relationships between glucose and lactate were hardly affected. Where 
lactate in excess of the normal steady-state level was added it was removed, presumably by 
gluconeogenesis. When lactate, but no glucose, was added to the incubation mixture, 
virtually all the lactate was converted to glucose and no steady-state was achieved during the 
incubation period. 

We have attempted to gain some insight into the processes involved by measuring the 
levels of metabolic intermediates. Although some of these prove technically rather difficult 
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Figure 5. The effects of added lactate on 
lactate formation from glucose. Hepatocytes 
from fasted rats were incubated with 40 mM 
glucose (e) in the presence of 2 mM (+), 
3 mM (T) and 4 mM (•) lactate. 
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to measure under our experimental conditions we can say with some degree of confidence 
that the achievement of a steady "plateau" in regard to lactate concentration is not accom
panied by any significant change in intermediary metabolite concentrations, notably citrate, 
fructose 1,6-bisphosphate or adenine nucleotides (data not shown). It is difficult, therefore, 
to attribute changes in the glycolytic flux between 20 and 60 min to changes in the elasticity 
coefficients of key enzymes such as phosphofructokinase. Of course there may be subtle 
changes in metabolite concentrations that we have failed to detect. Nevertheless, the process 
appears to behave much more like a system approaching equilibrium than one under kinetic 
control. 

It is evident, however, that the system cannot be approaching true thermodynamic 
equilibrium, since from the t.GO of glycolysis [-112 kJ mol-l (Krebs & Kornberg, 1957)], 
one would expect equilibrium at a [lactatel/[glucose] ratio of over 106. We therefore 
interpret our results as an example of a balance of far from equilibrium forces, where the 
chemical t.G for glycolysis is balanced by an opposing intracellular force, as yet undefined. 
An example of such a force would be the process of electroconformational coupling 
described by Tsang et a/. (1989). Such interactions could not take place in a homogeneous 
bulk aqueous phase, and hence we take our findings as providing compelling evidence for 
the existence of a high degree of cellular organization. This organization must extend to the 
individual enzymes (Berry et al., 1987; Berry et al., 1988ab ). That is to say, intracellular 
metabolic flux is highly, and possibly completely, channelled. 

Westerhoff & Kell (1988) were the first to discuss the breakdown of the conventional 
control analysis for channelling systems. The most immediate result is the violation of the 
unit-value flux summation. Welch et al. (1988) extended control analysis to heterogeneous 
states of enzyme organization, specifying the formal interdependence of flux-control coef
ficients in organized systems. Recently, Kaeser et al. (1990; also Chapter 20 by Kaeser, 
Sauro and Acerenza in this book) used a similar theoretical approach, in applying the ana
lysis to homologous and heterologous enzyme-enzyme interactions. Notably, it is shown that 
the flux summation is greater than unity for channelling systems (see also Welch & Keleti, 
1989). Indeed, the control-theoretical hallmark of a perfectly channelled system is a summa

tion precisely equal to the number of enzyme steps in the pathway. 
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In summary, the results we have obtained in attempting to apply control analysis to our 
experimental data are consistent with our belief that a high degree of channelling is present. 
We consider that the further development of control analysis to take into account the likeli
hood that most metabolic pathways possess a high degree of enzyme organization, will 
encourage experimentalists to make more use of the method which presently appears to be 
exploited more frequently in the think-tank of the theorist than in the water-bath of the 
experimentalist. 
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Chapter 30 

Application of Metabolic Control Analysis 
to Photosynthesis: the Problem of Getting 
Data for an Impressive Algorithm 

CHRISTOPH GIERSCH, DIRK LAMMEL and KLAUS STEFFEN 

THE MATHEMATICS of metabolic control theory is simple, not complicated as could be 
inferred from the literature. The differential equations describing the time course of meta
bolite concentrations, and qualitative knowledge of reaction rates allow formulation of two 
matrices. Control coefficients can then be determined from enzyme elasticities by standard 
matrix algebra This procedure is used to calculate symbolically control coefficients of 
photosynthetic reactions. Also peculiarities of photosynthesis (light-driven reactions, high 
enzyme concentrations in combination with constraints) that require extension to control 
theory can be treated by this approach. 

To obtain numerical values for control coefficients from the symbolic equations data on 
enzyme elasticities are required. We shall show in this chapter that the amount of data 
necessary for the control approach is difficult or even impossible to collect from one sample, 
so that original measurements have to be supplemented by data from other sources, which 
can lead to errors in calculated control coefficients of unknown magnitude. The integrative 
potential of control analysis seems to be outweighed in part by its requirement of data on the 
complete system. Some progress may come from expressing the ratio of control coefficients 
(rather than the coefficients themselves) by elasticities, which requires considerably less 
data. At present, control analysis is a set of impressive relations for quantities that are 
difficult or impossible to measure. 

On the Mathematics of Metabolic Control Analysis 

Calculation of control coefficients from known enzyme elasticities is a prerequisite for 
applying control theory to metabolic systems. An algorithm for calculation of control 
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coefficients has been proposed recently (Giersch, 1988). The essence of this algorithm is the 
notion that steady state metabolite concentrations are implicitly defined as functions of 
enzyme concentrations by the steady state condition of the system. This fact allows calcula
tion of partial derivatives of steady state metabolite concentration with respect to enzyme 
concentrations, from which concentration control coefficients are obtained. This approach is 
sketched here for a biochemical system with m metabolites Xj and n reaction rates vi. All 
reaction rates vi are assumed to be proportional to concentration Ei of the enzyme cata
lysing vi. This latter assumption is known as the central dogma of metabolic control 
analysis. The differential equations describing the time course of metabolite concentrations 

xj are as follows: 

(1) 

fJ._ji are coefficients that indicate whether vi is a source ( aji > 0) or a sink for xj ( aji < 0), 
or is not connected to xj ( aji = 0). Interpreting the terms on the right-hand-side of eqn. (1) 
not as summands but as matrix entries an m x n matrix is obtained, the weighted 
stoicheiometric matrix A: 

(2) 

For most biochemical systems A will not have maximal rank, corresponding to the fact that 
some of the metabolite concentrations are related by constraints involving other metabolites. 
How to deal with constraints has been discussed in the literature (Giersch, 1988; Reder, 
1988). We note here only that each constraint on metabolite concentrations leads to deletion 
of a row in A [and to additional entries in the elasticity matrix B: see, e.g., the first column 
of Bin eqn. (9), below]. We assume that matrix A has maximal rank [i.e. rank(A) = m], 
thus that the system of equations A(1· .. l)T = [0], where (1· .. l)T is the transpose of row 
Cl·. -1), has n- m linear independent solution vectors (v1 ... vn); vi in eqn. (2) is the ith 
component of the general solution to A(l ... ll = [0]. Note that n- m is the number of 
independent fluxes running through the system. 

A second matrix, the elasticity matrix B, can be formulated from knowledge of the 
functional dependence vi (x1 ... xm) ("which reaction rate depends on which metabolites"): 

l 
e} · · · E'l1 

B - . . . - ... 

eh.··. ~ 
(3) 

where~ =(XjfvJ(av/axJ are enzyme elasticities. If no constraints are imposed on the system, 
and if all vi are affected by their direct substrates and products only, A and B have entries at 
the same positions, i.e. matrices A mtd B have identical structures. 
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Table 1. Theorems of metabolic control analysis1 

Theorem, written Number of 
Basis for theorem References 

in components as matrix equationsz and notes3 

I cisj=o m Conservation of mass ( :En.iivi = 0) a,b 

I c(·= 1 n Conservation of mass ( :En.iivi = 0) a,b 

I s· ci IG:= -li.;t [cis~]BT =-[1m] m2 (ABT)-1ABT = [lml and eqn. (4) c,d 

I 1. C/t:l:=O [c(•]BT = [0] mn (AB T)-1 AB T = [I ml and eqn. (5) a 

I CJjiVjCJ· = 0 A[c(·]=lOJ mn ABT(ABT)-1 = [lml and eqn. (5) e 

I c(·=n-m tr[c('] = n- m tr((AB1)-IABT) = tr(BT(AB1)-IA) = m f,g 

L(s~ct·=O ks·][c('] = [0] Right-hand sides of eqns. (4-5) h 

1The metabolic pathway is assumed to have n enzymes and m free metabolites whose steady state concentrations are 
Sf The number of independent fluxes running through the system is n - m and equals the trace of the n x n matrix 
[ c;] of flux control coefficients. 

2The number of equations that allow calculation of control coefficients from enzyme elasticities. 
3a, Kaeser & Burns (1973); b, Heinrich & Rapoport, 1974; c, Westerhoff & Chen, 1984; d, o-"' is the Kronecker &, 

equal to 1 if j = k, to 0 if j 7' k; e, Reder, 1988; f, Giersch, 1988; g, tr(M) is the trace of matrix M; h, published 
here for the first time. 

The essential assumptions for application of the implicit function theorem are that 
system (1) has a steady state and that them x m matrix ABT evaluated at the steady state is 
invertible (BT is the transpose of B). Necessary conditions for invertibility of ABT are 
discussed in Giersch ( 1988). If the inverse ( AB 1)-1 exists, the mn concentration control 
coefficients cfj and the n2 flux control coefficients c{• can be calculated from the following 
pair of equations: 

[cfj] =-(ABTr1A 

[c{•] =[In]- BT(ABTr1A 

(4) 

(5) 

in which [1 nJ in eqn. (5) is the n x n unit matrix. The theorems of metabolic control 
analysis (Table 1) follow from the steady-state condition (Li<ljivi = 0, so row sums of 
(AB1)-1A and BT(AB1)-1A are 7..ero), and from the particular structures in terms of A and B 
of the right-hand-sides of eqns. ( 4) and (5), as outlined in Table 1. An additional theorem, 
[qjUCi''l = [0], follows also immediately from eqns. (4-5). Note that the seven theorems 
hold for any pair (C, D) of matrices as long as (CDT) is invertible and the row sums of C are 
zero. 

Control coefficients calculated from eqns. (4-5) are uniquely determined (because of the 
implicit function theorem). What about uniqueness of coefficients obtained from the 
theorems of Table 1? There are m(m + 1) equations for calculation of the mn concentra
tion control coefficients c;"j, so that calculation does not give unique results if n -m > 1. 
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The n2 flux control coefficients C[' are to be calculated from 1 + n(2m + 1) equations 
(Table 1), so that unique results are not obtained if n - 2m > 1. The difference n -m, the 
number of independent fluxes, is determined by the topological structure of the system. 
Calculation of control coefficients for systems with high n -m by means of the theorems of 

Table 1 requires additional branch point relationships (see Fell & Sauro, 1985, Westerhoff & 
Kell, 1987). These are not needed for the calculation by eqns. ( 4-5). On the other hand, if 
uniqueness is guaranteed, calculation of flux control coefficients by means of the theorems is 

more convenient than by eqn. (5). In any case, calculation of algebraic expressions for 

control coefficients in terms of enzyme elasticities requires relatively simple matrix algebra 
only. For small systems, symbolic calculation of control coefficients can be done with paper 

and pencil. 
Although the theorems of control analysis follow immediately from eqns. (4-5), some 

points of interest remain: are there more theorems than the seven listed in Table 1? Note that 

e.g. I.pj;v; = 0 (column sums of A are zero) except for columns corresponding to reactions 
at the "ends" of the pathway. Could this lead to additional theorems? Moreover, the theor
ems of Table 1 hold for any elasticity matrix B (a<> long as ABT is invertible) whereas 

pathway structures and rate laws cause B (and A) to adopt certain characteristic properties. 
What are the consequences in terms of control coefficients of these characteristic structures 
of matrices A and B? 

Before applying the above algorithm to photosynthesis, two peculiarities of photo
synthetic C02 fixation are considered: light driven reactions and enzymes occurring at high 
(mM) concentrations. 

Control Analytical Treatment of Peculiarities of Photosynthesis 

Light-Driven Reactions. Peculiar to photosynthesis are light-driven reactions like electron 
transport or photophosphorylation. The rate R of a light reaction is dependent both on light 
intensity L and on the biochemical capacity R m of the plant: R = R(L, R m). For light
driven reactions, the two parameters L and Rm substitute for the single parameter (enzyme 
concentration) in ordinary biochemical reactions. An extension of control theory to allow 

analysis of light reactions is to assume that R is proportional to (or homogeneous of degree 
1 in) L and Rm: R(tL, tRm) = tR(L, Rm) for any t, which, from Euler's theorem on 
homogeneous functions, is equivalent to 

(6) 

We make the following definitions: 

(6a) 

so that hL + hRm = 1 from Euler's relation, eqn. (6). hL and hRm are the sensitivities of rate R 
towards changes in light L and biochemical capacity R m· It can be shown (Giersch eta/., 
1990) that control coefficients for light C L and the biochemical capacity CRm can be 

obtained by multiplying by hL and hRm' respectively, the coefficient C calculated as for 
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ordinary biochemical reactions. In our analysis of photosynthetic C02 fixation we use a 
model of a light-driven reaction that has been proposed by Farquhar & Wong (1984). It has 
the advantage of being homogeneous of degree 1 in L and Rm and is given by: 

(7) 

where R is the rate of the light-driven reaction and q the fraction of light absorbed by 
chloroplasts. 

High Enzyme Concentration. At least one of the enzymes of photosynthetic C02 fixation 
occurs at concentration comparable to that of its substrate: the concentration of active sites 
of ribulose-! ,5-bisphosphate carboxylase in the chloroplast stroma has been estimated to be 
about 4 mM, whereas the concentration of its substrate ribulose 1,5-bisphosphate can be 
considerably lower (the other substrate of ribulose-! ,5-bisphosphate carboxylase, C02 , is 
treated as a parameter). While in an open system the occurrence of enzymes at high 
concentrations does not violate the central dogma of metabolic control analysis (see Chapter 
20 by Kaeser, Sauro and Acerenza in this book) this is not true when additional constraints 
are imposed on one of the metabolites turned over by the highly concentrated enzyme. As 
ribulose 1 ,5-bisphosphate participates in the phosphate pool in the chloroplast stroma, which 
is known to be constant, the reaction rate v of ribulose-! ,5-bisphosphate carboxylase is not 
a homogeneous function of the enzyme concentration E. From Euler's theorem (or from 
inspection of the rate law of this enzyme: see Farquhar, 1979) non-homogeneity of v in E is 
equivalent to EOv/v()E 7:-1. Non-homogeneity has the consequence that the theorems of 
control analysis (Table I) do not hold. This affects also interpretation of control coefficients 
(what does a flux control coefficient of 0.8 mean if the sum of flux control coefficients is 
certainly not equal to I but otherwise unknown?). However, control coefficients can be 
redefined in such a way that all theorems of Table I hold for the redefined set even if 
Eav/v()E 7:-I (Giersch et al., I990). The "new" coefficients, K;, are simply obtained by 

dividing the "old" ones by EOv/v()E: 

so that K; = Ci if (and only if) EdvfvaE =I. The Ki coefficients are a generalization of the 
Ci coefficients and can be calculated in the same way as the latter from eqns. (4-5) or by 
means of the theorems. 

Elasticity Matrix and Stoicheiometric Matrix for the Calvin Cycle 

The pathway of photosynthetic C02 fixation involves about 25 reactions and metabolites. A 
simplified model of the pathway with only six reactions is shown in Fig. I. This model high
lights some of the basic principles of C02 fixation: C02 is bound to the acceptor ribulose 
I ,5-bisphosphate, which is regenerated in a circular ATP-requiring process. Triose phos
phate from the chloroplast is exchanged for inorganic phosphate in the cytosol. The model 
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Figure 1. Simplified model of the Calvin cycle. This model features photophosphorylation (v6) as a light
driven reaction, the phosphate translocator (v5), and four reactions (v 1 - v4) modelling C02 fixation and 
regeneration of ribulose 1,5-bisphosphate: v1, ribulose-1,5-bisphosphate carboxylase; v2, phosphoglycerate 
kinase and glyceraldehyde 3-phosphate dehydrogenase; v3, regeneration of pentose phosphates; v4 , 

phosphoribulokinase. The rate law for ribulose-1,5-bisphosphate carboxylase (Farquhar, 1978) considers that 
the concentration of this enzyme is of the same order as ribulose 1,5-bisphosphate. The model has seven 
variables (ribulose 1,5-bisphosphate ... ATP) which are interrelated by two constraints (conservation of 
adenylates, conservation of total phosphate in the chloroplast) such that there are 5 free variables; the 
concentrations of C02, inorganic phosphate (P1) and triose phosphate (TP) in the cytosol are parameters. The 
superscript c denotes species in the cytosol. Other abbreviations: TP, triose phosphate; Ru5P, ribulose 5-
phosphate; RuBP, ribulose 1,5-bisphosphate; PGA, 3-phosphoglycerate. 

has seven metabolites (C02, as well as triose phosphate and inorganic phosphate in the 
cytosol, are parameters). The differential equations for the system of Fig. 1 are as follows: 

<frrATP] 0 v2 + 0 v4 + 0 + v6 

t-£3-P -glycerate 1 2v1 v2 + 0 + 0 + 0 + 0 

t-£ triose-P] = 0 + v2 5v3 + 0 vs + 0 

<frrribulose 5-P] = 0 + 0 + 3v3 v4 + 0 + 0 (8) 

<frrmorganic P] = 0 + v2 + 2v3 + 0 + vs v6 

<frrADP] = 0 + v2 + 0 + v4 + 0 v6 

t-£ribulose-1,5-P2]1 = -vi + 0 + 0 + v4 + 0 + 0 

[ribulose 1,5-P2]fis the concentration of free ribulose 1,5-bisphosphate. The total concentr
ation of ribulose 1 ,5-bisphosphate exceeds the free concentration by the concentration of the 
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(ribulose-1 ,5-bisphosphate carboxylase )•(ribulose 1 ,5-bisphosphate) complex. The right
hand-sides of the rows in eqn. (8) are interpreted as rows of a matrix A' (see above). 
Inspection of A' shows that its rank is not maximal: the second to last row is opposite in sign 
to the first one ([ATP] + [ADP] = const.), and the last one can be expressed in terms of rows 
1 to 5 (the total phosphate concentration, organic + inorganic, in the chloroplast stroma is 
constant). Matrix A, the weighted stoicheiometric matrix, is obtained by deleting from A' 
the last two rows. A (but not A') has maximal rank; thus the number of independent fluxes is 
6-5 = 1. The components (v1 ... v6) of the flux vector are v1(1, 2, 0.33, 1, 0.33, 3). 

Formulation of the elasticity matrix B requires knowledge of the rate laws vi. It is 
assumed here that all reaction rates vi are affected only by their direct substrates or pro
ducts. Reactions 1, 3, 4, and 6 are formulated as irreversible reactions because of their high 
Gibbs energy change. Thus, the functional dependence vi = vj(xj) is described as follows 
(see Giersch et al., 1990, for details): v1 = v1([ribulose 1,5-P2]1); v2 = v2([3-phospho
glycerate], [ATP], [ADP], [triose phosphate], [inorganic phosphate]); v3 = v3([triose 
phosphate]); v4 = v4([ribulose 5-phosphate], [ATP]); v5 = v5([inorganic phosphate], 
[triose phosphate]); v6 = v6([ADP], [inorganic phosphate]). Denoting metabolites by their 
row numbers in (8) the elasticity matrix B can be written as follows: 

El E2 0 I I 
E4 
I 0 E6 

I 

riqOOOO 

B= Ej~~o~o (9) 

El 0 0 E: 0 0 

E~~00E~E~ 

(note that v1 = v1 (x1 ··· x5 ) due to the constraint that P0, the total phosphate concentra
tion in the stroma, expressed as x1 + ··· + x5 + [ribulose 1,5-P2 ] 1, is conserved). From 
eqns. (8-9) the 5 x 5 matrix A B T is calculated. Only four of its 2.5 entries are zero. It is 
assumed that AB T evaluated at steady state values of vi and Ei is invertible. Though 
somewhat laborious, the inverse, (ABT)-1, can be calculated using paper and pencil (or, with 
less effort, by a computer program capable of performing symbolic calculations). Control 
coefficients Ki are then expressed in terms of a.ji• E~, and vi by means of eqns. ( 4) and (5). 
Corresponding matrices A and B for the complete photosynthetic pathway can be formulated 
in analogous manner. They are 21 x 23 matrices (25 metabolites with 4 constraints, 23 
enzymes). 

Above we have shown that symbolic determination of control coefficients from enzyme 
elasticities is relatively simple even for complicated pathways like that of photosynthetic 
C02 fixation. Another issue, considered now, is the search for data on enzyme elasticities. 

Estimation of Control Coefficients for Photosynthetic Reactions 

To calculate numerical values for the Ki, data on enzyme elasticities are required. Two 
approaches are considered: (a) the more conventional one of constructing a simulation 
model, and (b) the direct one of collecting data on 'dvJiJx/ 
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(a) Using data on reaction kinetics v i(Xj. Pk) and solving a nonlinear system of equations. 
There is a large volume of published data on the kinetics of Calvin cycle enzymes. For the 

majority of enzymes, there exist at least estimates of Michaelis and inhibition constants and 

limiting rates. These data allow formulation of reaction rates vi (for details see Giersch et 
al., 1990). However, published data on photosynthetic reactions are not complete and often 
inconsistent. We have estimated missing data by means of the simulation model of eqn. (8). 

Steady-state metabolite concentrations were calculated by solving system (8) of non-linear 

equations for Si, from which steady-state fluxes and enzyme elasticities are obtained. 

Control coefficients are then calculated according to eqns. (4-5). 

Fig. 2 shows the dependence of calculated metabolite concentrations and flux control 

coefficients on the activity of phosphoribulokinase. Decreasing the activity of this enzyme 

below about 2.5 mM/s (or 230 J..LmoV[mg chlorophyll•h]) leads to classical manifestation of 

flux limitation at the phosphoribulokinase reaction: the products ribulose 1,5-bisphosphate, 

3-phosphoglycerate and triose phosphate decline while substrate ribulose 5-phosphate is 

piling up. Flux control coefficients Ki behave as expected: that for reactions 1 to 3 decrease, 

and that for the phosphoribulokinase reaction (K4) increases with decreasing phospho-

Figure 2. Dependence of calculated steady 
state metabolite concentrations (a, b) and 
flux control coefficients (c) on phospho
ribulokinase activity. 1 1 is the rate of C02 

fixation (lmM s·1 is equal to 90 lllllOl per mg 
chlorophyll per hour). Parameter values for 
this simulation correspond to saturating light 
and nearly saturating C02' The components 
of K6 [see eqn. (6a) above] are not denoted 
as they almost coincide, but see Fig. 3. 
RuBPI(f): total (free) ribulose 1,5-bisphos
phate concentration; other abbreviations as in 
Fig. I. 
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Figure 3. Dependence of calculated flux 
control coefficients K. on the concentration 1.3 1.3 I '>i.-
of inorganic phosphate in the cytosol. Note ... 

K6RM the "sensitivity catastrophe" when this con- c: 
K2 Q) 

centration is less than 0.8 m M, where the ~ 
absolute values of K3 , K 5 and K 6 exceed Q) K1 

0 
1.3. The summands of K!,, K6L=ht.·K!. and 0 0.0 0.0 

K!.RM=hRM·K6 [see eqn. (6a)] are also shown, g K4 
from which it is evident that photophos- c: 

0 

phorylation is more sensitive to an increase 0 
)( 

in the biochemical capacity (Rm) than to an :J 
u:: -1.3 -1.3 increase in light. Parameter values are as for 0.4 0.8 1.2 1.6 2.0 

Fig. 2 except V max of phosphoribulokinase, 
which is 4.81 m M s·1 . 

Pi cytosol (mM) 

ribulokinase actlVlty (Fig. 2). Note that IKil ::::; 1 for all Ki. The limiting rate of 
phosphoribulokinase observed under physiological conditions is high (corresponding to at 
least 5 mM/s) such that the flux control coefficient of phosphoribulokinase can be estimated 
from Fig. 2 to be insignificant. 

Dependence of flux control coefficients on external phosphate (cytosol inorganic 
phosphate) is depicted in Fig. 3. It is known that photosynthesis is a process requiring 
inorganic phosphate, which is taken up from the cytoplasm in exchange for triose phosphate 
from the chloroplast. Therefore, it is expected that the calculated concentration of inorganic 
phosphate in the chloroplast stroma, and as a consequence (Giersch & Robinson, 1987), the 
ATP concentration and the rate of C02 fixation, decline when the concentration of inorganic 
phosphate in the cytoplasm decreases (not shown). Flux control coefficients show dramatic 
changes when this c~ncentration falls below 0.9 mM: that for the phosphate translocator 
(K5) and photophosphorylation (K6) increase drastically, while that for regeneration of 
pentose phosphates from triose phosphates (K3) declines to large negative values. Note that 
the absolute values of K 3 , K 5 and K 6 exceed 1 at low concentrations of inorganic 
phosphate in the cytoplasm (Fig. 3). 

Increase in K5 with decreasing concentrations of inorganic phosphate in the cytoplasm 
reflects the limiting capacity of the phosphate translocator to facilitate diffusion of inorganic 
phosphate and phosphate esters ("no import of inorganic phosphate into the chloroplast if 
the concentration of inorganic phosphate in the cytoplasm is low"), and increase in K 6 

reflects the inorganic phosphate requirement of photophosphorylation ("no phosphorylation 
without inorganic phosphate"). Why is the control coefficient for K 3 negative and its 
modulus so high (Fig. 3)? An increase in activity of reaction 3 (Scheme 1) will further 
decrease triose phosphate and inorganic phosphate in the chloroplast (the concentration 
control coefficient of triose phosphate and inorganic phosphate towards v3 are -5.7 and -4.5, 
respectively) and thereby lower the rate of inorganic phosphate import and of ATP 
synthesis. Thus, at low external phosphate, the triose phosphate consuming regeneration of 
pentose phosphates exerts a kind of "supercontrol" on the flux. It would be interesting to 
check if this result of the model can be verified experimentally. 

The examples of Figs. 2 and 3 show that complete "sensitivity scenarios" can be studied 
if rate laws are used for formulation of elasticity matrix B. While this approach certainly 
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aids understanding of qualitative aspects of regulation, the present incompleteness of data on 
reaction rates vi causes the numbers calculated for control coefficients to be subject to 
discussion. They should be considered with caution. Whereas we calculated the flux control 
coefficient ofribulose-1,5-bisphosphate carboxylase at 1000 ~mol quanta m-2 s-1 and nearly 
saturating C02 to be close to 0.2 (Fig. 3), Woodrow (1986) concluded that" ... ribulose-1,5-
bisphosphate carboxylase may, under certain conditions, be a major controller" of 
photosynthesis which probably means 0.3 < K1 < 0.8, and Pettersson & Ryde-Pettersson 
(1988) presented a model indicating that K1 is close to zero at saturating C02. Available 
data do not allow yet to give preference to any of these figures. 

(b) Using data on the derivatives <Nifaxr This approach starts from experimental data on 
Si, Ji and the partial derivatives <Ni!'a.x;. measured at the steady state. Metabolite 
concentrations and fluxes can be measured by conventional methods. One of the problems 
with this approach comes from the fact that all data have to be sampled at one specific 
steady state. For the simple model of Fig. 1, twelve partial derivatives have to be determined 
(besides the flux and the metabolite concentrations), for the complete scheme (21 metabol
ites, 23 enzymes) more than 50 partial derivatives. Given the daily variation of plant 
material, sufficient data for the steady state in question are difficult or even impossible to 
collect. However, the required amount of data can be reduced drastically if the analysis is 
restricted to ratios of control coefficients rather then to the coefficients themselves. For 
example, assuming the fimctional dependence vi(.Xj) as for the model of Fig. 1, the ratio 
KtfK6 of flux control coefficients for ribulose-1,5-bisphosphate carboxylase and photo
phosphorylation can be shown (Giersch eta/., 1990) to be as follows: 

0v6 
0.66. {)[ADP] 

K1-------------~~~~------~ 
K6- ( dVz J dV1 a[ADPj 

{)[ribulose-1,5-Pz]1 av2 1 

{)[3-P-glycerate] 

(10) 

so that measurement of four partial derivatives is sufficient to determine the ratio KtfK6• 

From published data the partial derivatives in eqn. (10) can be estimated to be about 1.52, 
0.26 (3 mM ribulose 1,5-bisphosphate) or 0.0064 (5 mM ribulose 1,5-bisphosphate), 0.157 
and 1.29 (all s-1) for dVJd[ADP], ()v1/d[ribulose-1,5-P2]t' ()v2/d[ATP], and ()v 2 /d[3-
phosphoglycerate], respectively (saturating illumination and ambient C02). The ratios 
KtfK6 calculated from these data are 0.54 and 22 for total ribulose 1,5-bisphosphate 
concentrations of 3 mM and 5 mM, respectively (note that K1!K6 is about 20 for nearly 
saturating C02 according to Fig. 2). What is the "correct" ribulose 1,5-bisphosphate 
concentration? Its total concentration, like that of other metabolites, can vary at least twofold 
in parallel experiments. The drastic dependence of calculated K1!K6 ratios on assumed 
values of this concentration implies that all data have to be sampled from the same batch of 
plant material. This again demonstrates that calculation of control coefficients from pooled 
data extracted from the literature cannot produce reliable results. 
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The major problem with this approach is measurement of dll;/()xlln vitro data that are 
known to reflect the in vivo situation only partially can be collected from the isolated 
enzyme by established methods. However, under certain assumptions regarding the func
tional dependence v/~), even in vivo data on the partial derivatives can be obtained: 
d\1;/a~ can be expressed by aT ;lap and iJS/ap. where pis an external parameter like the C02 
concentration. The two latter derivatives can be obtained from in vivo measurements of Ji 
and Sj for various values of p, so that it seems feasible to determine in vivo elasticities 
without isolating enzymes or measuring enzyme activities. No such data exist yet, and it is 
obvious that the price one has to pay in terms of experimental effort is high. 

Conclusion 

Control analysis has developed impressive relations between parameter sensitivities of 
steady state concentrations or of fluxes on the one hand and enzyme elasticities on the other. 
These relations allow systemic properties to be expressed in analytical form by local ones. 
For small systems and for systems with simple structures (linear metabolic chains, 
ecological food chains) clues on modulus and sign of control coefficients can be derived 
solely from qualitative knowledge of the rate laws. This is valuable information. 

Calculation of numbers for control coefficients of a pathway like the Calvin cycle 
requires collection of experimental data on all fluxes, all metabolite concentrations, and 
reaction kinetics of all enzymes of the pathway for one given steady state of the plant 
material. For reasons outlined above this type of experimental data is difficult or impossible 
to obtain. Collecting data for calculating ratios of control coefficients seems more feasible, 
since fewer data are required. Nevertheless, it cannot be overlooked that calculation of 
control coefficients of photosynthetic reactions from enzyme elasticities is at present 
hampered by the lack of suitable methods for collecting experimental data of the type 
required for control analysis. 
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Chapter 31 

Application of Control Analysis to 
Photosynthetic Sucrose Synthesis 

MARKSTIIT 

SucROSE is the major product of photosynthesis, and it is exported to the rest of the plant 
via the phloem. However, a substantial portion of the photosynthate is retained in the leaf, 
often as starch. This starch is later degraded to provide respiratory substrate, or to support 
continued synthesis of sucrose for export during the night. Since major increases in crop 
productivity have been related to an improved allocation of photosynthate within the plant 
rather than an increase in the basic rate of photosynthesis (Gifford et al., 1984), there is 
considerable interest in understanding the mechanisms which regulate the partitioning of 
photosynthate, and in identifying sites which might allow this partitioning to be 
manipulated. 

In this chapter we shall describe some experiments using mutants of Clarkia xantiana 
with a step-wise reduction in the activity of either the cytosolic or the chloroplast phospho
glucose isomerase. These mutants have allowed us to selectively change the rate of sucrose 
or starch synthesis, and study the importance of the mechanisms which are thought to be 
involved in regulating these fluxes. By applying the concepts of Kaeser & Bums (1973), we 
have made a first attempt at describing the control of partitioning quantitatively, in terms of 
the flux control coefficients and elasticity coefficients of some of the enzymes involved. 

Background- Pathways and Regulatory Mechanisms for Sucrose and Starch Synthesis 

Current research suggests that the partitioning of photosynthate is controlled from the 
cytosol (Stitt eta/., 1987b). C02 is initially fixed via the Calvin cycle in the chloroplast, 
and triose-phosphates are then exported to the cytosol (Fig. 1). The inorganic phosphate 
released during sucrose synthesis then returns to the chlorqplast, where it is needed to 
support further photophosphorylation. The export of triose phosphates actually occurs in a 
strict counter-exchange with inorganic phosphate, which is catalysed by the phosphate 
translocator (Fliigge & Heldt, 1984). When sucrose synthesis is restricted, less inorganic 
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Figure 1. Pathways of Photosynthetic Carbon Metabolism. Fluxes of carbon are shown as solid lines, and 
fluxes of inorganic phosphate as dotted lines. For simplicity UTP and pyrophosphate are omitted from the 
reaction catalysed by UDPglucose pyrophosphorylase, and UDP is omitted from the reaction catalysed by 
sucrose phosphate synthase. Individual reactions involved in the regeneration of ribulose 1,5-bisphosphate 
have also been omitted. 

phosphate is released in the cytosol, and the export of triose-phosphate is decreased. More 
photosynthate is then retained in the chloroplast and converted to starch, recycling inorganic 
phosphate within the chloroplast to support further photosynthesis 

Techniques are available to measure the subcellular metabolite levels in protoplasts 
(Wirtz etal., 1980; Lilley eta!., 1982; Gardestrom & Wigge, 1988) or by non-aqueous 
density gradient centrifugation of lyophilized leaf material (Gerhardt et al., 1987). It has 
been shown that four reactions in the cytosol are substantially removed from their thermo
dynamic equilibrium, viz. the cytosolic fructose 1,6-bisphosphatase, sucrose phosphate 
synthase, sucrose-6-phosphatase and the hydrolysis of pyrophosphate (Gerhardt et al., 
1987; Weiner et al., 1987; Quick et al., 1989). The remaining reactions are all very close 
to equilibrium. Research during the last 6 years has also established that the cytosolic 
fructose 1,6-bisphosphatase and sucrose phosphate synthase are regulated to allow the rate 
of photosynthesis to be (a) increased in response to a rising rate of photosynthesis and (b) 

decreased in response to a lower demand for sucrose, allowing more photosynthate to be 
temporarily stored as starch in the chloropla~t (Stitt et al., 1987ab; Stitt & Quick, 1989). 

Two factors are thought to be important for the short-term regulation of sucrose 
phosphate synthase. Firstly, sucrose phosphate synthase has an allosteric site, with glucose 
6-phosphate acting as an activator and inorganic phosphate as an inhibitor. This means that a 
rising supply of hexose-phosphate will act to stimulate sucrose synthesis (Doehlert & Huber, 
1984). Secondly, evidence is accumulating that sucrose phosphate synthase is regulated via 
covalent protein modification. This involves changes of the kinetic properties (Stitt et al., 
1988; Walker & Huber, 1988), and preliminary evidence suggests it may involve protein 
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phosphorylation (Huber et al., 1989). This levels to an activation of sucrose phosphate 
synthase as the rate of photosynthesis increases (Stitt et al., 1988). 

The cytosolic fructose 1,6-bisphosphatase is regulated (inhibited) by the regulator meta
bolite fructose 2,6-bisphosphate (Herzog et al., 1984; Stitt et al., 1987a). The fructose 
2,6-bisphosphate concentration depends upon the activity of the enzymes which are respons
ible for its synthesis and degradation, fructose 6-phosphate 2-kinase and fructose 2,6-bis
phosphatase, which themselves are regulated by metabolites. Rising rates of photosynthesis 
lead to an increase of 3-phosphoglycerate and triose-phosphates and, probably, a decrease of 
inorganic phosphate. These act to inhibit fructose 6-phosphate 2-kinase, and the resulting 
decrease of fructose 2,6-bisphosphate then deinhibits the cytosolic fructose 1,6-bisphosphat
ase (Stitt et al., 1987a). The rising triose-phosphate concentration also leads to large 
increase of the substrate, fructose 1 ,6-bisphosphate, because these metabolites are linked by 
a second-order reaction, and to a yet larger activation of the cytosolic fructose 1,6-bisphos
phatase, because this enzyme has a sigmoidal substrate saturation curve (Herzog et al., 
1984; Stitt et al., 1987a). 

A model has been developed to describe the response of the cytosolic fructose 1 ,6-
bisphosphatase to a rising supply to triose-phosphate as the rate of photosynthesis increases 
(Herzog et al., 1984; Stitt & Heldt, 1985b; Stitt et al., 1987a). The model takes into 
account the measured reciprocal changes of the inhibitor (fructose 2,6-bisphosphate) and the 
substrate, as well as the properties of the partially purified enzyme. It predicts that the 
fructose 1,6-bisphosphatase will be effectively inactive until a "threshold" concentration of 
triose-phosphate is exceeded, above which the activity rises very sharply (Fig. 2). This 
prediction is in good agreement with the measured relation between the triose-phosphate 
level and the rate of sucrose-synthesis in leaves (see Fig. 2). 

Figure 2. A model for the regulation of the cytosolic 
Frul,6Pase in response to a rising supply of triose
phosphate. A, Changes of fructose 2,6-bisphosphate (Fru 
2,6 P:i) and triose phosphate (Triose P) as the rate of 
photosynthesis increases. B, Comparison of the modelled 
response of the cytosolic fructose 1 ,6-bisphosphatase (0 
and line) and the measured relation between the triose
phosphate content and the rate of photosynthesis as the 
light intensity (II) or the CO2 concentration is increased 
(e). The cytosolic fructose 1,6-bisphosphatase activity was 
modelled from the kinetic properties of the partially 
purified enzyme and the measured levels of fructose 2,6-
bisphosphate and triose-phosphates in leaves, assuming the 
reactions catalysed by triose-phosphate isomerase and 
aldolase were close to equilibrium (see Stitt & Heldt, 
1985b; Stitt et al., 1987a). 
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This highly cooperative response of the fructose 1,6-bisphosphatase in vivo is very 
important, because rapid C02 fixation requires a rather delicate balance between the tum
over of the Calvin cycle and the removal of triose-phosphate. If too much triose-phosphate 
were to be removed for end product synthesis, photosynthesis would be inhibited because 
the regeneration of ribulose 1,5-bisphosphate (the acceptor for C02) would be prevented. On 
the other hand, if triose-phosphates were to be removed too slowly, photophosphorylation 
and photosynthesis would be inhibited because too little inorganic phosphate would be 
recycled. Inactivation of the fructose 1,6-bisphosphatase below a "threshold" level of triose
phosphates, presumably reflecting the level needed for Calvin cycle turnover, will ensure a 
first priority for the regeneration of more acceptor. The sharp activation of the fructose 1,6-
bisphosphatase after this ''threshold" is exceeded will ensure that the "surplus" triose 
phosphate is rapidly removed and converted to sucrose, recycling inorganic phosphate to 
support photosynthesis (Stitt et a/., 1987 ab ). Incidentally, the absolute value of the 
"threshold" can be altered to allow rapid intercellular diffusion of metabolites during 
photosynthesis in speciali7.ed C-4 plants like maize (Stitt & Heldt, 1985a), and as an 
adaptation to decreasing temperature (Stitt & GroBe, 1988). 

So far we have considered some of the mechanisms which allow the rate of sucrose 
synthesis to be coordinated with the rate of C02 fixation. Balancing regulatory mechanisms 
also operate in the cytosol to allow a feedback inhibition of sucrose synthesis and alter 
partitioning towards starch. When sucrose accumulates in the leaf or is supplied exogenous
ly, sucrose phosphate synthase is inactivated (Stitt et a/., 1988) and hexose-phosphates 
increase in the cytosol (Gerhardt eta/., 1987). The increased fructose 6-phosphate then 
activates fructose 6-phosphate 2-kinase and inhibits fructose 2,6-bisphosphatase (Stitt eta/., 
1984a; Larondelle et a/., 1986; MacDonald et a/., 1989), leading to an increase of 
fructose 2,6-bisphosphate (Stitt et a/., 1983; Stitt et a/., 1984b) and, thence, to an 
inhibition of the cytosolic fructose 1,6-bisphosphatase (Gerhardt et a/., 1987). More 
photosynthate is then retained in the chloroplast for conversion to starch. 

The mechanisms that are directly responsible for stimulating starch synthesis have been 
studied in isolated chloroplasts, where the effect of decreased sucrose synthesis can be 
stimulated by decreasing the concentration of inorganic phosphate that is supplied in the 
medium in which the chloroplasts are suspended. Decreased inorganic phosphate leads to a 
lower ATP/ADP ratio, and the reduction of 3-phosphoglycerate is restricted (Heldt et al., 
1977). The resulting increase of the ratio of 3-phosphoglycerate to inorganic phosphate then 
activates ADP-glucose pyrophosphorylase (Preiss, 1985) and starch synthesis is increased. 

These studies used what might be termed the "traditional" approach to the study of 
regulation, concentrating on (a) identifying the "irreversible" reactions and then (b) 
studying the changes of metabolites and fluxes in vivo and (c) the properties of the isolated 
enzymes in the hope that (d) a regulatory mechanism could be proposed. This approach, 
however, has now led to a dilemma. In the course of these studies it became obvious that 
there are several enzymes in the cytosol which could be contributing to regulation, (for 
example, we have not even considered sucrose-phosphatase or the removal of 
pyrophosphate, see Quick eta/., 1989; Stitt & Quick, 1989) and it also became obvious that 
several mechanisms could be operating to regulate each enzyme; for example, the cytosolic 
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fructose 1,6-bisphosphatase could also be regulated by AMP (Herzog et al., 1984), and 
possibly by calcium (M. Brauer, M. Stitt & D. Sanders, unpublished). 

We therefore began to suspect that the ''traditional" approach was not going to allow us 
to clearly define the relative importance of these various enzymes and mechanisms for the 
control of flux. Firstly, the approach involves basically, the study of correlations and it is 
notoriously difficult to assign causality to correlations. Secondly, the pathway and the 
individual enzymes were becoming very complex and while a complete "reductionist" 
description for a given cultivar in fixed growth conditions might be possible, it was doubtful 
whether it would be feasible to use this approach for a wide range of plants or growth 
conditions. For these reasons, we have recently become interested in the possibility of using 
mutants with a progressive reduction in the activity of a chosen enzyme. These might allow 
a more rigorous analysis of these regulatory mechanisms and possibly, a first application of 
control theory to these pathways. 

Studies using Mutants with a Reduced Activity of the Cytosolic or the Chloroplast 
Phosphoglucose Isomerase 

The experiments were carried out with mutants of Clarkia xantiana which had a step-wise 
reduction in the activity of the cytosolic (Jones et al., 1986a) or the chloroplastic (Jones et 
al., 1986b) phosphoglucose isomerase. The role of these two enzymes during photo
synthetic metabolism can be seen from Fig. 1. The chloroplast phosphoglucose isomerase is 
essential for starch synthesis, and the cytosolic phosphoglucose isomerase is needed for 
sucrose synthesis. Although neither is directly involved in the Calvin cycle, there is an 
indirect dependence because C02 fixation requires sucrose and starch synthesis to recycle 
inorganic phosphate. We have used these mutants to investigate the following questions: 

1. Can these mutants be used to directly measure the flux control coefficient of the 
cytosolic and plastid phosphoglucose isomerase? On one hand, we were interested in 
assessing the technical difficulties in this kind of study. We were also interested in using 
this as a test case for the widespread assumption that enzymes like phosphoglucose 
isomerase, which catalyse a "near-equilibrium" reaction, are in "excess" and cannot 
control flux through a pathway. 

2. Does a decrease of the cytosolic and chloroplast phosphoglucose isomerase have an 
analogous effect on the fluxes, or is there an asymmetrical interaction between the 
chloroplast and the cytosol? Photosynthetic carbon metabolism is, essentially, a branch
ed pathway leading, after the Calvin cycle, to either sucrose or starch. Obviously, the 
phosphoglucose isomerase isoenzyme in one subcellular compartment will have a flux 
control coefficient for the pathway leading to the end-product in its own compartment. It 
would also have a flux control coefficient for the end-product synthesis in the other 
compartment, which will probably be "negative", because decreasing phosphoglucose 
isomerase in one branch will tend to divert photosynthate into the other branch of the 
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pathway. Each phosphoglucose isomerase will also have a flux control coefficient for 
photosynthesis, whose magnitude will depend upon the ability of one branch to respond 
to a decreased flux in the other branch. Current notions about the control of partitioning 
suggest that the rate of starch synthesis responds to changes in the rate of starch 
synthesis, rather than vice versa. In that case, we might expect a different pattern to 
emerge, depending upon whether the chloroplast or the cytosol phosphoglucose 
isomerase is decreased. 

3. Can the cytosolic phosphoglucose isomerase mutants be used to directly test and 
quantify the contribution that fructose 2,6-bisphosphate makes to the control of photo
synthate partitioning? Decreased cytosolic phosphoglucose isomerase should lead to an 
increase of fructose 6-phosphate, which (see above) is thought to be responsible for the 
increase of fructose 2,6-bisphosphate and, thence, the inhibition of the cytosolic fructose 
1,6-bisphosphatase. The cytosolic mutants should allow us to test and quantify the 
importance of these interactions. 

We approached these questions by illuminating leaves in saturating 14C-labelled C02, 

and measuring the flux to sucrose and starch via 14C-incorporation. Parallel samples were 
quenched in liquid N 2, extracted, and assayed for metabolites. The experiments were carried 
out in limiting and in saturating light, to allow different fluxes to be imposed through the 
pathways. The detailed results of the experiments (Kruckeberg et al., 1989; Neuhaus et al., 
1989) and a theoretical treatment of the pathway of sucrose synthesis (Stitt, 1989ab) have 
been published elsewhere. 

Is Phospho glucose Isomerase "in Excess"? Determination of the Flux Control Coefficients, 
Disequilibrium Ratios and Elasticity Coefficients 

Measurement of flux control coefficients depends upon being able to accurately measure 
small changes in the metabolic fluxes. A lower limit of resolution is set, however, by the 
variability of these kind of measurements, as the standard error is often about 10% of the 
mean. These studies also depend on the quality of the mutants. Even after taking the plant 
material through a rigorous crossing programme to produce an isogenic background, it is 
still possible that the original mutation has pleiotropic effects on the expression of other 
genes. Hopefully, these effects will be minimized when mutants are used which have 
relatively little effect on growth rates, as was the case in these studies. 

The effects of decreased phosphoglucose isomerase on the fluxes to starch and sucrose 
and the mass action ratio are summarized in Fig. 3 and Table 1. The effect of each 
isoenzyme on the fluxes in its own compartment will be discussed first (i.e. the effect of 
decreased plastid phosphoglucose isomerase on starch synthesis, and of decreased cytosolic 
phosphoglucose isomerase on sucrose synthesis; for discussion of the effect on the other 
fluxes, see below). It is apparent that the effect on flux depends (a) on the subcellular 
isoenzyme and (b) on the conditions. 
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The chloroplast phospho glucose isomerase has a significant control coefficient for starch 
synthesis in the wildtype in high light (about 0.34), but it has no consistent or significant 
effect on flux in low light (Fig. 3). The mass action ratio also decreases markedly below the 
expected equilibrium constant (about 3.3) in high light, but was not significantly affected in 
low light (Table 1). Thus reduced chloroplast phosphoglucose isomerase activity has a 
similar effect on the local reaction parameters and on flux through the pathway, and 
phosphoglucose isomerase makes an increasing contribution to control as the flux imposed 
on the pathway is increased. 

A more complex picture emerges for the cytosolic phosphoglucose isomerase. The mass 

Table 1. Influence of decreased 
plastid or cytosolic phospho
glucose isomerase activity on the 
ratio of fructose 6-phosphate 
to glucose 6-phosphate* 

Phosphoglucose isomerase 
activity (as% of wild type) 

Plastid Cytosol 

100 100 
75 100 
50 100 

100 64 
100 36 
100 18 

[Glucose 6-P]/[Fructose 6-P] 

Saturating light Limiting light 

2.61 ± 0.06 2.87±0.06 
2.17 ± 0.07 2.78±0.08 
1.86±0.08 2.76±0.D7 

2.43±0.04 2.92±0.04 
2.23±0.05 2.61 ±0.06 
1.54±0.09 2.19±0.09 

*Leaves from four separate plants (120-200 Jlg chloroplasts) were illuminated at 1000 Jlmol m·2 s·1 (saturating) or 125 
Jlmol m·2 s·1 (limiting) in saturating C02 at 15°C for 10 min before transferring them rapidly into liquid N2 with 
illumination being continued at the same light intensity. The results are mean ±standard error of the mean from 4-8 
separate experiments. 
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action ratio decreases continuously as cytosolic phosphoglucose isomerase activity is 
reduced, with the decrea-.e being apparent in low light and larger in high light (Table 1). 
However, there is negligible effect on fluxes until two-thirds of the cytosolic phospho
glucose isomerase has been removed and, when an effect does appear, the effect is larger in 
low light than in high light (Fig. 3). The flux control coefficient of the cytosolic phospho
glucose isomerase therefore (a) responds in an opposite manner to the chloroplast phospho
glucose isomerase as the light intensity is increased, and (b) is not related to the extent of 
disequilibrium. 

The measurements of fructose 6-phosphate and glucose 6-phosphate allowed the 
elasticity coefficients of phosphoglucose isomerase to be estimated (Table 2). Again, the 
variability in the data (standard error about 10% of the mean) places constraints on the 
accuracy of these estimates. However, for an enzyme like phosphoglucose isomerase, which 
may reasonably be assumed to have hyperbolic substrate saturation kinetics, the equations 
developed by Groen eta/. (1982) can be used. They have the advantage that the glucose 6-
phosphate/fructose 6-phosphate ratio can be used, instead of the absolute metabolite levels. 
This is useful, because the variability in the metabolite ratios is less than the variability in 
the individual metabolite levels (see Kruckeberg eta/., 1989). 

Table 2. Estimated elasticity 
Phosphoglucosc Fructose 6-P Glucosc6-P 

coefficients in vivo for the 
cytosolic phosphoglucose isomerase activity High Low High Low 
isomerase (as% of wild type) light light light light 

100 4.6 7.6 -4.6 -6.9 
64 3.2 8.4 -3.3 -8.4 
36 2.3 5.2 -2.5 -4.9 
18 1.2 2.6 -1.5 -2.1 

The elasticity coefficients of the cytosolic phosphoglucose isomerase for fructose 6-
phosphate and glucose 6-phosphate are between 4.5 and 7.5 in the wild type (Table 2), 
emphasizing that "near equilibrium" reactions typically have relatively high elasticities for 
their substrate and product. This is not due to any inherent kinetic property of the enzyme; 
rather, the high elasticities arise because the net activity v represents the difference between 
the forward (v+1) and the reverse (v_1) reaction (Kaeser & Bums, 1979). If v+ 1 and v_ 1 are 
of a similar magnitude, then a relatively small change of e.g. v + 1 caused by a change of the 
substrate concentration will lead to a considerably larger change in the net flux, ( v+1 - v_1). 

Table 2 also shows that the elasticity coefficients fall progressively as phosphoglucose 
isomerase is decreased in the mutants. When less phosphoglucose isomerase is available, the 
reaction will have to be further displaced from equilibrium to maintain a given net reaction 
rate. This means that v+1 and v_ 1 will diverge, and the net activity (v+ 1 - v_ 1) will become 
less sensitive to e.g. a small change of v+1 caused by a change of the substrate 
concentration. 

The cytosolic phosphoglucose isomerase starts to adopt a significant flux control 
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coefficient in low light when the elasticity coefficients for its substrate and product fall to 
about 2. At this point, the reaction has a disequilibrium ratio of about 0.66, or a free energy 

change of only -1.25 kJ mol-l (see Kruckeberg et al., 1989; Stitt, 1989b). Clearly, a 

reaction can exert control under some circumstances even when it is still near to equilibrium. 

Equally, it is clear that phosphoglucose isomerase is not present in "excess". The chloroplast 

phosphoglucose isomerase can have a significant flux control coefficient even in the wild 

type. The cytosol phosphoglucose isomerase activity is barely adequate to maintain its 

reactants reasonably close to equilibrium, and can also start to exert control when its activity 

is reduced by more than 3-4 fold. 

Asymmetrical Interactions between the Branches of the Pathway 

The interaction between the fluxes in the cytosol and the chloroplast is markedly 

asymmetrical. When the rate of starch synthesis is decreased by reduced chloroplast 

phosphoglucose isomerase activity, there is no significant compensatory increase of sucrose 

synthesis (Fig. 3). Instead, the rate of photosynthesis decreases. A similar result has recently 

been obtained using a pea mutant with a decreased amount of the starch branching enzyme 

(Smith, Neuhaus & Stitt, 1990). 
In contrast, in mutants with a reduced cytosolic phosphoglucose isomerase, the 

decreased rate of sucrose synthesis is fully compensated for by an increased rate of starch 

synthesis and the rate of photosynthesis is no significantly affected. The cytosolic phospho

glucose isomerase therefore adopts a significant negative flux control coefficient for starch 

synthesis in these mutants, rising to about -0.21 in low light. In high light, there is less effect 

on the flux to sucrose and the flux to starch is also less affected. 
These results are fully consistent with the notion that partitioning is regulated from the 

cytosol, rather than the chloroplast. They also emphasize that partitioning can be altered 

without this necessarily impairing the overall rate of photosynthesis. Indeed, the effect of 

reduced phosphoglucose isomerase activity on flux (but not on the local parameters) is 

largely overridden in conditions which allow high rates of photosynthesis. This behaviour 

has an obvious functional importance. It means that sucrose synthesis can be decreased to 

allow more photosynthate to be redirected towards storage as starch but can, nevertheless, be 

increased again if more favourable conditions permit a higher rate of photosynthesis. This 
will minimize the risk that an adjustment of partitioning leads to a decreased rate of 

photosynthesis. The question now arises, how this flexible response in the cytosol is 

achieved. 

Quantification of the Fructose 2,6-Bisphosphate Regulator Cycle 

The influence of reduced phosphoglucose isomerase activity on the activity of the cytosolic 

fructose 1,6-bisphosphatase will depend upon (a) the effect of an increase of fructose 6-
phosphate on the fructose 2,6-bisphosphate concentration and (b) the effectiveness of 

fructose 2,6-bisphosphate as an inhibitor of the cytosolic fructose 1,6-bisphosphatase. 
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Figure 4. Fnzyme-ftux and enzyme-metabolite 
relation in Clarkia mutants with A, reduced 
chloroplast or B, C, reduced cytosolic phospho
glucose isomerase. The results for the cytosolic 
series are given for B, high and C, low light. 
Fluxes are shown as solid symbols for starch 
(e) and sucrose (.._) synthesis, and the overall 
rate of photosynthesis <•>· Metabolites are 
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duction ofQA (the primary acceptor for photo
system 2, (0) and the 3-phosphoglycerate/ 
triose-phosphate ratio (0). 

~-OS 

M. Stitt 

Glc6P 

~<II~ 0 -03 -06 0 -03 -06 0 -03-06 0 -Q3 -D6 0 -D3 -0.6 
AE_ = ( PGIMutont _ PGIWotdtype ) 

E PGIWic!type 

When cytosolic phosphoglucose isomerase is reduced, the increase of fructose 6-
phosphate is accompanied by a 2-3 fold larger increase of fructose 2,6-bisphosphate (Fig. 4). 
A similar relation is seen when fructose 6-phosphate increases in leaves as sucrose 
accumulates (Stitt, 1989ab). This relation can be represented by an amplification factor a, 
and it has been shown (Stitt, 1989a) that a can also be expressed in terms of the properties 
of the enzymes of this regulator cycle, such that 

d[Fru-2,6-P:iJ~ 2-K ~-P 
a = [Fru-2,6-P2] d[Fru-6-P] = eFru-6-P" Fru-6-P 

2-P _2-K 
[Fru-6-P] eFru-2,6-P,- tFru-2,6-P2 

where d[Fru-2,6-P2]/[Fru-2,6-P2] and d[Fru-6-P]/[Fru-6-P] are the fractional changes in 
the steady state concentrations of fructose 2,6-bisphosphate and fructose 6-phosphate 
respectively, and the symbols E represent the elasticity coefficients of fructose 6-phosphate 
2-kinase (2-K) for fructose 2,6-bisphosphate and fructose 6-phosphate, and of fructose 2,6-
bisphosphatase (2-P) for fructose 2,6-bisphosphate and fructose 6-phosphate. Analysis of the 
kinetic properties of the partially purified enzymes suggests that a could approach a maximal 
value of about 4, provided the fructose 2,6-bisphosphatase does not become substrate
saturated. This is a reasonable assumption, because the major fructose 2,6-bisphosphatase in 
the cytosol has a Km for fructose 2,6-bisphosphate of at least 30 JlM (MacDonald et al., 
1989), which is much higher than the fructose 2,6-bisphosphate concentration of 2-10 JlM 
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(Stitt et al., 1983; 1984b; 1987a). The empirical estimates for the gain in this regulator 
cycle are therefore in quite reasonable agreement with the properties of the enzymes which 
are involved. 

The impact of the increased fructose 2,6-bisphosphate on the flux to sucrose varies, 
depending on the conditions (Fig. 3). In low light, a 50% increase of fructose 2,6-bis
phosphate leads to a 20% decrease of sucrose synthesis and a 30% increase of starch 
synthesis. In high light, the fructose 2,6-bisphosphate level doubled, but starch and sucrose 
synthesis only changed by about 10%. In interpreting the experiments in high light, it might 
be noted that the cytosolic fructose 1,6-bisphosphatase has a sigmoidal substrate response 
(see above). The increased levels of triose-phosphate in the mutant in saturating light (Fig. 
3C) could therefore explain why flux is only slightly affected by increased fructose 2,6-
bisphosphate in these conditions. 

This interaction can be treated more quantitatively. Fructose 1,6-bisphosphatase activity 
can be represented by the following simplified expression: 

dv _ d[Fru-2,6-P2l Fru-1,6-bisphosphatase d[triose-P] Fru-1,6-bisphosphatase 
-- £Fru26-P + E · v [Fru-2,6-P2l - · 2 [triose-P] tnose-P 

where the symbols r represent the elasticity coefficients of the cytosolic fructose 1 ,6-bis
phosphatase for fructose 2,6-bisphosphate and triose-phosphates. This expression treats 
triose-phosphate isomerase, aldolase and fructose 1 ,6-bisphosphatase as a block of reactions. 
It also omits the term describing the interaction with the product (fructose 6-phosphate) 
because the reaction is irreversible, and because there is no product inhibition in the 
presence of physiological concentrations of fructose 2,6-bisphosphate (see Stitt, 1989a). 

The data in Fig. 4 can then be used to estimate elasticities by the dual modulation 
method (Kaeser & Bums, 1979). The equations developed by Groen et al. (1982) are not 
applicable in this case, because the fructose 2,6-bisphosphatase is markedly non-hyperbolic. 
The dual modulation method can be applied in this case, because the elasticity coefficients 
are somewhat lower than for phospho glucose isomerase, and the estimates are therefore less 
susceptible to experimental error in the metabolite and flux determinations. Nevertheless, the 
values should only be regarded as approximations. The estimates also only represent an 
average of the elasticities found over the conditions used (i.e. in this case, high and low 
light; wildtype and reduced phosphoglucose isomerase activity). Obviously, a small 
perturbation is theoretically desirable but, experimentally, fairly large perturbations have to 
be used to obtain a change in the metabolite level or flux which can be reliably measured. 

The data in Fig. 4 yield estimates for the elasticity coefficients for triose-phosphates of 
+ 1.5 and fructose 2,6-bisphosphate of -0.4. These agree quite well with estimates of + 1.1 
and -0.5 which have been obtained by analysis of the perturbations of metabolites and fluxes 
in spinach leaves in response to small changes in the light intensity and C02 concentration, 
or the amount of sucrose in the leaf (Stitt, 1989a). They also agree quite well with the 
values which can be predicted from the in vitro kinetics of the partially purified cytosolic 
fructose 1,6-bisphosphatase when it is operating in conditions where it is partially saturated 
with substrate (Herzog et al., 1984; Stitt, 1989a). 
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These results emphasize therefore (a) that an increase of fructose 6-phosphate will lead 
to a 2-3 fold amplified increase of fructose 2,6-bisphosphate, (b) that fructose 2,6-bis
phosphate will inhibit the cytosolic fructose 2,6-bisphosphatase and (c) that the increase of 
fructose 2,6-bisphosphate can be overriden by a relatively much smaller increase of the 
triose-phosphates. Thus, in low light, an increase of fructose 2,6-bisphosphate is· quite 
effective in changing partitioning. In saturating light when high rates of C02 fixation and 3-
phosphoglycerate reduction are achieved, this restriction of sucrose synthesis can, if 
necessary, be overcome by a relatively small increment in the triose-phosphate pool. 

Application of the Connectivity Theorem to Investigate the Distribution of Control 

The question now arises why the flux control coefficient of phosphoglucose isomerase is 
smaller in high light than in low light. The impact of reduced phosphoglucose isomerase will 
depend upon the relation between the elasticity coefficients of phosphoglucose isomerase for 
fructose 6-phosphate and glucose 6-phosphate, and the elasticity coefficients that other, 
controlling, enzymes have for these metabolites, as stated in the connectivity theorem 
(Kaeser & Burns, 1973). The decreased flux control coefficient of phosphoglucose isomer
ase in high light could therefore be explained if (a) there is a drastic decrease in the 
elasticity coefficients of other enzymes for fructose 6-phosphate or glucose 6-phosphate or 
(b) if control is distributed away from other enzymes which happen to respond most 
sensitively to fructose 6-phosphate or glucose 6-phosphate. 

This can be illustrated by considering the cytosolic fructose 1,6-bisphosphatase. The 
fructose 1,6-bisphosphatase does not respond directly to fructose 6-phosphate (see above), 
but it is affected indirectly via the change of fructose 2,6-bisphosphate. Accordingly, a 

· al 1 · · & fru 6 h h · · b h . Fru-1,6-bisphosphatase nonon e asttclty .or ctose -p osp ate IS given y t e expression a·EFru-2,6-P2 , 

which has a value of about -0.8 (averaged over the conditions used in the experiments). For 
comparison, ~~:_s;P isomerase varies between 4.6 to 1.2, and 7.6 to 2.6, as phosphoglucose 
isomerase activity is reduced in high and low light, respectively (Table 2). Given that 
phosphoglucose isomerase has a flux control coefficient for sucrose synthesis of 0.21 and 
about 0.05 in low and high light, respectively, and applying a modified form of the 
connectivity theorem, 

C sucrose synthesis Glc p isomerase 
Fru 1,6-bisphosphatase = EFru:6-P 
Csucrose synthesis Fru 1,6-bisphosphatase 

sucrose-P synthase (l· EFru 2,6-P2 

we can estimate that the fructose 1,6-bisphosphatase may have a flux control coefficient for 
sucrose synthesis of about 0.5 in low light, but only about 0.07 in high light. 

A model of sucrose synthesis (Stitt, 1989a) has also suggested that control may usually 
be equally distributed between fructose 1,6-bisphosphatase and the block of reactions around 
sucrose phosphate synthase, but could be redistributed towards the latter block at high flux 
rates. This redistribution is partly due to the ability of a rising supply of triose-phosphate to 
override control at the fructose 1,6-bisphosphatase in conditions allowing high rates of C02 
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fixation. The effect of reduced phosphoglucose isomerase activity on the reactions clustered 
around sucrose phosphate synthase is likely to be weaker than the effect on the fructose 1 ,6-
bisphosphatase. Although glucose 6-phosphate is an activator of sucrose phosphate synthase 
(see above), fructose 6-phosphate is actually one of the substrates of sucrose phosphate 
synthase, and the concentration of the other substrate, UDPglucose, can be controlled 

independently of the glucose 6-phosphate and glucose !-phosphate concentration, by 

regulating turnover of pyrophosphate and the uridine nucleotides (Quick et al., 1989; J. 
Dancer, H. E. Neuhaus & M. Stitt, unpublished work). 

However, it should be stressed that the expressions which are used to estimate in vivo 
elasticities have to include simplifying assumptions, as well as the implicit assumption that 
the most important regulatory mechanisms have already all been discovered. The accuracy 
of these estimates is also constrained by the statistical quality of the data for fluxes and 

metabolite levels. Probably, conclusions based on interpretation of elasticities should be 

considered as tentative, pending a more direct determination of the flux control coefficients 

using mutants of the individual enzymes. 

Outlook 

Photosynthesis provides a very attractive system for applying the concepts of Kaeser and 
Burns because (a) the fluxes involved can be measured relatively easily, (b) it is easy to 
perturb the system from outside by altering the light intensity or C02 concentration, or the 
export of sucrose from the leaf and {c) quite a wide range of mutants are already available 
from mutagenesis programmes. For example, we are now carrying out experiments with 
mutants four out of the five enzymes involved in the pathway of starch synthesis. This 
should allow a detailed study of the distribution of control in this important metabolic 

pathway. It is rather more difficult to obtain mutants of the enzymes involved in the Calvin 

cycle or sucrose synthesis because there is no simple screen available, and such mutants 

would probably often be lethal. However, there is good reason to hope that techniques like 
antisense DNA can be used to produce transgenic plants with a reduced amount of selected 
enzymes (see Rodermel et al., 1988). This will make it possible to carry out a detailed 
analysis of the control of flux in these pathways, which are of primary importance for 
controlling the rate and partitioning of photosynthate. It is to be hoped that application of 
this combination of genetics and biochemistry will revolutionize the way in which plant 
metabolism is studied, as well as our ability to subsequently utilize this knowledge. 
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Chapter 32 

Application of Control Analysis to the 
Study of Amino Acid Metabolism 

RICHARD G. KNOWLES, CHRISTOPHER I. POGSON 
and MARK SALTER 

FoR LABORATORY scientists studying the control of metabolism, the usefulness or other
wise of theories of metabolic control is determined by the ease of their utility for the analysis 
of experimental data, and the insights into the control of metabolism provided by this data 
analysis. In this chapter we describe the application of the metabolic control theory develop
ed by Higgins (1965), Kaeser & Bums (1973) and Heinrich & Rapoport (1974) to our 
studies of amino acid metabolism both previous and current. We have found this theory of 
control analysis and modelling of the pathways under study, to be invaluable tools in the 
elucidation of the control structure of amino acid metabolism. The distinction between 
regulatory importance, regulability and control, and the way in which the regulability and 
control coefficients of an enzyme combine to describe its regulatory importance will be 
discussed. 

Application to Aromatic Amino Acid Catabolism in the Liver 

Previously the control of these pathways in the liver has been described solely in terms of 
the "rate-limiting" roles of the first enzymes of these pathways: tryptophan 2,3-dioxygenase, 
phenylalanine hydroxylase and tyrosine aminotransferase. By using control analysis we have 
shown that this simplistic view of the control structure is false (Salter eta/., 1986a). High 
flux control coefficients were shown to occur in the aromatic amino acid transport into the 
liver cells (Salter et a/., 1986b) as well as in the first enzymes of the pathways. It was also 
clear that this control structure was not static, but changed with changes in the expressed 
activities of the different enzymes or transporters. It was interesting to observe high flux 
control coefficients in steps such as transport, which are readily reversible, are not far from 
equilibrium under pathway conditions and have V max values greatly in excess of the path-
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EXTRACELLULAR CYTOSOL MITOCHONDRIA 

Glutaminase 
GLUTAMINE 

~ cJ =1.2+0.9 -1.1 = 1.0 

Figure 1. Glulamine metabolism in isolated liver cells. 

way flux; such characteristics have previously been thought to indicate that such a step 
would not exert significant control over a pathway. 

Application to Glutamine Catabolism in the Liver 

There has been considerable debate about the relative importance of glutamine transport and 
glutaminase in determining the rate of glutamine catabolism in the liver (reviewed in Ochs, 
1986). We have used both published and unpublished (S. Low, unpublished work) data to 
model glutamine transport and catabolism (see Fig. 1) and to analyse the control structure of 
this pathway at physiological concentrations of glutamine. Glutamine is transported across 
the liver cell plasma membrane by two distinct transport systems; one is a sodium-dependent 
concentrative transporter (system N) which catalyses net influx into the cell (Kilberg et al., 
1980) and the remaining transport is though to be carried out by a non-concentrative 
transporter which catalyses net efflux from the cell. Catabolism of glutamine to glutamate is 
catalysed by the mitochondrial enzyme glutaminase. 

Small changes in the activities of transport or glutaminase can be made in this model in 
order to determine the flux control coefficients of individual steps; these are shown in Fig. 1. 
It is clear that a large degree of control resides in all three steps. Because of the net efflux of 
glutamine through the non-concentrative transporter this step has a negative control 
coefficient for glutamine catabolism. This large negative control coefficient permits the 
occurrence of greater positive control coefficients in the other two steps (the total flux
control coefficients for these two steps being 2.1). This transporter, catalysing net efflux, 
also· acts as a safety valve preventing excessive increases in the intracellular glutamine 
concentration that would otherwise occur because of the low elasticity of the concentrative 
transporter for internal glutamine. This system of concentrative transport (catalysing net 
influx) and non-concentrative transport (catalysing net efflux) co-existing with a pathway of 
metabolism (Fig. 2) is common. The control structure of such systems, with a large degree 
of either negative or positive control residing in each step allows pathway flux to be very 
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SUBSTRATE 

NON-CONCENTRATIVE 

I 
Figure 2. A general scheme for concentrative and non-concentrative transpon and metabolism. 

sensitive to changes in any of the steps. Our use of modelling and control analysis has 

therefore shown that both transport and glutaminase are important in determining the flux 

through this pathway; this contrasts with previous debate as to whether control resides in 

either transport or glutaminase. This analysis has also revealed an unexpected degree of 

complexity in the control structure, as a consequence of the properties of the two 

transporters. 

Application to Tryptophan Homeostasis 

There are two distinct enzymes in the body which can catalyse the irreversible breakdown of 

tryptophan to kynurenine, tryptophan 2,3-dioxygenase in the liver parenchymal cells and 

indoleamine 2,3-dioxygenase elsewhere in the body. Other pathways of tryptophan metabol

ism are quantitatively minor (Pogson eta/., 1989). Under normal conditions tryptophan 

2,3-dioxygenase is thought to catalyse the majority of tryptophan catabolism, as shown in 

Fig. 3. Dietary tryptophan input is thought to be insensitive to the plasma tryptophan 

concentration, and tryptophan 2,3-dioxygenase responds essentially linearly to plasma 

tryptophan in this concentration range. Manipulation of activities of reaction steps in this 

model demonstrates that the metabolite control coefficient of tryptophan 2,3-dioxygenase 

OTHER TISSUES LIVER 

10uM 

----~tT--TRYPTOPHAN--+i-!----9-9-i cTRP,.,_l 

IDO TOO 

I :::P=, 
DIET 

~cTRP=0+1-1 =0 

Figure 3, Tryptophan homeostasis under nonnal conditions 
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OTHER TISSUES LIVER 

IDO 5~M TDO 

._----+++----- TRYPTOPHAN ----1H-t------. 

1 100 

DIET C TRP = 2 

l:CTRP=2-1-1=0 

50 

cTRP = _1 

Figure 4. Tryptophan homeostasis after treatment with interferon, which induces indoleamine 2,3-dioxygen
ase, but not tryptophan 2,3-dioxygenase. The model assumes that indoleamine 2,3-dioxygenase is saturated 
with tryptophan (cf. Fig. 5). 

approaches -1 whereas that of indolearnine 2,3-dioxygenase approaches 0; from the summa
tion property (Heinrich & Rapoport, 1974; Kaeser & Bums, 1979) the dietary input can be 
calculated to have a metabolite control coefficient of 1 (Fig. 3). 

However, under certain conditions indoleamine 2,3-dioxygenase may be substantially 
induced. Brown eta/. (1987) have demonstrated a 50% decrease in the plasma tryptophan 
concentration of cancer patients when treated with interferon y; interferon y is thought to 
induce indoleamine 2,3-dioxygenase but not tryptophan 2,3-dioxygenase. In our model (Fig. 
4) we have assumed that indoleamine 2,3-dioxygenase is saturated with tryptophan and that 
dietary tryptophan input is unchanged; a 50% decrease in plasma tryptophan concentration 
implies that indoleamine 2,3-dioxygenase has been induced to a level at which it catalyses 
flux equal to that through tryptophan 2,3-dioxygenase. Again manipulating the activities of 
reaction steps in this model allows the calculation of metabolite control coefficients: under 
these conditions both indoleamine 2,3-dioxygenase and tryptophan 2,3-dioxygenase have 
metabolite control coefficients approaching -1, and dietary input therefore has a metabolite 
control coefficient of 2. In a model in which indoleamine 2,3-dioxygenase is taken to be 
unsaturated with tryptophan (Fig. 5), the metabolite control coefficients of indoleamine 2,3-
dioxygenase, tryptophan 2,3-dioxygenase and dietary input are -0.5, -0.5 and 1 respectively. 

Using this approach we have therefore obtained considerable insight into tryptophan 

OTHER TISSUES LIVER 

IDO 5~M 

._----+H---TRYPTOPHAN---+H------. 

TDO 

50 
cTRP = -0.5 r :~, 0 , 

DIET 

l: C TRP = 1-0.5-0.5 = 0 

50 
cTRP = -0.5 

Figure 5. Tryptophan homeostasis after interferon treatment. The model differs from the one used for Fig. 4 in 
assuming that indoleamine 2,3-dioxygenase is saturated with tryptophan. 
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Dioxygenase / 
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Figure 6. Metabolism of tryptophan to quinolinate in liver and brain. Abbreviation: QPRT, quinolate 
phosphoribosyltransferase 

homeostasis on the basis of a limited amount of data. The values obtained by modelling 
tryptophan homeostasis await experimental verification using specific inhibitors of indole
amine 2,3-dioxygenase or tryptophan 2,3-dioxygenase. 

Application to Quinolinate Metabolism 

Quinolinate can be formed from tryptophan in the liver and the brain by the kynurenine 
pathway (reviewed in Stone & Connick, 1985: Fig. 6). The pathway in the liver is initiated 
by tryptophan 2,3-dioxygenase whereas that in the brain is initiated by indoleamine 2,3-
dioxygenase. Recent work has shown quinolinate to be an exitatory agonist at the N
methyl-D-aspartate receptor in the brain; high concentrations of quinolinate have been 
demonstrated to cause neuronal cell death as a consequence of extreme excitation at this 
receptor. Increases in quinolinate in the brain have been suggested to be associated with 
exitatory and neurodegenerative diseases such as Huntington's Chorea and epilepsy; 
increases with aging have also been observed in rats. 

Little is known about the regulation of quinolinate concentration in the brain. Quinolin
ate is metabolized by quinolinate phosphoribosyltransferase; this enzyme is thought to have 
a Km for quinolinate which is below the physiological concentration in the brain and 
catalyses an irreversible reaction (Okuno et al., 1988). Since the substrate elasticity will 
therefore be small, quinolinate phosph.oribosyltransferase will have a large metabolite 
control coefficient for quinolinate and increases in quinolinate synthesis will result in large 
increases in quinolinate concentration. 

Under conditions in which indoleamine 2,3-dioxygenase is not induced, it will have low 
metabolite control coefficients for plasma tryptophan (see above) and for intracellular 
tryptophan, because of the fast rate of tryptophan transport (Pogson et al., 1989), and is 
likely to have a significant control coefficient for quinolinate synthesis in the brain. Given 
the low elasticity of quinolinate phosphoribosyltransferase for quinolinate, increases in 
indoleamine 2,3-dioxygenase activity would result in large increase in quinolinate con
centration, i.e. indoleamine 2,3-dioxygenase will have a large metabolite control coefficient. 
Because of the high metabolite control coefficient of tryptophan 2,3-dioxygenase for plasma 
tryptophan (see above), and if indoleamine 2,3-dioxygenase is unsaturated with tryptophan 
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LIVER BRAIN 
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-TRYPTOPHAN ---tt-t-----+TRYPTOPHAN ---tt-t-----+TRYPTOPHAN- -QUINOLINATE 
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Figure 7. The role of tryptophan 2,3-dioxygenase in the control of metabolism of tryptophan to quinolinate in 
the brain. Abbreviations: TOO, tryptophan 2,3-dioxygenase; 100, indoleamine 2,3-dioxygenase. 

in the brain then tryptophan 2,3-dioxygenase in the liver will also have a significant (but 

negative) metabolite control coefficient for quinolinate in the brain (Fig. 7). 

It can be seen therefore that the elucidation of this control structure has allowed us to 

identify sites of possible therapeutic importance. 

Regulability, Control and Regulatory Importance 

There has been much debate and confusion about the importance of control coefficients and 
their role in describing the regulatory importance of enzymes. This is largely caused by the 
absence of clear consistent usage of terms such as control, regulability and regulatory 

importance. 
There would perhaps be less confusion in this field if "control" was used to denote the 

sensitivity of flux or metabolite concentrations to changes in the activity of steps in the 

pathway (i.e. control coefficients), "regulability" to denote the degree to which enzyme 

activity (as expressed under pathway conditions) can be changed by any effector, and the 

"regulatory importance" of an enzyme would be a property derived from these two factors 

together, and would therefore define the ability of an enzyme to change pathway flux (or the 

concentration of a metabolite in that pathway). 
The only obvious way to quantify this characteristic of regulatory importance would be 

to formulate a theory combining control coefficients and regulability of enzymes. However, 

because the control coefficients of enzymes usually change significantly as a consequence of 

regulation of their activity, it would first be necessary to formulate theories describing how 

control coefficients change with changes in expressed enzyme activity under pathway 

conditions. 
Another reason for the desirability of knowing how control coefficients change with 

changes in enzyme activity is to facilitate the accurate determination of low control 

coefficients by inhibitor titration. Accurate measurement of low control coefficients could be 

useful for the identification of therapeutic targets in a pathway since it would allow the 
investigator to determine what degree of enzyme inhibition (regulability) would be necess

ary for the required inhibition of pathway flux. The identification of the optional site(s) for 

therapeutic intervention would require the identification of the enzyme with the best com-
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Figure 8. The inhibition of trypto
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phenylalanine. Abbreviation: TDO, 
tryptophan 2,3-dioxygenase. 

t: 
0 
!;; 
c: 

~ 100 
c: .. 
J: c. 
0 c. 
~ 

1-

~ 50 
;;:: 

0 
0 
1-

g 
c: 
0 
u ... 
0 

?{!. 

0 
2 3 

[Phenylalanine] (mM) 

4 

r. Transport 
o Flux 

383 

• Flux+ 3'-'M TDO inhibitor 

bination of control coefficient and regulability (given that inhibitors are more easily 
developed for some enzymes than others). 

That it is difficult to obtain accurate values of low control coefficents by inhibitor 
titration (without knowledge of how the control coefficient changes with enzyme activity) is 
shown by the following example, using the data shown in Fig. 8. This figure shows the 
effect of the tryptophan transport inhibitor, phenylalanine, on tryptophan catabolic flux (in 
the presence or absence of a tryptophan 2,3-dioxygenase inhibitor), and on tryptophan trans
port, in isolated rat liver cells. Calculation of flux control coefficients of transport from the 
data at 0.5mM phenylalanine gives values of 0.08 ± 0.08 (mean ± standard deviation) in the 

presence of the tryptophan 2,3-dioxygenase inhibitor and 0.42 ± 0.10 in its absence. It is 
clear that using the flux inhibition data at 0.5 mM phenylalanine (at which concentration 
transport has already been inhibited by 30%) it is virtually impossible to calculate accurately 
control coefficients which are below 0.1, using inhibitor titration, even when one has errors 
as small as those shown in Fig. 8 (standard deviations approximately 2-3% of mean). It is 
possible that use of data from the whole of the inhibition curve, together with knowledge of 
how the control coefficients change with changes in the enzyme or transporter activity, 
would permit far more accurate determination of low control coefficents. 

Conclusions 

The examples of experimental studies given above illustrate the usefulness of control 
analysis as a theoretical framework enabling the elucidation of the control of metabolism 
and allowing the postulation of new hypotheses for experimental verification or falsification. 
We have been surprised by how frequently such analysis gives new and unexpected insights 
into the control of metabolism, and suggests possible novel sites of therapeutic intervention. 

We consider that control theory needs to be extended to embrace more fully the regula
bility of enzymes as well as their control coefficients, and to facilitate our understanding of 
how control coefficients change with changes in enzyme activity. 
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Chapter 33 

Flux Control Coefficients of Glycinamide 
Ribonucleotide Transformylase for de novo 
Purine Biosynthesis 

GARY K. SMITH, RICHARD G. KNOWLES, CHRISTOPHER I. POGSON, 
MARK SALTER, M. HANLON and R. MULLIN 

THE PATHWAY of de novo purine synthesis in mammals is initiated from phosphoribosyl

pyrophosphate and incorporates carbon and nitrogen from glutamine, glycine and the one
carbon pool to form initially IMP, from which the other purines can be synthesized. This 
pathway has been considered to be largely regulated by purines at the first enzyme, 
phosphoribosylpyrophosphate amidotransferase. In order for this enzyme to be an effective 
site of feedback regulation it must have a substantial flux control coefficient compared to the 
other enzymes in the de novo pathway. This feedback inhibitory mechanism results in 
significant control residing outside the purine de novo pathway, in purine utilization 

(positive control) and the alternative pathway of purine synthesis, purine salvage (negative 

control). As part of a continuing anti-tumour effort we are investigating specific steps in the 
de novo purine synthesis as targets for inhibition in cancer chemotherapy. 

Glycinamide ribonucleotide transformylase catalyses the third step in this ten-step path
way, the conversion of glycinamide ribonucleotide to formyl glycinamide ribonucleotide; 
the co-substrate for this reaction is 10-formyltetrahydropteroylpolyglutamate. Using an 
inhibitory analogue of its folate substrate, 5-deazaacyclotetrahydrofolate, the goal of the 

current study was to determine the flux control coefficient of this enzyme in the human T
cell leukaemia line MOLT-4. 

Results and Discussion 

The following equation, modified from Kaeser & Burns (1973) and Groen et al. (1982), 
was used to determine the flux control coefficient of an irreversible enzyme (such as 
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glycinamide ribonucleotide transformylase) using a competitive inhibitor: 

[lx + Ki (1 + K...S.....)] 
c' = - m (d.l.) 

lx dl 

in which lx and J x are the intracellular inhibitor concentration and pathway flux 
respectively under the conditions being studied and S is the intracellular concentration of 
the competing substrate. 

Both 5-deazaacyclotetrahydrofolate and the folate substrate are polyglutamated inside 
the cell to form the active species. The Ki and Km of the hexaglutamated compounds are 
0.4 fJ.M and 3.3 fJ.M respectively (R. Ferone, M. Hanlon, J. K. Kelley, E. W. McLean, N. K. 
Cohn, D. S. Duch, M. Edelstein and G. K. Smith, unpublished work). Measurements of the 
inhibitor concentration inside the cell showed that at steady state (24 hours exposure) it 
accumulated approximately 300-fold over external levels over the range of inhibitor con
centrations used. The intracellular concentration of the polyglutamated form of the folate 
substrate in these cells was also measured and was found to be approximately 1.1 fJ.M. De 
novo purine synthesis from 3-14C-serine in MOLT-4 cells was determined after incubation 
for 24 hours with 0-100 nM extracellular concentrations of 5-deazaacyclotetrahydrofolate. 
At 100 nM 5-deazaacyclotetrahydrofolate de novo purine synthesis was inhibited 
approximately 90%. The slope of the sigmoidal curve of flux against inhibitor concentration 
(d.Tidl) was estimated at various points on the curve (/ x• lx) and then used to determine 
flux control coefficients using the equation above. The results of these experiments can be 
seen in Table 1. In the approximate absence of inhibitor it is clear that the flux control 
coefficient is very close to zero but as the enzyme is inhibited the flux control coefficient 
increases to a value that is close to unity. 

Although in Table I we have given a value of 0.01 for the flux control coefficient of 
glycinamide tjbonucleotide transformylase in the approximate absence of inhibitor, in reality 
this value cannot be determined with greater accuracy than ± 0.1. This would seem to be a 
general problem of determining flux control coefficients by this method as with normal 
experimental error (in this case a standard error of the mean in the range 3-4%) a significant 

Table 1. Effect of 5-deazaacyclotetrahydrofolate on the activity of glycinamidc ribonucleotide 
transformylase (GARTF) and de novo purine biosynthesis in MOLT -4 cells 

[5-deazaacyclotetrahydrofolate] Inhibition of Inhibition of cGAiriF Extracellular (nM) Intracellular (nM) Activity(%) Flux(%) 

0 0 0 0 0.01 
5 1500 75 1 0.03 

10 3000 86 2 0.1 
25 7500 94 29 0.7 
40 12000 96 56 1.2 
50 15000 97 62 1.3 

100 30000 98 86 1.2 
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change in flux will be required to obtain an accurate slope. When the enzyme under study 
has a low flux control coefficient, as in this case, then substantial inhibition of the enzyme 

activity must occur before any significant change in the flux can be seen. For example, at 10 

nM extracellular 5-deazaacyclotetrahydrofolate (3 j.I.M, intracellular) the flux has not 

significantly changed but it can be calculated that at this concentration of inhibitor the 
enzyme will be approximately 90% inhibited. The flux control coefficient may well have 
significantly changed with such a change in enzyme activity but is unobservable. It may be 
possible to use data from the whole curve of flux inhibition to obtain greater accuracy. 

It is clear from these results that not only is the absolute value of the control coefficient 
of a step of interest important, but also the way in which the control coefficient changes on 
regulation of the enzyme. In this instance a step with a very low flux control coefficient can 
nevertheless represent a site at which de novo purine synthesis can be regulated. Thus, the 
suitability of an enzyme as a target for therapeutic intervention is is also determined by the 

degree to which its activity can be modulated by an effector. This will be limited in practice 

by considerations such as the affinity of an available inhibitor, its distribution within the 
body, its pharmacokinetics and its toxicity. In this instance significant inhibition of de novo 

purine biosynthesis by 5-deazaacyclotetrahydrofolate is achieved as a result of its high 

enzyme affinity and high intracellular concentrations achieved after exposure for 24 hours. 

Conclusions 

We have shown that glycinamide ribonucleotide transformylase has a very low flux control 
coefficient for purine synthesis under normal conditions but that on extensive inhibition by 
5-deazaacyclotetrahydrofolate this flux control coefficient increases approximately to unity. 

Under the conditions in which glycinamide ribonucleotide transformylase has a flux control 
coefficient of unity we would suggest that de novo flux control will no longer reside in 

purine utilization or purine salvage as a consequence of the effective loss of the feedback 

loop from purines to phosphoribosylpyrophosphate amidotransferase. This would be 

predicted to occur because of the substantially reduced flux control coefficient in phospho

ribosylpyrophosphate amidotransferase. 
Our studies also indicate that the suitability of a site for therapeutic intervention is a 

function both of its control coefficient and the extent of achievable inhibition (regulability). 
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Chapter 34 

Molecular Adaptation in the Lactose Operon 

ANTONYM. DEAN 

MODERN studies of molecular evolution are dominated by sequence comparisons among 
homologous genes of present day species. This approach, which enables the construction of 
gene phylogenies that reflect the historical relations among species, has been crowned with 
the spectacular discovery of a new kingdom- the archaebacteria (Woese, 1987). 

Natural selection plays less role in discussions of molecular evolution than might be 
imagined, partly because gene function is largely irrelevant to this comparative anatomy of 
macromolecules, and partly because it need rarely be invoked. An analysis of virtually any 
gene phylogeny will show that the rates of sequence divergence have been remarkably 
constant for millions of years in the many diverse lineages (Wilson et al., 1977). This 
clock-like behaviour need only be regarded as the consequence of mutation bringing new 
alleles into the gene pools, and the allele frequencies changing as a result of the random 
sampling of alleles at each generation. Thus, chance alone is responsible for divergence in 
this, the neutral theory of molecular evolution (Kimura, 1983). 

The claim that most of the molecular differences between species are the result of 
chance in no way diminishes the importance of natural selection. Natural selection is the 
only mechanism by which species adapt to changed environments, and a failure to adapt 
may result in extinction. Not surprisingly, the comparative approach has also been used to 
study natural selection. But here it has met with considerably less success because the 
relations between gene function, metabolism and adaptation are never explicitly addressed. 
At best, the comparisons yield a posteriori explanations for certain functional character
istics that might be adaptive. 

In principle, an experimental approach can determine these relations. Unfortunately, 
past attempts to unite biochemistry, metabolism, physiology and natural selection have 
foundered because the experimental systems were too complicated, too ill-defined, or simply 
lacking the necessary experimental controls for a thorough and convincing analysis. There is 
not a single paper in the liter~re in which the sign and magnitude of a selection coefficient 
can be predicted for a given difference in enzyme kinetics. 

This chapter describes studies on the lactose operon of Escherichia coli (Dean et al., 
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1986, 1988ab; Dykhuizen eta/., 1987; Dean, 1989). A simple linear pathway, in a simple 
prokaryote, in the simple environment of a laboratory continuous culture device is a modest, 
yet practical, way to start to untangle the relations between enzyme activity, metabolism and 
natural selection. The result is an ability to determine the direction and magnitude of natural 
selection for any given difference in enzyme kinetics. Moreover, speculation on the future 
course of molecular adaptation and on past selection pressures will be gamefully entertained. 

Measuring Fitness 

Natural selection occurs when an allele spreads, at the expense of others, through a 
population by endowing its bearer with higher relative fitness. So what, if anything, is 
fitness? For our purposes, fitness is the growth rate of a strain of E. coli and relative fitness 
is nothing more than a ratio of growth rates. A relative fitness of less than one means that the 
strain will be eliminated by natural selection and a relative fitness of greater than one means 
that it will take over the entire population, again by natural selection. A relative fitness of 
one means that there is no natural selection and evolution can only proceed by chance 
changes in the frequencies of the strains. 

The best method for estimating relative fitness in E. coli is a mixed culture of two 
strains in a chemostat where differences in relative fitness as small as 0.5% can be 
reproducibly detected (Dykhuizen & Hartl, 1983). Unlike batch growth, the chemostat 
maintains a culture in a permanent exponential growth phase by a slow, but constant, 
addition of fresh medium into the growth chamber. An overflow siphon removes the cells 
and spent medium so that a constant volume is maintained. The medium is composed of 
minimal salts, and the strains compete for lactose which is both the sole source of carbon 
and energy and the only nutrient limiting the growth-rates. Indeed, consumption by the 
culture reduces the concentration of incoming lactose to such a low level that inducible 
lactose operons become repressed. Consequently, competition experiments are conducted 
between constitutive operons, or between inducible operons which are induced by the 
addition of a small quantity of a non-metabolizable inducer (Dykhuizen & Davies, 1980; 
Dean eta/., 1988a). The expression of the operon is entirely under the control of the 
experimenter and so the evolution of gene regulation will not be discussed. 

The relative fitness conferred by a lactose operon is determined as follows. First, the 
lactose operon is transduced into a small lac deletion of an otherwise prototrophic K12 
genetic background. This step eliminates any fitness differences conferred by unrelated 
genetic backgrounds. Second, the strain is placed in competition with TDl, which carries a 
K12 lactose operon in the same genetic background, and which is also resistant to the 
bacteriophage T5. The progress of the competition is periodically monitored by estimating 
the proportion of the culture that is T5 resistant. 

The difference between the exponential growth rates of the two competing strains is 
determined from 

(1) 
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Figure 1. Results from a typical 
selection experiment. Glucose 
competition between IDl (resist
ant) and TD9 ("'). Lactose com
petition between IDl (resistant) 
and TD9 (e), and between IDl 
and TD9 (resistant) <•). 
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where R1 is the proportion of the culture that is T5 resistant at time t, and wR and ws are 
the exponential growth rates (fitnesses) of the resistant and sensitive strains respectively. 
The slope of the plot of the log density ratio of the two strains against time is equal to the 
difference in fitness, (wR- ws). The growth rate of the culture is equal to the fractional rate 
of replacement of the culture by fresh medium, d. Hence the relative fitness of the resistant 
with respect to the sensitive strain is approximately as follows: 

WRfws = 1 + (WR- Ws)d (2) 

For the purposes of this chapter, relative fitness is always expressed with respect to the 
fully induced K12 operon of TD 1 whose fitness, as it turns out, is exactly equivalent to that 
of the constitutive K 12 operon of strain TD2. 

Some typical results are illustrated in Fig. 1 (Dean, 1989). A set of competition experi
ments were conducted between TD 1 and TD9, which carries an operon from a natural 
isolate of E. coli. The absence of detectable levels of selection during competition for 
glucose demonstrates that only differences encoded by the lactose operons could cause 
selection during competition for lactose. Two lactose competition experiments were 
conducted, in the first of which TD1 was resistant to T5, and in the second of which TD9 
was resistant. The symmetrical selective response demonstrates that T5 resistance confers no 
detectable selective effect during competition for lactose. The relative fitness of TD9 is 
0.967 which means that natural selection will eventually eliminate it from the chemostat 
population. The problem, then, is to understand this selection in terms of the biochemistry of 
lactose metabolism. 

Fun with Flux 

The chemostat competition experiments demonstrate that different lactose operons confer 
different fitnesses. Presumably, fitness is partially determined by the rate at which lactose is 
metabolized and this, in tum, is partially determined by the kinetic differences among the 
permeases and ~-galactosidases encoded by the lactose operons. If fitness is a function of the 
flux, then a model of flux must be constructed. 
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The lactose flux has three steps of interest. First, lactose enters the periplasmic space 
through the porin pores of the outer cell wall. Porins are not specific carriers of substrates 
(Nikaido & Vaara, 1987) and the flux across the outer cell wall can be adequately accounted 
for by Fick's law of passive diffusion 

(3) 

in which Jwa11 is the flux, L m and LP are the concentrations of lactose in the external 
medium and the periplasmic space respectively, and Dis the rate constant of this diffusion 
process. 

Second, active uptake by the lacY encoded permease transports the lactose from the 
periplasm into the cytosol through the otherwise impermeable cell membrane. The exit of 
galactosides appears to be associated with a very large Michaelis constant (Winkler & 
Wilson, 1966) so that an appropriate model for lactose uptake is as follows: 

(4) 

whereJpennease is the net lactose flux across the membrane, Vpennease and K1 are the maxi
mum rate of uptake and the apparent Michaelis constant respectively, Li is the concentra
tion of lactose in the cytosol and Keqm is the apparent equilibrium constant. 

Third, lactose is irreversibly hydrolysed by ~-galactosidase to glucose and galactose, 
which eventually enter central metabolism as glucose 6-phosphate. The kinetics of ~ 
galactosidase are complicated by various side reactions of which the synthesis and irrevers
ible hydrolysis of allolactose, the true inducer of the lactose operon, are by far the most 
significant (Huber et al., 1976). However, data from kinetic studies, in which the allolactose 
side reaction is allowed to reach a quasi-steady state, fit the Michaelis-Menten form very 
well (Dean, 1989) and so 

.!, _ V ~galactosidaseLi 
~galactosidase - Km + L;. (5) 

The fluxes across each of these three steps are equal at steady state, so lwall = Jpennease 
= l~galactosidase and eqns. (3-5) can be solved to yield 

(6) 

where J is the steady state flux, and the lactose metabolite pools LP and Li are functions of 
the concentration of environmental lactose (Lm) and the kinetic parameters at each step. 
Metabolite pools distal to ~galactosidase are not expected to influence this flux because the 
hydrolysis of lactose is irreversible, and none of the steps are known to be influenced by 
allosteric effectors. One may hope that eqn. (6) is an adequate model of the lactose flux. 
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From Flux to Fitness 

The rate at which lactose changes during growth in a chemostat is described by 

(7) 

where Lm is the concentration of lactose in the growth chamber, L0 is the concentration of 

lactose in the fresh medium dripping into the growth chamber, Y is the yield coefficient of 

cells per gram of lactose consumed and w is fitness (Monod, 1942). Rewriting the equation 

to emphasize the flux, J, in the process gives 

dLm = l:!(L.J -Lrn) -JN 
dt 

Hence J = w/Y, which can be rewritten using eqn. (6) as follows: 

(8) 

(9) 

The yield coefficient is virtually constant over the range of growth rates of interest, and 

therefore flux is predicted to be directly proportional to fitness. 

The intense competition for lactose in the chemostat ensures that LP and L; will be 

much smaller than the respective Michaelis constants (Dean, 1989). Hence, the relative 

fitness of a strain X with respect to that of the common competitor TD1 is predicted to be 

equal to the ratio of the fluxes, and 

1 + Kt.'IDI + Km,'IDI 

Dux V permease, 'IDI Keqm V ~galactosidase, 'IDI 
WR = .J.x. = __ ___:.-=::-----:...._--==::...._--...:...._-

Ws J'IDI .1_+ Kt.x + Km,x 
Dx V permease, X Keqm V ~galactosidase, x 

(10) 

The kinetic parameters and relative fitnesses were determined for the permeases and ~

galactosidases of various operons. In total, five mutant ~-galactosidases (Dean et al., 1985), 

four lactase alleles from the ebg locus (Hall, 1984), six operons from world-wide natural 

isolates of E. coli in competition with TDl (Dean, 1989) and the fitness effects of modulat

ing expression of an inducible operon in competition with a constitutive operon (Dykhuizen 

& Davies, 1980; Dykhuizen et al., 1987) have been investigated. The uptake of radio

labelled lactose by intact cells provided parameter estimates for both the diffusion step and 

the permease step, whilst the in vitro hydrolysis of lactose by ~-galactosidase was assayed 

by coupling the production of galactose to the reduction ofNADP by galactose dehydrogen

ase. The estimate of Keqm = 442 was obtained as an average of estimates found in the 

literature (Winkler & Wilson, 1976; Wright et al., 1981). Thus, all the data necessary to 

estimate the relative fluxes have been obtained, together with the observed relative fitnesses 

of each strain. 
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Figure 2. The relation between fimess and 
flux for variants of the lactose operon, 
either the permease, the ~-galactosidase or 
both (e), and for variant alleles of ebgA 
(II, Hall, 1984). 
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As predicted, relative fitness, wx/wTot, is directly proportional to relative flux, 
lxllTm (Fig. 2). Relative fitness would not necessarily be proportional to the model of 
relative flux if a step in the pathway had been omitted. Had this been the case, the flux 
control coefficients of the permease and 13-galactosidase would be inflated by a common 
factor compared to their fitness control coefficients. But Table 1 shows a good agreement 
between the control coefficients predicted from the kinetics studies of TD1 and those 
experimentally determined from the many competition experiments. Moreover, the sum of 
the control coefficients is not significantly different from unity. Hence, the flux summation 
theorem of Kaeser & Bums (1973, 1981) is confirmed and eqn. (10) can be rewritten as 
follows: 

WR _ fx _ 1 
Ws - fwt - CJ CJ CJ 

dilfusim permease ~-galactosidase 

1. ··- . + lrnnease + 
lld!ltuslrn n.pe kll-galactosidase 

(11) 

where C~, C~ease and C~galactosidase are the flux control coefficients, and the three k 
values are the first-order rate constants of the variants expressed as a proportion of those of 
TDl. Note that kdn!usirn = 1 for all strains because the lactose operon encodes no structural 
component of the cell wall. 

Predicted (kinetics) 
Observed (fimess) 

Table 1. TD 1 Control Coefficients on Limiting Lactose 

Cell wall Permease j}-Galactosidase 

0.819 0.178 0.003 
0.882 ± 0.085 0.158 ± 0.029 0.003 ± 0.0003 

Sum 

1.04±0.09 
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In a sense, eqns. (10-11) represent a sort of missing link between molecular evolution, 
as represented by relative fitness on the left, and molecular biology, as represented by 
relative flux on the right. Relative fitness is completely defined in terms of the kinetic 
parameters of the lactose flux. Consequently, this equation can be used to predict the 
magnitude and direction of selection of a previously untested lactose operon solely from a 
knowledge of the kinetics of its enzymes. 

The Control of Natural Selection ... 

In general, the fitness of one allele with respect to another can be defined as follows: 

(12) 

where WR and ws are the fitnesses conferred by the alleles, ?'JE is the change in enzyme 
activity, C~ is the conventional control coefficient with respect to some metabolic parameter 
M, and cAr is the control coefficient of fitness with respect to M (Dean & Dykhuizen, 
1990). In our case M = cAr= 1 so eqn. (12) reduces to 

(13) 

We can use this equation to predict the future course of evolution in the chemostat for each 
step in the lactose flux. Increases in ~-galactosidase activity are unlikely to have a significant 
impact on the fitness because the flux control coefficient is so small (Dean et al., 1987). 
Rather, natural selection will target mutations in the cell wall and in the permease where 
large control coefficients allow increased activities be manifest as gains in fitness. As 
selection proceeds to increase cell wall permeability and permease activity, so the control 
coefficients of these steps will become smaller and smaller. Meanwhile, the flux summation 
theorem ensures that the control coefficient of the ~-galactosidase will become larger and 
larger. Hence mutants of ~-galactosidase that were previously hidden are now exposed to 
natural selection (Dean, 1989). 

Fig. 3 shows the expected distribution of control in TD1 as a function of the con
centration of environmental lactose. Again, natural selection is unlikely to target the ~
galactosidase because the flux control coefficient remains small regardless of the concentra
tion of lactose. In contrast, selection targets the cell wall only at low concentrations of 
lactose where the first order constant for the diffusion step (D) is rather smaller than that of 
the permease (the ratio V ~/K1). At high concentrations of lactose, all the control shifts 
to the permease which becomes saturated, rate limiting and subjected to intense natural 
selection. 

The initial adaptation of the cell wall requires low concentrations of lactose in a 
chemostat. This fits our intuitive notion that the more available something is, the less 
competition there is, and hence the less effective natural selection is. Much evolutionary 
speculation depends on this notion of scarcity, competition and selection intensity. But as 
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Figure 3. The distribution of flux 
control in the fully induced Kl2 
lactose operon as a function of the 
concentration of environmental lact
ose. The stimulated control coef
ficients were obtained from the 
elasticities estimated using kinetics 
parameters obtained for TD 1. 
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the abundance of lactose increases the control shifts to the permease which becomes 
increasingly exposed to natural selection. This demonstrates that there is no a priori reason 
to assume that natural selection is more intense when resources are scarce (Dean, 1989) . 

... and The Natural Selection of Control 

Why is most of the control housed in the cell wall and in the permease but not in the ~
galactosidase? There is nothing in the simple metabolic model that suggests why a particular 
distribution of control should have been favoured over any other. But in habitats other than 
the chemostat, the relation between fitness and flux might be rather different. 

At low concentrations of lactose, most of the control is located in the cell wall. 
Elimination of the cell wall might increase the flux, but the cells would now be highly 
susceptible, for instance, to osmotic shock. Lactose diffuses from the external environment 
into the periplasmic space through proteinaceous channels (porins) of the outer cell wall. 
Expression of the OmpF encoded porins, which are of greater diameter, will increase the 
flux. However, expression of OmpF is repressed at 37°C in media of relatively high 
osmotic strength. Such are the conditions in the chemostat and also the mammalian gut, 
where the response may be an adaptation to prevent bile salts from entering the periplasmic 
space and wreaking havoc at the cell membrane (Nikaido & Vaara, 1987). These additional 
selective forces may prevent increases in cell wall permeability at low concentrations of 
lactose. Of course, these considerations are irrelevant at high concentrations of lactose where 
the cell wall will have a negligible control coefficient. 

Some control is always present at the permease. But cells starving on lactose and 
constitutively expressing the permease are subject to death by a collapse in the proton 
motive force caused by a sudden excess of lactose (Dykhuizen & Hartl, 1978; Wilson et al., 
1981; Ghazi et al., 1983). This selection may prevent increases permease activity if, in 
natural environments, E. coli is alternately subjected to lactose starvation and inundation 
(Dykhuizen et al., 1987). With the first two steps subject to alternate selective forces that 
prevent increases in activity, gains in fitness can only be achieved at the third step. One 
might reasonably speculate that the low control coefficient of the ~-galactosidase is the result 
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of selection for an increased flux, and that natural selection may have been so efficient that 
evolutionary improvement of the ~-galactosidase is no longer possible (Hartl et al., 1985; 
Dean et al., 1986). 

Conclusion 

Experimental evolution combines with theories of metabolism to provide a new and power
ful means of studying molecular adaptation. Insights into the molecular mechanisms of 
natural selection have been gained that are unobtainable from sequence comparisons. For 
instance, the intensity of selection may have little to do with the abundance of a resource. 
And there is no guarantee that the kinetic differences among homologous enzymes are 
adaptive because the control coefficient is equally important in determining fitness. Indeed, 
the ~-galactosidase may be typical of a class of enzymes for which natural selection has been 
so effective at reducing control coefficients that even substantial activity changes have 
insignificant fitness effects. In such cases, the result of natural selection may be a mode of 
evolution that proceeds by the chance sampling of alleles from generation to generation 
(Hartl et al., 1985). Moreover, the ability to quantify metabolism together with methods to 
study fitness has opened the way to predicting the future course of molecular evolution. 
After all, eqn. (12) suggests that natural selection can, in principle, be described for any 
underlying biochemical process, not just the lactose flux of Escherichia coli. 

Acknowledgements: This work was supported by grants from the National Institutes of Health to Daniel E. 
Koshland, Jr., whose kindness, patience and support I greatly appreciate. I also wish to thank Bruce Morimoto, 
whose helpful criticisms and suggestions so markedly improved this manuscript. 

REFERENCES 

Dean, A.M. (1989) Genetics, in press 
Dean, A.M. & Dykhuizen, D. E. (1990) in Principles of Metabolic Control, (Westerhoff, H. V., 

ed.) Plenum, New York 
Dean, A.M., Dykhuizen, D. E. & Hartl, D. L. (1986) Genetical Research 48, 1-8 
Dean, A.M., Dykhuizen, D. E. & Hartl, D. L. (1988a)Mol. Biol. Evol. 5, 469-485 
Dean, A.M., Dykhuizen, D. E. & Hartl, D. L. (1988b) in Proceedings of the Second International 

Conference on Quantitative Genetics (Weir, B.S., Eisen, E. J., Goodman, M. M. & Narnkoong, 
G., eds.), pp. 536-548, Sinauer Associates Inc., Sunderland, Massachusetts 

Dykhuizen, D. E. & Hartl, D. L. (1978) J. Bacteriol.135, 876-882 
Dykhuizen, D. E. & Hartl, D. L. (1983) Microbial. Reviews 47, 1050-1069 
Dykhuizen, D. E., Dean, A.M. & Hartl, D. L. (1987) Genetics 114, 25-31 
Ghazi, A., Therisod, H. & Shechter, E. (1983) J. Bacteriol.154, 92-103 
Hall, B. G. (1984) in Microorganisms as Model Systems for Studying Evolution (Mortlock, R.P., 

ed.), Plenum, New York 
Hartl, D. L., Dykhuizen, E.D. & Dean, A.M. (1985) Genetics 111, 655-674 
Huber, R. E., Kurz, G. & Wallenfels, K. (1976) Biochemistry 15, 1994-2001 
Kaeser, H. & Bums, J. A. (1973) Symp. Soc. Exp. Biol. 27, 65-104 
Kaeser, H. & Bums, J. A. (1981) Genetics 97, 639-666 



398 A.M. Dean 

Kimura, M. (1983) The Neutral Theory of Molecular Evolution, Cambridge University Press, New 
York 

Monod, J. (1942) Recherches sur La Croissance des Cultures Bactlriennes, Hermann, Paris 
Nikaido, H. & Vaara, M. (1987) in Escherichia coli and Salmonella typhimurium, Vol. I, 

(Neidhart, F. C., ed.), pp. 7-22, American Soc. Microbiol., Washington D.C. 
Wilson, A. C., Carlson, S. S. & White, T. J. (1977) Ann. Rev. Biochem. 46, 573-639 
Wilson, D. M., Putzrath, R. M. & Wilson, T. H. (1981) Biochim. Biophys. Acta 649, 377-384 
Winkler, H. H. & Wilson, T. H. (1966) J. Biol. Chem.JO, 2200-2211 
Woese, C. R. (1987) Microbiol. Rev. 51, 221-271 
Wright, J. K., Reide, I. & Overath, P. (1981) Biochemistry 20, 6404-6415 



Chapter 35 

On the Control of Gene Expression 

HANS V. WESTERHOFF, JOHANNA G. KOSTER, 
MARIELLE VAN WORKUM and KENNETH E. RUDD 

THE CONTROL THEORY of metabolic pathways has become fairly complete (reviewed in 
Kaeser & Porteous, 1987; Kell & Westerhoff, 1986; Westerhoff & Van Dam, 1987; Wester
hoff, 1989ab; see also numerous chapters in this book, especially Chapter 3 by Porteous). 
However, it discusses control at a single level, i.e., that of metabolic pathways, without 
taking the variability of gene expression explicitly into account. In metabolic control theory, 
protein concentrations can only be reset by interventions. This type of control analysis is 
useful for understanding principles of metabolic control, and for understanding metabolic 
changes that are too quick or in too limited a metabolic system to involve changes in gene 
expression. Because variations in gene expression are ubiquitous and clearly implicated in 
metabolic regulation, it is of interest to see how the principles of metabolic control change if 
variable gene expression is taken into account. In this chapter we present a first attempt to 
extend metabolic control theory to variable gene expression. We also discuss two experi
mental situations in which we have analysed such control and make explicit where regula
tion differs from control. 

Hierarchical Control Structures 

Not all biochemical pathways are directly involved in the conversion of metabolic substrates 
and products. Some pathways are specialized in regulation of metabolism. An example is the 
modulation of the activity of glycogen phosphorylase by the activities of phosphorylase 
kinase and phosphatase. Fig. 1 gives an example where the concentration of a metabolic 
modifier (such as ATP) is controlled by two enzymes not otherwise involved in the pathway. 

In such cases it can be useful to subdivide the overall metabolic network into two 
hierarchical levels. One of these corresponds to the usual pathways converting metabolites, 
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Figure 1. Example of a hierarchical control 
system. A metabolic pathway converts S toP. The 
activity of the first enzyme is affected by the con
centration ratio of [ATP]/[ADP], which is in
creased by enzyme E 4 and decreased by enzyme 
Eb. Control coefficients within the metabolic 
pathway will be indicated in the text by C, 
whereas control coefficients within the regulatory 
pathway will be indicated by r. 
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the other level houses the conversion reactions of the metabolic modifier or of the phos
phorylation dephosphorylation reactions of the enzyme. As usual [review: Westerhoff & 
Van Dam, 1987; see also eqns. (5-6) below], control coefficients are defined as the change in 
the logarithm of a metabolic variable divided by the change in the logarithm of a parameter, 
when the latter is the only parameter that is changed. The latter change is in principle 
infinitesimal. Transitions between steady states are considered. Small changes in the natural 
logarithm of a property are equivalent to small relative changes. 

Writing C for the control coefficients of the nm enzymes in the metabolic pathway in 
Fig. 1, and r for the control coefficients by the two enzymes (E a and E b) in the regulatory 
pathway, we can express the following summation laws: 

n~ 

LC{+ L rf=1 (1) 
i= I j=a,b 

(2) 

--ATP/ADP .....ATP/ADP _ ~ --ATP/ADP _ O 
la +Jb -LJ1j - (3) 

j=a,b 

L rf = ci·EiTP/ADP L r1TP/ADP = 0 (4) 
j=a,b j=a,b 

In words, the usual flux control summation theorem (Kaeser & Bums, 1973) remains valid, 
independently of whether one sums over all the enzymes [(i.e. both the nm enzymes in the 
metabolic pathway and the two enzymes Ea and Eb that control the [ATP]/[ADP] ratio: 
eqn. (1)] or only over the nm enzymes in the metabolic pathway [eqn. (2)]. This is because 
the total control of the enzymes Ea and Eb on the flux through the metabolic pathway runs 
through [ATP]/[ADP] [eqn. (4)] and the sum of their control coefficients with respect to that 
concentration is zero [eqn. (3)] (cf. Heinrich et al., 1977). 

The regulatory pathway (in Fig. 1 merely consisting of the enzymes Ea and Eb) is 
subject to the usual laws of metabolic control, including the connectivity laws (cf. Kaeser & 
Bums, 1973; Westerhoff & Chen, 1984). 
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Figure 2. Dictatorial control of metabolite concentrations by gene expression. a, the ''pathway" of control. In 
b it is stressed that this is not a metabolic pathway. There is a hierarchy of control. At each level, there is 
metabolism (of DNA, RNA, protein, or metabolites respectively), but the upper levels have a definite control 
over the lower levels. Here the extreme of a "dictatorial" hierarchy is shown, where lower levels do not affect 
higher levels. (Fig. 4 below illustrates a more "democratic" hierarchy.) 

Variable Gene Expression: the Case of a Dictatorial Hierarchy of Control 

In the existing metabolic control analysis, enzyme concentrations [or, more strictly speaking, 
enzyme activities (Heinrich et al., 1977)] are treated as parameters, i.e. they are assumed to 
be constant unless "reset" by some event outside the system under study. Such resetting of 
these parameters has been done by use of inhibitors, or by genetic means, for instance by 
comparing various heterokaryons of Neurospora crassa (Flint eta/., 1981), by comparing 
mutants (Dean et al., 1986), or by causing a gene to be expressed from a plasmid (Walsh & 
Koshland, 1984). The measured relative change in flux, divided by the measured change in 
enzyme activity, was then used to obtain the flux control coefficient by the manipulated 
enzyme. Thus the enzyme concentration was viewed as a controller. 

From a different point of view, an enzyme concentration is a variable that is controlled 
by other parameters: it is determined by the relative activities of RNA polymerase, RNA 
processing enzymes, RNAases, the protein synthesizing machinery, protein processing 
enzymes and proteases, as well as by the gene dose and the concentration of transcriptional 
and translational regulators. The scheme given in Fig. 2a resembles that of a metabolic 
pathway, but differs from it in the sense that DNA is not a precursor of mRNA, mRNA is 
not a precursor of the enzyme, just as the enzyme is not the precursor of the product of the 
reaction it catalyses. Rather, mRNA functions as an activator of the protein synthesis 
catalysed by the ribosomal system (Fig. 2b). 

For the moment we shall limit the discussion to the case in which the low-molecular
mass substrates, cofactors and activators for RNA and protein synthesis are in saturating or 
constant supply. Fig. 2b emphasizes that the control of gene expression involves a hier
archy. The horizontal levels correspond to metabolic pathways, one for the metabolism of 
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each mRNA, one for the metabolism of each enzyme and, finally, one for the metabolic 
pathway catalysed by the enzymes. 

In Fig. 3, four enzyme complexes are involved in RNA metabolism: RNA polymerase, 
the spliceosome, an RNA translocase (which transports RNA from the nucleus to the cyto
plasm) and RNAase. In principle, the concentrations of these enzymes are controlled by yet 
another level in the hierarchy. For the present discussion however, we shall take these 
concentrations as parameters. This allows us to define the control coefficients for the flux of 
RNA synthesis with respect to each of these enzymes, e.g. for the control of RNA synthetic 
flux J by RNA polymerase: 

CJ - dl/] 
I -

po ymerase d[polymerase ]/[polymerase] 
dlnl (5) 

dln[polymerase] 

Similarly, there are concentration-control coefficients for these enzymes with respect to, e.g., 
the concentration of mature RNA: 

dRNA~ . = Q~] = d[RNA]/[RNA] 
IT8nSCilpnon po ymemse d[polymerase ]/[polymerase] dln[polymerase] 

dln[RNA] (6) 

The dependence of the RNAase activity, vRNAase• on the RNA concentration is character
ized by the corresponding elasticity coefficient: 

~dVRNw:/v
RNA = d[RNA]/[RNA] 

dlnVRNw: 
dln[RNA] 

{7) 

Whenever the RNA metabolism is at steady state, the usual theorems hold. For instance, the 
sum of the control coefficients with respect to the concentration of the mRNA equals zero: 

CmRNA cmRNA cmRNA cmRNA 0 polymerase + splicing + translocase + RNAase = (8) 

and the flux connectivity theorem with respect to the mRNA concentration reads: 

CJ _JXllymerase c!. splicing rJ translocase rJ ..RNAase 0 
polymerase·t.~ + splicing·EmRNA + l-lranslocase"EmRNA + l-RNAase"l:.mRNA = (9) 

DNA 
I 
I 

I J 
NTPs ~ hnRNA~ nRNA----. mRNA---. NMPs 

polymerase splicing translocase 1 RNAases 
I 
I 

~ protein 
translation 

Figure 3. One of the levels of Fig. 2; the level of RNA metabolism. DNA transcription by RNA polymerase 
gives rise to heterogeneous nuclear RNA (hnRNA), which is processed (by the spliceosome) to yield nRNA, 
which is then transported across the nuclear membrane by a translocase to yield cytosolic mRNA, which may 
be degraded by RNAases. The remaining mRNA drives translation. Of course, this picture is still a 
simplification of actual RNA metabolism. 
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It should be noted that many of the elasticity coefficients in this last equation may equal 

zero. For instance, it is not likely that the cytosolic mRNA concentration has a direct influ

ence on eukaryotic transcription. It is more orthodox to assume the mRNA concentration to 

affect the level of a metabolite, which then feed-back represses transcription. However, in 

the present section of this paper, we limit the discussion to the case where metabolite con

centrations do not affect the higher levels in the hierarchy. 

A theorem that is special for the hierarchical systems of gene expression, states that the 

sum of the control coefficients with respect to a flux or concentration, over all enzymes at a 

higher hierarchical level equals zero. We elaborate on this for the controls exerted by the nR 

(= 4 here) enzymes involved in RNA metabolism over the rate of synthesis of a protein and 

over the concentration of that protein: 

nR 

L. rfpoooo;. =o (10) 
i=l 

nR L ~ein=O (11) 
i=l 

As in the case of hierarchies in ordinary metabolism (see above), eqns. (10-11) derive from 

the fact that the sum of the controls exerted by those enzymes on the RNA species that affect 

translation equals zero [eqn. (8)]. An important new theorem is an analogue of the expres

sion for the control coefficient of a flux with respect to the concentration of an external 

modifier (Kaeser & Bums, 1979): 

r.:rotein _ translation C protein 
mRNA - E;i;RNA • translation (12) 

This theorem is expressed here for the control exerted by the concentration of mRNA on the 

concentration of a protein. It states that the control coefficient equals the arithmetic product 

of the elasticity coefficient of translation with respect to the mRNA and the control coef

ficient of the protein concentration with respect to translation. 

The control exerted by transcription on the concentration of a metabolite involves three 

levels of the hierarchy. In quantitative terms this results in the corresponding control coef

ficient being equal to the mathematical product of three control coefficients, one for each 

level of the hierarchy: 

.. .metabolite • .rnRNA ....,enzyme ITldahOOic 
'1' transcription = r tt;;;.;,..q,tion · t mRNA · Cenzyme (13) 

Capitals Y, r and C are used for control coefficients at the levels of RNA, protein and 

substrate metabolism, respectively. For each of these an expression of the type of eqn. (12) 

exists. 'I' is used for the control coefficient that runs through the three hierarchies. Eqn. (13) 

is relatively simple because it was assumed that only the transcription of a single gene was 

modulated. In the case that the transcription of more than one gene is modulated, complex 
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Figure 4. A scheme with feed-back repression. For 
simplicity, the repression is assumed to operate at the 
level of translation. 

products may arise. The control by an external modifier of transcription is found by 
multiplying ~~~on by the elasticity coefficient of transcription for that modifier: 

.. .metabolite •• .metabolite transaiption 
"t" modifier = 't' transcription · £modifier (14) 

Variable Gene Expression: a Case of Democratic Hierarchy of Control 

Up to this point, we assumed that the hierarchical control structure was "dictatorial", i.e. that 
higher levels of control were insensitive to changes at the lower levels of control. We shall 
now consider an example of "democratic" control, where the concentration of a metabolite 
X feed-back represses the synthesis of the enzyme that produces it (Fig. 4). For simplicity 
we shall assume that the feedback repression occurs at the level of translation and that the 
concentration of the mRNA is constant. We consider the effect of a change dlnktransJation in 
the inherent rate constant of translation (for instance due to a change in ribosomal con
centration). The resulting change in [X] consists of two terms. One is the direct effect of the 
change in inherent translational activity, the other is the subsequent effect of the change in 
translation activity due to the change in [X]: 

[XJ oo oo 1 oo~ dln =Ctranslation ·dlnktranslation = (C1 · r translation+ C2 ·1 iranslation)·dlnktranslation (1S) 
(dX] r1 dX] ~ ) translation dln[XJ + 1 · translation + 2 ·1 iranslation · Ex · 

Here the subscripts 1 and 2 refer to enzymes 1 and 2 in Fig. 4. Consequently, the control 
exerted by translation on the concentration of the metabolite X C~on is (usually) 
decreased due to the feed-back repression by X (E~anslation is usually negative): 

C.x - c:an.lation 
k.r.n.IIIion -

1 .,translation eX 
- "'X • translation 

(16) 
1 translation eX rl - Ex · 1 · translation 

where we have assumed that the feed-back repression by X on translation only affects the 
synthesis of enzyme 1 and not that of enzyme 2. c:an.lation corresponds to the ratio of the 
actual change in ln[X] to the actual change in translation activity (including the effect of 
the feed-back repression). cXk.r.nsii!ion corresponds to the ratio of the actual change in ln[X] to 
the initial change in translation activity (excluding the effect of the feed-back repression). A 
potentially more confusing phenomenon is that the control coefficients of the metabolic 
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enzymes with respect to metabolite concentrations are also affected by the presence of feed
back repression. Denoting the control coefficients in the presence of feed-back repression by 
a prime', one finds (Westerhoff, in preparation): 

e,x_ ef' 
1-

1 translation eX r1 - EX · 1 · translation 
(17) 

(Again we assume that feed back repression by X is limited to the synthesis of enzyme 1). 

ef' is the control coefficient of [X] with respect to enzyme 1 in the absence of feed-back 
repression (it should be noted that [X] remains a function of the concentrations of enzymes 1 
and 2). C'f is the actual change in ln[X] divided by the change in logarithm of the initial 
change in enzyme 1 concentration, dln[EJ]o; in the case of ef' (no prime!) it is divided by 
the ultimate change in enzyme 1 concentration, dln[Eiloo: 

dln[X] =C'fdln[Ei!oo = e'f-dln[EJ]o (18) 

The two changes in enzyme concentration are related by: 

(19) 

Since E~anslation is usually negative (feed-back repression), eqn. (17) reflects the fact that the 
control exerted by enzyme 1 on the concentration of metabolite X is reduced by the 
presence of the feed-back repression. 

Perhaps surprisingly, the absence of feed-back repression (or induction) of X on the 
synthesis of enzyme 2 (r;anslation = 0 in our example) does not imply that the control 
coefficient with respect to enzyme 2 is the same as in the absence of feed-back repression: 

e,x_ e"f 
2-

1 translation eX r1 - EX · 1 · translation 
(20) 

The classical summation theorem holds for either type of control coefficients: 

ef'+ef =O=C'f+e'~ (21) 

Using the method of Westerhoff and Chen (1984), we derived the following connectiv
ity theorem for the primed control coefficients (Westerhoff, in preparation): 

(22) 

By inserting eqns. (17) and (20), it can be shown that this connectivity theorem is consistent 
with the purely metabolic connectivity theorem (Westerhoff & Chen, 1984), which remains 
valid: 

e x 1 ex 2 1 1 ·Ex+ 2 ·Ex=- · (23) 
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Histone Gene Expression in Early Development 

In metabolic control theory, systems are assumed to be at steady state. That is, fluxes and 
concentrations are constant in time. For systems at constant volume, the latter implies that 
amounts are also constant, i.e. that net synthesis equals net degradation. In growing systems, 
the latter equality does not apply. However, metabolic control theory has been shown to 
apply to steadily growing systems, provided that the so-called fluxes to expansion are taken 
into consideration, i.e. the rates of net synthesis necessary to supply all progeny cells with 
the normal level of metabolites (Kaeser, 1983). In many actual cases, the flux to expansion is 
a minor component to metabolism. We have studied a case where this flux to expansion is a 
major component and where its (large) magnitude is essential for the survival of the 
organism. This is the case of histone gene expression in the early development of some 

. eukaryotic organisms. Histones are proteins needed in large amounts ( 1:1 mass:mass relative 
to DNA) to structure eukaryotic DNA. The cell cycle of some eukaryotes in early 
development is almost as short as that of rapidly growing E. coli, yet their cellular DNA 
content is a thousand times higher. This implies an enormous rate of DNA synthesis and, 
since all DNA seems to be packaged around histone octamers, an equally impressive 
requirement of histone protein. 

Figure 5. Scheme for histone gene expression. It will be 
assumed that the rate constants are independent of time, 
that transcription and DNA synthesis rates are proportional 
to the amount of DNA, translation and RNA degradation 
rates proportional to the amount of RNA and proteolysis 
proportional to the amount of protein. Magnitudes of the 
rate constants and of the initial amounts of histone protein 
and histone mRNA were given in Koster et al. (1988). 

r--,kDNA replication 

~DNA 
I 
I 
I 

~mRNA~ 
~NA synth. : k RNA deg. 

I 

-4protein~ 
kprotein synth. kprotein deg. 

In Xenopus laevis, fertilization is followed by a short lag, but then exponential growth 
(in the sense of DNA replication) sets in, with the constant cell-cycle time of 35 min 
(Newport & Kirschner, 1982). For such exponential growth, the differential equations 
corresponding to Fig. 5 can be solved; if one assumes time-independent rate constants. By 
dividing the amount of protein by the amount of DNA, neglecting the amounts of RNA and 
protein present in the beginning, one finds for the amount of protein per cell (Koster, 1987): 

[protein] 
[DNA] 

ngenes · kprotein synthesis" kRNA synthesis 

(koNA replication + kRNA degradation) (koNA replication + kprotein degradation) 
(24) 

Here ngenes is the number of genes per haploid genome encoding the protein under study, and 
the rate constants k refer to the processes indicated. 

Differentiating the logarithm of this expression with respect to that of kRNA synthesis one 
finds the value of 1.0 for the control coefficient of the protein/DNA ratio with respect to 
RNA synthesis. Similarly, the control coefficients with respect to protein synthesis and the 
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number of genes per genome both equal 1. For the control coefficients with respect to 
protein and RNA degradation one finds -kprotein degradation/(kDNA replication + kprorein degradation) 

and -kRNAdegradation/(kDNAreplication + kRNAdegradation) respectively, whereas the control coef
ficient with respect to DNA replication amounts to 

kDNA replication kDNA replication 

kDNA replication + krrotein degradation kDNA replication + kRNA degradation 

Summing all the control coefficients for rate constants (processes), one finds that the 
summation theorem applies: the sum of the controls over the amount of protein per cell (i.e., 
per amount of DNA) adds up to zero. As discussed above, when taken by hierarchical level, 
the summation theorems also hold, provided that the effect of DNA synthesis is taken into 
consideration. For instance, the sum of the control coefficients by transcription, RNA 
degradation, and DNA replication insofar as RNA synthesis is concerned [which gives a 

control coefficient for DNA replication of -kDNA replication/(kDNA replication + kRNA degradation)] 

equals zero. 
Calculation of the histone-protein to DNA ratio from the above equation for the case of 

early development of Xenopus laevis led to the ratio of 0.19 (Koster, 1987; cf. Koster et 
al., 1988). Clearly, exponential growth plus de novo synthesis of histone mRNA and 
histone protein would lead to shortage of histone proteins. As detailed elsewhere (Koster et 
al., 1988; cf. Woodland, 1980) Xenopus laevis deals with this problem by storing histone 
mRNA and histone protein in its oocyte and by limiting the period of exponential growth to 
the first 8 hours after fertilization. 

Control of and by DNA Supercoiling and the Cellular Energy State 

In prokaryotes, gene expression is affected by DNA supercoiling (Drlica, 1984). DNA 
supercoiling is increased (made more negative) by DNA gyrase, at the cost of the hydrolysis 
of intracellular ATP. Topoisomerase I decreases (negative) supercoiling. This system is 
homeostatically controlled both at the level of the degree of supercoiling affecting the 
activities of gyrase and topoisomerase I and at the level of supercoiling affecting the 
expression of the gyrase and the topoisomerase I genes (Menzel & Gellert, 1983; Tse-Dinh, 
1985). On top of this, there are environmental influences on DNA supercoiling, the 
mechanism of which has not been elucidated (Higgins et al., 1988). 

If one neglected the influences of supercoiling on the .expression of the gyrase and 
topoisomerase I genes, the following summation and connectivity theorems would be valid: 

csupercoiling + csupe~iling = 0 
gyrase top01somerase I (25) 

Csupercoiling DNA gyrase Csupercoiling topoisomerase I _ 1 
DNA gyrase. Esupercoiling + topoisomerase I. Esupercoiling - - (26) 

The degree of supercoiling may be defined in terms of the change in linking number relative 
to the relaxed state of the DNA. 



408 H. V. Westerhoff and others 

In reality the expression of gyrase and topoisomerase I genes are affected by DNA 
supercoiling. We indicate this by writing the activity g of gyrase as a function of the 
endogenous activity g0 and the degree of supercoiling cr: 

g == g( a, go) (27) 

Similarly we write for the activity I of topoisomerase I: 

I ==l(a,/o) (28) 

The degree of supercoiling remains the usual function of the overall activities of gyrase and 
topoisomerase I: 

cr == cr(g, /) (29) 

Note that we leave out of consideration the influences of transcription on supercoiling, 
which have recently been shown to be important (Wu et al., 1988; Figueroa & Bossi, 1988). 
The usual control coefficient indicating the control of gyrase on supercoiling is: 

ccr=(dlncr) 
g ding 1 

(30) 

That is, this control coefficient relates the change in supercoiling to the change in gyrase 
activity, the latter including the secondary change in gyrase activity resulting from the effect 
of supercoiling on gyrase expression. C% differs from the effect on DNA supercoiling taken 
per amount of initial change in gyrase activity, as defined by 

c·cr=(dlncr) 
g dingo lo 

(31) 

where it is noted that there should be no initial change in topoisomerase I activity, but a 
change due to the change in supercoiling is allowed. For the change in gyrase concentration 
we may write: 

dlng ==dingo+ f80 dlncr (32) 

Here J1-is the control coefficient for the effect of a change in supercoiling on the concentr

ation of DNA gyrase. With similar definitions relating to topoisomerase I, one can express 
the two control coefficients for gyrase on supercoiling into one another: 

C,(J_ q 
g-

1- C:·Y~- CJ·Y~ 
(33) 

The summation and an adjusted connectivity theorem are valid for the new control coeffici

ents (Westerhoff, in preparation). These can be used to express the new control coefficients 
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for the effect of gyrase on supercoiling into more fundamental properties: 

1/C'g = -~ + d,- I1 + y~ (34) 

Not unexpectedly, feed-back repression (negative Y5) has an effect similar to that of feed
back inhibition (negative ~); it reduces the control of supercoiling by DNA gyrase (it 
increases C'g). DNA gyrase can decrease the linking number of negatively supercoiled, 
double-stranded closed circular DNA. The free-energy source for this is the ATP that is 
hydrolysed by the enzyme. In vitro, supercoiling of a plasmid by DNA gyrase, was a rather 
strong function of the Gibbs energy of hydrolysis of ATP (Westerhoff et al., 1988). To 
obtain an indication if the same phenomenon may occur in vivo, we incubated E. coli in the 
presence of a protonophore, carbonyl cyanide-p-trifluoromethoxyphenylhydrazone (FCCP), 
which is known to decrease the intracellular free energy of hydrolysis of ATP. Depending 
on the amount of protonophore added, we found an increase in average linking number 
(corresponding to a decrease in negative supercoiling) of the intracellular reporter plasmid 
pBR322 of up to 9. In terms of control theory, such a control by intracellular ATP is written 
as follows: 

(35) 

Eqn. (35) demonstrates that this control is quite a complex function of various enzyme 
properties as well as of the properties of the expression of the gyrase genes. This is found 
even though we have neglected the effects of transcription on supercoiling and even though 
we have assumed that ATP only affects supercoiling through DNA gyrase. Actual transcrip
tion is not essential for the effect of the protonophore on DNA supercoiling (Westerhoff, 
unpublished observation). 

Regulation versus Control 

Confusion has arisen with regard to what metabolic control analysis does and does not 
discuss. In its generic form, metabolic control analysis discusses the effects of changes in 
system parameters on system variables. Most often the variables have been fluxes and 
concentrations, the parameters have been enzyme concentrations. Limiting the present dis
cussion to fluxes, metabolic control analysis allows one to determine and explain the extent 
to which potential changes in enzyme activities or in the concentration of externally deter
mined concentrations of metabolic modifiers, affect a flux. 

It is important to note that metabolic control analysis does not therefore analyse (i) how 
the flux is actually regulated, or (ii) which regulatory links in metabolism are important for 
the actual regulation of the flux. The former question (i) cannot be addressed without 
knowing what actually changes in the external factors that affect metabolism (i.e, which of 
the enzymes are and which are not activated in the in vivo situation). 



410 H. V. Westerhoff and others 

The second question (ii) can be addressed to some extent by the following extension of 
metabolic control theory. We consider the example of Fig. 4 and eqn. (16). Here we found 

the control in the absence of changes in gene expression to be given by e:..n.lation and the 
control for the case where the derepression of gene expression is operative as C'L..,. 
Clearly, in eqn. (16) the regulatory importance of the dashed regulatory loop in Fig. 4 that 
leads from X to transcription and then back to X is given by what we here define as the 
regulation coefficient R for that loop: 

R ex ['1 translation = 1 · translation · EX (36) 

Other examples of coefficients for regulatory loops are found in the denominator of eqn. 
(33). 

One can also quantify values for regulatory links. For instance the extent to which the 
activity of translation regulates the concentration of X (note that we can discuss in terms of 
regulation by translation rather than control by translation because the activity of translation 
now is variable due to the feed-back repression by X) is quantified by 

x cxe1 R translation = 1 · translation (37) 

To demonstrate that these quantifications of regulatory links can be used to actually 
calculate control coefficients, it serves to rewrite eqn. (16) as follows: 

C'X eX e•X translation CX 
k,.,w;.., = translation + k........ .... · EX · translation (38) 

Inspection of Fig. 4 confirms that there are two regulatory links leading from translation to 
X. The first is the straightforward connection through enzyme 1, stopping in X. This yields 
the regulatory coefficient e;anslation (which is equal to the control coefficient in the absence 
of feedback repression). The second link involves the feed back repression: it runs from 
translation through enzyme 1 to X (giving rise to e:W.lation) then back from X to translation 
(giving rise to eroslation) and then again from translation to X. Because this second link 
again consists of a direct effect and a secondary effect involving feed back repression, it 

invokes the factor cL.. ... in addition to e;anslation· 

Discussion 

In the above, we have expanded control theory in a first attempt to include variable gene 
expression. It turns out that control coefficients that include variations in gene expression 
differ from control coefficients that do not include them. When comparing control coeffici
ents determined by varying gene dosage to control coefficients determined using metabolic 
inhibitors, this should be kept in mind. Biochemical systems theory has also dealt with 
variations in gene expression (Savageau, 1976), mostly in the integral sense. In our experi
ence however, the parameter choice in metabolic control theory is more amenable to 
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experimental analysis than the one in biochemical systems theory (for a more detailed 

comparison of the application of various control theoretic methods see Chapter 6 by Groen 

and Westerhoff in this book). Consequently, we consider it useful to extend metabolic 

control theory into the domain of varying gene expression. Such an extension may allow 

improved interpretation of control data already available (e.g. Barthelmess et al., 1974) and 

stimulate further experimental control analyses. 
In some organisms, histone gene expression in early development is a race against the 

clock. If growth continued to be exponential, the embryo would fail to provide sufficient 

histones to package its newly synthesized DNA. However, as detailed elsewhere (Koster et 
al., 1988), growth slows down in time. 

The control of intracellular supercoiling by the cellular energy state is likely to be 

complicated. It may involve alterations in transcription rates (Wu et al., 1988), alterations in 

gyrase activity and subsequent alteration in supercoiling. The latter may again affect the 

expressi~n of the gyrase genes, resulting in a tendency towards homeostasis (Menzel & 
Gellert, 1983). 

Workers expecting that metabolic control theory is devised to solve the alpha and 

omega of metabolic regulation may have been disappointed. Indeed, metabolic control 
theory is limited to discussing what effect changes of certain properties of metabolic systems 

may have on fluxes and concentrations. The question of which changes actually occur in a 

certain physiological context cannot be solved by a general theory, but must involve detailed 

knowledge of the system under study. 
However, metabolic control theory can do more than what has been focussed on 

traditionally. We have shown here that metabolic control theory can quantify the importance 

of regulatory links within metabolic pathways. If more than one such link exists, one can use 

our method to decide which is the most important. This may lead to increased understanding 

of why metabolic pathways that are controlled have certain control structures (Savageau, 

1976; Westerhoff & Van Dam, 1987). 
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Chapter 36 

An Experimentalist's View of 
Control Analysis 

DANIEL E. ATKINSON 

IN RESPONDING to the invitation to comment on some aspects of the symposium, I will 
attempt no evaluation of the internal logic or mathematical merits of the various mathe
matical treatments that have been discussed. Those and other characteristics of these treat
ments have been discussed by other participants. Rather, I will focus my comments mainly 
on two questions that Dr. Cornish-Bowden asked me to consider, and which he posed in his 
introductory presentation (see Chapter 1): (a) what characteristics should a theory have if it 
is to be useful to experimentalists and (b) are the main treatments that have been discussed 
here- those of Kaeser and Burns (see especially Chapters 3, 17, 20 and 25), Heinrich and 
Rapoport (Chapter 28), and Savageau (Chapters 4 and 5) - valuable to experimental 
metabolic biochemists? 

We all believe in theory, and I hope that we all believe in experiment. Some participants 
in the symposium might add a caveat; they believe in experiments as long as they are not 
expected to perform any. Probably we all agree that the importance of experiments and their 
results lies not in themselves, but in their contribution to expanding our understanding, and 
that the aim of science is greater explanatory power- that is, the construction of generaliz
ations that relate in a more definitive way to a wider range of phenomena. 

Several words that are central to this discussion have quite different meanings to 
different participants in this symposium and to members of the biochemical community 
more generally. Attempts to suggest answers to the questions posed by Dr. Cornish-Bowden 
are likely to founder in semantic confusion unless we begin with a consideration of those 
differences. Specifically, the words "theory" and "control" are used by various participants 
with very different meanings. 

A major aim of science is not only to learn more about the world, but to understand 
more about it. Understanding primarily means integration and interrelation of as wide a 
range of phenomena as possible in terms of explanatory generalizations. These generaliza
tions are given many names, such as hunches, working hypotheses, hypotheses, theories, and 
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laws. I will use the generic tenn "generalizations" except where "theory" is mandated by Dr. 

Cornish-Bowden's charge (Chapter 1) or the usage of other participants. 
In order to correlate, explain, or predict phenomena, a scientific generalization must of 

course deal with the subject matter of the field to which it applies. Genetic theories or 

generalizations deal with and interrelate genetic observations, physical theories deal with 

physics, geological theories with geology, and so on. The fact that the generalizations of a 

field deal with the subject matter of the field is so obvious that it would ordinarily seem 

superfluous to mention it. But it is a remarkable fact that the treatments of Kaeser and Bums 

and of Heinrich and Rapoport have no specifically metabolic or biochemical content. They 

deal mathematically with generalized sequences of a few reactions, which could equally 

well be organic or inorganic, biological or geological. They are systems for mathematical 

treatment of kinetic results, and their constraints are those of the mathematical formalisms 
that are employed, rather than those of biological systems- or for that matter, of any other 

specific kind of systems. Having no specific relation to any kind of phenomena or 
observation, these treatments not only are not biochemical, they are not really scientific 

theories or generalizations at all. As Dr. Kaeser remarked at this symposium, they are 
methods of data treatment. Use of the tenn "theory" in this context is unfortunate. 

Abstraction and remoteness from the world of real observations is a deliberate feature of 

the design of these systems. Those who work with them speak of the desirability of design

ing a system without preconceptions; that is, of first setting up a completely general treat

ment and only at the time of use making specific adjustments if necessary. Nothing could be 

farther from the way that ordinary scientific generalizations are developed. Generalizations 

deal with observations, and make specific statements about observations and their relation

ships. To the best of my knowledge, no one has ever set out to design a geological theory 

devoid of geological content or preconceptions, or a chemical theory without chemical input. 

We can conclude at this stage that these treatments, having no discipline-specific content 

or predictive power, cannot aid an experimentalist in posing questions or devising experi

ments to try to answer them, and thus in contributing to our understanding of metabolic 
regulation. They are also not relevant to interpretation of his results. That conclusion is 

related to the questions that Dr. Cornish-Bowden posed for me. 
It is said that these treatments introduce a quantitative approach into an area- the study 

of metabolic regulation - that has hitherto been qualitative. The unspoken implication is 

that quantitative is better than qualitative. That assumption is not always valid. Qualitative 

questions are questions of kind; quantitative questions are questions of degree. It is generally 

useful to know what we are dealing with before we attempt to measure it. If a man walking 

along a path hears a rustle in the tall grass and catches a glimpse of tawny skin, the 

qualitative question of whether the creature is a tiger or an antelope is of more immediate 

importance to him than a precise quantitative measurement of its body length or height at the 

shoulders. Similarly, in almost any context, qualitative questions are more fundamental than 

quantitative questions, and logically must have priority. Even when methods are quantitative 

or semi-quantitative, the important questions to be addressed are qualitative. A metabolic 

chemist measures enzyme properties or the distribution of radioactivity among metabolites 

not for the sake of quantitation per se, but in an attempt to answer the underlying 
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qualitative questions. What reactions are involved? How are they related in the cell? Into 

what sequences are they organized? How do the sequences interact? How are they regulat

ed? In developing answers to these and similar questions, quantitation is a means to an end 

-understanding- rather than a meaningful goal in itself. And a system that is quantitative 

but lacks specific substantive content can only be, as these systems are, methods for dealing 

with numbers rather than scientific generalizations or theories. 
The fact that these treatments have no biochemical or predictive content does not neces

sarily mean that they might not be of value to experimentalists. Statistical techniques are 
similarly devoid of discipline-specific content, but are useful to experimentalists in nearly all 
fields. The mathematical treatments discussed at this symposium have more in common with 

statistical techniques than with scientific theories or generalizations. Thus we must ask 

whether, like statistics, they can aid an experimentalist in designing experiments (not in 

terms of what questions to ask- that is the province of scientific generalizations - but of 
how to ask them efficiently) and in evaluating the probable significance of experimental 
results. The remainder of this chapter will deal in one way or another with that question. 

The study of metabolism has led to such generalizations as: regulation is usually exerted 

at the first committed step of a sequence, which is the same as saying that it occurs at 

branch-points; the enzyme property that is usually regulated is the affinity of the branch

point enzyme for a substrate for which it competes with the enzyme that catalyses the first 

reaction of the other branch; the reactions catalysed by such regulated enzymes are usually 

of high kinetic order with respect to substrate; responses to modifier metabolites are also 
usually of high order; and so on. Discovery of none of those features could have been 
facilitated by use of the treatments with which this symposium dealt, and none of them are 

incorporated into those treatments. Indeed the treatments appear to be unable to deal with 
some of those features of real systems. 

The treatment of Savageau (Chapters 4 and 5) begins with a consideration of enzymes, 

and uses power functions to approximate some features of their behaviour. All subsequent 

manipulations are in terms of derived mathematical terms. It thus at the outset divorces 
itself, for the sake of mathematical convenience, from the actual physical properties and 

functional parameters of enzymes and metabolic systems. Since those are the features of the 

system about which an experimentalist must think when attempting to understand metabolic 

function, correlation, integration, and regulation, this approach interposes itself between 

observations and meaningful consideration of their biological significance and surely, if used 

by an experimentalist, would impede his generation of explanatory hypotheses. 
In discussions of this method, the rates of all reactions that diverge from a branch-point 

are lumped together for the sake of mathematical convenience. Nearly all known metabolic 
regulation is effected by altering the partition ratio at branch-points - that is, by changing 

the relative rates of the reactions that diverge from the branch-point. A method that lumps 

those reactions for the sake of elegance or convenience in mathematical analysis thus 

appears to lose in the process any possibility of dealing with actual metabolic regulation. 

Such lumping is not of course a necessary feature of the method, but its use by those who 

promote the method seems to indicate indifference toward actual regulatory patterns in real 

cells. 
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In this discussion I will deal specifically with the treatment of Kaeser and Bums and 
assume that my comments apply in general also to that of Heinrich and Rapoport, since 
those treatments are considered by both groups to be virtually interchangeable. 

These treatments deal with a formalized sequence of a few reactions, which may include 
a feedback loop, as in Scheme 1, where a later metabolite is a negative modifier for the 
enzyme that catalyses the conversion of X0 to X 1: 

\ 
Xo 

) 
Scheme 1 

This treatment defines for each enzyme a flux control coefficient, essentially the partial 
derivative atnF!dlna; where F is flux through the system at steady state and a; is the 
activity of the enzyme that catalyses reaction i. In the absence of a feedback loop and if 
only small variations are considered, it may reasonably be assumed that such expressions are 
true derivatives, that is, that they may be integrated and have other properties of such 
functions. Among the consequences of that assumption is that the flux control coefficients 
for the enzymes of a sequence must sum to a value of one. That feature - summation to one 
- is a central postulate of the treatment. It is a mathematical property of functions of the 
kind that are employed in this treatment, not a biological generalization. It seems to be 
tacitly assumed in most discussions of these treatments that the flux control coefficient of an 
enzyme is, as the name implies, a measure of the extent to which that enzyme influences the 
flux through the sequence. As I noted in the Prologue, that assumption cannot be true when 
the enzyme is of high order and is regulated by change of its affinity for substrate. Indeed the 
very properties that allow an enzyme to be a sensitively-responding controller of flux -
high kinetic order and variable affinity for substrate - cause it to have a low value of the 
flux control coefficient as that parameter is defined, as pointed out by Sauro & Fell (1987) 
and by me in the Prologue. 

When we consider a system containing a feedback loop, it becomes impossible to 
separate variables, since the concentration of the end-product feedback modifier X3 is a 
function of flux, and flux is a function of the concentration of the feedback modifier. The 
treatment thus appears not to be applicable to feedback-controlled systems, which include 
nearly all biochemical sequences. As we will see later, in a properly-functioning feedback
regulated system, whether technological or biological, the value of all flux control coef
ficients are zero, since small changes in the concentration of any enzyme will not affect the 
regulated flux. This is true regardless of the order of reaction and of what property of the 
regulatory enzyme is modulated. These treatments explicitly ignore or deny that fact. They 
also lump the net demand, symbolized in Scheme I by the arrow showing metabolic use of 
X3, with the other reactions of the sequence. Such an approach confounds the regulatory 
interactions by lumping the control system with the factors to which it responds. 
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Failure to distinguish between the regulatory properties of a sequence and the external 

factors to which the regulatory system responds is the consequence of an approach that 

concerns itself indiscriminately with all factors that affect the flux through a sequence 
without regard for their nature or functional significance. We encounter here a fundamental 
difference in approach between those who work with the mathematical treatments under 
discussion and those who attempt to understand the regulatory interactions of actual 
metabolic systems. On the basis of this symposium, I have reluctantly become convinced 

that the difference is irreconcilable. 
Those whom Dr. Cornish-Bowden terms theoreticians (although the mathematical treat

ments with which they work are not theories in the usual scientific sense of the term, as we 
have noted) are interested equally in all factors that affect the flux. They explicitly do not 
distinguish between intrinsic properties and extrinsic factors. Thus, despite their use of the 
word "control," they deal really with anything that. affects rates. Because they ignore the 

distinction between external factors that tend to perturb the system and the evolved intrinsic 

homeostatic properties of the system that resist those perturbations, they are unable to deal 
with the regulation of real sequences. Metabolic chemists would generally consider the word 
"control" to refer to factors that are involved in the regulation of a flux, not to everything 
that might affect it. They more often use the word "regulate," which avoids ambiguity of 
that kind. If we are to understand regulation, we must study the regulatory system itself and 

its reaction to the environment. Reaction to the environment is the essence of regulation or 

homeostasis, and we handicap ourselves fatally if we begin by lumping the regulatory 
system and the environment (in this case, the demand for the end product) indiscriminately 
together. 

The situation may be illustrated by consideration of a familiar example of technological 
regulation, a household refrigerator. At steady state, the rate at which heat is pumped out of 
the refrigerator is equal to the sum of all of the flows of heat into it. The rate at which heat 
enters will be determined by many factors, among them the ambient temperature, the 

efficiency of the insulation of the walls, the tightness of fit of the door, how often the door is 
opened and for how long, and the temperatures and heat capacities of the materials that are 
put into the refrigerator. The rate at which heat is pumped out depends primarily on the 
fraction of time that the compressor runs, and that is the variable that is regulated. 

The regulatory system of the refrigerator does not monitor the rate of every heat leak 
and the amount of heat introduced with everything that is put into it, sum them, and adjust 

the run time of the compressor so as to exactly balance those heat gains. It accomplishes the 
goal of balancing heat flows out and in by a much simpler means - it measures the internal 

temperature and controls the compressor so as to maintain a nearly constant temperature. 
Each component of the refrigeration system could become rate-limiting if it were 

defective. However, in a properly operating system, with heat-pumping capacity greater than 
the demand on the system, the size of the motor or the compressor, the tensile strength of the 

drive belt, the area of the radiator, and other features of the system could be changed with no 
effect on the maintenance of temperature. That is, every component of the system has a 

capacity greater than is being used, and although all are essential to the regulation of 
temperature, the flux control coefficient of each of them, and of all combined, is zero. 

No one would seriously propose that, in considering the operation of a refrigerator, we 
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should indiscriminately lump together the heat leak through its walls and the fraction of time 
that the compressor runs. To do so would be to ignore the design features that make 
constancy of temperature possible. The factors that affect the entry of heat into the refrigera
tor are not part of the control system; they are what the system works against. The run cycle 
of the compressor depends primarily on the rate at which heat leaks in. In the case of a 
refrigerator, everyone as a matter of course distinguishes between, on the one hand, the 
factors that tend to change the internal temperature of the refrigerator and, on the other, the 
operation of the regulatory system that responds to those factors and holds the temperature 
within a narrow range. That distinction is essential to understanding regulation. 

The analogy with a regulated biosynthetic sequence is quite close. The demand for the 
product of the sequence typically has several components. If the product is an amino acid, 
for example, it will be used in protein synthesis and perhaps in synthesis of other amino 
acids or other types of metabolites. It will be generated by degradation of cellular proteins, 
and may be gained from or lost to the environment (the interstitial fluid and blood in the case 
of mammalian cells). Like the refrigerator, .the regulatory system does not monitor all of 
these gains and losses of the product, but only its concentration. The properties of a 
regulatory enzyme, typically the branch-point enzyme that initiates the sequence, are adjust
ed so as to maintain the concentration of the end product within narrow limits, and thus 
automatically to balance the rate of production of the product with its momentary demand. 

In a typical metabolic sequence, the rates of individual reactions and the flux through the 
sequence are not determined by the raw properties of the enzymes, but primarily by 
modulation of the properties of the enzyme that catalyses the first reaction. All enzymes are 
operating below capacity. The flux will increase or decrease with increased or decreased 
demand, as reflected in the concentration of the end product (which typically is a negative 
modifier for the first enzyme), but is not sensitive to changes in the amounts of the compon
ent enzymes, singly or together. The flux control coefficient for each enzyme, and thus the 
sum of the flux control coefficients, is zero. Of course that situation has limits; if the con
centration of an enzyme were to be reduced until its maximal velocity was less than the pre
existing flux, that enzyme would begin to limit the flux through the system, and its flux 
control coefficient would rise toward a value of one. It is noteworthy that it is only in such a 
case, where, in sharp contrast to a normally operating sequence, the amount of an enzyme is 
a flux-limiting factor, that there is any relationship between the flux control coefficient as 
defined in these systems and the regulation, control, or limitation of flux. And in such cases 
regulation would fail. 

It is evident that flux control coefficients close to zero are essential if the flux through a 
sequence is to be regulated in response to metabolic need. As in any feedback-regulated 
system, flux must reflect demand, not the properties of the component enzymes. Because of 
the inapplicability of the mathematical treatments under discussion to feedback control, 
those who propose or use them frequently assume that the concentration of the end product 
is somehow fixed or clamped. When that assumption is made we no longer deal with 
metabolic regulation- which necessarily determines both fluxes and concentrations in the 
absence of a helpful supernatural finger fixing either - and we can only engage in a 
mathematical exercise. 
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It was suggested at the symposium that even if flux control coefficients for reactions 
within the feedback loop are all zero, the net demand (the sum of processes that use 
metabolite X3 , labelled v3 in Scheme 1), exerts total control and has a flux control 
coefficient of one. The two components of that suggestion - total control and a control 
coefficient of one- must be considered separately. 

It is valid, in one sense, to say that v3 exerts total control over flux within the feedback 
loop, since that flux will be regulated so as to be equal to v3• That adjustment occurs, 
however, only as a consequence of modulation of v0, the rate of the reaction catalysed by 
the first enzyme of the sequence. Actual control is entirely at that first step. There is no 
logical or semantic difficulty, however, in the perception that net demand and the first step 
both exert total control over the flux; we are merely dealing with different levels in the 
regulatory system. 

The second statement, that the flux control coefficient of the demand step will have a 
value of one, is not correct. The use of the end product metabolite X3 is, like other metabolic 
reactions, subject to regulation. Just as for the reactions within the feedback loop, the V max 

values of the enzyme or enzymes for which X3 is a substrate will exceed their maximal 
metabolic rates, and the actual rates of the reactions that they catalyse will be determined by 
their response to appropriate signals. It is the essence of regulation that fluxes respond to 
regulatory signals; in such cases the V max values of the enzymes are not relevant (i.e. flux 
control coefficients are zero) as long as they are large enough to handle the required rates. 

Numerical Simulation of Feedback Metabolic Regulation 

Figs. 1 to 6 show some characteristics of a regulated biosynthetic sequence as simulated in 
an iterative numerical model. The model is based on the same idealized reaction sequence as 
that previously discussed (Scheme 2). Being iterative, it can deal with the circular causality 
inherent in feedback regulation of fluxes, in which the concentration of the end product is 
both an input to and a consequence of the regulation. 

\ LA B c ::l 
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) x3 
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Scheme2 

The end-product, X3, is a negative feedback modifier of enzyme A, which converts the 
branch-point metabolite to the first metabolite specific to this sequence, X 1. Enzyme A has 
four sites each for substrate and modifier. The values of S0.5 and M o.s (the concentrations 
of substrate X0 and modifier X3 respectively for half-saturation of enzyme A) are assignable, 
as are the cooperativity factors (or the increments or decrements of free energy of binding 
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Figure 1. Effect of increasing V max of the first 
enzyme in the sequence of Scheme 2 by 10%. Values 
of v0, the rate of the first reaction, and of [X3], the 
concentration of the end product, were obtained by 
use of the model described in the text. They are 
plotted in terms of their values in the pre-existing 
steady state. At ten units on the arbitrary time scale, 
the maximal velocity of the first enzyme, A, was 
increased by 10%. 
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that result from previous binding of another ligand of the same kind at another site) and the 

interaction factors (or incrementS or decrements of the free energy of binding) between sites 

of different kinds -that is, the effect on binding of either substrate (X0) or modifier (X3) of 

previous binding of the other. The reaction catalysed by that enzyme is assumed to be uni

directional. That assumption is reasonable, since it is conceptually necessary that regulatory 
enzymes of this type catalyse unidirectional reactions (and, of course, because the expecta

tion has been borne out by observation). The net rate at which the product, X3, is used is 

assignable, and use of the end-product is assumed to be unidirectional. In the simulations on 

which these figures are based, the binding of a molecule of substrate or modifier is enhanced 

by 1.4 kcaVmol by each molecule of the same kind already bound (the cooperativity factor is 

10) and binding of a molecule of either type is less favourable by 1 kcaVmol for each 

molecule of the other that is already bound (a negative binding interaction factor of 5). In 

each figure the system is initially at steady state and is perturbed by the indicated change at 

10 arbitrary time units. 
If the activity of the first enzyme is increased by 10% (Fig. 1), there is an instantaneous 

increase of 10% in the reaction velocity of the reaction catalysed by that enzyme, but the 

resulting increase in concentration of the regulatory end product adjusts the affinity of the 

enzyme to bring flux back into exact agreement with the demand for the end-product. At the 
new steady state the flux is identical with the initial flux and concentrations are slightly 

altered. 
If the activities of all three enzymes are increased simultaneously by 10% (Fig. 2), the 

pattern is similar, except that the increases in activities of the other enzymes transmit the 

effect to X3 a little faster so that the rate of the regulated reaction returns to the steady-state 

Figure 2. Effect of increasing V max values of all 
enzymes of the sequence by 10%. Same as Fig. 1, 
except that the maximal velocities of enzymes A, B, 
and C were simultaneously increased by 10% at 10 
on the time scale. 
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Figure 3. Effect of decreasing the intrinsic value of 
S0.5 for the first enzyme. Same as Fig. 1, except that 
S05 was decreased by 2.75% at 10 on the time scale. 
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flux a bit more quickly. It is evident that the steady-state value of the flux control coefficient 
is zero for each enzyme, and for all enzymes together. 

The response pattern is similar when the rate of the first enzyme is transiently increased 
by a change in its affinity for substrate, rather than a change in the amount of the enzyme. If 
the intrinsic value of S0.5 (the value of S0.5 in the absence of modifier) is decreased so as to 
cause an increase of 10% in momentary reaction rate (in this simulation, a decrease of 
2.75% in S0.5 is required) the pattern (Fig. 3) is essentially identical to that of Figs. 1 and 2. 
A similar result is obtained if the affinity of the enzyme for modifier X3 is decreased so as to 
increase the momentary rate by 10% (not shown). Neither of these changes is physio
logically relevant; they are included for the sake of completeness and because the flux 
control coefficient is said to refer also to changes of this kind. 

The magnitude of the transient effects of changes in activity of enzymes other than the 
first will depend on the operating parameters of those enzymes. For the set of parameters 
that I used, the transient effects on both the rate of the first reaction and the concentration of 
end product are very small. That will be true for all physiologically reasonable values. In 
this simulation, if the concentration of the second enzyme, B, is increased by 10%, the 
concentration of the end product X3 rises momentarily by about 0.03%, which causes the 
rate of the first reaction to fall by about 0.13% (Fig. 4). In this case both the flux and the 
concentration of end product will return exactly to their initial values. 

A much more important aspect of regulation is that the flux through a sequence varies in 
response to need (as indicated by changes in the concentration of the end-product) with 
relatively little change in the concentration of the end-product. Again the ratio of amounts of 
change will depend on the parameters of the system and on the concentrations of substrate 

Figure 4. Effect of increasing V max of the second 
enzyme of the sequence by 10%. Same as Fig. 1, 
except that the maximal velocity of enzyme B was 
increased by 10% at 10 on the time scale. 
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Figure 5. Effect of increasing demand by 10%. 
The demand (rate of removal of the end product 
X3) was increased by 10% at time 10 on the time 
scale. 
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Figure 6. Effect of doubling demand. Same as 
Fig. 5, except that demand was increased by 
100%. 

and modifier in comparison with the values of S0.5 and M 0.5. For the parameters I used, 
which were conservatively chosen to be metabolically reasonable, this kind of control is 
illustrated by the consequences of increasing demand (the rate of removal of X3) by 10%. 
The flux increases by 10% and demand is met, at the expense of a decrease of about 2% in 
the concentration of the end-product (Fig. 5). The relative pattern is very similar when the 
demand is doubled (Fig. 6). 

Comment on Pre-Symposium Papers 

Comment on some of the responses to my pre-symposium paper (reprinted with the 
responses in the Prologue to this book) seems desirable, since the responses addressed some 
salient points. 

Mazat. Dr. Mazat says that the most important thing that theorists have to say to 
experimentalists is to urge them to work out for themselves the theory that they need. That is 
excellent practical advice, but experimentalists do not need such urging. All of the useful 
generalizations that contribute to our understanding of metabolic regulation have been 
developed by experimentalists. Like niost other scientific generalizations, they have grown 
directly from observations, and are rich in discipline-specific content. Between 1956 and 
1960, many of the basic generalizations on which our understanding of metabolic regulation 
is still based were proposed by Umbarger (1956) or by Pardee (Yates & Pardee, 1956). Dr. 
Chock has briefly reviewed at this symposium (see Chapter 13 in this book) the brilliant 
interplay of experiment and conceptual development that has been so extraordinarily 
productive in the study of glutamine synthetase by Earl Stadtman's group and others at NIH, 
and specifically the extensive system of generalizations concerning the properties and 
functions of regulatory cascades that Chock and Stadtman proposed on the basis of that 
experimental program. Those generalizations have provided insight into the operation of 
many other biological systems. Dr. Easterby presented interesting generalizations relating to 
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transitions between steady states (Chapter 23). Again they were based on experimental 
findings. 

Fell and Sauro. This is not the place for extended discussion of the nature of scientific 
theories or hypotheses, but the relationship between observation and generalization, intro
duced into the discussion by Fell and Sauro, is relevant to the matters under discussion. 
Hypotheses and other generalizations arise from observation, not from divine inspiration. 
The view of Popper, that scientists are doomed only to attempt to falsify hypotheses that 
have somehow arisen de novo without relation to observation, seems to me to be as far from 
the realities of the actual practice of science as it would be possible to get. Of course no one 
could have guessed in the absence of observation that several di- and tricarboxylic acids are 
intermediates in the catabolism of sugars, or that all sequences are functionally coupled by 
the ATP-ADP-AMP system, or that genes exist and are made of nucleic acid, and so on. The 
catalogue would include the whole of scientific knowledge. Generalizations depend on, and 
derive from, observations, and the converse is not true. 

In general, observations are useful because they lead to the generation of hypotheses, the 
modification of hypotheses, or the rejection of hypotheses. That is, the goal of science is 
understanding, not accumulation of facts. Fell and Sauro quote Darwin to that effect. But 
they misconstrue his meaning when they add that if anyone believes that there is a 
significant role in science for pure observation uncontaminated by any theory or hypothesis 
he is disagreeing with Darwin. A more inappropriate opponent of the importance of pure 
observation could hardly be imagined. On the basis of observations that were completely 
uncontaminated by any theory or hypothesis, Darwin was led to the most important unifying 
generalization in biology, and perhaps the most significant contribution to scientific 
understanding of all time. When he was surprised to find that the fossils of South America 
resembled living animals on that continent much more closely than they resembled fossils of 
Europe and Asia (he had expected that organisms living at the same time anywhere on the 
earth would be similar), and that cave organisms resembled organisms of the vicinity more 
than cave organisms on other continents, he was not gathering evidence for or against any 
hypothesis. Although he implicitly accepted the individual creation of species, it most 
certainly never occurred to him that he was gathering evidence to test that view. The point of 
his later statement quoted by Fell and Sauro (that an observation must be for or against some 
view if it is to be of service) is, of course, that his observations would have been merely 
another interesting collection of traveller's tales if they had not led him to generalize as to 
their meaning. Some years after having been made in innocence of any hypothesis, they 
became important through their role in the generation of a supremely important hypothesis. 

The more truly innovative a scientific advance, the more likely that it was based on 
observations that were, in Fell and Sauro's words, uncontaminated by theory or hypothesis. 
The basic concepts of metabolic regulation, the area of direct interest here, were formulated 
in the late 1950s by Umbarger and Pardee. Yates & Pardee (1956) were not thinking about 
regulation, but merely studying the properties of an enzyme - making observations and not 
testing any hypothesis. They recognized the existence of feedback regulation because they 
observed unexpected properties for which an explanation had to be sought. Umbarger (1956) 
performed his crucial experiments on the basis of a hypothesis, but that hypothesis was 
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based on observations that had been made by others with no guiding hypothesis in mind. 
The reason that these considerations are relevant to our discussion is that Darwin's 

comment has an equally cogent converse. Science advances through the interplay between 
observation and generalization. Just as observations are important mainly because they 
suggest, support, or refute generalizations, generalizations are important only when they 
relate and rationalize observations and fit them into meaningful conceptual patterns. Observ
ations that are not directly relevant to any existing generalizations are still potentially 
important - they reflect aspects of reality that require explanation, and they may sometime, 
like Darwin's initially puzzling observations in South America, be instrumental in the origin 
of a generalization. But a generalization unrelated to observations or inapplicable to 
accumulated observations is not useful and is unlikely ever to become so. 

The treatments of Kaeser & Bums (1973) and Heinrich & Rapoport (1974) [as well as 
that of Newsholme (Crabtree & Newsholme, 1987), which has received less attention in the 
symposium, though it is included in the comparison described by Groen and Westerhoff in 
Chapter 6 of this book] are not based on observation, as are normal scientific hypotheses. fu 
that respect they resemble the de novo hypotheses imagined by Popper. Practising meta
bolic biochemists, who attempt on the basis of observation, generation of hypotheses, further 
observation, and modification of hypotheses to understand how metabolic processes are 
regulated, find it difficult to see merit in an approach that reaches conclusions on the basis of 
unsupported assumptions. 

As noted in my pre-symposium paper, Sauro & Fell (1987) claimed to have shown by 
use of one of those models that the whole basis of our present understanding of the 
regulation of biochemical sequences - the result of a large number of observations and 
considerable thought - is incorrect. The actual situation is that the model of Kaeser & 
Bums (1973), on which their claim was based, cannot by its very nature apply to a feed-back 
regulated system characterized by circularity of cause-and-effect relationships. 

fu their pre-symposium paper, Fell and Sauro say that the response of a system flux J to 
an effector Q acting on an enzyme i is the product of the flux control coefficient and an 
elasticity coefficient: 

(1) 

That relationship is said to be true whatever the effect of Q on enzyme i. They explicitly add 
that it is true when Q affects the Michaelis constant (or S0.5 value) of enzyme i. The 
equation shows that however strong the effect of Q on i (indicated by ~. it can have no 
effect on flux through the system if the flux control coefficient (C() is zero, since then the 
product R6 must be zero. 

Any argument based on statements such as "The equation shows ... " should be suspect, 
since if an equation is invalid or inapplicable the things that it shows may well be erroneous. 
As follows from discussion earlier in this paper, the trouble with eqn. (1) is that it does not 
take into account cases in which not only is J a function of Q, but Q is also a function of J. 
That is the situation for any feedback regulated system, whether technological or biological. 
A mathematical treatment based on the implicit assumption of one-way interactions between 
the terms in eqn. (1) cannot be validly applied to a situation characterized by circular cause-
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and-effect relationships. We have seen that in feedback-controlled systems the flux control 
coefficient of every element of the system is zero, yet one of them controls the flux as a 
consequence of its response to a feedback signal. Probably Fell and Sauro would not have 
said so confidently that my comment that an enzyme with a flux control coefficient near zero 
could exert 100% control of flux "cannot be true" if they had considered analogous techno
logical cases such as temperature control in waterbaths, residences, or refrigerators. The lack 
of correlation that I noted between flux control coefficients and actual control of flux, which 
they believe to be impossible, is universally true in feedback-regulated systems. It is admit
tedly inconsistent with their equation, but that is rather different from being impossible. 

Salter and Knowles. In their thoughtful comment, Salter and Knowles call for a theory that 
will relate control coefficients to regulatory importance of enzymes. In spite of their 
recognition that the flux control coefficient has not been related to control of fluxes, they 
implicitly assume that such a relationship exists when they say that if the flux control 
coefficient of an enzyme were 0.0001 it could not contribute to regulation of flux. They fail 
to recognize that it is in principle impossible for flux control coefficients to be related to flux 
in most real metabolic systems because the mathematical approach on which the control 
coefficient is based is unable to deal with the kind of circular causality that is essential to 
feedback regulation. In consequence their laudable goal of formulation of a theory to relate 
control coefficients and regulatory importance of enzymes is, I believe, in principle 
unattainable. As noted above, a flux control coefficient of, or close to, zero is a prerequisite 
for feedback regulation and it is at feedback-modulated enzymes that regulation is exerted; 
hence there cannot be a positive relationship between that coefficient and the regulatory 
importance of an enzyme. 

Hofmeyr. Hofmeyr argues that order of reaction is not all that meaningful in our con
sideration of the enzymes that are responsible for metabolic regulation, because, he says, the 
kinetic order of any reaction, regardless of the properties of the enzyme, approaches infinity 
as the reaction nears equilibrium. The implicit rationale for that statement is that at equi
librium the net rate of conversion is zero, and if a small amount of substrate is added there 
will be a small net forward reaction. The reaction order is then considered to be infinite on 
the ground that a change from zero to any finite number is an infinite change. That statement 
is neither valid nor consistent with chemical practice. The concept of a kinetic reaction order 
for a net conversion is meaningless. Reaction orders can apply only to reactions, not to the 
differences between forward and reverse reactions. Metabolic reactions have high kinetic 
orders only because of the properties of the enzymes that catalyse them, and high order is 
important because it is an essential prerequisite to sensitive partitioning at branch-points. 

I must disagree with some other aspects of Hofmeyr's comments, but only one point 
will be noted. He observes that the mathematical models under discussion include among 
their assumptions the postulate that the concentration of the terminal metabolite is "clamped 
by the environment of the system." That assumption begs the question. When we study 
metabolic regulation, the problem of importance is how concentrations and fluxes are 
regulated. Our aim must be to increase our understanding of the interactions that underlie 
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phenomena of interest, and understanding cannot be advanced by excluding important 
aspects of the systems that we are studying from scientific attention by attributing them to 
"the environment" or to Mother Nature. An approach to metabolic regulation that considers 
one of the most important consequences of regulation (the fact that fluctuations in end 
product concentrations are small as compared to the range of flux values) to be fixed by 
some mysterious force extraneous to our concerns cannot help us in understanding how 
those consequences actually arise. It may be intellectually interesting to assume constant 
concentrations of the first and last substances in a reaction sequence, and then to set oneself 
formal mathematical problems as to how the rates of reactions in such an artificial system 
might be affected by changes in various formal parameters. However, that approach severs 
all connection with the questions that need to be answered if the regulation and correlation 
of metabolic processes are to be understood. Such an approach is closely related to the 
failure to recognize the fundamental difference between the demand for the regulatory end
product, which is determined by other metabolic needs, and the interactions within the 
feedback loop, by which fluxes are adjusted appropriately to meet that demand, while the 
concentration of the end-product is held within relatively narrow limits. 

These are not criticisms specifically of Hofmeyr's comments, since he accurately 
reflects the assumptions of the mathematical treatments under discussion. But the import
ance of the distinction between the two approaches - on the one hand, trying to devise 
experiments to elucidate the regulation of concentrations and fluxes in real cells; on the 
other, fixing concentrations by edict - cannot, in my opinion, be overemphasized. It is 
crucial to the question of whether we are to deal with biology on its own terms or with 
mathematical abstractions, simplified by biologically inappropriate assumptions whenever 
that is mathematically convenient. 

Recapitulation 

In conclusion, I must present what I believe to be the answers to the questions posed by Dr. 
Cornish-Bowden. 

(a) What characteristics should a theory have if it is to be useful to experimentalists? My 
answer is that, like generalizations in other fields, it should correlate and rationalize 
observations and be capable of generating predictions. Thus it must deal directly with the 
subject matter of metabolism and its regulation. If it is instead a method for handling results, 
like statistical techniques, it should be applicable to the study of biochemical sequences, and 
should aid in the design of efficient experiments and the evaluation of the significance of 
their results. 

(b) Are the main treatments that have been discussed here valuable to experimentalists? I 
think the answer must be that they are not. Lacking specific biochemical content, they 
cannot rationalize biochemical observations and generate predictions. As methods for handl
ing data, they might be useful in dealing with unregulated sequences of reactions, where the 
properties of the individual enzymes collectively determine the flux. But they are not applic
able to regulated sequences or systems, either biological or technological. It is the essence of 
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regulation that flux responds to a signal, and that it must be essentially independent of the 
properties of individual components of the system. What is required is that the capacity of 
each component be larger than any flux that will be called for by the signal so that the 
system becomes "transparent;" flux is determined only by the signal. Those considerations 
apply whether the signal is external or internal. When the signal is internal, as in feedback
regulated systems, the relationships become more complex, since causality is circular in 
such systems, but it is still an essential feature that flux must be nearly independent of the 
capacities of the individual enzymes and must depend almost entirely on the regulatory 
signal. In both types of systems (those responding to external or to internal signals), the 
effectiveness of regulation is related to how nearly total is the dependence of flux on the 
signal, and hence on how nearly independent the flux is of the capacities of components of 
the system. Thus mathematical treatments that are based on the response of flux to change in 
enzyme activity (or to changes that can be expressed as changes in activity) cannot apply to 
feedback-regulated systems. In searching for usefulness for such treatments, one must look 
elsewhere than at metabolic regulation, which is exerted primarily through responses to 
product negative feedback and other types of signalling. 
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NOTE ADDED IN PROOF 

I thank Dr Kaeser for sending me a copy of his urbane and collegial letter (Appendix A in 
this book) and affording me an opportunity for a brief rejoinder. Dr Kaeser's letter does not 
address a central question - can the models discussed in this book deal with negative
feedback-controlled systems in which no concentrations or fluxes are fixed, and in which the 
flux through the system and the concentration of the end product are mutually dependent? (It 
is acceptable, in considering a given regulatory segment of a metabolic system, to assume 
the concentration of the first or branch-point metabolite to be effectively constant, since that 
concentration is stabilized by homeostatic interactions that are prior and external to the 
system under consideration). 

In my model, and in actual synthetic sequences, the properties of enzyme E3 are not 
relevant. The feedback system responds to the concentration of X3 in such a way as to 
minimize variation in that concentration. It thus automatically adjusts the flux through the 
regulated segment symbolized by E0 , E1, and E2 to equal the net rate at which X3 is 
removed. The system is oblivious to the properties of the various enzymes that are jointly 
symbolized by E3; its response to the rate at which X3 is removed is indirect, mediated by 
changes in the concentration of X3, which is the variable that is sensed. 
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Edinburgh, 25th September 1989 

My dear Dan, 

Since you raise questions, of a general nature and of a methodological (and perhaps 
even of a philosophical) kind, I would like to make some remarks which are not specifically 
dealt with in my contribution (nor, I imagine, in those of others). I agree with some of the 
ideas you present, particularly about "understanding" as the aim of science. I am, however, 
less pessimistic than you and believe that our apparent differences are reconcilable. Some 
of your views, I believe, are due to misunderstanding of what we try to do and also what we 
are actually doing. 

As you rightly say, qualitative questions have logical priority over quantitative ones. All 
the qualitative questions which you mention are what we usually describe as the "structural" 
aspects of metabolism -the metabolic map, the positive and negative effectors that act, the 
branch points, the cycles etc. This is the molecular anatomy with all its connections, but an 
organism (or even part of one) also has physiological properties. These raise quantitative 
questions to which we must give quantitative answers. Control analysis attempts to do just 
that. It does not ask: "is there a feedback from A to B"? but "if there is one,_ what 
quantitative contribution does it make to the flux in the pathway or the concentration of the 
metabolites when it is embedded in the rest of the 'structure' of which it is only a part". If 
you address a particular question then, of course, you must use the particular quantitative 
information that you have. But before you can apply it and interpret the measurements, you 
have to describe your problem in quantitative terms. And here we must use the only 
quantitative language we know: mathematics. After all, one of the great advances in 
metabolism was the formulation of the Michaelis-Menten equation. It lacks, as you put it, 
"specific substantive content". It applies to any enzyme (or more complex formulations 
invented since) or to non-enzymic events. It is only when you put particular values of 
V mw Km etc. for a particular enzyme that it becomes "biochemical". Before that it is 
simply a hyperbolic equation. Control analysis is no different, except that it deals with 
systems of enzymes instead of single ones. Just as the Michaelis-Menten equation tells you 
what experiments to do and how to treat the measurements you obtain in order to make 
quantitative statements about the enzymes, so control analysis tells you what kind of 
experiments to do (and they are different from those on single enzymes) and what to 
measure under what circumstances. The interpretation of these measurements then yields the 
quantitative values of the elasticity and control coefficients. One of the important results of 
this treatment has been to generate theorems (or properties) of systemic behaviour and not 
merely those of its parts. The answer to your question: "can they aid our experimentalist in 
designing experiments?" is an emphatic YES. Indeed, an ever increasing number of publica
tions by experimentalists testifies to its "usefulness" in understanding how metabolism 
works. 

429 
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Why would Groen and his colleagues have "titrated" mitochondria with a number of 
inhibitors if control analysis had not told him (a) to do the titrations and (b) to use these 
measurements to gain insight into the control of oxidative phosphorylation? Why would Stitt 
and his colleagues have used mutants of Clarkia if control analysis had not told him (a) to 
combine these mutants in various ways and (b) use measurements on such strains to gain 
quantitative insight into the control of starch and sucrose synthesis? Why would Salter and 
his colleagues have used hormones and inhibitors on hepatocytes if control analysis had not 
told him (a) to do such experiments and (b) how to use the quantitative analysis of his 
measurements to gain insight into aromatic catabolism? Why did we ourselves construct 
heterokaryons in Neurospora or use mutants of Drosophila to make measurements, to 
reveal important biological insights into metabolism? Why do so many other workers do 
these new kinds of experiments? So you are wrong in stating that our approach does not tell 
experimentalists what to do. Indeed, one of the aims of control analysis is to make people do 
experiments, as is abundantly clear from our first (and subsequent) publications. These 
experiments are, however, of a different kind from the "grind and find" which so much of 
biochemistry (and molecular genetics) consists of. 

Whether the results of such experiments and their interpretation are useful (or even true) 
is an entirely different matter. Because a lot of people do it, does not prove it is right. After 
all, we had been burning witches for centuries. I will therefore have to convince you, as the 
Grand Inquisitor, that you are in error in rejecting the new heresies. You try to make your 
points with reference to a feedback system and your refrigerator. Let me try to tell you 
where your analysis is wrong and where you misinterpret what we say and do. 

Now, Dan, you have seriously misunderstood one of the essential features of our model. 
We do not clamp the concentration of the signal but something outside the system (your 
ambient temperature, for example). The internal temperature, then, is one of the variables. 
The existence of a feedback will reduce (but not abolish) changes in the internal temperature 
when some parameter is changed (say the number of openings). When drinking beer such 
small changes don't matter. But there is one further difference between a thermostat and an 
enzyme feedback. The thermostat is mechanically designed to "click" on and off. Enzymes 
respond by a continuous function of the concentration of signal. If there were no 
concentration change in the signal, there could be no response of the rate. This response is 
measured quantitatively by the feedback elasticity in our control equations. If such feedback 
occurs at "the first committed step" or at a branch point, then this will be reflected in the 
structure of our equations. If it is of "high kinetic order", then the feedback elasticity 
coefficient will be a large negative number. The mechanism of feedback action may well be 
via an alteration in affinity. The magnitude of this coefficient will have to be determined 
experimentally on the enzyme, but its systemic effect- which is all we want to know about 
-will have to be measured in the whole system. This involves all intrinsic and extrinsic 
factors and measurements of all the control coefficients. The summation of these to unity is 
an algebraic certainty and has been confirmed experimentally by Torres et al. [Biochem. J. 
234, 169-174 (1986)] and othersl. A feedback cannot be said to "control the flux". The 
immediate effect of the negative feedback by the signal on to an early enzyme is to reduce 
the variation of the concentration in response to changes in the activities of enzymes 

1 An extension of the summation theorem to deal with enzyme-enzyme interactions is presented in Chapter 20 
of this volume. 
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proximal to the signal and to changes in the concentration of the "external" substrate to the 
pathway. This increased "buffering" of the signal will also result in increased buffering of 
the flux through the pathway with respect to these signals. When the feedback is very 
effective, the signal (and flux) will be substantially constant over a range of enzyme 
variation. In control analysis terms, this means that the control coefficients Cl and Cl will be 
very small (where e; are any of the enzymes proximal to the signal). At the same time, and 
as an automatic outcome of such a situation, the enzyme(s) distal to the signal will have very 
high flux control coefficients C£. In the limit as Cl ~ 0, C~ ~ 1. This means that with very 
effective feedback, most of the control is thrown onto the distal enzymes. Changes in these 
(changes in "demand") will then "control" the flux in the sense that it will be possible to 
"extract" a wide range of fluxes almost proportional to the distal enzyme activities (i.e. 
C~ = 1) with very little change in the concentration of the signal. This, then, is how a 
feedback system works: control by the distal enzyme(s) and little control by the proximal 
enzymes (in the loop and proximal to it). This conclusion cannot have been derived by the 
closest inspection of the feedback loop itself and its mechanism. It is only by considering its 
role in the whole system, i.e. control analysis, that this insight is gained. 

In your feedback models you appear to fix the output rate, v3, i.e. the rate is independ
ent of anything proximal to it. For some reason, however, you did not include in the 
summation the term corresponding to this enzyme, E3. It is, of course, clear that all rates 
must be included, constant or not. Since you found that all other coefficients were approxi
mately zero, you would have found the coefficient for E3 ( C~) approximately unity. So there 
is no conflict between your simulation and our treatment. 

The "link" between control analysis and "regulation" (as traditionally understood) has 
been presented by Herbert Sauro in his contribution (Chapter 17) to this volume. It is well 
worth considering. 

So I would commend to you (and others of the same persuasion) to look at the little bit 
of algebra which underlies our approach and note its translation into experiments. That is 
how control analysis started and where it remains: a method of doing experiments to gain an 
understanding of all the complex interactions of metabolism. 

I have a friend who has a refrigerator. He started off as a bachelor. He filled his 
refrigerator once a week with beer cans and, every evening, took out three and drank them. 
He is an ingenious fellow as well as a bit of a miser. He wanted to know how much his beer 
really cost him. So he fitted up a simple ammeter connected to the compressor and noted the 
measurements. This gave him the flux (of electricity), F, and hence the cost averaged over a 
week. He did not like the result. So hereasoned that with better insulation his beer would 
cost less. He fitted polystyrene panels all round and watched his ammeter and recorded the 
results., finding that F decreased and approached a small value as the thickness I of the 
insulation increased. At each point he calculated the cost of adding more insulation, i.e. 
oF/()J, or to make it independent of the inches and amps, invented a coefficient (which was 
negative): 

He noted the change in the C value at each point. 
He also noted that the kitchen was rather warmer than other rooms, so he tried various 

positions in the house and found that F increased with the ambient temperature. Next, he 
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changed the setting of the thermostat (knowing all about Newton's laws of cooling?) and 
found that F decreased as the thermostat was set to higher temperatures. 

He had changed the "control function" (what he later called the "feedback elasticity 
coefficient"). He had, of course, installed a recording thermometer in the refrigerator and 
noted that, in the previous two experiments (insulation and ambient temperature) the average 
internal temperature had changed - decreasing as the amount of insulation increased, but 
increasing as the ambient temperature increased - although he had not touched the 
thermostat. 

He complained to the shop but they tested the thermostat and found nothing wrong with 
it. He therefore concluded that the internal temperature, although acting as a signal to the 
thermostat function, was in fact a variable just as the flux was. They were interdependent 
and both depended on all the parameters which he could alter. 

Then he got engaged to a very nice girl and brought home some chilled TV dinners to 
entertain her. His flux shot up and he realized that he was opening the door more frequently. 
So he installed a recorder for the number of times and the length of opening. Again, both 
flux and internal temperature changed. 

Then the inevitable happened and he married the girl. She removed most of the beer and 
filled the refrigerator with whatever wives fill it with. The ambient temperature in the 
kitchen went up because she loved baking and the door was never long closed. The flux and 
the internal temperature went up and so did the temperature in the ice compartment (where 
they kept the frozen peas and the ice-cream). 

He despaired a little of fully understanding what was going on until he happened to read 
a paper, published in 1973, which suggested he was dealing with system properties and not 
just the nature of the thermostat. In this paper there was an explicit treatment of a feedback 
system. One thing, though, worried him. The paper was all about Biochemistry yet he was 
dealing with a refrigerator. 

Eventually he realized that the formal descriptions of the two systems were almost the 
same but that they obtained their "biochemical" or "refrigerator" meaning by identifying the 
parameters and the variables. He learnt that in both cases large numbers of parameters were 
responsible for determining the variables, that the average internal temperature was not fixed 
by the thermostat but depended on the nature of its control function as well as on the 
quantitative values of other features of the box. It was only by measuring the effects of 
variation in all of them that he obtained a complete understanding. He has lived happily ever 
after, drinking less beer, eating better meals and paying more for his electricity. 

Yours sincerely, 

H.KACSER 
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Computer Programs 

THE PRIMARY purpose of the methods of analysis described and developed in this book is to 
promote understanding of the ways in which fluxes and concentrations of metabolites are 
controlled in biochemical systems. The capacity to reproduce the behaviour in the computer 
is hardly essential for understanding the ideas set out in the various chapters, but it is 
certainly very helpful, because it allows one to translate the "thought experiments" that are 
often used in studies of metabolic control into experiments in numero: provided one can 
specify the system under discussion precisely enough one can determine in the computer 
whether it really does respond to influences in the way that one predicts. Suitable programs 
are tedious and difficult to write, but easy for anyone with a basic understanding of kinetics 
to use. We therefore note here the existence of some programs that are currently available 
for modelling metabolic systems in the computer. 

Available from: 

Cost: 
Documentation: 
Hardware requirements: 
Limitations: 
Language: 

CONTROL 

T. Letellier and J.-P. Mazat, Departement de Biochimie, Universite de Bordeaux 
II, 146 rue Leo Saignat, 33076 Bordeaux Cedex, France. 
None. 
Notice in French. A short notice in English will soon be available. 
IBM PC, XT, AT or true compatible. A printer is useful but not necessary. 
CONTROL can accept up to 19 reactions and 19 metabolites. 
CONTROL is written in Turbo Pascal 3.0. 

CONTROL uses the method developed by C. Reder [J. Theor. Bioi. 135, 175-201 (1988); also pp. 77-96 in 
Contro/e du Metabolisme Cel/ulaire (Mazat, J.-P. & Reder, C., eds.), Bordeaux, 1988). It can be applied to 
any metabolic network (linear, branched, with substrate cycles, etc.) and is intended for (i) determining the 
flux and concentration control coefficients from the elasticity coefficients, and (ii) writing formally the 
summation and connectivity relationships (for flux and concentrations). It only requires the writing of the 
stoicheiometry matrix of the metabolic network (theN matrix in the above references). 

Authors: 
Available from: 

Cost: 
Documentation: 

ESSYNS- Evaluation and Simulation of SYNergistic Systems, Version 2.00 

Douglas H. Irvine, Michael A. Savageau and Eberhard 0. Voit. 
Douglas H. Irvine, Department of Molecular, Cellular and Developmental 
Biology, University of Colorado, Boulder, Colorado 80309-0347, USA. 
US $40.00 for program disks and printed documentation. 
137-page User's Guide to ESSYNS by Eberhard 0. Voit, Douglas H. Irvine and 
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Hardware requirements: 

Limitations: 

Language: 

Computer Programs 

Michael A. Savageau, plus 31 on-line help menus. 
IBM PC, XT, AT, PS/2 or compatible computer with 512K of memory. Graphics 
require a CGA, EGA, VGA, Hercules, ATT, PC3270 or IBM8514 video card; a 
colour monitor is not required but can be used for special effects. Graphics can be 
printed directly on an Epson, Okidata or IBM dot-matrix printer. A math co
processor is not required but is used when available for faster numerical 
computation. Extended memory (EMS) also is not required but is used when 
available for faster operation. 
Up to 25 simultaneous non-linear ordinary differential equations expressed in S
system canonical form. Solutions have up to 15 significant digits. 
Borland Turbo Pasca15.0. 

ESSYNS computes dynamic solutions for complex non-linear systems, as well as eigenvalues and full steady
state sensitivity profiles. Results can be displayed or printed in tabular format, or they can be displayed or 
printed in two- or three-dimensional graphs. Use of the program does not require any knowledge of the 
underlying mathematical details. No programming or compiling is required, and all options in the program are 
selected with simple, single-letter commands. A new variable-order, variable-step Taylor-series method has 
been specially developed for ESSYNS to maximize its efficiency and accuracy [Irvine & Savageau, SIAM J. 
Numer. Anal. in press (1990)]. For example, on an 8MHz PC-compatible computer with a math co-processor, 
a representative problem (described in the article cited above) requires only 0.87 second to generate a complete 
dynamic solution with more than 300 points accurate to six significant digits. 

Available from: 
Cost: 

Documentation: 

Hardware requirements: 

Limitations: 

Language: 

GEPASI 

Pedro Mendes, C.E.B.F.A., Cv Bento Rocha Cabral 14, 1200 Lisboa, Portugal. 
US $35.00 for a registered copy with printed manual and tutorial. Sharing of 
copies on a shareware basis is allowed. 
Printed manual with tutorial for registered users. Text file with quick user guide 
is included in the disk. 
IBM PC, XT, AT, PS2 or true compatible with one disk drive and at least 256 
kilobytes memory. A VAX/VMS version is also available (write for details). 
GEPASI can only handle pathways with uni-uni enzymes and accepts up to 20 
enzymes and 20 pools (either internal or external). Many reaction kinetics 
available! 
GEPASI is written inC and compiled with Microsoft C 5.0 (or with the v AX/VMS 
C compiler). 

GEPASI is a program that simulates the dynamic behaviour of metabolic pathways. It uses a macroscopic 
approach to the kinetics of each enzyme in the pathway as described in Chapter 16 of this book. The user must 
define the pathway structure and kinetic parameters as well as metabolite initial concentrations in an ASCII file 
and GEPASI outputs the concentrations of all metabolites as a function of time. It also calculates the elasticities 
and control coefficients at the steady state. The package includes a special program for interactive build-up of 
input files, ready-to-run examples and a program for graphical display of results (works with all common 
graphics cards). 

GEPASI does not make approximations to the dynamics of the pathways. As long as the kinetics of each 
enzyme is really described by the mathematical model chosen the dynamics will be just like the simulation (if 
other effects such as temperature, pressure etc. are negligible). Moreover, simulations can be taken in large 
finite time intervals. GEPASI accepts any pathway that has up to 20 metabolites and 20 enzymes. Eleven 
different kinetic models can be chosen for each enzyme. The structure can include branches (even with more 
than three arms) and substrate cycles (with two enzymes or longer) as long as the limits above are not 
exceeded. No mass conservation cycles can be included just because the current version of GEPASI does not 
accept bimolecular reactions. 

Registered users will be notified of future versions of GEPASI that will be available at very reduced prices 
(mainly postal charges). 
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Available from: 

Cost: 
Documentation: 

Hardware requirements: 

Limitations: 

Language: 
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METAMOD 

J.-H. S. Hofmeyr, Department of Biochemistry, University of Stellenbosch, 
Stcllenbosch, South Africa 7600; but see NOTE ADDED IN PROOF below. 
Equivalent of US $10.00 to cover mailing and photocopying costs. 
A user's manual and a file READ.ME that contains the latest information is 
provided. 
IBM PC, XT, AT or true compatibles with at least 512 kilobytes of memory. 
Since there is no graphical output, any graphics card will do. A mathematical co
processor will be sensed automatically but is not essential. The original version 
written in Basic for the BBC Microcomputer (see reference below) has not been 
updated. 
The size of the metabolic pathway depends on the amount of memory available. 
Typically, 15 reactions; 20 metabolites and 5 conservation equations are allowed. 
METAMOD is written in Turbo Pascal 5.0. 

METAMOD (Comp. Appl. Biosci. 2, 243-249 (1986)] is a tool designed to help students, teachers and 
researchers explore the behaviour and control of metabolic steady states. Its use is interactive, easy to master 
and requires no knowledge of programming. Metabolic pathways are defined in terms of reactions, rate 
equations and conservation equations; METAMOD calculates the steady state by solving the balance equations 
directly and calculates the elasticity and control coefficients by finite difference methods. When run on a 8 
MHz IBM XT without 8087 co-processor the pathway shown in Fig. 1 of the above paper (6 variable 
intermediates, 8 reactions) reached steady state in 45- s. 

NOTE ADDED IN PROOF. METAMOD has now been merged with MetaModel (next entry) and will not be 
maintained in the future as a separate program. 

Available from: 

Cost: 

Documentation: 
Hardware requirements: 
Limitations: 
Language: 

MetaModel 

Athel Cornish-Bowden, CNRS- CBM2, 31 chemin Joseph-Aiguier, BP 71, 13402 
Marseille, France. 
US $25.00 or 100 FRF to cover mailing and copying costs (US price includes 
bank charges). It may be transferred freely for any non-commercial purpose. 
Printed manual with up-date information in a file on the disk. 
IBM PC, XT, A Tor true compatibles with at least 512 kilobytes of memory. 
Systems of up to 15 reactions involving up to 20 metabolites can be handled. 
MetaModel is written in Turbo Pascal 5.0. 

MetaModel was originally written in Fortran for teaching the principles of control analysis to undergraduates 
with little or no prior experience of computers and no prior knowledge of control analysis. It was designed to 
allow such users to enter their own pathways and study their steady states within an hour or two of first 
encountering the program. The current version has been completely rewritten to take account of the different 
characteristics of Pes as compared with main-frame computers, but it retains the easy-to-use features. The 
menu structure is designed to provide ample help to first-time users while allowing more experienced users to 
avoid endlessly repeating the same inputs. MetaModel does not provide graphical output directly, but produces 
output files that can be read and processed by commercial spreadsheet programs (Quattro, Lotus 1-2-3, etc.) 

Available from: 

Cost: 
Documentation: 
Hardware requirements: 
Other software needed: 
Limitations: 

Modelling Metabolism on an Electronic Spreadsheet 

D. E. Atkinson, Department of Chemistry and Biochemistry, University of 
California, Los Angeles, California 90024, USA. 
None. 
Instruction sheet supplied with the disk. 
Macintosh Plus or higher with at least 1 megabyte of RAM. 
Excel. 
Simulation of a specific situation; not a general model. 
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lAnguage: Excel. 

This model is implemented in Excel, one of several easy-to-learn, non-procedural computer languages known 
as spreadsheets. It is based on the general principles set out in Dynamic Models in Biochemistry by D. E. 
Atkinson, S. G. Clarke, D. C. Rees, and D. S. Barkley (N. Simonson & Company, 13450 Maxella Avenue, 
Marina del Rey, California 90292), a spreadsheet workbook for undergraduate students that is intended to put 
simple biochemical simulation within reach of users with no knowledge of formal computer programming. The 
present model is specific rather than general. It simulates a three-enzyme biosynthctic sequence, the first 
enzyme of which is regulated by endproduct negative feedback. Within that limited compass, all relevant 
kinetic parameters, including the degree of cooperativity and the strength of the feedback effect, are assignable. 

ORDER FORM 

To (emer 1UJI1Ie and address as shown above): 

Name of program: 

Computer to be used (enter IBM PC, AT, Macintosh Plus etc.): 
Check Hardware Requiremems listed above before ordering 

Disk reader: 5.25 inch/3.5 inch 
Strike out i111JfJPlicable entries 

Enclosed: Blank disk 5.25 inch/3.5 inch +cheque/money order for ___ _ 
Strike out inapplicable entries Enter amounJ 

Program to be sent to: 
Enter 1UJI1Ie and address and 
enclose pre-addressed label 

Signature:--------- Date: _____ _ 

This page is not copyrighted and may be freely photocopied. Plenum Publishing Corporation and the editors 
of this book toke no responsibility for the accuracy of the descriptions of the programs given here. 
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