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Preface

The geometry of curves and surfaces has attracted mathematicians, physicists and
other scientists for many centuries. Starting from simple geometric observations,
mathematicians produce highly sophisticated theories that often lead not just to a
deeper understanding of the observations made at the beginning, but also to further
questions. Curves are one-dimensional objects and surfaces have two dimensions.
One question that often arises is: What happens in higher dimensions? This is a
natural question, since experience tells us that, in many instances, more than two
dimensions are relevant. The generalizations of curves and surfaces to higher di-
mensions are submanifolds.

In this book we deal with particular questions about the geometry of submanifolds.

For Jiirgen Berndt, the gateway to this area has been the classification by Elie Car-
tan of isoparametric hypersurfaces in real hyperbolic spaces. In his doctorate thesis
he investigated the analogous problem for complex hyperbolic spaces. Surprisingly,
a full classification is still not known, and recent results show that this problem is
much more difficult than expected. These recent results stem from the author’s in-
vestigations about isometric actions with an orbit of codimension one, so-called co-
homogeneity one actions. Cohomogeneity one actions are currently of interest in
Riemannian geometry for the construction of metrics with special properties, for
instance, Einstein metrics, metrics with special holonomy and metrics of positive
sectional curvature. The investigation of actions on manifolds and the geometry of
their orbits is a central theme in his research.

Submanifold geometry is the primary research topic of Sergio Console. He has
been particularly interested in the interaction of algebraic and geometric methods for
the study of the Riemannian geometry and the topology of submanifolds of space
forms with simple geometric invariants, for example, isoparametric or homogeneous
submanifolds. In particular, he learned from the third author how to use holonomy
methods in submanifold geometry, a theme he discussed much with the first author
in 1995 when they both worked at the University of Cologne. This was the beginning
of the plan to write the present monograph, and collaboration on this project started
when all the authors met in Turin in 1997.

Carlos Olmos is mainly interested in local and global submanifold geometry in
space forms, in particular in problems related to the so-called normal holonomy
that combines local and global methods. He is also interested in Riemannian and
Lorentzian geometry. The subjects of his doctoral thesis, directed by Cristian Sén-
chez, motivated most of his research.

Many available textbooks deal with the geometry of curves and surfaces, the clas-
sical topic for introductory courses to differential geometry at universities. In con-



trast, only few books deal with submanifolds of higher dimensions. Although many
books on differential geometry contain chapters about submanifolds, these chapters
are often quite short and contain only basic material. A standard reference for sub-
manifold geometry has been Geometry of Submanifolds by Bang-yen Chen, but this
book was written in 1973 and concerned research problems that were of interest at
that time. Books dealing with more recent problems from submanifold geometry
are Critical Point Theory and Submanifold Geometry (1988) by Richard Palais and
Chuu-lian Terng, Submanifolds and Isometric Immersions (1990) by Marcos Dajczer
et al., Tubes (1990) by Alfred Gray, and Lie Sphere Geometry with Applications to
Submanifolds (1992) by Thomas Cecil. To some extent, these books deal with top-
ics that also appear in our book, but, for these problems, our approach is different
and relies on methods involving the holonomy group of the normal connection of a
submanifold. These methods originated from the Normal Holonomy Theorem that
was proved by the third author in 1990. The Normal Holonomy Theorem is the ana-
logue for submanifold geometry in space forms of Marcel Berger’s classification of
holonomy groups of Riemannian connections on manifolds. Since 1990, normal hol-
onomy has developed as a powerful tool in submanifold geometry. The purpose of
this book is to present a modern and self-contained introduction to submanifold geo-
metry with emphasis on topics where the tool of normal holonomy had great impact.
This book is aimed at researchers and graduate students in mathematics, in particular
in geometry, and could be used as a textbook for an advanced graduate course.

We briefly describe the contents of this book. Until now, the main applications
of normal holonomy concern submanifolds of space forms, that is, manifolds of
constant sectional curvature. For this reason, we first present an introduction to sub-
manifolds in space forms and discuss in detail the fundamental results about such
submanifolds. Important examples of submanifolds of Euclidean spaces are orbits
of linear Lie group actions, and, for this reason, we investigate in great detail the
geometry of such orbits. Then we introduce the concept of normal holonomy and
present the Normal Holonomy Theorem together with its proof and some applica-
tions. In great detail, we apply the tool of normal holonomy to study isoparametric
submanifolds and their focal manifolds, orbits of linear Lie group actions and hom-
ogeneous submanifolds, and homogeneous structures on submanifolds. At the end
of the book we discuss generalizations to submanifolds of Riemannian manifolds,
in particular of Riemannian symmetric spaces. In an appendix, we summarize the
necessary facts about Riemannian manifolds, Lie groups and Lie algebras, homog-
eneous spaces, symmetric spaces and flag manifolds, which the reader might find
helpful.

Several proofs presented in the book have never appeared in the literature. For
instance, we present a new proof of Cartan’s theorem about the existence of totally
geodesic submanifolds of Riemannian manifolds, a result that is hard to find in the
literature. An advantage of this book is that it contains much material that is currently
accessible only in a large number of published articles in various journals. The book
also contains a number of open problems that might attract the reader.

Of course, there are many interesting and fascinating problems in submanifold
geometry that are not touched on in this book. The reason is simply that there are too



many of these problems. Our selection of topics for this book has been motivated by
normal holonomy and, naturally, also by personal taste and interest.

To produce most of the illustrations we used the software SUPERFICIES by An-
gel Montesinos Amilibia of Universidad de Valencia. SUPERFICIES is freely dis-
tributed, with source code, under GNU General Public License and is available at
ftp://topologia.geomet.uv.es/pub/montesin/

We would like to thank Simon Chiossi, Antonio Di Scala, Anna Fino, Sergio
Garbiero and Simon Salamon for their careful reading of parts of the manuscript and
for their suggestions for improvements.
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Chapter 1

Introduction

These notes are motivated by recent progress in submanifold geometry in space
forms, using new methods based on the holonomy of the normal connection. Par-
ticular progress has been made in the framework of homogeneous submanifolds,
isoparametric submanifolds and their generalizations. In this monograph we present
an introduction to this topic and a thorough survey of all main results in this area. The
proofs presented here are, to some extent, new, resulting in a more unified treatment
of this topic. At the end of the book, we discuss generalizations of some problems to
more general manifolds, in particular symmetric spaces.

The study of submanifolds in Euclidean space has a long tradition, and many beau-
tiful results and theories emerged from it. The first objects of interest were surfaces
in 3-dimensional Euclidean space on which certain geometric or analytic properties
were imposed. For example, Weingarten surfaces were defined by a functional rela-
tionship between their principal curvatures. This class of surfaces contains minimal
surfaces and surfaces of constant mean curvature, both of which still attract much
interest. The immediate generalization to higher dimension is the study of hyper-
surfaces in Euclidean spaces of arbitrary finite dimensions. A fundamental result of
this theory states that principal curvatures, together with the integrability conditions
given by the equations of Gauss and Codazzi, determine uniquely the hypersurface
up to a rigid motion of the Euclidean space. Note that higher dimensional hypersur-
faces are more rigid than surfaces. Indeed, by the Beez-Killing Theorem, the second
fundamental form of an m-dimensional hypersurface with m > 2 is generically de-
termined by the first, see [12] and Exercise 2.8.1.

In higher codimension the situation is slightly more complicated, since one can
choose among infinitely many normal directions. Each normal direction induces a
set of principal curvatures, and the information regarding all these sets of principal
curvatures is encoded in the second fundamental form, or shape operator, of the sub-
manifold. The canonical derivative of Euclidean space induces in a natural way a
metric connection on the normal bundle of the submanifold, the so-called normal
connection. The second fundamental form, the normal connection, and the inte-
grability conditions given by the equations of Gauss, Codazzi and Ricci determine
the submanifold locally, up to a rigid motion of the Euclidean space. Such higher
complexity is the reason that research on the local geometry of submanifolds of Eu-
clidean space with simple geometric invariants is relatively recent compared with
surface geometry.

A very influential paper by Chern, do Carmo and Kobayashi [55] on this topic
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was published in 1971. In this paper the authors studied submanifolds with second
fundamental form of constant length and this was the starting point for quite a few
investigations in submanifold geometry. For instance, parallelism of the second fun-
damental form was first mentioned in [55], a geometric feature widely studied in the
1980s. Submanifolds with parallel second fundamental form in Euclidean spaces are
locally orbits of a distinguished class of representations, namely the isotropy rep-
resentations of semisimple symmetric spaces, or s-representations for short. These
s-representations have a fundamental role in the context of our investigations. For
many reasons, the orbits of s-representations play a role in submanifold geometry
similar to that of symmetric spaces in Riemannian geometry.

A simple geometric condition for submanifolds of higher codimension is flatness
of the normal bundle (the first thorough account on the subject is maybe the book by
B.Y. Chen [48] published in 1973). In this case, the normal connection is trivial and
the geometric data are all encoded in the shape operator, consisting in this case of a
commuting family of selfadjoint operators that can be simultaneously diagonalized.
When the principal curvatures (with respect to parallel normal fields) are constant,
one gets a very important class of submanifolds: isoparametric submanifolds. These
submanifolds are generalizations of isoparametric hypersurfaces, which were intro-
duced at the beginning of the 20th century in the context of geometrical optics and
studied by Segre, Levi Civita and E. Cartan, among others.

There is a strong link between isoparametric submanifolds and s-representations.
In fact, as a consequence of a result by Thorbergsson [219], the orbits of s-represen-
tations are almost all submanifolds with constant principal curvatures, that is, prin-
cipal curvatures with respect to parallel normal fields along curves are constant.

In this book we will explore the central position of s-representations in the frame-
work of submanifold geometry in space forms. At the same time, we will illustrate
a method for investigating the local geometry of submanifolds of space forms. The
main tools are the following:

e Reduction of codimension (Theorem 2.5.1): allows one to ignore the part of
the normal bundle on which the shape operator vanishes.

e Moore’s Lemma for local splitting [139]: permits splitting a submanifold lo-
cally into irreducible components.

o Normal Holonomy Theorem [173]: this result yields the decomposition of the
representation of the normal holonomy group on the normal spaces into the
sum of irreducible representations, all of which are s-representations. It can be
regarded as a kind of extrinsic analogue to Rham’s decomposition theorem and
Berger’s classification of Riemannian holonomy groups. The Normal Holo-
nomy Theorem involves geometric constructions such as focal manifolds and
holonomy tubes.

We will also present some recent results on the geometry of homogeneous sub-
manifolds of space forms. In the case of hyperbolic spaces, the strategy is to regard



Introduction 3

them as hypersurfaces of a Lorentz space and Lorentzian holonomy plays an impor-
tant role.

We now summarize the contents of this book.

In Chapter 2 we explain the basics of submanifold geometry in space forms. We
introduce the main local invariants and derive the fundamental equations for subman-
ifolds. Then we investigate some simple conditions on local invariants. For example,
the vanishing of the second fundamental form characterizes totally geodesic subman-
ifolds, which we shall consider in Section 2.4, where we classify totally geodesic
submanifolds of space forms. If a submanifold M of a Riemannian manifold M is
contained in a totally geodesic submanifold of M of dimension less than the dim-
ension of M, one says that there is a reduction of the codimension of M.

In Section 2.5 we explain Theorem 2.5.1 (reduction of the codimension), the first
of our three basic tools. A natural generalization of totally geodesic submanifolds
is that of fotally umbilical submanifolds, which means that the second fundamental
form is proportional to the metric.

In Section 2.6 we discuss the classification of totally umbilical submanifolds of
space forms. The second of our main tools, Moore’s Lemma for the local splitting
of submanifolds, is explained in Section 2.7.

Chapter 3 is devoted to the study of an important class of submanifolds, namely
those arising as orbits of isometric actions of Lie groups on Riemannian manifolds.
These submanifolds, which we shall call (extrinsically) homogeneous, have a strong
regularity, since their geometric invariants are the same at each point (modulo some
suitable identification).

In Section 3.1 we present the general setup, introducing some basic concepts such
as orbit types, principal orbits, isotropy and slice representations. We will investi-
gate orbits from two different viewpoints: the geometry of a single orbit, and the
geometry of the whole set of orbits. Indeed, an action on a Riemannian manifold M
determines a foliation (often singular) whose leaves are the orbits of the action. For
some distinguished types of representations, like s-representations and polar actions,
introduced in Section 3.2, it is more interesting to investigate the whole orbit foli-
ation, since the subgroup of isometries of the ambient space that leaves some orbit
invariant does not depend on the orbit.

Polar actions on IR are characterized by the existence of a linear subspace, called
a section, that intersects every orbit and lies perpendicular to the orbits at intersec-
tion points. Now, s-representations are polar (the tangent space to any flat in the
symmetric space is a section) and, by Dadok’s Theorem 3.2.15 [63], have the same
orbits as polar actions. The existence of a section implies that the orbit foliation
has remarkable geometric properties. The orbits are all equidistant and their tangent
spaces are parallel. Moreover, if IV is a principal orbit, the normal bundle to V is flat
with trivial holonomy, and the principal curvatures of /N with respect to any parallel
normal field are constant. This leads to the study of isoparametric submanifolds of
IR™, which will be carried out later in Chapter 5.

In Section 3.3 we will reverse our approach, starting from a homogeneous Rie-
mannian manifold and examining whether it can be viewed as an orbit in some Rie-



4 Submanifolds and Holonomy

mannian manifold or, in other terms, if it admits an equivariant embedding. The
study of a single orbit is carried out in Sections 3.4 and 3.5, where we investigate
homogeneous submanifolds of space forms.

In Section 3.5 we show how the theory of homogeneous submanifolds of the hy-
perbolic space " can be used to obtain general results on the action of a connected
Lie subgroup of O(n, 1) on the Lorentzian space R™!, [69].

In Section 3.6 we describe the extrinsic geometry of orbits and give, among other
things, a description of the second fundamental form of the orbit of a representation
of a Lie group (G in terms of the corresponding Lie algebra representation. As al-
ready mentioned, symmetric submanifolds of [R” (and their generalizations to spaces
of constant curvature) are historically one of the first class of homogeneous subman-
ifolds that have been studied and classified. Section 3.7 is devoted to this topic.

In Sections 3.8 and 3.9, we consider classes of submanifolds sharing properties
with homogeneous ones. The most classical “homogeneous-like” property is the
constancy of principal curvatures, which characterizes isoparametric hypersurfaces
of space forms. Historically, these hypersurfaces are defined as regular level sets of
isoparametric functions, so that they determine an orbit-like foliation of the ambient
space. Thus, isoparametric hypersurfaces are very close to being homogeneous (and
actually, in many cases, they are). In higher codimension, a natural “homogeneous-
like” property is that the algebraic type of the second fundamental form does not
depend on the point. This is an extrinsic version of curvature homogeneous mani-
folds [225].

In Chapter 4 we explore holonomy methods for studying submanifold geometry.
In Section 4.1 we recall some important results about the holonomy of a Riemann-
ian manifold, which will allow us to make a comparison with results on normal
holonomy. Important in the extrinsic context is the Normal Holonomy Theorem
4.2.1 [173], which asserts that the nontrivial part of the action of the normal holon-
omy group on a normal space is an s-representation. The Normal Holonomy The-
orem is an extrinsic analogue of Berger’s Theorem on Riemannian holonomy, and
one of its main consequences is the recognition that orbits of s-representations play a
similar role in submanifold geometry as Riemannian symmetric spaces in Riemann-
ian geometry. This is illustrated in Section 4.4, where we define some important tools
for the study of submanifolds with some regularity (e.g., submanifolds with parallel
normal fields whose shape operator has constant eigenvalues, isoparametric subman-
ifolds): focalizations, building holonomy tubes. These tools will be very important
in the subsequent chapters.

Chapter 5 is devoted to the study of certain generalizations of isoparametric hy-
persurface to higher codimensions.

In Section 5.2 we will discuss some geometric properties of isoparametric sub-
manifolds. Among them is the important fact, due to Terng [216] (and to Carter and
West [38] in the particular case of codimension three), that one can associate a finite
reflection group to isoparametric submanifolds, the Coxeter group. The singular lev-
els of isoparametric maps are actually focal manifolds of the isoparametric submani-
folds. Thus, isoparametric maps determine a singular foliation of the ambient space.
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If M is a fixed isoparametric submanifold of IR", the leaves are the parallel mani-
folds M¢ = {p+£&(p) | p € M}, where £ is an arbitrary parallel normal vector field.
Suppose that one drops the assumption that the normal bundle is flat in the defini-
tion of isoparametric submanifold, and requires only that the shape operator A ¢ have
constant eigenvalues for any parallel normal vector field £(¢) along any piecewise
differentiable curve. Then one defines a submanifold of a space form with constant
principal curvatures. Striibing studied these submanifolds in [205] (even though he
called them isoparametric) and noticed that the focal manifolds of an isoparametric
hypersurface are submanifolds with constant principal curvatures. This result was
generalized by Heintze, Olmos and Thorbergsson in [96] to isoparametric subman-
ifolds. Indeed, in [96] the converse is proved as well, namely that a submanifold
with constant principal curvatures is either isoparametric or a focal manifold of an
isoparametric submanifold (Theorem 5.3.3 here). The paper [205] of Striibing is
actually of great importance for the methods adopted by him: he constructed tubes
around isoparametric submanifolds and used normal holonomy for the study of sub-
manifolds with constant principal curvatures. These are the same methods we make
use of extensively.

In Section 5.5 we examine a slightly more general situation than that of an isopara-
metric submanifold. We suppose there exists a (locally defined) parallel normal sec-
tion that is not umbilical and isoparametric, i.e., the eigenvalues of the shape operator
Ag in the £ direction are constant (and A¢ is not a multiple of the identity). Our aim
is to study the geometric consequences of this property. What we will show is that
this imposes severe restrictions on the geometry of the submanifold. Namely, if a
submanifold of the sphere with this property does not (locally) split, then it is a sub-
manifold with constant principal curvatures [61], (Theorems 5.5.2 and 5.5.8). This
result also has a global version for complete simply connected submanifolds [70],
(Theorem 5.5.8).

In Chapter 6 we continue the study of geometric invariants by distinguishing sub-
manifolds with constant principal curvatures from other submanifolds. We weaken
the above condition on the existence of a (nontrivial) parallel isoparametric normal
field. We require only that the submanifold admits “enough” parallel normal fields
or, in other words, that the normal holonomy group has a nontrivial pointwise fixed
subspace whose dimension is called the rank of the immersion. In the case of a hom-
ogeneous submanifold M of Euclidean space it was proved in [175] that if the rank
is larger than or equal to 2 then M is an orbit of an s-representation. A crucial fact in
the original proof is the following: the curvature normals of a homogeneous subma-
nifold (which can be defined as in the isoparametric case, taking into consideration
only directions in the flat part of the normal bundle) have constant length. In [70] it is
actually shown that this property alone, together with the same higher rank assump-
tion, yields a generalization (Theorem 6.1.7) of the above higher rank rigidity result.
Unlike the theorems on higher isoparametric rank rigidity (Theorem 5.5.2 and 5.5.8),
Theorem 6.1.7 is global and is, in fact, false without the completeness assumption.
As a consequence, one can derive a global characterization of an isoparametric sub-
manifold: a complete immersed and irreducible submanifold f : M™ — R", m > 2
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with flat normal bundle is isoparametric if and only if the distances to its focal hy-
perplanes are constant on M.

Moreover, we apply these higher rank rigidity results to pursue a study of normal
holonomy (and, more generally, ¥+ -parallel transport) of a homogeneous subma-
nifold. In the more general setting of homogeneous (pseudo)-Riemannian vector
bundles, the holonomy algebra can be described in terms of projection of Killing
vector fields on the homogeneous bundle (see [60], for more details). In the case of
Riemannian manifolds, this yields Kostant’s method for computing the Lie algebra
of the holonomy group of a homogeneous Riemannian manifold. One can compute
normal holonomy of homogeneous submanifolds by projecting on the normal spaces
the Killing vector fields determined by the action (Theorem 6.2.7).

In Chapter 7, we give a differential characterization of homogeneous subman-
ifolds. Using this framework, we characterize orbits of s-representations and we
study isoparametric submanifolds, giving a proof of Thorbergsson’s theorem, which
asserts that isoparametric submanifolds of higher codimension are homogeneous and
actually orbits of s-representations.

In Chapters 8 and 9, we generalize certain topics to a broader class of manifolds.
In Chapter 8, we first discuss the fundamental equations for submanifolds in Rie-
mannian manifolds. One of the basic methods for studying submanifolds in general
Riemannian manifolds is to investigate tubes around them and their focal sets. The
tool for this is Jacobi field theory, which will be explained in detail. We then continue
with a discussion of totally geodesic, totally umbilical and symmetric submanifolds
in Riemannian manifolds.

We present a proof of Cartan’s theorem on local existence of totally geodesic sub-
manifolds in Riemannian manifolds, and Hermann’s theorem about the existence of
complete totally geodesic submanifolds in Riemannian manifolds. We discuss how
totally umbilical submanifolds are related to extrinsic spheres and present a char-
acterization of extrinsic spheres by circles. We finally discuss the relation between
symmetric submanifolds and submanifolds with parallel second fundamental form
in general Riemannian manifolds.

In Chapter 9, we keep to submanifold theory within symmetric spaces. Symmet-
ric spaces are natural generalizations of space forms possessing a beautiful geometric
structure. We discuss the classification problems of totally geodesic submanifolds,
of totally umbilical submanifolds and extrinsic spheres, of symmetric submanifolds,
of submanifolds with parallel second fundamental form and of homogeneous hyper-
surfaces.

In the Appendix, we briefly recall basic material needed for this book: Riemannian
manifolds, Lie groups and Lie algebras, homogeneous spaces, symmetric spaces and
flag manifolds.



Chapter 2

Basics of submanifold theory in
space forms

In this chapter, we present the basics of submanifold theory in spaces of constant
curvature, or briefly, in space forms. In the literature there are mainly three different
definitions for a submanifold of a Riemannian manifold. Let A/ and M be Riemann-
ian manifolds. When we have an isometric immersion from M into M we say that
M is an immersed submanifold of M. When M is a subset of M and the inclusion
M <> M is an isometric immersion, then M is said to be a submanifold of M. If, in
addition, the inclusion is an embedding, then A is said to be an embedded subma-
nifold of M. Note that a submanifold is embedded if and only if its topology is the
one that is induced from the ambient space. The immersion of a real line as a figure
eight in a plane is an example of an immersed submanifold that is not a submanifold.
And a dense geodesic on a torus is an example of a submanifold that is not embed-
ded. The local theories for these three kinds of submanifolds are the same, the only
difference arises when dealing with global questions. Therefore, when we deal with
local properties of submanifolds, we make no distinction and just say submanifold.

The Riemannian metric on a manifold induces a Riemannian metric on a sub-
manifold in a natural way. More precisely, let M be a submanifold of a Riemann-
ian manifold M. At each point p € M, the inner product (-, -}, on T, M induces
an inner product on 73, M that we denote by the same symbol. This family of in-
ner products on the tangent spaces of M forms a Riemannian metric on M, the
so-called induced Riemannian metric. Note that this is a local notion and has to
be interpreted for an isometric immersion f : M — M by means of the formula
(X, Y)p = (fep X, fpY ) p(p) forallp € M and X, Y € T}, M. We will always view
a submanifold of a Riemannian manifold with the metric that is induced in this way.

We now give a more detailed description of the contents of this chapter. In Section
2.1, we start with the fundamental equations of submanifold theory. The equations
of first order, the so-called Gauss and Weingarten formulae, define the basic objects
for the study of submanifolds: the second fundamental form, the shape operator and
the normal connection. The second fundamental form and the shape operator contain
the same information and just provide different viewpoints of the same aspects. The
fundamental equations of second order, the so-called equations by Gauss, Codazzi
and Ricci, represent higher-dimensional generalizations of the Frenet equations that
are familiar to us from the differential geometry of curves. The Gauss-Codazzi-
Ricci equations determine locally a submanifold of a space form in a unique way up
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to isometric congruence of the space form. This is the content of the fundamental
theorem of local submanifold geometry in space forms, Theorem 2.1.2.

As an application of the fundamental equations we present the standard models
for the three different types of spaces forms in Section 2.2: the Euclidean space, the
sphere and the real hyperbolic space.

If £ is a normal vector of a submanifold A at a point p, the shape operator A of
M in direction £ is a self-adjoint endomorphism of the tangent space 1, M of M at
p, and hence is diagonalizable. Its eigenvalues are the so-called principal curvatures
of M at p in direction . Almost all geometric properties of a submanifold involve
the shape operator, or equivalently, the second fundamental form, and in particular
the principal curvatures. For this reason, we investigate principal curvatures more
thoroughly in Section 2.3.

The simplest condition one can impose on the second fundamental form is that
it vanishes. This characterizes totally geodesic submanifolds, which we consider in
Section 2.4. The main result of that section is the classification of totally geodesic
submanifolds of space forms.

If a submanifold M of M is contained in a totally geodesic submanifold of M of
dimension less than dim M, one says there is a reduction of the codimension of M.
In Section 2.5, we derive a sufficient condition for reduction of codimension in space
forms, Theorem 2.5.1.

A natural generalization of totally geodesic submanifolds is that of totally umbili-
cal submanifolds, which means that in each normal direction the shape operator is a
multiple of the identity. A basic example is a sphere in Euclidean space. In Section
2.6, we derive the classification of totally umbilical submanifolds of space forms.

Another reduction process for submanifolds is that of splitting as an extrinsic prod-
uct. This so-called reducibility of submanifolds is discussed in Section 2.7. The main
result is Moore’s Lemma. Both Moore’s Lemma and the theorem on the reduction
of codimension are fundamental tools for the study of submanifolds of space forms.

2.1 The fundamental equations for submanifolds of space
forms

In this section, we present the fundamental equations for submanifolds of space
forms and discuss one of their major applications, the Fundamental Theorem of Lo-
cal Submanifold Geometry in Space Forms. A few details about space forms, or
spaces of constant sectional curvature, can be found in the next section. In this sec-
tion, we denote by M an n-dimensional space of constant curvature &.

a) The fundamental equations of first order

We first want to derive the fundamental equations of first order, which then induce
the main objects for the study of submanifolds: second fundamental form, shape
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operator and normal connection. These equations can be generalized without any
problems to any Riemannian manifold as ambient space, a case that will be studied
later.

The Riemannian metric on M induces along M an orthogonal splitting of 7' M

TMIM=TM & vM .

The vector bundle v M is called the normal bundle of M. The fibre at p € M of v M
is the normal space at p and is denoted by v, M (or v,(M)). Let X,Y be vector
fields on M. In order to differentiate them with respect to the Levi Civita connection
V of M we have to extend them to vector fields on A/. But it turns out that, for our
purposes, it does not matter how the extension is done, therefore, we introduce no
new symbols. We decompose VxV into its tangent part (? xY)T and its normal
part (VxY)L. Then the Levi Civita connection V of M is given by

(VxY)T =VxY,
and one defines the second fundamental form of M by
a(X,Y) = (VxY)*.
This gives the orthogonal decomposition
VxY =VxY +a(X,Y),

which is called the Gauss formula. The Gauss formula and the vanishing of the
torsion of V and V imply that the second fundamental form is a symmetric tensor
field with values in the normal bundle of M .

A section of v M is called a normal vector field of M. Let £ be a normal vector
field of M and decompose V x¢ into its tangent and normal component. The normal
part induces a connection V+ on v M, the so-called normal connection on M. We
now define

AgX = —(VXg)T.

The tensor field A; is called the shape operator of M in direction £ and is related to
the second fundamental form « by the equation

<O‘(X’Y)a€> = <A§X,Y> .

The symmetry of o implies that A is a selfadjoint tensor field on M. The previous
equation also shows that for each p € M the endomorphism A(p) does not de-
pend on the extension of &, as a normal vector field. Thus, we can define the shape
operator with respect to any normal vector of M. The collection of all these endo-
morphisms is called the shape operator of M and is denoted by A. The orthogonal
decomposition

Vxé=—A;X + Ve

is known as the Weingarten formula.
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The formulas of Gauss and Weingarten are first order equations.

b) The fundamental equations of second order

We will now derive three equations of second order, namely the equations of
Gauss, Codazzi and Ricci. For this we first recall that the covariant derivatives of
the second fundamental form and of the shape operator are given by the formulas

(Vxa)(Y,Z) = Vxa(Y,Z) — a(VxY,Z) — a(Y,Vx Z) ,

These two covariant derivatives are related by

Let R and R be the Riemannian curvature tensor of M and M, respectively. Recall
that if M is a space of constant curvature , its Riemannian curvature tensor is of the
form

RX,)Y)Z =x((V,2)X — (X, Z2)Y) .
We now relate R and R with the extrinsic invariants o, A and V1. Let X,Y, Z be
vector fields on M. Using the formulas of Gauss and Weingarten we obtain
R(X,Y)Z =VxVyZ—-VyVxZ —Vixy|Z
=Vx(VyZ+a(Y,2)) - Vy(VxZ + a(X, Z))
—(Vix 17 + o([X, Y], 7))
=VxVyZ+a(X,VyZ) — Aay, )X + Vxa(Y,2)
—VyVxZ —a(Y,VxZ)+ Aax,2)Y — Vya(X, Z)
—VixyiZ —a(VxY, Z) + a(Vy X, Z)
= R(X,Y)Z = Aay, )X + Aax,2)Y
+H(Vxa) (Y, Z) = (Vya)(X, Z) .

The tangential component of this equation gives
(Y, )X —(X,2)Y) = (R(X,Y)Z2)" = R(X,Y)Z - Asiy, ) X + Aax, )Y,
and the normal component gives

0= (R(X,Y)2)" = (Vxa)(¥,Z) = (Vya)(X,2),

since M has constant curvature x. The first equation is called the Gauss equation,
the second one the Codazzi equation. If W is another vector field on M, the Gauss
equation can be rewritten as

H(<Y’ Z><X’ W> - <X’ Z><Y’ W>)
= (R(X,Y)Z, W) = (a(Y, Z), (X, W)) + (a(X, Z), a(Y, W)) .
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And if ¢ is a normal vector field, the Codazzi equation can be rewritten as
(VxA)eY. Z) = (Vy A)eX, 2) = 0.
Using again the formulas of Gauss and Weingarten, we obtain

0=R(X,Y) =VxVyl—VyVxé — Vixyi
= Vx (=AY + V§€) = Vy (A X 4 V&) + A¢[X, Y] = Vix 46
= —Vx(4AeY) —a(X, AeY) — Agee X + Vx Vié
+Vy (AeX) 4+ a(Y, A X) + AgY — ViVxE
+AeVxY — AVy X — Vix 316
= (VyA)eX — (VxA)eY + RYHX, V) +a(Ae X, Y) — a(X, AgY) .

Here,
RH(X,Y)6 = Vx Ve — V¥VxE — Vix yié

is the curvature tensor of the normal bundle with respect to the normal connection
V1, the so-called normal curvature tensor of M. The tangential part of the latter
equation yields again the Codazzi equation. The normal part gives the so-called Ricci
equation, namely

0= (R(X,Y))* = RYHX, V) + a4 X,Y) — a(X, AsY) .
If 7 is another normal vector field of A/, the Ricci equation can be rewritten as
<RJ_ (Xa Y)ga 77> = <[A§a An]Xa Y> )

where [A¢, Ay] = A¢ A, — A, A¢. If R* vanishes, one says that M has flat normal
bundle. The geometric interpretation of a flat normal bundle is that parallel transla-
tion with respect to V + of normal vectors along curves with the same initial and end
point in M depends only on the homotopy class of the curve. This will be discussed
later in more detail in the context of normal holonomy.

Note that, for submanifolds of space forms, the geometric interpretation of the
Ricci equation is that the normal curvature tensor measures the commutativity of the
shape operators. We summarize the fundamental equations in

THEOREM 2.1.1
Let M be a submanifold of a space form M of constant curvature k. Then the
following equations hold for all vector fields X,Y, Z, W on M and all normal
vector fields &,n of M :

Gauss equation:

(RIX,Y)Z,W) = c((Y, 20X, W) = (X, Z){Y, W)
+Hoa(Y,Z), (X, W)) — (a(X, Z), (Y, W)) ;
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Codazzi equation:
(Vxa) (Y, Z) = (Vya)(X,2) ;

Ricci equation:

(RH(X,Y)E, ) = ([Ae, A]X,Y) .

The fundamental equations of Gauss, Codazzi and Ricci play an analogous role
in submanifold geometry of space forms as the Frenet equations in the differential
geometry of curves. Namely, they suffice to determine, up to isometries of the ambi-
ent space, a submanifold of a space form. This is the conclusion of the fundamental
theorem of local submanifold geometry.

THEOREM 2.1.2 (Fundamental Theorem of Local Submanifold
Geometry)
Let M be an m-dimensional Riemannian manifold, v a Riemannian vector
bundle over M of rank p, V' a metric connection on v and «(X,Y) a sym-
metric tensor field on M with values in v. Define A : v — End(TM) by
(A X, Y) = (a(X,Y),&) for X, Y € T,M, £ € vp, p € M. Suppose o, A and
V' satisfy the equations of Gauss, Codazzi and Ricci for some real number k.
Then, for each point p € M, there exists an open neighbourhood U of p in
M and an isometric immersion f from U into a space form M”(ﬁ) of con-
stant curvature k, n = m —+ p, such that o and A are the second fundamental
form and shape operator of f, respectively, and v is isomorphic to the normal
bundle of f. The immersion f is unique up to an isometry of M" (k). More-
over, if two isometric immersions have the same second fundamental forms
and normal connection, they locally coincide up to an isometry of the ambient
space.

PROOF We give a proof for k = 0, that is, M"(x) = R™. The proof for
the general case is similar and can be found, for instance, in [203].

Let £ = TM & v be the Whitney sum of the Riemannian vector bundles
TM and v over M. We define a connection V on E by

VxY =VxY +a(X,Y) and Vxé=—AX + Vi€

for all vector fields X, Y on M and sections £ in v. Then the Gauss-Codazzi-
Ricci equations imply that V is a flat connection, that is, the curvature of
V vanishes. Thus, there exists an open neighborhood V of p in M and a
@—parallel frame field (&1, ...,&,) of E over V. Such a frame field is unique up
to a linear isometry of R”. We denote by #; the metric dual one-form of &.
Then we have

dm(X’Y) = X<€i’Y> _Y<€i’X> - <€Z’ [X’YD
= (Vx& V) + (&, VxY) + (&, a(X,Y))
—(Vy&i, X) = (&, Vy X) — (&, a(Y, X)) = (&, [X,Y]) =0 ,
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since by construction the T'M-part of V coincides with the Levi Civita con-
nection on M, and because « is symmetric by assumption. Thus #7; 1s closed,
and hence, there exists a function f; on some open neighborhood U; of p in
M such that df; = ;. Let U be the intersection of all U;, ¢ = 1,... ,n. Then
F={f1,..., fn) : U = R"is the isometric immersion with the required proper-
ties. Note that, once we fix the frame field, f is unique up to translation, so f
is unique up to an isometry of R™. Observe that there is a bundle isomorphism
between E and TIR” restricted to U, which is the identity on T M.

Finally, assume that two isometric immersions have the same second
fundamental form and normal connection. We define as above Riemannian
vector bundles F and E’. Then there are bundle isomorphisms between F
and TR"|M and E’ and TR"|M , which are the identity on T'M and preserve
both metric and connection. By the same arguments as in the first part of
the proof, we can see that the immersions differ locally by a rigid motion of

R™.
¢) Equations of higher order

The fundamental equations of first and second order are the basic tools for in-
vestigating the geometry of submanifolds. However, one can derive further useful
equations of higher order.

We discuss here an example of a third order equation. To begin with, recall that
the second covariant derivative of the second fundamental form is given by

(Viix, @) (X3, Xa) = Vx, (Vx,@) (X3, Xa) — (Vo x,9) (X3, Xa)
—(Vx,0)(Vx, X3, X4) — (Vx,0) (X3, Vx, X4) .
Then, taking the covariant derivative V )Lfl of the equation
(Vx,0) (X3, X4) = Vi, (X5, X4) — a(Vx, X3, X4) — a(X3, Vx, X4) ,
a straightforward computation yields the so-called Ricci formula
Vi — Vi,x, o = —R(X1,X3)-a.

The curvature operator R(X 1, X2) acts on the tangent space as the Riemannian cur-
vature tensor and on the normal space as the normal curvature tensor. The notation
R(X1,X>) - o means that R(X;, X») acts on the tensor « as a derivation.

REMARK 2.1.3 By taking the trace of the operator V2 one defines the
Laplace-Beltrami operator A. For instance,

Ao = tr(Vza) .

Below we will use some formulae involving Aq, for instance (cf. [55, formula
(3.12)]) X
L Allall? = [V 0l + (o, Aa)
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where the norms and inner product are the usual ones of tensors. The term
(A, &) can be computed directly in terms of the second fundamental form
and the normal curvature tensor. This was done, for instance, in the paper
by Chern, do Carmo and Kobayashi [55] (mentioned in the introduction) for
the case of a minimal submanifold of a space form of constant curvature k.
In this case, the relation 1s

(Aa, ) = nxlal* = fla o o' — | RF|?,

where o' is the adjoint of o regarded as a homomorphism from 7'M & TM to
vM.

2.2 Models of space forms

A large part of this book deals with problems in space forms. For this reason, we
now take a closer look at the standard models of these spaces. The application of the
fundamental equations simplifies their description.

a) The Euclidean space R"

Consider R”™ as an n-dimensional smooth manifold equipped with the standard
smooth structure. At each point p € R"™ we identify the tangent space 7, R™ of R"
at p with R" by means of the isomorphism

T,R™ = R" | 4, (0) — v,

where v, (t) := p + tv. Using this isomorphism we get an inner product { , ) on
1,IR™ by the usual dot product on R ", that is,

n

(v,w) = Zviwi .

i=1

This family of inner products defines a Riemannian metric { , ) on R”. We call R”
equipped with this Riemannian metric the n-dimensional Euclidean space, which we
also denote by R™. By means of the above isomorphism, the Levi Civita connection
V of R™ coincides with the usual derivative I} of R™. It is then a straightforward
exercise to check that the Riemannian curvature tensor of R ™ vanishes. The isometry
group I(R") of R” is the semidirect product O(n) x R™, where R" acts on itself by
left translations. Explicitly, the action of O(n) x R"™ on R" is given by (A4, a) -z =
Az 4 a and the group structure of I(IR ") is given by the formula (A4, a) - (B,b) =
(AB, Ab + a). The identity component I°(R") of I(R") is SO(n) x R™ and the
quotient group /(IR™)/I°(IR™) is isomorphic to Z ».
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b) The sphere 5™ (r)

Let r be a positive real number, and consider the sphere
S*(r)={p € R"" [{p,p) =17}

with radius r and center 0 in IR+, It is a smooth submanifold of R ?*! with a unit
normal vector field & defined by

1
gp — ;pa

where we again use the canonical isomorphism 7, [R"™ = R". Differentiating £ with
respect to tangent vectors of .S™ (), we obtain for the shape operator A, of S (r)
with respect to £ the expression

1
A X =—-X
r

for each tangent vector X of S™(r). The Gauss equation then gives us the Riemann-
ian curvature tensor R of S™ (r), namely

R(X,Y)Z = r—12(<Y, Z)X — (X, 2)Y).

This implies that S™ (r) has constant sectional curvature r~2. We usually denote the
unit sphere S” (1) by S”. The isometry group 1(S™(r)) of S™(r) is the orthogo-
nal group O(n + 1) acting on S™(r) in the obvious way. The identity component
I°(S™ (7)) of I(S™(r)) is SO(n + 1), and the quotient group I(S"(r))/I°(S™ (7))
is isomorphic to Z ».

¢) The hyperbolic space H"

There are various models for the hyperbolic space. One of them is constructed in
a similar way to the sphere, but starting from a Lorentz space. We will refer to it as
the standard model. Consider R "1 equipped with the bilinear form

n

<U, w> = Z ViW; — Un41Wn 41
i=1

of signature (n, 1). Identifying each tangent space of R"+! with R"*+! as described
above, we get a Lorentzian metric on R"*!, which we also denote by { , ). The
smooth manifold R"*! equipped with this Lorentzian metric is called Lorentz space
and will be denoted by R™L, Let r be a positive real number and

H™(r) :={p € R™ [ {p,p) = =17, pag1 > 0} .

This is a connected smooth submanifold of IR ™! with time-like unit normal vector
field
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The tangent space 7, H"(r) consists of all vectors orthogonal to &, and hence is
a space-like linear subspace of R™ . Thus, the Lorentz metric of R™! induces a
Riemannian metric on H" (7).

An affine subspace W of R™1 is Riemannian, Lorentzian or degenerate if the re-
striction of (, ) to the vector part of IV is positive definite, has signature (dim(W) —
1, 1) or is degenerate, respectively.

The shape operator of 77" () with respect to & is given by

1
A X =—-X
r

for all tangent vectors X of H”(r). The Gauss equation, which is valid also in the
Lorentzian situation, then gives for the Riemannian curvature tensor R of H " () the

expression
1

R(X,Y)Z = =5 ((Y, )X —(X,2)Y).

It follows that H ™ (r) has constant sectional curvature —r~2. We write H" instead
of H™(1). The orthogonal group O(n, 1) of all transformations of R ™! preserving
the Lorentzian inner product consists of four connected components, depending on
whether the determinant is 1 or —1 and the transformation is time-preserving or
time-reversing. The time-preserving transformations in O(n, 1) are those that leave
H"™(r) invariant and form the isometry group I(H"(r)) of H"”(r). The identity
component [°(H"(r)) is SO°(n, 1) and the quotient group I(H " (r))/I°(H"(r))
is isomorphic to Z ».

Several other classical models of hyperbolic space are very useful for visualizing
geometric aspects of /", for instance, for visualizing geodesics. We briefly mention
two of them.

The first of these models is known as the half plane model

{lzeR" | o= (21,...,20), 2, >0},
endowed with the Riemannian metric

ds? .= (- >/x2

n -

In this model, the geodesics are either lines orthogonal to the hyperplane z,, = 0 or
circles intersecting the hyperplane x,, = 0 orthogonally.
The second model is known as the Poincaré disk model and is given by the open
ball
{r € B ]| < 2)

with the Riemannian metric

. A%
ds? = (-,)/ (1_7)

In this model, the geodesics are circles orthogonal to the boundary sphere ||z|| = 2
of the ball (including the degenerate circles given by diameters).
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d) The classification problem for space forms

The Riemannian manifold

) S (k=2 i k>0
M™(k) =< R ,if k=10
H™((—r)~Y?) [ if k<0

is connected and simply connected and often referred to as a standard space of con-
stant curvature . A connected Riemannian manifold M "™ of constant curvature « is
called a space form, or sometimes also real space form to distinguish it from com-
plex and quaternionic space forms. It is called a spherical, flat or hyperbolic space
form depending on whether k > 0, Kk = 0 or & < 0. Any space form M" of
constant curvature # admits a Riemannian covering map M"(x) — M". A clas-
sical problem is to determine all compact space forms. A theorem by Bieberbach
says that any compact flat space form M is covered by a flat torus, where the group
of deck transformations is a free Abelian normal subgroup of the first fundamental
group 71 (M) of M with finite rank. The spherical space forms have been classified
by J.A. Wolf [243]. The even-dimensional case appears to be quite simple, as one
can show that any even-dimensional spherical space form is isometric either to the
sphere or to the real projective space of corresponding dimension and curvature. The
theory of hyperbolic space forms is more subtle and still an active research field.

2.3 Principal curvatures

The shape operator or second fundamental form is the fundamental entity in sub-
manifold theory. Practically all geometrical problems concerning submanifolds in-
volve them in one or another way. In the course of this book we will deal with
submanifolds whose second fundamental form has a “regular” behaviour especially
to what concerns its eigenvalues, called principal curvatures.

Various properties of « or A lead to interesting classes of submanifolds. For in-
stance, the vanishing of o leads to totally geodesic submanifolds, which will be
discussed later.

The mean curvature vector field I of an m-dimensional submanifold M of M is
defined by

H = —tra,
m

and h := ||H|| is the mean curvature function of M. A minimal submanifold is a
submanifold with vanishing mean curvature function. This class of submanifolds has
already attracted mathematicians for a long time. There is a great variety of literature
concerning minimal submanifolds and, in particular, minimal surfaces. We refer the
interested reader to [66].
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A simple condition for principal curvatures on a hypersurface M is that they sat-
isfy some functional relation, in which case, one calls M a Weingarten hypersurface.
This is a classical topic; for a modern treatment of the subject, see [187]. For higher
codimension, Terng generalized this notion by requiring that the submanifold has flat
normal bundle and the principal curvatures satisfy a polynomial relation [217] (see
Exercise 2.8.5).
In the course of this book we will encounter various kinds of properties of the
second fundamental form or the shape operator that lead to interesting areas of math-
ematics. We start with discussing principal curvatures in more detail.

a) Principal curvatures and principal curvature vectors

Let M be submanifold of a space form M. As usual, the shape operator of M is
denoted by A and the second fundamental form by «. Recall that A and « are related
by the equation

(a(X,)Y),6) = <A§X’ Y),

where X,Y € T, M and £ € v, M, p € M. Because of the symmetry of «, the
shape operator A¢ of M is selfadjoint. Its eigenvalues are the principal curvatures of
M with respect to €. An eigenvector of A is called a principal curvature vector of
M with respect to £, and the eigenvectors corresponding to some principal curvature
form a principal curvature space. The multiplicity of a principal curvature is the

dimension of the corresponding principal curvature space. As A, X = sA¢ X for
all s € IR, the principal curvatures of M/ with respect to s¢ are precisely the principal
curvatures of M with respect to & multiplied with the factor s, and the principal

curvature spaces are the same for all 0 # s € R. For this reason, one is often
interested only in the principal curvatures with respect to unit normal vectors. If, in

particular, M is a hypersurface of M, that is, if the codimension of M in M is one,
and if ¢ is a local or global unit normal vector field on M, one often speaks of the

principal curvatures of M without referring to £. Note that the principal curvature

spaces with respect to linearly independent normal vectors are, in general, not the
same.

We say that a submanifold M of a space form has constant principal curvatures
if for any parallel normal vector field £(), along any piecewise differentiable curve,
the principal curvatures in direction &(¢) are constant. We will deal later with such
submanifolds, starting from Section 4.4. If in addition the normal bundle of M is
flat, one says that the submanifold is isoparametric .

Observe that, since the principal curvatures are roots of a polynomial (namely, the
characteristic polynomial of A;), they are continuous but do not need to be differ-
entiable. For instance, if M is a surface in IR3, since the principal curvatures can
be expressed in terms of the Gaussian curvature X and the (length of the) mean

curvature H by
M=H++VH?-K, 1=1,2,

it is clear that they are differentiable on the set of nonumbilical points (a point is
umbilical if there is only one principal curvature at that point). A simple example
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of a surface where the principal curvature functions are not smooth is the monkey
saddle z = (¢ — 3zy?)/3. Here, the principal curvatures are not smooth in the
origin, cf. [46].

FIGURE 2.1: Principal curvature lines on the monkey saddle » = (23 —
3xy?)/3.

However, if the multiplicities of the principal curvatures are constant on the unit
normal bundle, then the principal curvatures are smooth functions.

b) Principal curvature distributions and nullity

Let & be a local unit normal vector field of A that is defined on a connected open
subset U of M. Then A; is smoothly diagonalizable over an open and dense subset
of UU. On each connected component of this subset we have k& smooth eigenvalue
functions A\; with multiplicities m;, m = mj1 + ...+ my. The principal curvature
space withrespect to A; is Ex, = E; = ker{A; — \;id}. We also call E; a curvature
distribution. Note that, if ¢ happens to be a global unit normal vector field on M
and the principal curvatures of M are constant with respect to £, then each curvature
distribution is globally defined on M. A curve in M, all of whose tangent vectors
belong to a curvature distribution, is called a curvature line of M. Some curvature
lines on the monkey saddle are illustrated in Figure 2.1.

More in general, a curvature surface is a connected submanifold S of M for which
there exists a parallel unit normal vector field £ such that 7S is contained in a
principal curvature space of the shape operator A, forall z € S.
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FIGURE 2.2: A cyclides of Dupin. This class of surfaces can be characterized
by the fact that their curvature lines are circles or straight lines.

A submanifold M inIR™ or S™ is said to be Dupin, if the principal curvatures are
constant along all curvature surfaces of M. A Dupin submanifold is called proper
if the number g of distinct principal curvatures of A is constant on the unit normal
bundle of M. Important examples of Dupin submanifolds are the cyclides of Dupin
and isoparametric submanifolds. We will not study Dupin submanifolds in this book;
refer to [41,42,45] for more details.

The linear subspace g = N¢ey,ar ker Ag of T, M is called the nullity space of M
at p. The collection of all these spaces is called the nullity distribution of M. Note
that this is actually a distribution only on any connected component of a suitable
dense and open subset of A .

2.4 Totally geodesic submanifolds of space forms

a) Definitions

Let M be a submanifold of a Riemannian manifold M. Suppose 7 is a geodesic
in M. Then the Gauss formula says that (¥, ¥) is the second derivative of 7 when
considered as a curve in the ambient space M. Since

200X, Y)=a(X +Y, X +Y)— (X, X) — (YY)

forall X, Y € T, M, p € M, we see that the second fundamental form « vanishes
precisely if every geodesic in M is also a geodesic in M. In such a case, M is
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called a totally geodesic submanifold of M. The basic problems concerning totally
geodesic submanifolds deal with existence, classification and congruency. We will
deal with these problems more thoroughly in the general context of submanifolds of
a Riemannian manifold in Section 8.3.

For submanifolds of space forms, as we will soon see, we have a positive an-
swer regarding the existence problem in the following sense. For each pointp € M
and every linear subspace V' C TpM there exists a totally geodesic submanifold
M of M with p € M and T, M = V. Moreover, since the exponential map
exp, : TpM — M maps straight lines through the origin 0 € TpM to geodesics
in M, there is an open neighborhood U of 0 in TpM such that exp, maps U NV
diffeomorphically onto some open neighborhood of p in M. This implies that M is
uniquely determined near p, and that any totally geodesic submanifold of M con-
taining p and being tangent to V' is contained as an open part in a maximal one with
this property. This feature is known as rigidity of totally geodesic submanifolds.

b) Classification in space forms

Geodesics are clearly the simplest examples of totally geodesic submanifolds. In
the standard models M" () of space forms, as discussed in Section 2.2, we can give
the following explicit description of geodesics. Let p € M"(x) and X € T, M" (k).
The geodesic yx : R — M"(x) with yx (0) = p and ¥x (0) = X is given by

cos(y/Kt)p + \/LE sin(/kt) X , k>0
yx(t) =< p+tX , k=0 .
cosh(v/—«t)p + ﬁ sinh(v—kt)X , k <0

This describes the classification of the one-dimensional totally geodesic submani-
folds of M™ (k).

From this we also easily see that the canonical embeddings M* (k) C M"(k),
1 < k < n, are totally geodesic. The isometry group of M (k) acts transitively
on the pairs (p, V) with p € M"(k) and V a k-dimensional linear subspace of
1, M7 (k). This, together with the uniqueness properties described above, estab-
lishes the classification of the totally geodesic submanifolds in the standard space
forms.

THEOREM 2.4.1

Let p e M"™(x) and V a k-dimensional linear subspace of T, M"(x), 0 < k <
n. Then there exists a connected, complete, totally geodesic submanifold M
of M™(x) with p € M and T,M = V. Moreover, M is congruent to the
canonical totally geodesic embedding of M*(k) in M™ (k). Each connected,
totally geodesic submanifold N of M"(x) with p € N and T,N = V is an
open part of M.

Actually, it is not difficult to show directly that the totally geodesic submanifolds
of R™ are the affine subspaces (see Exercise 2.8.4). Moreover, the connected, com-
plete, totally geodesic submanifolds of S™(r) C R™*1 are precisely the intersections
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of S™(r) with the linear subspaces of R"*1. Analogously, the connected, complete,
totally geodesic submanifolds of H"(r) C R™?! are precisely the intersections of
H"™(r) with the linear Lorentz subspaces of R™!. We also propose as an exercise to
give a direct proof of this (see Exercises 2.8.6 and 2.8.7).

2.5 Reduction of the codimension

A submanifold M of a Riemannian manifold M is said to be full if it is not con-
tained in any totally geodesic submanifold of A of dimension less than n = dim M.
If M is not full in M, one says there is a reduction of the codimension of M. For
example, M is full in R™ if and only if it is not contained in any affine hyperplane of
R™. If M is not full in R ", there exists a smallest affine subspace of IR” containing
M, namely the intersection of all affine subspaces containing M. If & is the dimens-
ion of this affine subspace, then one might view M as a full submanifold of R *. This
means that we have reduced the codimension of M by n — k dimensions.

In order to reduce the codimension, it is useful to study a particular subspace of
the normal space called the first normal space. It is defined as the subspace Npl of
v, M spanned by the image of the second fundamental form at p, that is,

Ny =span{a(X,Y) | XY € [,M} C v, M .

In other words, V. pl is the orthogonal complement in v, M of the linear subspace
of v, M consisting of all normal vectors £ at p for which the shape operator A
vanishes. If the dimension of the first normal space does not depend on p, then A
is a subbundle of the normal bundle v M .

The following criterion is very useful in this context for submanifold theory in
space forms (see [64, Chapter 4], cf. also [78]).

THEOREM 2.5.1 (Reduction of codimension)

Let f: M — M be an isometric immersion from an m-dimensional connected
Riemannian manifold M into an n-dimensional standard space form M. If
for some, and hence for any, p € M the first normal space ./\fp1 15 tnvariant
under parallel translation with respect to Y+, and if | denotes the constant
dimension of N1, then there erists an (m + l)-dimensional totally geodesic
submanifold N of M such that f is an isometric immersion of M into N.

PROOF Observe first that the orthogonal complement A+ in vM of the
first normal bundle A := A’! is invariant under V*-parallel transport as well.
Note also that ¢ € ./\pr‘ if and only if A¢ = 0. We divide the proof into three
separate cases according to the sign of the curvature of M. It is also clear that
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we can restrict to the model spaces R” S” and H", because a homothetic
change of the metric does not affect the assertion.

(1) The case M = R™. Let p € M and ¢ a curve in M with ¢(0) = p. Let
& € ./\pr‘ and & the parallel normal vector field along ¢ with £(0) = &y. Since
Nt is invariant under V+-parallel translation, the Weingarten formula

Vel = At + V€ =0

implies that ¢ is a V-parallel vector field along ¢. Since the parallel transport
in R”™ along curves is independent of initial and end points of the curve, this
implies that the parallel transport of & € AL is independent of the curve.
Hence, for any & € ./\pr‘ the parallel translation of &; along curves determines
a well-defined parallel normal vector field £. Thus, there exists a parallel
orthonormal frame field &1, ..., &n_m—; of N't. As we have just seen, each ¢;
is the pull-back to M of a suitable constant vector field on R”, which we also
denote by &;. For any i € {1,...,n — m — [} we define the height function

it M =R, p=(f(p)&) -

For each X € TM we then get

Hence, f; is constant and it follows that f(M) is contained in the intersection
of n — m — [ affine hyperplanes of R” with pairwise linearly independent nor-
mal directions. Such an intersection is isometrically congruent to the totally
geodesic R+ C R" by which the assertion is proved.

(2) The case M = S”. Consider S as the unit sphere in R**! with centre
at the origin. Let ¢ be the unit normal vector field on S™ in R"*! pointing
outwards, that is, , = p for all p € S”. Recall that the Levi Civita connection
V of S” is the orthogonal projection onto the tangent spaces of S of the
directional derivative D of R"?t! Then we get

Dx( =X, Dxé=Vx¢

for all X € TM and all normal vector fields & of M which are tangent to
S, Thus, when we consider f as an isometric immersion into R"*! the
corresponding first normal spaces form a subbundle A'' of the normal bundle
of M in R?*! which is the span of A' and R¢. We also see that AN is
invariant under D'-parallel transport, where D+ is the normal connection of
M regarded as a submanifold of R"*T1. By case (1) we now see that f is an
isometric immersion into some totally geodesic R™++1 — R7»+1 But, since
R™mH+1 contains R¢, it also contains the origin of R?*! and it follows that f
is an isometric immersion into some totally geodesic R”++1 n g7 = gm+l,

(3) The case M = H™. The proof is similar to case (2) and we therefore
sketch it here only. We consider H” as a hypersurface in Lorentz space R™!
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and denote by ¢ the time-like unit normal vector field on H"™ given by (, = p
for all p € H™. Asin case (2) we first deduce that f is an isometric immersion
into R™! whose first normal spaces are invariant under parallel translation
with respect to the normal connection in R™1. We then prove, as in case (1),
that f is an isometric immersion into an affine subspace of R™! whose linear
part is a Lorentz subspace of R™'. But this affine subspace then contains the
origin of R™!, which eventually implies that f is an isometric immersion into
a totally geodesic H™+ C H”.

Actually, there exists a more general version of the above theorem (see [64, Propo-
sition 4.1]): it is sufficient to require the existence of a parallel subbundle £ of rank
d < codim M of the normal bundle with the property that N ! (z) C £(z) for any .
Then the codimension reduces to d.

Some necessary and sufficient conditions for the invariance under parallel trans-
port of the first normal bundle were obtained by do Carmo, Colares, Dajczer and
Rodriguez and can be found in [64, Section 4.2].

A certain generalization to arbitrary Riemannian manifolds M can be found in
[192].

REMARK 2.5.2 If asubmanifold M of Euclidean or Lorentz space admits
a parallel (nonzero) normal vector field & such that A; = 0 then M is not full

(Exercise; what happens in the case of a submanifold of the sphere?). 0

2.6 Totally umbilical submanifolds of space forms

A submanifold M of a Riemannian manifold M is said to be umbilical in direction
&, if the shape operator A¢ of M in direction of the normal vector ¢ is a multiple of
the identity.

A normal vector field € such that A, is a multiple of the identity is called umbilical
normal vector field (or section).

If M is umbilical in any normal direction &, then M is called a totally umbilical
submanifold of M. M is totally umbilical if and only if

a(X,Y) = (X,Y)H

for all vector fields X, Y on M, where H is the mean curvature vector field. It is ob-
vious that each one-dimensional submanifold and each totally geodesic submanifold
is totally umbilical. It is also clear that conformal transformations of M preserve
totally umbilical submanifolds.

A totally umbilical submanifold with nonzero parallel mean curvature vector field
is called an extrinsic sphere. In a space form the two concepts of totally umbilical
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(and non-totally geodesic) submanifolds and extrinsic spheres coincide in dimen-
sions > 2. Indeed, we have the following

LEMMA 2.6.1

Let M be a totally umbilical submanifold of dimension > 2 in a space form.
Then the mean curvature vector field H is parallel with respect to the normal
connection (i.e., V+*H = 0) and the normal curvature R+ vanishes identically.

PROOF We first observe that the shape operator of M is of the form
Ae(X) = (¢, H)X. The Ricci equation then easily implies Rt = 0 (see
also Exercise 2.8.12). And, since the second fundamental form of M is of
the form a(X,Y) = (X,Y)H, the Codazzi equation implies (Y, Z)V%H =
(X, Z)ViH.

Since dim M > 2 we can choose Y = Z perpendicular to X, and we get
VEiH =0. 0

The connected, complete, totally umbilical and non-totally geodesic submanifolds
M withm = dimM > 2 of R™, S™ and H" are as follows (cf. Exercises 2.8.6,
2.8.7):

InR™ M is a sphere S™ (r) C R™.

In S™: M is a m-dimensional sphere which is obtained by intersecting S™ with
an affine and nonlinear subspace of R *1,

In H™: When we consider H™ sitting inside R, M can be obtained by inter-
secting H™ with an affine and nonlinear subspace of R™!. In particular, the totally
umbilical hypersurfaces are the intersections of /™ with the affine subspaces of R™!
whose vector part is (Ra)t. Moreover:

e If a is a time-like vector in R™1, in which case (Ra)? is a Euclidean vector
space, the totally umbilical hypersurfaces obtained in this way are geodesic
hyperspheres. A geodesic hypersphere M, (p) in H" is the set of all points in
H™ with distance > 0 toa pointp € H".

e If a is a space-like vector in R™, in which case (Ra)* is a Lorentzian vector
space, the totally umbilical hypersurfaces obtained in this way are the hyper-
surfaces that are equidistant to a totally geodesic H"~! C H™.

e If aisalight-like vector in R ™1, in which case (Ra)' is degenerate, the totally
umbilical hypersurfaces obtained in this way are the so-called horospheres.

In the Poincaré ball model of I7", the horospheres are the spheres in the ball that
are tangent to the boundary sphere of the ball. In this model, it is clear that horo-
spheres are totally umbilical. Indeed, the identity map from the ball equipped with
the Euclidean metric onto the ball equipped with the Poincaré metric is a conformal



26 Submanifolds and Holonomy

transformation. Therefore, it sends the spheres tangent to the boundary sphere of the
ball, which are totally umbilical, onto totally umbilical submanifolds of I ™.

In the half plane model, the hypersurfaces z, = ¢, ¢ > 0, are horospheres. Actu-
ally, z,, = c gives a family of parallel hypersurfaces that are all centred at the same
point at infinity. Moreover, in this model, it is easy to see that every horosphere in
H™ is isometric to the Euclidean space R™~ 1, and that they are totally umbilical,
because of the description of the geodesics in this model.

We can summarize the above discussion on extrinsic spheres in space forms in the
following theorem, which gives us an explicit description.

THEOREM 2.6.2
Let p be a point in a standard space form M”(ﬁ), m > 2, V an m-dimensional
linear subspace of the tangent space TPM”(K) and H a non-zero vector of
T, M"(r) orthogonal to V. Then there exists a unique connected complete
extrinsic sphere M of M™ (k) withp € M, T,M =V and H, = H. Moreover,
M is a space of constant curvature k + (H, H).

A survey about totally umbilical submanifolds in more general ambient spaces, as
well as many references, can be found in [50]. We discuss totally umbilical subman-
ifolds and extrinsic spheres in symmetric spaces in Section 9.2.

b) Pseudoumbilical submanifolds

A generalization of totally umbilical submanifolds is that of pseudoumbilical ones.
A submanifold M of a Riemannian manifold M is called pseudoumbilical if it is
umbilical in direction of the mean curvature vector field /7. This just means

(a(X,Y), H) = (X, V)| H|’

forall X,Y € T, M, p € M. We have the following proposition [54].

PROPOSITION 2.6.3 B
Let M™ be a pseudoumbilical submanifold of a standard space form M™(x). If
the mean curvature vector field H of M is parallel, then either M 1is a mintmal

submanifold of M7 (k), or M is a minimal submanifold of some extrinsic
sphere in M™ (k).

PROOF By assumption, ||H|| is constant. If H = 0, then M is minimal
in M”(Kj) and the proposition holds. Let us assume that H # 0. Then
¢ := H/||H|| is a Vt-parallel unit normal vector field of M. If M™(x) = R",
we consider the vector field Y on M defined by

1
Y, = [P
PP
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for all p € M. For any X € T'M, we then get

Hence, Y is a constant vector field, say Y = p,. Therefore, M is contained
in the hypersphere with centre at p, and radius 1/||H||. Moreover, since I is
orthogonal to this hypersphere, M 1s minimal in it.

If & # 0, we regard M™ (k) as a hypersurface if R”+! resp. R™! and similar
arguments yield the result.

2.7 Reducibility of submanifolds

a) Submanifold products and extrinsically reducible submanifolds

Let My, . ..,Ms,Ml, . ..,Ms be Riemannian manifolds and f; : M; — M;,
t=1,...,s, be isometric immersions. The product map

F=fix. .. X fo:Mix...x My — M x...xM,,
(pla"'aps)H(fl(pl)a"'afs(ps))

is called the immersion product of f1,- .., fs or the submanifold product of M1, ...,
M, in M, x ... x M. There are simple equations relating the second fundamental
form and the mean curvature vector field of a submanifold product with those of its
factors. Recall that there is a natural isomorphism

I

oo (M XX M) =Ty, My & ... Ty, M,

which we will use frequently in the following. Denote by o ; and H; the second
fundamental form and the mean curvature vector field of M, respectively. Then the
second fundamental form o of M x ... x M, is given by

a((X1,. 0, Xs), (V1,000 Y5) = (e (X1, Y1), .oy s (X, Y5))

for all X;,Y; € T, M;. Similarly, the mean curvature vector field I of My x ... x
M; is given by
H=(Hy,...,H,).

More generally, let M = M; x ... x M, be a submanifold of a Riemannian
manifold M, where dim M; > 1foralli = 1,...,s and s > 2. Here, M is not
necessarily a Riemannian product. We denote by L, ..., L, the totally geodesic
foliations on A that are canonically induced by the product structure of Af. For
instance, the leaf Ly (p) of Ly throughp = (p1,...,ps) is M1 X {pa} x ... x {ps}.
Note that #; = T'L; is a parallel distribution on M for each ¢ = 1,...,s. One
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says that M is extrinsically reducible in M, or M is an extrinsic product in M, if
the second fundamental form « of M satisfies a(X;,Y;) = 0 forall X; € T, L;(p),
Y; € T,L;(p),i # j, p € M. From the above equation for the second fundamental
form of submanifold products we immediately see that each submanifold product A/
in a Riemannian product manifold M is extrinsically reducible in M. We say that a
submanifold M of M is locally extrinsically reducible in M at p € M if there exists
an open neighborhood of p in M that is extrinsically reducible in M. Finally, we say
that M is locally extrinsically reducible in M, if it is locally extrinsically reducible
in M at each pointin M.

b) Extrinsically reducible submanifolds in Euclidean spaces and spheres

There is a useful criterion for local extrinsic reducibility of submanifolds in Eucli-
dean spaces due to Moore [139].

LEMMA 2.7.1 (Lemma of Moore)
Let M be a submanifold of R™. If there exists a nontrivial parallel distribution
H on M such that the second fundamental form a of M satisfies a(H, HL) =
0, then M 1s locally a submanafold product in R™ and hence locally extrinsically
reducible in R™.

Moreover, if f: M — R” 1s a complete simply connected immersed subma-
nifold, then it is a product of immersions.

PROOF Since # is a parallel distribution on M, H' is also a parallel
distribution on M. Hence, both % and H* are integrable with totally geodesic
leaves. We choose and fix a point p € M. By the de Rham decomposition
theorem there exists an open neighborhood of p in M that is isometric to
the Riemannian product M; x My, where M; and M, are connected integral
manifolds of # and H* through p, respectively. We will now prove that
Mi x My is a submanifold product in R”.

For each point ¢ = (q1,¢2) € My x My we put Li(q1) = {q1} x M2 and
La(q2) = My x {q2}. We now choose two points ¢ = (q1, ¢2) and § = (¢1, §2) in
My x My and two tangent vectors X € T,Li(q1) = "H;‘ and Y € T5L4(2) =
Hi. Let ¢ :[0,1] — La(g2) be a smooth curve with ¢(0) = ¢ = (¢1, ¢2) and
e(1) = (41, ¢2). Let Ex be the V-parallel vector field along ¢ with Ex(0) = X,
where V is the Levi Civita connection of M. By construction, ¢ is tangent to
everywhere, and since X € H* and H* is a parallel distribution on M, we see
that Ex is tangent to H1 everywhere. Since, by assumption a(?—l,?—lJ‘) =0,
the Gauss formula for M C R” implies

?éEX =V¢Ex + Oz(é, Ex) =0.

Thus, Ex is a V-parallel vector field along ¢, and hence Ex (t) = X for all
t € [0, 1], where we identify, as usual, the tangent spaces of R"™ with R™ in the
canonical way. It follows that Ex (1) = X € H1. Next, let d : [0,1] — L1(q1)
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be a smooth curve with d(0) = § = (¢1, =) and d(1) = (1, ¢2), and let Ey be
the V-parallel vector field along d with Ey (0) = Y. Similarly, one can show
that By (1) =Y € H. We thus have proved that T, Li(¢1) and T5L2(§2) are
perpendicular to each other for all ¢,§ € M; x M.

Since R™ is homogeneous, we can assume without loss of generality that
p is the origin of R™. Let R™ and R™ be the linear subspaces of R” that
are generated by the linear subspaces T, La(g2) = Hq and TyL1(q1) = 7-[;‘ for
all ¢ € My x Ms, respectively. We have just proved that R™ and R”? are
perpendicular to each other. By construction, we have My x My C Rt x R72,
which shows that M; x Ms is a submanifold product in R™.

The same proof, but using the global de Rham theorem, yields the global
version.

Since S™ is a totally umbilical submanifold of R *!, the Lemma of Moore implies

COROLLARY 2.7.2
Let M be a submanifold of S™ and consider S™ as a submanifold of R™t!,
If there exists a nontrivial parallel distribution H on M such that the second
fundamental form a of M C S™ satisfies a(H,HL) = 0, then M is locally a
submanifold product in R"! and hence locally extrinsically reducible in S™.

¢) Extrinsically reducible submanifolds in Lorentzian spaces and hyperbolic
spaces

The Lorentzian analogue of the Lemma of Moore is not a straightforward gen-
eralization. This is due to the fact that, in Lorentzian spaces, there exist degenerate
linear subspaces. Recall that a linear subspace V of R™! is called degenerate if there
exists a nonzero vector v € V such that (v, w) = 0 for all w € V. Evidently, any
such vector v must be light-like.

PROPOSITION 2.7.3

Let M be a Riemannian submanifold of R™'. If there exists a nontrivial
parallel distribution H on M such that the linear subspaces Hy, ¢ € M, span a
nondegenerate linear subspace V of R™' and such that the second fundamental
form a of M satisfies a(H, HL) =0, then M is locally a submanifold product
in R™Y and hence locally extrinsically reducible in R™1

PROOF The first part of the proof is analogous to the one in the Euclidean
case. (Since we assume M to be a Riemannian submanifold we can apply the
de Rham decomposition theorem.) Since V' is nondegenerate by assumption, it
is either a Lorentzian or a Euclidean subspace of R™! and hence V1 is either
Euclidean or Lorentzian, respectively. It follows that M; x My C V x V+ C
R™! which shows that M is locally a submanifold product in R™!.
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Using the Lorentzian version of Moore’s lemma, we now derive a reducibility
result for submanifolds in real hyperbolic spaces.

COROLLARY 2.7.4

Let M be a submanifold of H® and consider H® as a submanifold of ™1,
If M s not contained in a horosphere of H", and if there exists a nontrivial
parallel distribution H on M such that the second fundamental form o of
M C H" satisfies a(H,HL) = 0, then M is locally a submanifold product in
R™! and hence locally extrinsically reducible in H™.

PROOF Since H" is totally umbilical in R™! we also have &(#,H1) = 0,

where & is the second fundamental form of M C R™!. Moreover, since M
is a submanifold of H” and H" is a Riemannian submanifold of R™!, M is
a Riemannian submanifold of B™!. Let Vi and V5 be the span of the linear
subspaces H, and "H;‘, g € M, respectively. It remains to be proven that
either V; or V5 is a nondegenerate subspace of R™!. Assume that both 1}
and V, are degenerate. Then, since V; is orthogonal to V5, also Vi + V5 1is
a degenerate subspace of R™! It follows that M is contained in an affine
subspace of R™! whose linear part is degenerate. Since the intersection of
such an affine subspace with H” is a horosphere in H”, we see that M lies in
a horosphere of R H", which is a contradiction.

REMARK 2.7.5 Horospheres are isometric to Euclidean space. So, a
submanifold of hyperbolic space that is contained in a horosphere can be
regarded as a submanifold of Euclidean space. 0

2.8 Exercises

Exercise 2.8.1 Let M be a m-dimensional hypersurface of R”, with m >
2. Let k1, ..., Ky, be its principal curvatures. Suppose that at least three principal
curvatures are nonzero. Prove that the sectional curvatures determine K1, ..., K.
Deduce the Beez-Killing Theorem, namely that, for an m-dimensional hypersurface
of R", with m > 2 and with at least three nonzero principal curvatures, the second
fundamental form is determined by the first fundamental form (cf. [12], 10.8).
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Exercise 2.8.2 Let f : S? — R be given by

1 1
(z,y,2) — (J;y, xz, Yz, —(xz — yz) —(xz +y? = 2z2)) .

2 VA

(a) Verify that f induces an embedding f of the real projective plane into a hyper-
sphere S*(1/1/3) of R5.

(b) Compute the second fundamental form of f (or of f), verifying that they are
minimal in the sphere.

f is called the Veronese surface.

Exercise 2.8.3 Let P : S'(R) x S'(R) — R*be the Clifford torus, given by
(u,v) — (Rcosu, Rsinu, Rcosv, Rsinv) .

Compute the second fundamental form of P.

Exercise 2.8.4 Give a direct proof of the fact that the totally geodesic subman-
ifolds of R™ are affine subspaces. Hint: See the proof of Theorem 2.5.1 (Reduction
of codimension).

Exercise 2.8.5 (cf. [217], Corollary 1.5) Let M be a submanifold of a space of
constant curvature. Prove that, if there exists a parallel normal field £ such that the
eigenvalues of A¢ are all distinct, then A has flat normal bundle.

Exercise 2.8.6 Prove that the connected, complete, totally geodesic (resp. to-
tally umbilical) submanifolds M ™, m > 2, of S™(r) C R"*! are the intersections
of S™(r) with the linear (resp. affine) subspaces of R™+1.

Exercise 2.8.7 Prove that the connected, complete, totally geodesic (resp. to-
tally umbilical) submanifolds M ™, m > 2, of H"(r) C L” are the intersections of
H™(r) with the linear (resp. affine) subspaces of L”.

Exercise 2.8.8 Prove that a submanifold M of Euclidean space with parallel
second fundamental form has parallel first normal space.

Exercise 2.8.9 Prove that two autoparallel distributions that are orthogonally
complementary are both parallel. Is this result still true for three autoparallel distri-
butions?
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Exercise 2.8.10 Let M be a submanifold of Euclidean space with parallel sec-
ond fundamental form. Suppose that the shape operator Ay relative to the mean
curvature 1 has two distinct eigenvalues. Prove that M is locally reducible.

Exercise 2.8.11 Suppose M is a totally geodesic submanifold of a space form,
and let N be a submanifold of M. Prove that Aé” X = Aé\f X forall £ € v, M,
X € T,N,p € N, where AM and A" are the shape operators of M and N,
respectively. Prove that the above property (satisfied for any submanifold N of M)
characterizes totally umbilical submanifolds.

Exercise 2.8.12 Prove that a totally umbilical submanifold of a space form has
flat normal bundle.

Exercise 2.8.13 Prove that a geodesic with initial direction v, ||v|| = 1, ina
horosphere
¢+ (Bn)t0H" (1),

where (1, n) = 0, has the expression

t2
Yo(t) = qg+1tv — 7.
0 201, q)
Exercise 2.8.14 Prove that a geodesic with initial direction v, ||v|| = 1, ina

totally umbilical lower dimensional hyperbolic space in 77 ™*(—1) given by
7+ (By)* 0 H™ (1),

where (1, ) = —1, has the expression

1 . 1
Y t) =q¢+ 5(77, q)(sinh td)v + 5(77, q)(coshtd — 1)y,

with@ = 2/(n, q).

Exercise 2.8.15 (Ejiri[77], suggested by A.J. DiScala) Let f : M x N — R"
be an isometric minimal immersion from a product of Riemannian manifolds. Then
f is a product of immersions. Hint: use Gauss equation for proving that «(X,Y) =
0if X is tangent to M and Y is tangent to N.



Chapter 3

Submanifold geometry of orbits

In this chapter, we investigate submanifolds that arise as orbits of isometric Lie group
actions on Riemannian manifolds. These so-called (extrinsically) homogeneous sub-
manifolds have the important feature that their geometric invariants, like the second
fundamental form, are independent of the point.

In Section 3.1, we start with the general setup and introduce some basic concepts
such as orbit types, principal orbits, isotropy and slice representations. The purpose
of this section is also to introduce the notation that will be used in the sequel.

In these notes, we are interested in orbits from two different viewpoints: the geo-
metry of a single orbit and the geometry of the entire set of orbits of an action.
The orbits of an isometric Lie group action on a Riemannian manifold }/ might be
viewed as a singular foliation on A. For some particular types of representations,
like s-representations and polar actions, which we will introduce in Section 3.2, it
is of great interest to investigate the entire orbit foliation. Polar actions on IR * are
characterized by the existence of a linear subspace of IR”, a so-called section, that
intersects each orbit and is perpendicular to orbits at the points of intersection. An
s-representation is the isotropy representation of a semisimple symmetric space. An
s-representation is polar, since the tangent space to a flat in the symmetric space is a
section, and by Dadok’s Theorem 3.2.15 [63] it has the same orbits as a polar action.
The existence of a section implies that the orbit foliation has remarkable Riemann-
ian geometric properties. The orbits are equidistant with parallel tangent spaces, the
normal bundle of a principal orbit is flat with trivial holonomy and the principal cur-
vatures of a principal orbit with respect to any parallel normal field are constant. This
motivates the study of isoparametric submanifolds of IR ”, which will be discussed
later in these notes. We will see that s-representations have a distinguished role in
submanifold geometry, to many extents comparable to the one of symmetric spaces
in intrinsic Riemannian geometry.

In Section 3.3, we reverse our approach. We start with a homogeneous Riemann-
ian manifold and investigate whether it can be viewed as an orbit in another Rie-
mannian manifold or, in other terms, if it admits an equivariant embedding.

In the next sections, we look at the geometry of single orbit. In Sections 3.4
and 3.5, we study homogeneous submanifolds of space forms. In Section 3.6, we
describe the extrinsic differential geometry of orbits, and give, among other things, a
description of the second fundamental form of the orbit of a representation of a Lie
group in terms of the corresponding Lie algebra representation.

Symmetric submanifolds of R”, and of spaces of constant curvature, form histo-
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rically one of the first class of homogeneous submanifolds that were studied and
classified. Section 3.7 is devoted to this topic.

In Sections 3.8, and 3.9 we study classes of submanifolds that are characterized
by important geometric properties of homogeneous submanifolds. The most clas-
sical “homogeneous-like” property is the constancy of principal curvatures, which
characterizes isoparametric hypersurfaces of space forms. Traditionally, these hy-
persurfaces are defined as regular level sets of isoparametric functions, so that they
determine an orbit-like foliation of the manifold. Isoparametric hypersurfaces are
pretty close to being homogeneous, and actually, in many cases, they are. In higher
codimension, a natural “homogeneous-like” property is that the algebraic type of the
second fundamental form does not depend on the point. This is an extrinsic version
of curvature-homogeneous manifolds [225].

3.1 Isometric actions of Lie groups

An important class of submanifolds in a smooth manifold is given by orbits of
Lie group actions. In the framework of Riemannian geometry, one is interested in
isometric Lie group actions. In this section, we summarize some basic concepts of
this topic, like orbit types, principal orbits, isotropy and slice representations. For
details and further reading, refer to [28,74,111].

a) Basic concepts

Let M be a Riemannian manifold and G a Lie group acting smoothly on M by
isometries. Then we have a Lie group homomorphism p : G — I(M) and a smooth
map

GxM— M, (g,p) = plg)(p) = gp
satisfying (¢¢")p = ¢(¢'p) forall g, ¢’ € GG and p € M. An isometric action of a
Lie group G on a Riemannian manifold M’ is said to be equivalent to the action
of G on M if there exists a Lie group isomorphism ¢ : G — G’ and an isometry
f: M — M'suchthat f(gp) = ¥(g)f(p) forallp € M and ¢ € (. For each point
p € M the orbit of the action of G through p is

G-p={gplg G},
and the isotropy group at p is
Gp:={9€CGlgp=p}.

If G- p = M for some p € M, and hence, for each p € M, the action of G is said
to be transitive and M is a homogeneous G-space. More details about homogeneous
(-spaces can be found in Appendix A.3. We assume from now on that the action of
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G is not transitive. Each orbit G - p is a submanifold of A, but, in general, not an
embedded one.

Example 3.1
Consider the flat torus 72 obtained from R? by factoring out the integer
lattice. For each w € R the Lie group IR acts on T isometrically by

RxT? =T (t,[c,y]) = [z +t,y+wi],

where [z, y] denotes the image of (z,y) € R? under the canonical projection
R? 5 T?. If w is an irrational number, then each orbit of this action is dense
in 72 and hence cannot be an embedded submanifold.

Each orbit (¢ - p inherits a Riemannian structure from the ambient Riemannian
manifold M. With respect to this structure, G - p is a Riemannian homogeneous
space G - p = /G, on which ( acts transitively by isometries.

DEFINITION 3.1.1  Let M be a submanifold of a Riemannian manifold
M. We say that M s an (extrinsically) homogeneous submanifold of M if, for
any two points p,q € M, there exists an isometry g of M such that (M) = M

and g(p) = q.

Example 3.2 (Flag manifolds)

A flag in C" is a sequence of inclusions {0} C V1 C ... C V; C C, where Vj is
a complex linear subspace of C of fixed dimension. These complex algebraic
varieties are classical examples of complex flag manifolds or C-spaces. If the
inclusions are all strict and every dimension between 1 and n — 1 appears,
the variety is called the full complex flag manifold of C™. Any of these flag
manifolds can be realized as an orbit of the adjoint representation of SU(n)
(see Appendix A .4, page 309), so that it becomes a homogeneous submanifold
of some Euclidean space, more precisely, of the Lie algebra su(n) of SU(n)
equipped with the inner product that is induced from the negative of the
Killing form of su(n). Indeed, it suffices to take the adjoint orbit of a diagonal
element with zero trace in su(n). If all entries in the diagonal are different,
we get the full complex flag manifold of C*.

One can generalize this example by taking the orbits of the adjoint rep-
resentation of a semisimple compact Lie group . We will refer to such
(generalized) complex flag manifolds also as adjoint orbits. Note that, via the
inner products on the Lie algebra g of G and the dual Lie algebra g* that are
induced from the Killing form of g, the adjoint representation can be identified
with the coadjoint representation on g*. In this setting, adjoint orbits are the
same as coadjoint orbits.

Complex flag manifolds belong to a larger class of homogeneous subman-
ifolds that will be of great interest for us in the following, namely real flag
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manifolds. A real flag manifold is an orbit of the 1sotropy representation of
a semisimple Riemannian symmetric space, or briefly, of an s-representation.
For details on this, refer to Appendix A.4, page 310.

We will come back to the adjoint orbits of SU(n) later in this chapter as
an 1llustrating example for various concepts that we are going to introduce. 0

A homogeneous submanifold A is thus an orbit of some subgroup G of the isom-
etry group of a Riemannian manifold. Although it is often assumed in the literature
that GG is connected and closed, we will not assume closure unless explicitly stated.

b) The set of orbits

We denote by M/ the set of orbits of the action of G on M and equip M /G with
the quotient topology relative to the canonical projection M — M /G, p— G-p. In
general, M /G is not a Hausdorff space. For instance, when w is an irrational number
in Example 3.1, then 72 /IR is not a Hausdorff space. This unpleasant behaviour does
not occur for so-called proper actions. The action of G' on M is proper if, for any
two distinct points p, ¢ € M, there exist open neighbourhoods U/}, and U, of p and ¢
in M, respectively, such that {g € G' | gU, N U, # B} is relatively compact in G.
This is equivalent to saying that the map

GxM—MxM, (9,p) = (p,gp)

is a proper map, i.e., the inverse image of each compact setin M x M is also compact
in G x M. Every compact Lie group action is proper, and the action of any closed
subgroup of the isometry group of M is proper as well. If GG acts properly on M, then
M /G is a Hausdorff space, each orbit (¢ - p is closed in M and hence an embedded
submanifold, and each isotropy group G, is compact.

¢) Slices

A fundamental feature of proper actions is the existence of slices. A submanifold
Y of M is called a slice at p € M if

) pel,
X2) G-X:={9q |9 € G, q€e X} isanopen subset of M,
X)) Gp- X=X,

(34) the action of GG, on X is isomorphic to an orthogonal linear action of GG , on an
open ball in some Euclidean space,

(35) the map
(GX E)/Gp%Ma Gp'(ﬂa‘])'_)gq

is a diffeomorphism onto (& - £, where (G x X)/G, is the space of orbits of
the action of GG, on G x ¥ given by k(g,q) := (gk~', kq) for all k € G,,
g € G and ¢ € X. Note that (G x £)/G, is the fibre bundle associated to the
principal bundle G — G/, of fibre ¥ and hence a smooth manifold.
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Montgomery and Yang [142] proved that every proper action admits a slice at each
point. It is useful to remark that a slice > enables us to reduce the study of the action
of G on M in some G-invariant open neighbourhood of p to the action of &', on the
slice 3.

d) Orbit types

The existence of a slice at each point also enables us to define a partial ordering
on the set of orbit types. We say that two orbits GG - p and GG - ¢ have the same orbit
type if GG, and G, are conjugate in . This defines an equivalence relation among
the orbits of (G. We denote the corresponding equivalence class by [G - p], called
orbit type of G - p. By O we denote the set of all orbit types of the action of GG on
M . We introduce a partial ordering on O by saying that [G - p] < [G - ¢] if and only
if G4 is conjugate in G to some subgroup of G .. If X is a slice at p, then properties
(24) and (X5) imply that [G - p] < [G - ¢q] forall ¢ € G - ¥. We assume that M /G
is connected. Then there exists a largest orbit type in . Each representative of this
largest orbit type is called a principal orbit. In other words, an orbit & - p is principal
if and only if for each ¢ € M the isotropy group G, at p is conjugate in GG to some
subgroup of (G,. The union of all principal orbits is a dense and open subset of
M . Each principal orbit is an orbit of maximal dimension. A non-principal orbit of
maximal dimension is called exceptional. An orbit whose dimension is less than the
dimension of a principal orbit is called singular. The cohomogeneity of the action is
the codimension of a principal orbit.

Exercise 3.10.17 leads to a proof of the existence of principal orbits for isometric
actions.

Example 3.2 (continued). The principal orbits of the adjoint action of
SU(3) are the full complex flag manifolds given by complete flags {0} C V1 C
Vo C 3, corresponding, for instance, to the orbit of a diagonal element in
s5u(3) (with zero trace and different entries). If two entries are equal, one gets
a singular orbit diffeomorphic to the complex projective space. Of course, for
Ad(SU(n))-orbits, diagonal elements with different entries determine princi-
pal orbits.

As we will see, adjoint representations (and more generally, polar actionsEl
have no exceptional orbit (see Remark 3.2.10).

e) Isotropy representations and slice representations

We assume from now on that the action of G on M is proper and that M /G is
connected. Recall that, for each ¢ € (¢, the map

g M =M, p— gp

is an isometry of M. If p € M and g € G, then ¢, fixes p. Therefore, at each point
p € M, the isotropy group G, acts on T, M by

Gp xT,M —-T,M, (9,X) =g -X:=(pg)pX .
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But, since ¢ € (G, leaves (' - p invariant, this action leaves the tangent space T}, (G- p)
and the normal space v, (G - p) of G - p at p invariant, too. The restriction

Xp:Gp x T, (G -p) > T,(G-p), (g, X)—~9g-X
is called the isotropy representation of the action at p, while the restriction
op 1 Gp X1 (G-p) = 1p(G-p), (9,6) = 9§

is called the slice representation of the action at p. If (G ), is the connected compo-
nent of the identity in G p,, the restriction of the slice representation to (G, )o will be
called connected slice representation.

f) Geodesic slices

Let p € M and r € R be sufficiently small so that the restriction of the expo-
nential map exp,, of M atp to U, (0) C (G - p) is an embedding of U, (0) into M.
Then % = exp, (U, (0)) is a slice at p, a so-called geodesic slice. Geometrically, the
geodesic slice X is obtained by running along all geodesics emanating orthogonally
from (& - p at p up to the distance 7.

FIGURE 3.1: A geodesic slice.

Since isometries map geodesics to geodesics, it is clear that

9% = expgy, (g9 - U, (0))
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for all ¢ € GG. Thus, GG - X is obtained by sliding 3 along the orbit G - p using the
group action. Let ¢ € ¥ and ¢ € (4. Then g¢ € X and hence g¥ = X. Since
YNNG - p={p},itfollows that gp = p and hence, g € ;.. Thus we have

LEMMA 3.1.2
If ¥ is a geodesic slice at p, then G, C G for all ¢ € X.

Let X be a geodesic slice at p. Then G - ¥ is an open subset of M. As principal
orbits form an open and dense subset of M, the previous lemma implies that G - p
is a principal orbit if and only if Gy = G, for all ¢ € X. On the other hand, each
g € G, fixes both ¢ and p and therefore, assuming the geodesic slice is sufficiently
small, the entire geodesic in 3 connects p and ¢. Thus, G4 pointwise fixes the one-
dimensional linear subspace of v, (G- p) corresponding to this geodesic. This implies
the following useful characterization of principal orbits.

THEOREM 3.1.3
An orbit G - p s principal of and only of the slice representation X, s trivial.

) Killing vector fields and reductive decompositions

Let G be a Lie group acting on M isometrically and p € M. Then the orbit
M := G - pis a Riemannian G-homogeneous space in the induced Riemannian
metric. Therefore, we can identify A/ with the homogeneous space GG/ K, where
K = (), is the isotropy group at p. As K is compact, the homogeneous space GG/ K
is reductive. Let g = ¥ & m be a reductive decomposition of the Lie algebra g of GG.
Each X € g determines a Killing vector field X * on A by means of

d
X

T t: (t — Exp(tX)q)

0

for all ¢ € M, where Exp denotes the Lie exponential map g — (5. Note that
X, =0 Xet.

Whenever the action of G on M is effective, there is a particularly nice reductive
decomposition. The restriction of X * to M is a Killing vector field on M which we
also denote by X *. Since X ™ is a Killing vector field on A, the covariant derivative
VX* is a skew-symmetric tensor field on M and hence (VX*), € so(7,M). Let
B be the Killing form of so(7, M), which is a negative definite symmetric bilinear
form on s0(7}, M). We define a symmetric bilinear form on g by

(X,¥) = =B(VX")p, (VY7)y)

for all X,Y € g. If X € ¢ then X; = 0 and hence X* = 0 if and only if
(VX*), = 0, since a Killing vector field X * is uniquely determined by the values
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of X7 and (V.X*),. Therefore, if G acts effectively on M, then (-, -) is positive
definite on €. Let m be the orthogonal complement of ¢ in g with respect to (-, -).
Then ¢ Nm = {0} and Ad(K)m C m, see for instance [223]. Thus, g = ¢ & m
is a reductive decomposition of g. Since Exp maps open neighbourhoods of 0 € g
diffeomorphically onto open neighbourhoods of ¢ € G, it follows that

TLM={X,|Xeg}={X, | Xecm}.

If M; is a homogeneous submanifold of M and M, is a homogeneous subma-
nifold of A5, then My x M5 is clearly a homogeneous submanifold of M, x Ms.
Conversely, if My x M> is a connected homogeneous submanifold of My x Mo,
then M; is a connected homogeneous submanifold of M;, i = 1, 2. In fact, assume
My x My =G - (p1, p2), where G C I(M; x M>) is a connected Lie subgroup and
pi € M;. Enlarge (i to the connected component G of the group {g € I(M; x M>) |
g(My x My) = My x Mz} of extrinsic isometries of M1 x M>. We will show
that G = G4 x Gy C I(My) x I(Ms), which implies homogeneity of M;. Let
X = (X3, X3) be a Killing vector field induced by G(X;a Killing vector field of
M;). Then X' = (X;,0) and X2 = (0, X>) are Killing vector fields of M; x M.
Moreover, X! and X? are both tangent to M, x M. Thus, X', X? are both Killing
vector fields induced by G. It follows that G = G x Ga C I(My) x I(M>). This
implies the following

PROPOSITION 3.1.4 ) )
A homogeneous submanifold M of a Riemannian product My x ... x My 1is

always a submanifold product My x ... x My of homogeneous submanifolds
M; C M;. If, in addition, M 1is full in M, then each factor M; is full in M;.

h) Equivariant normal vector fields

If G - p is a principal orbit and ¢ € v, (G - p) then

égp =g-¢

is a well-defined normal vector field on G - p. Indeed, if gp = ¢'p, then g~ ¢’ € G,
and g=tg’ - & = &, thatis, g - € = ¢’ - £&. The vector field £ will be called equivariant
normal vector field determined by €. Hence, if G- p is a principal orbitand &1, . . ., &
is an orthonormal basis of v, (G - p), then él, RV ék is a global smooth orthonormal
frame field of the normal bundle of (& - p. This just means that the normal bundle of a
principal orbit s trivial, that is, it is isomorphic to the trivial bundle G- p xR * — G-p.

Note that, from a given principal orbit G - p, one can determine all nearby orbits
by using equivariant normal vector fields. Indeed, let G - p be a principal orbit and é
an equivariant normal vector field of G - p. Then

€XPyp (égp) = €XPyp (9-&) =49 eXP(ép)
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and hence,
M = {exp, (&) | ¢ € G-p} = G - exp, (§,) |

that is, M is the orbit through exp,, (ép). If M is connected and complete, each orbit
of (G can be obtained in this manner from a single principal orbit.

3.2 Polar actions and s-representations

a) Polar actions.

On R?\ {0} consider polar coordinates (p,). Any point (p,0) € R2\ {0}
lies in the orbit of the point (p, 0) with respect to the standard action of the special
orthogonal group SO(2) on R 2 Therefore, the line # = 0, and, more generally, any
line through the origin meets any SO(2)-orbit orthogonally. It is easy to see that
the standard action of SO(n) on R” by rotations also has this property. Thus, it is
natural to consider isometric actions of a Lie group on a Riemannian manifold with
this feature.
Let M be a connected complete Rie-
mannian manifold and G a closed
(so that the action is proper) sub-
group of 7(M). A complete, em-
bedded and closed submanifold >
of M is called a section if ¥ inter-
sects each orbit of GG and is perpen-
dicular to orbits at intersection
points. If there exists a section in
M, then the action of (¢ is called
polar. Notice that from a section
we can obtain a section that contains
any given point by using the group
G. If GG is disconnected and acts po-

FIGURE 3.2: A section and some orbits. larly on M, then also the connected
component GG° of (G containing the
identity acts polarly on M.

Let K be a compact Lie group. A representation p : K — SO(n) is called a polar
representation, if p(K') acts polarly on R™. As seen above, a simple example of a
polar representation is given by the standard action of SO(n) on R . Note that this
action is the isotropy representation of the sphere S” = SO(n + 1)/5O(n).

Actually, as we will show below, a very important class of polar representa-
tions is the isotropy representations of symmetric spaces, which are also called s-
representations.
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A special case is the adjoint representation of a compact Lie group; in this case,
using Lie algebra theory, it is easy to see that any Cartan subalgebra provides a
section for the action.

Example 3.2 (continued). Consider the adjoint action of SU(n). The Lie
algebra su(n) of SU(n) is given by su(n) = {A € gl(n,C) | A* = —A,trA = 0}.
A Cartan subalgebra of su(n) is

Ay 0

t= .. Z/\Z»:O

0 A,

The fact that t meets each Ad(SU(n))-orbit in su(n) can be seen from linear
algebra: each skew-hermitian matrix can be put in diagonal form with purely
imaginary entries by conjugation with a special unitary matrix. Since t is a
section, each Ad(SU(n))-orbit can be thought of as an orbit of a diagonal
element. (We already used this fact while discussing this example.)

An action is called hyperpolar if it admits a flat section. Clearly, every hyperpolar
action is polar, and in R” these two concepts coincide. The study of hyperpolar
actions was initiated by Conlon [56,57], who called them “representations admitting
a K -transversal domain” and showed that they are variationally complete (see [27, p.
974] for this notion). To our knowledge, polar representations were first considered
in the early ’80s by Szenthe [206-208], who called them isometric actions admitting
an orthogonally transversal submanifold. In the late ’80s, Palais and Terng [186]
discovered an interesting relation between polar representations and isoparametric
submanifolds. The polar representations on IR ™ were classified by Dadok [63], and
Kollross [119] classified the hyperpolar actions on irreducible, simply connected,
symmetric Riemannian spaces of compact type up to orbit equivalence.

As we will see, polar representations are important for submanifold geometry in
Euclidean space. Indeed, the existence of a section X implies that the orbit foliation
has remarkable geometric properties. The orbits are equidistant with parallel tangent
spaces and, if N is a principal orbit, the normal bundle to N is flat with trivial
holonomy, and the principal curvatures of N with respect to any parallel normal field
are constant. This leads to the study of isoparametric submanifolds of R ”, which will
be carried out later in these notes.

As was first shown by Szenthe [207,208], a section is necessarily totally geodesic
(see also [186]). We now give a proof of this fact using Killing vector fields.

THEOREM 3.2.1
Bvery section of a polar action is totally geodesic.

PROOF Let X be a section. We denote by X, the set of points in X which
lie on a principal orbit of the action. Let p € X, and ¢ € 1, X. Then the
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group action induces a Killing vector field X on an open neighbourhood of
p with X, = & The polarity of the action implies that X is perpendicular
to X. Let A be the shape operator of 3. Since X is a Killing vector field,
its covariant derivative VX is a skewsymmetric tensor field. The Weingarten
equation thus implies (4w, w) = —(V X, w) = 0 for all w € T,X. Hence, X
is totally geodesic at points in X,. By Exercise 3.10.9, X, is open and dense
in ¥, and hence X is totally geodesic.

The following proposition is due to Dadok [63] for the case of polar representa-
tions and to Heintze, Palais, Terng and Thorbergsson [97] for the general case.

PROPOSITION 3.2.2

The connected slice representation of a polar action at any pownt s polar.
Moreover, if 3 s a section of the polar action and p € X, then 1,3 is a
section of the connected slice representation at p.

PROOF We denote by K = G, the isotropy group at p of the polar action

of G on M. By Exercise 3.10.2, the codimension of a principal orbit of the
action of K on the normal space v, (G - p) is equal to the dimension of T, X. If
we prove that 7,% is perpendicular to the orbits of K we are finished, since
1,3 would coincide with the normal space to a principal K-orbit, and so it
would intersect all other orbits (see Exercise 3.10.11). The Lie algebra of K
may be regarded as the set of skewsymmetric endomorphisms of v, (G-p) of the
form (VX),, where X is a Killing vector field on M induced by G,. But every
Killing vector field X induced by G is always perpendicular to . Therefore,
for each u € 1,3, V, X is orthogonal to T,X, since X is totally geodesic by
3.2.1 (note that the tangent component of V, X is equal to —Ax,)u, where
A is the shape operator of ¥). This shows that the Killing fields induced by
K on v,(G - p) are perpendicular to T, X.

For any Killing vector field X on M induced by the polar action of G we denote
by B{f ,p € M, the skewsymmetric endomorphism on v, (G - p) defined by

<B{§v,w> = (Vo X,w), v,wev,(G p).

Let h” be the subalgebra of so(v,(G - p)), which is generated by all these endo-
morphisms B2, and denote by H” the connected Lie subgroup of SO(v,(G - p))
associated to hP.

LEMMA 3.2.3

The Lie group H? contains the image Up(G;) of the connected slice represen-
tation at p (regarded as a subgroup of SO(vp(G - p)), and the action of HP on
vp (G - p) has the same orbits as the connected slice representation at p.
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PROOF Let 0, : Gp = SO(vp(G - p)) be the slice representation at p. If
X € gp, then o,(Exp(tX)) = e'»X. But if v is a curve in v,(G - p) with
¥(0) = p and £ = +/(0), then

D D d
7 X(€) = | enBX))e= 5 T (B =
D d D .
== — Exp(tX = | X, ,=VX"=BX
ds s=0 dt t:O( Xp( ))7(8) ds s=0 ) vg ? g’

since Ve X* € v,(G - p). This implies that o, (Gp) C HP.

For the second part, observe that 7,3 is a section of the connected slice
representation at p, where X is a section of the G-action at p (see Proposition
3.2.2). Let X be a Killing vector field induced by G, and denote by A the
shape operator of ¥. Then we have <B;(v,w> =(V, X,w) = (Axv,w) =0
for all v, w € T,%, since X is perpendicular to ¥ and X is totally geodesic. So
U B;(v is a linear Killing vector field on v, M that is perpendicular to any

section of ¢,. The lemma now follows from Exercise 3.10.15. I

PROPOSITION 3.2.4

Let G act polarly on M and assume that § € v,(G - p) is fizred under the
connected slice representation at p. Then & extends locally to a G-invariant
YVt -parallel normal vector field to G - p.

PROOF Let F' be the set of fixed points of G on v, M. Recall that if X 1s

a section for the G-action with p € X, then T, X is a section for the connected
slice representation. Since HP has the same orbits as the connected slice
representation, we get HP¢ = ¢ for all £ € F' and, in particular, B{f&’ =0 for
any Killing vector field X induced by G. We extend ¢ to a (local) equivariant
normal vector field € of G - p, and extend & to a (local) vector field n on
M. Then we get 0 = (VeX, &) = (Vx,n — [X,n],,&) = (Vx,n,&), since
(X, 7, = %L:O (q))—(t)*@t(p)ﬁ = 0 and ¢ is equivariant.

Since the slice representation acts trivially on the normal space of a principal orbit,
the proof of the previous proposition readily implies

COROLLARY 3.2.5
Let G act polarly on M. Then every G-equivariant vector field on a principal
orbit is VL -parallel.

There exists a partial local converse of the previous corollary. Let G be a Lie
group acting on a connected Riemannian manifold M, and denote by A, the open
and dense subset of M/ that is formed by all points in M that lie on principal orbits of
the action. We say that (G acts locally polar on M if the distribution » on M, given
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by the normal spaces v, (G - p) to the principal orbits is integrable (and hence with
totally geodesic leaves, by the same proof as Theorem 3.2.1).

PROPOSITION 3.2.6

Let G be a Lie group acting on a connected Riemannian manifold M. If every
equivariant normal vector field on a principal orbit is VL -parallel, then G acts
locally polar on M.

PROOF Let & and &2 be G-equivariant vector fields tangent to v and
X a Killing vector field induced by . Then (V¢ &y, X) = (£, Ve, X) =
—(&2,Vxé& — [X,&1]) = 0, since & is parallel and [X,&;] = 0 by the same
argument as in the proof of Proposition 3.2.4. Thus v is autoparallel and
hence, in particular, integrable.

The following proposition will be used for the geometric study of the orbits of the
isotropy representation of a symmetric space.

PROPOSITION 3.2.7

Let G act polarly on M and let ¥ be a section. If S s a connected totally
geodesic submanifold of M that intersects all G-orbits orthogonally, then there
exists an isometry g € G such that ¢(S) C X.

PROOF We can assume that S is not a point. Then there exists a point
p € S that lies on a principal orbit. Let g € G such that g(p) € . Then we
have g. 1,5 C g«1p(G - p) = vy(p)(G - p) = T, %, which implies g(.5) C ¥ since
both ¢(S) and ¥ are totally geodesic and connected and ¥ is complete. 0

REMARK 3.2.8 Let GG be a connected Lie subgroup of SO(n) that acts
polarly on R” and let G - p be an orbit. Then there exists an open neighbour-
hood V of 0 in the normal space v, (G- p) with the following property: ifv € V
and G- (p+v) has the same dimension as G- p, then the connected component
of the isotropy subgroup of G at p fixes v (and therefore both orbits are
parallel).

PROPOSITION 3.2.9

Let G be a connected Lie subgroup of SO(n) that acts polarly on R™. If S is
a submanifold of R™ that s locally invariant under the action of G, then G
acts locally polar on S.

PROOF Let p € S such that g-p C 7,5 has maximal dimension. Since the
dimension of the G-orbits does not decrease locally, we can assume that all



46 Submanifolds and Holonomy

(local) G-orbits in S have the same dimension as G-p. Let V(p) = p+v,(G-p)
be the affine normal space to the orbit G - p in R™. We will show that the
intersection of V(p) and S (by taking a smaller S if necessary) is a section for
the (local) G-action on S (see [187]). As T,V (p) + 1,5 = vp(G - p) + 1,5 =
R™ ¥ := V(p) NS is a submanifold of S whose dimension is equal to the
codimension of the GG - p in S. Tt remains to prove that V(p) NS meets
orthogonally local orbits of G in S. Let ¢ € V(p) NS and v = ¢ — p. Then
the orbit G - ¢ = G - (p+ v) has the same dimension as G - p. By Remark
3.2.8, both orbits must be parallel (possibly by considering a smaller S). Thus
V(p) = V(¢) and hence & = V(¢)NS, which says that G-¢N.S is perpendicular
to X at q.

REMARK 3.2.10 An important property of polar actions on R” is that
they have no exceptional orbit. This can be shown directly by arguments pre-
sented in this section, but an easier proof will be given in Section 5.4 (Corollary
5.4.3) by using properties of isoparametric submanifolds.

REMARK 3.2.11 In [91] Gorodski, Olmos and Tojeiro introduced a new
invariant for isometric actions of compact Lie groups, which they called copo-
larity. Roughly speaking, it measures how far from being polar the action is.
The idea is to generalize the notion of section. They call minimal k-section
(through a regular point p of the action) the smallest connected, complete,
totally geodesic submanifold of the ambient space passing through p that in-
tersects all the orbits and such that, at any intersection point with a principal
orbit, its tangent space contains the normal space of that orbit with codim-
ension k. The integer k 1s called copolarity of the isometric action. Polar
actions correspond to the case k = 0.

b) s-representations.

We first recall the definition of an s-representation (cf. Appendix A.4). Let S be
a simply connected semisimple Riemannian symmetric space. If G is the identity
component of the full group of isometries of 5, then (G acts transitively on S and
we can write S = /K, where K is the isotropy subgroup of G at a point p € S.
Since S' is simply connected and G is connected, K is also connected. The isotropy
representation of (/K at p is the Lie group homomorphism x : & — SO(T,95)
given by y(k) = k.p,. Note that x is injective, since any isometry that fixes p is
completely determined by its differential at this point. By an orbit of the isotropy
representation of S at p we mean an orbitin 73,5 of the group x (K). If the base point
p is replaced by ¢ = ¢p, g € G, the resulting isotropy representation is equivalent
to the one at p. For this reason, we will often omit the base point and will simply
speak of the isotropy representation of the symmetric space S. Note that the s-
representation of a symmetric space of noncompact type is the same as the one of
the corresponding dual simply connected symmetric space of compact type.
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Some important properties of s-representations that we will discuss in Chapters 4,
5 and 6 are the following: The group x(K) coincides with the holonomy group of
S’ at p. Moreover, the Lie algebra of this holonomy group coincides with the linear
span of the set {R,(X,Y) | X,Y € T,5}, where R, is the curvature tensor of
S at p. Therefore, the holonomy representation of a simply connected semisimple
symmetric space .S = G/ K coincides with the isotropy representation of G/ K.

REMARK 3.2.12 If g=t®p is the Cartan decomposition associated to
the symmetric pair (G, K), then the isotropy representation of S is equivalent
to the adjoint representation of K on p. If the symmetric space is a compact
Lie group H, the corresponding symmetric pair is (H x H, AH), where AH =
{(h,h) | H € H}, and the isotropy representation is equivalent to the adjoint
representation of H on its Lie algebra §.

The orbits of s-representations are known as R-spaces, real flag manifolds (see
also Appendix A.4, page 310), or generalized real flag manifolds, or more precisely,
as standard embeddings of R-spaces (cf. [115,117,118, 146]). They play an impor-
tant role in geometry, topology and representation theory and have been extensively
studied.

We will now prove (see also [27] and [56]) that the isotropy representation of
S = G/K is polar, that is, there exists a linear subspace ¥ of p which meets all
Ad(K)-orbits, and is perpendicular to the orbits at the points of intersection.

THEOREM 3.2.13
Let (G, K) be a Riemannian symmetric pair of a simply connected semisimple
Riemannian symmetric space S, and let g = € be the corresponding Cartan
decomposition of the Lie algebra g of G. Then the adjoint representation of
K on p 1s polar and every mazimal Abelian subspace of yp is a section.

PROOF We can assume that S is irreducible and of compact type, and
that the Riemannian metric on S 1s normalized in such a way that the inner
product (-,-) on p = 7,5 that is induced from the Riemannian metric on S
is equal to the negative of the Killing form B of g. We choose a point v € p
such that the orbit Ad(K) - v is principal, and denote by X the affine normal
space to this orbit at v, that is, ¥ = {v + £ | £ € 1, (Ad(K) - v)}. Note that
0 € X, since —v € v, (Ad(K) - v). Thus X = v, (Ad(K) - v), where we regard
the normal space v, (Ad(K) - v) as a linear subspace of p.

i) X meets every orbit: Let Ad(K) - w be another orbit. By compactness of
K and homogeneity of Ad(K) - v we can assume that the distance (induced
from (-, -)) between v and w is equal to the distance between the two compact
orbits. Tt is easy to see that w — v belongs to the normal space v, (Ad(K) - v),
and hence w € v + v, (Ad(K) - v) = X. This proves that ¥ meets every orbit.

ii) ¥ is an Abelian subspace of p: If w € X, then [u,v] € & since [p,p] C &
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If € ¢ is arbitrary, then B([u,v],2) = —B(u,[z,v]) = 0, since [z,v] €
Ty (Ad(K)-vand u € ¥ = vy (Ad(K)-v). This implies [u, v] = 0 since B is non-
degenerate. For u,w € ¥ we compute [[u, w],v] = [[u, v], w] + [u, [w,v]] = 0,
since [u,v] = 0 = [w, v]. This shows that [u, w] lies in the isotropy subalgebra
£, of € at v. But [u, w] must also be in the isotropy subalgebra of ¢ at any
point in X, since v is a point in a principal orbit (note that ¥ is a geodesic
slice, cf. Lemma 3.1.2). In particular, [[u, w], w] = 0. Moreover, [u,w] = 0,
since B([u, w], [u, w]) = —B([u, w], w],u) = 0.

iii) ¥ meets orbits orthogonally: If v € ¥ and z € T, X, then B(T, (Ad(K) -
u,z) = B([t,u],z) = B(& [u,2]) = 0, since X is Abelian. This finishes the
proof that the adjoint action of K on p 1s polar.

iv) The section Y. is a maximal Abelian subspace: Suppose that

Y = v, (Ad(K)v) C ¥

and Y/ is a maximal Abelian subspace of p. Then one can show, as in the
proof of (iii), that ¥’ is perpendicular to the orbit Ad(K) - v at v. Hence,
Y C vy (Ad(K) - v), which implies X = ¥/,

Example 3.3 Real flag manifolds

We consider the symmetric space S = SL(n,R)/SO(n). The Lie algebra
sl(n,R)of SL(n,R) has the Cartan decomposition sl(n,R) = s0(n)®S,, where
S, denotes the real vector space of all traceless symmetric n X n-matrices with
real coefficients. The isotropy representation of SO(n) is just conjugation on
S, by matrices in SO(n). A section is given by the diagonal matrices with
trace zero. The orbits are the standard embeddings of the real flag manifolds,
that is, the varieties of all possible arrangements {0} C V3 C ... C V; C R",
where V; is a linear subspace of R™ of fixed dimension. A special case is
the orbit through the diagonal matrix with entries (1,0,...,0), which is the
Veronese embedding of the real projective space RP"~ ! in &, .

A flat in a symmetric space S is a connected, complete, totally geodesic, flat sub-
manifold. Every complete geodesic is a one-dimensional flat. The tangent spaces
to flats at p are in