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COMPUTING BRAIN ACTIVITY MAPS FROM
fMRI TIME-SERIES IMAGES

fMRI is a very popular method in which researchers and clinicians can image
human brain activity in response to given mental tasks. This book presents a com-
prehensive review of the methods for computing activity maps, while providing
an intuitive and mathematical outline of how each method works. The approaches
include statistical parametric maps (SPM), hemodynamic response modeling and
deconvolution, Bayesian, Fourier and nonparametric methods. The newest activ-
ity maps provide information on regional connectivity and include principal and
independent component analysis, crisp and fuzzy clustering, structural equation
modeling, and dynamic causal modeling. Preprocessing and experimental design
issues are discussed with references made to the software available for implement-
ing the various methods. Aimed at graduate students and researchers, it will appeal
to anyone with an interest in fMRI and who is looking to expand their perspectives
of this technique.
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Preface

You will find here a comprehensive review of all fMRI data processing methods
proposed in the literature to 2005. I have endeavored, however, to produce a review
that is useful to more than those already in the know. With the introduction of each
major method I have additionally given an overview of how the method works in
wide and hopefully intuitive terms. The overviews taken together should give the
newcomer a broad idea of all the choices that can be made for transforming raw
fMRI data into a brain activity map.

The term activity map is used here to include the specific forms of maps labeled
as activation maps and connectivity maps. Activation maps show regions of the
brain that are active in response to a task given to the person in the MRI, while
connectivity maps are intended to provide information on the neural connectivity
between the active regions.

All methods are described in a precise manner from a mathematical perspective.
So a certain amount of mathematical and/or statistical background is assumed of
the reader. However, the math is presented at a high level. You will not find here
details of how to implement any of the methods reviewed. For the details you will
need to consult the original literature listed in the references.

In short, this book can help the newcomer to the field of fMRI (or a seasoned
researcher wanting to know about methods used by others) to become oriented
via a three-step process. The first step is to more or less skim through the book,
reading the descriptive overviews to get a perspective on the big picture. Then, after
some methods of interest are identified, a more careful reading of the high level
mathematical descriptions can be done to become more familiar with the underlying
ideas. Finally, if the reader is convinced of the utility of a particular method, the
original literature can be consulted, the methods mastered and contributions of
one’s own to the field envisaged. This is the path that all graduate students using
fMRI are interested in taking so I imagine that it will be those graduate students
who will find this book most useful.

This book (in a slightly shorter form) was originally written as a review article
for Current Medical Imaging Reviews (CMIR) and submitted for peer review. The
finished manuscript proved to be longer than I originally envisaged. I was under

ix



x Preface

the impression when I first began to write that there were only a “few” basic ways
to process fMRI data. That impression was proved to be very wrong as I dug
into the literature to find literally hundreds of ways of turning raw fMRI data into
something interpretable. So, while the reviews of the original manuscript came back
from CMIR generally positive, it was far too long to be published in the journal.
At that point the editor for CMIR, Sohail Ahmed, agreed to support the publication
of the review in book form by Cambridge University Press. With thanks to Martin
Griffiths at Cambridge University Press this book has subsequently become a reality.
Thanks are due also to Clare Georgy for her help in the details of producing the
final manuscript and Betty Fulford for looking after the legal aspects. Thanks to
my technical assistant, Jennifer Hadley, here at the University of Saskatchewan, for
preparing some of the figures and for organizing copies of all the references into an
ordered stack of paper that stood at a height just slightly less than my own. Thanks,
finally and mostly, to my family: Kerry, Dominic and Darien, for their patience and
understanding with the long night hours I devoted to writing this review.
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Introduction

The production of a brain activity map from data acquired with a volunteer or
patient and magnetic resonance imaging (MRI) [269] requires a fairly wide range
of interdisciplinary knowledge and techniques. Producing brain activity maps from
functional MRI (fMRI) data requires knowledge and techniques from cognitive
neuropsychology, physics, engineering and mathematics, particularly statistics.
The process typically begins with a question in cognitive psychology that can be
answered, at least in part, by combining the knowledge obtained from brain activity
maps with previous knowledge of the function of specific regions of the brain. The
previous knowledge of regional brain function generally has its origin in lesion
studies where disease or injury has removed a brain region, and its function, from
the brain’s owner. Such lesion-based knowledge has firmly established the prin-
ciple of functional segregation in the brain, where specific regions are responsible
for specific functions. The use of fMRI to produce activation maps allows specific
questions on functional segregation to be posed and investigated without risk to
the person being studied. The brain is also known to be a very complex system
in which several regions, working cooperatively, are required for some tasks. This
cooperation among regions is known as functional integration and may be stud-
ied using fMRI techniques that lead to connectivity maps. Methods for producing
activation and connectivity maps are reviewed here with the goal of providing a
complete overview of all data processing currently available to produce the brain
activity maps from raw fMRI data. This overview should be of particular use to
those wishing to begin or revise a program of fMRI investigation, whether from a
clinical perspective or from a research perspective, by setting out and explaining
the various data processing options now available.

A team of fMRI investigators generally includes an expert in the field of cognitive
science and an engineering/physics expert (rarely the same person). The overview
will primarily, but not exclusively, be useful for the engineer/physicist on the team.
The overview will also be of value to those who wish to contribute to fMRI data
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2 Introduction

analysis methodology by providing a summary of what has been accomplished to
date by others.

1.1 Overview of fMRI technique

With a sufficiently sharp question about cognition, the experimental design begins
with the design of a “task paradigm” in which specific sensory stimuli are presented
to the volunteer in the MRI apparatus. The stimuli are frequently visual (e.g. images
or words) or auditory (speech) in nature and are presented using computer hardware
and software designed specifically for cognitive science experimentation. The soft-
ware E-Prime (Psychology Software Tools, Inc., Pittsburgh, USA) is commonly
used for such presentations although the job can be done fairly easily from scratch
using something like Visual Basic. The most important aspect of the presentation
software, aside from submillisecond timing accuracy, is its ability to either send
triggers to or receive them from the MRI† to keep the presentation in synchrony
with the image acquisition‡.

While the volunteer is performing the task, the MRI apparatus is gathering image
data of the volunteer’s brain. To acquire image data a pulse sequence program is
required to run on the MRI’s computer. The pulse sequence commands the switch-
ing of the MRI’s magnetic gradient coils§, radio frequency (RF) transmission and
reception and the acquisition of data to microsecond timing accuracy. We will focus
here on echo planar imaging (EPI) [297] pulse sequences that acquire a time-series
of volume (3D) image data typically at intervals of 1–2 s/volume (this value can
vary from experiment to experiment and is known as the repeat time (TR) of the ima-
ging experiment). Non-EPI approaches to functional brain imaging are reviewed in
[251]. We include in the class of EPI sequences the traditional Cartesian approach
plus those that depend on other trajectories in k-space¶ like spirals [6], rosettes
[344, 386], Lissajous patterns [323] or radial patterns [388, 400], because the re-
sulting data sets are essentially the same from a brain activity map data processing
point of view.

† We will also use MRI to designate magnetic resonance imager.
‡ Most investigators prefer that the trigger comes from the MRI because the timing from the MRI is usually

more accurate than timing from software running on a typical microcomputer – especially microcomputers that
devote significant resources to maintenance of the operating system.

§ The banging or pinging noise heard during the operation of an MRI is from switching large amounts of
current (∼102 A) in the gradient coils. From an engineering point of view, it is possible to build gradient coils
that do their job silently [89, 90, 129] but there has not yet been sufficient economic motivation for MRI
manufacturers to supply a silent MRI apparatus.

¶ MRI data are acquired in a spatial frequency space known as k-space and must be reconstructed into an
image using Fourier transformation techniques [385]. The image reconstruction process is usually invisible to
the fMRI investigator, having been done by software installed in the MRI.
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A volume data set is made up of a collection of volume elements or voxels, a
term generalized from the word pixel (picture elements) used in electronic imaging.
An fMRI data set consists of a time-series of volume data sets, so each data point
in an fMRI data set has a unique coordinate (x, y, z, t) in 4D space, R

4, where x,
y and z are spatial coordinates and t is time. We will also focus exclusively on
functional imaging techniques that rely on the blood oxygenation level dependent
(BOLD) phenomenon [347]. BOLD works because deoxygenated hemoglobin is
paramagnetic while oxygenated hemoglobin is not paramagnetic [355]. The pres-
ence of paramagnetic deoxyhemoglobin causes the signal-producing proton spins
to dephase more rapidly than they would otherwise because of the local magnetic
field gradients caused by the paramagnetism. The dephasing mechanism is a partly
reversible process known as T∗

2 if a gradient echo EPI sequence is used, or an irre-
versible process known as T2 if a spin echo EPI sequence is used. An increase in
blood flow to active brain regions results in a higher concentration of oxygenated
blood and therefore results in an increased MRI signal in the active region [348].

1.2 Overview of fMRI time-series data processing

So the stage is set for the mathematical analysis of our fMRI data set: we have in
our possession a time-series of EPI images in which we hope to see evidence of
the BOLD effect in voxels of interest (Fig. 1.1). Before analysis, the data set may
require some preprocessing to remove the effects of motion, “noise” and intersubject
variation of neuroanatomy. Relevant image preprocessing approaches are reviewed
in Chapter 2. Next, before the data can be analyzed to produce activation maps, we
need to understand the task paradigm. There are two basic task paradigm designs,
blocked and event-related; these designs are reviewed in Chapter 3.

By far the most common approach to activation map computation involves a
univariate analysis of the time-series associated with each (3D) voxel. The major-
ity of the univariate analysis techniques can be described within the framework of
the general linear model (GLM) as we review in Section 4.1. Many GLMs depend
on a model of the hemodynamic response which may, in turn, be modeled mathe-
matically. Models of the hemodynamic response and their application to fMRI data
are reviewed in Section 4.2. Other methods for producing activation maps include
various other parametric methods (Section 4.3), Bayesian methods (Section 4.4),
nonparametric methods (Section 4.5) and Fourier methods (Section 4.6). Of par-
ticular interest to clinical investigators, who will want to make medical decisions
on the basis of an fMRI investigation, is the reliability of the computed activation
maps. Some of these reliability issues, from the point of view of repeatability, are
covered in Section 4.7. Finally, in a clinical setting, speed is important for many
reasons. Additionally, fMRI may be used along with other approaches to gather
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Fig. 1.1. Schematic of a typical EPI BOLD fMRI data set and its reduction to an
activation map. An EPI time-series, represented here by a series of single slices
from the volume data set at each point in time, is collected while the subject in
the MRI performs a task synchronized to the image collection. The intensity of
each voxel in the image set will vary in time. An active voxel will vary in step
with the presented task while an inactive voxel will not. A statistical method is
needed to determine if a given voxel time course is related to the task, and therefore
active, or not. The active voxels are then color coded under a relevant amplitude–
color relationship and the resulting activation map is overlain on a high resolution
anatomical MRI image to allow the investigator to determine which brain regions
are active under the given task. See also color plate.

converging evidence. Real time aspects and the use of fMRI with other approaches
like electroencephalograms (EEGs) are briefly reviewed in Section 4.8.

From a purely statistical point of view, fMRI data should be analyzed using mul-
tivariate techniques so that correlations between the time courses of the individual
voxels are taken into account. These correlations are also of interest to the cognitive
neuroscientist because they carry information about connectivity. Therefore mul-
tivariate GLM approaches, of which an overview is given in Section 5.1, may be
used to compute connectivity maps. A major problem with multivariate approaches
is that the data vector (the 3D volume data set) has a very high dimension (∼105) in
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comparison to the number of vector data points (=time points, ∼102) making the
straightforward application of multivariate statistics impossible. The solution is to
reduce the dimensionality of the data by decomposing the data into components.
Components may be produced using principal component analysis (PCA) or inde-
pendent component analysis (ICA) and their variations as we review in Section 5.2.
When used spatially, the relatively new mathematical technique of wavelet analysis
may also be used to analyze the fMRI data set as a whole. Wavelet analysis is particu-
larly attractive for fMRI analysis because confounding physiological influences like
heart beat and breathing leave behind model noise that is autocorrelated. Wavelet
analysis, because of its fractal properties, naturally “whitens” the noise to decor-
relate it and makes statistical testing more straightforward. Wavelet approaches to
brain map computation are reviewed in Section 5.3. PCA and ICA use a specific cri-
terion, variance and statistical independence respectively, to define components or
images of related voxels. Clustering approaches use a more empirical criterion, usu-
ally based on distance in data space, to produce images of related voxels. Clustering
approaches are reviewed in Section 5.4. Our review ends with a look at the issues of
functional connectivity (Section 5.5) and effective connectivity (Section 5.6). The
issue of effective connectivity, where fMRI data are used to make inferences about
how different regions of the brain affect each other causally, represents the cur-
rent cutting edge of fMRI brain map computation. Models of effective connectivity
will become more sophisticated, and will be capable of modeling networked neural
activity, as more becomes known about the physiology of the neural-hemodynamic
system.

1.3 Mathematical conventions

The following mathematical conventions and assumptions will be adopted in the
presentation that follows. All functions f may be complex-valued and are assumed
to be square integrable, f ∈ L2(Rn). This allows us to use the inner product of two
functions f and g

〈f , g〉 =
∫

Rn
f (�x) g∗(�x) d�x, (1.1)

where the ∗ denotes complex conjugation, and norm

‖f ‖2 =
∫

Rn
|f (�x)|2 d�x. (1.2)

The functions that we will encounter will frequently be real-valued and have
compact support, so these functions belong to L2(Rn) without any additional
assumptions. The correlation, r, of two functions f and g is the normalized inner
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product of the functions minus their mean, F = f − f and G = g − g, as defined by

r = 〈F, G〉
‖F‖ ‖G‖ , (1.3)

where h = ∫
h(�x) d�x/V with V being the hypervolume of an appropriate domain

and where ‖H‖ ≡ σh, the standard deviation of h. The cross-correlation function,
c, of two functions f and g is defined by

c(�y) =
∫

Rn
f (�x) g∗(�x + �y) d�x, (1.4)

the autocorrelation function of f by

a(�y) =
∫

Rn
f (�x) f ∗(�x + �y) d�x (1.5)

and the convolution f ∗ g by

f ∗ g(�y) =
∫

Rn
f (�x) g∗(�y − �x) d�x. (1.6)

When Fourier transforms are required, we assume that f ∈ L2(Rn) ∩ L1(Rn),
where L1(Rn) is the space of absolutely (Lebesgue) integrable functions. Then we
may define the Fourier transform F and its inverse, F−1 as

F f (�η) =
∫

Rn
f (�x) e−2π i�x·�η d�x and F−1g(�x) =

∫
Rn

g(�η) e2π i�x·�η d �η (1.7)

where i = √−1. The Fourier transform of the autocorrelation function is the
spectral density function.

Vectors, �x, will be considered to be column vectors in R
n with �xT representing a

row vector. To make use of functional ideas, we may also consider �x ∈ �2, where �2

is the vector space of square summable sequences. In either case, the inner product
and norm are defined by

〈�x, �y〉 =
∑

k

xky∗
k = �xT �y∗ and ‖�x‖2 = 〈�x, �x〉 (1.8)

(see Equations (1.1) and (1.2)), where xk and yk denote the components of �x and
�y respectively. The correlation between two vectors �x and �y in a K-dimensional
subspace is

r = 〈�X, �Y〉
‖�X‖ ‖�Y‖ , (1.9)

where �A = �a−�a with �a = ∑K
k=1 ak/K and where ‖�A‖ ≡ σ�a the standard deviation

of �a (see Equation (1.3)). The quantity 〈X, Y〉 is the covariance between �X and �Y
(or �x and �y). The cross-correlation and convolution of two vectors in �2 may be
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defined analogously to Equations (1.4) and (1.6). The discrete Fourier and inverse
Fourier transforms of �x ∈ R

n are given by

(F�x)k =
n∑

j=1

xj e−2π ikj and (F−1�x)k =
n∑

j=1

xj e2π ikj (1.10)

respectively, where we note that conventions on the numbering of indices may be
made differently to allow a straightforward interpretation of (F�x)k as frequency
components.

The convolution theorem [57, 379] states that

F(g ∗ f ) = (Fg)(F f ) and F(�g ∗ �f ) = (F�g)(F�f ). (1.11)

I use �x to represent a finite-dimensional vector and [X] to represent a matrix.
There is some variation in the literature as to the use of the words, scan, session,
etc. For this review the following definitions are adopted:

• Volume: A set of 3D voxels obtained at one time point in the fMRI time-series. A
volume is composed of a number of 2D slices. A slice, synonymous with image, is
composed of pixels. Pixels and voxels are really the same thing but the word voxel is
generally used when an analysis is considered from a 3D point of view and pixel is used
when a 2D point of view is considered.

• Scan: Synonymous with volume.
• Run: A time-series of volumes continuously obtained with a time of TR between volume

acquisition. Many authors use session as a synonym of run as defined here. However we
reserve session for the next definition.

• Session: A collection of runs collected from the same subject. The subject stays in the
MRI for an entire session. This use of the word session conforms to its use in the
software package AFNI.

• Subject: Synonymous with the American Psychological Association’s participant. In a
repeated measures design, a subject will typically experience multiple sessions.

1.4 Note on software availability

Freely available software for many of the techniques described in this review is
available either directly from the authors of the original literature or on the internet.
Internet addresses are given where known. An “early” review of different software
packages available in 1998 is given by Gold et al. [189]. That review primarily
lists the “features” provided by each software package, particularly in terms of
what kind of analysis can be done. As a cursory survey of the present review will
indicate, there is no one best method for data analysis and therefore no one best
software package to use. Some side-by-side comparisons of methods have been
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done; those comparisons are briefly reviewed in Section 4.7. A few commercial
software packages are referenced in this review and their mention should not be
taken as an endorsement. Commercial software is only referenced in cases where it
is directly relevant to the reviewed literature and/or where I have personal experience
with the referenced software.



2

Image preprocessing

fMRI time-series contain a number of systematic sources of variability that are not
due to the BOLD effect of interest. These sources of systematic variability may
be removed as a preprocessing step, as outlined in this chapter, or they may be
removed as a covariate at the time of activation map computation. The sources of
variability include factors due to the physics of MRI, subject motion, heart beat
and breathing, other physiological processes, random thermally generated noise
and intersubject anatomical variability. The variability due to the physics of MRI
include ghosts, geometric distortion and some signal drift which (with the exception
of drift) may be removed at the pulse sequence and image reconstruction level.
However, such ideal pulse sequences are not yet widely available on commercial
scanners and many investigators must simply accept compromises, such as the
geometric distortion of EPI images. A small amount of subject motion can be
compensated for by aligning the time-series fMRI images but motion may also be
dealt with at the source by using suitable restraining devices and training the subject
to hold still (mock MRIs are very useful for training study subjects in this respect).
It is impossible to remove the source of physiological variables so these need to
be corrected at the time of data processing. Two approaches are used to remove
physiologic effects from the data: one is to model heart beat and breathing, the other
is to measure and remove the effect of a global signal. Again, many investigators
do not account for non-BOLD physiologic variation at the expense of reduced
statistical power to detect BOLD activations. Various filtering techniques also exist
to remove thermally generated noise from the time-series with the trade-off of
wiping out small BOLD variation in the smoothing process. Finally, to compare
activation maps between subjects, it is necessary to transform or warp the data sets
into a common stereotaxic space. The image processing literature is full of many
methods for registering images between subjects and between imaging modalities.
Here we only touch upon a small number of approaches that have been applied to
fMRI data.

9



10 Image preprocessing

(a) (b)

Fig. 2.1. Proton NMR signal from the scalp comes primarily from fat while signal
from the brain comes primarily from water. Proton spins in fat and water emit
at different resonant frequencies, because of chemical shift, and this difference
is interpreted in the Fourier transform reconstruction as being due to different
locations, especially in the phase encoding direction for EPI sequences. When
signal from both fat and water is received, a ghost image of the scalp appears as
shown in (a). Suppressing the signal from fat with an appropriately designed pulse
sequence eliminates the ghost as shown in image (b) where fat saturation pulses
have been used.

2.1 EPI ghost artifact reduction

Ghost images in EPI images can be caused by chemical shift artifact (primarily
caused by signal from fat), misalignment of k-space lines (for conventional EPI)
in the raw data set, main magnetic field inhomogeneities, or susceptibility gradi-
ents from anatomical inhomogeneity. Some of these ghost artifacts can be easily
removed, while others may be next to impossible to remove so that the data will
remain slightly contaminated by ghosts when they are analyzed. Many of the meth-
ods for eliminating or reducing ghost artifacts can be, and are for many commercial
EPI implementations, applied at the pulse sequence level or at the Fourier trans-
form image reconstruction stage, resulting in a raw data set for the investigator that
already has corrections for ghost artifacts applied. Some methods of ghost correc-
tion require ancillary data, such as magnetic field maps, in addition to the image
data, while other methods work using only the image data.

The easiest ghost artifact to reduce is that caused by the signal from fat in the
scalp, see Fig. 2.1. A pulse sequence that applies a fat saturation pulse before image
data acquisition will eliminate most of the chemical shift† ghost artifact.

The ghost artifact caused by misalignment of alternating k-space lines in con-
ventional EPI is known as an N/2 ghost because the ghost image is shifted by N/2

† Chemical shift is a shifting of the emitted RF frequency from the proton due to the shielding of the main
magnetic field by the electronic configuration around the proton. Chemistry depends on molecular electronic
configuration hence the term chemical shift.
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from the main image in the phase direction when the number of lines in the phase
encode direction† is N . The misalignment of the odd and even k-space lines may
be caused by gradient field eddy currents, imperfect pulse sequence timing, main
field inhomogeneity and susceptibility gradients. Most packaged EPI sequences
acquire two or three reference lines before the actual collection of image data so
that the offset between the odd and even lines may be measured and a phase cor-
rection applied before Fourier image reconstruction. It is possible to determine the
necessary correction from the image data directly but more computation is required.
Buonocore and Gao [71] give a method for correcting the N/2 ghost directly from
image data for single-shot conventional EPI, the type normally used for fMRI, while
Buonocore and Zhu [72] give a method that works for interleaved EPI where more
than one acquisition is required to obtain data for one image slice.

Non-Cartesian EPI approaches, such as spiral acquisition in k-space, do not suffer
from N/2 ghost artifacts but instead the factors that cause N/2 ghosts in Cartesian
EPI lead to a local blurring in non-Cartesian approaches [236].

2.2 Geometric distortion correction

The same sources that lead to ghost artifacts can also lead to geometric distortion
of an EPI image. EPI is more sensitive to geometric distortion than the high re-
solution spin warp spin echo images that are commonly used as underlays for the
activation maps. Consequently the exact source of the activations, as determined by
their position on the spin echo image, may be in error by several millimeters. The
sensitivity of EPI to geometric distortion stems from the relatively long acquis-
ition time (∼40 ms) required and the sensitivity to spread in the reconstruction
point spread function (PSF) in the phase encode direction caused by magnetic field
inhomogeneities‡. Modeling the phase evolution of the MRI signal and applying
the reconstruction Fourier transform without any correction gives a reconstructed
image ρ1 that is related to the undistorted image ρ by

ρ1(x, y) = ρ

(
x ± �B(x, y)

Gx
, y + �B(x, y)T

Gyτ

)
, (2.1)

where Gx is the magnitude of the applied frequency encoding gradient, Gy is the
(average) magnitude of the blip phase encoding gradient, T is the acquisition time
per line of k-space and τ is the duration of the phase encoding gradient blip in
the EPI pulse sequence [471]. The ± in Equation (2.1) refers to the odd and even
k-space lines. Equation (2.1) shows that the geometric distortion is greatest in the

† Standard EPI images have a frequency encode direction and phase encode direction. See Vlaardingerbroek
and den Boer [433] and Haacke et al. [200] for a complete discussion on MRI pulse sequences.

‡ The total inhomogeneity, �B, at any given voxel is the sum of the effects mentioned in Section 2.1.



12 Image preprocessing

(a) (b) (c)

Fig. 2.2. Geometric distortion from Cartesian EPI data: (a) axial image; (b) coronal
image; (c) sagittal image. Distortion is least for the axial image because of the
solenoidal design of the axial gradient coils which cannot be used for the other
two directions.

phase encode direction because of the relatively long T . Equation (2.1) may be
expressed in terms of a position dependent PSF, or kernel, H as

ρ1(�r′) =
∫

A
ρ(�r)H(�r′, �r) d�r, (2.2)

where �r = (x, y) and A ⊂ R
2 is the support of ρ. Summing up, for Cartesian EPI,

magnetic field inhomogeneity causes [334]:

• A geometrical distortion, proportional to the frequency offset �ω = γ�B caused
by the inhomogeneity �B. (Here γ is the gyromagnetic ratio of the proton,
γ = 2.68 × 108 T−1 s−1.)

• Blurring in the phase encoding direction.
• Ghosting in the phase encoding direction caused by extra peaks in the PSF in the phase

encoding direction.
• Blurring of the ghosts, caused by spread in the secondary PSF peaks.

The geometric distortion is least for axial images (compared to sagittal or coronal
images) because of the presence of higher magnitude, higher order magnetic field
concomitant with the linear gradient field for the nonaxial† gradient fields (see
Fig. 2.2). These higher magnitude nonlinear components of the nonaxial gradient
fields are caused by the different construction of the nonaxial and axial gradient
field coils necessary to allow access to the bore of the MRI. Modeling of the
gradient fields provides a way of correcting the extra distortion caused by the
concomitant field associated with the nonaxial gradient fields [124]. Non-Cartesian
EPI methods, like spiral imaging, avoid most of the geometric distortion problems
with the distortion effects being generally replaced by local blurring.

From Equation (2.1) it is clear that knowledge of the magnetic field inhomo-
geneity could be used to correct the geometric distortion of Cartesian EPI images

† The axial gradient field is usually labeled as the z gradient field.
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either in the image space directly through interpolation [235] or before Fourier
transformation, by correcting the phase of the raw data†, determining the actual
k-space locations of the raw data and then interpolating the data in k-space to a reg-
ular grid [369]. By simultaneously correcting phase and amplitude, a simultaneous
correction of the associated intensity distortion may also be done [88]. Knowledge
of magnetic field inhomogeneity can be obtained from the measurement of a field
map using sequences with multiple echo times, TE , that allows the phase evolu-
tion in each voxel to be measured‡. The field map may be measured using an EPI
sequence [369] or with a properly timed spin warp spin echo§ sequence [393]. As
an alternative to the separate acquisition of a field map and the image data, it is
possible to build a pulse sequence that acquires enough data for both the field map
and the image simultaneously [84, 85]. Such a sequence¶ provides an undistor-
ted image without postprocessing when the necessary reconstruction procedures
are applied on-line within the sequence and would provide a field map for every
image instead of one field map for the whole fMRI time-series. Using one map
for the whole series has the disadvantage that small head motions can significantly
alter the susceptibility part of �B. Nevertheless, geometric distortions based on
one field map lead to better registration of the activation map with the spin echo
anatomical map [230] and transformation of the data to a standard anatomical space
[111] (see Section 2.5).

An alternative approach to using a field map to correct geometric distortion is
to measure the PSF H of Equation (2.2), using an appropriate pulse sequence,
at a sufficient number of voxel locations (x, y) and invert Equation (2.2) [334].
Geometric distortion methods that rely on the field map, unlike PSF methods, can
be affected by phase unwrapping problems, partial volume errors‖, and eddy current
errors [471]. PSF geometric distortion correction is also better able to correct for
intensity distortion over field map based methods.

Without a field map (or PSF map) the average fMRI investigator is forced to
accept the positioning error that results from overlaying a geometrically distorted
EPI-based activation map on an undistorted high resolution spin warp anatomical

† Raw MRI data, before image reconstruction, are complex with an amplitude and phase.
‡ The echo time, TE , in a pulse sequence is the time from the initial 90◦ RF pulse to the middle of the data

acquisition period.
§ With spin warp spin echo sequences, one line of k-space is acquired per acquisition as opposed to all lines

in an EPI sequence. Spin echo spin warp T1 weighted images are commonly used as high resolution anatomical
underlays for the activation maps.

¶ An EPI sequence that measures field and image simultaneously would be of enormous use to fMRI
investigators. Unfortunately such sequences are not yet supplied as standard equipment on commercial MRIs.

‖ The term “partial volume effects” refers to the effect that the signal from one slice (really a slab) has on the
signal from another slice due to the overlapping thickness profiles.
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map. However, a couple of methods have been devised to correct the geometric dis-
tortion without field maps. One method requires an additional spin echo EPI image
that has the same contrast as the spin warp image [412]. Then a nonlinear trans-
formation is computed to allow the spin echo EPI image to be warped onto the spin
warp image. The resulting nonlinear transformation may then be used to correct the
geometric distortion in the gradient echo EPI time-series images. Another method
uses models of the susceptibility-by-movement interaction to derive a field map on
the basis of how the EPI distortion changes with head motion [13]. The motion
information for that last method is obtained from the rigid body motion parameters
obtained by aligning each EPI image in the time-series to a reference image in the
time-series (see Section 2.3).

After the images have been corrected for geometric distortion, there will still be
a nonuniform distribution of signal strength, typically with reduced signal near the
regions of large susceptibility gradients near the sinuses. Geometric distortion can
also cause an increase in signal caused by a many-to-one voxel mapping in regions of
high distortion. Such regions can be identified by comparing homogeneity corrected
EPI images to uncorrected images using a t-test [278] and using the resulting
difference maps in the interpretation of the fMRI results.

2.3 Image alignment and head motion

A typical fMRI experiment requires a time-series of ∼100 volume sets of images
taken ∼2 s apart. The person being imaged is instructed to keep his head still (or the
head is restrained by some means) but some small motion is inevitable at the sub
voxel level (∼2 mm in the slice plane). The analysis of the time-series assumes that
each voxel is fixed and that intensity change within a voxel is caused by changes
at that fixed spatial location. Small movements can shift a fraction of a given tissue
type in and out of a given voxel leading to intensity changes in the voxel caused by
motion that could lead to the computation of a false positive activation [202], see
Fig. 2.3. An obvious way around this small motion problem is to align all of the
images in the time-series to one reference image in the series†.

Aside from pulsing activity occurring within the brain due to the cycle of blood
pressure caused by the beating heart, the head and brain may be considered as a
rigid object. So to align the images requires that only the six rigid body motion
parameters, three rotations: yaw, pitch and roll plus three translations, are needed
to specify the alignment. Specifically, if �r = [x y z] T are the image-based spatial
coordinates of a given brain structure in the image to be aligned and �r′ = [x′ y′ z′]T

† Usually the first image of the time-series is not chosen because a few TR repeats are necessary to bring the
pixel intensity to a constant level that depends on the the values of the spin lattice relaxation rate, T1, and TR.
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(a) (b)

Fig. 2.3. Small head motion in an fMRI experiment leads to false positives in
activation maps. (a) The “ring artifact” is caused by motion of the edge of the
brain in and out of pixels at the edge of the brain. (b) The “brain-on-fire artifact”
is caused by motion perpendicular to the image plane. In both cases motion that
is correlated with the task paradigm is picked up in the activation maps. Image
alignment can reduce these kinds of artifacts in the activation maps if the motion
amplitude is on the order of the size of a voxel or less. The identification of ring
artifact is relatively straightforward. The identification of “brain-on-fire artifact”,
as I have called it here, can be trickier. Some tasks, such as the mental rotation
task, can produce a lot of activation and false activation can be hard to identify
in those cases. (The mental rotation task involves the presentation of two 3D
objects in different orientations and the subject is asked to decide if the two objects
are identical. To accomplish the task the objects must be mentally rotated to be
compared.) Brain-on-fire artifact can be more severe than shown here but it is
usually accompained by the ring artifact, especially in more superior axial slices.
One hint that something is wrong is that the ventricles show activation, although
this may be caused by breathing physiology. (In some investigations involving
exercise, ventricle “activation” has been observed when changes in breathing were
correlated with the task. It is not yet clear whether there were other motion-related
false positives in those activation maps.) See also color plate.

are the coordinates of the same structure in the reference image, then a rigid body
transformation is given by

�r′ = [R]�r + �T , (2.3)

where

[R]=
⎡
⎣1 0 0

0 cos θy sin θy

0 − sin θy cos θy

⎤
⎦
⎡
⎣cos θp 0 − sin θp

0 1 0
sin θp 0 cos θp

⎤
⎦
⎡
⎣ cos θr sin θr 0

− sin θr cos θr 0
0 0 1

⎤
⎦
(2.4)

is the rotation matrix with θy, θp and θr representing rotation about the yaw, pitch
and roll axis respectively† and �T = [Tx Ty Tz]T is the translation parameter vector.

† The roll axis is normally in the z or axial head to foot direction, while the pitch and roll axes are arbitrarily
chosen to be mutually perpendicular in the coronal and sagittal directions.
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To align the images we must somehow determine what values to use for the rigid
motion parameters θy, θp, θr , Tx, Ty, Tz. Two steps are required: a way of searching
through the six-dimensional rigid motion parameter space† and, a way of determin-
ing when the images are aligned. Searching through rigid motion parameter space
using gradient descent methods is very slow so methods of arriving at the correct
parameter set using a single (or very few) iterations have been devised [153]. The
solution can be found with a single calculation by linearizing Equation (2.3)‡, along
with an adjustment to match image intensities, and casting the problem into a least
squares framework so that the mean square error (MSE) or difference between the
two aligned images is minimized. This single calculation approach for image align-
ment is available in the SPM (Statistical Parametric Mapping) software package§.
Variations on the alignment procedure have been implemented in other software
packages including AIR (Automated Image Registration¶) [447, 448], COCGV
(Correspondence of Closest Gradient Voxels‖) [352], FLIRT (FMRIB’s Linear
Registration Tool††) [233], IR (Intramodal Registration‡‡) [420] and AFNI (Ana-
lysis of Functional Neuroimages§§) [107, 109]. A Patch Algorithm (PA) [7, 475]
was compared to AIR, COCGV, FLIRT, IR and SPM by Zhilkin and Alexander
[476] on the basis of minimizing the MSE between images and it was found that
all six algorithms produced similar results. Using an activation phantom with rigid
body motion, Morgan et al. [326] order software packages in terms of the number
of false positives from least to most as SPM (the 99 version), AIR and AFNI. How-
ever, it is interesting to note that Morgan et al. find that applying a correction to a
perfectly stationary phantom introduces more false positive activations than a map
computed with no corrections.

The method of aligning images based on minimizing MSE has been classified
as a nonlabel-based method [153]. Methods based on the matching of fiducial
markers have been categorized as label-based. Three fiducial image markers may
be automatically derived from the eigenvectors of the data volume’s moment of
inertia matrix [I] of voxels, at coordinates [xi yi zi]T , having an intensity above a

† Mathematically, the rigid motion parameter space is the manifold S3 × R
3 where S is the circle.

‡ To linearize Equation (2.3) is to change the search space from S3 × R
3 to the tangent space R

6 at �0.
§ The SPM software is available at http://www.fil.ion.ucl.ac.uk/spm/.
¶ The AIR software is available from http://bishopw.loni.ucla.edu/AIR3/.
‖ The COCGV software is available at http://www.cc.nih.gov/ldrr/staff/ostuni/cocgv/cocgv.html.

†† The FLIRT software can be found at http://www.fmrib.ox.ac.uk/fsl/flirt/.
‡‡ The Intramodal Registration software can be found at http://bigwww.epfl.ch/thevenaz/registration/.
§§ Find AFNI at http://afni.nimh.nih.gov/afni/.
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threshold T [95], where

[I] = 1

N

⎡
⎣

∑
(xi − α)2 ∑

(xi − α)(yi − β) ∑
(xi − α)(zi − γ )∑

(yi − β)(xi − α) ∑
(yi − β)2 ∑

(yi − β)(zi − γ )∑
(zi − γ )(xi − α) ∑

(zi − γ )(yi − β) ∑
(zi − γ )2

⎤
⎦
(2.5)

with N being the number of voxels having an intensity greater than T and⎡
⎣αβ
γ

⎤
⎦ = 1

N

⎡
⎣
∑

xi∑
yi∑
zi

⎤
⎦ (2.6)

being the center of gravity vector. Alignment based on such fiducial marker align-
ment is a true one-step computation and therefore faster by factors of 2–5 than
the nonlabel-based approaches; however the accuracy of registration deteriorates
with increased image noise [96]. Another approach, which might be considered
as an intermediate between label-based and nonlabel-based approaches, is to align
edge detected images on the basis of maximizing the correlation between the edge
detected images [47]. Such contour-based registration methods have an advantage
over the MSE minimization methods in that contour registration is not affected by
intensity variation caused by nonmotion sources.

The nature of the MRI signal means that a simple rigid body transformation
cannot remove all the effects of motion on the image. There are two main effects
that a rigid body transformation cannot correct. One is the partial volume effect
between slices caused by the intensity profile in the slice thickness direction. A
small motion in the slice thickness direction can lead to a large change in the
signal from the edge of the slice due to the large profile gradient there. The second
effect may be called unintentional spin-tagging, or a spin history effect, and is the
result of the first effect in combination with the history of movement. A proton
spin near the edge of a slice will, in effect, experience a variable TR that will
lead to varying amounts of longitudinal magnetization recovery between images
which, in turn, lead to a motion-related signal intensity variability from a fixed
physical location that remains after image alignment. One solution is to model
the proton magnetization history on the basis of the computed time-series of rigid
body motion parameters obtained by rigid body alignment [160]. The resulting
magnetization history model can then be used to adjust the pixel intensity of the
individual time-series frames. Although perfect adjustment is not possible, because
the original alignment depends on intensity which is adjusted after magnetization
history modeling, a considerable improvement in sensitivity to BOLD signal can
be had from the alignment–intensity adjustment process [160].

With longer TR (∼4 s) the effects of magnetization history become negligible
because the proton spins have had the opportunity to almost completely relax in
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the longitudinal direction. However, motion history can still be represented in the
intensity time course of a given voxel in the realigned data because of interpolation
errors from the method used to actually realign the images. The most accurate
interpolation method would involve, for each voxel, an interpolation, such as sinc
function interpolation, that depended on the value of all the other voxels. Such
approaches to interpolation can be computationally intensive [203] and can be
drastically reduced by interpolating in the Fourier domain where translation in the
image domain is converted to a simple phase multiplication in the Fourier domain
[128]. Interpolation in the Fourier domain is particularly attractive for MRI data
because the original data are collected in the Fourier domain. No interpolation
method is perfect and there will be residual intensity variation caused by motion.
This remaining residual variation can be covaried out by removing signal that is
correlated with the motion as determined by the computed time course of the rigid
motion parameters [198]. This last adjustment may be made as a preprocessing step,
or it may be implemented as confound variables in a general linear model analysis
of the data (see Section 4.1). Linear combinations of low frequency sinusoids are
frequently used to model the remaining motion variation.

Even with extensive modeling of the head motion and its effects, there remains
susceptibility caused signal variation due to the motion of objects, like the heart
and lungs, that are outside the field of view of the head [466]. These variations may
be addressed by methods described in Section 2.4.

2.4 Physiological artifact and noise removal

There are many sources of physiological “noise” in the fMRI signal. These sources
primarily include heartbeat and breathing, which in turn affect the flow of cerebral
spinal fluid (CSF) and localized pulsing in the brain. Speaking and swallowing
can also be sources of systematic signal change. If the effect of these systematic
sources is not accounted for, the statistical power of the subsequent analysis of the
BOLD signal will be reduced. The systematic non-BOLD signal can be modeled
as “nuisance variables” in a GLM or, as described in this section, the systematic
signals may be removed as a preprocessing step.

2.4.1 Drift

Before physiologic effects can be measured and removed it is necessary to remove
nonspecific slow signal drift from the intensity time-series. The source of non-
specific signal drift includes CSF flow and spontaneous low frequency fluctuations
that have been hypothesized to be related to nonspecific neural activity [253]. Small
drifts in the MRI’s main field and/or receiver frequency can also cause drift; low
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frequency drift has been observed at the edges of the brain and in cortex infoldings
in cadavers [402]. Drift may be quantified by linear and higher order polynomial fits
to the time course for each 3D voxel [26] or by cubic (or other) splines. With splines,
a choice needs to made on the number of basis functions with more basis functions
being able to model higher frequency variance. Wavelets (see Section 2.4.5) may
also be used to remove a drift, or more generally, a global effect by assuming that
the log2(n) − 1 scale level (for an n length time-series) represents the global sig-
nal, replacing that level with a constant level and then using the inverse wavelet
transform to produce a detrended time-series. In a comparison of linear, quadratic,
cubic, cubic spline and wavelet-based detrending it was found that cubic spline
detrending resulted in time-series with the highest significance (p values) after a
GLM analysis (see Section 4.1) [417]. The cubic spline was followed by quadratic,
linear, cubic and wavelet, in order of significance with the order of cubic and wave-
let switching, depending on the subject imaged. That same study also examined an
auto-detrending method that chose the best (based on final p value) of the five listed
detrending methods on a voxel by voxel basis in each subject.

2.4.2 Cardiac and respiratory signal

After the effects of rigid body head motion and low frequency drift have been
accounted for, the next systematic effects to remove are those due to physiolo-
gical processes like breathing and heart beat. The changing volume of air in the
lungs causes varying magnetic susceptibility gradients across the brain, and internal
motion in the brain in the form of pulsation in arteries, veins and cerebrospinal fluid
is caused by the heart. The amplitude of these physiological variations increases
with higher main field strength because of the increase in the corresponding
susceptibility induced magnetic field gradients.

The removal of variation due to breathing and heart beat requires knowledge
of the breathing and heart beat time courses. Breathing can be measured directly
using a pneumatic bellows strapped around the subject’s chest and heart beat can
be measured using EEG or photoplethysmograph† equipment. The respiratory and
cardiac time courses may be used either to correct the data after acquisition or in real
time to acquire the data in a manner that reduces the variation due to breathing and
heart beat. The two physiologic signals can produce ghosting effects in the acquis-
ition phase direction, especially with 3D methods that encode the third direction in
k-space instead of with spatially selective slices. The physiologic ghosting artifact
can be effectively removed by gating the phase encodes using either the respiratory
or cardiac signals in real time. Gating based on the cardiac signal is as effective in

† The photoplethysmograph relies on an LED clamped on the end of the finger.
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reducing physiologic signal variation as the k-space methods discussed below, but
respiratory gating does not efficiently remove physiologic variation [409].

Gating of the MRI pulse sequence at the volume acquisition point, ensuring that
each volume is acquired at the same phase of the cardiac cycle, can also reduce
physiological signal variation. However, the signal must then be retrospectively
corrected based on an estimated T1 value and a model of the proton magnetization
history because of the resulting variable TR [199]. Any subsequent map computation
must then also take into account the variable TR in the statistical model of the BOLD
function.

Recorded cardiac and respiratory time courses may be used as confound variables
in the map computation stage if a GLM (see Section 4.1) is used [105] or they may be
subtracted from each 3D voxel’s time course as a preprocessing step. The recorded
physiologic signals are not themselves subtracted from the voxel time-series, rather
the recorded signal is used to determine the phases of a model of the cardiac and
respiratory effects at each imaging time point t. Specifically, the physiological noise
component, yδ(t) = yc(t)+ yr(t), may be expressed as [185]

yc(t) =
2∑

m=1

ac
m cos(mϕc(t))+ bc

m sin(mϕc(t)),

yr(t) =
2∑

m=1

ar
m cos(mϕr(t))+ br

m sin(mϕr(t)),

(2.7)

where the superscripts c and r refer to cardiac and respiration respectively and
ϕc(t) and ϕr(t) are the corresponding physiologic phases. The phases are variable
from cycle to cycle and the cardiac phases are easy to compute based on the time
between the R-wave peaks. The respiratory phases may be computed using a his-
togram equalization method given by Glover et al. [185]. Once the phases for each
imaging time point are determined, the Fourier coefficients for Equation (2.7) may
be computed from

ax
m =

N∑
n=1

[yx(tn)− yx] cos(mϕx(tn))

/ N∑
n=1

cos2(mϕx(tn)),

bx
m =

N∑
n=1

[yx(tn)− yx] sin(mϕx(tn))

/ N∑
n=1

sin2(mϕx(tn)),

(2.8)

where x is c or r, yx is the average of the time-series and N is the total number of
time points [185]. Traditionally the signals of Equation (2.7) are simply subtracted
from the voxel time courses [93, 185] although projecting out the signals as in
Equation (2.9) may be a better idea.
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Fig. 2.4. Distribution of brain activity that is correlated with the cardiac signal
(top row) and the respiratory signal (bottom row). The first column shows activity
seen in the original time-series data at the cardiac and respiratory frequencies
before preprocessing. The second column shows cardiac and respiratory frequency
activity left in the time-series after preprocessing that subtracts the components
given by Equation (2.7) as determined from using the center k-space points from a
spiral sequence. The third column shows cardiac and respiratory frequency activity
left in the time-series after preprocessing that subtracts the components given by
Equation (2.7) as determined from pneumatic bellows and photoplethysmograph
measurements. This image was taken from [185] and is used with permission.

MRI data may also be used to estimate the physiologic time courses in the absence
of a separate recording. A navigator echo (essentially a stand alone unphase-
encoded k-space line) may be used before each slice acquisition and the phase
of the echo (center point) used to produce a time-series from which the breath-
ing and heart beat time courses may be computed [228]. The use of a navigator
has the drawback that it needs a minimum TR to allow time for it in the pulse
sequence and it is acquired at a different time than the image data that need to be
corrected. Fortunately one can use the center k-space point (or small neighborhood
of the center) of the actual image data, before it is reconstructed via the Fourier
transform, to get the same phase time-series that the navigator echo can provide
[144, 271, 460] – plus the image-based physiologic information series temporally
matches the image series. Figure 2.4 compares the efficacy of removing the cardiac
and respiratory components from the measured time-series using measured cardiac
and respiratory rates versus using cardiac and respiratory rates as determined from
central k-space data.

The determination of the breathing and heart beat time courses from cen-
ter k-space data requires that multislice data be arranged in temporal, rather
than slice order. If the images are not temporally ordered, the physiologic sig-
nals will be undersampled and impossible to determine because of the resulting
aliasing effects [144]. The typical respiratory frequency range is from 0.1 to
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0.5 Hz (6–30 cycles/min) and the cardiac frequency range is from 0.75 to 1.5 Hz
(40–90 beats/min) [93]. Inherent in using the center k-space phase value is the
assumption that the physiologic effects are global. This assumption is more or less
true for breathing but less true for heart rate variation since pulsatile motion in the
brain is more local. In a study with resting volunteers it has been shown that strong
cardiac effects may be seen near the medial areas of the brain, along the middle
cerebral artery near the anterior lobes and the insula around the anterior cerebral
artery in the medial frontal lobes, and in the sigmoid transverse and superior sagittal
sinus regions [112]. Nevertheless, good results can be had with the global effect
assumption. Once a global time course for the physiological (and other) variation is
obtained, it is necessary to extract the respiratory and cardiac contributions. These
contributions are obtained by first Fourier transforming the global time course �g
to reveal the respiratory and cardiac frequencies. The respiratory time course �r is
reconstructed by computing the inverse Fourier transform of F�g multiplied by a
band pass centered around the respiratory frequency. The cardiac time course �c is
similarly computed with the selection of the proper bandpass width being somewhat
empirical but necessary because respiration and heart beat are only approximately
periodic. Finally a corrected time course, �D, for each voxel is computed from the
original (post alignment) time course �d by projecting out the respiratory and cardiac
time courses [144]:

�D = �d − 〈�d, (�r + �c )〉(�r + �c )
‖(�r + �c )‖2

. (2.9)

Instead of using information from the central k-space point, it is possible to
produce a physiologic time-series using either the mean of the magnitude images
or the mean of a low frequency region of influence (ROI) in k-space (to avoid
problems with low signal to noise ratio at high spatial frequencies) [229].

2.4.3 Global signal removal

Besides MRI drift, cardiac and respiratory influences, other non-BOLD factors can
systematically contribute to variation in the fMRI time-series. Speaking or swal-
lowing in the MRI can produce main magnetic field changes of up to 0.087 ppm
in the inferior region of the brain and some speech can cause additional changes
of up to 0.056 ppm in the frontal region [42]. The acoustic noise from the gradi-
ent switching can also directly affect the BOLD response in auditory, motor and
visual cortices [91]. Given the variable sources, some investigators choose to simply
quantify the global effects instead of trying to attribute, and account for, the global
effects as being due to cardiac and respiratory processes. If the global signal is
correlated with the experimental paradigm, then different activation maps will be



2.4 Physiological artifact and noise removal 23

obtained if the global signal is or is not accounted for in the analysis [3]. These
correlations could be introduced by task-related breathing, pain-related studies or
overt speaking among other causes.

Within the framework of the GLM (see Section 4.1) two main approaches have
been proposed to incorporate the measured global signal G(t) (which is the time
course of the image means). One is an additive term model (an ANCOVA or
ANalysis of COVAriance model) that can be expressed as†

Yi(t) = μi + αih(t)+ βi[c(t)+ G(t)] + εi(t), (2.10)

where Yi(t) is the intensity of voxel i at time t, μi is the average of voxel i’s time
course, h is the response vector of interest, c is a response (covariate) of no interest
and εi represents noise [178]. The other model is a proportional multiplicative or
ratio scaling model

Yi(t) = G(t)[μi + αih(t)+ βic(t)+ εi(y)]. (2.11)

The response vector h can be as simple as a binary valued function that repre-
sents the presentation time course or, more usually, a model of the hemodynamic
response (see Section 4.1). The popular software package SPM offers the method of
Equation (2.11) in addition to grand mean session scaling for performing between-
subjects GLM analysis.

Gavrilescu et al. [178] compare grand mean session scaling, ANCOVA scaling,
and proportional scaling with two methods of their own, a masking method and an
orthogonalization method and find decreased sensitivity to activations in the three
former methods compared to their own. The masking method begins by assuming
that the global signal G(t) can be decomposed as

G(t) = Gm + Gν(t)+ A(t)+ B(t), (2.12)

where Gm represents the mean of the global time course, Gν(t) represents variation
around that mean that is not correlated with h(t), A(t) is variation around the mean
that is correlated with h(t) because of the task induced activation and B(t) represents
the variation around the mean that is correlated with h(t) due to other physical
and physiological processes. Processes Gν(t), A(t) and B(t) are assumed to be
different in active and nonactive areas so that there should be two choices of G(t),
namely Gn(t) and Ga(t) for nonactive and active regions, for use in Equations (2.10)
and (2.11). The determination of the mask that divides the image into active and
nonactive regions proceeds by an iterative process. The assumption of different
Gn(t) and Ga(t) is made to account for the effect that the activation response has on
the global signal. The orthogonalization method is to use as G(t) in Equations (2.10)

† Here the functions abstractly represent the data or design matrix vectors, for example Yi(tn) would
represent the intensity at voxel i and time point n.
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and (2.11) the part of the global signal that is orthogonal to any nonconstant column
of the design matrix (see Section 4.1). In other words, if G is the measured global
signal and dk are the nonconstant columns of the design matrix for 1 ≤ k ≤ K ,
then one should use, if the dk are mutually orthogonal,

G = G −
K∑

k=1

〈G, dk〉dk/‖dk‖2 (2.13)

in Equations (2.10) and (2.11). In the case of nonorthogonal dk a Gram–Schmidt
orthogonalization procedure may be used in place of Equation (2.13).

Desjardins et al. [121] give a derivation that an adjusted global signal should be
used in the proportional scaling model, Equation (2.11), where the adjusted global
signal is defined by the measured global signal multiplied by its time course mean.
They show that such adjustment can account for the contribution of local BOLD
signals to the global signal.

Another approach is to model the global effect using the global signal, similarly
to how the cardiac and respiratory signals may be modeled from the global signal
(Section 2.4.2), but without explicitly identifying the source. The linear model of
the global signal (LMGS) used by Macey et al. [293] first computes the global
signal and subtracts the mean to produce an offset global signal �G. Then a model

�Yi = ai �G + �Yi
adj

(2.14)

was computed for every voxel i to give an adjusted voxel time-series �Yi
adj

for use in
subsequent activation map computation. LMGS was shown to have an advantage
over spline modeling of the global effects in that high frequency global effects could
be removed by LMGS but not by spline modeling.

2.4.4 Filtering techniques for noise removal

Noise, whatever its source, reduces the significance of detected activations. Parrish
et al. [354] suggest that a map that shows the spatial variation of the signal to noise
ratio† (SNR) is useful for showing regions where activations of a given amplitude
can be detected by a given statistical procedure.

Most pulse sequences apply a spatial filter, by multiplication in k-space, to the
acquired data that spatially smooths the data and increases its SNR. The type of filter
used in the pulse sequence is generally selectable by the MRI operator from a set of
given choices. Lowe and Sorenson [287] show, using receiver operating character-
istic (ROC‡) methods, that the Hamming filter is the best choice, followed by a Fermi

† Signal to noise ratio is generally defined as μ/σ , where μ is the average signal and σ is the standard
deviation.

‡ ROC analyses plot specificity (false positives) versus sensitivity (true positives) while varying a parameter.
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filter approximation if a Hamming filter is not available. They also note that the con-
volution of a Gaussian kernel with computed SPM (see Section 4.1), a commonly
used smoothing approach, provides similar SNR improvements as the spatial filter-
ing of k-space data but note that all convolution-based spatial filtering techniques
can attenuate very small signals dramatically. Gaussian spatial smoothing can also
be used before map computation with similar results.

Spatial filtering can also reduce the interpolation error effects from rigid body
registration [292] (see Section 2.3). In the case of nonlinear alignment between
subjects to a standardized brain atlas (Section 2.5), spatial smoothing becomes
more important to reduce such interpolation errors and the effects of variable brain
topography.

Spatial filtering can inappropriately average voxel time courses between active
and nonactive voxels. A solution to this problem is to use adaptive filters. Using
appropriate classification schemes, it is possible to divide voxels into classes and
then define binary masks to produce subimages that can be independently spatially
filtered and then combined to produce the filtered image [405]. Software for such
an approach, which then avoids averaging nonactive time courses with active ones,
is available†.

Weaver [437] used a unique monotonic noise suppression technique with good
results. With this technique, extrema in the image are identified along the horizontal,
vertical and two diagonal directions and the data between the extrema are forced,
using a least squares algorithm, to vary monotonically between the extrema.

A more sophisticated approach than adaptive filtering is to use a Markov random
field (MRF) approach in a Bayesian framework. Following Descombes et al. [119]
we outline how this approach works. The goal of the MRF approach is to preserve
edges in the data both spatially, where they occur between active and nonactive
regions and between gray matter and white matter, and temporally, where they
occur between task and rest periods. To fix ideas, consider a 3D MRF scheme for
a time-series of 2D images (the 4D approach is a straight forward extension). The
set of sites for the MRF is then

S × T = {s = (i, j), t|1 ≤ i ≤ I , 1 ≤ j ≤ J , 1 ≤ t ≤ T}, (2.15)

where s represents the spatial coordinate and t the temporal coordinate. The state
space,�, is the set of all possible intensity values (typically integers between 0 and
4095 for MRI data). An fMRI signal (data set), Y , is then a�-valued function on the
set of sites. The set of all possible data sets Y is known as the configuration space
�. An MRF is a probability distribution on � that satisfies a reflexive condition
on finite neighborhoods in the site space and, through the Hammersley–Clifford
theorem, it can be shown that an MRF can be written as a Gibbs field where the

† The software may be found at http://www.ece.umn.edu/users/guille/.
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probability distribution, P, is defined as

P(Y) = 1

Z
exp(−U(Y)) (2.16)

for all Y ∈ �, where Z is a normalization factor (to ensure that the total probability
is 1) known as the partition function, and U is an energy function that consists of a
sum over cliques, c, (a clique is a finite subset of sites) of potential functions. The
MRF-based distributions are used within a Bayesian framework to determine the
adjusted (“smoothed”) data Y from the given raw data X in� under the assumption
that X = Y + η, where η represents noise. The Bayesian approach is based on
Bayes law, which states

P(Y |X)P(X) = P(X|Y)P(Y), (2.17)

the probability of Y given X times the probability of X equals the probability of
X given Y times the probability of Y . From Equation (2.17) we have that the a
posteriori probability, P(Y |X), is given by

P(Y |X) ∝ P(X|Y)P(Y), (2.18)

where P(X|Y) refers to the likelihood model (or data driven term or goodness
of fit) and P(Y) refers to the prior model. The MRF model is used to define the
prior model and a likelihood model is typically based on Gaussian probability
distributions. For application to fMRI, Descombes et al. [119] use a �-model (see
below) for the likelihood model in place of a Gaussian distribution to handle noise
outliers caused by physical and physiologic processes. Putting the MRF together
with the noise likelihood model gives (as shown in [119])

P(Y |X) ∝ exp(−U(Y)), (2.19)

where, using Y = {y(i,j)(t)} and X = {x(i,j)(t)},
U(Y) =

∑
(i,j),t

VL(y(i,j)(t))

+
∑

c={t,t+1}

∑
(i,j)

VT (y(i,j)(t), y(i,j)(t + 1))

+
∑

c={(i,j),(i+1,j)}

∑
t

VI(y(i,j)(t), y(i+1,j)(t))

+
∑

c={(i,j),(i,j+1)}

∑
t

VJ(y(i,j)(t), y(i,j+1)(t)), (2.20)

where the potentials are given by

VL(y(i,j)(t)) = −βL

1 + (y(i,j)(t)− x(i,j)(t))2/δ2
(2.21)
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for the likelihood model and

VT (y(i,j)(t), y(i,j)(t + 1)) = −2β

1 + (y(i,j)(t)− y(i,j)(t + 1))2/δ2
, (2.22)

VI(y(i,j)(t), y(i+1,j)(t)) = −Aβ

1 + (y(i,j)(t)− y(i+1,j)(t))2/δ2
, (2.23)

VJ(y(i,j)(t), y(i,j+1)(t)) = −β
1 + (y(i,j)(t)− y(i,j+1)(t))2/δ2

(2.24)

for the prior model. The parameter A is equal to the aspect ratio of the acquisition
k-space matrix (equal to 1 for square acquisition matrices) to account for differ-
ences in resolution in the i and j directions, βL = 1, because of the unspecified
proportionality constant in Equation (2.19), and β and δ are model parameters to be
chosen†. The potentials of Equations (2.21)–(2.24) are known as�-models because
they are based on the function

�(u) = −β
1 + (|u|/δ)p (2.25)

and p = 2 is used so that the �-model approximates Gaussian behavior near the
origin. The desired adjusted data Y are obtained by maximizing the a posteriori
probability (MAP – see Equation (2.19)) which Descombes et al. [119] do by using
simulated annealing. Based on experiments with fMRI data, Descombes et al. [119]
suggest that δ = 4 and β = 0.4 provide good results.

Kruggel et al. [257] compare a number of different filtering schemes in the
temporal dimension for their ability to correct for baseline fluctuation or to
restore the signal. For baseline (low frequency) correction the following methods
were investigated.

1. Moving average (MA) filter. This filter computes the mean in a window of length
2N + 1:

y f
s (t0) =

N∑
r=−N

ys(t0 + r)/(2N + 1), (2.26)

where here, as below, y f represents the filtered time-series and y represents the original
data. A window length of ∼1.4 times the length of a single trial was found to be
optimal.

2. Finite impulse response low pass (FIR-LP) filter, where

y f
s (t0) =

N∑
r=−N

φrwr ys(t0 + r), (2.27)

† Criticism of Bayesian approaches usually stems from the lack of fixed rules available to select parameters
like β and δ in a prior model.
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where φr denotes 2N + 1 low pass filter coefficients for a cutoff frequency λ (taken to
be less than the stimulation frequency ν) defined by

φr =
{
λ/π if r = 0,
sin(rλ)/π if 0 < |r| ≤ N

(2.28)

and wr are the 2N + 1 Hamming window coefficients

wr = 0.54 + 0.46 cos(πr/N), −N ≤ r ≤ N . (2.29)

In other words the filter is a product of sinc and Hamming filters.
3. Autoregressive (AR) filter:

y f
s (t) =

p∑
r=1

αr ys(t − r)+ ε(t), (2.30)

where αr is the p parameter of the AR(p) process [440] and ε(t) ∼ N(0, σ 2). It was
found that p ≥ 15 was needed to produce good results.

4. Stateless Kalman filter:

y f
s (t) = ys(t − 1)+ (p/(p + r))(ys(t)− ys(t − 1)), (2.31)

where p = (1 − p/(p + r))p + q is the estimated covariance, q is the process noise and
r is the measurement covariance. Kruggel et al. [257] set r = 0.01, q = r/10 f and
f ≥ 1 to get reasonable performance.

Of these baseline filtering methods, the MA filter performed best but the Kalman
and FIR-LP filters were less sensitive to changes in filter parameters. The AR
filter was judged as too computationally intense and too nonlinear to be of much
use. For signal restoration (high frequency filtering) Kruggel et al. [257] consider
the following temporal filtering methods, applied after the FIR-LP filtering (at
λ/ν = 1.5).

1. FIR-LP filtering. An optimum at λ/ν = 0.38 was found.
2. Temporal Gaussian filter:

yf
s(t0) =

N∑
r=−N

gr ys(t0 + r), (2.32)

where

gr = exp(−r2/2σ 2)√
2πσ

, −N ≤ r ≤ N . (2.33)

Selection of σ ≥ 1.6 and N ≥ 3σ gave the best results. See [46] for another application
using Gaussian windows.

3. AR filters with p = 2 gave good results.
4. Spatial Gaussian filtering. This popular method was not found useful for restoring

small signals in event-related fMRI (see Chapter 3).
5. MRF restoration as described above [119].

Of the five methods listed here, MRF performed the best.
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Functional data analysis (FDA) techniques may be used to extract a smooth
underlying function from the discrete fMRI data set [368]. The smoothed data
may then be subjected to the same, or similar, analysis that would be applied to
raw data. Working with slices, Godtliebsen et al. [186] construct a smooth function
representation of the data on [0, 1]×[0, 1]×[0, 1] of a slice time-series, specifically
modeling the data, zijk as

zijk = ρ(xi, yi, tk)+ εijk , (2.34)

where εijk represents independent and identically distributed (iid) random noise
with zero mean and variance σ 2, xi = i/n, yj = j/n, tk = k/m for an n × n image
taken at m time points and ρ is the underlying smooth function. Given two kernel
functions, K and L, defined on [0, 1], the estimate ρ̂(xp, yq, tr) of ρ at the given time
points is given by

ρ̂(xp, yq, tr) = Bpqr/Apqr , (2.35)

where

Bpqr = 1

mn2

n∑
i=1

n∑
j=1

m∑
k=1

Kh
piK

h
qjK

h
rkLg

pqijzijk , (2.36)

Apqr = 1

mn2

n∑
i=1

n∑
j=1

m∑
k=1

Kh
piK

h
qjK

h
rkLg

pqij (2.37)

with

Kh
pi = Kh(xp − xi), (2.38)

Kh
qj = Kh(yq − yj), (2.39)

Kh
rk = Kh(tr − tk), (2.40)

Lg
pqij = Lg(zpq − zij), (2.41)

where Kh(x) = K(x/h)/h, Lg(x) = L(x/g)/g and zpq = ∑m
k=1 zijk/m. Godtliebsen

et al. also give methods for estimating the bias and variance of the ρ̂(xp, yq, tr)
estimates.

LaConte et al. [261] use a nonparametric prediction, activation, influence, and
reproducibility resampling (NPAIRS) method to evaluate the effect on performance
metrics of alignment, temporal detrending and spatial smoothing. NPAIRS is an
alternative to ROC analysis where results are plotted in a reproducibility–mean-
prediction-accuracy plane instead of the usual false-positive–true-positive plane.
It is found that there is little impact on the performance metrics with alignment,
some benefit with temporal detrending and the greatest improvement was found
with spatial smoothing.
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2.4.5 Wavelet transform basics and wavelet denoising

The wavelet transform of a function f ∈ L2(R) begins with a two-parameter family
of functions ψa,b, known as wavelets, which are derived from a single mother
wavelet function � as

ψa,b(x) = 1√|a|�
(

x − b

a

)
. (2.42)

Any function � for which ∫
R

|F�(ξ)|2
ξ

dξ < ∞ (2.43)

qualifies as a mother wavelet. A sufficient condition that leads to the satisfaction of
Equation (2.43) is that F�(0) = 0. The wavelet transform Wf of f is given by

Wf (a, b) = 〈f ,ψa,b〉. (2.44)

When Equation (2.43) is satisfied, the wavelet transform is invertible; i.e. W(L2(R))

is a reproducing kernel Hilbert space, see Daubechies’s book [115] for details.
Define

ψm,n(x) = ψam
0 ,nb0am

0 = a−m/2
0 �(a−m

0 x − nb0) (2.45)

to be a discrete set of wavelet functions indexed by the integers n and m. Then with
the proper selection of a0 and b0 the set {ψm,n} forms a countable basis for L2(R).
When � is formed in the context of a multiresolution analysis, defined next, we
may set a0 = 2 and b0 = 1.

A multiresolution analysis [115] consists of a succession of subspaces Vj ⊂
L2(R) such that

· · · V2 ⊂ V1 ⊂ V0 ⊂ V−1 ⊂ V−2 · · · (2.46)

with† ⋃
j

Vj = L2(R) and
⋂

j

Vj = {0} (2.47)

plus an orthonormal basis for each subspace Vj that is obtained by dilation of the
basis of V0 which, in turn, is given by translations of a mother scaling function �.
Specifically, if we let

φj,n(x) = 2−j/2�(2−jx − n), (2.48)

then {φj,n} forms an orthonormal basis for Vj for fixed j. Projection of a function
f into Vj is said to be a representation of f at scale j. We make use of this idea by

† The overbar in Equation (2.47) represents closure.
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associating a function P0f with a given data vector �y as follows:

P0f (x) =
∑

n

ynφ0,n(x), (2.49)

where P0 is the projection into V0 operator. In other words, we set yn = 〈f ,φ0,n〉
somewhat arbitrarily. With a multiresolution setup, it is possible to construct a
wavelet basis {ψj,n} for the subspaces Wj, where

Vj−1 = Vj ⊕ Wj, (2.50)

which allows us to write

Pj−1f = Pjf +
∑

k

〈f ,ψj,k〉ψj,k . (2.51)

Equation (2.51) gives a decomposition of a high resolution Pj−1f into a lower
resolution version (low pass filtered version) Pjf plus difference information (high
pass filtered version) given by

∑
k Wf (2j, n2j)ψj,k . This process may be iterated

J times to give a decomposition of P0f into J wavelet levels plus a low resolution
version PJf which is characterized by “approximation coefficients”

aj,k = 〈f ,φj,k〉. (2.52)

The quantities

dj,k = 〈f ,ψj,k〉 (2.53)

are known as the wavelet coefficients (or “detail coefficients”) and can be computed
using fast numerical methods [363] for a given data vector �y. The wavelet transform
is invertible in the sense that given a set of wavelet coefficients plus the low pass
representation of the original data at scale J , one can recover �y exactly. Note that
there are many ways to choose the wavelet and scaling function pairs,� and�, with
the expected form of the data determining, in many cases, which pair is likely to be
the most useful. By relaxing the orthonormal basis condition, wavelet transforms
may be formulated in which one pair of scaling and wavelet functions is used
to decompose the data and another pair is needed for reconstruction (the inverse
wavelet transform).

The approach given above for functions on L2(R) can be extended using tensor
products to give wavelet transforms for functions on L2(Rn). The case L2(R2)

corresponds, of course, to images and an example of a numerical wavelet decom-
position of an image is given in Fig. 2.5. Generalizations of the wavelet transform
are possible with the wavelet packet transform being one of the more common. In
a wavelet packet transform, each wavelet difference function is decomposed as if
it were a scaled function, according to Equation (2.51). An example of a wavelet
packet transform of an image is also given in Fig. 2.5.
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(a) (b) (c)

Fig. 2.5. Wavelet transforms of a 2D image: (a) original image; (b) wavelet trans-
form to two levels. A decimating wavelet transform (using the Haar wavelet
function) is illustrated here. With a decimating wavelet transform, images at level
j have half as many coefficients (values) as the image at level j − 1. Decimated
wavelet transforms are numerically fast and exactly invertible. After wavelet trans-
form to one level, four images are produced, one scale image and three wavelet
images. There is a wavelet image in the horizontal direction (bottom left image),
a wavelet image in the vertical direction (top right image) and a diagonal wavelet
image (bottom right image). The second level wavelet transform decomposes the
first level scale image into three more wavelet images and a scale image (top left-
most image). (c) Wavelet packet transform to two levels. Under the wavelet packet
transform, each of the first level wavelet images is decomposed into three wavelet
and one scale image, in addition to the first level scale image.

To accomplish wavelet denoising, the wavelet (and scale) coefficients are com-
puted, the wavelet coefficients modified, and then the inverse wavelet transform
is applied to yield denoised data. The wavelet coefficients may be modified by
hard thresholding or by soft thresholding. In hard thresholding, any wavelet coef-
ficient smaller than a given threshold, t, is set to zero. In soft thresholding, a given
threshold, t, is subtracted from all wavelet coefficients. Donoho [123] has shown that
soft thresholding, also known as wavelet shrinkage, represents an optimal denoising
approach given Gaussian noise characteristics. It is readily appreciated that wave-
let denoising is essentially a sophisticated low pass filter technique, removing high
frequency information at multiple scale, or subband, levels. The soft thresholding
approach was the first wavelet denoising method to be applied to MRI [438].

Soft thresholding is optimal in the case that the image noise is iid as a normal
(Gaussian) distribution with mean zero and standard deviationσ (∼N(0, σ)). For the
originally acquired complex-valued k-space data the white Gaussian noise model is
a good approximation to the noise, generated by thermal processes, found in each
of the real and imaginary channels. The images, however, are created by taking the
magnitude of the Fourier transform of the original k-space data so that the noise in
the images has a nonzero mean and a Rician (magnitude dependent) distribution
instead of Gaussian [345]. One approach, then, is to apply wavelet shrinkage to
the original k-space data [8, 470] but this approach can be compromised by phase
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errors in the data [345]. Given the non-Gaussian noise distribution, the optimal
wavelet filtering strategy is different from the soft thresholding one. Specifically, a
Wiener type of filter works better with the filter constructed as follows. Let I be a
subscript that indexes the translation (k) and dilation (j) indices, given, for example,
in Equation (2.53), plus, for 2D and higher wavelet transforms, orientations so that
we may write the scaling and wavelet coefficients of a signal s (image†) as

dI = 〈s,ψI〉 and cI = 〈s,φI〉 (2.54)

respectively. Then the wavelet coefficients may be filtered via

d̂I = αIdI , (2.55)

where the inverse wavelet transforms of {d̂I} and {cI} give the wavelet filtered
image. The Wiener type filter suggested by Nowak [345] is given by

αI =
(

d2
I − 3σ 2

I

d2
I

)
+

, (2.56)

where (·)+ means set the answer to zero if the term in brackets is negative andσI is an
estimate of the noise that can be estimated by measuring the square of background
noise surrounding the head, which will have a mean of 2σ 2. With orthogonal wavelet
transforms σI = σ . The application of Equation (2.56) to magnitude MRI images
works well if the SNR is high where the Rician distribution becomes approximately
Gaussian but it is better to apply the filter of Equation (2.56) to the wavelet transform
square of the magnitude image, subtract 2σ 2 from the scale coefficients (to correct
for bias), compute the inverse wavelet transform and take the square root to end up
with the denoised MRI image [345].

Wink et al. [444] use wavelet shrinkage denoising and compare activation
maps computed from wavelet denoised images to those computed from Gaus-
sian smoothed images. They find that the greater the amount of smoothing, the
more false positives are generated. So wavelet denoising that produces less smooth
images produces less false positives than Gaussian smoothed images or smoother
wavelet denoised images. They also find that the noise in the difference of two
images containing Rician noise is Gaussian.

Instead of applying wavelet denoising to the images in an fMRI time-series,
the individual voxel time-series, as a temporal sequence, may be denoised. In the
temporal direction the noise is correlated and not independent, however, Alexander
et al. [9] argue that at each scale of a wavelet transform the noise between wavelet
coefficients is nevertheless uncorrelated and the level of the noise at scale j may be

† An image may be represented as a vector by stacking the columns on top of one another.
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estimated by

σ 2
j =

[
MAVj

0.6745

]
, (2.57)

where MAVj denotes the median absolute value of the wavelet coefficients at scale j.
The noise estimate of Equation (2.57) may then be used in Equation (2.56) to
produce a denoised temporal series for each voxel independently.

The standard wavelet transform involves a decimation at each scale (see Fig. 2.5)
that makes the transform nontranslation-invariant. There are two ways to recover
translation invariance, one is to shift the image or signal through all possible cyclic
permutations and average the resulting wavelet transforms, the other is to use a
wavelet transform that does not involve decimation, known as the stationary wave-
let transform (SWT), to produce a redundant set of wavelet coefficients. Using
the SWT, LaConte et al. [260] apply the following Wiener like filter for use in
Equation (2.55) for denoising temporal fMRI voxel time-series that is organized
into K epochs with N samples per epoch (a blocked design, see Chapter 3):

αj,n =
(
(K/(K − 1))(d̃j[n])2 + (1/K − 1/(K − 1))

∑K−1
k=0 (d

j
k[n])2

1
K

∑K−1
k=0 (d

j
k[n])2

)
, (2.58)

where

d̃j[n] = 1

K

K−1∑
k=0

dj
k[n]. (2.59)

A more complex method of wavelet filtering may be derived using a leave-one-
out cross-validation technique [340]. This method again applies to a blocked design
with K epochs of N samples each. First compute the SWT {dj

k} of each epoch k
independently. Then construct the leave-one-out estimates

d̂j
p[n] = 1

K − 1

∑
k �=p

dj
k[n]. (2.60)

Apply wavelet shrinkage to each epoch k time-series to leave

d̃j
p[n] = d̂j

p[n](1 − λj[n]), (2.61)

where, using γ (θ) = min(θ , 1),

λj[n] = γ

(
(d̂j

p[n])2 − dj
p[n]d̂j

p[n]
(d̂j

p[n])2

)
. (2.62)

Average the coefficients obtained for each p from Equation (2.61) and then inverse
SWT to obtain the denoised time-series. A leave-q-out version is also possible [340].
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original T1-weighted image

image after transformation
into the “Talairach box”

Fig. 2.6. An example of a transformation into Talairach coordinates. The Cartesian
coordinates of the voxels in the transformed image may be used to identify specific
brain structures – at least approximately. The landmarks are usually identified
on a high resolution T1-weighted “anatomical” image like the one shown here.
Once the landmarks are identified, the transformation may be determined. The
transformation may then be used on all images that were obtained in the same
imaging session, including the EPI time-series images and computed activation
maps, as long as the physical coordinates of the voxels for those images are known.
The physical coordinates of the pixels can usually be determined from information
saved by the pulse sequence in the image header. The geometrical distortion of
the EPI images relative to the standard “spin warp” images used for identifying
the anatomical landmarks introduces some inaccuracies in that approach. Those
positional inaccuracies may be mollified to a certain extent by convolving the data
(EPI time-series or computed activation maps) with a smoothing function like a
Gaussian before transformation. The use of smoothed images in Talairach space
also compensates to some degree for individual variation in brain structure when
comparing activations between subjects.

2.5 Anatomical transformations to standard brain spaces

Comparing or averaging results between subjects requires that the data, in the case
of transformation before analysis, or the activation maps, in the case of transform-
ation after analysis, be registered to a common stereotaxic space represented by
a template. The most common template in use is that of Talairach and Tournoux
[416], see Fig. 2.6. Other templates include the Montreal Neurological Institute
(MNI) probabilistic template [131, 132, 133] (see Fig. 4.7 for an example display
in MNI space) and the human brain atlas (HBA) [375]. A nonlinear transformation
is required to map individual data into these standard brain spaces. In addition to
registering to standard templates, many of the methods described below are also
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useful for registering fMRI data to images obtained from other modalities like
PET (positron emission tomography) or SPECT (single photon emission computed
tomography) images and can also be used to warp EPI data onto high resolution
spin warp anatomical MRI images. Nestares and Heeger [337] use a multiresolu-
tion method (Laplacian pyramid – a wavelet decomposition) to align low resolution
functional images with high resolution anatomical images. Many of the transforma-
tions are made easier if the individual data are smoothed first and smoothing can also
make up for differences in individual anatomical topography for the simpler trans-
formations. Many of the transformations used begin with an affine transformation
in one way or another.

The rigid body transformation of Equation (2.3) is a special case of the more
general affine transformation that allows linear stretching and squeezing in addition
to translation and rotation. By augmenting 1 to the vectors �r = [x y z]T , the
coordinates of points in the original image, and �r′ = [x′ y′ z′]T , the coordinates of
points in the transformed image, we can write the general affine transformation as⎡

⎢⎢⎣
x′
y′
z′
1

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

m11 m12 m13 m14

m21 m22 m23 m24

m31 m32 m33 m34

0 0 0 1

⎤
⎥⎥⎦
⎡
⎢⎢⎣

x
y
z
1

⎤
⎥⎥⎦ , (2.63)

where some means to constrain the transformation so that the transformation param-
eters may be computed is required. In the case of registering to Talairach space, a
12-patch piecewise continuous transformation is used to squeeze the brain into the
“Talairach box” [107]. Landmarks are required to define the piecewise affine trans-
formation and these need to be manually identified. These landmarks are the anterior
and posterior commisures (AC and PC), top (superior) most, bottom (inferior) most,
left most, right most, front (anterior) most and back (posterior) most parts of the
brain.

An affine transformation may also be used to register images to a template in
a nonlabel-based manner [18]. Nonlinear methods may be used for more accurate
transformation into the template space. Many of the published nonlinear methods
use Bayesian methods (i.e. MAP) for their solution [19, 21]. Nonlinear nonlabel-
based methods include those that use Fourier type basis functions [20] or spline
warps [122] to define the transformation. Label-based methods that employ auto-
matically extracted features have also been used [94, 116]. The various approaches
for registration to a template may be evaluated using some criteria that measure
registration accuracy, including evaluation methods based on wavelets [122]. Using
the wavelet methodology, Dinov et al. [122] find that the MNI nonlinear spline warp
[100] provided better registration than the AIR 12- and 30-parameter polynomial
warps [447, 448] and the SPM nonlinear trigonometric warping [20].
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After the activation maps have been transformed onto a common brain atlas,
the identification of various sulci and gyri is useful for understanding the
underlying brain function. Such anatomical region identification may be done
automatically† [425].

2.6 Attitudes towards preprocessing

The first preprocessing step of ghost and some noise removal is usually performed
at the pulse sequence level and is generally done through the selection of options in
setting up the pulse sequence. For example, selection of fat saturation will eliminate
the chemical shift ghost and the selection of a k-space filter will eliminate some of
the noise. The incorporation of such features into pulse sequences makes it easy
for any investigator to apply them.

After pulse sequence level preprocessing, it is generally considered desirable to
align the time-series images using rigid body transformations (known by many as
“motion correction”) according to the prescriptions given in Section 2.3. However,
as we have seen, some studies have shown that even this step may introduce false
positives. Also, if the motion is too large, alignment will not make the resulting
activation map artifacts go away. So image alignment is probably most useful for a
limited range of motion amplitude; if the motion is small or nonexistent, alignment
can introduce false activations from interpolation error and if the motion is too large
alignment cannot compensate because the interpolation of image values becomes
too crude.

The step of preprocessing to remove physiologically correlated signal is best
done using measured heart and respiration rates. If those measurements are not
available, the best approach may be to model such “nuisance effects” in a GLM
approach to detecting the activations (see Chapter 4). If the frequencies of heartbeat
and breathing are incommensurate with any periods in the experiment presentation
design (see Chapter 3), then it is frequently safe to ignore the presence of the
background physiologic signals.

Removing effects like heartbeat, breathing and even drift as a preprocessing
step can compromise the power of the subsequent statistical analysis if not done
correctly. This is because, from a variance point of view, the subtracted signals
are usually not orthogonal to the signals of interest. In other words, there is some
shared variance between the two signals. That is why “projecting out” the unwanted
signal as per the prescription of Equation (2.9) is better than simply subtracting the
confound signal. A safer approach is not to remove the effects of no interest as a
preprocessing step but to explicitly model the effect as a column or columns in a

† Software is available as an SPM interface.
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GLM analysis (see Section 4.1). Then the variance due to each effect is accounted
for properly, and automatically.

In comparing activations between subjects, it is usually necessary to transform
into a common anatomical space, as discussed in Section 2.5. However, this step
may be postponed until after the maps are computed (a usual practice). So, with
the exception of ghost removal and k-space filtering at the pulse sequence stage,
nearly all of the preprocessing steps discussed in this chapter may be considered
as optional, depending on the presentation design and on the type of subsequent
time-series analysis proposed to make the activity maps.
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Color Plate 1.1. Schematic of a typical EPI BOLD fMRI data set and its reduction
to an activation map. An EPI time-series, represented here by a series of one slice
from the volume data set at each point in time, is collected while the subject in
the MRI performs a task synchronized to the image collection. The intensity of
each voxel in the image set will vary in time. An active voxel will vary in step
with the presented task while an inactive voxel will not. A statistical method is
needed to determine if a given voxel time course is related to the task, and therefore
active, or not. The active voxels are then color coded under a relevant amplitude-
color relationship and the resulting activation map is overlain on a high resolution
anatomical MRI image to allow the investigator to determine which brain regions
are active under the given task.
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Color Plate 2.3. Small head motion in an fMRI experiment leads to false positives
in activation maps. (a) The “ring artifact” is caused by motion of the edge of the
brain in and out of pixels at the edge of the brain. (b) The “brain-on-fire artifact”
is caused by motion perpendicular to the image plane. In both cases motion that
is correlated with the task paradigm is picked up in the activation maps. Image
alignment can reduce these kinds of artifacts in the activation maps if the motion
amplitude is on the order of the size of a voxel or less. The identification of ring
artifact is relatively straightforward. The identification of “brain-on-fire artifact”,
as I have called it here, can be trickier. Some tasks, such as the mental rotation
task, can produce a lot of activation and false activation can be hard to identify
in those cases. (The mental rotation task involves the presentation of two 3D
objects in different orientations and the subject is asked to decide if the two objects
are identical. To accomplish the task the objects must be mentally rotated to be
compared.) Brain-on-fire artifact can be more severe than shown here but it is
usually accompained by the ring artifact, especially in more superior axial slices.
One hint that something is wrong is that the ventricles show activation, although
this may be caused by breathing physiology. (In some investigations involving
exercise, ventricle “activation” has been observed when changes in breathing were
correlated with the task. It is not yet clear whether there were other motion-related
false positives in those activation maps.)

Color Plate 4.1. An example use of color-coding with an SPM. This image of the
interface to the AFNI software shows a color-coded amplitude map thresholded
with an SPM of correlation values. The correlation threshold in this example is
set at 0.7003 by the slider on the interface and the color bar shows that the colors
represent fractions of the maximum BOLD amplitude found in the data set. Many
software packages for fMRI data processing have similar interfaces for displaying
SPM related data.



Color Plate 4.8. Example frames from an activation movie made with the random
walk model of Equations (4.276) – (4.278) and a visual stimulation paradigm.
Although hard to see in this reproduction, underneath the images is a representation
of the presentation paradigm and a red dot on that representation showing the time
of the activation map. The times, from top left to bottom right are t = 39, 45, 51,
99, 105, 111, 159, 165 and 171 s. Taken from [191], used with permission.

Color Plate 5.2. Activations computed on the 2D surface of the cortex using
AIBFs. In part (ii): (a) shows an outline of the computed cortical surface on top of
the voxels of the original EPI data along with the activation as computed on the
2D surface; (b) shows the activations as transformed by the function g of Equa-
tion (5.15) from cortical space to voxel space; (c) shows a conventional map as
computed with the SPM software for comparison. Part (i) shows the same activ-
ation on: (a) the cortical flat map SF ; (b) the inflated cortical map SI ; and (c) the
folded grey matter surface SG. Taken from [247], used with permission.



Color Plate 5.7. Example replicator dynamics solution to finding networks in a
visual stimulation experiment. At the top, two slices from one subject are shown
with the found networks color coded with red representing the first network and
various shades of yellow representing other networks. At the bottom are the MDS
maps (plotted with the two principal directions of the similarity structure matrix
[W ] represented as the x and y directions) for each slice with the networks being
represented by their numbers. In this example, SOM clustering was done first,
followed by the determination of networks of cluster centers by replicator dynamics
from the SOM clusters. Note how the SOM organization shows up in the MDA
clusters as expected. Taken from [286], ©2002 IEEE, used with permission.
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Experimental designs

Before an fMRI time-series can be acquired, a question needs to be posed and an
experiment designed. There are two main types of experimental design in fMRI,
the blocked design and the event-related design†. Figure 3.1 schematically shows
the difference between the two designs. In the blocked design, a fixed number
of multiple trials are presented in immediate succession in each block. The time
between each trial is known as the stimulus onset asynchrony (SOA). Between
blocks of stimulus presentation are blocks of rest. One cycle of blocked task and rest
is known as an epoch. In an event-related design the tasks are presented individually,
instead of in blocks, with a spacing, T , that may be variable [376]. The time interval
T may be further broken down‡ into the interstimulus interval (ISI) and stimulus
duration (SD) so that T = ISI + SD.

Each experimental design has its advantages and disadvantages. For example, a
blocked design will generally be more sensitive to detecting activations while an
event-related design may be better able to characterize the BOLD response. Both
types of design rely on signal averaging to remove noise when the activation maps
are computed. An event-related design with constant ISI may be considered as a
limiting example of a blocked design. With both types of design, the hemodynamic
response function (HRF) may be considered, in a linear systems approach, as the
convolution of the stimulus paradigm (a step function equal to 1 during the stimulus
and 0 otherwise) and the impulse response function (IRF). The shape of the HRF
tends to drive the analysis of blocked designs, while the shape of the IRF tends to
drive the analysis of the event-related designs. For example, the stimulus paradigm
function for the analysis of event-related data tends to be more a series of Dirac δ
functions than a step function. For some designs, the distinction between blocked
and event-related designs may be blurred as we shall see in the following sections.

† The blocked design has also been referred to as the state-related design [161].
‡ Some investigators prefer to equate T and ISI.

39
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(a)

(b)

(c)

Fig. 3.1. Blocked and event-related fMRI experimental designs. (a) Blocked fMRI
design. The high regions represent task and the low regions represent rest. The
tasks and rests are alternated periodically with the sum of one task and one rest
being designated an epoch. (b) The blocked design interpreted as an event-related
design. Each block of a blocked design typically contains repeated performance
of the same or a similar task. To construct a regressor in the GLM design matrix
to represent the model HRF, a model IRF may be convolved with the function
illustrated in (a) for a conventional blocked design analysis or with the function
illustrated in (b) for an event-related analysis of the blocked design. (c) A randomly
presented event-related design. The convolution of this function with a model IRF
produces the model HRF for use in a GLM design matrix.

3.1 Blocked designs

The simplest way to analyze a blocked design is to use a t-test to compare the
average signal during the task to the average signal during the rest. Software for
performing such a t-test is readily available in the Stimulate software [411]. Most
fMRI analyses, however, either model or attempt to measure the HRF in some way,
because of the availability of the relatively rapidly sampled time-series data.

A popular approach to blocked designs, because it is easy to program, is to have
the stimulus presentations phase-locked with the image acquisition. This approach
can lead to a sparsely sampled HRF and it has been demonstrated that designs that
use distributed stimulus presentation can produce different activation maps from
phase-locked presentation designs when both are similarly analyzed [364, 430].
Two ways of achieving distributed presentation are to vary the SOA from presenta-
tion to presentation (e.g. SOA = 2000±150 ms) or to use a TR that is not an integer
multiple of the SOA (e.g. SOA = 3000 ms, TR = 3150 ms). Varying the presentation
in this way leads to sampling the HRF at points not fixed by TR and it is hypothes-
ized that denser sampling is needed because the HRF may contain a high frequency
component caused by, in part, “top-down” cognitive processing [364, 430]. The
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hypothesized high frequency components have been observed experimentally as
being due to resting fluctuations in arterial carbon dioxide [445].

The HRF model for model-based analysis (Section 4.1) will be different depend-
ing on whether an assumed IRF, h, is convolved with a boxcar step function, χS, or
with a series of Dirac δ functions (see Fig. 3.1(a) and (b)). The Dirac δ approach
may better characterize the observed BOLD signal [311]. Alternatively, a mixed
blocked/event-related design may be used where the stimuli may be arranged in a
random ISI (=SOA) presentation within a block to be repeated at the next epoch. An
analysis with χS ∗h reveals sustained responses, while an analysis with δ∗h reveals
responses more directly associated with the stimulus presentations [432, 439].
Figure 3.1 illustrates designs with one task type per run but multiple task types
may be presented randomly through the imaging time sequence in an event-related
design and later analyzed using separate models for each task type. The same prin-
ciple also applies to blocked designs as long as the task type is constant within a task
block and mixed task, mixed block/event-related designs have been successfully
implemented [268].

What is the optimal repetition period for a blocked design, or equivalently, what is
the optimal ISI for an event-related constant ISI presentation? Following Bandettini
and Cox [27], we can provide a linear systems mathematical answer to this question.
Let x represent the HRF and h represent the IRF so that

x(t) = α

M−1∑
m=0

h(t − mT)+ β + ζ(t), (3.1)

where α is the response magnitude, β is the signal baseline, T = ISI + SD, and
ζ is the noise assumed to be stationary and white with variance σ 2. Note that
Equation (3.1) is a δ ∗ h type model but can be made to be essentially a χS ∗ h type
of model by setting h ≈ χS. By minimizing the amount of variance in the estimate
α̂ of α for a fixed amount of scan time (time covered by the fMRI time-series)
Bandettini and Cox find an optimal time Topt for T as

Topt = 2
μ2

1

μ2
, (3.2)

where

μ1 =
∫

h(t) dt and μ2 =
∫

h(t)2 dt (3.3)

which is equivalent to maximizing the expected value of
∫ |x(t) − x̄|2 dt, where x̄

is the average signal (β + constant). We may evaluate Equation (3.2) by assuming
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a standard model for the IRF, the gamma variate function

h�(t; b, c) =
{

tbe−t/c t > 0,
0 t < 0.

(3.4)

We then find

Topt = 2bc4b�(b)2

�(2b)
, (3.5)

where

�(τ) =
∫ ∞

0
t(τ−1) e−t dt. (3.6)

Using realistic fMRI values of b = 8.6 and c = 0.55 s we find Topt = 11.6 s. With
SD = 2 s, so that h = χ[0,2] ∗ h�(·; 8.6, 0.55) we find Topt = 12.3 s. With an SD of
2 s, Bandettini and Cox find an optimum T of 12 s experimentally and also show
that, for any function h, an optimum T is given roughly by

Topt =
{

14 SD ≤ 3 s,
14 + 2(SD − 3) SD > 3 s,

(3.7)

which shows that having equal times for task and rest is not optimal.
Comparison of the relative efficiency of blocked versus event-related experi-

mental design (from a GLM point of view) depends on the contrast vector of interest
(see Section 4.1.6). If the contrast vector emphasizes detection (e.g. single basis
function, a model HRF), a blocked design is more efficient, under the assumptions
of linear, task independent hemodynamic response. If the contrast vector empha-
sizes estimation (multiple basis functions, e.g. coefficients to characterize an IRF),
then a (randomized) event-related design is more efficient [44, 310].

3.2 Event-related designs

Event-related fMRI was introduced by Buckner et al. [65], who used a nonpara-
metric method (Kolmogorov–Smirnov statistic, see Section 4.5) for computing
activation maps for both the event-related (with equal ISIs) and a comparative
blocked design. Event-related designs are, however, better used with randomized
ISI spacing [74] as this allows the IRFs to be sampled with varying degrees of over-
lap. Event-related designs also allow for the possible removal of task correlated
signal change due to motion because the HRF signal rises more slowly than the
motion induced signal and will result in a deduced IRF that can be distinguished
from the motion signal [43].

Hopfinger et al. [223] studied the effect on a randomized event-related design
at 2 T of the following four factors: (1) resampled voxel size after realignment,
(2) spatial smoothing, (3) temporal smoothing and (4) the set of basis functions used
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to model the response from a sensitivity perspective. The basis functions considered
included a gamma function HRF model (see Equation (3.4)) plus the temporal
derivative of the HRF plus a dispersion derivative of the HRF (the derivative with
respect to c in Equation (3.4)). They found optimal values at 2 mm2 resampling
voxel size, 10 mm FWHM† spatial smoothing and 4s FWHM temporal smoothing
and a basis function set (modeled by columns in the design matrix, see Section 4.1)
consisting of an HRF model and its temporal derivative‡.

Josephs and Henson [238] provide a review of factors that affect event-related
experimental designs. In particular, there can be considerable variation in the actual
HRF and its linearity both between subjects and between brain regions within
a single subject [4, 244]. This variation can cause a significant number of false
negatives when a fixed HRF model is used in a GLM (see Section 4.1) for activation
detection§ [206]. Duann et al. [125] used ICA (see Section 5.2) to show that it is
possible to evolve a double peaked hemodynamic response to a short stimulus burst
in the V1 region of the occipital lobe. The HRF can also vary with age. Using a
model of the HRF composed of piecewise sums of variable width half-Gaussians,
Richter and Richter [373] were able to show that the latencies of the leading edge,
peak and trailing edge all increased with age, where the latencies were defined as
the midpoints of the middle three of the seven pieces of the fitted HRF model.

Using the efficiency criteria given in Section 4.1.6 for estimation it can be shown
that a randomized selection of ISI is more efficient than constant ISI presentation. A
truly optimal presentation with respect to Equation (4.68) can be done using genetic
algorithms to search through the ISI parameter space [436] (software available as
an SPM extension).

It is possible to mix more than one task type into a design, either for event-
related or blocked designs and then separate the tasks at the map computation stage
(see Section 4.1.5). With the introduction of multiple tasks, specialized event-related
designs become possible [280, 283] that include:

• Permuted block designs. These may be constructed beginning with a blocked design
containing blocked identical tasks with the tasks being different between the blocks,
then modifying by permuting individual tasks between originally homogeneous blocks
to make the blocks heterogeneous in terms of task type within the blocks.

• m-sequence designs [73]. With these designs, if L = Q + 1 is a prime number with Q
being the number of tasks (1 is added for the null task), a specialized sequence of length
N = Ln − 1 can be constructed whose estimation efficiency is better than a random
design.

† FWHM = full width half maximum, in this case with a Gaussian kernel.
‡ The use of a derivative models some of the nonlinearity of the HRF, see Section 4.2.
§ Handwerker et al. [206] use the Voxbo software (http://www.voxbo.org) and the fmristat software

(http://www.math.mcgill.ca/keith/fmristat) for their work.
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• Clustered m-sequence designs. These designs begin with an m-sequence design having
maximal estimation efficiency and the tasks are permuted to improve the detection
efficiency at the expense of estimation efficiency.

• Mixtures of the above types.

3.3 The influence of MRI physics on fMRI experiment design

An fMRI experiment must address a cognitive science question within the
constraints of blocked and event-related experimental designs. In addition, the
experimenter must select the appropriate parameters for the EPI sequence itself.
These parameters are flip angle, echo time (TE), repetition time (TR), number of
slices and slice thickness. There is also the option of choosing between various spin
preparations prior to image acquisition including spin echo, gradient echo, inver-
sion recovery, diffusion weighting, etc. For typical work at a main field strength
of 1.5 T, a gradient echo sequence with a fat saturation pulse (see Section 2.1) is
used. Other spin preparation options (e.g. spin echo, diffusion weighting, etc.) may
be used for measuring BOLD signal from specific vascular sources at higher fields
(see Section 4.2).

The selection of flip angle involves a trade-off with TR in terms of signal intensity
versus speed, but that trade-off is minor compared to other consequences of TR

selection (see below). So a selection of 90◦ is a good choice especially since isolated
timing errors only affect one time point; i.e. with a 90◦ flip angle only one repetition
is required for the spins to come to longitudinal equilibrium. This point is important
for the beginning of a fMRI time-series acquisition. Most experiments collect five
or so “dummy” volumes of data before the experiment proper commences. For
a perfect 90◦ flip angle only one dummy volume is required to bring the spins to
equilibrium but a few more are recommended, not only to compensate for imperfect
flip angle control but also to allow the subject to get used to the noise made by the
gradient coils during imaging.

The selection of TE is a trade-off between having more signal for smaller TE

and more BOLD T∗
2 contrast for longer TE . Using fuzzy clustering methods (see

Section 5.4) Barth et al. [28] show a steady increase in BOLD signal enhancement
from short to long TE for TE ∈ {42 ms, 70 ms, 100 ms, 130 ms, 160 ms} except
at TE = 130 ms, where the enhancement was lower than for TE = 100 ms and
TE = 160 ms. The lower enhancement at TE = 130 ms is attributed to vascular
and tissue spin dephasing (type-2 BOLD effect, see Section 4.2 and Fig. 4.3). At 4
and 7 T, Duong et al. [127] show that setting TE to be approximately equal to brain
gray matter T2 leads to signal that is dominated by microvasculature signal over
large vessel signal.
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The selection of TR also has two opposing mechanisms, a shorter TR gives higher
sampling of the HRF, while a longer TR gives more NMR signal. Constable and
Spencer [102] show, with both mathematical modeling and experimentation, that
the statistical power gained by shortening TR (from increased sampling of the HRF)
far outweighs the NMR signal gain obtained by increasing TR. So the experimenter
should select the minimum TR that will allow the collection of the required number
of slices. Opposed to the criterion of selecting the shortest TR possible is the obser-
vation that the false positive rate associated with uncorrected inferential statistics
is reduced for longer TR because the autocorrelation in the noise is reduced [365]
(see Section 4.1.7).

The selection of the number of slices depends on the coverage desired. That cov-
erage, in turn, is determined by the slice thickness. The trade-off in slice thickness
selection is between increasing contrast with thinner slices and increasing SNR
with thicker slices. Howseman et al. [227] show that higher SNR is more desirable
because it leads to increased statistical significance in the activation maps. They
show that acquired 1 mm thick slices smoothed to 8 mm yield less significant activ-
ation maps than maps made directly from acquired 8 mm thick slices and suggest
that a slice thickness of 5–8 mm will optimize sensitivity and provide adequate lo-
calization. An exception to this recommendation is in the lower brain areas where
the effect of signal drop out caused by susceptibility gradients from the sinuses can
be countered with the use of thin slices. Howseman et al. further show that there
is no effect on the significance of the map of slice order and in particular that there
is no effect of T1 spin tagging inflow in EPI-based fMRI experiments†. However,
it should be noted that slice order can affect measurement of HRF latency and
sequential slice order can lead to MRI signal cross-talk between the slices through
overlapping slice profiles.

† Gao et al. [175] show more directly that the BOLD effect far outweighs blood inflow effects in EPI
gradient echo based fMRI.
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Univariate approaches: activation maps

The GLM approach to the analysis of neuroimages was first elucidated by Friston
et al. [157] and the vast majority of fMRI data analysis techniques employed by
neuroscientists use a GLM of one form or another. In this section we examine voxel-
wise analysis of data; each voxel’s time-series is subject to a statistical analysis and a
summary statistic like Student’s t or Fisher’s F is computed. Color-coding the values
of the statistic and plotting them as an image gives an SPM that is usually overlain
on a high resolution anatomical image of the brain. Jernigan et al. [234] argue that
it is important to retain the color-coding of an SPM to convey more information
than just to show which voxels are above a cut off threshold. An alternative way
to present an activation map is to present an amplitude (also color-coded) that is
thresholded by the SPM values [107, 109], see Fig. 4.1.

4.1 The GLM – univariate approaches

A GLM of the time-series of an individual voxel in a 3D volume data set may be
expressed as

�y = [X] �β + �ε, (4.1)

where �y is the time-series data for one voxel, �β is the parameter vector, [X] is the
design matrix and �ε is the residual or error vector. The columns of the design matrix
characterize the parameters (explanatory variables) to be estimated. Consider, as an
illustrative example, a blocked design with two volumes of images collected during
the task followed by two volumes of images collected during rest at each epoch with
three repeated epochs. (We assume that the volumes collected at the beginning of the
time-series to allow the proton spins to come to longitudinal equalization have been
discarded.) This simple design will result in the collection of 12 image volumes
as a time-series. Consider the time-series from one 3D volume voxel, �y, in the
simple data set; �y is a 12-dimensional vector. Then the explicit GLM for our simple

46
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Fig. 4.1. An example of use of color-coding with an SPM. This image of the
interface to the AFNI software shows a color-coded amplitude map thresholded
with an SPM of correlation values. The correlation threshold in this example is
set at 0.7003 by the slider on the interface and the color bar shows that the colors
represent fractions of the maximum BOLD amplitude found in the data set. Many
software packages for fMRI data processing have similar interfaces for displaying
SPM related data. See also color plate.
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where the two columns of [X] are associated with the two indicator parameters β1

(task) and β2 (rest). In practice, additional columns might be added to account for
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drift and other factors (see Chapter 2). For event-related analysis, a single column
could represent the HRF (this is also a better approach for blocked designs than
the simple model of Equation (4.2)) or each column could represent a parameter
describing an IRF. If the design matrix is of full rank (as is the case for our simple

model), then an estimate of �β, �̂
β, may be found from the least squares solution

�̂
β = ([X]T [X])−1[X]T�y. (4.3)

Define [X]+ to be a pseudoinverse of [X]. If [X] is of full rank, then [X]+ =
([X]T [X])−1[X],T , otherwise, if [X] is not of full rank (e.g. when the grand mean
is modeled), then there exist a number of methods to compute [X]+. With the
pseudoinverse defined, Equation (4.3) may be written simply as

�̂
β = [X]+�y. (4.4)

The GLM is a multiple regression model and generalizes the idea of computing the
correlation, as given by Equation (1.9), between a model HRF and the voxel time
course [99]. When computing correlations there is the problem of what to choose
for the model HRF. Popular choices are to let the model HRF be equal to an assumed
IRF convolved with a step function defining the task paradigm (see Section 4.1.2).
Another choice is to pick a representative time course given by the data from a
region known to be active, as determined through visual inspection of the time
course for example. Visual inspection of the time courses is easier for blocked
designs where time courses that are correlated with the task presentation are more
apparent (e.g. Fig. 1.1). Yet another choice, for blocked designs, is to average the
response over the task epochs, for each voxel, and use the periodic extension of the
average time course as the model HRF for the given voxel [389].

An effect of interest may be compared to a null hypothesis of no effect using a
contrast vector, �c, to describe the effect of interest. Specifically the effect of interest

is modeled by �c T �β, and estimated by �c T �̂
β. A t-test may then be used to test the

null hypothesis that �c T �β = 0 using the test statistic

t = �c T �̂
β√

var(�c T �̂
β)

, (4.5)

where var(�c T �̂
β) depends on the noise model adopted. For the simple design given

by Equation (4.2) and a test to see if the signal during task is significantly different
from that during rest, �c T = [−1 1]. A useful noise model is that the noise is
normally distributed as N(0, σ 2[�]). For the case in which noise between time
points is not correlated, [�] = [I] the identity matrix. With that N(0, σ 2[�]) noise
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model (assuming that [�] is known),

var(�c T �̂
β) = σ 2[X]+[�][X]+ T . (4.6)

The variance σ 2 may be estimated from the residuals, �̂ε, defined as

�̂ε = �y − [X] �̂
β = ([I] − [X][X]+)�y = [R]�y, (4.7)

where [R] = [X]([X]T [X])+[X]T is known as the residual matrix. With this residual
matrix, the estimate, σ̂ 2 of σ 2 is

σ̂ 2 =
�̂ε T �̂ε
tr[R] , (4.8)

where tr denotes trace and the effective degree of freedom, ν, to use with the t-test
statistic of Equation (4.5) for comparison to the Student t distribution is

ν = tr([R])2
tr([R]2)

. (4.9)

The map of t values given by Equation (4.5) is known as an SPM of t values or
SPM{t}.

The design matrix and parameters usually need to be divided into effects of
interest and effects of no interest (confounds) so that, with �θ representing the
parameters of interest and �φ representing the confound parameters, Equation (4.1)
becomes, at voxel i of n voxels,

�yi = [A]�θi + [B] �φi + �εi. (4.10)

With a breakdown of the design matrix according to Equation (4.10), it becomes
possible to characterize the response with the F statistic as discussed in
Section 4.1.3. Otherwise, the use of contrasts and the t statistic as discussed above
represent the main ideas behind the use of a GLM for characterizing and detecting
BOLD response. We end this discussion with a review of a couple of methods that
may potentially increase the power of the GLM approach but which are not in wide-
spread use. Discussion of more conventional approaches resumes in Section 4.1.1.

The matrices [A] (p × m) and [B] (q × m) of Equation (4.10) are normally set
a-priori but Ardekani et al. [16] show how both the dimension of and the bases
(columns) for [B] may be determined empirically if it is assumed that [A]T [B] = 0
and �εi ∼ N(0, σ 2[I]). Defining the projection matrices [PA] and [PB] by

[PA] = [A]([A]T [A])−1[A]T and [PB] = [B]([B]T [B])−1[B]T , (4.11)

Ardekani et al. show how the basis for [B] may be chosen from the q eigenvectors
of ([I] − [PA])[R] having the largest eigenvalues, where

[R] = 1

n

n∑
i=1

�yi�y T
i (4.12)
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is the covariance matrix of the data. The dimension q is found by minimizing the
Akaike information criterion (AIC) given by

AIC(q) = −�([Y ]; [�], [�], [B], σ 2)+ Kq, (4.13)

where � is the log of the likelihood function given by

�([Y ]; [�], [�], [B], σ 2) = −np

2
ln(2πσ 2)− 1

2σ 2

n∑
i=1

(�yi − [A]�θi − [B] �φi)
T

× (�yi − [A]�θi − [B] �φi) (4.14)

and

Kq = nm + nq + [qp − qm − q(q + 1)/2] + 1 (4.15)

is the number of free parameters in the model. The maximum likelihood (ML)
solution for the parameters (parameters that maximize �) is given by the least
squares solutions

�̂
θi = ([A]T [A])−1[A]T�yi, (4.16)

�̂
φi = ([B]T [B])−1[B]T�yi (4.17)

and the estimate for σ 2 is given by

σ̂ 2 = 1

np

n∑
i=1

(�yi − [A]�θi − [B] �φi)
T (�yi − [A]�θi − [B] �φi). (4.18)

Ardekani et al. further show that a constant false alarm rate (CFAR) matched sub-
space detector (MSD) for specifying the activation map is obtained by considering
the F ratio

F(�y) = �y T [PA]�y/σ 2m

�y T ([I] − [PA] − [PB])�y/σ 2(p − q − m)
(4.19)

and computing the activation mapϕ (with 1 as active) using the following uniformly
most powerful (UMP) test of size α:

ϕ(F) =
{

1 if F > F0,
0 if F ≤ F0,

(4.20)

where

α =
∫ ∞

F0

Fm,p−q−m dF (4.21)

is the tail area, from F0 on, of the F distribution with m numerator and p − q − m
denominator degrees of freedom.
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The SNR for GLMs may be increased by “borrowing” signal from neighboring
voxels. Let �zi1 be the time-series data for a given voxel i and let �zij, 2 ≤ j ≤ L be
the time-series of the voxels in a specified neighborhood of voxel i. Then we may
consider the model of Equation (4.10) as being for the weighted average

�yi =
L∑

j=1

wj�zij. (4.22)

Hossein-Zadeh et al. [226] show that the optimal weights �w may be obtained by
maximizing the objective function

λ(�w) = �w T [Z]T [PA][Z]�w
�w T [Z]T (I − [PX ])[Z]�w , (4.23)

where [Z] = [�zi1 . . . �ziL] and [PX ] is the projector into the column space of the design
matrix defined analogously to Equations (4.11). Defining [C] = [Z]T [PA][Z] and
[D] = [Z]T (I − [PX ])[Z], �w is the eigenvector corresponding to the largest eigen-
value of [D]−1[C]. Once the weights are settled and a least squares solution to
Equation (4.10) found and the resulting SPM thresholded to provide a provisional
activation map, Hossein-Zadeh et al. apply a postprocessing procedure to trim
the resulting active clusters (connected components of the activation map) of inact-
ive voxels. The postprocessing proceeds in four steps: (1) For each provisionally
active voxel, remove the nuisance effects from the time-series via �y = �z − [PB]�z.
(2) Find the “seed” time-series �r in each connected cluster as the voxel having the
most energy as defined by �y T [PA]�y. (3) For each voxel in each connected cluster
compute

g = �y T [PA]�y
�r T [PA]�r . (4.24)

(4) Declare all voxels for which g < gt , where gt is an empirically determined
threshold, as inactive. Hossein-Zadeh et al. find that gt = 0.1 works well.

4.1.1 Temporal smoothing

Based on the idea of filter matching, it has been shown that statistical power for
detection may be increased by smoothing the fMRI voxel time-series in the temporal
direction using a filter [K], [151, 154, 455]. Typically Gaussian smoothing with
Kij ∝ exp(−(i − j)2/2τ 2) is used, with τ 2 = 8 s2 [142]. With temporal smoothing,
the GLM becomes

[K]�y = [K][X] �β + [K]�ε, (4.25)
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and the estimates of �β become

�̂
β = ([K][X])+[K]�y. (4.26)

The process of multiplying the data and model by [K] is known as coloring the

data (see Section 4.1.7). The relevant variance to use in Equation (4.5) for �̂
β

of Equation (4.26), employing the simplification [�] = [I] that the smoothing
allows, is

var(�c T �̂
β) = �c T var( �̂β)�c, (4.27)

where

var( �̂β) = σ 2([K][X])+[V ](([K][X])+)T (4.28)

with [V ] = [K][K]T and where

σ̂ 2 = �e T�e
tr([R][V ]) (4.29)

is an estimate for σ 2. In Equation (4.29) �e = [R][K]�y and [R] is the residual forming
matrix. With temporal smoothing, the effective degrees of freedom are

ν = tr([R][V ])2
tr([R][V ][R][V ]) . (4.30)

4.1.2 Modeling the impulse response function

The GLM design matrix may be constructed with an assumed IRF convolved with
the presentation function (see Section 3.1) to give a model HRF. The model HRF is
then used for BOLD signal detection. Or the design matrix may be designed with
the goal of characterizing the IRF using a parametric model of the IRF. We review
those two approaches to analysis here by looking at both kinds of IRF model.

One of the first models of the IRF assumed a Poisson form

h(τ ) = λτ e−λ/τ !, (4.31)

where τ andλ are positive integers [151]. Discrete convolution with the presentation
paradigm then gives the model HRF (a column in [X]). Widely used refinements
on Equation (4.31) include the gamma variate functions of Equations (3.4) and
(4.195). An alternative way to model the HRF directly in a blocked design is to
assume it has the functional form

fk(t) = sin(π t/(n + 1)) exp(−t/(nk)), (4.32)

where n is the length of the task block in scans (number of task data volumes
collected per epoch) with k = 4 to model an early response and k = −1 to model
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a late response [155]. Using the values of f4 and f−1 at the scan times provides two
columns for the design matrix [X]. Contrasts between the two columns can then
reveal differences in response between different brain regions. Linear combinations
of f4 and f−1 are capable of modeling a variety of HRFs from standard unimodal
responses to bimodal responses.

A GLM design with a single column representing the model HRF and a con-
trast vector of �c = [1]T in Equation (4.5) is equivalent† to simply computing
the correlation (see Equation (1.9)) between the time course and the model HRF
through Equation (4.196). It is also possible to correlate the Fourier transform of the
model HRF with the Fourier transform of the voxel time-series [26]. When using
a correlation approach it is necessary to project out drift and other confounds as a
preprocessing step (see Section 2.4.1).

Combining linear systems theory with the GLM allows one to construct a design
matrix capable of characterizing the IRF h. Let u represent the stimulus function
which, for event-related designs, is taken as

u(t) =
∑

events

δ(t − tevent), (4.33)

then linear systems theory predicts a signal (HRF) y of the form

y(t) = u ∗ h(t)+ ε(t), (4.34)

where ε is the error time course. Let {gb|1 ≤ b ≤ B} be a set of basis functions so
that we may represent h as

h(t) =
B∑

b=1

βbgb(t), (4.35)

then Equation (4.34) may be written as

y(tn) =
B∑

b=1

u ∗ gb(tn)βb + ε(tn), (4.36)

where tn are the times sampled by the fMRI image time-series. Almost any set of
basis functions can be used, including low order polynomials [60], with gamma
variate functions (see Equations (3.4) and (4.195)) being common choices. Harms
and Melcher [211] propose a set of five basis functions that they call the OSORU
set, for onset, sustained, offset, ramp and undershoot, with each basis function
capable of modeling those five physiologically observed components of the BOLD
response (see Section 4.2 and Fig. 4.4). Clark [98] proposes orthogonal polynomials
as a basis set. For blocked designs, a Fourier basis (sines and cosines) is particu-
larly useful [15] and may be employed to model the HRF directly by skipping the

† It may be desirable to model the grand mean in [X] to have a noise model with zero mean.
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convolution with u given in Equations (4.34) and (4.36) (or equivalently setting u
equal to Dirac’s δ). Wavelet packet methods may be used to select the best wavelet
packet basis from a local clustering point of view [317].

From Equation (4.36) we see that setting Xnb = u∗gb(tn) gives the design matrix.
To adequately sample the IRF, nonconstant ISIs should be used [237]. As usual,
columns may be added to the design matrix to represent effects of no interest like
drift and physiological noise leaving a design matrix having B effects of interest.

As an alternative to modeling the IRF as a linear combination of basis functions, as
given in Equation (4.35), one can model the amplitude of each point on a finite length
IRF as a separate parameter by considering the discrete version of Equation (4.34)
[44]. This leads to a finite impulse response (FIR) model of the form

y(tn) =
M∑

m=1

u(tn−m+1)βm, (4.37)

where M is the assumed finite length of the IRF and u is the stimulus function. In
this case the design matrix entries are Xnm = u(tn−m+1), not counting, of course,
columns devoted to modeling effects of no interest. The approach of Equation (4.37)
introduces less bias than the approach of Equation (4.36) into the estimation of the
IRF when B < M, because no assumption is made about the shape of the IRF other
than its length, and it generally provides a better estimate of the IRF shape [396].

4.1.3 Using the F statistic

To decide whether a voxel is activated or not from a design that models the IRF,
an SPM of F statistics is appropriate. The appropriate F statistic may be deter-
mined using the extra sum of squares principle that works as follows. Partition the
design matrix into columns of interest and no interest and the parameter vector into
subvectors of interest and no interest and express the GLM as

�y = [XH |Xr]

⎡
⎣ �β1

—
�βr

⎤
⎦+ �ε, (4.38)

where the subscript H refers to effects of interest and r to effects of no interest. Let
SR = �̂ε T �̂ε be the residual sum of squares for the full model and Sr = �̂ε T

r
�̂εr be the

residual sum of squares for the reduced model

�y = [Xr] �βr + �εr (4.39)

and let p = rank[X], pr = rank[Xr] and q = p − pr . Let SH = Sr − SR and
assume the the noise model for �ε is N(0, σ 2[I]), where [I] is the identity matrix
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(i.e. independent (white) Gaussian noise), then the test statistic†

F = SH/ν0

SR/ν
(4.40)

may be compared to Fν0,ν to test the null hypothesis of no activation, where the
degrees of freedom of the numerator ν0 = q and the denominator ν = N −p, where
N = dim�y. Subsequently an SPM{F} may be plotted. If we define the projectors

[R] = [I] − [X][X]+, (4.41)

[Rr] = [I] − [Xr][Xr]+, (4.42)

[M] = [R] − [Rr], (4.43)

then Equation (4.40) can be rewritten as

F = �y T [M]�y/tr[M]
�y T [R]�y/tr[R] . (4.44)

If the noise model is N(0, σ 2[�]), then the numerator of Equation (4.44) will no
longer follow aχ2

ν0
distribution under the null hypothesis. Instead it will follow a lin-

ear combination ofχ2
1 distributions that, by the Satterthwaite approximation, can be

approximated by a gamma distribution. Under that approximation, the appropriate
F statistic to compute is [455]

F = �y T [M]�y/tr([M][�])
�y T [R]�y/tr([R][�]) , (4.45)

which may be compared to Fν0,ν , where

ν0 = tr([M][�])2
tr([M][�][M][�]) and ν = tr([R][�])2

tr([R][�][R][�]) (4.46)

(see Equation (4.30)‡). To apply Equation (4.45), knowledge of [�] is required.
One approach to estimating [�] is to compute a pooled estimate over all the voxels
(the SPM2 software does that). However, it is known that the time-series auto-
correlation varies over the brain, due to the varying physiological processes that
cause the autocorrelation (see Section 2.4.2), so that another approach is to model
the autocorrelation function ρ (see Equation (1.5)) for each voxel [259]. Assume,
in the following discussion, for simplicity, that normalized time is used such that
tn = n for the data point at position n in the time-series. When ρ is given, the entries
of the estimated autocorrelation matrix [�̂] are given by

�̂ij = ρ(|i − j|). (4.47)

† The terms SH and SR are variously known as the sum of squares due to the model and sum of squares due
to the error respectively or as the “between” sum of squares and “within” sum of squares respectively from an
ANOVA/ANCOVA point of view.

‡ The theory developed for the F statistic may be applied to the t statistic under the equivalence t2ν = F1,ν .
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The autocorrelation function, ρ, is found by fitting a model to the estimated
autocorrelation function

ρ̂(k) =
∑N−k

i=1 (
�̂εi − ε̂)(�̂εi+k − ε̂)∑N−k

i=1 (
�̂εi − ε̂)2 , (4.48)

where ε̂ is the mean of the residual vector components. Kruggel et al. [259] find
that the “damped oscillator” model

ρ(k) = exp(a1k) cos(a2k) (4.49)

fits fMRI data well. The standard AR(1) model may be obtained from
Equation (4.49) by setting a2 = 0.

Kiebel et al. [249] argue, using restricted maximum likelihood (ReML) esti-
mators of σ 2 for the noise model N(0, σ 2[�]), that the F statistic of Equation (4.45)
should be used with ν = tr[R] instead of the formula given in Equation (4.46). Then
they extend their work to the case where �ε ∼ N(0, [Cε]), where [Cε] = ∑m

i=1 λi[Qi]
is described by multiple variance parametersλi that may be estimated using iterative
ReML methods. In that case, they recommend the use of

F = �y T [M]�y/tr([M][Cε])
�y T [R]�y/tr([R][Cε]) (4.50)

with

ν0 = tr([M][Ĉε])2
tr([M][Ĉε][M][Ĉε])

(4.51)

and

ν =
∑

i λ̂
2
i tr([M][Qi])2∑

i λ̂
2
i tr([M][Qi])2 tr([R̂ML][Qi][R̂ML][Qi])−1

, (4.52)

where

[R̂ML] = [I] − [X]([X]T [Ĉε]−1[X])−1[X]T [Ĉε]−1. (4.53)

If [Ĉε] is available, then another alternative is to prewhiten the data by multiplying
the model �y = [X] �β + �ε by [Cε]−1/2 to obtain a model with independent errors
[67] (see Section 4.1.7).

4.1.4 Nonlinear modeling: Volterra kernels

By running multiple experiments to measure the HRF from widely spaced single
trials of varying duration (SD, see Section 3.1), Glover [184] is able to show
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significant deviation from expected linear system behavior. The extent of non-
linearity has also been observed to vary across the cortex, becoming nonlinear
for stimuli of less than 10 s in the primary auditory cortex, less than 7 s in the
primary motor cortex and less than 3 s in the primary visual cortex [320, 407].
Shorter duration stimuli lead to a more nonlinear response than longer dura-
tion stimuli [281, 429] and using an ISI shorter than 2 s also leads to nonlinear
response [64, 113]. The BOLD response appears to be more nonlinear closer to
the neuronal source than farther away [360]. The nonlinearity of the BOLD signal
has been experimentally shown to occur because of the dependence of the sig-
nal on multiple physiological parameters, specifically on cerebral blood volume
(CBV), cerebral blood flow (CBF) and deoxyhemoglobin concentration [177]
(see Section 4.2).

Nonlinear aspects of the HRF may be accounted for in a GLM by using Volterra
kernels [162]. To do this, generalize the linear approach of Equation (4.34) to the
completely general† nonlinear form‡

y(t) = h0 +
∫ ∞

−∞
h1(τ1)u(t − τ1) dτ1

+
∫ ∞

−∞

∫ ∞

−∞
h2(τ1, τ2)u(t − τ1)u(t − τ2) dτ1 dτ2

+
∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞
h3(τ1, τ2, τ3)u(t − τ1)u(t − τ2)u(t − τ3) dτ1 dτ2 dτ3

+ etc. + ε(t), (4.54)

where hn is the nth order Volterra kernel. The linear systems model includes only
the zeroth and first order kernels. To apply Equation (4.54) we truncate it to second
order and assume a causal (so that the integrals start at 0) model with finite memory
(so that the integrals stop at T ) to arrive at

y(t) = h0 +
∫ T

0
h1(τ1)u(t − τ1) dτ1

+
∫ T

0

∫ T

0
h2(τ1, τ2)u(t − τ1)u(t − τ2) dτ1 dτ2

+ ε(t). (4.55)

† At least for analytic functions.
‡ In practice, Equation (4.34) will have an overall mean term similar to h0 of Equation (4.54).
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With a set of basis functions {gb|1 ≤ b ≤ B}, the Volterra kernels may be written as

h1(τ1) =
B∑

i=1

c1
bgi(τ1), (4.56)

h2(τ1, τ2) =
B∑

j=1

B∑
i=1

c2
ijgi(τ1)gj(τ2). (4.57)

If we let

xi(t) =
∫ ∞

−∞
gi(τ1)u(t − τ1) dτ1, (4.58)

then Equation (4.55) becomes

y(t) = h0 +
B∑

i=1

c1
i xi(t)+

B∑
j=1

B∑
i=1

c2
ijxi(t)xj(t)+ ε(t). (4.59)

Equation (4.59) may be seen to be a GLM by setting

�β = [
h0 c1

1 . . . c1
B c2

1,1 . . . c2
B,B

]T
(4.60)

and the first column of [X] to be 1s, the next B columns to be

[xi(t1) · · · xi(tN )]T ,

where N is the number of time points measured, 1 ≤ i ≤ B, and the final B2

columns to be

[xi(t1)xj(t1) · · · xi(tN )xj(tN )]T

for 1 ≤ i, j ≤ B. As usual, effects of no interest may be added as additional columns
and detection achieved via use of an F statistic. The model of Equation (4.54)
may be simplified by assuming that the Volterra kernels are tensor products, e.g.
h2(τ1, τ2) = h1(τ1)h1(τ2), in which case it may be shown that the Volterra series
is a McLaurin expansion of

y(t) = f

(∫ ∞

−∞
h1(τ1)u(t − τ1) dτ1

)
, (4.61)

where f is a nonlinear function.
An alternative approach to nonlinear modeling with Volterra kernels, when

stochastic inputs are used, is to use Wiener kernels [391]. In terms of Wiener
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kernels, ki, Equation (4.55) is equivalent to

y(t) = [k0] +
[∫ T

0
k1(τ1)u(t − τ1) dτ1

]

+
[∫ T

0

∫ T

0
k2(τ1, τ2)u(t − τ1)u(t − τ2) dτ1 dτ2 − σ 2

∫ T

0
h2(τ , τ) dτ

]

+ ε(t) (4.62)

when u(t) is white Gaussian noise input with variance σ 2 [241]. The terms in square
brackets in Equation (4.62) are the Wiener functionals. The Wiener kernels are then
the expected values

k0 = 〈y(t)〉, (4.63)

k1(τ1) = 〈y(t) u(t − τ1)〉, (4.64)

k2(τ1, τ2) = 1

2! 〈y(t) u(t − τ1) u(t − τ2)〉 forτ1 �= τ2. (4.65)

In practice, better estimates of the Wiener kernels are obtained by specifying an
m-sequence input [40] (see Section 3.2) instead of white Gaussian noise input for u.

4.1.5 Multiple tasks

In all the cases discussed so far we may separate more than one process within one
time-series [351]. This is done by using several task functions ui with models of
the form

y(t) =
N∑

i=1

ui ∗ h(t)+ ε(t) (4.66)

or the nonlinear equivalent where N tasks are assumed. In that case, the number of
columns of interest (not counting the mean) in the design matrix is multiplied by
N . It is also possible to design graded stimuli [54] so that u of Equation (4.34) or
(4.66) would be of the form

u(t) =
∑

j

ajδ(t − tj) (4.67)

with aj not necessarily equal to 1.

4.1.6 Efficiency of GLM designs

The efficiency of a given GLM design is given in [310] as

efficiency = 1

σ 2�c T ([X]T [X])−1�c (4.68)
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or if a contrast matrix [c] is specified

efficiency ∝ 1

tr(σ 2[c]T ([X]T [X])−1[c]) . (4.69)

By formulating a model for the expected value 〈[X]T [X]〉 for use in
Equation (4.68) for stochastic designs, where the occurrence of stimuli at fixed
times is given by a probability, Friston et al. [164] show that:

• Long SOA designs are less efficient than rapid presentation designs.
• Nonstationary designs, where the probability of occurrence varies in time, are more

efficient than stationary designs.
• The most efficient design is the blocked design.
• With multiple trial types in the same time-series, the efficiency depends on the type of

contrasts desired. For example, the efficiency of detecting differences grows as the
probability for event occurrence increases but the probability of detecting evoked
responses declines as the probability of event occurrence increases.

Following Liu et al. [282] a clean distinction between estimation efficiency and
detection efficiency may be made by explicitly breaking the GLM down into the
effect of interest, the model of the IRF, and effects of no interest (nuisance effects)
as follows:

�y = [X] �βH + [S] �βr + �ε, (4.70)

where [X] �βH models the effect of interest and [S] �βr models the nuisance effects.
With that breakdown, the estimate of the IRF is given by (assuming matrices of full
rank for simplicity)

�̂
βH = ([X]T [P⊥

S ][X])−1[X]T [P⊥
S ][X]�y, (4.71)

where [P⊥
S ] = [I]−[S]([S]T [S])−1[S]T is a projection matrix that projects �y into the

subspace perpendicular to the span of the columns of [S]. Using [X⊥] = [P⊥
S ][X]

we can rewrite Equation (4.71) as

�̂
βH = ([X⊥]T [X⊥])−1[X⊥]T�y. (4.72)

Then, following the rationale that the efficiency is the inverse of the variance of the
estimated parameters that lead also to Equations (4.68) and (4.69), we may define
estimation efficiency as

ξ = 1

σ 2 tr[([X⊥]T [X⊥])−1] . (4.73)

Detection is based on using the F statistic to decide between

H0 : �y = [S] �βr + �ε (4.74)
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and

H1 : �y = [X] �βH + [S] �βb + �ε. (4.75)

Liu et al. [282] show that detection power may be usefully quantified by the Rayleigh
quotient

R =
�β T
H [X⊥]T [X⊥] �βH

�β T
H

�βH
. (4.76)

The quantities ξ and R are opposed to each other: as designs are changed to increase
R (moving toward blocked designs), then ξ must necessarily decrease and vice versa.
Another factor in fMRI design is the perceived randomness of task presentation to
the experimental participant. Randomness can be required for reducing confounds
due to anticipation and habituation. Liu et al. [280, 283] define an entropy measure,
Hr to quantify the randomness of an fMRI experimental design from the cognitive
point of view. They find that Hr and ξ tend to increase together.

4.1.7 Noise models

Many specific (e.g. heartbeat and respiration) and nonspecific physiological and
physical processes involved in the generation of an fMRI BOLD signal produce
a time-series with correlated noise. Failure to account for the correlated noise in
the analysis of the signal can result in a loss of statistical power. Preprocessing
to remove the systematic non-BOLD variation is possible according to the meth-
ods outlined in Section 2.4 and these methods tend to reduce the correlations in
the noise but more general analysis methods can estimate and reduce the correla-
tions further. Three main approaches along these lines are to correct the relevant
degrees of freedom (variance correction) associated with the computed statistics
(see Section 4.1.3), to color the data and model so as to end up with noise terms with
small relative autocorrelation (see Section 4.1.1), or prewhiten the data and model to
remove the autocorrelation from the noise terms (see the end of Section 4.1.3). The
smoothing approach outlined in Section 4.1.1 is a coloring approach where multi-
plication by [K] introduces a known autocorrelation that is essentially accounted
for in Equations (4.29) and (4.30). (Note that [K] may include a low pass filter com-
ponent in addition to the smoothing aspect to provide a band-pass filter.) Following
Woolrich et al. [449] we can describe these approaches in more detail.

The basic GLM is†

�y = [X] �β + �e (4.77)

with �e assumed to be N(0, σ 2[V ]). Then there exists a square, nonsingular matrix
[K] such that‡ [V ] = [K][K]T and �e = [K]�ε, where �ε ∼ N(0, σ 2[I]). Next introduce

† Note the slight change of symbols used here from the previous subsections.
‡ The matrix [K] is known as the square root of [V ].
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a filter matrix [S] by which we can color the data and model of Equation (4.77) to
produce

[S]�y = [S][X] �β + �η, (4.78)

where �η ∼ N(0, σ 2[S][V ][S]T ). From Equation (4.78) the ordinary least squares
(OLS) estimate of �β is

�̂
β = ([S][X])+[S]�y (4.79)

(see Equation (4.26)). The variance of a contrast of these parameter estimates is

var
(
�c T �̂
β
)

= keffσ
2, (4.80)

where

keff = �c T ([S][X])+[S][V ][S]T (([S][X])+)T�c (4.81)

(see Equation (4.28) where [V ], in the notation of Equation (4.81), is set to [I]).
The noise variance parameter σ 2 may be estimated using

σ̂ 2 = �η T �η
tr([R][S][V ][S]T )

(4.82)

(see Equation (4.29)), where [R] = [I] − [S][X]([S][X])+ is the residual forming
matrix with the residuals given by

�r = [R][S]�y = [R]�η. (4.83)

With this setup we can classify the three approaches to dealing with noise
autocorrelation mentioned above by:

• Coloring. Where [S] is a filter that is designed so that, relative to the filter, we can
assume [V ] = [I]. This is the approach outlined in Section 4.1.1.

• Variance correction. Where [S] = [I] (i.e. no filter) is used and an estimate of [V ] is
used to compute

keff = �c T [X]+[V ]([X]+)T �c. (4.84)

This is the approach outlined in Section 4.1.3.
• Prewhitening. Assuming [V ] can be determined, set [S] = [K]−1 so that

keff = �c T ([X]T [V ]−1[X])−1�c. (4.85)

This approach gives the best linear unbiased estimates (BLUE), or Gauss-Markov
estimates, of �β. Methods of estimating [V ] are reviewed below. (The damped oscillator
model of Kruggel et al. [259] is reviewed in Section 4.1.3.)
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The usual approach to estimating [V ] or its transformed version [S][V ][S]T is to
estimate the autocorrelation matrix of the residuals �r (Equation (4.83)) which turns
out to be [R][S][V ][S]T [R]T and not [S][V ][S]T . In practice, because of the typical
frequency spectrum structure of fMRI data, the difference in the two correlation
matrices is small [449].

One of the earlier approaches to modeling the autocorrelation of �r used 1/f
(where f = frequency) type models† where the spectral density of �r, �a, was fit to
one of the following two three-parameter models‡

|a(ω)| = 1

k1(ω/2π + k2)
+ k3 (4.86)

or a decaying exponential model of the form

|a(ω)| = k1 e−ω/(2πk2) + k3, (4.87)

where k1, k2 and k3 are the parameters to be fit [469]. A spatially smoothed version
of the above approach was also tried [2] and it was found that MRI time-series
of water phantoms also had the same ∼ 1/f noise structure indicating that 1/f
processes are due to physical MRI processes and not physiological processes.

Woodrich et al. [449] further try tapers such as the Tukey window given by

ρ̂(τ ) =
{1

2 (1 + cos[πτ/M]) r(τ ) if τ < M,
0 if τ ≥ M,

(4.88)

where M ∼ 2
√

N , with N being the length of the time-series, is close to optimal.
They also try a nonparametric pool adjacent violators algorithm (PAVA), multi-
tapering and AR parametric model estimation. An AR process of order p, denoted
AR(p), is given by

r(t) = φ1r(t − 1)+ φ2r(t − 2)+ · · · + φpr(t − p)+ e(t), (4.89)

where e is a white noise process and {φi} are the parameters. The SPM software uses
AR(1) models based on averaged fits to residuals over the whole brain to refine the
estimate of a global φ1 [459]. Spatial smoothing can be used to improve the results
for voxel-wise noise modeling approaches and Worsley et al. [459] introduce an
additional procedure for reducing the bias of the noise model estimate.

In prewhitening approaches, it is necessary to have an estimate of [V ] to construct
the filter. A two-step process usually suffices to estimate [V ] [449]. First set [S] = [I]
in Equation (4.78), find the first estimate [V1] from the residual and construct

† These are more properly referred to as “modified 1/f models” because the amplitude of the spectral
density is assumed to follow 1/f . Conventional 1/f models, having fractal scaling properties, assume that the
power (amplitude squared) follows 1/f [166].

‡ Note the transition from the vector �a to function a.



64 Univariate approaches: activation maps

[S] = [V1]−1/2. With this [S] solve Equation (4.78) again and estimate [V2] from
the resulting residuals. Use [S] = [V2]−1/2 as the prewhitening matrix.

Friston et al. [166] propose that different filtering strategies (selection of [S])
may be classified according to validity, robustness and efficiency. Validity refers to
the accuracy of the computed p values, efficiency refers to minimizing the variance
of the estimated parameters and robustness refers to the sensitivity that the com-
puted p values have to violations of the assumed model (especially estimates of the
autocorrelation matrix [V ]). Friston et al. quantify efficiency and bias to show how
robustness may be traded off with efficiency. To illustrate these quantities, intro-
duce [Ki] and [Ka] to represent the inferred and the actual convolution matrix [K]
respectively so that [Vi] = [Ki][Ki]T and [Va] = [Ka][Ka]T . Efficiency is defined as

efficiency = 1

σ 2�c T ([S][X])+[S][Vi][S]T (([S][X])+)T�c (4.90)

(see Equation (4.68)). Bias is defined as

bias([S], [Vi]) = 1 − tr([R][S][Vi][S]T ) �c T ([S][X])+[S][Va][S]T (([S][X])+)T�c
tr([R][S][Va][S]T ) �c T ([S][X])+[S][Vi][S]T (([S][X])+)T�c .

(4.91)

Negative bias leads to p values that are too small (too lax), positive bias leads to
p values that are too large (too conservative). Prewhitening is known to produce a
minimum variance (maximum efficiency) filter but Friston et al. show that a band-
pass filter for [S] produces a minimum bias filter and therefore provides a more
robust procedure for estimating �β and associated p values.

The conclusion that band-pass filtering is optimal from a bias point of view is
dependent on the use of an a-priori assumed distribution of the test statistic under the
null hypothesis. When the H0 distribution is determined empirically, prewhitening
produces less bias [69]. The null distribution of a test statistic may be determined
empirically by permuting the data and computing the resultant test statistic [341].
When the noise is serially correlated, the data permutation must be done carefully
so that the noise associated with the permuted data has the same autocorrelation
properties as the original data. Two approaches that preserve noise autocorrelation
have been used to permute fMRI time-series data: a Fourier method and a wavelet
method. With the Fourier method, the (complex-valued) Fourier transformation
of the time-series data for each voxel is computed, the phases are shuffled and
the inverse Fourier transform computed to yield the “permuted” data set [264]. The
wavelet method is based on the fact that 1/f processes have fractal properties that are
preserved under the right wavelet transform [69]. Specifically, under an orthogonal
wavelet transform, the expected correlation between two wavelet coefficients wj,k
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and wj′,k′ for a fractional Brownian motion or other 1/f -like noise process is†

E[r(wj,k , wj′,k′)] ∼ O(|2jk − 2j′k′|2(H−R)), (4.92)

where R is the number of vanishing moments of the wavelet function and H is
the Hurst exponent‡ of the noise process. If R > 2H + 1, it can be shown that
the wavelet coefficient correlations will decay hyperbolically fast within levels and
exponentially fast between levels. The Hurst coefficient for fMRI noise processes
can be argued to be H < 1 so R of at least 4 is required (i.e. Daubechies’s compactly
supported wavelets with four vanishing moments should be used [114]). The use
of wavelets with higher R does not achieve more decorrelation because compactly
supported orthogonal wavelets with more vanishing moments have larger support,
leading to a higher risk of computational artifact. Similar reasoning [69] leads
to the recommendation that the maximum scale level, J , to which the wavelet
decomposition should be computed is J such that N/2J−1 ≥ 2R. Data shuffling
in the wavelet domain using the appropriate wavelet transform then proceeds as
follows. Compute the wavelet transform, shuffle the wavelet coefficients within each
scale level and, compute the inverse wavelet transform to end up with “permuted”
data that have the same noise characteristics as the original data. Computing the test
statistic for different wavelet permuted data will give an empirical null distribution
of the test statistic. The use of a translation-invariant wavelet transform to compute
permutation statistics produces an overcomplete set of wavelet coefficients, a subset
of which must be chosen for permutation and reconstruction purposes [225].

Kamba et al. [239] model the source of noise directly, using a measurement
of the global signal (see Section 2.4.3) in a model of the BOLD response. Their
model is an autoregressive model with exogenous inputs (ARX model) that may
be expressed as

A(q) y(t) = �B(q)T �u(t − k)+ ε(t), (4.93)

where the first component of �u, u1, represents the stimulus input and the second com-
ponent, u2, represents the global signal input. The functions A and �B are polynomials
of the shift operator q:

A(q) = 1 + a1q−1 + · · · + anaqna , (4.94)

Bi(q) = 1 + bi,1q−1 + · · · + bi,nbqnb , i = 1, 2. (4.95)

The magnitudes of b1,j characterize the activations.

† The O is Landau’s big oh notation meaning “of the same order as”.
‡ See Section 5.3 for more information about and applications of the Hurst exponent.
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4.1.8 Type I error rates

An activation map, or more directly an SPM, consists of ∼4×103 univariate statist-
ics, one for each voxel. At α = 0.05 we can therefore expect ∼2000 false positives.
A correction to α (or to the reported p value) is necessary to correct for multiple
comparisons to correctly give the probability that a voxel declared as active is actu-
ally a false positive. A straightforward approach is to use Bonferroni correction and
multiply the per voxel p by the number of voxels, v, in the brain. If there is spa-
tial correlation in the data, the Bonferroni correction will be too conservative and
activations will be missed [453]. An MRI image that is Fourier reconstructed at the
same matrix size as the acquisition matrix will have a point spread function (PSF)
whose FWHM is comparable to the pixel size [387] so there will be very little spa-
tial correlation in the plane of the image in such a case. In the slice direction there
will be some spatial correlation due to overlapping slice profiles (partial volume
effect). Otherwise spatial correlation is largely introduced by data preprocessing.
The interpolation involved in image realignment (see Section 2.3) will induce spa-
tial correlation as will deliberately imposed spatial smoothing designed to increase
statistical power through averaging.

Even in the absence of spatial correlation, the statistical power of Bonferroni for
large numbers of comparisons is low, so alternative p value correction methods are
needed in general. One approach is to control the false discovery rate more directly.
To test v voxels using the false discovery rate method [180], let q be the rate of false
discovery that the researcher is willing to tolerate and let p(1), p(2), . . . , p(v) be the
uncorrected p values associated with each voxel in order from smallest to largest
p value. Let r be the largest i for which

p(i) ≤ i

q

q

c(v)
, (4.96)

where, for the case of nonnegative spatial correlation (includes spatial
independence),

c(v) =
v∑

i−1

1/i ≈ ln v + γ , (4.97)

where γ ≈ 0.577 is Euler’s constant. Declare the voxels with i such that 1 ≤ i ≤ r
to be active.

Forman et al. [141] describe a method to correct p value based on false discovery
rates in clusters using the idea that larger clusters are less likely than smaller clusters
to appear by chance. Genovese et al. [179] define a test-retest reliability, based on
experimental repetition of a test study, that may then be applied to the study of
interest.



4.1 The GLM – univariate approaches 67

When the data are spatially correlated, the theory of Gaussian random fields
(GRF) [1] may be used to provide corrected p values. Let the set of voxels that
represent the brain be denoted by S and the set of active voxels, as defined by a
thresholding procedure (all voxels whose test statistic is above a threshold t), be
denoted by At . Using techniques from algebraic topology, the Euler characteristic,
χt , of the set At may be defined. For a sufficiently high threshold t, the component
subsets of At will have no holes (be homotopic to zero†) and χt = mt , where mt

is the number of maxima of the SPM of test statistics in S that are greater than t.
To apply GRF theory, the SPM must be of Z statistics. So an SPM of t statistics (a
t-field, see Equation (4.5)) is transformed into a Gaussianized t-field (Gt-f) on the
basis of equivalent p values by setting, for each voxel,

Z = �−1(�ν(t)), (4.98)

where � is the standard normal cumulative density function (CDF) and �ν is the
CDF of the Student’s t distribution with ν degrees of freedom. With the Gt-f and
GRF theory we can define three types of probability, or p values [246]:

(i) The probability, under H0, that a voxel at a maximum of the Z-field has a value, Zmax,
that is greater than a given threshold t is approximately equal to E(mt), the expected
value of χt = mt [150, 454]. That is

p(Zmax > t) ≈ E(mt) = V |[�]|1/2 (2π)−(D+1)/2 HeD(t) e−t2/2, (4.99)

where V is the volume of the brain (search) set S, |[�]| is the determinant of [�], D
is the dimension of the data set (2 or 3 depending on whether the SPM is of a slice or
volume) and HeD is the Hermite polynomial of degree D (He2(t) = t2 − 1,
He3(t) = t3 − 3t). The matrix [�] is the variance–covariance matrix of the partial
derivatives of the spatial correlation process in the D spatial directions. If X
represents that process, then in (x, y, z) 3D space,

[�] =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

var

(
∂X

∂x

)
cov

(
∂X

∂x
,
∂X

∂y

)
cov

(
∂X

∂x
,
∂X

∂z

)

cov

(
∂X

∂x
,
∂X

∂y

)
var

(
∂X

∂y

)
cov

(
∂X

∂y
,
∂X

∂z

)

cov

(
∂X

∂x
,
∂X

∂z

)
cov

(
∂X

∂y
,
∂X

∂z

)
var

(
∂X

∂z

)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (4.100)

The matrix [�] needs to be estimated from the data (see below). The SPM software
denotes the probabilities given by Equation (4.99) as voxel level p values in its output.

† Homotopies are families of continuous functions that may be continuously transformed into each other. To
be homotopic to zero means that any function that is homotopic to the surface of a sphere (in 3D – homotopic to
a circle in 2D) can be continuously transformed, within the given set, to a point (zero). That is, the set has no
holes that the shrinking homotopy can get hung up on.
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(ii) The probability, under H0, that the size nt of a cluster in a GRF above a high
threshold t exceeds k voxels is [152]

p(nt > k) = 1 − exp(E(mt) e−βk2/D
), (4.101)

where E(mt) represents the expected number of clusters above the threshold t, as
described above, and

β =
(
�(D/2 + 1)E(mt)

V�(−t)

)2/D

(4.102)

with V and � as defined above. The SPM software denotes the probabilities given by
Equation (4.101) as cluster level p values in its output.

(iii) The probability, under H0, that the number of clusters in a set of clusters in a GRF
above threshold t and of size greater than n is greater than k is given by [158]

p(Cn,t > k) = 1 −
k−1∑
i=0

ϒ(i, E(mt)p(nt > n)), (4.103)

where Cn,t is the number of clusters of size n above threshold t and

ϒ(i, p) = pi e−p

i! . (4.104)

The SPM software denotes the probabilities of Equation (4.103) as set level p values
in its output.

The above probabilities may also be estimated empirically using permutation
methods [214, 215] (see Section 4.1.7). Sensitivity and regional specificity both
diminish as one moves from the voxel level (Equation (4.99)) to cluster level
(Equation(4.101)) to set level (Equation (4.103)). It is also possible to give a p
value that represents the probability of finding a given cluster size, nt and peak
height, Zmax simultaneously under H0 [362]. If the FWHM of the PSF is not con-
stant in all directions (as may happen with smoothed maps mapped to a 2D cortical
surface – see Section 5.1.1) or the correlations are not stationary, then a correction
to ordinary GRF theory is required [457]. All GRF methods require the estimation
of [�] which may be done using a (vector-valued) map of the residuals from the
GLM fit [246, 361]. To estimate [�], first form the standardized residuals �S from
the residuals �R by

�S = �R√�R T �R
, (4.105)

then the components of [�̂], λ̂ii (the covariances can be assumed to be zero), can
be computed from

λ̂ii = λν
ν − 2

(ν − 1)n

∑
x∈S

n∑
j=1

(
∂Sj(x)

∂li

)2

, (4.106)
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where n is the length of the fMRI time-series, S is the search region, li represent
the three directions (for 3D GRFs), ν is the effective degrees of freedom (see
for example, Equation (4.30)), the partial derivatives are estimated using finite
difference techniques and λν is a correction factor given by

λν =
∫ ∞

−∞
(t2 + n − 1)2

(ν − 1)(ν − 2)

ψν(t)3

p(t)2
dt, (4.107)

whereψν is the probability density function (PDF) of a t distribution with ν degrees
of freedom, t is the threshold and p(t) = φ(�−1(1−�ν(t)))with φ being the PDF
of the standard normal distribution.

The methods covered in this section and in Sections 4.1.3 and 4.1.7 all assume
that the random variables represented by the columns of the design matrix have a
Gaussian distribution (i.e. the population being sampled is normal). Hanson and
Bly [210] show that, in fact, the BOLD-parameter population is better described
by a gamma distribution than by a normal distribution. This observation is why,
they speculate, many investigators need to threshold their activation maps at very
low p value thresholds to avoid excessive type I errors that are visible from visual
inspection of the maps (e.g. the observation of activation in nongray matter). If
the computed p values were based on the assumption of a population gamma
distribution, the thresholds used would correspond to higher p values.

4.1.9 Combining and comparing activation maps between subjects

Thus far we have reviewed methods for computing activation maps for individuals.
Experimental tests of cognitive neuroscience hypotheses require testing multiple
subjects under multiple conditions. So analysis at the group level is necessary. In
principle, it is possible to analyze group data altogether with one giant GLM using,
for example, columns in the design matrix to represent indicator variables for differ-
ent conditions. Such an approach is prohibitively expensive from the computational
point of view and not necessary. It is possible to test any hypothesis that can be
formulated under a single-level GLM with a hierarchical analysis in which “sum-
mary statistics” produced at the individual level are analyzed in a second GLM that
reflects the cognitive conditions more directly [38].

The simplest group analysis one might want to do is to produce an “average” or
summary of the activation maps from the group. Lazar et al. [270, 307] give several
methods that can be used for combining t-statistics of voxels (see Equation (4.5))
from k individuals:

• Fisher’s method [140] in which the group statistic is

TF = −2
k∑

i=1

ln pi, (4.108)
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where pi is the p value associated with the t-statistic from subject i. Under H0, TF

follows χ2
2k .

• Tippett’s method [422] in which the group statistic is

TT = k
min
i=1

pi, (4.109)

where pi is the p value associated with the t-statistic from subject i. The null hypothesis
is rejected if TT < 1 − (1 − α)1/k when the acceptable type I error rate is set at α. A
generalization of this procedure is to consider the rth smallest p value and reject H0 if
that p value is smaller than a constant that depends on k, r and α [442].

• Stouffer’s method [410] in which the group statistic is

TS =
k∑

i=1

�−1(1 − pi)√
k

, (4.110)

where � is the standard normal CDF. Stouffer’s statistic is compared to the standard
normal distribution.

• Mudholkar and George’s method [329] in which the group statistic is

TM = −
√

3(5k + 4)

kπ2(5k + 2)

k∑
i=1

ln

(
pi

1 − pi

)
(4.111)

which is compared to t5k+4.
• Worsley and Friston’s method [458] where

TW = k
max
i=1

pi (4.112)

rejecting H0 if TW < α1/k .
• Average t method in which the group statistic is

TA =
k∑

i=1

ti√
k

, (4.113)

where ti is the t-statistic from subject i. The statistic TA is an approximation to TS and is
considered to follow the standard normal distribution under H0.

Of all these methods, Tippett’s method produces the worst results because no
averaging is done [270], see Fig. 4.2. Methods for combining estimated parameters
(e.g. �c T �β) directly, in mixed-effects models, are discussed below. McNamee et al.
[307], using jack-knife (leave-one-out) analysis find that Fisher’s method is the
most sensitive to individual outlier behavior, a mixed-effects model is the most
robust and Stouffer’s method is in between†.

† Lazar et al. [270, 307] use the FIASCO software package to do their work. FIASCO can be found at
http://www.stat.cmu.edu/∼fiasco/.
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Fig. 4.2. Comparison of group SPM averaging methods, taken from [270] (used
with permission). M & G = Mudholkar and George’s method, W & F = Worsley
and Friston’s method. Tippett’s method produced the most false positives, Worsley
and Friston’s method produced the fewest true positives. Data are presented in
Talairach coordinates and the task was a memory-guided visual saccade task.

Friston et al. [163] use conjunction analysis to make inferences about the pro-
portion of the population that would show an effect (an activation in a given region)
based on the observation that all n subjects in a study showed the effect. If αmin

represents the uncorrected p value obtained by setting TW of Equation (4.112) equal
to αmin, then the theory of n intersecting GRFs may be used to compute a corrected
p value, pn. If 1 − αc is the specificity required, then the minimum population pro-
portion γc that would show activation in the regions for cases where all n subjects
showed activation is

γc ≥ ((αc − pn)/(1 − pn))
1/n − αmin

1 − αmin
. (4.114)



72 Univariate approaches: activation maps

To account for the variation of individual brain organization, the relevant p value,
pi, for use in Equation (4.112) can be the minimum p value from a predefined ROI.

A fixed-effects model combines the parameter of interest yi in each subject to
obtain an average θ for a group of k subjects according to the model

yi = θ + εi, (4.115)

where E(εi) = 0 and var(εi) = Vi = 1/wi. With this model the parameter estimate
is the weighted average

θ̂ =
∑k

i=1 wiyi∑k
i=1 wi

(4.116)

and, using

var(θ̂) = 1∑k
i=1 1/Vi

, (4.117)

the associated test statistic is the usual t-statistic

TX = θ̂√
var(θ̂)

. (4.118)

In the case that all Vi are equal, TX = TS, where TS is Stouffer’s statistic.
In case we do not believe that there is a fixed population θ and, instead, believe

that the variation in yi is due in part to real differences between subjects and not just
measurement error, we use a mixed-effects model (also known as a random-effects
model by some) of the following form

yi = θi + εi, (4.119)

θi = θ + ei, (4.120)

where E(εi) = 0 and var(εi) = Vi, as with the fixed-effects model, and E(ei) = 0
and var(ei) = σ 2

θ . The estimate of θ in this model is

θ̂∗ =
∑k

i=1 w∗
i yi∑k

i=1 w∗
i

, (4.121)

where w∗
i = 1/(s2

i + σ̂ 2
θ ) with s2

i being an estimate of Vi. The test statistic is

TR = θ̂∗√
var(θ̂∗)

, (4.122)

where

var(θ̂∗) = 1∑k
i=1 1/(Vi + σ 2

θ )
, (4.123)
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a quantity that will be larger than the corresponding fixed-effects value given by
Equation (4.117). The difficulty with mixed-effects models is the estimation of σ̂ 2

θ .
One approach is

σ̂ 2
θ = s2 −

∑k
i=1 s2

i

k
, (4.124)

where s2 is the sample variance of {yi|1 ≤ i ≤ k}. A drawback to the use
of Equation (4.124) is that it may give negative results. Bayesian methods for
estimating random-effects variance components are reviewed in Section 4.4.

The extension of fixed- and mixed-effects models of simple averaging to more
general models, like the popular ANOVA models used by cognitive neuroscientists,
is relatively straightforward. It is informative to view these more general models in
their place in a two-level hierarchical model. Following Beckmann et al. [38], we
have at the first level, our usual GLM for subject k

�yk = [Xk] �βk + �εk , (4.125)

where E(�εk) = 0, cov(�εk) = [Vi]. Let

�y =
[
�y T

1 �y T
2 · · · �y T

N

]T
, (4.126)

[X] =

⎡
⎢⎢⎢⎣

[X1] [0] · · · [0]
[0] [X2] · · · [0]
...

. . .
...

[0] · · · [0] [XN ]

⎤
⎥⎥⎥⎦ , (4.127)

�β =
[ �β T

1
�β T
2 · · · �β T

N

]T
, (4.128)

�ε =
[
�ε T

1 �ε T
2 · · · �ε T

N

]T
, (4.129)

then the two-level model is

�y = [X] �β + �ε, (4.130)

�β = [XG] �βG + �η, (4.131)

where [XG] is the group-level design matrix (e.g. an ANOVA), �βG represents the
group-level parameters and �η is the group-level error vector with E(�η) = 0,
cov(�η) = [VG] and cov(�ε) = [V ], a block-diagonal form of the [Vk] matrices.
Equations (4.130) and (4.131) generalize Equations (4.119) and (4.120). Compos-
ing Equations (4.130) and (4.131) gives the large single-level model mentioned at
the beginning of this section:

�y = [X][XG] �βG + �γ , (4.132)
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where �γ = [X]�η+ �ε, E( �γ ) = 0 and cov( �γ ) = [X][VG][X]T + [V ]. In general, the
estimate of �βG obtained from using the BLUE estimate of �β from Equation (4.130)
on the left hand side of Equation (4.131) will not be the same as the BLUE estimate
of �βG obtained from the direct least squares solution of Equation (4.132). To ensure
that the estimate of �βG from the two-level model coincides with the estimate from
the single level model we must define

[VG2] = [VG] + ([X]T [V ]−1[X])−1 (4.133)

and estimate �βG using

�̂βG = ([XG]T [VG2]−1[XG2])−1[XG]T [VG2]−1 �̂β, (4.134)

cov( �̂βG) = ([XG]T [VG2]−1[XG2])−1. (4.135)

If it is assumed that [VG] = [0] in Equation (4.133), then the two-level model is a
fixed-effects model. Otherwise, it is a mixed-effects model and sophisticated (iter-
ative Bayesian) procedures may be required to estimate [VG] if heteroscedasticity
(unequal within subjects variance) is assumed. When homoscedasticity is assumed,

i.e. that [VG] = σ 2
θ [I], closed form, least squares solutions are available for �̂β.

Beckmann et al. [38] give examples for some of the more popular second-level
GLMs like paired and unpaired t-tests and ANOVA F-tests. The FSL software†

may be used to implement these models.
As with the first level analysis, an empirical determination of the H0 distribution

of the test statistic at the second level is also possible. In that case permuting the
data is more straightforward than the methods outlined in Section 2.4 because there
is generally no correlation in noise between subjects. An application of permutation
tests for mixed plot ANOVA designs in fMRI is given in [413].

4.2 Modeling the physiology of the hemodynamic response

Many BOLD detection methods rely on a model of the BOLD response over time,
as we have seen in previous sections. Those HRF models were and are largely
empirical, based on observed responses. To validate and improve the IRF/HRF
models used for the analysis of fMRI time-series it is necessary to understand
the physiology of the BOLD response. In this section we look at work aimed at
understanding that physiology.

The fMRI signal is based on the BOLD contrast mechanism whose basic
physiological features were elucidated soon after it was discovered [347, 349,
350, 395]. Following Ugurbil et al. [426], we outline those basic features here.

† Software available at http://www.fmrib.ox.ac.uk/fsl/.
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BOLD contrast is based on the fact that deoxyhemoglobin is paramagnetic. A mag-
netic field intensity, H , can cause magnetization intensity, M, to occur in material
objects. The amount of magnetization is determined by the susceptibility χ as given
by M = χH. Here H (and later B) refer to the magnitudes of the vector fields. Note
that the magnetic field induction, B, is related to magnetic field intensity by per-
meability μ defined by B = μH. But variation in μ is small compared to variations
inχ in different tissues. Materials may be classified according to their susceptibility,
roughly:

1. Diamagnetic. χ < 0: these materials repel magnetic fields (reduce the intensity). A
rod-shaped piece of diamagnetic material will line up perpendicular to the magnetic
field. Most body tissues are diamagnetic.

2. Paramagnetic. χ > 0: these materials attract (enhance) magnetic fields. A rod-shaped
piece of paramagnetic material will line up parallel to the magnetic field.

3. Ferromagnetic. χ � 0 (typically χ > 1000): these materials are composed of
magnetized clusters of atomic magnets that easily line up with the external magnetic
field. They stick to magnets.

A “susceptibility gradient” will surround the paramagnetic deoxyhemoglobin
molecule. That is, the magnetic field near the deoxyhemoglobin will be higher
than it will be further away. So the Larmor frequency of the proton spins (usually
in water) will be higher near the deoxyhemoglobin than farther away. Suppose
we have an infinitely long blood vessel at an angle θ to the magnetic field. If Y
represents the fraction of oxygenated blood present, then it can be shown that the
change in Larmor frequency from ω0 is given by

�ωin
B = 2π �χ0 (1 − Y) ω0

(
cos2 θ − 1

3

)
(4.136)

inside the cylinder and

�ωout
B = 2π �χ0 (1 − Y) ω0 (rb/r)

2 sin2 θ cos 2φ (4.137)

outside the cylinder, where�χ0 is the maximum susceptibility difference expected
in the presence of fully deoxygenated blood. The effect of the�ωB is to cause spins
within a voxel to dephase, thus causing T∗

2 signal decay.
The BOLD phenomenon is dependent on the diffusion of the signal-producing

water molecules. The diffusive motion can lead to “irreversible T∗
2 ”. The effect of

diffusion can be divided into two regimes: dynamic and static averaging.
Dynamic averaging occurs when the diffusive path length during TE is long com-

pared to the susceptibility gradient, ∂�ωB/∂r. This occurs, for example, in blood
vessels around red blood cells or around capillaries or venuoles. (Note that there
is no BOLD from fully oxygenated arterial blood.) Dynamic averaging produces
irreversible T∗

2 .
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Fig. 4.3. Type 2 BOLD effect. The boxes represent a single voxel. The phase of
the signal from the blood vessel, Si, in that voxel will be in or out of phase with
the signal from the tissue, Se, as TE is changed because of the different precession
rates between blood and tissue signal. In addition, the overall signal will decay
with longer TE because of T2 decay of the two components. (See Equation (4.142)
for a signal model that incorporates Si and Se.) The BOLD effect will manifest
itself during activation with a signal from the vascular component that is more
coherent with the extravascular component.

Static averaging occurs when the diffusive path length is small compared to the
susceptibility gradient, which happens around large blood vessels. Static averaging
produces reversible T∗

2 . Signal loss due to reversible T∗
2 may be recovered as usual

with the 180o RF pulse of a spin echo sequence.
The definition of what constitutes a large blood vessel increases with increasing

field strength, B0, because the susceptibility gradient, represented by �ωB, is a
function of ω0 = γB0. At higher field strengths, static averaging should dimin-
ish and be replaced by more sensitive dynamic averaging around smaller blood
vessels.

A third type of BOLD signal is from the so-called “type 2” mechanism (Fig. 4.3).
In this case, the blood vessels and surrounding tissue occupy a similar volume within
a voxel. The bulk Larmor frequencies of the protons in the blood will be different
from the bulk Larmor frequencies in the tissue. So the signal from the blood and
the surrounding tissue will go out of and into phase and lose coherence as they
both decay according to different T2 values. Type 2 BOLD signal loss† is reversible

† Signal loss in this sense happens during rest; during activation, the source of dephasing
(deoxyhemoglobin) is reduced resulting in less loss and the BOLD signal enhancement.
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(recoverable) with a spin echo sequence. Note that type 2 signal has, by definition,
an intravascular component and an extravascular component; the sum of these
components is essentially modeled in Equation (4.142).

BOLD signal may come from water molecules in two sources: intravascular
and extravascular. And we have seen that there are reversible and irreversible T∗

2
phenomenon associated with each source:

• Extravascular:

• reversible T∗
2 around large blood vessels;

• irreversible T∗
2 around small blood vessels.

• Intravascular:

• reversible T∗
2 caused by type-2 BOLD effect;

• irreversible T∗
2 caused by water molecules moving in and out of red blood cells.

Separating the sources has been accomplished experimentally through the use
of diffusion weighted MRI, where the addition of bipolar diffusion gradients to a
sequence attenuates the signal from diffusing water. These same gradients will also
kill signal from macroscopically flowing water. Therefore, a “diffusion sequence”
can be used to eliminate intravascular BOLD signal [274]. In a similar vein, spin
echo sequences may be used to eliminate the BOLD signal from reversible T∗

2
effects†.

Using a diffusion sequence at 1.5 T kills all the BOLD signal, which shows that
the BOLD signal at 1.5 T must be intravascular. At higher fields, there is still some
BOLD signal from a diffusion experiment and thus some extravascular signal. At
very high fields (∼9 T) a diffusion sequence does not affect the BOLD signal at
all, implying that at very high fields all signal is extravascular.

Using a spin echo sequence for BOLD at 1.5 T results in a large reduction in signal
over gradient echo sequences showing that most of the BOLD signal at 1.5 T is type
2 BOLD. This result is consistent with an investigation by Hoogenraad et al. [222],
who use inversion recovery sequences to suppress signal from gray matter, white
matter or cerebral spinal fluid (CSF) to find that activated voxels almost always
come from a gray matter or CSF voxel that contains a vein. So the BOLD “spatial
resolution” at 1.5 T must be comparable to the voxel size because the type 2 effect
is intrapixel – although the small signal seen using spin echo sequences could be
intravascular signal from large blood vessels. At 4 T it has been shown that BOLD
signal can be localized to 700 μm [315]. A study by Kim et al. [252], however,
finds that, while the BOLD response correlates linearly with the underlying neural
activity, localization of that neural activity to only supramillimeter scales is possible.

† The use of a magnetization transfer pulse in the EPI sequence, for saturating signal from macromolecules,
has the potential to also identify tissue types associated with the BOLD signal [472].



78 Univariate approaches: activation maps

The BOLD signal, being dependent on the amount of deoxyhemoglobin present,
depends on three factors:

• CBV – cerebral blood volume,
• CBF – cerebral blood flow,
• CMRO2 – cerebral metabolic rate of O2 consumption.

The CBV component† is, of course, dependent on changes in CBF. A model for the
BOLD signal change �S as a function of CBF and CMRO2 is

�S

S
= A

[
1 −

(
CBF

CBF0

)α−β ( CMRO2

CMRO2,0

)β]
, (4.138)

where the subscripts 0 refer to baseline values. Using the assumed values A =
0.25, α = 0.38 and β = 1.5, Uludağ et al. [427] plot CBF/CBF0 versus
CMRO2/CMRO2,0 to find a value for the coupling n between CBF and CMRO2,
defined as

n = �CBF

CBF0

/
�CMRO2

CMRO2,0
, (4.139)

to be fairly tight at a value of n = 2.2 ± 0.15. Uludağ et al. are also able to use a
model for oxygen extraction fraction, E, given by

E = E0

(
CMRO2

CMRO2,0

/
CBF

CBF0

)
(4.140)

and an assumed baseline of E0 = 40% to find E = 33±1.4% during activation,
46±1.4% during an eyes-closed rest period and 43±1.2% during an eyes-open
rest period. Schwarzbauer and Heinke [394] use perfusion sensitive spin tagging
techniques with conventional BOLD fMRI to measure �CMRO2 = 4.4 ± 1.1%.

The important point to remember is that the less deoxyhemoglobin present (the
more the oxygenated blood), then the more the BOLD signal. The presence of
deoxyhemoglobin causes susceptibility gradients which decreases T∗

2 (because of
spin dephasing). And, at a fixed TE , the smaller (or shorter) T∗

2 is, the less MRI
signal there will be. So the higher the ratio CBF/CMRO2, the higher the BOLD
signal. At the beginning of the BOLD response, it is believed that the CMRO2

increases at first but that an increase in CBF shortly following that is responsible
for most of the BOLD signal. The basic BOLD response (IRF) appears as shown
in Fig. 4.4. There is an initial negative dip, followed by an increase and decline,

† Many experimental investigations of the relationship between CBV, CBF and CMRO2 measure changes in
total CBV with changes in CBF (e.g. [250] where the FAIR MRI spin tagging technique [251] is used to measure
CBF or [242] where an exogenous relaxation enhancing contrast agent is used to measure CBV). Lee et al. [275]
find that a 100% increase in CBF leads to ∼31% increase in total CBV of which only half (15%) of the increase
is due to venous CBV change, so they suggest that many experimental investigations that measure CBV need to
make a correction to arrive at a venous CBV value.
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Fig. 4.4. A typical BOLD response to a short stimulus. The major features of
the basic BOLD function are well modeled by the bivariate gamma function of
Equation (4.195). The initial dip will occur within a delay period of ∼2 s before
the rise begins. The rise to maximum takes ∼6–10 s followed by a decline that
takes a similar amount of time [76]. The undershoot may be due to elevated oxygen
extraction after the blood flow has returned to baseline.

finishing off with an undershoot and returning to baseline. These major features are
well modeled by the bivariate gamma function of Equation (4.195). The initial dip
has received a considerable amount of attention from some investigators because
it represents an opportunity for increased spatial localization of the underlying
neuronal signal [77, 126]. This increased localization is possible because the initial
dip presumably represents an increased demand for oxygen by the neurons before
the hemodynamic system has had a chance to respond with increased CBF.

In some regions of the brain, in some tasks, a response that is the negative of
that shown in Fig. 4.4 is sometimes seen. Three theoretical mechanisms have been
proposed to explain the negative BOLD response (NBR) [435]:

1. The mechanism is vascular steal, where oxygenated blood is taken from the NBR
regions to supply the regions showing a positive BOLD response.

2. The mechanism is active neuronal suppression, where neural oxygen usage is reduced
below baseline.

3. The mechanism is an extended initial dip, in which the CBF does not increase over the
oxygen consumption in a neuronally active region.

Experimental work by Shmuel et al. [399] supports the active neuronal suppression
hypothesis.

Logothetis et al. [284, 285] report that the BOLD response is due to local field
potentials (LFPs). Logothetis et al. measure both multi unit activity (MUA) and
LFP while doing an fMRI BOLD measurement on monkeys. According to them,
MUA corresponds to the output of a neural population; LFP corresponds mostly
to a weighted average of synchronized dendro-somatic components of the input
signals of a neural population. They find that BOLD correlates with LFP more than
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MUA. They also record single-unit activity and find it to behave similarly to MUA.
After linear systems modeling, Logothetis et al. describe the BOLD response to be
a low pass filtered version of total neural activity.

The system of neurons, their oxygen consumption rate and the resulting smooth
muscle response in the feeding blood vessels may be modeled mathematically with
a system of differential equations as outlined in Section 4.2.1.

4.2.1 The balloon and other models

To a first approximation the hemodynamic response to a stimulus has been shown to
be linear [64], which means that models of the form given by Equation (4.34) may
be used. Nonlinear aspects of the hemodynamic response may be modeled using the
Volterra kernel approach (see Section 4.1.2). The next step beyond a Volterra series
approach is to model the physiology of the connection between neural activity
and the hemodynamic response. These models usually begin with a model that
relates the BOLD signal y = �S/S (see Equation (4.138)) to the normalized total
deoxyhemoglobin q = Q/Q0 and blood volume v = V/V0, where Q0 and V0 are
the rest quantities, via

y = V0
[
k1(1 − q)+ k2(1 − q/v)+ k3(1 − v)

]
. (4.141)

This model [76] assumes that the signal, S, originates from the post capillary venous
vessels in the static averaging diffusion regime from both intravascular sources, Si,
and extravascular sources, Se, weighted by blood volume fraction V as

S = (1 − V)Se + VSi. (4.142)

Linearizing Equation (4.142) about V0 gives

�S = (1 − V0)�Se −�VSe + V0�Si +�VSi (4.143)

and dividing Equation (4.143) by Equation (4.142) results in

�S

S
= V0

1 − V0 + βV0

[
1 − V0

V0

�Se

Se
+ �Si

Se
+ (1 − v)(1 − β)

]
, (4.144)

where β = Si/Se is the intrinsic signal ratio at rest. The extravascular signal may
be described by the following model based on numerical simulations by Ogawa
et al. [349]:

�S

S
= −�R∗

2 TE = aV0(1 − q), (4.145)

where R∗
2 = 1/T∗

2 and a = 4.3�χ ω0 E0 TE . At 1.5 T, with a susceptibility differ-
ence between the intra and extravascular space of �χ = 1 × 10−6, �χω0 = 40.3
s−1. A resting oxygen extraction fraction of E0 = 0.4 (see Equation (4.140)) and
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a TE = 40 ms give a = 2.8. A model for the intravascular signal and the resting
signal ratio β may be formulated from the experimental and simulation results of
Boxerman et al. [53]. The model for the intravascular signal is

�S

S
= −�A = −2�E = 2

(
1 − q

v

)
, (4.146)

where A = 0.4 + 2(0.4 − E) for an oxygen extraction fraction in the range 0.15 <
E < 0.55 and A0 = β = 0.4 assuming a magnetic field of 1.5 T, TE = 40 ms and
a blood vessel radius of 25 μm. Substituting Equations (4.145) and (4.146) into
Equation (4.144) yields Equation (4.141) with k1 = a = 7E0 = 2.8, k2 = 2 and
k3 = 2E0 − 0.2 = 0.6 at 1.5 T with TE = 40 ms and a vessel radius of 25 μm. The
resting blood volume fraction per voxel is 0.01–0.04.

The balloon model postulates a coupled relationship between deoxyhemoglobin
mass, Q, and venous volume V which can change according to pressures in a
balloon like venous vessel that receives the output from a capillary bed. The coupled
equations are

dQ

qt
= Fin(t)E(Fin)Ca − Fout(V)

Q(t)

V(t)
, (4.147)

dV

dt
= Fin(t)− Fout(V), (4.148)

where Fin is the CBF (ml/s) into the receiving venous vessel and Fout is the CBF
out of the receiving venous vessel, Ca is the arterial oxygen concentration (in
fully oxygenated blood) and E is the oxygen extraction fraction from the capillary
bed before the blood enters the receiving venous vessel. In terms of normalized
(dimensionless) variables q = Q/Q0, v = V/V0, fin = Fin/F0 and fout = Fout/F0,
where the 0 subscripted variables are the resting values, Equations (4.147) and
(4.148) become

dq

qt
= 1

τ0

[
fin(t)

E(fin)

E0
− fout(V)

q(t)

v(t)

]
, (4.149)

dv

dt
= 1

τ0
fin(t)− fout(v), (4.150)

where τ0 = V0/F0 is the mean transit time of blood through the receiving venous
vessel at rest. The oxygen extraction fraction may be modeled as [75]

E = 1 − (1 − E0)
1/fin (4.151)

and the balloon like output may be described by a windkessel (elastic bag) model
[296] as

fout = v1/α . (4.152)
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Mildner et al. [319] set finE/E0 = CMRO2/CMRO2,0 (see Equation (4.140)) in
Equation (4.149) in order to compare model predictions with their observations. In
later work, Obata et al. [346] replace E(fin) in Equation (4.149) (as represented by
Equation (4.151)) with an independent function E(t) to better represent the variation
of BOLD and flow dynamics observed across brain regions.

Based on his experimental work, Glover [184] suggests that the windkessel model
be modified to

fout = 1 + λ1(v − 1)+ λ2(v − 1)α , (4.153)

where λ1 = 0.2, λ2 = 4.0 and α = 0.47. Other experimental investigations
have evaluated both the structure of the balloon model and the parameters in it.
These experimental investigations combine fMRI with near-infrared spectroscopy
(NIRS) for direct measurement of oxygenation [423], and with inversion recovery
MRI [137] and exogenous contrast agent monocrystalline iron oxide nanocolloid
(MION) [461] both to quantify CBF.

To connect the balloon model of Equations (4.149) and (4.150) and the BOLD
model of Equation (4.141) to synaptic activity, Friston et al. [168] propose two
additional equations to model the control of fin by synaptic activity u as

dfin
dt

= s(t), (4.154)

ds

dt
= εu(t)− s(t)/τs − (fin(t)− 1)/τf , (4.155)

where the new variable s can be thought to roughly represent a nitrous oxide (NO)
astrocyte mediated signal from the synapse to the smooth muscles that control
the vasodilation that controls fin. The parameter ε represents the efficacy with
which synapse activity causes an increase in the vasodilation signal, τs is the time
constant for signal decay (or NO elimination) and τf is the time constant for auto-
regulatory feedback from the blood flow. Tying together the NO signal model of
Equations (4.154) and (4.155) with the balloon and BOLD models leads to a state
space model that may be explicitly summarized as [148]

dxi

dt
= fi(�x, u), 1 ≤ i ≤ 4, (4.156)

y = λ(�x), (4.157)

where �x = [x1 x2 x3 x4]T is the “state space” vector (the unobserved variables
of the model) and y is the BOLD response to the neural activity u in a single voxel.
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Fig. 4.5. Schematic of the meaning of the state space variables x1, . . . , x4
of Equation (4.156). The BOLD signal is determined from the xi through
Equation (4.157). This diagram was taken from [374] and is used with permission.

The four functions fi and λ are given explicitly by

f1(�x(t), u(t)) = εu(t)− κsx1(t)− κf [x2(t)− 1], (4.158)

f2(�x(t), u(t)) = x1(t), (4.159)

f3(�x(t), u(t)) = 1

τ
[x2(t)− x3(t)

1/α], (4.160)

f4(�x(t), u(t)) = 1

τ

(
x2(t)

[1 − (1 − E0)
1/x2(t)]

E0
− x3(t)

1/α x4(t)

x3(t)

)
, (4.161)

λ(�x(t)) = V0

(
7E0[1 − x4(t)] + 2

[
1 − x4(t)

x3(t)

]
+ [2E0 − 0.2][1 − x3(t)]

)
,

(4.162)

where Equations (4.158) and (4.159) correspond to Equations (4.154) and (4.155),
Equations (4.160) and (4.161) represent the balloon model of Equations (4.149)
and (4.150), and Equation (4.162) represents Equation (4.141). The state space
variables explicitly are:

x1 = s = flow inducing signal caused by neural synaptic activity u; (4.163)

x2 = fin = normalized blood inflow into the voxel (CBF); (4.164)

x3 = v = normalized blood volume in the voxel (CBV); (4.165)

x4 = q = normalized deoxyhemoglobin mass. (4.166)

A schematic of the meaning of these state space variables is given in Fig. 4.5
and some simulated versions of the state space functions are given in Fig. 4.6.
Bayesian methods (see Section 4.4) may be used not only to solve for the unobserved
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Fig. 4.6. Example time courses for the functions x1, . . . , x4 and y of
Equations (4.156) and (4.157) from a simulation study. Here induced signal =
x1, rCBF = x2, v = x3, q = x4 and BOLD response = y. The dashed line in the
BOLD response panel is x2 and shows how the measured BOLD signal lags behind
the blood flow response, which in turn lags behind the neural response modeled
in this case as a short stimulus at t = 0. Note how the basic features of the BOLD
response shown in Fig. 4.4 are reproduced by the modeled BOLD response here.
This diagram was taken from [148] and is used with permission.

state variables but also for the parameters of the model. In particular, a map of ε
may be considered to be an activation map. Complete state space models may
also be used to generate model Volterra kernels which have then been favorably
compared to measured Volterra kernels (see Section 4.1.4) [168]. Alternatively,
the state space model of Equations (4.156)–(4.162) may be placed in a Bayesian
framework (see Section 5.6.5) and posterior estimates of the state variables and
their variances may be obtained pixel by pixel from an fMRI time-series [148,
374]. The extent and magnitude of the nonlinearities of the BOLD response for
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various experimental design parameters including prior stimulus, epoch length (for
blocked designs), SOA for a fixed number of events and stimulus amplitude were
investigated by Mechelli et al. [308] using simulations based on Equations (4.156)
and (4.157).

Zheng et al. [474] (see also [213]) extend the state space model of
Equations (4.156)–(4.162) to include a capillary bed model for oxygen transport to
tissue (OTT) that replaces the model for the oxygen extraction fraction as given by
Equation (4.151). To do this, E(fin) in Equation (4.149) is replaced with a new state
space variable E(t) along with two more variables, CB, the spatial mean total blood
O2 concentration in the capillary bed that feeds the receiving venous vessel, and g,
the ratio of the spatial average oxygen concentration in the tissue (CP) to the plasma
oxygen concentration in the arterial end of the capillary (Ca

P, so that g = CP/Ca
P).

The three new equations that describe E, CB and g and their relationship to fin and
u are

dE

dt
= fin(t)

ϕ

[
−E(t)+ (1 − g(t))

(
1 −

(
1 − E0

1 − g0

)1/fin(t)
)]

, (4.167)

dCB

dt
= fin(t)

ϕ

[
−CB(t)− Ca

BE(t)

ln (1 − E(t)/(1 − g(t)))
+ Ca

Bg(t)

]
, (4.168)

dg

dt
= 1

J

VcapE0

VvisrT

[(
CB(t)− g(t)Ca

B

CB,0 − g0Ca
B

− 1

)
− Ku(t)

]
, (4.169)

where the quantities with subscript 0 denote resting quantities, as usual, and ϕ is a
constant related to capillary transit time, Ca

B is blood O2 concentration at the arterial
end of the capillary bed (taken to be 1 by Zheng et al.), Vtis, Vcap are the volume
of blood in tissue and capillary respectively, r = CP/CB is the ratio of plasma O2

concentration, CP, to total blood O2 concentration CB (r is assumed constant), T
is the mean capillary transit time, J is a scaling constant, and K is a constant such
that the metabolic demand M satisfies M = Ku.

Aubert and Costalat [22] formulate a detailed state space physiological model of
the BOLD response using νstim (in place of u) and Fin as input variables, with the
BOLD response y as given by Equation (4.141) being the output. In their model
νstim represents stimulus induced sodium inflow into the cells (which, in principle,
is a function of u) and there are a total of 15 variables in their model. Those
variables are concentrations of: (1) intracellular sodium (Na+

i ), (2) intracellular
glucose (GLCi), (3) glyceraldehyde-3-phosphate (GAP), (4) phosphoenolpyruvate
(PEP), (5) pyruvate (PYR), (6) intracellular lactate (LACi), (7) reduced form of
nicotinamide adenine dinucleotide (NADH), (8) adenosine triphosphate (ATP),
(9) phosphocreatine (PCr), (10) intracellular oxygen (O2i), (11) capillary oxygen
(O2c), (12) capillary glucose (GLCc), (13) capillary lactate (LACc), (14) venous
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volume (Vv = V of Equation (4.148)) and (15) deoxyhemoglobin (dHb = Q of
Equation (4.147)).

4.2.2 Neural activity from hemodynamic deconvolution

The state space models reviewed in Section 4.2.1 describe the HRF y in terms of
neural activity u. A first approximation to u is to assume that it equals the stimulus
function. Beyond that it is desired to deconvolve the cause of the HRF from the HRF
to arrive at an estimated neural response u that is more useful for state space models
and connectivity mapping (see Section 5.6). Although the hemodynamic response
is known to be nonlinear, if relatively short presentations (SD, see Section 3.1) are
used and the ISI (see Section 3.1) is long enough the response may be well approxi-
mated as linear†. With these assumptions, Glover [184] proposes deconvolving
u from

y(t) = u ∗ h(t)+ ε(t) (4.170)

with an estimate u′ of u obtained from a measurement of the IRF h using short
duration SD in another experiment with the same subject and the following Wiener
filter:

u′(t) = F−1

[
H∗(ω)Y(ω)

|H(ω)|2 + E2
0

]
, (4.171)

where H and Y are the Fourier transforms of h and y, respectively and E0 is an
estimate of the assumed white noise spectrum amplitude of ε. A model for h for
use in Equation (4.171) is obtained by fitting the function

h(t) = c1tn1e−t/t1 − a2c2tn2e−t/t2 , (4.172)

with ci = max(tni e−t/ti), to the data collected for IRF measurement. This method
requires measurement of E0 and is sensitive to the value assumed for the noise
spectral density.

Gitelman et al. [183] generalize the approach to deconvolution in the following
way. The discrete convolution obtained from evaluating Equation (4.170) at the
sampled time points may be written in matrix form as

�y = [H]�x + �ε, (4.173)

where [H] is a Toeplitz matrix representation of translated values of h. Let the
columns of [X] be a set of basis functions evaluated at the sampled time points;

† Janz et al. [231] show that nonlinearities from neural adaptation may also be responsible for nonlinearities
in the BOLD response. That is, the neural response to the stimulus may become nonlinear as the neural system
adapts to the stimulus.
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Gitelman et al. use a Fourier basis set (cosines). Then Equation (4.173) becomes
approximated by

�yA = [H][X] �β + �ε. (4.174)

By the Gauss–Markov theorem, the maximum likelihood estimator of �β is

�̂
βML = ([X]T [H]T [�]−1[H][X])−1[X]T [H]T [�]−1�yA (4.175)

when �ε ∼ N(0, σ 2[�]). The high frequency components of �̂
βML will generally be

ruined by noise so the following maximum a-posteriori (MAP) estimate will be
better:

�̂
βMAP = ([X]T [H]T [�]−1[H][X] + σ 2[Cβ]−1)−1[X]T [H]T [�]−1�yA, (4.176)

where [Cβ]−1 is the prior precision (inverse of the prior covariance) of �β. The
diagonal elements of [Cβ] may be used to impose a smoothing constraint on the

high frequency (or other) components of �̂
βMAP. It can be shown that

�̂
βMAP = H∗(ω)Y(ω)

|H(ω)|2 + gε(ω)/gβ(ω)
, (4.177)

where gβ is the prior spectral density and gε is the noise spectral density when
Fourier basis vectors are used in [X]. It can be seen that Equation (4.177) is formally
equivalent to Equation (4.171).

4.2.3 Hemodynamic and mental chronometry

For some studies it is desired to know the delay, or latency, of the BOLD response.
Estimates of the time of the peak of the HRF may be used to infer timing of the
underlying neural activity to ∼100 ms [66]. Also it has been shown that both
the latency and width of the BOLD response correlate positively with the reaction
time (RT) required by the subject to perform the given task [314]. Other features
of the hemodynamic response that have been observed [78] are:

• The magnitude of the response is larger and the latency is longer for draining vessel
voxels than for cortical voxels.

• Properties of the earlier part of the response, e.g. the early negative dip, provide better
spatial localization than later parts of the response.

• The variability of the rising portion of the response is less than the variability of the
descending portion.

One of the first approaches to measuring the latency of the BOLD response
involves fitting a straight line to the ramp up of the BOLD response [313]. Working
within ROIs identified as active using a conventional GLM for the IRF, Bellgowan
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et al. [39] model the measured HRF as a convolution between a Heavyside step
function u, to represent the neural activity, with a gamma variate function to rep-
resent the hemodynamic response to neural activity. The width and delay of the
Heavyside function is varied until a good fit between model and data is found, with
the delay giving high resolution ∼100 ms chronometry.

Another way of estimating the delay of the HRF is to fit a gamma density function
of the form

f (t + l) = c
ba

�(a)
(t + l)a−1 exp(−b(x + l)) (4.178)

to the measured, mean subtracted, response, where l gives lag, the delay (the time to
peak) is given by l+a/b and c represents the response magnitude (area under the f ).
Hall et al. [204] uses such measures of lag, delay and magnitude plus a goodness-of-
fit parameter in a logistic regression with a receiver operating curve (ROC) analysis
to show that such parameters may be used to distinguish between voxels containing
gray matter and those containing primarily veins with a discriminating power (area
under the ROC curve) of 0.72.

Saad et al. [381] use correlation analysis to both detect activation and quantify
latency. They compute the cross-correlation function between the measured voxel
time-series y(t) and scaled and translated versions of a reference function x(t)
given by αx(t − δ). (Their reference function is a simple sine wave having a fre-
quency equal to the frequency of their block design experiment.) The resulting
cross-correlation function rxy is related to the autocorrelation function rxx of x by

rxy(τ ) = αrxx(τ − δ), (4.179)

which will be maximum when τ = δ. The corresponding correlation coefficient
r(δ), given by

r(δ) = rxy(δ)√
rxx(0)ryy(0)

, (4.180)

may be used as a thresholding parameter for detecting activation. The maximum of
rxy occurs where the Hilbert transform of rxy, Hrxy, equals zero. Finding the zero
of Hrxy is computationally more efficient† than finding the maximum of rxy.

Calhoun et al. [78] use a weighted least squares approach to measure latency,
which they define essentially as time to onset by using a fixed model for the HRF
that may be shifted by δ. For each δ, the GLM

�y = [Xδ] �β + �ε, (4.181)

† Sadd et al. [381] report that their software is available as a plug-in for the AFNI software.
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where the column of interest in [Xδ] is the fixed HRF shifted by δ, may be solved
using

�̂
βδ = ([Xδ]T [W ][Xδ])−1[Xδ]T [W ]�y, (4.182)

where [W ] is a weighting matrix that is used to more heavily weight the earlier
response time points to account for the reduced variability that has been observed
in the earlier parts of the HRF. Then, for each δ, an adjusted correlation coefficient,
ρδ , is computed as

ρδ =
√
(N ′ − 1)R2

δ − K

N ′ − K − 1
, (4.183)

where K is the number of explanatory variables, N ′ is the effective degrees of
freedom (see Section 4.1.3) and

R2
δ =

�̂
β[Xδ]T [W ]T�y − �y T diag([W ])2/diag([W ])T [I]

�y T [W ]�y − �y T diag([W ])2/diag([W ])T [I] . (4.184)

The δ that maximizes ρδ defines the latency. Calhoun et al. compute ρδ in the
Fourier domain to increase computational efficiency and resolution on values of δ
considered.

Friston et al. [161] use two basis functions to represent the IRF as given by
Equation (4.35), a sum of two gamma variate functions as given by Equation (4.195)
and its temporal derivative. Once βb of Equation (4.35) are determined, then some
aspect of the inferred IRF h, such as the time of the maximum response, may be
used as a measure of latency l. Friston et al. show that the standard error of such a
latency estimate is given by

SE(l) = SE(h(τ ))

/(
dh

dt
(τ )

)
, (4.185)

where τ is the time associated with the latency parameter (l = τ for the example
of time of peak relative to stimulus onset). The logic of using the sum of a model
IRF and its derivative to model latency goes as follows. Let h0(t) be a model IRF
given by, for example, Equation (4.195), then define a shifted version of h0 by

h(t; δ) = h0(t − δ) (4.186)

so that

h(t; δ) ≈ h0(t)+ h1(t)δ (4.187)

by Taylor’s theorem, where

h1(t) = ∂h(t; δ)

dδ

∣∣∣∣
δ=0

= −dh0

dt
(t). (4.188)
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Convolving with the stimulus paradigm u gives two functions x0 = u ∗ h0 and
x1 = u ∗ h1 and a GLM that may be expressed as

yi = x0(ti)β1 + x1(ti)β2 + εi (4.189)

= u ∗ (β1h0(ti)+ β2h1(ti))+ εi (4.190)

≈ u ∗ h(ti; δ)α + εi, (4.191)

where α is a scaling factor. Comparison with Equation (4.187) yields δ = β2/β1

[216]. Liao et al. [277] extend this approach by picking different two basis functions
b0 and b1 so that

h(t; δ) ≈ b0(t)w0(δ)+ b1(t)w1(δ) (4.192)

is a better approximation than Equation (4.187). Convolving with the stimulus
paradigm u gives two functions x0 = u ∗ b0 and x1 = u ∗ b1 and a GLM that may
be expressed as

yi = x0(ti)w0(δ)γ + x1(ti)w1(δ)γ + εi, (4.193)

so that the parameter vector is �β = [w0(δ)γ w1(δ)γ ]T . Once �β is estimated, the
parameter of interest, δ, and an associated t statistic can be computed.

Hernandez et al. [217] explore, using simulation and experiment, the effect of
sequence and stimulus timing errors on the determination of BOLD delay. They let
B(t) be the BOLD actual response (HRF), let y(t) = B(t)+ε(t) be the signal model
with added noise and let x(t) = B(t − T) ≡ BT (t) represent an analysis function
in error by an offset of T and derive the correlation between x and y, rxy to be

rxy = 〈B, BT 〉 − B
2

σB

√
σ 2
ε + σ 2

B

(4.194)

assuming B = BT . Note that 〈B, BT 〉 equals the autocorrelation function of B
evaluated at −T so that rxy is dominated by the behavior of that autocorrelation
function, and hence on the form of B. For their simulations an IRF of the form

r(t) = �
τ1
1 t(τ1−1) e(−�1t)

�(t1)
− �

τ2
2 t(τ2−1) e(−�2t)

�(t2)
, (4.195)

where � is given by Equation (3.6) and τ1 = 6, τ2 = 16, �1 = 1, �2 = 1, was used
(time units in seconds). The model of Equation (4.195) is an improvement over that
of Equation (3.4) in that it is capable of representing the undershoot, after response,
of the BOLD function. By looking at the corresponding t statistic

t = rxy

√
ν

1 − r2
xy

, (4.196)
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where ν is the degrees of freedom, Hernandez et al. show that, as a function of T ,
the statistic t has a relatively sharp peak at typical fMRI SNRs so that a series of
analyses that vary the temporal offset of the model HRF would be able to arrive at
the correct offset by maximizing t with respect to T .

4.3 Other parametric methods

The GLM is widely used for the analysis of fMRI time-series, and is easily the
most popular method, but other approaches have been tried and are being used on
a regular basis by some research groups. Here we review other approaches that
may be characterized in terms of estimating parameters associated with the BOLD
response.

One interesting early approach to activation map computation for a blocked
design uses likelihood ratios formed over clusters of pixels to increase SNR [378].
In that approach, the SNR at pixel p is defined in the usual way as SNRp = s/σ ,
where s is the signal and σ is the standard deviation of the noise. Over a region of
N pixels, the SNR increases to SNRr = √

N SNRp. Signal in an active region of
voxels is assumed to have a mean of μ1 while a nonactive region has a mean of μ0

and the probability of observing a value y in each case is assumed to be

pi(y)
1

σ
√

2π
e−(y−μi)

2/2σ 2
, (4.197)

which is a good assumption given the long TR of their investigation (small noise
autocorrelation). For a time-series of region values �y of length n containing r rest
time points, the likelihood ratio, L, is shown to be

L(�y) =
n∏

k=r+1

p1(yk)

p0(yk)
(4.198)

and a region is considered active if L(�y) > γ for ln γ = (n−r) ln α, where α repre-
sents a decision level for rejecting the null hypothesis such that [p1(yk)/p0(yk)] > α
for each k. Regions are initially defined by computing likelihood ratios for each
voxel’s time-series. Then adjacent activated voxels define the regions for the
next likelihood ratio calculation. Regions are then trimmed on the basis that the
individual voxels, p, have to have an SNR that passes the test

SNRp >
1√

N − 1
SNRr . (4.199)

A similar likelihood ratio test, at the single-voxel level, has been used on complex
image data† to provide more sensitive detection [335].

† MRI data are intrinsically complex and typically only the magnitude image is provided after Fourier
transforming the raw data. Here it is assumed that the complex data are available for analysis.
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An ANOVA-based GLM approach to blocked designs, BOLDfold, has been
proposed [97, 389]. Let there be N epochs with K time points (scans) in each epoch
to give a total of n = NK data volumes in the time-series. Denote the scan times as
tij, where i indexes the epoch and j indexes the time within the epoch. Group k of the
ANOVA is defined by the time points {tik|1 ≤ i ≤ N} so that there are K groups.
The average of each group, taken in order, then represents the average BOLD
response over the epochs and may be tested for flatness by comparing the standard

F = MSg

MSe
(4.200)

to Fν1,ν2 , where MSg is the mean square difference between groups and MSe is the
mean square error, and ν1 = K − 1 and ν2 = K(N − 1) are the treatment and error
degrees of freedom, respectively. It may be shown that

F = ν2

ν1

r2

(1 − r2)
, (4.201)

where r is the correlation between the measured time-series and the average
response repeated N times given explicitly by

r2 =
[∑N

j=1
∑K

i=1(yi· − y··)(yij − y··)
]2

[
N
∑K

i=1(yi· − y··)2
] [∑n

j=1
∑k

i=1(yij − y··)2
] , (4.202)

where y·· represents the grand mean of the time-series values and yi· represents the
mean of group i [389]. A similar approach is proposed by Lu et al. [289]. If we
define �Yi = [yi1 · · · yiK ]T and the correlation between �Yi and �Yj as cij, then a map
of T parameters may be thresholded to give an activation map where

T = (2/N(N − 1))
∑N

i=1
∑

j>i cij√
(2/N(N − 1))

∑N
i=1

∑
j>i(cij − (2/N(N − 1))

∑N
i=1

∑
j>i cij)2

. (4.203)

These ANOVA type approaches have the advantage of providing a model free
estimate of the HRF (as opposed to the IRF) in blocked designs. A similar model
free approach, not requiring a blocked design, but requiring multiple identical ima-
ging runs, may be obtained by computing the correlation coefficients of time courses
in corresponding voxels between the runs [276].

Purdon et al. [366] and Solo et al. [406] construct a physiologically motivated
model, where the signal is assumed proportional to blood volume times deoxyhemo-
globin concentration VQ, in which spatiotemporal regularization (smoothing†) is

† A local polynomial technique is used in the regularization procedure in lieu of a computationally
intractable global Tikhonov regularization procedure.
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used to estimate the model parameters. Their model for the measured data x(t, �p)
at time point t and pixel† �p may be expressed as

x(t, �p) = m( �p)+ b( �p)t + s(t, �p)+ ν(t, �p), (4.204)

where m( �p)+b( �p)t is a drift correction term, s(t, �p) is the signal model and ν(t, �p)
is the noise model. The signal is modeled as s(t, �p) = V(t, �p)Q(t, �p) where

Q(t, �p) = k1( �p)+ k2( �p) (ga ∗ u)(t), (4.205)

ga(t) = (1 − e−1/da)2 (t + 1) e−t/da (4.206)

and

V(t, �p) = k3( �p)+ k4( �p) (gb ∗ u)(t), (4.207)

gb(t) = (1 − e−1/db) e−t/db , (4.208)

where ga is a gamma variate function, k1( �p), . . . , k4( �p) are constants, da = 1.5 s,
db = 12 s and u is the stimulus function. So

s(t, �p) = fa( �p) (ga ∗ u)(t − δ( �p))+ fb( �p) (gb ∗ u)(t − δ( �p))
+ fc( �p) (ga ∗ u)(t − δ) (gb ∗ u)(t − δ( �p)), (4.209)

where �β( �p) = [m( �p) b( �p) fa( �p) fb( �p) fc( �p) δ( �p)]T are the signal parameters to be
estimated. The noise model is given by

ν(t, �p) = w(t, �p)+ η(t, �p), (4.210)

w(t, �p) = ρ( �p)w(t − 1, �p)+ ε(t, �p), (4.211)

where η(t, �p) is zero-mean Gaussian white noise with variance σ 2
η ( �p) represent-

ing scanner noise, ε(t, �p) is zero-mean Gaussian white noise with variance σ 2
ε ( �p)

and ρ( �p) is a correlation coefficient; w(t, �p) is an AR(1) model and the model is
equivalent to an ARMA(1,1) model [52]. So the noise parameters to be estimated
are �α( �p) = [σ 2

η ( �p) σ 2
ε ( �p) ρ( �p)]T . Altogether, the parameters to be estimated are

given by �θ( �p) = [ �β T �α T ]T . The parameters are estimated by minimizing

J(�θ) = J([�θ(1, 1)T . . . �θ(M1, M2)
T ]T ) =

∑
�p

J�p(�θ( �p)), (4.212)

where the criterion at pixel �p is a spatially locally weighted log-likelihood given by

J�p(�θ( �p)) =
∑

�q
Kh( �p − �q)L(�q; �θ( �p)), (4.213)

† The spatial regularization used is 2D but could, in principle, be extended to 3D.
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where L(�q; �θ( �p)) is a Gaussian log-likelihood based only on the time-series at pixel
�q and Kh( �p−�q) is a spatial smoothing kernel. The Gaussian log-likelihood at pixel
�q is given in terms of the temporal discrete Fourier transforms (DFT) F[x(t, �q)] =
x̃(k, �q) and F[μ(t, �p; �β( �p))] = F[m( �p)+ b( �p)t + s(t, �p)] = μ̃(k, �p; �β( �p))

L(�q; �θ( �p)) = −1

2

∑
k

|x̃(k, �q)− μ̃(k, �p; �β( �p))|2
N2S(k; �α( �p)) − 1

2

∑
k

ln S(k; �α( �p)), (4.214)

where N is the number of time points and S(k; �α( �p)) represents the noise spectrum.
The Epanechnikov smoothing kernel is given by

Kh(�q) = K

(
q1

M1h

)
K

(
q2

M2h

)
1

h2M1M2

(
1 − 1

4M2
1

)(
1 − 1

4M2
2

)
, (4.215)

where M1 and M2 are the image dimensions and

K(x) =
{

3(1 − x2)/4 for |x| ≤ 1
0 for |x| > 1

. (4.216)

Equation (4.213) is minimized by an iterative procedure (see [406]) to complete
the process which is called locally regularized spatiotemporal (LRST) modeling.

Purdon et al. [366] and Solo et al. [406] also compare their model to the standard
GLM using the nearly unbiased risk estimator (NURE) technique. This technique
is based on an estimate of the Kullback–Leiber (KL) distance, R(θ), between the
true probability of the data, p(x), and the probability density given by the model,
pθ (x), defined by

R(θ) =
∫

p(x) ln

(
p(x)

pθ (x)

)
dx (4.217)

plus a measure of the number of parameters in the model. As always, there are trade-
offs between models but Purdon et al. and Solo et al. find that LRST outperforms
the standard GLM in terms of modeling the noise better than temporal filtering
(see Section 4.1.1) and fewer parameters are required to model nonlinearities than
in a Volterra approach (see Section 4.1.4). However, the GLM approach requires
considerably less computation.

Ledberg et al. [272] take a 4D approach to activation map computation. In their
approach multiple data runs are required with the assigned task being constant
within a run. Activations are determined by comparing runs in a GLM. Ledberg
et al. recommend that a large number of short runs be used as opposed to the
standard approach of using a small number of long runs. Let there be t time points
in each run, v voxels in each volume and n runs in total and organize the data into
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an n × vt data matrix [Y ] as follows:

[Y ] =

⎡
⎢⎢⎢⎣

�v T
11 · · · �v T

1t

�v T
21 · · · �v T

2t
. . .

�v T
n1 · · · �v T

nt

⎤
⎥⎥⎥⎦ , (4.218)

where �v T
ij is the volume at time j in run i, so each row represents a run. The “4D”

GLM is then

[Y ] = [X][B] + [E], (4.219)

where [X] is an n × p design matrix, [B] is a p × vt matrix of model parameters
and [E] is an n × vt matrix of error terms. The rows of the design matrix code for
the conditions represented by the runs (e.g. the runs could alternate between task
and rest) and the columns represent volumes at a given time in every run. If the
expected value of [E] is [0] and cov([e]j) = σ 2

j [I], where [e]j is the n × v matrix

that represents the jth column of [E] and �h is a p-dimensional estimable contrast
(i.e. �h T = �a T [X] for some �a), then the BLUE estimate of �h T [B] is given by

�h T ˆ[B] = �h T ([X]T [X])+[X]T [Y ] (4.220)

with an associated 4D statistical t vector of dimension vt given by

�t = (�h T ˆ[B])(diag([R]T [R])�h T ([X]T [X])+�h/γ )−1/2, (4.221)

where [R] = [Y ]−[X] ˆ[B] is the matrix of residuals, γ = n−rank([X]) is the degrees
of freedom of the model and diag is the matrix operation that sets nondiagonal
entries to zero. Inferences can be made at the 4D voxel level or 4D cluster level
by using permutation or Monte Carlo techniques to determine the null hypothesis
distributions. The voxel level inferences yield vt size activation maps (movies)
when the values of �t are thresholded at some level.

Katanoda et al. [240] modify the GLM to base parameter estimation for a voxel
on the time courses of neighboring voxels. They illustrate their approach with a
simple regression model in which the design matrix has one column so that with
the standard GLM approach the model at voxel u0 is given by

y(t, u0) = x(t)βu0 + ε(t, u0). (4.222)

The standard model is extended to include neighboring voxels and expressed as⎡
⎣y(t, u0)

. . .

y(t, u�)

⎤
⎦ =

⎡
⎣x(t)
. . .

x(t)

⎤
⎦βu0 +

⎡
⎣ε(t, u0)

. . .

ε(t, u�)

⎤
⎦ , (4.223)
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where u1, . . . , u� represent neighboring (spatial) voxels. Katanoda et al. solve the
model of Equation (4.223) in the temporal Fourier domain where the temporal auto-
correlations (AR(1) model) and spatial correlations that are specified in a separable
fashion are more easily modeled. The Fourier domain approach leads to a model
that can be solved by an ordinary least squares method.

4.3.1 Nonlinear regression

The GLM is a linear regression approach but nonlinear regression may also be used
to detect activations and quantify the HRF. Kruggel and von Cramon [258] propose
a nonlinear regression approach by first dividing the fMRI volume time-series into
a set of k ROIs, S, (defined on the basis of a preliminary GLM analysis) and time
points T = {1, . . . , �}, where � is the number of time points, so that the reduced
data set for model fitting is {y(s, t)|s ∈ S, t ∈ T}. The nonlinear model used is

y(s, t) = g(t, �β)+ ε(s, t) (4.224)

for a total of n = k� equations, where it is assumed that ε ∼ Nn(0, [V ]) and �y ∼
Nn(�g(T , �β), [V ]) with Nn denoting the n-variate normal distribution. The model,
per se, is defined by

g(t, �β) = β0

β1
exp

(
−(t − β2)

2

2β2
1

)
+ β3, (4.225)

where β0 is interpreted as gain (amplitude), β1 as dispersion (width), β2 as lag
and β3 as the baseline. Starting with [V ] = [I] the parameters �β are computed by
minimizing

arg min
�β
[�y − �g(T , �β)T [V ]−1�g(T , �β)] (4.226)

using the downhill simplex method. Then the residuals are used to compute [V ] for
use in the next iteration of optimizing Equation (4.226). After five or so iterations
the values for �β are adopted, the residuals checked for normality and stationarity
and confidence intervals computed.

4.4 Bayesian methods

The GLM and other methods described thus far are applied by considering the
null hypothesis, H0, of no activation and looking for evidence against H0 in a stat-
istic with a low p value, the probability of incorrectly rejecting H0. This approach
is known as the frequentist approach†. Recently, many investigators have been

† Many authors in the fMRI literature refer to the frequentist approach as the “classical” approach even
though Bayes’s ideas were developed in the 1700s and Fisher promoted the frequentist approach in the early
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developing Bayesian methods as an alternative to frequentist methods. In this
section we review Bayesian approaches to making inferences about activation. In
Section 5.6.5 we review Bayesian approaches to making inferences about connectiv-
ity. The boundary between Bayesian activation inference and Bayesian connectivity
inference is a fuzzy one with the boundary being filled by the application of
multivariate and/or clustering methods in a Bayesian way.

To illustrate the ideas of the Bayesian approach, following Woolrich et al. [450]
(see also [41]), let� represent the parameters (a set) of a given model M (a set of
equations) and let Y represent the data (a vector for univariate voxel analysis or a
data matrix for multivariate approaches). Then Bayesian methods are based on the
Bayes rule (see Equation (2.17))

p(�|Y , M) = p(Y |�, M) p(�|M)

p(Y |M)
, (4.227)

where each term represents a probability distribution†. For any given data set, the
term p(Y |M) is constant so we may absorb it into the function �(�|Y , M) =
p(Y |�, M)/p(Y |M) and write

p(�|Y , M) = �(�|Y , M) p(�|M), (4.228)

where p(�|M) is the prior distribution for �, �(�|Y , M) is the likelihood func-
tion and p(�|Y , M) is the posterior distribution. A computational complication in
Equation (4.228) is that

p(Y |M) =
∫
�

p(Y |�, M) p(�|M) d� (4.229)

needs to be computed and the integral is frequently not tractable analytically.
Integrals describing the marginal posterior distributions for parameters of interest,

p(�I |Y , M) =
∫
�¬I

p(�|Y , M) d�¬I , (4.230)

where�I and�¬I are the parameters of interest and noninterest respectively, also
need to be computed and also may not be tractable analytically. Without analytical
solutions, the integrals need to be estimated numerically. A popular way of com-
puting such integrals numerically is via a Markov chain Monte Carlo (MCMC)
[174, 182] method, where samples of � are generated from the given distribution
in such a way that a histogram of those samples matches the given probability dis-
tribution. The MCMC method requires many samples for an accurate estimate of
the given probability distribution integral but one can get away with fewer samples

1900s. From the point of view of the history of fMRI analysis (which began in the early 1990s), however, the
frequentist approach may be considered “classical”.

† A probability distribution may be defined as a non-negative function in L2(Rn) whose norm is 1.
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by fitting a Student t distribution to the sample histogram in a method known as
Bayesian inference with a distribution estimation using a T fit (BIDET).

Frequentist approaches find � that maximize the likelihood �, frequently using
least squares methods (e.g. Equation (4.79)) or using the iterative expectation
maximization (EM) method described later in this section. That is, the param-
eters computed in frequentist methods are ML parameters. Bayesian methods find
the MAP parameters, i.e. the parameters that maximize p(�|Y , M). When the
prior distribution is flat (constant†), the ML solution and MAP solutions coincide.
The advantage to the Bayesian approach is that a-priori information may be used
in making inferences. This means that one need not always start “from scratch”,
essentially discounting previous knowledge and wisdom, when making inferences
from a given data set. Knowledge from previous experiments could, in principle,
be used as a-priori information in a Bayesian approach. Frequently, the a-priori
information is in terms of the smoothness (regularization approach) of the response
or in terms of the structure of the noise variance components (e.g. the autocorrela-
tion structure of the fMRI time series would be modeled in the prior term). Other
differences derive from the differing inference philosophies of the frequentist and
Bayesian approaches. With the frequentist approach, one states the probability that
an activation could be false (the p value) on the basis of an a-priori assumed (or
sometimes estimated by permutation methods) null hypothesis probability distri-
bution. With the Bayesian approach, one states the probability that an activation
is true. This difference means that there is no multiple comparison problem with
Bayesian methods; the posterior probabilities do not need to be adjusted in the same
way that p values do (see Section 4.1.8). However, a minimum threshold probab-
ility must still be chosen to define the boundary between active and nonactive
voxels.

4.4.1 Bayesian versions of the GLM

The first applications of Bayesian theory to fMRI activation map computation were
made by Frank et al. [143] and by Kershaw et al. [243]. This work began with the
GLM as given by

�y = [A]�θ + [B] �ψ + �ε = [X] �β + �ε, (4.231)

where [X] = [[A]|[B]] and �β = [�θ T �ψ T ]T gives a partition of the design matrix
and parameter vector into effects of interest and no interest, respectively, with
dim �θ = m and dim �ψ = q. Assuming iid normally distributed variation in �ε,

† A flat distribution is an improper distribution because its integral is infinite. However, an improper
distribution multiplied with a proper distribution gives a proper distribution.
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Equation (4.231) leads to the likelihood function

�(�y| �β, σ 2) = K

(2πσ 2)n
exp

[
−(�y − [X] �β)T (�y − [X] �β)

2σ 2

]
, (4.232)

where K is a normalization constant, n = dim �y and σ is a hyperparameter that
quantifies the variance and which needs to be estimated along with the parameters
in �β. Since nothing is known about the distribution of the parameters a-priori,
a noninformative prior distribution may be used. Noninformative priors may be
constructed using Jefferys’s Rule which states that for a set of nonindependent
parameters, ��, the noninformative prior may be taken as

p( ��) ∝ √
det[J], (4.233)

where [J] is the Fisher information matrix having entries

Jij = E

[−∂2(ln �)

∂�i ∂�j

]
. (4.234)

Assuming that the variance hyperparameter is independent of the other paramet-
ers, p( �β, σ 2) = p( �β)p(σ 2), applying Jefferys’s Rule leads to the noninformative
prior distribution p( �β, σ 2) = 1/σ 2. In this case, the normalization integral may be
computed analytically to give a posterior distribution of

p( �β, σ 2|�y) = (rs2)r/2
√

det([X]T [X]) (σ 2)−(p/2+1)

2p/2 �(1/2)m+q �(r/2)
exp

[
−rs2 + Q( �β)

2σ 2

]
,

(4.235)

where

r = n − m − q, Q( �β) = ( �β − �̂
β)T [X]T [X]( �β − �̂

β)

and

�̂
β = ([X]T [X])−1[X]T�y.

The marginal posterior probability density for the parameters of interest may also be
analytically computed. From Equation (4.235) one may compute the MAP estimate

of ( �β, σ 2) or the expectation value. Both methods lead to the ML value �̂
β but

the MAP calculation produces pσ̂ 2/(p + 2) and the expectation value calculation
produces pσ̂ 2/(r − 2) as estimates for σ 2, where σ̂ 2 is the ML value (the variance
of �ε) so that each method gives a different posterior probability.

Both Goutte et al. [195] and Marrelec et al. [298] use the finite impulse response
(FIR) model of the IRF (given by Equation (4.37)) as the design matrix for the
parameters of interest and a model of the error autocovariance [�] in the prior via
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the matrix [R] = [�]−1, modified to constrain the IRF to begin and end at zero, to
result in MAP estimate of

�βMAP = ([X]T [X] + σ 2[R])−1[X]T�y, (4.236)

where the hyperparameter σ 2 may be obtained as the value that maximizes the
evidence p(�y|[X], σ 2, ν, h) with ν and h being hyperparameters used to define [R].
A connection of this approach to a Tikhonov regularization solution obtained by
minimizing the penalized cost

C( �β) = (�y − [X] �β)2 + λ
∑

i

(
∂nβi

∂in

)2

, (4.237)

where n is the order of the derivatives used for smoothing, is made by Goutte et al.
Equation (4.237) may be rewritten as

C( �β) = (�y − [X] �β)2 + �β T [R] �β (4.238)

for some [R] (generally different from an [R] derived from a noise autocorrelation
model). Equation (4.238) (with the appropriate [R]) may be derived as the negative
log of the product of the likelihood and prior of Goutte et al.’s FIR model with AR
noise modeled in the prior. Thus the regularization term in a Tikhonov regularization
approach represents a prior covariance when viewed from a Bayesian perspective.

Marrelec et al. [299, 300] extend the GLM-based Bayesian model to include sev-
eral stimuli types per run for multiple runs and show that directed acyclic graphs
(DAG) may be used to skip direct calculation of the posterior probability density
function (pdf) by representing the posterior distribution as a product of conditional
pdfs of the parameters and hyperparameters. The conditional pdfs may be approx-
imated by inverse χ2 and normal distributions and a Gibbs sampling scheme that
is informed by the structure of the DAG may be used to generate a numerical
approximation of the posterior distribution.

Woolrich et al. [452] represent both temporal and spatial covariance in their
Bayesian model but nonlinearly parameterize the IRF, h, used to define the model
h ∗ x, where x is the stimulus function. They model h as a piecewise continuous
addition of four half period cosines in which six parameters are to be determined in
MAP solution. The six parameters allow for a characterization of the IRF (different
for each voxel) that include the amplitude of the initial dip, the onset delay, the
main response amplitude and the undershoot amplitude at the end of the response.
MCMC sampling is used to characterize the resulting posterior distribution and a
deviance information criterion (DIC) is used to quantify the model goodness of fit.
Given a set of parameters θ and data y, the DIC is defined as

DIC = pD + D, (4.239)
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where D = Eθ |y(D) is the posterior expectation of the deviance, D, given by

D(θ) = −2 ln p(y|θ)+ 2 ln f (y), (4.240)

where f is a nonessential standardizing term, and

pD = D − D(Eθ |y(θ)) (4.241)

quantifies the complexity of the model. A low DIC indicates a good model. Woolrich
et al. find that models that use Markov random fields (MRF) as priors give a low
DIC.

A similar nonlinear Bayesian approach is used by Gössl et al. [192] but instead
of a piecewise function consisting of four half period cosines they use the following
piecewise model of the IRF:

h(t) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0.0 t < t1

exp

(
−
(

t − t2
β1

)2
)

t ∈ [t1, t2)

1.0 t ∈ [t2, t3)

(1 + β5) exp

(
−
(

t − t3
β2

)2
)

− β5 t ∈ [t3, t4)

−β5 exp

(
−
(

t − t4
4.0

)2
)

t ≥ t4

, (4.242)

where the splice times are defined in terms of the model parameters β1, . . . ,β5 by

t1 = β3, (4.243)

t2 = β1 + β3, (4.244)

t3 = β1 + β3 + β4, (4.245)

t4 = β1 + β2 + β3 + β4. (4.246)

Note that, with the first segment being zero, the initial dip is not modeled with
Equation (4.242).

MRFs are used by Descombes et al. [120] at two stages of activation map compu-
tation. The first use of MRFs is to denoise the time-series data (see Section 2.4.4).
After denoising, a standard SPM is computed and pixels classified by four functions
of pixel index s:

(i) The activation map, da, such that da(s) ∈ {0, −1, 1} with 0 denoting no activation, 1
activation and −1 deactivation (see Section 4.2 for a discussion of deactivation).

(ii) The L2 norm map, dn, such that dn(s) ∈ R
+.

(iii) The maximum map, dm, such that dm(s) ∈ R
+.

(iv) The time of maximum map, di, such that di(s) ∈ {1, · · · , T}, where T is the number
of time points in the fMRI time-series.
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The maps dn, dm and di are used to define a potential Va(s) that is used to define
MRF that is a “denoised” version of the activation map da.

MRFs may be used in a more direct way to compute activation maps by the
argument that biological processes should lead to activation patterns that form
MRFs. Rajapakse and Piyaratna [367] use this idea and specify a prior condition to
constrain the activation map to be an MRF. Smith et al. [403] use a similar idea by
employing an Ising prior for Bayesian determination of a binary activation map. As
an alternative to an MRF prior, Penny and Friston [356] use a prior that specifies
that activations should occur as ellipsoid clusters. Penny and Friston’s approach
belongs to a class of models known as mixtures of general linear models (MGLM).

As an alternative to computationally intensive MCMC methods for computing the
posterior distribution, an approximate analytical solution for the posterior density
can be obtained by assuming that the approximate posterior density q(θ |y) can be
factored over parameter groups, θi, as

q(θ |y) =
∏

i

q(θi|y) (4.247)

and using the variational Bayes (VB) framework [357]. The VB approach may
be understood by first expressing the log of the evidence in terms of an arbitrary
distribution q(θ |y) as

ln p(y) =
∫

q(θ |y) ln p(y) dθ (4.248)

=
∫

q(θ |y) ln
p(y, θ)

p(θ |y) dθ (4.249)

=
∫

q(θ |y) ln
p(y, θ)

q(θ |y) dθ +
∫

q(θ |y) ln
q(θ |y)
p(θ |y) dθ (4.250)

= F + KL, (4.251)

then maximizing F via the standard calculus of variations Euler–Lagrange equations
leads to the solution for the factors of the approximate posterior

q(θi|y) = exp[I(θi)]∫
exp[I(θi)] dθi, (4.252)

where

I(θi) =
∫

q(θ¬i|y) ln p(y, θ) dθ¬i (4.253)

with θ¬i being all the parameters not in the ith group. Equation (4.252) may be
evaluated analytically. Woolrich et al. [451] use VB with an MRF spatial prior.

Rowe [377] describes a multivariate Bayesian model in which a source function s
is inferred instead of assuming it to be the given stimulus function x. Both temporal
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and spatial correlations are modeled using appropriate hyperparameters and an
iterated conditional modes (ICM) algorithm (see [377]) is used to find the MAP
estimate for s at each voxel.

4.4.2 Multilevel models, empirical Bayes and posterior probability maps

Friston et al. [170] outline a general approach to multilevel hierarchical Bayesian
modeling in which estimates of variance components at higher levels may be used to
provide empirical priors for the variance components at lower levels. This approach
is known as empirical Bayes (EB) and the resulting parameter estimate is known as
the empirical a-posteriori (EAP) estimate or a parametric empirical Bayesian (PEB)
estimate. The use of two hierarchical levels has been applied to two situations. In
the first situation the first level is the voxel level and the second level is the subject
level [171, 450] to give a mixed-effects model (see Equations (4.119) and (4.120)).
In the second situation, the first level is the voxel level and the second level is the
spatial level [171, 172]. See Section 5.4 for a third two-level approach where the
second level is the epoch in a blocked experimental design. Neumann and Lohmann
[338] introduce a hybrid scheme in which the first (voxel) level is a standard SPM
analysis and the second level, at the subjects level, is a Bayesian analysis.

A hierarchical Bayesian model with the first level being the voxel level and the
second level being the spatial level gives an analysis that replaces the “traditional”
SPM approach of computing statistics at the voxel level and then correcting the p
values using GRF at the spatial level. This hierarchical Bayesian approach has been
implemented in the more recent SPM software† and, in place of an SPM, a pos-
terior probability map (PPM) is produced (see Fig. 4.7). Since the SPM software is
widely used by neuroscientists, it is worthwhile to examine how the PPM empirical
Bayes method works for a single subject following [172]. Begin by partitioning the
design matrix and parameter vector into (0) effects of no interest and (1) effects
of interest, [X] = [[X1][X0]], �β T = [ �β T

1
�β T
0 ], and regard the effects of no interest

as fixed effects and the effects of interest as random effects. Then the hierarchical
observation model is

�y = [[X1][X0]]
[ �β1

�β0

]
+ �ε(1), (4.254)

�β1 = �0 + �ε(2), (4.255)

where the effects of interest are estimated by considering the whole volume in
which they are posited to have a mean of 0 and a covariance structure E(‖ �ε(2)‖2) =∑m

i=1 λi[Ei]. Here m = dim �β1, λi is a hyperparameter and [Ei] is the “basis matrix”

† SPM2 is available at http://www.fil.ion.ucl.ac.uk/spm.



104 Univariate approaches: activation maps

Fig. 4.7. Comparison of a PPM activation map with an SPM t map. The PPM
shows voxels that are activated with a 95% probability or greater. The SPM t map
shows voxel level activations, corrected using GRF (see Section 4.1.8), at p < 0.05.
Note the increased sensitivity of the PPM. The images are shown as displayed in
the output of the SPM software on the MNI space (see Section 2.5) “glass brain”.
Taken from [172], used with permission.

with 1 on the ith diagonal and zeros elsewhere. Note that it is assumed that there is
no spatial correlation in this particular model but it could be added. The model of
Equations (4.254) and (4.255) may be expressed as a single-level model by stuffing
the random effects into a compound error term:

�y = [X0] �β0 + �ξ , (4.256)

�ξ = [X1] �ε(2) + �ε(1). (4.257)

Here Eall voxels(�ξ �ξ T ) = [Cξ ] = [Q]�λ in which

[Q] = [[X1][E1][X1]T , · · · , [X1][Em][X1]T , [V ]] (4.258)

and

�λT = [λT
1 · · · λT

mλ
T
εp

], (4.259)

where [V ] gives a model of the time-series autocorrelation and the hyperparameter
λεp is a pooled estimate of voxel level hyperparameter λε (see below). Let [Y ] be the
complete data matrix (in which voxel time courses appear as rows, one row for each
voxel), let [Cεp] = λεp[V ]. Then the values for variance hyperparameters �λmay be
estimated using the EM algorithm in which the E-step consists of (starting with a
guess for �λ) computing the expectation values for [Cξ ] and a posterior covariance
matrix [C �β0|�y] via

[Cξ ] = [Q]�λ (4.260)
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and

[C �β0|�y] = ([X0]T [Cεp]−1[X0])−1. (4.261)

The values of [Cξ ] and [C �β0|�y] from the E-step are then used to update (maximize)
a scoring function, represented by [H] and �g, in the M-step by computing

[P] = [Cξ ]−1 − [Cξ ]−1[X0][C �β0|�y][X0]T [Cξ ]−1, (4.262)

gi = −1

2
tr([P][Qi])+ 1

2
tr([P]T [Qi][P][Y ]T [Y ]/n), (4.263)

Hij = 1

2
tr([P][Qi][P][Qj]), (4.264)

where n is the number of voxels in the data set. With [H] and �g, the old value of �λ
may be updated via

�λnew = �λold + [H]−1�g (4.265)

and the new �λ is used in the E-step in repetition until �λ converges. The value of �λ
found is maximized within the null space of [X0] so it is an ReML estimate. The
estimate of �λmay then be used to construct the EB prior [Cβ] for the original voxel
level model:

[Cβ] =
[∑m

i=1 λi[Ei] [0]
[0] [∞]

]
, (4.266)

where [∞] is a dim( �β0) square matrix with infinities on the diagonal and zeros
elsewhere to represent the flat priors assumed for the effects of no interest. The
variance components [Cε] and [C �β|�y] for the original voxel level model given by

�y = [X] �β + �ε (4.267)

may be estimated (ReML estimates) using another EM process to estimate the
hyperparameter λε , where the E-step consists of computing

[Cε] = λε[V ], (4.268)

[C �β|�y] = ([X]T [Cε]−1[X] + [Cβ]−1)−1, (4.269)

and the M-step consists of computing

[Pε] = [Cε]−1 − [Cε]−1[X0][C �β|�y][X0]T [Cε]−1, (4.270)

gε = −1
2 tr([Pε][V ])+ 1

2 tr([Pε]T [V ][Pε]�y�y T ), (4.271)

Hε = 1
2 tr([Pε][V ][Pε][V ]). (4.272)

After each M-step, λε is updated via

�λε,new = �λε,old + H−1
ε gε (4.273)
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until it converges. Finally the posterior parameter estimates are given by

�η �β|�y = [C �β|�y][X]T [Cε]−1�y (4.274)

and the posterior probability that a contrast of parameters exceeds a threshold γ is
given by

p = 1 −�
⎛
⎜⎝ γ − �c T �η �β|�y√

�c T [C �β|�y]�c

⎞
⎟⎠ , (4.275)

where �c is the contrast vector and � is the unit normal cumulative probability
density function.

4.4.3 Random walk models

Gössl et al. [191] construct a locally linear state space model in which the drift and
activation parameters are modeled as random walks. With yi,t being the brightness
of voxel i at time point t and zi,t being the value at time t of the model HRF,
constructed in the usual way by convolving an IRF model with the stimulus time
course, their model may be expressed as

yi,t = ai,t + zi,tbi + εi,t , εi,t ∼ N(0, σ 2
i ), (4.276)

ai,t = 2ai,t−1 − ai,t−2 + ξi,t , ξi,t ∼ N(0, σ 2
ξ i), (4.277)

bi,t = 2bi,t−1 − bi,t−2 + ηi,t , ηi,t ∼ N(0, σ 2
ηi), (4.278)

where ai,t models, in a random walk fashion, the drift and bi,t models the activa-
tion. The imposition of a Gaussian prior on the “innovations” ξi,t and ηi,t constrains
the walks to be locally linear by penalizing deviations from straight lines. A con-
sequence of the random walk model is that an activation map can be computed
for every time point, giving an activation movie. Frames from such a movie are
shown in Fig. 4.8. Also the model for the HRF is specific for each voxel i, being
parametrized by parameters θi and di (dispersion and delay) as

zi,t =
t−di∑
s=0

h(s, θi)xt−di−s, (4.279)

where h is the model IRF and x is the stimulus function. Parameter estimation
proceeds in two steps with θi and di being estimated in the first step by minim-
izing the distance between zi and yi using a Gauss–Newton method in the first
step and a Kalman filter and smoother embedded in an EM algorithm (in lieu of
a computationally intense MCMC method) in the second step to estimate a and b.
In [193] Gössl et al. introduce spatial as well as temporal correlations into their
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Fig. 4.8. Example frames from an activation movie made with the random walk
model of Equations (4.276)–(4.278) and a visual stimulation paradigm. Although
hard to see in this reproduction, underneath the images is a representation of the
presentation paradigm and a red dot on that representation showing the time of
the activation map. The times, from top left to bottom right are t = 39, 45, 51, 99,
105, 111, 159, 165 and 171 s. Taken from [191], used with permission. See also
color plate.

model through the use of a global hyperparameter, λi, for each time-point to char-
acterize the spatial correlations. This global hyperparameter approach makes the
multivariate approach possible where an ML solution of a full multivariate GLM
would not be.

4.5 Nonparametric methods

One of the more popular nonparametric statistics that has been used for the com-
putation of activation maps for blocked designs is the Kolmogorov–Smirnov (KS)
statistic† that measures the maximum distance between two cumulative probability

† The lyngby software, available at http://hendrix.imm.dtu.dk/software/lyngby/ is capable of producing KS
statistic base activation maps [207].
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distributions. If xi represents the brightness of a voxel at time-point i in a time-series
that contains Non task points and Noff rest time-points then SNon(x) represents the
cumulative distribution of the frequencies of xi values for i in the task set. The cumu-
lative distribution of the rest set SNoff (x) is defined similarly and the KS statistic,
D, is given by

D = max−∞<x<∞ |SNon(x)− SNoff (x)|. (4.280)

The p value associated with D for rejecting H0 that D = 0 is

p = QKS(λ) = 2
∞∑

k=1

(−1)k−1 e−2k2λ2
, (4.281)

where

λ =
(√

Ne + 0.12 + 0.11/
√

Ne

)
(4.282)

and

Ne = NonNoff

Non + Noff
. (4.283)

When used over all the voxels, the p value needs to be Bonferroni corrected by
multiplying by the number of comparisons (voxels) considered. Aguirre et al. [5]
measure false positive rates (FPR) on null task data sets that are thresholded using D
values that correspond to α = 0.05 (given by setting p = α in Equation (4.281) and
solving for D) for individual images and for a Bonferroni correctedα across images.
They find significantly higher false positive rates than α using the signed rank test
and a binomial test to look for differences between α and the FPR. They test the
KS statistic derived activation maps from raw data, linear drift corrected data and
high-pass filtered data (see Section 4.1.1) and find that the linear drift corrected data
lead to slightly lower FPR while high-pass filtered data had considerably higher
FPR than maps made from raw data. Aguirre et al. also test the normality of the
null data using the D’Agostino–Pearson K2 statistic that measures the skewness and
kurtosis of the sample and find only a slight deviation from normality. Since the KS
statistic is a less powerful statistical test when the data are normally distributed and
because of the high observed FPR, Aguirre et al. advise that activation maps based
on the KS statistic are less desirable than maps based on standard SPM approaches.

The other popular nonparametric approach to activation map computation is to
use permutation methods to empirically describe the null distribution of a statistic
of interest [341]. The essentials of permutation methods have been covered in
Section 4.1.7, where it was shown that Fourier or wavelet methods are needed to
permute the data because of the autocorrelation in the time-series.
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4.6 Fourier methods

Fourier methods for computing activation maps are limited to periodic blocked
designs. One approach is to detect a sinusoidal signal at the block frequency [365].
For that method, first compute the periodogram, I(ωk), of the voxel time-series of
length N

I(ωk) = 1

N

∣∣∣∣∣
N−1∑
n=0

xn exp(−iωkn)

∣∣∣∣∣
2

, where ωk = 2πk/N (4.284)

and then compare

F = I(ωp)

(1/(N − 3))
[∑N−1

k=0 I(ωk)− I(0)− 2I(ωp)
] (4.285)

to F2,N−3, whereωp (a multiple of 2π/N) is the frequency of the block presentation.
Kiviniemi et al. [255] use the fast Fourier transform (FFT) to compute a spectrum

for every voxel and also, for the global signal, to look for BOLD activity in resting
brains. A frequency of interest is identified in the global spectrum and the mean and
standard deviation of the amplitude of that frequency in the spectrums of all the brain
voxels is computed. Voxels whose intensity at the frequency of interest are more
than six standard deviations above the mean are considered activated. Kiviniemi
et al. compare this FFT approach to correlation, PCA and ICA (see Section 5.2)
methods for identifying activation in the resting brain†. The FFT method finds
the smallest volume of activation and the correlation method finds the largest
volume.

Mitra and Pesaran [321] describe how windowed Fourier analysis may be applied
to a singular value decomposition (SVD) eigenvector set (see Section 5.1) of the
voxel time courses to construct a time-frequency analysis in which quasi-periodic
physiological processes (heart beat and respiration) may be identified along with the
task correlated activity. This method requires TR to be short enough to adequately
sample the physiological processes. Mitra and Pesaran also describe a “space-
frequency” SVD in which SVD analysis is applied to the fMRI data set in which
all the time-series have been replaced with windowed Fourier transforms. From the
space-frequency SVD, a frequency–coherence graph may be computed in which
the coherence reflects how much of the fluctuation in the windowed frequency band
is captured by the dominant SVD spatial eigenimage.

† Kiviniemi et al. [255] use the FastICA software, available at http://www.cis.hut.fi/projects/ica/fastica/ to do
their ICA analysis.
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Hansen et al. [209] describe how to analyze blocked designs using a GLM in
which columns 2k − 1 and 2k are given by the sinusoids

xn,2k−1 = sin(kω0tn), (4.286)

xn,2k = cos(kω0tn) (4.287)

for k ∈ {1, . . . , K} and ω0 is the fundamental frequency of the BOLD signal.
Hansen et al. regard K andω0 as parameters and show how the posterior probability
p(ω0, K|�y) may be computed using the principle of conjugate priors.

4.7 Repeatability and comparisons of methods

As should be obvious, there are many ways to compute an activation map with
advantages and disadvantages to each method, not the least of which is ease of use.
No one approach can reveal the best or true activation map, especially since the
physiology of the BOLD signal is still under active investigation (see Section 4.2).
Reviewed in this section are studies that address not only the consistency of maps
computed using different methods but also the consistency of maps computed
using the same method and experimental paradigm but for different sessions and/or
subjects.

The identification of what comprises a “valid” activation map depends in the first
instance on converging evidence on the phenomenon being investigated and what
“makes sense” to the neuroscientist [265]. So the first step after map computation
is to visually inspect the computed maps [359] both in terms of whether the map
“makes sense” and, especially in the case of blocked designs, in terms of if the time
course shows a smooth BOLD response to the tasks [389].

Beyond subjective comparisons, the simple measure of reproducibility, Rv/M,
where Rv is the number of times a voxel appears activated in M replicates, has been
used. Employing this measure of reproducibility, Yetlin et al. [465] find an optimal
threshold for the simple correlation approach (r = 0.60, p = 5×10−8 uncorrected)
and Tegeler et al. [419] conclude that a simple t-test gives better reproducibility
than multivariate discriminant analysis (see Section 5.1) at 4 T. Both investigators
use the finger-touching task. Lukic et al. [290] find, using an ROC analysis†, the
opposite result that multivariate discriminant analysis produces better results than a
simple t-test. Using a nonparametric Friedman two-way ANOVA, Machulda et al.
[294] find that varying the threshold level (correlation in this case) and maximum
cluster size analysis parameters (factor 1) produces relative changes in activation
between four ROIs (posterior and anterior hippocampus, parahippocampal gyrus

† Lukic et al. [290] use the LABROC1 software for the ROC analysis, which may be obtained from
http://xray.bsd.uchicago.edu/krl/KRL_ROC/software_index.htm.
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and entorhinal cortex – factor 2). Using ROC analysis (applied to resting brain
ROIs with artificial activations added), Skudlarski et al. [401] come to the following
conclusions about optimal approaches:

• Preprocessing: The removal of drifts and high pass filtering is good, while temporal
normalization, smoothing and low pass filtering are not beneficial.

• Map statistics: The tested statistics, t, r and the nonparametric Mann–Whitney statistic,
all give similar results.

• Task design: Within the blocked designs tried, a task on, task off of 18 s each is found to
be optimal.

• Spatial clustering: Smoothing before map computation is found to be more efficient
than cluster filtering (removing small clusters) after map computation.

Skudlarski et al. take the approach that the statistic threshold is not to be interpreted
probabilistically; the statistic is only a metric to be used for the detection of activ-
ation. Below we will see how an optimal threshold may be selected on the basis of
replicated experiments.

McGonigle et al. [301] look at intersession effects in a study involving one
subject, three tasks and 99 sessions (33 sessions/task) and find significant session-
by-task interaction. However, the voxels showing the session-by-task interaction
do not show up in multisession fixed-effects analysis. This indicates that voxels
found active in a single session for one subject may be due to some effect of the
session and not the given task.

Saad et al. [382] examine the effect that averaging scans (time-series) together
for a single subject has on the spatial extent of the detected activation. The scans are
averaged by transforming data to Tailarach space before averaging (see Section 2.5).
They find that the spatial extent of the activations increases monotonically without
asymptote when the number of scans averaged together is increased from 1 to 22.

Lange et al. [267] suggest that several different methods be used for every study
in order to validate the final reported map. They look at nine methods, comparing
the results using: (i) ROC analysis, (ii) a concordance correlation coefficient, ρc, for
reproducibility between two random variables with meansμ1 andμ2 and variances
σ 2

1 and σ 2
2 defined as

ρc = 2ρσ1σ2

σ 2
1 + σ 2

2 + (μ1 − μ2)2
, (4.288)

where ρ is the correlation between the two random variables, and (iii) a resem-
blance of activity measure based on the similarity of spatial correlations in the two
activation maps.

When several methods are used to produce summary activation maps, one can
also average the summary maps to yield a consensus map and avoid having to pick
the “best” map [208].
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Genovese et al. [179] present a probabilistically based quantitative method for
assessing the reliability of maps produced over M replications of an identical experi-
ment with a fixed analysis method. Using a model that consists of a linear combina-
tion of binomial distributions for the probability that a truly active voxel is classified
as active, pA, (true positive) and for the probability that a truly inactive voxel is
classified as active, pI , (false positive) Genovese et al. construct a log-likelihood
function to characterize pA, pI and λ, the proportion of truly active voxels, as

�(pA, pI , λ|�n) =
M∑

k=0

nk ln[λpk
A(1 − pA)

(M−k) + (1 − λ)pk
I (1 − pI)

(M−k)],

(4.289)

where �n = [n1, . . . , nM]T and nk is the number of voxels in replicate k that are classi-
fied as active. Maximizing � produces the estimates p̂A, p̂I and λ̂with standard errors
given by the diagonal elements of the Hessian (matrix of second derivatives) of �.
When comparing two map computation methods one can use two log-likelihood
functions of the form of Equation (4.289), one for each method, and constrain λ to
be the same for both log-likelihood functions. However, analysis of the differences
in pA between two methods must take into account the correlation between the two
pA values when the variance of the differences is computed. Maximizing the log-
likelihood requires that M ≥ 3 in order for a solution to exist (a condition known
as identifiability). If M = 3, an ROC can be constructed to define a relationship
between pA and pI so that Equation (4.289) may then be maximized. To address the
reliability issue with Equation (4.289), compute the ML reliability efficient frontier,
which is a curve of the relationship between p̂A and p̂I as a function of the tuning
parameter (which is usually the SPM threshold). With that relationship, the reliab-
ility criterion function pO = λpA + (1 − λ)(1 − pI) may be maximized to find the
optimal threshold setting (see Section 4.1.8). Applying these methods, Noll et al.
[343] find nearly identical between-session reliability for a motor and a working
memory task. Liou et al. [279] show how pO, which defines the observed pro-
portion of agreement between the true active/inactive status and the classification
result, may be corrected for chance. Defining the agreement expected by chance as
pC = λτ + (1 − λ)(1 − τ), where τ = λpA + (1 − λ)pI , and using an ROC model,
the proportion of agreement corrected for chance is

ρ = pO − pC

1 − pC
. (4.290)

For k different contrasts (or computation methods) the agreement between maps
from contrasts j and k may be assessed with

κij = PjPk −∑
i nijnik/[M(M − 1)V ]

PjPk
, (4.291)
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where nij is the number of times that the ith voxel is considered active for the jth
contrast out of M replications and Pj is the sum of nij/(MV) over the V voxels in the
data set. Then optimum thresholds for the k contrasts may be found by maximizing

κ =
∑

j �=k PjPkκjk∑
j �=k PjPk

. (4.292)

Once optimal thresholds are found the quantity, Rv/M, where Rv is the number of
replications for which the voxel was labeled active, may be plotted for each voxel to
give a reproducibility map. Liou et al. suggest that most truly active voxels have a
reproducibility above 90% (strongly reproducible in their terms), while some have a
reproducibility between 70% and 90% (moderately reproducible). Liou et al. apply
these methods to find optimal points on the ROC for an EM method and a GLM
method and find improved sensitivity without an increase in the false alarm rate for
the EM method.

4.8 Real time fMRI and complementary methods

Converging evidence for hypotheses regarding brain activation and function at the
neural level may be obtained by combining fMRI data with other neurological
data. These other approaches include the use of EEG [220] and single-neuron
electrical recording [117]. Efforts are also underway to detect the neural magnetic
field directly using MRI [50, 51] with some success being reported by Xiong et al.
[463]. The approach to obtaining such magnetic source MRI (msMRI) data is very
similar to conventional fMRI methods except that the experimental paradigm is
designed so that the BOLD signal is held at a constant level to allow the detection
due to spin phase changes caused by neuronal magnetic fields.

For application in the clinical setting, activation maps need to be computed in real
time or near real time so that physicians can be sure that adequate data have been
obtained before the patient leaves the MRI scanner. To implement real time fMRI,
fast computational algorithms have been developed for real time image coregistra-
tion [110], recursive correlation coefficient computation [108] and GLM parameter
computation through Gram–Schmidt orthogonalization of the design matrix [25].
Prototype real time fMRI hardware systems capable of the multiple required tasks
including task/imaging synchronization, physiological and task (e.g. button presses)
monitoring and map computation have been implemented [404, 434].
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Multivariate approaches: connectivity maps

The description of connectivity between brain regions may be usefully given by
two concepts, those of functional connectivity and effective connectivity. Func-
tional connectivity refers to temporal correlations between spatially separated brain
regions, while effective connectivity refers to a causal relationship between spatially
separated brain regions [147]. Functional connectivity may be assessed by the vari-
ance observed between a pattern vector (volume image) �p and the data [M]. Here
we adopt the convention of organizing fMRI time-series data into a v × n data
matrix [M], where v is the number of voxels in a volume (scan) and n is the number
of time-points in the fMRI time-series. In other words, the entire volume for one
scan is represented as a row in [M] and each row represents a different scan time.
We also assume that the grand mean vector has been subtracted from the data vec-
tors in [M] so that the variance–covariance matrix of the data is given simply by
[C] = [M]T [M]. Then, with this setup, if the quantity ‖[M]�p‖2 is large it provides
evidence for a functional connectivity pattern that matches �p. Each component of
the vector [M]�p is the covariance (unnormalized correlation) between a scan volume
and �p (see Equation (1.9)), so if ‖[M]�p‖2 is large it means that the correlations vary
considerably in time. Ways of quantifying functional connectivity are reviewed in
Section 5.1. Ways of quantifying effective connectivity are reviewed in Section 5.6.

Many authors cite their favorite introductory multivariate statistics texts because
the ideas of multivariate statistics need to be relatively well understood before
applications to fMRI may be understood. My favorite introductory texts are those
by Rencher [371, 372].

5.1 The GLM – multivariate approaches

In general, the multivariate analysis of fMRI time-series data is problematical
because the dimension, v, of the data vector, represented by the number of 3D
voxels in a volume data set, far exceeds the number of data vectors measured,
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represented by the number of time points, n. One way around this is to restrict
analysis to a predetermined small number of ROIs [342, 370]. The ROIs repre-
sent anatomically homogeneous regions and the time-series of the voxels in each
ROI may be averaged together to reduce the noise component. In this way the
dimension of the data vector is reduced so that v < n and a multivariate analysis,
which explicitly models the covariances between the data vector components, may
be used.

Another way to reduce the dimension of the data vector is to use principal com-
ponent analysis (PCA, see Section 5.2) which may be derived from an SVD of the
data matrix [M] [156]. The SVD of [M] is given by

[M] = [U][S][V ]T , (5.1)

where, if [M] is an n × v matrix, [U] is an n × n matrix, [S] is an n × n diagonal
matrix of (square roots of) eigenvalues and [V ] is a v × n matrix. The columns
of [V ] are the (orthonormal) eigenvectors of the sums of squares and products
matrix [C] = [M]T [M]; these vectors represent the eigenimages (and which may
be displayed as images) that account for the amount of variance in the data as
quantified by the corresponding eigenvalue (in [S]). The columns of [U] contain
the voxel time courses that correspond to the eigenimages in [V ]. The columns of
[U] are the (orthonormal) eigenvectors of [M][M]T because

[M][M]T = [U][S]2[U]T , (5.2)

as may be easily derived from Equation (5.1). Since the matrix [C] is unmanage-
ably large, the eigenimage matrix [V ] (the principal components of [M]) may be
computed from the eigenvalue solution [U] using

[V ] = [M]T [U][S]−1. (5.3)

From the SVD, we may produce a reduced set of time courses to analyze, using
standard multivariate techniques like MANOVA, MANCOVA and discriminant
analysis, as

[X] = [U][S], (5.4)

where, generally, only eigenvectors with eigenvalues greater than 1 are kept in [X].
The reduced representation of the fMRI time course data in [X] is now amenable
to analysis by a multivariate GLM

[X] = [G][β] + [ε], (5.5)

where [G] is the design matrix, [β] is the parameter matrix and [ε] is the error matrix.
Typically [G] represents a MANCOVA model† such that [G] = [H|D], where the
submatrix [H] models effects of interest and [D] models the effects (covariates) of

† MANCOVA = Multivariate ANalysis of COVAriance.
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no interest. The model for [G] used by Friston et al. [156] contains four columns
for each of three conditions for a total of twelve columns with the four columns for
each condition containing Fourier basis functions (cosines) for modeling the HRF
for the given condition. The least squares estimate of the parameters is given by

[β̂] = ([G]T [G])−1[G]T [X] (5.6)

with variance (assuming iid Gaussian errors)

var( �βj)[aT |gT ] = σj([G]T [G])−1, (5.7)

where �βj is the jth column of [β̂] and [a]T represents the parameters of interest
and [g]T the parameters of no interest. The omnibus statistical significance of the
parameters may be tested using Wilk’s Lambda

� = det[R(�)]
det[R(�0)] , (5.8)

where [R(�)] is the sums of squares and products matrix due to the error,

[R(�)] = ([X] − [G][β̂])T ([X] − [G][β̂]), (5.9)

and [R(�0)] is the sums of squares and products matrix due to the error after
discounting the effects due to the hypotheses of interest [H],

[R(�0)] = ([X] − [D][g])T ([X] − [D][g]). (5.10)

The statistic −(r − ((J − h + 1)/2) ln(�) may be compared to a χ2 distribution
with Jh degrees of freedom to test the null hypothesis, where r = n − rank([G]),
J is the number of columns in [X] and h = rank([H]).

The effects of interest from the MANCOVA of Equation (5.5) are given by

[T ] = ([H][a])T ([H][a]), (5.11)

which may be used to interpret the eigenimages (functional connectivity) in terms
of the MANCOVA model in a canonical variates analysis (CVA). CVA produces a
sequence of contrasts �ci such that the variance ratio

�c T
i [T ]�ci

�c T
i [R(�)]�ci

(5.12)

is maximized subject to the constraint that 〈�ci, �cj〉 = 0 for j < i (there is no
constraint for �c1). The solution of the canonical contrast vectors is given by the
solution [c] to the eigenvalue problem

[T ][c] = [R(�)][c][θ ], (5.13)

where [θ ] is a diagonal matrix of eigenvalues (canonical values) and the columns
of [c] are the canonical contrast vectors. The canonical (functional connectivity)
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Fig. 5.1. An example of an functional connectivity image, �C1, from a CVA as
given by Equation (5.14) for a three-condition task, where the tasks were a rest
condition, moving left and right hands in a fixed alternating order in response to
a visual cue and, moving left and right hands in a random alternating order in
response to a visual cue. The dotted time course in the lower right graph is [X]�c1,
the first canonical variate, where [X] is the reduced set of time courses as given by
Equation (5.4), and the solid line is [G]�c1, where [G] is the design matrix. Taken
from [156], used with permission.

images (see Fig. 5.1) are given by the columns of [C], where

[C] = [V ][c]. (5.14)

The statistical significance of the canonical functional connectivity images �Cj

for j ≤ S + 1 may be tested by comparing the statistic (r − ((J − h +
1)/2)) ln[∏J

i=S+1(1 + θi)] to a χ2 statistic with (J − s)(h − S) degrees of freedom.
These null distributions assume that the reduced data, in the form of components,
follow multivariate normal distributions which, in general, is an approximation.
Almeida and Ledberg [10] give exact distributions to use with component mod-
els when the data are normally distributed. Nandy and Cordes [336] outline ROC
methods that may be used to assess the sensitivity and specificity of multivariate
methods. A classical application of SVD and CVA to both the complete data set
and to subsequently identified brain ROIs is given by Bullmore et al. [68].

5.1.1 Anatomically constrained analysis

Another way of reducing the dimension of the scan observation vector is to restrict
the analysis from a 3D volume to a 2D manifold that represents the cortical surface
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(i)

(ii)

Fig. 5.2. Activations computed on the 2D surface of the cortex using AIBFs. In
part (ii): (a) shows an outline of the computed cortical surface on top of the voxels
of the original EPI data along with the activation as computed on the 2D surface;
(b) shows the activations as transformed by the function g of Equation (5.15) from
cortical space to voxel space; (c) shows a conventional map as computed with
the SPM software for comparison. Part (i) shows the same activation on: (a) the
cortical flat map SF ; (b) the inflated cortical map SI ; and (c) the folded grey matter
surface SG. Taken from [247], used with permission. See also color plate.

of the brain, see Fig. 5.2. Kiebel et al. [247] use the Brain Voyager software (Brain
Innovations, Rainer Goebel) to (i) segment the gray matter from the rest of the brain
to give a gray matter surface SG, (ii) inflate SG to produce a balloon like surface SI

and (iii) flatten SI , after cutting, onto a flat 2D surface, SF . Circular Gaussian basis
functions {bj

F |1 ≤ j ≤ Np} are defined on SF and transformed back to SG, which is

defined by a set of vertices �VG and faces, to provide a set of basis functions {bj
G}.

Then a function f on SG may be represented by f = ∑
j cjb

j
G and, if g represents an

appropriate transformation from L2(SG) to L2(R3) then† the data �Y from one scan
may be modeled with

�Y = g(f (�VG))+ �ε, (5.15)

where f (�VG) represents the vector formed by evaluating f at each of the components
of �VG. Let NK represent the number of brain voxels in a scan volume and let

† I use L2 for purposes of illustration and not for any rigorous mathematical purposes. The map g in
Equation (5.15) of course involves a restriction to segmented gray matter.
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[A] be the NK × Np matrix in which the jth column represents the basis vector

bj
Y = g(bj

G) (anatomically informed basis functions – AIBFs) in voxel coordinates.
Then Equation (5.15) may be written as

�Y = [A] �β + �ε, (5.16)

which may be solved using

�̂
β = ([A]T [A] + λ[I])−1[A]T �Y , (5.17)

where the regularization parameter can be chosen to be

λ = tr([A]T [A])
Np

. (5.18)

With Equations (5.16) and (5.17) we may convert the measured voxel data �Yj at

time j to measured cortical surface data �̂
βj and so obtain a time-series of cortical

surface data. The cortical data matrix is then [B]T = [ �̂
β1 · · · �̂

βNY ], where NY is the
number of time-points (scans). The cortical data matrix may also be expressed in
voxel space as [B]T

voxel = [A][B]T . Either way, the resulting cortical data set may be
analyzed using the univariate methods of Chapter 4 or by the multivariate methods
of Section 5.1 with [B] taking the place of [M]. For multisubject studies, the cortical
surface in a standard stereotaxic space (see Section 2.5) may be used as SG in place
of the individual segmented cortical surface [248]. That is, the data are smoothed
and transformed to the standard stereotaxic space where the basis functions bj

G
are defined. The smoothing requires that the spatial GLM of Equation (5.16) be

multiplied by a smoothing matrix [LE] before �̂
β is computed, similarly to how

temporal smoothing, through [K], is used in Equation (4.25).
Smoothing is also possible on the cortical surface at the subject level using an

analogy between Gaussian convolution on a surface and heat diffusion on a surface
[14]. Through the analogy a smoothed version of the data may be computed on
the irregular cortical surface vertex grid by evolving a finite difference diffusion
model to a predetermined time to reflect convolution with a Gaussian kernel with
a predefined width.

5.2 Principal and independent component methods

PCA typically gives the eigenvector component time courses specified by the
columns of the matrix [U] in Equation (5.1). Spatial versions of PCA give eigen-
images, which are the columns of [V ] of Equation (5.1). The PCA components
are ordered, by the magnitude of their corresponding eigenvalues, as the direc-
tions in data space in which the data vary maximally. The PCA eigenvectors define
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the hyperellipsoid axes of the data scatterplot if the data are multivariate normally
distributed. PCA is often invoked as a method of reducing the dimensionality of sub-
sequent analysis such as independent component analysis or clustering. Normally,
PCA is done on the whole data set, with perhaps extracerebral voxels trimmed to
reduce the computational burden. Lai and Fang [263] partition the fMRI time-series
into three sets with one set being the middles (to avoid transitions) of the active
time blocks and one set being the middles of the inactive time blocks, concatenate
the active and inactive segments and perform a PCA of the new data set. The active
and inactive segments for each voxel are then projected into the subspace spanned
by the M most dominant principal components to form �f(a) and �f(i), respectively, at
each voxel. Then they define activation, A, at a given voxel by

A = (‖�f(a)‖ − ‖�f(i)‖)
M∑

j=1

|m(a),j − m(i),j|√
σ 2
(a),j − σ 2

(i),j

, (5.19)

where m(a),j and σ(a),j represent the mean and standard deviation of the projection
of �f(a) into principal component j in the active section (with similar definitions for
the inactive segment), and ‖ · ‖ represents the �2 norm (the active and inactive
segments have equal length). Thresholding A gives the active voxels.

A standard application of PCA, in general, is to use the components to define
factors that may be associated with some process. The use of PCA for factor analysis
has been applied to fMRI by Backfrieder et al. [24] and by Andersen et al. [11].
Assume that there are m time-series images and p dominant principal components
(say the ones with eigenvalues greater than 1). Then we may model the v × m
(transpose of the) data matrix [Y ] (with m > p) as

[Y ] = [V ][B] + [E], (5.20)

where [V ] is the v×p matrix containing the p most dominant principal components
as columns, [B] is a p×m matrix that allows the original data set to be expressed as
linear combinations of the dominant principal components and [E] is the residual
matrix. The basis of the signal space specified in the columns of [V ] may be replaced
by another, not necessarily orthogonal, basis represented by columns in a matrix
[F] that represent the factor directions. Specifically, there is a transformation [T ]
such that

[V ][T ][T ]−1[B] = [F][C], (5.21)

so that

[Y ] = [F][C] + [E], (5.22)

where [C] is a matrix that specifies the “loadings” of the signal onto the factor
components and each column of [F] specifies a factor image. If [T ] is an orthogonal
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transformation, then it is said to perform an “orthogonal rotation” of the principal
components into the factors†, otherwise the transformation is said to be an “oblique
rotation”. A variety of methods exist to find the appropriate [T ] (e.g. Varimax) but
usually some a-priori information is needed. For example, when a known activation
region is identified, [T ] can be chosen so that the active region appears in only one
or two factor images representing activation and gray matter (anatomical) factors.

If the data are not multivariate normally distributed, then the maximum variation
may not be along one direction in data space but along a curve. In that case, which
will happen when there are interactions among sources (factors), a nonlinear PCA
analysis may be used. Friston et al. [165, 169] describe a second-order nonlinear
PCA. Following Friston et al. let �y(t) ∈ R

v represent the fMRI data set consisting
of v voxels when t is restricted to p values. Nonlinear PCA assumes that the data
are a nonlinear function, �f , of J underlying sources represented by �s(t) ∈ R

J for
each t as

�y(t) = �f (�s(t)). (5.23)

Truncating the Taylor expansion of Equation (5.23) after the bilinear terms gives

�y(t) = �V (0) +
J∑

j=1

uj(t)�V (1)
j +

J∑
j=1

J∑
k=1

uj(t)uk(t)�V (2)
j,k , (5.24)

where �u(t) = �s(t)− �s and

�V (0) = �f (�s), (5.25)

�V (1)
j =

[
∂f1
∂uj
(�s), · · · ,

∂fv
∂uj
(�s)
]T

, (5.26)

�V (2)
j,k =

[
∂2f1
∂uj∂uk

(�s), · · · ,
∂2fv
∂uj∂uk

(�s)
]T

. (5.27)

Equation (5.24) may be generalized by adding a sigmoid function σ to allow for
more general interactions:

�y(t) = �V (0) +
J∑

j=1

uj(t)�V (1)
j +

J∑
j=1

J∑
k=1

σ(uj(t)uk(t))�V (2)
j,k . (5.28)

Given �u, it is possible to find �V (0), �V (1)
j and �V (2)

j,k for 1 ≤ j, k ≤ J by minimizing
the residuals (difference between the left and right hand sides of Equation (5.28))
in a least squares sense. Friston et al. use neural network methods to find the

† Mathematically, all rotations are orthogonal but language is not always logical. Here oblique and
orthogonal refer to the relative rotations of the basis vectors.
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(i) (ii) (iii)

Fig. 5.3. An example result from a nonlinear PCA. The analysis gives, in this
case, (i) spatial mode 1, �V (1)

1 , (ii) spatial mode 2, �V (1)
2 , and (iii) their second order

interaction mode, �V (2)
1,2 . Taken from [169], used with permission.

sources �u that minimize the residuals globally. The end result is J sources, ui(t),
1 ≤ i ≤ J , whose amplitudes are characterized by �V (1)

j and whose interactions are

characterized by �V (2)
j,k , see Fig. 5.3.

5.2.1 Independent component analysis (ICA)

From a multivariate perspective, an fMRI data set may be thought of in two ways.
In the usual way (as we have been implicitly assuming until now) the data are
represented by a p × v data matrix [M], in which each row represents one 3D voxel
data set taken at a fixed scan time. That way, [M] represents p measurements of a
v-dimensional quantity, the spatial image. The other way is to represent the data
by a v × p matrix [Y ] = [M]T , in which each column represents one 3D voxel
data set taken at a fixed scan time. Viewed this way we have v measurements of a
p-dimensional quantity, the voxel intensity time course. An ICA of [M] produces
spatially independent components (component images) and is termed spatial ICA
(sICA). An ICA of [Y ] produces temporally independent components (compo-
nent timecourses) and is termed temporal ICA (tICA) [79]. More specifically, let
[Ŵ ]−1 be the estimate of the mixing matrix and [C] be the matrix containing the
components as rows. The sICA approach gives

[M] = [Ŵ ]−1[C] (5.29)

and the columns of [Ŵ ]−1 give the time courses corresponding to the spatial com-
ponents in the rows of [C]. In general the number of rows in [C] is chosen to be
less than the number of rows in [M]. The tICA approach, which generally is used
only on an ROI basis to limit the number of computations required, gives

[Y ] = [Ŵ ]−1[C] (5.30)
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and the columns of [Ŵ ]−1 give the spatial images corresponding to the time course
components in rows of [C].

The premise behind ICA is that the data are considered to be mixtures of sources,
represented in the rows of [S] according to

[M] = [A][S], (5.31)

where [A] is the mixing matrix. The goal is to find the unmixing matrix [W ] = [A]−1

so that

[S] = [W ][M]. (5.32)

ICA will produce estimates [C] and [Ŵ ] of [S] and [W ] respectively to give

[C] = [Ŵ ][M]. (5.33)

The sources are assumed to be statistically independent in the sense that

p(S1, . . . , Sn) =
n∏

k=1

p(Sk) (5.34)

when n components (maximally n equals the number of time points for sICA) are
used [303, 415], where Si is the ith signal source, or component, represented in the
ith row of [S]. Such statistical independence is a stronger condition of independence
than orthogonality, as assumed in PCA. There are several measures of independence
but one of the most common is mutual information. Working now with the estimated
components† C1 to Cn the mutual information is defined as

I(C1, . . . , Cn) =
n∑

i=1

H(Ci)− H(C1, . . . , Cn), (5.35)

where

H(x) = −
∫

p(x) ln p(x) dx (5.36)

is the entropy of the probability distribution p associated with x. The infomax ICA
method maximizes the mutual information by iterating estimates for [W ] in a neural
net training algorithm. Esposito et al. [130] compare the infomax algorithm to a
fixed-point algorithm and find that infomax is superior for finding noise compo-
nents while the fixed-point algorithm gives more accurate active components when
assessed by correlation to a model waveform.

PCA has been compared to ICA both in terms of its ability to find noise com-
ponents [421], so that the data may be denoised by projecting into the subspace

† I have temporarily dropped the �· notation because the component vectors are row vectors.
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orthogonal to the noise, and in terms of separating signals from two different tasks
performed in the same run [49]. ICA was found to be superior to PCA on both
counts. However, McKeown and Sejnowski [304] examine the assumptions that
ICA produces a small number of independent components mixed with Gaussian
noise and find that those assumptions are more likely to be true in white matter than
in active regions containing blood vessels. They therefore suggest that ICA is more
suited to ROI analysis than to global analysis of fMRI data.

The use of PCA before ICA can reduce the dimensionality of the ICA analysis
and reduce the computational burden, especially for very long (>1000 time-points)
time-series [306]. In terms of probability distribution moments, PCA separates com-
ponents to second order while ICA separates components to all orders. McKeown
et al. [303] illustrate an intermediate, fourth order, method of component separation
due to Comon [101].

ICA has been used for the analysis of functional connectivity in the brain both
in a resting state [17, 431] and in standard task driven investigations and to com-
pare resting data to task driven data [17]. But in general, it can be difficult to
interpret the components produced by ICA [87]. So ICA frequently needs to be
used in combination with other methods. One approach is to correlate a model
HRF with the component time courses to determine which components are task
related [324]. Intravoxel correlations of the original time-series within selected
sICA component maps may also be used [254]. ICA can also be combined with
clustering methods (see Section 5.4). Himberg et al. [219] generate several ICAs
of a data set, for subsequent clustering purposes, by bootstrapping the data and/or
beginning the optimization (maximization of mutual information) from different
points†. (Bootstrapping is an alternative to data permutation, where from a set of
n data values a new set of n data values is generated by randomly picking a data
value from the original sample, recording it and replacing the data point back in
the original data set and then repeating the random selection and replacement until
a “bootstrapped” sample of n values is taken from the original sample.) McKeown
[305] introduces a hybrid technique, HYBICA, that results in a method intermedi-
ate between a completely data driven ICA and a completely model driven GLM.
McKeown uses ICA to define the signal subspace and the columns of interest in
the GLM design matrix. First, k task-related independent components are identi-
fied to define an activation subspace. Then the stimulus function, u, is projected
into the basis vectors of the k-dimensional activation subspace to define k columns
of interest in the design matrix. The dimension k can be varied from 1 to n, the
length of the time-series, to vary the GLM from more data driven to more model
driven.

† Himberg et al.’s software, Icasso, is available from http://www.cis.hut.fi/projects/ica/icasso. They also use
the FastICA and SOM MATLAB toolboxes available from http://www.cis.hut.fi/research/software.html.
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ICA may be applied to the data set consisting of Fourier transforms, or power
spectrums, of each voxel time-series. Such an approach is particularly useful for
blocked designs where the frequency of presentation can be readily identified to
define the task-related components [325]. ICA of the Fourier spectrum also has
the advantage of being insensitive to variation in the delay of the response, produ-
cing components that are dependent on time course shape independently of delay
[83]. ICA of complex-valued fMRI data is also possible with the advantage of
potentially separating responses due to large and small blood vessels into different
components [82].

To use ICA with groups of subjects, two approaches have been proposed. One
is to concatenate data across subjects after dimension reduction with PCA for each
subject [80]. With the second approach, components are computed for each indi-
vidual subject, a component of interest (e.g. one containing the motor region) is
selected from one subject and the components from each of the other subjects
that correlate (spatially) the most with the original component are selected [81].
An alternative is to use, as the original map of interest, the sum of two compo-
nents, examining its correlations with two component sums in the other subjects.
Using two components combines a potential activation component with a poten-
tial anatomical component (e.g. a gray matter component). A standard fixed- or
mixed-effects analysis, or a conjunction analysis, may then be done on the selected
components (see Section 4.1.9).

5.2.2 Canonical correlation analysis

Canonical correlation analysis, introduced to fMRI by Friman et al. [145, 146],
represents another way, besides PCA and ICA, to decompose multivariate data into
uncorrelated components. With PCA the variance, or signal energy, is maximized
in each component in turn. With ICA, Gaussianity-related measures like kurtosis,
negentropy and/or mutual information are minimized in each component in turn
to produce mutually statistically independent components. With canonical correla-
tion analysis, the autocorrelation of the resulting components is maximized with the
idea that the most interesting components have the most autocorrelation. As with
PCA and ICA we may compute either a temporal canonical correlation analysis to
find temporal components or a spatial canonical correlation analysis to find spatial
components. Following Friman et al. we give the details for a temporal canonical
correlation analysis using the time course xi(t) in �x(t) = [x1(t), . . . , xn(t)]T , where
n is the number of pixels (for a slice by slice analysis) and t ∈ {1, . . . , N}, as the
data vector for each pixel measurement. The spatial canonical correlation analysis
proceeds similarly with the data vector being the scan (image) for each time meas-
urement. The idea is that the time courses are a linear combination, or mixing, of
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some underlying sources: �x(t) = [A]�s(t), where [A] is the mixing matrix. Canon-
ical correlation analysis finds the matrix [W ] such that �̂s(t) = [W ]�x(t). Defining
�y(t) = �x(t − 1), to maximize the lag 1 autocorrelation, the rows of [W ] are the
eigenvectors that solve the eigenvalue problem

[Cxx]−1[Cxy][Cyy]−1[Cyx]�w = ρ2 �w, (5.37)

where the estimates for the correlation matrices are given by

[Ĉxx] = 1

N

N∑
t=1

�x(t) �x(t)T , (5.38)

[Ĉyy] = 1

N

N∑
t=1

�y(t) �y(t)T , (5.39)

[Ĉxy] = [Ĉyx]T = 1

N

N∑
t=1

�x(t) �y(t)T (5.40)

and the square root of the eigenvalues, ρ, represents the correlation between �w T �x(t)
and �w T�y(t) = �w T �x(t − 1) with the first eigenvector and value giving the largest
possible correlation. The second eigenvalue is the largest possible correlation in
the subspace orthogonal to the first eigenvector, etc. The components si(t) are
maximally autocorrelated signal sources that should contain the activation time
course(s) of interest (typically the second or third component after the drifts). Once
the components of interest are identified (see Fig. 5.4), correlations of the voxel
time courses with those components give activation and/or functional connectivity
maps. To reduce computation, a subset of the PCA components may be used as the
data for both ICA and canonical correlation analysis.

5.2.3 Functional data analysis (FDA)

As discussed in Section 2.4.4, FDA represents the fMRI data set as a smooth
function. Lange et al. [267] apply FDA to produce a regularized PCA. They use a
cubic B-spline basis of 42 basis functions, Bp(t), 1 ≤ p ≤ 42, representing the data
with the coefficient matrix [C] (coefficients of the basis functions in place of the
original voxel values, i.e. [C] replaces [M]). To use [C] they let [J] be the matrix
of inner products 〈Bp, Bq〉, [K] be the matrix of inner products 〈D2Bp, D2Bq〉 and
define [L] by the Cholesky decomposition [L][L]T = [J] + λ[K], where λ is a
roughness penalty parameter. Next [L][D] = [C] is solved for new coefficients [D]
and a PCA performed on [D] to find eigenvectors [U]. The equation [L]T [Z] = [U]
is solved for [Z] and the columns of [Z], �zp, renormalized so that �z T

p [J]�zp = 1.
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Fig. 5.4. Time courses extracted from fMRI data by temporal PCA, ICA and
canonical correlation analysis. Here the PCA components were used, to reduce
the dimensionality of the subsequent processing, as inputs to the ICA and canon-
ical correlation analysis. The statistically independent ICA components emerge
from the analysis in no particular order which can make the identification of the
activation time course difficult. The canonical correlation analysis components
emerge in order of those with the highest to lowest autocorrelation. Here the first
component is clearly drift and the third component is clearly the activation com-
ponent. Correlating the third canonical correlation analysis component with the
original data then gives an activation map. Taken from [145], used with permission.

Finally, the (function) eigenvectors ζ = [Z]T [B] are computed. Lange et al. find
that the second eigenvector represented the (unthresholded) activation map.

5.2.4 Multivariate assessment of design matrices

PCA may be obtained from the SVD of the data matrix [M] as given by
Equation (5.1). Given the design matrix [X] of a multivariate GLM of the form

[M] = [X][β] + [ε], (5.41)
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more meaningful, and interpretable, SVD decompositions are possible. The meth-
ods are based on decomposing the sums of squares and products matrix [M]T [M]
into model-based sums of products and squares [H] and error-based sums of
products and squares [R] as follows

[M]T [M] = ([X][β̂] + [ε])T ([X][β̂] + [ε]) (5.42)

= [β̂][X]T [X][β̂] + [ε]T [ε] (5.43)

= [H] + [R], (5.44)

where the least squares estimate of [H] is given by

[H] = [M]T [X]([X]T [X])−1[X]T [M]. (5.45)

Following Kherif et al. [245] we list three of these more general SVD approaches.

• Partial least squares [302] is based on an SVD of [X]T [Y ], giving eigenimages obtained
from optimal combinations of predictors in [X] from the point of view of explaining
variance in terms of those predictors. A more direct decomposition of [H] is given by an
orthonormalized partial least squares which is an SVD of ([X]T [X])−1/2[X]T [M].

• Canonical variates analysis seeks the matrix of images (columns) [V ] that maximizes
([V ][H][V ]T )/([V ][R][V ]T ) thus maximizing the SNR of the resulting components
(see Section 5.1). Finding that [V ] can be done through the SVD of the matrix

[Z] = ([X]T [X])−1/2[X]T [M][R]−1/2 (5.46)

or, more directly, through the SVD of

[Z] = ([X]T [X])−1/2[X]T [M]([M]T [M])−1/2 (5.47)

using the relation

max[V ]
[V ]([M]T [M])[V ]T

[V ][R][V ]T
= max[V ]

[V ][H][V ]T

[V ][R][V ]T
+ 1. (5.48)

.
• Multivariate linear model (MLM) is a variation of CVA that takes into account the

temporal autocorrelation noise matrix [�] and results from an SVD of

[Z] = ([X]T [�][X])−1/2[X]T [M][N]−1/2, (5.49)

where

[N]−1/2 = diag(1/σ̂1, 1/σ̂2, . . .) (5.50)

= diag((�̂ε T
1

�̂ε1/v)
−1/2, (�̂ε T

2
�̂ε2/v)

−1/2, . . .), (5.51)

where v is the number of voxels. Kherif et al. show how the MLM method may be used
with large design matrices and a test data set to narrow the choice of a GLM model for
the analysis of a new experimental data set.
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5.2.5 Parallel factor (PARAFAC) models

PARAFAC models, introduced to fMRI by Andersen and Rayens [12], represent
data using more than two dimensions with each dimension corresponding to a
factor. For example, for a trilinear model, if the factors are space (voxels), time and
subject, then the data are represented by a data cube, S, where the third dimension
indexes subject number. For a data set composed of I voxels, J time points and K
subjects, a PARAFAC model has R components of the form

S =
R∑

r=1

cr�xr ⊗ �yr ⊗ �zr , (5.52)

where ⊗ denotes a tensor or outer product and �xr ∈ R
I , �yr ∈ R

J and �zr ∈ R
K are

unit vectors. The vectors �xr , �yr and �zr define the spatial (functional connectivity),
temporal and subject components respectively. PARAFAC models may be solved
using eigenbased methods or by an iterative alternating least squares routine.

5.3 Wavelet methods

The wavelet transform has many properties that make it attractive for application to
fMRI analysis [70]. One of those properties is that, when the wavelet function has
enough vanishing moments, the wavelet transform provides a Karhunen–Loéve like
decomposition of a voxel time-series. That is, the wavelet coefficients are uncor-
related (see Section 4.1.7). Noise with 1/f spectral properties may be described
as distributional derivatives of fractional Brownian motion whose fractal or self-
similar properties may be characterized with the Hurst exponent 0 < H < 1.
In slightly more precise terms, for H ∈ (0, 1) there exists exactly one Gaussian
process that is the stationary increment of the corresponding self-similar process.
When H ∈ (0, 1

2 ), the process has short term dependence, when H ∈ (1
2 , 1) the

process has long term dependence and H = 1
2 corresponds to white noise. The

spectral density, S, of a fractional Brownian increment process is

S(f ) ≈ σ 2
H

f γ
, (5.53)

where

σ 2
H = σ 2(2π)−2H sin(πH)�(2H + 1) (5.54)

and the exponent is γ = 2H − 1. Fadili and Bullmore [136], in a method they call
wavelet-generalized least squares (WLS), build a likelihood function based on the
correlation properties of the wavelet coefficients of a 1/f autocorrelated time-series
(specifically for autoregressive fractionally integrated moving average (ARFIMA)
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noise with fractional difference parameter d = H − 1
2 ) to enable an ML estimate

of the correlation matrix [�J ] in the wavelet domain (it will be diagonal)†. This
estimate may be used with the wavelet transform of a GLM of the time-series to
compute the BLUE of the GLM parameters. Specifically the GLM

�y = [X] �β + �ε (5.55)

is transformed under the discrete wavelet transform (DWT) to yield

�yw = [Xw] �β + �εw (5.56)

and the BLUE of �β is given by

�̂
β = ([Xw]T [�̂]−1[Xw])−1[Xw]T [�̂]−1�yw. (5.57)

One of the earlier applications of wavelets to activation map computation
applied the wavelet transform twice, once spatially for denoising and smoothing
as described in Section 2.4.5 and then temporally to identify significant clusters
(within a detail scale level j of interest) of correlated wavelet coefficients [55, 218].
The spatial transform increases the contrast to noise level of BOLD signals whose
spatial extent is comparable to the level of smoothing [467]. Using the estimate σj

as given by Equation (2.57) for the temporal wavelet transform, the active voxels
are found by first computing

Bj(i/n) = 1

σj
√

2n

i∑
k=1

(d2
j,k − d

2
j ), (5.58)

where dj is the average of the detail coefficients at level j, and the KS statistic

Kj = max
1≤i≤n

|Bj(i/n)|. (5.59)

Voxels with significant Kj are then considered active.
Ruttimann et al. [380] consider a blocked experimental design with task on and

off conditions and analyze the 3D data set given by the mean over the blocks of
the difference of mean on and mean off signals. That is, if g(1)i ( �p) represents the

mean voxel values for the on-block number i and g(0)i ( �p) represents the mean voxel
values for the off-block number i, then the data set

f ( �p) = 1

N

N∑
i=1

(g(1)i ( �p)− g(0)i ( �p)) (5.60)

is analyzed. Müller et al. [332] generalize f ( �p) to represent a contrast from a
standard fMRI GLM. Activation map computation then proceeds in a two-step

† Knowledge of an ARFIMA model of [�J ] at each voxel also allows one to plot H maps.
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elimination of wavelet coefficients (setting them to zero) of the wavelet transform
of f , followed by an inverse wavelet transform of the surviving wavelet coefficients
to produce the activation map. The first culling step consists of eliminating wavelet
coefficients by saving only those coefficients, dm

j,k , whose value of (dm
j,k/σN )

2 lies

in the tail of an appropriate χ2 distribution, where σN is a noise standard devi-
ation estimated from the data†. The second step consists of rejecting the remaining
coefficients that fall below a threshold on the assumption that they follow a nor-
mal distribution. Desco et al. [118] investigate the effect of using different wavelet
functions for this method.

Meyer [316] begins with a partially linear model for a voxel time-series

yi = θi + βxi + νi, (5.61)

where the subscript i denotes time or, equivalently, the component of the implied
vectors. The vector �θ is a nonparametric model for the trend, �x denotes a single
column design matrix (for simplicity) and �ν represents noise that can be modeled
as a 1/f noise process. The trend is modeled as a linear combination of large scale
wavelets at a scale coarser than a given J0. If the wavelet has p vanishing moments,
a polynomial trend of degree p − 1 can be approximated with small error. The
smaller J0 is, the more the trend will follow the given time-series. The model of
Equation (5.61) wavelet transformed to

[W ]�y = [W ]�θ + β[W ]�x + [W ]�ν, (5.62)

where the covariance matrix of the noise, [W ]�ν, will be given by

[�] = diag(σ 2
J , σ 2

J−1, . . . , σ 2
1 ), (5.63)

where σi are as given by Equation (2.57). Concatenating [W ]�θ with β, after
eliminating the zero coefficients of [W ]�θ , modifies Equation (5.62) to

[W ]�y = [A]�ξ + [W ]�ν, (5.64)

which has an ML solution of
�̂
ξ = ([A]T [�]−1[A])−1[A]T [�]−1[W ]�y, (5.65)

where �̂
ξ contains the wavelet coefficients of �θ and the parameter β.

5.3.1 Continuous wavelet transforms

Continuous wavelet transforms may also be used to detect activation in a method
von Tscharner et al. [424] label WAVANA. The continuous wavelet transform of

† The m superscript denotes direction, for example in Fig. 2.5 there are three directions, horizontal, vertical
and diagonal.
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a time-series S(t) gives a function Sw(j, t) in which the scale level j and time t
may both be regarded as continuous variables. The function Sw(j, t) at fixed j is a
band-pass version of the original time-series and characterizes differences between
scales in a continuous manner. The function Sw(j, t)may be displayed as a contour
plot in the (j, t) plane (this plot is known as a scalogram). For a blocked design of N
cycles, the function Sw(j, t)may be partitioned into N functions Swp(j, n, τ), where
τ is the time from the beginning of each cycle. An average function

Sa(j, τ) = 1

N

N∑
n=1

Swp(j, n, τ) (5.66)

and a standard deviation function

σSa(j, τ) =
√√√√ 1

N

N∑
i=1

[Swp(j, n, τ)− Sa(j, τ)]2 (5.67)

may be defined. Then two t-statistics functions may be computed

St(j, n, τ) = Swp(j, n, τ)

σSa(j, τ)
, (5.68)

Sat(j, τ) = Sa(j, τ)

σSa(j, τ)/
√

N
(5.69)

giving, potentially, an activation map for every time t in the time-series or for every
cycle time τ but in practice the maximums of the two functions are used to produce
maps. Within the contour plot of Sw(j, t) the scale j that best represents the periodic
paradigm may be identified (usually j = 1) and activation maps computed for that
scale.

In another application of the continuous wavelet transform, Müller et al. [333]
used the complex-valued Morlet wavelet

ψ(t) = eiω0te−t2/2 (5.70)

to compute the phase of the resulting continuous cross wavelet transform between
two functions g and f given by

Wψ

a,b(f × g) = Wψ

a,b(f ) Wψ

a,b(g)
∗, (5.71)

where g is a reference function and f is a voxel (or ROI averaged) time series.
The inverse variance of Wψ

a,b(f × g) shows if f and g have coherence and may be
used to infer phase differences between active brain regions (for inferring mental
chronometry) or to define active regions because lower strength activations have
higher phase variability.
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Shimizu et al. [397] apply the continuous wavelet transform at each voxel, using
the Mexican hat wavelet, to compute a multifractal spectrum. The multifractal spec-
trum is a function D(h) of the Hölder coefficient h whose value is the Hausdorff
dimension of underlying fractal processes in the signal specific to the Hölder coeffi-
cient. The Hölder coefficient may be defined at each time point t0 in the time-series,
f , and is defined as the largest exponent h such that there exists a polynomial Pn(t)
of order n that satisfies

|f (t)− Pn(t − t0)| = O(|t − t0|h) (5.72)

for t in a neighborhood of t0. Shimizu et al. show how properties of the “maxima
skeleton” of the continuous wavelet transform may be used to compute the function
D(h), which has a simple “inverted U” shape from which one may extract the point
(hmax, Dmax), and w, its FWHM. The quantity

Pc = hmax

Dmax
w (5.73)

may then be used to define the activation map.

5.4 Clustering methods

Clustering consists of assigning each voxel time course vector �yj ∈ R
P to one of K

clusters, Ck ⊂ {1, . . . , N}, on the basis of minimizing the within-class (intraclass)
inertia

IW = 1

N

K∑
k=1

∑
j∈Ck

d2(�yj, �ck), (5.74)

where N is the number of voxels in the data set, �ck is the class center and d is a dis-
tance measure on R

P, and on the basis of maximizing the between-class (interclass)
inertia

IB = 1

N

K∑
k=1

|Ck| d2(�ck , �c), (5.75)

where |Ck| is the cardinality of Ck and �c = ∑K
k=1(|Ck|/N)�ck [194]. If the class cen-

ters are defined to be the average of the vectors in the cluster, then the minimization
of IW becomes equivalent to the maximization of IB via Huygens’s familiar for-
mula that states that the total sum of squares is equal to the within sum of squares
plus the between sum of squares. Thus, minimizing Equation (5.74) leads to a
definite assignment of each voxel time course to a definite cluster. A fuzzy prob-
abilistic assignment is possible by minimizing Equation (5.87) instead. Clusters
are computed iteratively by assigning vectors to the cluster of the nearest center
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then recalculating the cluster centers and reassigning vectors to clusters, until con-
vergence. This K-means method requires only that the number of clusters, K , be
specified in advance. To avoid having to choose K , or to help in choosing K , a
number of hierarchical clustering schemes have been proposed.

The group-average agglomerative hierarchical method [194] begins with the
maximum number of clusters, one per data vector. Next the two closest vec-
tors/clusters are joined, reducing the number of clusters by 1. The process proceeds
until there is one cluster. Then some method is required to pick, from the hierarchy,
the best number of clusters. The distance metric d can be made to be sensitive to
the covariance structure [�] of the data by defining

d2(�a, �b) = ([U]�a − [U]�b)T [�]−1([U]�a − [U]�b), (5.76)

where [U] is the matrix of eigenvectors and [�] is the diagonal matrix of eigen-
values of [�]. The number of computations can also be reduced by discarding,
using a variety of methods, voxels that are definitely not active. Another way of
reducing the computational burden is to cluster voxel cross-correlation functions
(see Equation (1.4)) for each voxel in place of the time course [194, 196]. Extract-
ing the feature strength and delay from the cross-correlation function, as Lange
and Zeger [266] do using the gamma variate function for cross-correlation, gives
parameters that may be used in constructing more diverse feature vectors. Goutte
et al. [196] create feature vectors for each voxel by collecting parameters produced
by several activation map computation methods for a metacluster approach. They
use, in particular, a seven-dimensional feature vector composed of: (1) a simple
on–off t statistic, (2) a KS statistic, (3) a correlation statistic (with delayed stimulus
function), (4) σ of an FIR fitted signal, (5) delay from an FIR model, (6) strength
from a Lange–Zeger filter and (7) delay from a Lange–Zeger filter.

Hierarchical clustering can also begin with one cluster (the whole data set) which
is split into two using K = 2 in a k-means approach. Then a variety of methods,
including visual inspection of clusters in principal component space, PCA of each
cluster to assess the variability of the eigenvalues, within cluster sum of squares and
statistical similarity of the clusters using a KS statistic, may be used to determine
which cluster(s) to split in the next step [138]. These splitting criteria also provide
information on when to stop splitting the clusters.

Cordes et al. [104] cluster on the spectral decomposition of each voxel time
course, specifically restricting attention to frequencies less than 0.1 Hz in computing
a correlation-based distance measure to isolate activity in the resting brain.

Hierarchical clustering produces tree structures called dendrograms [330], after
the dendrites of crystal growth (see Fig. 5.5), that may themselves be manipu-
lated. Stanberry et al. [408] describe an approach called dendrogram sharpening.
Following Stanberry et al., the dendrogram sharpening works as follows. In a
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Fig. 5.5. Schematic dendrogram. At the top the minimum number of clusters is 1
which is the whole image (all the time courses). At the bottom is the maximum
number of clusters in which each voxel (one time course) is a cluster. A distance
between the two extremes may be defined and many different dendrograms are
possible.

dendrogram, the original data points (maximal number of clusters) are called ter-
minal nodes. Working from the terminal node up, when two clusters, the left and
right child nodes, are merged they form a new node called the parent node. The
ordinate value of the parent node is equal to the distance, known as an agglom-
eration value, between the children forming the node. The size of a node is equal
to the number of terminal children under the node. At the top of the dendrogram
is the root node. Stanberry et al. define three distance measures between clusters:
(i) single linkage equal to the Euclidian distance between the nearest neighbors,
(ii) complete linkage equal to the Euclidian distance between the farthest neigh-
bors and (iii) average linkage equal to the average distance between all pairs of
cluster members. The use of average-linkage leads to K-means clustering. The
use of the single linkage method leads to nonoverlapping clusters. Once a dendro-
gram is constructed it can be sharpened in a number of ways. One is to simply
delete low density clusters; this may remove small clusters. Another method is
sharpening by replacement where each point is replaced by the centroid of it and
its nearest neighbors. Stanberry et al. use an algorithm that discards all small-sized
child nodes that have a large-sized parent node. Their sharpening process is con-
trolled by two parameters, nfluff and ncore. The parameter nfluff gives the maximum
size of child cluster that will be discarded if it has a parent node of size larger
than ncore. In addition, the trimming rule also stipulates that if a particular child is
subject to sharpening, it will be deleted only when its agglomeration value is larger
than that of the remaining child to prevent the discarding of children composed
of close children. The parameters may be used with single or multiple passes to
yield different sharpened dendrograms. After dendrogram sharpening, the cluster
centers need to be identified and the discarded voxels reclassified to the new cluster
centers.
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Baune et al. [37] apply a dynamical clustering algorithm (DCA) in which two
parameters θnew and θmerge are specified in place of the number of clusters as in
K-means clustering. Euclidean distance is used and the DCA method begins with
an arbitrary time course vector as a cluster center, �c1, and the distances to all the
other data vectors are computed to that initial cluster center. The vector, �x, closest
to the center is chosen and if d(�c1, �x) > θnew, then �x defines a new center �c2.
Otherwise, �x is assigned to the first cluster and the mean of the vectors in the cluster
is computed as the new cluster center. The process iterates with the additional step
at each iteration that the distances between the newly computed cluster centers are
computed and if any distance is less than θmerge, the two corresponding clusters are
merged. The parameters θnew and θmerge are taken as 90% and 80%, respectively,
of the mode of a histogram of all pairwise distances between the data vectors.

Chen et al. [86] demonstrate a more sophisticated approach, that they call
clustered components analysis, in which the directions of the clusters are primarily
considered by clustering normalized vectors. Prior to clustered components ana-
lysis†, Chen et al. reduce the dimensionality of the time courses, by projecting
them into the subspace spanned by sines and cosines at the stimulus frequency (a
blocked design is assumed) and its higher harmonics, further remove noise compo-
nents in that harmonic subspace and finally prewhiten the data (see Section 4.1.7).
For clustered components analysis, the data, �yn, of voxel n are modeled as

�yn = αn�exn + ωn, (5.77)

where �exn ∈ EK = {�e1, . . . , �eK} is the center of cluster xn, 1 ≤ xn ≤ K , K is the
number of clusters and ωn is Gaussian white noise. Chen et al. then specify a pdf
for cluster membership under the model of Equation (5.77) along with some prior
probabilities "K = {π1, . . . ,πK} for each cluster. Forming a Bayesean model,
an EM algorithm is then used to compute the class centers and the prior cluster
membership probabilities. The number of classes, K , is determined by minimizing
a minimum descriptive length (MDL) criterion given by

MDL(K , EK ,"K) = − ln p(y|K , EK ,"K , α̂)+ 1
2 KM ln(NM), (5.78)

where KM represents the number of scalar parameters encoded by EK and"K , and
NM represents the number of scalar parameters required to represent the data.

Salli et al. [383, 384] describe a contextual clustering approach, based on MRF
considerations, that works as follows. First a conventional (univariate) SPM{z}
map is thresholded at a threshold Tcc to initially divide the voxels into active and
nonactive with the condition at voxel i

zi > Tcc (5.79)

† The clustered component analysis software is available from http://www.ece.purdue.edu/∼bouman.
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defining an active voxel. Next the voxels are reclassified with voxel i considered
active if

zi + β

Tcc
(ui − Nn/2) > Tcc, (5.80)

where Nn is the number of voxels in a predefined neighborhood of voxel i (e.g.
the 26 nearest neighbors in a 3D neighborhood), ui is the number of currently
active voxels in the predefined neighborhood and β is a parameter that weights
neighborhood information and is given by

β = T2
cc

s
(5.81)

where s is a user selected parameter. Equation (5.80) is iterated until convergence.
As s → 0 contextual clustering approaches a recursive majority-vote classification,
as s → ∞ the method approaches voxel-by-voxel thresholding. The contextual
clustering algorithm is capable of detecting activation regions whose median value
is greater than Tcc in addition to detecting individual voxels with very high zi. Salli
et al. used repeated simulations to identify optimal Tcc and s parameters from a
repeatability point of view (see Section 4.7).

Gibbons et al. [181] use a two level mixed effects (see Section 4.4.2) Bayesian
analysis of blocked designs in which the epoch number is the second level over the
voxel level. They use a third degree polynomial to fit the average HRF (as opposed
to the IRF) over the epochs along with empirical Bayes, assuming multivariate
normality of the polynomial coefficients, and using the EM method. Each voxel’s
third degree polynomial fit has two critical points (usually maximum and minimum),
CP1 and CP2, which may be used to label a voxel as potentially active if the
following criteria are met

1. CP1 < (tn − t1)/2 and CP1 > (tn − t1)/4 where tn and t1 are the first and last
time-series points respectively. This criterion ensures that the time of maximum is in
the first quartile of the epoch time interval.

2. CP2 < tn and CP2 > (tn − t1)/(3/4). This criterion ensures that the time of
minimum is in the third quartile of the epoch time interval.

3. CP1 − CP2 ≥ 2σε where σε is the pooled estimate of the error variance over all voxels.
This criterion gives a minimum signal to noise ratio.

4. CP1 > x − s where x is the global average voxel intensity and s the corresponding
standard deviation. This criterion can eliminate lower intensity, motion caused, artifact
at the edge of the brain.

The resulting collection of polynomial coefficients in voxels that pass the above
criteria are then subject to clustering using K-means, Gaussian finite mixture mod-
els and K-Mediod clustering methods. Gibbons et al. find that the nonparametric
K-Mediod method provides the most homogeneous clusters.
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Zang et al. [468] use clustering properties, rather than clustering per se, to create
their regional homogeneity (ReHo) maps. Specifically Kendall’s coefficient of con-
cordance (see Equation (5.103)) for a pixel with its nearest neighborhood voxels is
computed as

W =
∑

nhbd(Ri)
2 − n(R)2

K2(n3 − n)/12
, (5.82)

where K is the neighborhood size (e.g. K = 7, 19 or 27), Ri is the rank of time point
i of n time points, and R = (n + 1)K/2. The result is a W map of which one is
made for each of two conditions. A t-test difference of the two W maps then shows
where the activations differ between the two conditions.

Beyond clustering based on numerical information contained in the data, clus-
tering on stimulus types is possible. Multivariate statistical pattern recognition
methods, including linear discriminant analysis (a MANOVA application) and sup-
port vector machines may be applied to the response of the brain (in selected ROIs)
to a given set of stimuli. Cox and Savoy [106] measure the fMRI response, in a
training set of subjects, to a set of ten object pictures and classify the responses. The
viewing of the objects is done in 20 s periods, not necessarily alternating, to obtain
a 4D fMRI data set corresponding to the object viewed. The time course responses
in specific ROIs (in the visual regions) are then classified, essentially forming a
cluster of responses for each object. Then new subjects are introduced and, without
knowledge of the object viewed, the response is classified to one of the previously
defined clusters in an attempt to “read the brain” and determine what object was
viewed.

5.4.1 Temporal cluster analysis (TCA)

TCA may be used to define a “stimulus” function, u, from the data that can sub-
sequently be used in a standard GLM approach to compute an activation map
corresponding to the defined stimulus. These TCA approaches are of use in study-
ing the BOLD response to physiologic challenges to glucose metabolism, drug
action, the onset of rapid eye movement (REM) sleep [473] or to localize epileptic
activity [327]. Following Zhao et al. [473] TCA works by converting the (transpose
of the) data matrix [Y ] for a v voxel data set having p time points given by

[Y ] =

⎡
⎢⎢⎢⎣

y1,1 y1,2 · · · y1,p

y2,1 y2,2 · · · y2,p
...

...
...

yv,1 yv,2 · · · yv,p

⎤
⎥⎥⎥⎦ (5.83)
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into a matrix [W ] according to

wi,j =
{

yi,j if yi,j = max(yi,1, yi,2, . . . , yi,p),
0 otherwise.

(5.84)

The vector

�u = [u1, u2, . . . , up]T , (5.85)

where

uj =
v∑

i=1

wi,j, (5.86)

then defines the stimulus function. Thresholding �u (e.g. setting uj = 0 if the total
number of voxels hitting their maximum is less than a given number at time point j)
gives a sharper stimulus function. TCA can also be performed with [Y ] replaced by
a difference data set, e.g. [Y ] = [Y1] − [Y0] for two fMRI data sets obtained under
conditions 0 and 1 [464]. The TCA algorithm may be run a second (and third or
more) time by replacing the maximum voxel values found in the first application
with zeros and applying TCA again to find the secondary maximums [176].

5.4.2 Fuzzy clustering

In fuzzy clustering the voxel time-series are given weights that define the degree of
membership that the time-series has to each cluster group. This is an alternative to
hard or crisp clustering in which each voxel (time-series) is assigned to a unique
cluster. Fuzzy clustering has been shown to be capable of separating changes due to
functional activation and other sources [443] and, when combined with appropriate
model calculations, allows the quantification of flow and BOLD contributions in
regions with different vascularization [328]. Fuzzy clustering has also been applied
to multiple echo fMRI data sets to extract TE dependent changes [29]. The iden-
tification of active time courses through the standard method of computing their
correlation with a given model time course can result in a collection of time courses
that are not necessarily correlated with each other. Fuzzy clustering avoids this prob-
lem by producing clusters of time courses that are tightly correlated with each other
[31, 34]. Fuzzy clustering has also been demonstrated to outperform PCA in source
separation if the data contain sources other than activation and scanner noise [33].

Let [X] = [�x1, . . . , �xn] be the fMRI data matrix†, where �yi ∈ R
p is the measured

time-series for voxel i. Let [V ] = [�v1, . . . , �vc] be the matrix of class center vectors
�vi ∈ R

p where the number of clusters, c, is fixed. Finally, let [U] be the c × n

† [X] = [M] of Section 5.1 here to more closely follow the original literature.
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membership matrix in which the element uik is the degree of membership (weight)
of voxel i to cluster k. If d is a metric on R

p, then [U] and [V ] are computed by
minimizing

Jm([X], [U], [V ]) =
c∑

i=1

n∑
k=1

um
ikd2(�xk , �vi) (5.87)

subject to the constraints

0 ≤ uik ≤ 1, (5.88)

0 <
n∑

k=1

uik ≤ n, (5.89)

c∑
i=1

uik = 1, (5.90)

where m > 1 is a fuzziness index used to “tune out” noise in the data [134].
Incorporating the constraints into Equation (5.87) leads to an iterative scheme for
computing [U] and [V ]. Using the subscript l to denote the lth component of the
vectors �yk and �vi, the matrices are updated at each iterative step according to

vil =
∑n

k=1 um
ikykl∑n

k=1 um
ik

, (5.91)

uik = 1∑c
j=1(d(�xk , �vi)/d(�xk , �vj))2/m−1

, (5.92)

where the new quantities are on the left and the old ones are on the right. Iteration
proceeds until max |uik(t) − uik(t − 1)| < ε, where t indexes the iterations and ε
is a convergence tolerance. The iterations are started with a random initialization
matrix given by

[U](0) =
(

1 − 1√
2

)
[Uu] + 1√

2
[Ur], (5.93)

where [Uu] is a matrix with every entry set to 1/c and [Ur] is a random hard cluster
assignment matrix.

Some choices for the distance measure include the Euclidean measure [30]

d2(�xk , �vj) =
p∑

l=1

(xkl − vjl)
2, (5.94)

a hyperbolic correlation measure [134]

d(�xk , �vj) = [(1 − rjk)/(1 + rjk)]β , (5.95)
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where rjk is the correlation between �yk and �vj and where β is a fuzziness index
usually set to 1 to allow m to control the fuzziness, and [188]

d(�xk , �vj) = 2(1 − rjk). (5.96)

The distance given in Equation (5.95) is a pseudometric, meaning that it cannot
separate all vectors in R

p (the triangle inequality is not satisfied). The metric of
Equation (5.96) is, however, topologically equivalent to the Euclidean metric (as are
all true metrics in R

p) and will lead to a convergent cluster solution. The convergence
of clustering schemes based on pseudo-metrics needs to be checked.

To perform fuzzy clustering, it is necessary to choose valid values for the fuzzi-
ness index m and number of clusters c. The problem of choosing the correct m and c
is known as the cluster validity problem and does not yet have a complete solution,
although there are a number of ad hoc solutions in use. The validity of a cluster
analysis may be measured by one of a number of validity functionals that give the
validity of a cluster solution as a function of m and c. Frequently, m is fixed and
c is varied between 2 and cmax = √

n or n/3 [134]. One such validity functional
is the SCF functional given by Fadili et al. [135], where SCF = SCF1 + SCF2 is
composed of two functionals SCF1 and SCF2 that quantify the clustering solution
as follows. The SCF1 measure is defined as the ratio of the compactness and average
separation between the clusters and is given by

SCF1 =
∑c

i=1
∑n

k=1

(
um

ikd2(�xk , �vi)/(
∑n

k=1 uik)
)

1
c

∑c
i=1 d2(�x, �vi)

, (5.97)

where
∑n

k=1 uik is the number of voxels in cluster i. The SCF2 criterion expresses
the fuzzy relationships between the clusters in terms of fuzzy union (FU) and fuzzy
intersection (FI) as follows:

SCF2 = FI

FU
=
∑c−1

i=1
∑c

j=i+1 FIij

FU
, (5.98)

where

FIij =
∑n

k=1

[
mini,j(uik)

]2∑n
k=1 mini,j(uik)

(5.99)

and

FU =
∑n

k=1

[
maxi∈{1,...,c}(uik)

]2∑n
k=1 maxi∈{1,...,c}(uik)

. (5.100)

The clustering is optimal when SCF is minimized. Resampling as a means of
validating an individual cluster is also an option [35]. To apply resampling, for each
vector in the cluster compute the correlations of the vector with a large number
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of component permutations (∼10 000) of the cluster center vector, compute a p
value for the vector based on the resulting empirical distribution and eliminate the
corresponding voxel from the cluster if p is too high. Clusters may also be trimmed
using Kendall’s coefficient of concordance [32]. The trimming method works as
follows. Modify the data matrix [Yk], which contains the voxel time courses of the
kth cluster as columns (of which there are N) to the matrix [Z] using

zij = (yij − yi)
2, (5.101)

where yi = ∑N
j=1 yij/n is the global cluster mean of scan i. For each voxel compute

Vj =
p∑

i=1

zij, (5.102)

then it can be shown that
N∑

j=1

Vj = K(1 − W), K = N2p(p2 − 1)

12(N − 1)
, (5.103)

where W is Kendall’s coefficient of concordance and (1 − W) is the discordance.
So Vj defines the contribution of �yj to the discordance of the cluster. Therefore
removing the vector with the highest Vj will lower the discordance of the cluster.
Vectors can be removed until a desired level of concordance is reached. That level of
discordance may be expressed by stopping the trimming process when the minimum
Spearmann rank correlation coefficient rk,l between any pair of vectors in the cluster
is significant. The Spearmann rank correlation coefficient is used because it can be
shown that the average Spearmann rank correlation coefficient, ravg of the cluster
is related to Kendall’s coefficient of discordance by

ravg = NW − 1

N − 1
. (5.104)

A visual assessment† of the concordance may be obtained by stacking the data
vectors as rows on top of each other and displaying as a gray scale image [36].

Another consideration in fuzzy clustering is that the constrained functional Jm

of Equation (5.87) has many local minimums so that alternative methods may be
needed to ensure that a global minimum is found [322]. Also, an fMRI data set
contains many noisy time courses that need to be removed to make fuzzy clustering
a more balanced process [134]. To reduce the size of the data set, voxels can be
removed on the basis of anatomy (e.g. white matter or CSF) or with a spectral peak
statistic that may be used to remove time courses with flat spectral densities (white

† For a fee, the EvIdent fuzzy clustering software, which allows the visual assessment of concordance, is
available from http://www.ibd.nrc-cnrc.gc.ca/english/info_e_evident.htm.
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noise voxels) [232]. Finally, after fuzzy clustering, the cluster centers can be tested
using an ordinary GLM (usually a simple correlation with a model vector suffices)
to determine the relationship of the cluster to the original experimental paradigm.

5.4.3 Vector quantization (VQ) and neural-network-based clustering

VQ is a general signal processing approach that is applied to a data set of vectors
(signals – in fMRI, the data set of voxel time-series). VQ clustering identifies several
groups, or clusters, in the data set consisting of similar, by some measure, vectors.
The groups or clusters are represented by prototypical vectors called codebook
vectors (CV) that represent the center of the clusters. Each data vector may be
assigned to a definite cluster in a “crisp” assignment scheme or may be given weights
for each cluster in a “fuzzy” assignment scheme. VQ approaches determine cluster
centers, �wi by making them analogous with neural net connection weights that are
iteratively updated, at times t, by a learning rule, for the ith neuron or cluster center,
of the form [446]

�wi(t + 1) = �wi(t)+ ε(t) ai(�x(t), C(t), κ) (�x(t)− �wi(t)), (5.105)

where �ε(t) represents the learning parameter, �x is a randomly chosen time course
and ai is a function dependent on a codebook dependent cooperativity function C(t)
and a cooperativity parameter κ . Examples of VQ methods include [446]

(i) Kohonen’s self-organizing map (SOM) [92, 139, 339] in which the neurons are
arranged on a uniform square or hexagonal lattice with fixed distances dij between
the nodes†. Time course centers are organized in a meaningfully and visually obvious
way on the lattice after classification, see Fig. 5.6. The cooperativity function for the
learning rule for Kohonen’s SOM is

ai = exp(−dij/σ
2), (5.106)

where σ 2 is an operating parameter. Chuang et al. [92] follow up a Kohonen SOM
with a fuzzy clustering analysis of the SOM components to reduce redundancy.

(ii) Fuzzy clustering based on deterministic annealing. The cooperativity function is the
softmax activation function given by

ai = exp(−‖�x(t)− �wi(t)‖2/2ρ2)∑
i exp(−‖�x(t)− �wi(t)‖2/2ρ2)

, (5.107)

where ρ is a fuzziness parameter and 2ρ2 may be interpreted as a temperature. The
algorithm starts with one cluster (the whole data set) and splits them as the iterations
proceed.

† The public domain software SOM PAK is available at http://citeseer.ist.psu.edu/kohonen96som.html.
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Fig. 5.6. Example time courses extracted by a Kohonen SOM approach. The fMRI
experiment involved periodic visual stimulation. Notice how the time courses are
related to each other both along the rows and along the columns. Taken from [139],
used with permission.

(iii) “Neural gas” network. The cooperativity function is

ai = exp(−ki(�x, �wi)/λ), (5.108)

where ki = 0, 1, . . . , N − 1 represents a rank index of the reference vectors �wi to �x in
a decreasing order, N is the number of neurons in the network and λ determines how
many neurons will change their synapses in an iteration.

Wismüller et al. [446] discuss the relative merits of the three above VQ methods.

5.4.4 Replicator dynamics

Lohmann and Bohn [286] introduce the method of replicator dynamics to fMRI for
the purpose of finding functionally connected clusters or networks of voxels in the
brain. Replicator dynamics begins with a v×v similarity matrix [W ], where v is the
number of voxels in the data set. The similarity matrix may be given by correlations
(computed, for example, from [M]T [M], where [M] is the fMRI data matrix) or by a
matrix of Spearman’s rank correlation coefficients between the voxel time courses
or by mutual information. The similarity matrix needs to contain positive entries in
order for the replicator dynamics algorithm to converge, so correlation-based [W ]
need to either use the absolute values of the correlation coefficients or set negative
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correlations to zero. A network, a set of voxels N , found by replicator dynamics
is defined by a vector �x in a unit v-dimensional hypercube. Each component of �x
represents a voxel and a value of 0 means that the voxel is not a part of N and a
value of 1 indicates membership in N . Values in (0, 1) indicate fuzzy membership
in N . A network is defined as the solution to the following dynamical system

d

dt
xi(t) = xi(t)[([W ]�x(t))i − �x(t)T [W ]�x(t)], i = 1, . . . , v, (5.109)

where the subscript i denotes the ith component. The discrete (in time) version of
Equation (5.109) is given by

xi(t + 1) = xi(t)
([W ]�x(t))i

�x(t)T [W ]�x(t) (5.110)

and Equations (5.109) and (5.110) are known as replicator equations. A fundamental
theorem of natural selection guarantees that replicator systems will converge to a
stationary state, our desired network N . The process of evolving the replicator
dynamics is begun from the state in which xi = 1/v for all i. After convergence, the
network is “defuzzified” by setting all xi > 1/n equal to 1 and the rest to 0. After
one network is found, another network may be found by considering only those
voxels that are not contained in the first network. The process is repeated until a
desired number of networks is found. After the networks are found, it is possible to
update [W ] by setting the similarity value, an entry in [W ], of voxel i equal to the
average of all the similarity values of the voxels that belong to the same network
as voxel i. Then the networks may be recomputed using the updated [W ]. To use
the replicator dynamics approach for a group of n subjects, an average [W ] may be
employed where the average is computed using Fisher’s z transform. That is, each
entry, r, in the similarity matrix of an individual subject is transformed to z = f (r),
where

z = f (r) = 0.5 ln

(
1 + r

1 − r

)
. (5.111)

The inverse transformation is given by

r = f −1(z) = e2z − 1

e2z + 1
, (5.112)

so if [Wi] is the similarity matrix for subject i, then the group similarity matrix [W ]
is given, entry-wise, by

[W ] = f −1

[
n∑

i=1

f ([Wi])
]

. (5.113)

To visualize the similarity structure given by [W ], Lohmann and Bohn use multi-
dimensional scaling (MDS) [159]. For time courses comprising k time points, MDS
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Fig. 5.7. Example replicator dynamics solution to finding networks in a visual
stimulation experiment. At the top, two slices from one subject are shown with
the found networks color coded with red representing the first network and vari-
ous shades of yellow representing other networks. At the bottom are the MDS
maps (plotted with the two principal directions of the similarity structure matrix
[W ] represented as the x and y directions) for each slice with the networks being
represented by their numbers. In this example, SOM clustering was done first, fol-
lowed by the determination of networks of cluster centers by replicator dynamics
from the SOM clusters. Note how the SOM organization shows up in the MDS
clusters as expected. Taken from [286], ©2002 IEEE, used with permission. See
also color plate.

is a way of visualizing clusters of time courses in the unit cube in R
k . With the

similarity measures in [W ] representing distances in R
k , normalized time courses

are plotted in R
k , usually with the axes along the principal directions of [W ] so that

structure may be maximally seen, see Fig. 5.7. The network clusters found should
be close in distance in R

k .
A variation for finding the second network is to use the eigendecomposition of

[W ] given by

[W ] = [P]T [�][P], (5.114)
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where [P] is a matrix of the eigenvectors of [W ] and [�] is a diagonal matrix
containing the eigenvalues. The first eigenvalue of [�] is set to 0 to give [�2]. Then
the similarity matrix given by

[W2] = [P]T [�2][P] (5.115)

is used on the whole data set in the replicator equation to find the second network.
In this way, the second network may contain voxels from the first network. Finally,
Lohmann and Bohn show that replicator dynamics may be used to find networks
of cluster centers identified in SOM clustering.

5.5 Functional connectivity

The component decomposition and clustering methods reviewed so far character-
ize functional connectivity primarily in terms of correlations between voxel time
courses. For example, ICA uses the information theoretic concept of mutual inform-
ation which may be related to correlation between voxels in the following way [147].
Let p and q represent two ROIs of voxels represented by data matrices [Mp] and
[Mq]. Then the mutual information between the two regions, MIpq, is given by

MIpq = ln

(
|[Mp]T [Mp]| |[Mq]T [Mq]|√|[M]T [M]|

)
, (5.116)

where | · | denotes a determinant. In the limiting case in which each ROI consists
of one voxel

MIpq = − ln(1 − r2)/2, (5.117)

where r is the correlation between the two voxel time-series.
A few groups have developed and applied a method they call functional con-

nectivity MRI (fcMRI) based on the measurement of low frequency (< 0.1 Hz)
signal in the resting brain [45, 103, 197, 205, 288, 462]. This resting brain fcMRI
works by first having the subject perform a task that will activate a region of interest
such as a part of the motor cortex (e.g. from finger tapping) or a speech region like
Broca’s area. Then an fMRI time-series is obtained with the subject resting through
the whole series. A seed voxel time course is then selected from the active ROI(s)
identified in the task activation analysis and all voxels correlated with that seed time
course are declared to be a part of the resting network associated with the original
ROI. Care must be taken that fcMRI is not measuring aliased cardiac or respirat-
ory signal [291] or that some other phenomenon besides neural activity induced
BOLD is being observed [295]. However, it is worth noting that measurements
of flow made using the spin tagging flow-sensitive alternating inversion recovery
(FAIR) method have shown that fcMRI resting state signals are BOLD-based and
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not blood-flow-based [48]. The null distributions of the correlation coefficients
found in fcMRI may be determined by permutation in the wavelet domain (where
the time-series noise is uncorrelated) so that significantly correlated voxels may be
identified [56].

Clusters of functionally connected regions (general functional connectivity now,
not just resting brain studies) may be assessed for statistical significance using
random field theory for cross-correlation and autocorrelation fields similarly to how
Gaussian random fields are used to assess the significance of clusters with univariate
SPM [456] (see Section 4.1.8). Given two fMRI time-series data sets containing
n time points each, with the individual voxel values denoted by Xi(x1, y1, z1) and
Yi(x2, y2, z2), then their 6D cross-correlation field, R, is given by

R(x1, y1, z1, x2, y2, z2) =
∑n

i=1 Xi(x1, y1, z1)Yi(x2, y2, z2)√∑n
i=1 Xi(x1, y1, z1)2

√∑n
i=1 Yi(x2, y2, z2)2

. (5.118)

An autocorrelation field is defined with X = Y . Such random field methods may be
used in lieu of SVD, CVA, PLS or MLM (see Section 5.2.4) to assess correlation-
based functional connectivity.

Functional networks or clusters are identified by d’Avossa et al. [23] on the basis
of BOLD response shapes from a blocked experiment. Their procedure is as follows.
First, active regions are identified using univariate SPM methods. Then a PCA
analysis is computed and the nonnoisy components (as determined from a separate
SNR estimate) are kept. The time courses of the active voxels are projected into the
space spanned by the retained principal components to reduce data dimensionality.
The dimension-reduced, active time courses are then subjected to a fuzzy cluster
analysis with the number of clusters being set by a cluster validation procedure
based on mutual information. The fuzzy cluster identified time courses serve as the
prototypical BOLD time course and the clusters represent functionally connected
regions.

Sun et al. [414] use coherence between time-series as a Fourier-based measure
of correlation for finding functionally connected regions. Specifically, if fxx, fyy and
fxy represent the power spectrums of time-series x and y and the cross-spectrum
of x and y respectively, then the coherency Cohxy(λ) of x and y at frequency λ is
given by

Cohxy(λ) = |Rxy(λ)|2 = |fxy(λ)|2
fxx(λ)fyy(λ)

, (5.119)

where Rxy is the complex-valued coherency of x and y. To avoid detecting correl-
ations due to an external source and not due to interactions between the voxels
(stimulus-locked response) a partial coherence, taking the external reference time
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course r into account, as given by

Cohxy|r(λ) = |Rxy(λ)− Rxr(λ)Rry(λ)|2
(1 − |Rxr(λ)|2)(1 − |Rry(λ)|2) (5.120)

may be used. Sun et al. use the seed voxel method with coherence to identify
functionally connected clusters.

5.6 Effective connectivity

Friston [147] defines the idea of effective connectivity as being distinct from func-
tional connectivity with the idea that effective connectivity depends on some model
of the influence that one neuronal system exerts on another. With effective con-
nectivity, we can begin to study brain dynamics as opposed to simply identifying
brain regions associated with certain functions in an approach some refer to as
neo-phrenology [149]. It is only with these deeper models of brain function that
incorporate effective connectivity that we can hope to advance the understanding of
mysteries like memory and consciousness using fMRI and neuroimaging in general
[390]. The development of models and understanding of connectivity (both func-
tional and effective) depends on the use of information from other imaging sources
(e.g. PET, MEG, EEG) and, as such, a thorough understanding of what connectivity
means for each modality and of the analysis procedure is needed for the interpret-
ation of experimental results [224, 273]. With the MRI modality, diffusion tensor
imaging (DTI) has been effectively used to construct and verify connectivity mod-
els on the basis of the resulting white-matter fiber tract maps provided by DTI
[256, 398]. The validation of models of effective connectivity is important and
Friston [147] identifies three types of validity concerns. These are construct valid-
ity (does the model have validity in terms of another construct or framework), face
validity (does the model capture what it is supposed to) and predictive validity (does
the model accurately predict the system’s behavior).

Let us begin our review of effective connectivity models with the simple model
originally proposed by Friston [147]. Let [M] be the t × v fMRI data matrix for t
scans and v voxels and let �mi be the time course of voxel i. Then the simple model
expresses the time course at voxel i as a linear combination of the time courses of
all the other voxels:

�mi = [M] �Ci + �εi, (5.121)

where �Ci is the vector of effective connectivities from all the voxels to voxel i and
�εi is an error vector. The least squares solution to Equation (5.121) is given by

�Ci = ([M]T [M])−1[M]T �mi. (5.122)
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In fact, defining the effective connectivity matrix [C] as the matrix whose columns
are the vectors �Ci, the least squares solution for the effective connectivity matrix is

[C] = [V ][V ]T , (5.123)

where [V ] is as given by Equation (5.1). In contrast, the functional connectivity
matrix is given by

[M]T [M] = [V ][S]2[V ]T . (5.124)

So effective connectivity, in this model, is represented by orthogonal modes
(eigenimages) with internal unit connections between the voxels in a mode. With
functional connectivity, the modes are weighted by the variance accounted for
(eigenvalues) by each mode. One immediate face validity issue with the simple
model is that [C] is symmetric. That is, the connections between the voxels are
two-way with the strength in each direction being equal. Nonlinear models with one-
way or unequal strength back connections may be modeled by structural equation
modeling (SEM) (see Section 5.6.2).

5.6.1 Mental chronometry revisited

One obvious way of modeling effective connectivity is to order activated regions
on the basis of their latency under the assumption that one region must be activated
before another can be activated by it [318]. In this respect, the methods reviewed in
Section 4.2.3 are useful. Here we review a couple of multivariate approaches that
incorporate BOLD timing.

Working in the spectral domain, Müller et al. [331] use coherence as defined in
Equation (5.119) in addition to the phase lead θjk(λ) of voxel j over k as defined by

fjk(λ) = |fjk(λ)| eiθjk(λ) (5.125)

at the frequency λ of the blocked presentation design. The phase lead at the presen-
tation frequency is readily converted to a latency (or time to peak) difference that
may be used to order functionally connected (coherent) regions temporally.

Lahaye et al. [262] define a functional connectivity measure that includes, in
addition to correlations between voxel time courses, the influence of the past history
of one time course on another. The functional connectivity maps so defined therefore
include more effective connectivity information than functional connectivity maps
based on correlation (which reveals linear instantaneous interactions only) alone.
Lahaye et al. produce a sequence of nested connectivity models that range from the
standard correlation model to one that includes both hemodynamic delay (history)
effects and nonlinear effects. Their models are applied to a voxel data set that is
reduced in the number of voxels by a parcellation method that produces 100 equal
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volume parcels comprising gray matter only. Thus only 100 parcel time courses,
obtained preferentially by averaging the original time courses in the parcel, are
analyzed. Let xa(t) and xb(t) be the time courses of parcels a and b respectively
and let Gi

b→a denote the model regressor for the directed interaction b → a which
is described by the model

xa = Gi
b→a · β i

b→a. (5.126)

Based on their finding that the history, in addition to correlation, is important for
defining functional connectivity, Lahaye et al. recommend that functional con-
nectivity be based on an F statistic obtained by comparing an AR model, MAR

b→a
and a history model, MHD

b→a defined by the regressors

GAR
b→a = {xa(t − kτ)1<k<M}, (5.127)

GHD
b→a = {xa(t − kτ)1<k<M , xb(t), xb(t − kτ)1<k<M}, (5.128)

where τ = TR. The inclusion of xb(t) models correlation, while xb(t − kτ)1<k<M

models prior history effects. Lahaye et al. note that their models respect Granger
causality, while Volterra-kernel-based models, for nonlinear modeling, may not.
Granger causality states that in the b → a causality, xa depends on past values of
xb and is independent of future values of xb.

5.6.2 Structural equation modeling (SEM)

SEM, also known as path analysis, postulates causal relationships between observed
or measured variables and unobserved or latent variables. Applications of SEM to
date have not used latent variables, but we will give a general outline of SEM here
because it is possible that latent variables could be used to model underlying neural
activity [418]. Latent variables have a similar standing to factors which we have seen
can be obtained from PCA (see Equation (5.22)). There are several ways to specify
an SEM model; we will follow the LISREL model† here because of its simplicity.
Define two measured variables, �x, the independent measured variable (IV), and
�y, the dependent measured variable (DV). The vectors have as their components,
in the fMRI case, observed time course vectors (with the mean subtracted so that
the time courses represent deviations from the mean), one component per region.
Similarly, define the IV and DV latent variables by �ξ and �η respectively. Then the
full LISREL model consists of three submodels: (1) the structural equation model

�η = [B]�η + [�]�ξ + �ζ , (5.129)

† LISREL = LInear Structural RELations is implemented in a commercial software package available from
http://www.ssicentral.com/lisrel/mainlis.htm. There are other commercial SEM software packages available,
none of them are specifically designed for fMRI. The freely available SPM software does, however, have an
SEM toolbox.
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(2) the measurement model for �y
�y = [�y]�η + �ε, (5.130)

and (3) the measurement model for �x
�x = [�x]�ξ + �δ. (5.131)

Note that the two measurement models are essentially factor models. Further, define
the covariance matrices

Cov(�ξ) = [�] Cov(�ζ ) = [�] Cov(�ε) = [�ε] Cov(�δ) = [�δ]. (5.132)

The entries in the (in general unsymmetrical) matrices [B] and [�] define the path
coefficients that represent the causal influence of one variable on another. The
matrix [B] is restricted to have zeros on the diagonal and it is assumed that �ε is
uncorrelated with �η, �δ is uncorrelated with �ξ , �ζ is uncorrelated with �ξ and �ζ , �ε and �δ
are mutually uncorrelated. Under these assumptions and constraints, the covariance
matrix implied by the full model is given by

[�] =
[[�y][A]([�][�][�]T + [�])[A]T [�y]T + [�ε] [�y][A][�][�][�x]T

[�x][�][�]T [A]T [�y]T [�x][�][�x]T + [�δ]
]

,

(5.133)

where [A] = ([I]−[B])−1. The goal is then to find [B], [�], [�y] and [�x] such that
the difference between the data covariance matrix and [�] of Equation (5.133) is
minimized. The significance of the resulting path coefficients may then be assessed
using an appropriate χ2 statistic. The SEM model is almost always represented
by a path diagram, which for the LISREL setup has IVs on the left, DVs on
the right, measured variables on the outside and latent variables on the inside,
see Fig. 5.8.

For application to fMRI the latent IVs and DVs are identified with the measure-
ment IVs and DVs respectively so Equations (5.130) and (5.131) reduce to �y = �η
and �x = �ξ and we are left with a single structural equation model

�y = [B]�y + [�]�x + �ζ . (5.134)

To apply SEM to fMRI an explicit model needs to be constructed based on
previous information on how different brain regions interact. In this respect DTI
[201, 353, 441] should be very useful for constructing SEM models, especially in
patients whose connective pathways are physically absent. Most SEM approaches
to date select a relatively small number of regions (∼3–6) to model. The data rep-
resenting each region then need to be defined. The time courses or their projection
onto the first PCA component in the active region may be averaged together, or
the time course or its projection onto the first PCA component from the voxel with
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Fig. 5.8. A generic LISREL path diagram. From left to right, δi are components
of the error �δ, xi are components of the observed independent �x, λ(x)ij are entries
in the measurement model matrix [�x], ξi are the latent independent variables in
�ξ , φij are entries in the (symmetric) [�], γij are the path coefficients in [�], βij
are the path coefficients in [B], ηi are the dependent latent variables in �η, ζi are
components of the error �ζ , ψij are entries in the (symmetric) [�], λ(y)ij are entries
in the measurement model matrix [�y], yi are the observed dependent variables in
�y and εi are components of the error �ε.

the highest SPM t statistic may be used [190]. Honey et al. [221] further use only
the time points associated with the task, discarding the rest time points. Variations
in the data representation used and exact ROI definition lead to different solutions
for the SEM model [190]. Nevertheless, SEM has been applied to study differ-
ences in learning between normal and schizophrenic subjects [392], differences in
verbal working memory load [221] and changes due to learning [61] to name a few
examples. SEM may also be used in group analysis with a virtual stimulus present-
ation node connected to all subjects [309]. Büchel and Friston have used a series
of SEM models to show that “top-down” attention can modulate the “bottom-up”
visual processing pathway [58, 62, 63], an effect they verified using direct nonlinear
modeling using Volterra series [167].

We use one of Büchel and Friston’s SEM models [63] to illustrate a path diagram
and its relation to Equation (5.134). The path diagram is illustrated in Fig. 5.9. The
corresponding SEM is given by⎛
⎝PP

V5
V1

⎞
⎠ =

⎡
⎣0 0.69 0

0 0 0.87
0 0 0

⎤
⎦
⎛
⎝PP

V5
V1

⎞
⎠+

⎡
⎣ 0 0

0.14 0
0 0.61

⎤
⎦(V1 ∗ PP

LGN

)
+
⎛
⎝ζ1

ζ2

ζ3

⎞
⎠ ,

(5.135)

where we have represented the time courses with a notation that represents the
regions defined in the caption to Fig. 5.9. This particular SEM has a nonlinear



154 Multivariate approaches: connectivity maps

V5V1*PP

LGN V1

PP

0.69

0.87

0.14

0.61

Fig. 5.9. An example path diagram for a structural equation model (SEM) presen-
ted by Büchel and Friston [63]. The independent variables, �x, are drawn on the left,
the dependent variables, �y, are drawn on the right. The ROI definitions are: LGN
= lateral geniculate nucleus, V1 = primary visual cortex, V5 = motion sensitive
area and PP = posterior parietal complex. The term V1*PP is an interaction term.
The SEM corresponding to the path diagram is given in Equation (5.135).

variable, V1*PP, constructed by multiplying the time courses from V1 and PP to
represent their interaction.

5.6.3 Vector autoregressive modeling (VAR)

Suppose that we are interested in the effective connectivity between M ROIs. Let
�x(n) = (x1(n), . . . , xM(n))T denote the measured response in those M ROIs at time
n. With SEM the value of any given xi(n) can depend only on linear combinations of
the values of the other components at time n. VAR extends this model to make �x(n)
a function of �x(t) for t < n which allows the history of the responses to influence the
current response. Explicitly, a vector time-series �x(n) can be modeled as a VAR(p)
process as

�x(n) = −
p∑

i=1

[A(i)]�x(n − i)+ �u(n), (5.136)

where �u(n) is multivariate white noise with var(�u(n)) = E(�u(n) �u T (n)) = [�].
Goebel et al. [187] construct a series of three VAR models and use the covari-
ance matrices from these models to define a measure of influence Fx,y between an
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activated reference region, represented by K ROIs and �x(n) = (x1(n), . . . , xK(n))T

and other activated regions, represented by L ROIs and �y(n) = (y1(n), . . . , yL(n))T .
Defining �q T (n) = (�x T (n), �y T (n)), the three VAR models are

�x(n) = −
p∑

i=1

[Ax(i)]�x(n − i)+ �u(n) var(�u(n)) = [�1], (5.137)

�y(n) = −
p∑

i=1

[Ay(i)]�y(n − i)+ �v(n) var(�v(n)) = [T1], (5.138)

�q(n) = −
p∑

i=1

[Aq(i)]�q(n − i)+ �w(n) var(�w(n)) = [Y ], (5.139)

where

[Y ] =
[[�2] [C]
[C]T [T2]

]
. (5.140)

The measure of influence Fx,y, given by

Fx,y = ln(|[�1]| |[T1]|/|[Y ]|), (5.141)

where | · | denotes a determinant, may be decomposed into

Fx,y = Fx→y + Fy→x + Fx·y, (5.142)

where Fx→y denotes the influence of x on y, Fy→x denotes the influence of y on
x and Fx·y denotes the instantaneous influence of x on y. The three influences are
defined by

Fx→y = ln(|[T1]|/|[T2|), (5.143)

Fy→x = ln(|[�1]|/|[�2]|), (5.144)

Fx·y = ln(|[�2]| |[T2]|/|[Y ]|) (5.145)

and each may be plotted, for a given reference region, to give a “Granger causality
map”.

Harrison et al. [212] take a different approach and extend the VAR model of
Equation (5.136) to a nonlinear VAR by augmenting the vector �x(n) with new
variables (components) of the form

Ij,k(n) = xj(n)xk(n) (5.146)

to form the augmented vector �̃x(n) and the nonlinear VAR model given by

�̃x(n) = −
p∑

i=1

[Ã(i)]�̃x(n − i)+ �̃u(n). (5.147)
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The relevant entries in [Ã(i)] then model nonlinear interactions between regions j
and k. The matrix [Ã(i)] may be estimated by least squares methods (ML) and the
optimal order p may be determined by Bayesian methods. VAR models may also
be constrained, by regularization, to form smooth fields when used at the voxel
level [428].

5.6.4 Variable parameter regression and Kalman filtering

Büchel and Friston [59] introduce a variable parameter model for characterizing
the effective connectivity between two regions as a function of time. The variable
parameter regression model for characterizing the influence of n regions �xt at time
1 ≤ t ≤ T on region yt is given by

yt = �x T
t

�βt + ut , (5.148)

where ut ∼ N(0, σ 2) and �βt specifies the effective connectivities at time t. The
time course for the influenced region is (y1, . . . , yT ), while the time course of
influencing region j is given by the jth components of the �xts as (xj,1, . . . , xj,T ). The
effective connectivity time course from region j to y is given by the components
(βj,1, . . . ,βj,T ).

The evolution of �β is assumed to follow a random walk with zero drift over time
as given by

�βt = �βt−1 + �pt , (5.149)

where pt ∼ N(0, σ 2[P]) is an innovation (underlying stochastic process). It is
assumed that ut and �pt are uncorrelated. The parameters of the variable parameter
regression model are estimated iteratively using Kalman filtering. To see how the
Kalman filtering works in this case we follow Büchel and Friston and first assume
that [P] and σ 2 are known – they will be estimated in a second iterative loop.

Let �̂
βt(s) be the estimate of �βt based on s observations of y and let σ 2[Rt] be the

estimated covariance matrix of �̂
βt(t − 1). Then the estimate of �̂

βt(t) is obtained

inductively from the estimate of �̂
βt−1(t − 1) beginning with

�̂
βt(t − 1) = �̂

βt−1(t − 1), (5.150)

[Rt] = [St−1] − [I] + [P], (5.151)

where σ 2[St−1] is the estimated covariance matrix of �̂
βt−1(t−1). The Kalman filter

�Kt revises this estimate of �βt with

�̂
βt(t) = �̂

βt(t − 1)+ �Ktet , (5.152)
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where

et = yt − �x T
t

�̂
βt(t − 1), (5.153)

�Kt = [Rt]�xtE
−1
t , (5.154)

Et = �x T
t [Rt]�xt + 1, (5.155)

[St] = [Rt] − �Kt�x T
t [Rt]. (5.156)

The estimates �̂
βt(t), which are based on only t pieces of information are updated

to smoothed estimates �̂
βt(T) based on information from all the data using

�̂
βt(T) = �̂

βt(t)+ [Gt]( �̂βt+1(T)− �̂
βt(t)), (5.157)

where

[Gt] = [St]([St] + [P])−1. (5.158)

The smoothed covariance matrix estimates are obtained from

[Vt] = [St] + [Gt]([Vt+1] − [Rt+1])[Gt] T , (5.159)

[VT ] = [ST ]. (5.160)

The variance parameters σ 2 and [P] are obtained by maximizing the log-likelihood
function

L = −1

2

T∑
t=n+1

ln(σ 2Et)− 1

2

T∑
t=n+1

e2
t

σ 2Et
. (5.161)

The log-likelihood statistic may also be used to formulate a test statistic that
asymptotically has a χ2 distribution with one degree of freedom under the null
hypothesis.

5.6.5 Dynamic causal modeling (DCM)

DCM [173, 312] represents the most comprehensive model of brain activ-
ity based on fMRI data used to date. The basic approach is to model the
neuronal-hemodynamic activity in a state space model

d�x
dt

= f (�x, u, �θ), (5.162)

�y = λ(�x) (5.163)

at the voxel (or small ROI) level using the model of Equations (4.158)–(4.162) with
the input u to one region being either the output from another region or an exogenous
influence like a stimulus or a category of stimulus. A bilinear connectivity model
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of the neuronal activity z (z is a component of �x in Equation (5.162)) underlying a
single voxel may be used as given by

dz

dt
= Az +

∑
j

ujB
jz + Cu. (5.164)

Such a model, as given by Equations (5.162)–(5.164), is a forward model and the
parameters must be chosen so that the predictions of the model match the data
as closely as possible. This may be done by converting the forward model to an
observation model by adding an error term. The set of parameters to be estimated,
�θ , may be partitioned into �θh, the hemodynamic response parameters, and �θc, the
connectivity parameters. Prior probabilities for �θc may be imposed by solution sta-
bility requirements and prior probabilities for the parameters �θh may be imposed by
previous measurements of a given individual using simple experimental protocols
aimed at measuring the hemodynamic parameters. Putting the prior probabilities
together with the observation model yields a posterior probability Bayesian model
that may be estimated using an EM algorithm.

Given the lack of detailed knowledge of the neural networks underlying many
cognitive processes, especially higher processes involving language where there
are no animal models, several DCMs may be applied to a given analysis problem.
These models may be compared to each other using Bayes factors to determine
whether the evidence favors one model or the other [358]. Bayes factors are based
on the model evidence which is defined as

p(y|m) =
∫

p(y|θ , m) p(θ |m) dθ , (5.165)

where m denotes the model, y denotes the data and θ denotes the model parameters.
The Bayes factor for comparing model i to model j is given by

Bij = p(y|m = i)

p(y|m = j)
. (5.166)

The (logarithm of the) model evidence may be approximated by the Bayesian
information criterion (BIC) or by the Akaike information criterion (AIC) given by

BIC = Accuracy(m)− p

2
ln(Ns), (5.167)

AIC = Accuracy(m)− p, (5.168)

where Accuracy(m) is a function of error covariances, p is the number of parameters
in the model and Ns is the number of scans in the fMRI data set. The BIC is biased
toward simple models and the AIC is biased toward complex models so Penny et al.
[358] recommend computing Bayes factors using both the BIC and the AIC and to
make a decision about whether to use one model over another only if the two Bayes
factor estimates agree.
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Conclusion

There is no one best way to reduce fMRI data to brain activity maps, either activ-
ation maps or connectivity maps. The fMRI investigator must select a method of
choice on the basis of a number of factors including software availability, speed of
computation, ease of use and taste. The factor of taste can only have legitimacy if
the investigator understands how each of the various approaches work and what the
trade-offs are of using one method over another. The goal of this review was to give
the investigator that overview of how the various available methods work. Once a
method is selected, a deeper understanding of it may be obtained from the original
literature. At that point investigators may be confident that, in focusing on a small
number of methods for use in their laboratory or clinic, they have not overlooked a
method that may have significant impact on the interpretations of their computed
brain activity maps.

All of the methods reviewed here require that the MRI data be transferred “off-
line” from the MRI computer to a computer dedicated to brain map computation.
The only method widely available “on-line” for the computation of activation maps
is a simple independent samples t-test that compares average activation in an “on”
state to the average activation in an “off” state. Currently, setting up an fMRI
capacity in a clinical situation is not a turn-key proposition, although a few turn-
key off-line systems are now being offered commercially. The use of even these
turn-key off-line systems requires a team of people who between them understand
the MRI physics, the cognitive neuropsychology, the neuroanatomy and the brain
map computation methods to correctly interpret the computed brain activity maps.
This complexity in the interpretation of brain activity maps has led many clinical
fMRI ventures to become closely associated with a research center.

For clinical use, as a rule, activation maps only are used. Connectivity mapping
is not routinely applied in the clinic. Much more needs to be understood about the
physiology of the networked neural-hemodynamic system that is the brain before
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clinical level confidence may be placed in a dynamic causal model, for example.
However, from the fundamental knowledge point of view, effective connectivity
modeling promises to provide unique windows into the understanding of how the
brain and, ultimately we hope, how the mind works.
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