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The geometry of curves and surfaces has attracted mathematicians, physicists and
other scientists for many centuries. Starting from simple geometric observations,
mathematicians produce highly sophisticated theories that often lead not just to a
deeper understanding of the observations made at the beginning, but also to further
questions. Curves are one-dimensional objects and surfaces have two dimensions.
One question that often arises is: What happens in higher dimensions? This is a
natural question, since experience tells us that, in many instances, more than two
dimensions are relevant. The generalizations of curves and surfaces to higher di-
mensions are submanifolds.
In this bookwe deal with particular questions about the geometry of submanifolds.
For Jürgen Berndt, the gateway to this area has been the classiÞcation by Elie Car-

tan of isoparametric hypersurfaces in real hyperbolic spaces. In his doctorate thesis
he investigated the analogous problem for complex hyperbolic spaces. Surprisingly,
a full classiÞcation is still not known, and recent results show that this problem is
much more difÞcult than expected. These recent results stem from the author�s in-
vestigations about isometric actions with an orbit of codimension one, so-called co-
homogeneity one actions. Cohomogeneity one actions are currently of interest in
Riemannian geometry for the construction of metrics with special properties, for
instance, Einstein metrics, metrics with special holonomy and metrics of positive
sectional curvature. The investigation of actions on manifolds and the geometry of
their orbits is a central theme in his research.
Submanifold geometry is the primary research topic of Sergio Console. He has

been particularly interested in the interaction of algebraic and geometric methods for
the study of the Riemannian geometry and the topology of submanifolds of space
forms with simple geometric invariants, for example, isoparametric or homogeneous
submanifolds. In particular, he learned from the third author how to use holonomy
methods in submanifold geometry, a theme he discussed much with the Þrst author
in 1995 when they bothworked at the University of Cologne. This was the beginning
of the plan to write the present monograph, and collaboration on this project started
when all the authors met in Turin in 1997.
Carlos Olmos is mainly interested in local and global submanifold geometry in

space forms, in particular in problems related to the so-called normal holonomy
that combines local and global methods. He is also interested in Riemannian and
Lorentzian geometry. The subjects of his doctoral thesis, directed by Cristian Sán-
chez, motivated most of his research.
Many available textbooks deal with the geometry of curves and surfaces, the clas-

sical topic for introductory courses to differential geometry at universities. In con-



trast, only few books deal with submanifolds of higher dimensions. Although many
books on differential geometry contain chapters about submanifolds, these chapters
are often quite short and contain only basic material. A standard reference for sub-
manifold geometry has been Geometry of Submanifolds by Bang-yen Chen, but this
book was written in 1973 and concerned research problems that were of interest at
that time. Books dealing with more recent problems from submanifold geometry
are Critical Point Theory and Submanifold Geometry (1988) by Richard Palais and
Chuu-lian Terng, Submanifolds and Isometric Immersions (1990) byMarcos Dajczer
et al., Tubes (1990) by Alfred Gray, and Lie Sphere Geometry with Applications to
Submanifolds (1992) by Thomas Cecil. To some extent, these books deal with top-
ics that also appear in our book, but, for these problems, our approach is different
and relies on methods involving the holonomy group of the normal connection of a
submanifold. These methods originated from the Normal Holonomy Theorem that
was proved by the third author in 1990. The Normal Holonomy Theorem is the ana-
logue for submanifold geometry in space forms of Marcel Berger�s classiÞcation of
holonomy groups of Riemannian connections on manifolds. Since 1990, normal hol-
onomy has developed as a powerful tool in submanifold geometry. The purpose of
this book is to present a modern and self-contained introduction to submanifold geo-
metry with emphasis on topics where the tool of normal holonomy had great impact.
This book is aimed at researchers and graduate students in mathematics, in particular
in geometry, and could be used as a textbook for an advanced graduate course.
We brießy describe the contents of this book. Until now, the main applications

of normal holonomy concern submanifolds of space forms, that is, manifolds of
constant sectional curvature. For this reason, we Þrst present an introduction to sub-
manifolds in space forms and discuss in detail the fundamental results about such
submanifolds. Important examples of submanifolds of Euclidean spaces are orbits
of linear Lie group actions, and, for this reason, we investigate in great detail the
geometry of such orbits. Then we introduce the concept of normal holonomy and
present the Normal Holonomy Theorem together with its proof and some applica-
tions. In great detail, we apply the tool of normal holonomy to study isoparametric
submanifolds and their focal manifolds, orbits of linear Lie group actions and hom-
ogeneous submanifolds, and homogeneous structures on submanifolds. At the end
of the book we discuss generalizations to submanifolds of Riemannian manifolds,
in particular of Riemannian symmetric spaces. In an appendix, we summarize the
necessary facts about Riemannian manifolds, Lie groups and Lie algebras, homog-
eneous spaces, symmetric spaces and ßag manifolds, which the reader might Þnd
helpful.
Several proofs presented in the book have never appeared in the literature. For

instance, we present a new proof of Cartan�s theorem about the existence of totally
geodesic submanifolds of Riemannian manifolds, a result that is hard to Þnd in the
literature. An advantage of this book is that it contains much material that is currently
accessible only in a large number of published articles in various journals. The book
also contains a number of open problems that might attract the reader.
Of course, there are many interesting and fascinating problems in submanifold

geometry that are not touched on in this book. The reason is simply that there are too



many of these problems. Our selection of topics for this book has been motivated by
normal holonomy and, naturally, also by personal taste and interest.
To produce most of the illustrations we used the software SUPERFICIES by An-

gel Montesinos Amilibia of Universidad de Valencia. SUPERFICIES is freely dis-
tributed, with source code, under GNU General Public License and is available at
ftp://topologia.geomet.uv.es/pub/montesin/
We would like to thank Simon Chiossi, Antonio Di Scala, Anna Fino, Sergio

Garbiero and Simon Salamon for their careful reading of parts of the manuscript and
for their suggestions for improvements.
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These notes are motivated by recent progress in submanifold geometry in space
forms, using new methods based on the holonomy of the normal connection. Par-
ticular progress has been made in the framework of homogeneous submanifolds,
isoparametric submanifolds and their generalizations. In this monograph we present
an introduction to this topic and a thorough survey of all main results in this area. The
proofs presented here are, to some extent, new, resulting in a more uniÞed treatment
of this topic. At the end of the book, we discuss generalizations of some problems to
more general manifolds, in particular symmetric spaces.

The study of submanifolds in Euclidean space has a long tradition, and many beau-
tiful results and theories emerged from it. The Þrst objects of interest were surfaces
in 3-dimensional Euclidean space on which certain geometric or analytic properties
were imposed. For example, Weingarten surfaces were deÞned by a functional rela-
tionship between their principal curvatures. This class of surfaces contains minimal
surfaces and surfaces of constant mean curvature, both of which still attract much
interest. The immediate generalization to higher dimension is the study of hyper-
surfaces in Euclidean spaces of arbitrary Þnite dimensions. A fundamental result of
this theory states that principal curvatures, together with the integrability conditions
given by the equations of Gauss and Codazzi, determine uniquely the hypersurface
up to a rigid motion of the Euclidean space. Note that higher dimensional hypersur-
faces are more rigid than surfaces. Indeed, by the Beez-Killing Theorem, the second
fundamental form of an �-dimensional hypersurface with� � � is generically de-
termined by the Þrst, see [12] and Exercise 2.8.1.

In higher codimension the situation is slightly more complicated, since one can
choose among inÞnitely many normal directions. Each normal direction induces a
set of principal curvatures, and the information regarding all these sets of principal
curvatures is encoded in the second fundamental form, or shape operator, of the sub-
manifold. The canonical derivative of Euclidean space induces in a natural way a
metric connection on the normal bundle of the submanifold, the so-called normal
connection. The second fundamental form, the normal connection, and the inte-
grability conditions given by the equations of Gauss, Codazzi and Ricci determine
the submanifold locally, up to a rigid motion of the Euclidean space. Such higher
complexity is the reason that research on the local geometry of submanifolds of Eu-
clidean space with simple geometric invariants is relatively recent compared with
surface geometry.

A very inßuential paper by Chern, do Carmo and Kobayashi [55] on this topic

1



2 Submanifolds and Holonomy

was published in 1971. In this paper the authors studied submanifolds with second
fundamental form of constant length and this was the starting point for quite a few
investigations in submanifold geometry. For instance, parallelism of the second fun-
damental form was Þrst mentioned in [55], a geometric feature widely studied in the
1980s. Submanifolds with parallel second fundamental form in Euclidean spaces are
locally orbits of a distinguished class of representations, namely the isotropy rep-
resentations of semisimple symmetric spaces, or �-representations for short. These
�-representations have a fundamental role in the context of our investigations. For
many reasons, the orbits of �-representations play a role in submanifold geometry
similar to that of symmetric spaces in Riemannian geometry.

A simple geometric condition for submanifolds of higher codimension is ßatness
of the normal bundle (the Þrst thorough account on the subject is maybe the book by
B.Y. Chen [48] published in 1973). In this case, the normal connection is trivial and
the geometric data are all encoded in the shape operator, consisting in this case of a
commuting family of selfadjoint operators that can be simultaneously diagonalized.
When the principal curvatures (with respect to parallel normal Þelds) are constant,
one gets a very important class of submanifolds: isoparametric submanifolds. These
submanifolds are generalizations of isoparametric hypersurfaces, which were intro-
duced at the beginning of the 20th century in the context of geometrical optics and
studied by Segre, Levi Civita and É. Cartan, among others.

There is a strong link between isoparametric submanifolds and �-representations.
In fact, as a consequence of a result by Thorbergsson [219], the orbits of �-represen-
tations are almost all submanifolds with constant principal curvatures, that is, prin-
cipal curvatures with respect to parallel normal Þelds along curves are constant.

In this book we will explore the central position of �-representations in the frame-
work of submanifold geometry in space forms. At the same time, we will illustrate
a method for investigating the local geometry of submanifolds of space forms. The
main tools are the following:

� Reduction of codimension (Theorem 2.5.1): allows one to ignore the part of
the normal bundle on which the shape operator vanishes.

� Moore�s Lemma for local splitting [139]: permits splitting a submanifold lo-
cally into irreducible components.

� Normal Holonomy Theorem [173]: this result yields the decomposition of the
representation of the normal holonomy group on the normal spaces into the
sum of irreducible representations, all of which are �-representations. It can be
regarded as a kind of extrinsic analogue to Rham�s decomposition theorem and
Berger�s classiÞcation of Riemannian holonomy groups. The Normal Holo-
nomy Theorem involves geometric constructions such as focal manifolds and
holonomy tubes.

We will also present some recent results on the geometry of homogeneous sub-
manifolds of space forms. In the case of hyperbolic spaces, the strategy is to regard
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them as hypersurfaces of a Lorentz space and Lorentzian holonomy plays an impor-
tant r�ole.

We now summarize the contents of this book.

In Chapter 2 we explain the basics of submanifold geometry in space forms. We
introduce the main local invariants and derive the fundamental equations for subman-
ifolds. Then we investigate some simple conditions on local invariants. For example,
the vanishing of the second fundamental form characterizes totally geodesic subman-
ifolds, which we shall consider in Section 2.4, where we classify totally geodesic
submanifolds of space forms. If a submanifold� of a Riemannian manifold �� is
contained in a totally geodesic submanifold of �� of dimension less than the dim-
ension of �� , one says that there is a reduction of the codimension of� .
In Section 2.5 we explain Theorem 2.5.1 (reduction of the codimension), the Þrst

of our three basic tools. A natural generalization of totally geodesic submanifolds
is that of totally umbilical submanifolds, which means that the second fundamental
form is proportional to the metric.
In Section 2.6 we discuss the classiÞcation of totally umbilical submanifolds of

space forms. The second of our main tools, Moore�s Lemma for the local splitting
of submanifolds, is explained in Section 2.7.

Chapter 3 is devoted to the study of an important class of submanifolds, namely
those arising as orbits of isometric actions of Lie groups on Riemannian manifolds.
These submanifolds, which we shall call (extrinsically) homogeneous, have a strong
regularity, since their geometric invariants are the same at each point (modulo some
suitable identiÞcation).
In Section 3.1 we present the general setup, introducing some basic concepts such

as orbit types, principal orbits, isotropy and slice representations. We will investi-
gate orbits from two different viewpoints: the geometry of a single orbit, and the
geometry of the whole set of orbits. Indeed, an action on a Riemannian manifold ��
determines a foliation (often singular) whose leaves are the orbits of the action. For
some distinguished types of representations, like �-representations and polar actions,
introduced in Section 3.2, it is more interesting to investigate the whole orbit foli-
ation, since the subgroup of isometries of the ambient space that leaves some orbit
invariant does not depend on the orbit.
Polar actions on�� are characterized by the existence of a linear subspace, called

a section, that intersects every orbit and lies perpendicular to the orbits at intersec-
tion points. Now, �-representations are polar (the tangent space to any ßat in the
symmetric space is a section) and, by Dadok�s Theorem 3.2.15 [63], have the same
orbits as polar actions. The existence of a section implies that the orbit foliation
has remarkable geometric properties. The orbits are all equidistant and their tangent
spaces are parallel. Moreover, if� is a principal orbit, the normal bundle to� is ßat
with trivial holonomy, and the principal curvatures of� with respect to any parallel
normal Þeld are constant. This leads to the study of isoparametric submanifolds of
�
�, which will be carried out later in Chapter 5.
In Section 3.3 we will reverse our approach, starting from a homogeneous Rie-

mannian manifold and examining whether it can be viewed as an orbit in some Rie-
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mannian manifold or, in other terms, if it admits an equivariant embedding. The
study of a single orbit is carried out in Sections 3.4 and 3.5, where we investigate
homogeneous submanifolds of space forms.
In Section 3.5 we show how the theory of homogeneous submanifolds of the hy-

perbolic space �� can be used to obtain general results on the action of a connected
Lie subgroup of ���	 �� on the Lorentzian space ����, [69].
In Section 3.6 we describe the extrinsic geometry of orbits and give, among other

things, a description of the second fundamental form of the orbit of a representation
of a Lie group 
 in terms of the corresponding Lie algebra representation. As al-
ready mentioned, symmetric submanifolds of�� (and their generalizations to spaces
of constant curvature) are historically one of the Þrst class of homogeneous subman-
ifolds that have been studied and classiÞed. Section 3.7 is devoted to this topic.
In Sections 3.8 and 3.9, we consider classes of submanifolds sharing properties

with homogeneous ones. The most classical �homogeneous-like� property is the
constancy of principal curvatures, which characterizes isoparametric hypersurfaces
of space forms. Historically, these hypersurfaces are deÞned as regular level sets of
isoparametric functions, so that they determine an orbit-like foliation of the ambient
space. Thus, isoparametric hypersurfaces are very close to being homogeneous (and
actually, in many cases, they are). In higher codimension, a natural �homogeneous-
like� property is that the algebraic type of the second fundamental form does not
depend on the point. This is an extrinsic version of curvature homogeneous mani-
folds [225].

In Chapter 4 we explore holonomy methods for studying submanifold geometry.
In Section 4.1 we recall some important results about the holonomy of a Riemann-
ian manifold, which will allow us to make a comparison with results on normal
holonomy. Important in the extrinsic context is the Normal Holonomy Theorem
4.2.1 [173], which asserts that the nontrivial part of the action of the normal holon-
omy group on a normal space is an �-representation. The Normal Holonomy The-
orem is an extrinsic analogue of Berger�s Theorem on Riemannian holonomy, and
one of its main consequences is the recognition that orbits of �-representations play a
similar role in submanifold geometry as Riemannian symmetric spaces in Riemann-
ian geometry. This is illustrated in Section 4.4, where we deÞne some important tools
for the study of submanifolds with some regularity (e.g., submanifolds with parallel
normal Þelds whose shape operator has constant eigenvalues, isoparametric subman-
ifolds): focalizations, building holonomy tubes. These tools will be very important
in the subsequent chapters.

Chapter 5 is devoted to the study of certain generalizations of isoparametric hy-
persurface to higher codimensions.
In Section 5.2 we will discuss some geometric properties of isoparametric sub-

manifolds. Among them is the important fact, due to Terng [216] (and to Carter and
West [38] in the particular case of codimension three), that one can associate a Þnite
reßection group to isoparametric submanifolds, the Coxeter group. The singular lev-
els of isoparametric maps are actually focal manifolds of the isoparametric submani-
folds. Thus, isoparametric maps determine a singular foliation of the ambient space.
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If � is a Þxed isoparametric submanifold of ��, the leaves are the parallel mani-
folds�� � ��� ���� � � ���, where � is an arbitrary parallel normal vector Þeld.
Suppose that one drops the assumption that the normal bundle is ßat in the deÞni-
tion of isoparametric submanifold, and requires only that the shape operator � have
constant eigenvalues for any parallel normal vector Þeld ���� along any piecewise
differentiable curve. Then one deÞnes a submanifold of a space form with constant
principal curvatures. Strübing studied these submanifolds in [205] (even though he
called them isoparametric) and noticed that the focal manifolds of an isoparametric
hypersurface are submanifolds with constant principal curvatures. This result was
generalized by Heintze, Olmos and Thorbergsson in [96] to isoparametric subman-
ifolds. Indeed, in [96] the converse is proved as well, namely that a submanifold
with constant principal curvatures is either isoparametric or a focal manifold of an
isoparametric submanifold (Theorem 5.3.3 here). The paper [205] of Strübing is
actually of great importance for the methods adopted by him: he constructed tubes
around isoparametric submanifolds and used normal holonomy for the study of sub-
manifolds with constant principal curvatures. These are the same methods we make
use of extensively.

In Section 5.5 we examine a slightlymore general situation than that of an isopara-
metric submanifold. We suppose there exists a (locally deÞned) parallel normal sec-
tion that is not umbilical and isoparametric, i.e., the eigenvalues of the shape operator
� in the � direction are constant (and � is not a multiple of the identity). Our aim
is to study the geometric consequences of this property. What we will show is that
this imposes severe restrictions on the geometry of the submanifold. Namely, if a
submanifold of the sphere with this property does not (locally) split, then it is a sub-
manifold with constant principal curvatures [61], (Theorems 5.5.2 and 5.5.8). This
result also has a global version for complete simply connected submanifolds [70],
(Theorem 5.5.8).

In Chapter 6 we continue the study of geometric invariants by distinguishing sub-
manifolds with constant principal curvatures from other submanifolds. We weaken
the above condition on the existence of a (nontrivial) parallel isoparametric normal
Þeld. We require only that the submanifold admits �enough� parallel normal Þelds
or, in other words, that the normal holonomy group has a nontrivial pointwise Þxed
subspace whose dimension is called the rank of the immersion. In the case of a hom-
ogeneous submanifold� of Euclidean space it was proved in [175] that if the rank
is larger than or equal to 2 then� is an orbit of an �-representation. A crucial fact in
the original proof is the following: the curvature normals of a homogeneous subma-
nifold (which can be deÞned as in the isoparametric case, taking into consideration
only directions in the ßat part of the normal bundle) have constant length. In [70] it is
actually shown that this property alone, together with the same higher rank assump-
tion, yields a generalization (Theorem 6.1.7) of the above higher rank rigidity result.
Unlike the theorems on higher isoparametric rank rigidity (Theorem 5.5.2 and 5.5.8),
Theorem 6.1.7 is global and is, in fact, false without the completeness assumption.
As a consequence, one can derive a global characterization of an isoparametric sub-
manifold: a complete immersed and irreducible submanifold � ��� � �

�,� � �
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with ßat normal bundle is isoparametric if and only if the distances to its focal hy-
perplanes are constant on� .
Moreover, we apply these higher rank rigidity results to pursue a study of normal

holonomy (and, more generally, ��-parallel transport) of a homogeneous subma-
nifold. In the more general setting of homogeneous (pseudo)-Riemannian vector
bundles, the holonomy algebra can be described in terms of projection of Killing
vector Þelds on the homogeneous bundle (see [60], for more details). In the case of
Riemannian manifolds, this yields Kostant�s method for computing the Lie algebra
of the holonomy group of a homogeneous Riemannian manifold. One can compute
normal holonomy of homogeneous submanifolds by projecting on the normal spaces
the Killing vector Þelds determined by the action (Theorem 6.2.7).

In Chapter 7, we give a differential characterization of homogeneous subman-
ifolds. Using this framework, we characterize orbits of s-representations and we
study isoparametric submanifolds, giving a proof of Thorbergsson�s theorem, which
asserts that isoparametric submanifolds of higher codimension are homogeneous and
actually orbits of �-representations.

In Chapters 8 and 9, we generalize certain topics to a broader class of manifolds.
In Chapter 8, we Þrst discuss the fundamental equations for submanifolds in Rie-
mannian manifolds. One of the basic methods for studying submanifolds in general
Riemannian manifolds is to investigate tubes around them and their focal sets. The
tool for this is Jacobi Þeld theory, which will be explained in detail. We then continue
with a discussion of totally geodesic, totally umbilical and symmetric submanifolds
in Riemannian manifolds.
We present a proof of Cartan�s theorem on local existence of totally geodesic sub-

manifolds in Riemannian manifolds, and Hermann�s theorem about the existence of
complete totally geodesic submanifolds in Riemannian manifolds. We discuss how
totally umbilical submanifolds are related to extrinsic spheres and present a char-
acterization of extrinsic spheres by circles. We Þnally discuss the relation between
symmetric submanifolds and submanifolds with parallel second fundamental form
in general Riemannian manifolds.

In Chapter 9, we keep to submanifold theory within symmetric spaces. Symmet-
ric spaces are natural generalizations of space forms possessing a beautiful geometric
structure. We discuss the classiÞcation problems of totally geodesic submanifolds,
of totally umbilical submanifolds and extrinsic spheres, of symmetric submanifolds,
of submanifolds with parallel second fundamental form and of homogeneous hyper-
surfaces.

In theAppendix, we brießy recall basic material needed for this book: Riemannian
manifolds, Lie groups and Lie algebras, homogeneous spaces, symmetric spaces and
ßag manifolds.



������� �

������ �� ��	
������ ������ ��
����� ���
�

In this chapter, we present the basics of submanifold theory in spaces of constant
curvature, or brießy, in space forms. In the literature there are mainly three different
deÞnitions for a submanifold of a Riemannian manifold. Let� and �� be Riemann-
ian manifolds. When we have an isometric immersion from� into �� we say that
� is an immersed submanifold of �� . When� is a subset of �� and the inclusion
� �� �� is an isometric immersion, then� is said to be a submanifold of �� . If, in
addition, the inclusion is an embedding, then� is said to be an embedded subma-
nifold of �� . Note that a submanifold is embedded if and only if its topology is the
one that is induced from the ambient space. The immersion of a real line as a Þgure
eight in a plane is an example of an immersed submanifold that is not a submanifold.
And a dense geodesic on a torus is an example of a submanifold that is not embed-
ded. The local theories for these three kinds of submanifolds are the same, the only
difference arises when dealing with global questions. Therefore, when we deal with
local properties of submanifolds, we make no distinction and just say submanifold.

The Riemannian metric on a manifold induces a Riemannian metric on a sub-
manifold in a natural way. More precisely, let � be a submanifold of a Riemann-
ian manifold �� . At each point � � � , the inner product ��� ��� on �� �� induces
an inner product on ��� that we denote by the same symbol. This family of in-
ner products on the tangent spaces of � forms a Riemannian metric on � , the
so-called induced Riemannian metric. Note that this is a local notion and has to
be interpreted for an isometric immersion � � � � �� by means of the formula
���� �� � ������ ���� ����� for all � �� and��� � ��� . We will always view
a submanifold of a Riemannian manifold with the metric that is induced in this way.

We now give a more detailed description of the contents of this chapter. In Section
2.1, we start with the fundamental equations of submanifold theory. The equations
of Þrst order, the so-called Gauss and Weingarten formulae, deÞne the basic objects
for the study of submanifolds: the second fundamental form, the shape operator and
the normal connection. The second fundamental form and the shape operator contain
the same information and just provide different viewpoints of the same aspects. The
fundamental equations of second order, the so-called equations by Gauss, Codazzi
and Ricci, represent higher-dimensional generalizations of the Frenet equations that
are familiar to us from the differential geometry of curves. The Gauss-Codazzi-
Ricci equations determine locally a submanifold of a space form in a unique way up

7
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to isometric congruence of the space form. This is the content of the fundamental
theorem of local submanifold geometry in space forms, Theorem 2.1.2.
As an application of the fundamental equations we present the standard models

for the three different types of spaces forms in Section 2.2: the Euclidean space, the
sphere and the real hyperbolic space.
If 	 is a normal vector of a submanifold� at a point �, the shape operator 
� of

� in direction 	 is a self-adjoint endomorphism of the tangent space � �� of� at
�, and hence is diagonalizable. Its eigenvalues are the so-called principal curvatures
of � at � in direction 	. Almost all geometric properties of a submanifold involve
the shape operator, or equivalently, the second fundamental form, and in particular
the principal curvatures. For this reason, we investigate principal curvatures more
thoroughly in Section 2.3.
The simplest condition one can impose on the second fundamental form is that

it vanishes. This characterizes totally geodesic submanifolds, which we consider in
Section 2.4. The main result of that section is the classiÞcation of totally geodesic
submanifolds of space forms.
If a submanifold� of �� is contained in a totally geodesic submanifold of �� of

dimension less than ��� �� , one says there is a reduction of the codimension of� .
In Section 2.5, we derive a sufÞcient condition for reduction of codimension in space
forms, Theorem 2.5.1.
A natural generalization of totally geodesic submanifolds is that of totally umbili-

cal submanifolds, which means that in each normal direction the shape operator is a
multiple of the identity. A basic example is a sphere in Euclidean space. In Section
2.6, we derive the classiÞcation of totally umbilical submanifolds of space forms.
Another reduction process for submanifolds is that of splitting as an extrinsic prod-

uct. This so-called reducibility of submanifolds is discussed in Section 2.7. The main
result is Moore�s Lemma. Both Moore�s Lemma and the theorem on the reduction
of codimension are fundamental tools for the study of submanifolds of space forms.

��� ��� ��	
���	�� ������	� ��� �����	����
� �� �����
�����

In this section, we present the fundamental equations for submanifolds of space
forms and discuss one of their major applications, the Fundamental Theorem of Lo-
cal Submanifold Geometry in Space Forms. A few details about space forms, or
spaces of constant sectional curvature, can be found in the next section. In this sec-
tion, we denote by �� an �-dimensional space of constant curvature �.

a) The fundamental equations of Þrst order

We Þrst want to derive the fundamental equations of Þrst order, which then induce
the main objects for the study of submanifolds: second fundamental form, shape
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operator and normal connection. These equations can be generalized without any
problems to any Riemannian manifold as ambient space, a case that will be studied
later.
The Riemannian metric on �� induces along� an orthogonal splitting of � ��

� �� �� � �� � � �

The vector bundle � is called the normal bundle of� . The Þbre at � �� of �
is the normal space at � and is denoted by �� (or ��� �). Let ��� be vector
Þelds on� . In order to differentiate them with respect to the Levi Civita connection
�� of �� we have to extend them to vector Þelds on �� . But it turns out that, for our
purposes, it does not matter how the extension is done, therefore, we introduce no
new symbols. We decompose ���� into its tangent part � ���� �� and its normal
part � ���� ��. Then the Levi Civita connection� of� is given by

� ���� �� � ��� �

and one deÞnes the second fundamental form of� by

����� � �� � ���� �� �

This gives the orthogonal decomposition

���� � ��� 	 ����� ��

which is called the Gauss formula. The Gauss formula and the vanishing of the
torsion of �� and � imply that the second fundamental form is a symmetric tensor
Þeld with values in the normal bundle of� .

A section of � is called a normal vector Þeld of� . Let 	 be a normal vector
Þeld of� and decompose ���	 into its tangent and normal component. The normal
part induces a connection �� on � , the so-called normal connection on � . We
now deÞne


�� �� 	� ���	�
��

The tensor Þeld 
� is called the shape operator of� in direction 	 and is related to
the second fundamental form � by the equation

������ �� 	� � �
���� � �
The symmetry of � implies that 
� is a selfadjoint tensor Þeld on� . The previous
equation also shows that for each � � � the endomorphism 
���� does not de-
pend on the extension of 	� as a normal vector Þeld. Thus, we can deÞne the shape
operator with respect to any normal vector of� . The collection of all these endo-
morphisms is called the shape operator of� and is denoted by 
. The orthogonal
decomposition

���	 � 	
�� 	���	
is known as the Weingarten formula.
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The formulas of Gauss and Weingarten are Þrst order equations.

b) The fundamental equations of second order

We will now derive three equations of second order, namely the equations of
Gauss, Codazzi and Ricci. For this we Þrst recall that the covariant derivatives of
the second fundamental form and of the shape operator are given by the formulas

��������� �� � ������� �� 	 ������ �� 	 �������� �

���
��� � ���
��� 	 
��
�
�� � ���
�� �	 
����� �	 
��

�
�� �

These two covariant derivatives are related by

���������� ��� 	� � ����
���� �� � ����
���� �� 	 �
��
�
��� �� �

Let � and �� be the Riemannian curvature tensor of� and �� , respectively. Recall
that if �� is a space of constant curvature �, its Riemannian curvature tensor is of the
form

������ �� � ����� ��� 	 ������ � �

We now relate � and �� with the extrinsic invariants ��
 and ��. Let ���� � be
vector Þelds on� . Using the formulas of Gauss and Weingarten we obtain

������ �� � ���
��� � 	 ���

���� 	 ������ ��

� ������ � 	 ���� ���	 ��� ���� 	 �������

	������ �� 	 ��
��� �� ���

� ���� � 	 ��������	 
������� 	������� ��

	����� 	 �������� 	
������� 	���������

	����� �� 	 ������ �� 	 ��������

� ����� �� 	 
������� 	
�������

	��������� ��	 ����������� �

The tangential component of this equation gives

����� ��� 	������ � � � ������ ���� � ����� �� 	
������� 	
������� �

and the normal component gives

� � � ������ ���� � ��������� �� 	 ����������� �

since �� has constant curvature �. The Þrst equation is called the Gauss equation,
the second one the Codazzi equation. If� is another vector Þeld on� , the Gauss
equation can be rewritten as

����� ������ � 	 ��������� ��
� ������ ���� � 	 ����� ��� ����� ��	 �������� ����� �� �
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And if 	 is a normal vector Þeld, the Codazzi equation can be rewritten as

����
���� �� 	 ����
������ � � �

Using again the formulas of Gauss and Weingarten, we obtain

� � ������ �	 � ���
��� 	 	 ���

���	 	 ������ �	

� ����	
�� 	��� 	� 	 ��� �	
�� 	���	� 	 
�
��� �	������ �	

� 	�� �
�� � 	 ����
�� �	
��
�
�� 	������ 	

	�� �
��� 	 ����
��� 	
��
�
�� 	������	

	
���� 	 
���� 	������ �	

� ���
��� 	 ���
��� 	������ �	 	 ��
���� �	 ����
�� � �

Here,
������ �	 � ������ 	 	������	 	������ �	

is the curvature tensor of the normal bundle with respect to the normal connection
��, the so-called normal curvature tensor of � . The tangential part of the latter
equation yields again the Codazzi equation. The normal part gives the so-called Ricci
equation, namely

� � � ������ �	�� � ������ �	 	 ��
���� �	 ����
�� � �

If � is another normal vector Þeld of� , the Ricci equation can be rewritten as

������� �	� �� � �

�� 
	���� � �

where 

�� 
	� � 
�
	 	 
	
�. If �� vanishes, one says that� has ßat normal
bundle. The geometric interpretation of a ßat normal bundle is that parallel transla-
tion with respect to�� of normal vectors along curves with the same initial and end
point in� depends only on the homotopy class of the curve. This will be discussed
later in more detail in the context of normal holonomy.
Note that, for submanifolds of space forms, the geometric interpretation of the

Ricci equation is that the normal curvature tensor measures the commutativity of the
shape operators. We summarize the fundamental equations in

������� ��	�	
��� � �� � �����	
��� �� � ����� ���� �� �� ��	���	� ��������� �� ���	 ���
����
	� �����
�	� ��� ��� � ������ ���� ���� ��� �	 � �	� � 	����
������ ���� 	� � �� � �
Gauss equation:

������ ���� � � ����� ������ � 	 ��������� ��
	����� ��� ����� �� 	 �������� ����� �� 
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Codazzi equation:
��������� �� � ����������� 

Ricci equation:
������� �	� �� � �

�� 
	���� � �

The fundamental equations of Gauss, Codazzi and Ricci play an analogous role
in submanifold geometry of space forms as the Frenet equations in the differential
geometry of curves. Namely, they sufÞce to determine, up to isometries of the ambi-
ent space, a submanifold of a space form. This is the conclusion of the fundamental
theorem of local submanifold geometry.

������� ��	�� 
��������� ������� �� ����� ����������
���������
��� � �� �	 ���
��	�
�	� �
���		
�	 ��	
����  � �
���		
�	 ������
��	�� ���� � �� ��	� �� �� � ����
� ��		���
�	 �	  �	� ����� � � ����
����
� ��	��� ��� �	 � �
�� ����� 
	 �  ��	� 
 �  � ������ � ��
�
���� � � ������ �� 	� ��� ��� � ��� � 	 � �� � � � � !������ �� 
 �	�
�� ���
��� ��� �����
�	� �� "����� #���$$
 �	� �
��
 ��� ���� ��� 	����� ��
���	� ��� ���� ��
	� � � � � ����� �%
��� �	 ���	 	�
���������� � �� � 
	
� �	� �	 
������
� 
�����
�	 � ���� � 
	�� � ����� ���� ��
��� �� ��	�
���	� ��������� �� � � �	 �� ���� ���� � �	� 
 ��� ��� ����	� ��	����	��
���� �	� ����� �������� �� � � �������
���� �	�  
� 
�������
� �� ��� 	����
��	�� �� � � ��� 
�����
�	 � 
� �	
��� �� �� �	 
������� �� ��
���� &����
����� 
� ��� 
������
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�����
�	� ���� ��� ���� ����	� ��	����	�� �����
�	� 	���� ��		���
�	� ���� ���� ��
	�
�� �� �� �	 
������� �� ��� ���
�	�
������

����� �� ���� � ����� ��� � � �� ���� ��� ��
��� � �
� ��� ����� ���
��� �������  ��� �� ������� ���  �� !� ��"��� ��� ������ �� �� 
#�$��

%�� � � �� �  !� ��� ������& �"� �� ��� '��������� �� ��� !"�����
�� ���  ���� � � �� ��(�� �  ���� ���� )� �� � !&

)��� � ��� 	 ����� � ��� )��	 � 	
�� 	���	
��� ��� �� ��� (���� ��� �� � ��� �� ����� 	 �� � ���� ��� *�"��+,���--�+
'�  � �."������ ����& ���� )� �� � /��  ���� ����� ���� ��� ���  "����"�� ��
)� ��������� ��"�� ����� �0���� �� ���� �����!������ � �� � �� � ��� �
)�+�������� ����� (��� �	�� ���� 	
� �� � ���� � � 1" � � ����� (��� �� "��."� "�
�� � ������ �������& �� �
� �� ������ !& �� ��� ����� �"�� ���+���� �� 	�
���� 2� ����

������� � � ��	�� � � 	 � �	�� �� 	 �	�� 
��� ��
� � )��	�� � �	 �	����� �	 �	�� ����� ��
	� )�� 	�� �� 	 �	������ 	 �	�� ������� 	 �	�� 
��� �� � � �
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c) Equations of higher order

The fundamental equations of Þrst and second order are the basic tools for in-
vestigating the geometry of submanifolds. However, one can derive further useful
equations of higher order.
We discuss here an example of a third order equation. To begin with, recall that

the second covariant derivative of the second fundamental form is given by

���
����

������ ��� � ����
�����

������ ��� 	 ������
��
������ ���

	�����
������

��� ��� 	 �����
���������

��� �

Then, taking the covariant derivative��
��
of the equation

�����
������ ��� � ����

����� ��� 	 �����
��� ���	 ��������

��� �

a straightforward computation yields the so-called Ricci formula

��
����

�	��
����

� � 	 )����� ��� � � �
The curvature operator )����� ��� acts on the tangent space as the Riemannian cur-
vature tensor and on the normal space as the normal curvature tensor. The notation
)����� ��� � � means that )����� ��� acts on the tensor � as a derivation.

������ 	
�
� 7& ��9��� ��� ��� � �� ��� �������� �� ��� ��(��� ���
Laplace-Beltrami operator :� 6�� ������ ��

:� �� ������� �

7���2 2� 2��� "�� ���� ����"��� ��������� :�� ��� ������ � � �� 
;;� ����"��
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��� ��� ������  "����"�� ������� ���� 2�� ����� ��� ������ �� �� ��� �����
!& ,����� �� ,���� ��� <�!�&���� 
;;� ���������� �� ��� ������" ����� ���
���  ��� �� � ������� �"!�������� �� � ��� � ���� ��  �������  "����"�� ��
=� ����  ���� ��� �������� ��

�:�� �� � ��
�
�	 
� Æ ��
� 	 
��
��

2���� �� �� ��� ��>���� �� � �������� �� � ������������ ���� �� ��� ��
� �

��� ��
��� �� ����� �����

A large part of this book deals with problems in space forms. For this reason, we
now take a closer look at the standard models of these spaces. The application of the
fundamental equations simpliÞes their description.

a) The Euclidean space �


Consider �
 as an �-dimensional smooth manifold equipped with the standard
smooth structure. At each point � � �
 we identify the tangent space ���
 of �


at � with�
 by means of the isomorphism

���

� �
 � ?���� �� � �

where ���� �� � 	 ��. Using this isomorphism we get an inner product � � � on
���


 by the usual dot product on�
, that is,

��� �� �

�
�	�

���� �

This family of inner products deÞnes a Riemannian metric � � � on �
. We call �


equipped with this Riemannian metric the �-dimensional Euclidean space, which we
also denote by�
. By means of the above isomorphism, the Levi Civita connection
� of �
 coincides with the usual derivative � of �
. It is then a straightforward
exercise to check that the Riemannian curvature tensor of�
 vanishes. The isometry
group ���
� of�
 is the semidirect product �����
, where �
 acts on itself by
left translations. Explicitly, the action of  �����
 on�
 is given by �
� !� � " �

" 	 ! and the group structure of ���
� is given by the formula �
� !� � �#� $� �
�
#�
$ 	 !�. The identity component � ���
� of ���
� is % ��� � �
 and the
quotient group ���
�&����
� is isomorphic to��.
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b) The sphere %
�'�

Let ' be a positive real number, and consider the sphere

%
�'� � �� � �

� � ��� �� � '�
with radius ' and center � in�

�. It is a smooth submanifold of �

� with a unit
normal vector Þeld 	 deÞned by

	� ��
3

'
� �

where we again use the canonical isomorphism ���
 �� �
. Differentiating 	 with
respect to tangent vectors of %
�'�, we obtain for the shape operator 
� of %
�'�
with respect to 	 the expression


�� � 	3

'
�

for each tangent vector� of %
�'�. The Gauss equation then gives us the Riemann-
ian curvature tensor � of %
�'�, namely

����� �� �
3

'�
���� ��� 	 ������ � �

This implies that %
�'� has constant sectional curvature '��. We usually denote the
unit sphere %
�3� by %
. The isometry group ��%
�'�� of %
�'� is the orthogo-
nal group  �� 	 3� acting on %
�'� in the obvious way. The identity component
���%
�'�� of ��%
�'�� is % �� 	 3�, and the quotient group ��%
�'��&���%
�'��
is isomorphic to��.

c) The hyperbolic space (


There are various models for the hyperbolic space. One of them is constructed in
a similar way to the sphere, but starting from a Lorentz space. We will refer to it as
the standard model. Consider�

� equipped with the bilinear form

��� �� �

�
�	�

���� 	 �

��

�

of signature ��� 3�. Identifying each tangent space of�

� with�

� as described
above, we get a Lorentzian metric on �

�, which we also denote by � � �. The
smooth manifold�

� equipped with this Lorentzian metric is called Lorentz space
and will be denoted by�
��. Let ' be a positive real number and

(
�'� �� �� � �
�� � ��� �� � 	'� � �

� ) � �
This is a connected smooth submanifold of �
�� with time-like unit normal vector
Þeld

	� ��
3

'
� �
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The tangent space ��(
�'� consists of all vectors orthogonal to 	� and hence is
a space-like linear subspace of �
��. Thus, the Lorentz metric of �
�� induces a
Riemannian metric on(
�'�.
An afÞne subspace � of �
�� is Riemannian, Lorentzian or degenerate if the re-

striction of � � � to the vector part of� is positive deÞnite, has signature ������ �	
3� 3� or is degenerate, respectively.
The shape operator of(
�'� with respect to 	 is given by


�� � 	3

'
�

for all tangent vectors � of (
�'�. The Gauss equation, which is valid also in the
Lorentzian situation, then gives for the Riemannian curvature tensor� of( 
�'� the
expression

����� �� � 	 3

'�
���� ��� 	 ������ � �

It follows that (
�'� has constant sectional curvature 	'��. We write (
 instead
of (
�3�. The orthogonal group  ��� 3� of all transformations of �
�� preserving
the Lorentzian inner product consists of four connected components, depending on
whether the determinant is 1 or 	3 and the transformation is time-preserving or
time-reversing. The time-preserving transformations in  ��� 3� are those that leave
(
�'� invariant and form the isometry group ��( 
�'�� of (
�'�. The identity
component ���(
�'�� is % ���� 3� and the quotient group ��( 
�'��&���(
�'��
is isomorphic to��.

Several other classical models of hyperbolic space are very useful for visualizing
geometric aspects of(
, for instance, for visualizing geodesics. We brießy mention
two of them.
The Þrst of these models is known as the half plane model

�" � �
 � " � �"�� � � � � "
�� "
 ) � �
endowed with the Riemannian metric

�*� �� ��� ��&"�
 �
In this model, the geodesics are either lines orthogonal to the hyperplane "
 � � or
circles intersecting the hyperplane "
 � � orthogonally.
The second model is known as the Poincaré disk model and is given by the open

ball
�" � �
 � 
"
 + #

with the Riemannian metric

�*� �� ��� ��&
�
3	 
"
�

@

��

�

In this model, the geodesics are circles orthogonal to the boundary sphere 
"
 � #
of the ball (including the degenerate circles given by diameters).
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d) The classiÞcation problem for space forms

The Riemannian manifold

��
��� ��

��
�
%
������� � �� � ) �
�

 � �� � � �

(
��	������� � �� � + �

is connected and simply connected and often referred to as a standard space of con-
stant curvature �. A connected Riemannian manifold� 
 of constant curvature � is
called a space form, or sometimes also real space form to distinguish it from com-
plex and quaternionic space forms. It is called a spherical, ßat or hyperbolic space
form depending on whether � ) �, � � � or � + �. Any space form � 
 of
constant curvature � admits a Riemannian covering map ��
��� � �
. A clas-
sical problem is to determine all compact space forms. A theorem by Bieberbach
says that any compact ßat space form� is covered by a ßat torus, where the group
of deck transformations is a free Abelian normal subgroup of the Þrst fundamental
group ,��� � of� with Þnite rank. The spherical space forms have been classiÞed
by J.A. Wolf [243]. The even-dimensional case appears to be quite simple, as one
can show that any even-dimensional spherical space form is isometric either to the
sphere or to the real projective space of corresponding dimension and curvature. The
theory of hyperbolic space forms is more subtle and still an active research Þeld.

��� ���	����� ���������

The shape operator or second fundamental form is the fundamental entity in sub-
manifold theory. Practically all geometrical problems concerning submanifolds in-
volve them in one or another way. In the course of this book we will deal with
submanifolds whose second fundamental form has a �regular� behaviour especially
to what concerns its eigenvalues, called principal curvatures.
Various properties of � or 
 lead to interesting classes of submanifolds. For in-

stance, the vanishing of � leads to totally geodesic submanifolds, which will be
discussed later.
The mean curvature vector Þeld( of an �-dimensional submanifold� of �� is

deÞned by

( ��
3

�
��� �

and - �� 
(
 is the mean curvature function of � . A minimal submanifold is a
submanifoldwith vanishingmean curvature function. This class of submanifolds has
already attracted mathematicians for a long time. There is a great variety of literature
concerning minimal submanifolds and, in particular, minimal surfaces. We refer the
interested reader to [66].
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A simple condition for principal curvatures on a hypersurface� is that they sat-
isfy some functional relation, in which case, one calls� aWeingarten hypersurface.
This is a classical topic; for a modern treatment of the subject, see [187]. For higher
codimension, Terng generalized this notion by requiring that the submanifold has ßat
normal bundle and the principal curvatures satisfy a polynomial relation [217] (see
Exercise 2.8.5).
In the course of this book we will encounter various kinds of properties of the

second fundamental form or the shape operator that lead to interesting areas of math-
ematics. We start with discussing principal curvatures in more detail.

a) Principal curvatures and principal curvature vectors

Let� be submanifold of a space form �� . As usual, the shape operator of� is
denoted by
 and the second fundamental form by�. Recall that
 and � are related
by the equation

������ �� 	� � �
���� � �
where ��� � ��� and 	 � �� , � � � . Because of the symmetry of �, the
shape operator
� of� is selfadjoint. Its eigenvalues are the principal curvatures of
� with respect to 	. An eigenvector of 
� is called a principal curvature vector of
� with respect to 	, and the eigenvectors corresponding to some principal curvature
form a principal curvature space. The multiplicity of a principal curvature is the
dimension of the corresponding principal curvature space. As 
��� � *
�� for
all * � �, the principal curvatures of� with respect to *	 are precisely the principal
curvatures of � with respect to 	 multiplied with the factor *, and the principal
curvature spaces are the same for all � �� * � �. For this reason, one is often
interested only in the principal curvatures with respect to unit normal vectors. If, in
particular,� is a hypersurface of �� , that is, if the codimension of� in �� is one,
and if 	 is a local or global unit normal vector Þeld on� , one often speaks of the
principal curvatures of� without referring to 	. Note that the principal curvature
spaces with respect to linearly independent normal vectors are, in general, not the
same.
We say that a submanifold� of a space form has constant principal curvatures

if for any parallel normal vector Þeld 	���, along any piecewise differentiable curve,
the principal curvatures in direction 	��� are constant. We will deal later with such
submanifolds, starting from Section 4.4. If in addition the normal bundle of � is
ßat, one says that the submanifold is isoparametric .
Observe that, since the principal curvatures are roots of a polynomial (namely, the

characteristic polynomial of 
�), they are continuous but do not need to be differ-
entiable. For instance, if � is a surface in ��, since the principal curvatures can
be expressed in terms of the Gaussian curvature . and the (length of the) mean
curvature( by

/� � ( �
�
(� 	. � � � 3� # �

it is clear that they are differentiable on the set of nonumbilical points (a point is
umbilical if there is only one principal curvature at that point). A simple example
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of a surface where the principal curvature functions are not smooth is the monkey
saddle 0 � �"� 	 $"1��&$. Here, the principal curvatures are not smooth in the
origin, cf. [46].

����� 	
�: Principal curvature lines on the monkey saddle 0 � �"� 	
$"1��&$.

However, if the multiplicities of the principal curvatures are constant on the unit
normal bundle, then the principal curvatures are smooth functions.

b) Principal curvature distributions and nullity

Let 	 be a local unit normal vector Þeld of� that is deÞned on a connected open
subset � of� . Then 
� is smoothly diagonalizable over an open and dense subset
of � . On each connected component of this subset we have 2 smooth eigenvalue
functions /� with multiplicities� �, � � �� 	 � � �	 ��. The principal curvature
space with respect to /� is��� � �� � 9���
�	/���. We also call�� a curvature
distribution. Note that, if 	 happens to be a global unit normal vector Þeld on�
and the principal curvatures of� are constant with respect to 	, then each curvature
distribution is globally deÞned on � . A curve in� , all of whose tangent vectors
belong to a curvature distribution, is called a curvature line of� . Some curvature
lines on the monkey saddle are illustrated in Figure 2.1.
More in general, a curvature surface is a connected submanifold% of� for which

there exists a parallel unit normal vector Þeld 	 such that ��% is contained in a
principal curvature space of the shape operator
�� for all " � %.
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����� 	
	: A cyclides of Dupin. This class of surfaces can be characterized
by the fact that their curvature lines are circles or straight lines.

A submanifold� in�
 or %
 is said to be Dupin, if the principal curvatures are
constant along all curvature surfaces of � . A Dupin submanifold is called proper
if the number 3 of distinct principal curvatures of 
 � is constant on the unit normal
bundle of� . Important examples of Dupin submanifolds are the cyclides of Dupin
and isoparametric submanifolds. We will not study Dupin submanifolds in this book;
refer to [41,42,45] for more details.
The linear subspace �� � ������ 9��
� of ��� is called the nullity space of�

at �. The collection of all these spaces is called the nullity distribution of� . Note
that this is actually a distribution only on any connected component of a suitable
dense and open subset of� .

��� ������ ���
���� �����	����
� �� ����� �����

a) DeÞnitions

Let� be a submanifold of a Riemannian manifold �� . Suppose � is a geodesic
in� . Then the Gauss formula says that �� ?�� ?�� is the second derivative of � when
considered as a curve in the ambient space �� . Since

#����� � � ��� 	 ��� 	 � �	 ������	 ���� � �

for all ��� � ��� , � � � , we see that the second fundamental form � vanishes
precisely if every geodesic in � is also a geodesic in �� . In such a case, � is
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called a totally geodesic submanifold of �� . The basic problems concerning totally
geodesic submanifolds deal with existence, classiÞcation and congruency. We will
deal with these problems more thoroughly in the general context of submanifolds of
a Riemannian manifold in Section 8.3.
For submanifolds of space forms, as we will soon see, we have a positive an-

swer regarding the existence problem in the following sense. For each point � � ��
and every linear subspace � � �� �� there exists a totally geodesic submanifold
� of �� with � � � and ��� � � . Moreover, since the exponential map
�0�� � �� �� � �� maps straight lines through the origin � � � � �� to geodesics
in �� , there is an open neighborhood � of � in �� �� such that �0�� maps � � �
diffeomorphically onto some open neighborhood of � in� . This implies that� is
uniquely determined near �, and that any totally geodesic submanifold of �� con-
taining � and being tangent to � is contained as an open part in a maximal one with
this property. This feature is known as rigidity of totally geodesic submanifolds.

b) ClassiÞcation in space forms

Geodesics are clearly the simplest examples of totally geodesic submanifolds. In
the standard models ��
��� of space forms, as discussed in Section 2.2, we can give
the following explicit description of geodesics. Let � � ��
��� and� � �� ��
���.
The geodesic �� � �� ��
��� with �� ��� � � and ?�� ��� � � is given by

�� ��� �

��
�

 ���
�
����	 ��

�
����

�
���� � � ) �

� 	 �� � � � �
 ����

�	����	 ���� �����
�	���� � � + �

�

This describes the classiÞcation of the one-dimensional totally geodesic submani-
folds of ��
���.
From this we also easily see that the canonical embeddings ������ � ��
���,

3 + 2 + �, are totally geodesic. The isometry group of ��
��� acts transitively
on the pairs ��� � � with � � ��
��� and � a 2-dimensional linear subspace of
�� ��
���. This, together with the uniqueness properties described above, estab-
lishes the classiÞcation of the totally geodesic submanifolds in the standard space
forms.

������� �� �	
��� � � ��
��� �	� � � 2��
��	�
�	� 
	��� �������� �� �� ��
���� � + 2 +
�� ���	 ����� �%
��� � ��		������ �������� ����� ������
� �����	
��� �
�� ��
��� �
�� � � � �	� ��� � � � &�������� � 
� ��	����	� �� ���
��	�	
�� ����� ������
� ������
	� �� ������ 
	 ��
���� '��� ��		������
����� ������
� �����	
��� 4 �� ��
��� �
�� � � 4 �	� ��4 � � 
� �	
���	 ���� �� � �

Actually, it is not difÞcult to show directly that the totally geodesic submanifolds
of �
 are the afÞne subspaces (see Exercise 2.8.4). Moreover, the connected, com-
plete, totally geodesic submanifolds of %
�'� � �

� are precisely the intersections
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of %
�'� with the linear subspaces of�

�. Analogously, the connected, complete,
totally geodesic submanifolds of ( 
�'� � �
�� are precisely the intersections of
(
�'� with the linear Lorentz subspaces of�
��. We also propose as an exercise to
give a direct proof of this (see Exercises 2.8.6 and 2.8.7).

��� ��
����	 �� �� ��
���	���	

A submanifold� of a Riemannian manifold �� is said to be full if it is not con-
tained in any totally geodesic submanifold of �� of dimension less than � � ��� �� .
If � is not full in �� , one says there is a reduction of the codimension of� . For
example,� is full in�
 if and only if it is not contained in any afÞne hyperplane of
�

. If� is not full in �
, there exists a smallest afÞne subspace of �
 containing

� , namely the intersection of all afÞne subspaces containing� . If 2 is the dimens-
ion of this afÞne subspace, then one might view� as a full submanifold of��. This
means that we have reduced the codimension of� by �	 2 dimensions.
In order to reduce the codimension, it is useful to study a particular subspace of

the normal space called the Þrst normal space. It is deÞned as the subspace � �
� of

�� spanned by the image of the second fundamental form at �, that is,

� �
� � span������ � � ��� � ��� � �� �

In other words, � �
� is the orthogonal complement in �� of the linear subspace

of �� consisting of all normal vectors 	 at � for which the shape operator 
 �

vanishes. If the dimension of the Þrst normal space does not depend on �, then � �

is a subbundle of the normal bundle � .
The following criterion is very useful in this context for submanifold theory in

space forms (see [64, Chapter 4], cf. also [78]).

������� ��!�	 
�������� �� ������"���

��� � �� � �� �� �	 
������
� 
�����
�	 ���� �	 ���
��	�
�	� ��		�����
�
���		
�	 ��	
��� � 
	�� �	 ���
��	�
�	� ���	���� ����� ���� �� � (�
��� ����� �	� ��	�� ��� �	�� � � � ��� ���� 	���� ����� � �

� 
� 
	���
�	�
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��� 4 �� �� ���� ���� � 
� �	 
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(��� ������ !"���� � �� � � �� ��������� "���� ��+�������� ��������� �� 2����
4��� ���� ���� 	 � ��
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2�  �� ������ � �� ��� ����� ��� �� �
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 ��� (
� !� �"�� � ��������� 
 ����� �� ��� ����� ���� ��� �8� � ��� ����������

(1) The case �� � �
. %�� � � � ��� 6 �  "��� �� � 2��� 6��� � �� %��
	� � ��

� ��� 	 ��� �������� ������ �� ��� (��� ����� 6 2��� 	��� � 	�� 1�� �

�� �� ��������� "���� ��+�������� ������������ ��� ���������� ����"��
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� ?6	���� 	 � �
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Actually, there exists a more general version of the above theorem (see [64, Propo-
sition 4.1]): it is sufÞcient to require the existence of a parallel subbundle � of rank
� +  ����� of the normal bundle with the property that� ��"� � ��"� for any ".
Then the codimension reduces to �.
Some necessary and sufÞcient conditions for the invariance under parallel trans-

port of the Þrst normal bundle were obtained by do Carmo, Colares, Dajczer and
Rodriguez and can be found in [64, Section 4.2].
A certain generalization to arbitrary Riemannian manifolds �� can be found in

[192].
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A submanifold� of a Riemannian manifold �� is said to be umbilical in direction
	, if the shape operator 
� of� in direction of the normal vector 	 is a multiple of
the identity.
A normal vector Þeld 	 such that
� is a multiple of the identity is called umbilical

normal vector Þeld (or section).
If� is umbilical in any normal direction 	, then� is called a totally umbilical

submanifold of �� . � is totally umbilical if and only if

����� � � ���� �(
for all vector Þelds��� on� , where ( is the mean curvature vector Þeld. It is ob-
vious that each one-dimensional submanifold and each totally geodesic submanifold
is totally umbilical. It is also clear that conformal transformations of �� preserve
totally umbilical submanifolds.
A totally umbilical submanifold with nonzero parallel mean curvature vector Þeld

is called an extrinsic sphere. In a space form the two concepts of totally umbilical



Basics of submanifold theory in space forms 25

(and non-totally geodesic) submanifolds and extrinsic spheres coincide in dimen-
sions � #. Indeed, we have the following

����# ��$�	
��� � �� � ����� ���

�� �����	
��� �� �
��	�
�	 � # 
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���	 ��� ���	 ��������� ������ ��� ( 
� ����� �
�� ������� �� ��� 	����
��		���
�	 )
������( � �* �	� ��� 	���� ��������� �� ��	
���� 
��	�
����

����� �� (��� �!����� ���� ��� ����� �������� �� � �� �� ��� ����

���� � �	�(��� ��� '�  � �."����� ���� �����& ������� �� � � ����
���� �0�� ��� #�D�3#�� B��� ��� � ��� �� ��� �"��������� ���� �� � �� ��
��� ���� ����� � � ���� �(� ��� ,���--� �."����� ������� ��� �����( �
��������(�

1�� � ���� � # 2�  ��  ����� � � � �������� "��� �� �� ��� 2� ���
��( � ��

The connected, complete, totally umbilical and non-totally geodesic submanifolds
� with � � ���� � # of �
, %
 and (
 are as follows (cf. Exercises 2.8.6,
2.8.7):

In�
: � is a sphere %��'� � �
.

In %
: � is a �-dimensional sphere which is obtained by intersecting % 
 with
an afÞne and nonlinear subspace of�

�.

In (
: When we consider (
 sitting inside �
��, � can be obtained by inter-
secting (
 with an afÞne and nonlinear subspace of �
��. In particular, the totally
umbilical hypersurfaces are the intersections of(
 with the afÞne subspaces of�
��

whose vector part is ��!��. Moreover:

� If ! is a time-like vector in �
��, in which case ��!�� is a Euclidean vector
space, the totally umbilical hypersurfaces obtained in this way are geodesic
hyperspheres. A geodesic hypersphere����� in(
 is the set of all points in
(
 with distance ' ) � to a point � � (
.

� If ! is a space-like vector in�
��, in which case ��!�� is a Lorentzian vector
space, the totally umbilical hypersurfaces obtained in this way are the hyper-
surfaces that are equidistant to a totally geodesic (
�� � (
.

� If ! is a light-like vector in�
��, in which case ��!�� is degenerate, the totally
umbilical hypersurfaces obtained in this way are the so-called horospheres.

In the Poincaré ball model of(
, the horospheres are the spheres in the ball that
are tangent to the boundary sphere of the ball. In this model, it is clear that horo-
spheres are totally umbilical. Indeed, the identity map from the ball equipped with
the Euclidean metric onto the ball equipped with the Poincaré metric is a conformal



26 Submanifolds and Holonomy

transformation. Therefore, it sends the spheres tangent to the boundary sphere of the
ball, which are totally umbilical, onto totally umbilical submanifolds of( 
.
In the half plane model, the hypersurfaces "
 � 6, 6 ) �, are horospheres. Actu-

ally, "
 � 6 gives a family of parallel hypersurfaces that are all centred at the same
point at inÞnity. Moreover, in this model, it is easy to see that every horosphere in
(
 is isometric to the Euclidean space �
��, and that they are totally umbilical,
because of the description of the geodesics in this model.

We can summarize the above discussion on extrinsic spheres in space forms in the
following theorem, which gives us an explicit description.

������� ��$��
��� � �� � ��
	� 
	 � ���	���� ����� ���� ��
���� � � #� � �	 ���
��	�
�	�

	��� �������� �� ��� ��	��	� ����� �� ��
��� �	� ( � 	�	�$��� ������ ��
�� ��
��� �������	� �� � � ���	 ����� �%
��� � �	
��� ��		����� �������
�%��
	�
� ������ � �� ��
��� �
�� � �� � ��� � � �	� (� � (� &��������
� 
� � ����� �� ��	���	� ��������� � 	 �(�(��

A survey about totally umbilical submanifolds in more general ambient spaces, as
well as many references, can be found in [50]. We discuss totally umbilical subman-
ifolds and extrinsic spheres in symmetric spaces in Section 9.2.

b) Pseudoumbilical submanifolds

A generalization of totally umbilical submanifolds is that of pseudoumbilical ones.
A submanifold � of a Riemannian manifold �� is called pseudoumbilical if it is
umbilical in direction of the mean curvature vector Þeld(. This just means

������ ��(� � ���� �
(
�

for all��� � ��� , � �� . We have the following proposition [54].
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a) Submanifold products and extrinsically reducible submanifolds

Let ��� � � � ���� ���� � � � � ��� be Riemannian manifolds and �� � �� � ���,
� � 3� � � � � *, be isometric immersions. The product map

� � �� � � � �� �
 ��� � � � ���� � ��� � � � �� ��� �

���� � � � � ��� �� �������� � � � � �������

is called the immersion product of ��� � � � � �� or the submanifold product of��, ...,
�� in ��� � � � �� ���. There are simple equations relating the second fundamental
form and the mean curvature vector Þeld of a submanifold product with those of its
factors. Recall that there is a natural isomorphism

��������������� � � � ����� � ����� � � � �� ����� �

which we will use frequently in the following. Denote by � � and (� the second
fundamental form and the mean curvature vector Þeld of��, respectively. Then the
second fundamental form � of�� � � � ���� is given by

� ����� � � � � ���� ���� � � � � ���� � �������� ���� � � � � ������ ����

for all��� �� � �����. Similarly, the mean curvature vector Þeld( of�� � � � ��
�� is given by

( � �(�� � � � �(�� �

More generally, let � � �� � � � � � �� be a submanifold of a Riemannian
manifold �� , where ����� � 3 for all � � 3� � � � � * and * � #. Here, �� is not
necessarily a Riemannian product. We denote by 8�� � � � � 8� the totally geodesic
foliations on � that are canonically induced by the product structure of � . For
instance, the leaf 8���� of 8� through � � ���� � � � � ��� is�� � ��� � � � �� ���.
Note that �� � �8� is a parallel distribution on � for each � � 3� � � � � *. One
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says that� is extrinsically reducible in �� , or � is an extrinsic product in �� , if
the second fundamental form � of� satisÞes ����� ��� � � for all�� � ��8����,
�� � ��8����, � �� 9, � � � . From the above equation for the second fundamental
form of submanifold products we immediately see that each submanifold product�
in a Riemannian product manifold �� is extrinsically reducible in �� . We say that a
submanifold� of �� is locally extrinsically reducible in �� at � �� if there exists
an open neighborhood of � in� that is extrinsically reducible in �� . Finally, we say
that� is locally extrinsically reducible in �� , if it is locally extrinsically reducible
in �� at each point in� .

b) Extrinsically reducible submanifolds in Euclidean spaces and spheres

There is a useful criterion for local extrinsic reducibility of submanifolds in Eucli-
dean spaces due to Moore [139].
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Since %
 is a totally umbilical submanifold of�

�, the Lemma ofMoore implies
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c) Extrinsically reducible submanifolds in Lorentzian spaces and hyperbolic
spaces

The Lorentzian analogue of the Lemma of Moore is not a straightforward gen-
eralization. This is due to the fact that, in Lorentzian spaces, there exist degenerate
linear subspaces. Recall that a linear subspace � of�
�� is called degenerate if there
exists a nonzero vector � � � such that ��� �� � � for all � � � . Evidently, any
such vector � must be light-like.
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Using the Lorentzian version of Moore�s lemma, we now derive a reducibility
result for submanifolds in real hyperbolic spaces.
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�,����"� ��-�	 Let � be a �-dimensional hypersurface of �
, with � )
#. Let ��� ���� �� be its principal curvatures. Suppose that at least three principal
curvatures are nonzero. Prove that the sectional curvatures determine ��� ���� ��.
Deduce the Beez-Killing Theorem, namely that, for an �-dimensional hypersurface
of �
, with� ) # and with at least three nonzero principal curvatures, the second
fundamental form is determined by the Þrst fundamental form (cf. [12], 10.8).
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�,����"� ��-�� Let � � %� � �� be given by

�"� 1� 0� ��
�
"1� "0� 10�

3

#
�"� 	 1��� 3

#
�
$
�"� 	 1� 	 #0��

	
�

(a) Verify that � induces an embedding F� of the real projective plane into a hyper-
sphere %��3&

�
$� of��.

(b) Compute the second fundamental form of � (or of F� ), verifying that they are
minimal in the sphere.

F� is called the Veronese surface.

�,����"� ��-�( Let ; � %����� %���� � �� be the Clifford torus, given by

�<� �� �� ��  ��<�� ���<��  �� ��� ��� �� �

Compute the second fundamental form of ; .

�,����"� ��-� Give a direct proof of the fact that the totally geodesic subman-
ifolds of�
 are afÞne subspaces. Hint: See the proof of Theorem 2.5.1 (Reduction
of codimension).

�,����"� ��-�! (cf. [217], Corollary 1.5) Let� be a submanifold of a space of
constant curvature. Prove that, if there exists a parallel normal Þeld 	 such that the
eigenvalues of 
� are all distinct, then� has ßat normal bundle.

�,����"� ��-�$ Prove that the connected, complete, totally geodesic (resp. to-
tally umbilical) submanifolds� �, � � #, of %
�'� � �

� are the intersections
of %
�'� with the linear (resp. afÞne) subspaces of�

�.

�,����"� ��-�) Prove that the connected, complete, totally geodesic (resp. to-
tally umbilical) submanifolds� �, � � #, of (
�'� � 8
 are the intersections of
(
�'� with the linear (resp. afÞne) subspaces of 8
.

�,����"� ��-�- Prove that a submanifold� of Euclidean space with parallel
second fundamental form has parallel Þrst normal space.

�,����"� ��-�. Prove that two autoparallel distributions that are orthogonally
complementary are both parallel. Is this result still true for three autoparallel distri-
butions?
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�,����"� ��-�	/ Let� be a submanifold of Euclidean space with parallel sec-
ond fundamental form. Suppose that the shape operator 
� relative to the mean
curvature( has two distinct eigenvalues. Prove that� is locally reducible.

�,����"� ��-�		 Suppose� is a totally geodesic submanifold of a space form,
and let 4 be a submanifold of � . Prove that 
�

� � � 
�
� � for all 	 � �� ,

� � ��4 , � � 4 , where 
� and 
� are the shape operators of � and 4 ,
respectively. Prove that the above property (satisÞed for any submanifold 4 of� )
characterizes totally umbilical submanifolds.

�,����"� ��-�	� Prove that a totally umbilical submanifold of a space form has
ßat normal bundle.

�,����"� ��-�	( Prove that a geodesic with initial direction �, 
�
 � 3, in a
horosphere

: 	 ������(
�	3� �

where ��� �� � �, has the expression

���� � : 	 �� 	 ��

#��� :�� �

�,����"� ��-�	 Prove that a geodesic with initial direction �, 
�
 � 3, in a
totally umbilical lower dimensional hyperbolic space in( 
�	3� given by

: 	 ����� �(
�	3��

where ��� �� � 	3, has the expression

���� � : 	
3

#
��� :������ �=�� 	

3

#
��� :�� ��� �= 	 3�� �

with = � #&��� :�.

�,����"� ��-�	! (Ejiri [77], suggested by A. J. Di Scala) Let � �� �4 � �


be an isometric minimal immersion from a product of Riemannian manifolds. Then
� is a product of immersions. Hint: use Gauss equation for proving that ����� � �
� if� is tangent to� and � is tangent to 4 .
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In this chapter, we investigate submanifolds that arise as orbits of isometric Lie group
actions on Riemannian manifolds. These so-called (extrinsically) homogeneous sub-
manifolds have the important feature that their geometric invariants, like the second
fundamental form, are independent of the point.
In Section 3.1, we start with the general setup and introduce some basic concepts

such as orbit types, principal orbits, isotropy and slice representations. The purpose
of this section is also to introduce the notation that will be used in the sequel.
In these notes, we are interested in orbits from two different viewpoints: the geo-

metry of a single orbit and the geometry of the entire set of orbits of an action.
The orbits of an isometric Lie group action on a Riemannian manifold �� might be
viewed as a singular foliation on �� . For some particular types of representations,
like �-representations and polar actions, which we will introduce in Section 3.2, it
is of great interest to investigate the entire orbit foliation. Polar actions on �� are
characterized by the existence of a linear subspace of ��, a so-called section, that
intersects each orbit and is perpendicular to orbits at the points of intersection. An
�-representation is the isotropy representation of a semisimple symmetric space. An
�-representation is polar, since the tangent space to a ßat in the symmetric space is a
section, and by Dadok�s Theorem 3.2.15 [63] it has the same orbits as a polar action.
The existence of a section implies that the orbit foliation has remarkable Riemann-
ian geometric properties. The orbits are equidistant with parallel tangent spaces, the
normal bundle of a principal orbit is ßat with trivial holonomy and the principal cur-
vatures of a principal orbit with respect to any parallel normal Þeld are constant. This
motivates the study of isoparametric submanifolds of ��, which will be discussed
later in these notes. We will see that �-representations have a distinguished r�ole in
submanifold geometry, to many extents comparable to the one of symmetric spaces
in intrinsic Riemannian geometry.
In Section 3.3, we reverse our approach. We start with a homogeneous Riemann-

ian manifold and investigate whether it can be viewed as an orbit in another Rie-
mannian manifold or, in other terms, if it admits an equivariant embedding.
In the next sections, we look at the geometry of single orbit. In Sections 3.4

and 3.5, we study homogeneous submanifolds of space forms. In Section 3.6, we
describe the extrinsic differential geometry of orbits, and give, among other things, a
description of the second fundamental form of the orbit of a representation of a Lie
group in terms of the corresponding Lie algebra representation.
Symmetric submanifolds of ��, and of spaces of constant curvature, form histo-

33
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rically one of the Þrst class of homogeneous submanifolds that were studied and
classiÞed. Section 3.7 is devoted to this topic.
In Sections 3.8, and 3.9 we study classes of submanifolds that are characterized

by important geometric properties of homogeneous submanifolds. The most clas-
sical �homogeneous-like� property is the constancy of principal curvatures, which
characterizes isoparametric hypersurfaces of space forms. Traditionally, these hy-
persurfaces are deÞned as regular level sets of isoparametric functions, so that they
determine an orbit-like foliation of the manifold. Isoparametric hypersurfaces are
pretty close to being homogeneous, and actually, in many cases, they are. In higher
codimension, a natural �homogeneous-like� property is that the algebraic type of the
second fundamental form does not depend on the point. This is an extrinsic version
of curvature-homogeneous manifolds [225].

��� �����	
�� �	���� �� ��� �
����

An important class of submanifolds in a smooth manifold is given by orbits of
Lie group actions. In the framework of Riemannian geometry, one is interested in
isometric Lie group actions. In this section, we summarize some basic concepts of
this topic, like orbit types, principal orbits, isotropy and slice representations. For
details and further reading, refer to [28,74,111].

a) Basic concepts

Let � be a Riemannian manifold and � a Lie group acting smoothly on� by
isometries. Then we have a Lie group homomorphism � � �� ��� � and a smooth
map

��� �� � ��� �� �� ������� � ��

satisfying ������ � ������ for all �� �� � � and � � � . An isometric action of a
Lie group �� on a Riemannian manifold � � is said to be equivalent to the action
of � on � if there exists a Lie group isomorphism 	 � � � � � and an isometry

 �� �� � such that 
���� � 	���
��� for all � �� and � � �. For each point
� �� the orbit of the action of � through � is

� � � �� ��� � � � �� �

and the isotropy group at � is

�� �� �� � � � �� � �� �

If � � � � � for some � � � , and hence, for each � � � , the action of � is said
to be transitive and� is a homogeneous�-space. More details about homogeneous
�-spaces can be found in Appendix A.3. We assume from now on that the action of
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� is not transitive. Each orbit � � � is a submanifold of� , but, in general, not an
embedded one.
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Each orbit � � � inherits a Riemannian structure from the ambient Riemannian
manifold � . With respect to this structure, � � � is a Riemannian homogeneous
space � � � � ���� on which � acts transitively by isometries.
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A homogeneous submanifold� is thus an orbit of some subgroup� of the isom-
etry group of a Riemannian manifold. Although it is often assumed in the literature
that � is connected and closed, we will not assume closure unless explicitly stated.

b) The set of orbits

We denote by��� the set of orbits of the action of� on� and equip��� with
the quotient topology relative to the canonical projection� ���� � � �� � ��. In
general,��� is not a Hausdorff space. For instance, when  is an irrational number
in Example 3.1, then � ���is not a Hausdorff space. This unpleasant behaviour does
not occur for so-called proper actions. The action of � on� is proper if, for any
two distinct points �� � �� , there exist open neighbourhoods� � and �� of � and �
in� , respectively, such that �� � � � ��� � �� �� � is relatively compact in �.
This is equivalent to saying that the map

��� �� �� � ��� �� �� ��� ���

is a proper map, i.e., the inverse image of each compact set in��� is also compact
in � �� . Every compact Lie group action is proper, and the action of any closed
subgroup of the isometry group of� is proper as well. If� acts properly on� , then
��� is a Hausdorff space, each orbit� � � is closed in� and hence an embedded
submanifold, and each isotropy group�� is compact.

c) Slices

A fundamental feature of proper actions is the existence of slices. A submanifold
: of� is called a slice at � �� if

(:�) � � :,
(:�) � �: �� ��� � � � � � � � :� is an open subset of� ,

(:�) �� � : � :,
(:�) the action of�� on : is isomorphic to an orthogonal linear action of� � on an

open ball in some Euclidean space,

(:�) the map
��� :���� �� � �� � ��� �� �� ��

is a diffeomorphism onto � � :, where �� � :���� is the space of orbits of
the action of �� on � � : given by ���� �� �� ������ ��� for all � � ��,
� � � and � � :. Note that ��� :���� is the Þbre bundle associated to the
principal bundle� �� ���� of Þbre : and hence a smooth manifold.
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Montgomery and Yang [142] proved that every proper action admits a slice at each
point. It is useful to remark that a slice : enables us to reduce the study of the action
of � on� in some �-invariant open neighbourhood of � to the action of � � on the
slice :.

d) Orbit types

The existence of a slice at each point also enables us to deÞne a partial ordering
on the set of orbit types. We say that two orbits � � � and � � � have the same orbit
type if �� and �� are conjugate in �. This deÞnes an equivalence relation among
the orbits of �. We denote the corresponding equivalence class by �� � ��, called
orbit type of � � �. By � we denote the set of all orbit types of the action of � on
� . We introduce a partial ordering on � by saying that �� � �� � �� � �� if and only
if �� is conjugate in � to some subgroup of ��. If : is a slice at �, then properties
(:�) and (:�) imply that �� � �� � �� � �� for all � � � � :. We assume that���
is connected. Then there exists a largest orbit type in �. Each representative of this
largest orbit type is called a principal orbit. In other words, an orbit� �� is principal
if and only if for each � � � the isotropy group � � at � is conjugate in � to some
subgroup of ��. The union of all principal orbits is a dense and open subset of
� . Each principal orbit is an orbit of maximal dimension. A non-principal orbit of
maximal dimension is called exceptional. An orbit whose dimension is less than the
dimension of a principal orbit is called singular. The cohomogeneity of the action is
the codimension of a principal orbit.
Exercise 3.10.17 leads to a proof of the existence of principal orbits for isometric

actions.
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e) Isotropy representations and slice representations

We assume from now on that the action of � on � is proper and that ��� is
connected. Recall that, for each � � �, the map

�� �� �� � � �� ��

is an isometry of� . If � �� and � � ��, then �� Þxes �. Therefore, at each point
� �� , the isotropy group �� acts on ��� by

�� � ��� � ��� � ����� �� � �� �� ������� �
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But, since � � �� leaves � �� invariant, this action leaves the tangent space ���� ���
and the normal space ���� � �� of � � � at � invariant, too. The restriction

�� � �� � ���� � ��� ���� � �� � ����� �� � ��
is called the isotropy representation of the action at �, while the restriction

�� � �� � ���� � ��� ���� � �� � ��� �� �� � � �
is called the slice representation of the action at �. If ����� is the connected compo-
nent of the identity in ��, the restriction of the slice representation to ����� will be
called connected slice representation.

f) Geodesic slices

Let � � � and � � �� be sufÞciently small so that the restriction of the expo-
nential map �(�� of� at � to ���'� 	 ���� � �� is an embedding of ���'� into� .
Then : � �(������'�� is a slice at �, a so-called geodesic slice. Geometrically, the
geodesic slice : is obtained by running along all geodesics emanating orthogonally
from � � � at � up to the distance �.

������ ��	: A geodesic slice.

Since isometries map geodesics to geodesics, it is clear that

�: � �(����� ����'��
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for all � � �. Thus, � � : is obtained by sliding : along the orbit � � � using the
group action. Let � � : and � � ��. Then �� � : and hence �: � :. Since
: �� � � � ���, it follows that �� � � and hence, � � ��. Thus we have

����� �	
	�
�� : 
� � ������
� �
�� �� �� ���	 �� 	 �� ��� � � � :�

Let : be a geodesic slice at �. Then � � : is an open subset of� . As principal
orbits form an open and dense subset of� , the previous lemma implies that � � �
is a principal orbit if and only if � � � �� for all � � :. On the other hand, each
� � �� Þxes both � and � and therefore, assuming the geodesic slice is sufÞciently
small, the entire geodesic in : connects � and �. Thus, �� pointwise Þxes the one-
dimensional linear subspace of ������� corresponding to this geodesic. This implies
the following useful characterization of principal orbits.

������� �	
	�
�	 ���
� � � � 
� ��
	�
�� 
� �	� �	� 
� ��� �
�� �������	���
�	 :� 
� ��
�
��

g) Killing vector Þelds and reductive decompositions

Let � be a Lie group acting on �� isometrically and � � �� . Then the orbit
� �� � � � is a Riemannian �-homogeneous space in the induced Riemannian
metric. Therefore, we can identify � with the homogeneous space ���, where
� � �� is the isotropy group at �. As� is compact, the homogeneous space ���
is reductive. Let � � � � � be a reductive decomposition of the Lie algebra � of �.
Each � � � determines a Killing vector Þeld�� on �� by means of

��
� ��

 

 �

����
���

�� �� 1(�������

for all � � �� , where Exp denotes the Lie exponential map �� �. Note that

��
� � '��� � � �

Whenever the action of � on � is effective, there is a particularly nice reductive
decomposition. The restriction of� � to� is a Killing vector Þeld on� which we
also denote by��. Since�� is a Killing vector Þeld on� , the covariant derivative
��� is a skew-symmetric tensor Þeld on� and hence ������ � ������ �. Let
! be the Killing form of ������ �, which is a negative deÞnite symmetric bilinear
form on ������ �. We deÞne a symmetric bilinear form on � by

���" � �� 
!�������� ��" ����
for all ��" � �. If � � �, then ��

� � ' and hence �� � ' if and only if
������ � ', since a Killing vector Þeld �� is uniquely determined by the values
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of ��
� and ������. Therefore, if � acts effectively on � , then ��� �� is positive

deÞnite on �. Let � be the orthogonal complement of � in � with respect to ��� ��.
Then � � � � �'� and %����� 	 �, see for instance [223]. Thus, � � � � �

is a reductive decomposition of �. Since Exp maps open neighbourhoods of ' � �

diffeomorphically onto open neighbourhoods of # � �, it follows that

��� � ���
� � � � �� � ���

� � � � �� �

If �� is a homogeneous submanifold of ��� and �� is a homogeneous subma-
nifold of ���, then�� ��� is clearly a homogeneous submanifold of ��� � ���.
Conversely, if �� � �� is a connected homogeneous submanifold of ��� � ���,
then�� is a connected homogeneous submanifold of ���, $ � ,� ;. In fact, assume
�� ��� � � � ���� ���, where � 	 �� ��� � ���� is a connected Lie subgroup and
�� � ���. Enlarge � to the connected component <� of the group �� � �� ���� ���� �
���� ���� � �� ���� of extrinsic isometries of �� � ��. We will show
that <� � <�� � <�� 	 �� ���� � �� ����, which implies homogeneity of ��. Let
� � ���� ��� be a Killing vector Þeld induced by <� (�� a Killing vector Þeld of
���). Then �� � ���� '� and �� � �'� ��� are Killing vector Þelds of ��� � ���.
Moreover, �� and�� are both tangent to�� ���. Thus,��� �� are both Killing
vector Þelds induced by <�. It follows that <� � <�� � <�� 	 �� ���� � �����. This
implies the following

 �� �!��� �	
	"
� ������	���� �����	
��� � �� � �
���		
�	 ������� ��� � � � � � ��	 
�
����� � �����	
��� ������� �� � � � � ��	 �� ������	���� �����	
����
�� 	 ���� ��� 
	 ���
�
�	� � 
� �� 
	 �� � ���	 ���� ������ �� 
� �� 
	 ����

h) Equivariant normal vector Þelds

If � � � is a principal orbit and � � ���� � �� then
=��� �� � � �

is a well-deÞned normal vector Þeld on � � �. Indeed, if �� � ���, then ����� � ��
and ����� � � � �, that is, � � � � �� � �. The vector Þeld =� will be called equivariant
normal vector Þeld determined by �. Hence, if� �� is a principal orbit and ��� � � � � �	
is an orthonormal basis of ���� � ��, then =��� � � � � =�	 is a global smooth orthonormal
frame Þeld of the normal bundle of� ��. This just means that the normal bundle of a
principal orbit is trivial, that is, it is isomorphic to the trivial bundle����� 	� ���.
Note that, from a given principal orbit� � �, one can determine all nearby orbits

by using equivariant normal vector Þelds. Indeed, let � � � be a principal orbit and =�
an equivariant normal vector Þeld of � � �. Then

�(����=���� � �(����� � =��� � � �(��=���
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and hence,

�
 �� ��(���=��� � � � � � �� � � � �(���=��� �

that is,�
 is the orbit through �(���=���. If� is connected and complete, each orbit
of � can be obtained in this manner from a single principal orbit.

��� ���
 �	���� �� ��
��
����		����

a) Polar actions.

On �� � �'� consider polar coordinates ��� %�. Any point ��� %� � �� � �'�
lies in the orbit of the point ��� '� with respect to the standard action of the special
orthogonal group �&�;� on��. Therefore, the line % � ', and, more generally, any
line through the origin meets any �&�;�-orbit orthogonally. It is easy to see that
the standard action of �&��� on �� by rotations also has this property. Thus, it is
natural to consider isometric actions of a Lie group on a Riemannian manifold with
this feature.

Let� be a connected complete Rie-

������ ��
: A section and some orbits.

mannian manifold and � a closed
(so that the action is proper) sub-
group of ��� �. A complete, em-
bedded and closed submanifold :
of � is called a section if : inter-
sects each orbit of � and is perpen-
dicular to orbits at intersection
points. If there exists a section in
� , then the action of � is called
polar. Notice that from a section
we can obtain a section that contains
any given point by using the group
�. If� is disconnected and acts po-
larly on� , then also the connected
component �� of � containing the
identity acts polarly on� .

Let� be a compact Lie group. A representation � � � � �&��� is called a polar
representation, if ���� acts polarly on ��. As seen above, a simple example of a
polar representation is given by the standard action of �&��� on ��. Note that this
action is the isotropy representation of the sphere � � � �&��  ,���&���.
Actually, as we will show below, a very important class of polar representa-

tions is the isotropy representations of symmetric spaces, which are also called �-
representations.
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A special case is the adjoint representation of a compact Lie group; in this case,
using Lie algebra theory, it is easy to see that any Cartan subalgebra provides a
section for the action.
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An action is called hyperpolar if it admits a ßat section. Clearly, every hyperpolar
action is polar, and in �� these two concepts coincide. The study of hyperpolar
actions was initiated by Conlon [56,57], who called them �representations admitting
a�-transversal domain� and showed that they are variationally complete (see [27, p.
974] for this notion). To our knowledge, polar representations were Þrst considered
in the early �80s by Szenthe [206�208], who called them isometric actions admitting
an orthogonally transversal submanifold. In the late �80s, Palais and Terng [186]
discovered an interesting relation between polar representations and isoparametric
submanifolds. The polar representations on �� were classiÞed by Dadok [63], and
Kollross [119] classiÞed the hyperpolar actions on irreducible, simply connected,
symmetric Riemannian spaces of compact type up to orbit equivalence.
As we will see, polar representations are important for submanifold geometry in

Euclidean space. Indeed, the existence of a section : implies that the orbit foliation
has remarkable geometric properties. The orbits are equidistant with parallel tangent
spaces and, if ) is a principal orbit, the normal bundle to ) is ßat with trivial
holonomy, and the principal curvatures of) with respect to any parallel normal Þeld
are constant. This leads to the study of isoparametric submanifolds of��, which will
be carried out later in these notes.
As was Þrst shown by Szenthe [207,208], a section is necessarily totally geodesic

(see also [186]). We now give a proof of this fact using Killing vector Þelds.
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The following proposition is due to Dadok [63] for the case of polar representa-
tions and to Heintze, Palais, Terng and Thorbergsson [97] for the general case.
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For any Killing vector Þeld � on� induced by the polar action of � we denote
by !�� , � � � , the skewsymmetric endomorphism on ���� � �� deÞned by

�!�� ,� *� � �����*� � ,� * � ���� � �� �

Let 	� be the subalgebra of ������� � ���, which is generated by all these endo-
morphisms !�� , and denote by -

� the connected Lie subgroup of �&����� � ���
associated to 	�.
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Since the slice representation acts trivially on the normal space of a principal orbit,
the proof of the previous proposition readily implies
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There exists a partial local converse of the previous corollary. Let � be a Lie
group acting on a connected Riemannian manifold� , and denote by�� the open
and dense subset of� that is formed by all points in� that lie on principal orbits of
the action. We say that � acts locally polar on� if the distribution � on� � given
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by the normal spaces ���� � �� to the principal orbits is integrable (and hence with
totally geodesic leaves, by the same proof as Theorem 3.2.1).
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The following propositionwill be used for the geometric study of the orbits of the
isotropy representation of a symmetric space.
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b) �-representations.

We Þrst recall the deÞnition of an �-representation (cf. Appendix A.4). Let � be
a simply connected semisimple Riemannian symmetric space. If � is the identity
component of the full group of isometries of �, then � acts transitively on � and
we can write � � ���, where � is the isotropy subgroup of � at a point � � �.
Since � is simply connected and � is connected, � is also connected. The isotropy
representation of ��� at � is the Lie group homomorphism � � � � �&�����
given by ���� � ���. Note that � is injective, since any isometry that Þxes � is
completely determined by its differential at this point. By an orbit of the isotropy
representation of � at �we mean an orbit in ��� of the group����. If the base point
� is replaced by � � ��, � � �, the resulting isotropy representation is equivalent
to the one at �. For this reason, we will often omit the base point and will simply
speak of the isotropy representation of the symmetric space �. Note that the �-
representation of a symmetric space of noncompact type is the same as the one of
the corresponding dual simply connected symmetric space of compact type.
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Some important properties of �-representations that we will discuss in Chapters 4,
5 and 6 are the following: The group ���� coincides with the holonomy group of
� at �. Moreover, the Lie algebra of this holonomy group coincides with the linear
span of the set �2����" � � ��" � ����, where 2� is the curvature tensor of
� at �. Therefore, the holonomy representation of a simply connected semisimple
symmetric space � � ��� coincides with the isotropy representation of���.
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The orbits of s-representations are known as R-spaces, real ßag manifolds (see
also Appendix A.4, page 310), or generalized real ßag manifolds, or more precisely,
as standard embeddings of R-spaces (cf. [115, 117, 118, 146]). They play an impor-
tant role in geometry, topology and representation theory and have been extensively
studied.
We will now prove (see also [27] and [56]) that the isotropy representation of

� � ��� is polar, that is, there exists a linear subspace : of 
 which meets all
%����-orbits, and is perpendicular to the orbits at the points of intersection.
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A ßat in a symmetric space � is a connected, complete, totally geodesic, ßat sub-
manifold. Every complete geodesic is a one-dimensional ßat. The tangent spaces
to ßats at � are in one-to-one correspondence with Abelian subspaces of 
 (via the
exponential map and the usual identiÞcation of ��� with 
). A maximal ßat in �
is a ßat of maximal dimension. A well-known result by E. Cartan asserts that any
two maximal ßats in � are conjugate by some element of �. The inÞnitesimal, and
equivalent, version of this is the following classical result that follows from the above
theorem and Proposition 3.2.7.
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We recall that the dimension of a maximal ßat in the symmetric space �, or equiva-
lently, the dimension of a maximal Abelian subspace of 
, is the rank of the symmet-
ric space. The above discussion shows that the rank is equal to the cohomogeneity
of the isotropy representation of � � ���.
We now study more thoroughly the geometry of an orbit of an �-representation

and relate it to the root system of the symmetric space � � ���.
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We now turn to the general case of an orbit of an �-representation. We assume that
the semisimple symmetric space ��� is noncompact. Let '� � 
 and consider the
orbit� � %���� � '� � � � '�. Let � be a maximal Abelian subspace of 
 con-
taining'�, and letI � �� ��'� be the set of restricted roots of the symmetric space
with respect to � (cf. Section A.2). Notice that, unlike in the case of root systems
of compact Lie groups, the root system of a symmetric space can be nonreduced.
Recall that ( � I if and only if ' �� ( � �� and �� � �� � � � �'��� � (�'��
for all ' � �� �� '. Then we have
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where � is the centralizer of � in �. Since ���'�, ' � �, interchanges � and 
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The geometric interpretation of these splittings is explained by

���� � 
� � ���� � 
�� � (3.2)
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Indeed, if we endow � with the standard inner product equal to
! on � and ! on 
,
where ! is the Killing form of �, we obtain an %����-invariant inner product ��� ��
on �. Thus, for any " � 
 and � � ���� , we have

' � ��� �'�� " �� � ���� '��� " � �

and so ���� � �� � 
 � ��� '�� � '� � 
�� . Note that ���'�� � �� � 
� and
���'�� � 
� � �� are isomorphisms since ���'��� � (��'���.

An element ' is regular if and only if �
�
� ; �
�
� for all ! � 
, or equiv-
alently, if �
� �� ; �
� �� for all ! � 
. Note that an element ' is regular if and
only if 
� is a (maximal) Abelian subspace of 
. Recall that the dimension of � is
the rank of the symmetric space.

We have just proved that an �-representation is polar. The converse is also true to
some extent, as we will now explain. Two representations �� � �� � �&��� and
�� � �� � �&��� are said to be orbit-equivalent if there is an isometry ' � ���
�
� that maps the orbits of �� to the orbits of ��, that is, '������� � ���'�� for

all � � ��. Dadok [63] classiÞed all polar representations. He used Proposition
3.2.2 for an inductive argument. Then he saw from the list that polar representations
are all orbit-equivalent to isotropy representations of semisimple symmetric spaces.
That is, there is an �-representation with the same orbits. Hence, he proved the
following result.

������� �	�	
% �����)�

����� ���� �������	���
�	 �	 2� 
� ���
�!�$�
���	� �� �	 �!�������	���
�	�

It is clear that every orthogonal representation of cohomogeneity one is polar. In
fact, it must be transitive on spheres. Every cohomogeneity two action on�� is polar
as well, since it is polar on the spheres in��, and the cohomogeneity of the action on
any sphere is one. These actions were Þrst classiÞed by Harvey and Lawson in [102].
A geometric proof of Dadok�s result was obtained by Heintze and Eschenburg [81]
for cohomogeneity at least three.

A simple example of a polar representation that is not the isotropy representation
of a symmetric space is the standard inclusion of �� ��� into �&�;��. The orbits of
�� ��� in��� �� �� are hyperspheres centred about the origin. Therefore the orbits
of �� ��� coincide with the orbits of the action of �&�;�� on ���, which is the
isotropy representation of the sphere � �� � �&�;�  ,���&�;��. In Dadok�s list,
examples appear that are not transitive on the sphere, and it also contains an example
of a (reducible) polar representation of a simple Lie group whose orbits are products
of spheres.
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��� �����
��	 ���

a) DeÞnitions

Let��� � be smooth manifolds and ���� Lie groups acting smoothly on� and
� �, respectively. A smooth map 
 �� �� � is called equivariant (with respect to
these two actions) if there exists a Lie group homomorphism 	 � �� � � such that


���� � 	���
���

for all � � � and � � �. The basic feature of equivariant maps is that they map
orbits of the �-action on� into orbits of the � �-action on� �. In the framework
of Riemannian geometry of particular interest for us will be equivariant immersions
and embeddings. If� and � � are Riemannian manifolds, �� � ��� ��, and 
 is
an isometric immersion or embedding, then we speak of a �-equivariant isometric
immersion or embedding. If, in particular,� � � ��, �� � ����� � &��� � ��,
and the ��-action on�� is the standard one

� � �&��� �������� �
� � ��'� <�� �� �� '� < �

then an equivariant isometric immersion 
 �� � �� is called a linearization of the
�-action on� .
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A classical problem is the existence of linearizations of isometric Lie group ac-
tions on Riemannian manifolds or, more generally, the existence of equivariant im-
mersions or embeddings into a given Riemannian manifold.

b) Existence of equivariant embeddings of compact Riemannian homogeneous
spaces into Euclidean spaces

A well-known result by Nash asserts that any Riemannian manifold can be iso-
metrically embedded in some Euclidean space [164]. Moreover, a result by Mostow
and Palais (see e.g. [28], page 315) states that if a compact Lie group � acts on a
compact manifold� , then� admits an equivariant embedding into some Euclidean
space. Moore in [140] gave an answer to the question whether a compact Riemann-
ian homogeneous space admits an embedding that is both equivariant and isometric.
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There are important examples of equivariant immersions of compact Riemannian
homogeneous spaces that can be constructed from the eigenvalues of their Laplace
operator.

c) The standard minimal isometric immersions of compact Riemannian homog-
eneous spaces into spheres

Let� � ��� be a compact Riemannian homogeneous space. Since� is com-
pact, its Laplace operator has a discrete spectrum ' � (� ; (� ; � � � �  �. We
denote by �� the eigenspace of (� in the Hilbert space 5��� � of all 5�-functions on
� and by =� the dimension of ��, which is always a positive integer. We assume
$ � , from now on. The Laplacian on any Riemannian manifold is invariant under
the action of the isometry group. Thus, we get a representation 	 of � on � � by
means of

	���
 �� 
 Æ ���

for all � � � and 
 � ��. We equip �� with a �-invariant inner product

�
�� 
�� �� =�
+����� �

�
�


�
�  +��� �

where +����� � denotes the volume of� with respect to the Riemannian metric �
on � and  +��� is the volume element on � determined by �. Then 	 becomes
an orthogonal representation of � on the = �-dimensional Euclidean vector space
���� ��� ���. Let 0�� � � � � 0��

be an orthonormal basis of �� consisting of smooth
functions� � �. We identify �� with ��� by means of this basis. The smooth
map

0 � �� �0�� � � � � 0��
� �� � �

��

is an equivariant immersion with respect to 	 � � � &�����. Thus, 0 � is a lin-
earization of the �-action on� .
Moreover, the image 0 ��� � is contained in the unit sphere ����� 	 �

��. We
give a short proof of this fact. We Þrst remark that, for each � � �,

�0� Æ ���� � � � � 0��
Æ ���� � �	���0�� � � � � 	���0��

� � 	���0 �

is also an orthonormal basis of ��. Thus there exists a matrix �'������ � &�=��
such that

	���0 � �
��	
���

'�����0� �
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Note that �'������ is the matrix associated to 	��� with respect to the basis 0�, � � �,
0��

. Since �'������ is orthogonal, we get

��	
���

�	���0��
� �

��	
����	��

'�����'	����0�0	 �

��	
���

�0��
� �

and hence,
���

����0��
� is constant on� . By integrating, and using the orthonormal-

ity of 0�� � � � � 0��
, we get

��	
���

�0��
� vol��� � �

��	
���

�
�

�0��
� +��� �

vol��� �
=�

=� � vol��� � �

that is,
���

����0��
� � ,.

If� � ��� is isotropy irreducible, then� has a unique �-invariant Riemann-
ian metric up to a constant factor. Therefore, since the induced metric by 0 � on�
is �-invariant, 0 � is homothetic. Thus, by possibly rescaling the Riemannian metric
by a constant factor, 0 � can be assumed to be isometric. In this situation, the map

0 � �� � ����� 	 ���

is called i-th standard isometric immersion of� into ����� resp. ���. This is an
equivariant isometric immersion into the sphere ����� together with its standard
action of &�=��. Moreover, 0 � is a minimal isometric immersion into �����, (see,
e.g., [210]). Indeed, since I0 � � (�0

� and I0 � is proportional to the mean cur-
vature vector Þeld of the isometric immersion 0 � � � � �

��, the mean curvature
vector Þeld of the isometric immersion 0 � �� � ����� vanishes. These particular
immersions have been widely studied, see, for instance, [72,134,135,221,235].
Thus, we have explicitly proved that every compact isotropy irreducible Riemann-

ian homogeneous space ��� admits a�-equivariant isometric immersion into some
Euclidean space (or into some sphere). Similarly, we might say that every transitive
isometric action of a compact Lie group on a Riemannian homogeneous space admits
a linearization.

d) The Veronese surface

In general, the standard isometric immersions are not embeddings. Consider, for
instance, �� � �&�/���&�;�, which is a space form with constant curvature one,
and consider the second standard isometric immersion. Explicitly, an orthogonal
basis of the eigenspace �� corresponding to the second eigenvalue (� of the Laplace
operator on �� is given by�

��� �4� �4�
,

;
��� 
 ����

,

;
�
/
���  �� 
 ;4��

�
�

Any such eigenfunction is a homogeneous polynomial6 of degree two in three vari-
ables that is harmonic, that is,

>�6�>��  >�6�>��  >�6�>4� � ' �
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An easy way to see directly that this is an orthogonal basis is to observe that � � is an
irreducible �&�;�-module. By Schur�s Lemma, all inner products on �� are homo-
thetic. An �&�;�-invariant inner product on the space �� of harmonic polynomials
of degree two is given by summing the products of all monomial coefÞcients.
The immersion 0 � � �� � �&�/���&�;� � �

� is given by

0 � � �� � ��

�
,�
/

�
� �� �

��� �� 4� ��
�
��� �4� �4�

,

;
��� 
 ����

,

;
�
/
���  �� 
 ;4��

�
�

Since �� � �&�/���&�;� is isotropy irreducible, we see that 0 � is minimal in
the hypersphere ��� ��

�
�. Moreover, as one can easily see, 0� maps a point and its

antipodal point on � � to the same point. Thus 0 � induces an isometric immersion of
the real projective plane �6 � into ��. This immersed surface is also known as the
Veronese surface in ��.
The action 	 of �&�/� on �� is given by

	���6 �,� � 6 ����,� � 6 � �� � � � �&�/� � , � �� � (3.3)

We observe that 	 induces a representation 	� � ���/� � ������ of the correspond-
ing Lie algebras, which maps a matrix�

� ' 
7 
.7 ' 
?
. ? '

�
� � ���/�

to the matrix �
�����

' 7 . 
? ?

7 ' ? . .

. 
? ' ;7 '
? 
. 
;7 ' '

? 
. ' ' '

�
����� � ������ �

e) Nonexistence of equivariant immersions of symmetric space of noncompact
type

For noncompact Riemannian homogeneous spaces there is no general result for
the existence of equivariant immersions. In fact, for Riemannian symmetric spaces
of noncompact type one has the following negative result [232].
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This result generalizes a classical result of Bieberbach ( [23], Section IV) asserting
that the real hyperbolic plane has no equivariant isometric embedding into a Eucli-
dean space.
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��� ����������� ����������� �� �������� ����

Recall that if � � � � ����� is a representation of a compact Lie group, then
the elements of � have a common Þxed point � (Remark 3.3.1), and hence, we can
assume that � � &��  ,� (� � �&��  ,� if � is connected) and that each orbit
lies in a sphere. The case of orbits of a representation � � �� &�� ,� (orthogonal
representation) has been extensively studied, and we will be mainly concerned with
this situation. More generally, for a homogeneous submanifold of ��, we have the
following result by Di Scala [68].
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Roughly speaking, this result says that the homogeneous submanifolds of Eucli-
dean spaces that are not contained in a sphere are generalized helicoids.
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�,� The universal covering group <� of� is isomorphic to the direct product���	,
where � is a simply connected compact Lie group.
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�;� The induced representation of���	 into ����� is equivalent to <��� <��, where
<�� is a representation of� ��	 into �&� �, <�� is a representation (not necessarily
linear) of�	 into �����, and   # � �.
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�/� The induced representation � of � � �	 is equivalent to �� � ��, where ��
is a representation of � � �	 into �&� � and �� is a linear map of �	 into ��

(� �   #), regarding�� as a group of translations.
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This result is sharp in the sense that there exist minimal submanifolds of �� with
codimension one (for instance, minimal surfaces of revolution). By Calabi�s Rigidity
Theorem, any holomorphic isometry of a complex submanifold of � � extends to � � .
On the other hand, any complex submanifold is minimal. So we have the following:
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In this section, we outline the results of [69] about homogeneous submanifolds of
the real hyperbolic space -� � �&���� ,���&���. We Þrst introduce some nota-
tion. Let ��� ��� ��� be a real vector space endowed with a nondegenerate symmetric
bilinear form of signature ��� ,�. We can identify � with the Lorentzian space ����,
whence Aut��� ��� ��� �� &��� ,�. It is well known that -� can be identiÞed with a
connected component of the set of points � � ���� with ��� �� � 
,. Observe that
the identity component of &��� ,� acts transitively on - � by isometries. An afÞne
subspace D of � is called Riemannian, Lorentzian or degenerated if the restriction
of ��� �� to the vector part of D is positive deÞnite, has signature ��
�D 
 ,� ,�
or is degenerate, respectively. A horosphere in -� is the submanifold that is ob-
tained by intersecting -� with an afÞne degenerate hyperplane. Recall that the
ideal boundary -���� is the set of equivalence classes of asymptotic geodesics.
Thus -���� can be regarded as the set of light lines through the origin, that is,
-���� ! �4 � �

��� � �4� 4� � '�. Observe that a point 4 at inÞnity deÞnes a
foliation of -� by parallel horospheres. We say that the horosphere E is centred at
4 � -���� if E is a leaf of that foliation. An action of a subgroup� of &��� ,� is
called weakly irreducible if it leaves invariant degenerate subspaces only.
The classiÞcation of homogeneous submanifolds of -� is basically given by the

following result.
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This result is also a tool for the proof of the next result, which shows how the
theory of homogeneous submanifolds of - � can be used to obtain general results
about the action of a connected Lie subgroup of &��� ,� on the Lorentzian space
����.
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Theorem 3.5.2 has an immediate consequence, which provides a purely geometric
answer to a question posed in [9].
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We will now present some ideas for the proof of Theorem 3.5.2. The fundamental
tools for the proof of Theorem 3.5.2 are Theorem 3.5.1 and the followinguniqueness
result.
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A simple consequence of Theorem 3.5.1 and Lemma 3.5.4 is that every minimal
homogeneous submanifold of-� is totally geodesic. As we saw in Theorem 3.4.2,
the analogous statement for�� is also true.

A key fact in the proof of Theorem 3.5.1 is the following observation: If a normal
subgroup - of � has a totally geodesic orbit - � � of positive dimension, then
� � � � - � �. This is because � permutes the--orbits, and hence - � � � � � � by
Lemma 3.5.4.
The next step for proving Theorem 3.5.1 is to study the two following cases sep-

arately: � is semisimple (and of noncompact type) and � is not semisimple. In the
latter case one proves the statement Þrst for Abelian groups. Applying the previ-
ous observation to a normal Abelian subgroup of �, three possibilities can occur: �
translates a geodesic, � Þxes a point at inÞnity, or � has a proper totally geodesic
orbit. As a consequence, a connected Lie subgroup� of&��� ,� that acts irreducibly
on ���� must be semisimple. Finally, one shows that if � has a Þxed point 4 at in-
Þnity, then � has a totally geodesic orbit (possibly the entire - �), or � has a Þxed
point in -�, or all of its orbits are contained in the horospheres centered at 4. The
idea is that if� has neither a Þxed point nor orbits in horospheres, then there exists a
codimension one subgroup- of � such that every --orbit is contained in the horo-
sphere foliation determined by 4. Then - acts isometrically on horospheres, and
one can use the fact that - must have a totally geodesic orbit in each horosphere,
because each horosphere is a Euclidean space. At last, it is not hard to show that the
union of all these totally geodesic orbits over all horospheres is a totally geodesic
�-invariant submanifold of- �.
Where � is a semisimple Lie group we choose an Iwasawa decomposition � �

�') . Then it is possible to prove that the solvable subgroup ') of � has a min-
imal orbit that is also a �-orbit. One Þrst chooses a Þxed point � of the compact
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group �, which always exists by Cartan�s Fixed Point Theorem. It is possible to
prove that the isotropy subgroup�� of� at � coincides with�. Then the mean cur-
vature vector Þeld- of � � � � ') � � is invariant under ��. If- does not vanish,
then the �-orbits through points on normal�-invariant geodesics are homothetic to
the orbit� � �. Observe that these orbits are also ') -orbits. The volume element of
these orbits can be controlled by Jacobi vector Þelds, eventually proving that there
exists a minimal �-orbit that is also an ') -orbit.
An induction argument involving � and the dimension of � completes the proof

of Theorem 3.5.1.

The idea for the proof of Theorem 3.5.2 is as follows: If � acts in a weakly
irreducible way, then the�-orbitsmust be contained in horospheres and, if an orbit is
a proper submanifold of some horosphere, one can construct a proper totally geodesic
�-invariant submanifold as the union of orbits parallel to totally geodesics orbits of
the action of � restricted to the horosphere. This is a contradiction because totally
geodesic submanifolds are obtained by intersecting the hyperbolic space - � with
Lorentzian subspaces.
If � acts irreducibly, then it must act transitively on - �. By a previous observa-

tion, we already know that� is semisimple and of noncompact type. The second part
of the theorem follows from the theory of Riemannian symmetric spaces of noncom-
pact type, once we show that the isotropy group at some point is a maximal compact
subgroup of �.

��" #����� �������	� ��
� �� �
��	�

Let � be a Lie group acting isometrically on a Riemannian manifold �� . Let
� � �� and ' be the shape operator of the orbit� � � � �. Then we have

'��
��� � ��'
�

for all � � �,� � ��� and � � ��� . In particular, if� is a principal orbit and =�
is the equivariant normal vector Þeld on� determined by �, then
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��� � '��
��� � ��'
�

for all � � �,� � ��� and � � ��� . Therefore we have

'�
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� ��'
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and hence,
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Let now �� be a Killing vector Þeld on �� that is induced by the action of �.
Recall that

��� � ���
� � � � �� � ���

� � � � �� �
where � � � � � is a reductive decomposition. Since �� is a Killing vector Þeld
on �� , for any normal vector Þeld � we have � ������! � � ��
���! , and the Wein-
garten formula tells us

'
�
�
� � 
�� ��������! �

where ���! denotes the orthogonal projection from �� �� onto ��� . Note that, ��

being a Killing vector Þeld on �� , the covariant derivative � ������ of �� at � is a
skewsymmetric endomorphism of �� �� . We summarize this in
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If �� � �� and � 	 �&���, then the elements in � 	 ����� can be identiÞed
with skewsymmetric endomorphisms of ��. Using this identiÞcation the previous
proposition can be rephrased as
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a) Motivation and deÞnition

Symmetric submanifolds are, in a certain sense, analogous to symmetric spaces
for submanifold theory. Indeed, they always come equipped with a symmetry at
each point, namely the geodesic reßection in the corresponding normal submanifold.
Some real ßag manifolds, the so-called symmetric R-spaces, can be embedded as
symmetric submanifolds in Euclidean spaces. We will see that essentially all sym-
metric submanifolds in Euclidean spaces arise from symmetric R-spaces.
The study of symmetric submanifolds in Euclidean spaces, and of the closely

related submanifolds with parallel second fundamental form, started around 1970.
To our knowledge, the origin of these studies goes back to the paper by Chern, do
Carmo and Kobayashi [55] on minimal submanifolds of spheres with second funda-
mental form of constant length. In this paper the condition ��7 � ' is explicitly
stated. Further studies were undertaken by Vilms [233] and Walden [234]. Then
Ferus [83�85], systematically studied submanifolds of �� with parallel second fun-
damental form. He achieved a complete classiÞcation of these submanifolds, and, as
a consequence of his result, it turns out that such submanifolds are locally extrinsic
symmetric. A direct proof of this latter fact was presented by Strübing [204], whose
result we will discuss in part b) below.
The precise general deÞnition of a symmetric submanifold is as follows. A sub-

manifold� of a Riemannian manifold �� is called a symmetric submanifold if, for
each � �� , there exists an isometry �� of �� with

����� � � � ���� � �� ��� ������,� �
�
, � , � ���
, � , � ���

�

In this section, we deal with symmetric submanifolds of space forms. The general
case will be discussed in Section 8.5.

b) Symmetric submanifolds and parallel second fundamental form

We begin by investigating the relation between symmetric submanifolds and par-
allel second fundamental form. We will see that for submanifolds of space forms
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these two concepts lead to the same theory, whereas, in more general Riemannian
manifolds, symmetric submanifolds have parallel second fundamental form, but not
vice versa.
Let� be a symmetric submanifold of a space form �� . Any isometry of �� is an

afÞne map with respect to the Levi Civita connection. Using the Gauss formula we
obtain

����7��"� :� � �������7��"� :� � �������7�����"� ���:� � 
����7��"� :�

for all � � � and ��"� : � ��� . Thus, the second fundamental form of a sym-
metric submanifold is parallel.

 �� �!��� �	'	

��� ����	� ��	����	�� ���� �� � �������
� �����	
��� �� � ����� ���� 
�
������

A natural question arising from this proposition is whether parallelity of the sec-
ond fundamental form implies symmetry of the submanifold. Since the Þrst condi-
tion is local, whereas the second is global, this question makes sense only for some
kind of local symmetry. To make this precise, we introduce the notion of a locally
symmetric submanifold� of a Riemannian manifold �� by requiring that for each
� �� there exists a local isometry �� of �� with

����� � � � ���� � � � ��� ������,� �
�
, � , � ���
, � , � ���

for some open neighbourhood� of � in� . Our aim now is to show that, for a sub-
manifold of a space of constant curvature, local symmetry is equivalent to parallelity
of the second fundamental form (see also [204]).

������� �	'	�
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� ������

We mention straight away that this result does not generalize to more general
Riemannian manifolds. As we will see later, a totally geodesic real projective space
�6 	 in complex projective space �6 � is not a locally symmetric submanifold for
� ; �, but obviously has parallel second fundamental form.
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If �� is a standard space of constant curvature there is a global version of Theorem
3.7.2, since the local symmetry deÞned in the proof can be extended to a global
isometry.
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c) Construction methods in standard space forms

In this part we describe two methods for constructing new symmetric submani-
folds from given symmetric submanifolds in standard space forms. These methods
are quite elementary, but useful for classiÞcation purposes.

Method 1: Extrinsic products of symmetric submanifolds.

Let � � �� � � � � � �� be an extrinsic product in a standard space form
�� , and suppose that each leaf 5���� of the induced totally geodesic foliations 5 �,
$ � ,� � � � � �, on� has parallel second fundamental form 7��� in �� . By deÞnition,
the second fundamental form 7 of� satisÞes 7���� "�� � ' for all�� � ��5����,
"� � ��5����, $ �� B, � � � . Since � is a Riemannian product, it follows from
this deÞnition that ���

��
7��"�� :	� � ' for all �� � ��5����, "� � ��5����

and :	 � ��5	��� whenever B �� �. Using the Codazzi equation, this implies
�����

7��"� � :	� � ' for all �� � ��5����, "� � ��5���� and :	 � ��5	���
whenever two of the three indices $� B� � are distinct. On the other hand, if all three
indices $� B� � coincide,

�����
7��"�� :	� � �����

7�����"� � :	� � ' �

since, by assumption, 7��� is parallel. Altogether, it follows that � has parallel
second fundamental form in �� .

Now assume that each leaf 5���� is a symmetric submanifold of �� . Since each
symmetric submanifold has parallel second fundamental form, the previous discus-
sion shows that� has parallel second fundamental form in �� . From Theorem 3.7.3
we deduce that� is a symmetric submanifold of �� . We summarize this in
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Method 2: Prolongation of symmetric submanifolds via totally umbilical
submanifolds.

Another method for constructing a new symmetric submanifold from a given sym-
metric submanifold of a standard space form is the so-called prolongation via a to-
tally umbilical submanifold.
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The following example illustrates how these two methods can be used to construct
new symmetric submanifolds of spheres from some given symmetric submanifolds
of spheres. Let �� be a symmetric submanifold of ��������� and �� a symmet-
ric submanifold of ���������. Since ��������� sits totally umbilically inside ���,
it follows from Lemma 3.7.5 that �� is a symmetric submanifold of ���. Anal-
ogously, �� is a symmetric submanifold of ���. We now apply Lemma 3.7.4 to
see that the extrinsic product�� ��� is a symmetric submanifold of ��, where
� � ��  ��. But, by construction,�� ��� sits inside ��������� � ���������,
which is a submanifold of �������, where � �

�
���  ���. Since �

������ is a to-
tally umbilical submanifold of��, it follows from Lemma 3.7.5 that�� ��� is a
symmetric submanifold of �������.

d) Examples of symmetric submanifolds in standard space forms

We will now use Theorem 3.7.3 to present some examples of symmetric subman-
ifolds in standard space forms. In fact, according to this result, it is sufÞcient to Þnd
connected complete submanifolds with parallel second fundamental form.
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e) ClassiÞcation of symmetric submanifolds of standard space forms

We now classify the symmetric submanifolds of the standard space forms. Rough-
ly speaking, we will show that the examples given above exhaust all possibilities.
Although it is possible to formulate just one classiÞcation theorem for all standard
space forms (see [6]), we will investigate the cases of zero, positive and negative
curvature separately for the sake of simplicity.

ClassiÞcation in Euclidean spaces.

As a Þrst step, we classify the locally symmetric submanifolds of��. This classi-
Þcation is due to Ferus and can be found in the papers [83], [86], [84] and [85]. The
most concise proof was given in [86] using the algebraic framework of Jordan triple
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systems. Here, we prefer to adopt the more geometric approach of [83] and [84],
following also [212] and [80].
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�		���� �� �� �������� !� ��� � ������ �	���$ ������� a complete symmetric
submanifold of �� is covered by a submanifold product��� ��� � � � � ��� �
��������� � ����� � ��, where�� is a standard embedding of an irreducible
symmetric R-space.

In the rest of this subsection, we will be concerned with the proof of Theorem
3.7.8. Since � is a locally symmetric submanifold, its second fundamental form
7 is parallel. It follows that the nullity distributionF � (see Section 2.3) on� has
constant rank. Moreover, we have

7���"� :� � ���7�"� :� 
 7�"���:� � '
for all sections " in F� and all vector Þelds ��: on � . This shows that F� is a
parallel subbundle of �� . Since 7�F�� F

�
� � � ' by deÞnition ofF�, the Lemma of

Moore now implies that� is locally a submanifold product of�� with a Euclidean
factor, a leaf of F�, if the rank of F� is nonzero. Without loss of generality we can
assume from now on that the nullity distribution on� is trivial.
Since 7 is parallel, the mean curvature vector Þeld - of � is a parallel normal

vector Þeld and the shape operator '% is a parallel selfadjoint tensor Þeld on � .
Therefore, the principal curvatures (�� � � � � (� of � with respect to - are constant
and hence, since '% is parallel, the corresponding principal curvature spaces form
parallel distributionsF�� � � � � F� on� .
Since 2����" �- � ' for all��� � ��� , � � � , the Ricci equation implies

�'% � '
� � ' for all normal vector Þelds � of� . Therefore, each eigendistribution
F� is invariant under all shape operators, that is, '
F� 	 F� for all normal vector
Þelds � of� . This implies in particular that

7�F�� F�� � ' � �� ��� $ �� B � (3.9)
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Since the bundles F� are parallel, (3.9) and Moore�s Lemma 2.7.1 implies that� is
locally a submanifold product� ����� � ����, where�� is an integral manifold
of F� and a submanifold of a suitable ���� 	 �

�. We denote by 7� the second
fundamental form of �� 	 �

��� and by I� � � � �� the canonical projection.
Then we have

7���" � � �7��I����I��" �� � � � � 7��I����I��" ��

for all��" � ��� , � �� . This implies that7� is parallel as well. By the theorem
on the reduction of codimension (Theorem 2.5.1) we can reduce the codimension of
each��, since the distribution of the Þrst normal spaces is parallel (see, for instance,
Exercise 2.8.8). Thus, for each�� we get a full immersion�� � ��� � ����. Let
-� be the mean curvature vector Þeld of��. Then - � �-�� � � � �-�� and

�7����" ��-�� � �7���" ��-� � (����" �
for all ��" � ����, � � ��. If (� �� ', this shows that�� is a pseudoumbilical
submanifold of ��� with parallel mean curvature vector Þeld and (� � "-�". By
Proposition 2.6.3 we get that �� is minimal in a hypersphere of ���. Part (a) of
Theorem 3.7.8 then follows from the following lemma and the assumption that the
nullity distribution of� is trivial.
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��7 � ' !� ��+� I7 � ' ��� �������
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+�	 7 ! '�

We continue with the proof of part (b) of Theorem 3.7.8. Without loss of gener-
ality, we can assume that � is a full irreducible symmetric submanifold of ����.
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Recall from part (a) that � is minimal in a hypersphere ��. We will assume that
this sphere is centered at the origin and has radius

�
;= with= � �
�� .

The idea of the proof is the following: First, we associate to � a Lie algebra
�, which can be seen as the Lie algebra of all isometries of ���� that leave �
invariant. Then we deÞne a Lie bracket on the vector space � � ������ in such a
way that ��� �� is a symmetric pair. This proof follows original ideas by Ferus [84]
and is completely algebraic. It will turn out that the deÞnition of � depends only
on the value of the second fundamental form of � at a single point. Hence, as a
by-product, we also get that a symmetric submanifold is uniquely determined by the
value of its second fundamental form at one point.
We Þx a point � � � and put � � ��� and D � ��� . Since the immersion

is full, we have D � im7� � span�7��,� ,� � , � � �, where the latter equality
follows by polarization of 7.
We now introduce an operator which, although encoding the same piece of infor-

mation as the second fundamental form or the shape operator, turns out to be useful,
especially when dealing with homogeneous submanifolds. For each � � � the in-
Þnitesimal transvection �& is the endomorphism

�& � � �D � � �D � � �� 7����! �
'��� �

We denote by � the real vector space that is spanned by the inÞnitesimal transvec-
tions ��& � � � � �.
For �� � � � we denote by �2&�' the endomorphism on � �D given by �2&', �

2��� ��, for all , � � and �2&'� � 2���� ��� for all � � D , where 2 is the
Riemannian curvature tensor of � and 2� is the normal curvature tensor of � .
From the equations by Gauss and Ricci it follows that ��&� �'� � �2&'. We deÞne a
subalgebra 	 of ���� �� ���D � 	 ���� �D � � ����  ,� by

	 � �! � ���� �� ���D � � ! � 7 � '�
� �! � ���� �� ���D � � �!�'
� � '�
 for all � �D�
� �! � ���� �� ���D � � �!��&� � ��& for all � � � � �

(3.11)

Here ! �7 means that! acts on 7 as a derivation. One should think of the elements
in 	 as the inÞnitesimal isometries that are generated by one-parameter groups of
isometries of���� leaving� invariant and Þxing �. These inÞnitesimal isometries
are just the differentials of 0� � &�� ,� such that

0�7��� �� � 7�0��� 0���� (3.12)

In other words, if ! � 	, then 0� � 1(���!� satisÞes (3.12). Notice also that
�2&' � 	.
The direct sum � � 	�� is a subalgebra of ����  ,� with bracket relations

��&� �'� � �2&' � �'��&� � ��& ��� � � ��' � 	��

Let � be the connected Lie subgroup of �&��  ,� with Lie algebra �. We now
deÞne a Lie algebra structure on the vector space � � ������ � � � � �D . For
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this purpose, we consider the adjoint operator 2�� � R�D � R�� of 2�, which is
characterized by

�2���� $ J�� � $ �� � �2���� ���� J� � ��'
� '(��� ��

for �� � � � and �� J � D , and hence we can deÞne 2���� $ J�� � �'
� '(��.
For �� J � D we deÞne an endomorphism ��� $ J� on � �D by ��� $ J�� �
2���� $ J�� and��� $ J�1 equal to the unique element � �D such that

') � �2
���� $ J�� '*� � ��'
� '( �� '*� � (3.13)

Note that � is uniquely determined by (3.13), since � is full in ���� and hence
� �� ') has trivial kernel. By deÞnition we have ���� $ J�� '* � � '�	
�(
*, and
thus��� $ J� � 	.
We are now able to deÞne the Lie algebra structure on �. For two elements in �

we use the Lie algebra structure on �. If ! � � and � � � � D , then we deÞne
�!��� � !�. Finally, for ,� * � � and �� J �D we deÞne

�,� *� � 
���� ��� � �,� �� � 
���� � ��� J� � ��� $ J� �

We have to verify that the Jacobi identity holds. This is obvious if all elements lie
in �. Since the bracket on � is equivariant with respect to the action of � on �, it
follows by differentiation that the Jacobi identity holds if at least one element lies in
� only. We are thus left to verify the Jacobi identity for elements in � �D , that is,
we have to show that��� �"� :�� � ' for all ��"� : � � �D , where  denotes
the cyclic sum. This is clear if all the three elements lie in � , since then the Jacobi
identity is just the Þrst Bianchi identity for2. If � � � and �� J � D , then

��� ��� J�� � ��� �'
� '( ��  ��� ���&�
 �J� ���&�
� 
�'
 � '(�� '
'(�
'('
� � ' �

If �� � � � and � �D , then

��� ��� ��� � 
��� ���'�  ��� ���&�
 ��� ��&� �'��
� 7�'
�� ��
 7�'
�� ��  2���� ��� � '

by the Ricci equation. Finally, we prove the Jacobi identity for �� J� 1 � D . Since
� is full in ����, it sufÞces to prove that '��
��(�*�� � '. But this follows from
'�
��(�*�� � 
'�(�*�
 � 
��'(� '*�� '
� by deÞnition of�. Note, in particular, that
the Lie algebra structure on � is completely described by the shape operator of� .
We now deÞne 1 � 
;=- �D , where - is the mean curvature vector of� at

�. Since� is minimal in the sphere with radius
�
;=, we have that '* � 
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Note that the above lemma also shows that the isotropy representation can be
identiÞed with the adjoint action of� on����.
According to the general construction (as explained in Section 3.7 d), the orbit��1

is a symmetric submanifold or, more precisely, a standard embedded symmetric R-
space. Since � is, by assumption, full and irreducible, the remarks of Section 3.7,
page 70, imply that � � 1 is actually a standard embedded irreducible symmetric
R-space. Moreover, the tangent space at 1 to� � 1 is easily seen to coincide with �
and, using Corollary 3.6.3, one can see that the second fundamental form of� � 1 at
1 coincides with the one of� at �. Thus, the normal space to� � 1 at 1 is equal to
D .
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ClassiÞcation in spheres.

The classiÞcation of symmetric submanifolds of ����� is a simple consequence of
the one of symmetric submanifolds of ��. An important observation is that a sym-
metric submanifold of �� cannot have have a Euclidean factor, because otherwise it
could not be contained in a sphere.
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ClassiÞcation in hyperbolic spaces.

The classiÞcation of symmetric submanifolds of -���� was carried out indepen-
dently by Takeuchi [212] and Backes-Reckziegel [6]. In the latter paper, Jordan triple
systems were used for the proof (as in [86]). Here, we adopt the more geometric ap-
proach of [212]. What comes out from the classiÞcation in hyperbolic spaces is that
there is no �interesting� new example. This is a consequence of Lemma 3.7.10 and
actually follows from the more general results in [69] (see Lemma 3.5.4).
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Isoparametric submanifolds are one of the main topics of the present book. In this
section, we concentrate on isoparametric hypersurfaces. These hypersurfaces were
introduced at the beginning of the 20th century, motivated by questions in geomet-
rical optics, and studied by Segre, Levi Civita and É. Cartan, among others. The
generalization to higher codimension came much later, starting from the 1980s. For
more details about the historical development see [220].
Isoparametric hypersurfaces of space forms can be characterized by the property

of their principal curvatures being constant. They are deÞned as regular level sets
of isoparametric functions, so that they determine an orbit-like foliation of the space
form. Isoparametric hypersurfaces share many properties with homogeneous hyper-
surfaces.

a) Transnormal functions

Let �� be a connected Riemannian manifold. A transnormal function on �� is a
nonconstant smooth function 
 � �� � � such that "��� 
"� � < Æ 
 for some
smooth function < � � � �, where � �� 
� �� � is an interval in �. Basic properties
of transnormal functions were derived by Wang [239]. First of all, 
 has no critical
values in the interior � � of �. Therefore, if A � ��, the level set�- �� �� � �� �

��� � A� is a smooth hypersurface of �� . If A�� A� � ��, then �-� and �-� are
equidistant to each other, that is, � �����-�� � � ��-� � ��� for every �� � �-� and
�� � �-� . So regular level sets of a transnormal function 
 � �� � � form a
foliation by equidistant hypersurfaces on �� , except possibly for one or two singular
level sets. One often calls this a transnormal system.

b) Isoparametric functions and isoparametric hypersurfaces

An isoparametric function is a transnormal function 
 � �� � � such thatI
 �
@ Æ 
 for some continuous function @ � � � �, where I
 � �
+���� 
� is the
Laplacian of 
 . Suppose 
 is a transnormal function on �� and�- is a regular level
set. Then � �� ��� 
�

�
<�A� is a unit normal vector Þeld on�-. LetF�� � � � � F���

be a local orthonormal frame Þeld of�-. Using the Weingarten formula, the mean
curvature 3- of�- is expressed by
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Taking into account that a transnormal function has, at most, two nonregular values,
we can now conclude
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Each connected component of a regular level hypersurface of an isoparametric
function is called an isoparametric hypersurface. The transnormal system induced
by an isoparametric function is called an isoparametric system. By the previous
proposition, any isoparametric hypersurface belongs to a family of equidistant hy-
persurfaces with constant mean curvature.

c) Homogeneous hypersurfaces

Let �� be a connected complete Riemannian manifold and �� �� � its isometry
group. Suppose � is a connected closed subgroup of �� �� � acting on �� with coho-
mogeneity one. We equip the orbit space ���� with the quotient topology relative
to the canonical projection �� � ����. Then ���� is a one-dimensional Hausdorff
space homeomorphic to the real line �, the circle ��, the half-open interval �'���,
or the closed interval �'� ,�. This was proved by Mostert [143] for the compact case
and by Bérard Bergery [8] in the general case. The following basic examples illus-
trate the four cases. Consider a one-parameter group of translations in��. The orbits
are parallel lines in ��, and the space of orbits is homeomorphic to �. Rotating a
torus around its vertical axis through the center leads to an orbit space homeomor-
phic to ��, whilst rotating a sphere around some axis through its center yields an
orbit space homeomorphic to �'� ,�. Eventually, rotating a plane around some Þxed
point leads to an orbit space homeomorphic to �'���.
If ���� is homeomorphic to � or ��, each orbit of the action of � is principal

and the orbits form a codimension one Riemannian foliation on �� . In the case ����
is homeomorphic to �'��� or �'� ,�, there exist one or two singular orbits, respec-
tively. If a singular orbit has codimension greater than one, then each regular orbit is
geometrically a tube around this singular one. And if the codimension of a singular
orbit is one, then each regular orbit is an equidistant hypersurface to it. Suppose that,
in addition, �� is simply connected. If �� is compact, then, for topological reasons,
���� is homeomorphic to �'� ,� and each singular orbit has codimension greater
than one. Thus, each principal orbit is a tube around any of the two singular orbits,
and each singular orbit is a focal set of any principal orbit. If �� is noncompact, then
���� must be homeomorphic to � or �'���. In the latter case, the singular orbit
must have codimension greater than one, and each principal orbit is a tube around
the singular one.
It is not difÞcult to deduce from the previous discussion that the orbits of � form

a transnormal system on �� . According to Proposition 3.6.1, each principal orbit of
the action of � has constant principal curvatures, hence in particular constant mean
curvature. Thus, using Proposition 3.8.1, we get
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d) Isoparametric hypersurfaces

Clearly, the condition of constant principal curvatures is stronger than just having
constant mean curvature. A natural question is whether any isoparametric hypersur-
face has constant principal curvatures. Élie Cartan [32] gave an afÞrmative answer
for the case that �� is a space form.

������� �	/	�
���� 
����������
� ������������ 
	 � ����� �� ��	���	� ��������� ��� ��	���	�
��
	�
�� �����������

The proof can be deduced by the more general result in the next chapter. In par-
ticular, it is a special instance of Exercise 4.6.5.
The previous result does not extend to more general Riemannian manifolds. In

fact, Wang [237] gave an example of an isoparametric hypersurface in complex pro-
jective space �6� with nonconstant principal curvatures. Further examples are pro-
vided by distance spheres in Damek-Ricci spaces. The story brießy goes as fol-
lows (for details see [21]): Using the Iwasawa decomposition of semisimple real Lie
groups, the complex hyperbolic space �-��� can be realized as a solvable Lie group
� equipped with a left-invariant Riemannian metric. As a group, � is the semidirect
product of � and the �;�  ,�-dimensional Heisenberg group. In this construc-
tion one can replace the Heisenberg group by a so-called generalized Heisenberg
group. For certain generalized Heisenberg groups this yields the quaternionic hy-
perbolic spaces and the Cayley hyperbolic plane, but, in all other cases, one gets a
nonsymmetric homogeneous Hadamard manifold, a so-called Damek-Ricci space.
These manifolds are named after Damek and Ricci, who proved that these spaces
provide counterexamples to the Lichnerowicz Conjecture, stating that any harmonic
manifold is locally isometric to a two-point homogeneous space. There are various
ways to deÞne or characterize harmonic manifolds. One characterization is that a
Riemannian manifold is harmonic if and only if its geodesic hyperspheres have con-
stant mean curvature. Hadamard�s Theorem implies that in a Hadamard manifold
the square of the distance function to a point is a well-deÞned transnormal function.
The result of Damek and Ricci says that in a Damek-Ricci space this function is even
isoparametric. It was then proved by Tricerri and Vanhecke that the corresponding
isoparametric hypersurfaces, which are geodesic hyperspheres, have non-constant
principal curvatures. This lead Tricerri and Vanhecke to pose the
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Two-point homogeneous spaces are precisely the Euclidean spaces, spheres and
projective and hyperbolic spaces over the normed real division algebras ����� and
�. Equivalently, two-point homogeneous spaces are precisely the Riemannian sym-
metric spaces of rank one and Euclidean spaces. The above conjecture is known to
be true in all dimensions different from D and ,J. This is because it is closely related
to the Osserman Conjecture whose answer is not known in these two dimensions
only (see Nikolayevsky [167]). The Osserman Conjecture states that a Riemannian
manifold is locally isometric to a two-point homogeneous space if and only if the
spectrum of its Riemannian Jacobi operator is independent of the point and of the
direction. Again, the relevant information about this and many references can be
found in [21].

e) Historical remarks: Cartan�s fundamental formula

We now turn to the classiÞcation problem of isoparametric hypersurfaces in stan-
dard space forms. Recall that any homogeneous hypersurface is isoparametric, so
the classiÞcation of isoparametric hypersurfaces includes the classiÞcation of hom-
ogeneous hypersurfaces, or equivalently, of cohomogeneity one actions up to orbit
equivalence. For this reason, we also discuss the classiÞcation problem of homog-
eneous hypersurfaces. A crucial step in this context is the so-called Cartan�s funda-
mental formula. To state it, denote by � the number of distinct principal curvatures
of a given hypersurface� with constant principal curvatures, and by (�� � � � � (� the
principal curvatures of� with corresponding multiplicities= �� � � � �=�.
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We give a direct proof along the same lines as Cartan�s original proof, although
Cartan used differential forms rather than vector Þelds. It is worthwhile to mention
that Nomizu [169] and, independently, Münzner [144] observed that the sum on
the left-hand side of the above equation corresponds to the mean curvature of the
focal set of � , which is determined by the principal curvature ( �. This yields the
geometrical interpretation of Cartan�s fundamental formula in terms of minimality
of the focal sets in an isoparametric system. In Section 5.2 we will actually give
another proof for isoparametric hypersurfaces in spheres using the Coxeter groups
that are associated to isoparametric submanifolds. An even simpler purely geometric
proof of the minimality of the focal manifolds can be derived from the theory that
we are going to develop in the next chapter (see Section 4.4 and also page 153).
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From this formula one can easily deduce that the number of distinct principal
curvatures of a hypersurface with constant principal curvatures in �� or -� is at
most two. It is then easy to determine all isoparametric hypersurfaces in�� and-�.
For�� this classiÞcation is due to Levi Civita [130] for � � / and to Segre [199] in
general, while for-� it is due to E. Cartan [32].
An isoparametric hypersurface of�� is one of the following:

(1) a geodesic hypersphere in��, or

(2) an afÞne hyperplane in��, or

(3) a tube around a �-dimensional afÞne subspace of�� for some , � � � �
;.
Similarly, an isoparametric hypersurface of-� is one of the following:

(1) a geodesic hypersphere in-�, or

(2) a horosphere in-�, or

(3) a totally geodesic hyperbolic hyperplane- ��� in-� or an equidistant hyper-
surface to it, or

(4) a tube around a �-dimensional totally geodesic hyperbolic subspace- 	 of-�

for some , � � � �
 ;.

f) Isoparametric hypersurfaces of ��

In a series of papers [32], [33], [34], [35], Cartan made an attempt to also classify
the isoparametric hypersurfaces in the sphere ��. He did not succeed, and, in fact,
the full classiÞcation is still not known. In the following, we present some basic
results regarding this.
As far as spheres are concerned, Cartan�s fundamental formula does not provide

sufÞcient information to determine the possible number of distinct principal curva-
tures. Only later Münzner [144] proved, using methods from algebraic topology,
that the number � of distinct principal curvatures of an isoparametric hypersurface
in �� equals ,� ;� /� . or J. This can also be deduced using Coxeter groups (see
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the example at page 148). Cartan classiÞed isoparametric hypersurfaces with, at
most, three distinct principal curvatures. They all turn out to be homogeneous. Af-
ter the original proof of Cartan [33], alternative proofs were given using various
approaches [109], [114], [62]. Surprisingly, for � � . there exist inhomogeneous
isoparametric hypersurfaces. The Þrst such examples were discovered by Ozeki and
Takeuchi [184], and later Ferus, Karcher and Münzner [87] constructed new series
of examples by using representations of Clifford algebras. Recently, Cecil, Chi and
Jensen [43] proved that, with a few possible exceptions, all inhomogeneous isopara-
metric hypersurfaces of �� with � � . are given by this construction. It was shown
by Abresch [1] that the case � � J occurs only in �� and ���, and Dorfmeister and
Neher [73] proved that an isoparametric hypersurface in �� must be homogeneous.
Now, as concerns the classiÞcation of homogeneous hypersurfaces, the following
result by Hsiang and Lawson [102] settles the remaining cases � � .� J:
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We can therefore read off the classiÞcation of homogeneous hypersurfaces in
spheres from the list of compact, simply connected, Riemannian symmetric spaces.
In detail, we get the following list of homogeneous hypersurfaces � in � � �
�&��  ,���&���:

� � ,: Then� is a geodesic hypersphere in ��. A suitable subgroup of �&�� ,�
is the isotropy group �&���, and the corresponding Riemannian symmetric space of
rank two is

��&�;� � �&��  ,����&��� � �� � �� �

� � ;:� is a Riemannian product of two spheres, namely

�	����� ���	������ � ���  ��� � , � ' ; ��� �� ; , � ' ; � ; �
 , �
A suitable subgroup of �&�� ,� is �&�� ,���&��
��, and the corresponding
Riemannian symmetric space of rank two is

��&��  ;�� �&�� 
 �  ,�����&��  ,�� �&�� 
 ��� � �	�� � ���	 �

� � /: � is congruent to a tube around the Veronese embedding of �6 � into ��,
�6 � into ��, �6 � into ���, or �6 � into ���. The corresponding Riemannian
symmetric spaces of rank two are

�� �/���&�/� � �� �/� � �� �J�����/� � F��0� �

respectively. These homogeneous hypersurfaces might also be characterized as the
principal orbits of the natural actions of �&�/�, �� �/�, ���/�, 0� on the unit
sphere in the linear subspace of all traceless matrices in the real Jordan algebra of all
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/� / Hermitian matrices with coefÞcients in�, � , �, �, respectively. The singular
orbits of these actions give the Veronese embeddings of the corresponding projective
spaces.

� � .:� is a principal orbit of the isotropy representation either of

���;� � �&�,'��� �B� � F����$��,'�� �,� �

or of a two-plane Grassmannian

��
� ��

	��� � �&��  ;���&��� � �&�;� �� � /� �
����

	��� � �� ��  ;����� ��� � � �;�� �� � /� �
����

	��� � ����  ;������� � ���;� �� � ;� �

The homogeneous hypersurfaces related to ��
� ��

	��� are the principal orbits
of the action of �&��� � �&�;� on the unit sphere � �	�� in G���� � ;��� &
��	 deÞned by �'�!�� � '�!�� with ' � �&���, ! � �&�;� and � �
G���� � ;���. The homogeneous hypersurfaces related to the complex and quater-
nionic Grassmannians are obtained from the analogous actions of ��� ��� � � �;��
and ����� � ���;� on the unit sphere in G���� � ;� � � & � �	 & ��	 and
G���� � ;��� & ��	 & ��	, respectively.
The homogeneous hypersurfaces related to ���;� & ��$��B� are the principal

orbits of the adjoint representation of ���;� on the unit sphere � � of its Lie algebra
�
�;� & ���.
The unitary group � �B� acts on � � and hence on R�� � & � �� & ��� in a natural

way. The principal orbits of this action on the unit sphere � �� correspond to the
principal orbits of the action of the isotropy representation of �&�,'��� �B�.
Denote by I� and I� the two real half-spin representations of ��$��,'� on

��� & � �� , and by � the canonical representation of � �,� on � �� given by multipli-
cation by unit complex numbers.
Then the isotropy representation of F����$��,'�� �,� is equivalent to I� ' ��  
I� ' ���, and its principal orbits in the unit sphere � �� 	 ��� are homogeneous
hypersurfaces.

� � J: � is a principal orbit of the isotropy representation of � ���&�.� or of
the compact real Lie group ��. The isomorphisms ��$��.� & ���,� � ���,� and
�
� & �

� give rise to an action of ��$��.� on �� by means of �(� K� � �4� ,� �
�(4� ,K���, where �(� K� � ���,� � ���,� and �4� ,� � � � �. The principal
orbits of this action on the unit sphere � � are homogeneous hypersurfaces with six
distinct principal curvatures. Miyaoka [138] proved that the orbits of this action are
precisely the inverse images under the Hopf map �� � �� of the �&�/�-orbits in ��

as described in the case � � /. The principal orbits in the unit sphere ��� of the Lie
algebra �� & ��� of the adjoint representation of the Lie group�� are homogeneous
hypersurfaces with six distinct principal curvatures, all of whose multiplicities are
two.
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We now introduce a class of submanifolds that generalize those that have been
studied in this chapter. Indeed, a common feature of isoparametric hypersurfaces
of space forms and of homogeneous submanifolds is that their second fundamental
form at different points can be expressed by the same matrices.
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Submanifolds with algebraically constant second fundamental form might be re-
garded as an extrinsic analogue of curvature-homogeneous manifolds (see [225]).
Submanifolds of �� with algebraically constant second fundamental form and non-
zero parallel mean curvature vector Þelds have generically constant principal curva-
tures.
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This result follows from the more general Theorem 5.5.2, therefore we omit the
proof here. Note that Theorem 3.9.2 implies that a homogeneous submanifold of ��

with nonzero parallel mean curvature vector Þeld is an orbit of an s-representation
[175]. Since every compact subgroup of �&��� has a minimal orbit in �� [102], the
assumption that the mean curvature vector Þeld is nonzero cannot be removed.
In Section 3.7, we observed that a symmetric submanifold of a space form is

uniquely determined by its second fundamental form at one point. The following
improves that result (see also [62]).
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Note that, in the previous theorem, we also allow vanishing mean curvature.



90 Submanifolds and Holonomy

If ����G� � �� and if ) is irreducible, then � is minimal since, as we saw in
Section 3.7, irreducible symmetric submanifolds of �� are minimal. Note also that
Theorem 3.9.3 generalizes a rigidity theorem for immersions with parallel second
fundamental form due to Reckziegel [192]: if two immersions with parallel second
fundamental form at some point have the same tangent space and second fundamen-
tal form, then they locally coincide.
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���*��-� �	
0	
 Consider the symmetric pair ��5������ �&����, � � ;. The
corresponding Cartan decomposition is

������� � ����� � �� �

where �� is the real vector space of all symmetric � � �-matrices with real co-
efÞcients and trace zero. Show that one can identify the tangent space of � �
�5�������&��� at H � #�&��� with �� and that the isotropy representation of
�5�������&��� is conjugation on �� by elements in �&���. Prove that this ac-
tion is orthogonal with respect to the inner product ���" � � ���" � on � �. The
orbits are the standard embeddings of the real ßag manifolds. A special case is the
Veronese embedding of the real projective space �6���. Compute the shape opera-
tor of an orbit for � � /.

���*��-� �	
0	� Let � be a closed subgroup of the isometry group of a Rie-
mannian manifold� , � � � and , � ���� � �� a point on a principal orbit of the
slice representation at �. Then there exists a real number L 8 ' such that� ��(����,�
is a principal orbit of the �-action for all � � �'� L�. Conclude that the cohomogene-
ity of the �-action on� is equal to the cohomogeneity of the slice representation at
any point � �� .

���*��-� �	
0	� Let � be a compact subgroup of the isometry group of a
Riemannian manifold� and � � � be a singular orbit of the �-action on � . Let
� 	 ���� � �� be the Þxed point set of the slice representation at �. Then the
dimension of � is strictly smaller than the cohomogeneity of the �-action of � .
Hint: If �
�� � � is not maximal, then the cohomogeneity of the slice represen-
tation is greater than �
�� (see Exercise 3.10.2).

���*��-� �	
0	" Assume that a connected Lie group � acts locally polar on a
Riemannian manifold� . Let � � � and �	 be a sequence of points on� that lie
on principal orbits and converge toward �. Let :	 be a local section of the �-action
through �	. Assume that ���:	 converges to some subspace � of ��� . Then � is
a section for the slice representation at �. Conclude that the slice representation at �
is polar.

���*��-� �	
0	% Let � be a closed subgroup of �&���. Then the action of �
is polar on�� if and only if it is polar on � ��� 	 ��.
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���*��-� �	
0	& Prove that the action of �� � �#�/ � % � ��on � � � deÞned
by #�/ � �4�� 4�� �� �#�/4�� #�/4�� is not polar. Observe that by Exercise 3.10.5 the
action is not polar on the sphere �� either.

���*��-� �	
0	' Assume that the Lie subgroup � of �&��� acts on �� � �'�
without Þxed points. Show that if � has a principal orbit that is not full in� �, then
the action cannot be polar. Deduce from this another proof of Exercise 3.10.6.

���*��-� �	
0	/ Prove that the Þrst normal space at any point of an orbit of an
irreducible polar representation on�� coincides with the normal space at that point.

Hint: The Þrst normal space is��-parallel.

���*��-� �	
0	( Let � be a compact Lie group that acts polarly on a complete
Riemannian manifold� , and let : be a section for the �-action. Prove that the set
:� of points in : that lie on a principal orbit is open and dense in :. Hints: (i) If
:� is not dense in :, then there exists an open subset S of : such that �
��� � ��
is constant on S and smaller than the cohomogeneity of the�-action. (ii) Let � � :
be such that �
��� � �� � �
��� � �� for any � in an open neighbourhood of � in :.
Then ��: is pointwise Þxed by the slice representation of � (same ideas as used to
solve Exercise 3.10.2).

���*��-� �	
0	
0 Let � be a submanifold of a Riemannian homogeneous
space �� . Prove that� is totally geodesic in �� if and only if the orthogonal projec-
tion onto �� of any Killing vector Þeld on �� is a Killing vector Þeld on� .

���*��-� �	
0	

 Let � be a closed subgroup of the isometry group of a Rie-
mannian manifold� and � � � . Prove that � � �(������� � ��� intersects each
orbit of the �-action on� .

���*��-� �	
0	
� Let � be a closed subgroup of the isometry group of a Rie-
mannian manifold � and assume that � acts with cohomogeneity one on � . If
every geodesic in� is a closed submanifold, then � acts polarly on� .

���*��-� �	
0	
� Let� be a full irreducible symmetric submanifold of ��.
Prove that� does not have a parallel nonumbilical local normal vector Þeld.

���*��-� �	
0	
" Prove that any equivariant vector Þeld on a principal orbit of
a polar representation is parallel with respect to the normal connection. Deduce that
a principal orbit of a polar representation is isoparametric.
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���*��-� �	
0	
% Let � be a Killing vector Þeld that is orthogonal to all sec-
tions of a polar action of � on a Riemannian manifold� . Then the one-parameter
group of isometries generated by� preserves any �-orbit.

���*��-� �	
0	
& Let� � ��� be a simply connected semisimple Riemann-
ian symmetric space with � � ���� �, � � � and � � ��. Let � � � � 
 be the
corresponding Cartan decomposition of � and identify the isotropy representation of
��� with%� � � � �&�
� via the isomorphism ��� �� 
.
Let � � � � 1 �� ���� be a symmetric R-space regarded as an immersed

submanifold 
 �� � �� �� 
 � � � 1 �� %����1. Let � � �� � � be the reductive
decomposition of � given by � � ��� with respect to a �-invariant inner product on
�. Prove that for any ��"� : � � �� �*� ,

(a) 
�� � �����1,

(b) 7���" � � ��������" �1,

(c) ���07����" � � ����:���������" �1�� � ', where � denotes the normal
component.

(See e.g. [112].) Note that this yields a new proof of Proposition 3.7.7.

���*��-� �	
0	
' ����-����� �2 �*������� �*3��- 2�* �-����*�� ������-�
Let � be a connected complete Riemannian manifold and - a connected closed
subgroup of ��� �. Let � � � and denote by �(�� � ��- � �� � � the normal
exponential map of the orbit-�� deÞned by �(������ � �(������ for �� � ���-���,
� � - � �. Let M 8 ' be sufÞciently small so that �(�� is a diffeomorphism from �1
onto an open subset of� that contains �, where

�1 � ��� � ���- � �� � ������ ; M � � � !1��� �- � ��
and !1��� is the open M-ball in� centered at �. Prove the following statements:

(a) Let � � �(������, where �� � ���- � �� and ������ ; M�;. Then the isotropy
subgroup -� is contained in -�. Hint: If 3 � -� then 3� � !1��� �- � �
and � � �(���3������.

(b) If � � �(����12��, then there exists <� � - � � such that <� � �(������ with
������ ; M�;.

(c) Using (a) and (b) and the compactness of the isotropy subgroups, prove that
there exists an open and dense subset � of � where the conjugacy class of
the isotropy subgroup -� is locally constant. Conclude that if � � �, then
3������- � �� � � for all 3 � -�.

(d) Prove that for any � �� the subset �(������- � ��� 	� intersects any other
orbit of -. Hint: Let � � 3� � - � � and � � - � � be such that the distance
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 ��� �� is minimal. Then the minimizing geodesic . � �'� ,� � � from �
to � is perpendicular to both orbits. Then 3�� Æ . is geodesic starting at �,
perpendicular to ���- � ��, and which intersects- � �.

(e) Conclude that the isotropy subgroups- �, � � �, belong all to the same conju-
gacy class.



������� �

��� �����	 
�	����� �������

A connection on a Riemannian manifold � can be interpreted as a tool for com-
paring different tangent spaces by means of parallel transport. In general, parallel
transport depends upon the curve that is chosen for joining two given points. This
dependence is measured by the so-called holonomy group, that is, the group of linear
isometries of a tangent space ��� generated by all parallel transports along loops
based at �. Holonomy plays an important role in Riemannian geometry, in particular
in the context of special structures on manifolds, for example, Kähler, hyperkähler,
or quaternionic Kähler structures. Holonomy is a concept that can be deÞned for any
connection on a vector bundle. In this chapter, we will deal with the holonomy group
of the normal connection of a submanifold, the so-called normal holonomy group of
a submanifold. The purpose of this chapter is to explain how the theory of holonomy
can be used to study submanifold geometry.

In Section 4.1, we recall some important facts on holonomy. There are many
analogies with the holonomy of a Riemannian manifold, due to the a priori surpris-
ing fact that normal holonomy groups look like non-exceptional Riemannian holon-
omy groups. Furthermore, we introduce higher order mean curvature tensors, and
we characterize submanifolds whose higher order mean curvature tensors are par-
allel with respect to the normal connection as submanifolds with constant principal
curvatures. This class of submanifolds is very important in the context of normal
holonomy and includes orbits of �-representations (which were introduced and dis-
cussed in the previous chapter). We show in Theorem 4.1.7 that the normal holon-
omy of an orbit of an �-representation is equal to the slice representation, that is, the
effectivized action of the isotropy group on the normal space.

In Section 4.2 we explain the Normal Holonomy Theorem 4.2.1 [173], which as-
serts that the nontrivial part of the normal holonomy action on the normal space is
an �-representation. The Normal Holonomy Theorem is some sort of extrinsic ana-
logue to de Rham�s Decomposition Theorem and Berger�s Theorem on Riemannian
holonomy.

In Section 4.3, we present a proof of the Normal Holonomy Theorem based on
holonomy systems as introduced by Simons.

One of the main consequences of the Normal Holonomy Theorem is that orbits of
�-representations play a role in submanifold geometry that is similar to that of Rie-
mannian symmetric spaces in Riemannian geometry. This is illustrated in Section
4.4, where we deÞne some important tools for the study of submanifolds: focaliza-
tion and construction of holonomy tubes. These tools are very suitable for studying

95
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submanifolds that satisfy simple geometric conditions, like submanifolds admitting a
parallel normal vector Þeld whose shape operator has constant eigenvalues, isopara-
metric submanifolds, submanifolds with constant principal curvatures, et cetera.
We Þnish this chapter in Section 4.5 with some further remarks about normal

holonomy.

��� �����	 
�	�����

a) General facts

We Þrst present the deÞnition of the normal holonomy group of a submanifold,
even though it is along the same lines as in the Riemannian case (cf. Appendix,
Section A.1). In fact, one can give a general deÞnition of holonomy group for any
connection on a vector bundle. For general facts about parallel transport and holon-
omy see [117] (cf. Appendix).
Let� be a submanifold of a standard space form ������, and denote, as usual,

by �� the normal bundle of � and by �� the induced normal connection. Let
�� � � � and 	 � ��� ��� � be a piecewise differentiable curve in� with 	��� 	 �
and 	��� 	 �. Then the��-parallel transport along 	 induces a linear isometry


�� � ��� � ��� �

It is easy to see that parallel transport does not depend on the parametrization of the
curve 	.
We now Þx a point � � � and denote by 
�� the set of all piecewise differen-

tiable loops based at �. Recall that a loop based at � is a curve 	 � ��� ��� � with
	��� 	 � 	 	���. We denote by 	 � 	� the composition of the loops 	 and 	 � given
by 	 � 	���� 	 	���� for � � � � �� and 	 � 	���� 	 	���� � �� for �� � � � �.
Then we have a map


� � 
�� � ����� � � 	 �� 
�� �

which satisÞes 
����� 	 
���

�
� and 
��� 	 �
�� �

��, where �	 � ��� �� � � is given
by �	��� 	 	�� � ��. The image 
��
�� � is a subgroup of ����� �, the so-called
normal holonomy group of � at �. We denote this normal holonomy group by  �.
If � is connected, then all normal holonomy groups are conjugate to each other.
Indeed, if 	 is a piecewise differentiable curve from � to �, then � 	 
���
� �

��.
In this situation, we will often omit the base point and refer to the �normal holonomy
group� .
If we replace 
�� by the set 
��� of null homotopic piecewise differentiable

loops in � based at �, then the resulting subgroup of ��� �� � is called the re-
stricted normal holonomy group of � at � and denoted by  �

�. Note that 
�
� is a



The Normal Holonomy Theorem 97

normal subgroup of � and ��� is countable. One can show that 
�
� is an arc-

wise connected subgroup of ����� � (see [117, vol. I, Chapter II, Theorem 4.2], cf.
also [22, page 289]). As a consequence of a result by Yamabe [245], which states
that every arcwise connected subgroup of a Lie group is a Lie subgroup, we get that
�� is a Lie subgroup of����� � (cf. also [117, vol I, Appendix 4, page 275] for a an
easier proof, using that �� is �

�-arcwise connected in this case). This implies that
�� is the identity component of � (see [22, Corollary 10.48, page 289]). In par-
ticular, �� and � have the same Lie algebra, which is called the normal holonomy
algebra of� at �. Of course, if� is simply connected, then � 	 ��.
Since we are mainly concerned with the local geometry of submanifolds, we will

mainly use the restricted normal holonomy group throughout these notes. Another
reason is that � is, in general, not a closed subgroup of ����� �, whereas �� is
closed in ����� � and, in particular, compact, as we will prove in Theorem 4.2.1.
The normal holonomy group will always be regarded as a Lie subgroup of the or-
thogonal group����� �, so � will act in a natural way on ��� .
For a submanifold, we can also consider the combined holonomy

�� 	 ��
� � 
�� � 	 	 is a loop in� based at �
 � ������ � �� �

where ������ � denotes the holonomy group of� at � and 
� is the parallel trans-
port in� along 	. Note that, in general, �� does not coincide with ����� � �.
There is a natural action of �� on tensor Þelds with tangent and normal variables.
An important example is the action on the normal curvature tensor ��

� given by

��
� ��
� ���� ��� 	 �


�
� �

�����
� ��
�� � 
���


�
� � �

for all �� � � ��� and � � ��� .

������ ����� ���� ���������� �� 	 �� � ���� ���� � �� ������� �����
� � � � ���� �������� ��������� �
� ����� 	 � ��� �����!� �� "�#� $�#��� ��%

������ !����!���� �� � � �!�� �� ��
� �� %��!��&�% �&�#�'

b) Higher order mean curvatures

The existence of parallel tensor Þelds has often strong implications on the geo-
metry of a manifold. In Riemannian geometry, a basic example of this situation is a
classical result by Cartan: If the Riemannian curvature tensor of a Riemannian mani-
fold� is parallel, then� is locally symmetric. Symmetric spaces play a prominent
role in Riemannian geometry and are closely related to holonomy, as we will soon
see.
In submanifold geometry, it is therefore natural to look for tensors that are parallel

with respect to the normal connection. As we observed in Chapter 2, the second
fundamental form, or equivalently the shape operator, is in some sense an analogue to
the Riemannian curvature tensor. From the second fundamental form, one can derive
both the Riemannian curvature tensor of the submanifold, via the Gauss equation,
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and the normal curvature tensor, via the Ricci equation. We will now introduce some
symmetric tensor Þelds on the normal bundle of a submanifold, the so-called higher
order mean curvatures.
Let� be an �-dimensional submanifold of a standard space form ������. The

mean curvature ����� of order � � ��� � � � ��
 in direction � � �� is deÞned
as the �-th elementary symmetric function of the eigenvalues of �� divided by the

constant

�
�
�

�
. In terms of the principal curvatures ��� � � � � �� of� with respect

to �, counted with multiplicities, we have

����� 	
�(��� ��(

�(

�
	�
���
	�

�	�  � � �  �	� �

Note that����� 	 ��� ��, where� is the mean curvature vector Þeld of� . We de-
note by ������ � � � � ��� the real-valued symmetric tensor Þeld on �� that is obtained
by polarization of�����, that is,

������ � � � � ��� 	
�

�(

��
���

�������
�

��	�
���
	���

����	� ) � � �) �	�� �

For example, ��� � �������� ��� 	 ���������� � ����������.
Suppose that ��� � � � � ��, or equivalently ��� � � � ���, are invariant under ��-

parallel transport. Then �������� is constant for any parallel normal vector Þeld
���� along any piecewise differentiable curve in� . Since the elementary symmetric
functions of the eigenvalues of ���� are the coefÞcients of the characteristic poly-
nomial of ����, this polynomial does not depend on �. Thus ���� has constant
eigenvalues. Conversely, it is easy to see that if ���� has constant eigenvalues, then
��� � � � � ��, or equivalently��� � � � ���, are ��-parallel. A submanifold� with
this property is called a submanifold with constant principal curvatures.
This class of submanifolds can be regarded as the analogue in submanifold geo-

metry of locally symmetric spaces in Riemannian geometry, for reasons that we will
discuss later. Important examples of submanifolds with constant principal curvatures
are given by the orbits of �-representations, which play the same role in submanifold
geometry as symmetric spaces play in Riemannian geometry, as we will illustrate
later. It follows readily from our deÞnition that a submanifold with constant princi-
pal curvatures has parallel mean curvature vector Þeld.
An important subclass of the class of submanifolds with constant principal cur-

vatures is given by those with ßat normal bundle, which are called isoparametric
submanifolds. These are somehow �generic� among submanifolds with constant
principal curvatures. Indeed Heintze, Olmos and Thorbergsson [96] gave a complete
characterization of submanifolds of standard space forms with constant principal
curvatures as being either isoparametric or a focal manifold of an isoparametric sub-
manifold (see Section 5.3).
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������ ����	 *�  � ��#� ����� ��� !�� !����!����+� � �,&�������%
 ��� !������� ����!���� !,�#��,��� ��������!���� &� ��� �������� ����� ���
��� �������� ������ #�!��� -��% ���� ����� ��� ���!� ��� %�.�������&�� !,�#��
��� ����� �������� ���� ��� !������� �����#��,��' /�� �%#������ �� ��� �&�#�
%�-������ �� ����� �� ������ ��%�� ���� !,�#��,��� �� ���� �� ��� � ���� ���
!������!� �� ��� ����!���� !,�#��,��� �� � ��������� ��������'

c) An illustration of normal holonomy: classiÞcation of surfaces with constant
principal curvatures

We now illustrate the use of normal holonomy in a simple example: we classify
surfaces in standard space forms with constant principal curvatures (see [205, Section
6]). As a Þrst step, we show that we can reduce the problem to full surfaces. We will
then analyze the possible cases according to the codimension. Indeed, an important
general property of submanifolds with constant principal curvatures, which we will
make use of now and in the sequel, is that one can always reduce their codimension
to the dimension of the Þrst normal space. This follows from the Theorem 2.5.1 on
the reduction of codimension and the next

����� �����

��� � �� � �����	
��� �� ������ �
�� ��	���	� ��
	�
�� ����������� ���	�
��� ���� � � � � ��� ���� 	���� ����� � �

� 
� 
	���
�	� �	��� ��������
���	������


���� *�  � �����0�% �� 1�!���� �'2� ��� ���������� !��������� �� �
� �
�

�� � �
� �� ��� �� ��#�� &� �� �

� �
� 	 �� � ��� 	 �� � �
' 3� ����� � ����%�4

����� ���� ��� %�-������ �� �,&�������%�  ��� !������� ����!���� !,�#��,���
���� �� �

� �
� �� ��#������ ,�%�� ��4�������� ���������' 5,� ���� ������� ����

� �
� �� ��#������ ,�%�� ��4�������� ��������� ��  ���'

In particular, we get that the codimension of a full submanifold with constant
principal curvatures cannot exceed the maximal number ��� ) ��� of linearly
independent symmetric ���-matrices. In the case of surfaces, this shows that the
codimension � of a surface�� in �������� with constant principal curvatures is, at
most, three. We now investigate the three possible cases for the codimension �.
1. The case � 	 �. In this case, the normal bundle �� has rank one and hence is

ßat. Thus� is an isoparametric hypersurface of ������. Then, by Exercise 4.6.12,
� has parallel second fundamental form. Moreover, � is either totally umbilical
or it is locally extrinsically reducible. In the latter case, � is locally an extrinsic
product of two one-dimensional totally umbilical submanifolds with parallel mean
curvature vector Þeld (see for instance the classiÞcation of symmetric submanifolds
in Section 3.7, part e).
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2. The case � 	 �. Here we will make use of the restricted normal holonomy
group � of the surface. Since � is a connected Lie subgroup of �����, we have
two possibilities: � is either trivial or equal to �����.

If �� is trivial, then �� is ßat and� is isoparametric with two distinct common
eigenvalue functions. Note that� cannot be totally umbilical since the codimension
of� is bigger than one. Let �� and �� be the curvature normals (see Exercise 4.6.9),
which, by Exercise 4.6.11, span the Þrst normal space. Then �� and �� are linearly
independent, and locally there exists a parallel unit normal vector Þeld � such that
���� �� 	 ���� ��. Therefore, �� is a constant multiple of the identity, that is, � is
an umbilical section. Since � is full and, by Theorem 2.5.1 on the reduction of
codimension, � must be a multiple of the mean curvature vector Þeld �, and hence
� is pseudoumbilical. By Theorem 2.6.3, � is a minimal submanifold of some
extrinsic sphere �����) ����� in ��	���, and hence the problem is reduced to the
previous case � 	 �.

If �� 	 �����, then �� is transitive on the unit sphere in ��� for all � �
� . This implies that there exist constants ��� such that ����� 	 ���, � 	 �� �,
for all unit vectors � � ��� . In particular, ��� 	 ����� 	 ��� �� 	 � for �
orthogonal to �. Thus � 	 �, that is, � is a minimal submanifold. Moreover,
as a reformulation of the condition on ��, for any normal vectors � and � we have
��� � ��� 	 �������� 	 ����� �� for some � � �. Now, either� is totally geodesic
or � � �. In the latter case, each shape operator �� with respect to a unit normal
vector Þeld � has two distinct eigenvalues��. We can then choose local orthonormal
frame Þelds ��� �� of �� and ��� �� of �� such that ��� is represented by the

matrix

�
� �
� ��

�
. Suppose that ��� is represented by the matrix

�
 !
! � 

�
. Since

���� � ���� 	 � we get  	 �, and since ���� � ���� 	 ���� � ���� we get ! 	
��. Without loss of generality we may assume that ! 	 �, so that ��� has the

form

�
� �
� �

�
. In particular, from the equations of Gauss and Ricci we have that

the sectional curvature of� is equal to " 	 � � ���, while the normal curvature
"� 	 ������� ������ ��� 	 ���. Next, using the Codazzi equation, we can see that
� 	 6 ���� 	 �"�"�, where6 is the Laplace-Beltrami operator on� acting on
functions by6# 	

�
	
��
����

# 	
�
	
�	�	# �

�
	
����	# (this is left as an exercise,

cf. also [55, formula 3.5]). So ��� 	 ��� 7��, that is, � 	 8�� � �. Hence� has
the same second fundamental form as the Veronese surface ����

�
8�� �	��� (cf.

Section 3.3). We now apply Theorem 3.9.3, which shows that� coincides locally
with the Veronese surface ����

�
8�� �	���.

3. The case � 	 8. If � is minimal, then the Þrst normal space has dimension
two, namely the dimension of the space of traceless ���-symmetric matrices. By as-
sumption it must be equal to the codimension. It follows that� cannot be a minimal
submanifold. Moreover, �� 	 ���� is a global parallel unit normal vector Þeld,
and ��� commutes with all shape operators by the Ricci equation. If ��� has two
distinct eigenvalues, then all shape operators are simultaneously diagonalizable and
� is isoparametric, since it has ßat normal bundle. This is a contradiction, since the
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number of distinct principal curvatures must be bigger or equal than the dimension
of the Þrst normal space (cf. Exercise 4.6.12). So ��� is a constant multiple of the
identity, that is,� is pseudoumbilical. By Theorem 2.6.3,� is a minimal submani-
fold of some extrinsic sphere ��	�� ) ����� in ��
��� and� � ��	��) �����
has constant principal curvatures. This reduces the problem to the previous case.
Altogether, we have now proved (cf. [205, Theorem 3 and Corollary 3]):

	
����� �����
��� � �� � �� ������� �� � ���	���� ����� ���� �������� �
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d) The geometry of an orbit of an �-representation

We have already shown in Section 3.6 that every principal orbit of an �-representa-
tion is isoparametric. We now prove that, more generally, every orbit of an �-
representation is a submanifold with constant principal curvatures.
Let �$�"� be a Riemannian symmetric pair of noncompact type, � 	 � � � the

corresponding Cartan decomposition of �, and �� � the usual *%�"�-invariant inner
product on � that is induced from the Killing form and the Cartan involution of �.
Let � �	 �� � � and� 	 *%�"�  �� the corresponding adjoint orbit, which is a
real ßag manifold. The isotropy subalgebra at �� is

��� 	 �% � � 	 �%���� 	 �
 �

Let � be the orthogonal complement with respect to �� � of ��� in �. Then � 	
��� �� is a reductive decomposition of �. Recall that the tangent and normal space
of� at �� are given by

���� 	 ��� ��� � ���� 	 �� � � 	 ��� ��� 	 �
 �

����� ����
#� ���� ��� ���� � � ���� �


���� 9�� % � � ��% �� & � ����  � ��#� �%� �� � � ��% ��%� ��� &� 	
�%� ��� &��' /�� :�!�&� �%������ ������� ���� &�� ��� 	 ��� �&� ����� �&� ��� ���� 	 �'
/�,� ��� &� � ��� � ��% ���!� �%� ��� &�� 	 �'
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Let 	 be a piecewise differentiable curve in� with 	��� 	 ��. There exists a
unique piecewise differentiable curve ���� � " such that ���� 	 �, ����������� � �

and 	��� 	 *%��������. Then the normal vector Þeld ;���� 	 *%������� satisÞes

!

!�
;���� 	

!

!�
*%������� 	 *%������������������ �� � *%��������� ���� � �

which is contained in *%���������� 	 ����� by Lemma 4.1.5. This shows

that ;� is the ��-parallel transport of � along 	. Since the shape operators �� and
�������� are conjugate to each other (see, for instance, (3.4)), it follows that the

principal curvatures of � with respect to ;� are constant along 	. Thus, we have
proved

�������	��� �����
$���� ���
� �� �	 ���������	���
�	 
� � �����	
��� �
�� ��	���	� ��
	�
��
�����������

e) The normal holonomy of an orbit of an �-representation

It is well known that the holonomy representation of an irreducible Riemannian
symmetric space coincides with the isotropy representation (see Section A.1). We
now discuss an analogue for submanifold geometry that involves the orbits of �-
representations and is due to Heintze and Olmos [95].
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� %��!������� �� ������ �������� �� ��&��� �� ����� �� ���?�!���� �� @������
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f) Normal holonomy and normal curvature tensor

An important fact about holonomy groups is that the holonomy algebra is related
to the curvature tensor. We brießy discuss this fact for the normal holonomy group,
but everything in this paragraph holds in full generality for the holonomy of any
metric connection on a vector bundle.
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In general, one can show that the normal curvature tensor endomorphisms always
belong to the normal holonomy algebra (see [22, 10.52, p. 290]). This can be seen
as a consequence of the following simple formula relating the curvature tensor with
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parallel transport. Let 1� - � ��� , � � ��� . Construct a parametrized surface
#��� �� on� such that #��� �� 	 �, #���� �� 	 1 and #��� �� 	 -.

We now move along coordinate

����� ���: A parametrized surface
#��� �� on� .

lines from #��� �� to #��� ��, then to
#��� ��, then backward to #��� �� and
Þnally to #��� �� again. In this way,
a loop 	 is deÞned. Let 
���� be the
��-parallel displacement of � along
this loop. Then, by Exercise 4.6.2,
�
� ���


���� 	 � and

���1� -�� 	 ��
�

!�

!�� ���

���� �

As a linear operator, or more precisely
as an element of ������ �,

���1� -� 	 ��
�

!�

!�� ���

��� �

Note that 
��� is a curve in the normal holonomy group� that is the identity at � 	 �

and it has zero velocity. Hence, the second derivative ��

�� ���

��� 	 �����1� -�

makes sense and belongs to the Lie algebra of the normal holonomy group 0���.
Moreover, if 	 is a curve from � to � and �� � � ��� , then �
�� �

������� ��
�� �
0���.
In a suitable sense, the holonomy algebra is spanned by the curvature tensors

produced in this way. This is due to a remarkable result of Ambrose and Singer
(which holds for the holonomy of any linear connection on a vector bundle; see, for
instance, [117] or [22], [189]).
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For a proof of this theorem see Exercise 8.6.4.
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 ���� 
� �� ��� ���������� �������� ��������� �� � ����� � ���!� ��� %�.��4
�����&�� !,�#� 	 � ��� �� � � �������� ���� � ��% �� � � ��� ��!�,����� ���

���������� !����!���� �� ������#����'

For the local study of the geometry of submanifolds we will use the local nor-
mal holonomy group. The local normal holonomy group  ���� at � is deÞned as
intersection of all normal holonomy groups  �

��2 �, where 2 runs through all open
neighbourhoods of �. Observe that there always exists an open neighbourhood 3 of
� such that the normal holonomy group of 3 at � coincides with ���� , and the same
is true for smaller neighbourhoods of �, so we can assume that 3 is diffeomorphic
to an open ball. If the dimension of  ���� is constant, then ���� 	 ��.
A property that will be useful in the sequel is the following (see [82, Appendix]

for a proof).

�������	��� ������
*� 4 � � 
� ��Æ�
�	�� ���� ���	 ����� ���	����� ��	� ���� �� �	��� ��
���� 4 ��	��
	� � 	�
���������� �� ��� 
��	�
�� �� ���� �	� ���	�� �� ���� �

�� �
� �����	 ��	����� �
�����

We begin with some motivating facts about holonomy of Riemannian manifolds.
The two fundamental results regarding the restricted holonomy group of a Riemann-
ian manifold are the de Rham Decomposition Theorem and the Berger Holonomy
Theorem. Both have local and global versions, and we will refer only to the Þrst one.
De Rham�s Theorem asserts that a Riemannian manifold � is locally irreducible
around � if and only if its local holonomy group acts irreducibly on � �� . Berger�s
Theorem says that if� is irreducible around � and not locally symmetric, then the
restricted holonomy group ������� � acts transitively on the unit sphere in ��� . In
particular, one has the following property: for each � � � there exist a unique (up
to order) orthogonal decomposition ��� 	 3� � � � �� 3� of ��� into������� �-
invariant subspaces 3�� � � � � 3� and normal subgroups$�� � � � � $� of���

�
��� � such

that

(i) ������� � 	 $� � � � ��$� (direct product).

(ii) $	 acts trivially on 3� if . �	 5.

(iii) $� 	 ��
 and, if . � �, $	 acts transitively on the unit sphere in ��� or it
acts irreducibly on 3	 as the isotropy representation of a simple Riemannian
symmetric space.

We call this result the algebraic de Rham-Berger Theorem.
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A key property for dealing with holonomy groups of Riemannian manifolds is
that the holonomy algebra is generated by algebraic curvature tensors, that is, linear
tensors satisfying all the algebraic identities of a curvature tensor. More precisely,
the holonomy algebra of a Riemannian manifold is generated by endomorphisms of
the form

	������� �� 	 �
� �
����
��� 
���
�

where �� � � ��� , 	 � ��� ��� � is a piecewise differentiable curve starting at �,
and 
� denotes parallel transport along 	.
It is surprising that, for the normal connection of a submanifold of a standard space

form, the algebraic de Rham-Berger Theorem holds in a simpler version.
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This result is an important tool for the study of the geometry of submanifolds of
space forms. Indeed, in Section 4.4, we will construct so-called holonomy tubes,
many properties of which rely on the Normal Holonomy Theorem. Holonomy tubes
have many applications, as we will see later.
We Þrst sketch the proof by listing the ingredients of the Normal Holonomy The-

orem recipe, before we provide the arguments in full detail. We will deÞne a tensor
Þeld

�� � ���� � ��

that contains the same geometric information as the normal curvature tensor ��,
yet bears the algebraic properties of a Riemannian curvature tensor, that is, it is
an algebraic curvature tensor (see, for instance, Section A.1). A very important
property of �� is that its scalar curvature is nonpositive and vanishes if and only if
�� vanishes. This implies that normal holonomy groups look like nonexceptional
Riemannian holonomy groups.
The argument follows some ideas of Cartan and the methods used by Simons [200]

in his proof of Berger�s Theorem. One deÞnes a holonomy system, that is, a triple
�3���$�, where 3 is a Euclidean vector space, � an algebraic curvature tensor on
3 and $ a compact Lie group acting effectively on 3 by isometries, such that ���

belongs to the Lie algebra of $ for all �� � � 3 . Some reduction results allow us
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to concentrate on irreducible holonomy actions. Roughly speaking, we will take
$ 	 ��, 3 	 ��� and � 	 ��

� . Note that, since a connected Lie subgroup of the
orthogonal group acting irreducibly on a vector space is compact, one gets that � is
compact.

A prominent role among holonomy systems is played by the so-called
symmetric holonomy systems, which are strictly related to symmetric spaces and
�-representations.

��� ����� �� �
� �����	 ��	����� �
�����

a) Holonomy systems

Let us consider an �-dimensional Euclidean vector space �3� �� �� and the real
vector space � of all tensors of type ��� 8� on 3 . We identify such a tensor with
a bilinear map 6 � 3 � 3 � End�3 � � ��� �� �� 6���. Then the group ���� of
isometries of 3 acts on � by

�7  6 ���� 	 76�������������7
�� � 7 � ���� � �� � � 3 �

By differentiation, we get an action of ����� on � by
��  6 ���� 	 �6���� � 6���� � �6���� �� � � � ����� � �� � � 3 �

Next, we recall the following deÞnition (cf. Section A.1).

'�(���	��� ����� & ��	��� � � � 
� ���� �	 algebraic curvature tensor

�

�,� ��� 	 ����

�-� ����8� 9� 	 �����9� 8�
�.� ����8� 9� 	 ��� �� ��
�"� ���8 )����)���� 	 � �������
� �� ���� /
�	��
 
��	�
���

Note that every linear combination of algebraic curvature tensors is again an al-
gebraic curvature tensor. If � is an algebraic curvature tensor, 7 � ����� and
� � �����, then 7  � and �  � are algebraic curvature tensors as well. Thus, the
real vector space of all algebraic curvature tensors on 3 is an �����-module.
Associated to every algebraic curvature tensor � is its scalar curvature (cf. Ap-

pendix)
���� 	 �

�
	
�

�������� � �	� �
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where ��� � � � � �� is an orthonormal basis of 3 . Note that ��7 �� 	 ���� holds for
all 7 � ����.

'�(���	��� ����& ��� � �� �	 ������
� ��������� ��	��� �	 3 � &
������� �������� $ �� ���� 
� ���� � holonomy group of� 
� ��� � � ��� �
�� � � 3 � ����� � ��	���� ��� �
� ������ �� $�

If ��� � � holds for all �� � � 3 , then �7 ���� � � and �� ���� � � holds for
all 7 � $, � � � and �� � � 3 . Thus, if $ is a holonomy group for �, it is also a
holonomy group for 7 � and � � for all 7 � $ and � � �.

'�(���	��� ����� & ��
�� � 	 �3���$�� ����� 3 
� �	 $��
���	 ����
��� ������ � �	 ������
� ��������� ��	��� �	 3 �	� $ � ��		����� ���	���
����� �� � 
� ���� � holonomy system�

The deÞnition of holonomy systems is motivated by the fact that, on a Riemann-
ian manifold� with Riemannian curvature tensor �, the elements ���� ��, �� � �
��� , lie in the holonomy algebra at �. Thus, if� is a Riemannian manifold, then
�����������

�
��� �� is a holonomy system for each � � � .

b) Symmetric holonomy systems and holonomy of symmetric spaces

We now turn to a fundamental class of holonomy systems that are strictly related
to symmetric spaces.

'�(���	��� ����� & ���	��� ������ � 	 �3���$� 
� ���� symmetric

� 7 � 	 � ��� � 7 � $� �� �'�
���	��� 
� � � 	 � ��� � � � ��

In other words, a holonomy system is symmetric if its algebraic curvature ten-
sor is $-invariant. The deÞnition of symmetric holonomy systems is motivated by
Cartan�s theory of symmetric spaces. Indeed, given a symmetric holonomy system
� 	 �3���$�, one can carry out the following construction due to Cartan:
Consider the real vector space � �	 � � 3 and deÞne on it a bilinear skewsym-

metric map �� � � �� �� � by

���:� 	 ���:�� � ��� �� 	 ��� � ��� �� 	 �� � ��: � � � �� � � 3 �

where �� �� denotes the Lie algebra structure on �. It turns out that �� � deÞnes a Lie
algebra structure on �, that is, it satisÞes the Jacobi identity. To verify this, note Þrst
that the only nontrivial case occurs when two elements are in 3 and one element is
in �. Indeed, if all three elements are in 3 , the Jacobi identity is just the algebraic
Bianchi identity for �, and if��: � � and � � 3 we have

����:�� �� ) ��:� ��� ��) ������� :� 	 ��: �:��� ���:�� ) :���� 	 � �
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For � � � and �� � � 3 , the deÞnition of symmetric holonomy systems implies

��� ��� ��� ) ��� ��� ��� ) ��� ������
	 ��������� ����� � ����� 	 �� ���� 	 � �

From the very deÞnition, it follows that the Cartan relations

��� �� � � � ��� 3 � � 3 � �3� 3 � � �

hold. Then � corresponds to a Riemannian symmetric space � , whose tangent
space at a point � can be identiÞed with 3 , whose curvature tensor at � is � and
whose holonomy algebra at � is �. To construct� explicitly, consider the involutive
automorphism

; � � 	 �� 3 � � 	 �� 3 � �) � �� �� � �

The pair ��� ;� is an orthogonal symmetric Lie algebra, since $ is compact and
hence � is a compact Lie algebra. If 0 is a simply connected Lie group with Lie al-
gebra � and$ is the connected closed subgroup of 0 with Lie algebra �, then �0�$�
is a Riemannian symmetric pair and� 	 0$ is a simply connected Riemannian
symmetric space (cf. [99, page 213]).
Let < � 0 � � be the canonical projection and � 	 <�$� 	 �$ � � . Let ��

be the Riemannian curvature tensor of� at �. Then

����� ��8 	 ����� ��� 8� � �� �� 8 � ��� �

Using the deÞnition of �� � on �, we have

����� ��8 	 ����� ��� 8� 	 ������� 8� 	 ���8 �

and hence �� 	 �. Note also that, by the Ambrose Singer Holonomy Theorem,
the holonomy algebra of� at � is generated by the endomorphisms 
 ��� �!���!��
� ,
where 	 is any piecewise differentiable curve in� with 	��� 	 � and 
� denotes
parallel transport along 	. Since � is a symmetric holonomy system, the holonomy
algebra coincides with

span���� 	 �� � � ���
 	 ����� 	 �3� 3 � �
Hence a symmetric holonomy system � 	 �3���$� with � �	 � corresponds to a
simply connected symmetric space � 	 0$ in such a way that � identiÞes with
the Riemannian curvature tensor of� at � 	 �$.
Note that the restriction of the Killing form : � of � to � is given by

:����:� 	 �����%��� Æ �%�:�� ) ��" ��%��� Æ �%�:��
	 :����:� )

�

� � �:
��������:�

for all ��: � �.
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Now suppose that the action of$ on3 is irreducible. In this case, one says that the
holonomy system is irreducible. This obviously implies that� is irreducible, since
by the de Rham Decomposition Theorem (Appendix, page 290) this is equivalent to
the holonomy acting irreducibly on ��� 	 3 .
Without loss of generality we can also assume that $ acts faithfully on 3 (so �

is effective, that is, � does not contain a nontrivial ideal of �). Using the lemma
of Schur, one can show that �, and thus also 0, are semisimple, i.e. :� is nonde-
generate. Indeed, any effective orthogonal symmetric algebra � 	 � � 3 with �
acting irreducibly on 3 and �3� 3 � �	 � is the direct sum of, at most, two simple ide-
als [117, Chapter 11, Proposition 7.5]. Thus, the restriction of: � to 3 , which is also
nondegenerate, must equal a nonzero constant multiple �+ of the inner product on
3 (via the identiÞcation of 3 and ��� ), since both bilinear forms are $-invariant.
Hence,

����8� 9� 	 +:������ ��� 8�� 9� 	 +:����� ��� �8� 9�� � (4.1)

Thus, we obtain the following result, due to Kostant, which allows us to read off the
curvature tensor of the irreducible symmetric space corresponding to the orthogonal
symmetric algebra� 	 ��3 from the Lie algebras of � and 3 alone (see also [196]).

	
����� ����
��� ��������� ��	��� �� ��� 
������
�� +
���		
�	 �������
� ����� � ����
�����	�
	� �� ��� �������	� �������
� ������ � 	 �� 3 ��� ��� ����

����8� 9� 	 +:����� ��� �8� 9�� 	 +

�
:� )

�

�� �:
�����

�
���� ��� �8� 9�� � (4.2)

�	� � 
� $
	���
	 �
�� 	�	)��� ����� ����������

������ ����� /��� ���,�� ������� ����� �� � 	 �3���$� ��% �� 	
�3���� $� ��� � � ����%,!�&�� ��������! �������� �������  ��� %��3 � ��
���� �� 	 �� ��� ���� !������� �'

Observe now that �3� 3 � 	 	�
 	 �, where 	�
 is the holonomy algebra. Indeed,
since we are assuming that � is effective, so that � is semisimple, the orthogonal
complement of �3� 3 � � 3 with respect to :� is an ideal of � contained in �, and
hence it vanishes. So:
The holonomy algebra of� coincides with � and an irreducible symmetric hol-

onomy system � 	 �3���$� corresponds to an �-representation with

$ 	 holonomy group 	 isotropy group of the symmetric space .

The following remarkable result due to Simons [200] is the essential tool in Si-
mons� proof of Berger�s Theorem. It enables one to prove that an irreducible Rie-
mannian manifold with nontransitive holonomy group is locally symmetric. Never-
theless, we choose not to provide the long technical proof, which is not needed for
proving the Normal Holonomy Theorem.
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����� ����� )*� �!��"�+

��� �3���$� �� �	 
������
�� ���	��� ������� *� $ 
� 	�� ���	�
�
�� �	 ���
�	
� ������ 
	 3 � ���	 �3���$� 
� �������
��

������ ����� 3� � �� � ��!���� ����%,!�&�� B��������� �������% ��%
� � � �����-�� �� �	 �� ���� ������������ �� �� �� �� ����%,!�&�� ��������
������' 9��� ��� �&�#� ������� ��% ����%��% ��!��� 1����� ���#�%�% �
!��!���,�� ����� �� ��� ����� ��� ���,�� � ��!�  �� �&�����% A ����� ��������
,���� !�����-!����� ���,���� &� 5����� ���� ��% �� ��������� 0�� � �� Berger�s
Theorem�� Let� be a Riemannian manifold that is locally irreducible at some point
�. If the holonomy group is not transitive on the unit sphere in � �� , then � is
locally symmetric.
/�� �������!��%� �������� ���,� �� � ��!���� ����%,!�&�� B��������� ��4

�����% �� !����% nonexceptional �� ����� �D���� � ��������! ���!�  ��� �� ���4
������! �������� ���,�' 5� 5�����J� /������� �D!�������� ���������� ���
�� ��� ��������#� �� ��� ,��� ������ �� ��� ������� ���!�' 3� ��� �!���� !,�#�4
�,�� �� � �� ��� �%����!���� +���� ���� ��� �������� �� ����D!�������� �����
�� � !����I,��!� �� "���� 7'8'�7 ����  ��� &� �����% ������'

From Theorem 4.3.7 we deduce the following important property of �-represen-
tations.

�������	��� �����

��� " �	� " � �� ��� 
������
�� ���������	���
�	� �	 3 � %��3 � �� ���� ���
	�� ���	�
�
�� �	 ��� �	
� ������ 
	 3 � *� " �	� "� ���� ��� ���� ���
���
���	 " 	 "� �	� ��� ���������	���
�	� ��
	�
���


���� /�� ���,� �" ��������% &� " ��% "� �� ��� ��������#� �� ���
,��� ������ �� 3 � ���!� �� ��� ��� ���� ��&��� �� " ��% "�' "�� � ��% ��

&� ��� !,�#��,�� ������� !��������%��� �� ��� �4��������������� �� " ��% "�'
/��� �3��� �"� �� �� ����%,!�&�� �����������#� �������� ������' 5� /������
7'8'A� �3��� �"� �� ��������! ��% ���!� ��� "�� ����&�� �� �" �� ��������% &�
�' /��� " 	 �" ��%� &� B����0 7'8'<� �� 	 ��'

c) Normal curvature tensor and proof of the Normal Holonomy Theorem

Let � be a submanifold of a standard space form ������. We start with the
normal curvature tensor �� (at a point � � � ) in order to construct a holonomy
system. For each �� � � ��� the endomorphism ����� �� lies in the normal hol-
onomy algebra. But it follows from the very deÞnition that �� is not an algebraic
curvature tensor. To construct a tensor Þeld of type ��� 8� on the normal bundle of
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� we consider �� as a homomorphism

�� � K���� � K���� �

The homomorphism �� composed with its adjoint homomorphism ��� gives rise
to an endomorphism

�� 	 �� Æ��� � K���� � K���� �

which can be identiÞed with a ��� 8�-tensor on ��� .
The Ricci equation ������ ���� �� 	 ����� ����� �� implies

����� � �� 	 ���� ��� �

hence
������� ������ �	� 	 ������� � ���� ������ � �	��

	 �������� � ��� � Æ ���� � ��� �� � (4.3)

since the inner product on K���� is given by ���:� 	 �����:�. Using (4.3) we
get

����� �����, [173]
�� 
� �	 ������
� ��������� ��	��� �	 ��� �


���� F� �,�� #����� ���� !��%������ ���4�7� �� L�-������ 7'8'� ���%'
C� ���4�8� ��� !���� ���� �7'8�' /� #����� ��� ����&���! 5���!�� �%������ �7��
���� !���,������� ��������� �7'8� ���� ��� ����

������� ������ �	� 	 ������������������ ����������������� � (4.4)

$�!��! �,� �#�� ��� ��%�!�� �� �� 8 ����%� ��� ����&���! 5���!�� �%������'

Note that (4.3) implies that �� has nonpositive scalar curvature and its scalar
curvature vanishes if and only if�� is identically zero.

������ ������ /�� �D�����!� �� ���� ����&���! !,�#��,�� ������  ���
���������#� �!���� !,�#��,�� �� �� ����� ��������!� ��� ��� ���,!�,�� ������
�� ������ ��������' 3� ������� ���� ������ �������� ���,�� &���#� ��0�
����D!�������� �������� ���,�� �� B����������������%� ���� B����0 7'8'>�
��% ������-�� ��� ����� �� ��� C����� �������� /������� !������%  ���
��� ��� �� 5�����J� /������'

Using again the Ricci equation [173], an alternative expression for�� is given by

������ ����� 	 �
��
	��

���������	� ����	��� � (4.5)
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where ��� � � � � �� is an orthonormal basis of ��� . Moreover, since 0���� 	
��������, the image of �� is the same as that of �� (cf. [173]). The Ambrose
Singer Holonomy Theorem and the previous lemma therefore imply

����� �����&
��� � �� � �����	
��� �� � ���	���� ����� ���� ������ �	� � � � � ���	 ���
�
� ������ �� ��� 	���� ���	��� ����� 
� ���		�� �� ��� ��	���� �� ��� ����
	������ �� 	 
���� ���
�� �� 
�� ��
�� � ����� 	 
� �	� �
����
�� �
(���	�
���
����� 
	 � �
�� � �� �	���
	��

We denote by � the real vector space of tensors on ��� that is spanned by all
	���, where 	 runs through all piecewise differentiable curves in � with � as
endpoint. Since �� is an algebraic curvature tensor, any � � � has the algebraic
properties of a curvature tensor.
Next, we deÞne a holonomy system. At this stage, it is still not clear that �

� is
compact, but this obstacle is avoided by splitting algebraically both � �� and the Lie
algebra of �� using the algebraic properties of the tensors in �. What we achieve is
an �algebraic� de Rham decomposition.
Explicitly, we decompose ��� into��-invariant orthogonal subspaces,

��� 	 3� � � � �� 3� �

where �� acts trivially on 3� and irreducibly on 3	 for all . � �. If �	 denotes the
orthogonal projection of � � ��� onto the factor 3	, the following holds for any
� � �:
(a) ���	� ��� 	 � if . �	 5

(b) ���� �� 	
�
	���	� �	�

(c) ���	� �	�3� 	 ��
, if . �	 5

(d) ���	� �	�3	 � 3	

These statements are all obtained from the properties of algebraic curvature ten-
sors. As for (a), if . �	 5 and �, �� � ��� , then

����	� ����� ��� 	 ����� ����	� ��� 	 � �

because ���� ��� � � and � leaves 3	 invariant. This readily implies (b). For (c), if
&� � 3�, the algebraic Bianchi identity together with (a) give

���	� �	�&� 	 ����	� &���	 � ��&� � �	��	 	 � �

Part (d) is clear.
We denote by �	 is the real vector space spanned by

���	� �	� � �	� �	 � 3	 � � � � �
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The following lemma can be easily veriÞed.

����� ������
��� ����
	� �������	�� ����

�
� �� 	 ��
 �	� ���� �	� . � �� 
� �	 
��� �� ��

�

� � 	 �� � � � �� �� �	� ��	� ��� 	 ��
 
� . �	 5�

�


� �	  3	 	 3	 ��� � . � ��

�
�� �	  3� 	 ��
 
� . �	 5�

��� �	 ���� 
������
�� �	 3	 ��� � . � ��

Let now	 be the connected Lie subgroup of �� with Lie algebra �	. Then

�� 	 � � � � �� � �

with 	 acting trivially on 3� for all . �	 5 and irreducibly on 3	 for all . � �.
Since a connected Lie group of orthogonal transformations on a vector space acting
irreducibly is compact, each 	 is compact. Thus �� is compact.
We can say more. For each . � � we can choose �	 � � so that �	 is not

identically zero on 3	. Then �3	� �	�	� is an irreducible holonomy system, �	 has
nonvanishing scalar curvature (cf. Remark 4.3.11) and we can apply the following

����� ������

��� $ �� � ��		����� �
� �������� �� ���3 � ���
	� 
������
�� �	 � $��
���	
������ ����� 3 � �	� �� � �� �	 ������
� ��������� ��	��� �	 3 ���� ����
��� � � ��� � �� � � 3 � *� ���� �	 �� ���	 $ 
� �������� � 	 �3���$� 
� �	

������
�� ���	��� ������� �	� $ ���� �	 3 �� �	 ���������	���
�	�


���� /�� !����!����� �� $ ����� � ���� � ������� ���,�� ������� ����
� !����!��% "�� �,&���,� �� ����� �!���� ����%,!�&�� �� � #�!��� ���!� ��
!����!� ����� ��� ������!�� ���A�� #�� �� *����%�D 2�' 1��!� $ �� !����!��
����� �D���� � ���� ����,�� �� $ ��%  � !�� %�-��

;� 	

�
#

7 � �

/�� �!���� !,�#��,�� �� ;� !���!�%��  ��� ��� ��� �� �� ���!� �#������� %���
��� !����� ��� �!���� !,�#��,�� ���!��� ���� �� ;�� 	 ��7  ;�� ��� ��� 7 � $�'
�����#��� ;� �	 � &�!�,�� �� ;�� �	 �' $������� 7  ;� 	 ;� ��� ��� 7 � $� ��
�3� ;��$� �� � ��������! �������� ������' *!!��%��� �� ���#��,� �����0�� $
�!�� �� 3 �� �� �4��������������'
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It follows from Lemma 4.3.14 that 	 acts on 3	 as an �-representation for all
. � �. This concludes the proof of the Normal Holonomy Theorem 4.2.1.
We now give some geometric applications of the Normal Holonomy Theorem.

��� ���� ��������� ���	�������� �� �
� �����	
��	����� �
�����

a) Parallel normal isoparametric sections

Let� be a submanifold of a standard space form ������.

'�(���	��� ����� & ����� 	���� ������ ��� � �� � 
� ���� �
parallel normal isoparametric section 
� �� ��� ��	���	� �
��	������

In the sequel, we mainly deal with submanifolds of ��, a situation that includes
submanifolds of spheres by regarding the latter as submanifolds of ��. Most of
the results extend to submanifolds of the real hyperbolic space, the latter seen as
Riemannian hypersurface of the Lorentzian space (cf. [179]). Therefore, we will
concentrate on submanifolds of��.
The constancy of the eigenvalues of the shape operator �� is a tensorial property,

for it is equivalent to the higher order mean curvatures in direction � being constant
(cf. Remark4.1.2).
Recall also that, if� is full in ��, by Theorem 2.5.1 on the reduction of codim-

ension, the only parallel umbilical isoparametric sections are constant multiples of
the position vector Þeld with respect to a suitable origin. This situation is, of course,
trivial. Thus, we will be interested in nonumbilical isoparametric sections and we
will actually see that the existence of one such section has strong consequences on
the geometry of the submanifold. A Þrst example in this direction is the following
useful lemma.
Let � be a parallel isoparametric section, ��� � � � � �� the different (constant) eigen-

values of�� and �� 	 =�� � � ��=� the decomposition into the smooth eigendis-
tributions of the shape operator�� .

����� ����&

��� � �� � �����	
��� �� �� �	� � � ����� 	���� 
����������
� ����
�	�

��� $��� �
��	�
���
���
�	 =	 �� �� 
� ��������� �	� ��	�� 
	������� �
��
����� ������
� ������

��� $��� �
��	�
���
���
�	 =	 
� 
	���
�	� �	��� � ����� ��������� �� � �
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��� *� �� ��	��� �� �	��� ��� ��� �� =	 ������� � � � � ���	 �	��� 
� ��	�
��
	�� 
	 ��� �Æ	� �������� �)=	������� �� ��� �	� �	� 	 �� 	=	���
��� � � � ��� � ����� �	 
� ��� ����� �������� �� ��� ��� �	���� ��������
�� � �����	
��� �� ��� �Æ	� ���������


���� ���� /�� ��������� �� ���#��� �� 7 	 �' *��,�� ���� 7 � �' "��
,�% &� ��!����� �� =	 ��% * � ��!���� �� =�  ��� . �	 5' M���� ��� $�%�++�
�I,�����  � ���

��	 � �����$%� *� 	 ���$���%� *� 	 ���%���,�% � 	 � �

1��!� ���� ���%� ��� ��� . �	 5 ���� ������� ���� �$% �� � ��!���� �� =	�  ��!�
����� ���� =	 �� �� �,���������� �,&&,�%�� �� �� '
�&�� 1��!� ��� 	 ��  � ��#� ���,�% �� 	 �� ��% ��� B�!!� �I,����� �������

���� ���� ��� 	 � ��� ��� ������ #�!��� -��%� �' /�,�� ��� ����� ���������
!���,��  ��� �� ��% !����I,����� ������#� ��� �����%�����&,�����'
�!� /�� ��������� �� ���#��� �� 7 	 �' *��,�� ���� 7 � �' "�� + � ��� ���

�	��� &� � ������ !,�#�  ��� +��� 	 �� - � ������ #�!��� �� �	��� � � ��
�� ��% 3 ��� �������� ������ #�!��� -��% ����� +  ��� �����!� �� ��� ������
!����!���� �� �	��� � � ' 1��!� >�+����� 3 ���� 	 � ��% �	��� �� ������� ���%���!
�� � � ��� !�#������ %���#���#� �� 3  ��� �����!� �� ��� "�#� $�#��� %���#���#�
�� �� #�������' /��� ������� ���� �	��� �� !�������% �� ��� �Æ�� ���!� � )
=	��� � ��� ' /�� ��������� �&�,� ��� ����� �������� �	 ����� � ���� ���

��!� ���� �	��� �� ������� ���%���! �� � '

b) Parallel and focal manifolds

Let � be a submanifold of �� and assume the existence of a nontrivial parallel
normal vector Þeld � (which we will view as a smooth map� � ��). We deÞne a
smooth map

�� �� � �
� � � �� �) ���� �

The differential of �� at � has the same rank as the matrix �%� �����. We denote by
���� the dimension of the kernel of �% � �����. Then � ) ���� is a focal point of
� in direction � if ���� � �. In this case, ���� is the multiplicity of the focal point.
If ���� � � is constant, this happens, for instance, if � is an isoparametric section,
then the image

�� 	 ��) ���� 	 � � �

of �� is an immersed submanifold of �� of dimension %��� � � (cf. [44], [191]).
If ���� � � � �, then �� is called a focal (or parallel focal) manifold of � in
direction �. If ���� � �, or equivalently, if �� is a regular map, then�� is called a
parallel manifold to� in direction �.
In this chapter, we deal with local properties and hence we can assume that�� is

embedded. Global properties will be studied in Section 5.5 (see in particular Exer-
cises 5.6.6, 5.6.7 and 5.6.8) and Chapter 6.
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����� ��	: A piece of a cylinder� with its parallel displacement in direction
of vector Þelds � and � ) & pointing inward. �� a parallel manifold, while���& is
focal.

������ ����� 3� � �� � �,&�������% �� ���  � ����� #�� � �� �
�,&�������% �� ���� ��% ���� %�-�� �������� ��% ��!�� �������%� �� � #��
���� ������!�' C��� ���� �#��� �������� ������ #�!��� -��% �� � � �� �� ����
� �������� ������ #�!��� -��% ��� � ����' N�� !�� ������ #����� ���� ��������
��% ��!�� �������%� �� �,&�������%� �� �� ��� ���� !�������% �� � ������ ���
%�.����� ��%�,� �� ��������'

������ ����� F� !�� ���� �����!� ��� E,!��%��� ���!� &� � "�����+���
���!�� ��% #�� ��� �����&���! ���!� �� ������� ����%� ���� �!!��%��� �� �,�

����� ���: A piece of a cyclides of Dupin and two of its parallel surfaces.
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����%��% ��%��' *���� �� ���� ���,������ �#��� �������� ������ #�!��� -��%
�� � � �� �� � �������� ������ #�!��� -��% �� � � �

���' O�� ��� � ��
� �,&�������% �� ���� ��� ��� �%#������ ����  � !�� �����  ��0 �� � #�!���
���!�' /�,� �) ���� �� � ��!�� ����� �� � � �

��� �� 0����%� ������ �	 ��
'

Let�� be an embedded parallel or focal manifold of� . Then the smooth map

< �� � �� � � �� ����� 	 �) ����

is a submersion (and a diffeomorphism if�� is a parallel manifold). We denote by
� and  the horizontal and vertical distributions that are induced by <. Note that
�� is isomorphic and parallel to �'����� and ��� � �'����� . Moreover,  � =
0�� <�� = 0����%� ���� = ���<���<����.

����� ���: Submanifold, focal manifold and horizontal direction.

������� ��& �Focalization of an eigendistribution�.
"�� �	 &� � ���+��� �����#��,� �� � �������� ������������! ��!���� �' /���
�	 	 ��	 �� � �������� ������������! ��!����  ��� ��� 	=	 	 �%(�

��%  � ��#�
0����% � ���� 	 =	' L����� &� <	 � � � ��� ��� ��!�� ��� ���� � ����
��� ' /��� ��� ������� ���!� �� ��� �� <	��� �� ��#�� &�

=����� � � �� ;=	���� � � �� =���� �
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 ���� ;=	��� ����� ���� =	��� �� ������%' 3� �����  ��%�� ��� #����!�� ��%
����+����� %�����&,����  ��� �����!� �� <	 �� � ��� �� ��#�� &�  	 =	 ��%

� 	 =	 � � � �� ;=	 � � � ��=�� �����!��#���' F�  ��� ��� ���� ��� �� ��� ��!��

�������% ���� PfocalizesQ =	 ��� �	�'

The following lemma describes a fundamental property of a focal map < �� �
�� .

����� ����
��� ����� �� ��� ���0���
�	 < ���� � �	�� ��� ����� ���� ��	
��� �� ���
����� ������
� �����	
���� �� � � �	� ��� ����� �������� �� � ����� ���
�������	� ��������
�
�	 �� 	  �� 
	���
�	��


���� /�� ��������� �� ���#��� ���� �� � �����' *��,�� ���� %���� � �'
"�� ,�% &� ��!����� ��  ��% * �� �����#�!��� �� ��  ��� ��* 	 �*� � �	 �'
M���� ��� $�%�++� �I,�����  � ���

��� ����$%� *� 	 ���$���%� *� 	 ���%���,�% � 	 � �

1��!� � �� ������% &� �,!� �����#�!���� *� ���� ������� ���� �$% �� � ��!����
��  �  ��!� ����� ����  �� �� �,���������� �,&&,�%�� �� �� � ��% ���!�
��� ���#�� ��� ������� ���%���! �,&�������%� �� � ' /�� ����� ��� ��� ��!��%
��������� �� �������,� �� ��� ��� ��� "���� 7'7'� �&�'

Let + be a curve in �� and � 	 +����. Then there exists for each point � �
<�����
� exactly one curve �+ in� with �+���� 	 �, < Æ �+ 	 + and �+���� � ����� for
all �. This curve �+ is called the horizontal lift of + through �. The next result is of
great importance for comparing the geometry of a submanifold� with the one of
the parallel (possibly focal) manifold�� (see [96, page 170]).

����� �����
��� + �� � ����� 
	 �� �	� � 	 +����� ��� �+ �� ��� ���
)�	�� 
�� �� + �������
� � <�����
�� 1�� ���� & � ��� � ���� ��� ����� ���	������ �� & ��	�
+ �	� �+ �
�� ������� �� ��� 	���� ��		���
�	� �� �� �	� � � �������
����
��
	�
���


���� /�� �������� ��������� &��� �� & ����� �+���  ��� �����!� �� ���
������ !����!���� ��� �� ���������� ���� ���!� �� � ���' 1��!� ��� ���4
�+����� %�����&,���� �� ��#������ ,�%�� ��� ����� �������� � �� � &� "����
7'7'2�  � ���

&���� 	 ��&�� R�+��� � �����
�	 ������ �

/�,�� &��� �� � �������� ������ #�!��� -��% ���� ����� +���' $��#������� �� ����
�� ��� ���� �� &��� �� �������� ����� +���  ��� �����!� �� ��� ������ !����!����
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�� ��� ���� �� �� �������� ����� �+���  ��� �����!� �� ��� ������ !����!����

�� � '

We now compare the shape operators � and ;� of � and �� respectively. We
have the following important relation between the shape operators in the common
normal directions to� and�� .

����� ����� -	.�� /���.��0
1�� � � � ��� � �'����� �� ����

;�� 	 ������ Æ ���%����������
�� �


���� "�� R+��� � �'�����
�	 �� &� ������� �� � !,�#� + �� ��  ���

+��� 	 <���� ��% ��� �+ &� ��� ����+����� ���� �� +  ��� �+��� 	 �' /���

�+��� 	 +��� � �����

1�� ���� �	 ��+���� 	 ���+����' F� ��#�

���� R�+��� 	 � R���� 	 ;���� R+��� 	 ;����� R�+��� ) R����� 	

	 ;����� R�+���� �� R�+�����

3� �� �� �,Æ!���� �� ��� � 	 �'

������ ����� N�� !�� ���� %���#� ����,��� ��� ����� ��������� �� ���
#����!�� ������ %���!����� �� ��� ��!�� �������%' "�� - &� � #����!�� ������
#�!��� �� ��� �'�'� - �  	 0����% � ���� ��% ��� 	 � ����+����� !,�#� �� �
 ��� ������� #�!��� � � � �� �' "�� �	��� 	 	��� ) ��	���� &� ��� ���?�!����
�� 	 �� �� S ��� ������� #�!��� �� � �� �� 	 �����' "�� -��� %����� ��� #�!���
�&�����% &� �������� ��������� �� - �� �	  ��� �����!� �� ��� ������ !����!����
�� �� ' /��� -��� �� ���� � #�!��� -��% �� � ���������� �� �� &� "����

7'7'<' F� %����� &�
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/�0��� ���� �!!�,�� ��� P�,&� ����,��Q 7'7'A� ��� ������ ������� ���� the shape
operator ;� of the focal manifold can be expressed in terms of the shape operator �
and its covariant derivative���.

������ ����� 3� $������ 2�  �  ��� !����%��� ��� � ���!��� !���� ��!��
�������%� �� �,&�������%� �� ������� ���� �����%�% �� �,&�������%� �� E,!��4
%��� ���!��' F�  ��� �D����� ������!�� �� � P�,&� ����,��Q �� ���� ���,�����'
1�� ED��!��� 2'<'8 ��� ��� !��� �� ������������! �,&�������%� �� ������� ���%
���� ���� �2� ��� ��� !��� �� ������������! ������,���!�� �� ��������'

In the sequel, we will often consider the ��-parallel transport along a curve 	 �
��� ��� � as a transformationmap between the afÞne normal spaces 	���)������
and 	��� ) ������ . If�� is a focal manifold of� , we will often identify �� ����
in� (� � ��) with vectors �����, which are normal to both� at �� ���� and to
�� at p (cf. Figure 4.5).

One can relate the geometry of the Þbre of the projection < � � � �� with the
��-parallel transport in� .
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��� �� �� �	� � �� � ����� 	���� ������ ��� �� � �
&����� 0����%���� ��� ��	���	� �
��	�
�	� �� �� �� ��� ����� ��� �����
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����� ���: Focal manifold�� and Þbre <����� of < �� � ��.

-� ��� ���� <������ 
� ��	��
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�� ��� � <������ �	� 
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������� ��
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�
�� <������ 	��� ��


���� 9���� ���� ���� �	��� 	 	��� � ����' F� �%������ �� �	���  ��� ���
#�!��� -��% �����' 1��!� ����� �� ��4�������� �� � ����� �	� �� ����� � ����
"���� 7'7'< ���� ����� �� ���� ��4�������� �� �� ����� 	' /�,��  ��� ���

�&�#� �%����-!����� 
�� ��	���� 	 �	���' G���� � ��% 8 ����� ���� �'

Let� be a Riemannian submanifold of Euclidean (or Lorentzian) space with ßat
normal bundle. For � � � , let � ) ���� � be the afÞne normal space. The focal set
@+ ��� of� at � is given by

@+ ��� 	 �� ) �� 	 �� � ���� � and ��%���� � is singular
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Since the normal bundle is ßat, the shape operators at � form a commuting family.
Let �������    � ������ be the common eigenvalues (which are linear functionals
deÞned on ���� �). Then

@+ ��� 	
��
	��

A	����

where
A	��� 	 �� ) �� 	 �� � ���� �� �	���� 	 �


are called focal hyperplanes. We have the following.

�������	��� ������
��� � �� � +
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�����


���� G��� (i) �� ����� ���!� ����� 	 3���%� ������ 	 ��� � �� ��� 	
����� ��% �� � � ) ��� ' 9�� (ii)  � ,�� ��� �,&� ����,�� �"���� 7'7'A� ���
��� ����� ��������� � �� � ��% ;� �� �� � ��� � � � ) ���� � 	 �� ) ��������

���� ;����� 	 �������%� ������
��' 1��!� �� �� 	 ��� ��� ����  � ��#� ����

;����� 	 ����� � ��������%� ������
�� 	

	 ������ � �%� ) ��%����������%� ������
�� 	

	 ����� � �%���%� ������
�� ) �%

��� �I,�#�������� �% � ;����� 	 ��% � �������% � ������
���  ��!� ������� ����

�%� ;����� �� ��#����&�� �� ��% ���� �� �%� ���� �� ��#����&��'

c) The holonomy tubes

Let � be a submanifold of Euclidean space. We consider a tube that can be
constructed using the normal holonomy of � . If �� � ���� � the holonomy tube
�� ��	 at �� is the image in the exponential map of the subset of the normal bundle,
�BC�	� , obtained by parallel translating �� with respect to�� along any piecewise
differentiable curve in� . More explicitly, it is deÞned by (cf. [96])

�� ��	 	 �	��� ) 
�� �� 	 	 � ��� ��� � is piecewise differentiable � 	��� 	 �
 �

�BC�	� is actually a subbundle of �� (but not a vector bundle), called holonomy
subbundle through ��. Its Þbre at � is the orbit of �� under the action of the normal
holonomy group at �. �BC�	� is always a 1-1 immersed submanifold of �� and,
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if the normal holonomy group is compact, in particular if � is simply connected,
it is an embedded submanifold. Usually we will need the holonomy tube for local
results, so we will assume� to be simply connected.
We deÞne the focal distance as the supremum of the positive real numbers 4 such

that 1 is not an eigenvalue of �� if ��� D 4.
Suppose 1 is not an eigenvalue of �!�� �	 , for any ��-parallel transport 
�� �� of

�� along any piecewise differentiable curve 	, or, in particular, ���� is less than the
focal distance. Then the holonomy tube �� ��	 is an immersed submanifold of �

�.
In this case, there is an obvious submersion <�	 � �� ��	 � � whose Þbres are
orbits of the (restricted) normal holonomy group.

Let � �	 � ) �� � �� ��	 . Then ��
	
�� ��	



	 ��� � ��	 �  ���. Thus

��
	
�� ��	



can be identiÞed with the normal space in ��� to the normal holonomy

orbit   ��. In Section 5.4 we will prove that the normal holonomy at � of the hol-
onomy tube �� ��	 is the image in the slice representation of the isotropy subgroup
� on ��

	
�� ��	


 �	 ��	�  ���.
An important local property of the holonomy tube is that it has ßat normal bundle

if �� lies on a principal orbit of the restricted normal holonomy group. (This is actu-
ally a special case of the above description of the normal holonomy of the holonomy
tube.)

�������	��� �����&
3������ �� � ��� 
�� �	 � ��
	�
�� ���
� �� ��� �����
���� 	���� ���	���
����� �	� ���� ���� 
� ��� ���	 ��� ���� �
���	�� �� � � ���	 �� ��	 ��� 2��
	���� ��	���


���� 1��!� ��� ���,�� �� ��!���  � !�� ���,�� ���� �� ��	 �� ��&�%%�%'
"�� ;� �	 � ) �� ��% & � ����� ��	 � ��� ��% !����%�� ��� �������� ���������

�� & � ��� �����!� �� ��� ������ !����!����� ����� ��� ����+����� !,�#� 	'

/��� ���%,!�� �  ��� %�-��% ������ #�!��� �& �� �� ��	 ' 3�%��%� &� "����

7'7'<� �& �� ���� ��4�������� ����� ��� ���?�!���� 	 �� 	 �� � ' /�,�� �� Æ ��
������� ����+����� !,�#�  ��� 	��� 	 Æ��� 	 ;�� 	��� 	 Æ���� ���� 
�� &��� ��%


�� Æ��� %�.�� &� �� ������� ��#�� &� ��� �!���� �� ��� ������ �������� ���,�
�� �� � � �!�,���� &� ��� �!���� �� �� ������� -D��� ��� �� ���� �� &������ ��
��� �������� �,&���,� �� �� �� 

�
�' 1��!� �� ���� �� � ����!���� ��&�� �� 

�
�� ���

�������� �,&���,� �� �� �� 
�
� �!�� ���#����� �� ��� ������ ���!�� ���!� �� &'

C� � �& �� �������� �� ��� ����+����� %���!���� &� !�����,!����' 3� �� ����
�������� �� ��� #����!�� %���!����' 3�%��%� � -&�� �� � ����!���� ��&�� �� ���
 ��!� �!�� �� �� �4�������������� ��� �����!,���� ������' /�,�� ��� ������
���!� �� ��� -&�� �� H�� �!�' 1�!���� 8'�� ��% & �� � ��4�I,�#������ #�!���

-��%�  ��!� �� �������� &� $�������� 8'�'2'

By means of holonomy tubes, one reduces the study of the geometry of a given
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submanifold� of Euclidean space to the study of a holonomy tube with ßat normal
bundle. The Þrst question arising is why not consider the usual spherical tube � , (i.e.,
the normal exponential of the normal vectors of a Þxed small length 4), which is a
hypersurface and so has ßat normal bundle. There are many geometric reasons for
considering holonomy tubes instead of spherical tubes (some of them depending on
the particular problem). But the most convincing and basic fact is that the holonomy
tube of a product of submanifolds is the product of the corresponding holonomy
tubes. This is not true for spherical tubes.
Moreover, one can also see that a holonomy tube �� ��	 is irreducible if � is

irreducible. Indeed, suppose �� ��	 was reducible but� irreducible. This would
mean that the projection of the holonomy tube on� killed a factor. But then one
would not be able to recover this factor by constructing the holonomy tube.

������ ������ 9�� � �������� �,&� �� ��	 � ��� -&�� �� ��� ���?�!����

< � �� ��	 � � �� ��&�� �� ��� �������!��%� ������ �������� ���,�'

d) Combining focalizations with holonomy tubes

We will now somehow combine the constructions of parallel focal manifolds and
of holonomy tubes.
Namely, given a parallel normal isoparametric section and a parallel focal mani-

fold�� of � , we pass to a holonomy tube with respect to ����� (at some �) and
then we compare the geometry of� with the tube�s.
We do this in the case of a focal manifold that �focalizes� an eigendistribution= 	.

Let us Þx a nonzero eigenvalue �	 of the shape operator relative to the parallel normal
vector Þeld �. Set �	 	 ���	 � and consider the parallel focal manifold ��� . Fix
� � � and take the holonomy tube ���� �������. Let us denote by�	 the horizontal
distribution of < 	 �� � ��� . Then �	 	 =� � ���� ;=	 � ����=� 	 =�

	 . If �
	 is

the shape operator of��� , by the �tube formula� (Lemma 4.4.7)

�	& 	 �& 	��
���%��������	��

����

As one can easily check, 1 is not an eigenvalue of �	������, hence

#	 	 �D�-+��
������� ���

+��
� �BC��������� � �

�

is an immersion. Let + � ��� �� � ��� be a piecewise differentiable curve in���

with +��� 	 <	��� and �+ � ��� �� � � its horizontal lift to� with �+��� 	 �. By
Lemma 4.4.6, if &��� is a parallel normal vector Þeld to��� along +, then &��� may
be regarded as a parallel normal vector Þeld to� along �+. If &��� 	 ��	���, then
&��� 	 ��	��+���� for all � � ��� ��, implying

#	��+���� &����� 	 +��� � �	��+���� 	 <	��+���� � �	��+���� 	
	 �+��� ) �	��+���� � �	��+���� 	 �+����

which, in turn, shows that #	
	�BC���������


 � � and that <#	 	 pr������� ���
+��

,
where pr: �� � � is the projection. It follows immediately that # 	 is one to one.
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Therefore we identify�BC��� ������ with �����������. This shows that if we pass
from � to the focal manifold��� and then to the holonomy tube with respect to
��	���, � � ��� , locally ���� ������� � � .
Moreover, we can regard / � �	��� as a normal vector to��� at �� (i.e., we identify

/ with the vector / � �� 	 ��	�/�). Now, by Lemma 4.4.6, parallel transport 
 	� �/�
in ������ of / along a short piecewise differentiable curve 	 � ��� ��� ��� starting
at �� coincides with 
�����	�/�� of ��	�/� in ��� � along the horizontal lift �	 of
	. But 
�����	�/�� 	 ��	��	���� because ��	 is a parallel normal Þeld to� . So,
in our identiÞcations, 
 	��/� 	 
�� ���	�/�� 	 ��	��	���� (where �	��� is regarded
as a normal vector to ��� at 	���). If 	 is a closed null homotopic curve, then
�	��� belongs to �	���. Since parallel transport along short loops always contains a
neighbourhood of the identity of the local normal holonomy group, (see Proposition
4.1.11, cf. [82, Appendix]) we get that the normal holonomy orbit 	��� / is contained,
near /, in �	���.
This discussion together with Lemma 4.4.10 yields

�������	��� ������
��� � �� � �����	
��� �� ��� �	 � 	�	)��� �
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����
�� �� ��� ����� 	���� 
����������
� ������ ��� �� 3�� �	 	 ���	 � �	�
��	�
��� ������ ��� ���� ��	
��� ��� � ��� �������
�	 <	 � � � ��� �	�
��� ���	��� ���� ���� �������� ���	

,� #	 	 �D�-+��
������� ���

+��
� �BC��� ������ � �� 
� � �	� �� �	� 
�����
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��	���� ��� �����
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����� 
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	��� 	���
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	 �	����

.� ��#	������������� 	 �=	����
� � �������

	�
'����

���	�����

Let � � � , then � � <	��� 	 ��	��� belongs to �'�������� � and (as remarked
above) the holonomy tube ���� ������� is locally contained in� .
Moreover �		�+��

�������
is also a parallel normal Þeld in the holonomy tube (be-

cause it is the vector Þeld deÞned by the centres of the holonomy tube�s Þbres). In
particular, any tangent space to the holonomy tube is invariant under the shape oper-
ator �� of� . Let �, �� be the shape operators of� and ���� ������� respectively,
and +��� be a curve on ���� ������� with +��� 	 �. Since �	 is a parallel normal Þeld
to both submanifolds

������+
���� 	 � !

!� ��
�	�+���� 	 �������+

�����

Hence, ��� 	.���+��
�������

� 	 ���� . This shows that �	 restricted to the holonomy tube
is also an isoparametric section of ���� ������� (whose shape operator has no zero
eigenvalue).
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In the sequel (Section 5.3), we wish apply these techniques to the study of sub-
manifolds with constant principal curvatures.
To begin with, we state a proposition giving a sufÞcient condition for a submani-

fold to have constant principal curvatures, namely that the Þbres of all focalizations
on the submanifolds ��� (which �focalize� the eigendistributions =	) are homog-
eneous under the normal holonomy group. We will later see that this condition is
also necessary, a consequence of the Homogeneous Slice Theorem [96].

�������	��� �����
��� � �� � �����	
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���� "�� =�� ���� =� &� ��� �����%�����&,����� �� �� ������#� �� ��� ���� ��'
B�!��� ���� �!�' "���� 7'7'�� ��� �����%�����&,����� =	 ��� ��#������ &� ���
����� ���������' F� -D ��� ��%�D . ��% ��� ����� ��� ��� ���!� ��� %�.����4
���&�� !,�#� 	���� �����(�

��� !������� �����#��,��� ���� ��� �������� ������
#�!��� -��% ����� 	' 1��!� ��� �������� �� ��#��� !������� ����!���� !,�#�4
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�� ����+�����  ��� �����!� �� ��� �,&�������� <	 �� � ��� '
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������ ������ *� � !����I,��!� �� G���������� 7'7'�2�  � ��� �����
�� ��� �������� �,&�� ����������� ��!���� !���!�%�  ��� � � ���� � �� � �,&4

�������%  ��� !������� ����!���� !,�#��,���'

e) Partial tubes about submanifolds of space forms

We now set a common framework for many constructions carried out in this
chapter. This also takes into account the classical construction of (spherical) tubes
�� 	 ��D��/�� 	 � � ���
 of radius / around a submanifold� of a space form.
In the last section, we constructed the parallel manifold�� for any parallel normal

vector Þeld �, and the holonomy tube �� ��	 , around any �� � ��� .
All these examples belong to the general class of partial tubes, introduced by S.

Carter and A. West in [40] for submanifolds of Euclidean space, but can be general-
ized to submanifolds of space forms by regarding them, as above, as either subman-
ifolds of Euclidean or Lorentzian spaces.
Let � be an �-dimensional submanifold of ������ and set � 	 !�%��� as a

submanifold of Euclidean space or of Lorentz space. We denote by �� the normal
bundle of� as a submanifold of Euclidean space or of Lorentz space. Let T be the
set of critical normals, i. e. of �� � ��� such that � ) �� is a focal point. A partial
tube about� is a subbundle: of �� with typical Þbre �, where:

(i) � is a submanifold of��

(ii): does not intersect the set of critical normals T

(iii): is invariant by parallel transport along any curve, with respect to the normal
connection

If = is the endpoint map, its restriction= �0 is an immersion in Euclidean or Lorent-
zian space, which follows just from (i) and (ii). The geometric meaning of (iii)
is the following: Fix a point � � � and identify � with the Þbre : � of : at �, or
equivalently identify ��� with�� via a linear isometryE� such thatE���� 	 :� �
��� . Let � � �, 8 	 ��� E����� � : and denote by ��� the normal space to � at
� in��. Then, as shown in [40, Theorem 1.2], (iii) is equivalent to the property that
for any �� �� E�, as above the normal space ��: to: at 8, coincides with E������.
Note that any path 	 from � to � determines, by composing parallel transport along

	 with E�, a linear isometry E� � �
� � ��� . One can deÞne the push-out region


 as the subset of �� given by those � such that for any E� as above E�� does not
belong to set of critical normals T� at �.
Then any submanifold � of�� contained in the push-out region
 invariant under

the normal holonomy group deÞnes a unique partial tube with typical Þbre � and
with: 	 �E����� 	 � � �� 	 a path 
.
Examples of partial tubes.
1: /-tubes. Let / � �� and ��� the unit normal sphere bundle over� , that is, the
sphere bundle over� consisting of all unit normal vectors of� . The /-tube or tube
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with radius / around� is deÞned by

�� �	 ��D��/�� 	 � � ���
 	 ��) /���� 	 � � �� � � ���
 �

If / is smaller than the distance between� and its focal set, then�� identiÞes with
the set of normals of length /. Therefore,�� is a partial tube about� with typical
Þbre the hypersphere in�� (� 	 !�%��� ) having centre the origin and radius /.

2: Parallel manifolds. Let� be a submanifold of ������ and � a parallel normal
vector Þeld that does not belong to the set of critical normals T. The image of � in
�� can be thought of as a partial tube about� with typical Þbre a single point, and
identiÞes with the parallel manifold�� .

3: Focal manifolds. Let �� be a parallel focal manifold with respect to a parallel
normal isoparametric section � on a submanifold � of ��. The Þbre <������ is
contained in the afÞne normal space ��) ������� and, by Lemma 4.4.10, is invariant
by ��-parallel transport in ��. By 3 in Lemma 4.4.10 we have that, locally, �
can be seen as a partial tube about��. This actually generalizes the situation of an
isoparametric submanifold and one of its focal manifolds.

4: Holonomy tubes. Let �� ��	 be a holonomy tube around a submanifold � .
Then, if �� is less than the focal distance, �� ��	 is the partial tube with typical Þbre
the orbit of �� under the action of the normal holonomy group.

Let: be a partial tube about� and let �	 be a curve in: joining �� 	 ��� E��� and
�� 	 ��� E���. We can project �	 down to� , getting a curve 	 from � and �. Writing
�	��� 	

	
	���� E���;���



, we determine a curve ;��� in the Þbre �. Again, parallel

transport along ; composed with a Þxed isometry F� � �� � ��� determines an
isometry F� � ��� ���, where ! 	 !�%��� in��.
The following result ( [40], Lemma 4.2) relates parallel transport along �	 in the

normal bundle to a partial tube to��-parallel transport in� along 	 and the parallel
transport in the normal bundle of the typical Þbre along ;

�������	��� ������
4���� ���	����� 
	 ��� 	���� ��	�� �� ��� ����
� ���� : ��	� �	 
� �
��	
��

E�F�9 �� E�F�9�

The proof can be found in [40], page 158, and uses arguments similar to Lemma
4.4.6, together with the description of the normal space to the partial tube, given
above. We propose it as an Exercise (Exercise 4.6.3).

Note that this proposition generalizes Lemma 4.4.6. Indeed, if �� is a parallel
focal manifold of� with respect to a parallel normal isoparametric section �, like in
Example 3, one can write a point of the partial tube� as ��� �����, and the typical
Þbre identiÞes with the set of vectors ���� such that � ) ���� 	 �) ����. Since � is
parallel, we have E����� 	 ����, so that the curve ; identiÞes with the constant path
� �� ����.
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��� ����
�� �������

a) Realizations of �-representations as normal holonomy groups

E. Heintze and C. Olmos computed the normal holonomyof orbits of �-representa-
tions obtaining that all �-representations arise as normal holonomy representations
with 11 exceptions [95]. Up to now, no example has been found of a submanifold
realizing one of these exceptions as normal holonomy representation. The simplest
exception (it has rank one) is the isotropy representation of the Cayley projective
space represented by @	��.��=�. K. Tezlaff [218] gave a negative answer to the
question of whether this representation is the normal holonomy representation of one
of the focal manifolds of the inhomogeneous isoparametric hypersurfaces in spheres
of Ferus, Karcher and Münzner [87], which would have been good candidates.
A still open conjecture is that if� is a full irreducible homogeneous submanifold

of the sphere that is not the orbit of an �-representation, then the normal holonomy
group acts transitively on the unit sphere of the normal space [175].

b) Normal holonomy and irreducibility

The Normal Holonomy Theorem 4.2.1 provides, in particular, an orthogonal de-
composition of the normal space at � into invariant subspaces.
The existence of an invariant subspace for the normal holonomy however, does

not imply in general that the submanifold splits locally (both extrinsically and intrin-
sically). For example, for a submanifold of Euclidean space contained in a sphere,
the line determined by the position vector � is an invariant subspace under normal
holonomy (it always belongs to the ßat part of �� ), but such a submanifold does
not necessarily split.
For submanifolds of space forms, one can get only weaker versions of de Rham�s

decomposition Theorem (see, for instance, Exercise 4.6.1). But, if� is a complex
submanifold of � � , there is a version of de Rham decomposition theorem available:
if  splits,� locally splits as a product of submanifolds [67].

c) A bound on the number of factors of the normal holonomy representations

Let � be a submanifold of Euclidean space (or more generally of a space of
constant curvature). Let � � � and let

��� 	 3� � 3� �    � 31

be the decomposition of ��� given by the Normal Holonomy Theorem (applied to
the local normal holonomy group).
The following result gives a bound for the number A of irreducible factors of the

normal holonomy representation.
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d) Normal holonomy of surfaces

Using the above bound on the number of normal holonomy representation com-
ponents and properties of holonomy systems, we prove the following.
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Note that, for a surface contained in a sphere but not contained in a proper afÞne
subspace (or, equivalently in a smaller dimensional sphere), there is an analogue
result (Exercise 4.6.16).

e) Computation of normal holonomy

The description of the Lie algebra 0��� given by the Ambrose-Singer Theo-
rem is not very explicit since the normal holonomy algebra depends also on parallel
transport 
�� . Thus it is not very useful for explicit computations.
In some cases, like homogeneous submanifolds, one can compute the normal hol-

onomy by taking the covariant derivatives of the normal curvature tensor.
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In Section 6.2 we will give a description of normal holonomy of orbits in terms of
projection of Killing vector Þelds (Theorem 6.2.7). This yields a very practical tool
for computing a homogeneous submanifold�s normal holonomy.

���  !�������

����1!�� ����� The following exercise gives a sort of extrinsic version of de
Rham�s decomposition theorem. Let � � �� ��� be a submanifold and � the
combined holonomy (cf. page 97). Let � � � and suppose that both ��� and ���
split as orthogonal direct sums ��� 	 �� � ��, ��� 	 �� � �� whilst � splits
as a product �� � �� with �� acting trivially on �� � �� and �� acting trivially on
�� � ��. Assume further that >���� ��� � �� and >���� ��� � ��. Prove that� is
locally reducible.

����1!�� ����& We use the same notation as on page 104 and deÞne the loop 	��
by the following procedure: Move on the coordinate lines from #��� �� to #��� ��,
then to #��� ��, then backward to #��� �� and Þnally back to #��� ��. Prove that
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����1!�� ����� Prove Proposition 4.4.17.

����1!�� ����� Compute the restricted normal holonomy group of the Veronese
surface (cf. Section 3.3).

����1!�� ���� Let� be a submanifold of the Euclidean space and � a parallel
normal vector Þeld. Consider locally the parallel foliation� � (� small). Prove that
the shape operator �� of � has constant eigenvalues if and only if, for any �, the
shape operator �� of�� has constant trace.

����1!�� ����� (cf. [217]) A submanifold� of a space of constant curvature is
called a Weingarten submanifold if it has ßat normal bundle and its principal curva-
tures satisfy a polynomial relation [217]. Show that if� is Weingarten, then so are
any of its parallel (nonfocal) manifolds. Prove conversely that, if � has a parallel
(nonfocal) manifold that is Weingarten, then� is Weingarten.

����1!�� ����� Using Proposition 4.5.3, compute the restricted normal holon-
omy group of the third standard embedding of @ � � ���

�
<� � �� � �� deÞned

by
��� �� 8� � ���

�
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����1!�� ����� Using Proposition 4.5.3, compute the restricted normal holon-
omy group of the orbits of*%��2 ���� (cf. Section 3.2).

����1!�� ����� Let � � ��� be an isoparametric submanifold of a space
form, i.e, a submanifold with ßat normal bundle and such that the eigenvalues of
the shape operator with respect to parallel normal Þelds are constant. Prove that
there exist 7 ��-parallel normal vector Þelds ��� ���� �� (the curvature normals),
with 7 � !�%��� 	� �, such that the eigenvalues of the shape operator �� are
��� ���,..., ��� ��� and ��� ���� �� is a global parallel frame of �� .
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����1!�� �����, Let � be a full isoparametric submanifold of a space form,
������ �����,...., ����� the common eigenvalues of �, with ����� � �. Denote by
=	, . 	 �� ���� 7 the common eigendistributions of the shape operator (called the
curvature distributions of � ). Prove that any = 	 is autoparallel. Hint: Use the
Codazzi equations. If you are stuck, see the proof of Lemma 4.4.2.

����1!�� ������ Let � be a full isoparametric submanifold of a space form.
Prove that the curvature normals ��� � � ��� span the Þrst normal bundle.

����1!�� �����& (cf. [205]) Let� be an�-dimensional isoparametric subma-
nifold of a space form and denote by �� the constant dimension of its Þrst normal
space and by 7 the number of distinct curvature normals. Prove that

(a) �� � 7 � �;

(b) if 7 � � then��> 	 �;

(c) if 7 	 � then� locally splits.

Hints: For (a) use Exercise 4.6.11, for (b) and (c) Exercises 4.6.10 and 2.8.9.

����1!�� ������ Let � be a parallel normal vector Þeld. Prove that an eigendis-
tribution = of the shape operator ��, relative to an eigenvector �, is autoparallel if
and only if !��-� 	 � for - ! =. Hint: see the proof of Lemma 4.4.2. or compute
directly using Codazzi equation.

����1!�� ������ A submanifold� � �� is said to have extrinsic homogene-
ous normal holonomy bundle if for any �� � � � and any piecewise differentiable
curve + � ��� �� � � with +��� 	 �, +��� 	 � there is an isometry 7 of �� such
that 7�� � 	 � , 7��� 	 � and 7���-	+ � ��� � ��� coincides with the ��

parallel transport along +. Prove that an orbit of an �-representation has extrinsic
homogeneous normal holonomy bundle.

����1!�� ����� Let �� be the normal Þeld on the holonomy tube < � �� ��	 �
� deÞned by

����� 	 � � <���� � � �� ��	 �

Prove that �� is parallel in the normal connection �� ��	 . Hint: see the proof of
Proposition 4.4.12.

����1!�� ������ Prove the following analogue of Theorem 4.5.2. Let� be a
surface of �� not contained in a proper afÞne subspace (or, equivalently, in a smaller
dimensional sphere). Then the local normal holonomy group is either trivial or it
acts transitively on the unit sphere of the normal space.
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����1!�� ������ Let $ � ���8�. Prove that either $ is transitive on the unit
sphere of�� or it has a Þxed vector.
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This section is devoted to the study of generalizations of the concept of isoparametric
hypersurface to higher codimensions.
The beginning of the history of generalizations of isoparametric hypersurfaces to

higher codimensions goes back to the 80s, with the (sometimes independent) work of
many authors: J. Eells [76], D. Gromoll and K. Grove [92], Q.-M. Wang [238], C.E.
Harle [93], W. Strübing [205] and C.-L. Terng [216]. There are different aspects of
these generalizations that are actually strictly related: isoparametric maps, isopara-
metric submanifolds and submanifolds with constant principal curvatures (for more
details on the historical development see [220]).
The general deÞnition of an isoparametric map is credited to C.-L. Terng. It is a

smooth map � � ���� � � � � ��� � ������� �
�, such that,

(a) � has a regular value
(b) ����	 ��� ���	 ��� and 
�� are functions of � , for any �� �
(c) ����	 ��� ���	 �� � is a linear combination of ���	��� � � � � ���	��, with functions
of � as coefÞcients, for any �� �.
Condition (b) means that ����	 ��� ���	 ��� and 
�� are constant on the regu-

lar level sets, i.e., the inverse images �������� of regular values �, which exist
by (a). This condition assures, as in the case of isoparametric hypersurfaces, that
the regular level sets are equidistant and have parallel mean curvature. This latter
fact implies that the principal curvatures along parallel normal vector Þelds are con-
stant (Exercise 5.6.1). Condition (c) says that the normal distribution determined
by ���	 ��� � � � � ���	 �� is integrable (and a fortiori parallel) and the normal bundle
	
�
��������

�
to each regular level set is ßat (cf. [187, Chapter 6]). Thus, regular

level submanifolds of an isoparametric map are isoparametric submanifolds of co-
dimension (or rank) 
 (Theorem 5.1.2). Conversely, any isoparametric submanifold
� of �� determines a polynomial isoparametric map on ��, which has � as a
regular level set (cf. [187, Section 6.4] and here Section 5.2).
The notion of isoparametric submanifold is nowadays also regarded as originally

given by C.-L. Terng, even though it was Þrst stated by C.E. Harle in [93]. An im-
portant example (by Thorbergsson�s Theorem 5.4.5, the only one if the codimension
is greater or equal to three) is given by the principal orbits of �-representations, as
shown in Section 5.4.
In Section 5.2 we will discuss geometric properties of isoparametric submani-

folds. Among them is the important fact due to C.-L. Terng [216] (and S. Carter and
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A. West [38], in the particular case of codimension three), that one can associate to
isoparametric submanifolds a Þnite reßection group, the Coxeter group.

The singular levels of isoparametric maps are actually focal manifolds of the
isoparametric submanifolds. Thus, isoparametric maps determine a singular folia-
tion of the ambient space. If � is a Þxed isoparametric submanifold of ��, the
leaves are parallel manifolds�� � ��  ��� � � � ��, where  is an arbitrary
parallel normal vector Þeld.

If, in the deÞnition of isoparametric submanifolds, one drops the assumption that
the normal bundle is ßat and requires only that the shape operator � � has constant
eigenvalues for any parallel normal vector Þeld ��� along any piecewise differen-
tiable curve, then one deÞnes a submanifold of a space form with constant prin-
cipal curvatures (cf. Section 4.1). Strübing in [205] studied these submanifolds
(even though he called them isoparametric) and noticed that the focal manifolds of
an isoparametric hypersurface are submanifolds with constant principal curvatures.
This result was generalized by Heintze, Olmos and Thorbergsson in [96] to isopara-
metric submanifolds. Indeed, in [96] the converse is proved, namely that a submani-
fold with constant principal curvatures is either isoparametric or a focal manifold of
an isoparametric submanifold (Theorem 5.3.3 here). The paper [205] of Strübing is
actually of great importance for the methods adopted. He constructed tubes around
isoparametric submanifolds and made use of the normal holonomy for the study of
the submanifolds with constant principal curvatures. In fact, these are the techniques
we extensively make use of.

In Section 5.5, we examine a more general situation than isoparametricity. We
suppose (as in Section 4.4), that there exists a (locally deÞned) parallel nonumbilical
normal section that is isoparametric, i.e., the eigenvalues of the shape operator�� in
the direction of  are constant. Our aim is to study the geometric consequences of this
property. What we will show is that it imposes severe restrictions on the geometry of
the submanifold. Namely, if a submanifold of the sphere with such property does not
locally split, it is a submanifold with constant principal curvatures [61], Theorem
5.5.2. A global version for complete simply connected submanifolds can be also
stated ( [70], Theorem 5.5.8 in these notes). By this result we see that the deÞnition
of isoparametric submanifolds or, more generally, of submanifolds with constant
principal curvatures, cannot be weakened much by assuming the existence of just
one nontrivial isoparametric section. Roughly speaking, if one such section exists,
then many exist.

��� �����	
��
 �� �
���	����	�� ���


In this section, we show that isoparametric submanifolds of Euclidean space corre-
spond to regular level sets of isoparametric maps. Moreover, we will sketch the proof
of the fact that any isoparametric submanifold is a regular level set of an isoparamet-
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ric polynomial. To make exposition easier, we restrict the discussion to Euclidean
spaces, but everything holds for space forms.
In order to simplify proofs and obtain a better understanding of the concepts in-

volved, we will need some generalities about Riemannian submersions (see [180]).
For the sake of completeness, we include a brief account of the topic.
Let� and � be Riemannian manifolds. A surjective �� map � ����� � ��

is called a Riemannian submersion if ��� � ����������
� � ������

� is a linear
isometry, for all � � � . The distribution 	 on � deÞned by � 
� �������� is
called vertical distribution and its orthogonal complement � is called horizontal
distribution. The vertical distribution is always integrable (and, in general, with non
totally geodesic leaves), because any leaf of the vertical distribution is a connected
component of the Þbre (i.e., the preimage by � of an element in � ). Let � � � � �

be a (differentiable) curve. A curve �� � � � � is called horizontal lift of � if
� Æ �� � � and �� is a horizontal curve, i.e. ������ � ��	�
�, for all � � �. If � � � � � ,
�� � � and � � ������������, there exists a unique horizontal lift �� of �, deÞned in
a neighbourhood of �� such that ������ � � (this is a standard fact involving ordinary
differential equations). If � is a curve in� then � �

�
�����  � �
�
 �� Æ ������ with

equality if and only if � is horizontal. Then, ����  ��� Æ �� with equality again
if and only if � is horizontal. From this, one obtains that the horizontal lift of a
geodesic is a geodesic. So, if the horizontal distribution� is integrable, then it is
also totally geodesic (see next Remark 5.1.1).
A (differentiable) vector Þeld � of � is called projectable if it is ��related to

some vector Þeld � of � , i.e. ������� � � ������, for all � � � . It is standard to
show that� is projectable if and only if ������� � ��������� when ���� � �����.
Given a vector Þeld � in� , there exists a unique Þeld� in� that is both horizontal
and ��related to � (the so-called horizontal lift of � ). A projectable horizontal
vector Þeld on � is called a basic vector Þeld. Observe that a vertical Þeld of�
is always projectable, since it is ��related to the null Þeld of � . If �� and ��

are Þelds of � ��related to Þelds �� and �� of � , respectively, then the bracket
���� ��� is ��related to ���� ��� (see [117]). So the bracket of two projectable Þelds
is projectable, and the bracket of a projectable Þeld by a vertical one is vertical. We
can always choose locally an orthonormal frame ��� � � ���� �� � � � � � of � such
that the Þrst � Þelds are vertical and the last 
 are basic. Now

� � ����� �� � ������� ��  ��������� �

and since ����� ���
� � ��� ��� is vertical we obtain that

���
�� �� � ���������� � (5.1)

Observe that the left-hand side changes sign if we interchange � and � . Since
��� �� � ���� ����� we obtain that ������ ��� �

�
� ���� ��� ���, for all �� � �

�� ���� 
, � � �� ���� �, so

������� �
�

�
��� ��� �� (5.2)

for all � � basic and � vertical.
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/-���

This Þnishes our brief general account on Riemannian submersions.

Now let � be an open subset of ���� and � � � � �
� differentiable with a

regular value, i.e., there exists � � ��� � such that ��� is onto for every � belonging
to the level set �������� (such a level set is called regular level set). It follows
from the deÞnition in the introduction to this chapter that, in this setup, � is an
isoparametric map if:

(i) The Laplacian 
� � �
��� � � � �
��� is constant along any level set of � .

(ii) The inner product ����	 ��� ���	 ��� is constant along any level set of � , for any
�� � � �� � � � � 
.

(iii) The bracket ����	��� ���	 �� � is a linear combination of ���	 ��� � � � � ���	 ��,
and its coefÞcients are constant along any level set of � .
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� �������	
�� 
	 �������� ����� �� ��
���������� �	 ��� 
��� �	 �� �� �
�����
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In this section we start the study of the isoparametric submanifold geometry and
construct the Coxeter group.

a) Curvature distributions and curvature normals

Let� be an isoparametric submanifold of a space form ������, � � ��� � or �. If
� � �, we will regard ������ as a unit sphere, and� as a submanifold of Euclidean
space. If � � ��, � is regarded as a Riemannian submanifold of Lorentz space.
Remark that an isoparametric submanifold of a sphere (resp. hyperbolic space) is still
isoparametric when regarded as a submanifold of Euclidean (resp. Lorentz) space,
since the radial vector is umbilical (cf. Exercise 5.6.4). Throughout this section, ��
and � will denote the directional derivative and the shape operator in Euclidean or
in Lorentz space, respectively.
Since the normal bundle of � is globally ßat, normal holonomy is trivial and,

by the Ricci equations, the shape operators ��������� are simultaneously diago-
nalizable. Let #���� #���,...., #��� be the common eigenvalues of � at �, with
#��� � �. We have common eigendistributions $�, � � �� ���� % (the curvature
distributions of� ) with

���� � #������ �� � $��
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(autoparallel, Lemma 4.4.2) and #� � 	�� � � linear functions, or #� � �	�� ��.
Using the metric #� � ������� � �, determining normal vector Þelds �� called curva-
ture normals. Since the eigenvalues #��� are constant if  is parallel, the curvature
normals are parallel in the normal connection. If the ambient space is Lorentzian,
the curvature normals can be deÞned as well and lie in Lorentz space.
Choose parallel  � 	� such that �� ��� are all different. (For a Þxed � � � ,

pick � � 	�� outside the hyperplanes ������� ������ � � � �, � �� �, and extend it
to a parallel normal Þeld.) The eigendistributions associated to �� are the common
eigendistributions $�� � � � � $� of the commuting family of shape operators ($� �
����� is the possibly trivial nullity distribution).

������ ����� :# � $��� �� ���!��������( ��-����#��	 �# " !��-���(
�!�(�1 $� (���	 "�'� 	�/��	 �"� (��'����� ������� - �����	��� � �� �
��-����#��	 �# !�� ;������� �"�� - ���1 $� "�'� ��������� �� � ���  �1
$"��� � �� �"� !������� '�(��� /��	� :� !����(����1 �� �� � #�� �� � � �� � � � � %�
<����'��1 �"� �����	�����-������ ����(����	 �� �� ��	 ��� (���(�	�1 ���(� �"�
!������� '�(��� /��	 �� ��-���(���

By Lemma 4.4.2, the eigendistributions $� are autoparallel and invariant by all
shape operators that operate on them as a multiple of the identity. Thus, the leaf
&���� � �$����	��� � of$� through � is a totally umbilical submanifold of the
ambient space. In the Euclidean case, &���� is the open part of an afÞne subspace,
if �� � �, or of a sphere, otherwise. In the Lorentzian case &���� is the open part
of a sphere, if ������� ������ ' �, of a horosphere, if ������� ������ � � or of a
hyperbolic space if ������� ������ ( �.
The leaf of$� at � will be denoted by &���� and called curvature leaf at � relative

to #�.
The dimensions )� �� 	��$� are called multiplicities of the isoparametric

submanifold.
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#����$�� the Þrst normal space to an isoparametric submanifold is spanned by the
curvature normals.

Actually, using the above Lemma, &���� is contained in the afÞne space �$����
������. This is due to Lemma 4.4.2 and the fact that the Þrst normal space is gener-
ated by the ��. So, in the Euclidean case, we have
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�
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�� 
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Let  be any parallel normal vector Þeld on an isoparametric submanifold� of
Euclidean or Lorentz space. Then  is a parallel isoparametric section and (cf. Sec-
tion 4.4) we can consider the parallel (possibly focal) manifolds � � . Recall that
�  ��� is a focal point if �����	��� � ������ �� �. We can write down this con-
dition taking into account the curvature normals � �. Indeed �����

� ���� ��	��
, so

the matrix of �	��� ������ is given by

�
�������

�� ���� � � � � �
� � �

�

�

�

� � � � �� ���� �

�
						

�

The focal points belong to the hyperplanes of 	��

*���� �� ��� ������� ���� � ���

Each *���� is called focal hyperplane associated to$�.

������ ����� ��(�� " !��!����� ��	 #�(�� ��� �# �� ���!��������( ��-%
����#��	 ��� ��'������ - !������� �����!��� �� �"� ������ -��	��1 ���(� �"�
(��'����� ������� ��� ��%!��������

Thus, an isoparametric submanifold determines a singular foliation of Euclidean
or Lorentz space, where each leaf is either isoparametric or a focal manifold of an
isoparametric submanifold.

Note that, for a compact immersed full isoparametric submanifold, all curvature
normals are nonzero. In fact, since� is complete, any leaf of the �-eigendistribution
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is an afÞne subspace of the ambient space, which must be trivial since� is compact.

The rank of an isoparametric submanifoldof Euclidean space is the maximal num-
ber of linear independent curvature normals.
Thus, for a full isoparametric submanifold of Euclidean space, the rank coincides

with the codimension. By Lemma 5.2.2, Lemma 4.1.3 and the theorem on the reduc-
tion of the codimension (cf. Remark 5.2.3), we can assume that an )-dimensional
isoparametric submanifold of rank 
 is contained in��, with � � )  
.

b) The Coxeter group

Next, we associate a Coxeter group to a complete isoparametric submanifold�
of Euclidean space (cf. [187]). A similar construction can be carried out in the
Lorentzian case.
Let �� � � � and let +��� � 	�� � 	�� be the parallel transport. The afÞne

parallel transport �+��� � �  	�� � �  	�� is the unique isometry deÞned by:
�+������ � � and ��+������ � +��� .
From the isoparametric condition

�+����,� ���� � ,�����

where ,��-� denotes the focal set of� at -.
Let .�� denote the reßection in the afÞne space �  	�� across the hyperplane

*���� corresponding to a (nonzero) space-like curvature normal.
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We now relate the antipodalmaps with the focal structure. DeÞne 0� �� �
��

���� ���
.

So 1���� �� �  0���� � .
�
� ��� is the antipodal map with respect to the curvature

sphere &����. The isoparametric condition implies �+��������,� ���� � ,� �1�����.
Note that 1� can be regarded as the projection map sending� to the parallel mani-
fold���

(which coincides with� ). From Proposition 4.4.11

,���� � ,���
��  0������

Since � � ���
and 1���� � �  0����, we conclude that �+��������,� ���� �

,� ���.
Therefore, any reßection .

�
� permutes the focal hyperplanes *����� � � � � *����,

which generate a Þnite group of reßections [104]

������� ��
�� �������
��� ��$����
�� .

�
� ���
��� ��� ����������� *���� ��
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����� �
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������ �������� � &���� ��$����
� ��
�� 2 �� ������ '
(���� ��
��

	 ��� ��
���������� �������	
�� �� ��

Note that, for any �� �� � � , 2 � �� 2 �� , because parallel transport along any
curve joining � and � � conjugates2 � and2 �� . We then write2 for2 �.

Observe that the reßections .�� determine permutations of the curvature distribu-
tions. To see this, let ���� be a (piecewise differentiable) curve in� based at � and
����� �� ����  0���� a curve based at 1����. Then 	�� � 	������ and by Lemma
4.4.6 a normal vector Þeld 3 is��-parallel along ���� if and only if it is��-parallel
along �����. Moreover

��������� � �������	� �������
�� � ������1��

��
�� �

Thus, if $� is a curvature distribution of � at �, it is a curvature distribution of � at
1����, as well. Hence, there is a permutation �� of ��� ���� %� such that

�1����$���� � $������1����� (5.3)

Observe that $���� equals $������1����� as linear subspace of the ambient space.
The curvature normals at 1���� are given by

�������1����� �
�

�� �0����� ������
���1����� � � �� � � � � %� (5.4)

������ ����� +"� �-�'� �������� ��!���� ��'��� ������(����� �� �"�
������� �#� � :�	��	1 �� � (����&���(� �# ���>�)� � 	��$� � 	��$����� �

)������
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In general, if 4 is a reßection group generated by reßections through hyperplanes
�� orthogonal to vectors 	�, one deÞnes the rank of 4 as the maximal number of
independent vectors in �	��. Thus, the Coxeter group2 associated to an isopara-
metric submanifold of Euclidean space has rank equal to the rank of the isopara-
metric submanifold. If� is a homogeneous isoparametric submanifold, we will see
(Section 5.4) that� is a principal orbit of the isotropy representation of a symmetric
space. The Coxeter group coincides then with the Weyl group of the corresponding
symmetric space.
The complement in �  	�� of the union of the focal hyperplanes *���� is not

connected. Let � be one of its connected components. Its closure � is a simplicial
cone and a fundamental domain for the 2 -action on �  	�� (i.e., each 2 -orbit
meets � at exactly one point). � is called theWeyl chamber for2 .

������� ��	 Isoparametric hypersurfaces in spheres
:# � �� � (��!�(� ���!��������( " !�����#�(� �# �"� �!"���1 �� "�� (�	�����%
��� � �� 4�(��	��� �!�(�� :�� ����(����	 @�7���� ����!2 "�� ���� � �����1 �� ��
� ��A�(���� ����! �# �"� !������ . �"� (�����/(����� �# /���� @�7���� ����!�
����1 ����1 ���=1 @"�!��� ��� �� 	���(� ���!�(����1 2 �� �"� 	�"�	��� ����! �#
��	�� �% �����! �# � �������� �# � ������� %%����1 $"��� % �� �"� ���-�� �#
	�B����� (��'����� �������� +"� !�(���� -���$ �"�$� �"� (��� % � >�
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:# % �� �		1 �"� @�7���� ����! �� ��������'� �� �"� ��� �# #�(�� ������ +"��1
�"� �����!��(����� ��� ��� �&���� :# % �� �'��1 �"��� ��� �$� ��-��� ��	 �$�
�����!��(������ :# $� !�� ��	�(�� �� �"�� *� ��	 *��� ��� �	C�(���1 �"�� )� �
)��� #�� �� � ��	 % � ��==�1 (#� ���� 6�(���� >�)��

. �"� �������-�� ������� �# <D��,��� ��==1�=��1 ��� ��� �� 	���(��� (�"���%
����(�� ���������1 �"� ���-�� % �# (��'����� ������� (�� ��� -� �� �� >� =
�� 8 ��� (��� % � � � �� � �!"���1 ��	 #�� % � � �� �� � !��	�(� �# �!"������
:� ��"�� �����1 �"� @�7���� ����! �# �� ���!��������( " !�����#�(� �# �"�
�!"��� �� (� ���������!"�( �����1 �� ���-���,�� � �����(� �� ��1 ��� ���=1 6�(����
��)��1 (#� ��)*��

The fact that2 is a Þnite reßection group forces the intersection
�
�

*���� to con-

sist of one point, or, equivalently,2 to have a Þxed point.
This implies that if� is a rank 
 isoparametric submanifold of��, there exists a

parallel normal Þeld 3 such that �3� ��� � � for � � �� ���� % (indeed �  � � *����
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if and only if ��� ��� � �). This observation will be crucial for the next reduction
results.

c) Reduction theorems for isoparametric submanifolds of Euclidean space

The Coxeter group allows one to prove reduction results on isoparametric sub-
manifolds. We begin with Euclidean ambient space.
Roughly speaking, what happens is that, given an isoparametric submanifold of

Euclidean space, one can always split off its Euclidean factor. What is left is a
product of compact isoparametric submanifolds with an irreducible Coxeter group.
As stated, we start with the following strong result of the fact that the Coxeter

group has a Þxed point.
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More in general, if� is not compact, one can split off a Euclidean factor, writing
� locally as an extrinsic product of an isoparametric submanifold of the sphere with
a Euclidean factor. Namely [187]
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��"�� $��	�1 �����	���� �� �"� �����	�����-����� (�����!��	��� �� �"� ������ E�
(��!������� 6��(� -��" ������ ��	 �����	���� ��� ����!������� ��	 ��'������

- ��� �"�!� �!�������1 <����E� 0���� ��!���� �"�� � �!�����

A local statement of the theorem is straightforward.

There is one more splitting result for isoparametric submanifolds. Suppose that
�� and �� are isoparametric submanifolds of ������ and ������ respectively.
Let 2� indicate the Coxeter group of�� (� � �� �). Then�� ��� is an isopara-
metric submanifoldwith Coxeter group2��2� (of������������). The converse
is also true.
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d) The Slice Theorem

Essentially by the same proof as Lemma 4.4.2, we have the following
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Recall that, for a Þxed isoparametric submanifold� , the parallel (possibly focal)
manifolds�� determine a singular foliation of the ambient space ��. Isoparametric
leaves correspond to � in the interior of a Weyl chamber of2�.



Isoparametric submanifolds and their focal manifolds 151

From the previous lemma we can deduce the important slice theorem of Hsiang,
Palais and Terng [103].
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We now compare the normal spaces of parallel focal manifolds, getting a general-
ization for isoparametric submanifolds of Lemma 4.4.11.
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e) Applications to isoparametric hypersurfaces of spheres

Let us consider the case of isoparametric hypersurfaces in spheres more closely.
We can actually use Coxeter groups to write down an explicit formula for the prin-
cipal curvatures. We will, moreover, have a formula for the principal curvatures of
the focal manifolds, showing they are minimal. This will also yield another proof of
Cartan�s fundamental formula 3.8.5.

Let� 6� &� be an isoparametric hypersurface of the unit sphere &�, � �� and
 be a unit normal vector to� in &� oriented so that ��� � is a positive orthonormal
frame of 	�� . Let #�� ���� #� be the distinct principal curvatures (in direction of ).
Set 5 � �� (then 5 is pointing toward the centre of the sphere). Then a generic unit
normal vector to� in���� can be written as

7 � (�����   ������ 5

and the shape operator � has eigenvalues #� (�����  ������. Thus, it is easy to see
that the curvature normals are

�� � #�  5 �
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If we set #� �� (���8��, with � ( 8� ( ��� ( 8� ( �, 8� is the angle between  and
�� and, by rank 2 Coxeter groups properties (see page 148), 8�� 8��� �

�
�
. We have

proved the following
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Next, we consider parallel and focal manifolds in &�. So, given� � &� and a
Þxed unit normal Þeld  to� in &�, we move along the geodesic from any � �� in
direction ���. We pass to the parallel (perhaps focal) manifolds�
 �� �(����� � 
������ ��� � � ��� and have maps 1
 � � ��
, 1
��� � (����� � ������ ���.
The differential of 1
 at � is given by (����� �	 � ��������. If � is taken in the

eigendistribution$ � relative to a principal curvature #� � (���8��,

�1
���� � �(����� � ������ (���8���� �
����8� � ��

����8��
� �

Thus, 1
��� is focal if � � 8�, � � �� ���� % and�� �� �!� focalizes $�.
As in the case of submanifolds of Euclidean space (cf. Lemma 4.4.7), we can

write a �tube formula� for the shape operator of �
: if ��� is normal to � at �,
then ��1���� �� � ������ �  (����� ��� is normal to �
 at 1��� and the shape
operator �� of�
 is given by

���� � ������� �	  (���������(����� �	� ���������
�� �

where we have to restrict to horizontal spaces, in case of focal manifolds (Exercise
5.6.3).
An easy computation shows that the principal curvatures in direction � of�
 are

given by
(���8� � �� 
 � �� ���� % �

(cf. also [44], page 246).
In case of a focal manifold�� the principal curvatures in direction � at �� � 1����

are given by

(���8� � 8�� �
�  #�#�

#� � #�

 � �� ���� %� 
 �� � �

and an easy generalization of Lemma 5.2.15 shows that normal vectors �����, � �
1��
� ����, generate the normal space at �� of the focal manifold��. In particular, we
see that the principal curvatures of the focal manifold are independent of the (unit)
normal vector.
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We now apply Theorem 5.2.16 to prove the minimality of focal manifolds.

 �������! ��
�	�
��� 	
��� ����	
�� �� 
	 �� ��
���������� ��������	��� �� ��� ������ �� ����
�����

	�

� 0�� � -� � ���� ������ �� ��� +"��

������� �
�
"���

)" (���8" � 8�� �

����
���

)� (��



�

%

�
�

� �

����
���

)� (��


� �


�

%

�
� �

����
���

)� (��


�% � 
��

%

�
�

� �

����
���

)��� (��


��

%

�
�

:# % �� �'��1 �"�� )��� � )� 1 �� �"� ���� ���� �-�'� �&���� ��������1 �"���#���
������� � �� +"� ���� "��	� ���� �# % �� �		1 ���(� ��� �����!��(����� ��� �&���

�� �"�� (����

Observe that, since (���8� � 8�� �
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minimality of the focal manifolds is equivalent to Cartan�s fundamental formula.
Therefore, Corollary 5.2.17 yields a proof of Cartan�s fundamental formula.

������ ������ +"��� �� �(����� � !���# �# ��������� �# �"� #�(��
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f) Reduction theorem for isoparametric submanifolds of hyperbolic space

To study isoparametric submanifolds of hyperbolic space, we regard!� as a sub-
space of Lorentz space ����. We also need to consider, more generally, Riemannian
submanifolds of ����, i.e., submanifolds of Lorentz space whose tangent space is
Riemannian. We just mention that for such submanifolds one can deÞne the same
basic objects, such as shape operators and normal connection, and the fundamental
equations still hold.
We now want to prove a reduction theorem from Bingle Wu [244] for complete

isoparametric submanifolds of real hyperbolic space. This states that any isopara-
metric submanifold of !�, which is full when regarded in Lorentz space, splits as
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an extrinsic product of a smaller dimensional hyperbolic space and an isoparametric
submanifold of a sphere. Recall that when the submanifold is not full (in Lorentz
space) then it is also an isoparametric submanifold of a proper totally umbilical sub-
manifold of hyperbolic space (which is also a space of constant curvature).
The proof follows A. Will, whose ideas [241] simplify the original arguments

of [244].

If  is a parallel normal vector Þeld, then, as in the Euclidean case, we can consider
the parallel manifold�� � ��� � �  ����. This is always a Riemannian manifold
(perhaps of lower dimension) since its tangent space at �� is given by the Riemannian
����� � ��	� ��������� �.
Let  be a parallel normal vector Þeld that distinguishes all eigenvalues of the

shape operator (cf. the beginning of this section). By adding a suitable multiple of
the position vector Þeld (which is umbilical) we can assume that  is timelike and
that �� ��� �� � for any � � �� � � � � %.
Fix such a  and let

� �
�

�� ���
�

Then ��� ��� � � and �� ��� �� � for any � �� �. Consider the focal manifold
��� . As in the Euclidean case, the normal space 	����� equals 	�� �$����, which
contains the leaf &����. More precisely, &���� is contained in the hyperbolic space of
radius �� � ��� � � ��� � ��� ��.
The following lemma is the key to proving that the theories of isoparametric sub-

manifolds of hyperbolic space and Euclidean space are related [241].
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We now go on to the reduction theorem, for which we need
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As a consequence, we have the following theorem from Bingle Wu [244]:
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�����>1 �"� (��'����� ������� �!�� � 4�(��	��� ��-�!�(� �# �"� ������ �!�(��
6� � (����� -� #��� - 0���� �����1 � (�����	�(����� +"���#��� % � � ��	
� �� � ������ ��-���(�� ��-����#��	� 6��(� � �� #��� ��	 (��!����1 � ����
-� �"� $"��� " !��-���( �!�(��

g) Isoparametric submanifolds and polynomial isoparametric maps

Recall that an isoparametric submanifold� of�� is a regular level of an isopara-
metric map � . Moreover, this map can be taken to be a polynomial map � � �� �
�
�, where 
 � (�	���� �; see [187, 216]. Crucial in this result is the role played

by the Coxeter group2 . Any2 -invariant homogeneous polynomial of�� extends
uniquely to an isoparametric polynomial map deÞned in ��. This is attained by
deÞning the extension to be constant on the leaves of the singular foliation of ��

determined by the isoparametric submanifolds parallel to � . By the well known
Chevalley Restriction Theorem (see [216]), the ring of2 -invariant polynomials on
�
� has exactly 
 generators >�� � � � � >�. Then � � � �>�� � � � � �>�� is the desired

isoparametric polynomial map, �>� denoting the extension of >� to��.

The following results of C-L Terng [216,217] depend strongly on the existence of
these polynomial isoparametric maps.

(1) Isoparametric submanifolds have globally ßat normal bundle: if in the isopara-
metric submanifold deÞnition the normal bundle is required only to be locally
ßat, it follows that it is globally ßat.

(2) Extendability of isoparametric submanifolds: a local isoparametric submanifold
is an open part of a complete and embedded isoparametric submanifold.

��� ������	�� �	���	���
 �� 
���������
 ���� ��
���
�	������ ��	����	�


Recall that a submanifold� of Euclidean space is a submanifold with constant
principal curvatures if the eigenvalues of the shape operator ���
� are constant for
any parallel normal vector Þeld ��� along any piecewise differentiable curve [96],
cf. also Section 4.1, page 98.

a) Geometric characterization of submanifolds with constant principal
curvatures

Let � be a submanifold of �� and consider, for � � 	�� , the holonomy tube
�� ��� . We will need the following application of the Normal Holonomy Theorem
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a) If �� ��� is isoparametric then� has constant principal curvatures.
0�� 3��� -� � ��%!������� ������ '�(��� /��	 �� � ����� � (��'� 9����
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$"��� ��� �� �"� ��%!������� �����!��� �# � ����� 9 �� G9 �(#� 0���� =�=�8��

6��(� �� ��� "�� A�� ������ -��	��1 �"� G�E� ��� ������������� 	��������,�-��
��	 ���
� "�� (������� �����'����� - ������

b) If� has constant principal curvatures then �� ��� is isoparametric.

0�� 3 -� � !������� ������ '�(��� /��	 �� �� ��� � +"� ������(���� �# G�� �� �"�
'����(�� ��-�!�(�� �� �&��� �� �"� �"�!� �!������ �# �"� /-��� �-�(���� �"���
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��� ������ ���	���( �� �� ��� 1 (#� 0���� =�=���� 6��(� �"� /-��� ��� ��-��� �#
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C��� �� �� K��!������� =�=���1 !��� ?�1 �"� �����'����� �# G�� 	� ��� ("����
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 "�� (������� �����'������ 0��� �"�
L��-� #������M =�=�*1 ��� �-�����

G���
 � ����	����
�� (5.6)

9�$1 - 0���� ��>��1 �� ��	 �� (������1 �� �&������ ���8�  ���	� �"�

�������

We now discuss the following complete characterization of submanifolds with
constant principal curvatures [96].
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������ ���� +"� �-�'� �"����� �� ���� ���� #�� ��-����#��	� �# �
�!�(� #��� �������� !���#��� :� �"� (��� �# " !��-���( �!�(�1 	�� �� +"�����
������1 ��� $��� "�'� �"� #����$��� ������� Let � be a complete submanifold of
the hyperbolic space !� � ���� which is full and irreducible in ����. If� has
constant principal curvatures, then� � !�.

b) A Lemma on normal holonomy of submanifolds with constant principal
curvatures
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The following Lemma expresses the fact that, if 3 and � belong to different orbits
of the normal holonomy group at �, then �� and �� have different eigenvalues.
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c) The Homogeneous Slice Theorem
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As a result of Lemma 5.3.5, we get the following important result taken from [96]:
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� �� � #�(�� ����#��	1 � /-�� , �# � �� � ����� �# ������ "������ ��-��� �#
�"� #�(�� ����#��	� +"� �����'����� �# �"� �"�!� �!������ �# � �� �"� $"���
/-�� , ��� (�������� F��(�1 - �"� F������ 0����1 �"� ������E� (����(��	
(��!����� �"���	 (������ �# ��� ��� ��-��� +"� ������ �"�� #����$� #��� �"�
9����� F������ +"������

An alternative proof can be found in [96].
In general, if  is a parallel normal isoparametric section and one builds the fo-

cal manifold�� and then goes back to make up the holonomy tube ���������, the
holonomy tube is contained in� (Proposition 4.4.14). With isoparametric subman-
ifolds we get equality. Namely, as a corollary of the Holonomy Lemma:
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a) Homogeneous isoparametric submanifolds and orbits of �-representations

We saw in Section 3.2 that the principal orbits of an �-representations are isopara-
metric.
Conversely, if an orbit of an orthogonal representation of a compact Lie group

is isoparametric, then the representation is polar and the orbit is principal. More
precisely (cf. [186], Theorem 6.5),
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 Æ %����� !������� �"� (��'����� ������� �� �� 6��(�
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We can reformulate the above result in the following way:
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As a consequence, we get an important property of polar actions.

 �������! ���#

��� 4� B�� � �� � �
��� ����
�� ���� � ��(���� �������
��� 
���� �� �����
������

	�

� 0�� 4 � � -� � ��7���� 	���������� ��-�� ��	 ���� � !���(�!��
��-�� 4 � � +"��1 4 � � -������ �� �"� ���!��������( #�������� 	��������	 - 
4 �  ��	 �� !������� �� 4 � � ��� 	���������� �������1 4 � � (����� -� #�(��1
�� �� �� ���!��������( ��	 �"�� !���(�!���

In other words, the corollary tells us that polar actions have no exceptional orbit
(cf. Section 3.1).

Moreover, using Dadok�s Theorem we get:
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Under high rank assumptions, any full isoparametric submanifold is homogene-
ous, and thus, by the previous results, an orbit of an �-representation. More precisely,
one has the following theorem, which was Þrst proved by Thorbergsson [219] (an-
other proof [174] of which will be given in Section 7.3)
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In Section 6.1, we will introduce the idea of rank for homogeneous submanifolds.
We will see (Theorem 6.1.7) that this is related to orbits of �-representations, namely,
a full irreducible homogeneous submanifold of the sphere of rank greater than one is
an orbit of an �-representation [175].

b) Transvections

The transvection group of a Riemannian manifold� is the group+��� � of isome-
tries of � that preserve the holonomy subbundle at any point. In other words,
+��� � is the group of all isometries 1 such that, for any � � � , there exists
a piecewise differentiable curve 9 joining � and 1��� for which the differential
1�� � ��� � ������ coincides with the parallel displacement along 9.
Now, a symmetric space can be characterized by the fact that the transvection

group acts transitively on the holonomy bundle. This is to say that, for any �� � ��

and any piecewise differentiable curve 9 from � to �, there exists an isometry % such
that %��� � � and %�� � ��� � ��� coincides with the parallel transport along 9.
We will see that there is a similar property for orbits of �-representations, this time

involving the transvections of the normal connection.
Let� be a submanifold of�� and let % � ����� be such that %�� � � � .
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The set of all transvections of� (with respect to��) is a subgroup of ����� and
will be denoted by +�������.
In the deÞnition of a transvection, one can replace the word �any� with �some�. In

fact, if � is any other point, let 9 be a curve joining � with �. Then %������ coincides
with the parallel transport along the curve 9 � � � �% Æ �9�, obtained by glueing 9 with
� and then with the opposite curve % Æ �9 of % Æ 9. In fact, since % is an isometry, it
maps parallel normal Þelds along curves into parallel normal Þelds along curves. So

+��Æ) Æ %�� � %�� Æ +
�
) � +�	 Æ +�) � (5.7)

wherefore
%�� � +��Æ�) Æ +

�
	 Æ +�) �

with %� always restricted to the normal space.
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%��C�� � � � � C�� � �%��C�� � � � � %��C��1 $"��� C�� � � � � C� �� �� ���"������� -�%
��� �# 	�� � 5�� "�� �"�� %� ��!� "������ ��--��	��� ���� "������ ��-%
-��	��� �#  �	� �1 ���(� %� !�����'�� -��" �"� "���,����� ��	 �"� '����(��
	�����-������ +"�� % �� � �����'�(���� �# ��	 ��� �# �� ���'�� ��'������ �� 
"������ ��--��	�� �#  �	� �� . ���"� B�
�%��'�����(� �# �"� (����(����1
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(���(�	�� $��" �"� ��%!������� �����!��� ����� �"� (��'� ���� � �� +"��1 �"�
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����! �# �����'�(����� �# �"� ��-���

c) Homogeneous submanifolds with constant principal curvatures

The main class of examples of homogeneous submanifoldswith constant principal
curvatures is given by orbits of �-representations. Indeed, recall that, by Proposition
4.1.6, an orbit of an �-representation has constant principal curvatures.
Now, orbits of �-representations can be characterized by the fact that +�������

acts transitively on the normal holonomy bundle. More explicitly, for any �� � � �

and any curve 9 on� joining � and �, there exists an isometry % of Euclidean space,
leaving the submanifold� invariant, mapping � to � and such that

%������ � 	�� � 	��

coincides with the ��� parallel transport along 9 [178]. In this case, one also says
that� has extrinsic homogeneous normal holonomy bundle.
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a) :#� �� ���!��������(1 ���(� �� ���� "���������� ���	�� �"� ����! �������
�# ���������� �# �� ���'��� � ��'�������1 - +"����� ��=�� �� �� � !���(�!��
��-�� �# � !���� ��!������������ <����'��1 - ;�	��E� +"����� >�����1 � ��
�� ��-�� �# �� �%��!������������
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d) Normal holonomy of holonomy tubes

Let� be a submanifold of��, which we assume to be simply connected.
We use the results obtained on the geometry of submanifolds with constant prin-

cipal curvatures to describe the normal holonomy of the holonomy tube of� . The
reason for the connection with the geometry of submanifolds with constant principal
curvatures, or, more precisely, of orbits of �-representations, is that if � � �� ��� �
� is a holonomy tube, then its Þbres are orbits of the normal holonomy group,
which, by the Normal Holonomy Theorem, are orbits of �-representations.
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Recall that, if �� � 	��� �, the holonomy tube �� ��� at �� is the image by the
exponential map of the holonomy subbundle �D���� . The latter is the subset of
the normal bundle obtained by parallel translating � � with respect to��, along any
piecewise differentiable curve in� ; cf. Section 4.4. There is an obvious submersion
� � �� ��� �� , whose Þbres are orbits of the normal holonomy group of� .
Let � �� �  �� � �� ��� . Then

��
�
�� ���

�
� ��� � ��� �J � ����

Thus, 	�
�
�� ���

�
can be identiÞed with the normal space in 	�� to the normal

holonomy orbitJ � ��.

Let �� be the normal Þeld on the holonomy tube deÞned by

���� �  � ����  � �� ��� �

Then �� is parallel in the normal connection �� ��� (the proof is similar to the one of
Proposition 4.4.12, Exercise 4.6.15). Note that the mapping � � �� ��� �� can be
viewed as endpoint map  �  � ��, so that

������� � �����	 �����

where � is the shape operator of the holonomy tube.
The mapping � � �� ��� � � is a submersion, whose horizontal distribution

� � �������� can be identiÞed with the tangent space at � to� , while the vertical
space is given by 	 � �����	 ����. Observe that, since �� is parallel, ��� commutes
with all shape operators of �� ��� . So, all shape operators of �� ��� leave �����	 
����, and hence �, invariant.
Using once again the Ricci identity

E����� � � �� if� � �� � � �����	 �����

We are thus in the general situation where we have a submersion� �� on which
every piecewise �� curve � has a unique horizontal lifting ��* (for a Þxed basepoint
����) and a connection� (in our case, the normal connection on the holonomy tube)
on a vector bundle over � whose curvature E� satisÞes E����� � � � if � is
horizontal and � vertical. In this setting, we have the following

����� ���		
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Using this we get
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��� �
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The existence of a (nontrivial) isoparametric section on a submanifold � of a
space form has consequences on its geometry. Instances of this occurred in Section
4.4.
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Note that, for isoparametric submanifolds, the isoparametric rank coincides with
the usual notion of rank. For a principal orbit of an �-representation, the rank coin-
cides with that of the corresponding symmetric space.

a) Local higher isoparametric rank rigidity

We recall from Chapter 2 that a submanifold is locally reducible at � if there is
some neighbourhood� of � such that � is an extrinsic product. We call a submani-
fold locally irreducible if it is not locally reducible at any point.
The followinghigher rank rigidity result for submanifolds of the Euclidean sphere

&� holds [61].
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Thorbergsson�s Theorem (Theorem 5.4.5) implies that any irreducible isopara-
metric submanifold of the sphere with codimension at least two is an orbit of an
�-representation. Thus,
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The key point to prove Theorem 5.5.2 is a generalization, given in [179], of the
Homogeneous Slice Theorem of [96]. We state only the Euclidean version, but the
same geometric proof applies to the Lorentzian case with timelike parallel normal
sections. Furthermore, it can be adapted to proper Fredholm submanifolds of Hilbert
space.
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Before dwelling into the proof we brießy explain main ideas. If we had two max-
imal dimensional holonomy tubes around��, through points of� , they would be
parallel manifolds of the ambient space. If � �� � is the parallel normal Þeld which
relates the second tube to the Þrst by parallelism, an easy computation involving the
�tube formula� (relating shape operators of parallel manifolds), proves that the shape
operator of � is zero in the horizontal directions. Any two points in the holonomy
tube can be joined by horizontal curves, so � is constant in the ambient space. This
implies that the normal distribution to the orbits of the polar action (on the Þbres) of
the normal holonomy group of�� is parallel in the ambient space. Thus, � splits
and there can be only one maximal dimensional holonomy tube.

We need the following consequence of the �tube formula�:

����� �����

��� � �� � �������	
�� 
	 �������� ����� ��� ��� � � �� �������� �
����
&����� ������ ���� � �� �
� �� ���������� 
	 ��� ����� 
�����
� �� ���

����� � ����������� 	
� �
�� � � � � )���� �� �� ��� ����� 
�����
� 
	 ���
�������� ����	
�� �� �������	���� ��� )��� ����������� ���� ������ � �

	
� ��� � � ������	��������
��

	�

� ���� �"� ��-� #������ $� "�'� ������ � �������	� ������
�� ��	

������ � �������	�������
��� +"�� ����������� � ���������������	�������

�� �
����� ����� �&����� "��	� - �����!������ +"�� ����� � ����� � �������	 �
������1 �� ����� � ����������� +"�� ��	 � ����������� � � ��	 �"� �����

#����$�1 #�� -��" �"�!� �!������� (������1 - �"� 3�((� �&�������



170 Submanifolds and Holonomy

	�

� �� ������� ����� 0�� $ � �����	 � ��� -� �"� ����!�������
�����	�����-����� �� � ����(����	 $��" �����'���� � �# �"� �"�!� �!������ ���
?���� ��������� ���� �"��� �� 6�(���� =�= �(#� ���� �8�1�*=�� �� �� ��� 	�Æ(���
�� ��� �"�� ��'�� � ���# &��� �# $1 �� ��"�� (���� ���# &���� (�� -� �-�����	 - 
!������� �����!������ &��� �� �"� ������ �!�(� �� ��1 ����� �� �"��� (��'�
�� �� C������ � ��� $��" � ����� :� !����(����1 &��� �� ��(��� ��'������
��	�� �"� ������(��	 ������ "������ ����! �#�� �� ���� ���� �"� �������
�� ��(�� ������ "������ 1 6�(���� =��1 !��� #O (#� ���� �)�1 I!!��	�7��� �6��(�
��� 	��(������ $��� -� ��(��1 �� 	�����(���� $��� -� ��	� -��$��� ������(��	
��	 ��� ������(��	 ������ "������ ����!���

0�� � � � ��	 (����	�� �"� ���(��� ��-�� J�� � � �"����" � �# �"� ������
"������ ����! J�� �# �� �� �� � �  ���1 $"��� J�� �� �����	�	 �� �(���� ��
�"� �Æ�� ������ �!�(� ��  	�������

2� "�'� �$� !����-�������� ���"�� J�� � � �� �# ��(�� ��7���� 	�������� ��
&��� �� �� �� ����

2� ����� $��" �"� #����� (���� 2� (�� ������1 - (����	����� � ����"%
-���"��	 �# � �# ��(����� 1 �"�� ��� ��(�� ��-��� �# J�� �� &��� "�'� �"� ����
	��������� 6��(� �"� ���'�� &��� ��'� !�������� �� �"� ������ �!�(� �# ��1
$� ��!!��� �"� ��(�� ��-�� J�# � - �� &�-� �� �# ��7���� 	�������� #�� �� 
- �� � :� �"�� $� 1 $� "�'� � 	�����-����� �	 �� � ��'�� - �"� ������ �!�(�
�	�-� �� &�-� �� �"� ��-�� J�# � -� 5-���'� �"�� �	��-� �� �"� ������� �!�(� ��
�"� "������ ��-� �������#� � � �� -� 2� $��� �"�$ �"�� �"� 	�����-�����
�	 �����/�� �"� (��	����� �# <����E� 0���� ��*��1 "��(� �	 � � ���(� � �� ���
��(��� ��	�(�-�� ��	 �� �� 1 ��"��$���  $���	 -� ��-���(���� �	 �� �� ����!��%
����� 	�����-����� - �"� 9����� F������ +"����� ��	 K��!������� >���H�
. �"� !���# �# �"� ������ !��!�������1 �# �� � !����1 $"��� !���� 	������ �"�
���# �# �	 �"����" ��1 �"�� ��� � ��� �� -������ �� �"� ������ �!�(� �# J��� � ��
�� �� ������	�	 �� � ��-����#��	 �# �"� �Æ�� ������ �!�(� ���  	���������
:# �� �� (���� �� �� �"�� ��� �� /7�	 - �"� ������! ��-����! �# J��� �� ��1
���(� J��� � �� ��	 J��� � �� "�'� �"� ���� 	�������� ����� �"�� ��� � ���1 ���(�
!���� � &������ . K��!������� >���= ���� 3����� >���H� ��� �7���	� �� �
J������'������1 �

�%!������� ������ /��	 �� �"� ��-�� J��� ��� �� ���  	��������
:� �� ��$ ����	��	 �� �"�$ �"�� ��� �7���	� �� � !������� ������ /��	 � ��
�"� "������ ��-� ����������� +"�� ���������� (���(�	�� $��" �"� !�������
����#��	 ������������� �� �����������

5-���'� �"�� �"� 	�����-����� �	 (������� �# /7�	 !����� �	�-� �# �"� ������! 
��-����! �# J�# �� -� @����	����� "���,����� ��	 '����(�� (��'�� ��	 �!!� ���
������� ��������� �� �� 6�(���� ��= �!��� 	1 !��� �8��1 ��� �-����� �"�� �	
	�/��� - ������(���� ���%!�������1 A�� ��--��	�� �# �"� ������ -��	�� �# �� 
"������ ��-� �������#� ������	�	 �� � ��-����#��	 �# �"� ��-���� �!�(���
<����'�� � ��� -������ �� �"� ���# !��� #�� �� � � �������#��

0�� �1 ��1 �� ��	 �� -� �"�!� �!������� �# � 1 ����������1 ����������
��	 �� ���!�(��'�� � :# � �� �"� 	�����-����� ��'�� - �"� "���,����� �!�(��
�# �"� "������ ��-�� �������#� � � �- � � �1 �"�� ����� � ���� ���� �



Isoparametric submanifolds and their focal manifolds 171

�����1 �����	�	 �� ��-�!�(�� �# �"� ��-���� �!�(�� 9��� �"�� � � $�� +"�
	�����-����� � �� ��'������ ��	�� �"� �"�!� �!������ �# � ��	 ���� �# �"�
"������ ��-��� +"� ������(���� �#  �� �� "������ ��-� �������#� � � 1
- �� 1 �� ���� � !������� ������ '�(��� /��	 �� �"�� ��-����#��	 �# �"� ��-����
�!�(�� +"�� �� � (����&���(� �# �"� ��'�����(� �# � ��	�� �"�!� �!������� ��#
� ��	 �"� "������ ��-�� ��	 �"� #�(� �"�� ��
� � �	� <����'��1 ��

�����

��	 ��
�����

"�'� �"� ���� �����'����� �� �� �$"�(" ��� (��������1 $��" �"�

!����-�� �7(�!���� �# � �# �	 � �����	� ���� +"�� ��!���� ��
�����

� ��
�����

1 �# �
�� ���� �� :� #�(�1 -��" �"�!� �!������� ��� ������������� 	��������,�-�� - 
�"� L��-� #������M� 9���(� ���� � ��� � ��1 � � �� �1 �� ���� � ���� � ������
. 0���� �����1 $� "�'� ��

��
 � �1 ���(� � � $� � ������	 � ����� �

������	 � ��
���

� ��"� 	�����-������ ��� ������(��	 �� ������������ � �� �"��
(������� ����� "���,����� (��'�� �$��" ���!�(� �� ��� .�� �� �$� !����� ��
���������� (�� -� C����	 - � "���,����� (��'� �- �"� (������(���� �# �"�
"������ ��-��1 �� � �� (������� ����� ���������� �� �"� ��-���� �!�(��

+"���#���1 �"� ���'�� �# �"� ����!������� 	�����-����� �	 ��� !�������1 �� �"�
��-���� �!�(�1 ����� �� "������ ��-� �������#�� 6��(� �	� �� �"� 	�����%

-����� ������� �� �"� "������ ��-��1 H��	� �	�� � �1 $"��� H �� �"� ��(��	
#��	������� #��� �# � � ����"������1 �	 �� � !������� 	�����-����� �# � 1 #�� ��
�� ����!������� ��	 ��� ���'�� ��� !������� ��� �"� ��-���� �!�(�� ����� (��'��
�� � � ��� �� �	�� <����E� 0���� ��!���� �	 � �1 ���(� � �� ��� ��(��� 
��	�(�-���

2� ���� ����� ���� ,� $"�� �"� ��-�� �"����" � �# �"� ������ "������ 
����! J�� �# �� �� �� � �  ��� �� &��� �� ��� �# ��(�� ��7���� 	���������
+"�� ��-�� �� ��$� � (�������	 �� &��� ���� � ���� �"� /��� !��� �# �"� !���#��
<����'��1 �"��� ��� �������� �� �# &��� ��-����� (���� �� � ��	 ��(" �"��
�"� ������ "������ ��-�� �� &��� �� �# ��7���� 	��������� ����"������1
J��� ��

� �� � (��!���� 3��������� ��-����#��	 �# �"� ��-���� �!�(� �"�� ��(��� 
(���(�	�� $��" &����1 - $"�� $� "�'� !��'�	�

I ����	��	 �������� ��$ �"�$� �"�� ���� � �"� ��-�� J��� � �� ��(��� (���%

(�	�� $��" &��� ��	 �"� �"����� #����$��

	�

� �� ������� ����� 6��(� � �� (�������	 �� � �!"��� &���1
$��"��� ���� �# ��������� 1 $� (�� ������ �"�� ��� �����'����� #� �# �"� �"�!�
�!������ �� ��� 	�B����� #��� ,��� ���"��$��� $� (�� �		 � �����-�� (�������
�����!�� �# �"� !������� '�(��� /��	 �� ��

0�� � �� #��
� � 2� (�� (����	�� �"� #�(�� ����#��	 ��� � ��  ���� � � �

�� ��	1 #�� �� � � � 1 �"� "������ ��-�1 ���������� . +"����� ����=1
��������� (���(�	�� ��(��� $��" � � :� �� �����" �� ��(��� 3����� =�=��81
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A different proof of Theorem 5.5.2, via the Holonomy Lemma, can be found in
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[61].

b) Global higher isoparametric rank rigidity

The global version of Theorem 5.5.2 is not trivial, since a simply connected ir-
reducible Riemannian manifold can be locally reducible at any point. The same
pathology probably exists in the context of submanifolds as well. The key fact for
this global version is the following result:
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For the global version of Theorem 5.5.2 we need the global version of 5.5.4. First
of all, we make some observations.
Let � �� � �

� be a simply connected complete submanifold and let  be a non-
umbilical isoparametric parallel normal section of� . Assume � is an eigenvalue of
the shape operator��. Endow� with the �bundle-like�metric % deÞned in Exercise
5.6.6. Consider the quotient space�,�, where � � 5 if � and 5 are both in the same
leaf of ��� ��	����. Then�,� is endowed with a natural differentiable Hausdorff
manifold structure such that the projection � � � � �,� is a ;� submersion.
Moreover, if �� � �,� � �

� is deÞned by �������� � ����  ���, then �� is
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an immersion and�,� with the induced metric is a complete Riemannian manifold
(Exercise 5.6.7). With this procedure, starting from a complete submanifold� , we
construct a parallel focal manifold �� ��,� � �

#, which is also complete with the
induced metric.
As in Theorem 5.5.4, the (global) restricted normal holonomygroupJ�

���� of�,�

acts on the Þbre ���������. Let � � ��� ��� �,� be piecewise differentiable with
���� � ���� � ���� and let �� be its horizontal lift to� with ����� � �. As in the
local case, ������ ���� can be regarded as a parallel normal Þeld to �� ��,� � �

�.
As in the proof of Theorem 5.5.4, the normal space to maximal dimensional orbits of
J����� form a parallel distribution on �

���������. Applying Lemma 5.5.6, we obtain
that this parallel distribution is never singular. Using the same ideas of Theorem
5.5.4 in the category of immersions, the global version of Moore�s Lemma yields:
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As in the local case, there is a corollary, the global version of Theorem 5.5.2

������� ����5 [70]
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As an immediate corollary, we have that if� is not an isoparametric hypersurface,
it is an orbit of an �-representation.

c) Higher isoparametric rank rigidity for submanifolds of Euclidean and hyper-
bolic spaces.

We now examine the case of submanifolds of Euclidean and hyperbolic spaces.

As a consequence of a Lorentzian version of Theorem 5.5.4, C. Olmos and A.
Will proved that irreducible and full submanifolds of hyperbolic space must have
isoparametric rank zero [179].
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Using the same methods, regarding a submanifold � of Euclidean space as a
submanifold of a horosphere K � !� � ����, C. Olmos and A. Will proved the
following [179]:
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As a consequence, if  is not a multiple of the radial vector, by Theorem 5.5.2,�
has constant principal curvatures.
In other words, Theorem 5.5.2 is true for submanifolds of Euclidean space. If

���-������	�� �  � then � is contained in a sphere and if ���-������	�� �  �
then� has constant principal curvatures.
Moreover, the global version (Theorem 5.5.8) of Theorem 5.5.2 is true in the

more general context of submanifolds of Euclidean space [70]. Namely, let � �
� � �

� be a full and irreducible isometric immersion, where � is a simply
connected complete Riemannian manifold. Then ��� � is contained in a sphere
if ���-����� �� �  � and ��� � is a submanifold with constant principal curvatures
if ���-����� �� �  �.

By a result of A.J. Di Scala (Theorem 3.4.1; [68]) any minimal homogeneous sub-
manifold of Euclidean space is totally geodesic. The same is true for the hyperbolic
space by the results explained in Section 3.5 ( [69]). So, we have the following
(cf. [176]).
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����%$1� ����	 Prove that, if all leaves of a parallel foliation have parallel mean
curvature, then each leaf has constant principal curvatures.

����%$1� ����
 Let � be an integrable distribution on a open subset of�� and
assume that the distribution�� is integrable with totally geodesic leaves (or, equiv-
alently, it is autoparallel). Then any two (nearby) leaves of � are parallel. Equiva-
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lently, if� denotes one leaf, the other is the parallel manifold� � with respect to
some parallel vector Þeld . In particular, any leaf has ßat normal bundle.

����%$1� ����# Let � � &� be an isoparametric submanifold and Þx a unit
parallel normal Þeld  to � in &� (more generally, let  be a parallel normal sec-
tion). Moving along the geodesic from any � � � in direction ���, consider the
parallel (possibly focal) manifolds�
 �� �1
��� �� (������  ��������� � � �� .
Prove the following �tube formula�: if ��� is normal to� at �, then ��1���� ��
� �������  (�������� is normal to�
 at 1��� and the shape operator �� of �
 is
given by

���� � ��������	  (���������(������	� ���������
�� �

where we have to restrict to horizontal spaces, in case of a focal manifold (Exercise
5.6.3).

����%$1� ���� Let � be a submanifold of a space form �� ��� contained in
a totally umbilical submanifold� of �� ���. Prove that� is isoparametric in � if
and only if it is isoparametric in �� ���.

����%$1� ����� Prove that for a compact immersed full isoparametric submani-
fold all curvature normals are nonzero.

����%$1� ����� (cf. [70]) Let � � �� � �
� be an isometric immersion, where

��� � � �� is a complete Riemannian manifold. Let  be an isoparametric parallel
normal Þeld to� and # �� � an eigenvalue of the shape operator ��. Consider the
autoparallel distribution ����#�	 � � �� on � and deÞne a following Riemannian
metric % on� by requiring:

(i) ��� ��	 � �-���� and ���� ��	 � �-�����
� are also perpendicular with respect

to %.

(ii) %���� � � ���� � if��� lie in ��� ��	��-����.

(iii) %���� � � ���	��-������ ��	��-����� �, if��� lie in ���� ��	��-����
�.

Prove that:

(a) ��� %� is a complete Riemannian manifold.

(b) Any leaf of ��� ��	��-���� is an embedded closed submanifold of�

(c) Any two leaves &�, &� of ��� �#�	 ���� are equidistant with respect to % (i.e.
the distance /���� &�� does not depend on � � &�).
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Hints: (b): consider the parallel map �-��� � � � �
�, �-������ � ���� 

#�����. Then / �-��� � �	 � #���� has constant rank and ��-����
����� is an

embedded closed submanifold of� , whose connected component is an integral ma-
nifold of ��� �#�	� ���.
(c): let &���, &�5� be any two different leaves of ��� �#�	���� and let 9 � ��� -��
� be a unit speed geodesic (with respect to %) with 9��� �� � � &���, 9�-� � &�5�
and such that - � ��9� � /��&���� &�5��. Let �� � &��� and � � ��� �� � &���
with ���� � �, ���� � �� (observe that 9 must be a horizontal geodesic). Prove that:

(1) There exist I ' � such that, for all � � ��� ��, �-����:.������ is an embedded
submanifold of�/ and so �-��� � ��� %�� �-����:.������ is a Riemannian
submersion, where �-����:.������ carries the Riemannian metric induced by
�
/.

(2) For � small, let 9* denote the horizontal lift of the geodesic �-��� Æ 9����.� of
�-����:.������� with the initial condition 9 *��� � ����. Use this idea to
construct gluing horizontal lifts, geodesics 9 * � ��� -� � � starting at ����
and such that 9*��� � &�9���� for all � � ��� ��. Then

/���� &�5�� � /���� 9�-�� � /����� 9*�-�� 
 /����� &�5��  /��&���� &�5�� �
� /���� 9�-���

Therefore, /���� &�5�� � /����� &�5��.

The metric % on� is an example of bundle-like metric in the sense of Reinhart [193]
(cf. Exercise 5.6.8).

����%$1� ����� (cf. [70]) Let � � �� � �
� be an isometric immersion, where

��� � � �� is a complete Riemannian manifold. Let  be an isoparametric parallel
normal Þeld to� and # �� � an eigenvalue of the shape operator��. Let�,� be the
quotient space, where � � 5 if � and 5 are both in the same leaf of ��� ��	��-����.
Prove that:

(i)�,� is endowed with a natural differentiable Hausdorff manifold structure such
that the projection � �� ��,� is a ;� submersion.

(ii) Let �� � �,� � �
� be deÞned by �������� � ����  ���. Then �� is an

immersion. Moreover,�,� with the inducedmetric is a complete Riemannian
manifold.

����%$1� ����5 (cf. [193]) Using the ideas of Exercises 5.6.6 and 5.6.7, prove the
following: let � � � � � be a map of constant rank, from a complete Riemannian
manifold� into a Riemannian manifold � . Assume that locally � is a Riemannian
submersion from � into its image. Then there exists a Riemannian submersion
J �� � G� and an immersion � � G� � � such that � � � Æ J.
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In the previous chapter, we have seen that orbits of �-representations agree, up to
codimension two, with isoparametric submanifolds and their focal manifolds (or,
equivalently, submanifolds with constant principal curvatures). It is therefore natu-
ral to look for geometric invariants distinguishing orbits of �-representations from
different orbits (or submanifolds with constant principal curvatures from other sub-
manifolds). In Chapters 4 and 5, we observed that admitting a (nontrivial) parallel
isoparametric normal Þeld has strong consequences on the geometry of a submani-
fold.
In this chapter, we weaken this condition, requiring only that the submanifold

admits �enough� parallel normal Þelds, in other words, that the normal holonomy
group has a nontrivial point-wise Þxed subspace whose dimension is called rank of
the immersion. In the case of a homogeneous submanifold� of Euclidean space,
it was proved in [175] that, if the rank is bigger than or equal to two, then� is an
orbit of an �-representation. In the original proof, a crucial fact was that the curva-
ture normals (deÞned as in the isoparametric case, considering only directions in the
ßat part of the normal bundle, as we will explain) of a homogeneous submanifold
have constant length. In [70] it is actually shown that this property, together with the
same higher rank assumption, yields a generalization (stated here as Theorem 6.1.7)
of the above higher rank rigidity result. Unlike theorems on higher isoparametric
rank rigidity (Theorem 5.5.2 and 5.5.8), Theorem 6.1.7 is global and fails without
the completeness assumption. As a consequence, one can derive a global charac-
terization of an isoparametric submanifold: a complete immersed and irreducible
submanifold � � � � �

�, ���� � � with ßat normal bundle is isoparametric if
and only if the distances to focal hyperplanes are constant on� .
In the last part of this chapter, we will apply these higher rank rigidity results

to investigate normal holonomy (and, more generally, ��-parallel transport) of a
homogeneous submanifold. In a more general setting of homogeneous (pseudo)-
Riemannian vector bundles, the holonomy algebra can be described in terms of pro-
jection of Killing vector Þelds on the homogeneous bundle (see [60], for more de-
tails). In the case of Riemannian manifolds, this yieldsKostant�smethod for comput-
ing the Lie algebra of the holonomy group of a homogeneous Riemannian manifold.
Here, we explain how to compute normal holonomy of homogeneous submanifolds
by projecting the Killing vector Þelds determined by the action on the normal spaces
(Theorem 6.2.7).

177
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��� �����	
���� �
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In this section, we will be concerned with immersed submanifolds admitting par-
allel normal sections. In other words, we assume that the normal holonomy group
has a nontrivial point-wise Þxed subspace, whose dimension is called rank of the
immersion. The aim is to prove a global higher rank rigidity theorem, which is false
in the local setup. In particular, this leads to a deÞnition of isoparametricity that
coincides with the one used for complete submanifolds only. This condition can be
formulated in terms of the induced metric by the usual Gauss map, or equivalently,
in terms of the so-called third fundamental form.

a) Rank of submanifolds

Let � � � � ������ be an immersed submanifold of a space form (with the
induced metric) and consider the following subspaces of the normal space at � � �

���� �� �	 �� � ��� � 
�
� � � 	 ��

���� �� �	 ����� ����

where 
�� is the restricted normal holonomy group at �. Note that ��� � � is the
maximal ßat��-parallel subbundle of �� , where ���� ���� 	 ���� ��.

���������� �	
	
 ��� �������	� 	
�� � 	� �� ������ ��� �� ��
������ rank of the submanifold ��� � �� ���	�� �� ���� �� �� ���� ���� ��
�	 �	������ �	�����	�� �� ���� ���� ����� � ������ 	� ���� �� ��

If � is simply connected, then ��� �� must be globally ßat and so ���� �� �
is the maximal number of linearly independent parallel normal vector Þelds to � .
Since we are working in the category of immersions, we always assume that �
is simply connected. Otherwise, we consider the immersed submanifold � Æ � �
�� � ���, where � � �� � � is the universal cover of� . In this case, we have
���� �������� 	 ��� ������.
If � has ßat normal bundle then ����� � is just the codimension ������� �.

Thus, if � is a full isoparametric submanifold of Euclidean space, the above no-
tion of rank coincides with the usual notion of rank for isoparametric submanifolds.
If, in addition, � is homogeneous then, by [63], it is a principal orbit of an �-
representation. Then ����� � coincides with the rank of the corresponding sym-
metric space (cf. Section 5.4).
The general philosophy is always that, for submanifolds of Euclidean space, nor-

mal holonomy plays a similar role to Riemannian holonomy, and orbits of �-represen-
tations are the extrinsic analogue of symmetric spaces.
By replacing the normal holonomy group with the local normal holonomy group,

one obtains the notion of the local rank ��� ���
� �� �	 at a given point 	 � � . In
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other words, ������
� �� �	 is the maximal number of linearly independent normal

Þelds deÞned in a neighbourhood of 	. The local rank is deÞned by

������
� �� � 	 ����������

� �� �	 � 	 � �� 


If � is simply connected, then ������
� �� � 	 ���� �� � if and only if any

locally deÞned parallel normal Þeld extends globally.
The above equality holds in the following two important cases: when � is an

analytic submanifold or� has ßat normal bundle.

������ �	

�� � �� �� ����������� ���������� �� ��� ����� �� ��� �
 �� 	 � 
 
 
  ��
�� ���� ����� ������������

���
�� 	 � �
�� � 	 � 
 
 
  � �!"����� #$%$��$

As we will see, this notion of rank turns out to be particularly useful when� 	
� � � is a homogeneous submanifold of Euclidean space contained in a sphere and
hence, ���� � � (in particular this is the case if� is a compact homogeneous
submanifold of��).
On the other hand, in the case of submanifolds of the real hyperbolic space, A.

Will [240] found a family of homogeneous, irreducible and full submanifolds with
ßat normal bundle and codimension at least 2 (non isoparametric by the classiÞca-
tion of Section 5.2, see also [244]). In this case, the rank does not interfere with the
geometry of the homogeneous submanifold. We will therefore concentrate on (hom-
ogeneous) submanifolds of Euclidean space (and the sphere) where the existence of
a nontrivial parallel normal Þeld has strong inßuence on the geometry. This is a par-
ticular case of so-called submanifolds with curvature normals of constant length that
we will discuss right now.

b) Submanifolds with curvature normals of constant length

Let � � � � �
� be an immersed submanifold and assume that ���� �� � � �.

Let � be a section of ��� ��.
Since ��� �� is ��-parallel and ßat, then ����� �� 	  for any tangent vectors
� and � and so, by the Ricci equation, �� commutes with all shape operators and
in particular with those relative to sections of ��� � �. In this way, for any � � � ,
the set ��� � � � ���� ��� is a commuting family of symmetric endomorphisms.
Simultaneous diagonalization induces a decomposition of the tangent space at �

��� 	 ����� 	 � � � 	��������

into distinct common eigenspaces. Associated to this decomposition are well deÞned
normal vectors ����� � � �  ��������, called curvature normals, such that

�� ����� 	 
�
��� ��������
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for any � � ���� ��, � 	 � � � �  ����. The dimension of �
��� is called multi-
plicity of the curvature normal �
���. This corresponds to the multiplicity of the
eigenvalue 
�
��� �� of the shape operator ��, for generic � � ���� �� (i.e., �
is not in the union of the hyperplanes given by 
� ���� � ����� � � 	  , � � �
�� � � �  �����). Sometimes it is convenient to regard curvature normals at � as an �-
tuple ������ � � �  ������, where each curvature normal is counted with multiplicity
(with� 	 ����� �).
The curvature normals have the following continuity property whose proof is

standard:

����������� �	
	� ����������� �������� �� ��� ����� �����!"
�� ��������� � �������� �� � �	�
������ 	 � ��� �� ������� � � � � ������� ��
�� ���
���� �	����� � �� ���	��� �� ��� 	���� ��� �	���� ��� ���������
���� ���� ���� ����� � ����������� ���� �������� �� ������� � � � �  ������ ��
�	�
����� 	 �� ���
���� �	����� ������� � � � � ������ � � �	���� �� �	 ����
�������� ������
����

One can also show that there is an open and dense subset &  � where the num-
ber of eigendistributions is constant (or equivalently, the number of distinct curvature
normals is locally constant). In &, the eigenspaces locally deÞne �� distributions
and their associated curvature normals deÞne �� locally deÞned normal sections. It
is standard to show, using the Codazzi equation, that any eigendistribution in & is
integrable (in general, the leaves are not totally umbilical unless ��� �� 	 �� ), cf.
Lemma 4.4.2). If �����
� � �, then ��

��
 	  if � lies in �
, as can be shown
using the Codazzi equation of the shape operator. ��-parallelism of �
 in the direc-
tions orthogonal to � 
 is equivalent to autoparallelism of � 
. Once more, the main
ingredient is the Codazzi equation. Namely:

#�$$% �	
	&
�� � � � � �

� �� �� �������� ��������	�� ��� ���� �� � � �� �� � ��
�� 	��� ����� 	� � ����� �� �	��	� ����������� �� �� �� ��������	��
�� � � �  �� ��� ���	����� ���
���� �	����  ���� �� � � �  ��� ����� �	� ���
� 	 � � � �  ��
��� �
 �� ��	�������� � 	 � � �� ��� 	��� �� ��

��
 	  �	� ��� � � ��

 �	�

��� !� �����
� � � ��� �
 �� ��	�������� � 	 � � �� ��� 	��� �� �
 �� ��������
� 	�

����� '�� 	 � � ( � � �� �� ������ )���� *���� �� � ���� ����
� � ��� ���� �� �
 ��� �� ���� �� �� �� � �	 � ������$ '�� � �� � �������
������� �� ��� �� +����� �� 	( �$�$(

�
���	�� �	 �����	�� �� ��� � �	 �
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,��� �� 	 
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�	�( ,���� �� �/��)����� �� �
 ����������� �� 	$
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 ��	

�� ��� ������� ������� � �� ��� �� +����� �� 	$ 3���� +����� )����� �� 	 ���
�� ���� ��� ����� ������ �� ��	�� ���( ,� ��)� ��� ���$
-� ��)� � � �� �� ����+� �� ����)� ����( �� ����
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������ 	
�
� 4���)� ���� ����� �� 	  �� ��� �������� � � ���� �$
5� ��� 6���� �/������( 
����� �� �� 	 
��� ����� �( �� �� ��������
,��� ��� ����� �������$ 7�� ��+������������� �
 �� ���� ��)����� ���� ���
����� �������( � �/��)�������( !��
 ��� 	  ( �� � �	 �( ! ����+ ��� ������

����������� ���$

Let � � be the subset of�of the lengths of the curvature normals at �

� � 	 ���������� � � �  ������������� 


���������� �	
	' "� �������� ��������	�� � � � � �
� �� ����

	 ��
� curvature normals of constant length �� �� �� 	� ������ � � �	�� �	
������ 	� � � � �

It is interesting to note that an (extrinsic) homogeneous submanifold� with rank
at least one has curvature normals of constant length. In fact, if " is an extrinsic
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isometry mapping � into 	 then "������ � 	 �	� and clearly, the linear isometry
"�� maps curvature normals at � into curvature normals at 	.
Let � �

� 	 ����������� � � �  ��������������. Then � has curvature normal of con-
stant length if and only if � �

� does not depend on �. An interesting fact is that the
set � �

� is related to the eigenvalues of the so-called adapted third fundamental form,
which we will introduce next.
Let # 	 ���� �� � and consider the map �� from � into the Grassmannian

��# �� of #-planes in��: � �� ���� ��.
The map �� will be called adapted Gauss map. If �� is ßat, then the adapted

Gauss map coincides with the usual Gauss map �. Let �� be the possibly degenerate
metric induced on� by the adapted Gauss map and let $� be the symmetric tensor
on� relating �� with the Riemannian metric 
� ��

����� � 	 
$��� � 


We call $� the adapted third fundamental form. If �� is ßat, then $ � 	 $, the
so-called third fundamental form, classically deÞned by means of the usual Gauss
map (see [168]). If %� � � �  %� is an orthonormal basis of ���� �� then (see Exercise
6.3.4)

$�
� 	

��
���

��
��


 (6.1)

Since ��� ����� 	 
�
��� %��������, formula (6.1) yields

$�
� ����� 	

��
���


�
��� %��������� 	 ���
������������

for any � 	 � � � �  ����. So we have the following result.

����������� �	
	�

"� �������� ��������	�� � � � � �
� ��� ���
���� �	����� 	� �	����

����� �� ��� 	��� �� �� ������ ���� ���������� �	�� ��� �	���� ������

������

c) Higher rank rigidity

We now state a global result due to A.J. Di Scala and C. Olmos, for which the
assumption of completeness is fundamental [70].

�(����$ �	
	) [70]
�� � � ���� � �� �� � ������ �	������ ��� �	����� #��������� ���
���	��� �� � � � � �

� �� � ���� ��� ����������� ��	����� �������	� ���
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���� �� � � � ��� ���� �� �� ���
���� �	����� ��
� �	���� ������ "��
����� �������	��� �� �� ������ 	� ���
���� �	����� �� �	���� 	� �
	� �� ���� �� � 	 ������

� �� �� ���� ��� � �� �	������ �� � �������

$	��	
��� �� ���� �� � � �� ��� � �� � ��������	�� ��� �	���� �����
����� ���
����� ���� ����� ��� � �� ����� �� ��	��������� ������������ 	�
�� ������ 	� �� 	��� 	� �� ������������	���

����##%�* �	
	+ [175,176]
�� � ����� � �� �� �� ������������ �	�	����	�� ����������� ��� ���� ����
�����	�� 	� %�������� ����� ��� ���& � ���� &�%� ���� � �� �	������ �� �
������� $	��	
��� �� ���#�� � � �� ��� � �� �� 	��� 	� �� ������������	��

By Theorem 3.4.2 ( [68]), there exist no minimal homogeneous submanifolds of
Euclidean space besides the totally geodesic ones, hence the following corollary.

����##%�* �	
	, [68,175,176]
�� � ����� � �� �� �� ������������ �	�	����	�� ����������� ��� ���� ����
�����	�� 	� %�������� ����� ��� �������� ���� ���
����� ���� � �� �����
� ������� ��������	�� 	� � ������ 	� �� 	��� 	� �� ������������	��

The above corollary cannot be strengthened, since any representation of a compact
Lie group has a minimal orbit in the sphere (e.g., a principal orbit with maximal
volume, see [102]).

We will explain the main steps used in the proof of Theorem 6.1.7. All the details
can be found in [70].
The aim is to demonstrate that the curvature normals are parallel in the normal

connection and hence, by Theorem 5.5.8 and its extension to submanifolds of Eucli-
dean spaces (see part c) of Section 5.5, page 174), the theorem follows. The strategy
of the proof is to show that if there is a nonparallel curvature normal then the subma-
nifold must split off a curve, contradicting irreducibility.

Simplifying hypothesis: we will make some extra assumptions that spare the tech-
nical details. These assumptions are automatically fulÞlled if� satisÞes the hypoth-
esis of Corollary 6.1.8, i.e., a homogeneous submanifold with rank at least � (simply
connectedness is not important, since one can pass to the universal cover). Here are
the assumptions:

(ex�) The number of curvature normals is constant on� and

���� �� � 	 ������
� �� �


(ex�) If a curvature normal is parallel in an open and non-empty subset of� then
it is globally parallel.
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Observe that, if the number of curvature normals is constant on� , then the curva-
ture normals and their associated eigendistributions are globally deÞned and smooth
(see Exercise 6.3.5).
Also note that the assumption (ex�) can be replaced by the assumption that the

local rank ������
� �� �	 is constant on� (see Exercise 6.3.3).

Suppose that the simplifying hypothesis of Theorem 6.1.7, ex�, ex� hold. Let
�� � � �  �� be the (globally deÞned) eigendistributions with associated curvature
normals �� � � �  ��. We can assume that ���
�� � ������ if � ' �. If all curvature
normals are parallel, then any of them provides an isoparametric global normal sec-
tion and, by Theorem 5.5.8, we are Þnished. Let us then assume that the curvature
normals are not all parallel. Without loss of generality, we can assume that the Þrst
#� � are the only parallel ones. In other words, �� is a nonparallel curvature normal
of maximal length.
For � � � �� � � �  �� let "
� � � � �be deÞned by

"
� 	 
��  ��� � 
�
 ��� 	 
�� � �
 ��� 


By the Cauchy-Schwarz inequality

"
� (  if � ( � 


Let ) be an arbitrary subset of �� � � �  �� � �#� () 	 � is allowed!) and let

&� 	 ��� � � � "����� 	  � � � )��� 

superscript denoting the interior. Observe that &� 	 � if ) is not contained in
�� � � �  # � ��. Notice also that &� 	 ��� � � � "����� �	  � � 	 � � � �  # �
� #. � � � �  ����. In particular, &� 	 � , if # 	 �. It is a standard fact that

& 	
�

�����			 ��
��

&�

is an open and dense subset of� .
We will show that the eigendistribution� � associated to the curvature normal ��

is autoparallel. It sufÞces to show that the restriction ����� is autoparallel, for any
) � �� � � �  # � ��. For this we will follow the outline of Section 2 of [175]. Let
) � �� � � �  #���. Without loss of generality, we can assume that ) 	 �� � � �  ��,
� ' #. Now

(i) 
�
 ��� is constant if � � ' # (in particular, if � � � �), since �
 �� are parallel.

(ii) 
�
 �
� ( 
�
 ��� for any � � �, since ��
� � ����.
(iii) 
�� ��� ( 
�� ��� for any * ( #, since ���� � ����.
(iv) For � � � 
�
 ��� is constant in &� , since 
�
 ��� 	 ����� and the curvature

normals have constant length.
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Let � � &� and �� be the parallel normal section ����� 	 �����. The shape
operator ��� does not distinguish, near �, the eigendistribution � �, unless ) 	 �.
This is because of the deÞnition of &� which implies ��������� � �
������� 	
"
���� 	  , for � 	 � � � �  �. Also note that, in &� , ��������� � ��������� 	
"����� �	  , for all # �	 * ( �. It is clear by (i), (ii) (iii) and (iv) that there exists
a parallel normal section �� that is a linear combination of �� � � �  ��, and such that
�� . �� distinguishes at �, hence near �, the eigendistribution �� (i.e. �������� .
������ �	 �������� . ������ if � �	 #). From (iv), 
�� ��� 	 + is a constant, so

��.�� ��� 	 +.
�� ���. Using the Cauchy-Schwarz inequality, since ���� 	 ����
is constant, the function 
�� ��� has a maximum at � and 
�� . �� ��� achieves its
maximum at �, too. Hence its differential is zero at �. The symmetric tensor

� � 	 ���	�� � 
�� . �� �����
then satisÞes the Codazzi equation (only) at �, since � ��	�� and �� satisfy the Co-
dazzi equation. Namely, ���� ���� � 	 �� �� �����, where � is the Levi-Civita
connection of � , and ���� ���� � 	 ��� ��� � � � ����� �. Equivalently, the
tensor 
�� �� ���� � �� is symmetric in all its three entries. Since �� 	 ���� ��
near �, �� is autoparallel at �. In fact, if �� are tangent Þelds lying in �� and �
is arbitrary, then


�� �� ���� � ��� 	 
��� ��� � � � ����� � ��� 	 �
� ����� � ��� 


The Codazzi equation gives

�
� ����� � ��� 	 
����
���� � ��� 	 
��� ��� �� � ����� � ��� 	

�
� ����� � ��� 	 �
��� � ������ 	  


Then �
� ����� � ��� 	  for � arbitrary and ���� �� lies in ����� ���� 	
�����. Since � is arbitrary we conclude that �� is autoparallel in &� . But ) is
arbitrary, so we conclude that �� is an autoparallel distribution in &, hence in � .
Applying Lemma 6.1.3 ������� 	 �, since �� is not parallel. Moreover, the distri-
bution��

� is integrable, as shown by the next lemma.
In order to reinforce these ideas, it would be convenient for the reader to reproduce

the above arguments in the important case # 	 � (proving that �� is autoparallel in
� 	 &�).

#�$$% �	
	
-
'���� �� ��	
� �������	��

��� �� �� ��	�������� ��� ������� 	 ��

���� ��� ��������	� ��
� �� ����������

����� 8�� ��� ,�� 9��� ��)��$ '�� �� ���� ���, ��� ����� ��� �& �� ���
������ �� � ,��� �� �� ��� �������$ -���( �� ��������� �"�( �& �� ���� ���
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�������+ ��
� �� �� ����+���� �����������$

With the same assumptions and notations throughout this section, since� is sim-
ply connected, we have that �� 	 ��, for some globally deÞned unit vector Þeld
�. Observe that the integral curves of� are unit speed geodesics, since�� is totally
geodesic. Let ,� denote the ßow of�. Then, for all - � �,
�.� �,������� 	 �� �,�����

�
� � 	 ��

� 


The Þrst equality is clear. Let us then show the second one. If +��� is a curve that

lies in ��
� , then �,����+�� �� 	

/"

/� ����
�	 )�-�, where "�� -� 	 ,��+����. But

- �� )�-� is a Jacobi Þeld along the geodesic 0��������-� 	 ,��+� �� with initial
conditions )� � 	 +�� � � ��+� �� and

) �� � 	
1

/- ����

/"

/� ����
	

1

/� ����

/"

/- ����
	

1

2� ����
��+���� ���+� �� 

since ����� 	 �. Then )�-� is always perpendicular to 0���������-�, which generates

���0��������-��. This shows �,������
� � 	 ��

� .

Let � � � and let � � be the integral leaf through � of ��
� . Then there exists an

open neighbourhood3 of � in � � and 4 (  such that � � ��4 4��3 � � deÞned
by

��� 	� 	 ,��	�

is a diffeomorphism onto its image, where ,� is the ßow associated to�.
Let �+ � �  ��� � be a piecewise differentiable loop at � contained in ����4 4��

3 �. If we write �+�-� 	 ��"�-� +�-�� 	 ,�����+�-��, then both " and + are closed
curves starting at  and � respectively. Let �� � ��4 4�� �  ��� � be deÞned by

���� -� 	 ��� +�-��


From �.� we get that

�..� ��

�
/��

/�

/��

/-

�
	  

(we have used the Ricci equation and the fact that �� is invariant under all shape
operators).
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Observe now that +��-� 	 �  -� and +��-� 	 �"�-� -� are both curves in ��4 4��
�  �� from �   � to �  ��. Then, by �..� and Exercise 6.3.2,

5���Æ�� 	 5���Æ�� 	 5���

We have shown the following:

#�$$% �	
	



(�
�� � � � ���� ����� � ������	���		� � 	� � ���� �� �	� ��� �		� + �
� �	������ �� � ���� ����� ��	��� �		� �+ � � �	������ �� �� ������� ����
� � 	� ��

� ��� ���� �� 5�� 	 5���

For any � � � , ��� 	 ����� 	 ���� ��, regarding the leaf � � of ��
� as a

submanifold of the ambient space. Moreover, the restriction of � to � � deÞnes a
parallel normal Þeld to this leaf. In fact, let � be a tangent Þeld to� that lies in��

�

and let �� be the Levi-Civita connection of the ambient space. Then 
 ������ 	  ,
since � is of unit length, and the projection of ���� to the normal space of � is
!���� 	  , where ! is the second fundamental form of� .
The above observation, together with Lemma 6.1.11, implies that, for any � � � ,

�...� ���� �� 	����� 	 ����� ���� 


Let � � � and let 0 � �� � be an integral curve of � with 0� � 	 � (observe
that 0�-� 	 ,���� is a geodesic with initial condition����). Then, for all - � �,

����
�
� ���� 	 ����

�
� �0�-���

or equivalently,

�.3 � ������ �� 	 ���������� ������ 

where � is the immersion of� into Euclidean space. In fact, let �6 � ��
� ��� and let

6�-� be the parallel transport in� of �6 along the geodesic 0. Identifying� � ��
with �����, �������6�-� 	  (using the fact that 0 ��-� is parallel along 0�-� and that
!�0��-� 6�-�� 	  ). Thus 6�-� is constant in the ambient space, giving the above
equalities.
Let us now Þx - � � and the leaf � � of ��

� . Let �� � � � � �
� be the map

deÞned by
���	� 	 ��,��	��  	 � � � 


Equalities �.� and �.3 � imply that �� can be regarded as a parallel normal Þeld to� �.
Now, �.� gives ,���� �� 	 � �����, hence � � and � ����� are parallel submanifolds
of Euclidean space. More precisely,

�3 � �� ���� 	 � ����� 
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The following lemma relates the curvature normals of the isometric immersion
� � � � �

� to the curvature normals of the leaves of ��
�.
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d) Local counterexamples

Theorem 6.1.7 fails without the completeness assumption on � . Namely, there
exist non-isoparametric (non-complete) submanifolds of Euclidean space with ßat
normal bundle and algebraically constant second fundamental form [70]. We out-
line the construction of such examples: one begins with a non-full unit sphere � � of
�

�	�. In the afÞne normal space �.��� at a Þxed point � � �� , a curve +� is con-
structed starting at � and satisfying certain requirements (in particular, the curvature
of +� has to be constant). By means of the parallel transport of the normal connection
of �� one constructs a curve +	 in the afÞne normal space at any 	. The union of the
images of such curves gives the desired submanifold. This submanifold has only two
eigendistributions. One of them, say ��, is autoparallel with integral curves +	 . If
one starts with a circle in �, the simplest nontrivial example produced is a surface
in �. All examples constructed in such a way are intrinsically �� . ��-spheres.
Observe that the two curvature normals must satisfy 
�� ��� 	 �������, otherwise��

would be autoparallel and� would split.

e) Global formulation of isoparametricity

Theorem 6.1.7 and Remark 6.1.15 allow us to give a global (equivalent) deÞnition
of an isoparametric submanifold: a complete immersed and irreducible submanifold
� � �� � �

�, � � � with ßat normal bundle is isoparametric if the distances to
their focal hyperplanes are constant on� .

��� ����� ���	��� �� ���
��

To simplify the explanation, we will assume in this section that the submanifolds
are embedded, but everything can be carried out for immersed submanifolds.

a) Transvections

Let � be a submanifold of �� and let � � .���� be such that ��� � 	 � .
We will be concerned with the group of transvections -����� of the normal
connection�� we deÞned in Section 5.4.
Recall that-����� is the group of isometries of�� , leaving the submanifold

invariant and preserving any normal holonomy subbundle. More explicitly, � is a
transvection of� with respect to the normal connection�� if, for any � � � , there
exists a piecewise differentiable curve + � �  �� � � with +� � 	 � +��� 	 ����
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such that ������� 	 5�� , where 5�� is the parallel transport along + with respect to
��.
In a similar way, we deÞne -������ (respectively -������) by replacing

the above condition by ���������� 	 5������	��
(respectively ���������
 	 5������	�


).

Recall that ��� �� 	 ���� ���
� is the subbundle of the normal bundle on which the

normal holonomy group acts as an �-representation.
If� is a full submanifold of Euclidean space with constant principal curvatures,

then the associated curvature normals �� � � �  �� (with respect to ��� ��) are parallel
and generate ��� �� (since the Þrst normal space coincides with the normal space).
If � is an isometry of the ambient space with ��� � 	 � , then �� maps curvature
normals into curvature normals. Namely, if � is a curvature normal, then ����� is
a curvature normal, where ������	� �	 �����	����


�	�. If � can be continuously
deformed to the identity (through extrinsic isometries of� ), then � ���� 	 � (since
there are Þnitelymany curvature normals). This observation, together with Corollary
6.1.8, implies the following:

������ 	

� '�� � 	 � � �( ���� � �( �� � ���� ��� ���������
����+������ ����������� �� ��( ,��� �  .���� �� ���������$ -��� � �
-������$

We will see in next theorem that the inclusion� � -������ is a general fact.
It depends on the following well-known result, for which we include a proof based
on Riemannian holonomy standard theory.
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�� 9 �� � �	������ ��� �����	�� 	� �:���� ����� 	� �� �� �� �����������
��	� ��� �� ; �9�� �� �� �	������ �	��	��� 	� �� �	�����)�� 	� 9 ��
�:���� ���� 9 	 ; �9���

����� I� �� ��������� �������� ����� �( �������� ��� �������
������������� ��������$ <���)�( ����� ��� +����� �������� �������� ��
,���$ -��� ��� ���� �����,� ��� ��� ��"� ����������( �� � ������ ��
6����@;��$

����������� �	�	& (cf. [60])
�� � �� � #��������� �����	�� ����������� � 	 � � ��� �� � �� �� ���
������� 	� �� �	��� �#���������� �	�	�	�� ��	�� J�����

	 � 	� �� � �� ��
�	�����)�� 	� � �� ����	� �� ���� � �	����� � ��	����� �� ��� 	��� �� � ��
*+����� ��� #�����,� ���� 	�

����� '�� �� ����, ����	� � ,��� ��� ����� ����� ������ 
�$� 	
����
$�$
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7����� � �	 �$ �� ,� ��������� � 	 � 	 � ����+������( ���� � ��� �

�� ������ �� � ��� �� �� �� 	  $ 0�, ������  �	 )	 � �$ -��� )�
	 �� �

�������� ����������� ���� �������� ,��� �$ -���( )�
	 �������� ,���

J�����
	 ��� ���� ��+������� �� )�

	 ��*��� � ������� ����������� ��� 	$ 3����
� �� ������� ��������� �� 	 ,� ��������( �� �� 6��� ������������� ������(
���� )�

	 	 �+���$ 5� �������+ )	( ,� ��� ������ )�
	 	 ���$ !"������+ )	 ��

���������� ,� ������ � ������� ������ ������" ������� ) �� � $ -���( �
�� KG���� ��� 	$ -�� 6���� ����� �� �� � KG���� �������� � �����*�� ����
7������" 7$��

�� �� )� � 	

���� � )�

�



�� 0 �� ��� ��)� �� � ����� ���+�������� �� 	 9�����+ 	 �� � ��� 5� �� ���
������� ������� ����+ 0( ����


���� ��� )�� 	 
5
�� ���� ���5�  )	� 	  

����� )	 � �( ��� � �� 6����@;�� ��� 	$
-�� ���)� �,� �������( ��+���� ,��� ��� 7�����@3��+� �������� ���@

���( ���, ���� ��� ���)��� �� ���$

�(����$ �	�	.

�� � 	 � � � �� � �	�	����	�� ��������	�� 	� ��� ����� �  .���� ��
�	������� ����-

.� � � -�������

/� � � -����� �� � �� �� ����������� ���� ��������	�� 	� �� ���
���� � ��

����� '�� � � �( ��� �� � �  ��� � �� � ��=��������� ��)� �� � ,���
��� � 	 �� ����� 	 �$ '�� � � � ��� 0�-� �	 ���-� � �$ -�� �������� �����
�������� +���� �� � ��� 0�-�( �� ���9�+���� �� ��� ��=������� �� ��( �$�$(


�
���� 	 ���-��


�
�����-���


�


5�� ���� ��� ����� �������� +���� �� ���9�+���� ���� ������� �������


�
� 	 �5��� �


�
�
����5

�
��

	 "�

�
�"


�
� 

,��� 5��� �� ��� �� ������� ������� ����+ 0� �	 0�
���� ��� "� 	 �5��� �

����-��$

J���� �5�� �
��� � �; �
�
���

�( ,��� �; �
�
���

� �� ��� ��������� ��������� ��
��� ������2� ��� ��� ����+���� +���� �� 
�

�$ 5� ��� 0���� J�������
-����� ��� �������� ����� �������� +��� 
�

� ���� �� ���� �� �� ��

�@������������$ -���( �� '���� #$�$�( ���� �"���� 5�� � 
�
�( ,��� +
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�� � ����@��������� ���� �� � ���� ���� �� ������
 	 5�� 5�� ��������

$ J����

�� ��������
 	 5�
��� ��������


( ,���� ��)�� �$

'�� �� ��)� ��� �$ I�� 6���� #$�$�

5��������� 	 ����������

<���)� 5�� �������
	 ��( ����� ��� �� �� ;�� ��� + �� ����@���������($ -���

�� ������� 	 5���� ���������
��� �� �� 	 5���� $

Part 2 of Theorem 6.2.4 can be restated as follows:

�(����$ �	�	'
�� � 	 � � 6� ���� � �� �� � ���� ����������� �	�	����	�� ��������	��
	� ��� ����� � �� � ��	������� ��� �����	�� 	� �� ���� ��	�� 	� ��	������
	� ��� �� � � � ��� � � � � ����� ���� ����� + � �  �� � � ���������
��0��������� ��� +� � 	 �� +��� 	 � � � ���� ��

��� ���� 	 5�� 

����� 5�� ���	�� ����������� �����	� ��	�� +�

The following corollary of Theorem 6.2.4 has an analogue in the Riemannian
holonomy: Let � be a Riemannian homogeneous manifold without ßat de Rham
factor. Then the isotropy subgroup is contained in the holonomy group (cf. [90, 4.5,
page 110]).

����##%�* �	�	�
�� � 	 � � � �� � ���� �	�	����	�� ��������	�� 	� ��� ����� �  .����
�� �	������� ���� �� ����� ����� �� ����� ����������	� 	� �� ��	�	��
�����	�� �� �� �	������ �� �� �	���� �	�	�	�� ��	�� � ��

We have not assumed that� is irreducible or that ���� � �. This is because the
corollary holds for homogeneous curves. (By Remark 3.1.4 the connected compo-
nent of the extrinsic group of isometries is the product of the connected component
of the extrinsic group of isometries of each factor.) In fact, if� 	 � � 6 with �
connected and ���� 	 �, then any element � in the isotropy �� acts trivially on
��� . Since � is an intrinsic isometry of� then � is the identity map on� . Then
the Þxed set of � in�� is an afÞne subspace that contains� . Thus, � is the identity
if� is full.

b) Computation of the normal holonomy of orbits

The holonomy group J���� � of a locally irreducible homogeneous Riemannian
manifold� 	 �79 can be computed from �. Indeed, Kostant [121] proved that if
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� is not Ricci-ßat, the Lie algebra of the holonomy group of� is (algebraically)
generated by the skew symmetric endomorphisms given by the Nomizu operators
(see Section 2.3) ���, � � �. Actually, the assumption that� is not Ricci-ßat
can be dropped, since Alekseevsky and Kimel�fel�d [4] proved that a homogeneous
non-ßat Riemannian manifold cannot be Ricci-ßat (see also [7, page 553]).
Let us turn now to the case of a full irreducible orbit� 	 � �� of a representation

� � .����. We have the following analogous result of C. Olmos and M. Salvai
[177] for the computation of the normal holonomy group in terms of�.

�(����$ �	�	) [177]
�� � � .���� ��� � 	 � � � �� ���� ��� ����������� �� � ��������	�� 	� ��

��� ���� � �� ���� �� ��� ������� 	� �� �	���� �	�	�	�� ��	�� 
� ��
��������������� �������� �� �� 	��	�	��� ��	1���	� 	� �� �Æ�� ��������
�.��� 	� �� *������ 
��	�  ���� 	� �� ������� �� �� $	��	
�� 
� 	 ���
�

��

����� 
�
� �� �� �������� �	���� �	�	�	�� ��	�� ��� ��� �� �� ��	�	��

�������� �� �� �����	�� 	� :���� � 
�� �� ����� ����������	�� ������ ��� 	
��� ���� � � � �����

We introduce some notation Þrst. Let � belong to the Lie algebra � of � and
consider the curve deÞned on �  ��

0�
� ��� �	 !"� �� � �


Observe that 0��
� ��� 	 0�

� �-�. DeÞne the operator

�� � ��� � ���

by �� � 	

�
2

2- ����
�!"�-���� �

��
	 �� � ��� 	

1�

2- ����
�!"�-���� � (where

� �� denotes the orthogonal projection on ��� ).

������ 	

� � �� ��� �� ��� K�����+ )���� *��� �� ��� ����� �����
��� �������� �� ��9�����+ ��� K�����+ )���� *��� ��*��� �� �$

Let 5���� denote ��-parallel transport along 0�
� . (5

�
���� is the parallel transport

along 0�
� from  to -.) Then we have

�� � 	
2

2- ����
�5������
� Æ �!"�-��� � 
 (6.2)

(We omit the point in the subscript of �!"�-��� here and in the sequel for the sake
of simplicity.) Note that �� is skew symmetric with respect to the induced inner
product on ��� , i.e. 
��� ��. 
����� 	  . Thus �� � ������ �. Moreover,
�� belongs to the normalizer of the normal holonomy algebra, since �5 �

�����
� Æ
�!"�-��� belongs to the normalizer of the normal holonomy group.
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������ 	

� '�� � 	 � � � ����� � �� �� � ���� ��� ���������
����������� �� !�������� ����� ��� ��� � � ���� ��$ -��� �!"� -���� ��
������� �� ��� ����� ����������( �� ��� � � � ���� 6���� #$�$��$ -���
�5������
� Æ �!"�-��� � 	 � ��� ��( ��� 	  $ 5�� �� �����+� �� ��� �����@
�2� �� ��� ����� �������� ��+��� �� �$ 3�( �� '���� #$�$�( �� �����+�
�� ��� ����� �������� ��+��� �� �$

Let � 	 !"� "�. Then � Æ 0�
� 	 0�

� � and hence

�� Æ 5����� Æ �
�
� ����

	 5�� ����

(we omit the point in the subscript of � � here and in the sequel for the sake of sim-
plicity). From this it is not hard to see that

�5������
� Æ �!"� -��� ����

is a one-parameter group of linear isometries of ��� . By (6.2) �!"���-���� Æ
5����� 	 %
�� , and therefore

5����� 	 �!"�-��� Æ %
�� (6.3)

is an explicit formula for computing��-parallel transport along 0�
� from  to -.

c) Parallel transport along broken Killing lines.

Let � � � be Þxed � � � and � � �. Using the notation of previous paragraphs,
consider the curve 0�

�	��-� 	 �!"� -� � � �� � ��. This is the integral curve of the
Killing vector Þeld � �, where � ��	� 	

2

2- ����
�!"� -� � � 	 with initial condition

0�
�	�� � 	 � � �. One has that 0�

�	� 	 � Æ 0
!"���� ��
� and so, by formula (5.7), page

163,
5��	��� Æ �� 	 �� Æ 5���!"������ (6.4)

Let now �� � � �  �� � � and �
 	 �!"��

�� � � � �!"���� � �, for � 	 � � � � ,
� . � (�� 	 ��).
Consider the broken Killing line < obtained by gluing the integral curves < 
 	

0��
�� 	�
, - � �  ��, � 	 � � � ��. Namely, < 	 <� � � � � � <� and

<
�-� 	 �!"� -�
��!"��

�� � � � �!"���� � �
Using formulas (6.3) and (6.4) it is straightforward to compute ��-parallel trans-
ports along < (which is the composition of the parallel transport along < 
). Namely,

5�# 	 ���	��� Æ %
� %
��� � � �%
�� (6.5)

where �
 	 �2��
�
 ��
.
A broken Killing line whose pieces are integral curves of Killing vector Þelds

induced by � is called �-broken Killing line.
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The following lemma asserts that��-parallel transport along loopswhich are bro-
ken Killing lines gives the normal holonomy group. The proof will only be sketched
since it requires a background on connections on principal bundles.

#�$$% �	�	
-

�� � �� �� �������� �	�	����	�� ��������	�� 	� %�������� ������ 	��� 	�
�� ��� ��	�� � ��� �� � � � � �� �
� �� �� ��	�� 	������ �� ��������

�����	���� ��	�� �		�� ����� � � �� ��� ����	&�� *������ ������ ���� �
�

�	������� ��� �� �	���� �	�	�	�� ��	�� 
� � ��

����� �������� '�� � �� ��� ������ �� ����� ����� �� � ���� �� �@
����� K�����+ �����$ '�� +� +� � � �� ��������� ����� ��� ����� �� � ������
�� ����� ����� �� ��$ -��� �� �� ������� �� ���, ���� ���� �"���� � �����,���
������ �������� +� � �( � � �  ��$ � �� 5��
 �� � �����,��� ������ ��)� ����

���� �� �
�( � '�� ���+��� ��:���� � ���$ ���E( )��$ �( 7������" L��$ '�� ,� ���
=� �� ��� ;�,� ���������� �� �,� ������ K�����+ )���� *���� � � �������
�� �$ -���( �� ��� 	 � � ( "�� -� 	 ,� Æ =� � 	 �� � �������2�� ������
,���� ���������� ����� �� ����+�� ��)�� �� K�����+ )���� *���� �������
�� �$ -���( ��� ���� �+����� �� �� 3������ :$� (e)( ���,� ���� ���	  �	�

�����+� �� ��� '�� ��+��� �� �
	$

'�� ��, ���� � �� ��� ������ �� ��������� ����� �� ��� ����� �����$
-��� ��� ���+��� ������ �� ��� ����� �� ��� +���� �
	 ��*�� �� ����+����
��������������  �� ��� )������ ���$  �� ��)����� ���� ��� ;�, �� ���
���2����� ������+ �� ��� K�����+ )���� *��� ������ �
 ���9�+���� ���� �������
������� ����+ ����+�� ��)�� �� K�����+ )���� *���� ������� �� ��$ '�� !
�� ��� ���2����� ����������� �� ���� �$ -�� ���2����� ��� �� ��� ������
�� ��� �,� ����� *���� �� ��� ��)���� �������� �� ��� ����������+ ������$
5�� ��� ��)���� ���� ��  $ -��� ������� ���� " 	 !	 �� ����+����$ -���(
" �������� ��� ����������� +�)�� �� ��� �������� ����������( �� �
� ��������

��� ����� �������� +��� �� �$ -�� '���� �����,� ������� ��������� �
� �

� �� ��)���$

We return to the operators �� . Let � be the smallest Lie subalgebra of ������ �
which contains �� , for any � � �. Let > be the connected Lie subgroup of
�:���� � with Lie algebra �. Let � � ��. Since > is a geometric object, we
see that ��>��
� 	 >, where �� 	 ����� . So ���> is a group.

������ 	

�� '�� � �����+ �� ��� '�� ��+��� �� ��� ������� ���@
+��� ��$ -��� �!"� -�� � � 	 � ��� ��( �� ������ �#$%� �!"� -�������� 	

%�� $

-��� ���,� ���� ���  �( ,��� ��� �� ��� '�� ��+��� �� ��� 	 ������ � � �
���$
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We can supply a proof of Theorem 6.2.7:

����� �� ������� 	

� 5� ������ �#$L� ��� '����#$�$� ��� +���
���> �������� ��� ����� �������� +��� 
�$ 6���� #$�$M ��� 1������
#$�$# +�)� ��� �������� ���������( �� 
� 	 ���>$ <���)�( �� 6���� #$�$��(

��� ����� �������� ��+��� �� � ��������� ,��� �$ -��� *������ ��� ����$

������ 	

� 3������ � 	 > � � �� �� ���� �� �� �@������������(
��� ���� ��� ������)� ������������� � 	 �� 	 �( ,��� � 	 ��� $ 5� '����
:$�$L ,� ���,

�������� 	  


-��� ����� ���� �� 	  �� � � �$ -���( -����� #$�$E +�)�� �� ��������)�
���� �� -����� :$�$E$ 0�����( ��� ����� �������� ������������ �� �
��������� ,��� ��� ����� ������������( �$�$( ��� ��=����)� ����� ������ �� ���
������� +��� >� �� ��� ����� ����� ��� $

������ 	

�� -����� #$�$E �� ���� �� �M�� �� ��� +������� ���@
�����2����� �� ����+���� ������������� ,��� ��������� � ���� �� ����
������*������ �� ��� ��������� ����( ��$ 6���� %$�$�� �� ��� ��*������ ��
����������$ -��� �� ��� ���� ���,� ����� ���� ���� ���� ������$ �� ,����
�� ���������+ �� *�� ����� ������������$

We end by formulating the following:

���/������ �	�	
. (cf. [175]) �� � � ���� � �� �� � ���� �	�	����	��
��������	�� 	� �� ������ ��
�� ����� �� �	 �� 	��� 	� �� ������������	��
���� �� �	���� �	�	�	�� ��	�� 	� � ��� ������
��� 	� �� ������ 	� ��
�	���� ����� ��� ��������� �� �	���� �	�	�	�� ��	�� ��� �������������
!� ���� 	 � �� ��	
� �	�1����� �� ��� �� �� ������ 	� �������� ���������

�� 2���	� 3�4 ���

��� �����
���

������!� �	&	
 Let� be an isoparametric hypersurface of the sphere �� and
let�
 � 	 � 
 
 
  � their focal submanifolds. Then,

���
�� 	 � �
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for � 	 � 
 
 
  �.

������!� �	&	� Let � � ��  �� �+ 2� � � be a piecewise differentiable map
of the variables � -, � is an immersed submanifold of a Riemannian manifold ; .
Assume that ���$�

$�
 $�

$�
� �  . Let, for � 	 � �, +
 � �  �� � ��  �� �+ 2� be two

piecewise differentiable curves with +�� � 	 +�� � and +���� 	 +����. Prove that

5��Æ�� 	 5��Æ��

where 5� denotes the parallel transport in the normal connection of � . Prove a
similar result for the Levi-Civita parallel transport.
These are indeed special cases of ßat connections induced on pull back vector

bundles (cf. [189]).

������!� �	&	& Let � � � � �
� be a connected Riemannian submanifold.

Then ������
� �� �	 is constant on� if and only if ��� ���

� �� � 	 ���� �� �.

������!� �	&	. Prove Formula (6.1).

������!� �	&	' Let � � � � �
� be an immersed simply connected subma-

nifold with ���� �� � � � and assume that the number of curvature normals is
constant on � . Prove that the curvature normals are globally deÞned �� normal
Þelds (assuming the local version). Hint: Let 9 be the subset of the normal space to
� that consists of all the curvature normals at any point. Prove that9 is a differen-
tiable manifold and that the projection � � �� � � , restricted to9, is a covering
map. Thus, � restricted to any connected component of9 is a diffeomorphism. The
inverse map is a globally deÞned curvature normal Þeld.

������!� �	&	� Prove that Corollary 6.2.6 is not true if� is not full.

������!� �	&	) Let� be a compact full submanifold of Euclidean space with
parallel second fundamental form. Then any Killing vector Þeld on � extends
uniquely to a Killing vector Þeld on the ambient space. Hint: Since � is locally
symmetric, any bounded Killing vector Þeld lies in the Lie algebra of the transvec-
tions. Let � � � be a Þxed point and let � be a transvection of� . Set 5� 	 ���.
Then the isometry �� of the ambient space, deÞned by ����� 	 ����, �����%�� 	 5� ,
�������� 	 5�� , leaves� invariant.

������!� �	&	+ (based on an unpublished proof of Ferus� Theorem by E. Hulett
and C. Olmos). Let� be a compact full submanifold of ��. For 6 � ��, let "& be
the restriction to� of the height function in the direction of 6 (i.e. " &�8� 	 
8 6�,
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where 8 � � ). Let �& be the gradient of "& (� is endowed with the induced
metric). Prove

(i) The second fundamental form of� is parallel if and only if ��& ��� is a Killing
vector Þeld on� , for all 6 � � ��.

(ii) Assume that the second fundamental form of � is parallel. Let � be the Lie
algebra of Killing vector Þelds on �� that are tangent to � . DeÞne on the
vector space � 	 �� the following bracket: �� 6� 	 � � 6, if � � � and
6 � ��; ��� � is the bracket of �, if �� � �; �6 �� is the extension to the
ambient space of the Killing vector Þeld ��& ��� (see Exercise 6.3.7).

(a) Prove that �	�� is an orthogonal involutive Lie algebra (see [243]).

(b)� is (orthogonally) equivalent to an orbit of an �-representation.



������� �

����������� �	
��	�
�� ��
�����������

In the late �20s, E. Cartan gave a local characterization of Riemannian symmetric
spaces by the differential condition

�� � ��

For any point �,�� determines uniquely (up to isometries) the symmetric space. Ac-
tually, the curvature tensor�� of a locally symmetric space� determines a globally

symmetric Riemannian manifold ���� �� whose curvature tensor at � is the same as
the one of� . Indeed, ��, together with the integrability condition �� ���� ��� � �,
allows construction of an orthogonal symmetric Lie algebra �, which uniquely deter-
mines �� . In terms of holonomy systems ���������� is a symmetric holonomy
system, where � is the simply connected Lie group with Lie algebra �. As we did
in part b) of Section 4.3, we can set � �� �� ��� , with � � span���������������
(which is the Lie algebra of the holonomy group, as a consequence of the Ambrose-
Singer holonomy Theorem) and deÞne a Lie bracket on � by

�	�
� � 	
 � 
	� 	�
 � ��
��� �� � ������� �� � � ����
�� �� � ��  � �� � � ����

Taking symmetric spaces as models, starting from the �70s, D. Ferus [83], [84],
[86], W. Strübing [204], E. Backes and H. Reckziegel [6] studied the symmetric
submanifolds of a space form �� . Recall that� is a symmetric submanifold of ��
if it is invariant with respect to reßections at its normal spaces. The symmetry of
submanifolds is locally characterized by

�� � ��

If � � � , �� and the integrability condition ���
� ��� � �� � � (where �� is the

normal curvature) permits recovery of the submanifold completely (and, possibly, its
extension to a complete one). These constructions were provided in Section 3.7.

To come back to the intrinsic case, there is a similar framework for locally hom-
ogeneous spaces. A differential characterization is given by the Ambrose-Singer
theorem, which asserts that a Riemannian manifold ��� �� is locally homogeneous
if and only if there exists on� a metric connection 	� such that

	�� � �
	�� � �

201
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with � � �� 	�. 	� is called Ambrose-Singer connection or canonical connection.
The tensor � is called a homogeneous structure.

In this chapter we want to describe the analogous setup for homogeneous sub-
manifolds. First we will examine the case of submanifolds of space forms. Using
this framework, we will characterize orbits of �-representations and we will study
isoparametric submanifolds, giving a proof of Thorbergsson�s Theorem 5.4.5.

��� ������	��
� ��
��
�� �	� ������	����

Let� be an orbit of a faithful representation � of a Lie group� into the isometry
group �� �� � of a space form �� of constant curvature �. Since � is faithful, we will
assume � � �� �� �.
The orbit� � � � � through any point � � �� is an immersed submanifold of

�� and, at the same time, a reductive homogeneous space ���. Let � � � � �

be a reductive decomposition of the Lie algebra � of �, with � the Lie algebra of
the isotropy group at �. Recall that � is isomorphic to � �� , via the isomorphism
sending � � � to the value at �, ��

� , of the Killing vector Þeld �
�. We denote by


 � ��� 	 � the inverse of the above isomorphism.

a) Homogeneity determines homogeneous structures.

As a start, we recall the deÞnition of intrinsic canonical connection on ���,
associated with the reductive decomposition � � ���. � is a principal Þbre bundle
over ��� with structure group �. The reductive complement � of � in � deÞnes
a left-invariant distribution on �, which is right-invariant under � and determines
a connection on the bundle �. This connection induces a canonical connection 	�
on the tangent bundle � ����� of ���. 	� can be characterized geometrically as
the one whose geodesics through � � �� are the one-parameter subgroups ���� �
������ � �, for any � � � and such that the 	�-parallel transport along � is given
by ��� � ������ � �. Note that the torsion of 	� at � is given by �������� on �,
so that it vanishes if and only if ��� is a Riemannian symmetric space.
On the other hand, the vector bundle� � � ���� � ����� is a homogeneous

vector bundle, i.e., the action of � on � is covered by the action of � on � . We
will denote the former action together with its differential by � � � and � � � , for
� � �, � � � and � � �. Thus, the reductive complement � of � in � determines
an extrinsic canonical connection �� on the homogeneous vector bundle �. Indeed,
� determines a unique �-invariant metric connection on � such that the horizontal
subspaces along the Þbre  ����� are �� � � 
 � � ��. More geometrically, ��
can be characterized as the metric connection whose geodesics through � are ���� �
������ � �,� � � and whose parallel displacement along the geodesics coincides
with� � � , for � � �.
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Let �� be the holonomy of the connection ��. We identify �� with its representation
on ������� and� with its action on�� � ������� via the isotropy and the
slice representations. The above implies that �� � �, as representations. Hence, all
�-invariant tensor Þelds on � are parallel with respect to the canonical connection��.
In particular, � �� ����� �� and the second fundamental form are�-invariant.

Thus, we get

����� �������� � � ��� ��� � ��

Note that �� and �� are ��-parallel subbundles of�. This suggests the follow-
ing

��	
�
�
� ����� � homogeneous structure �� � ��	
������ � �� �
����� ���
 �� �� � ������ ��� � � � �� � ��� � �� �� � ��� � �� � ����

����� �� �� �� ��� ����������� ���� canonical connection� �� � � �� � ��
����� 	� �� �� ���� � ��

�� �� ��� ����������� ���������� �� � ��� �� �� ��� ���
� ������������
����

��� �� �� � �������� ��		���� �� ��

��� �� �� � 
����� �����������

� � ��� � �� ����

�������!� "� �� �����!� "�� �����!� "�� ��!� ���"� � � �

!���� ��!� " ��� ������ ���� �� � �

�"� ��� � �� �����

������	 # � �����	 # �� �
���	

# � �	 ����# � � � �

!���� ��! ��� ������ ���� �� � � # �� � ������ ��� �� �� � �� �

������ ����	 ��� � �� � ����������� ��������� �� � ��� ��� � ��  
!� ��� � �� �� "�� ��# � � ��� $ �
 %� �� ��������%�� �& ��� � ���
'�%�� ���(�� ��%� �������%�%�� %�(��%��� )����(��$ �# �����# �*� �& ���
��+�%�%��$ �
 %� �,�'-�#�����%� .��� �
 ��� �� �������� �� �
 � ������ ��
������� /�$ ��� ��� ��� �� �������� �� �� ������� �& ���� ���������� ��

�������� 
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������ ����
 0& �� %� � ��-������� ��������� �& � ���� %�� ����������
��������� �� %� ������� �� '��� 

������ ����� 1�� ��� �%(� �� ��������%(� ��� �������# ������� ��+�%-
�%�� �& �����%��� �������%�� �23�$ �# ��,%��$ %������ �& ��� �������%�� ����

�� �$ ��� �����%��%�� �� � �& ��� ��(%-4%(%�� �������%�� �� �� � ��  .��� �
�����%��� �������%�� �� %� � ����%� �������%�� ���%�&#%��

��� �� %� � ��-������� ��������� �& �$

��� 
 � ��� �� %� ��-������� 

.��� ��� ��,�� ��� ���� �& �5� ��� �6� %� 7�+�%�%�� 2 8 * 
.� ��� ��� �9�%(������ �& ����� �'� ��+�%�%��� ���� ����$ %& � ��� ! ���

(����� +���� �� � $


�! � ���! � ���! � ��! � ����! �� ���! � ��! � ����! ��

���$ %& $ %� � ������ (����� +���


�$ � ���$ � ���$ � ��� � ��
�$ � ���$ � ��$ ��$�

0& % %� ��� %�+�%���%��� �����(���%�� ��+��� %� /���%�� 5 2$ 
�	 � ��	 �
%�	$ &�� ��# (����� +��� 	 �� � .�� ���(� &������� ����%�# %��# ����
��� ��-�������%�# �& 
 %� �9�%(����� �� ��� ���� �& � ��� � :����� ���� � %�
������� %& ��� ���# %&  %� 

.�%� ������ ������ %� ���� +� &�� �������%;��%��� �� ������%&���� �& ���-
�������� �����$ �& �23� 

Let � � � � � be an open part of a homogeneous submanifold of a space form
�� . DeÞne on� a canonical connection �� similar to the beginning of this section.
Then the difference tensor � � �� �� � �� is a homogeneous structure. Hence,
we have the following:

����� �����

�� ���� ���� �� � ��
�������� ��	
������ ��
��� � ��
�������� ����������

We will soon see that the converse is also true. This gives a differential character-
ization of homogeneous submanifolds of space forms.

������ ����� <# ��� =������-/%���� �������# �������$ ��� �%�
������� �& ��� �������# ���� �& �� %� ��������� �# �� ��%��� �� %���-�������� .���$ ��� �������# ������� %� ��������� �# ��� ��>���%��� �� �

�& ������! � 
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������ ����� /%��� &�'� 8� � �������$ � ����������� ������%&���
� � � � � �& �� ��� �� ����%����� �� � ����������� ������%&��� �& ���� 
4��(�����#$ � ����������� ��������� � �� � ������%&��� �& �� ��� �� ��-
������ �� � ����������� ��������� � �� ���� �# ����%�� ��( � �$ '���� (
%� ��� ��%�%�� (����� +��� �������� �� � ������ (����� +��� �� � %� ���� 

������ ���� .� ���%(��� ��� ������%�� �& 
 '� ��(� %� :����, 2 8 ?$
'� �����%�� ��� %�(���� 
 �& ��� %������%�� � 	 ��� � � 	 � � � 

"�� ��� ��,� �& �%��%�%�#$ '� �����%�� 
 %� ��� ���� �& � �����������
������%&���� �& ��� ����� �� � ���� .�� ����� �&�� ��� )� �� ���%���
����� ��� (��# �%�%��� 

0� ��� ���� �& ������%&���� �& ��$ ��� ��� ������ ��� �������� �& � ��
�%@�����%��� �& %������%�� �& ���� � ��� � ��� $ '���� �� %� ��� ������
���� �& � %� ���� A����$ &�� ��# � � ��� $ 

 � � � ���' � 8� �
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� �
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'���� �� %� ��� ��(%-4%(%�� �������%�� �& ����$ � ��� ��(%-4%(%�� �������%��
�& � ��� � %� ��� ������ &���������� &��� �& � �������� �� � ������%&���
�& ���� /%�%����#$ ��%�� !�%������� %����%�%��$



$ � �
$ � ���

'����  %� ��� ���� ������� �& � �� � ������%&��� �& ���� A����$ ���
%�(���� 
 � ��� 	 � �& ��� %������%�� � 	 ��� � � 	 � � � ��� ���
&����'%�� ������%��



� � �
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'���� � � ��� $ � � ���� � ��� � ��� $ �� ��� ���������� ��>���%��
�& � �� ��� $ �� ��� ���������� ��>���%�� �& � �� ��� $ �$  ��� %
��� ������%(��# ��� ������ &���������� &���$ ��� ���� ������� ��� ���
%�+�%���%��� �����(���%�� �& � $ �������� �� � ������%&��� �& ���� 

1����(� ���� �� %������� ���%�� ���� �& ����������� ���������� ������
'��� � � � 0� ���������� �� ��� ����%�%�� ���� �� � � !� ��(� ������#
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����%��� ��%� �%����%�� %� /���%�� 5 2 0� ��%� ����$ ��� ������� 
 ��%��%���
'%�� ��� %�+�%���%��� �����(���%�� % 

b) Existence of homogeneous structures and homogeneity.

Next we prove that the converse of Lemma 7.1.6 holds. For its proof, it is crucial to
write down the differential equations of the ��-geodesics and of the Darboux frames
along it. It is the same type of argument as in [204] (cf. also Section 3.7 and [178]).
For notational convenience, we will use the operator 
 (which entails the pieces of

information of second fundamental form, shape operator and canonical connection),
given by



� � �
� � ������� ���� � ��! � %�!�

where � � ��� ,� � � ���� � ��� � ��� .

Let � be a unit speed ��-geodesic in� with ���� � � and

	��� � �	���� � C����� � � � � 	�����

be a ��-parallel Darboux frame at ����, i.e., the Þrst, � �%�� vectors are tangent
to� . Since �� �

��
	� � �, for any - � 8� � � � � ', we have

�� �
��
	���� � �� �

��
	���� � 
 �

��
	���� � 
 �

��
	�����

But

 �

��
	���� �

�
�

.��	�����

for some constant matrix 
 � �.��� � 
 �����	����� 	�����, because 
 as well as

	� and C� are ��-parallel. Thus, in matrix notation, we have the differential equations
�� �

��
	 � 	
� (7.1)

����� ������

��� � 	 �� 	� � ��������� ��	
������ �� � ����� ���
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������ � ��
���
������ ��������� �� ��� �� / �� � #��� ����� �$���� �� ���
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���� ����

0 ��� � /� 0 �� � ��

����� ��� .��� �� � %���'%�� �%@�����%���� ���(� &��� � �� / ��� ���

� ��� �� ��� ��-������� �������� ����� . 7�+�� 0 �� ��� ��%9�� %������# �&
�� ���� ����

0 ��� � /� 0�� � � �8��

.�� �%� %� �� ���' ���� 0 �� � ��  .� ��%� ���$ ���

1 � � � �� 
 0 ��� ���0������ � � �� �����
0������
! � ��� �������
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0& 3 %� � ������ ��%���������� �& �$ ���� # �3 � 1  .�%� ���'� ���� 1 %�
��� ��� �������� ��� ���& 

������ ������ ����� 2 8 8� %� � �������%;��%�� �& ����� 5 2 85 

Let ���� �� � be the group of isometries of the ambient space �� leaving the
submanifold� invariant. The transvection group .���� ��� of �� is the group of
isometries � � ���� �� � such that for any � �� ��� coincides with the ��-parallel
transport along some piecewise differentiable curve in� from � to ����. Then the
above result implies that � � .���� ��� is transitive on� . So, for any � �� , the
�-orbit of � contains� as an open subset. Thus, Lemma 7.1.6 and Lemma 7.1.10
give the proof of the following theorem [174]

������ ������

� ��������� ��	
������ �� �� �� �� ���� ���� �� � ��	�� ��
��������
��	
������ �� �� �� ��� ��� �� �� ��
��� � ��
�������� ����������

������ �����	 .�� ���(� ������� ��� ���� �� ������ �� EA closed
submanifold of �� is a globally homogeneous submanifold of �� if and only if it
admits a homogeneous structure.F

It can be shown that, given a homogeneous structure � on � , a homogeneous
submanifold �� , which contains� as an open subset, is uniquely determined by the
punctual data ���� ���. Indeed, starting from the data ���� ���, one can construct
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a Lie subalgebra � of the Lie algebra of �� �� �. Moreover, if � is the connected
Lie subgroup of �� �� � having � as Lie algebra, �� �� � � � is a homogeneous
submanifold that contains� as an open subset (see Exercise 7.4.3; cf. [58,59]).

One can actually get rid of the datum of the homogeneous structure at �, provided
that one takes account of some iterated covariant derivative of � at �. One can
show [58] that a homogeneous submanifold is uniquely determined by the knowledge
of covariant derivatives of � at � up to the order 4 � *, where 4 is an integer, which
is the extrinsic analogue of the Singer invariant [201].
If� is a homogeneous isoparametric submanifold orbit of the isotropy represen-

tation of a symmetric space with reduced root system, then� is uniquely determined
by the data �������� (Exercise 7.4.5).

��� �������� �� ������	��
� ��
��
��

a) The space of homogeneous structures

We begin with some remarks on the space of homogeneous structures. Let �
be a homogeneous structure on a submanifold and � � � . Set � �� ��� and
3 �� ��� . Then �� � � � � ����� � � ���3 �� (see Remark 7.1.3). By using the
inner products of � and3 , we identify ���� � with G�� � (where G� is the second
exterior power of � �) and ���3 � with G�3 �.
We will omit the subscript �, writing simply � for � � in the sequel.
Hence,

� � �� � � G�� ��� �� � � G�3 �� (7.2)

In other terms, one identiÞes � with the tensor ��	 � �� ��!� "�, � � � , !� " �
� �3 .
Let us denote by ����3 � the module �� � � G�� �� � �� � � G�3 �� under the

(natural) action of &�,� � &�5� (diagonally immersed subgroup of &�, � 5�,
, � �%�� , 5 � �%�3 ). This action is the following: � � &�,� � &�5� acts on
the tensors � in ����3 � according to the formula

�� � ���	 � �� ��������	 ���� � (7.3)

&�5� acts trivially on � � �G�� � which can be thus considered as a &�,� module.
Let us set

� �� � �� � � � G�� � �
� ���3 � �� � � � G�3 � �

Then
����3 � � � �� � �� ���3 ��

First we split � �� � into irreducible factors.
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������ �����

� �� � ����
����� ���� ����� ��������	� ��������

These three irreducible factors are usually denoted by ��, �� and �	.
A proof of Theorem 7.2.1 can be found in [223] page 37. Another proof is the

following:

����� 4���%��� ��� &����'%�� &�,�-�9�%(��%��� ���

G � � � � G�� � �	 G	� ��
.�� � � � � G�� � �	 � ��

'���� G %� ��� ���%�#�����%;��%�� ��� .�� %� ��� ��������%�� �%(�� �# ���
����� �� ��� +��� �'� ��������� %� � ��G�� � D��� ���� G	� � ��� � � ���
%������%��� .���� ��� ����� ��9������ �& &�,�-�������

� �	 ,�� .�� �	 � � � G�� � ����	 � � �	 � �

� �	 ,�� G �	 � � � G�� � 

�	 G	� � �	 � �

.�� +��� ����� ��9����� %������ ��� %������%�� �& &�,�-�������

� � � G�� � �� � � � ,�� .��� (7.4)

)����(��$ ��� ��� ��� &����'%�� ��������%(� �%�����

� �
� �

,�� .�� � ,�� G 6	 ,�� G
� �

� �	 ,�� .�� �	 � � � G�� � ����	 � � �	 �
� �

G	� � � G	� �

� �
� �

'���� ��� ��&� (���%��� ��9����� %� ����� ��%��� G��� ��� %� ���>���%(�� .�%�
%��%�� ����

,�� .�� �� �,�� .�� � ,�� G� � G	� �� (7.5)

"��� �2 6� ��� �2 ?� '� ��� ��� &�,�-������� %������%��

� � � G�� � �� � � � �,�� G � ,�� .���� G	� �� (7.6)

1�� ��� (��%&# �� � $ �����%�� ��� '�%���� �& ��� ����������%�� ���������-
%�� �� ��� &�,�-������ ,�� .�� � ,�� G� ���� ,�� .�� � ,�� G %� %������%��� ��
'���$ �� ���� �2 H� %� ��� ���%��� ��%��%�� %��� %������%��� &������ 4����%��
'%�� �**5�$ '� ��(� ��� %����%+���%���
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�� �� � �� �� �� ,�� .�� � ,�� G� �	 �� G	� � 

����� �����

� ���3 � �� ��������	��

����� � � %� �� %������%��� &�,�-������ �%��� %� %� ��� �������� ����-
������%�� �& &�,� G�3 � %� �� %������%��� &�5�-������ ������� G�3 � %� ���
��>�%�� ����������%�� �& &�5� ����� 2 * * ���� &����'� &��� ��� &����'%��
�������� ������ �& ����������%�� �����#� 0& � ��� ) ��� ������ �%� �����$
 %� �� %������%��� � ������ ��� 	 %� �� %������%��� ) ������$ ���� �	
%� �� %������%��� � � ) ������ �'���� '� ������  ���� ��� 	 �� � � )
�������� �/��$ &�� %�������$ �*3$ I�� 6 86� &�� � ���& �

b) Examples

We can now give examples of homogeneous structures, dividing them into some
classes in accordance with the scheme given by the above algebraic decomposition.

����� ���	 )�%� ������� �& ����������� ����������

type of homogeneous structure class of submanifolds
0 symmetric submanifolds
� � �� � �� � �	 orbits of �-representations
� 2-symmetric submanifolds

The examples are indicated in the second column of Table 7.1. Thus, the algebraic
decomposition of the previous paragraph corresponds to geometric properties of the
submanifolds.

Symmetric submanifolds of space forms.
In Section 3.7, we studied symmetric submanifolds of space forms. We proved

that � 	 �� is locally symmetric if and only if its second fundamental form is
parallel (Theorem 3.7.2). In terms of homogeneous structures, this property can be
restated as follows:� is a symmetric submanifold of a space form �� if and only if
� admits the homogeneous structure � � � (where � is the null tensor).

Recall that any symmetric submanifolds of space forms split locally as an extrin-
sic product of extrinsic spheres and of full irreducible connected compact extrinsic
symmetric submanifold of Euclidean space ��, which is minimal in a hypersphere
of��. Then, as proved in Theorem 3.7.8

������ �����

� �� ��������	� ��������� ��
���� �$��������� ��

����� ��	
������ ��
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%������� ����� �� �� ��	�� �� �� �����������������

������ ����
 0� %� ���%��� �� �%(� � �%���� ���& �& ��%� ������ ��%��
7���,J� .������ 5 * 8? ��� ������� �� ������ �������# �K�� ��� � � &����
�� ��� ���� �& ���������� �����&�����%��� ���(%�� � %�(��%��� /%��� � %�
����%��%����# �#�����%�$� �����%�� �Æ�� ��L���%��� �� ������ ����� <# ���
D����� A������# .������$ ��� ��%�� ����������%�� �& ��� %�����# �������
�� �� � � � �� ��� ������ ���� ��� %� �� �-����������%�� �%� ���%�����
� ���� ���%��� ��� M � ��� �� � ����%�� !� ���%� ���� M %� � ����%�� &��
��� ���%�� �& � �� �� �� '��� 0�����$ �(��# �-���%� ����� ��� ��� ���� M 
��� �� ��(� ���� M ����� �-���%�� �����������# ��� ! � � � $ � M .���
�� �! � M$ &�� M %� � ����%�� &�� ��� ��%�� ����������%�� �& �� �� ���  .�,�
� 4����� �������%�%�� � � �� � ��$ '���� �� %� ��� ���� �& %�+�%���%���
�����(���%��� �� � "�� ��# � � �� ��� ������� �������� ����� ��� ������%�
���� � � ���� �� ������� ��� ������ ���� %� ��(%��� �# ��� ���%�� �&
���� A���� ���� � ! � ���� � ��� $� %� ��-������� ����� ���� � �$
��

�� � ! �� � �� � �� � $��� �

�
+

+� ���
���� � ��� $�

��
� � �

.����&��� � � ! � � � �� � $� %� �����%����� �� ��� ��� ����� �� M .�%�
���'� ���� �� � ! � M ��� ��� �-���%�� %� ���� '%�� ����%�� M .�� ������
���� &����'� &��� ��� 7���,J� .������ 5 * 8? 

Orbits of �-representations. In [178] the orbits of the �-representations are charac-
terized as the submanifolds admitting a homogeneous structure � with �� � � (i.e.,
� � � � �� � �� � �	). It is proved the following

������ �����

��� � 	� � �� ��������� ��
���� ��	
������ �� ��� #��� ��� ���!��� ���
�&�������'

�� #���� �$���� � ��
�������� ��������� � �� � �� ���� � �

�� � �� ��	�� �� �� �����������������

Recall that by Theorem 5.4.9 being an orbit of an �-representation is equivalent to
having extrinsically homogeneous normal holonomy bundle.

����� �� ������� ����� !� +��� ������ ���� ��������� 8 �����$ % � $
� ���%�� � ����������� ��������� � '%�� �� � � ��� . �� � %���'%��
�%@�����%���� ���(� %� � >�%�%�� � ��� / <# ����� 2 8 8� ����� %� ��

%������# 0 �& �� ���� ���� 0 ��� � /$ 0 �� � � � ��� 0������ � �
���

� �

��
�

�  /� � ��� ����%��%����# ����������� ������ �������# ������$ '�%�� %�
�9�%(����� �� ��%�� �� ���%� �& �� �-����������%�� 
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"�� ��� ���(����$ ����� ���� � %� �� ���%� �& �� �-����������%�� !� ���
��� ���� �����%�� �� %� ��� ���& �& I����%�%�� 6 8 H /���� ���� � � � �
� � =�����$ � � � ��� ���� � � �� �� %� � ������%(� �������%�%�� �& �  
��� �� �� ��� �����%��� �������%�� �����%���� �� ��%� ������%(� �������%�%�� 
7�+�� � �������%�� �� �� � �� �� �� �� �� ��� 

"��� ��� &����'%�� ����� '� ���� ����%�# ��� ���� �� �� ���� � �� %� �
����������� ��������� �� � �& �#� �  

����� �����

��� � � � �� 	� �� ��	�� �� �� ����������������� #��� ��� � ��

����� ��� " � �$ ���� ���� �� ���"�� %� ���-������%� ��� ����"���
%� ��� ��-������� �������� ����� � .���$ ��%�� ����� 6 8 ? '� ��(�$ &��
��# �� * � ��� $

���
�������� *� � ��

���������"����� ����"���*� �

�

�
+

+� ���
������"����� ����"���*�

��
�

�
+

+� ���
����" � ���� *��� � �"����� *��� � �

4-symmetric submanifolds.

��	
�
�
� ����� [124] ��� 7 � � 	 ������ 	� � ��	
������� �
regular s-structure �� � �� � ��
�� �� ���
������ �8����� �� �� ���� ����'

��� 8��� � � � �
��� � �� �� ������� �$�� ����� �� 8��� �
� � (�� ��� �� � � � � 8� � 8� � 8� � 8�� � � 8�����
)� �8����� �� �� ����� ����� 4 � * ����� 8� � %��� � �� ���� � 4-symmetric

submanifold�

A 4-symmetric submanifold is extrinsically homogeneous. Indeed, if � is a 4-
symmetric submanifold, let .���� �8����� be the group of the transvections, i.e.,
the group generated by the isometries 8���8��

��� of � . Then one can deÞne the
representation

0 � .���� �8����� 	 �� �� �
8���8��

��� �	 8�8
��
� �

� is an orbit of .���� �8����� in the representation 0 .

������ ����� D��� ���� ��� ���(� ��+�%�%�� �%@��� &��� ��� ��� �& 4 
/N�����; �832� 0�����$ %� ��� ��+�%�%�� �& /N�����;$ %� %� ������� %� ���%�%��
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���� ��� �����%��%�� �� ��� ������ ����� �& ��� �%@�����%�� �& ��� 4-�#�����%��
��� ��� %����%�# �% � $ &�� ��# �$ �8�������� � %�� O�%�� �����%�� 2 6 H$ ���
��� ���' ���� � 4-�#�����%� ������%&��� %� ��� ����� �& /N�����; %� �� ���%�
�& �� �-����������%�� ���� ���� �82K�� 

Let us turn to the case 4 � *, i.e. of the 2-symmetric submanifolds. Any sym-
metric submanifold is 2-symmetric, but the converse is not true. As a matter of
fact, if� is a symmetric submanifold, the set of reßections 8� with respect to the
normal spaces ��� is a regular ��structure of order 2. However, not all regu-
lar ��structures are of this kind. Indeed, one can prove that a �-structure of order
2 is generated by reßections with respect to (generally proper) subspaces of ���
( [124], [31]).

Let � be a submanifold of �� . The 4-th osculating space of � at � is the
space ��

� �� � spanned by the Þrst 4 derivatives in � of curves � � ��9� 9� 	 �
with ���� � �. Note that ��

��� � � ��� . The 4-th normal space of � at �
is the orthogonal complement � �

� �� � of ��
��� � in ����

� �� �. So, for instance,
� �
� �� � � %��� (cf. page 22). � is called nicely curved if the dimension of any

��
� �� � does not depend on �. In this case, one can deÞne the 4-th osculating bundle

(respectively: 4-th normal bundle) as the vector bundle, whose Þbres at � is ��
� �� �

(respectively� �
� �� �). A metric connection on� ��� � is given by

�	�

� $ �� proj	�
� ���

���$� � � ���� $ vector Þeld on� ��� ��

where proj is the orthogonal projection on� �
� �� �. One has higher order fundamen-

tal forms deÞned by

����� $� �� proj	�
� ���

���$� � � ���� $ vector Þeld on� ����� ��

A. Carfagna, R. Mazzocco and G. Romani proved the following characterization
of 2-symmetric submanifolds of Euclidean spaces and spheres in [31], which was
proved to hold also for hyperbolic space forms in [30].

������ �����

� ��	
������ � �� �� �� ����

����� �� ��� ��� �� �	�

�� � � ��� ���
4 � 8�

(�	�

�� is deÞned in a natural way, using the Levi-Civita connection on the tan-
gent part.)
Let �	 be the connection on �: deÞned by �	

� $ � �	�

� $, if $ � � �, 4 � 8
(and extended by linearity on any $ � �� ). Then one can deÞne on �� � �� the
connection ��	 �� ���	 �4 � 8� �

where � the Levi-Civita connection on� . Consider the tensor �	 �� ���� ���	 .
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������ ������ [59]
� ��	
������ � �� �� �� ����

����� �� ��� ��� �� �	 �� � ��
��������
��������� �� ��� ��	
������ � �

In particular, by Theorem 7.2.10, one gets that a 2-symmetric submanifold �
admits a homogeneous structure of type� . Actually, if� is a compact submanifold
of��, the converse is also true.

������ ������ [59]
��� � 	� � ��
���� ��������� ��	
������ �� ��� #��� � ��
��� � ��
���
������ ��������� � � � �� ��� ��� �� � �� ����

������

������ ������ ���������� !���" 4 /N�����; %� ��� JK�� '�� ��� +���
'�� ���� � �����%��� �������%�� �� ��� ������� ���� �& � ������%&��� .�%�
'�� ������� �� 4-�#�����%� ������%&���� �%� ��� ����� �& /N�����;$ �& :����,
2 * K� A� ��(�� ���� � 4-�#�����%� ������%&��� �& ����%���� ���� ��� ��
���������%;�� �# ��� �����# �& ��(%�� ������� ������ &���������� &���
'%�� ������ �� ��� �����%��� �������%�� �& � 4-�#�����%� ���� ��������%;%��
/��P��%�� �*�6�� .�%� ������ '�� ���%���� %� �83K� 

��� ����������� �
���	������ �� ����� �	�

In Section 5.4 we cited Thorbergsson�s Theorem 5.4.5. Namely, any irreducible
full isoparametric submanifold of �� of rank at least three is an orbit of an �-
representation.
The original proof of Thorbergsson [219] uses Tits buildings and the Homogene-

ous Slice Theorem 5.3.6. There is an alternative proof of Thorbergsson�s result using
the theory of homogeneous structures on submanifolds [174] and normal holonomy.
The idea of the proof is the following: We know that, by Theorem 7.2.5, if there
exists on a submanifold � of �� a canonical connection �� of type � , then �
is an orbit of an �-representation. Given an irreducible full isoparametric submani-
fold of Euclidean space of codimension at least three one can focalize at the same
time any two eigendistributions. The corresponding Þbres are, by the Homogene-
ous Slice Theorem, orbits of �-representations. A canonical connection �� on �
is constructed by gluing together the canonical connections that occur naturally on
these Þbres. The proof of the compatibility between these canonical connections
is based on the relation between the normal holonomy groups of the different focal
manifolds. The common eigendistributions of the shape operator of� are parallel
with respect to the canonical connection. This implies readily that � �� � �. To
show that �������� � ���� � � one has to use the geometric fact that the ��
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parallel transport along a horizontal curve with respect to some focalization equals
the�� parallel displacement in the focal manifold along the projection of the curve.

a) The canonical connection on orbits of �-representations

To motivate the deÞnition of canonical connection we now look at what properties
it must have. To this goal, we start with an isoparametric submanifold � that is
homogeneous. In this case, � is a principal orbit of an �-representation, i.e., of the
isotropy representation of a symmetric space � � ���. Suppose � � � � �.
Recall from Section 3.2 that � � �
 � ��, (with �� given by the sum of the positive
eigenspaces of �������  � ��) is an orthogonal direct sum (with respect to the
opposite of the Killing form of �) and a reductive decomposition of �. Recall also
from Section 3.6 that the common eigendistributions of the shape operator of� are

�� � �� � ���� with ��� � ��� if *; is not a root.

In particular, they correspond to positive roots ; of ��� ����� � � ��.
Consider a focal orbit� � � � <, with < � � � $��� and let

�� �� ,���� � %���

Note that �� corresponds to a sum of restricted root vectors of �������  � ��.
Denote this sum by �. Then �� � �
 � � and �� � 	 is a reductive decomposition of
the homogeneous space��, where 	 is the orthogonal complement of �� in �.

����
�
� �����

��� � 	� �� ��	�� �� �� ����������������� �� ��� �������� ���������� �� �
���������� !��� ��� �	��� ��������� ����
�������� �� � ��� ��� ��� �������
�� ��� #��� �� ��� ��� ���� ��� ���!��� ����������'

�� #�� �����������	������ �� ��� ����� �������� �� � ������������ �#���
�� ��� �� ��� ���� ���� ��� � ���

�� )� � ��� �� �� ���������� �� � ��
 �� ����������� �� ������ 
  � ��
������������� �� �� �����������	����� �� �� ��� ����

���� � ������ � � �� � ����������� �� � �

����� � ������ � < �� � ����������� �� �� �

�� * � ��� ����

�������* �� �������� �� � ���� ��

�������* �� �������� �� �� ���� ���

Next, we suppose that < �� <� � � � $����, where $� is a parallel normal Þeld
focalizing only �� (so that �� � ,����� � %��. Let '� be the curvature normal
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relative to �� and ����� be the afÞne subspace through � parallel to the vector space
spanned by '���� and �����. Set

Q�� ��
�
�4����
� 
 4 � � and 4 � ����� � ������

�
�
�

and
�� ��

�
�4����
� 
 4 � ����

�
�
�

Clearly, Q�� � ��. We claim that �� � Q��, so Q�� � ��. In fact, if��� is full,
�� is the restricted normal holonomy group of��� at <� and so �

� � Q�� follows
from the Homogeneous Slice Theorem. If ��� is not full, it is a factor of � and
obviously in this case � � � Q��.
By the Normal Holonomy Theorem, the representation of� � on ����� is an �-re-

presentation. One can thus construct, as above, a canonical connection�� on �����.
This connection is associated to the reductive decomposition of the Lie algebra of� �

with reductive complement given by a sum of restricted root vectors of �������  �
�� corresponding to ��.
Thus �� coincides with the connection induced by �� in the autoparallel subma-

nifold �����.

b) The canonical connection on isoparametric submanifolds of rank at least
three

To begin, we show how one can focalize at the same time any two eigendistri-
butions on an irreducible full isoparametric submanifold� of Euclidean space of
codimension at least three. We start with some notation. Suppose ��� ���� �� are the
common eigendistributions of the shape operator and '�� ���� '� the corresponding
curvature normals. Let $� be a parallel normal vector Þeld that focalizes only the
eigendistribution� �, and =�� be the span of '� and '�. Observe that =�� is a parallel
subbundle of the normal bundle �� .
If we choose a parallel normal vector Þeld $�� with the property that

$�� � '�� � 8 if and only if '� � =���

then $�� focalizes both�� and ��. In other words,

��� � ,������ � %��

is an autoparallel distribution that contains � � � ��, if > �� -. Let ������ be the
leaf through � of ���, which, we know, can be regarded both as a totally geodesic
submanifold of� and as a compact full isoparametric submanifold of afÞne space

������ � �� ��� � =������

with curvature normals �'�������� 
 '� � =���. The rank of ������ is one, if > � -,
and two, if > �� -. By the Homogeneous Slice Theorem, ������ is homogeneous
under the normal holonomy group of the focal manifold. So, � ����� is an orbit of an
�-representation.
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Consider now the submersions  �� � � 	 ���� and  � � � 	 ��� . Observe
that $�� � $� is constant on ���/�, since

�
������ � ������ ������� � � �

where � is the shape operator of ���/�. Thus $�� � $� deÞnes locally (on some
neighbourhood # � ��� ) a parallel normal vector Þeld on ��� , which we will
denote by 2��.
Let us Þx 2��� ����� and consider the holonomy tube ���� ���� � ����� in ���

relative to the singular normal vector 2��� �����. Because a full focal manifold
of an irreducible isoparametric submanifold determines the foliation (cf. Corol-
lary 5.3.7 of Homogeneous Slice Theorem 5.3.6 and Exercise 7.4.1) we have that
���� � �������� � ����� (and also��� � ����� ������ �����).
Locally (on # ) we also have a submersion ��� � # � ��� 	 ����# � � ����

given by � �	 � � 2�����. So we have

��� Æ  � �  ���

������ ��	�� 0& � %� � ���%;����� ���(� %� � '%�� ������ ��  �� ����
� %� ���� ���%;����� '%�� ������ ��  � ���  � Æ � %� ���%;����� '%�� ������ ��
��� 

We can now give the deÞnition of connection on � , which will turn out to be
canonical.
Let ���

� be the canonical connection on ����/� naturally induced by the restricted
normal holonomy group of ���� (which acts as an �-representation). Denote by
?�� �� �����

� the corresponding homogeneous structure of type � . For the sake
of simplicity, we will still denote by? �� the value of the tensor Þeld?�� at /. Recall
that?��

� , (� � ������/�) is a skew-symmetric endomorphism.
Decompose ��! � ��� as

� �

��
���

��� ! �

��
���

!� � ��� !� � ���/��

DeÞne the tensor Þeld? on� by

?�! �
�
��

?��

��
!� �

(again, we write ? for the value of the tensor Þeld ? at /). Observe that possibly
> � - in the above sum.
If > � - (for simplicity > � - � 8) then one operates on a curvature sphere

���/� that is a totally geodesic submanifold of the �-representation orbit � ���/� for
any 4. Take, for instance, 4 � *. By what we remarked in part (a) of this section
(where we discussed the canonical connection on orbits of �-representations), the
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connection on ���/� induced by the canonical connection ��� on ����/� coincides
with the connection relative to the isotropy representation of the isotropy group� ��

� ,
� � $��/� � $���/� on ������ � ��, where ��� is the restricted normal holonomy
group of���� .
On the other hand, ��� can be regarded as holonomy tube of���� with respect

to � � $��/� � $���/� and by Theorem 5.4.12, the normal holonomy of ��� at �
is the image in the slice representation of ���

� in ������ � ��. Thus, the canonical
connection ��� � �� on ���/�, regarded as orbit of the normal holonomy of��� ,
coincides with���. This is the key point for the proof of the following

����� �����

)� ��! � ������/�� ���� ?�! � ?��
�! �

����� 0& ��� ��������� ��! �� ���� �& (������ %� �%����%���%���%���$
���� ?�! ��%�� �� � ��� �& ����� �& �#� ?��

��
!� �> �� -� ��� �& �#� ?��

��
!� 

"�� ��� +��� ,%�� �& ����$ ����� %� ������# �� ������ "�� ��� ������$ �#
'��� '� �����,�� ���(�$ ?��

��
!� � ?��

��
!� /� '� ��� +�%���� 

As a consequence, we have that?� is a skew-symmetric endomorphism of ��� .
So, it determines a metric connection on�

�� �� ��?�

Consider the connection on ����� given by the sum�� and��. We still denote
this connection with��.

������ ��	�
 <# ��� ���(� �����$ '� �������# ��(� ���� ����/� %� ��

����������� ������%&��� �& � '%�� ������ �� ��� �������%�� �� 

Now, Thorbergsson�s Theorem 5.4.5 follows from Theorem 7.2.5, the results on
homogeneous isoparametric submanifolds of Section 5.4 and the following:

������ �����

�� �� � �������� ���������� �� ���� � �� � �

����� !� ���� ��(� ���� �8� ��� � � ��� �*� ��? � � 
�8� ��� � � <# �����%�� 2 6 *$ %� ��Æ��� �� ���' ���� ��# �%����%���%���%��
�& � %� ��-������� <# ��� ���(� :����,$ ����/� %� �� ����������� �����-
�%&��� �& � '%�� ������ �� �� )����(��$ �� %� ��-������� %� ����/� �������
��� ������ &���������� &��� �& ����/� %� ��-������� .��� ��

!�
�� � �� ���$

�%��� - %� ���%����#$ ���� � ��$ % � $ �� %� ��-������� 

�*� ��? � � 0& ��!� " � ������/� ���� ��
�?	 " � ���

�?
��
	 " � �$ �������

����/� %� �� ���%� �& �� �-����������%�� ��� �� %� %�� �����%��� �������%�� 
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��� �� ������ ���� > �� - ��� 4 �� ���� ���� ���/� %� ��� �����%��� %�
������/� 

!� +��� �����, ���� ���
�?�	 " � � �'%�� ��! � ������/�$ " � ���/�� %�

�9�%(����� �� ��� �����# ���� &�� ��# ��-������%� �� %� ���/�$ '%�� ����� �
/$ C����� � "$ %& � � ������� ��� ��-������� �������� ����� �� &��� / ��
� � ���8�$

?"	 ����
��! � � � �?�!�

D�'$ �� ��(� ��? � � ��%�� ��� ���(� ��&�������%��$ %� %� ����%�� �� ��(�
�����%�� ���'��� ������� �������� %� � ������ �%����%�� �� � &���� ���%&���
��� ������� �������� �'%�� ������ �� ��� �����%��� �������%��� �� �� ���%�
�& �� �-����������%�� ��& I����%�%�� 2 5 8� ��� ���� �����%�� �������
�������� %� ������ �%����%��� ������ 6 6 H� 

��� �� ����%��� ��� &����%;��%���  � � � 	 ��� $  �� � � 	 ���� ��� ���
����� �������%�� ��� �& ��� �� ���� ��������� �� �������# ���� �& ���� 

��� �� � ���/� ��� �����(� ���� %�� ��-������� �������� ������ ����� ��
��� �� ���� %� ����/� �'�%�� �����%�� ���/�� ����/� &����%;�� %� ��� %���

�����/���� ���$ �# I����%�%�� 2 5 8$ ������ %� ��-������� %� �����/���� �����

 ������ )����(��$ �# ����� 6 6 H$ ������ %� ��%�� ��-������� ����� ��� Æ
� � Æ ������ �  �� Æ ����� %� ����  !� ��� ����� ��%� �������� &�� ��#

���/� � ������/�$ ����%�� ���� &�� ��# � � ������/�$ Q���� %� ��-�������
����� ����� %& ��� ���# %& %� %� ��-������� �����  �� Æ����� 0� ����� '����$ ��
����/�$ ��� ��-������� �������� � � ����� �� &��� / �� � � ���8� ������ '%��
��� ��-������� �������� �� �����  �� Æ ����� <# ��� A���������� /�%��
.������ ��� ��� &��� ���� ��� ����� ��� ������ �������# �& ���� �� / �� ���
������ �������# �& ���� �� �$ '� ��(� ���� ��� �?�� � ?� 

.���$ %& ��! � ������/�$

?"	 ����
��! � � ?"�����

��! � � ��?�! � � �?�!�

.����&��� ��? � � 

������ ��	�# = ���& �& .�����������J� ������� ���� ���%�� �� ������
�������# ��� �(�%�� ��� ��� �& ����������� ����������$ &����'� &��� ���
�����,���� ������ �& ����� A�%��;� ��� R%���� �%� ���� #%���� ��������%�#
�& %�+�%�� �%����%���� %���������%� ������%&���� �36� 
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��� ��������

�������� ����� Let� be the parallel singular foliation of������ induced by a
compact irreducible isoparametric submanifold. Let� and : be two submanifolds
of the family� , � �� and choose / � : such that $ �� /� � is normal to� at �.
Prove that : coincides with the holonomy tube �� � �. Deduce that �$ � / � � is
normal to : at / and� is the holonomy tube �: ���.

�������� ����� Let� be an isoparametric submanifold. Prove that a connec-
tion�� on� with ����� � �� is canonical if and only if any eigendistribution of
the operator of� is parallel with respect to��.

�������� ����� (cf. [58,59]) Let � be a homogeneous structure of a submani-
fold of ��. Fix � � � and consider the pair ���� ���. The purpose of this exercise
is to describe how one can associate with ���� ��� (for any � �� ) a Lie subalgebra
� of the Lie algebra of ����� and further a homogeneous submanifold that contains
� as an open subset.
To simplify the notation, we set � �� ��, � �� ��. Let ���� be a curve in� , with

���� � �, C���� � �. Denote by ���� the isometry of �� �� � ��� � ��� into

���� �� � ����� � ����� determined by the parallel transport with respect to ��
along �. For any �, there exists a unique isometry 0 � �� �� � such that

0��� � ����� 0�� � �����

(a) Prove that the tangent vector at %� to the curve 0 gives an element S� of the
Lie algebra of �� �� � that has the following expression in terms of � and �: Let
! � �� � ��� � ��� and set ! ��� �� ����! . The transformation S� has linear
part =S� given by

=S�! � ��! � ���� ! ��� 	�� � 
�!

where ! � (! �) is the tangential (normal) component of ! . The translational part
of S� is � �	 �.
(b) Let � be the Lie algebra spanned by the ���� and � the span of the S�. Set

� � ����

Prove that � is a Lie subalgebra of the Lie algebra of ����� with Lie brackets

�S��S�� � S�����
� � �����

� �����S�� � S
�#�
�

�

� ����� ���$� � ��
�#�
�$

� ��
� �#�
$

�
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(Remark that � ����� ���$� � ��
�#�
�$

� ��
� �#�
$

follows from ���� � �� � �, which

is a consequence � or better an integrability condition � of the equations ��� � �,��� � �.)
(c) Let � be the connected Lie subgroup of �� �� � having � as Lie algebra. Prove

that �� �� � � � is a homogeneous submanifold that contains� as an open subset.
Hint: modify the proof of Lemma 7.1.10.
(d) Generalize the above to a submanifold of a space form.

�������� ����� (cf. [125]) Let � � � � � be a principal orbit of an �-
representation (i.e., a homogeneous isoparametric submanifold) corresponding to a
symmetric
space � � ��� with a reduced root system (i.e., if ; is a positive root, *; is
not).
Prove that the canonical connection�� associated with the reductive decomposi-

tion � � �
 � �� (see Section 3.2 and part (a) of Section 7.3) agrees with the projec-
tion connection �� deÞned by projecting the Levi-Civita connection on the various
curvature distributions, i.e.,

	��! ��

��
���

���!����

where ����� denotes the projection on ��.

�������� ����� Let� � � �� be a principal orbit of an �-representation (i.e., a
homogeneous isoparametric submanifold) corresponding to a symmetric space � �
��� with a reduced root system. Let 	� be the homogeneous structure relative to the
projection connection 	� of Exercise 7.4.4.
Show that

	��� � ��>+� ��
��
�
���

����
�
� � � ������ � � ������ > �� -

and that
	��� � �� �� � � ������

Using Exercise 7.4.3, deduce that� is uniquely determined by the values at � of the
second fundamental form and its covariant derivative.

�������� ����� Let � be an embedded connected submanifold of �� and let
� � �� � ����� � ��� � � �� be its family of extrinsic isometries. Assume that
� acts transitively on� . Let � �� and assume that the subgroup) of the isotropy
group given by

) � �� � �� � ��� ���� � %�����
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has no Þxed points in ��� . Let

� � � ��

be a reductive decomposition of the Lie algebra � of �, where � is the Lie algebra of
�� and � an =�����-invariant subspace (� is not assumed to be connected). Let �
be the homogeneous structure on� associated to this decomposition (observe that
� is also the Lie algebra of the connected component of the identity�� of �, but it
is important for the applications to extrinsic 4-symmetric submanifolds in the sense
of Sánchez not to assume that � is connected). Prove that � is of type � and so�
is an orbit of an �-representation. Hint: if 5 � ) then �� $� 2� � ���5$� 52� �
��� $� 2� for all� � ��� , $� 2 � ��� . Hence, ��������$� 2� � �. So, ��$� 2�
is zero if� is perpendicular to the Þxed vectors of 5 in ��� .



������� �

��������	
�� 	� ���������

�����	
��

In this chapter, we present basic material about submanifolds of Riemannian man-
ifolds. The core of submanifold geometry is formed by the Þrst order equations of
Gauss and Weingarten and the second order equations of Gauss, Codazzi and Ricci.
Since we already discussed these equations in detail for space forms, we present
them in Section 8.1 without proof.

In Section 8.2, we discuss an important method for the study of submanifolds
based on Jacobi vector Þelds. The basic idea is to study the geometric behaviour of
a submanifold by �pushing it� in certain normal directions.

One of the fundamental objects on a Riemannian manifold is geodesics. If all
geodesics in a submanifold are geodesics in the ambient manifold as well, then the
submanifold is called totally geodesic. In a sense, totally geodesic submanifolds are
the simplest examples of submanifolds. For space forms, we discussed this topic in
2.4. The fundamental problem in a general Riemannian manifold is the existence
problem. It has been solved by E. Cartan and, in Section 8.3, we present a proof
of his result. We also show that the Þxed points of isometries form totally geodesic
submanifolds. Finally, we discuss the issue of rigidity for totally geodesic submani-
folds.

In Section 8.4, we discuss the relation between totally umbilical submanifolds
and extrinsic spheres. A submanifold is totally umbilical if the second fundamental
form is proportional to the mean curvature vector Þeld and it is an extrinsic sphere
if, in addition, the mean curvature vector Þeld is nonzero and parallel in the normal
bundle. Both concepts generalize the idea of Euclidean spheres. As geodesics can be
used to characterize totally geodesic submanifolds, we will use circles to characterize
extrinsic spheres.

Symmetric submanifolds in submanifold geometry are the analogues of symmetric
manifolds in Riemannian geometry. Roughly speaking, a submanifold is symmetric
if the reßections in the normal spaces leave the submanifold invariant. In 8.5, we
show that the second fundamental form of a symmetric submanifold is parallel and
discuss brießy more geometric facts about such submanifolds.
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��� �����	
���� �	� ��� ��	����	�� �����
�	�

In this section, we present the basic equations from submanifold theory in Rie-
mannian geometry. Let � be a submanifold of a Riemannian manifold �� . We
will use the following notations: The dimensions of� and �� will be denoted by
� and � respectively. The Riemannian metric on �� and the induced Riemann-
ian metric on � will be denoted by ��� ��. The Levi Civita covariant derivatives
on �� and � are �� and �, respectively. By �� and � we denote the Riemannian
curvature tensors of �� and � . We recall that we are using the sign convention
����� �� � ����������������� ��. The tangent bundle and the normal
bundle of � will be denoted by 	� and 
� . An analogous argument, as in the
case of space forms, leads to the following fundamental equations for submanifolds
in Riemannian geometry:

������� ��	�	

��� � �� � �����	
��� �� � �
���		
�	 ��	
��� �� � ���	 ��� ����
	�
�����
�	� ��� ��� � ������ ���� ���� ��� ��	��	� �� � �	� � ������
���� ��  	���� �� � �
Gauss formula:

���� � ��� � ����� � �

Weingarten formula:
���� � ���� ���

�� �

Gauss equation:

� ������ ���� � � ������ ���� ������� ��� ����� ����������� ����� �� �

Codazzi equation:

� ������ ���� � ���

������ ��� ���

�������� �

Ricci equation:

� ������ ��� � � ������� ��� � � ����� ������ � �

Here � denotes the second fundamental form of� and � is the shape operator
of� . Since� and �� are torsion-free connections, � is symmetric, i.e., ����� � �
������. The second fundamental form and the shape operator are related by

������ �� �� � ������ � �
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The vector Þeld ��
�� is the normal component of ����, and �� is the normal co-

variant derivative of � . The 
� -valued tensor Þeld ��� on � is the covariant
derivative of � in the normal bundle of� deÞned by

���

������ �� � ��

����� �� � ������ �� � �������� �

Finally, �� is the curvature tensor of the normal bundle of� deÞned by

������ �� � ��

��
�

� � ���

��
�

�� ���

���� �� �

��� ���� ��
	�� �	� �����
 ������ ����

The eigenvalues of the shape operator are called the principal curvatures of the
submanifold, and corresponding eigenvectors are called principal curvature vectors.
A fundamental technique in submanifold geometry is to study the behaviour of sub-
manifolds by displacing them in normal directions at various distances. The main
tool for calculating the principal curvatures and principal curvature spaces of the
displaced submanifolds is the theory of Jacobi vector Þelds.

a)� -Jacobi vector Þelds

Let � � � � �� be a geodesic in �� parametrized by arc length and with 	 � �,
� �� ��	� � � , and 
��	� � 
�� . Suppose � ��� �� � ����� is a smooth geodesic
variation of � � �� with ���� � ���	� � � and ���� � 
���	� � 
����� for all �.
The Jacobi vector Þeld � along � induced by this geodesic variation is determined
by the initial values

� �	� �
�

��

����
���

� ��� 	� � ���	� � ���� � 
��	� � 	��

and, using the Weingarten formula,
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����
���

�

��
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���	� �
�

��

����
���

���� � ��� ���� � ������� �	� ���

� ���� �

Thus, the initial values of � satisfy

� �	� � 	
���� �� � ��	� � � �
���� �	� � 

���� �

A Jacobi vector Þeld � along � whose initial values satisfy these two conditions is
called an� -Jacobi vector Þeld. Thus� -Jacobi vector Þelds correspond to geodesic
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variations of geodesics intersecting� perpendicularly, roughly speaking. As a Ja-
cobi vector Þeld � along � is uniquely determined by its values � �	� and � ��	� we
easily see that� -Jacobi vector Þelds along � form an �-dimensional linear subspace
of the ��-dimensional vector space of all Jacobi vector Þelds along �. Obviously,
� ��� � � 
���� is an� -Jacobi vector Þeld along �. Since this particular Jacobi vector
Þeld has no special relevance, we deÞne ������ as the �� � ��-dimensional vector
space consisting of all� -Jacobi vector Þelds along � which are perpendicular to the
� -Jacobi vector Þeld � �� � 
����.

b) Parallel displacement and focal points of hypersurfaces

Let� be a hypersurface of a Riemannian manifold �� and � a unit normal vec-
tor Þeld on � . Our aim is to study the displacement �� of � in direction � at
distance �. In general,�� is not a submanifold of� . We will see how one can de-
termine, by means of� -Jacobi vector Þelds, whether�� is a submanifold. If�� is
a submanifold, we want to calculate the principal curvatures and the corresponding
principal curvature vectors of�� . Since these are all local objects, there is no loss
of generality when we assume that � is, in fact, globally deÞned on� .

Let � be a positive real number and

�� �� � �� � � �� �������� �

where ��� denotes the exponential map of the ambient space �� . The smoothmap��

parametrizes the parallel displacement�� of� in direction � at distance �. If �� is
not complete we might have to restrict�� to the subset of� on which�� is deÞned.
Obviously,�� is an immersed submanifold of �� if and only if �� is an immersion.
But it might happen that�� is a submanifold of �� with higher codimension. Just
imagine a cylinder with radius � and one-dimensional axis� in��. If � is the inward
unit normal vector Þeld on the cylinder, then parallel displacement of the cylinder in
direction � at distance � is the axis �, a smooth embedded submanifold of ��. In
general, such submanifolds are called focal manifolds of� and arise when �� has
constant rank less than ���, because then, locally,�� is a submersion onto a smooth
submanifold of �� whose dimension is equal to the rank of ��. So the Þrst task is to
calculate the differential of ��.

Let � � � and � � ��� � � �� ��������. Since � has constant length and the
normal bundle has rank one, ������ consists of Jacobi vector Þelds � along � with
initial values � �	� � 	�� and � ��	� � ����� �	�. Let � � ������ and � be a
smooth curve in� with ��	� � � and 
��	� � � �	�. Then

� ��� �� � �����������

is a smooth geodesic variation of � consisting of geodesics of �� intersecting� per-
pendicularly, and the corresponding� -Jacobi vector Þeld is � . For the differential
���� of �� at � we get

����� �	� � ���� 
��	� �
�

��

����
���

����������� � � ��� �
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Thus, �� is not immersive at � if and only if there exists some nonzero � -Jacobi
vector Þeld � � ������ with � ��� � 	. In such a case, ����� is called a focal
point of � along �, and the dimension of the kernel of � ��� is called multiplicity
of the focal point. If ����� is a focal point of � along �, the multiplicity of it is
the dimension of the linear subspace of ������ consisting of all � � ������ with
� ��� � 	. The geometric interpretation of Jacobi vector Þelds in terms of geodesic
variations implies that����� is a focal point of� along � if and only if there exists
a nontrivial geodesic variation of �, all of whose geodesics intersect� orthogonally
and that meet inÞnitesimally at �����. The most obvious picture of a focal point is
that of the center of a sphere, where the geodesics intersecting the sphere orthogo-
nally meet. If there exists a positive integer � such that ����� is a focal point of�
along ��� with multiplicity � for all � in some open neighbourhood � of �, then, if
� is sufÞciently small, �� 	� parametrizes an embedded �� � � � ��-dimensional
submanifold � of �� that is called focal manifold of � in �� . If ����� is not a
focal point of� along �, then ��� is immersive in some open neighbourhood � of
� and we conclude that, if � is sufÞciently small, �� 	� parametrizes an embedded
hypersurface of �� , which is called equidistant hypersurface to � in �� . In both
cases, the vector 
���� is a unit normal vector of the focal manifold resp. equidistant
hypersurface at �����.

Our next aim is to calculate the shape operator of the focal manifold resp. equidis-
tant hypersurface with respect to 
����. We denote the focal manifold resp. equidis-
tant hypersurface by�� (in general only a part of the original� �).

Let � � � and �� �� � be as above. Then �� � �� Æ � is a curve in �� with

���	� � ���� 
��	� � � ���, and we deÞne a unit normal vector Þeld � of�� along
�� by ���� � 
������ ���. We denote by �

� the shape operator of�� . Then, using
the Weingarten formula, we obtain

� ���� �
�
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���

�

��

����
	��

� ��� �� �
�

��

����
���

���� � 
�

��	�

� ���
������ ��� � ����	��

� �

where ���� denotes the orthogonal projection onto 
 
����� . Thus, if � is an � -
Jacobi vector Þeld along � in ������, the shape operator �� of�� satisÞes

��
�
���� ��� � ��� ������ �

where ���� denotes the orthogonal projection onto 	 
����� . If, in particular,�� is
a hypersurface of �� , then � ���� is tangent to�� because � is perpendicular to 
�
and the normal space of�� at ���� is spanned by 
����. In summary,
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In case �� has codimension one, there is another efÞcient way to describe the
shape operator��. In the previous situation, we denote by �� the parallel subbundle
of the tangent bundle of �� along � that is deÞned by the orthogonal complements
of�
���� in 	
�	� �� , and put ���
 �� ��
 	�� � ����� 
�� 
�	��. Let� be the ������-
valued tensor Þeld along � given by

��� � ���
 Æ� � 	 � ��	� � ��� � ���	� � ���� �

If � � 	�� and  � is the parallel vector Þeld along � with  ��	� � �, then
� � � � is the Jacobi vector Þeld along � with initial values � �	� � � and
� ��	� � �����. Thus ���� is a focal point of � along � if and only if ���� is
singular. If�� has codimension one, then���� is regular, and we obtain
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Therefore
��

�
��� � ������ Æ��
��� �

c) Tubes and focal manifolds of submanifolds with codimension greater than
one

We now turn to the case where� is a submanifold of �� with codimension greater
than one. Let � � �	 and 

� the unit normal sphere bundle over� , that is, the
sphere bundle over� consisting of unit normal vectors of� . We put

�� �� 
������� 	 � � 

�� �

In general, �� is not a submanifold of �� . But if, for instance, � is compact and
embedded, then�� is a compact embedded hypersurface of �� for sufÞciently small
�. If�� is a hypersurface of �� we call�� tubewith radius � around� . And if��

is a submanifold of �� with codimension greater than one, we call it focal manifold
of� .

Let � � � and � � � � �� be a geodesic parametrized by arc length and with
��	� � � and 
��	� � 

� . As � has codimension greater than one the vector
space ������ naturally splits into the direct sum

������ � ������� � �������
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of linear subspaces

������� �� 
� � ������ 	 � �	� � 	�� � � ��	� � �� �
���� �	��

and
������� �� 
� � ������ 	 � �	� � 	 � � ��	� � 
��� �

� -Jacobi vector Þelds in ������� arise from geodesic variations all of whose
geodesics intersect� perpendicularly at the single point �. We say that ���� is a fo-
cal point of� along � if there exists a nonzero� -Jacobi vector Þeld � � ������
with � ��� � 	. If ���� is a focal point of� along � then the dimension of the linear
subspace 
� � ������ 	 � ��� � 	� of ������ is called multiplicity of the focal
point. A focal point arising from � � ������� is, in fact, a conjugate point of � in
�� along �.

We now assume that �� is a submanifold of �� . Let � be a smooth curve in


� with ��	� � 
��	�. Then � ��� �� � ���������� is a smooth geodesic variation
of � consisting of geodesics intersecting � perpendicularly. Let � be the corre-
sponding� -Jacobi vector Þeld. � is determined by the initial values � �	� � 
��	�
and � ��	� � ���	�, where � � � �� � ��� 	� � � and � is considered as a vector
Þeld along �. Since � is of unit length � belongs to ������. The curve �� � � ��
���������� is smooth in�� and hence � ��� � 
���	� � 	
�����. As any tangent
vector of�� at ���� arises in this manner we have
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� ��� 	 � � ������� �

Denote by �� the shape operator of��. A calculation shows that
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�
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for all � � ������, where ���� denotes the component tangent to��. In case��

is a tube, � ���� is always tangent to�� . We summarize this in
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Of particular interest is the case of� consisting of a single point 
��, � � �� . For
sufÞciently small � � �	, the set �� is a compact embedded hypersurface of �� ,
a so-called geodesic hypersphere of �� . �� is sometimes called a distance sphere
in �� because, at least for � small enough, it consists of points in �� with distance
� to �. When� is a point, ������ consists of Jacobi vector Þelds � along � with
� �	� � 	 and � ��	� orthogonal to 
��	�, and the shape operator �� of�� is given
by ��

�
���� ��� � �� ����.
As before, we present another efÞcient way of describing the shape operator of

a tube. In the set-up of Theorem 8.2.2, suppose �� is a tube. We decompose ���
orthogonally ��� � 	�� � �
��  ��� �.
Let � be the ������-valued tensor Þeld along �, which is the solution of the

Jacobi equation

��� � ���
 Æ� � 	 � ��	� �

�
��� 	
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The matrix decomposition corresponds to the above decomposition of ��� . A similar
argument as in the previous case shows that the shape operator ��

�
��� of �� with
respect to 
���� is given by

��
�
��� � ������ Æ��
��� �

Note that���� is singular if and only if ���� is a focal point of� along �.

��� ����� ������
� �����	
����

Let � be a submanifold of a Riemannian manifold �� . Recall that� is called
totally geodesic in �� if every geodesic in� is also a geodesic in the ambient ma-
nifold �� . This is equivalent to the vanishing of the second fundamental form of
� .

a) Existence of totally geodesic submanifolds

Let � be a point in �� and � a linear subspace of 	� �� . Is there a totally geodesic
submanifold� of �� with � �� and 	�� � � ? Suppose there is such a subma-
nifold� . Since the exponential map ���� � 	� �� � �� maps straight lines through
the origin 	 � 	� �� to geodesics in �� there is an open neighbourhood � of 	 in
	� �� such that ���� maps � � diffeomorphically onto some open neighbourhood
of � in� . This implies that� is uniquely determined near � and that any totally
geodesic submanifold of �� containing � and tangent to � is contained as an open
part in a maximal one with this property. This feature is known as rigidity of totally
geodesic submanifolds.
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We have seen that a totally geodesic submanifold arises necessarily as the image
under the exponential map of some open part of a linear subspace of the tangent
space. So, for the existence of a totally geodesic submanifold with given initial data
��� � �, one has to investigate whether such an image is totally geodesic. The Gauss
formula readily implies that the second fundamental form at � vanishes. When does
it vanish at all other points? An answer was given by E. Cartan [36].
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If the manifold �� is real analytic, the assumption on the geodesics can be replaced
by the local property that the Riemannian curvature tensor ��� and all its covariant
derivatives � ��� ����, � � �, at � preserve � .

A global version of the existence of complete totally geodesic immersed submani-
folds of complete Riemannian manifolds has been obtained by Hermann [100] using
once-broken geodesics. Let � � �� and � be a linear subspace of 	� �� . Further, let
� � �	� *� � �� be a once-broken geodesic starting at � and broken at �� � �	� *�.
FollowingHermann, we say that � is � -admissible if 
���� lies in the parallel translate
of � along � from � to ���� for all � � �	� *�, and if ������ *�� is contained in some
convex neighbourhood of �����. It is convenient to encompass smooth geodesics
among once-broken geodesics.
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We will discuss the existence problem for totally geodesic submanifolds of sym-
metric spaces in Section 9.1.

b) Fixed point sets of isometries

An important class of totally geodesic submanifolds is given by Þxed point sets of
isometries.
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This proposition is of particular interest when # is an isometric involution on �� .
If ��� is non-empty, then # is the reßection of �� in each connected component of
��� . An interesting example is given by the geodesic symmetry �� of a Riemannian
symmetric space �� at a given point � � �� . The point � is an isolated Þxed point
of ��. Each other connected component of the Þxed point set of �� is called a polar
of �� (with respect to �). Polars contain deep information about the geometry and
topology of a symmetric space, see, for instance, [147�151].

c) The congruence problem for totally geodesic submanifolds

Another fundamental problem concerning totally geodesic submanifolds is con-
gruence. By this we mean the following: Given two Riemannian manifolds� and
�� and two totally geodesic isometric immersions #
� #� � � � �� , is there an
isometry ) of �� so that #
 � ) Æ #�? If such a ) exists, the two immersions are said
to be congruent. A basic problem is to determine the congruence classes of totally
geodesic isometric immersions from a Þxed Riemannian manifold� into another
Þxed Riemannian manifold �� . This is, in general, a rather difÞcult problem and
has been solved so far only for some particular ambient spaces �� , for instance ��,
rank-one symmetric spaces, real [52] and complex [15] two-plane Grassmannians.
Even in Grassmannians, the congruence problem seems to be still open except for
the above-mentioned special cases.
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Recall that a submanifold� of a Riemannian manifold �� is said to be umbilical
in the direction � if the shape operator�� of� in the direction of the normal vector
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� is a multiple of the identity. If� is umbilical in any normal direction �, then� is
called a totally umbilical submanifold of �� . The mean curvature vector Þeld - of
an �-dimensional submanifold� of �� is deÞned by

- ��
�

�
�!��� �

and . �� �-� is the mean curvature function of � . � is totally umbilical if and
only if

����� � � ���� �- (8.1)

for all vector Þelds��� on� . A totally umbilical submanifold with nonzero paral-
lel mean curvature vector Þeld is called extrinsic sphere. The Codazzi equation pro-
vides a criterion to tell when a totally umbilical submanifold is an extrinsic sphere.

a) When is a totally umbilical submanifold an extrinsic sphere?
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In a space of constant curvature, the tangent bundle of any submanifold is curvatu-
re-invariant. Thus, Proposition 8.4.1 implies
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b) Circles

A smooth curve � � � � �� parametrized by arc length is called a circle in �� if it
parametrizes a one-dimensional extrinsic sphere in �� . Let � � � � �� be a smooth
curve parametrized by arc length and� � ����, which is an immersed submanifold
of �� . Then
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by the Gauss formula, and the Weingarten formula implies
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This shows that a smooth curve � � � � �� parametrized by arc length is a circle in
�� if and only if it satisÞes the third order differential equation
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This equation says that a circle has non-vanishing constant Þrst geodesic curvature
and vanishing higher geodesic curvatures. Standard arguments from theory of differ-
ential equations imply the following existence and uniqueness result about circles,
which establishes the classiÞcation of one-dimensional extrinsic spheres in Riemann-
ian manifolds.
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c) Characterization of extrinsic spheres by circles

A submanifold� of a Riemannian manifold �� is totally geodesic if and only if
any geodesic in� is also a geodesic in �� . For extrinsic spheres, we have a similar
characterization by using circles [171].
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The previous two results show that an extrinsic sphere is locally uniquely deter-
mined by its tangent space at a point and the mean curvature normal at that point. In
this sense, extrinsic spheres are rigid. The discussion also indicates how to construct
a given extrinsic sphere geometrically. Fix a point � in an extrinsic sphere � of a
Riemannian manifold �� . The Gauss formula implies that every geodesic in� is
a circle in �� . Thus, � can be reconstructed by running along every circle � in ��
with initial values ��	� � �, 
��	� � 	�� and � �� �
 
���	� � -�.

��" �������
� �����	
����

Recall that a submanifold� of a Riemannian manifold �� is called a symmetric
submanifold if for each � �� there exists an isometry 1� of �� with

1���� � � � 1��� � �� �� 1��� �

�
�� � � � 	��
� � � � 
��

�

In this section, we want to study the relation between symmetry of submanifolds
and parallelity of the second fundamental form. Let� be a symmetric submanifold
of a Riemannian manifold �� . For 1� as above, the connected component of the
Þxed point set of 1� containing � is a totally geodesic submanifold of �� whose
tangent space at � coincides with the normal space of � at �. We call the latter
normal submanifold of � at � and denote it by � �

� . Note that �
�
� is just the

image under the exponential map of �� of the normal space 
�� of� at �. Thus,
a necessary condition for a submanifold to be symmetric is that there exists a totally
geodesic submanifold of the ambient space tangent to each normal space. This is
no restriction in a space of constant curvature, but quite restrictive in more general
Riemannian manifolds like symmetric spaces. It is also clear from the very deÞnition
that every symmetric submanifold is a Riemannian symmetric space. In particular,
symmetric submanifolds are complete. Let �
� �� be two distinct points in� . Then
there exists a geodesic � in � connecting �
 and ��. The geodesic symmetry 1�
at the midpoint � on � between �
 and �� maps ��

��
to��

��
, and vice versa. This

shows that any two normal submanifolds� �
��
and��

��
are congruent to each other

under an isometry of �� . Thus, we can talk about the congruence class of normal
submanifolds associated to� at points in� , any representative of which we simply
denote by��.

Any isometry of �� is an afÞne map with respect to the Levi Civita covariant
derivative. Using the Gauss formula, we therefore get

���
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for all � � � and ���� � � 	�� . Thus, the second fundamental form of a sym-
metric submanifold is parallel. The Codazzi equation then implies that each tan-
gent space of� is curvature-invariant, that is, ���	���	�� �	�� � 	�� for all
� �� . We summarize this in
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A natural question arising from this proposition is whether parallelity of the sec-
ond fundamental form implies symmetry of the submanifold. Since the Þrst condi-
tion is local whereas the second one is global, this question makes sense only for
some kind of local symmetry. To make this precise, we introduce the notion of a
locally symmetric submanifold� of a Riemannian manifold �� by requiring that
for each � � � there exists an isometry 1� on some open neighbourhood� of � in
� with

1���� � � � 1��� � � � �� 1��� �

�
�� �� � 	��
� �� � 
��

�

For submanifolds of spaces of constant curvature, local symmetry is equivalent to
the parallelity of the second fundamental form [204]. But this result does not gen-
eralize to more general Riemannian manifolds. For example, a totally geodesic real
projective space �2� in complex projective space �2 � is not a locally symmetric
submanifold for � 3 �, but obviously has parallel second fundamental form. We
will say more about symmetric submanifolds of symmetric spaces in Section 9.3.

��# $!���
���

����� !� ��"�	 Let # �� � + and ) � + � 2 be isometric immersions and
let 4 be the composition ) Æ # . Let �� , �� and �� be the second fundamental forms
of # , ) and 4 respectively. Prove that for any � �� , "� ( � 	��

���"� (� � �� �"� (� � ���#��"� #��(� �
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����� !� ��"�
 Prove that a totally geodesic �2 � in �2 � is not a symmetric
submanifold if � 3 �.

����� !� ��"�� The present exercise generalizes the well-known fact that the
intersection of the Þxed point set of an isometry with an invariant submanifold is
totally geodesic in the submanifold. Let 2 be a Riemannian manifold and let 2
,
2� and 2
  2� be submanifolds with 2
 totally geodesic. Assume that 	�2� is
invariant under the reßection at 	�2
 for any 5 � 2
2�. Then show that2
2� is
totally geodesic in 2�. Furthermore, the shape operator�� of 2� leaves 	��2
2��
invariant for any 5 � 2
  2� and any  � 
�2�  	�2
.

����� !� ��"�� Using Lemma 8.3.2 prove the Ambrose-Singer Theorem on
Riemannian holonomy. Adapt the argument for a general connection.



������� �

��������	
�� 	� �������� ������

In this chapter, we study submanifolds of Riemannian symmetric spaces: totally
geodesic submanifolds (Section 9.1), totally umbilical submanifolds and extrinsic
spheres (Section 9.2), symmetric submanifolds (Section 9.3), submanifoldswith par-
allel second fundamental form (Section 9.4) and homogeneous hypersurfaces (Sec-
tion 9.5). We mainly discuss the classiÞcation problems for these submanifolds.
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Throughout this section, we denote a Riemannian symmetric space by �� . The
corresponding Riemannian symmetric pair is ����� with � � � �� �� � and � the
isotropy group at some point � � �� . We denote the corresponding Cartan decom-
position of � by � � �� � and identify � �

�� with� in the usual way.

a) Lie triple systems

Let 	 be a linear subspace of �� �� . The Riemannian curvature tensor of �� is par-
allel. Thus, from Theorem 8.3.1, we see that there exists a totally geodesic subma-
nifold� of �� with � � � and ��� � 	 if and only if 	 is a curvature-invariant
subspace of ��

�� , that is, if �
�	� 	 �	 � 	 . Since the Riemannian curvature tensor
of �� at � is given by

�
����� � � ������ �� �

for all����  � � � ��
�� , we get
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Since every Riemannian locally symmetric space is locally isometric to a Rie-
mannian symmetric space, one can apply this criterion also for the local existence
of totally geodesic submanifolds in Riemannian locally symmetric spaces. General-
izations to more general classes of homogeneous spaces have been obtained by A.A.
Sagle [194] and K. Tsukada [229].

b) Construction of a totally geodesic submanifold from a Lie triple system

How can we actually construct a totally geodesic submanifold from a given Lie
triple system? Suppose that 	 � � is a Lie triple system and recall that �	� 	 �
denotes the linear subspace of �, which is spanned by all vectors of the form ���� �
with��� � 	 . We deÞne

�� �� �	� 	 �� 	

and claim that �� is a Lie subalgebra of �. In fact, if ��� � 	 , then ���� � �
�	� 	 � � ��. Next, if����  � 	 , then ����� �� � � 	 � �� since 	 is a Lie triple
system. Since �	� 	 � is spanned by vectors of the form ���� � it follows that

��	� 	 �� 	 � � 	 � �� �

Eventually, let���� �� � 	 . Then, using the Jacobi identity for the Lie bracket,
we obtain

����� �� ��� �� � ����� ��� ������ ����� �� ��� � �
� ���	� 	 �� 	 �� 	 � � �	� 	 � � �� �

and hence
��	� 	 �� �	� 	 �� � �	� 	 � � �� �

Altogether, it now follows that � � is a Lie subalgebra of �. Let � be the Cartan
involution on � corresponding to the Cartan decomposition � � � � �. For all
����  � 	 we have

������ � � � � ������ �� � ��� � ������ ��� �� � ��� � ���� ��  � �� �

This shows that �� is invariant under �.

Let �� be the connected Lie subgroup of � with Lie algebra ��. Then �� is in-
variant under the corresponding Cartan involution on �. Let � �� � � � � be the
orbit of the action of � � on �� containing � and denote by 	
� the Lie exponential
map from � to �. For every � � 	 the curve � �� 	
����� � � is a geodesic in ��
and contained in� , hence also a geodesic in� . It follows from the Gauss formula



Submanifolds of Symmetric Spaces 245

that the second fundamental form of� at � vanishes. Since �� acts transitively on
� , the second fundamental form of� vanishes everywhere and it follows that�
is totally geodesic in �� . This shows that the maximal totally geodesic submanifold
of �� tangent to 	 is homogeneous and, in particular, complete. Note that � is
not embedded in general. For instance, choose for 	 a line corresponding to a dense
geodesic on a ßat torus. One can say even more about� . The geodesic symmetry ��
of �� at � reßects in � each geodesic in �� through �, hence leaves� invariant and
its restriction to� is an isometric geodesic symmetry. Thus� is also a Riemannian
symmetric space.

Conversely, suppose that �� is a connected Lie subgroup of � that is invariant
under the Cartan involution. Then the Lie algebra � � of�� has the direct sum decom-
position

�� � ��� � �� � ��� ��� �

We deÞne 	 �� ���� and claim that 	 is a Lie triple system. Indeed, let����  �
	 . Then����  are in ��, and since �� is a Lie subalgebra of �, also ����� �� � � ��.
Also,����  are in�, and hence

����� �� � � ���������� ����� � � �

Altogether, this implies that ����� �� � � � � � � � 	 , which shows that 	 is a
Lie triple system. Let � be the connected Lie subgroup of � that is determined by
the Lie triple system 	 as described above. Then the orbit � � � is the connected,
complete, totally geodesic submanifold of �� with � � � � � and ���� � �� � 	 .
The Lie algebra � of� satisÞes

� � �	� 	 �� 	 � ��� ��� �� ���� ��� ��� � ��� � ��� ��� ��� � �� �

From this, we conclude that� � � � �� � �. Since � � � is complete and connected,
and as

����� � �� � ����� ��� � ��	 � ���� � �� �

we see that�� �� � � ��, which implies that�� �� is totally geodesic. We summarize
this in
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The following example illustrates how this result can be used for the construction
of totally geodesic submanifolds of compact Lie groups. Recall that any connected
compact Lie group admits a biinvariant Riemannian metric, turning it into a symmet-
ric space.
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What is the least codimension of a totally geodesic submanifold of a given sym-
metric space? This problem has been studied by A.L. Onishchik [181], who called
this minimal codimension the index of the symmetric space. He classiÞed all sym-
metric spaces of index one and two. In particular, he proved
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c) The classiÞcation problem

The classiÞcation problem for totally geodesic submanifolds in Riemannian sym-
metric spaces can therefore be reduced to the classiÞcation problem of Lie triple
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systems or �-invariant Lie subgroups. Unfortunately, these are very difÞcult alge-
braic problems and not helpful to solve the original problem.

Another approach to the classiÞcation problem of totally geodesic submanifolds
in Riemannian symmetric spaces of compact type has been suggested by B.Y. Chen
and T. Nagano [53]. Due to the fact that every totally geodesic submanifold of a
Riemannian symmetric space is contained in a complete one, which, in addition, is
again a Riemannian symmetric space, it is sufÞcient to classify the maximal totally
geodesic submanifolds. Recall that a totally geodesic submanifold� of �� is called
maximal if there exists no totally geodesic submanifold� � of �� with� � � �,
� � � � and �� � � �. So the Þrst question one has to solve is: Given a Riemannian
symmetric space �� , which Riemannian symmetric spaces can be realized in �� as a
maximal totally geodesic submanifold?

Chen and Nagano approached this problem by means of the �������-method.
The idea of this method is as follows. According to Proposition 8.3.4, each con-
nected component of the Þxed point set of the geodesic symmetry �� of �� at � is a
totally geodesic submanifold of �� . If � � �� is a point different from � and con-
tained in such a component, denote this component by�����, then � is an antipodal
point of � and����� is the orbit through � of the action of the identity component
�� of the isotropy group � at �. Note that two points � and � in a Riemannian
manifold �� are antipodal if there exists a closed geodesic � in �� , say of length �,
so that the distance between � and � along � is ��,. Any such orbit����� is called
polar of �, or, if����� consists just of the single point �, pole of �. There exists
a complete totally geodesic submanifold����� of �� tangent to the normal space
of����� at �, namely the connected component containing � of the Þxed point set
of �� Æ ��. Consider the set �� �� � of all quadruples ��� �������������� modulo
congruence by isometries of �� . When� is a totally geodesic submanifold of �� ,
then there is a natural map ��� � � �� �� �, where the relation among the totally
geodesic submanifolds in the quadruples is inclusion. In other words, when� is a
Riemannian symmetric space and there is no such map ��� � � �� �� �, then�
cannot be realized in �� as a totally geodesic submanifold. So the strategy is to com-
pute all the quadruples ��� �������������� for Riemannian symmetric spaces and
then to compare them. Then eliminate all pairs ��� �� � where there is no natural
map ��� � � �� �� � and investigate the remaining cases whether they can actually
be realized by totally geodesic submanifolds. One useful remark for this is that the
rank of a totally geodesic submanifold cannot exceed the rank of the ambient space.

We illustrate this with the classiÞcation of maximal totally geodesic submanifolds
of compact Riemannian symmetric spaces of rank one. These spaces are the spheres
�� and the projective spaces ���, ��� , ��� and �� �. For each of these spaces
there is only one such quadruple. This is because all geodesics are closed with the
same length and the isotropy subgroup at a point acts transitively on the set of unit
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tangent vectors at that point. The quadruples are
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For example, we see that the Cayley projective plane �� � cannot be realized as a
totally geodesic submanifold in any other compact Riemannian symmetric space of
rank one. Following the above strategy we get all maximal totally geodesic subman-
ifolds:
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The classiÞcation of totally geodesic submanifolds of compact Riemannian symmet-
ric spaces of rank one is originally due to J.A. Wolf [242]. Further lists of maximal
totally geodesic submanifolds in Riemannian symmetric spaces of compact type can
be found in [53]. The �������-method is also the starting point for T. Nagano
and M. Sumi [152] toward a classiÞcation of totally geodesic spheres in Riemannian
symmetric spaces of compact type. Their work extends previous results of S. Helga-
son [98] about totally geodesic spheres of maximal curvature in compact symmetric
spaces.

d) Reßective submanifolds

An interesting subclass of the totally geodesic submanifolds is formed by the re-
ßective submanifolds, which are, in general, deÞned as follows. Let �� be a Rie-
mannian manifold and� a submanifold of �� . When the geodesic reßection of ��
in� is a globally well-deÞned isometry of �� , then� is called reßective submani-
fold. Since any reßective submanifold is a connected component of the Þxed point
set of an isometry, it is totally geodesic. Obviously, any connected component of
the Þxed point set of an involutive isometry on a Riemannian manifold is a reßective
submanifold. In particular, this implies
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We already encountered reßective submanifolds in the framework of symmetric
submanifolds, namely any normal submanifold�� of a symmetric submanifold is
reßective. For symmetric spaces, we have the following useful criterion.
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A thorough study and classiÞcation of reßective submanifolds in simply con-
nected Riemannian symmetric spaces can be found in a series of papers by D.S.P.
Leung [126�129]. We shall illustrate now how this is related to the classiÞcation of
involutions on Lie groups.

Let �� be a symmetric space, � � �� and ����� the corresponding Riemann-
ian symmetric pair. The geodesic symmetry �� of �� in � determines the Cartan
involution

� � � � � � ) �� ��)��

on �. Now let � be a reßective submanifold of �� with � � � and let �� be
the complete totally geodesic submanifold of �� tangent to the normal space of�
at �. Both� and �� are reßective and the reßections �� and ��� of �� in �
and �� are involutive isometries of �� , respectively. Thus, we get two involutive
automorphisms * and *� on � by

* � �� � � ) �� ��)�� � *� � � � � � ) �� ���)��� �

It is clear from the construction that ��� �� � ��� air pairwise commuting involutive
isometries on �� and the product of any two of them is equal to the third one. This
implies that �� *� *� are also pairwise commuting involutive automorphisms on �
and the product of any two of them is equal to the third one.
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Conversely, suppose we have given three pairwise commuting involutive automor-
phisms �� *� + on� such that the product of any two of them is equal to the third one
and where � is still the Cartan involution of the Riemannian symmetric pair �����.
We denote by �� the Þxed point set of �. Then we have ��

� � � � ��. The
identity component��

� of�� acts isometrically on �� � ���. Since �* � *�, the
group ��

� is �-invariant and hence, its orbit� � ��
� � � is totally geodesic in �� .

Analogously, the orbit, � ��
 � � is totally geodesic in �� . We denote by

� � �� � �� � � � �� � �� � � � � � �

the usual decompositions of � into the �+-eigenspaces of the corresponding involu-
tions on �. Since *+ � +* � � and ��

�� � ��, we have

��� � �� � �� � �� � � � ��, � ��, � �� � � � �� � �� � ��� �

Thus, these three involutive automorphisms on� induce a pair of reßective subman-
ifolds� and, of �� so that�� � , . It follows that the classiÞcation of reßective
submanifolds in symmetric spaces is equivalent to the classiÞcation of triples �� *� +
of pairwise commuting involutive automorphisms on certain Lie groups such that the
product of any two of them is equal to the third one.

The reßective submanifolds in the compact Riemannian symmetric spaces of rank
one are
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Already from this list we see that not every totally geodesic submanifold is reßective.
For instance, ��� in �� � is not reßective for - � +� � � � � .� +. The motivation for
Leung to study these submanifolds was to generalize the classical Schwartz reßec-
tion principle for minimal surfaces in �	 to certain kinds of minimal submanifolds
in Riemannian symmetric spaces. Leung established the complete classiÞcation of
reßective submanifolds in Riemannian symmetric spaces.

e) Duality and totally geodesic submanifolds

A very useful observation is that totally geodesic submanifolds are preserved un-
der duality. To be precise, let ����� be a Riemannian symmetric pair so that��� is
a simply connected Riemannian symmetric space of compact type or of noncompact
type, respectively. Consider the complexiÞcation �� � � � /� of � and the Cartan
decomposition � � � � � of �. Then �� � � � /� is a real Lie subalgebra of ��

with respect to the induced Lie algebra structure. Let�� be the real Lie subgroup of
�� with Lie algebra ��. Then ���� is a simply connected Riemannian symmetric



252 Submanifolds and Holonomy

space of noncompact type or of compact type, respectively, with Cartan decompo-
sition �� � � � /�. It is straightforward to check that 	 is a Lie triple system in
� if and only if /	 is a Lie triple system in /�. In this manner, we get a one-to-
one correspondence between the totally geodesic submanifolds of��� and its dual
symmetric space ����. As an application, we get the following list of the maximal
totally geodesic submanifolds in noncompact Riemannian symmetric spaces of rank
one, namely the hyperbolic spaces over ����� and �:

��� � �����

��� � ����� ����

��� � ����� � ���

��� � ������� �

��� ������	 ��������� ���������� ��� �������� �����

a) Circles

We already discussed the existence and uniqueness of circles in Riemannian man-
ifolds in Proposition 8.4.3. It is well known that each geodesic in a Riemannian
symmetric space is an orbit of a one-parameter group of isometries. It is easy to
show that each circle in��, ��,��� and��� is an orbit of a one-parameter group
of isometries. S. Maeda and Y. Ohnita [133] proved that this is also true for circles
in �� � and ��� . This was extended to all two-point homogeneous spaces by K.
Mashimo and K. Tojo [136]. In fact, they proved that this property characterizes
two-point homogeneous spaces.
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The �only if� part is proved by showing that the isotropy group at some point acts
transitively on unit tangent vectors at that point.

b) The classiÞcation problem for extrinsic spheres

One step toward the classiÞcation of extrinsic spheres of dimension � , in Rie-
mannian symmetric spaces is the following result:
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Therefore, the classiÞcation of extrinsic spheres in Riemannian symmetric spaces
can be worked out in two steps. First, classify the totally geodesic submanifolds
with constant curvature in a Riemannian symmetric space. For symmetric spaces
of compact type, one can apply the results of T. Nagano and M. Sumi [152] men-
tioned in the previous section. Using duality between symmetric spaces of compact
and noncompact type, the classiÞcation can be transferred to symmetric spaces of
noncompact type. In the second step, one has to classify the extrinsic spheres in
spaces of constant curvature with codimension one. This has been done explicitly in
Theorem 2.6.2.

c) The classiÞcation problem for totally umbilical submanifolds

The classiÞcation of totally umbilical submanifolds of dimension3 , in Riemann-
ian symmetric spaces has been achieved by Y.A. Nikolaevskii [166]. Basically, these
submanifolds live in totally geodesically embedded products of spaces of constant
curvature. A partial classiÞcation was previously obtained by B.Y. Chen in [51]. In
particular, Chen proved:
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A special case of this result is Theorem 9.1.4.
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��� �	������� ����������

a) Symmetry versus parallel second fundamental form

In Proposition 8.5.1, we proved that the second fundamental form of a symmetric
submanifold is parallel and that tangent to each normal space there exists a totally
geodesic submanifold of the ambient space. For simply connected Riemannian sym-
metric spaces, Naitoh [156] proved that the converse also holds.
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2 ������ �� -��F���� �,5=� ���!� ���� ����� �
��� �� ���� ����������� �
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b) Totally geodesic symmetric submanifolds

The classiÞcation of totally geodesic symmetric submanifolds in Riemannian sym-
metric spaces follows from the one of reßective submanifolds (see Section 9.1).
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c) Grassmann geometries

The obvious question now is: Are there any non-totally geodesic symmetric sub-
manifolds in a given Riemannian symmetric space? We will discuss this question in
the framework of Grassmann geometries.

Let �� be a Riemannian manifold. The isometry group �� �� � of �� acts in a natu-
ral way on the Grassmann bundle���� �� � of5-planes in the tangent bundle � �� .
An5-dimensional connected submanifold� of �� belongs to the (5-dimensional)
Grassmann geometry of �� if all its tangent spaces lie in the same orbit of the action
of �� �� � on ���� �� �. For example, any homogeneous submanifold of �� belongs
to some Grassmann geometry of �� . If� belongs to some Grassmann geometry of
�� , the Grassmann geometry associated to � is the set ���� ��� of all connected
submanifolds of �� whose tangent spaces lie in the same orbit as those of� . For
instance, the Grassmann geometry ����� ��� associated to an 5-sphere in �� is
the geometry of all 5-dimensional submanifolds of � �. Also, the Grassmann geo-
metry ����� � ���� associated to an 5-dimensional complex projective subspace
in �� � is the geometry of all5-dimensional complex submanifolds in �� � .

Now suppose that� is an 5-dimensional symmetric submanifold of �� . Let ��
and �� be two different points in � . Connecting � � and �� by a geodesic in � ,
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the symmetry ��� at the midpoint �� on � between �� and �� is an isometry of ��
leaving� invariant and interchanging �� and ��. This shows in particular that�
is a homogeneous submanifold and hence belongs to the5-dimensional Grassmann
geometry of �� .

From now on we suppose that �� is a Riemannian symmetric space. As we have
seen above, each tangent space and each normal space of a symmetric submanifold
of �� is a Lie triple system. This implies:
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This proposition motivates investigation of the Grassmann geometries associated
to reßective submanifolds of Riemannian symmetric spaces in more detail. For sim-
ply connected Riemannian symmetric spaces of compact type this was done by H.
Naitoh in a series of papers [157�161]. His proof also works for the Riemannian
symmetric spaces of noncompact type.
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Naitoh also obtained a decomposition theorem that settles the reducible case, see
[159].
Still remaining is the classiÞcation of the symmetric submanifolds in these Grass-

mann geometries. This has been carried out by various authors whose results we will
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now describe (see also [163] for a survey about symmetric submanifolds of symmet-
ric spaces of rank one). We already discussed the symmetric submanifolds of spheres
in Section 3.7.

d) Symmetric complex submanifolds of �� �

In this part, we describe the classiÞcation of symmetric complex submanifolds in
complex projective spaces. All these submanifolds arise from so-called canonical
embeddings of certain Hermitian symmetric spaces.

Let � be a complex simple Lie algebra, � a Cartan subalgebra of � and G the
corresponding set of roots. We choose a Weyl canonical basis 
��� ���, 2 � G, of
� and deÞne a compact real form �� of � by
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Let 2�� � � � � 2� � G be a set of simple roots. For each 6 � 
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and deÞne a complex Lie subalgebra �� of � by
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and a Lie subalgebra ���� of �� by

���� �� �� � ���
Let � be the simply connected complex Lie group with Lie algebra � and �� the
connected complex Lie subgroup of � with Lie algebra ��. Then ���� is a sim-
ply connected compact homogeneous complex manifold. Let �� and ���� be the
connected real Lie subgroups of � with Lie algebra �� and ����, respectively. The
inclusion �� 8� � induces a homeomorphism from�� �� ������� onto ����

turning�� into a C-space, that is, a simply connected compact complex homogene-
ous space, on which �� acts transitively by holomorphic transformations. Note that
the second Betti number '����� of �� is one. Conversely, as was shown by H.C.
Wang [236], every irreducible9-space� with '��� � � + arises in this manner.

We now describe a family of holomorphic embeddings of�� into complex pro-
jective spaces. Let � be a positive integer and + � � � ���������� � the irreducible
representation of � with highest weight �E �, where E� is the fundamental weight
corresponding to the simple root 2�. Denote by 	 � ������� the one-dimensional
eigenspace of + corresponding to �E�. Then the map

�� ������ � ) �� +�)�	
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induces a full holomorphic embedding of �� � ������� � ���� into �� ���� ,
which is called the p-th canonical embedding of� � into a complex projective space.
The submanifold �� of �� ���� is the unique compact orbit of the action of the
complex Lie group � on �� ���� . The dimension .��� can be calculated explicitly
by means of Weyl�s dimension formula. The induced metric on �� � ������ is
Kähler-Einstein. Note that�� is Hermitian symmetric if and only if .� � �+ for
all roots 2 � G�, and every Hermitian symmetric space arises in this manner.

It follows from Proposition 9.3.1 that a complete complex submanifold � of
��� is symmetric if and only if its second fundamental form is parallel. The com-
plex submanifolds of �� � with parallel second fundamental form were classiÞed by
H. Nakagawa and R. Takagi [165].
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Here, (� resp. (� denotes the Þrst resp. second canonical embedding, and (��(�
is the embedding that is induced by the exterior tensor product of the two representa-
tions associated to the Þrst canonical embedding (�. The embedding of �� � 	�� �

is also known as the Segre embedding and is explicitly given by

��;� � � � � � ;��� �<� � � � �<��� �� �;�<� � � � � � ;�<
 � � � � ;�<��

(all possible products of the coordinates). The embedding of �� � is known as the
second Veronese embedding and is explicitly given by

�;� � � � � � ;�� �� �;�� �
�

,;�;� � � � � �
�

,;���;� � ;��� �

The embedding of ����
�� is the Plücker embedding, and the one of ��

� ������
gives the complex quadric in �� � that is determined by the equation ; �� � � � ��;�� �
5.
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e) Symmetric totally real submanifolds of �� �

The classiÞcation of .-dimensional totally real symmetric submanifolds in �� �

was established by H. Naitoh [153] (for the irreducible case) and by H. Naitoh andM.
Takeuchi [162] (for the general case). The reßective submanifold in the correspond-
ing Grassmann geometry is the totally geodesic real projective spaces �� � in �� � .
The crucial observation for the classiÞcation is that an .-dimensional totally real
symmetric submanifold� of �� � is symmetric if and only if its inverse image H�
under the Hopf map ����� � ��� is a symmetric submanifold of the sphere. This
shows the relation with symmetric R-spaces. In the irreducible case, the relevant
symmetric R-spaces H� are � �.���:�.�, � �,.�����.�, � �.� and �� � &��(�.
Among all the standard embeddings of irreducible symmetric R-spaces they are char-
acterized by the property that the dimension of the ambient Euclidean space is twice
the dimension of the symmetric R-space. So, if . � + denotes the dimension of
the symmetric R-space H� , its image lies in the sphere ����� � ����� � ���� .
It turns out that H� is invariant under the canonical ��-action on ����� and hence
projects via the Hopf map to an .-dimensional submanifold � of �� � . Each of
these submanifolds is a totally real symmetric submanifold of �� � that is the image
of an embedding of the followingRiemannian symmetric spaces� � into �� � :

����� ��
	 -������� ������� ����
������ ���� � ���

� , � �� � Remarks
�� �.���:�.� �

��.� +��. � ,� . � @
�� �.� .� � + . � @
�� �,.�����.� �.� +��,. � +� . � @
&�(� ,?

These embeddings can be described explicitly in an elementary way. Consider the
natural action of ���.� � � on =����� � , the complexiÞcation of the real Jordan
algebra =���� of all symmetric . 	 .-matrices with real coefÞcients, given by

�1��� �� 1�1�

for 1 � ���.� � � and � � =����	 � . The complex dimension of =����� �
is .�. � +��,, and hence this action induces an action of ���.� � � on �� � with
, � .�. � +��, � + � �. � +��. � ,��,. This action has exactly . orbits that
are parametrized by the rank of the matrices. The subgroup of ���.� � � preserving
complex conjugation on �� � is ���.���. Now Þx a maximal compact subgroup
�:�.� of ���.���. The restriction to �:�.� � � of the action of ���.� � � on
=������ splits off a one-dimensional trivial factor corresponding to the trace. This
means that �:�.� � �, and hence �:�.�, Þxes the point � in ��� given by complex
scalars of the identity matrix in =����� � . The maximal compact subgroup �:�.�
of ���.��� determines a maximal compact subgroup �� �.� of ���.� � �. The
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orbit of the action of �� �.� through � gives an embedding of �� �.���:�.� in
��� as a totally real symmetric submanifold of real dimension, . The other three
embeddings can be constructed in a similar fashion by using the real Jordan algebras
=��� �, =���� and =	���. The corresponding subgroups are
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H. Naitoh and M. Takeuchi proved in [162] that each totally real symmetric sub-
manifold �� of �� � is basically a product of the irreducible submanifolds dis-
cussed above and a ßat torus. A suitable product of . � + circles in ����� projects
via the Hopf map to a ßat torus � � embedded in ��� as a totally real symmetric
submanifold. Naitoh and Takeuchi gave in [162] a unifying description of all sym-
metric submanifolds in the Grassmann geometry ���� �� ���� using the Shilov
boundary of symmetric bounded domains of tube type.

f) Symmetric totally complex submanifolds of �� �

The symmetric totally complex submanifolds of �� � have been classiÞed by
K. Tsukada [226]. The reßective submanifold in the corresponding Grassmann geo-
metry is the totally geodesic �� � � ��� . A basic tool for the classiÞcation is the
twistor map �� ���� � ��� . Consider ���� as a (right) vector space and pick a
unit quaternion, say /, which turns � ��� into a complex vector space � ���� . The
twistor map �� ���� � ��� maps a complex line in � ���� to the quaternionic
line in ���� spanned by it. The Þber over each point is a complex projective line
�� � � �� ���� . Alternatively, the set of all almost Hermitian structures in the
quaternionic Kähler structure of a quaternionic Kähler manifold �� forms the so-
called twistor space  of �� , and the natural projection  � �� is the so-called
twistor map onto �� . In the case of ��� the twistor space is just �� ���� .
Now let� be a non-totally geodesic symmetric totally complex submanifold of

��� belonging to the Grassmann geometry ���� � �����. The Þrst step in the
classiÞcation is to show that � is a Hermitian symmetric space with respect to a
Kähler structure that is induced from the quaternionicKähler structure of �� � . Then
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one shows that� can be lifted to a Kähler immersion into the twistor space �� ���� .
The main part of the proof is then to show, using representation theory of complex
semisimple Lie algebras, that this lift is one of the following embeddings in �� ����:

����� ���	 -������� ������� ������

������ ���� � ���

� . � ��� � embedding
�� � 	��

� ���� �5 � @� 5 � + (� � (�
���@��� �@� ? (�
�	��  � * (�
�:�+,��� �?� +B (�
&���� �&� ,D (�

In the Þrst case, the embedding is via the exterior tensor product of the Þrst canon-
ical embedding of each factor; in the other cases, it is the Þrst canonical embedding.
Note that, in the Þrst case, the submanifold is isometric to �� � 	 �� � for 5 � @
and isometric to �� � 	 �� � 	 �� � for 5 � =. The embedding of �	�� � into
�� �� is the Plücker embedding. The image of each of these embeddings under the
Hopf map �� ���� � ��� is indeed an .-dimensional symmetric totally complex
submanifold of �� � . Tsukada proved:
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g) Symmetric submanifolds associated with irreducible symmetric R-spaces

The pairs ��� �� � mentioned in part 5 of Theorem 9.3.4 are, for irreducible �� ,
precisely the pairs �� ����� and �� ������� in the two tables of the classiÞca-
tion of irreducible symmetric R-spaces that can be found at the end of the appendix.
The embedding of � in �� can be described as follows. Write �� � ��� with
����� a symmetric pair and put � � �� � �� . Let � � �� � be the corresponding
Cartan decomposition of �. Then there exists an element  � � so that the eigen-
values of %>�� are �+� 5��+. The element  determines a closed geodesic � in
�� . The antipodal point � to � on � is a pole of �, that is, a Þxed point of the ac-
tion of � on �� . The reßective submanifold� is the centrosome of � and �, that
is, the orbit of � through the midpoint on � between � and � (it does not matter
which of the two possible midpoint one chooses). The orbits of� through the other
points on � and distinct from � and � are non-totally geodesic symmetric subman-
ifolds of �� belonging to the Grassmann geometry ���� ���. In this way, we get
a one-parameter family of non-congruent symmetric submanifolds of �� , and every
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symmetric submanifold in ���� �� � arises in this way up to congruence. In par-
ticular, any non-totally geodesic symmetric submanifold of �� arises as an orbit of
the action of the isotropy group at a suitable point. It is worthwhile to mention that,
among the reßective submanifolds in �� , the symmetric R-spaces are precisely those
for which the totally geodesic submanifolds tangent to the normal spaces of� are
locally reducible with a one-dimensional ßat factor.

h) Symmetric submanifolds of symmetric spaces of noncompact type

In this part, we describe the classiÞcation of symmetric submanifolds of Riemann-
ian symmetric spaces of noncompact type. For the real hyperbolic space ���, this
was already done in Section 3.7. It was shown by Kon [120] resp. Tsukada [226]
that every symmetric submanifold in ����� � ���� resp. ����� ����� is to-
tally geodesic. The classiÞcation of symmetric submanifolds in������ ��� � was
obtained by Naitoh [155]. Here we want to describe the classiÞcation of symmetric
submanifolds in the remaining Grassmann geometry ���� ��� listed in Theorem
9.3.4 (5). This classiÞcation has been obtained by Berndt, Eschenburg, Naitoh and
Tsukada [18].

We start with recalling the theory of symmetric R-spaces from another viewpoint
(see Kobayashi and Nagano [116], Nagano [146], and Takeuchi [211] for details).
Let ���� �� be a positive deÞnite symmetric graded Lie algebra, that is, �� is a real
semisimple Lie algebra with a gradation �� � ���� � ��� � ��� so that ���� � �5� and
the adjoint action of ��� on the vector space ���� is effective, and a Cartan involution
� satisfying ������ � ���� �� � �+� 5� +�. The positive deÞnite symmetric graded
Lie algebras have been completely classiÞed (see [116], [211]).

By deÞning * ��� � ��+��� for� � ��� we obtain an involutive automorphism
* of �� that satisÞes �* � *�. Let �� � �� � �� be the Cartan decomposition induced
by �. Then we have * ���� � �� and * ���� � ��. Let �� � �� � �� and �� � �� � �� be
the �+-eigenspace decompositions of �� and �� with respect to * . Obviously, we have
�� � �� � ���, �� � �� � ����� � ����, �� � �� � ��� and �� � �� � ����� � ����. Since ��
is a semisimple Lie algebra, there is a unique element � � ��� so that

��� � 
� � �� � ������ � ��� � � � �+� 5� + �

It can be easily seen that � � �� and hence � � ��.

We denote by � the Killing form of ��. The restriction of � to ��	 �� is a positive
deÞnite inner product on �� and will be denoted by ��� ��. This inner product is invari-
ant under the adjoint action of �� on �� and under the involution * ���. In particular, ��
and �� are perpendicular to each other. Let �� be the simply connected Lie group
with Lie algebra �� and �� be the connected Lie subgroup of �� corresponding to ��,
and deÞne the homogeneous space �� � ��� ��. Let ? � �� � �� be the natural
projection, and put � � ?���, where � � �� is the identity. The restriction to �� of
the differential ?�� � ��� ��

�� of ? at � yields a linear isomorphism ��� ��
�� . In

the following, we will always identify �� and ��
�� via this isomorphism. From the
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2�� ���-invariant inner product ��� �� on �� �� ��
�� we get a ��-invariant Riemannian

metric on �� . Then �� � ��� �� is the Riemannian symmetric space of noncompact
type that is associated with ���� �� ��� ���.
We put

� �
� � 
- � ���2��-�� � ���

Then��
� is a closed Lie subgroupwhose Lie algebra is �� . The homogeneous space

� � � ���� �
� is diffeomorphic to the orbits2�� ��� � � � �� and �� �?��
� �� � �� ,

where �
� � �� � �� denotes the Lie exponential map from �� into ��. We equip� �

with the induced Riemannian metric from �� . Then � � is a compact Riemannian
symmetric space associated to the orthogonal symmetric Lie algebra ���� * ����, where
* ��� is the restriction of * to ��. The symmetric spaces �� arising in this manner are
precisely the symmetric R-spaces. If �� is simple, then� � is an irreducible symmetric
R-space.

The subspace �� is a Lie triple system in �� � ��
�� and ���� ��� � ��. Thus,

there exists a complete totally geodesic submanifold� of �� with � and ��� � ��.
Since� is the image of �� under the exponential map of �� at �, we see that� is
simply connected. We deÞne a Lie subalgebra � of �� by � � �� � �� and denote by
� the connected Lie subgroup of �� that corresponds to �. Then, by construction,�
is the �-orbit through �. We denote by �� the isotropy subgroup at � of the action
of � on �� . The Lie algebra of�� is ��. Since� � ���� is simply connected,
�� is connected. The restriction * �� of * to � is an involutive automorphism of �
and ��� * ��� is an orthogonal symmetric Lie algebra dual to ���� * ����. Moreover,� is
a Riemannian symmetric space of noncompact type associated with ��� * ���. Since
both �� and �� are Lie triple systems, � is a reßective submanifold of �� . The
corresponding Grassmann geometry ���� ��� is a geometry according to Theorem
9.3.4 (5).

We will construct a one-parameter family of symmetric submanifolds in �� con-
sisting of submanifolds belonging to that Grassmann geometry that contains the to-
tally geodesic submanifold� and the symmetric R-space � �. For each @ � �we
deÞne a subspace �� of �� � �� � ���� � ��� by

�� � 
� � @ ������ � � ��� �

In particular, �� � ��� and ��� � ���� are abelian subalgebras of ��. Then �� �
����� is a * -invariant Lie subalgebra of �� and ���� * ���� is an orthogonal symmetric
Lie algebra. We denote by �� the connected Lie subgroup of �� with Lie algebra ��
and by�� the orbit of the origin � by � � in �� .
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It was proved in [18] that every symmetric submanifold of an irreducible Rie-
mannian symmetric space of noncompact type and rank � , arises in this way. The
crucial point for the proof is a generalization of the fundamental theorem of subma-
nifold geometry in space forms to certain Grassmannian geometries.

��� ����������� ���� �������� ����� ����������� ����

a) ... in real space forms

With what we have achieved so far, the classiÞcation of submanifolds with par-
allel second fundamental form in spaces of constant curvature becomes very sim-
ple. When �� has constant curvature, each subspace of any tangent space of �� is
curvature-invariant. From Proposition 9.3.1 we therefore get

�	
	���
 �����
# 
����� 	���������� �� ��� �� �� �� ��	 ������� 	
��� ����������

���� �� ��� ���� �� �� �	 � 	������
 	�����������

b) ... in complex space forms

When the ambient space has nonconstant curvature, one cannot expect that com-
plete submanifolds with parallel second fundamental form are symmetric subman-
ifolds. This can be seen most easily in complex projective space �� � . A totally
geodesic real projective space �� �, - � +� � � � � . � +, is complete and obviously
has parallel second fundamental form. But, at each point, the normal space is isomor-
phic to the vector space ����� � � , and this cannot be the tangent space of a totally
geodesic submanifold of �� � . Hence, the normal spaces are not curvature-invariant,
and it follows that�� � is not a symmetric submanifold of �� � .
The classiÞcation of submanifolds with parallel second fundamental form in com-

plex projective space �� � and complex hyperbolic space ��� has been achieved
by Naitoh [154,155].



Submanifolds of Symmetric Spaces 267

���	
�� ����� �������#
�� � � � 
����� 	���������� �� ��� �� ��� � . � ,� ���� ������� 	
���
���������� ���� ��� ���� �	 ��� ������� ���	�
� ��� � �	

��� � 
����� 	����������� ��

���� � 	���������� ���� �	 
������� �� � ������� ���	�
 ��� �	�� ��� ���
	�� - � 
+� � � � � .�� ��

����� � - ����	����� ������� ��� 	���������� ���� �	 
������� �� � �������
���	�
 �� � �	�� ��� ��� 	�� - � 
+� � � � � .��

Complex submanifolds always have their normal spaces curvature-invariant. Thus,
the classiÞcation of complex submanifolds with parallel second fundamental form
reduces to the one of symmetric complex submanifolds that has been discussed in
Theorem 9.3.5 in the case of complex projective space. In the case of complex
hyperbolic space [120] proved:
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In case (ii),� also has parallel second fundamental form when considered as a
submanifold in �� � resp. ���. So this case reduces to the corresponding problem
in real space forms that has been discussed above.
In the last case (iii),� has parallel second fundamental form when considered as

a submanifold in �� � resp. ��� . Since� is totally real and has half the dimension
of these smaller ambient spaces, this case reduces to the study of half-dimensional
symmetric totally real submanifolds in �� � resp. ��� . In the projective case, the
classiÞcation has been given in Theorem 9.3.6. The classiÞcation in the hyperbolic
case has been achieved by Naitoh in [155].

c) ...in quaternionic space forms

The classiÞcation of submanifolds with parallel second fundamental form in qua-
ternionic projective space �� � and quaternionic hyperbolic space ��� is due to
Tsukada [226].
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Cases (i)-(iii) and (v) have been discussed already above, so we are left with case
(iv). In this situation, the normal spaces are curvature-invariant, so � is symmet-
ric. In the projective case, the classiÞcation was given in Theorem 9.3.7. In the
hyperbolic case, Tsukada proved in [226] that� is totally geodesic in case (iv).

d) ...in Cayley projective or hyperbolic plane

The classiÞcation of submanifolds with parallel second fundamental form in Cay-
ley projective plane �� � and Cayley hyperbolic plane ��� was also derived by
Tsukada [227].

���	
�� ����� ���)$�*�#
�� � � � 
����� 	���������� �� �� � �� ��� ������ ������� 	
��� ��� 
������� ���� ��� ���� ��� ������� ���	�
� ��� � �	

��� � 	���������� ���� ������� 	
��� ���������� ���� �� � ������� ���	�

�� � � �� �	�� ��� � ���� ��

���� � 	���������� ���� ������� 	
��� ���������� ���� �� � ������� ���	�

�� � �	�� ��� �

This reduces the classiÞcation problem to several that have been discussed above.

e) ...in symmetric spaces of higher rank

The previous discussion shows that the classiÞcation problem for submanifolds
with parallel second fundamental form in Riemannian symmetric spaces of rank one
is completely solved. In contrast, apart from the classiÞcation of symmetric sub-
manifolds, not much is known about submanifolds with parallel second fundamental
form in Riemannian symmetric spaces of higher rank. One exception is a paper by
Tsukada [228] in which he classiÞes the complex submanifolds with parallel sec-
ond fundamental form in Hermitian symmetric spaces. Suppose �� is a Hermitian
symmetric space of compact type and ��� is a complex and totally geodesically
embedded complex projective space. Then each complex submanifold of �� � with
parallel second fundamental form in �� � also has parallel second fundamental form
in �� . The submanifolds given in Theorem 9.3.5 therefore provide examples via such
totally geodesic embeddings. One can use these examples as building blocks of more
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general examples provided one has products of totally geodesic complex projective
spaces embedded totally geodesically and holomorphically in �� . Tsukada proved
that, in the compact case, all submanifolds with parallel second fundamental form
arise in this manner. In the noncompact case, the situation is quite simple, because
Tsukada obtained the following result as a generalization of Theorem 9.4.3:

���	
�� ����� ���)$�*�#

�� � � � 
����� 	���������� �� � 0������� 	������
 	��
 �� ��� 

����
� ���� %� � ��	 ������� 	
��� ���������� ���� ��� � �	 �������
���	�
�

��� ����
����� �	���������

The classiÞcation of homogeneous hypersurfaces in spheres has already been dis-
cussed in 3.8.6. We now turn to the more general case of symmetric spaces and start
with homogeneous hypersurfaces in projective spaces. Of course, for real projective
spaces, the classiÞcation is the same as for spheres, modulo the two-fold covering
map �� � ���.

a) Homogeneous hypersurfaces in complex projective spaces

An interesting fact is that in complex projective spaces the theories of isoparamet-
ric hypersurfaces and hypersurfaces with constant principal curvatures are different.
In fact, Wang [237] showed that certain nonhomogeneous isoparametric hypersur-
faces in spheres project via the Hopf map ����� � ��� to isoparametric hypersur-
faces in complex projective spaces with nonconstant principal curvatures. It is still an
open problem whether any hypersurface with constant principal curvatures in �� �

is isoparametric or homogeneous. The classiÞcation of homogeneous hypersurfaces
in �� � was achieved by Takagi [209]. It is easy to see that every homogeneous
hypersurface in �� � is the projection of a homogeneous hypersurface in �����.
But not every homogeneous hypersurface in ����� is invariant under the ��-action
and hence does not project to a homogeneous hypersurface in �� � . In fact, Takagi
proved that those that do project are precisely those that arise from isotropy represen-
tations ofHermitian symmetric spaces of rank two. In detail, this gives the following
classiÞcation:

���	
�� ����� ���$�%�#

# ����	����
 �� ��� � . � ,� �	 ��������	 �� ��� ���� �� �� �	 
�������
��
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�(� � ��� ������ � - ����	����� ������� ���	�
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+� � � � � .� +�� ��

�)� � ��� ������ �� 
����� ������
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�*� � ��� ������ �� 1�� ������� �� �� � 	 �� � ���� �� ���� � - � +�
��

�+� � ��� ������ �� 2�3�
-� ������� �� �� 
����� '��		���� ��������
���� � � ���� �� � � ��

�,� � ��� ������ �� ���� 	��� ������� �� �� 	������
 	��

�:�+5��� �B� ���� �� ���

The corresponding Hermitian symmetric spaces of rank two whose �-representa-
tions yield these embeddings via the Hopf map are (1) �� ��� 	 ����� ,
(2) ��

� ����	�, (3) ���� ��	 �, (4) �:�+5��� �B�, (5) &�� � ��/.�+5�. Takagi�s
result was improved by Uchida [230], who classiÞed all connected closed subgroups
of �� �. � +� acting on �� � with cohomogeneity one, that is, whose principal
orbits have codimension one. Uchida�s approach to the classiÞcation problem is
completely different and uses cohomological methods. In fact, Uchida classiÞed all
connected compact Lie groups acting with an orbit of codimension one on a simply
connected smoothmanifoldwhose rational cohomology ring is isomorphic to the one
of a complex projective space. This includes, for instance, all odd-dimensional com-
plex quadrics (which are real Grassmannians) ��

� ������� � �:�,.�+���:�,�	
�:�,. � +�.

b) Homogeneous hypersurfaces in quaternionic projective spaces

For the quaternionic projective space �� � , Iwata [106] used a method analogous
to the one of Uchida and classiÞed all connected compact Lie groups acting with
an orbit of codimension one on a simply connected smooth manifold whose rational
cohomology ring is isomorphic to the one of a quaternionic projective space. For
instance, the symmetric space ����:�=� has the same rational cohomology as the
quaternionic projective plane �� � . For the special case of ��� Iwata�s classiÞca-
tion yields

���	
�� ����� ��&���#
# ����	����
 �� ��� � . � ,� �	 ��������	 �� ��� ���� �� �� �	 � ���
������ � ������� ���	�
 �� � � ��� ��� 	�� - � 
5� � � � � .� +� �� �� �� �	
� ��� ������ � ������� ���	�
 ��� � ��� �

The tubes around�� � � ��� are the principal orbits of the action of ���-�+�	
���. � -� � ���. � +� on �� � . The two singular orbits of this action are totally
geodesic �� � and �������. The tubes around ��� � ��� are the principal
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orbits of the action of � �. � +� � ���. � +� on �� � . A different proof, following
the lines of Takagi, has been given by D�Atri [65].

c) Homogeneous hypersurfaces in Cayley projective plane

For the Cayley projective plane �� � Iwata [107] could also apply his cohomo-
logical methods and obtain:

���	
�� ����� ��&���#
# ����	����
 �� �� � �	 ��������	 �� ��� ���� �� �� �	 � ���	�
 ���� 
	��� �� � ��� ������ � ������� ���	�
 �� � � �� ��

The geodesic hyperspheres are obviously the principal orbits of the isotropy group
��/.�*� � (�. The second singular orbit of this action is a totally geodesic � � �
�� � � �� �. The tubes around �� � are the principal orbits of the action of max-
imal compact subgroup ���@� 	 ���+� of (�. Here, the second singular orbit is
an ++-dimensional sphere ��� � ���@�����,�, which is not totally geodesic but
minimal in �� �.

d) Homogeneous hypersurfaces in Riemannian symmetric spaces of compact
type

The classiÞcation of homogeneous hypersurfaces in irreducible simply connected
Riemannian symmetric spaces of compact type is part of the more general classiÞ-
cation of hyperpolar actions (up to orbit equivalence) on these spaces due to Koll-
ross [119]. Hyperpolar actions on symmetric spaces are sometimes viewed as gen-
eralizations of �-representations, that is, of isotropy representations of semisimple
Riemannian symmetric spaces. An isometric action of a closed Lie group on a
semisimple Riemannian symmetric space� is said to be hyperpolar if there exists a
closed, totally geodesic, ßat submanifold of� meeting each orbit of the action and
intersecting it perpendicularly. It is obvious that the cohomogeneity of a hyperpo-
lar action must be less or equal than the rank of the symmetric space. In particular,
the hyperpolar actions on Riemannian symmetric spaces of rank one are precisely the
isometric actions of cohomogeneity one, whose classiÞcation up to orbit equivalence
we described above for the compact case.

A large class of hyperpolar actions was discovered by Hermann [101]. Suppose
����� and ����� are two semisimple Riemannian symmetric pairs of compact
type. Then the action of� on the Riemannian symmetric space ��� is hyperpolar.
Also, the action of�	� on� given by ��� -��) �� �)-�� is hyperpolar. Note that,
in particular, the action of the isotropy group of a semisimple Riemannian symmetric
space is hyperpolar.

We describe the idea for the classiÞcation by Kollross in the special case when the
action is of cohomogeneity one and the symmetric space� � ��� is of rank � ,
and not of group type. Suppose � is a maximal closed subgroup of �. If � is not
transitive on� , then its cohomogeneity is at least one. Since the cohomogeneity of
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the action of any closed subgroup of� is at least the cohomogeneity of the action of
�, and we are interested only in classiÞcation up the orbit equivalence, it is sufÞcient
to consider only maximal closed subgroups of �. But it may happen that � acts
transitively on ���. This happens in precisely four cases, where we write down
��� � ���� ���:

�:�,.��� �.� � �:�,.� +��� �.� +� �. � =� �

�� �,.�����.� � �� �,.� +�����. � +� �. � @� �

��
� ���� � �:�D���:�,� 	 �:�B� � ���� �,� �

��
	 ���� � �:�<���:�@� 	 �:�B� � ��/.�D���:�=� �

In these cases, one has to go one step further and consider maximal closed subgroups
of � that then never happen to act also transitively. Thus, it is sufÞcient to consider
maximal closed subgroups of �, with the few exceptions just mentioned. In order
to have a closed subgroup� act with cohomogeneity one, it obviously must satisfy
��� � ��� � +. This already rules out a lot of possibilities. For the remaining
maximal closed subgroups, one has to calculate the cohomogeneity case by case.
One way to do this is to calculate the codimension of the slice representation; this is
the action of the isotropygroup��� on the normal space at the corresponding point
of the orbit through that point. This procedure eventually leads to the classiÞcation
of all cohomogeneity one actions up to orbit equivalence, and hence to the classi-
Þcation of homogeneous hypersurfaces on � � ���. It turns out that, with Þve
exceptions, all homogeneous hypersurfaces arise via the construction of Hermann.
The exceptions come from the following actions:

1. The action of �� � �:�D� on �:�D��� �@� � �:�<��� �=� � ��
� ����.

2. The action of �� � �:�D� on �:�D���:�@� 	 �:�=� � ��
	 ����.

3. The action of ��/.�*� � �:�+?� on �:�+?���:�,�	�:�+=� � ��
� ����.

4. The action of ���.����+� � �:�=.� on �:�=.���:�,� 	 �:�=. � ,� �
��
� �����.

5. The action of �� �@� � �� on ����:�=�.

All other homogeneous hypersurfaces can be obtained via the construction of Her-
mann. We refer to [119] for an explicit list of all Hermann actions of cohomogeneity
one.

e) Homogeneous hypersurfaces in Riemannian symmetric spaces of noncom-
pact type

Every homogeneous hypersurface in real hyperbolic space ��� is obviously iso-
parametric. Conversely, as the classiÞcation of isoparametric hypersurfaces in���
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by E. Cartan shows (see Section 3.8), any complete isoparametric hypersurface in
��� is homogeneous. This gives
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As subgroups of �:��+� .� giving these hypersurfaces as orbits one can choose (1)
a maximal compact subgroup�:�.�; (2) �:��+� -�	�:�.�-�; (3) �:��+� .�+�;
(4) the nilpotent subgroup in an Iwasawa decomposition of �: ��+� .�.

The method of Cartan does not work for the hyperbolic spaces �� � , ��� and
���. The reason is that the Gauss-Codazzi equations become too complicated.
Nevertheless, we can apply the method of Cartan to the special class of curvature-
adapted hypersurfaces. For these hypersurfaces the equations of Gauss and Codazzi
simplify considerably. A hypersurface � of a Riemannian manifold �� is called
curvature-adapted if its shape operator and its normal Jacobi operator commute with
each other. Recall that the normal Jacobi operator of � is the self-adjoint (local)
tensor Þeld on� deÞned by �
���  � , where �
 is the Riemannian curvature tensor
of �� and  is a (local) unit normal vector Þeld of� . If �� is a space of constant
curvature, then the normal Jacobi operator is a multiple of the identity at each point,
and hence every hypersurface is curvature-adapted. But, for more general ambient
spaces, this condition is quite restrictive. For instance, in a nonßat complex space
form, say ��� or ��� , a hypersurface � is curvature-adapted if and only if the
structure vector Þeld on� is a principal curvature vector everywhere. Recall that the
structure vector Þeld of� is the vector Þeld obtained by rotating a local unit normal
vector Þeld to a tangent vector Þeld using the ambient Kähler structure. In [13] the
Þrst author obtained the classiÞcation of all curvature-adapted hypersurfaces in �� �

with constant principal curvatures.
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Note that all the hypersurfaces listed here are homogeneous. The geodesic hy-
perspheres are obviously the principal orbits of the isotropy group ��� �+� 	 � �.��
of �� �+� .� at a point. The tubes around a totally geodesic �� � are the principal
orbits of the action of ��� �+� -� 	 � �. � -�� � �� �+� .�. The horospheres arise
as the orbits (there are only principal orbits in this case) of the nilpotent part in an
Iwasawa decomposition of �� �+� .�. Note that this nilpotent part is isomorphic to
the �,.� +�-dimensional Heisenberg group. Eventually, the tubes around�� � are
the principal orbits of the action of �:�+� .� � �� �+� .�. A natural question is
whether there are other homogeneous hypersurfaces in ��� . We will discuss this
question in more detail below.

A hypersurface� in a quaternionic space form �� , say ��� or ��� , is curvatu-
re-adapted if and only if the three-dimensional distribution that is obtained by rotat-
ing the normal bundle of� into the tangent bundle of� by the almost-Hermitian
structures in the quaternionic Kähler structure of �� , is invariant under the shape op-
erator of� . The curvature-adapted hypersurfaces in ��� with constant principal
curvatures were classiÞed in [14].
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The proof is based on the Gauss-Codazzi equations and uses focal set theory. It
is an open problem whether there exist curvature-adapted hypersurfaces in ���

with nonconstant principal curvatures. All the hypersurfaces listed in the previous
theorem are homogeneous. The geodesic hyperspheres are the principal orbits of the
isotropy group ���+� 	 ���.� of ���+� .� at a point. The tubes around a totally
geodesic ��� are the principal orbits of the action of ���+� -� 	 ���. � -� �
���+� .�. The horospheres arise as the orbits of the nilpotent part in an Iwasawa
decomposition of ���+� .�. And the tubes around �� � are the principal orbits of
the action of �� �+� .� � ���+� .�.
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Of course, now the question arises whether any homogeneous hypersurface in
��� or ��� is curvature-adapted. As the classiÞcations by Takagi and Iwata show,
the answer for the corresponding question in �� � and ��� is yes. But, in 1999,
Lohnherr and Reckziegel [131] found an example of a homogeneous ruled hyper-
surface in ��� that is not curvature-adapted. Consider a horocycle in a totally
geodesic and totally real ��� � ��� . At each point of the horocycle we attach
a totally geodesic ����� orthogonal to the complex hyperbolic line determined by
the tangent vector of the horocycle at that point. By varying with the points on the
horocycle, we get a homogeneous ruled hypersurface in ��� . In [16] the Þrst au-
thor constructed this hypersurface by an algebraic method. Using this method, more
examples of homogeneous hypersurfaces in ��� were found. This method also
generalizes to other Riemannian symmetric spaces of noncompact type and can be
used to produce examples of homogeneous hypersurfaces. We will now describe this
construction in more detail.

Let� � ��� be a Riemannian symmetric space of noncompact type with� �
���� � and � the isotropy group of � at a point � � � . We denote by . the
dimension of� and by ! the rank of� . Any homogeneous hypersurface in� is
an orbit of a connected closed subgroup of� acting on� with cohomogeneity one.
We denote by� the moduli space of all isometric cohomogeneity one actions on�
modulo orbit equivalence. Clearly, to classify the homogeneous hypersurfaces in� ,
we just have to determine�.

The orbit space of an isometric cohomogeneity one action on a connected com-
plete Riemannian manifold is homeomorphic to � or �5���. Geometrically, this
means that either all orbits are principal and form a Riemannian foliation on� or
there exists exactly one singular orbit with codimension� , and the principal orbits
are tubes around the singular orbit. This induces a disjoint union� � � � ��� ,
where �� is the set of all homogeneous codimension one foliations on � mod-
ulo isometric congruence and�� is the set of all connected normal homogeneous
submanifolds with codimension � , in � modulo isometric congruence. Here a
submanifold of � is called normal homogeneous if it is an orbit of a connected
closed subgroup of � ��� � and the slice representation at a point acts transitively on
the unit sphere in the normal space at that point.

Let � and � be the Lie algebra of� and�, respectively, and� the Killing form of
�. If � is the orthogonal complement of � in � with respect to � then � � � � � is a
Cartan decomposition of �. If A � � � � is the corresponding Cartan involution, we
get a positive deÞnite inner product on � by ���� � � ����� A� � for all��� � �.
We normalize the Riemannian metric on� such that its restriction to ��� 	 ���
coincides with ��� ��, where we identify � and ��� in the usual manner.

Let 	 be a maximal abelian subspace in � and denote by 	� the dual vector space
of 	. Moreover, let

� � �� �
�
	��

�	

be the restricted root space decomposition of � with respect to 	. The root system I
is either reduced and then of type1 � � � 9 � B � &� &�� &�� (�� �� or nonreduced
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and then of type �9 . For each # � 	� let �	 � 	 be the dual vector in 	 with
respect to the Killing form, that is, #��� � ��	��� for all � � 	. Then we get an
inner product on 	�, which we also denote by ��� ��, by means of �#� $� � ��	��
�
for all #� $ � 	�. We choose a set E � 
2�� � � � � 2 � of simple roots inI and denote
the resulting set of positive restricted roots by I�.

By 2���BB� we denote the group of symmetries of the Dynkin diagram associ-
ated to E. There are just three possibilities, namely

2���BB� �

���
��

	 � if I � B� �

�� � if I � 
1 �! � ,�� B �! � ,� ! � =�� &� �

� � otherwise �

where 
	 is the group of permutations of a set of three elements. The Þrst two
cases correspond to triality and duality principles on the symmetric space that were
discovered by E. Cartan.
The symmetric spaces with a triality principle are �:�<� � ���:�<� and the hy-

perbolic Grassmannian ��
���

��. Each symmetry � � 2���BB� can be linearly ex-
tended to a linear isometry of 	�, which we also denote by � . Denote byJ the linear
isometry from 	� to 	 deÞned byJ�#� � �	 for all # � 	�. Then �� � J Æ� ÆJ��

is a linear isometry of 	 with �� ��	� � �
 if and only if � �#� � $, #� $ � 	�.
Since � is an orthogonal transformation, �� is just the dual map of � �� � 	� � 	�.
In this way, each symmetry � � 2���BB� induces linear isometries of 	� and 	,
both of which we will denote by � , since it will always be clear from the context
which of these two we are using.

We now deÞne a nilpotent subalgebra � of � by

� �
�
	���

�	 �

which then induces an Iwasawa decomposition � � � � 	 � � of �. Then 	 � �

is a solvable subalgebra of � with �	 � �� 	 � �� � �. The connected subgroups
1�,�1, of � with Lie algebras 	� �� 	 � �, respectively, are simply connected
and 1, acts simply transitively on � . The symmetric space � is isometric to
the connected, simply connected, solvable Lie group 1, equipped with the left-
invariant Riemannian metric that is induced from the inner product ��� ��.
Let C be a linear line in 	. Since C lies in the orthogonal complement of the derived

subalgebra of 	 � �, the orthogonal complement �! � �	 � �� � C of C in 	 � � is
a subalgebra of 	� � of codimension one. Let �! be the connected Lie subgroup of
1, with Lie algebra �!. Then the orbits of the action of �! on� form a Riemannian
foliation ! on� whose leaves are homogeneous hypersurfaces. If� has rank one
then 	 is one-dimensional and hence there exists only one such foliation, namely the
one given by �! � �� � , . This is precisely the horosphere foliation on � , all
of whose leaves are isometrically congruent to each other. One can show that, for
higher rank also, all leaves of ! are isometrically congruent to each other. Using
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structure theory of semisimple and solvable Lie algebras, one can show that two
foliations ! and !� are isometrically congruent to each other if and only if there
exists a symmetry � � 2���BB� with � �C� � C�. It follows that the set of all
congruence classes of such foliations is parametrized my ��  ���2���BB�. Here,
��  �� is the projective space of all linear lines C in 	, and the action of 2���BB�
on��  �� is the induced one from the linear action of 2���BB� on 	.

Let 2� � E, / � 
+� � � � � !�, be a simple root. For each unit vector  � ���
the

subspace �� � 	 � �� �� � is a subalgebra of 	 � �. Let �� be the connected Lie
subgroup of 1, with Lie algebra ��. Then the orbits of the action of �� on� form
a Riemannian foliation � on � whose leaves are homogeneous hypersurfaces. If
0 � ���

is another unit vector, the induced foliation  � is congruent to � under an
isometry in the centralizer of 	 in�. Thus, for each simple root 2� � E, we obtain
a congruence class of homogeneous foliations of codimension one on � . We de-
note a representative of this congruence class by �. By investigating the geometry
of these foliations one can prove that � and � are isometrically congruent if and
only if there exists a symmetry � � 2���BB� with � �2�� � 2�. Thus, the set of
all congruence classes of such foliations is parametrized by 
+� � � � � !��2���BB�,
where the action of 2���BB� on 
+� � � � � !� is given by identifying 
+� � � � � !� with
the vertices of the Dynkin diagram. The geometry of these foliations is quite fasci-
nating. Among all leaves there exists exactly one that is minimal. All leaves together
form a homogeneous isoparametric system on� , and if the rank of� is � @, there
exist among these systems some that are noncongruent but have the same principal
curvatures with the same multiplicities. Such a feature had already been discovered
by Ferus, Karcher and Münzner [87] for inhomogeneous isoparametric systems on
spheres.

Using structure theory of semisimple and solvable Lie algebras Berndt and Tamaru
proved in [19] that every homogeneous codimension one foliation on� is isometri-
cally congruent to one of the above.

���	
�� ����( �./-�*�'�� �-)#
�� � � � 
���
�� �����
��� ��������� 	������
 	��
 �� ���
����
�
��� ��� ���� ���- !� �� ������ 	��
 �� �� ��� ���
������� ��������	

�����	��� �� ���������	 �� � �	 �	�������
 �� �� ����� 	��
 �� �� �
����
�� 2���BB� �� ��  ��� 
+� � � � � !��

��
�� ���  ��� 
+� � � � � !���2���BB� �

It is very surprising and remarkable that �� depends only on the rank and on
possible duality or triality principles on the symmetric space. For instance, for
the symmetric spaces �:�+D� � ���:�+D�, ���<����� �<�, ���<� � �����<�,
�:�+?����� �+?�, �:�+D����� �+D�, &�

���:�+?�, &�
� �&� and for the hy-

perbolic Grassmannians ��
���

���� (. � +), ��
���

��� � (. � 5), ��
���

����
(. � 5) the moduli space�� of all noncongruent homogeneous codimension one
foliations is isomorphic to�� �� 
+� � � � � <�.
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We now discuss the case when the rank ! is one, that is,� is a hyperbolic space
over one of the normed real division algebras �, � , � or �. From Theorem 9.5.7
we see that there are exactly two congruence classes of homogeneous codimension
one foliations on� . The Þrst one, coming from the 5-dimensional real projective
space, is the well known horosphere foliation. The second foliation is not so well
known except for the real hyperbolic case. In the case of ���, we get the foliation
whose leaves are a totally geodesic ����� � ��� and its equidistant hypersur-
faces. Comparing this with Cartan�s classiÞcation of homogeneous hypersurfaces in
Theorem 9.5.4 we see that we indeed got all homogeneous hypersurfaces of ���

that are not tubes around a lower dimensional submanifold. In the case of �� � , the
minimal orbit of the second foliation is precisely the minimal ruled real hypersurface
of ��� discovered by Lohnherr and Reckziegel, as mentioned above. The geometry
of the second foliation has been investigated for all hyperbolic spaces in [16].

To complete the classiÞcation of homogeneous hypersurfaces in connected irre-
ducible Riemannian symmetric spaces of noncompact type we must also determine
the moduli space�� . In the case of���we already know from Theorem 9.5.4 that
�� consists of .�+ elements given by the real hyperbolic subspace��� � ���,
- � 
5� � � � � .� ,�, and the tubes around���. An obvious consequence from Car-
tan�s classiÞcation is the nonobvious fact that a singular orbit of a cohomogeneity
one action of��� is totally geodesic.

In [20], Berndt and Tamaru determined the subset �"#
$ of �� consisting of all

cohomogeneity one actions for which the singular orbit is totally geodesic. In this
special situation, one can use duality between symmetric spaces of compact type and
noncompact type to derive the classiÞcation. An explicit list of all totally geodesic
singular orbits can be found in [20], which can be summarized as follows. The
set�"#

$ is empty for the exceptional symmetric spaces of &�
� and &�

� and all their
noncompact real forms, and of &�

 and its split real form. For all other symmetric
spaces, and this includes all classical symmetric spaces,�"#

� is nonempty and Þnite.
It isK�

"#
� � . 3 @ only for the hyperbolic spaces �����, ����� and ����� .

For the symmetric spaces ���, ��� , ��� , ���, ��
	��

��, ��
���

��� (. � @) and
��
���

��� (. � @) we have K�
"#
� � @. For the symmetric spaces ��	, ��

���
��

�+ 7 - 7 . � -� �-� .� � �@� D�� �,� ,5��5 3 ,�, ��
	��

�, ��
����� �+ 7 - 7

. � -� �-� .� � �,� ,5��5 3 ,�, ��
����� �+ 7 - 7 . � -�, ���@�������@�,

���@� � ���� �@�, ���=� � ���� �=� � �:�?� � ���:�?�, �:�D� � ���:�D�,
��
���:�=� and &���

 �(� we have K�
"#
� � ,. In all remaining cases we have

K�
"#

� � +.

Of course, the natural question now is whether a singular orbit of a cohomogeneity
one action on� is totally geodesic. As we already know from Theorem 9.5.4, the
answer is yes for ���. In [17] Berndt and Brück investigated this question for the
other hyperbolic spaces ��� , ��� and ���. The surprising outcome of their
investigations is that in all these spaces there exist cohomogeneity one actions with
non-totally geodesic singular orbits. In the following, we describe the construction
of these actions. Let� be one of these hyperbolic spaces and consider an Iwasawa
decomposition � � � � 	 � � of the Lie algebra of the isometry group of� . The
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restricted root system I associated to � is of type �9� and hence nonreduced.
The nilpotent Lie algebra � decomposes into root spaces � � �� � ���, where
2 is a simple root in I. The root space ��� is the center of �. The Lie algebra
� is a Heisenberg algebra in case of ��� , a generalized Heisenberg algebra with
@-dimensional center in case of ��� , and a generalized Heisenberg algebra with
D-dimensional center in case of ���.

We Þrst consider the case of ��� , . � @, in which case �� is a complex vector
space of complex dimension � ,. Denote by = its complex structure. We choose a
linear subspace � of �� such that its orthogonal complement �� in �� has constant
Kähler angle, that is, there exists a real number D � �5� ?�,� such that the angle
between =��4� and �� is D for all nonzero vectors 4 � ��. If D � 5 then � is a
complex subspace. It is easy to classify all subspaces with constant Kähler angle in
a complex vector space. In particular, such subspaces exist for each given angle D.
It is clear that � � 	 � � � ��� is a subalgebra of 	 � �. Let � be the connected
closed subgroup of 1, with Lie algebra � and , �

%��� the identity component of
the normalizer of � in � � ��� �+� 	 � �.��. Then , �

% ���� � �1, � � acts
on ��� with cohomogeneity one and singular orbit � � 1, � ��� � �� � . If
D � 5 then � is not totally geodesic.

A similar construction works in the quaternionic hyperbolic space �� � , . �
@. In this case, the root space �� is a quaternionic vector space of quaternionic
dimension.�+ and for � one has to choose linear subspaces for which the orthogonal
complement �� of � in �� has constant quaternionic Kähler angle. If . � , we can
choose any linear subspace � of �� of real dimension one or two.

Finally, in the case of the Cayley hyperbolic plane �� �, the root space �� is
isomorphic to the Cayley algebra �. Let � be a linear subspace of �� of real dim-
ension +, ,, =, B or ?. Let � be the connected closed subgroup of 1, with Lie
algebra � � 	 � � � ��� and , �

%��� the identity component of the normalizer of
� in � � ��/.�*�. For instance, if ��� � + then , �

% ��� is isomorphic to the
exceptional Lie group ��. The action of �� on the D-dimensional normal space
�� is equivalent to the standard D-dimensional representation of � �. Since this is
transitive on the ?-dimensional sphere, it follows that � �� � �1, � � � (�
acts on ��� with cohomogeneity one and with � as a nontotally geodesic singular
orbit. For the dimensions ,, =, B and ?, the corresponding normalizer is isomorphic
to � �=�, �:�=�, �:�@� and �:�,� respectively, and one also gets cohomogeneity
one actions on ��� with a nontotally geodesic singular orbit. Surprisingly, if � is
@-dimensional this method does not yield such a cohomogeneity one action.

It is an open problem whether for ��� , ��� or ��� the moduli space ��

contains more elements than described above. Also, for higher rank, the explicit
structure of�� is still unknown.
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�� !������

�0/-1��/ ����� Prove that a polar in �� � is a totally geodesic �� ���.

�0/-1��/ ����� Show that�� � is not a reßective submanifold of �� � if - 7 ..

�0/-1��/ ����� Use duality between symmetric spaces of compact and noncom-
pact type to deduce the classiÞcation of totally geodesic submanifolds in �� � from
the one in �� � .

�0/-1��/ ����� Let � be a circle in ��� . Construct explicitly a one-parameter
group of isometries of �� � that has � as an orbit.

�0/-1��/ ����� Calculate explicitly the second canonical embedding of �� �

into a complex projective space.

�0/-1��/ ����� Prove that the embedding of �� �.���:�.� in 9� � as de-
scribed in Section 9.3 e) is totally real, where , � �. � +��. � ,��,.

�0/-1��/ ����( Prove that the focal set of the complex quadric in �� � is a
totally geodesic�� �.

�0/-1��/ ����+ The action of ���@� 	 ���+� � (� on the Cayley projective
plane �� � has a totally geodesic �� � as a singular orbit. Prove that the second
singular orbit is an ++-dimensional sphere � ��.

�0/-1��/ ����� Show that the action of the exceptional Lie group�� � �:�D�
on �:�D��� �@� � �:�<��� �=� � ��

� ���� is of cohomogeneity one. Prove that
the two singular orbits of this action are ���� �,� � ��

� ���� and ����� �@� � �.
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Our study of submanifolds is mainly carried out in the framework of Riemannian
geometry. For the reader�s convenience and the purpose of Þxing notations, in this
appendix, we summarize some basic concepts regarding Riemannian manifolds, Lie
groups, homogeneous and symmetric spaces. This is not an attempt to introduce
these topics. At the beginning of each section, we provide a list of textbooks where
the interested reader can Þnd further details.

��� �����		��	 ��	�
���

Modern introductions to Riemannian geometry can be found in the books by
Chavel [47], Gallot-Hulin-Lafontaine [89], Jost [108], Petersen [188] and Sakai
[195].

Riemannian manifolds

Let� be an �-dimensional smooth manifold. By smooth we always mean ��,
and, as manifolds are always assumed to satisfy the second countability axiom, they
are paracompact. For each � �� we denote by ��� (or ���� �) the tangent space
of� at �. The tangent bundle of� is denoted by �� .

Suppose each tangent space ��� is equipped with an inner product ��� ���. If
the function � �� ���� ���� is smooth for any two smooth vector Þelds ��� on
� , then this family of inner products is called a Riemannian metric, or Riemannian
structure, on � . We usually denote a Riemannian metric, and each inner product
it consists of, by ��� ��. Paracompactness implies that any smooth manifold admits
a Riemannian structure. A smooth manifold equipped with a Riemannian metric is
called a Riemannian manifold.

Length, distance and completeness

The presence of an inner product on each tangent space allows measurement of the
length of tangent vectors, by which we can deÞne the length of curves and a distance
function. For the latter, we have to assume that� is connected. If 	 � �
� ���� is
any smooth curve into a Riemannian manifold� , the length ��	� of 	 is deÞned by

��	� ��

� �

�

�
� �	��� �	���� �
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where �	 denotes the tangent vector Þeld of 	. The length ��	� of a piecewise smooth
curve 	 � �
� ��� � is then deÞned in the usual way by means of a suitable subdi-
vision of �
� ��. The distance ���� �� between two points �� � � � is deÞned as the
inÞmum over all ��	�, where 	 � �
� ���� is a piecewise smooth curve in� with
	�
� � � and 	��� � �. The distance function � � � �� � � turns� into a met-
ric space. The topology on� induced by this metric coincides with the underlying
manifold topology. A complete Riemannian manifold is a Riemannian manifold�
that is complete when considered as a metric space, that is, every Cauchy sequence
in� converges in� .

Isometries

Let � be a Riemannian manifold. A smooth diffeomorphism � � � � � is
called an isometry if ����� ��� � � ���� � for all ��� � ��� , � � � , where
�� denotes the differential of � at �. If� is connected, a surjective continuous map
� � � � � is an isometry if and only if it preserves the distance function � on
� , that is, if ������� ����� � ���� �� for all �� � � � . An isometry of a connected
Riemannian manifold is completely determined by both its value and its differential
at some point. In particular, an isometry that Þxes a point and whose differential at
this point is the identity, is the identity map. If� is a connected, simply connected,
complete, real analytic Riemannian manifold, then every local isometry of� can be
extended to a global isometry of� .

The isometries of a Riemannian manifold form a group in an obvious manner. We
will denote it by ��� � and call it the isometry group of� . We always consider this
group as a topological group equipped with the compact-open topology. With respect
to this topology ��� � carries the structure of a Lie group acting on � as a Lie
transformation group. We usually denote by � ��� � the identity component of ��� �,
that is, the connected component of ��� � containing the identity transformation
of� .

Covariant derivatives

While there is a natural way to differentiate smooth functions on a smooth mani-
fold, there is no such natural way to differentiate smooth vector Þelds. The theory of
studying the various possibilities for such a differentiation process is called theory
of connections, or covariant derivatives. A covariant derivative (or connection) on
a smooth manifold� is an operator � assigning to two vector Þelds ��� on� a
third vector Þeld ��� and satisfying the following axioms:

(i)� is�-bilinear,

(ii)���� � ���� ,

(iii)���� � ���� ������ ,

where � is any smooth function on� and���� � ����� is the derivative of
� in direction�.
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If � is a Riemannian manifold, it is important to consider covariant deriva-
tives that are compatible with the metric, that is to say, covariant derivatives
satisfying

(iv) ����� � � ������ �� ������ �.

A covariant derivative� satisfying (iv) is calledmetric. A covariant derivative
� is called torsion-free if it satisÞes

(v)��� 	��� � ���� � �

On a Riemannian manifold there exists a unique torsion-free metric covariant
derivative, i.e., a covariant derivative satisfying properties (iv) and (v). This covari-
ant derivative is usually called the Riemannian covariant derivative or Levi Civita
covariant derivative of the Riemannian manifold � . Unless otherwise stated, �
usually denotes the Levi Civita covariant derivative of a Riemannian manifold. Ex-
plicitly, from these properties, the Levi-Civita covariant derivative can be computed
by means of the well-known Koszul formula:

	����� �� � � ��� �� � � ����� 	 � ���� � �

� ����� �� �� 	 ������� � � 	 ���� ��� �� �

Riemannian curvature tensor, Ricci tensor, scalar curvature

The major concept of Riemannian geometry is curvature. There are various kinds
of curvature of great interest. All of them can be deduced from the so-called Rie-
mannian curvature tensor

����� �� � ����� 	����� 	���	� �� �

The Riemannian curvature tensor has the properties:

������ ���� � � 	���������� � �

������ ���� � � 	������ ����� �

������ ���� � � ������ ���� � �

and
����� �� � ���� ��� �������� � 
 �

These equations are often called algebraic curvature identities of �, the latter, in
particular, will be referred to as algebraic Bianchi identity or Þrst Bianchi identity.
Moreover, � satisÞes

�������� ��� � ����������� � ��������� �� � 
 �

known as the differential Bianchi identity or second Bianchi identity .
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Let � � � , ��� � ��� , and denote by ������� � the real number which is
obtained contracting the bilinear map

��� � ��� � � � ��� �� �� ������ ���� � �

The algebraic curvature identities show that ��� is a symmetric bilinear map on
��� . The tensor Þeld �� is called the Ricci tensor of � . The corresponding self-
adjoint tensor Þeld of type (1,1) is denoted by ��. A Riemannian manifold for
which the Ricci tensor satisÞes

�� � ���� ��

with some smooth function � on� is called an Einstein manifold. For instance, each
quaternionic Kähler manifold of dimension ��, � 
 	, is an Einstein manifold.

The weakest notion of curvature on a Riemannian manifold is the scalar curvature.
This is the smooth function on� that is obtained by contracting the Ricci tensor.

Sectional curvature

Perhaps the most geometric interpretation of the Riemannian curvature tensor
arises via the sectional curvature. Consider a 2-dimensional linear subspace � of
��� , � � � , and choose an orthonormal basis ��� of �. Since ���� is a local
diffeomorphism near 0 in ��� , it maps an open neighborhood of 0 in � onto some
2-dimensional surface � in � . Then the Gaussian curvature of � at �, which we
denote by����, satisÞes

���� � ������ ����� �

Let����� � be the Grassmann bundle over� consisting of all 2-dimensional linear
subspaces � � ��� , � � � . The map

� � ����� �� � � � �� ����

is called sectional curvature function of � , and ���� is called sectional curva-
ture of � with respect to �. It is worthwhile to mention that one can reconstruct
the Riemannian curvature tensor from the sectional curvature function by using the
curvature identities.
A Riemannian manifold� is said to have constant curvature if the sectional cur-

vature function is constant. If ���� 
 �, the second Bianchi identity and Schur�s
Lemma imply the following well-known result: If the sectional curvature function
depends only on the point �, then � has constant curvature. A space of constant
curvature is also called a space form. The Riemannian curvature tensor of a space
form with constant curvature � is given by

����� �� � ����� ��� 	 ������ � �

Every connected three-dimensional Einstein manifold is a space form. It is an al-
gebraic fact (i.e., does not involve the second Bianchi identity) that a Riemannian
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manifold� has constant sectional curvature equal to zero if and only if� is ßat,
i.e., the Riemannian curvature tensor of� vanishes.

A connected, simply connected, complete Riemannian manifold of nonpositive
sectional curvature is called a Hadamard manifold. The Hadamard Theorem states
that, for each point � in a Hadamard manifold � , the exponential map ���� �
��� � � is a diffeomorphism. More generally, if � is a connected, complete
Riemannian manifold of nonpositive sectional curvature, then the exponential map
���� � ��� �� is a covering map for each � �� .

Vector Þelds and ßows

A vector Þeld� on a Riemannian manifold� is called a Killing vector Þeld if the
local diffeomorphisms��


 � � �� are isometries into� . This just means that the
Lie derivative of the Riemannian metric of� with respect to � vanishes. A useful
characterization of Killing vector Þelds is that a vector Þeld � on a Riemannian
manifold is a Killing vector Þeld if and only if its covariant derivative�� is a skew-
symmetric tensor Þeld on� . A Killing vector Þeld is completely determined by its
value and its covariant derivative at any given point. In particular, a Killing vector
Þeld � for which �� � 
 and ����� � 
 at some point � � � vanishes at each
point of� . For a complete Killing vector Þeld� on a Riemannian manifold� , the
corresponding one-parameter group ���


 � consists of isometries of� . Conversely,
suppose we have a one-parameter group�
 of isometries on a Riemannian manifold
� . Then

�� ��
�

�

����

��

�
���

deÞnes a complete Killing vector Þeld� on� with��

 � �
 for all  � �. If� is

a Killing vector Þeld on� and�� � 
, then

�

�

����

��

���

 ��� � �����

for all  � �.

Distributions and the Frobenius Theorem

A distribution on a Riemannian manifold� is a smooth vector subbundle � of
the tangent bundle �� . A distribution� on� is called integrable if for any � ��
there exists a connected submanifold �� of� such that ���� � �� for all � � ��.
Such a submanifold �� is called an integral manifold of�. The Frobenius Theorem
states that� is integrable if and only if it is involutive, that is, if the Lie bracket of any
two vector Þelds tangent to� is also a vector Þeld tangent to�. If � is integrable,
there exists through each point � � � a maximal integral manifold of� containing
�. Such a maximal integral manifold is called the leaf of� through �. A distribution
� on� is called autoparallel if��� � �, that is, if for any two vector Þelds���
tangent to � the vector Þeld��� is also tangent to �. By the Frobenius Theorem
every autoparallel distribution is integrable. An integrable distribution is autoparallel
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if and only if its leaves are totally geodesic submanifolds of the ambient space. A
distribution� on � is called parallel if ��� � � for any vector Þeld � on � .
Obviously, any parallel distribution is autoparallel. Since � is a metric connection,
for each parallel distribution� on� , its orthogonal complement�� in �� is also
a parallel distribution on� .

Covariant derivatives along curves

Given a piecewise differentiable curve 	�� on� , deÞned on an interval �, there
is a covariant derivative operator ��



along 	�� which maps (differentiable) tangent

vector Þelds of � along 	 to (differentiable) tangent vector Þelds of � along 	
(see [71]). Frequently, when it is clear from the context, we will write �



� or� ���

instead of ��



�. The covariant derivative along 	 is completely determined by the

following properties:

(i) �


����� ������ �

�


���� �

�


���� for all vector Þelds ����� ���� along

	��;

(ii) �


������ � � ������ � ����



��� for all vector Þelds ��� along 	�� and

all smooth functions ��� deÞned on �;

(iii) �


� �	��� � ����
�� , for all vector Þelds � on� .

Since� is metric, we have

�

�
����� � ��� � �

�

�
���� � ���� �����

�

�
� ���

for all vector Þelds ���� � �� along 	��.

������ ����� �� 	��  � �� � ������� ���� ��� ��� �� � �����  �!�
�!��" 	��# �$�$# ��� �!!  %� &��� ��� � ��� # �&�� �



��� � 



���# %&���

�&� !��� ���������� �� �&� ����! ��� �� �&� ����� ���� ��� $

A vector Þeld��� along 	�� is called parallel if �


���  
. The above equality

implies that ����� � ��� is constant if both vector Þelds are parallel along 	. From
the theory of ordinary differential equations, one can easily see that, for each � �
���
��� , � � �, there exists a unique parallel vector Þeld ���� along 	�� such
that ����� � �. For each  � � there is then a well-deÞned linear isometry � ��� �
���
�� � ���
�, called the parallel transport along 	, given by

� ������ � ���� �

The covariant derivative operator and parallel transport along 	�� are related by

�

�
��� �

�

��

����
���

�� �� � ������� � �� �
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Note that the parallel transport does not depend on the parametrization of the curve.

A parametrized surface in� is a smooth map � from an open subset of �� into
� . We do not assume that the differential of such a map is injective (in this case, the
surface is called regular). As in the case of curves, we will be considering smooth
vector Þelds �� � � along � . Then we have �� � � � ����	
�� . As usual, we
will denote by �

��
the covariant derivative along the curve  �� �� � � with  Þxed.

The corresponding tangent vector Þeld of this curve is denoted by ��

��
. In the same

way, we deÞne �
�

and ��

�

. From the fact that the Levi Civita covariant derivative is

torsion-free, we deduce
�

! 

!�

!
�

�

!

!�

! 
�

But the covariant derivatives with respect to  and  do not commute in general if the
curvature tensor does not vanish. More precisely,

�

! 

�

!
�� � � 	

�

!

�

! 
�� � � � �

�
!�

! 
�
!�

!

�
�� � � �

We will often omit � in the partial derivatives and simply write �
��
and �

�

.

Note that, when a smooth curve 	�� is deÞned on a closed interval �
� ��, this
means that 	�� is the restriction to �
� �� of a smooth curve that is deÞned on an open
interval � � �
� ��. A similar remark applies to a surface that is deÞned on a closed
subset of��.

Holonomy

A Riemannian manifold� is said to be ßat if its curvature tensor vanishes. This
implies that, locally, the parallel transport does not depend on the curve used for
joining twogiven points. If the curvature tensor does not vanish, the parallel transport
depends on the curve. A way of measuring how far the space deviates from being
ßat is given by the holonomy group. Let � � � and '��� the set of all piecewise
smooth curves 	 � �
� (�� � with 	�
� � 	�(� � �. Then the parallel translation
along any curve 	 � '��� from 	�
� to 	�(� is an orthogonal transformation of � �� .
In an obvious manner, the set of all these parallel translations forms a subgroup
)�!��� � of the orthogonal group "���� �, which is called the holonomy group
of � at �. As a subset of "���� �, it carries a natural topology. With respect to
this topology, the identity component )�! ���� � of )�!��� � is called the restricted
holonomy group of � at �. The restricted holonomy group consists of all those
transformations arising from null homotopic curves in'���. If� is connected, then
all (restricted) holonomy groups are congruent to each other, and, in this situation,
one speaks of the (restricted) holonomy group of themanifold� , which we will then
denote by )�!�� � resp. )�!��� �. The connected Lie group )�!��� � is always
compact, whereas )�!�� � is, in general, not closed in the orthogonal group. A
reduction of the holonomy group corresponds to an additional geometric structure
on� . For instance, )�!�� � is contained in �"���� � for some � � � if and only
if � is orientable. An excellent introduction to holonomy groups can be found in
the book by Salamon [196].
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Geodesics

Of great importance in Riemannian geometry are the curves that minimize the
distance between two given points. Of course, given two arbitrary points, such curves
do not exist in general. But they do exist provided the manifold is connected and
complete. Distance-minimizing curves # are solutions of a variational problem. The
corresponding Þrst variation formula shows that any such curve # satisÞes �



�# � 
.

A smooth curve # satisfying this equation is called a geodesic. Every geodesic is
locally distance-minimizing, but not globally, as a great circle on a sphere illustrates.
The basic theory of ordinary differential equations implies that, for each point� ��
and each tangent vector � � ��� , there exists a unique geodesic # � � � � with

 � �, #�
� � �, �#�
� � �, and such that, for any other geodesic $ � % � � with

 � % , $�
� � � and �$�
� � �, we have % � �. This curve # is often called the
maximal geodesic in� through � tangent to�, and we denote it sometimes by #� .
The Hopf-RinowTheorem states that a Riemannian manifold is complete if and only
if #� is deÞned on�for each � � �� .

Kähler manifolds

An almost complex structure on a smooth manifold� is a tensor Þeld % of type
(1,1) on� satisfying % � � 	���� . An almost complex manifold is a smooth ma-
nifold equipped with an almost complex structure. Each tangent space of an almost
complex manifold is isomorphic to a complex vector space, which implies that the
dimension of an almost complex manifold is an even number. A Hermitian metric
on an almost complex manifold� is a Riemannian metric ��� �� for which the almost
complex structure % on� is orthogonal, that is,

�%�� %� � � ���� �

for all ��� � ��� , � � � . An orthogonal almost complex structure on a Rie-
mannian manifold is called an almost Hermitian structure.

Every complex manifold� has a canonical almost complex structure. In fact, if
& � '� () is a local coordinate on� , deÞne

%
!

!'�
�

!

!)�
� %

!

!)�
� 	

!

!'�
�

These local almost complex structures are compatible on the intersection of any two
coordinate neighborhoods and hence induce an almost complex structure, which is
called the induced complex structure of � . An almost complex structure % on
a smooth manifold � is integrable if � can be equipped with the structure of a
complex manifold so that % is the induced complex structure. A famous result by
Newlander-Nirenberg says that the almost complex structure % of an almost complex
manifold� is integrable if and only if

���� � � % �%�� � � � % ��� %� �	 �%�� %� � � 
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for all��� � ��� , � �� . A Hermitianmanifold is an almost Hermitian manifold
with an integrable almost complex structure. The almost Hermitian structure of a
Hermitian manifold is called a Hermitian structure.

The 2-form * on a Hermitian manifold� deÞned by

*���� � � ��� %� �

is called the Kähler form of � . A Kähler manifold is a Hermitian manifold whose
Kähler form is closed. A Hermitianmanifold� is a Kähler manifold if and only if its
Hermitian structure % is parallel with respect to the Levi Civita connection� of� ,
that is, if�% � 
. The latter condition characterizes the Kähler manifolds among all
Hermitian manifolds by the geometric property that parallel translation along curves
commutes with the Hermitian structure % . A 	�-dimensional connected Riemann-
ian manifold� can be equipped with the structure of a Kähler manifold if and only
if its holonomy group )�!�� � is contained in the unitary group � ���. The stan-
dard examples of Kähler manifolds are the complex vector space �� , the complex
projective space �+� , and the complex hyperbolic space �,� .
The curvature and Ricci tensors of a Kähler manifold satisfy

����� �%� � %������ ��� �
	 �� ��� %� � � ������ �� %� � �� �� � � ���� � �� �

where �� � � � denotes the inner product on tensors induced by the Riemannian metric.

Quaternionic Kähler manifolds

A quaternionic Kähler structure on a Riemannian manifold� is a rank three vec-
tor subbundle � of the endomorphism bundle *����� � over� with the following
properties: (1) For each � in� there exist an open neighborhood � of � in� and
sections %�� %�� %	 of � over � so that %� is an almost Hermitian structure on � and

%�%�
� � %�
� � 	%�
�%� ������ ����!� �&����

for all - � (� 	� �; (2) � is a parallel subbundle of *����� �, that is, if % is a section
in � and� a vector Þeld on� , then��% is also a section in �. Each triple %�� %�� %	
of the above kind is called a canonical local basis of �, or, if restricted to the tangent
space ��� of� at �, a canonical basis of ��. A quaternionic Kähler manifold is a
Riemannian manifold equipped with a quaternionic Kähler structure. The canonical
bases of a quaternionic Kähler structure turn the tangent spaces of a quaternionic
Kähler manifold into quaternionic vector spaces. Therefore, the dimension of a
quaternionic Kähler manifold is �� for some � � �. A ��-dimensional connected
Riemannian manifold� can be equipped with a quaternionic Kähler structure if and
only if its holonomy group)�!�� � is contained in ����� ����(�. The standard ex-
amples of quaternionic Kähler manifolds are the quaternionic vector space �� , the
quaternionic projective space �+� , and the quaternionic hyperbolic space �,� .
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Riemannian products and covering spaces

Let �� and�� be Riemannian manifolds. At each point ���� ��� � �� ���,
the tangent space ����	������ � ��� is canonically isomorphic to the direct sum
����� � �����. The inner products on ����� and ����� therefore induce an
inner product on ����	������ ����. In this way, we get a Riemannian metric on
�����. The product manifold����� equipped with this Riemannian metric is
called the Riemannian product of�� and��. For each connected Riemannian ma-
nifold� there exists a connected, simply connected Riemannian manifold +� and
an isometric covering map +� � � . Such a manifold +� is unique up to isometry
and is called the Riemannian universal covering space of� . A Riemannian mani-
fold� is called reducible if its Riemannian universal covering space +� is isometric
to the Riemannian product of at least two Riemannian manifolds of dimension 
 (.
Otherwise,� is called irreducible. A Riemannian manifold� is said to be locally
reducible if, for each point � � � , there exists an open neighborhood of � in �
that is isometric to the Riemannian product of at least two Riemannian manifolds of
dimension
 (. Otherwise,� is said to be locally irreducible.

The de Rham Decomposition Theorem

The de Rham Decomposition Theorem states that a connected Riemannian mani-
fold� is locally reducible if and only if � �� is reducible as a )�!��� �-module
for some, and hence for every, point � �� . Since)�!��� � is compact, there exists
a decomposition

��� � .� � .� � � � �� .�

of ��� into )�!��� �-invariant subspaces of ��� , where .� � ��� is the Þxed
point set of the action of)�!��� � on��� and.�� � � � � .� are irreducible,/0��� �-
modules. It might happen that .� � ��� , for instance, when � � ��, or
.� � �
�, or when� is the sphere ��, 1 2 (. The above decomposition is unique
up to order of the factors and determines integrable distributions . �� � � � � .� on � .
Then there exists an open neighborhood of � in� that is isometric to the Riemann-
ian product of sufÞciently small integral manifolds of these distributions through �.
The global version of the de Rham decomposition theorem states that a connected,
simply connected, complete Riemannian manifold� is reducible if and only if � ��
is reducible as a )�!��� �-module. If � is reducible and ��� � .� � � � � � .�
is the decomposition of ��� as described above, then � is isometric to the Rie-
mannian product of the maximal integral manifolds ��� � � � ��� through � of the
distributions .�� � � � � .�. In this situation, � � �� � � � � � �� is called the de
Rham decompositon of� . The Riemannian manifold�� is isometric to a possibly
zero-dimensional Euclidean space. If ����� 2 
 then�� is called the Euclidean
factor of� . A connected, complete Riemannian manifold� is said to have no Eu-
clidean factor if the de Rham decomposition of the Riemannian universal covering
space +� of� has no Euclidean factor.
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Exponential map and normal coordinates

Of great importance is the exponential map ��� of a Riemannian manifold. To
deÞne it, we denote by ��� � �� the set of all tangent vectors for which #� �(� is
deÞned. This is an open subset of �� containing the zero section. A Riemannian
manifold is complete if and only if ��� � �� . The map

��� � ��� �� � � �� #� �(�

is called the exponential map of � . For each � � � , we denote the restriction of
��� to ��� � ��� by ����. The map ���� is a diffeomorphism from some open
neighborhood of 
 � ��� onto some open neighborhood of � � � . If we choose
an orthonomal basis 3�� � � � � 3� of ��� , then the map

�'�� � � � � '�� �� ����

�
��
���

'�3�

	
deÞnes local coordinates of� in some open neighborhood of �. Such coordinates
are called normal coordinates.

Jacobi vector Þelds

Let # � � � � be a geodesic parametrized by arc length. A vector Þeld � along
# is called a Jacobi vector Þeld if it satisÞes the second order differential equation

� �� � ���� �#� �# � 
 �

Standard theory of ordinary differential equations implies that the Jacobi vector Þelds
along a geodesic form a 	1-dimensional vector space. Every Jacobi vector Þeld is
uniquely determined by the initial values � ��� and � ���� at a Þxed number � � �.
The Jacobi vector Þelds arise geometrically as inÞnitesimal variational vector Þelds
of geodesic variations. Jacobi vector Þelds can be used to describe the differential
of the exponential map. Indeed, let � � � and ���� be the exponential map of�
restricted to ��� . For each � � ��� we identify �� ���� � with ��� in the
canonical way. Then, for each � � ��� , we have

3'����� � ���(� �

where �� is the Jacobi vector Þeld along #� with initial values ���
� � 
 and
� �
��
� � �.

��� ��� ������ �	 ��� ��������

Lie groups were introduced by Sophus Lie in the framework of his studies on dif-
ferential equations as local transformation groups. The global theory of Lie groups
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was developed by Hermann Weyl and Élie Cartan. Lie groups are both groups
and manifolds, which allows us to use concepts from both algebra and analysis to
study these objects. Some modern books on this topic are Adams [2], Carter-Segal-
Macdonald [37], Knapp [113], Varadarajan [231]. Foundations on Lie theory can
also be found in Onishchik [182], and the structure of Lie groups and Lie algebras
is discussed in Onishchik-Vinberg [183]. A good introduction to the exceptional Lie
groups may be found in Adams [3].

Lie groups

A real Lie group, or brießy Lie group, is an abstract group � that is equipped
with a smooth manifold structure such that � � � � � � �4�� 4�� �� 4�4� and
� � � � 4 �� 4�� are smooth maps. For a complex Lie group �, one requires that
� is equipped with a complex analytic structure and thatmultiplication and inversion
are holomorphicmaps. A simple example of a real Lie group is�� equipped with its
additive group structure, turning it into an Abelian Lie group. Suppose , is a lattice
in ��, that is, , is a discrete subgroup of rank 1 of the group of translations of ��.
Then �� � ��5, is a compact Abelian Lie group, a so-called 1-dimensional torus.
Every Abelian Lie group is isomorphic to the product���� � for some nonnegative
integers 1� 6 
 
. Another basic example of a Lie group is the isometry group ��� �
of a Riemannian manifold� . For any Lie group � the connected component of �
containing the identity of � is called the identity component of �. We denote this
component usually by ��.

A subgroup, of a Lie group � is called a Lie subgroup if, is a Lie group and
if the inclusion , � � is a smooth map. For instance the identity component � �

of a Lie group � is a Lie subgroup. Each closed subgroup of a Lie group is a Lie
subgroup.

For each 4 � �, the smooth diffeomorphisms

�� � �� � � 4� �� 44� ��� �� � � � � � 4� �� 4�4

are called the left translation and right translation on � with respect to 4, respec-
tively. A vector Þeld � on � is called left-invariant resp. right-invariant if it is
invariant under any left translation resp. right translation, that is � ��� � � Æ ��

resp. ���� � � Æ�� for all 4 � �. The smooth diffeomorphism

�� � �� Æ���� � �� � � 4� �� 44�4��

is called an inner automorphism of �.

Lie algebras

A (real or complex) Lie algebra is a Þnite-dimensional (real or complex) vector
space � equipped with a skew-symmetric bilinear map ��� �� � �� �� � satisfying

����� �� �� � ���� ��� �� � ������� � � � 




Appendix Basic Material 293

for all ���� � � �. The latter identity is called the Jacobi identity. To every Lie
group �, there is associated a Lie algebra �, namely the vector space of all left-
invariant vector Þelds equipped with the bilinear map arising from the Lie bracket.
Since each left-invariant vector Þeld is uniquely determined by its value at the iden-
tity 3 � �, � is isomorphic as a vector space to ���. In particular, we have
���� � ����.

Let � be a real Lie algebra and �� � ��(� be the complexiÞcation of � considered
as a vector space. By extending the Lie algebra structure on � complex linearly to
�� we turn �� into a complex Lie algebra, the complexiÞcation of �. Any complex
Lie algebra � can be considered canonically as a real Lie algebra ��by restricting
the scalar multiplication to �� � . If � is a real Lie algebra and � is a complex Lie
algebra so that � is isomorphic to �� then � is a real form of �.

Lie exponential map

Let � be a Lie group with Lie algebra �. Any� � � is a left-invariant vector Þeld
on � and hence determines a ßow �� � �� �� �. The smooth map

*�� � � � � � � �� �� �(� 3�

is called the Lie exponential map of � or�. For each� � �, the curve  �� *�����
is a one-parameter subgroup of � and we have ���� 4� � ����
���4� for all
4 � � and  � �. The Lie exponential map is crucial when studying the interplay
between Lie groups and Lie algebras. It is a diffeomorphism of some open neigh-
borhood of 
 � � onto some open neighborhood of 3 � �.

The Lie algebra of the isometry group

Let � be a connected Riemannian manifold. The Lie algebra � of the isometry
group � � ��� � can be identiÞed with the Lie algebra ��� � of Killing vector
Þelds on� in the followingway. The Lie bracket on��� � is the usual Lie bracket
for vector Þelds. For� � � we deÞne a vector Þeld�� on� by

��
� �

�

�

����

��

*��������

for all � �� . Then the map

�� ��� � � � �� ��

is a vector space isomorphism satisfying

���� �� � 	���� � �� �

In other words, if one should deÞne the Lie algebra � of � by using right-invariant
vector Þelds instead of left-invariant vector Þelds, then the map � � ��� � � � ��
�� would be a Lie algebra isomorphism.
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Adjoint representation

The inner automorphisms �� of � determine the so-called adjoint representation
of � by

-� � �� ./��� � 4 �� ���� �

where ���� denotes the differential of �� at 3 and we identify ��� with � by means
of the vector space isomorphism

�� ��� � � �� �� �

The adjoint representation of � is the homomorphism

�� � �� *����� � � �� �� � � � � �� ���� �� �

It can be obtained from Ad by means of

������ �
�

�
�
��� �� -��*������� � �

The relationship between Ad and ad is described by

-��*������ � ���������� �

where ��� denotes here the exponential map for endomorphisms of the vector
space �.

Killing form

The symmetric bilinear form 7 on � deÞned by

7���� � � �������� Æ ���� ��

for all ��� � � is called the Killing form, or Cartan-Killing form, of �. Every
automorphism � of � has the property

7���� �� � � 7���� �

for all��� � �. This implies that

7��������� � � 7��� ������ � � 


for all���� � � �.

Solvable and nilpotent Lie algebras and Lie groups

Let � be a Lie algebra. The commutator ideal ��� �� of � is the ideal in � generated
by all vectors in � of the form ���� �, ��� � �. The commutator series of � is the
decreasing sequence

�� � � � �� � ���� ��� � �� � ���� ��� � � � �
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of ideals of �. The Lie algebra � is solvable if this sequence is Þnite, that is, if �� � 

for some 6 � �. The lower central series of � is the decreasing sequence

�� � � � �� � ��� ��� � �� � ��� ��� � � � �

of ideals in �. The Lie algebra � is nilpotent if this sequence is Þnite, that is, if �� � 

for some 6 � �. Each nilpotent Lie algebra is solvable. A Lie group � is solvable
or nilpotent if and only if its Lie algebra � is solvable or nilpotent, respectively.

Simple and semisimple Lie algebras and Lie groups

Let � be a Lie algebra. There is a unique solvable ideal in � that contains all
solvable ideals in �, the so-called radical of �. If this radical is trivial, the Lie algebra
is called semisimple. A criterion by Cartan says that a Lie algebra is semisimple if
and only if its Killing form is nondegenerate. A semisimple Lie algebra � is called
simple if it contains no ideals different from �
� and �. A Lie group is semisimple
or simple if and only if its Lie algebra is semisimple or simple, respectively.

Structure theory of semisimple complex Lie algebras

Let � be a semisimple complex Lie algebra and 7 its Killing form. A Cartan
subalgebra of � is a maximal Abelian subalgebra � of � so that all endomorphisms
���,�, , � �, are simultaneously diagonalizable. There always exists a Cartan
subalgebra in �, and any two of them are conjugate by an inner automorphism of �.
The common value of the dimension of these Cartan subalgebras is called the rank
of �.

Any semisimple complex Lie algebra can be decomposed into the direct sum of
simple complex Lie algebras, which were classiÞed by Elie Cartan. The simple
complex Lie algebras are

8� � ���1�(� � � � 7� � ���	1�(� � � � �� � ���1� � � � �� � ���	1� � ��1 
 �� �

which are the simple complex Lie algebras of classical type, and

�� � 9� � :� � :� � :� �

which are the simple complex Lie algebras of exceptional type. Here, the index refers
to the rank of the Lie algebra. Note that there are isomorphisms 8� � 7� � ��,
7� � �� and 8	 � �	. The Lie algebra �� � ����� � � is not simple since
�� � 8� � 8�.

Let � be a Cartan subalgebra of a semisimple complex Lie algebra �. For each
one-form $ in the dual vector space �� of � we deÞne

�� � �� � � � ���,�� � $�,�� ��� �!!, � �� �

If �� is nontrivial and $ is nonzero, $ is called a root of � with respect to � and
�� is called the root space of � with respect to $. The complex dimension of �� is
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always one. We denote by 0 the set of all roots of � with respect to �. The direct
sum decomposition

� � ��


���

��

is called the root space decomposition of � with respect to the Cartan subalgebra �.

Structure theory of compact real Lie groups

Let � be a connected, compact, real Lie group. The Lie algebra � of � admits an
inner product so that each -��4�, 4 � �, acts as an orthogonal transformation on �
and each �����, � � �, acts as a skew-symmetric transformation on �. This yields
the direct sum decomposition

� � ���� � ��� �� �

where ���� is the center of � and ��� �� is the commutator ideal in �, which is al-
ways semisimple. The Killing form of � is negative semideÞnite. If, in addition, � is
semisimple, or equivalently, if ���� � 
, then its Killing form 7 is negative deÞnite
and hence 	7 induces an -����-invariant Riemannian metric on�. This metric is
biinvariant, that is, both left and right translations are isometries of�. Let ���� � be
the identity component of the center ���� of � and �� the connected Lie subgroup
of � with Lie algebra ��� ��. Both ����� and �� are closed subgroups of �, ��

is semisimple and has Þnite centre, and � is isomorphic to the direct product
����� � ��.

A torus in � is a connected Abelian Lie subgroup � of �. The Lie algebra 	 of
a torus � in � is an Abelian Lie subalgebra of �. A torus � in � that is not prop-
erly contained in any other torus in � is called a maximal torus. Analogously, an
Abelian Lie subalgebra 	 of � which is not properly contained in any other Abelian
Lie subalgebra of � is called a maximal Abelian subalgebra. There is a natural cor-
respondence between the maximal tori in� and the maximal Abelian subalgebras of
�. Any maximal Abelian subalgebra 	 of � is of the form

	 � ���� � 	� �

where 	� is some maximal Abelian subalgebra of the semisimple Lie algebra ��� ��.

Any two maximal Abelian subalgebras of � are conjugate via -��4� for some 4 �
�. This readily implies that any two maximal tori in� are conjugate. Furthermore,
if � is a maximal torus in �, then any 4 � � is conjugate to some  � � . Any two
elements in � are conjugate in� if and only if they are conjugate via the Weyl group
� ��� � � of � with respect to � . The Weyl group of � with respect to � is deÞned
by

� ��� � � � ;��� �5���� � �

where ;��� � is the normalizer of � in � and ���� � � � is the centralizer of �
in �. In particular, the conjugacy classes in � are parametrized by �5� ��� � �.
The common dimension of the maximal tori of � (resp. of the maximal Abelian
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subalgebras of �) is called the rank of � (resp. the rank of �). Let 	 be a maximal
Abelian subalgebra of �. Then 	� is a Cartan subalgebra of ��. For this reason, 	 is
also called a Cartan subalgebra of � and the rank of � coincides with the rank of ��.

We assume from nowon that � is semisimple, that is, the centre of � is trivial. Then
� is called a compact real form of ��. Each semisimple complex Lie algebra has a
compact real form that is unique up to conjugation by an element in the connected
Lie subgroup of the group of real automorphisms of �� with Lie algebra �����. The
compact real forms of the simple complex Lie algebras are for the classical complex
Lie algebras

�
�1 � (� � 8� � ���	1� (� � 7� � ���1� � �� � ���	1� � �� �

and, for the exceptional complex Lie algebras

�� � �� � �� � 9� � �� � :� � �� � :� � �� � :� �

Let
�� � 	� �



���

�����

be the root space decomposition of �� with respect to 	�. Each root $ � 0 is
imaginary-valued on 	 and real-valued on (	. The subalgebra (	 of 	� is a real form of
	� and we may view each root $ � 0 as a one-form on the dual space �(	��. Since
the Killing form7 of � is negative deÞnite, it leads via complexiÞcation to a positive
deÞnite inner product on (	, which we also denote by 7. For each < � �(	�� there
exists a vector ,� � (	 such that

<�,� � 7�,�,��

for all , � (	. The inner product on (	 induces an inner product ��� �� on �(	��. For
each <� = � 0, we then have

�<� =� � 7�,��,�� �

For each $ � 0 we deÞne the root reßection

 ��<� � < 	
	�<� $�

�$� $�
$ �< � �(	��� �

which is a transformation on �(	��. The Weyl group of � with respect to � is iso-
morphic to the group generated by all  �, $ � 0. Equivalently, one might view
� ��� � � as the group of transformations on 	 generated by the reßections in the
hyperplanes perpendicular to (,�, < � 0.

Structure theory of semisimple real Lie algebras

Let � be a connected, semisimple, real Lie group, � its Lie algebra and 7 its
Killing form. A Cartan involution on � is an involution > on � so that

7 ���� � � 	7��� >� �
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is a positive deÞnite inner product on �. Each semisimple real Lie algebra has a
Cartan involution, and any two of them are conjugate via -��4� for some 4 � �.
Let > be a Cartan involution on �. Denoting by  the (�()-eigenspace of > and by �
the (	()-eigenspace of > we get the Cartan decomposition

� � � � �

This decomposition is orthogonal with respect to 7 and 7  , 7 is negative deÞnite
on  and positive deÞnite on �, and

�� � �  � �� �� � � � ��� �� �  �

The Lie algebra  � (� is a compact real form of ��.

Let � be the connected Lie subgroup of � with Lie algebra . Then there exists
a unique involutive automorphism 1 of � whose differential at the identity of �
coincides with >. Then � is the Þxed point set of 1, is closed, and contains the
center ���� of �. If � is compact, then ���� is Þnite, and if ���� is Þnite, then
� is a maximal compact subgroup of �. Moreover, the map

� � � � � � �6��� �� 6*�����

is a diffeomorphism onto�. This is known as a polar decomposition of �.

Let � be a maximal Abelian subspace of �. Then all ���,�, , � �, form a com-
muting family of self-adjoint endomorphisms of � with respect to the inner product
7 . For each $ � �� we deÞne

�� � �� � � � ���,�� � $�,�� ��� �!!, � �� �

If < �� 
 and �� �� 
, then < is called a restricted root and �� a restricted root space
of � with respect to �. We denote by 2 the set of all restricted roots of � with respect
to �. The restricted root space decomposition of � is the direct sum decomposition

� � �� �


���

�� �

We always have
���� ��� � ��
�

and
>���� � ���

for all <� = � 2. Moreover,
�� � �� � �

where � is the centralizer of � in . We now choose a notion of positivity for � �,
which leads to a subset 2
 of positive restricted roots. Then

� �


����

��
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is a nilpotent Lie subalgebra of �. Any two such nilpotent Lie subalgebras are con-
jugate via -��6� for some 6 in the normalizer of � in �. The vector space direct
sum

� �  � �� �

is called an Iwasawa decomposition of �. The vector space � � � � � is, in fact, a
solvable Lie subalgebra of � with ��� �� � �. Let 8�; be the Lie subgroups of �
with Lie algebra �� � respectively. Then 8 and ; are simply connected and the map

� �8 �; � � � �6� 
� 1� �� 6
1

is a diffeomorphism onto�, a so-called Iwasawa decomposition of �.

If 	 is a maximal Abelian subalgebra of �, then � � �� 	 is a Cartan subalgebra
of �, that is, �� is a Cartan subalgebra of ��. Consider the root space decomposition
of �� with respect to ��,

�� � �� �


���

����� �

Then we have
�� � � �



���	 �����

�����

for all < � 2 and
�� � 	� �



���	 �����

����� �

In particular, all roots are real on �� (	. Of particular interest are those real forms of
�� for which � is a Cartan subalgebra of �. In this case, � is called a split real form
of ��. Note that � is a split real form if and only if �, the centralizer of � in , is
trivial.

��� ������	���� ������

A homogeneous space is a manifold with a transitive group of transformations.
Homogeneous spaces provide excellent examples for studying the interplay of anal-
ysis, geometry, algebra and topology. Amodern introduction to homogeneous spaces
can be found in Kawakubo [111]. Further results on Lie transformation groups can
be found in [182].

The quotient space �5�

Let � be a Lie group and � a closed subgroup of �. By �5� we denote the set
of left cosets of� in �,

�5� � �4� � 4 � �� �
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and by ? the canonical projection

? � �� �5� � 4 �� 4� �

We equip�5� with the quotient topology relative to ?. Then ? is a continuousmap
and, since� is closed in�, a Hausdorff space. There is exactly one smoothmanifold
structure on �5� (which is even real analytic) so that ? becomes a smooth map and
local smooth sections of�5� in� exist. If� is a normal subgroup of�, then�5�
becomes a Lie group with respect to the multiplication 4�� � 4�� � �4�4���.

If� is a closed subgroup of a Lie group�, then

�� �5� � �5� � �4�� 4��� �� �4�4���

is a transitive smooth action of � on �5�. In fact, the smooth structure on �5�
can be characterized by the property that this action is smooth. Conversely, suppose
we have a transitive smooth action

��� �� � �4� �� �� 4�

of a Lie group� on a smooth manifold� . Let � be a point in� and

�� � �4 � � � 4� � ��

the isotropy subgroup of � at �. If � is another point in� and 4 � � with 4� � �,
then �� � 4��4

��. Thus, the isotropy subgroups of � are all conjugate to each
other. The isotropy group �� is obviously closed in �. Thus, we can equip �5��

with a smooth manifold structure as described above. With respect to this structure,
the map

�5�� �� � 4�� �� 4�

is a smooth diffeomorphism. In this way, we will always identify the smooth mani-
fold� with the coset space �5�. Moreover, ? � � � �5� is a principal Þbre
bundle with Þbre and structure group�, where � acts on � by multiplication from
the right.

Homogeneous spaces

If � is a smooth manifold and � is a Lie group acting transitively on � , one
says that� is a homogeneous space, or, more precisely, a homogeneous �-space.
If � is a connected homogeneous �-space, then the identity component �� of �
also acts transitively on� . This allows us to reduce many problems on connected
homogeneous spaces to connected Lie groups and thereby to Lie algebras. Another
important fact, proved by Montgomery, is that, if� � �5� is a compact homog-
eneous �-space with � and � connected, then there exists a compact subgroup of
� acting transitively on� . This makes it possible to use the many useful features
of compact Lie groups for studying compact homogeneous spaces.
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Effective actions

Let � be a homogeneous �-space and @ � � � 3�4�� � be the homomor-
phism from � into the diffeomorphism group of � assigning to each 4 � � the
diffeomorphism

A� � � �� � � �� 4� �

One says that the action of � on� is effective if 5�� @ � �3�, where 3 denotes the
identity in�. In other words, an action is effective if just the identity of� acts as the
identity transformation on� . Writing� � �5�, we can characterize 5��@ as the
largest normal subgroup of � that is contained in �. Thus, �55��@ is a Lie group
with an effective transitive action on� .

Reductive decompositions

Let� � �5� be a homogeneous�-space. We denote by 3 the identity of � and
put / � 3� �� . Let � and  be the Lie algebras of� and�, respectively. As usual,
we identify the tangent space of a Lie group at the identity with the corresponding
Lie algebra. We choose any linear subspace � of � complementary to , so that
� �  � �. Then the differential ?�� at 3 of the projection ? � � � �5� gives rise
to an isomorphism

?���� � �� ��� �

One of the basic tools in studying homogeneous spaces is to use this isomorphism to
identify tangent vectors of� at / with elements in the Lie algebra �. But there are
many choices of complementary subspaces �, and certain ones turn out to be quite
useful. We will describe this now.

Let -� � � � ./��� be the adjoint representation of �. The subspace � is said
to be -����-invariant if -��6�� � � for all 6 � �. If � is -����-invariant and
6 � �, the differentialA��� at / of the diffeomorphism A� � � �� � � �� 6� has
the simple expression

A��� � -��6��� �

For this reason, one is interested in Þnding -����-invariant linear subspaces � of
�. Unfortunately, not every homogeneous space admits such subspaces. A homog-
eneous space �5� is called reductive if there is an-����-invariant linear subspace
� of � so that � �  � � and  � � � �
�. In this situation, � �  � � is called a
reductive decomposition of �.

Isotropy representations and invariant metrics

The homomorphism

B � � � ./���� � � 6 �� A���

is called the isotropy representation of the homogeneous space �5�, and the image
B��� � ./���� � is called the linear isotropy group of �5�. In case �5� is
reductive and � �  � � is a reductive decomposition, the isotropy representation
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of �5� coincides with the adjoint representation -��� � � � ./��� (via the
identiÞcation� � ��� ).

The linear isotropy group contains the information that decides whether a hom-
ogeneous space �5� can be equipped with a �-invariant Riemannian structure. A
�-invariant Riemannian metric � � � on� � �5� is a Riemannian metric so that
A� is an isometry of � for each 4 � �, that is, if � acts on� by isometries. A
homogeneous space � � �5� can be equipped with a �-invariant Riemannian
metric if and only if the linear isotropy group B��� is a relative compact subset of
the topological space ��������� � of all linearmaps ��� � ��� . It follows that
every homogeneous space �5� with � compact admits a �-invariant Riemannian
metric. Each Riemannian homogeneous space is reductive. If �5� is reductive
and � �  � � is a reductive decomposition, then there is a one-to-one correspon-
dence between the�-invariant Riemannian metrics on�5� and the positive deÞnite
-����-invariant symmetric bilinear forms on �. Any such bilinear form deÞnes a
Riemannian metric on � by requiring that each A� be an isometry. The -����-
invariance of the bilinear form ensures that the inner product on each tangent space
is well-deÞned. In particular, if � � �3�, that is, � � � is a Lie group, then
the �-invariant Riemannian metrics on� are exactly the left-invariant Riemannian
metrics on �. We Þnally remark that a �-invariant Riemannian metric on a homog-
eneous space �5� is unique up to homothety in case the isotropy representation is
irreducible. This is a consequence of the so-called Lemma of Schur.

Naturally reductive Riemannian homogeneous spaces

A homogeneous Riemannian manifold� is said to be a naturally reductive Rie-
mannian homogeneous space if there exists a connected Lie subgroup� of the isom-
etry group ��� � of � that acts transitively and effectively on � and a reductive
decomposition � � �� of the Lie algebra � of �, where  is the Lie algebra of the
isotropy subgroup� of � at some point / � � , such that

4�������� � � � 4��� ���� ��� � 


for all ���� � � �, where 4 denotes the inner product on � that is induced by
the Riemannian metric on � and ��� ��� denotes the canonical projection onto �

with respect to the decomposition � �  � �. Any such decomposition is called a
naturally reductive decomposition of �. The above algebraic condition is equivalent
to saying that every geodesic in � through / is the orbit through / of the one-
parameter subgroup of � that is generated by some � � �.

��� ��������� ������ �	 ��� ��	�
���

Symmetric spaces form a subclass of the homogeneous spaces and were studied
intensely and also classiÞed by Elie Cartan. The fundamental books on this topic are
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Helgason [99] and Loos [132]. Another nice introduction can be found in [214]. Flag
manifolds are homogeneous spaces that are intimately related to symmetric spaces.

(Locally) symmetric spaces

Let� be a Riemannian manifold, � � � , and C � �
 sufÞciently small so that
normal coordinates are deÞned on the open ball 7!��� consisting of all points in�
with distance less than C to �. Denote by ���� � ��� �� the exponential map of
� at �. The map

 � � 7!���� 7!��� � ������ �� ����	��

reßects in � the geodesics of� through � and is called a local geodesic symmetry
at �. A connected Riemannian manifold is called a locally symmetric space if, at
each point � in� , there exists an open ball 7!��� such that the corresponding local
geodesic symmetry  � is an isometry. A connected Riemannian manifold is called
a symmetric space if at each point � � � such a local geodesic symmetry extends
to a global isometry  � � � � � . This is equivalent to saying that there exists an
involutive isometry  � of � such that � is an isolated Þxed point of  �. In such a
case, one calls  � the symmetry of� in �.

Let� be a Riemannian homogeneous space and suppose there exists a symmetry
of� at some point � � � . Let � be any point in� and 4 an isometry of� with
4��� � �. Then  � �� 4 �4

�� is a symmetry of � at �. In order to show that
a Riemannian homogeneous space is symmetric, it therefore sufÞces to construct a
symmetry at one point. Using this, we can easily describe some examples of sym-
metric spaces. The Euclidean space�� is symmetric with  � � ��� �

� � � �� 	�.
The map

�� � �� � ���� � � � � ��� ��
�� �� �	��� � � � �	��� ��
��

is a symmetry of the sphere �� at �
� � � � � 
� (�. Let � be a connected compact Lie
group. Any -����-invariant inner product on � extends to a biinvariant Riemannian
metric on �. With respect to such a Riemannian metric, the inverse map  � � � �
� � 4 �� 4�� is a symmetry of � at 3. Thus, any connected compact Lie group is a
symmetric space.

We recall some basic features of (locally) symmetric spaces. A Riemannian ma-
nifold is locally symmetric if and only if its Riemannian curvature tensor is parallel,
that is, �� � 
. If � is a connected, complete, locally symmetric space, then its
Riemannian universal covering is a symmetric space. Using the symmetries, one can
show easily that any symmetric space is homogeneous. Note that there are complete
locally symmetric spaces that are not symmetric, even not homogeneous. For in-
stance, let� be a compact Riemann surface with genus 
 	 and equipped with a
Riemannian metric of constant curvature 	(. It is known that the isometry group
of � is Þnite, so � is not homogeneous and therefore also not symmetric. On
the other hand,� is locally isometric to the real hyperbolic plane �, � and hence
locally symmetric.
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Cartan decomposition and Riemannian symmetric pairs

One can associate a Riemannian symmetric pair to each symmetric space. We Þrst
recall the deÞnition of a Riemannian symmetric pair. Let� be a connected Lie group
and  a nontrivial involutive automorphism of �. We denote by � � � � the set of
Þxed points of  and by ��

� the connected component of �� containing the identity
3 of �. Let � be a closed subgroup of � with��

� � � � ��. Then � ��  �� is an
involutive automorphism of � and

 � �� � � � �� � �� �

The linear subspace
� � �� � � � �� � 	��

of � is called the standard complement of  in �. Then we have � � �� (direct sum
of vector spaces) and

�� �� � � � ��� �� �  �

This particular decomposition of � is called the Cartan decomposition or standard
decomposition of � with respect to �. In this situation, the pair ����� is called a
Riemannian symmetric pair if -����� is a compact subgroup of ./��� and � is
equipped with some -�����-invariant inner product.

Suppose ����� is a Riemannian symmetric pair. The inner product on � deter-
mines a �-invariant Riemannian metric on the homogeneous space� � �5�, and
the map

� �� � 4� ��  �4�� �

where  , the involutive automorphism on �, is a symmetry of� at / � 3� � � .
Thus, � is a symmetric space. Conversely, suppose� is a symmetric space. Let
� be the identity component of the full isometry group� , / any point in� ,  � the
symmetry of� at /, and� the isotropy subgroup of � at /. Then

 � �� � � 4 ��  �4 �

is an involutive automorphism of � with � �
� � � � ��, and the inner product on

the standard complement � of  in � is -�����-invariant (using our usual identiÞ-
cation � � ��� ). In this way, the symmetric space � determines a Riemannian
symmetric pair �����. This Riemannian symmetric pair is effective, that is, each
normal subgroup of� contained in� is trivial. As described here, there is a one-to-
one correspondence between symmetric spaces and effective Riemannian symmetric
pairs.

Riemannian geometry of symmetric spaces

Let� be a symmetric space, / �� , � � ���� �,� the isotropy group at / and
� �  � � the corresponding Cartan decomposition of �. For each � � � we have
a one-parameter group *����� of isometries of� . We denote the corresponding
complete Killing vector Þeld on� by� �. Note that

���� �� � 	���� � ��
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for all � � �, where the bracket on the left-hand side is in � and the one on the
right-hand side is the one for vector Þelds on manifolds. As usual, we identify � and
��� by means of the isomorphism � � ��� � � �� ��

� . Since �� is a Killing
vector Þeld, its covariant derivative�� � is a skew-symmetric tensor Þeld on� . Its
value at / is given by

������ � ������

if� �  and
������ � 


if� � �, where ������� � ���� �� is the projection of ���� � onto � for all � � �.
For each � � �, the geodesic #� � �� � with #� �
� � / and �#� �
� � � is
the curve  �� *�����/. Let ���

be the ßow of��. Then the parallel translation
along #� from / � #� �
� to #� �� is given by

����


 ��� � ��� � �"� �
�� �

The Riemannian curvature tensor �� of� at / is given by the simple formula

������ �� � 	����� �� ��

for all���� � � � � ��� .

Semisimple symmetric spaces, rank, and duality

Let� be a symmetric space and +� its Riemannian universal covering space. Let
+�� � � � � � +�� be the de Rham decomposition of +� , where the Euclidean factor
+�� is isometric to some Euclidean space of dimension 
 
. Each +��, ( 2 
, is a
simply connected, irreducible, symmetric space. A semisimple symmetric space is a
symmetric space for which +�� has dimension zero. This notion is because, if +�� is
trivial, then � ��� � is a semisimple Lie group. A symmetric space � is said to be
of compact type if� is semisimple and compact, and it is said to be of noncompact
type if � is semisimple and noncompact. Symmetric spaces of noncompact type
are always simply connected. An  -representation is the isotropy representation of a
simply connected, semisimple, symmetric space� � �5� with� � ���� �.

The rank of a semisimple symmetric space � � �5� is the dimension of a
maximal Abelian subspace of � in some Cartan decomposition � �  � � of the Lie
algebra � of � � ���� �.

Let ����� be a Riemannian symmetric pair so that �5� is a simply connected
Riemannian symmetric space of compact type or of noncompact type, respectively.
Consider the complexiÞcation �� � � � (� of � and the Cartan decomposition � �
�� of �. Then �� � � (� is a real Lie subalgebra of �� with respect to the induced
Lie algebra structure. Let �� be the real Lie subgroup of �� with Lie algebra ��.
Then��5� is a simply connected Riemannian symmetric space of noncompact type
or of compact type, respectively, with Cartan decomposition �� � �(�. This feature
is known as duality between symmetric spaces of compact type and of noncompact
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type and describes explicitly a one-to-one correspondence between these two types
of simply connected symmetric spaces.

ClassiÞcation of symmetric spaces

Any simply connected symmetric space decomposes into the Riemannian product
of a Euclidean space and some simply connected, irreducible, symmetric spaces.
Thus, the classiÞcation problem for simply connected symmetric spaces reduces to
the classiÞcation of simply connected, irreducible symmetric spaces. Any such space
is either of compact type or of noncompact type. The concept of duality enables one
to reduce the classiÞcation problem to those of noncompact type. The crucial step
for deriving the latter classiÞcation is to show that every noncompact irreducible
symmetric space is of the form � � �5� with some simple noncompact real
Lie group � with trivial center and � a maximal compact subgroup of �. If the
complexiÞcation of � is simple as a complex Lie algebra, then� is said to be of type
III, otherwise � is said to be of type IV. The corresponding compact, irreducible,
symmetric spaces are said to be of types I and II, respectively. The complete list of
simply connected, irreducible, symmetric spaces is as follows:

����� ���� 6!�����! �7������ ����� �� �7��� � ��� ���
Type I (compact) Type III (noncompact) Dimension Rank
����������� ������������� ��� ����� ���� � � �
������������ ������������� ��� ������ �� � � �
����� 	��������� ��	�� ����� 	��������� ��	�� ��	 ������ 	�
����� 	�������� ���	� ������ 	�������� ���	� �	 ������ 	�
����������� ������������ ��� � �� 	���

���������� ������������ ��� � �� �
����� 	�������� ���	� ����� 	�������� ���	� ��	 ������ 	�

The symmetric space �"�� � ��5�"��� � �"��� is the Grassmann manifold
of all �-dimensional oriented linear subspaces of ��
� and will often be denoted
by �


� ��
�
��. The Grassmann manifold �


� ��
�� is isometric to the Riemannian

product �� � �� and hence reducible. So, strictly speaking, this special case has to
be excluded from the above table. Disregarding the orientation of the �-planes, we
have a natural 2-fold covering map �


� ��
�
�� � ����

�
�� onto the Grassmann
manifold ����

�
�� of all �-dimensional linear subspaces of ��
�, which can be
written as the homogeneous space �"�� � ��5��"��� � "����. Similarily, the
symmetric space �� �� � ��5��� ��� � � ���� is the Grassmann manifold of all �-
dimensional complex linear subspaces of � �
� and will be denoted by ����

�
� �.
Eventually, the symmetric space �������5����������� is theGrassmann manifold
of all �-dimensional quaternionic linear subspaces of � �
� and will be denoted by
����

�
� �. The Grassmann manifold �

� ��

�
�� is the �-dimensional sphere �� .
And the Grassmann manifold ����

�
�� (resp. ����
�
� � or ����

�
� �) is the �-
dimensional real (resp. complex or quaternionic) projective space �+ � (resp. �+ �

or �+ � ). The dual space of the sphere �� is the real hyperbolic space �,�. And
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the dual space of the complex projective space �+ � (resp. the quaternionic projective
space �+ � ) is the complex hyperbolic space �,� (resp. the quaternionic hyperbolic
space �,� ).

In small dimensions, certain symmetric spaces are isometric to each other (with a
suitable normalization of the Riemannian metric):

�� � �+ � � �� �	�5�"�	� � �"���5� �	� � ���(�5� �(� �

�� � �+ � �

�� � �� ���5���	� �

�+ 	 � �"�8�5� ��� �

�

� ��

�� � ���	�5� �	� �

�

� ��

�� � ����
�� �

�

� ��

�� � �"�9�5� ��� �

�

	 ��

�� � �� ���5�"��� �

In the noncompact case, one has isometries between the corresponding dual sym-
metric spaces.

����� ��	� *��������! �7������ ����� �� �7��� � ��� ���

Type I (compact) Type III (noncompact) Dimension Rank
:�5����� :�

�5����� �	 8
:�5�� �8�� �� �	� :�

�5�� �8�� �� �	� 40 4
:�5� � ��(1�(
� :���

� 5� � ��(1�(
� 32 2
:�59� :���

� 59� 26 2
:�5�� �9� :�

�5�� �9� 70 7
:�5�"�(	�� �� �	� :��

� 5�"�(	� � �� �	� 64 4
:�5� �:� :���

� 5� �:� 54 3
:�5�"�(8� :�

�5�"�(8� 128 8
:�5:� � �� �	� :���

� 5:� � �� �	� 112 4
9�5������ �� �	� 9 �

� 5����� � �� �	� 28 4
9�5��(1�:� 9���

� 5��(1�:� 16 1
��5�"��� ��

�5�"��� 8 2

Here we denote by:�� :�� :�� 9�� �� the connected, simply connected, compact,
real Lie group with Lie algebra ��� ��� ��� ��� ��, respectively. This is the same no-
tation as was used for the corresponding simple complex Lie algebras, but it should
always be clear from the context what these symbols represent. The symmetric space
9�5��(1�:� is the Cayley projective plane �+ � and the dual space 9���

� 5��(1�:�
is the Cayley hyperbolic plane �, �.
Since ��(1�	� is isomorphic to � �(� and ��(1��� is isomorphic to �� �	� �

�� �	� we have to assume 1 
 � for the spaces in the last row this table. In small
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����� ��
� 6!�����! �7������ ����� �� �7��� �� ��� �;

Type II (compact) Type IV (noncompact) Dimension Rank
�� �1 � (� ���1 � (� � �5�� �1 � (� 1�1� 	� 1
��(1�	1 � (� �"�	1� (� � �5�"�	1 � (� 1�	1� (� 1
���1� ���1� � �5���1� 1�	1� (� 1
��(1�	1� �"�	1� � �5�"�	1� 1�	1	 (� 1

dimensions there are the following additional isomorphisms:

��(1��� � �� �	� � ���(� �

��(1�<� � ���	� �

��(1�8� � �� ��� �

In the noncompact case, there are isomorphisms between the corresponding dual
spaces.

����� ���� *��������! �7������ ����� �� �7��� ��
��� �;

Type II (compact) Type IV (noncompact) Dimension Rank
:� :�� 5:� 78 6
:� :�� 5:� 133 7
:� :�� 5:� 248 8
9� 9�� 59� 52 4
�� ���5�� 14 2

Hermitian symmetric spaces

A Hermitian symmetric space is a symmetric space that is equipped with some
Kähler structure so that the geodesic symmetries are holomorphic maps. The sim-
plest example of a Hermitian symmetric space is the complex vector space �� . For
semisimple symmetric spaces, one can easily decide whether it is Hermitian or not.
In fact, let ����� be the Riemannian symmetric pair of some irreducible semisimple
symmetric space� . Then the center of� is either discrete or one-dimensional. The
irreducible semisimple Hermitian symmetric spaces are precisely those for which the
center of� is one-dimensional. This gives the list in Table A.5
Note that �"���5�"�	���"�	� is isometric to the Riemannian product� ����,

therefore, we have to exclude the case � � 	 in the second row of the above table.
Every semisimple Hermitian symmetric space is simply connected and hence decom-
poses into the Riemannian product of irreducible semisimple Hermitian symmetric
spaces.
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����� ���� �������=!� ��������!� )��������
�7������ �����

compact type noncompact type
�� �� � ��5��� ��� � � ���� �� ��� ��5��� ��� � � ����
�"�	 � ��5�"�	� � �"��� �"��	� ��5�"�	�� �"���
�"�	1�5� �1� �"��	1�5� �1�
���1�5� �1� ���1���5� �1�
:�5� � ��(1�(
� :���

� 5� � ��(1�(
�
:�5� �:� :���

� 5� �:�

Complex ßag manifolds

Let � be a connected, compact, semisimple, real Lie group with trivial center
and � its Lie algebra. Consider the action of � on � by the adjoint representation
-� � �� *�����. For each 
 �� � � � the orbit

� �� � �-��4�� � 4 � ��

is a homogeneous �-space. Let 	� be the intersection of all maximal Abelian sub-
algebras of � containing � and �� the torus in � with Lie algebra 	� . Then the
isotropy subgroup of � at� is ����� �, the centralizer of �� in �, and therefore

� �� � �5����� � �

In particular, if � is a regular element of �, that is, if there is a unique maximal
Abelian subalgebra 	 of � that contains �, then � � � � �5� , where � is the
maximal torus in� with Lie algebra 	. Any orbit� �� of the adjoint representation
of � is called a complex ßag manifold or C-space. The latter notion is used more
frequently in earlier papers on this topic. In the special case of � � �� �1�, one
obtains the ßag manifolds of all possible ßags in � � in this way. In particular, when
� is some maximal torus of �� �1�, then �� �1�5� is the ßag manifold of all full
ßags in �� , that is, of all possible arrangements �
� � . � � � � � � . ��� � �

� ,
where . � is a 6-dimensional complex linear subspace of � � .

The importance of complex ßag manifolds becomes clear from the following facts.
Each orbit� �� admits a canonical complex structure that is also integrable. If� is
simple, there exists a unique (up to homothety) �-invariant Kähler-Einstein metric
on � �� with positive scalar curvature and compatible with the canonical complex
structure on � � �. Moreover, any Kähler-Einstein metric on � �� is homogene-
ous under its own group of isometries and is obtained from a �-invariant Kähler-
Einstein metric via some automorphism of the complex structure. Conversely, any
simply connected, compact, homogeneous Kähler manifold is isomorphic as a com-
plex homogeneous manifold to some orbit � � � of the adjoint representation of
�, where � � ���� � and � � �. Note that each compact homogeneous Kähler
manifold is the Riemannian product of some ßat complex torus and some simply
connected, compact, homogeneous Kähler manifold.
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Real ßag manifolds

A real ßag manifold is an orbit of an  -representation. Real ßag manifolds are
also known as �-spaces, an idea that is used more frequently in earlier papers on
this topic. Note that the  -representation of a symmetric space of noncompact type
is the same as the one of the corresponding dual symmetric space. Thus, in order
to classify and study real ßag manifolds, it is sufÞcient to consider just one type of
symmetric spaces.

Let� � �5� be a simply connected semisimple symmetric space of noncom-
pact type with � � ���� �, / � � and � the isotropy subgroup of � at /. Note
that � is connected as � is assumed to be simply connected and � is connected.
We consider the corresponding Cartan decomposition � �  � � of the semisimple
real Lie algebra � of �. Let 
 �� � � � and� �� the orbit of� through� via the
 -representation. For each 6 � � we have 6 �� � 6��� � 8��6�� and, therefore,
� �� � �5�� with�� � �6 � � � 8��6�� � ��. Let �� be the intersection
of all maximal Abelian subspaces � of � with� � �. We say that� is regular if ��
is a maximal Abelian subspace of �, or equivalently, if there exists a unique maximal
Abelian subspace of � that contains�. Otherwise, we call� singular. The isotropy
subgroup�� is the centralizer of �� in�. If, in particular, � is a split real form of
�� and � is regular, then� �� � �.

In general, a real ßag manifold is not a symmetric space. Consider the semisimple
real Lie algebra � equipped with the positive deÞnite inner product 7#���� � �
	7����� �, where � is the Cartan involution on � coming from the symmetric
space structure of �5�. For 
 �� � � �, the endomorphism ����� � � � � is self-
adjoint and hence has real eigenvalues. The real ßag manifold� �� is a symmetric
space if and only if the eigenvalues of ����� are 	(� 
��(. Note that not every
semisimple real Lie algebra � admits such an element�. A real ßag manifold that is
a symmetric space is called a symmetric R-space. If, in addition, � is simple, then it
is called an irreducible symmetric R-space. Decomposing � into its simple parts, one
easily sees that every symmetric R-space is the Riemannian product of irreducible
symmetric R-spaces.

The classiÞcation of the symmetric R-spaces was established by S. Kobayashi and
T. Nagano [116]. It follows from their classiÞcation and a result by M. Takeuchi
[213] that the symmetric R-spaces consist of the Hermitian symmetric spaces of
compact type and their real forms. A real form � of a Hermitian symmetric space
>� is a connected, complete, totally real, totally geodesic submanifold of >� whose
real dimension equals the complex dimension of >� . These real forms were classiÞed
by M. Takeuchi [213] and independently by D.S.P. Leung [129].

Among the irreducible symmetric R-spaces, the Hermitian symmetric spaces are
precisely those arising from simple complex Lie groups modulo some compact real
form. This means that an irreducible symmetric R-space is a Hermitian symmet-
ric space or a real form precisely if the symmetric space �5� is of type IV or III,
respectively. The isotropy representation of a symmetric space �5� of noncom-
pact type is the same as the isotropy representation of its dual simply connected
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compact symmetric space. Thus, we can also characterize the Hermitian symmetric
spaces among the irreducible symmetric R-spaces as those spaces that arise as an
orbit of the adjoint representation of a simply connected, compact, real Lie group�,
or equivalently, that is a complex ßag manifold. This leads to the following table:

����� ��� �������=!� �7������ �?����� ��
)�������� �7��

� � �� � -���� �� Remarks
��(1�1� �"�1�5�"�	� � �"�1 	 	� 1 
 <
��(1�	1� �"�	1�5� �1� 1 
 �
�� �1� �� �1�5��� ��� � � �1	 ��� 1 
 	� ( � � � ��� �
���1� ���1�5� �1� 1 
 	
:� :�5� � ��(1�(
�
:� :�5� �:�

The real forms are always non-Hermitian and, among the irreducible symmetric
R-spaces, they are precisely those spaces arising from the isotropy representation of
a symmetric space �5� of type I.

����� ���� �������=!� �7������ �?����� �� ���?)�������� �7��

�5� � �� Remarks
�� �1�5�"�1� ������ 1 
 �� ( � � � ��� �
�� �	1�5���1� ������ 1 
 	� ( � � � ��� �
�� �	1�5��� �1� � � �1�� � �1� 1 
 	
�"�1�5�"��� � �"�1 	 �� ����� � �������5�� 1 
 �� ( � � � ��� �
�"�	1�5�"�1� � �"�1� �"�1� 1 
 <
�"��1�5� �	1� � �	1�5���1� 1 
 �
���1�5� �1� � �1�5�"�1� 1 
 �
���	1�5���1� � ���1� ���1� 1 
 	
:�5����� ����� �5��
:�59� �+ �

:�5�� �9� ��� �9�5������5��

:�5� �:� � �:�59�
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sphere, 24, 236, 252

Þxed point set of isometries, 235
ßag manifold

complex, 35, 309
real (see also orbit, s-representation),

47, 48, 310�311
ßat

in a symmetric space, 48
focal

hyperplane, 145
manifold, 117, 227, 228
point, 117, 225�229
multiplicity, 117, 227, 229

set, 123
focalization, 119
formula

Cartan�s fundamental, 84, 151
Gauss, 9, 224
Ricci, 13
tube, 121
Weingarten, 9, 224

function
isoparametric, 81
transnormal, 81

Gauss
equation, 10, 224
formula, 9, 224

Gauss map
adapted, 182

geodesic hypersphere, 230
geodesic slice, 38
Grassmann geometries, 257

holonomy
combined, 97
group, 287
group, restricted, 287
normal
algebra, 97
group, 96�134
group, local, 106
group, restricted, 96
of an orbit, 194�198
of an orbit of an
s-representation, 102

of holonomy tubes, 165�167
system, 109
irreducible, 111
symmetric, 109

tube, 124
homogeneous structure, 203
horizontal

curve, 141
distribution, 119
lift, 120, 121, 126, 141

horosphere, 58
hyperpolar

action, 42
hypersurface

equidistant, 227
homogeneous, 82
in spheres, 87
in symmetric spaces, 269�279

isoparametric, 81�88, 148, 151�
153
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Weingarten, 18

identity
Bianchi
Þrst (algebraic), 108, 283
second (differential), 283

immersion
product, 27
standard minimal isometric, 53

isoparametric
function, 81
hypersurface, 81�88, 148, 151�

153
map, 139, 142
normal section, 116
submanifold, 98, 139�163
global, 177, 191
homogeneous, 161�163
reducibility, 149
reducibility
(in hyperbolic space), 153

isoparametric rank, 168�174
global, 168
local, 168

isotropy
group (linear), 301

isotropy representation, 38, 301
isotropy representation

of a symmetric space,
see s-representation

Iwasawa
decomposition, 299

Jacobi
vector Þeld, 291

� -, 225

Killing
form, 294
vector Þeld, 285

Killing line
broken, 196
G-broken, 196

Laplace-Beltrami operator, 13

lemma
Holonomy Lemma, 160
Moore (on reduction as extrinsic

product), 28
Levi Civita covariant derivative,

see Riemannian covariant
derivative

Lie triple system, 243
lift

horizontal, 120, 121, 126, 141

map
equivariant, 52

multiplicity
of a focal point, see focal, point,

multiplicity
of an isoparametric submanifold,

144

naturally reductive
decomposition, 302
homogeneous space, 302

normal
bundle, 9
extrinsic homogeneous, 164

connection, 9
curvature tensor, 11
holonomy
algebra, 97
group, 96�134
group, local, 106
group, restricted, 96
of an orbit, 194�198
of an orbit of an
s-representation, 102

of holonomy tubes, 165�167
section
umbilical, 24

space, 9
Þrst, 22
k-th, 213

vector Þeld, 9
equivariant, 40
umbilical, 24

nullity
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distribution, 20
space, 20

orbit
adjoint, see ßag manifold,

complex
coadjoint, see ßag manifold,

complex
exceptional, 37
principal, 37
s-representation, 47, 63
normal holonomy, 102

singular, 37
orbit equivalent representations, 51
orbit type, 37
osculating space, 213

parallel
manifold, 117
transport, 286

polar
action, 41�46
of a symmetric space, 236
representation, 41�46

principal orbit, 37
product

of submanifolds, 27
semi-direct, 14

projectable vector Þeld, 141

R-space, 310
standard embedding, 47
symmetric, 64, 70, 310
irreducible, 70, 310

rank
isoparametric, 168�174
global, 168
local, 168

of a compact Lie group, 297
of a Lie algebra, 295
of a submanifold, 178
(local), 179

of a symmetric space, 305
of an isoparametric submanifold,

146

reductive
decomposition, 301
homogeneous space, 301

reßective submanifold, 248
representation(s)

adjoint, 294
connected slice, 38
isotropy, 38, 301
orbit equivalent, 51
polar, 41�46
slice, 38

Ricci
equation, 11, 224
formula, 13
tensor, 284

Riemannian covariant
derivative, 283

Riemannian curvature tensor, 283
Riemannian metric

induced, 7
invariant, 302

root, 295
restricted, 298
space decomposition, 296

s-representation, 46�51, 305
orbit, 47, 63
normal holonomy, 102

scalar curvature, 284
second fundamental form, 9
shape operator, 9
singular orbit, 37
slice, 36

geodesic, 38
slice representation, 38
space forms, 284

models, 14
sphere

extrinsic, 24, 236, 252
standard embeddings of R-spaces, 47
submanifold

Dupin, 20
proper, 20

embedded, 7
focal, see focal, manifold
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full, 22
homogeneous, 35
of Euclidean space, 56�58
of hyperbolic space, 58�61

immersed, 7
isoparametric, 18, 98, 139�163
global, 177, 191
homogeneous, 161�163
reducibility, 149
reducibility (in hyperbolic space),
153

k-symmetric, 212
minimal, 17
parallel, see parallel, manifold
product (extrinsic), 27
pseudoumbilical, 26
reducible
extrinsically, 28
extrinsically, locally, 28

reßective, 248
semisymmetric, 90
symmetric, 64, 240
of space forms, 64�80
of symmetric spaces, 256�266

totally geodesic, 20
of general Riemannian mani-
folds, 230�236

of space forms, 20�22
of symmetric spaces, 243�252

totally umbilical, 24
of general Riemannian mani-
folds, 236�240

of space forms, 24�26
of symmetric spaces, 252�255

umbilical in a normal direction,
24

Weingarten, 135
with algebraically constant sec-

ond fundamental form, 89
with constant principal curvatures,

18, 98, 139, 157�161
homogeneous, 164�165

with curvature normals of con-
stant length, 179�191

with parallel second fundamen-
tal form, 64, 266�269

submersion
Riemannian, 141

symmetric pair, Riemannian, 304
symmetric R-space, 64, 70, 310

irreducible, 70, 310
symmetric space, 303

dual, 305
Hermitian, 308
locally, 303
of compact type, 305
of noncompact type, 305
semisimple, 305

theorem
algebraic Berger-de Rham, 106
Ambrose-Singer on holonomy, 105
Berger on holonomy, 106
Cartan (on existence of totally

geodesic submanifolds), 231
Dadok, 51
de Rham decomposition, 290
fundamental of local submanifold

geometry, 12
Hermann, 234
higher rank rigidity, 182
homogeneous slice, 161
isoparametric higher rank

rigidity (global), 173
isoparametric higher rank

rigidity (local), 168
Moore (on equivariant isometric

embeddings), 53
Münzner (on principal curvatures

of isoparametric hypersurfaces
in spheres), 152

normal holonomy, 107
normal holonomyof an orbit, 195
reduction of codimension, 22
Simons (on holonomy systems),

112
slice, 151
homogeneous, 161

Thorbergsson, 162
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proof (using homogeneous
structures), 214

third fundamental form, 182
adapted, 182

transnormal function, 81
transport

parallel, 286
transvection, 163

group, 163
of a connection, 207
of a Riemannian manifold, 163
of the normal connection, 163,
191

tube
(complete), 228
formula, 121
holonomy, 124
partial, 129

Veronese surface, 54
vertical

distribution, 119

weakly irreducible
action, 58

Weingarten
formula, 9, 224
hypersurface, 18
submanifold, 135

Weyl
group, 296
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