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Foreword

In their preface to the second edition of Test Equating, Scaling, and 
Linking, Mike Kolen and Bob Brennan (2004) made the following 
observation: “Prior to 1980, the subject of equating was ignored by most 
people in the measurement community except for psychometricians, who 
had responsibility for equating” (p. vii). The authors went on to say that 
considerably more attention is now paid to equating, indeed to all forms of 
linkages between tests, and that this increased attention can be attributed to 
several factors: 

1. An increase in the number and variety of testing programs that use 
multiple forms and the recognition among professionals that these 
multiple forms need to be linked. 

2. Test developers and publishers, in response to critics, often refer to 
the role of linking in reporting scores. 

3. The accountability movement and fairness issues related to 
assessment have become much more visible. 

Those of us who work in this field know that ensuring comparability of 
scores is not an easy thing to do. Nonetheless, our customers—the test-
takers and score users—either assume that scores on different forms of an 
assessment can be used interchangeably or, like the critics above, ask us to 
justify our comparability assumptions. And they are right to do this. After 
all, the test scores that we provide have an impact on decisions that affect 
people’s choices and their future plans. From an ethical point of view, we 
are obligated to get it right.

With the increased spotlight on linking, we have also seen interest in 
providing more sophisticated and complex kinds of assessment for tests 
designed for making high-stakes decisions. As we introduce more 
constructed response questions into our assessments, the challenge of 
linking increases. For example, when constructed response items are used 
as linking items, we are making the implicit claim that the raters scored the 
question the same way both times. How to control for differences in 
scoring at different administrations is a tricky business but is essential to 
successful linking. When test questions are scored by humans, instead of 
by machines, what mechanisms are needed to ensure that scores on reused 
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test forms can be reported without a check on the stability of the scoring of 
the constructed response portions? 

The No Child Left Behind Act of 2001 has spawned a strong market 
interest in formative assessments and assessments for other low-stakes 
decisions. We need to remind ourselves, and others, that linking issues 
need to play a role in assessment for lower stakes decisions. Without 
attention to score comparability on these formative assessments, we run 
the risk of giving bad instructional advice. The challenge lies in 
determining what kinds of standards need to apply to scores on these kinds 
of test. 

A final challenge relates to improved communication about the practical 
consequences of addressing linking issues at the design phase for a testing 
program and as an ongoing activity in order to ensure fair and meaningful 
scores. We need to do a better job of helping decision-makers and policy 
folks understand the issues around equating and linking. We need to 
explain the limitations of the methods and the cost of being able to make 
truthful claims about score comparability.

This volume takes important steps in preparing us for these challenges. It 
examines foundational issues that cut across different types of linking. It 
delves into issues that are particularly germane to different classes of linking. 

ETS Senior Vice-President of Research & Development 
January 2007 

Ida M. Lawrence 



Preface

In 1980, an Educational Testing Service (ETS) equating conference led to 
a book (Holland & Rubin, 1982) that was one of first to bring professional 
attention to the critical statistical practice of equating. At that time, 
equating was a trade practiced by a small group of applied 
psychometricians, and equating practices were passed down from experts 
to novices. 

Shortly after that book was published, both Neil Dorans and Paul 
Holland became intrigued by a simple question: When is an equating a 
good equating? Put another way, how do we evaluate the quality of an 
equating?

About 15 years later, Holland chaired a National Research Council 
committee that produced a report, Uncommon Measures (Feuer, Holland, 
Green, Bertenthal, & Hemphill, 1999), giving an accessible summary of 
informed, professional judgment about the issues involved in linking 
scores on different educational tests. Congressional requests to provide 
advice on how to link scores on tests that cover similar material was the 
impetus for the profession’s response delivered in Uncommon Measures.

Around the same time, Neil Dorans and Mary Pommerich collaborated 
to produce a concordance between scores on the ACT® and SAT®, the two 
major college admissions tests in the United States (Dorans, Lyu, 
Pommerich, & Houston, 1997). This work led to an interest in better 
understanding how equating differs from other types of linkage between 
scores and when different types of linkage should be conducted. In time, a 
special Applied Psychological Measurement issue on concordance was co-
edited by Pommerich and Dorans (2004a). Drawing distinctions among 
types of linkage was an important theme in that special issue.

Returning to the question of what constitutes an equating, Dorans and 
Holland (2000) introduced indexes for quantifying how much an equating 
depends on the subpopulation in which it is conducted. The importance of 
population invariance as a check on equatability has developed rapidly 
since 2001, as evidenced by a special issue on the topic in the Journal of 
Educational Measurement, edited by Dorans (2004a). 
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In June, 2005, Dorans and Holland organized another ETS-sponsored 
conference.1 Demonstrating a shift in focus from the seminal conference 
held 25 years earlier, the 2005 conference focused on the more general 
issue of linking, of which equating was but one topic of discussion. The 
conference was dedicated to Professor Ledyard R Tucker,2 one of the early 
theorists and practitioners of equating. The conference provided raw 
material for this volume.

During the 25 years between the two ETS conferences, several books 
addressed issues in score linking. The volume by Kolen and Brennan 
(2004), in its second edition, is an encyclopedic treatment of the field of 
equating, scaling, and linking. von Davier, Holland, and Thayer (2004b) 
focused on kernel equating as a unified approach that introduces several 
new ideas of general use in equating. In addition to Uncommon Measures,
another report on score linking from the National Research Council is 
Embedding Questions (Koretz, Bertenthal, & Green, 1999). Finally, the 
work of Livingston (2004) is a user-friendly account of many of the major 
issues and techniques. 

Where does this volume fit into the array of books that have been 
written about equating and linking? Simply, it is more about score linking 
than score equating. We place a strong emphasis on distinguishing 
between different kinds of linking and the inferences that can be associated 
with each type of linking. This volume examines the different types of 
linking from both theoretical and practical perspectives. Theory that 
ignores reality is doomed to be irrelevant. Practice that occurs without an 
appreciation of the theory of linking is likely to be influenced by the biases 
of the practitioner. This volume emphasizes the importance of both theory 
and practice.

 Several ETS staff provided essential support. Martha Thompson 
organized the linking conference that was attended by 200 assessment 
professionals. She and Liz Brophy turned a concept into a reality. John 
Mazzeo, Associate Vice-President for Statistical Analysis and Research, 
and Ida Lawrence, Senior Vice-President of Research and Development at 
ETS, supported the conference. As experienced linkers, they readily 
endorsed production of this volume as well. The volume benefited from 
the administrative skills of Liz Brophy and the editorial skills of Kim 
Fryer.

                                                     
1 Linking and Aligning Scores and Scales, a conference in honor of Ledyard R 

Tucker’s approach to theory and practice, was held at Princeton University on 

June 24–25, 2005. 
2A brief history of Ledyard R Tucker’s professional life can be found in Dorans 

(2004b).
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1   Overview 

There are six parts to this volume. The first part, Foundations, sets the 
stage for the remainder of the volume, providing an historical perspective 
on score linking, definitions of types of score linkage, and background 
information on data collection designs, linking methods, and related 
assumptions. The remaining five parts deal with different types of linking 
scenario.

In the not too far past, linkings of any sort were treated as equatings. In 
this volume, we use equating to refer to the pinnacle of linking, the type of 
linkage that is sought, rarely achieved, and too often mistakenly presumed 
to have been attained. Equating is what large-scale testing programs 
engage in when they use large representative samples of examinees, sound 
data collection practices, and appropriate methods to link test editions built 
to the same set of specifications. Equating adjusts for differences in 
difficulty that occur with the use of different sets of similar test questions. 
Equating ensures that examinees are treated fairly. Part 2, Equating,
focuses on linking scenarios in which the assumptions of equating are met.

A slightly different linking scenario arises when a testing program 
implements some form of change to their test, and wants to link scores 
across the old and new versions. The change might be in content, test 
administration conditions, or mode of administration. The change might be 
small or large. Testing programs that are in transition due to changes of 
any nature must face the question of whether scores from the previous 
version of the test can be viewed as interchangeable with scores from the 
new version of the test. Part 3, Tests in Transitions, discusses linking 
issues associated with this scenario.

Another linking scenario occurs when there is an interest in linking 
scores across related but distinct tests. Typically, the tests measure similar 
constructs, are administered to similar kinds of examinees, and are used for 
the same purpose, but differ in terms of specifications and perspective. Part 
4, Concordance, deals with linking issues associated with this scenario.

An alternate linking scenario arises when there is an interest in making 
comparisons of performance across different levels of difficulty for a given 
construct. In the realm of K-12 testing, test scores are often compared 
across grades even though test content and test populations differ. 
Linkages of this sort must ensure that the comparisons are meaningful 
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despite the changes in content and examinees. Part 5, Vertical Scaling,
discusses linking issues associated with this scenario. 

The final linking scenario considered in this volume occurs when there 
is an interest in linking group-level scores to individual-level scores. For 
example, the accountability movement has triggered an interest in making 
meaningful quantitative comparisons across scores on the National 
Assessment of Educational Progress and assessments designed to measure 
whether individuals meet state standards. Part 6, Linking Group 
Assessments to Individual Assessments, looks at linking issues under this 
scenario.

In the final chapter of this volume, Postscript, we briefly review the 
transitions that occur from Parts 2 to 6. We take note of the diversity of 
perspective within parts. We discuss the descent of linking from the ideal 
state of equating to the realities faced by professionals who have to operate 
in arenas where the need for comparability is great and the capacity to 
achieve it is limited. We address the inevitable conflict that occurs when 
expectations exceed professional capabilities. 



The title of this part, Foundations, is self-descriptive. Each of the two 
chapters sets a foundation for later parts of this volume. In A Framework 
and History for Score Linking, Paul Holland notes that linking scores or 
scales from different tests has a history about as long as the field of 
psychometrics itself. This chapter is organized around a typology of 
linking methods that distinguishes among predicting, scaling, and 
equating, providing useful distinctions for subsequent chapters. Appro-
priate historical facts are woven into the narrative to help show the 
relationship between the methods.

In Data Collection Designs and Linking Procedures, Michael Kolen 
describes commonly used designs for collecting data and statistical 
procedures for linking scores. Features of testing situations that influence 
linking are divided into the following categories: test content, conditions of 
measurement, and examinee population. Common data collection designs 
and their variations are considered. Statistical linking methods also are 
described, with a focus on the required statistical assumptions.

Together these two foundational chapters present a frame of reference 
for the subsequent parts, which discuss different types of linking in some 
detail.

Part 1:  Foundations 



2  A Framework and History for Score Linking 

Paul W. Holland1

Educational Testing Service and Paul Holland Consulting Corporation 

2.1. Introduction

For two tests, a link between their scores is a transformation from a score 
on one to a score on the other. The scores being linked might be raw scores 
or scaled scores (Angoff, 1971). Linking transformations can be developed 
in a variety of ways that reflect the similarities and differences between the 
tests as well as the uses to which the links are to be put. Several 
frameworks have been suggested for organizing the variety of links that 
are used in practice. For example, see Flanagan (1951), Angoff (1971), 
Mislevy (1992), Linn (1993), Feuer, Holland, Green, Bertenthal, and 

and Kolen and Brennan (2004) reviewed and synthesized several 
frameworks.

This chapter is concerned with a framework developed in Holland and 
Dorans (2006) that builds on this prior work. In addition, it gives a brief 
account of the history of score linking. Along with the next chapter by 
Kolen, it provides a setting for subsequent chapters in this volume that 
appear in the part of this volume on equating (Part 2), tests in transition 
(Part 3), concordance (Part 4), vertical linking (Part 5), and linking scales 
from group assessments to scales used to report scores on individuals  
(Part 6). 

The term linking refers to the general class of transformations between 
the scores from one test and those of another. Linking methods can then be 
divided into three basic categories called predicting, scale aligning, and 
equating. Scale aligning will be shortened to scaling when convenient. 

                                                     
1 The opinions expressed in this chapter are those of the author and not 
necessarily of Educational Testing Service. 

Hemphill (1999), and Dorans (2000, 2004d). In addition, Kolen (2004a) 
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Figure 2.1 illustrates the three basic categories of linking and their 
purposes.

Figure 2.1. The three overall categories of test linking methods and their goals. 

Each of these basic categories contains subcategories that share 
common objectives and that are distinct from the objectives of the methods 
in the other categories. It is important to distinguish among these basic 
categories because they are often seen as similar or identical when in fact 
they are not. Testing professionals need to understand these differences 
and the circumstances when one category is more relevant than another 
and, when necessary, to be able to communicate these distinctions to test 
users. Figures 2.2, 2.3, and 2.4 illustrate the several subcategories within 
the basic categories of predicting, scale aligning, and equating. 

It is sometimes useful to distinguish between score linkings that are 
direct and those that are indirect. A direct link functionally connects the 
scores on one test directly to those of another. An indirect link connects 
the scores on two tests through their common connection to a third test or 
scale. The categories of predicting and equating usually produce direct 
links, whereas the various subcategories of scale aligning typically 
produce indirect links. These distinctions are mentioned when appropriate. 

2.2. Predicting 

Predicting is the oldest form of score linking and it has been confused with 
the other methods of score linking since the earliest days of psychometrics. 
By the dawn of the 19th century, Legendre, Gauss, Laplace, and their 
scientific contemporaries understood how to use least squares methods to 
fit curves to solve problems in astronomy. By the end of that century, 
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linear regression methods had been applied to a variety of social and 
psychological phenomena as well. Notable among these pioneers was 
Galton, who first observed the effects of regression to the mean (Stigler, 
1986). Thus, the use of linear regression methods to predict the scores on 
one test or measurement from those of another is probably the oldest 
approach taken for linking scores. A version of predicting, called 
projection, is closely related to certain forms of scaling and equating. Both 
predicting and projecting are described in this section. 

Figure 2.2 illustrates the subcategories within the overall linking 
category of predicting. 

Figure 2.2. The types of linking methods within the overall linking category of 
predicting.

2.2.1. Predicting Observed Scores 

The goal of predicting is to predict an examinee’s score on one test from 
some other information about that examinee. This other information might 
be a score on another test or the scores from several other tests and it might 
include demographic or other information. For this reason, there is always 
an asymmetry between what is predicted and what is being used to make 
the prediction. The predictors and the predicted quantity might be different 
both in number and character. This asymmetry is evident even in the case 
of predicting one test score, Y, from another, X. In this simplest case, it 
has been known since the 19th century that the usual linear regression 
function for predicting Y from X is not the inverse of the linear regression 
function for predicting X from Y (Galton, 1888). This is a basic aspect of 
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the asymmetry between the predictor score and the predicted score. It is 
highlighted in requirement (c) of Section 2.4.1. 

If X and Y denote the scores on the two tests for examinees who are 
from a population, P, then denote the conditional expectation (or 
conditional mean/average) of Y given X over P, by 

E(Y | X = x, P). (2.1)

This conditional expectation is a standard method for predicting Y from X.
If X has the value x, then the equation y = E(Y | X = x, P) predicts y to be 
the value of Y. The prediction of Y from X is an example of a direct link 
between the scores on the two tests. 

Unless Y is functionally dependent on X, there is always some amount 
of error or uncertainty in any prediction. The error in this prediction is 
how far E(Y | X = x, P) is from the actual value of Y; that is, the difference 

Y – E(Y | X = x, P). (2.2)

The conditional expectation is the best predictor of Y in the sense that 
any other predictor of Y from X, say y = Pred(x), will have a larger 
expected squared error in expression (2.2); that is, 

2

2

E Pred x | ,xY X P

(2.3)

as shown in Cramér (1946), Parzen (1960), and others.
The conditional variance in Equation 2.3 is also called the conditional 

prediction error in the context of predicting Y-scores from X-scores.
Other types of predictor or prediction method minimize other measures of 
prediction error, a subject too large for us to do much more than merely 
mention. For example, see Blackwell and Girshick (1954), Parzen (1960), 

Using regression methods, both the conditional expectation, E(Y | X = x,
P), and the conditional prediction error can be estimated from data in 
which examinees are sampled from P and tested with both X and Y.
Discussions of regression methods are so widely available that no more 
details are given here about the variety of possibilities; for example, see 
Moore and McCabe (1999) or Birkes and Dodge (1993). 

An appropriate use of predicting to make a link between two tests arises 
when an examinee’s score on one test is used to predict how he or she will 

E EY Y |X Px x, |X P, Var Y |X Px, ,

or the discussion of best linear predictors in Holland and Hoskens (2003). 
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perform on another test. An example is the use of PSAT/NMSQT®  scores 
to forecast how an examinee will perform on the SAT® a year or so later. 
For example, periodically a year’s worth of SAT data from students who 
have taken both tests is used to estimate the conditional distribution of 
SAT scores given the corresponding (verbal or mathematical) 
PSAT/NMSQT score (see Educational Testing Service, 1999). This 
conditional distribution predicts the range of likely performance on the 
SAT given an examinee’s PSAT/NMSQT score. If these predictions are 
applied to examinees who are similar to those in the population from 
which the prediction equations are derived, then they are likely to be 
useful. For examinees who are very different from those whose data were 
used to estimate the conditional distributions, these predictions are less 
likely to be accurate. 

2.2.2. Projecting Distributions of Observed Scores 

Related to predicting individual scores on a test is the problem of 
projecting distributions of scores on one test from those on another test. In 
this case, as described earlier for predicting a score on Y from a score on 
X, data obtained from a sample of examinees who take both X and Y is 
used to estimate the conditional distribution of Y given X on a particular 
population, say P. Denote the conditional cumulative distribution function 
(cdf)  of Y given X = x in P by 

Pr{Y y | X = x, P}. (2.4)

The data can be used to estimate the cdf in Equation 2.4. Now suppose 
that in another population, say Q, there are data for the distribution of X,
but not for Y. If the distribution of X in Q is somewhat different from that 
of X in P, it might be desired to project the distribution of X in Q to obtain 
an estimate of the cdf of Y in Q, FYQ(y), using methods that are based on 
the formula 

FYQ(y) = Pr{Y y | Q} = E[Pr{Y y | X, P}| Q]. (2.5)

In Equation 2.5, the outer expectation (or averaging) is over the distri-
bution of X in Q. Strictly speaking, Equation 2.5 is valid only if the condi-
tional distribution of Y given X is the same in both P and Q; that is, if 

Pr{Y y | X = x, P} = Pr{Y y | X = x, Q}. (2.6)

Equation (2.6) is a type of population invariance assumption because it 
requires the conditional distribution that holds for one population to also 
hold for another population. Assumptions that are identical to Equation 2.6 
also arise in various cases of scaling and equating. Population invariance 
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assumptions, like Equation 2.6, pervade all aspects of scaling and equating 
where there are missing data in the sense that in the above example the 
data for Y in Q are missing. 

An important example of projecting a score distribution arises when X
and Y are both given to a sample of examinees in Year 1, and then in Year 
2, only one of them, say X, is given. To predict what the distribution of Y
would have been had it also been given in Year 2, projection methods 
provide a way of doing this. They are based on Equation 2.5, with P
representing the data from Year 1 and Q representing the data in Year 2. 
The need for the population invariance assumption in Equation 2.6 is quite 
evident in this example. 

Pashley and Phillips (1993) provided an example of projecting scores 
from the International Assessment of Educational Progress (IAEP) to the 
scale of the National Assessment of Educational Progress (NAEP). 
Williams, Rosa, McLeod, Thissen, and Sanford (1998) gave a detailed 
discussion of an example of projecting scores from a state assessment to 
the NAEP scale, which is the focus of the chapters by Braun and Qian 
(Chapter 17), Koretz (Chapter 18), and Thissen (Chapter 16). 

So far, the discussion has concerned only prediction methods that 
directly link observed scores on the tests to each other. There are other 
forms of prediction worthy of mention for completeness (e.g., methods that 
use observed scores to predict true scores).

2.2.3. Predicting True Scores 

The oldest version of predicting true scores from observed scores is 
Kelley’s formula that predicts the true score on Y from the observed score 
on Y (Kelley, 1927). This idea was generalized in Wainer et al. (2001) to 
the prediction of true scores on one test from the observed scores on it and 
some other tests. They referred to the predicted true scores as augmented
scores. Holland and Hoskens (2003) considered the problem of predicting 
true-scores from observed scores where the true-scores come from one 
test, Y, and the observed scores come from another test, X. They showed 
that the usual linear regression function, which predicts the observed 
scores of Y from the observed scores of X, is an appropriate predictor of 
the true score of Y, but that the usual measure of prediction error from 
linear regression is too large and needs to be adjusted by the reliabilities of 
the two tests. 
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2.2.4. Summary 

It was recognized very early that prediction methods were not satisfactory 
ways of creating comparable scores, as the early forms of scale aligning 
were called. Thorndike (1922) and Otis (1922) gave the first arguments for 
why linear regression was not a satisfactory method of finding comparable 
scores. Later, Flanagan (1951) emphasized the lack of symmetry of 
regression functions, thereby connecting regression methods to the failure 
to satisfy requirement (c) of Section 2.4.1. The distinction between 
prediction and equating has been repeatedly reaffirmed over the years; see 
Hull (1922), Flanagan (1939, 1951), Lord (1950, 1955, 1982), Angoff 
(1971), Mislevy (1992), Linn (1993), and Holland and Dorans (2006). 

2.3. Scale Aligning 

The methods of aligning scales are the second oldest group of linking 
methods. The need to make scores on different tests comparable (i.e., 
scaling) and the invention of methods to do it has a history almost as old as 
the field of psychometrics itself. Procedures for scaling were initially 
called methods for creating comparable scores. Kelley (1914) discussed 
problems with the methods proposed in Starch (1913) and modified in 
Weiss (1914) and Pinter (1914) for putting into comparable units the Ayers 
and the Thorndike methods of scoring of handwriting. Pinter had a sample 
of handwriting from examinees who had been judged using both methods. 
Weiss advocated setting the means of the scores on both tests equal to 50 
by a multiplicative factor. Kelley showed that this method could give 
absurd results in various circumstances and proposed, instead, to use 
standard scores as comparable measures (i.e., to subtract the mean and 
divide by the standard deviation of each measure). Using standard scores 
to scale tests has been used widely since that time. Treating standard 
scores as equivalent leads to the method of linear equating. Kelley 
explicitly titled his article “Comparable Measures” and used the terms 
equate and equating to refer to the results of setting comparable scores 
equal.

The influential textbook by Kelley (1923) had a chapter titled 
“Comparable Measures” in which he (a) again showed that the method 
proposed by Weiss (1914) can lead to absurd results, (b) asserted that 
Galton had, decades earlier, used a version of standard scores to compare 
quantities that are measured on different scales, (c) advocated standard 
scores and showed that they equal the ratio method only when special 
conditions hold, and (d) discussed the equal successive percentiles method 
to define comparable scores; this is an early form of equipercentile 
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equating (Equation 11 in Kelley). Kelley referred to even earlier uses of 
the equal successive percentile method in Otis (1916, 1918). 

These references suggest that by the time of the US entry into World War 
I, those who worked with test data had some familiarity with both the linear 
and the equipercentile methods of scaling the scores from different tests. von 
Davier, Holland, and Thayer (2004b) quoted Kelley (1923) to indicate that 
he was aware of the dual influence of examinee ability and test difficulty  on 
test scores and this needed to be accounted for in scaling tests.

The goal of scale aligning is to transform the scores from two different 
tests onto a common scale. Scaling transformations take scores from two 
different tests, X and Y, and put them onto a common scale. Such aligned 
scales imply an indirect linking of the scores on X and Y. More 
specifically, the implied linking is found by taking a score on X,
transforming it to the common scale, and then inverting the Y-to-scale
transformation to find the corresponding value for Y. The result is an 
indirect link from scores on X to those on Y. All methods of scale aligning 
can create indirect links between tests in this way. 

It should be emphasized that although the implied indirect links always 
exists, their meaningfulness depends on many factors, and the indirect link 
is rarely the main purpose for putting X and Y onto a common scale. 

The subcategories of scaling form a continuum starting with situations 
where the tests measure different constructs all the way to those where the 
tests measure similar constructs. The next five subsections briefly describe 
the six types of scaling along this continuum. Figure 2.3 illustrates the 
subcategories within the overall linking category of scale aligning. 

2.3.1. Battery Scaling: Different Constructs and a Common 
Population of Examinees 

When two or more tests that measure different constructs are administered 
to a common population, the scale scores for each test can be transformed 
to have a common distribution for this population of examinees (i.e., the 
reference population). Kolen (2004a) denoted this case as battery scaling.
Battery scaling has been used for many years. Flanagan (1951) described it 
in an educational testing context, but its roots can be traced back at least to 
Kelley (1914), where the scores on the different tests were given the same 
mean and variance in the reference population. Kelley (1923) and Angoff 
(1971) referred to scores from tests that measure different constructs but 
that are scaled so that they have the same distributions on a common 
population as comparable measures (Kelley, 1923) or comparable scores
(Angoff, 1971). 
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Figure 2.3. The types of linking method within the overall linking category of 
scale.

The data collected for battery scaling is usually either (a) a sample of 
examinees, all of whom take all of the tests, or (b) several equivalent (i.e., 
random) samples of examinees from a common population who take one 
or just some of the tests. In this way, all of the tests are taken by equivalent 
groups of examinees from the reference population. Thus, for each test 
being scaled, Y, the data can be used to estimate the cdf of Y over the 
reference population, P; that is, 

FYP(y) = Pr{Y y | P}. (2.7)

Y is then put on the common scale by a transformation of the form 

s = S(FYP(y)), (2.8)

where S(u) is an arbitrary scaling function selected to give the scaled 
version of Y a particular distributional form. A common example of such a 
scaling function is the inverse of the Normal or Gaussian distribution so 
that the distribution of the scaled scores is approximately Gaussian (Kolen 
& Brennan, 2004). 

The value of making the scales of different tests comparable in this 
special sense is that examinees will correctly interpret differences in the 
scores across the battery of tests. A higher score on one test will indicate 
better performance on that test when compared to a lower score on another 
test (relative to the population P). Effectively, comparing scaled scores 
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becomes the same as comparing percentiles in the reference population 
when the scales have been aligned this way. Measures or scores on 
comparable scales could be useful for comparing the strengths and 
weaknesses of examinees who are similar to those in the reference 
population. For examinees who are different from those in the reference 
population, such interpretations might not be as useful. 

Although the scales on the different tests are made comparable in this 
special sense, the tests measure different constructs. The implied indirect 
link between the scores on the different tests, described earlier, can be used 
to indicate comparable performance on the different tests (relative to the 
reference population), but it has no meaning as a way of transforming a 
score on a test of one construct into a score that is an appropriate measure 
for another construct. 

The recentering of the SAT scale is an example of battery scaling 
(Dorans, 2002). The scales for the SAT-verbal (SAT-V) and SAT-
mathematical (SAT-M) scores were redefined so as to give the scaled 
scores on the SAT-V and SAT-M the same distribution in a reference 
population of students tested in 1990. The redefined score scales replaced 
the original score scales, which had been defined for a reference 
population tested in 1941. The new score scales enable a student whose 
SAT-M score is higher than his SAT-V score to conclude that he/she did in 
fact perform better on the mathematical portion than on the verbal portion, 
at least in relation to the students tested in 1990. When the scales of tests 
are not aligned in this way, such inferences are not necessarily accurate. 
As the population of students taking the SAT becomes less like the 
reference population tested in 1990, the simple interpretation of better 
performance on one test compared to another, based solely on the scaled 
scores, will become less accurate. Finally, it should be obvious that the 
indirect link between the SAT-M and SAT-V has no meaning as a way of 
turning a score on one of these tests into a score on the other.

2.3.2. Anchor Scaling: Different Constructs and Different 
Populations of Examinees 

An important approximation to battery scaling arises when two or more 
tests that measure different constructs are administered to different
populations and a common measure (the anchor measure) is available for 
all of the examinees in these different populations. Anchor scaling refers to 
this general class of scaling method. Mislevy (1992) and Linn (1993) used 
the term statistical moderation to refer to cases of anchor scaling. 

In the typical application of anchor scaling, it is possible for one or more 
of the tests being scaled to be completely inappropriate for the examinees 
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taking some of the other tests. Language examinations provide good 
examples of this: A test of French is inappropriate for examinees who are 
unfamiliar with French. In other situations, examinees might choose which 
test to take based on the courses they have taken in school. Because of 
these selective factors, the samples of examinees taking the different tests 
are usually not equivalent, and the anchor measure is the information used 
to both measure and to adjust for this. Anchor scaling necessarily involves 
incomplete test data because some tests are given to certain subgroups of 
examinees, but not to all of them. Anchor scaling  is an approximation to 
battery scaling because of the potential inequivalence of the samples of 
examinees taking each of the tests. In contrast, when different samples of 
examinees take different tests for battery scaling, these samples are 
designed to be equivalent samples of examinees. 

The inequivalence of the samples used in anchor scaling requires the 
scaling methods used to make assumptions about the anchor measure that 
are not easily evaluated. The more strongly the anchor measure is related 
to the different tests being put on a common scale, the more satisfactory 
the resulting scale alignment will be, but other than that, little more can be 
said in general. 

2.3.2.1. Scaling on a Hypothetical Population 

There are two distinct ways that the anchor measure is used in anchor 
scaling. The first approach is very similar to projecting score distributions, 
discussed in Section 2.2. This approach has no commonly accepted name, 
so Holland and Dorans (2006) proposed identifying it as scaling on a 
hypothetical population (SHP). To outline this approach and to relate it to 
projecting score distributions, suppose that Y denotes a test to be scaled 
and A is the anchor measure. The data for the examinees taking Y and A
are used to estimate the conditional distribution of Y given A in the 
population of examinees (denoted by PY) who take test Y. As indicated 
earlier, PX and PY might be different for different tests, X and Y. As in 
Section 2.2, denote the cdf of this conditional distribution by 

Pr{Y y | A = a, PY}. (2.9)

Next, this estimated conditional distribution is averaged over a 
hypothetical distribution for A, the distribution of A in the hypothetical
population, P, to obtain an estimate of the cdf of Y in the hypothetical P;
that is, 

Pr{Y y | P} = E[Pr{Y y | A, PY}| P]. (2.10)

In Equation 2.10, the outer expectation is over the distribution of A in 
the hypothetical population. These cdfs are found for each of the tests 
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being scaled. The estimated cdf for Y on the hypothetical population, 
defined in Equation 2.10, is then treated as if it is the cdf of Y on a 
common population. Once this is done, the problem is regarded as the 
simpler case of battery scaling and the same scaling techniques are used 
from that point forward. 

As in the case of projection in Section 2.2, in order for Equation 2.10 to 
hold, a population invariance assumption, similar to Equation 2.6, must 
hold. The weaker the correlation between the anchor measure and the test, 
the less likely it is for this population invariance assumption to hold, even 
approximately.

It should also be pointed out here that there is nothing in the above 
analysis that requires the anchor measure to be a single score or number; it 
could involve more than one score, as the next example illustrates. 

The construction of the hypothetical population is critical to the success 
of this method because the linking is population dependent. Although a 
variety of hypothetical populations might be posited in a particular setting, 
they are unlikely to be equally plausible. Great care needs to be exercised 
in the construction of the population. 

An example of SHP is given by the scaling of the various subject area 
tests of the SAT. Typically, students take the SAT, and then some of them 
might take one or more subject tests. All of these scores are then presented 
as part of their college admissions materials, and the results of the subject 
tests for different examinees are treated as if they are on comparable 
scales. In this application, the SAT-V and SAT-M scores are used as the 
anchor measures. The hypothetical population is taken to be the population 
on which the SAT-V and SAT-M scales were established. SHP is closely 
related to poststratification equating, mentioned in Section 2.4. 

2.3.2.2. Scaling to the Anchor 

The second approach to anchor scaling also has no commonly accepted 
name, so Holland and Dorans (2006) identified it as scaling to the anchor
(STA). In this approach, the data for the examinees taking test Y are used 
to estimate a function linking scores on Y to those on A using the data 
from PY. This is done for each of the tests to be scaled and these linking 
functions are used to put each of the tests onto the scale of the anchor 
measure. Strictly speaking, in order for STA to be valid, the estimated 
linking functions for each test should not depend on the choice of the 
population used for each linking. This is a population invariance 
assumption similar those mentioned in Section 2.4.3 for chain equating. 

Linn (1993) indicated that the STA approach was used to bring 
comparability to scores on tests that are specific to particular schools in a 
school district. The anchor measure is a common districtwide examination 
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score, and the scores from the locally developed tests in each school are 
put on a common scale using the STA approach to anchor scaling. 

One difference between STA and SHP is that for STA, the measure 
needs to be a single score or number, whereas, indicated earlier, the SHP 
can operate on multiple sets of scores. See McGaw (1977) and Keeves 
(1988) for more discussion of STA, where it was referred to as an example 
of moderation.

2.3.3. Vertical Scaling: Similar Constructs and Similar 
Reliability, But Different Difficulty and Different Populations
of Examinees 

Tests of academic subjects targeted for different school grades might be 
viewed as tests of similar constructs that are intended to differ in 
difficulty—those for the lower grades being easier than those for the 
higher grades. It is often desired to put scores from such tests onto a 
common overall scale so that progress in a given subject can be tracked 
over time. This type of scaling is called vertical scaling (Kolen & 
Brennan, 2004). It has been called other things as well. For example, 
Angoff (1971) called it calibrating tests at different levels of ability and 
the term vertical equating is also used.

A topic, such as mathematics or reading, when considered over a range 
of school grades, has several subtopics or dimensions. At different grades, 
different aspects, or dimensions, of these subjects are relevant and tested. 
For this reason, the constructs being measured by the tests for different 
levels might differ somewhat, but the tests are often similar in reliability. 

Vertical scaling shares some features with anchor scaling (Section 
2.3.2). In particular, the tests to be scaled are, to some degree, 
inappropriate for all but one or a few grades, so the samples of examinees 
who take each test are not equivalent in the sense that they are for battery 
scaling (Section 2.3.1). However, due to the range of ages and grades that 
are usually involved, there is rarely an appropriate anchor measure that is 
available for every examinee. Instead, the tests given to neighboring 
grades might share some common material that can serve as an anchor test 
that connects a pair of tests for different grade levels but not all of the tests 
being scaled. This common material will be different for different pairs of 
tests given to neighboring grades. Methods such as SHP and STA, 
described briefly in Section 2.3.2, might be used to put the tests given to 
neighboring grades onto a common scale, and these can then be connected 
up to form an overall scale for the entire vertical system of tests. Item 
response theory (IRT) is also used to link these scales. See Kolen and 
Brennan (2004), Petersen, Kolen, and Hoover (1989), and the chapter by 
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Kolen (2006) for more discussions of these and other methods used in 
vertical scaling. 

There is usually a close connection between the material tested in a 
given test and the curriculum for that grade. For this reason, vertical 
scaling might be sensitive to population differences, such as school grade 
or age. For example, scaling a fourth-grade reading test to a fifth-grade 
reading test on a sample of fifth graders is likely to disagree somewhat 
with the link obtained from a sample of fourth graders. For more 
discussion of these issues, see the chapter by Kolen (2006), as well as 
Harris, Hendrickson, Tong, Shin, and Shyu (2004), Hoover, Dunbar, and 
Frisbie (2001), and Kolen (2003). Chapters by Harris (Chapter 13), Patz 
and Yao (Chapter 14), and Yen (Chapter 15) discussed issues in vertical 
scaling in depth. For an illustration of vertical scaling, see Williams. 
Pommerich, and Thissen (1998). 

Vertical scaling can be viewed as producing indirect links between the 
scores on the different levels of the tests, but these links are of less interest 
than the comparisons of scores on the same scale for the same student on 
the different tests in order to measure his or her learning and growth. 

2.3.4. Calibration: Same Construct, Different Reliability,
and the Same Population of Examinees 

Kolen and Brennan (2004) indicated that in the test-linking literature, the 
term calibration is used in a variety of senses. In Angoff (1971), it referred 
to vertical scaling (Section 2.3.3). In Petersen et al. (1989), calibration
referred to the estimation of  item response theory (IRT) item parameters 
so that they were on a common scale. This usage is standard in the IRT 

2006). In Linn (1993), calibration referred to methods of score linking for 
tests that measure the same constructs but that have different statistical 
characteristics—in particular, different reliability or difficulty. 

Here the term calibration is used to refer to situations in which the tests 
measure the same construct, have similar levels of difficulty, but differ in 
reliability (usually test length). To add to the confusion, Angoff (1971) 
regarded this use of calibration as an example of equating tests of differing 
reliability; in this framework, equating is reserved for tests of equal or at 
least very similar reliability. The classic case of calibration in the sense 
used here is scaling the scores of a short form of a test onto the scale of its 
full or long form. 

For calibration, there might be some ambiguity as to whether the linking 
is direct or indirect. The short form is often derived from the long form so 
that it usually makes more sense to scale from the less reliable test to the 

literature (Lord, 1980; Thissen & Wainer, 2001; Yen & Fitzpatrick, 
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more reliable one than vice versa. It is intuitively obvious as well that 
simply putting the scores of the short form onto the scale of a more reliable 
long form cannot increase the actual reliability of the short form. 

2.3.5 Concordances: Similar Constructs, Difficulty,
and Reliability 

Sometimes the tests to be linked all measure similar constructs, but they 
are constructed according to different specifications. In most cases, they 
are similar in test length and reliability. In addition, they often have similar 
uses and might be taken by the same examinees for the same purpose. The 
use of the linking is to add value to the scores on both tests by expressing 
them as if they were scores on the other test. Concordances represent 
scalings of tests that are very similar but that were not created with the 
idea that their scores would be used interchangeably. See Pommerich and 
Dorans (2004a) for a thorough discussion of many aspects of 
concordances.

Many colleges and universities accept scores on either the ACT® or SAT 
for the purpose of admissions decisions, and they typically have more 
experience interpreting the results from one of these tests than the other. 
Dorans, Lyu, Pommerich, and Houston (1997) reported a concordance 
table or function that linked the scores on each of these two tests to each 
other. This concordance was based on data from more than 100,000 
examinees who had taken both tests within a restricted time frame. If their 
applicants were not widely different from those in this large sample, this 
concordance enabled admissions officers to align cut-scores on these two 
similar but somewhat different tests better than they could have using the 
limited data typically available to them. 

Because the tests being linked measure somewhat different constructs 
and are constructed in different ways, concordances are potentially 
sensitive to the population of examinees whose data are used to estimate 
the concordance function. Dorans and Holland (2000) and Holland and 
Dorans (2006) argued that when the data indicate that substantially 
different concordance functions hold for large subpopulations of 
examinees (e.g., males and females), separate concordance functions ought 
to be considered for these groups, lest one group be disadvantaged by the 
use of a pooled concordance function for all. Dorans (2004d) discussed 
this point for the ACT and SAT. In practice, separate concordances might 
not be feasible for a variety of reasons, including a perceived unfairness in 
high-stakes uses of the tests.

Concordances are examples of scalings that produce direct links 
between the scores on the two tests. 
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Chapters by Pommerich (Chapter 11), Sawyer (Chapter 12), and Dorans 
and Walker (Chapter 10) addressed concordances in more detail. The 
chapters by Brennan (Chapter 9), Eignor (Chapter 8), and Liu and Walker 
(Chapter 7) addressed linking issues for testing programs in a state of 
transition, either with regard to mode of administration or test content. 
These linkages might be concordances, calibrations, or equatings. 

2.4. Equating: Same Construct and the Same Intended 
Difficulty and Reliability 

Equating is the third category of linking methods in this framework. All 
linking frameworks define equating as the strongest form of linking 
between the scores on two tests. In this chapter, equating represents the 
end point of a continuum that begins with methods that make no 
assumptions about the relationships between the tests being linked 
(prediction and battery scaling) and proceeds to methods that are 
appropriate for linking tests that are very similar (concordances and 
equating). Equating might be viewed as a form of scaling in which very 
strong requirements are placed on the tests being linked. 

The purpose of equating is to allow the scores from each test to be used 
interchangeably, as if they had come from the same test. This purpose puts 
strong requirements on the two tests and on the method of linking. Among 
other things, the two tests must measure the same construct at similar 
levels of difficulty and reliability. 

The earliest example of equating alternative forms of the same tests is 
not known to this author, but there is an early example of alternative forms 
that were not equated: the Army Alpha Test used by the American army 
during World War I. By the end of 1918, the army had tested over 1.7 
million men using the Alpha and Beta. The Alpha was targeted for 
examinees who could read and write English and the Beta was for those 
who could not. Yoakum and Yerkes (1920) gave a detailed description of 
both instruments. They indicated that the Alpha had five different test 
forms: “To avoid . . . the risk of coaching, several duplicate forms of this 
examination have been made available” (p. 18). Thus, by this early date, 
test security issues had already led to the use of alternate forms, at least for 
the Alpha. Yoakum and Yerkes said little about how the alternate forms of 
the Alpha were constructed, but the following passage suggests that they 
used random assignment of test items to forms to help ensure the similarity 
of the alternate forms. “All five forms of the group examination were used 
in the pre official trial of the tests. The differences in forms were so slight 
as to indicate the success of the random method of selecting items” (p. 8). 
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Under appropriate conditions, assigning test items to forms at random will 
produce nearly parallel test forms that are similar but not identical in 
difficulty. In the next sentence, Yoakum and Yerkes indicated that the five 
forms were not exactly equivalent: “Form B proved more difficult than the 
other forms” (p. 8). 

Nothing more is said about the issue of Form B’s difficulty, and in all 
probability, scores on the different forms of the Alpha were treated as 
sufficiently similar so that they were not equated, even though the linear 
and equipercentile methods for doing so were known and available by that 
time.

Of greater concern to the army statisticians was the comparability of 
scores achieved on the Alpha and Beta versions of the test. A special 
sample of military personnel was tested with both, and these data were 
used to put the Alpha and Beta on a common 7-point scale (A, B, C+, C, 
C , D, D ). Because these two tests were quite different in terms of format 
and questions asked, this was a case of battery scaling rather than of test 
equating. Indeed, Thorndike (1922) referred to three distinct scalings of 
the Alpha and Beta. 

The example that Kelley criticized in 1914 was also a form of battery 
scaling rather than equating. The two methods of assessing handwriting 
were very different scoring methods and would not, in current 
terminology, be construed to be alternative forms of the same test. The 
problem that interested Pinter (1914) and Starch (1913) was to measure the 
accuracy/stability of these different handwriting measures. Kelley referred 
to an earlier work by Woodworth (1912), which used standard scores to 
combine the results of several tests. Otis (1918) was also interested in the 
problem of combining test results when the tests were on quite different 
subjects: spelling, arithmetic, synonyms, proverbs, and so forth. Thus, 
these early uses of comparable scores were not to equate scores in the 
sense used here, but, rather, as intermediate battery scalings needed to 
solve other problems. 

Terman and Merrill (1937) discussed their revised edition of the 
Stanford-Binet test. Two alternative forms of the new edition were 
produced, but they were not equated directly. Rather, both were treated 
separately and the scores of each one put on the IQ scale using battery-
scaling methods. In the next edition of the Stanford-Binet test, the second 
form was eliminated because it was rarely used. 

Thus, the need, or at least the desire, to equate scores on alternate forms 
of the same test probably arose decades after the invention of scaling 
methods and of the two standard methods for equating: the linear and 
equipercentile methods. In 1938 two forms of the College Board’s SAT 
tests were given in the same year, and the need to equate them became 
evident by 1940. Early versions of anchor-test equating were used to 
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remove the effect of differential form difficulty for the SATs in 1941. In 
1942 the SAT verbal and math scales were linked back to the verbal scale 
established in April 1941; all linkings subsequent to 1942 were equatings 
(Donlon & Angoff, 1971; Dorans, 2002). Lord (1950, 1955) credited 
Ledyard R Tucker with devising the anchor-test methods used to equate 
the SATs during the 1940s; these methods, in various versions, continue to 
be used. 

Test equating is a necessary part of any testing program that continually 
produces new test forms and for which the uses of these tests require the 
meaning of the score scale be maintained over time. Although they 
measure the same constructs and are usually built to the same test 
specifications or test blueprint, different editions or forms of a test almost 
always differ somewhat in their statistical properties. For example, one 
form might be harder than another, so without adjustments, examinees 
would be expected to receive lower scores on the harder form. A primary 
goal of test equating for testing programs is to eliminate the effects on 
scores of these unintended differences in test form difficulty. For many 
testing programs, test equating is necessary to be fair to examinees taking 
different test forms and to provide score-users with scores that mean the 
same thing, regardless of the tests taken by examinees (Angoff, 1971; 
Kolen & Brennan, 2004; Petersen et al., 1989). 

In testing programs with high-stakes outcomes, it cannot be 
overemphasized how important it is that test equating be done carefully 
and accurately. The released scores are usually the most visible part of a 
testing program, even though they represent the end point of a long test 
production, administration, and scoring enterprise. An error in the equating 
function or score conversion function might change the scores for many 
examinees. The credibility of testing organizations has been called into 
question over test equating problems, in ways that rarely occur when, for 
example, flawed test questions are discovered in operational tests. 
Chapters 5, 6, and 4 by Cook, von Davier, and Petersen, respectively, in 
this volume addressed issues related to equating. 

2.4.1. What Makes a Linking an Equating? 

All forms of test score linking involve some of the same ingredients. 
These include (a) two or more tests and rules for scoring them, (b) scores 
on these tests from one or more samples of examinees, (c) an implicit or 
explicit population of examinees on which linking takes place, and (d) one 
or more methods of estimating or calculating the linking function. What 
distinguishes test equating from other forms of linking is its demanding 
goal of allowing the scores from both tests to be used interchangeably for 
any purpose. 
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In the context of a testing program that continually produces new test 
forms that are required to produce scores on the same scale, test equating 
is often regarded as the first part of a two-step process by which scores on 
new tests are put onto the reporting scale. The first step is the computation 
of the equating function, y = e(x), that links the raw scores on a new test, 
X, to those of an old test, Y—the so-called raw-to-raw equating. The 
second step is the conversion of these equated X raw scores to the 
reporting scale. In practice, there is an old form conversion function that 
maps the raw scores of the old test, Y, to the scale, call it S = s(y). The old 
form conversion function is composed with the equating function, e(x), to 
put the raw scores of X onto the reporting scale; that is, the new form 
conversion function is s(e(x)).

An alternative approach is to use the methods of IRT to find a direct 
conversion of X-scores to the common IRT scale rather than going through 
an old test, Y. This method, in principle, does not even require an old test, 
but could involve portions of several old tests.  Discussion of this approach 
is beyond the scope of this chapter. Instead, the focus here is on equating 
functions.

Dorans and Holland (2000) outlined five requirements that are widely 
viewed as necessary for test equating to be successful. The order in which 
these requirements are listed corresponds roughly to the order of their 
appearance in the literature. 

a. The equal construct requirement: The tests should measure the same 
constructs.

b. The equal reliability requirement: The tests should have the same 
reliability.

c. The symmetry requirement: The equating function for equating the 
scores of Y to those of X should be the inverse of the equating 
function for equating the scores of X to those of Y.

d. The equity requirement: It should be a matter of indifference to an 
examinee to be tested by either one of two tests that have been 
equated.

e. The population invariance requirement: The choice of 
(sub)population used to estimate the equating function between the 
scores of tests X and Y should not matter; that is, the equating 
function used to link the scores of X and Y should be population
invariant.

Both formal and informal statements of subsets of these five 
requirements appeared in a variety of earlier sources, including Lord 

Brennan (2004). Kolen (Chapter 3, Section 3.2) pointed out the importance 
(1950), Angoff (1971), Lord (1980), Petersen et al. (1989), and Kolen and 
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of common conditions of measurement as well as common content as a 
requirement for equating. 

In practice, requirements (a) and (b) mean that the tests need to be built 
to the same specifications and administered under the same conditions of 
measurement, whereas requirement (c) precludes regression methods for 
predicting Y-scores from X-scores from being a form of test equating. 

requirements (a) and (b) are needed. Requirement (d) is, however, hard to 
evaluate empirically and its use is primarily theoretical (Lord, 1980; 
Hanson, 1991). Furthermore, requirement (e), which is easy to use in 
practice, also can be used to explain why requirements (a) and (b) are 
needed (Holland & Dorans, 2006). Dorans and Holland (2000) used 
requirement (e) to develop quantitative measures of equitability. Their 
measures indicate the degree to which equating functions depend on the 
subpopulations used to estimate them. 

The other cases of score linking are likely to violate at least one of the 
five requirements for equating. Concordances are used with tests that 
measure similar but different things and do not share common test 
specifications. Although they might have a similar difficulty and 
reliability, they will satisfy requirement (a) only approximately and this 
might be detected by the failure of requirement (e) and possibly 
requirement (d). Tests that are vertically scaled might be on such different 
aspects of a school subject that requirement (a) is not satisfied, at least 
when the gap between the grades is large and the differences in difficulty 
might be so great that, regardless of attempts to scale them appropriately, 
examinees will definitely prefer one test over the other, thus violating 
requirement (d) and probably requirement (e) as well. Calibrating a short 
form to a long form violates requirement (b) and is likely to violate 
requirements (d) and (e). 

The tests that are scaled by either battery scaling or anchor scaling are 
usually measures of different constructs by design so that requirement (a) 
is not satisfied. Furthermore, scaling tests of different constructs will also 
tend to fail to satisfy requirements (d) and (e) for important subgroups of 
examinees. The direct and indirect linkings that arise in scaling are 
invertible, so requirement (c) is usually satisfied. 

Finally, prediction methods need not satisfy any of the five 
requirements. The asymmetry between predictors and outcomes violates 
requirement (c). Furthermore, requirements (a) and (b), measuring the 
same construct and being equally reliable, affect only the quality of the 
prediction; less related or less reliable tests make poorer predictors of the 
scores on another test. Requirement (d) plays no role in prediction. Finally, 
it often makes sense to include subgroup membership as predictors to 
improve prediction. This incorporates population sensitivity directly into 

Lord (1980) indicated that requirement (d) explains why both 
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the prediction, whereas equating functions should not depend on 
subpopulations, according to requirement (e). 

The difference between prediction and equating has been pointed out 
repeatedly over the last century. To give an example that shows how test 
equating and predicting can work together but do different things, suppose 
the scores from one testing program are used to predict some outcome 
variable, such as first-year college grades, using regression methods. In 
this case, the test score is being used as a predictor. It is routine to use the 
equated scores that come from different test forms as interchangeable 
values of the predictor. The predictions benefit from a prior test equating 
because test equating eliminates the need to distinguish between the scores 
on the various forms of the test that are used as predictors. This application 
occurs every time test scores from a testing program are used as predictors 
in validity studies. However, the predicted average grades from the test 
score would never be construed as an equating of test scores and first-year 
grades.

2.4.2. A Crucial Consideration for Scale Aligning and Equating 

There is one common concern for all of the methods that are grouped 
under categories of scale aligning and equating. Appropriate attention must 
be given to the control of differential examinee ability in the linking 
process. To be clearer about this, suppose that two different tests are given 
to two different groups of examinees. In the two distributions of resulting 
scores, there are two ever-present factors that can influence the results, 
regardless of how similar the score scales of the tests appear. One is the 
relative difficulty of the two tests (which is what test scaling and equating 
is concerned about) and the other is the relative ability of the two groups of 
examinees on these tests (which is a confounding factor that should be 
eliminated in the linking process). In scaling and equating, the interest is in 
adjusting for differences in test characteristics and in controlling for 
possible examinee differences in ability when making these adjustments. 

There are two distinct ways that the separation of test difficulty and 
differential examinee proficiency is addressed in practice. The first is to 
use a common population of examinees and the other is use an anchor 
measure. These approaches were mentioned in the discussion of scaling 
aligning in Section 2.3. Using the same examinees explicitly controls for 
differential examinee ability (i.e., they are the same examinees and have 
the same proficiencies). A variant of the use of a common set of examinees 
is to use two equivalent samples of examinees from a common population. 
On the other hand, when it is not possible to have samples of examinees 
from the same population, their performance on an anchor measure or set 
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of common items can quantify the differences between two distinct, but 
not necessarily equivalent, samples of examinees. The use of an anchor 
measure leads to approaches that can be more flexible than the use of 
common examinees (Holland & Dorans, 2006). 

2.4.3. A Brief Outline of Equating Methods 

Numerous methods have been developed over the years for scaling and 
equating tests. In the next two subsections they are organized according to 
whether the data collection design involves a common population or 
common items. The focus here is on observed-score procedures that 
directly transform (or link) the scores on X to those on Y, because these 
methods are the most directly related to the estimation of equating 
functions. True-score methods are mentioned in passing. Kolen (Chapter 3, 
Section 3.5) provided a more extensive consideration of methods and data 
collection designs. 

Figure 2.4 organizes the subcategories within the overall linking 
category of equating. 

2.4.3.1. Procedures for Equating Scores on a Common Population 

use of a common population of examinees: the single group (SG), the 
equivalent group (EG), and the counterbalanced (CB) designs. They all 
involve a single population, P. Most of this section applies easily to both 
the EG and SG designs. The CB design is more complicated and is 
omitted; for more on the CB design, see Kolen (Chapter 3), von Davier et 
al. (2004b), Angoff (1971), and Kolen and Brennan (2004). 

Several procedures have been developed for estimating equating 
functions using a common population. Underlying any linking method is a 
target population of examinees, following the usage in von Davier et al. 
(2004b). The target population is the population for which the equating 
function is supposed to apply. For data collection designs that use a 
common population, this is also the target population. In this chapter, T
denotes the target population of examinees. 

The cdf  of the scores of examinees in the target population, T, on test X
is denoted by FT(x); and it is defined as the proportion of examinees in T
who score at or below x on test X. More formally, FT(x) = Pr{X x | T}.

Holland and Dorans (2006) discussed three data collection designs that make 

The equipercentile definition of comparable scores is that x (an X-
score) and y (a Y-score) are comparable in T if FT(x) = GT(y). This means 
that x and y have the same percentile in the target population, T. When the 
two cdfs are continuous and strictly increasing, the equation of FT(x) and 
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Figure 2.4. The types of linking methods within the overall linking category of 
test equating.

GT(y) can always be satisfied and can be solved for y in terms of x. This 
equipercentile function is used for equating, concordances, vertical scaling, 
battery scaling, and calibration. For equating, the influence of T should be 
small or negligible, and, in that case alone, the transformed X-scores are 
interchangeable with the Y-scores.

It is sometimes appropriate to assume that the two cdfs, FT(x) and GT(y),
have the same shape and only differ in their means and standard 
deviations. In this case, it can be shown that the equipercentile function is 
the linear linking function. The linear linking function can also be derived 
as the transformation of X-scores that gives them the same mean and 
standard deviation on T as the Y-scores have.

The linear linking and equipercentile functions were introduced in the 
first two decades of the 20th century as methods of scale aligning. Both of 
these functions satisfy the symmetry requirement (c) of Section 2.4.1; that 
is, linking Y to X is the inverse function for linking X to Y.

The linear linking function can be viewed as the linear part of the 
equipercentile function (see von Davier et al., 2004b, for more details). 
The remainder is the nonlinear part of the equipercentile function. In the 
kernel equating method of equating (von Davier et al., 2004b), the 
equipercentile function and the linear linking function are shown to be two 
members of a two-parameter family of equipercentile functions that 
interpolate smoothly between these two special cases. 

Although there is really only one linear linking function for the SG or 
EG designs, the equipercentile function can depend on how FT(x) and 
GT(y) are made continuous or continuized. Test scores are typically 
integers, such as number-right scores or rounded formula scores. Because 
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of this, the inverse function is not well defined; that is, for many values of 
p, there is no score y for which p = GT(y). This is not due to the finiteness
of real samples, but, rather, to the discreteness of real test scores. To get 
around this, two methods of continuization of GT(y) are in current use. 

The first is very old (Otis, 1916) and uses linear interpolation to make 
GT(y) piecewise linear and continuous; see Kolen and Brennan (2004). The 
second approach uses Gaussian kernel smoothing to continuize the discrete 
distributions; see Holland and Thayer (1989) and von Davier et al. 
(2004b). This results in a continuously differentiable GT(y). Prior to 
continuizing the cdfs, several authors recommended presmoothing the 
discrete distributions of scores (Kolen & Brennan, 2004; Kolen & Jarjoura, 
1987;  Livingston, 1993; von Davier et al., 2004b). In presmoothing data, 
it is important to achieve a balance between a good representation of the 
original data and smoothness. Smoothness reduces sampling variability 
and a good representation of the data reduces the possibility of bias.

Levine (1955) used classical test theory to derive a procedure designed 
to equate the true scores of X to those of Y. For a more detailed discussion 
of true-score equating, see Kolen and Brennan (2004). Hanson’s theorem 
(Holland & Dorans, 2006) uses classical test theory to formalize the first 
four equating requirements of Section 2.4.1 and from them to derive the 
linear equating function as the only linear solution. Holland and Dorans 
also showed how Hanson’s theorem shows the relationship among the 
linear linking function, linear regression, and true-score equating in the 
case of calibration (Section 2.3.4). 

IRT (Kolen & Brennan, 2004).

2.4.3.2. Procedures for Linking Scores Using Common Items 

The use of common items to control for differential examinee ability arises 
when there are two populations of examinees, P and Q, rather than just 
one. In this situation, X and a set of common items (or anchor test) A are 
taken by examinees from P while Y and A are taken by examinees in Q.
Examinees take A and either X or Y. This is called the nonequivalent 
groups with anchor test or NEAT design in Holland and Dorans (2006). 
Kolen (Chapter 3, Section 3.5) called it the common-item nonequivalent 
groups design. The NEAT design is widely used because it can give 
greater operational flexibility than the approaches using common 
examinees. Examinees need only take one test, and the samples need not 
be from a common population. 

This flexibility comes with a price, however. For one, the target 
population is less clearcut for the NEAT design. Which is it, P or Q or 

Lord (1980) introduced nonlinear versions of true-score equating using 
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something else? For another, the use of the NEAT design always involves 
making additional assumptions to allow for the missing data in the NEAT 
design: X is never observed in Q and Y is never observed in P.

Braun and Holland (1982) proposed that for the NEAT design, the target 
population be what they called the synthetic population created by 
weighting P and Q. They denoted the synthetic population by T = wP + 
(1 – w)Q, which means that distributions (or moments) of X or Y over T
are obtained by first computing them over P and Q, separately, and then 
averaging them with w and (1 – w) to get the distribution or moments over 
T. The definition of the synthetic population forces the user to confront the 
need to create distributions (or moments) for X on Q and Y in P, where 
there are no data. This is why assumptions must be made about the missing 
data in the NEAT design. 

There are three distinct sets of assumptions about the missing data that 
have been used to estimate observed-score equating functions for the 
NEAT design. These are the (a) post-stratification equating type, (b) chain
equating type, and (c) Levine type discussed in detail in Holland and 
Dorans (2006). These three sets of assumptions all have the form that some 
aspect of the equating is the same for populations P and Q. The first two 
types of assumption can produce both the linear linking and equipercentile 
functions, whereas the Levine type, being based on classical test theory, 
only produces a linear function that need not be a linear linking function 
that describes the linear portion of the equipercentile function. 

In general, the three sets of assumptions result in different equating 
functions; however, when P = Q, all three sets of assumptions result in the 
same linear or nonlinear equating functions.

For the NEAT design, there are also linear and nonlinear true-score 
equating functions available that use either classical test theory or IRT 
(Kolen & Brennan, 2004).

In the next chapter, Kolen describes various data collection designs and 
the methods used for equating and other types of linking in greater detail. 

2.5. A Brief Note on the Theory of Equating 

The theory underlying test equating has evolved slowly over the years. The 
methods called observed-score test equating can be viewed as simple 
adaptations of scale-aligning methods to the problem of equating tests. This 
includes the linear and equipercentile methods discussed in Section 2.3.1, as 
well as the methods adapted to the anchor-test designs discussed in Section 
2.3.2. Levine (1955) was the first application of classical test theory to the 
problem of equating tests, and Lord (1980) first applied IRT to test equating. 
Other attempts to give a theoretical foundation to test equating include Morris 



30      Paul W. Holland

(Holland & Dorans, 2006) is the earliest result that derives an equating function 
from formalizations of conditions that are related to the five equating 
requirements in Section 2.3.1. 

Flanagan (1951) was careful to indicate the potential sensitivity of 
linking functions to the groups and samples used to form them. He even 
went so far as to state, “Comparability which would hold for all types of 
groups—that is general comparability between different tests, or even 
between various forms of a particular test—is strictly and logically 
impossible” (p. 758). This negative position is rather different from that 
taken later by Angoff (1971), who stated that equating relationships should 
be population invariant, or in his words, “…the resulting conversion 
should be independent of the individuals from whom the data were drawn 
to develop the conversion and should be freely applicable to all situations” 
(p. 563). Thus, both the requirement of population invariance for equating 
and its denial have roots that are at least 50 years old. See Kolen (2004b) 
for more on the history of population invariance and test equating. See also 
Chapters 6, 4, 12, and 10 by von Davier, Petersen, Sawyer, and Dorans and 
Walker, respectively, in this volume for discussions of what to do if 
population invariance fails to be met. 
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3.1. Introduction 

Scores on tests are linked using statistical procedures on data that have 
been collected in a systematic way. The outcome of a linking study is one 
or more statistically based linking functions that relate scores on one test 
or form to scores on another test or form. The purposes of the present 
chapter are to describe commonly used designs for collecting data and 
statistical procedures for linking scores. 

The score linking situations considered are those in which scores from 
the tests or forms to be linked are expressed on a common metric and used 
for common purposes. These situations are restricted in this chapter to the 
linking of tests that are intended to measure the same or similar constructs. 
With reference to the Holland and Dorans (2006) and Holland (Chapter 2) 
description of types of linking method, only test form equating and 
concordance are considered. Predicting and scale aligning for tests 
measuring dissimilar constructs and vertical scaling in the Holland and 
Dorans (2006) and Holland (Chapter 2) framework were not considered. 
Vertical scaling was considered further in Patz and Yao (Chapter 14), 
Harris (Chapter 13), and Yen (Chapter 15). Linkages involving aggregate-
level data are not addressed in this chapter. The interested reader should 
consult chapters by Thissen (Chapter 16), Braun and Qian (Chapter 17), 
and Koretz (Chapter 18). 

                                                      
1 The opinions expressed in this chapter are those of the author and not necessarily 
of the University of Iowa.  
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In this chapter, the features of testing situations that influence linking 
are described. Equating and linking tests that are intended to measure 
similar constructs are distinguished. Common data collection designs and 
their variants for equating and for linking tests that are intended to measure 
similar constructs are considered. Statistical linking methods are described. 

3.2. Features of Testing Situations 

There have been various frameworks developed in recent years for 
distinguishing among and developing terminology for different types of 
linking (e.g., Feuer et al., 1999; Holland, Chapter 2; Holland & Dorans, 
2006; Kolen & Brennan, 2004, Chapter 10; Linn, 1993; Mislevy, 1992; 
and the special issue of Applied Psychological Measurement edited by 
Pommerich & Dorans, 2004). The Holland and Holland and Dorans 
frameworks are the most up-to-date. Even these frameworks, and the 
associated terminology, do not emphasize important features of linking 
situations that are important for discussing linking designs and methods. 
For this reason, notation and terminology used in this chapter are in some 
cases different from those in typical usage. 

In distinguishing among linking designs, it is important to acknowledge 
that the entire context of test administration affects scores on tests and can 
influence linking functions. For the purposes of this chapter, these features 
are considered in three categories: test content, conditions of measurement, 
and examinee population. 

3.2.1. Test Content 

An examinee’s score on a test depends on the content of the test. Test 
content is considered broadly here as tasks that are presented to examinees. 
Standardized tests are developed with clearly defined content and 
statistical specifications that delineate the content areas, intended cognitive 
complexity, and item types to be included on a test. Features such as length 
of reading passages, complexity of diagrams, specifications for writing 
prompts, and so forth are carefully delineated in such specifications. Test 
specifications are an essential blueprint for test construction that provides 
an operational definition of test content. 
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3.2.2. Conditions of Measurement 

Scores also depend on the conditions under which the test is administered, 
referred to here as conditions of measurement. Some of these conditions 
are under the control of the test developer, such as the instructions, booklet 
layout, answer sheet design, timing, scoring procedures, aids such as 
calculators, mode of administration (e.g., computer or paper-and-pencil), 

measurement not under the direct control of the test developer include the 
stakes associated with test performance, the reasons an examinee is taking 
a test, and the type of test preparation activities. 

3.2.3. Examinee Population 

In aggregate, scores on tests differ for different examinee populations, 
such as those defined by gender, race, geographic region, or month of 
administration. Linking functions can differ from one examinee population 
to the next. Recent work has been done on examining the dependence of 
linking functions on examinee population. Much of this work was 
summarized in the special issue of the Journal of Educational 
Measurement edited by Dorans (2004a). 

3.2.4. Construct Measured 

The construct measured by a test clearly depends on the content of the test. 
The construct also depends on the conditions of measurement. For 
example, a test given under highly speeded administration conditions 
likely measures a different construct than a test given with ample time for 
all examinees to finish. The construct also can depend on the examinee 
population. For example, an English language reading comprehension test 
would likely measure a different construct for English language learners 
than for native English speakers. 

3.3. Types of Linking Considered 

Alternate forms of a test are built to the same test specifications. Alternate 
forms have nearly identical content features and differ only in the 
particular items that appear on the alternate forms. In operational 
administrations, alternate forms typically are administered under common 
conditions of measurement. As the term is used in the present chapter, test

how items are displayed on a computer screen, and so forth. Conditions of 
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form equating can be conducted when the test content and conditions of 
administration for the alternate forms to be equated are held constant. 
Using this restrictive definition of equating, scores on alternate forms of 

®

multiple-choice tests, can be equated. Equating designs and methods were 
also considered in Cook (Chapter 5, Section 5.2), von Davier (Chapter 6, 
Section 6.2), Holland (Chapter 2, Section 2.4.3), and Petersen (Chapter 4). 

By this definition of equating, the term equating is not appropriate for 
linking tests that are intended to measure similar constructs. Situations that 
are not equating include linking scores on tests that differ in content and/or 
conditions of measurement.

Table 3.1 provides some examples of linking situations. The upper left-
hand cell of this 2 × 2 table illustrates equating, where the content and 
conditions of measurement are the same for the tests to be linked. 

The lower right-hand cell gives situations in which both the content and 
conditions of measurement are not the same. This situation is typical of 
many in which scores on tests that are intended to measure similar 
constructs are linked. For example, linking scores on the mathematics test 

®

involves tests of somewhat different content that are administered under 
somewhat different conditions of measurement. These sorts of linking 
have traditionally been referred to as concordances and they are considered 
in Dorans and Walker (Chapter 10), Pommerich (Chapter 11), and Sawyer 

Some situations exist in which the tests differ in conditions of 
measurement but not in content. Examples are given in the lower left-hand 
portion of Table 3.1. One example is linking scores on a linear computer-

two administration modes. This sort of situation was considered further in 
Eignor (Chapter 8) and Brennan (Chapter 9). There are also situations in 
which tests differ in content but not in conditions of measurement. 
Examples are given in the upper right-hand portion of Table 3.1. One 
example is the revision of test content specifications when there are no 
changes in administration conditions. This sort of situation was considered 
further in Liu and Walker (Chapter 7) and Brennan (Chapter 9). 

All of the situations just mentioned are referred to in this chapter as 
examples of linking tests intended to measure similar constructs. In the 
Holland and Dorans (2006) and Holland (Chapter 2) linking 
categorization, the upper left-hand cell of Table 3.1 is referred to as test 
equating. The other three cells describe variations of what is referred to as 
scale aligning. In the Holland and Dorans (2006) and Holland (Chapter 2) 
linking categorization, equating is said to produce equivalence tables, 
whereas scale aligning is said to produce concordance tables. 

carefully constructed multiple-choice tests, such as the ACT  assessment 

of the ACT assessment to scores on the mathematics test of the SAT

(Chapter 12). 

based test and a paper-and-pencil test, where the same items are given in the 
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3.4. Linking Functions and Features of Testing Situations 

Linking functions depend on the content of the tests, the conditions of 
measurement, and the population features of linking situations. The 
designs for data collection for linking exert control over these features of 
the testing situation. 

Consider that scores on Test X and Test Y are to be linked. A score on 
Test X is represented by X and a score on Test Y is represented by Y.
Linking functions depend on the content of Test X, CX, and the content of 
Test Y, CY. Linking functions also can depend on the population of 
examinees. In most situations, examinees for a linking study are sampled 
from an actual population, P, that differs from the target population, T, on 
which the linking function is ideally defined.

Table 3.1. Examples of situations for linking scores on tests that differ in content 
and/or conditions of measurement 

 

Table 3.1.

Same Not same 
 
 
 
 
 
Same 
 

 

 
 
 

 
Old and new versions of a test 
when there has been a shift in 

 
 
Scores for examinees who 

questions to answer 
 

 
Conditions of  
measurement  

 
 
 
 
Not 
Same 

 
Computer-based linear and 
paper-and-pencil tests, when 
no changes are made to test 
content  
 
 

scoring rubric, assuming 

 
ACT Assessment and SAT  
 
Reading achievement tests 
from two different publishers 
  
 

 
Tests administered in different 
languages 

Content 

the ACT Assessment 

Alternate forms of 

Alternate forms of the 

multiple-choice tests of 

of the SAT

that the examinees are 

A constructed response test 

unaware of the change  

test content, but not in 

multiple-choice tests            choose to take different 
questions on a test that allows 

administration conditions  

examinee choice about which 

Computer-adaptive and 
before and after a change in paper and-pencil tests.  
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Linking functions also can depend on the conditions of measurement for 
Test X, MX, and Test Y, MY. The conditions of measurement in linking 
studies can differ from conditions of measurement that are considered 
ideal, IX for Test X and IY for Test Y.

To emphasize that linking functions can depend on all of the features of 
testing situations, the statistical notation for linking functions used in this 
chapter carries all of these important features. Consider a study in which 
data are collected and scores on Test X and Test Y are linked. In this 
study, the random-variable test score on Form X with content CX
administered under conditions of measurement MX is symbolized as 

,CX MX
X , with particular score (realization) ,CX MX

x . For Test Y with content 

CY administered under conditions of measurement MY, the random 
variable is ,CY MY

Y . Using link for a general linking function, the notation 

that is used to specify a function for linking scores on Test X to scores on 
Test Y in a particular population, P, is 

, | ,( )
CY MY
Y P CX MX

link x .

This function can be read as a function in population P for linking a score 
on Test X with content CX administered under conditions of measurement 
MX to scores on Form Y with content CY administered under conditions of 
measurement MY. This notation makes it clear that the linking function 
depends on the examinee population, the content of each test, and the 
conditions of measurement for Test X and Test Y. 

Now also consider a situation in which the conditions of measurement 
are ideal and the target population, T, is used to define the linking function. 
Using similar notational conventions, this ideal linking function is 
specified as

, | ,( )
CY IY
Y T CX IX

link x .

Thus, this ideal linking function can differ from the actual linking function,

, | ,( )
CY MY
Y P CX MX

link x

on the population of examinees and on the conditions of measurement for 
Test X and Test Y. 

When scores on test forms are equated, it is assumed that the content of 
Form X is the same as the content for Form Y, so that 

CX CY C .
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When equating, it is also assumed that the conditions of measurement for 
Form X and Form Y are the same, so that  

MX MY M .

When equating using operational administrations, it is assumed that the 
actual conditions of measurement are ideal, so that

MX MY IX IY I .

When scores on tests that are intended to measure similar constructs are 
linked, it is assumed that the content of Test X and Test Y are different, so 
that

CX CY .

In these situations, it also is assumed that the conditions of measurement 
for Test X and Test Y are different, so that 

MX MY .

When scores on test forms are equated or scores on tests are linked using 
special administrations or data collections, it is assumed that the actual 
conditions of measurement are different from the ideal conditions of 
measurement so that

MX IX , MY IY , and IX IY .

Although likely oversimplifications, these assumptions are used to 
highlight the importance of test content and conditions of measurement 
and to help compare and contrast the various designs. 

3.5. Linking Designs 

Commonly used designs for data collection in equating (Kolen & Brennan, 
2004) are considered in this section. Counterparts of these designs for 
linking tests that are intended to measure similar constructs, as well as 
some variations, are also considered. In this section, a design is discussed 
first as it is used in equating and then as its counterparts and variations are 
used to link tests intended to measure similar constructs. 
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3.5.1. Random Groups Design for Equating 

The random groups design for equating is diagrammed in Figure 3.1. In 
this design, examinees are randomly assigned Form X or Form Y. A 
spiraling process is often used with this design. In one method for 
spiraling, the alternate forms are alternated when the forms are packaged. 
When the booklets are handed out, the first examinee receives Form X, the 
second examinee receives Form Y, the third examinee receives Form X, 
and so on. This process leads to comparable, randomly equivalent groups 
taking Form X and Form Y. With the random groups equating design, the 
tests can be administered during standard operational administration 
conditions. Holland (Chapter 2, Section 2.4.3) would consider this design 
to be a common population design. 

Figure 3.1. Diagram for random groups equating design. 

Because this is an equating, it is assumed that the content of Form X and 
Form Y is the same, so CX CY C , as indicated in Figure 3.1. In an 
equating study using this design, the conditions of measurement for Form 
X and Form Y typically are identical to one another when both forms are 
administered in the same testing rooms under operational testing 
conditions. Although situations exist to the contrary, the conditions of 
measurement are the same for Form X and Form Y and are considered 
ideal when the design is implemented in an operational administration. 
Thus, MX MY IX IY I , as indicated in Figure 3.1. Using eq to 
refer to an equating function, which is a special type of linking function, 
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the actual equating function from the equating study is denoted 

, | ,( )
C I
Y P C I

eq x , and the ideal equating function is denoted as 
, | ,( )

C I
Y T C I

eq x , as 

shown in Figure 3.1. A comparison highlights that the conditions of 
measurement for the two forms are the same (and ideal) when equating 
with the random groups design. The only difference between the two 
equating functions is due to population. There is much evidence in the 
literature (see the special issue of the Journal of Educational Measurement
edited by Dorans, 2004a) that equating functions depend little on 
population, so there is reason to expect that, in practice, the actual and 
ideal equating functions will be very similar. 

In the random groups equating design, the difference between group-
level performance on the two forms is taken as a direct indication of the 
difference in difficulty for the two forms. Various statistical procedures, 
which require only minimal statistical assumptions, are available to 
estimate equating functions that equate scores on Form X and Form Y.

3.5.2. Random Groups Design and Variations for Linking 

A random groups design can be implemented for linking tests that are 
intended to measure similar constructs. This design is illustrated in Figure 
3.2. One way that Figure 3.2 differs from Figure 3.1 is that test replaces 
form. To apply this design to linking, examinees are randomly assigned to 
be administered Test X and Test Y. Holland (Chapter 2, Section 2.4.3) 
would consider this design to be a common population design. 

Figure 3.2. Diagram for random groups linking design. 
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Compared to random groups equating, the random assignment can be 
much more difficult to implement when the conditions of measurement for 
Test X and Test Y differ. For example, if the time limits for Test X and 
Test Y differ, it would be difficult to administer both tests in the same 
room. As another example, it would be difficult to administer a computer-
based test and a paper-and-pencil test in the same room. In these linking 
situations, examinees could be assigned to take Test X or Test Y ahead of 
time. Students assigned to Test X would take the test in one room and 
students assigned to Test Y would take the test in another room.

Given these administration complications, Test X and Test Y, in 
general, cannot be administered in a standard operational administration 
when using this design. In this case, a special linking administration is 
needed. If the conditions of measurement in the linking study differ from 
those used operationally, then the conditions of measurement in the linking 
study likely differ from the ideal conditions of measurement. In addition, 
the examinees included in the linking study, out of necessity, might not be 
representative of the target population of examinees. 

For the linking design illustrated in Figure 3.2, it is assumed that Test X 
and Test Y differ in content, so CX CY . In addition, the conditions of 
measurement for Test X and Test Y differ from one another because each 
test is different and each is administered under its own conditions of 
measurement. Because the linking typically requires a special data 
collection, the conditions of measurement likely differ from ideal 
conditions of measurement. Thus, as indicated in Figure 3.2, in general, 

,  ,  ,  and MX MY MX IX MY IY IX IY . The linking function from 
the linking study, 

, | ,( )
CY MY
Y P CX MX

link x , can differ from the ideal linking 

function,
, | ,( )

CY IY
Y T CX IX

link x , due to differences in content, differences in 

conditions of measurement for the tests, and differences in population. 
When Test X and Test Y differ in content, there is evidence in the 
literature to suggest that the linking relationship will depend on the 
population (see the special issue of the Journal of Educational 
Measurement edited by Dorans, 2004a). 

To avoid the problems of having to assign students within a school to 
take different tests, a variation of this design is sometimes used where 
random assignment is conducted at the school level. This design is referred 
to as the random groups design—randomization by school. In this 
variation, a list of schools to be included in the study is constructed and the 
schools are randomly assigned to take either Test X or Test Y. Note that 
the unit of randomization is the school. To achieve reasonable linking 
precision, the number of students that must be tested is, in general, too 
large to be practicable. 
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3.5.3. Single Group Design with Counterbalancing for Equating 

The single group design with counterbalancing for equating is illustrated in 
Figure 3.3. In this design, each examinee takes Form X and Form Y, in 
counterbalanced order. Counterbalancing is needed because examinee 
performance can differ depending on whether a form is taken first or 
second, due to such factors as practice and fatigue. One randomly chosen 
subgroup of examinees is administered Form X first. A second randomly 
chosen subgroup is administered Form Y first. Holland (Chapter 2, Section 
2.4.3) would consider this design to be a common population design. 

Figure 3.3. Diagram for single group with counterbalanced equating design. 

A special study is required when using this design, because examinees 
normally do not take two test forms in operational administrations. One 
way to administer the forms in this design is to construct test booklets that 
contain both forms. Half of the booklets contain Form X followed by Form 
Y. The other half of the booklets contains Form Y followed by Form X. 
The booklets are packaged in a spiraled manner and distributed in such a 
way that the first examinee in a room is administered Form X first 
followed by Form Y, the second examinee is administered Form Y 
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followed by Form X, and so forth. The first and second forms are 
administered under separate time limits. 

Refer again to Figure 3.3. The portion of the design labeled form taken 
first is identical to the random groups design shown in Figure 3.1. Thus, 
equating could be conducted using only the form taken first. To take full 
advantage of this design, data from the form taken second are used. 
However, the form taken second is administered under atypical conditions 
of measurement. In practice, examinees do not take two forms of a test. 
Thus, the data on the test taken second can be used only if the equating 
relationship for the form taken second can be shown to be the same as the 
equating relationship for the form taken first. If these equating 
relationships differ, then a differential order effect is said to occur. If this 
effect is substantial, then the data on the test administered second might 
need to be disregarded. 

When alternate forms of a test are equated, there is little reason to 
expect that differential order effects occur because the content of the two 
forms is the same and the only difference in conditions of measurement is 
test order. When a differential order effect does not exist, the data from the 
two orders can be pooled. In this case, each examinee has scores on two 
forms, and serves as his or her own control. Consequently, for a particular 
sample size, this design leads to much more precise estimates of equating 
relationships than does the random groups design. 

The single group design with counterbalancing is administered in a 
special study, which can lead to the conditions of measurement for this 
design being different from those for an operational administration. These 
different conditions of measurement can lead to differences between the 
equating function estimated in this design and the ideal equating function. 

When equating with this design, it is assumed that the content of the two 
forms is the same, so CX CY C , as indicated in Figure 3.3. Assume 
that there is no differential order effect, so that the conditions of 
measurement for Form X and Form Y are considered the same. Thus, as 
indicated in Figure 3.3, MX MY M , where M represents the 
conditions of measurement in the study. In the ideal situation, 
IX IY I , where I represents the ideal conditions of measurement. 
Because a special study is used, the conditions of measurement for the 
study likely are different from the ideal conditions of measurement. Thus, 
in general, with this design, M I . In this situation, as indicated in Figure 
3.3, the equating function for an equating study is denoted as 

, | ,( )
C M
Y P C M

eq x  and the ideal equating function is denoted as 
, | ,( )

C I
Y T C I

eq x .

This notation illustrates that the equating function for the equating study 
differs from that for the ideal equating function due to differences in 
conditions of measurement and differences in examinee population. 
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In some situations, what Holland (Chapter 2, Section 2.4.3), Holland 
and Dorans (2006), and Kolen and Brennan (2004) referred to as a single 
group design might be considered. In the single group design, examinees 
are administered the two tests to be equated, but the order of 
administration is not counterbalanced. The portion of Figure 3.3 for 
random subgroup 1 is an example of this design, where all of the 
examinees take Form X followed by Form Y. When order effects exist, 
there is no way to estimate their magnitude or to adjust the equating 
relationship for the effect of order when using the single group design. 
Thus, it is difficult to justify the use of the single group design in practical 
equating contexts.

3.5.4. Single Group Design with Counterbalancing
and Variations for Linking 

The single group design with counterbalancing for linking is illustrated in 
Figure 3.4. One way that Figure 3.4 differs from Figure 3.3 is that test
replaces form. In this linking design, the content of the two tests is 
assumed to differ, so CX CY , as indicated in the figure. This design can 
be particularly difficult to administer when linking two tests that are 
intended to measure similar constructs. Typically, in this situation the 
conditions of measurement are different for the two tests (i.e., MX MY ),
so it is not possible to administer both tests in the same room. Holland 

For example, suppose that Test X is a paper-and-pencil test and Test Y 
is a computer-based test. It likely would not be feasible to administer both 
modes in the same testing room at the same time. Instead, examinees are 
assigned to condition ahead of time, and special procedures are used for 
when and how the examinee takes each of the assigned tests in the order 

Proper administration of this design requires that examinees be 
randomly assigned to condition (test taken first) and that the tests be 
administered appropriately. In addition, it is necessary to assess whether 
differential order effects occur. It seems much more likely that differential 
order effects will be present when linking tests that are intended to 
measure similar constructs than when equating test forms, because the 
conditions of measurement for the two tests differ. For example, the effect 
of first taking a computer-based test on subsequent scores on a paper-and-
pencil test likely differs from the effect of first taking a paper-and-pencil 
test on subsequent scores on a computer-based test. If so, then a 
differential order effect occurs, and the data for the test taken second might 

(Chapter 2 ) would consider this design to be a common population 

required by the design. 

design. 
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need to be disregarded. However, disregarding data from the test 
administered second leads to a serious loss in linking precision. 

As indicated near the bottom of Figure 3.4, when linking Test X to Test 
Y using the single group design with counterbalancing for linking and its 
variations, test content differs, the conditions of measurement differ for 
Test X and Test Y, and these conditions of measurement differ from the 
ideal conditions of measurement. Also, as indicated at the bottom of  
Figure 3.4, the linking function from the study, 

, | ,( )
CY MY
Y P CX MX

link x , differs 

from the ideal linking function, 
, | ,( )

CY IY
T CX IX

link x , due to differences in 

content, differences in conditions of measurement for the tests, and 
differences in examinee population. 

Figure 3.4. Diagram for single group with counterbalancing linking design. 

Because of the serious practical difficulties in administering the single 
group design with counterbalancing in many linking situations, variations 
of this design often are used in practice. In one variation, the random 
assignment to condition is done by school. This design is referred to here 
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as the single group design with counterbalancing for linking—
randomization by school. For example, using a random selection 
procedure, one set of schools is assigned to be administered Test X first 
and a second set of schools is assigned to be administered Test Y first. In 
this case, school is the unit of randomization, which leads to substantial 
loss of precision when assessing whether there is a differential order effect. 
If a differential order effect cannot be ruled out, then a linking function 
calculated by pooling data would not necessarily control for differences in 
conditions of measurement for the ideal as compared to the actual linking 
functions.

Another variation of this design is one in which examinees are found 
who have taken both of the tests to be linked, with examinees found who 
have taken the tests in both orders. This design is referred to here as the 
single group design with counterbalancing for linking—naturally 
occurring groups. This sort of design is used, for example, to link scores 
on the ACT assessment to scores on the SAT exam. Pommerich (Chapter 
11), Dorans and Walker (Chapter 10), and Sawyer (Chapter 12) considered 
situations in which this design is used. In this design, some examinees are 
found who have taken one test first and other examinees are found who 
have taken the other test first. The time between administrations can vary, 

takers. In this design variation, differences in conditions of measurement 
as compared to ideal conditions can differ widely and are, for the most 
part, uncontrolled. 

The single group design, where all of the examinees take the tests in the 
same order, also might be considered for use in linking. If this design is 
used, the linking function will be affected by order effects by an unknown 
amount, making it difficult to justify the use of the single group design for 
linking.

3.5.5. Common-Item Nonequivalent Groups
Design for Equating 

The common-item nonequivalent groups design for equating is illustrated 
in Figure 3.5. This design is used when only one form can be administered 
per test date. In this design, Form X and Form Y have a set of items in 
common. Examinee Group 1 takes Form X and examinee Group 2 takes 
Form Y. The two groups of examinees might test on different test dates. 
With this design, examinee Group 1 is considered to differ systematically 
from examinee Group 2. This design was referred to as the nonequivalent 
groups anchor test (NEAT) design by Holland (Chapter 2, Section 2.4.3). 

as can the test forms. In addition, the population of examinees who take- 
the two tests can differ considerably from the general population of test- 
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Figure 3.5. Diagram for common-item nonequivalent groups equating design. 

This design has two variations. When the score on the set of common 
items contributes to the examinee’s score on the test, the set of common 
items is referred to as internal. Typically, these items are interspersed 
among other scored items. When the score on the set of common items 
does not contribute to the examinee’s score, the set of items is referred to 
as external. Typically, external common items are administered in a 
separately timed section. 

Scores on the common items provide direct information on how the 
performance of examinee Group 1 differs from the performance of 
examinee Group 2. The set of common items is chosen to proportionally 
represent the total test forms in content and statistical characteristics. To 
ensure that the common items behave the same way on the two forms, 
each of the common items is identical on the two forms and is in a similar 
position in the test booklet. 

When conducting equating using this design, strong statistical 
assumptions are required to disentangle form differences from examinee 
group differences. Especially when there are large group differences, the 
set of assumptions chosen can have a substantial effect on the equating 
results.

Because this is an equating study, the content of Test X and Test Y are 
the same (i.e., CX CY C ) as shown in Figure 3.5. The measurement 
conditions for Form X and Form Y often can be considered to be the same 
and ideal when this design is conducted in operational administration so 
that IX IY MX MY I , as indicated in Figure 3.5. 
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The actual equating relationship depends on the set of common items. 
Let V represent score on the common items, let 

X
MV  represent the 

conditions of measurement for the common items as administered with 
Form X, and let 

Y
MV  represent the conditions of measurement for the 

common items as administered with Form Y. Assume that the context of 
the common items is the same for Form X and Form Y and that the 
common items accurately reflect the content of the total scores. In this 
case, it seems reasonable to assume that the conditions of measurement are 
the same for the common items, regardless of test form. Denoting the 
common conditions of measurement as MV (

X Y
MV MV MV ). The 

actual equating relationship also depends on the set of assumptions that are 
made, denoted as A.

Notation for the equating function is expressed in Figure 3.5 as 

, | , , ,( )
C I
Y P MV A C I

eq x . The ideal equating function does not depend on the 

common items, because it is a relationship between scores on Form X and 
Form Y. So, the ideal equating function is expressed as 

, | ,( )
C I
Y T C I

eq x  in 

Figure 3.5. Comparing these two functions highlights that the conditions of 
measurement for the two forms are the same (and ideal) when equating 
with this design using operational administrations. The differences 
between the two equating functions are due to differences in population 
and the statistical assumptions used to estimate the equating function. 

3.5.6. Anchor-Test Nonequivalent Groups Design for Linking 

The anchor-test nonequivalent groups design illustrated in Figure 3.6, used 
to link tests that are intended to measure similar constructs, has similarities 
to the common-item nonequivalent groups design. In this design, Test X is 
administered to one group, Test Y is administered to a second group, and 
an anchor test, Test V, is administered to both groups. A major 
requirement in the common-item nonequivalent groups design for equating 
is that the content of the common items adequately represents the content 
of Form X and Form Y. When the content of Test X and Test Y differ, it is 
impossible for the common items to adequately represent the content of 
both Tests X and Y. Thus, the common-item nonequivalent groups design 
cannot be used when linking tests that are intended to measure similar 
constructs. Instead, the anchor-test nonequivalent groups design, which 
does not require that the anchor test have the same content as Test X and 
Test Y, is used. Linking using this design would fall under the category 
concordance using an anchor measure in the framework presented by 
Holland (Chapter 2). 
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Figure 3.6. Diagram for anchor-test nonequivalent groups linking design. 

In the anchor-test nonequivalent groups design, it is crucial that the 
conditions of measurement for the anchor test are the same for the group 
taking Test X

X
MV  and Test Y 

Y
MV . Otherwise, examinee group 

differences are completely confounded with differences in conditions of 
measurement for the two groups. So, in Figure 3.6, 

X Y
MV MV MV .

In linking using this design, the conditions of measurement for Test X 
and Test Y typically differ from one another. In these studies, the 
conditions of measurement for Test X and Test Y also could differ from 
ideal conditions of measurement. For this reason, the actual linking 

function in Figure 3.6 is 
, | , , ,

CY MY
Y P MV A CX MX

link x . The ideal linking function 

in Figure 3.6 is 
, | ,

CY IY
Y T CX IX

link x , which makes explicit that the ideal 

conditions of measurement for Test X can differ from the ideal conditions 
of measurement for Test Y. By comparing these functions, it can be seen 
that the actual function can differ from the ideal function due to 
differences between the actual and the ideal conditions of measurement for 
Test X, differences between the actual and the ideal conditions of 
measurement for Test Y, and differences in population. The assumptions 
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(A) can also contribute to differences between these two functions. As is 
made clear in the discussion of statistical methods later in this chapter, it is 
unlikely that the statistical assumptions made in this linking design hold in 
situations where Test X and Test Y differ in content and the group of 
examinees taking Test X differs substantially from the group of examinees 
taking Test Y. 

3.6. Linking Procedures 

In this section, statistical procedures for equating alternate forms and 
linking scores on tests intended to measure similar constructs are 
considered. Equating and linking methods were described in detail 
elsewhere (e.g., Holland & Dorans, 2006; Kolen & Brennan, 2004), so 
only an overview is provided here. 

As described earlier, the score linking situations considered were those 
in which scores from the tests or forms to be linked are expressed on a 
common metric and used for a common purpose. To address these 
situations, only symmetric statistical linking functions were considered 
(see Holland, Chapter 2). 

In this section, overviews of traditional and item response theory (IRT) 
methods for equating are presented. Then the application of some the 
methods to linking tests that measure similar constructs is considered. 

3.6.1. Traditional Statistical Methods for Equating 

The intent of traditional methods of equating is for scores on alternate 
forms to have the same score distributional characteristics in a population 
of examinees, after the scores are transformed to a common scale. Mean
equating results in scores having the same mean on the common scale. 
Using a linear transformation, linear equating results in scores having the 
same mean and standard deviation on the common scale. Using a nonlinear 
transformation, equipercentile equating results in scores on alternate forms 
having approximately the same score distribution on the common scale. 
Focus in this section is on equipercentile methods. 

Equipercentile equating functions are defined for a population and      
for tests given under particular conditions of measurement. Define 

T
F as

the cumulative distribution of scores on Form X in population T,
T

G  as the 

cumulative distribution of scores on Form X in population T, 1

T
G as the 

inverse of 
T

G , and ,C I
x  and ,C I

Y  as defined earlier. Based on results 
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presented by Braun and Holland (1982), when scores are continuous, Form 
X and Form Y measure content C, and the forms are administered under 
ideal conditions of measurement I, the equipercentile equating function for 
population T can be expressed as

,

1

| , ,
C I
Y T C I T T C I

eq x G F x . (3.1)

By substituting different subscripts in Equation 3.1, the function can be 
defined for other populations or for other conditions of measurement. For 
example, the equipercentile equating function for forms administered 
under other than ideal conditions of measurement, M, to examinees from 
population P is expressed as 

,

1

| , ,
C M
Y P C M P P C M

eq x G F x . (3.2)

Estimates of the cumulative distribution functions can be used with 
Equations 3.1 and 3.2 to produce an estimated equating function. 

Because scores on tests typically are discrete, a procedure is used to 
continuize scores so that the equations can be applied. Traditionally, 
percentiles and percentile ranks are used to continuize scores. If scores are 
integers, percentiles and percentile ranks can be thought of as continuizing 
scores by uniformly spreading the score density at an integer score over 
the range .5x  to .5x . von Davier, Holland, and Thayer (2003) 
provided an alternate scheme for continuizing scores referred to as the 
kernel method. Using the kernel method, the score density at an integer 
score is spread using a Normal distribution. Either of these approaches 
leads to continuous scores that can be equated using Equations 3.1 and 3.2. 

Smoothing methods often are used with estimates of equipercentile 
equating functions to reduce sampling error. In presmoothing, the score 
distributions are smoothed. The log-linear smoothing method, which is 
summarized by Kolen and Brennan (2004) and by von Davier et al. (2003), 
is an often-used presmoothing method. In postsmoothing, the 
equipercentile function is smoothed directly. The cubic spline 
postsmoothing method described by Kolen and Brennan is an often-used 
postsmoothing method.
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3.6.1.1. Random Groups and Single Group with Counterbalancing 
Designs

After data are collected using the random groups design, equipercentile 
equating, continuization, and smoothing procedures are applied. For the 
single group design with counterbalancing, after deciding on whether data 
from the forms taken second can be used, similar procedures are followed.

3.6.1.2. Common-Item Nonequivalent Groups Design 

Traditional equating methods using the common-item nonequivalent 
groups design (referred to as the NEAT design by Holland, Chapter 2) are 
more complicated. In this design, statistical assumptions are required to 
disentangle form and group differences. 

In one class of methods, sometimes referred to as poststratification
methods, the following nontestable assumptions are made: the regression 
of X on V is the same in examinee Group 1 and Group 2 and the regression 
of Y on V is the same in Group 1 and Group 2. In the Tucker linear 
method, assumptions are made regarding linear regressions. In the 
frequency estimation equipercentile method, assumptions are made 
regarding nonlinear regressions. A synthetic population is defined as a 
combination of the populations from which Group 1 and Group 2 are 
sampled. The equating function is based on this population. The 
assumptions made in poststratification methods seem less likely to hold 
when Group 1 and Group 2 differ substantially in proficiency. 

Smoothing methods can be applied when conducting the frequency 
estimation equipercentile method. von Davier et al. (2003) summarized a 
log-linear smoothing in the context of the kernel method. Kolen and 
Brennan (2004) summarized a cubic spline postsmoothing method in 
which a cubic spline function is fit to the unsmoothed equipercentile 
equivalents.

In another class of methods for linear equating, referred to as Levine
methods, an assumption is made that true scores on X and V in Group 1 are 
perfectly linearly correlated and that true scores on Y and V in Group 1 are 
perfectly linearly correlated. This assumption seems less likely to hold 
when the common items measure a construct that differs from the 
construct measured by the alternate forms. 

A third class of traditional methods for the common-item nonequivalent 
groups design are chained methods. In these methods, X is linked to V in 
Group 1, V is linked to Y in Group 2, and these two linkings are chained 
together. A chained linear method and a chained equipercentile method
have been developed. 
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3.6.2. IRT Statistical Methods for Equating 

Unidimensional IRT models assume that examinee proficiency can be 
described by a single latent variable, , and that items can be described by 
a set of parameters or curves that relate proficiency to probability of 
correctly answering the item (Lord, 1980). Unidimensional IRT models 
have been developed for use with test items that are dichotomously scored 
or polytomously scored. IRT models are based on strong statistical 
assumptions. The -scale has an indeterminate location and spread. For 
this reason, one -scale sometimes needs to be converted to another 
linearly related -scale. If summed scores are to be used, there are two 
steps in IRT equating (Kolen & Brennan, 2004). First, the -scales for the 
two forms are considered to be equal or are set equal. Then summed score 
equivalents on the two forms are found.

In many situations, the parameter estimates for the two forms are on the 
same -scale without further transformation. The typical situation in 
which a transformation of the -scale is required is in the common-item 
nonequivalent groups design when Form X and Form Y parameters are 
estimated separately. 

After the parameter estimates are on the same scale, IRT true-score and 
IRT observed-score methods can be used to relate summed scores on Form 
X to summed scores on Form Y. In IRT true-score equating, the true-score 
on one form associated with a given  is considered to be equivalent to 
the true score on another form associated with that same .

Item response theory observed-score equating uses the item parameters 
estimated for each form along with the estimated distribution of ability for 
the population of examinees to estimate the distributions of summed scores 
for Form X and Form Y. Standard equipercentile equating procedures are 
used to equate these two smoothed distributions. As Holland and Dorans 
(2006) noted, IRT observed-score equating can be viewed as an 
equipercentile equating of presmoothed score distributions that are 
consistent with the assumptions of an item-level response model. 

Any application of unidimensional IRT models requires that all of the 
items measure the same unidimensional proficiency, that the item 
responses are conditionally independent, and that the relationship between 
proficiency and probability of correct response follows the particular IRT 
model used. 
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3.6.3. Methods for Linking Tests Intended to Measure Similar 
Constructs

Tests intended to measure similar constructs often are linked using the 
same statistical methods used for equating. However, certain complica-
tions need to be addressed. 

In some circumstances, when using equipercentile methods, pre-
smoothing methods can be difficult to apply because the distributions 
might be expected to be irregular. For example, in linking scores on the 
ACT and SAT, integer-scale scores on the two tests are linked. For some 
test forms, the use of integer-scale scores can cause certain scale scores to 
be reported more often than adjacent scale scores because of the way the 
conversion to integers happens to be applied. In these situations, the scale 
score distribution is expected to be irregular. Such expected irregularities 
can lead to complications with presmoothing methods. For this reason, 
Kolen and Brennan (2004) used postsmoothing methods to link scale 
scores from different tests. 

Item response theory methods can be used only in those situations in 
which the tests that are linked can be considered to measure the same 
proficiency and in situations in which item-level response data are 
available. For example, IRT methods would not be used to link ACT and 
SAT scores, because the tests do not measure the same proficiency and 
item-level data are typically unavailable when the tests are linked.

The statistical procedures for linking scores on tests intended to measure 
similar constructs with the anchor-test nonequivalent groups design 
(referred to as the NEAT design by Holland, Chapter 2) often are the same 
statistical procedures as those for equating alternate forms with the 
common-item nonequivalent groups design. In applying these procedures, 
it is important that the anchor test be administered under the same 
conditions of measurement for the two tests, otherwise the linking results 
will be misleading. For example, consider linking a paper-and-pencil to a 
computer-based test using the anchor-test nonequivalent groups design. 
Suppose that the examinees taking the computer-based test take the anchor 
test on the computer and that the examinees taking the paper-and-pencil 
test take the anchor test under paper-and-pencil conditions. In this case, 
group differences are completely confounded with mode of administration 
effects, and it is impossible to use data collected to disentangle these 
effects. To disentangle these effects, it would be necessary to administer 
the same anchor test to both groups under the same conditions of 
measurement. For example, a paper-and-pencil anchor test might be 
administered to both groups. 

When using the anchor-test nonequivalent groups design, it is important 
to consider the effects of violations of statistical assumptions. Recall that 
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poststratification methods require that regressions of X on V and Y on V be 
the same for the groups taking Test X and Test Y. The chained methods 
require an assumption of population invariance of the links between Test X 
and anchor Test V and between anchor Test V and Test Y. These 
assumptions are less likely to hold as the extent of the differences in 
content or administration conditions for Test X and Test Y increase and to 
the extent that the differences in the proficiencies of the group taking Test 
X and Test Y increase. When using IRT methods with this design, an 
assumption is made that all items on Test X, Test Y, and the anchor test 
measure the same proficiency. This assumption is unlikely to hold for most 
situations in which scores on tests that measure similar constructs are 
linked.

When using the anchor-test nonequivalent groups design for linking 
scores on tests of different content, the anchor test cannot adequately 
represent the content of both Test X and Test Y. In this case, the linking 
results likely depend on the particular anchor chosen. If possible, the 
linking can be conducted using different anchor tests and the sensitivity of 
the linking to choice of anchor test assessed. In addition, the standard 
methods might be modified to accommodate the use of multiple anchors in 
a single linking. 

3.7. Summary and Conclusions 

Notation and terminology were used in this chapter to distinguish among 
designs, linking functions, and linking results. The notation incorporated 
population, conditions of measurement, and content. This notation makes 
explicit those factors on which linking functions depend. Terminology 
used with equating designs was expanded from typical terminology to 
distinguish between designs used in linking and equating. For example, the 
use of the term common-item nonequivalent groups design for equating 
and the term anchor-test nonequivalent groups design for linking tests that 
measure similar constructs serves to highlight the substantial differences 
between these designs (Holland, Chapter 2, referred to both of these 
designs as the NEAT design). In particular, in equating, the content of the 
set of common items represents the content of Form X and Form Y, 
whereas when linking tests intended to measure similar constructs, the 
content of the anchor test typically does not represent the content of both 
Test X and Test Y. Further developments in notation and terminology 
should serve to better distinguish among different linking situations, to 
display important differences among the designs, and to highlight the 
effects of factors such as content, conditions of measurement, and 
population on linking results. 
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When conducting equating, Form X and Form Y have the same content 
and typically are administered under the same conditions of measurement, 
providing significant statistical control. Equating can be expected to 
provide reasonable results, and the statistical assumptions required for 
conducting equating can be expected to hold reasonably well in a variety 
of situations. 

When linking scores on tests that are intended to measure similar 
constructs, Test X and Test Y typically have somewhat different content 
and are administered under different conditions of measurement to 
examinees from populations that differ from the target population. Thus, 
there is significantly less statistical control exerted in these situations than 
in equating situations. In addition, data collection designs often are very 
difficult to implement properly and statistical assumptions often are 
violated. Because of these complications, linking of scores on tests that 
measure similar constructs likely depends on the examinee population and 
on the conditions of measurement. 

Because of these dependencies, the sensitivity of linking functions to 
variations in conditions of measurement and population should be 
assessed. If there is substantial variation, then either reporting different 
linking relationships for different conditions of measurement and 
populations or not reporting the relationships should be strongly 
considered. In any case, when presenting the results of linking, test 
content, conditions of measurement, and population should be clearly 
specified.

Acknowledgments. The author thanks Robert L. Brennan, Neil J. Dorans, 
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In Equating: Best Practices and Challenges to Best Practices, Nancy 
Petersen provides a succinct review of what she considers to be best 
practices in equating, followed by a consideration of circumstances that 
can waylay equatings.

Linda Cook, in Practical Problems in Equating Test Scores: A 
Practitioner’s Perspective, also considers some of the daunting challenges 
facing practitioners. She discusses three major stumbling blocks 
encountered when attempting to equate scores on tests under difficult 
conditions: characteristics of the tests to be equated, characteristics of the 
groups used for equating, and characteristics of the anchor tests.

Alina von Davier addresses potential future directions for improving 
equating practices in Potential Solutions to Practical Equating Issues. She
provides a brief introduction to kernel equating and addresses the potential 
utility and controversy surrounding assessment of the population 
sensitivity of equating functions.

As a set, these three authors provide interesting practical and theoretical 
perspectives demonstrating that even the most tractable form of linking, 
equating, is not without challenges. 

Part 2: Equating 



4    Equating: Best Practices and Challenges to 
Best Practices 

Nancy S. Petersen1

ACT, Inc. 

This chapter addresses best practices and challenges to best practices in 
equating. While in places, I comment on or refer to the chapters by von 
Davier (Chapter 6) and Cook (Chapter 5), the focus is on best practices in 
equating and challenges to these best practices that we face today. 

4.1. Equating 

First, let me recap what equating is and why we do it. Most testing 
programs use multiple forms of the same test, primarily for security 
reasons. Although different forms for a given test are built to be very 
similar in content, format, type, and range of difficulty of the questions 
asked, the actual questions used might all be different in each form. Thus, 
two forms of a test cannot be expected to be precisely equivalent in level 
and range of difficulty. As a consequence, any comparison of raw scores 
on the two forms of the test would be unfair to the people who happened to 
take the more difficult form. 

Whenever scores on different test forms are to be compared, it is 
necessary that they be equivalent in some sense. Statistical procedures, 
referred to as equating methods, have been developed to deal with this 
problem. Equating methods are empirical procedures for establishing a 
statistical relationship between raw scores on two test forms; this 
relationship can be used to express the scores on one form in terms of the 
scores on the other form. When equating is successful, it becomes possible 
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to measure examinees’ growth, to chart trends, and to compare or merge 
data, even when the separate pieces of data derive from different forms of 
a test with somewhat different item characteristics (Petersen, Kolen, & 
Hoover, 1989). The purpose of equating, then, is to establish, as nearly as 
possible, an effective equivalence between raw scores on two test forms 
such that scores from each test can be used as if they had come from the 
same test.

Because equating is an empirical procedure, it requires a design for data 
collection and a rule for transforming scores on one test form to scores on 
another. Viewed simply as an empirical procedure, an equating method 
imposes no restrictions on the properties of the scores to be equated or on 
the method used to determine the transformation. It is when we 
contemplate the purpose of equating and try to define what is meant by an 
effective equivalence between scores on two test forms that it becomes 
necessary to impose restrictions (Petersen et al., 1989). 

In practice, equating is used to fine-tune the test construction process; 
that is, we use statistical procedures to correct for small variations in 
difficulty between multiple forms of a test that are built to the same 
blueprint (the same content and difficulty specifications) so that the scores 
on the multiple forms can be used interchangeably. To achieve this goal of 
interchangeable scores, strong requirements must be put on the blueprints 
for the two tests and on the method used for linking the scores.

There are five requirements that are widely viewed as necessary for a 
linking to be an equating (Holland & Dorans, 2006): 

a. The equal construct requirement: The two tests should both be 
measures of the same constructs (latent traits, skills, abilities). 

b. The equal reliability requirement: The two tests should have the 
same reliability. 

c. The symmetry requirement: The equating transformation for mapping 
the scores of Form Y to those of Form X should be the inverse of the 
equating transformation for mapping the scores of X to those of Y. 

d. The equity requirement: It should be a matter of indifference to 
examinees whether they are tested with Form X or Form Y.

e. The population invariance requirement: The equating function used 
to link the scores of Form X and Form Y should be the same 
regardless of the choice of (sub)population from which it is derived.

These five requirements are often treated as criteria for evaluating 
whether or not two tests can be, or have been, successfully equated. They 
also provide an intuitive “theory” of test equating. Holland (Chapter 2, 
Section 2.4.1) treated these requirements in greater detail. 
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For practical purposes, is sufficient to say that the equal construct and 
equal reliability requirements mean that the tests to be equated need to be 
built to the same content and statistical specifications. The symmetry 
requirement excludes the use of regression methods for test score 
equating. The equity requirement might be used to explain why both the 
equal construct and equal reliability requirements are needed (Lord, 
1980). If the two tests measure different constructs, examinees will prefer 
the one on which they believe they will score higher. The equity 
requirement is, however, hard to evaluate empirically and its use is 
primarily theoretical (Lord, 1980; Hanson, 1991). The population 
invariance requirement, on the other hand, is easy to apply in practice and 
it also can be used to explain why the equal construct and equal reliability 
requirements are needed. If the same blueprint is not used to construct the 
two tests, then the conversions will certainly differ for different groups of 
examinees. For example, a conversion table relating scores on a 
mathematics test to scores on a verbal test developed on data for men 
would be very different from one developed from data on women, because 
in our society women tend to do less well than men on mathematics tests.

4.2. Best Practices 

What contributes to a good equating? The primary things that contribute to 
a successful equating are choice of data collection design, quality and 
similarity of the tests to be equated, characteristics of the anchor test in 
relation to the tests to be equated, sample sizes and examinee 
characteristics, and choice of analysis methods (Holland, Dorans, & 
Petersen, 2006).

4.2.1. Data Collection 

Data collection is the most important aspect of any equating study. Ideally, 
the data should come from a large representative sample of motivated 
examinees that is divided in half, either randomly or randomly within 
strata, to achieve equivalent groups. Each half is then administered either 
the new or the old form of the test (Holland et al., 2006); that is, an 
equivalent groups design is the preferred design. In practice, however, an 
anchor test (a set of items or a test taken by both groups) should be 
included in the design as a contingency in case the spiraling does not work 
(see Figure 4.1). If the spiraling does not work, then we can still conduct 
an equating using a nonequivalent groups anchor test design (Kolen & 
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Brennan, 2004). Anchor designs were discussed in more detail in Kolen 
(Chapter 3, Section 3.5). 

  TEST  
SAMPLE Old Form X New Form Y Anchor V 
P1

P2

Figure 4.1. Equivalent groups design with optional anchor test. 

4.2.2. Total Tests and Anchor Tests 

The old and new test forms should be reliable measures of the same 
construct, built to the same test blueprint. Preferably, an external anchor 
test (a separately timed test) is available that is highly related to both the 
old and new test forms. Scores on the anchor test are used to adjust for any 
differences in ability that might have occurred randomly between groups 
and for any differences in difficulty between the test forms. The content 
and difficulty level of the old form, the new form, and the anchor test 
should be appropriate for the targeted population. 

It is generally considered good practice to have the anchor test be a 
miniversion of the old and new test forms (Holland et al., 2006). That 
means it should be similar in difficulty to and mirror the content of the 
tests that are being equated. This is done to boost the correlation of scores 
on the anchor test with those of the old and new forms. High reliability 
also helps increase this correlation. For item response theory (IRT) linking 
methods, it is also desirable to have the anchor-test items cover a broad 
range of difficulty. 

In practice, internal anchors (items common to both tests being equated) 
are often used. External anchors are seldom feasible due to the increased 
time required for administration or test structure. (Most tests do not consist 
of multiple, separately timed sections.) However, context effects become a 
possible issue with the use of internal anchors. To minimize these effects, 
common items should be placed, as nearly as possible, in the same location 
within each test form. 

4.2.3. Equating Process 

Once the data are available, it is often useful to presmooth the cumulative 
distributions, especially when samples are small (Livingston, 1993; 
Skaggs, 2004). Ideally, samples are large enough to make presmoothing 
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optional. It is informative to equate with several different models, 
including both linear and equipercentile models. With an equivalent 
groups design, equipercentile and linear methods can be compared using 
the standard error of equating, which describes sampling error, and the 
difference that matters (DTM), an effect size that can be used to assess 
whether differences in equating functions have practical significance 
(Holland & Dorans, 2006). The magnitude of the DTM depends on the 
intended use of the scores and the scale units of the test. If the departures 
from linearity are less than the DTM and less than what would be expected 
due to sampling error, the linear model is often chosen for its ease of 
implementation. Otherwise, the more general equipercentile model is 
selected.

When an anchor test is used, differential item functioning (DIF) 
analyses should be run to evaluate whether the items on the anchor test are 
performing in the same way in both the old and new form samples. In 
addition, an item analysis should be run for all items on both the new and 
old forms to see if they are performing as expected. If they are not, it is 
often because of a quality control problem such as a miscoded key. 

An equating should be checked for its reasonableness (Holland et al., 
2006). How do we determine reasonableness? We compare the raw-to-
scale score conversion for the new form to those obtained for previously 
administered forms. Is the new form conversion an outlier? Is it consistent 
with other difficulty information (such as mean percent correct) that might 
be available for that form and other forms that have been administered in 
the past? Do the more difficult forms tend to have higher raw-to-scale 
score conversions than the easier forms? Is the performance of the new 
form group consistent with the performance of other groups that are 
expected to be similar to it? For example, in testing programs with 
reasonable volumes and relatively stable populations, it is reasonable to 
expect that the new form sample will have scale score summary statistics 
similar to those obtained at the same time the year before. If the test has a 
passing score, then the pass rates should be relatively stable from year to 
year.

4.3. Challenges to Best Practices 

There can be many challenges to a successful equating. Random 
assignment of test forms to large samples of motivated examinees is not 
always possible. Total-test and anchor-test reliability are not always as 
high as desired. Internal anchors with few items might not be very reliable. 
Anchor tests, especially external anchors, might not be highly correlated 
with the tests being equated. As noted by Cook (Chapter 5), all of these 
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can present daunting challenges for the practitioner faced with providing 
equivalent scores on multiple forms of an assessment.

4.3.1. Choice of Data Collection Design

Some data collection designs can pose threats to sound equating. For 
example, test security is an issue for many high-stakes admissions, 
certification, and licensure tests. To help maintain test security, many of 
these testing programs want to give a new test form at every 
administration. As a result, they do not want to use an equivalent groups 
design because it requires readministration of an old test form for equating 
purposes. Instead, as Cook (Chapter 5) noted, they prefer to use a 
common-item or anchor-test design (see Kolen, Chapter 3,  Figures 3.5 
and 3.6 for pictorial depictions of these designs) so that only a subset of 
items is readministered for equating purposes. Consequently, these 
nonequivalent groups anchor-test designs (referred to as the NEAT design 
in Holland, Chapter 2) are often used in practice because of the flexibility 
they provide. Figure 4.2 demonstrates that the NEAT design looks just like 
an equivalent groups design with anchor test except that the samples P and 
Q are from different subpopulations of the total population of test-takers 
and might differ in significant ways. Thus, use of the NEAT design 
requires statistical procedures to adjust for ability differences between 
groups. The adjustments are based on assumptions. The assumptions might 
be unsound.

  TEST  
SAMPLE Old Form X New Form Y Anchor V
P
Q

Figure 4.2. Nonequivalent groups anchor test design. 

In fact, because of test security concerns, more and more testing 
programs want to move beyond the NEAT design to select the set of 
common items from multiple old forms to further reduce the chances that 
any test-taker has previously seen any item on the test. In pool equating 
(see Figure 4.3), item parameters are estimated after administration and 
then fed into a pool of active items for use in future test form assembly. 
Depending on whether the new form contains any items without parameter 
estimates, IRT preadministration or postadministration equating methods 
are used to equate the new form to the old base form, which is composed 
of previously calibrated items from the pool. (IRT preequating can only be 
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performed if all items in the new form have been previously calibrated.) In 
pool equating, unlike in traditional observed-score equating, the anchor 
items used in building a new form do not need to come from a single old 
form and they do not need to be included in the base form in order to be 
used as anchor items. IRT equating is more flexible than observed-score 
methods in that it can be used to manufacture potential solutions for 
missing data designs like these. However, IRT analyses are more complex 
to conduct than observed-score equating procedures; more importantly, 
IRT methods make more assumptions than observed-score methods. With 
IRT, it is necessary to evaluate the choice and the fit of the IRT model to 
the data. Otherwise, the validity of the potential solution might be suspect. 

Figure 4.3. Pool equating. 

The anchor items in a NEAT design are typically embedded within 
sections of scored operational items to help conceal their presence. In 
addition, the anchor or common items should be located in the same item 
positions within both total tests to reduce their susceptibility to context 
effects that might diminish their utility as measures of ability. If there are 
few common items, the anchor might be relatively unreliable and less 
useful for identifying differences in ability between samples and 
differences in difficulty between the test forms.

Small samples yield suspect equating results. As von Davier (Chapter 6, 
Section 6.4) noted, smoothing might help if the sample sizes are moderate. 
Nevertheless, smoothing might be of little help with samples of less than 
50 (Skaggs, 2004). In such cases, it might be necessary to make strong 
assumptions about the equating function. For example, there might be no 
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option other than to assume that the equating function is the identity 
function or that it differs from the identity function by a constant estimated 
from the data. 

The synthetic equating function proposed by von Davier (Chapter 6, 
Section 6.4), which is defined as the weighted average of the identity 
equating function and the equating function based on the small sample, 
holds some promise. This type of function has been used previously in 

With the NEAT design, the old and new form samples might perform 

large, different equating methods might yield different conversions unless 
the scores on the anchor test are highly related to scores on both total tests. 
In general, dissimilar conversion lines are indicative of problems with the 
data and additional quality control should be initiated to verify the results. 
Sometimes, in practice, the psychometrician has little control over the 
choice of data collection design and the selection of old and new form 
samples. Sometimes, in practice, a data processing error is made.

4.3.2. Psychometric Properties of the Total Tests
and Anchor Test 

Test characteristics affect the quality of equating. Use of pretested items in 
test assembly results in higher quality exams. Tests containing untried 
items might end up with fewer scorable items than planned. Shorter, less 
reliable tests are hard to equate because a greater portion of their score 
variability is noise. More importantly, tests composed of many untried 
items can turn out to be different in length, content, difficulty, and 
reliability from the tests to which they are to be equated; these factors 
make equating more difficult. Tests composed primarily of unpretested 
items might turn out to be too easy or too difficult for the intended 
population; this results in data that do not facilitate linking to other tests 
because the distributions are so skewed and relationships with other scores 
are attenuated. 

Anchor tests provide a common score across groups that can be used to 
adjust for group ability differences before adjusting for test difficulty 
differences (Holland et al., 2006). Short anchor tests tend to result in 
unreliable scores and lower correlations than desired with total-test scores. 
Low correlations might also occur when the content of the anchor test 
differs from that for the total tests. Context effects can impair the 
comparability of common items across forms. Anchors that are too easy or 

Inc.practice and, at  ACT,         we recently had an equating where we contem-

very differently on the anchor test. When group differences in ability are 

plated doing this. von Davier’s formal explication of this procedure is an 
advance in the field.
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too hard for the intended population produce skewed score distributions 
that present challenges for equating.

4.3.3. Samples 

Use of unrepresentative and unmotivated samples undermines equating. 
Only members of the population of interest should be included in equating 
samples. To the extent possible, equating samples should also be 
representative of the intended population. When equating data are 
collected via special studies rather than operational administrations, 
incentives are needed to ensure that examinees will take the test seriously.

Equating cannot be done effectively using small samples. The smaller 
the sample size, the more restricted is the class of plausible equating 
methods. Smoothing score distributions works with moderate-sized 
samples, but it is not effective with very small samples, especially when 
we are unsure of how representative the sample is of the intended 
population.

Large ability differences between the anchor-test samples, .25 standard 
deviation units or higher, tend to yield situations in which equating 
becomes difficult to impossible unless the anchor is highly related to both 
tests to be equated. 

4.3.4. Problems in Implementation 

Most of the difficulties in real-life equating settings are due to problems in 
data collection. 

The samples are too small, unmotivated, and/or unrepresentative of the 
population for which the test is intended. For some testing programs, 
especially those used to measure employability skills, it is difficult to 
gather data on the population of interest. Job applicants differ for different 
jobs and for different companies in significant ways. Therefore, it is 
basically impossible to gather data routinely on a representative sample of 
job applicants or on some other well-defined stable subsample for analysis 
purposes.

Sometimes the test administrators do not spiral the booklets as intended, 
messing up our equivalent groups design. Then if we have not included 
some common items so that we can use a NEAT design as a backup, we 
cannot equate, as we do not have data that can be used to conduct analyses 
to separate group ability differences from difficulty differences in the tests.

Sometimes the developers include very few common items in the total 
tests. Then if the samples turn out to be very disparate in ability, 
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performance differences between groups are not adequately represented by 
differences on the common items.

In all of these situations, the equating issues might be further 
exacerbated by issues related to test construction—the new form contains 
mainly unpretested items and turns out to differ significantly in difficulty 
from the old form; the content specs were changed; or the administration 
format was changed (e.g., for a listening test, the scenario was presented 
via text in the old form and by both text and orally in the new form).

4.3.4.1.  An Example of a Very Challenging Equating 

Until recently, the College Board Biology Achievement Test equating 
described in Cook (Chapter 5) and Cook and Petersen (1987) was the most 
memorable equating I have encountered in my 30 some years of equating 

®

However, those equatings were relatively straightforward compared to an 

We were asked to equate four field test forms of a reading test for non-
English speakers. Summary data for the base (old) form and the four new 
field test forms are shown in Table 4.1. The base form was administered in 
a foreign country to well-educated, white-collar workers who have had 
access to a great deal of English-language training. The new field-test 
forms were administered in the United States to recent immigrant, blue-
collar workers who have had limited access to English-language training. 
The two groups performed very differently on the common-items and on 
the total tests. 

The reading tests consisted of 30 items; however, there were only 7 
items common across forms for use as an anchor. This is far fewer than the 
general rule of thumb that the number of common items should be the 
greater of 20 items or 20% of the test length. Now with a test of only 30 
items, it is understandable why there are fewer than 20 common items, but 
only 7? That is too few to provide a reliable score. 

The four field-test forms were supposed to be spiraled. We never did 
figure out why Form RFT1 had twice as many test-takers as the others. 
Given the disparity in sample sizes, the spiraling could not have gone as 
planned.

The four field-test form groups scored approximately 1.3 standard 
deviation (SD) units lower than the old form group on the common items 
and 1.6 SDs lower on the total test. The mean scores on the new forms 
corresponded to approximately 41% of the maximum score, whereas the 
mean score on the base form corresponded to approximately 65%. The 
reading field tests were very speeded, with approximately 40% of the test-
takers running out of time.

(that and one for a Praxis II  Subject test with a sample size of three). 

equating situation recently encountered at ACT, Inc. 
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Table 4.1. Reading for non-English speakers: Field-test raw score (RS) summary 
statistics

  Field-test formsa

Reading Base formb RFT1 RFT2 RFT3 RFT4 
Sample size 559 323 149 146 141 
RS mean 20.3 10.9 12.2 11.3 13.0 
RS SD 4.9 5.2 5.2 5.3 5.5 
No. of operational items 30 30 30 30 30 
KR-20 0.83 0.83 0.81 0.82 0.84 
Common items mean 4.0 2.3 2.4 2.3 2.3 
Common items SD 1.5 1.4 1.3 1.3 1.2 
No. of common items 7 7 7 7 7 
Correlationc 0.79 0.78 0.65 0.70 0.77 

Consequently, we informed the client that we were unable to perform an 
actual equating for the field tests because the basic assumptions underlying 
the various equating models were violated. Rather, we provided a 
conversion table for use in scoring the field-test data based on our best 
professional judgment. We also informed the client that the field-test data 
were not suitable for estimating the statistical properties of the pretest 
items prior to inclusion in new forms because of the small number of test-
takers for three of the field-test forms, the small number of common items, 
the disparate performance of the groups, and the high not-reached rate on 
the reading tests.

This is a new assessment, still under development. The client is now in 
the process of planning a new field-test study. Along with that, we have 
asked the client to decide who their primary market is so we can determine 
the targeted test-taking population for the test. We will then try to sample 
from this population for our next field test. If the group from the foreign 
country is typical of the targeted test-taking population and if the group 
from the United States is typical of the American test-taking population, 
then the client actually needs to consider developing a different assessment 
for use in the United States. The current assessment is much too difficult 
for this particular American test-taking population. If they want to test in 
the United States, they really need to develop a different assessment or 
they need to determine if there is a white-collar job market in the United 
States for a test of reading for non-English speakers. If the group from the 

aThe field test forms were administered to test-takers in the United States. Each 
field test form contains 23 pretest items plus 7 items in common with the base 
form.

bThe base form is the current operational Form. The base form was 
administered to test-takers in a foreign country. 

cCorrelation between common items and unique items. 
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foreign country is typical of the targeted test-taking population, then the 
current reading test appears to be of suitable difficulty for this population.

4.4. Discussion 

For large-scale testing programs such as  the  ACT  and  the  SAT , most 
operational equatings come close to meeting the five criteria for an 
equating. These programs have large volumes, relatively stable test 
specifications, a relatively stable test-taker population, a well-designed 
data collection plan, and a large well-defined test-taker group used for 
item/test analysis and equating. They also pretest items prior to operational 
use and give a new form at every administration. In addition, these 
programs have sufficient data to evaluate questions such as whether 
scrambled section orders affect equating results and whether equatings are 
invariant for major subgroups. If not, they have been able to define a major 
stable subpopulation used for analysis purposes. For example, for the 
Biology Achievement Test (Cook & Petersen, 1987; Cook, Chapter 5), we 
solved the problem of subpopulation sensitivity by defining the analysis 
population for all future equatings to be seniors taking the test in the fall. 
So from then on, we only administered and equated new Biology forms 
using data from seniors who took the test in the fall; and, we only expected 
population invariance to hold for subgroups of that “analysis” population 
rather than for the whole test-taker population.

However, most testing programs are not so lucky. Many licensure and 
certification programs have small volumes, and small item pools, major 
security problems and they cannot readily pretest. It can be difficult when 
working on a small or new testing program to know when you have done a 
“good” equating. For new testing programs, it might be difficult to specify 
an analysis population on whom you can initially actually collect data for 
equating purposes. Often, you have to use whoever is willing to pay for the 
test; those users’ examinees might differ in significant ways from each 
other, such as with the reading exam for non-English speakers example. To 
improve security, many testing programs want to assemble tests from 
calibrated item pools in order to minimize the number of common items 
from any one old form in a new form even though the exam might only be 
given to a couple of hundred examinees at best in a year, making item 
calibration problematic. To reduce cheating, clients might also want to 
scramble items within a test form, even though context effects can cause 
comparability problems across scrambles. However, no matter what, when 
all is said and done, we are expected to do our magic and produce scores.

Perhaps the psychometrician’s oath should be essentially the 
Hippocratic Oath: Do no harm. That is the most important goal of 

��
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equating. Not only have we produced the best equating possible for all 
possible test forms or subgroups, but, given all of the problems we might 
have encountered, we have also produced the best linking the client can 
afford with minimal negative impact on any subset of examinees. Thus, I 
disagree with von Davier (Chapter 6, Section 6.3) as to her solution for 
population sensitivity. I would never recommend to a client that they use 
different conversions for different subgroups that took the same test or the 
same test items. I view a test score as the result of a “measurement,” like 
taking your temperature with a calibrated thermometer, rather than as 
strictly an “estimate” of a latent ability parameter. I do not want to be the 
one to go in front of a judge to say that it is fair to give different scores to 
two examinees who took exactly the same questions and answered them in 
the same way. We are not talking about “test use” here. In test use, when 
we are essentially making a prediction about how someone will perform in 
the future, there might be times when it is appropriate, and legal, to use 
individual or subgroup information in addition to test performance in the 
decision-making process. However, when we are equating, we are not 
talking about test use; we are talking about how we report scores for a test 
or a collection of items. The results of our equating analyses might indicate 
that our equating is not population invariant. In which case, I believe we 
should revisit our test blueprint, our definition of the analysis population, 
how scores will be used, and how we treat/talk about our equating results. 
However, I do not see it as a reason to score the test differently for 
different groups. I believe the only way to be fair to individuals in scoring 
the test is to report scores on the test in the same way for everyone. We 
might use the scores from a test differently for different groups, but I 
believe there should only be one way to report scores for any given 
collection of test items. 

4.5. Summary 

All in all, I think the theory of equating is in good shape. We can continue 
to tweak it, and von Davier’s Chapter 6 presented some good examples of 
how we can further refine our equating procedures. However, it is difficult 
to deal with the test development and data collection problems we face in 
practice, especially now that the world is our marketplace.  

I do feel that there is still a need for more comprehensive empirical 
investigations. Some of the various challenges we face in practice could be 
explored further via systematic investigations of the appropriateness of 
different equating procedures in a variety of realistic settings. These 
empirical investigations have their predecessors, such as the 
comprehensive studies conducted in the early eighties by Marco, Petersen, 



72      Nancy S. Petersen

and Stewart (1983) as well as other studies cited in Kolen and Brennan 
(2004). A variety of factors could be manipulated in a series of studies that 
examines the robustness of both newer approaches like kernel equating 
(von Davier, Holland, & Thayer, 2004b) and older linear and nonlinear 
methods. Foremost among these factors would be the magnitude of ability 
differences between samples as measured by the anchor items and the 
shape of the score distributions. What is the minimum number of anchor 
items that we really need to capture ability differences between groups? In 
addition, it would be worthwhile to manipulate difficulty differences 
between the total tests and the anchor, as well as the reliability of the total 
score and the anchor score. Correlations of the anchor score with total 
score and with sample size should be manipulated and studied. Ideally, real 
data would be used as the starting point for these studies. 

The results of the studies reviewed by Cook (Chapter 5) plus the 
equating example discussed in Section 4.3.4 clearly show that it is 
impossible to separate fully the effects of samples, tests, and common 
items on equating results. Therefore, as Cook and Petersen (1987) noted 
years ago, as long as it is still necessary to attempt to develop comparable 
scores in practical testing situations, equating will remain in large part not 
just a science but also an art. 



5   Practical Problems in Equating Test Scores:
A Practitioner’s Perspective

Linda L. Cook1

Educational Testing Service 

5.1. Introduction 

Most major testing programs, particularly large-scale or high-stakes testing 
programs, require the construction and administration of multiple forms of 
the same test. There are several reasons for this requirement. One reason is 
that many testing programs (e.g., the ACT® or the SAT®) administer tests 
on a fairly large number of testing dates per year. In addition, for security 
reasons, testing programs such as these rarely administer an examination 
more than once. Consequently, in order to protect the security of the tests 
and meet the demands of an examinee population for flexible testing dates, 
the construction and administration of alternate forms of the same test is a 
necessary requirement for operating these programs.

One thing that most major testing programs have in common is that it is 
imperative that scores on the multiple forms of the tests that are 
administered on the different test dates be completely interchangeable. 
Because it is virtually impossible to construct multiple test forms that are 
equivalent in level and range of difficulty, test scores on the different 
forms must be equated using some statistical procedure. Numerous 
procedures have been described and researched to accomplish both the 
equating and, when equating is not advisable, the alignment of the scales 
underlying the test scores. These equating and scale-alignment procedures 
have been discussed in great detail in a number of important publications 
(see, e.g., Angoff, 1984; Kolen & Brennan, 2004, Holland, Chapter 2; 
Kolen, Chapter 3). However, a review of these publications leaves the 

                                                     
1 The opinions expressed in this chapter are those of the author and not 
necessarily of Educational Testing Service. 
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reader with a clear sense that there are many difficult situations in which 
there is a need to equate or align scales on different test forms or tests and 
in which the usual procedures might provide questionable results. 

Cook and Petersen (1987) begin their review of problems related to using 
conventional and item response theory (IRT) equating methods in what 
they refer to as “less than optimal circumstances” by saying that “many 
psychometricians view score equating as a subjective art with theoretical 
foundations because the true relationship between scores on different forms 
of the same test is never known in practice.” They continue by saying, 
“Furthermore, actual data never satisfy the assumptions of the various 
equating models” (p. 225). 

In spite of the important advances that have been made in analyzing and 
understanding some of the issues and problems related to score linking, 
and particularly score equating, there remain many daunting challenges for 
the practitioner who is faced with providing equivalent scores on multiple 
forms of an assessment in situations that sometimes include one or more of 
the following conditions: test forms that differ in content, difficulty, and 
reliability, new and old form samples that differ in important 
characteristics, and anchor tests, used to adjust for sample differences, that 
have specifications that differ from the tests to be equated. (See Kolen, this 
volume, for details of how anchor tests are used.) 

The purpose of this chapter is to discuss some of the more important 
conditions that can lead to “stumbling blocks” that a practitioner might 
have to face as she attempts to develop equivalent or interchangeable 
scores.  Because of the prevalence and importance of the nonequivalent 
groups anchor test (NEAT) design and because of the complexities of 
implementing this design, most of the discussion in this chapter naturally 
focuses on equatings based on a NEAT data collection design. The chapter 
will provide a general discussion of this data collection design and some 

The art, and science, of equating has advanced considerably since Cook 
and Petersen published their article in 1987 in which they described the 
many problems and issues that they encountered as practitioners equating 
scores on the SAT and the College Board Achievement Tests (now called 
the SAT Reasoning TestTM and the SAT Subject TestsTM). The recent work 
on assessing the population sensitivity of equating functions that has been 
published in a special issue of the Journal of Educational Measurement 
(JEM) edited by Dorans (2004a) is an excellent example of the insightful 
analysis and scientific approach that is now being brought to bear on the 
practical issues related to linking test scores. In addition, Test Equating, 
Scaling, and Linking by Kolen and Brennan (2004) and The Kernel 
Method of Test Equating by von Davier, Holland, and Thayer (2004b) are 
examples of recent and substantial contributions to what we know today 
about the science of score linking.  
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issues related to using the design, followed by a discussion of three major 
stumbling blocks encountered when attempting to equate scores on tests 
under difficult conditions: characteristics of the test forms to be equated, 
characteristics of the groups used for equating, and characteristics of the 
anchor tests. 

5.2 The Nonequivalent Groups Anchor Test Design 

The anchor test can be included within the total test (internal anchor) or 
it can be administered separately from the total test (external anchor). 
(Kolen’s Chapter 3 in this volume contains visuals for both the internal 
anchor or common items design [Figure 3.5] and the external anchor 
design [Figure 3.6].) As mentioned previously, anchor-test designs are 
probably the most prevalently used designs in practice and the most 
difficult designs to implement. One reason that anchor-test designs are 

Equating designs typically have two important components. One 
component is a design for data collection and the second is a statistical 
model used to equate scores on the tests of interest. The nonequivalent 
groups anchor-test design is used to collect data in situations in which it is 
not possible to administer the tests to be equated to the same or randomly 
equivalent groups. Consequently, when using a NEAT design, the groups 
taking the new form (the test form to be placed on scale) and the old form 
(the test form that has been previously placed on scale) of the test to be 
equated differ from each other, typically in level of skills or abilities 

design. The NEAT design was also described in Kolen (Chapter 3, Section 
3.5; see especially Figures 3.5 and 3.6). Usually the new and old form 
groups take the tests of interest on different test dates. The anchor test, or 
set of common items, is administered along with, or as part of, the new and 
old forms of the test and is used to evaluate the differences in the ability 
levels between these groups and to estimate or help create distributions of 
scores on the two forms to be equated for the common population for the 
test. (See von Davier et al., 2004b, for a discussion of how these 
distributions are created.) Observed-score methods typically used with 
anchor-test designs are the chained equipercentile method and the Tucker 
and Levine observed-score linear methods (see Figure 2.4 in Holland, 
Chapter 2, Section 2.3.4). True-score methods such as Levine true score 
and IRT methods are also used. For IRT procedures, the anchor test is used 
to place the item parameter estimates for the two test forms on the same 
scale prior to score equating. (See Kolen, Chapter 3, Section 3.5; Kolen &

for a description of these equating models.)  

measured by the test. Section 2.4.3 in Holland (Chapter 2) described this 

 Brennan, 2004; Petersen,  Cook, & Stocking, 1983;  von Davier et al., 2004b, 
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difficult to implement has to do with the fact that these designs work best 
when certain conditions hold: similarity of new and old form samples, 
similarity of the two test forms to be equated, and a close relationship 
between scores on each of the forms to be equated and the anchor-test 
scores. Consequently, when equating scores on two test forms using an 
anchor-test design, “... it is necessary to determine how similar the test 
forms are with respect to content, difficulty and reliability. It is also 
necessary to determine the extent to which the anchor test mirrors the 
properties of the total tests. It is also important to gather as much 
information as possible about the extent to which the samples to be used in 
equating are similar in composition and ability and are representative of 
the population for which the test is intended  ( Cook & Petersen, 1987,    

Although the issues related to differences in equating samples, 
differences in the characteristics of the new and old forms, and differences 
in the relationship between the anchor test and the total tests are listed here 
as separate issues, it is important to point out that these are not 
independent issues; instead, they are very much intertwined. For example, 
it is quite possible for two test forms to appear to be very parallel when 
given to one set of equating samples, but yet exhibit quite discrepant 
properties when given to a second set of equating samples. This 
dependency between the characteristics of the assessment and the 
characteristics of the group taking the assessment is also a concern when 
evaluating the characteristics of the anchor test. These issues and how they 
interact will be discussed in the next sections of this chapter.

5.3. Characteristics of the New and Old Forms 

A fundamental requirement of all test equating procedures is that the 
multiple forms of the test to be equated must be as similar as possible in all 
important aspects (e.g., length, reliability, difficulty, content). Kolen and 
Brennan (2004) began the test development section of their chapter on 
practical issues in equating with a quote from Mislevy (1992). According to 
Mislevy, “Test construction and equating are inseparable. When they are 
applied in concert, equated scores from parallel test forms provide virtually 
exchangeable evidence about students’ behavior on the same general 
domain of tasks, under the same specified standardized conditions. When 

Angoff (1984) discussed a definition of equated scores and emphasizes that 
“…equating, or the derivation of equivalent scores, concerns itself with the 
problem of unique conversions which may be derived only across test 

p. 225). 

equating works it is because of the way the tests are constructed (p. 37).”  

”
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forms that are parallel—that is, forms that measure, within acceptable 
limits, the same psychological function” (p. 86).

One of the key points made in the equating literature (see, e.g., Angoff, 
1984; Kolen & Brennan, 2004) is the notion of population or 
subpopulation invariance; that is, scores on two forms of a test should 
exhibit a relationship that does not depend on the particular groups of 

the notion of population invariance depends both on the tests to be equated 

“Lack of invariance in an equating function indicates that the differential 
difficulty of the two tests is not consistent across the two groups. Note that 
invariance can hold if the relative difficulty changes as a function of score 
level in the same way across subpopulations. If, however, the relative 
difficulty of the two tests interacts with group membership or there is an 
interaction among score level, difficulty, and group, then invariance does 
not hold . (p. 49)”  

The point to emphasize in this discussion is that population invariance—
a recommended criterion for evaluating the quality of equating results that 
can be evaluated by checking whether the results for the equating based on 
a particular population hold for subpopulations—is well known to be 
related to differences in the characteristics of the test forms to be equated 

differences for population invariance by making use of two different sets 
of study results. He referred to several studies (Angoff & Cowell, 1986; 
Dorans & Holland, 2000; Harris & Kolen, 1986) in which the researchers 
determined that parallel test forms given to randomly equivalent subgroups 
of a population basically produced score conversions that were invariant 
across these subgroups. On the other hand, Kolen pointed out a number of 
studies that were designed to link nonparallel assessments that resulted in 
linking functions that were dependent on the subpopulation of examinees 
(Dorans, 2000; Dorans & Feigenbaum, 1994; Dorans & Holland, 2000; 
Houston & Sawyer, 1991). Kolen made the point that the results from the 
Dorans and Holland study showed that the larger the differences between 
the content of the tests to be linked, the more the linkings appeared to be 
population dependent. 

forms is an important principle for good test equating, and if it is suspected 
that the test forms might not be as similar as they should be to provide the 
basis for interchangeable scores, then it is particularly important to make 
sure that the groups used to derive the equating or linking transformations 
are as similar as possible in all aspects measured by the test forms. It is 
appropriate at this point  to consider the consequences of this statement for 
a large-scale testing program.

and the samples that are used to carry out the equating. Dorans stated,

examinees used to derive the relationship. As Dorans (2004e) pointed out, 

(see Dorans, 2004e). Kolen (2004b) summarized the implications of these 

According to Kolen (2004a) and Dorans (2004e), parallelism of test 
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At first glance, the requirement of parallel forms, and reasonably 
comparable equating samples, as a basis for the development of equivalent 
scores seems very logical and obtainable for most large-scale testing 
programs. However, the development and maintenance of parallel test 
forms over a period of time might not always be possible for a testing 
program. The maintenance of parallel test forms would not be such a 
critical issue were it not for the fact that, as pointed out earlier, most large-
scale testing programs use an anchor-test data collection design because it 
is difficult for them to collect equating data using a single group or a 
randomly equivalent groups data collection design. Consequently, many 
large-scale testing programs are frequently in the position of deriving 
equivalent scores on tests using groups that might not be similar in ability 
or other characteristics. This situation might not present a challenge to the 
testing program as long as the test forms to be equated are very similar in 
characteristics, but what about situations when test forms are not parallel?

Sometimes the need to administer nonparallel test forms in a testing 
program cannot be avoided. For example, the testing program might 
decide that it needs to revise the current testing battery to better align the 
assessments with current educational practices or to take advantage of 
technological advances in measurement. There are a number of notable 
examples of these types of change. Testing programs such as the SAT, 
ACT, and PSAT/NMSQT® have had the content of their tests revised 
periodically to better reflect changes to curricula and so forth. In most of 
these situations, the linking across forms with altered test content has been 
considered to result in equivalent scores (see Liu & Walker, Chapter 7, for 
one such illustration). In addition, the introduction of computerized testing 
in testing programs such as the GRE® and the TOEFL® necessitated some 
form of score linking between the nonparallel paper-and-pencil and 
computer-adaptive versions. In this situation, the linking cannot be 
assumed to constitute an equating, but, instead, it can be considered a 

the chapter by Eignor in this volume for more discussion of issues 
involved in making the transition from one mode of administration to 
another. Brennan (Chapter 9) discussed both Chapter 8 by Eignor and 
Chapter 7 by Liu and Walker in his consideration of issues faced by tests 
in transition. Kolen (Chapter 3, Section 3.2) formally incorporated 
conditions of administration into his treatment of linking and equating. 

Given the results of some of the studies cited earlier in this chapter 
(Dorans, 2000; Dorans & Feigenbaum, 1994; Dorans & Holland, 2000; 
Houston & Sawyer, 1991), it would seem prudent for practitioners facing 
the need to link scores on nonparallel assessments to do the best they can 
to ensure that the equating samples are representative of the target 

calibration in the sense defined by Holland (Chapter 2, Section 2.3.4). See 
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population for the test and that the samples are as similar as possible in the 
skills and abilities measured by the test. 

As mentioned earlier, there is an interaction between the tests to be 
equated and the characteristics of the samples to be used in the equating. It 
is quite possible for test forms to exhibit the properties of parallelism when 
given to one pair of equating samples and to behave as nonparallel test 
forms when administered to a second pair of equating samples. This point 
will be explored further in the next section of this chapter, which focuses 
on issues related to differences in equating samples.

5.4. Characteristics of the Groups Used for Equating 

Kolen and Brennan (2004) have pointed out that the effect of the group 
used for equating depends on the data collection design. They discussed 
the fact that when the test forms are carefully constructed to be parallel to 
each other and when the groups used to equate these test forms are 
randomly equivalent and representative samples, the equating relationship 
appears to be group independent (i.e., invariant across groups; see Angoff 
& Cowell, 1986; Harris & Kolen, 1986.) These authors continued by 
pointing out that for anchor-test designs, large differences between the old 
and new form groups “…can cause significant problems in estimating 
equating relationships, both for traditional and IRT equating methods.” 
(See Cook & Petersen, 1987; Harris, 1993; Skaggs, 1990; Skaggs & 
Lissitz, 1986.) Kolen and Brennan (2004) explained these results by 
making the point that large differences in mean ability or distribution of 
ability of the equating samples can lead to the failure of the assumptions of 
any equating model to hold.

It is important, at this point, to note that equating samples can exhibit a 
number of different sampling characteristics. For one, the samples can be 
either representative or nonrepresentative samples of the target population 
for the test. For example, a nonrepresentative sample of the target 
population of the test might be a sample of students who take the test in a 
special study and consequently might not be as motivated as students from 
the target population who took the test under standard testing conditions. 
The samples might also be representative of a different population than the 
target population. For example, this situation might occur if samples 
selected for the equating have been exposed to an academic curriculum 
other than the curriculum that the intended population for the test will be 
exposed to. Finally, it is possible that the new and old form samples, 
themselves, might each be representative of different populations. This 
situation could occur, for example, if the new and old form groups took the 
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tests at different points in time during the academic year when a particular 
content series in a course was being taught. 

In practice, nearly all of the above-described situations are encountered 
from time to time. The equating studies reviewed in this chapter, and 
prevalent in the equating literature, involve all of the situations just 
described. However, the last situation—new and old form samples from 
different populations—is one of the most problematic situations for score 
linking procedures and is one that can only occur with a NEAT data 
collection design.

One approach to the problem of disparate equating samples in anchor-
test designs is to attempt to match the new and old form samples using 
some type of matching variable (e.g., anchor-test scores). Matching, as a 
possible solution to the problems created by disparate equating samples, 
was a topic researched at Educational Testing Service (ETS) in the late 
1980s. The studies were reported in a special issue of Applied
Measurement in Education (APM) that was edited by Dorans (1990b). 
Matching was alluring because of the repeated observation that equating 
methods tended to converge to the same answer when old and new form 
samples were close in ability. In other words, different linear observed-
score methods would tend to give the same linear linking function, and 
different curvilinear observed-score methods would tend to give the same 
nonlinear linking function. By matching the old and new form sample such 
that they had identical distributions of anchor-test scores, a convergence of 
results would be obtained. In essence, matching is an inefficient brute-
force way of doing what Tucker and frequency estimation do elegantly 
(see Dorans, 1990a, for description of methods). The research documented 
in this special issue found that matching procedures provided inconsistent 
results; that is, some of the studies found the equatings resulting from the 
matching procedures to be quite acceptable and other studies found that the 
procedures did not produce successful equating results at all. This seemed, 
in part, to be a function of the specific equating methods employed in the 
various studies, but the results were also most surely related to the nature 
of the samples (i.e., whether they were representative samples from a 
particular population and whether the new and old form samples were 
samples from the same population). 

“The five articles in this special issue address what I think is the single 
most important of these factors,2 namely, the problem that different 
populations of examinees who take a test may not produce the same 

                                                     
2 The factors discussed by Skaggs were reliability of the tests to be equated, 
properties of the anchor tests, ability levels of the samples, and types of test to be 
equated.

Skaggs (1990), in his discussion of the ETS studies, commented, 
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equating function. This problem is actually a symptom of a larger concern, 
”

equating samples might differ, such as reading ability, recency of 
instruction, test anxiety, the number of hours of sleep the night before a 
test, etc. He urged more work on determining a causal explanation for how 
dimensions, such as these, interact to impact examinees’ test scores. What 
is implied by Skaggs’ comments is that equating samples that differ on the 
dimensions he describes are quite likely unrepresentative samples from the 

characteristics described by Skaggs that they may not even be samples 
from the same target population.

Skaggs’ concerns about group characteristics impacting equating 
designs become even clearer when one considers that a complicating factor 
for large-scale testing programs using anchor-test designs is that these 
testing programs offer multiple administrations of a test and, consequently, 
the new and old form groups used for equating usually take the test on 
different administration dates that can be a number of months or even 

possibility exists that they [the groups used for equating] may not be 
subgroups from the same population. If this situation exists, the equating 
function obtained from such a design may be very problematic” (p. 228).

Cook and Petersen (1987) described a study carried out by Cook, 
Eignor, and Taft (1985), which was later published in the Journal of 
Educational Measurement (Cook, Eignor, & Taft, 1988). This study 
examined the results of equating two forms of a biology achievement test, 
which had been constructed to be reasonably parallel to each other in both 
content and statistical properties, but which differed slightly in test length. 
For their study, Cook et al. (1985) used one old form sample and two 
different new form samples. The old form sample was randomly selected 
from a fall administration of the test. One new form sample was randomly 
selected from a spring administration of the test and the second sample 
was randomly selected from a fall administration. Cook et al. (1985) noted 
that students taking the biology test in the spring were able students who 
had recently completed a course in biology. They pointed out that students 
taking the test in the fall were less able students who mostly had not 
formally studied biology for 6–18 months. 

Table 5.1 contains summary statistics from Cook et al. (1985) that 
describe the performance of the three samples on the two forms of the 
biology test (the old form contained 99 items and the new form contained 
95 items), the anchor test (58 common items included in the total score on 
both the new and old forms of the test), and the correlation of the anchor 
test with the total test. As Cook and Petersen (1987) pointed out, the new 

(p. 105). Skaggs continued by pointing out the many dimensions on which 

target population. Also, the samples may differ sufficiently on the 

namely, that the same test can mean different things to different people   

several years apart. As Cook and Petersen (1987) pointed out,  “ The 
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and old form fall samples were very similar in performance on the 58-item 
anchor test. The performance of the two fall samples on the 58 common 
items can be contrasted with that of the spring sample, which performed 
much better on this same set of items. Item difficulties for the 58 common 
items contained in the new and old biology test forms correlated .99, 
which indicates that they measure biology, as defined by the 
specifications, in the same way for the two fall samples. The same set of 
items measures biology in a different way for the spring and fall groups, as 
evidenced by a correlation of .74 for their item difficulties. Cook and 
Petersen pointed out that “… it is quite likely that the two biology test 
forms, even though constructed to be very parallel, measure different skills 
or constructs depending upon whether they are administered to a spring or 
fall group” (p. 230). 

Table 5.1. Biology test raw score summary statisticsa

Form Sample 
size

No. of 
items

Mean SD r 

Fall old form 2,408 99 46.33 18.26 .96 
    Anchor test  58 25.62 11.42  
Spring new form 3,892 95 53.71 17.61 .97 
    Anchor test  58 32.89 11.42  
Fall new form 3,653 95 44.74 17.56 .96 
    Anchor test  58 25.65 11.27  
a Raw score summary statistics for the total test taken by the two new form 
samples and for the common items taken by all of the samples can be directly 
compared. Due to differences in test difficulty and test length, summary statistics 

Cook and Petersen (1987) continued the discussion of the Cook et al. 
(1985) work by pointing out that these authors also investigated the impact 
of the various new and old form sample combinations on the equating 
results. Cook et al. equated the two biology test forms to each other using 
Tucker, Levine, and equipercentile equating methods (see Angoff, 1984). 
IRT true-score equating based on the three-parameter logistic model (Lord, 
1980, p. 193) was also used. See  Chapter 2 by Holland (especially 
Section 2.4.3), and Chapter 3 by Kolen in this volume for details about 
equating methods. All equatings were carried out using (a) the spring new 
form/fall old form combination and (b) the fall new form/fall old form 
combination. Information provided in Table 5.2 gives the results of the 
equatings in the form of summary statistics obtained for the spring total 
group. Examination of the data shown in Table 5.2 indicates the different 
equatings using the spring new form fall old form combination resulted in 

for the old form should not be compared with those for the new form. 



5 Practical Problems in Equating Test Scores: A Practitioner’s Perspective     83

scaled-score means at least 15 points higher than those based on the fall 
new form/fall old form combinations.

Cook and Petersen (1987) asked several questions about these results. 
“Are the equatings discrepant due to the differences in ability level of the 
new and old form samples, or are they discrepant because the test is 
measuring different (nonparallel) constructs for the spring and fall 
groups?” (p. 230). Another closely related question is: Will the equating 
transformation determined by, for instance, using two samples from the 
fall population, produce the same results as an equating transformation 
determined using two samples from the spring population? This second 
question was investigated by Cook (1984). 

Cook (1984) equated two different forms of the biology test using new 
and old form samples from fall administrations and the equating was then 
repeated using new and old form samples from spring administrations. 
Although the spring and fall groups differed in level and dispersion of 
ability, the two spring samples used for the equatings were similar to each 
other, as were the two fall samples.

Table 5.2. Scaled-score summary statistics for the biology exam resulting from 
combinations of equating method, and equating sample, using the 58-item 
common-item set a

Equating method 
Linear Equipercentile IRT 

Mean SD Mean SD Mean SD
Fall new-form sample/ 
fall old-form sample–58 items 

569 103 567 103 568 103 

Spring new–form sample/ 
fall old–form sample–58 items 

585 104 582 102 586 102 

aRaw score frequency distributions used to compute scaled-score summary 
statistics were obtained from the spring total group (N = 23,405). 

Cook and Petersen (1987) provided the rounded results of the equatings 
carried out by Cook (1984) using the spring/spring and fall/fall samples. 
They showed that the equating transformation determined using the 
spring/spring combination results in reported scores that were 10 points 
higher, through most of the score range, than those obtained by a 
transformation determined using the fall/fall samples. As Cook and 
Petersen pointed out, these results provided an indication that the spring 
and fall groups taking the biology test might not be subgroups from the 
same population and that the biology test is quite likely not measuring the 
same thing for these two populations.

In the above-described situation, the slight differences in equating 
results, taken in conjunction with the correlation of .74 reported earlier 



84     Linda Cook

between item difficulties obtained in the spring and fall samples, indicate 
that the spring groups might be samples from one population and the fall 
groups might be samples from a different population. The different 
populations might be defined by the groups’ different levels of 
preparedness for taking the biology test; that is, the spring equating results 
are based on new and old form samples from one population and the fall 
equating results are based on new and old form samples from a second 
population. As mentioned previously, the spring and fall test-takers most 
likely represent different populations.

Although this situation caused problems for the equating, it is less 
problematic than the situation in which the new form group is taken from 
one population (e.g., a spring administration) and the old form group is 
taken from a different population (e.g., the fall administration). Recall that 
Cook et al. (1985) found that when parallel forms of the biology test were 
equated using new and old form groups that took the tests on different 
administration dates (i.e., were subgroups from different populations), all 
equating results were seriously affected. They concluded that the 
differences in equating results were brought about by differences in the 
new and old form samples. They attributed the differences in the groups to 
the differences in the recency of their course work and hypothesized that 
this difference in recency of course work interacted with test content.

The Cook et al. (1985) study is certainly a worse-case scenario. The 
results of their study do, however, highlight the necessity of choosing 
equating samples very carefully. When these samples cannot be selected 
such that they are similar in the abilities measured by the tests to be 
equated or when the samples are not representative of the target 
population, extreme caution must be taken in interpreting the results of the 
equating study. The next section of this chapter will explore how the 
characteristics of the anchor test (common items) interact with the 
characteristics of the groups used for equating and how this influences the 
equating results.

5.5. Characteristics of the Anchor Test (Common Items) 

A number of important considerations exist for choosing a set of anchor-
test items. It is clear that anchor tests need to be long enough to provide 
reliable scores and long enough so that the scores on anchor tests can be 
highly correlated with scores on both the new and old forms of the tests. 
Klein and Kolen (1985) investigated the relationship between anchor-test 
length and accuracy of results obtained using the Tucker conventional 
linear equating method. The test used was a certification test that contained 
250 multiple-choice items. These researchers, using data from a fall 
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administration of the test, separated examinees into similar and dissimilar 
ability-level groups. Within each group, they equated the test to itself 
several times using the Tucker method and anchor tests of 20, 40, 60, 80, 
and 100 items. The results of their study indicated that when groups are 
similar in ability, anchor-test length has little effect on the quality of 
equating. However, when the groups used for equating differ in level of 
ability, the length of the anchor test becomes very important. Klein and 

in this particular case, identical, and the groups of examinees very similar, 
substantially more accurate equating was not obtained by lengthening the 
anchor. However, longer anchors did result in more accurate equating 

When considering the length of common item sets, Kolen and Brennan 

groups design, common-item sets should be built to the same 
specifications, proportionately, as the total test if they are to reflect group 
differences adequately. In constructing common-item sections, the sections 
should be long enough to represent test content adequately  (p. 271).”

Klein and Jarjoura (1985) evaluated the importance of the content 
representation of the anchor test when using two conventional linear 
equating methods. They equated a 250-item multiple-choice test to itself 
through three intervening links or anchor tests. The success of the equating 
was judged by how closely the identity relationship of equating a test to 
itself was recovered. For the representative chain of equatings, they used 
three 60-item anchor tests, all representative of the content of the total 
tests. For the nonrepresentative chain, the first anchor consisted of 101 
items, the second of 105 items, and the third of 60 items. Only the 60-item 
anchor was representative of the total-test content: All anchors were 
similar to the total test in average difficulty. Both Tucker observed-score 
and Levine true-score equating methods were used. 

Based on the results of their study, Klein and Jarjoura (1985) concluded 
that it was quite important to use content representative anchors with 
nonrandom groups. According to these authors, “…when nonrandom 
groups in a common-item equating design perform differentially with 
respect to various content areas covered in a particular examination, it is 
important that the common items directly reflect the content representation 
of the full test forms. A failure to equate on the basis of content 
representative anchors may lead to substantial equating error  (p. 205).”

The points made by Klein and Jarjoura (1985) are particularly salient 
when considering the results of the Cook et al. (1985) study mentioned in 
the previous section of this chapter. In another part of their study, Cook et 
al. contrasted the results of using four different anchor tests to equate the 
biology achievement tests. They used the 58 common items originally 

Kolen concluded that, “When the tests being equated were very similar, or 

when the groups of examinees were dissimilar ” (p. 10).  

(2004) pointed out, “When using the common-item nonequivalent 
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chosen for the equating, a 36-item anchor test that was constructed by 
content experts to represent concepts in biology least likely to be affected 
by differences in recency of course work, a 29-item anchor test with item 
difficulty indexes (delta values) that changed the least for the spring and 
fall groups, and 29 common items for which item difficulty indexes 
changed the most for these two groups. The results of the equatings based 
on the different sets of common items are shown in Table 5.3. These 
results are in the form of summary statistics for the spring total group that 
have been derived using the equatings based on the four different anchor 
tests used with the spring/fall and fall/fall new form/old form sampling 
combinations.

Table 5.3. Scaled-score summary statistics for the biology exam resulting from 
combinations of the equating method, common-item set, and equating sample a

Equating method 
Linear Equipercentile IRT Spring new form sample/fall old 

form sample Mean SD Mean SD Mean SD
58 items 585 104 582 102 586 102 
36 items 579 102 574 102 581 103 
29 items
(smallest differences in deltas) 

539 103 541 103 545 102 

29 items 
(largest differences in deltas) 

624 105 608 99 619 97 

aRaw score frequency distributions used to compute scaled-score summary 
statistics were obtained from the spring total group (N = 23,405). 

Cook and Petersen (1987) discussed the results of the equatings and 
pointed out, “…that when the groups differ in level of ability (spring/fall 
samples), the different anchor tests yield very disparate equating results. 
However, when the groups are similar in level of ability (fall/fall samples), 
the various anchor tests yield equating results that are in close agreement” 
(p. 234). These authors concluded that these findings in conjunction with 
the Klein and Jarjoura (1985) findings, “…strongly indicate that when 
groups differ in level of ability (as they typically do in anchor test 
designs), special care must be taken when selecting the set of common 
items constituting the anchor test” (p. 234). 

Kolen and Brennan (2004) discussed the results of the Cook et al. (1985) 
study and concluded that, “…even after the more obvious effects [position 
effects, order of response alternatives, context effects] are controlled, common 
items might still perform differently across administrations” (p. 272). They 
urged that common items be screened for differences in functioning across the 
groups taking the new and old forms and that, as mentioned earlier, common-
item sets be long enough that items that do not behave the same across groups 
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can be dropped from the set of common items without impacting the 
representativeness of the common-item set. Actually, when new and old form 
groups are samples from different populations and differ in characteristics as 
greatly as the spring and fall groups used in the biology test equatings differed 
(Cook et al.), no amount of screening of the common items is likely to 
improve the situation and it simply might be impossible to choose an anchor 
test that will result in a satisfactory equating. 

5.6. Conclusions 

The purpose of this chapter was to discuss some of the practical issues, or 
stumbling blocks, that psychometricians who are interested in developing 
comparable scores on multiple forms of assessments frequently encounter. 
Most of the discussion in the chapter centered on the use of traditional 
equating methods with a nonequivalent groups anchor-test data collection 
design. The results of the studies reviewed in this chapter demonstrate very 
clearly that if the goal of the testing program is to produce equivalent scores 
on multiple forms of an assessment and an anchor-test data collection design 
is to be routinely used, then great care must be taken in (a) constructing the 
test forms, (b) choosing the new and old form groups to use in the equating, 
and (c) constructing the anchor test. The results of the studies reviewed in 
this chapter clearly show that it is impossible to separate the impact on 
equating results of the three components: samples, test, and common items. 
These three components of an equating design clearly interact with each 
other in a complex way that impacts the equating results.

One point made in the chapter is that an important definition of equated 
scores is that the equating function demonstrates population invariance; that is, 
an equating function must remain the same regardless of the subgroup from 
the total population used to derive it. Given that most large-scale testing 
programs administer tests on multiple testing dates and, by necessity, use 
anchor-test data collection designs, the likelihood of new and old form groups 
differing in some significant way that will impact the equating results is very 
high. Consequently, it would seem imperative to develop and institutionalize 
rigorous methods for evaluating the equating results as part of the ongoing 
equating process. One important tool in this evaluation would be the routine 
investigation of the invariance of the equating results for all major subgroups 
of the population. In addition, for testing programs that administer content-
bound tests at different points in the academic year, it would be very useful to 
investigate whether equating functions developed using, say, spring groups 
and then again using fall groups, are reasonably equivalent. If these two 
functions are not equivalent, it might be necessary to examine carefully what 
is meant when one talks about the intended population for the test. 
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The practical problems addressed in this chapter are among those that are 
frequently encountered when equating tests. A great deal of research has been 
done recently that has advanced the science of equating. However, as long as 
it is still necessary to attempt to develop comparable scores in practical testing 
situations, equating will require sound judgment on the part of professionals 
trained in the proper use and interpretation of methods and procedures (see 
Kolen, Chapter 3) as well as an understanding of distinctions among different 
types of linking (see Holland, Chapter 2). 

Acknowledgment. The author wishes to thank Daniel Eignor for his review 
and insightful and constructive comments. 
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I work on problems in statistics that I can solve. 
—Rupert Miller (Stanford, Department of Statistics) to Paul Holland, circa 
1964

6.1. Introduction 

Test equating methods are used to produce scores that are interchangeable 
across different test forms that are built to the same specifications 
(Holland, Chapter 2; Holland & Dorans, 2006; Kolen, Chapter 3). It is the 
most stringent form of score linking because it claims score 
interchangeability, not merely comparability, as do concordances and 
predictions (see Holland & Dorans and Holland, Chapter 2, for more 
details and definitions of types of score linking). Other types of score 
linking might use the same computations as test equating but do not result 
in scores that are interchangeable. A linking typically does not qualify as 
an equating when the test forms are not constructed to the same 
specifications or when the test forms measure different constructs. Test 
equating places several stringent requirements on the content and statistical 
properties of the test forms and on the samples of test-takers involved and 
is vulnerable to deviations from these requirements. These deviations 
might result in scores that are not interchangeable. In these circumstances, 
the intended test equating becomes a weaker form of test linking and the 
lack of interchangeability of scores can lead to unintended unfairness to 
some test-takers. 

A good equating is like good cooking: It starts with good ingredients, 
the right tools, sound knowledge, and a bit of talent. Some “stumbling 
blocks to equating” (Cook, Chapter 5) appear when the assumptions 

                                                     
1 The opinions expressed in this chapter are those of the author and not 
necessarily of Educational Testing Service. 
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required by an equating method are not fulfilled—for example, when the 
population invariance assumption fails (Dorans & Holland, 2000). Other 
stumbling blocks arise when the samples available for equating are too 
small and when large differences exist in the abilities of the groups that 
take the two test forms to be equated. In these situations, the equating 
issues are further exacerbated by poor test or anchor-test construction. In 
an attempt to address these stumbling blocks, researchers have measured 
the impact on equating of failures of assumptions (population invariance 
studies, studies on the quality of the anchor) and have developed new 
strategies to cope with design and data difficulties (equating with small 
samples, new approaches to anchor-test construction, and new equating 
models).

This chapter outlines some of this new research and discusses how it 
can improve test equating practice. 

Before embarking on this investigation of the usefulness of new 
methodologies, we need to remember that, so far, no systematic theory of 
test equating has been outlined. Over the years, methods have been 
developed in response to the need to create comparable test scores in 
practical circumstances. In order to evaluate these methods, Dorans and 
Holland (2000), Holland and Dorans (2006), Kolen and Brennan (2004), 
and Lord (1980) have laid out a framework that defines a good 
equating procedure. This framework is based on the following five 
requirements on the test forms and on the equating functions: the same 
construct, equal reliability, symmetry, equity, and population invariance 
requirements. “This is not much of a theoretical underpinning for test 
equating,” said Dorans and Holland (2000, p. 283). Moreover, many of 
these requirements are vague or arguable. In addition, in most situations, a 
failure of any of these requirements is hard to detect using the available 
data. The combination of the lack of a theory and difficulties in detecting 
bad equating results in practical settings create a challenging situation for a 
practitioner.

The research overviewed in this chapter is mostly focused on observed-
score equating methods and investigates the following equating issues: 

1. The population sensitivity of equating functions 
2. Small samples equating  

by matching on an anchor test and by constructing the anchor test in 
nontraditional ways

4. Addressing the stability of the equating results by implementing new 
equating models such as kernel equating (KE) and by applying the 
KE framework 

3. Addressing the differences in ability of the two groups of test-takers 
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The rest of the chapter is structured in six sections, with the first 
introducing the notation, the next four addressing the above-described 
issues, and, finally, providing the conclusions and discussion. 

This overview of problems and solutions in equating does not directly 
address the conflicts that might arise between the demands of the testing 
industry and strong statistical and psychometric practice. To paraphrase 
the motto of the chapter: “I work on statistical problems that I can solve.” 

6.2. Observed-Score Equating Methods 

In this section I introduce notation and lay out a framework for the 
discussion of equating. See also Kolen (Chapter 3) for a related discussion. 

There are two test forms to be equated, X and Y, and a target population, 
T, on which this is to be done. The data are collected in such a way that the 
differences in the difficulty of the test forms and the differences in the 
ability of the test-takers that take the two forms are not confounded. There 
are two classes of data collection designs for equating: (a) designs that 
allow for common people (equivalent groups, single group, and 
counterbalanced designs) from a single target population of examinees T
(see Livingston, 2004, for a slightly different view and definition of a 
target population) and (b) designs that allow for common items (the 
nonequivalent groups with an anchor-test design or NEAT design, also 
referred to as the common-item or anchor-test design) where the tests, X
and Y, are given to two samples from two test administrations 
(populations), P and Q, respectively, and a set of common items, the 
“anchor test,” is given to samples from both these populations). See also 
Figures 3.5 and 3.6 in the chapter by Kolen (Chapter 3, Section 3.5). The 
target population, T for the NEAT design, is assumed to be a weighted
average of P and Q. P and Q are given weights that sum to 1. This is 
denoted by T = wP + (1 – w)Q.

Many observed-score equating methods are based on the equipercentile
equating function. It is defined on the target population, T, as

eY;T(x) = GT

-1(FT(x)), (6.1) 

where FT(x) and GT(y) are the cumulative distribution functions (cdfs) of X
and Y, respectively, on T. In order for this definition to make sense and to 
ensure that the inverse equating function also exists, it is also assumed that 
FT(x) and GT(y) have been made strictly increasing and continuous or 
“continuized.”

Several important observed-score equating methods might be viewed as 
only differing in the way the continuization is achieved. The traditional 
equipercentile equating method (percentile rank method) uses linear 
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interpolation of the discrete distribution to make it piecewise linear and, 
therefore, continuous. The KE method uses Gaussian kernel smoothing to 
approximate the discrete histogram by a continuous density function.

Equipercentile equating leads to linear equating if one assumes that 
FT(x) and GT(y) are continuous and have the same shape while differing in 
mean and variance. The linear equating function, LinY;T(x), is defined by 
LinY;T(x) = YT + YT((x – XT)/ XT), where XT  and YT, and XT  and YT .are
the means and standard deviations of X and Y on T, respectively. 

In von Davier et al. (2004b), it is shown that any equipercentile equating 
function can be decomposed into the corresponding linear equating 
function and a nonlinear part.

The next four sections describe several stumbling blocks to equating, 
some of the research conducted to address them, how the results of these 
research studies might improve equating practice, and identify research 
that still needs to be conducted. 

6.3. Addressing the Fairness Issue: Population Invariance 
of Equating Functions 

The practical equating concern addressed in this section is the lack of 
fairness towards subgroups of examinees that may occur when the 
assumption of population invariance of an equating function does not hold 
across subpopulations. I discuss this topic from several perspectives.

6.3.1. Definitions and Measures of Population Differences in 
Equating

One of the five requirements of score equating functions mentioned earlier 
is that equating should be population invariant; that is, the function 
computed should not be sensitive to the examinees whose data are used    
to compute it. Because strict population invariance is often impossible to 
achieve, Dorans and Holland (2000) introduced a measure of the degree to 
which an equating function is sensitive to the population on which it is 
computed. The measure, the root mean square difference (RMSD), 
compares linking functions computed on different subpopulations with the 
linking function computed for the whole population. The RMSD index was 
initially developed for the single group and equivalent groups designs. It 
was extended to other equating designs and methods in von Davier et al. 
(2004a).

Although the concept of invariance in equating and linking can be 

increase in this research. Most of the studies have focused on the detection 
traced back to 1950 (Kolen, 2004b), in recent years there was a significant 
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of population differences in equating and linking (Angoff & Cowell, 1986; 
Dorans & Holland, 2000; Harris & Kolen, 1986; Segall, 1995; von Davier 
et al., 2004a) and on the development of tools for making decisions 
(Dorans & Feigenbaum, 1994; Holland, Liu, & Thayer, 2005; Liu & 

studies of test fairness that include differential prediction and differential 
item functioning (DIF). He provided an overview of the evolution of 
fairness assessment and placed the study of the population sensitivity of 
equating functions at the core of score equity. He recommended the 
routine investigation of subgroup dependence of the equating functions. I 
also believe that measures of population sensitivity of equating results 
should be routinely employed in operational work (similarly to the way 
that DIF analyses are now routine operational procedures). This is 
especially important when new tests or changes to the tests are introduced. 
The procedure could be automated and embedded in system software and 
might provide a flag if the population invariance assumption is violated at 
particular score points. However, establishing a flag requires a criterion. In 
the following subsections more details on establishing criteria are 
presented.

How could population invariance indexes help practitioners achieve 
better equating results? Such indexes are a first step in the process of 
ensuring fair equating results. The next subsection discusses how to judge 
the information provided by population invariance indexes. 

6.3.2. Criteria for Detecting Subpopulation Differences in 
Equating Functions 

There are at least three different questions one might ask about a particular 
measure of population sensitivity: (a) Does the amount of observed 
population sensitivity matter? (b) Is the amount of observed population 
sensitivity statistically significant or is it just noise? (c) What 
characteristics of the data, tests, and test-takers lead to population 
dependence?
 To address question a, we might make use of the difference that matters 
(DTM), introduced by Dorans and Feigenbaum (1994). The DTM for a 
testing program depends on its reporting scale. For example, if the unit of a 
score scale is one point, then a difference between equating functions 
larger than a half-point on this scale means a change in the reported score, 
and this fact might establish the DTM for that particular program. All 
differences in equating results can be compared to the DTM to judge if 
they matter. However, the population invariance index, RMSD, introduced 

Dorans (2004e) introduced score equity assessment (SEA) to describe 
Holland, 2006; Moses, 2006; von Davier  & Manalo, 2006).
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by Dorans and Holland (2006), needs to be compared to a standardized
DTM, which is the DTM divided by the same quantity as the denominator 
in the RMSD. Some of the recent studies that made use of the DTM 
criterion for detecting population sensitivity are: Dorans, Holland, Thayer, 
and Tateneni (2003), Liu, Cahn, and Dorans (2006), von Davier and 
Wilson (2005), and Yang (2004). 

The studies that address question b focus on computing the accuracy of 
the population invariance indexes. Moses (2006) computed the standard 
errors (SE) for the RMSD index for the KE and showed how to compute 
the analytical formulas for the SE in the KE framework, using a standard 
large-sample approach. Other approaches compute the empirical SE of the 
RMSD for various equating functions using jackknife techniques (von 
Davier & Manalo, 2006). 

Some studies (Holland et al., 2005; Liu & Holland, 2004) examined 
how population invariance indexes vary with differences between the tests 
and the subpopulations of test-takers. This allows us to define “a large 
value” of these indexes in terms of known factors that influence these 
indexes (question c).  

How do these different criteria help practitioners achieve better equating 
results? All three types mentioned are valuable and are not mutually 
exclusive. Each provides information that can aid important decisions for 
ensuring a fair assessment. For example, the difference between the DTM 
and the SE is similar to the difference between clinical significance and 
statistical significance as used in medicine: One can have a statistically 
significant population dependence that will not matter to the test-takers or 
might have a DTM that is not statistically significant given the data at 
hand. One the other hand, comparing an RMSD index value to those 
typically found for parallel tests of given reliability can indicate when a 
observed RMSD value is typical of that type of testing program. 

6.3.3. Implications of Population Sensitivity of Equating 
Functions 

What should be done when the population invariance assumption is 
violated? This case can easily arise with concordances (see Dorans & 
Holland, 2000; Holland & Dorans, 2006; Dorans & Walker, Chapter 10; 
Pommerich, Chapter 11; Sawyer, Chapter 12). However, suppose that it 
occurs in an equating situation. 

The psychometrician can consider examining potential violations of the 
equating requirements by applying the above described criteria. There are 
several areas that might be investigated: (a) Test development. Should 
population dependence be expected given the manner in which the tests are 
constructed? Do the tests measure the same construct? Are the tests 
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equally reliable? (b) The characteristics of the population dependence. Is 
this the first occurrence of a subgroup dependence of the equating function 
in this assessment? How much does the equating function depend on the 
subpopulations? At which scores does this dependence occur? Does the 
dependence matter to the test-takers? (c) The statistical significance. Is the 
observed population dependence statistically significant? Are the 
subgroups large enough that the equating functions for the subgroups are 
reliably different?

If this is a first-time occurrence and if no explanation can be found 
given the testing process, the psychometrician might decide to monitor 
past and future forms of this particular assessment. If this population 
dependence recurs or if it is too serious to be ignored, then more radical 
solutions might be considered. Linking functions between two tests can be 
computed and the scores on the tests can be linked using them, even when 
population invariance fails to hold to a sufficient degree. In this situation, 
however, it is appropriate to claim less for the linking between the two 
tests: The link might be appropriate for the target population as a whole 
but inappropriate for some identifiable subgroups. In particular, in order to 
be fair to different groups of examinees, it might be necessary to consider 
using different links between the tests for different subpopulations of 
examinees.

Holland and Dorans (2006) gave the following example. Suppose that 
there are two subgroups of test-takers, two tests to be linked, and one 
subgroup of test-takers has lower scores on X than the other subgroup but 
that the reverse holds for the other test, Y. They concluded that when a 
reversal holds, the lower scoring group is always disadvantaged by the use 
of the total-group linking function. When tests that are built to the same 
specifications are equated, the possibility of reversals is rare. For the 
forming of concordances, however, reversals are more likely and should be 
monitored for major subgroups.

Dorans (2004e) recommended using SEA and population dependence of 
equating functions “to distinguish between equating and weaker forms of 
linking” and said: 

Some have argued in the K-12 arena that scores from different tests are 
simply exchangeable. Despite cogent arguments to the contrary (see 
Feuer, Holland, Green, Bertenthal, & Hemphill, 1999), this belief 
lingers. […] Does it matter to a boy or a girl […] which test or version 
of a test they take? If the answer is yes […], then the presumption of 
exchangeability is not supported by the data. Inferences that depend on 
this presumption may be suspect. Some weaker form of linking is more 
appropriate, and separate concordances for males and females are more 
equitable than ignoring existing linking differences. (p. 65) 
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However, the use of different links (in situations where equating is 
actually expected) for different subpopulations of examinees is a 
controversial solution (see Petersen, Chapter 4). Is it fair to have two 
people taking the same test, performing similarly, and receiving different 
scores based on the subgroups to which they belong? This concern needs 
to be balanced with the unfairness that reversals can create. 

6.3.4. Discussion and Future Research Directions 

The suggestions for the above-described strategies are not only statistical 
but also involve program policy. A particular program will need to weigh 
the consequences of any decision for the test-takers and test users. It is 
better to avoid such situations by careful planning of test development and 
equating designs that lead to fair equating results. For more details, see 
Dorans (2004e), Petersen (Chapter 4, Section 4.2), and Kolen (2003). 

To make the study of population sensitivity more practical, I 
recommend continuing to search for indexes of population dependence that 
do not require the various subgroups equatings. When there are multiple 
subpopulations, examination of the subgroups equatings with the existing 
indexes is time- and labor-intensive. Dorans and Holland (2000) provided 
an example of such a simplifying method. See Holland et al. (2005) for an 
illustration of how this simplified method can reduce computations without 
losing sensitivity to population differences in equating. 

6.4. Addressing the Small-Samples Issue: Synthetic 
Linking Functions 

The equating of test scores is subject to sample characteristics. If the 
sample is large, the equating relationship in the sample might represent 
accurately the equating relationship in the population. The smaller the 
sample, the more likely that the equating function computed for that 
particular sample will differ from the equating function in the population. 
Both sampling error and bias can influence the quality of the equating. 
Hence, the impact of small sample size on equating is compounded when 
the samples are not representative.

The practical equating issue addressed here is what to do when the 
samples are small. 

The research in this area has focused on three topics: the use of 
presmoothing of the discrete data prior to equating (Livingston, 1993; 
Skaggs, 2004), the use of the identity function instead of equating (Harris 
& Crouse, 1993; Skaggs, 2004), and the use of a weighted average of the 
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identity and a linear equating function without presmoothing (Kim, von 
Davier, & Haberman, 2006). 

Livingston (1993) examined the effectiveness of log-linear 
presmoothing (Holland & Thayer, 1987, 2000) with small samples in an 
equivalent groups design with an anchor test. He found that the benefits of 
presmoothing were greatest when the sample was small, but that the 
number of moments in the observed distribution that should be preserved 
in the smoothed distribution might depend on the sample characteristics.

Skaggs (2004) studied equating of the passing score using samples 
ranging from 25 to 200 in an equivalent groups design with no anchor. He 
observed that the standard errors of equating became smaller as the sample 
size increased, but that the equating bias did not change much as a function 
of sample size. For samples as small as 25, no equating is likely to do less 
harm to examinees than some form of equating, but for samples in the   
50–75 range, some form of equating was preferable to no equating. 
Generally, using log-linear models that fit the first two or three moments 
of the observed distribution produced smaller standard errors than did the 
unsmoothed equating, as Livingston (1993) found. 

Kim et al. (2006) focused on the NEAT design, which is relatively 
uncommon in the literature on small-samples equating. In the NEAT 
design, the anchor test is supposed to adjust for the differences in ability in 
the two groups. However, in small samples, this adjustment might not be 
accurate. They introduced a compromise between the identity function (no 
equating) and an estimated equating function computed on the small 
sample. The synthetic linking function is defined as the weighted average 
of an estimated equating function and the identity function (ID(x) = x) or 
no-equating.

synY(x) = wey(x) + (1 – w)ID(x), (6.2) 

where w is a weight between 0 and 1. They showed that under an 
appropriate choice of the weight w, the synthetic function meets the 
symmetry requirement of an equating or linking function mentioned 
earlier.

The identity function might be a good choice when test specifications 
are well defined and the test forms are close to being parallel (see also 
Lawrence & Dorans, 1990; Skaggs, 2004), even when the equating 
samples are neither representative nor large enough. The mean of the 
equating results from the synthetic equating function is the weighted 
average of the mean of the identity and of the estimated equating function. 
This will reduce the bias in the identity equating function. At the same 
time, the new linking function will always contain less noise than the 
estimated equating function:
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One limitation of this approach is that the two tests should have the 
same length for the identity function to make sense. In addition, if the test 
forms are not nearly parallel, the bias introduced by the identity function 
might be too large. 

In Kim et al. (2006), 
differed in the reliability of the tests and the anchor. For the estimated 

was also used as the criterion based on about 10,000 cases. Smaller 
samples were randomly drawn from the two (nonequivalent) groups. When 
sample sizes were small (less than 25), the synthetic function did a better 
job than the estimated chained linear function. For samples as small as 10 
or 25, the synthetic equating function was preferable to either not equating 
or using the chain linear method alone. 

If historical data exist, w, in the synthetic function, can be viewed from 
the perspective of variance components. The weight on the identity should 
increase as sample variance increases and as year-to-year test variability 
decreases. In the absence of historical data, the weight can be a function of 
the difference in the abilities in the two groups, the correlation of the tests 
and the anchor, the reliabilities and the difference in difficulty of the two 
forms, and the sample size (see also Kolen & Brennan, 2004, p. 289). 

Equating with small samples requires the user to depend on assumptions
because there is less guidance from the data. The synthetic equating 
function illustrates how to use assumptions to achieve more stable results. 
When the test forms are constructed to be nearly parallel, the bias 
introduced by an identity equating is not expected to be large. The 
synthetic function allows more flexibility than simply not equating when 
the samples are small. In a similar way, presmoothing with log-linear 
models makes assumptions to compensate for the lack of data. 

However, assumptions can be wrong, so it is important to know their 
consequences. Would using empirical data to construct a replacement for 
the identity function be better? Would the equating results be more stable 
if a log-linear model is used that fits only the mean of the sparse observed 
distributions? Perhaps collateral information about the test items could be 
used to augment the total-test scores, as Mislevy, Sheehan, and Wingersky 
(1993) proposed? 

More research is needed before we can conclude whether the use of the 
synthetic function relying on the identity function makes matters better or 
worse. Follow-up studies of the work of Kim et al. (2006) can investigate 
the synthetic function under various circumstances, including those in 

linking function they used chained linear equating. Chained linear equating 

 two types of real test data were used that 
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which the identity function might introduce a significant bias. It is natural 
to suggest comparing versions of the synthetic function to the use of log-
linear models with few parameters in terms of bias and variability. 

6.5. Addressing Differences in Ability in the Two 
Populations of the NEAT Design 

The practical equating issue here is to equate scores for test forms that are 
taken by groups that exhibit large differences in ability (see Cook, Chapter 
5). In the NEAT design, the anchor test, taken by the two groups of test-
takers, is used to adjust for the differences in ability in the two groups. 
Previous research in this area has focused on three topics: the use of the 
anchor test to create similar or matched groups (Kolen, 1990; Lawrence & 
Dorans, 1990; Livingston, Dorans, & Wright, 1990), the use of other 
variables to create matched groups (Liou, Cheng, & Li, 2001; Wright & 
Dorans, 1993), and, recently, the creation of anchor tests that maximizes 
their correlation with the tests to be equated (Sinharay & Holland, 2006). 

When there are only small differences between the two samples of 
examinees used in the NEAT design, all linear equating methods tend to 
give similar results, as do all nonlinear equating methods (see Kolen, 1990; 
von Davier, 2003; von Davier et al., 2004a). To the extent that a NEAT 
design is almost an equivalent groups design with anchor test, the need for 
the anchor test is minimized. This is the main argument behind the 
matching-on-the-anchor procedure. When matching on the anchor is 
carried out, the distributions of the anchor in the two matched groups will 
be the same (Kolen, 1990; Lawrence & Dorans, 1990; Livingston et al.). If 
the distributions of the anchor in the two groups are the same, all 
comparable (equipercentile versus linear) observed-score equating 
methods will give the same result (von Davier, 2003). However, Cook and 
Petersen (1987) and Livingston et al. (1995) noted that although all the 
equating functions agree, their agreement might correspond to an incorrect 
equating function due to bias.

In order for the matching-on-the-anchor procedure to work, the anchor 
has to behave in the two groups similarly to the two tests, X and Y (see also 
Cook, Chapter 5). Other research focused on matching groups on variables 
other than the anchor (Wright & Dorans, 1993). Matching both on the 
anchor and on other variables seems to be promising. 

When the two samples are very different in performance, the use of the 
anchor test becomes critical; it is the only means of separating the 
differences between the abilities of the two groups of examinees from the 
differences between the two tests that are being equated (see Holland & 
Dorans, 2006). The most important properties of the anchor test are its 
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integrity and stability over time and its correlation with the scores on the 
two tests being equated (Holland & Dorans). It is important for the 
correlation to be as high as possible. Because of their part-whole 
relationship with the other tests, internal anchors have high correlations 
with the total tests. 

Petersen et al. (1989, p. 246) and von Davier et al. (2004a, p. 33) 
indicated that the higher the correlation between scores of an anchor test 
and scores on the tests to be equated, the better the anchor test is for 
equating. The importance for equating of this correlation raises the 
question: Does the usual advice of making the anchor test a “mini-version” 
of X and Y actually increase this correlation? The requirement that the 
anchor test should be representative of the content of the total test has been 
shown to be an important requirement by Klein and Jarjoura (1985). If the 
difficulties of the items in the full tests are spread over a range of values, 
does that mean that the difficulties of the anchor-test items should be 
spread over the same range? The results reported in Sinharay and Holland 
(2006) suggested that this might not be true. These authors examined 
whether the spread of item difficulties should be the same as that of X and 
Y
might perform as well (in terms of accuracy and precision in equating) as 
one consisting of items with a wider spread of difficulties. In a series of 
simulation studies, they explored the relations between scores on a total 
test and an external anchor test for different types of anchor test, based on 
generated data from one- and two-dimensional logistic item-response 
models. Their main finding is that an anchor test with a narrow spread of 
item difficulties located near the mean of the difficulties of the total tests 
has the highest correlation with the total tests for almost all of the 
situations considered. 

How can this research improve test equating? When there are large 
differences in ability in the two populations in the NEAT design, equating 
can be a challenge. 

Matching on the anchor and/or on other variables that correlate with the 
tests are procedures that require more research and the results need to be 
interpreted carefully. As mentioned earlier, all of the equating functions 
might agree to an incorrect (biased) equating function. If a demographic 
variable is used, then one might ask if the result is an equating and if the 
test scores are interchangeable. What role would the subpopulation 
dependence of the equating function play in choosing a person 
characteristic as a matching variable? More research is necessary to shed 
light on these issues. 

One interpretation of Sinharay and Holland (2006) is that although it is 
important that anchor tests match the content and overall difficulty of the 
total tests, it is less important to match the spread of the item difficulties of 

. They show that an anchor test with a narrow spread of item difficulty 
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the total tests. If further research bears out their preliminary findings, then 
their work suggests that test developers need not attempt to make the 
distribution of item difficulties look like a miniversion of the distributions 
for the total tests and can focus on matching test content and overall 
difficulty.

6.6. Addressing the Stability of Equating Results: Kernel 
Equating and Applications 

In the practice of equipercentile equating, psychometricians have typically 
used the percentile rank method (that uses linear interpolation to make the 
cdfs in Equation 6.1 continuous) for equating test forms with score 
distributions that differ in shape. One of the consequences of this method 
is that the linearly interpolated cdfs and the equating function have kinks; 
that is, the functions are not smooth (see Kolen & Brennan, 2004, Figures 
2.4, 2.5, and 2.10). Moreover, if there are no examinees at a particular 
score, the percentile rank method is not well defined. In order to address 
these issues, past research focused on procedures for smoothing the data 
prior to equating (presmoothing), procedures for smoothing the equating 
function (postsmoothing), alternative procedures for continuizing the cdfs, 
and new equating functions.

In my opinion, the issue of stability and quality of equating results is 
best addressed by providing the following: (a) a coherent and formal 
equating process; (b) better methods of continuizing the discrete 
distributions, F and G, in order to be able to compute the equating function 
from Equation 1; (c) useful measures of statistical accuracy; and (d) 
equating models that are appropriate for particular test designs. In the next 
subsection I will briefly describe the kernel equating method and indicate 
how it accomplishes the four above mentioned  aspects. 

6.6.1. The Gaussian Kernel Method 

observed-score test equating as having five steps or parts, each of which 
involves distinct ideas: (1) presmoothing of the score distributions; (2) 
estimation of the score probabilities on the target population; (3) 
continuization of the presmoothed discrete score distributions; (4) 
computing the equating function; and (5) computing the standard error of 
equating and related accuracy measures. They applied this framework to 
describe kernel equating (KE); see von Davier et al. (2004b) for details and 
for a detailed description of KE. 

Holland and Thayer (1989) and von Davier et al. (2004b) viewed all 
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The main advantage of the KE framework is that it brings together these 
steps into an organized whole rather than treating them as disparate 
problems. KE exploits presmoothing by fitting log-linear models to score 
data, and it incorporates the presmoothing into Step 5 of the framework, 
where KE provides new tools for comparing two or more equating 
functions and to rationally choose between them. 

Kernel equating is an equipercentile equating procedure in which the 
discrete score distributions are made continuous using Gaussian kernel 
smoothing rather than linear interpolation. By varying the bandwidth 
values in Step 4, KE can approximate the traditional equipercentile and the 
linear equating methods. The bandwidths are positive constants that 
manipulate the weight placed on the Gaussian kernel and that can be 
chosen to achieve various purposes. When “optimal” bandwidths are 
chosen, KE will closely approximate the traditional equipercentile 
equating method. When the bandwidths are large (10 times the standard 
deviation of the scores or larger), the continuized distributions will be 
nearly Gaussian and the KE functions are effectively linear. Thus, linear 
equating can be regarded as special case of equipercentile equating in the 
KE framework. 

In the KE framework, von Davier et al. (2004b) introduced the standard 
error of the difference (the SEED) between two equating functions. The 
SEED has several practical uses such as rationalizing the linear/nonlinear 
decision, implementing a new approach to the counterbalanced design, 

design, or aiding the comparison among other observed-score equating 
methods (von Davier & Kong, 2005). The various uses of the SEED do not 
require KE, but the SEED is a natural part of the KE framework and von 

Davier, & Rupp, 2006; von Davier et al., 2006) focused on evaluations of 
KE and on comparisons of KE with other observed-score and true-score 
equating methods. Among other things, these studies indicate that KE can 
closely approximate traditional equating methods well. These studies used 
the newly developed KE-Software (Educational Testing Service, 2006). 

6.6.2. Applications of the KE Framework 

Recent studies have taken advantage of the formal and coherent 
formulation of the KE process and have focused on the application of KE 
to particular equating issues.

Moses, Yang, and Wilson (2005) explored the use of KE for integrating 
and extending two procedures (Hanson, 1996; Lawrence & Dorans, 1990) 

Several research studies (Han, Li, & Hambleton, 2005; Mao, von 

comparing chained and poststratification equating methods in the NEAT 

Davier et al. (2004b) showed how to apply it for these purposes. 
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proposed for assessing the statistical equivalence of two test forms in 
which the same items have been scrambled into different orders.

Other applications of the KE framework are Moses (2006), which 
computed the standard error of population invariance indexes, and Moses 
and Holland (in press), which extended the KE computations to situations 
in which the data are not presmoothed. 

The KE framework is also used to construct hybrid equating function 
that combine a linear equating function from one source with an 
equipercentile function from another. An example is a nonlinear 
generalization of the Levine linear observed-score equating function. The 
Levine linear method does not yet have a curvilinear analogue, and there is 
no version of KE that approximates the Levine function. Nevertheless, the 
Levine linear method is often computed in practical applications for 
comparison purposes. Under some circumstances, it is more accurate than 
other linear methods (see Petersen, Marco, & Stewart, 1982).

von Davier, Fournier-Zajac, and Holland (in press) used the KE 
framework to construct a hybrid equating based on the Levine linear 
method. The new function preserves the nonlinear characteristics from the 
KE poststratification and the linear form from the classical Levine 
observed-score equating. 

With the five steps of the KE framework identified, other research has 
focused on replacing the original proposals from von Davier et al. (2004b) 
with alternatives to create new equating processes. One of these proposes 
alternative continuization methods: Wang (2004) continuized the discrete 
probability distribution by using the polynomial log-linear function (from 
the presmoothing step), divided by the area under it, in order to ensure that 
it is a probability distribution function. The method is called the 
continuized log-linear (CLL) method. As a potential alternative to the 
Gaussian kernel, Holland (personal communication, July 26, 2005) 
discussed the possibility of using a logistic kernel. One of the advantages 
of the logistic kernel is that the analytical form of the derivatives required 
for computing the SEE and the SEED is very simple. At the same time, 
given the modular character of KE-Software (Educational Testing Service, 
2006), it would be very easy to implement it in parallel with the Gaussian 
kernel.

6.6.3. Discussion and Future Research Directions

How do these new equating models address the issues of stability of the 
equating results? The nonlinear Levine function is a new equating method 
that might allow the known benefits of the Levine linear function (Petersen 
et al., 1982) to apply to cases where nonlinear equating is required. There 
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are situations in which the tests and the anchor are very carefully 
constructed, but the two test score distributions differ in shape (see von 
Davier, Holland, et al., 2006). In such a case, a nonlinear version of the 
Levine function is desirable.

One reason for seeking alternatives to continuization with a Gaussian 
kernel is that the use of the Gaussian kernel leads to lower values of the 
higher order cumulants of the continuous distribution than those of the 
original discrete distribution (Holland & Thayer, 1989; von Davier et al., 
2004b). So far, this reduction in the cumulants has not been shown to have 
any practical implication. The Wang (2004) proposal of CLL might 
provide a possible alternative to kernel smoothing because it directly 
computes the cdfs from the fitted loglinear model. 

The new accuracy method introduced in the KE framework, the SEED, 
has direct practical uses: It can aid the decision between linear and 
nonlinear equating functions, between equating functions that are based on 
different assumptions, such as the poststratification and chained equating 
(see Kolen & Brennan, 2004; von Davier et al., 2004b), or between the 
linear methods used in the NEAT design. The SEED is a statistical tool 
that has the potential of being extended to other applications—possibly as 
a decision aid between log-linear models. 

The KE method has been around for almost 20 years, and despite the 
obvious theoretical and practical advantages, it is still not part of the 
operational practice. Many practitioners are intimidated by the theoretical 
description of KE. Actually, many practitioners do not explicitly use linear 
interpolation, but a conversion table, with averaged values between score 
points. The KE method, although a differentiable function that differs from 
the linear interpolation, agrees closely to the equipercentile function, 
which uses linear interpolation at almost all score points when an 
appropriate bandwidth is selected. This is fortunate and unfortunate at the 
same time. It is fortunate to have the equating functions agreeing, but it is 
unfortunate because it gives practitioners no reason to change. Researchers 
and policy makers need better arguments to convince practitioners, such as 
emphasizing the availability of KE accuracy and diagnostic measures, the 
modularity of the KE framework that translates into a modular software 
package, and the easy-to-use interface of KE-Software (Educational 
Testing Service, 2006). Moreover, the KE framework has the potential of 
introducing automatic procedures with incorporated automatic decision 
steps to reduce the routine work of the psychometricians and data analysts. 

In my opinion, studies of alternative continuization methods and of 
hybrid functions are of a more theoretical than practical interest in the near 
future. From the practical point of view, I believe that research focused on 
decision aids and automatic equating procedures is necessary. Developing 
or refining indexes, such as the SEED for aiding in the process of 
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comparing equating function, indexes for deciding among log-linear 
models in the presmoothing procedures, or attempts to improve the fit of 
the loglinear models (and therefore to improve the stability of equating 
results) in regions of the score range that matter to a particular program are 
of importance in equating practice. In addition,  we should focus on 
expanding the research on the KE method to scale drift and to tests with 
complicated distributional shapes. Additionally, researchers should focus 
on finding more efficient ways to teach and explain the KE method and to 
engage more practitioners in evaluating procedures and approaches. 

6.7. Discussion 

This chapter summarizes my selection of the current research directions in 
equating that show some potential in addressing issues encountered in the 
practice of equating.

For the sake of coherence, I decided to focus on observed-score 
equating only. Equating that uses item information and is based on item 
response theory models has its own challenges, including those mentioned 
in Cook and Petersen (1987), von Davier and Wilson (2006), Hambleton, 
Swaminathan, and Rogers (1991), Kolen and Brennan (2004), Lord 
(1980), and Petersen et al. (1983, 1989). 

Here I discussed several equating topics: the population dependence of 
equating functions, the equating in small samples, the adjustments needed 
when the groups of test-takers differ in ability, and the stability of equating 
functions provided by the KE method. 

The main point that this chapter makes is that there is a continuous 
effort to address scientifically the practical issues of equating and that 
research does not take place in an ivory tower, but is responsive and 
related to practical problems.

Another point made here is that the equating process always involves 
policy decisions in addition to the statistical ones and that the 
responsibility for fair assessments needs to be shared between the leaders 
of the program and the psychometricians who advise them.

Currently, when more and more standardized testing is used for 
assessing competencies in different domains nationally and internationally, 
we are also discovering more challenges to ensuring that the process and 
the results are fair and accurate. In turn, these challenges and these new 
social implications open the door to more research in support of fair 
assessments, both in improving the test construction process and in 
advancing the statistical methods involved. 
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Educational testing programs are often in a state of transition. Changes in 
curriculum lead to changes in assessments. Sometimes modes of 
administration change. 

Jinghua Liu and Michael Walker in Score Linking Issues Related to Test 
Content Changes address score linking issues associated with content 
changes to a test in general. They use the College Board’s new SAT® data 
to illustrate how to evaluate the linkage between the scales of the new test 
and the old test from different perspectives. Among the criteria they use is 
subgroup linking invariance to assess the equatability of the new SAT to 
the old SAT.

In Linking Scores Derived Under Different Modes of Test 
Administration, Daniel Eignor discusses linkings between tests given 
under different modes of administration. He notes that transitional linkings 
in general might be viewed as equatings, calibrations, or concordances. 
The reasons why the linking between scores from computer adaptive tests 
and paper-and-pencil tests cannot be considered to be equated are 
discussed. Examples from the literature are given.

Robert Brennan synthesizes the issues raised in the two preceding 
chapters in Tests in Transition: Discussion and Synthesis. He suggests that 
the field of psychometrics needs a theoretically coherent and practically 
useful integration of equity and subpopulation invariance, and he begins to 
lay the foundation for that integration. 

Part 3: Tests in Transition 



7  Score Linking Issues Related to Test Content 
Changes

Jinghua Liu and Michael E. Walker1

Educational Testing Service 

7.1. Introduction 

This chapter addresses issues of score scale continuity in the event of 
changes to a test. A testing program needs to evolve from time to time to 
strengthen its alignment with school reform, curriculum changes, and 
changes in the test-taking population. The College Board’s SAT 
Reasoning Test™ (referred to as the SAT®) provides an excellent example 
of such evolution. The SAT has been reconfigured several times since its 
debut in 1926. All of the changes represented attempts to update the SAT 
to reflect contemporary school curricula, to reinforce educational standards 
and practices, to maintain test fairness for the increasingly diverse test-
taking population, and to enhance the test’s effectiveness as an admissions 
tool (Lawrence, Rigol, Van Essen, & Jackson, 2003).

Changes to a test can be multifaceted, including changes in test content, 
test statistical specifications, and mode of administration. Content changes 
can involve topic coverage (e.g., the 2005 revision to the SAT to cover 
third-year college-preparatory math), item format, and item type changes 
(e.g., the elimination of analogy items and quantitative-comparison items 
from the SAT in 2005; the introduction of student-produced response 
items to the SAT math section in 1994), test length (e.g., 67 items on the 
2005 SAT critical reading section vs. 78 items on the previous SAT verbal 
section), and the relative emphasis given to each aspect of the measured 
domain (e.g., the heavier reliance of the 2005 revision to the SAT on 
reading vs. vocabulary, as compared with the previous SAT). Content 
changes can also include adding a new measure to the existing test battery 

                                                     
1
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(e.g., the addition of a writing section to the SAT in 2005). Changes to test 
statistical specifications can involve changes to test difficulty and the 
distribution of item difficulty (e.g., the item difficulty distribution of the 
SAT verbal section shifted from a bimodal to a unimodal distribution in 
1994). Other changes are related to the modes of test administration, such 
as adjusting the timing of the test, allowing calculator use, moving from 
paper-and-pencil to computer-based testing and from fixed to adaptive 
testing, and so on.

Whenever a test undergoes changes in content, specifications, or 
administrative conditions, the question of score comparability arises. 
Although the difference between scores on the old and revised tests might 
fall along a wide continuum, we can nevertheless identify three distinct 
categories:

1. The revisions are minor enough that we can render the scores on the 
two versions essentially interchangeable through test score equating. 

2. The revised test differs too greatly from the original test for equating; 
but the relationship between the two tests is strong enough to 
establish a concordance relationship. 

3. The revisions are so substantial that the two tests cannot be said to 
measure the same construct, in which case, not even a concordance is 
warranted.

Essentially, this chapter discusses how to evaluate score comparability, 
test equatability, and scale continuity for tests in transition. 

At some point early in the redesign process, before we begin to 
investigate issues of score comparability, the testing organization must 
make a conscious decision about what is most important in the test 
revision. In some cases, the desire to maintain the meaning of the reported 
scores might be paramount. In some cases, the intended characteristics of 
the revised score scale (e.g., constant standard errors of measurement 
along the scale) drive everything else. In still other cases, matching the  
test coverage to the current curriculum or ensuring that the item types 
reflect current teaching practice is most important. The determination of 
this most important factor will have strong implications for the rest of     
the redesign process. Therefore, staff at the testing organization should 
give much thought to this decision. They need to ask themselves what the 
organization wants to achieve with the new test and what the constraints 
are. All of the revisions and data collections should be guided by this 
redesign principle. We will emphasize this point throughout the chapter. 

kinds of linking issue we might care about for tests in transition and the 
criteria we might utilize to determine the equatability of a new test to an 

In this chapter, we use data from linking the new SAT critical reading 
to the old SAT verbal for illustrative purposes. Section 7.2 addresses the 
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old test. Section 7.3 discusses considerations for data collection, using the 
data collection design employed in the Spring 2003 new SAT field trial as 
an example. Section 7.4 describes how we evaluate whether the new test is 
equatable to the old test. Finally, Section 7.5 summarizes the findings and 
research implications.

7.2. Major Linking Issues for Tests in Transition 

The equating process links scores from different editions of the same test 
(e.g., SAT math to SAT math). Equating adjusts for differences in 
difficulty of nearly parallel forms that are built to the same explicit content 
and statistical specifications and administered under the same conditions. 
The goal of equating is to ensure that scores from different editions of a 
test can be used interchangeably. Concordance, on the other hand, links 
two different tests that measure similar constructs (e.g., SAT math to 
ACT® math). Concordant scores are not interchangeable. What about tests 
in transition? Should the link between an old test and a revised test be 
considered an equating or a concordance? (See Holland, Chapter 2 for a 
further discussion of linkage types and factors that make a linking an 
equating.)

The first question is what the major goal is for the new test. For 
example, the College Board made it very clear at the beginning of the 
redesign stage for the new SAT, which was launched in March 2005, that 
the new critical reading score should be fully equatable to the old verbal 
score and that the new math score should be fully equatable to the old 
math score. This goal guided the development of the new SAT throughout 
the entire redesign process: It limited the scope of changes considered for 
the test, guided the design of the field trial and the analysis of the data, and 
directed the responses to the research findings. The importance of setting 
priorities for the different characteristics of the new test early in the 
redesign process cannot be overemphasized. 

In the case of the SAT, the College Board wanted the scores from the 
revised test and the original test to be considered as equivalent and the 
linkage between them to be an equating. Thus, the statistical analysts on 
the redesign team directed their attention to assessing the extent to which 
the revised test met the conditions for score equating. If those conditions 
were not met with the original prototypes, then the test revision would be 
modified so that the conditions were met. 

Other testing programs might wish to emphasize the measurement of a 
recently introduced topic in the core curriculum. In this situation, the 
research would include item analysis and construct validation efforts to 
ensure that the new test items adequately represented the new subject 
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matter. The research might also focus on the dimensionality of the new 
measure. The revised test might be modified to obtain sufficient content 
coverage. Secondary efforts would examine the relationship between the 
old and the revised tests to aid in the determination of how the scale for the 
revised test might best be set. 

This chapter primarily addresses score linking issues, although testing 
programs face many other considerations when redesigning a test. Using 
the SAT as an example, the remainder of this section first outlines the 
changes made to the test in 2005. Next, it reviews some of the 
characteristics that distinguish equating from other forms of score linking. 
Finally, the section lists the specific research questions examined to 
determine if the new SAT could be considered equatable to the previous, 
or old, SAT, given the extent of the revisions. 

7.2.1. Changes to the New SAT Critical Reading in 2005 

The SAT assesses how students apply what they have learned in high 
school to analyze and solve problems that they will likely encounter in 
college. The 2005 changes to the test were initiated to “strengthen the 
alignment of the SAT to the instructional practices in today’s classroom 
and to address the importance of writing skills” (College Board, 2005,      
p. 6). 

Table 7.1 summarizes the changes that were made to the content and 
timing of the SAT verbal and reading sections. The major content changes 
to the old verbal (OV) section involve the replacement of analogy items by 
additional short reading passages. The total length of the section has been 
reduced to 67 items from the previous 78 items, a 14% reduction. The new 
section represents increasingly heavier reliance on a reading construct, 
with approximately 72% reading comprehension items, as compared to 
51% in the OV section. The name of the section has changed from verbal
to critical reading (CR) to emphasize the change in focus.

The major content changes for the math section included the elimination 
of the quantitative comparison items from the old math (OM) section and 
the expansion of content to cover third-year college-preparatory math. The 
new math (NM) section contains 54 items, as compared 60 items. The 
number of student-produced response items remains at 10, but the number 
of five-choice items increased to 44 from the old 35. Correspondingly, the 
proportion of five-choice items in the test has increased to 81% from 58%. 

Another significant change is the addition to the test battery of a new 
writing section, containing multiple-choice questions and a student-written 
essay. Test timing has also been changed. The writing section consists of 
two multiple-choice sections (one 25-min and one 10-min) and one 25-min 
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essay section.2 The CR and NM sections contain three sections each: two 
25-min sections and one 20-min section (in comparison, the OV and OM 
sections each had two 30-min sections and one 15-min section). The 
variable section, which is primarily used to obtain pretest statistics or 
equating data from motivated examinees, has changed to 25 min for the 

Table 7.1. Comparison of content specifications between the CR and OV sections 

 CRa  OVb 

 No. of items
% of total 

test 
 No. of items

% of total 
test 

Item type      
Analogy 0 0  19 24 

Sentence completion 19 28  19 24 

Passage-based reading  48 72  40 51 

Total  67   78  

Reading item content      

Extended reasoning 36–40 54–60  28–32 36–41 

Literal comprehension 4–6 6–9  4–5 5–6 
Vocabulary in context 4–6 6–9  4–7 5–6 

Reading content 
categories      

Humanities 8–12 12–18  8–12 10–15 

Social studies 8–12 12–18  8–12 10–15 

Natural sciences 8–12 12–18  8–12 10–15 
Literary fiction  8–12 12–18  0 0 
Human relationships 0 0  8–12 10–15 
aTime allotted = 70 min. 
 bTime allotted = 75 min. 
 
new SAT from 30 min for the old SAT. The total testing time for the new 
SAT has increased to 3 hr 45 mins from the previous 3 hr for the old SAT.  

Any or all of the above listed changes could affect the psychometric 
characteristics of the test. Given the College Board’s stated goal of 
maintaining the equivalence of the new test with the old, the proposed 

                                                      
2 Although the introduction of the writing test constituted the greatest change in 
the SAT, it will not be discussed in this chapter, which focuses on linking the 
scores for the new SAT critical reading section to the scores for the old SAT 
verbal section.  
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1. Does the replacement of analogy items with short reading passages, 
the heavier reliance on a reading construct, and reallocation of time to 
reading items versus nonreading items change the construct enough 
to make equating impossible? 

2. Does the CR section (which was shortened to 67 items and 70 min vs. 
78 items and 75 min for the OV section) change the properties of the 
test enough to make equating impossible? 

3. Does the introduction of a writing section with an essay alter the 
testing context enough to affect the equatability of the CR scores to 

characteristics of a test will affect the equating process. This topic is 
discussed next. 

7.2.2. Requirements for Equating 

Equating is considered the strongest type of linking. Researchers in the 
field have devoted much energy toward providing a definition of what 
constitutes an equating of test X to test Y. Lord (1980) specified four 
requirements that must be met for equating: 

1. The same construct. The two tests must measure the same construct. 
2. Equity. Once two test forms have been equated, it should not matter 

to the test-taker which form of the test is administered. 
3. Symmetry. The equating transformation should be symmetric. The 

equating of X to Y should be the inverse of equating Y to X.
4. Subpopulation invariance. The equating transformation should be 

invariant across subpopulations from the same population. 

In addition to these requirements, Dorans and Holland (2000; see also 
Holland, Chapter 2) added another requirement for test equating, which 
one could argue is implicit in Lord’s equity requirement above (although 
see Dorans and Holland for an interesting discussion of this point): 

5. Equal reliability. Test X and test Y should have equal reliability. 

Kolen and Brennan (2004) focused on the degree of similarity of two 
linked tests, indicating that, in order for the linking to be considered 
equating, the tests must be the same with respect to four features. In 
addition to the requirement of equal constructs mentioned above, the 
authors added: 

changes immediately gave rise to several questions pertaining to the CR 
section:

To answer the above questions, it is necessary to know what 

the OV scores? 
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6. The same inferences. The two tests must share common measurement 
goals and be designed for use to reach the same kinds of conclusion. 

7. The same population. The two tests should have the same target 
population.

8. The same measurement characteristics/conditions. The tests should 
have the same specifications, be administered under the same 
conditions, and be equivalent in their psychometric properties. 

The above listed  requirements are not mutually exclusive. For example, 
Requirement 8, which is discussed further in Kolen’s chapter (Chapter 3, 
Section 3.2), can subsume Requirement 5. Dorans and Holland (2000) 
indicated a link between Requirements 4 and 5, although the authors 
showed that high reliability rather than equal reliability is more essential to 
equating. Holland’s chapter (Chapter 2, Section 2.4.1) should be consulted 
for a further discussion of equating requirements. Although other 
researchers have offered slightly different linking taxonomies, we believe 
that the above eight characteristics adequately summarize the consensus of 
the field.

The goal of equating is to produce exchangeable test scores. If all of the 
eight of the requirements hold exactly, then most experts in the field would 
agree that equating is possible. Unfortunately, the eight requirements never 
hold exactly, except perhaps in the most trivial of cases. Thus, the situation 
becomes one of degree: Are the requirements met sufficiently such that the 
scores on two tests can be considered equivalent within a reasonable 
amount of error? Dorans and Holland (2000) and Kolen and Brennan 
(2004) offered numerical indexes that can be useful in answering this 
question. Later in this chapter, we present the analyses performed in the 
context of the new SAT to determine whether the revised test could be 
considered equivalent to the previous version. 

If the above conditions are not met sufficiently, then the relationship 
between the two tests cannot be considered equating. For example, even 
though the new test could be put on the same scale as the old test, if the 
new test has substantially lower reliability (such that Requirements 5 and 8 
and possibly Requirement 2 are not met), then the new test could be 
considered calibrated to the old test but not equivalent to it (Holland, 
Chapter 2; Holland & Dorans, 2006). Even though the new test is designed 
for the same purpose and has the same reliability and difficulty, if the new 
test measures a similar but not identical construct (such that Requirements 
1, 2, 4, and possibly 8 are not met), then the two tests can be concorded but 
not equated. A concordance will allow translation of one test score to the 
metric of the other test score for a specific population of examinees, 
although this relationship will not necessarily hold for another population. 
Perhaps the most familiar example of a concordance is the one between the 
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SAT and the ACT. Although both are designed to aid in college 
admissions decisions, the two tests are built to different specifications 
based on slightly different theoretical perspectives. Chapters 10, 11, and 12 
by Dorans and Walker, Pommerich, and Sawyer, respectively, in this 
volume treat issues related to concordance in great detail.

If the difference in constructs between the new and old tests is drastic 
enough, even a concordance is not possible. Perhaps the best that can be 
hoped for is a scaling that allows comparisons of the scores in terms of 
percentile ranks. This type of scaling was accomplished between the SAT 
verbal and math scales by the 1990 recentering (Dorans, 2002). 

The distinctions made above are not so much in terms of the arithmetic 
operations used to link two tests, because the methodology often remains 
essentially the same regardless of whether all of the requirements for 
equating are met. The major differences among the different types of 
linkage involve the interpretation of the resulting test scores. In our 
particular example, the College Board wanted to ensure that SAT users 
could interpret scores on the new test in the same way that they had 
interpreted scores on the old test. For that reason, it became essential that 
the eight requirements be met as nearly as possible. The following 
subsection briefly discusses some of the criteria that we used to determine 
the extent to which the new SAT met the  eight requirements listed earlier.

7.2.3. Criteria to Determine Equatability of the New SAT 

In practice, the evaluation of the eight requirements listed earlier involves 
extensive analysis, both statistical and conceptual. Our investigation of the 
revisions to the SAT could be divided into the following major categories: 

1. Construct similarity. To achieve equating, the tests must measure the 
same construct. A good first step is to compare test specifications. 
Are the test blueprints similar enough to justify the linkage between 
the two tests? This comparison should include both the explicit 
content specifications and statistical specifications and is made at the 
beginning of the new test development to provide preliminary 
information on the degree to which the two tests measure the same 
construct.

2. Empirical relationship between the old test and the new test. What is 
the correlation between scores on the two tests for each measure? Is 
the correlation strong enough for test equating? Does the correlation 
approach the reliability of the test? Is this correlation invariant across 
important subgroups? In the case of the SAT, is the correlation 
between the OV and OM sections equal to the correlation between the 
CR and NM section? (Although equality of correlations cannot 
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demonstrate equality of constructs from old to new tests, lack of 
equality can call the equal constructs assumption into question.) 

3. Measurement precision. What is the reliability of the new test 
compared to the old test? Does the new test exhibit the same 
measurement precision as the old test across the range of the scores? 

4. Subgroup invariance. Does the new test and the old test rank 
important subgroup means in the same order? Is the linking from the 
new test to the old test invariant across important subgroups? 

7.3. Considerations for Data Collection Design 

Setting equatability as the goal does not necessarily ensure that the new 
test can be equated to the old test. Data need to be collected and extensive 
analyses need to be conducted to evaluate whether the equatability goal is 
achieved. This section describes what data need to be collected, data 
collection designs, and what issues need to be considered to evaluate the 
linkage issues for a test in transition. 

7.3.1. Linking Designs 

In the ideal linking design, both tests would be administered in their 
entirety to the same group of test-takers who are representative of the test-
taking population under operational conditions. In such a single group 
administration, we could estimate item and test characteristics as well as 
the correlation between the two tests under an entire-test context that 
simulates an operational situation. We also could link the two tests using 
the most powerful and statistically preferred design. 

Unfortunately, such a design is not always feasible given practical 
constraints, such as test length and different administration modes. In the 
case of the SAT, for example, the testing time is 3 hr for the old test and 
more than 3 hr 30 min for the new test. Adding time for material 
distribution and collection, instruction, and breaks, the total sitting time for 
two test batteries given on the same day would have been more than 7 hr 
30 mins. If, on the other hand, the two test batteries had been given on two 
different days, with one test administered per day, the design would have 
required two school days. In any case, it was unrealistic to expect schools 
or students to make such large time commitments. In addition, differential 
carryover (e.g., fatigue, practice) might have affected results. Therefore, it 
was necessary to make some modifications. 

In this chapter, we describe the two designs that were employed
as part of the Spring 2003 new SAT field trial. Kolen (Chapter 3) 
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described data collection designs and linking procedures in some detail, 
including the designs and procedures described in this chapter. 

7.3.1.1. Design 1: Equivalent Groups Design 

One modification involved the administration of each test battery in its 
entirety to different but equivalent groups of test-takers. A spiraling process 
involving packaging test books in sequences (1, 2, 1, 2,…) was employed 
in order to yield equivalent groups. This design provided information on 
performance of each test component in the context of the entire test 
battery, allowing us to link the new test to the old test through equivalent 
groups and to evaluate item statistics and test statistics under 
circumstances that simulate an operational situation. 

Design 1 in the field trial employed this modification, the equivalent or 
random groups design. This type of design is described by Kolen’s Figure 
3.1 (Chapter 3). The top portion of Table 7.2 summarizes the different 
booklets in Design 1. Booklets 1 and 2 contained a complete old SAT 
battery including the OV and OM sections. The two booklets were 
designed to determine to what degree the field-trial sample represented the 
ability of a typical SAT population and to serve as the old form to which 
the new test would be linked. Booklets 3 and 4 contained the entire new 
SAT prototype battery, including the CR, NM, and writing (NW) sections. 
The sections were interspersed in these booklets, approximating the 
section ordering of an operational form.3

                                                     
3 Each operational form of the SAT also includes a variable section, which 
might contain pretest items or anchor items to use for equating. The forms used in 
Design 1 of the field trial also included variable sections containing either math or 
verbal/critical reading items. These sections were identical across the old and new 
SAT forms; by examining performance on these sections, we could assess whether 
the design produced old and new form groups that were truly equivalent in ability. 
If the groups turned out not to be close enough in ability, the variable sections 
could serve as anchor tests for use in linking the old and new forms via a non-
equivalent groups anchor test (NEAT) design (see Kolen’s Figure 3.6, Chapter 3). 
Thus, the field trial contained a third equating design in addition to the equivalent 
groups and single group designs. 

7.3.1.2. Design 2: Counterbalanced Single Group Design 

Through the equivalent groups design, we were able to link the tests and 
obtain test and item characteristics, with the exception of the correlation 
between tests. Therefore, we needed another modification, which involved 
administering both versions of each test component or construct measure, 
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Table 7.2. Summary of the design in the Spring 2003 new SAT field trial

Design Test administered a Purpose 
1. Equivalent groups   
    Book 1 Entire old SAT + 

Variable Sect. 1 
    Book 2 Entire old SAT +  

Variable Sect. 2 
    Book 3 Entire new SAT +  

Variable Sect. 1 
    Book 4 Entire new SAT +  

Variable Sect. 2 

Link the new SAT prototype to the 
old SAT. 
Evaluate item characteristics 
(difficulty, etc.). 
Evaluate test characteristics 
(reliability, conditional standard error 
of measurement, speededness, etc.). 

2. Single group   
    Book 5 OV then CR 
    Book 6 CR then OV 
    Book 7 
    Book 8 

Link the new SAT prototype to the 
old SAT. 
Construct comparability (correlation 
between new and old measures, 
correlation with other variables, 
dimensionality analysis, etc.). 

aVariable Sect. 1 contains math items; Variable Sect. 2 contains verbal/critical 

one old and one new, to the same group of test-takers. This additional 
design provided information on the relationship between the old version 
and the new version on one test component or construct measure, allowing 
us to evaluate construct comparability, including the correlation between 
new and old tests, subgroup invariance of regressions, dimensionality 
analysis, and so on. To control for order effects, counterbalancing was 
used.

Design 2 in the field trial was an example of a counterbalanced single 
group design (see Kolen’s Figure 3.3. in Chapter 3). Each book in Design 
2 (shown in the lower portion of Table 7.2) contained just two versions of 
one component. For example, Booklets 5 and 6 both contained OV and CR 
sections, but in a counterbalanced order. Similarly, Booklets 7 and 8 
contained OM and NM sections. The counterbalanced designs allowed 
identification of potential fatigue effects or other effects related to the 
order in which the tests were given. Because the old SAT did not have a 
writing section, we focused in this chapter on linking the CR section to the 
OV.

OM then NM 

reading items. See Footnote 3 in the text. 

NM then OM 

7.3.2. Sample Size Considerations 

A crucial determinant of the success of a linking study is the ability to 
identify and to acquire a large enough sample that is representative of the 
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precision, adequate representation of subgroups of examinees, and 
economic constraints. This chapter does not directly examine economic 
constraints, although these constraints did have an impact on what could 
be done.

The sample-size requirements for any research design are driven by the 
desired amount of precision. Sample size has a direct influence on the error 
in estimation (of linking functions, of population parameters, and so on). 
The formulas typically applied in the context of equating to compute 
standard errors of equating (SEE) can be used to estimate the sample size 
required to achieve a given level of linking precision. The standard errors 
will be referred to here as standard errors of linking (SEL). Similarly, 
maximum values of the SEL or of proportions can be used to determine the 
appropriate sample size for estimating these quantities within a given 
tolerance level. Subgroup representation, including either ethnic groups or 
English as a second language groups, is also important across all designs. 
Minimum numbers need to be met for proper psychometric analyses, 

7.3.2.1. Sufficient Sample Size to Estimate Linking Precision

If equipercentile methods are used in any linking situation, then the shapes 
of score distributions, the degree of linking precision required, and the 
effects of smoothing affect the required sample size (Kolen & Brennan 
2004). The SEL can be used to specify the sample size required to achieve 
a given level of linking precision for a particular linking design and 
method. Ideally, linking errors should be small and not make a significant 
contribution to error in reported scores. The researcher must decide how 
much error is tolerable. 

Lord (1982) provided an approximate equation for estimating the 
standard errors of random groups equipercentile linking. Based on a 
simplified version that assumes normality (Petersen, Kolen, & Hoover, 
1989), Kolen and Brennan (2004) provided an equation for estimating 
sample size for random groups equipercentile linking. If we assume equal 
sample sizes for the two groups, the equation becomes 

group 2 2

2 ( ) /100 1 ( ) /100
i i

P x P x
N

u
,

(7.1)

current test-taker population. Three basic considerations underlie the target 
sampling allocation: adequate representation to ensure measurement 

where N represents the sample size needed for each group (i.e., both 
groups combined would contain 2N individuals), u is the desired error of 
linking in standard deviation units, and φ  is the ordinate of the standard 

including score equity assessment (Dorans, 2004e). 
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normal density at the unit normal score z, below which /100
i

P x of the 

cases fall. 
Lord (1982) also provided an approximate equation for estimating the 

standard errors of single group equipercentile linking. If we again assume 
normality, we can derive the following equation for estimating sample 
size: 

group 2 2

2 1 ( ) /100 1 ( ) /100
i i

P x P x
N

u
,

(7.2)

where  is the correlation between the old and new tests. Note that as 
approaches 1.0, the needed sample size becomes smaller and smaller. 
Note, too, that when  is zero, the needed sample size is the same as for the 
random groups equipercentile linking method. 

In the field trial, for example, it was decided that any absolute error less 
than 10, which is less than 10% of one standard deviation of the SAT scale 
(110), would be adequate for the purposes of this study, given the 
economic constraints. In Design 1, where an equivalent groups design was 
employed, we used Equation 7.1 to estimate that a minimum of 4,850 
people would be required in each group to achieve a maximum SEL of 10 
scaled score points between z-scores of 2.5 and +2.5 (i.e., for roughly the 
middle 99% of test scores, assuming normality). Design 2 involved 
administrations of component tests from different batteries using a 
counterbalanced single group design. If the new test were to be considered 
equatable to the old test, then the correlation of the two tests would need to 
approach the reliability of the test (i.e., .92 for the OV and OM sections). 
To obtain a conservative estimate of the sample size needed to estimate the 
single group linking functions with adequate precision, a minimum 
correlation of .80 between the two tests to be equated was assumed.4 Under 
these conditions, a maximum SEL of 10 scaled score points between z-
scores of 2.5 and +2.5 (i.e., for roughly the middle 99% of test scores, 
assuming normality) would require a minimum of 975 people in the group 
for an equipercentile linking function and a single group design.5

                                                     
4 Given the reliabilities of the SAT sections and the Writing Subject Test, a 
correlation this low between an old and a new section would be evidence that the 
two sections are not equivalent. 
5 This approximation is based on the assumptions that the scaled scores on the 
old and new sections are normally distributed, with standard deviations of 110. 
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7.3.2.2. Sufficient Subgroup Sample Size 

Given the need for a minimum of 975 people in each group and a 
proportional representation in the sample (7.8% of the sample needed to be 
Hispanic and Asian students), the projected minimum sample size for each 
subgroup in Design 2 was 75 per spiral. Spirals in Design 2 were arranged 
in counterbalanced pairs. Assuming no unequal carryover effects, the 
projected minimum sample size was 150 per counterbalanced spiral pairs 
for Hispanic and Asian students. This sample size is insufficient for 
computing correlations and conducting separate linkings by subgroups. 

Because investigating population invariance is crucial to determining 
whether the old and new tests are equatable, we recommended 
oversampling students in certain ethnic groups in Design 2 (i.e., recruit 
schools in California to ensure a sufficient number of Hispanic and Asian 
students and to ensure that either African American, Asian, and/or 
Hispanic students comprised at least 20% of the sample). We also 
recommended increasing the required sample size from a minimum of 975 
to 3,000. Therefore, each counterbalanced spiral pair would have a 
projected minimum sample size for each subgroup of 1,200. These 
numbers are sufficient to perform single group linkings with acceptably 
small SEL and power to allow for the examination of population 
invariance.

In addition, we need to consider sample-size requirements based on 
precision of parameter estimation, (e.g., means, percentile ranks, 
correlation) and on statistical power considerations (Walker & Liu, 2002). 

7.4. Equatability Analyses 

In this section, the equatability analyses are illustrated by using the new 
SAT as an example. First, we compare the test specifications or blueprint 
between the old test and the new test. Second, we assess the empirical 
relationship between the old test and the new test. Third, we compare the 
reliability and conditional standard error of measurement (CSEM) of the 
new test to the old test. Finally, we apply score equity assessment (SEA) to 
evaluate the equatability of the new test to the old test by looking at the 
linking invariance across gender groups. 

7.4.1. Comparison of Test Specifications Between the New SAT 
and the Old SAT 

To achieve equating, the test must measure the same construct. A good 
first step is to compare test specifications, including item type, number of 
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items per type, total number of items, item content, testing time, test 
difficulty, and so on. The comparison of test specifications could include 
comparisons of both the content specifications and statistical specifications 
between the new test and the old test. 

Table 7.1 summarizes the content comparison between the OV section 
and the CR section. The OV section measured verbal reasoning via three 
items types: analogy (24% of items were this type), sentence completion 
(24%), and passage-based reading questions (51%). The reading content 
was balanced across four domains: humanities, social studies, natural 
sciences, and human relationships. The OV section had 78 items in total 
and was administered in 75 min. 

The CR section replaced analogy items with additional short reading 
passages, resulting in approximately 72% reading comprehension items, as 
compared to 51% in the OV section. The name of the section was changed 
from verbal to critical reading to emphasize this change in focus. The 
reading content questions came from the same four domains, as earlier. 
The CR section had 67 items and was administered in 70 min. 

Statistical specifications for the SAT state the means and standard 
deviations for the item difficulty. In addition, SAT statistical specifications 
call for a specific number of items at each difficulty level. The same 
proportion of items were maintained at each difficulty level; the mean and 
standard deviation of item difficulties on the new SAT were very close to 
those on the old test.

7.4.2. Empirical Relationship Between the Old and New Tests 

Once we compare the specifications between the new and the old tests, we 
need to check the observed relationships between the scores. To achieve 
the score interchangeability provided by a useful equating, the correlation 

index called reduction in uncertainty (RiU) to measure the statistical 
certainty of a dependent variable from a predictor variable. Let r represent 
the correlation coefficient between the two variables, then reduction in 
uncertainty is defined as 

2RiU 1 1 .r
(7.3)

When r = 0, there is 0% reduction; when r = 1, there is 100% reduction. 
Where should the threshold be for a predictor to serve as a valid surrogate 

score linkage in high-stakes settings, it is reasonable to require at least 
50% of uncertainty reduction in one observed score resulting from the 
other observed score. Correspondingly, a correlation coefficient of at least 

between the two tests must be high. Dorans (2000, 2004d) defined an 

for the variable being predicted? Dorans (2004d) suggested that for test-
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.866 is needed to reduce the uncertainty by at least 50%. As measured in 
score units, a correlation of .866 or higher between two score vectors 

students who took both the OV and CR sections in the single group design. 
As shown in Table 7.3, the observed-score CR-OV correlation was .912, 

suggesting that the CR and OV sections are probably closely enough 
related to support an equating relationship.

The correlation between the OV and OM sections was compared to the 
correlation between the CR and NM sections. Both correlations rounded to 
.79 for the field-trial samples taking the entire test batteries in Design 1 (N
= 5,240 for the old test and N = 2,065 for the new test). The equality of 
these correlations suggests that the old test and the new test might measure 
the same construct. This evidence is necessary but not sufficient. 

Table 7.3. Comparison of observed-score correlations between the new SAT and 
old SAT from Design 2 in the Spring 2003 new SAT field trial 

  New test 
Old test CR 

Sect. 1 
CR

Sect. 2 
CR

Sect. 3 
CR

Total
OV Sect. 1 .818 .803 .783 .863 
OV Sect. 2 .817 .812 .795 .870 
OV Sect. 3 .747 .746 .726 .796 
OV Total  .860 .851 .831 .912 

7.4.3. Comparison of Measurement Precision on the Old and 
New Tests 

7.4.3.1. Reliability 

Dorans and Holland (2000) considered the equal reliability requirement for 
test equating, that is, tests that measure the same construct but differ in 
reliability should not be equated. This is a necessary but not sufficient 
condition for equating. In addition, high reliability on both tests is needed 
to ensure that the equated scores are informative enough to be accepted by 

Table 7.4 presents the reliability estimates on the new and old tests that 
were given in Design 1. In addition, a set of reliability ranges from six 
operational SAT forms given during 2001–2002 is summarized to serve as 
a baseline. As can be seen, the reliability estimates for the CR section were 

The correlation between OV and CR scores was calculated for 3,126 

indicates that the two score vectors are probably close enough to equate if 

with RiU = 59%, which reduces the uncertainty more than 50%, 

they measure the same thing (Dorans, 2004d). 

test users (Dorans, 2004d). 
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all above .90 across different computation methods. These reliability 
estimates were comparable to the reliabilities of the test forms given 
during 2001–2002 and they were virtually identical to the reliability 
estimates of the old test administered in the field trial. All other things 
being equal, a longer test is supposed to be more reliable. However, both 
the raw score reliability estimates and the scaled score reliability estimates 
of the CR section are quite high and are comparable to the old test, even 
with a considerably reduced number of items (67 items in the CR section 
vs. 78 items in the OV section). This might be attributed to several factors: 
First, the test would be more internally consistent with one item type 
eliminated, which would result in a higher reliability. Second, compared to 
sentence completion items and critical reading items, the analogy item type 
has relatively lower reliability (Liu, Feigenbaum, & Cook, 2004). 
Replacing an item set of lower reliability with an item set of higher 
reliability results in an increase in the overall reliability of the test. Another 
possible explanation is that a lack of motivation on the part of some test-
takers is hard to distinguish from low ability. Both could increase the 
variability of item performance and correlations among items. These 
increases could give the appearance of higher reliability. 

Table 7.4. Comparison of reliability coefficients between the new SAT and the 
old SAT from Design 1 in the Spring 2003 new SAT field trial 

The correlations obtained from Design 2 between the CR and OV 
sections (.912) approached the reliability estimates of the new and old 
tests. Given the assumptions of classical true-score theory, the true-score 
correlation between the old and new tests was close to unity for the CR-
OV pair. This finding provides evidence that the old test and the new test 
might be measuring the same constructs. 

7.4.3.2. Conditional Standard Errors of Measurement

In addition to the reliability comparison, we also compared the 
measurement precision at each score level between the old and new tests. 
Plots of the item response theory (IRT) scaled-score CSEM values are 
shown in Figure 7.1. This figure shows the CSEM values of the new test CR 

  New  
SAT 

Old  
SAT 

Range of SATs 
from 2001–2002

Verbal/critical reading     
Variance-component Raw .93 .93 .93–.94 
Kristof Raw .91 .92 .92–.93 
IRT Raw .93 .93 .93 
IRT Scaled .91 .91 .92 
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field trial and the CSEM values of the six operational SAT forms given in 
2001–2002.

Figure 7.1. Comparison of the CSEM between the CR and OV sections. 

An examination of the CSEM values of the new CR section compared to 
the OV section shows that the CR section appeared to have CSEM values 
very similar to the OV section between score range 350 and 800. Below 
score 350, however, some measurement power was lost. The CR CSEM 
curve is intertwined with the CSEM curves of the baseline forms across 
the entire score range, but there was variation across individual forms.

7.4.4 Score Equity Assessment 

As mentioned earlier one of the requirements for test score equating is 
population invariance; that is, the score equating function should be the 
same across subpopulations of the total population as it is in the total 

introduced the concept of SEA, which focuses on whether scores that are 
supposed to be used interchangeably are in fact interchangeable. The key 
question is whether the test measures what it measures in the same way for 

section compared to the CSEM values of the old test OV section given in the 

population (Dorans, 2004e; Dorans & Holland, 2000; Lord, 1980). Dorans 
(2004e) further modified the framework of equating invariance and 

different subpopulations as it does for the full population (Dorans, 2004e, 
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p. 48). SEA uses population invariance of linking functions across 
important subgroups, such as gender groups or ethnic groups, to assess the 
degree of interchangeability of scores. 

In this subsection, we apply SEA to evaluate score equity of the new 
SAT from the perspective of population invariance. Because this study is 
published elsewhere, we are just summarizing the methodology and major 
findings here. For details, see Liu, Cahn, and Dorans (2006). 

7.4.4.1. Equatability Indexes 

The equatability indexes used in this chapter are the standardized root  

difference (REMSD), developed by Dorans and Holland (2000). Dorans 
and Holland (2000) suggested using the RMSD to quantify the differences 
between the subpopulation linking functions and the total population 
linking functions at a given score value and using the REMSD to 
summarize overall differences between the linking functions.

7.4.4.1.1. Root Mean Square Difference 

The two tests to be linked are denoted by X (new test) and Y (old test), and 
the observed scores from these two tests are denoted by x and y,
respectively. Therefore, at each X score level, the RMSD is defined as 

2

( )

( ) ( )

RMSD ,

j Pj P

j

x

YP

w e x e x

(7.4)

where ( )e x represents the linking function that transforms scores of form X

to the raw score scale of form Y, and /j
j

w N N  denotes the relative 

proportion of examinees from P that are in Pj so that 1
j

j

w .

Note that in Equation 7.4, the divisor 
YP

 is used to quantify the sum of 
differences between the total population and subpopulation linked raw 
scores in standard deviation units. In the present study, the linkings 
converted the raw scores into scaled scores on the College Board’s familiar 
200–800 scale. Because most readers understand and readily interpret 
values on this scale, a modified version of Equation 7.4 was used, which 
expressed the differences in SAT scaled-score units (SSU) rather than in 
standard deviation units: 

mean square difference (RMSD) and the root expected mean square 
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2

(SSU)RMSD ( ) ( ) ,
jj P P

j

w s x s x
(7.5)

where ( )
P
s x represents a scaling that transforms raw scores of form X to 

the SAT score scale through the linking of form X to form Y for the total 
population and ( )

jP
s x represents the corresponding scaling function for the 

subpopulation Pj. These scaling functions for X are obtained by 
concatenating the linking function, ( )

P
e x , with the scaling for form Y,

( )s y .

7.4.4.1.2. Root Expected Mean Square Difference

2 2
( ) ( ) ( ) ( )

REMSD ,

j jP j P P j P P P

j j

YP YP

E w e x e x w E e x e x (7.6)

where E
P

denotes averaging over this distribution. Similarly, we 

modified Equation 7.6 and put this summary measure on the 200–800 
scale:

2 2

(SSU)REMSD ( ) ( ) ( ) ( ) .
j jP j P P j P P P

j j

E w s x s x w E s x s x
(7.7)

To evaluate the relative magnitude of the RMSD and REMSD, Dorans 
and Feigenbaum (1994) proposed the notion of score differences that 
matter (DTM) in the context of linking an SAT form to another SAT form. 
On the SAT scales, scores are reported in 10-point units (200, 210, …,780, 
790, 800). For a given raw score, if the unrounded scaled scores from two 
separate linkings differ by fewer than 5 points, then the scores ideally 
should be rounded to the same reported score. Dorans, Holland, Thayer, 
and Tateneni (2003) adapted the above indexes, used in SAT practice, to 
other tests and considered the DTM to be half of a score unit for 
unrounded scores. In the present study, the DTM was defined as half of an 
SAT score unit, 5 points. 

To obtain a single number summarizing the values of RMSD(x), Dorans 
and Holland (2000) introduced a summary measure, REMSD by averaging 
over the distribution of X in P: 
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In addition to using the RMSD and RESMD, we make use of the 
percentage of raw scores (PS) for which the total and subpopulation 
unrounded conversions differed by more than 5 points and the percentage 
of examinees (PE) for whom these conversions create scores that differed 
by more than 5 points. The two stringent indexes provide straightforward 
insights into a lack of invariance as a percentage of score range and of test-
takers.

7.4.4.2. Population Invariance in Linking the CR Prototype to the OV 
Section

In this study, the SEA on the two old SAT forms was conducted first to 
obtain a baseline. The two forms were given in the same SAT 
administration. The spiraling procedure used in the SAT administration 
and the large numbers of test-takers taking each form usually ensure 
equivalent groups in the same administration. Therefore, form X was 
linked to form Y through an equivalent groups design in each of the 
groups: total, male, and female test-takers. The results revealed that the 
RMSD values were smaller than 5 across the entire scale. The two 
percentage indexes, PS and PE, were 0 for both male and female test-
takers (Liu et al., 2006). In summary, no evidence was found to question 
the score equity with respect to gender on this particular linkage. This 
finding was consistent with the results of the study by Dorans and Holland 
(2000).

The correlation between the OV and CR sections was calculated by 
using data obtained from Design 2. As shown in Table 7.5, the observed-
score CR-OV correlations for the total, male, and female test-taker groups 
were .912 (RiU = 59%), .900 (RiU = 56%), and .921 (RiU = 61%), 
respectively. These correlations are all larger than .866, reducing 
uncertainty more than 50%. The reliability estimates for both tests were 
.93. Hence, the estimated true-score correlations were about .981, .968, 
and .990 for the total, male, and female groups, respectively. The 
magnitudes of these numbers suggest that the two tests measure the same 
construct in nearly the same way within the three groups. 

The equatability assessment was then carried out on the new SAT 
prototypes administered in the field trial and compared to the baseline. The 
linking results reported here were conducted using the equivalent groups 
design in Design 1, in that it was the same design used in the baseline 
analysis and contained the entire test battery as in a real test 
administration. Linkings were conducted in each of the three groups. 

7.4.4.1.3. Percentage Index s e
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Table 7.5. Formula score descriptive statistics in the CR and OV sections from 
Design 2 in the Spring 2003 new SAT field trial

Test-takers Na r RiU

Total 3,126 .912 59%
Male 1,548 .900 56%
Female 1,578 .921 61%
aThe summation of male and female sample sizes might not be equal to the sample 
size of total group due to nonresponses. 

Figure 7.2 displays the differences in linking results of the CR section to 
the OV for each pair: male test-takers versus total test-takers and female 
test-takers versus total test-takers. As illustrated in Figure 7.2, female test-
takers would have had slightly higher scores in the middle portion of the 
score scale and lower scores at the ends of the score scale if the female-
only conversion was used. Conversely, male test-takers would have 
obtained slightly lower scores in the middle range and higher scores at the 
ends of the score range if the male-only conversion was used. However, 
the differences were less than 5 scaled-score points across the entire score 
range.

Figure 7.3 depicts RMSD values compared to the DTM line at each score 
level. As seen in Figure 7.3, the RMSD fell below the DTM line virtually across 
the entire score range. The REMSD value of approximately 3 was below the 
DTM of 5.

Table 7.6 summarizes the differences between each subgroup 
conversion and the total group conversion. In general, Table 7.6 shows that 
male test-takers would have obtained a lower mean with a male-only 
conversion than they had with the total group conversion (standardized 
difference of 0.03), whereas female test-takers would have obtained a 
higher mean with a female-only conversion than they had with the total 
group conversion (standardized difference of 0.02). The PS was 3.5 and 
1.2 for male and female test-takers, respectively; and the PE was 0.7 and 
0.4 for males and females, respectively. In summary, the SEA on the CR 
section exhibits a slightly larger degree of departure compared to the 
baseline, but the lack of invariance across gender groups was not enough 
to cause any concern. 

A similar set of analyses was performed on the linkage from the NM to 
the OM sections in the field trial, and the results demonstrate that 
population invariance holds across gender groups for the math section as 
well (Liu, Feigenbaum, & Dorans, 2005). The observed-score correlations 
between the NM and OM sections were .922 (RiU = 61%), .923 (RiU = 
62%), and .918 (RiU = 60%) for the total, male, and female groups, 
respectively. These values all reduce the uncertainty more than 60%, 
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suggesting that the two tests measure the same construct in nearly the same 
way within the three groups. The divergences of the subgroup conversions 
from the total group conversion fell within the range of 5 points. The 
REMSD value in the new math prototype was 1.71, much smaller than the 
DTM value and even smaller than the baseline REMSD (2.37).

Figure 7.2. Scaled- score differences by gender in linking the CR to OV sections 
in the 2003 Spring new SAT field trial. 

Figure 7.3. RMSD by gender in linking the CR to OV sections in the Spring 2003 
new SAT field trial. 
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Table 7.6. Summary statistics of scaled-score based on total group conversion and 

SAT field trial
 Total Male Female 
Sample size 9,194 3,801 5,374 
     %  41.34% 58.45% 
Total group conversion    
     Mean 479.4 477.9 480.4 
     SD 107.8 111.0 105.3 
Subgroup conversion  
     Mean  474.9 482.8 
     SD 110.0 105.8 
Subgroup conversion mean - Total conversion mean  3.0 2.3 
Standardized mean difference  0.03 0.02 
% Raw scores with unrounded scaled-score 
difference  5 

 3.5 1.2 

% Examinees with unrounded scaled-score 
difference  5 

 0.7 0.4 

7.4.4.3. Summary of Score Equity Assessment 

Equatability analyses were conducted on the linkage of the CR to OV 
sections. Analyses were performed by comparing the new test to the old 
test on test specifications, reliability, and empirical relationships. Score 
equity assessment was examined by employing population invariance 
measures.

The content specifications on the new test do suggest dramatic changes 
from the old test. With the elimination of analogy questions and the 
changes in total test length, the coverage for different content categories 
has shifted in the new test. 

The reliability estimates on the new test were high (above .90) for the 
CR section. Those values were very close to the reliability on the old SAT 
given in the field trial, and they fell within the reliability range based on 
SAT operational forms. Therefore, equal reliability as a necessary 
condition for equating is met. 

The strength of the empirical relationship between the new test and the 
old test was assessed. The observed-score correlation between the CR and 
OV sections was .912, with RiU = 59%. The correlation was higher than 
.866 with an uncertainty reduction of more than 50%, the threshold 
suggested by Dorans (2000, 2004a) as a criterion to equate the two score 
sectors. The high correlation is a necessary condition, but not a sufficient 
condition for score equating. 

which the linking relationship was invariant across gender groups. The 

subgroup conversion in linking the CR to OV sections in the Spring 2003 new 

Score equity assessment was performed to determine the degree to 
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results suggest that linking the CR to OV sections was invariant across 
gender groups.

Scores on one test can be considered successfully equated to scores on 
another test only with respect to some population or populations. One can 
invariably define other populations for which the scores on the two tests in 
question are not exchangeable. In this study, the ethnic group sample sizes 
were too small to support sound linkings at the ethnic subgroup level to 
yield valid inferences about population invariance. Examination of score 
equity across ethnic groups requires further data collection and study.

Based on the equatability analyses from the field trial, it appears that 
linking the CR and OV sections might meet the equating requirements. All 
of the evaluations discussed in this chapter involved field-trial data, except 
for the content and statistical specification comparisons. Now that the new 
test is operational, we can examine invariance with the actual SAT 
population. The gender analyses can be repeated on the operational data. 
More importantly, we can use the data to examine invariance in other 
subgroups, such as ethnic groups, language groups, region groups, and so 
on.

7.5. Discussion 

When a testing program undergoes changes, researchers need to determine 
how to link the scores on the new test to the scores on old test. How do 
they evaluate the linkage between the two score vectors? To what degree 
do the revisions change the construct to be measured and, therefore, make 
the linking relationships dependent on the subpopulations? Is it best to 
break the old scale completely and set up a new scale? Can a concordance 
be established between the new test and the old test? Or is it possible to 
equate the new test to the old test?

Linking issues for tests in transition are different from most of the other 
issues studied in score linking research. In the latter situation, there are 
usually two existing tests to be linked, such as the SAT and ACT. When 
researchers try to link these two tests, they usually first choose an 
appropriate link type and methodology and then link the scores, evaluate 
the linking quality, and make recommendations (Pommerich, Hanson, 
Harris, & Sconing, 2004). The existing tests basically determine the 
linking type, and it is not possible to change the relationship between the 
two tests. Linking issues for tests in transition are different in that 
researchers can influence the types of linking. As emphasized earlier, a 
decision needs to be made about what is most important at an early stage 
of test revision. If equating the new test to the old is crucial, then all of the 
revisions and data collections should be guided by this principle. For 
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example, the new SAT would need to maintain the same specified 
difficulty level and the same specified item discrimination as the old SAT. 
In addition, the specified item difficulty distribution would need to be the 
same as the old one proportionally. Further, the content specifications 
should not shift substantially.

Setting equatability as the goal does not necessarily ensure achieving it. 
Careful data collection needs to be designed and conducted. It is crucial to 
collect data on a common group of test-takers who take both the new and 
the old tests in order to assess the empirical relationship between the two 
tests. Important factors such as linking precision and sample sizes for both 
the total group and important subgroups need to be taken into 
consideration.

After data collection and score linking, one needs to determine the most 
appropriate linking to use and to evaluate its quality. In this chapter, we 
developed a set of criteria including content and reliability comparisons, 
the strength of the relationship between the old and the new test scores, 
and population invariance across important subgroups. Content 
comparisons can be done at the early stage of the new test development 
process. Factor analysis and structural equation models can be used to 
assess the new test construct in relation to the old. High enough correlation 
is essential to reduce uncertainty. A correlation of .866 with a reduction in 
uncertainty of at least 50% can be used as a threshold. In addition to the 
relationship between the old and new tests, the relationship among 
components in the test might also reveal some important clues as to the 
comparability of the test scores. Population invariance provides another 
useful tool to evaluate score equatability. If there is an interaction between 
the test difficulty and group membership, then invariance does not hold 
and the employed linking cannot be considered equating. 



8    Linking Scores Derived Under Different 
Modes of Test Administration 

Daniel R. Eignor1
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8.1. Introduction 

All established testing programs that develop computer-based versions of 
paper-and-pencil tests, particularly computer-adaptive tests (CATs), 
typically need to link the scores derived from the two administration 
modes. Linking is necessary because computer-based and paper-based 
testing will likely occur together, at least for some transition period. 
Further, even if paper-and-pencil testing can be immediately phased out 
when the computer-based test (CBT) is introduced, scores from the 
computer-based version will, in many cases, need to be reported on the 
scale that existed for the paper-and-pencil test until such time that paper-
based scores are no longer accepted.

All of the above considerations necessitate that a linking study between 
scores from the two modes of test administration be conducted. Typically, 
the scores from the newer computer-based mode of administration will be 
linked to scores from the paper-and-pencil mode of administration and the 
scores from the two administrations will be reported as if they were 
interchangeable. The degree to which the linked computer-based and 
paper-and-pencil scores can be treated as interchangeable will depend on a 
number of different factors, the most important being the nature of the 
computer-based test itself.

The purposes of this chapter are twofold: (a) to clarify when a linking of 
scores between a computer-based test and a paper-and-pencil test can be 
considered to result in scores that are interchangeable and (b) using 

                                                     
1
 The opinions expressed in this chapter are those of the author and not 
necessarily of Educational Testing Service. 
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available literature on the topic to provide descriptions of the ways one 
might design a linking study to relate scores on computer-based and paper-
and-pencil-based tests. 

8.2. Background 

Holland and Dorans (2006) developed general definitions for a wide 
variety of linking methods, three of which will be important in the context 
of relating scores on computer-based and paper-and-pencil tests: equating, 
calibration, and concordance. (See Holland, Chapter 2, for a detailed 
discussion of types of linking.) Equating is used to refer to linking between 
two test forms that measure the same construct at the same level of 
difficulty and with the same level of reliability. Equated scores can be 
treated as being truly interchangeable. Calibration is used to refer to 
linking between two test forms that measure the same construct at 
approximately the same level of difficulty, but with different levels of 
reliability. Calibrated scores are typically treated as though they were 
interchangeable, although there are real questions as to whether this is 
appropriate. The use of a common reported score scale with scores from 
tests that have been calibrated actually encourages score users to use the 
results as if they came from an equating because there will be nothing 
about the nature of the scale that will help users understand that a 
calibration and not an equating has been done. Concordance is used to 
refer to linking between two different tests that measure similar constructs 
with somewhat similar levels of difficulty and reliability. Scores that have 
been concorded cannot be treated as being interchangeable.

In addition to the above definitions, it will be useful to employ two 
additional terms that are similar to those used by Hanson, Harris, 
Pommerich, Sconing, and Yi (2001): sets of equivalent scores and sets of 
scores that are equivalent in appearance only. A weak definition of sets of 
equivalent scores is that the two sets share the same raw score mean. A 
stronger definition is that the two sets share the same raw score mean, 
variance, and distribution of scores. Sets of scores that are identical in 
appearance only share the same raw score mean or, in the stricter sense, 
the same raw score mean, variance, and distribution of scores, but the 
scores themselves do not convey the same meaning. The scales for the two 
tests have been aligned, but the nature of the scores has not changed. As an 
example, two sets of scores might have the same raw score mean, variance, 
and distribution, but two scores that appear to be the same might not 
measure with the same level of precision; that is, the two scores might not 
have the same conditional standard error of measurement. 
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The term “linear CBT” is often used to describe a paper-and-pencil form 
that is administered via computer. All that differs is the mode of 
administration. Linkings of scores from paper-and-pencil and linear CBT 
modes are expected to be equatings. Whether the scores can be 
appropriately treated as interchangeable is an empirical question. In other 
instances when CATs are created, the assumption of strict interchange-
ability of scores from the two modes will be less appropriate. When 
linking scores on CATs and paper-and-pencil tests, the relationship 
between the scores from the two modes can at best be characterized as a 
calibration. Finally, there are instances in which the new computer-based 
test has been purposely constructed to differ from the paper-and-pencil 
test, either through the employment of innovative item types or through the 
updating of test content. In this situation, scores from the two modes 
cannot be considered to be interchangeable, although score users might 
want cut-scores on the computer-based test to be aligned with cut-scores 
on the paper-and-pencil test. In such a case, a concordance relationship 
could be established between scores across the two modes of 
administration. In sum, depending on the relationship between scores on 
paper-and-pencil and computer-based versions of the test, a linking 
between scores from the two modes can potentially be considered as an 
equating of the scores, a calibration of the scores, or a concordance 
between the scores. It should be noted that linear and curvilinear linking 
procedures, typically applied in the equating context, can also be used to 
calibrate scores or to bring about a concordance between scores. Most 
often, a curvilinear procedure, such as equipercentile linking, is employed 
in these contexts. 

Regardless of the actual form of the linking between the scores from the 
two modes of administration, a data collection design must be employed to 
collect data to conduct the linking. (See Kolen, Chapter 3, for a description 
of data collection designs and a discussion of the importance of 
measurement conditions to linking.) Data collection designs for linking 
tests that are described in the literature (see also Angoff, 1984) were 
developed for parallel or close to parallel forms of examinations given via 
the same administration mode, most typically the paper-and-pencil mode. 
Applications of these designs to link scores derived from different modes 
of administration have, at times, provided results that are questionable. 
Questionable linkages have particularly occurred when one score is 
derived from a CAT and the other score is derived from a paper-and-pencil 
administration. As a result, variations on the standard designs in Angoff 
(1984) have sometimes been employed. For instance, straightforward 
implementation of the single group counterbalanced design in which      
the computer-based and paper-and-pencil tests are given contiguously in 
the same testing session has often produced linking results of a 
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questionable nature. By administering the tests in a noncontiguous fashion, 
acceptable linking results have been produced.

In the sections that follow, a number of topics relevant to linking scores 
across different modes of administration will be discussed. In the next 
section, issues that cause scores from paper-and-pencil and certain 
computer-based versions of tests to lack the level of comparability brought 
about by an equating will be discussed. The focus will be on CATs and 
paper-and-pencil tests. The following section will discuss implementations 
of data collection designs in the context of linking scores derived from 
different modes of administration. Linking studies of this nature that have 
been documented in the literature will be discussed. Finally, the last 
section of the chapter will provide a summary and reflections on the 
linking of scores derived from different modes of test administration. 

8.3. Comparability Issues Involving Scores from 
Computer-Based and Paper-and-Pencil Tests 

The focus of this section will be on issues that cause linked scores on 
CATs and paper-and-pencil tests not to be comparable at the level brought 
about by an equating. First, however, it is useful to talk about 
comparability issues in the context of linking scores on linear CBTs and 
paper-and-pencil tests. When the same form is administered in the linear 
CBT and paper-and-pencil modes, the only thing that can keep scores from 
being equivalent across modes is the manner in which the items are 
presented on screen. Mazzeo and Harvey (1988) discussed many of the 
item presentation issues that might cause differences between scores on 
linear CBTs and paper-and pencil tests utilizing the same form. An 
updated discussion of item presentation issues is found in Pommerich 
(2004). Probably foremost among the issues here is how to present reading 
passages and items on screen. With linear CBT and paper-and-pencil 
versions of different test forms, scores can be affected by differences in 
difficulty caused by the different modes of presentation and by differences 
in difficulty across items.  Both can keep the two sets of raw scores from 
being equivalent. However, the resulting scores in most instances can be 
linked and reported on the same reported score scale.

Score comparability issues are not a concern when forming 
concordances between scores on tests, be they scores on linear CBT and 
paper-and-pencil tests or scores on CAT and paper-and-pencil tests, 
because the tests in question are typically not designed to yield comparable 
scores. As pointed out, however, in the chapters on concordance in this 
volume, not all concordances are of equal quality. Typically, there will be 
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no attempt made to report scores on a common scale. Care must be taken, 
however, to ensure that score users do not treat the related scores as though 
they were equivalent (i.e., to substitute the paper-based aligned score for a 
particular computer-based score in the score reporting process). Although 
the scales may be lined up, the scores do not mean the same thing. 

Comparability issues are of concern when linking scores on CATs and 
paper-and-pencil tests, and a number of recent articles in the literature 
have focused on this issue. Perhaps the most comprehensive treatment of 
these issues can be found in Wang and Kolen (2001). Kolen and Brennan 
(2004) provided a somewhat briefer but still thorough treatment of the 
issues, some of which are discussed below. If these issues did not exist, it 
might be possible to consider a linking between scores on a CAT and a 
paper-and-pencil test to constitute an equating. Much of the earlier 
literature on the topic of linking these sorts of scores did consider the 
linking to constitute an equating; see Eignor (1993), McBride, Corpe, and 
Wing (1987), and Segall (1995).

Perhaps the first issue that comes to mind is not really an issue at all. It 
has to do with whether the scores from CATs and paper-and-pencil tests 
can be considered comparable because of possible content differences. 
Modern item selection algorithms used with CAT, such as those described 
by Stocking and Swanson (1993) or van der Linden and Reese (1998), 
ensure that the content coverage across the two tests is comparable, 
although the comparability will likely be proportional in nature, given that 
CATs are typically shorter than paper-and-pencil exams. Eignor, Stocking, 
Way, and Steffen (1993) discussed how content specifications can be 
treated in CATs when using the Stocking and Swanson approach so as to 
have the content parallel that of a paper-and-pencil test. 

Test administration conditions that differ between the CAT and paper-
and-pencil form might contribute to a lack of comparability. CATs are 
given under conditions where examinees must respond to the current item 
before they can receive the next item, and they are not allowed to go back 
and review or change items to which they have previously responded. In 
paper-and-pencil format, examinees can skip items and can go back and 
review or change previously provided responses to items. 

The manner in which CAT and paper-and-pencil tests are scored can 
also contribute to a lack of comparability. Whereas paper-and-pencil tests 
are typically either number-right or formula scored, with CATs the final 
score is an item response theory (IRT)-based ability estimate. Typically, 
the ability estimate is based on a sum of weighted item responses, whereas 
the number-right score from the paper-and-pencil test (or, in some 
instances, a corresponding ability estimate) is based on a sum of 
unweighted item responses. Also, not reached items are treated very 
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differently in CATs than they are in paper-and-pencil tests (see Way, 
Eignor, & Gawlick, 2001). 

Psychometric characteristics of the CAT and paper-and-pencil tests also 
contribute to the lack of comparability of scores. With certain fixed-length 
CATs, the test length is set to yield the same level of overall reliability as 
the paper-and-pencil test in a representative group of examinees. Although 
this should ensure comparable overall standard errors of measurement (in 
that representative group), it in no way ensures that the conditional 
standard errors of measurement are equivalent. This will be true for 
comparisons made using observed scores (paper-and-pencil) and estimated 
true scores (CAT). This situation violates one of the assumptions of 
equating, the equity assumption, and, in particular, second-order equity 
(see Holland, Chapter 2; Kolen & Brennan, 2004). The equity criterion, in 
general, requires that it should be a matter of indifference as to which of 
two linked forms an examinee takes. This translates into very specific 
requirements about the level of precision to which scores on the two forms 
are measured. Second-order equity requires that examinees at a given 
ability level be measured with the same level of precision on the two test 
forms. In order for this to happen at a particular ability level, the 
conditional standard errors of measurement must be equivalent. The 
manner in which the fixed-length CAT was constructed will in no way 
ensure this is the case. Hence, with fixed-length CATs, second-order 
equity cannot be said to have been met. 

With variable-length CATs, the length of the CAT is set to yield a 
specific level of precision. The CAT, however, is likely to provide greater 
precision than the paper-and-pencil test at any selected ability level. 

Thus, the differing psychometric characteristics of the CAT and paper-
and-pencil test lead to a lack of comparability of scores, such that the 
linked scores cannot be considered to be equated. This is why the term 
calibration has been used in this chapter to characterize the linking of 
scores on CATs and paper-and-pencil forms. After calibration, the sets of 
scores can be said to be equivalent in appearance only. Finally, on a very 
superficial level, there is no way that linked scores on a CAT and a paper-
and-pencil form can lead to indifference on the part of an examinee as to 
which form she takes. Certain examinees will simply prefer to take the 
CAT, whereas others will prefer to take the paper-and-pencil form. 

For a complete treatment of the issues leading to a lack of comparability 
between CAT and paper-and-pencil scores, the reader is referred to Wang 
and Kolen (2001). The issues discussed in the previous paragraphs are 
simply those that this author feels are the most important to emphasize. 
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8.4. Mode of Presentation Linking Designs 

In the material that follows, taken in part from Eignor and Schaeffer 
(1995), the three most frequently used data collection designs for equating 
paper-and-pencil forms of an exam are discussed in the context of linking 
scores from computer-based and paper-and-pencil exams. These data 
collection designs are (a) the random groups design, (b) the single group 
counterbalanced design, and (c) the nonequivalent groups anchor test 
design. (See Kolen, Chapter 3, for detailed descriptions of these data 
collection designs.) Applications of these designs in a linking context will 
first be discussed, followed by a discussion of some modifications to these 
designs to deal with the peculiarities of computer-based administrations. 
These data collection designs will be discussed in the three linking 
contexts mentioned in Section 8.2: (a) equating linear CBT and paper-and-
pencil scores, (b) calibrating CAT and paper-and-pencil scores, and (c) 
establishing a concordance relationship between linear CBT or CAT scores 
and paper-and-pencil scores where the computer-based test was not 
designed to be parallel to the paper-and-pencil test. Studies from the 
literature employing these data collection designs will be discussed where 
appropriate.

Table 8.1 provides a listing of the studies to be discussed, classified by 
data collection design and the type of linking employed. The studies are 
further broken down into those that attempted to demonstrate that the 
scores from the two modes of administration were equivalent and those 
that linked scores without checking their equivalence. Although no claim 
will be made that the studies listed represent the full set of studies that 
have been conducted, they are the studies that the author was able to 
locate, and they do provide an indication of the small amount that has been 
done to date in this area. 

Before discussing these designs and related studies, it should be noted 
that the samples used in the linkings should be representative of the 
population to which the linking relationships will ultimately be applied. In 
the paper-and-pencil context, the samples should be representative of the 
population with respect to the distribution of the attribute being measured. 
With computers, other variables, such as level of computer familiarity, 
enter into the picture. In this case, the samples used in the linking need to 
be representative of the population with respect to both the attribute being 
measured and the level of computer familiarity or experience. This will be 
a particular issue when a CBT is to be introduced for the first time. Unless 
there are suitable practice materials and a viable tutorial, the examinees 
used in the linking study will likely not have the level of familiarity that 
examinees who take the test operationally will have. In this case, standards 
set on the CBT as a result of the linking study will likely demonstrate 
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higher passing rates operationally than demonstrated in the linking 
samples. Determining appropriate linking samples in the computer-based 
testing context will necessitate a consideration of additional variables 
beyond those considered in the paper-and-pencil context. 

Table 8.1. Summary of linking studies reviewed 

  Data collection design 

  Random 
groups

Single group 
counterbalanced

Nonequivalent
groups

anchor-test

Equivalent
scores
established

Poggio,
Glasnapp,
Yang, & 
Poggio (2005)

Mazzeo, Druesne, 
Raffeld, Checketts, & 
Muhlstein (1991); 
Sykes & Ito (1997) 

—

Equating
Score
equating
performed

Schaeffer,
Reese, Steffen, 
McKinley, & 
Mills (1993) 

— — 

Equivalent
scores
established

Eignor, Way, 
& Amoss 
(1994);
Lunz & 
Bergstrom
(1995)

Schaeffer, Steffen, 
Golub-Smith, Mills, & 
Durso (1995) 

—

Calibration
Score
calibration
performed

Segall (1995);
Segall & 
Carter (1995) 

Eignor (1993); 
McBride et al. (1987) 

Lawrence &
Feigenbaum
(1997)

Equivalent
scores
established

Not possible Not possible Not possible 

Concordance
Concordance
tables
produced

— Jiang (1999)  

8.5. Random Groups Design 

8.5.1. General Discussion 

One of the most frequently used data collection designs for studying 
whether scores from computer- and paper-based modes of administration 
are equivalent or for actually linking scores derived under these modes has 
been the random groups design. Such a design allows for straightforward 
statistical tests for differences in mean performance between groups across 

—
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modes. Such hypothesis testing typically requires relatively large sample 
sizes. If the hypothesis test demonstrates no significant differences in mean 
performance across modes, then this might provide some initial indication 
that the two sets of scores are equivalent and linking can be viewed as 
unnecessary. To be certain that linking is unnecessary though, the test for 
mean differences in performance should be followed by a check of score 
distributions and score variances. Jaeger (1981) discussed how the 
Kolmogorov-Smirnov two-sample test of the equality of cumulative 
distribution functions (Smirnov, 1948) can be used to check for equivalent 
score distributions. Hanson (1996) discussed how log-linear models can be 
used to check on the equivalency of score frequency distributions. Finally, 
Segall (1995) discussed how an F-ratio test can be used to test for 
differences in score variances across the two modes of administration. If 
any of these statistical tests provide an indication that linking is necessary, 
the sample sizes needed to do the tests will prove useful because the 
random groups linking design requires relatively large sample sizes to 
keep linking errors at an acceptable level. (See Lord, 1950, for a discussion 
of these sorts of errors in the context of equating.) It should be mentioned 
that for all of the studies of this sort that have been reviewed in this 
chapter, only the test for differences in mean performance has been 
employed.

In addition to relatively large sample sizes, this data collection design 
requires a good deal of control over the examinees involved in the study. 
For instance, if the CBT is seen as an innovative form of assessment, 
examinees who have been randomly assigned to take the paper-and-pencil 
test might be disappointed and drop out of the linking study. Differential 
dropout is a major threat to this design because the two groups might no 
longer be comparable in ability. Hence, this design is better employed 
under conditions in which scores count, and the paper-and-pencil test 
provides a suitable avenue to attaining a valued outcome. 

One distinct advantage of using a random groups design is that the same 
form can be given to both groups. In the case of equating a linear CBT to a 
paper-and-pencil test, each group would receive the same form via the 
different administration modes. In this situation, the linking does not need 
to take into account differences in difficulty due to different items. The 
linking must take into account only differences in difficulty brought about 
by administering the items via different modes. 

In the case of calibrating scores on a CAT and a paper-and-pencil form, 
the above is not exactly true. If scores on the paper-and-pencil form used 
in the calibration have been reported on a scale separate from the raw score 
scale, as should be the case if there are multiple paper-and-pencil forms, 
then scores on the CAT have typically been reported on the same scale. 
This is done through use of a “reference form” that is part of the CAT 
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system (see Eignor et al., 1993). The reference form has been previously 
given in a paper-and-pencil mode. In addition, items on the reference form 
will have been calibrated using the IRT model employed with the CAT 
and the item parameters placed on the IRT parameter scale for the bank. 
The initial score derived from the CAT will be an estimated ability score. 
Using this estimated ability and the item parameter estimates for the 
reference form, an estimated true score on the reference form can be 
derived. Estimated true scores on the reference form can then be linked 
with observed scores on the test given in the paper-and-pencil mode. One 
of the benefits of the random groups design is that it might be possible to 
administer the reference form from the CAT system in a paper-and-pencil 

paper-and-pencil form in the equating context, the calibration of scores 
does not need to take into account differences in difficulty across test 
forms. However, it will need to take into account a much more expansive 
set of possible causes for differences in scores. Possible causes for these 
differences were discussed previously in this chapter. 

Two final comments should be made about equating CBT and paper-
and-pencil forms in the context of the random groups design. An 
advantage of this design in this context is that the same form can be given 
to both groups. This, however, does not need to be the case. Two different 
forms, say A and B, with A given as a CBT and B in paper-and-pencil 
mode, can be used instead. If A and B have previously been equated in 
paper-and-pencil format, then equated scores can be used for B in the 
subsequent linking across modes. In this situation, all that can differ across 
forms are the levels of difficulty caused by mode of administration. The 
above scenario does not seem to have been used in actual studies however. 
In the studies reviewed, Forms A and B have not previously been equated 
in paper-and-pencil format. Hence, the linking of A given via computer 
and B given via paper-and-pencil has to take into account differences in 
difficulty across forms due to both the use of different items on the forms 
and the use of the different modes of administration. 

The other comment of relevance is related to how and when testing in 
the two modes can take place. In the context of equating two paper-and-
pencil forms, randomization is usually brought about by packaging the test 
books in a spiraled order, and the two tests are administered 
simultaneously, usually in the same room. This is typically not the case 
when equating a CBT to a paper-and-pencil form; having computers in the 
same room where the paper-and-pencil test is taken could prove to be 
distracting. Hence, random assignment to conditions will need to be done 
in some other way than through spiraling, and the two groups will need to 
be separated for testing purposes. Also, in most situations, there will not be 
enough computers to test all of the examinees in the CBT group 

format. So, as is the case with the linear CBT of the same content as the 
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simultaneously. Instead, testing will  need to be done over some time 
period. As long as additional learning does not take place during this time 
period for the CBT group, this arrangement would appear not to cause a 
problem. In fact, as will be seen in the discussion of the single group 
counterbalanced design in Section 8.6, this window of testing needed for 
the computer-based test can provide distinct benefits if testing is done 
properly.

8.5.2. Equating Studies Done with the Random Groups Design 

Most times when researchers employ the random groups data collection 
design to study the comparability of scores from linear CBT and paper-
and-pencil forms, a formal equating is not conducted. Instead, the same 
form is administered in both modes and statistical tests or informal checks 
of differences in mean scores are employed, and if the means are different, 
emphasis is placed on changing conditions under which the linear CBT is 
administered to ensure equivalent scores. For example, the administration 
of passage-based reading items on the computer might need to be altered 
so as to parallel to the extent possible the way such items are given in 
paper-and-pencil mode. 

In all of these studies, only differences in mean scores were looked at, 
and no attention was paid to possible differences in score distributions, 
which could imply that a formal equating study might still have needed to 
be conducted. 

8.5.3. Calibration Studies Done with the Random Groups 
Design

A number of studies have been conducted that have employed the random 
groups design to look at comparability of scores between CATs and paper-

Mazzeo and Harvey (1988) provided a review of a large number of 
studies done prior to 1988 that employed the random groups design to 
study the equivalence of scores across linear CBT and paper-and-pencil 
administration of the same form. A wide variety of testing contexts are 
covered.  The study by Schaeffer et al. (1993) to be discussed in Section 
8.6.3 illustrates the practice of altering administration conditions to bring 
about equivalent scores. A more recent application of this data collection 
design with linear CBT and paper-and-pencil versions of tests can be 
found in Poggio et al. (2005). Finally, for a meta-analysis of some 30 
studies employing the random groups design in studying scores on linear 
CBTs and paper-and-pencil tests, see Mead and Drasgow (1993). 
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and-pencil tests. In certain of these studies, formal linking or calibration 
studies have not been conducted. Instead, IRT-based ability estimates have 
been derived from both modes of administration and their means directly 
compared. In other situations, calibration studies have been conducted to 
allow the derived scores from the two modes, which could not be directly 
compared, to be used (more or less) interchangeably. Following are some 
examples of both kinds of study. Eignor et al. (1994) employed the random 
groups design to look at whether sets of scores for the National Council of 
State Boards of Nursing Licensure Examinations (NCLEX), which were 
given in both computer-adaptive and paper-and-pencil modes, could be 
considered to be equivalent. Formal statistical hypotheses tests were 
conducted for differences in mean performance, using 1-PL IRT ability 
estimates, and for differences in passing rates, using log-linear models. In 
almost all cases, no significant differences in performance or passing rates 
were found. The study reported in Eignor et al. (1994) was somewhat 
unique in that the plan was to immediately replace the paper-and-pencil 
version with the computer version, and both exams were administered at 
the same time, with scores on both counting for licensure purposes. The 
focus of the study was on demonstrating that there would be no falloff in 
candidate performance with the switch in test modes. 

Lunz and Bergstrom (1995) used a similar approach in one of a series of 
studies the authors conducted with the Board of Registry Certification 
Examinations for medical technologists. Examinees were randomly 
assigned to either CAT or paper-and-pencil conditions and equivalent 
mean performance across modes was taken as an indication that calibration 
of scores from the two modes of administration was not necessary. In this 
study, 1-PL model ability estimates were compared across the modes of 
administration.

It should be noted that in both the Eignor et al. (1994) and the Lunz and 
Bergstrom (1995) studies, no attempt was made to study the distributions 
of scores across the tests given in the two modes. Depending on the IRT 
model and calibration program employed, such a comparison might not be 
so straightforward. Also, even if means, variances, and distributions of 
scores could be established to be equivalent across modes, this would be in 
appearance only, as the scores would have different psychometric 
properties across the two modes. 

For certain of the studies that employed the random groups design with 
CAT and paper-and-pencil versions of the same test, an actual calibration 
of the scores took place. Segall (1995) discussed the use of this design in 
linking scores on tests that are part of the Armed Services Vocational 
Aptitude Battery (ASVAB) and that involve computer-adaptive and paper-
and-pencil counterparts of these tests. Segall and Carter (1995) discussed 
the planned use of the same design in calibrating scores on computer-
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adaptive and paper-and-pencil versions of certain tests that are part of the 
General Aptitude Test Battery (GATB). 

In both contexts, an equipercentile procedure with smoothed frequency 
distributions was employed to bring about the calibration that created the 
conversion between scores from the two modes. What is noteworthy about 
both of these studies is that ability estimates from the CAT were linked 
directly to number-right scores on the paper-and-pencil form. It was not 
possible to transform scores from one of the administrations to allow a 
comparison of means or, for that matter, means, variances, and 
distributions.

8.6. Single Group Counterbalanced Test Design 

8.6.1. General Discussion 

With the single group counterbalanced design, all examinees take both the 
computer-based and paper-and-pencil versions of the test. Unlike with the 
random groups design, two separate tests must be used, that is, the 
computer and paper-and-pencil tests cannot be different versions of the 
same test form. In most early applications of this design, the tests were 
given sequentially in one testing session. A random half of the total group 
took the computerized test first and the remaining half took the paper-and-
pencil version first. In this design, the first test taken might provide 
practice for the second test, thereby raising scores on the second test above 
what they would have been had the second test been given by itself. 
Fatigue might also lower performance on the test taken second. However, 
the relationship derived from the scores from the first administration of 
either version is what is of interest (i.e., the scores without practice or 
fatigue effects). This linking relationship could be estimated by ignoring 
the data from the second administrations and treating the first 
administrations as though they were obtained from a random groups 
design. However, the strength of the counterbalanced design is the 
potential to combine data from both administrations, thereby providing a 
much more precise estimate of the linking relationship than could be 
obtained from a random groups linking using the data from the tests 
administered first in each order. Another possible strength of this design is 
that it will likely be good for examinee motivation, given that the highest 
score is counted across the two testing opportunities, and everybody is 
provided the opportunity to take the test on computer. Both of these 
situations have the potential for helping with the possible dropout problem. 

One key limitation of the counterbalanced design has to do with the 
conditions that must be met before the data can be combined and used. The 
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procedure for combining counterbalanced design data makes some explicit 
assumptions about the nature of “order effects.” An order effect in this 
context refers to the average change in scores, be it an increase (from 
practice) or a decrease (from fatigue), to be expected from the first 
administration to the second administration. The equations used for 
estimating equating parameters using all of the data assume that such order 
effects are in the same direction for both testing orders and are 
proportional to the standard deviations of the tests. The requirement that 
the average signed changes be equal in standard deviation units is usually 
difficult to meet in practice. It should be noted that the equations referred 
to are those in Angoff (1984); other counterbalanced linkings based on less 
restrictive assumptions have been discussed by Holland and Thayer (1990) 
and von Davier, Holland, and Thayer (2003), but have not been considered 
in the present context. 

When the equations in Angoff (1984) are the focus and nonproportional 
order effects are present, then typically only data from the first 
administration of each test, treated as coming from a random groups 
design, can be used for linking purposes. Because the number of 
examinees in the counterbalanced design is usually small, in hope that the 
data from the orders can be combined, a linking based on only the first 
administration of each test will typically not be precise enough for 
operational use and additional data will need to be collected. See Kolen 
(Chapter 3, Section 3.5) for an additional discussion of these types of 
issue.

In more recently conducted linking studies using this design, the tests 
could not be given sequentially in one testing session because the 
availability of computers precluded the testing of all examinees in the 
computer mode at the same time. This situation has in many ways proven 
to be a blessing in disguise. If the timing between the two tests is such that 
there is no possibility of either practice or fatigue effects, then having two 
separate orderings of the versions of the test is no longer necessary. In 
most studies that have capitalized on this, the paper-and-pencil version of 
the test has been given first. The study done by Schaeffer et al (1995), 
discussed later in this section, is in this tradition. 

Another possibility is to consider use of the full-blown counterbalanced 
design, but not worry about specific order effects. For instance, in the 
Eignor (1993) study, examinees were randomly assigned to a testing order. 
Paper-and-pencil testing was scheduled for the middle of the testing 
window. Examinees assigned to the computer-first condition could pick a 
specific day to test on the computer prior to the paper-and-pencil testing 
day, whereas examinees assigned to the paper-and-pencil-first condition 
could pick a specific day to test on the computer after the paper-and-pencil 
testing day. The testing window was established by considering how long 
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a period between the first and second administrations could exist without 
being concerned that subsequent learning had taken place. Because testing 
in both modes was done on different days, practice and fatigue effects 
were viewed as being, for the most part, nonexistent, allowing data from 
the two modes to be combined. Although the above scenario would seem 
to be a viable way of collecting data with the counterbalanced design, two 
things happened in the Eignor (1993) study that caused difficulties: (a) test
proctors at sites did not always use the rosters provided to randomly assign 
examinees to testing orders and (b) some test proctors chose to test certain 
examinees in both modes on the same day. Given all of this, a compromise 
was reached whereby linking was done separately in the two orders and 
then the separate linkings were averaged. In doing so, however, the 
advantage of being able to use the combined data to do a more precise 
linking was lost. 

Finally, it is possible here to test for differences in the means across the 
test modes. However, unlike with the random groups data collection 
design, any statistical test applied in this context would need to take into 
account the repeated-measures nature of the data. 

8.6.2. Equating Studies Done with the Single Group 
Counterbalanced Design 

The studies that made use of the single group counterbalanced design in 
the equating context typically looked at whether sets of scores on the same 
form across modes could be considered to be equivalent rather than 
carrying out formal equating studies. In their review of earlier studies (i.e., 
prior to 1988) that compared linear CBT and paper-and-pencil versions of 
tests using the counterbalanced design, Mazzeo and Harvey (1988) found 
that order effects can be very different across orders, with such effects 
being considerably larger for the computer version when the paper-and-
pencil test is administered first than vice versa. In these studies, however, 
the two ordered tests were always given sequentially in one testing session. 

Mazzeo et al. (1991) looked at the comparability of computer linear and 
paper-and-pencil versions of the CLEP® General Examinations in 
Mathematics and English Composition. Because the number of available 
participants was small, the researchers chose to make use of a single group 
counterbalanced design. For a given sample size, greater precision in 
linking is gained from this design than from a random groups design, or 
from an anchor-test design, to be discussed later in this chapter. In the first 
round of data collection, Mazzeo et al. found the presence of order effects 
for both examinations. Modifications were made to the computer delivery 
system and then a second round of testing was undertaken with the two 
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tests being given sequentially in one session. No order effects were found 
for English Composition so that the data could be pooled and average 
performance across the two modes could be compared. The differences in 
means were viewed as being nonsignificant, which implied that scores 
from computer administrations could be reported on the paper-and-pencil 
scale. In the case of Mathematics, order effects were still present and, 
hence, the data were not pooled for comparison of the means. Looking at 
means from only the first administration of each of the two tests, the 
differences were substantial. Rather than using this data to link the tests 
(sample sizes were extremely small), the authors suggested that further 
investigation and modification take place in an attempt to remove order 
effects. 

Sykes and Ito (1997) employed a single group counterbalanced design 
to look at the equivalence of 1-PL model ability estimates across a linear 
CBT and a paper-and-pencil version of a licensure examination. When 
comparing the ability estimates, the authors found a significant order by 
mode of administration interaction effect such that there was a significant 
difference in ability estimates across modes when the paper-and-pencil 
form was administered first, but no significant difference in paper-and-
pencil and computer-based ability estimates when the computer-based 
form was given first. In this study, the two tests were given sequentially in 
a single session. It is interesting to note that in the Mazzeo et al. (1991) 
study, the larger mean differences within order were found when the CBT 
was given first, but in both orders the test taken second had the higher 
mean. Hence, the Sykes and Ito results differ from the Mazzeo et al. 
results. The Mazzeo et al. results seem in part to be due to practice effects. 
Sykes and Ito hypothesized that their results had to do with examinee 
expectations of a positive experience taking a new CBT.  When examinees 
received the CBT first, their expectations were immediately met and there 
was no later falloff in performance when taking the paper-and-pencil test. 
This was not true for the reverse ordering. 

8.6.3. Calibration Studies Done with the Single Group 
Counterbalanced Design 

There are three examples in the literature of calibration studies that made 
use of the single group counterbalanced design, or a variant of it.  Two 
studies calibrated scores across CATs and paper-and-pencil forms. One 
study calibrated scores between a CAT and a linear CBT.

Schaeffer et al. (1995) used a variant of the single group counter-
balanced design, where only a single ordering was used, to look at the 
comparability of scores from the CAT and linear CBT forms for the GRE®
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General Verbal, Quantitative, and Analytical tests. In Schaeffer et al. 
(1993), the authors had established that scores were comparable across 
linear CBT and paper-and-pencil versions of these tests via a random 
groups design. (The ultimate goal here was to move the paper-and-pencil 
GRE General tests to CAT. The researchers chose to do this via a two-step 
process.) Each of the three CBTs, one for Verbal, one for Math, and one 
for Analytical, is given in two sections. Hence, to take all three CBTs, an 
examinee would end up taking six sections. Six scrambles, different orders 
of these sections, were created, and a Verbal, Quantitative, or Analytical 
CAT was given in the seventh or last position of each of these scrambles. 
(Two scrambles had the Verbal CAT, two had the Quantitative CAT, and 
two had the Analytical CAT.) An example of one scramble follows: V1 A2 
Q1 V2 A1 Q2 VCAT. As can be seen, two sections of nonverbal material 
were given between V2 and VCAT, and this was true for all spirals. 
Although all sections were given in one session, practice effects were 
mitigated through the presence of two sections that contained different 
content prior to the CAT. This provides some justification for only using a 
single ordering where the linear CBT is always given first, followed by the 
CAT.  

Schaeffer et al. (1995) used the results to create estimated true score to 
reported score conversion tables for the CATs and then compared them to 
the observed score to reported score conversion tables for the linear CBTs. 
For the Verbal and Quantitative CATs; these tables were viewed as being 
sufficiently comparable in nature that the linear CBT conversion tables 
could be used with the CATs. However, this did not prove to be the case 
for the Analytical CAT. Additional data were collected, via a “true” single 
group counterbalanced design, where the three GRE  General CATs were 
given along with the Analytical linear CBT. The Analytical CAT was 
given first in one order, followed by the other two CATs, and then the 
Analytical linear CBT. In the other order, the Analytical linear CBT was 
given first, followed by the Verbal and Quantitative CATs, and then the 
Analytical CAT. It was found that, on average, the Analytical CAT scores 
were significantly higher than the Analytical linear CBT scores;  hence, a 
calibration of scores on these tests was undertaken using an IRT true-score 
procedure. The linking results were then applied and the Analytical linear 
CBT reported score conversion was used with the Analytical CATs. 

McBride et al. (1987) used the single group counterbalanced design to 
calibrate CAT and paper-and-pencil scores on selected tests from the 
Adaptive Differential Aptitude Test. Linear and equipercentile linking 
methods were employed. The equipercentile method was chosen in each 
case, because those results were superior to the linear linkings. In all 
linkings, the ability estimates on the CAT were linked directly to the 
number-right scores on the paper-and-pencil version. The authors did not 



152      Daniel R. Eignor

discuss any analyses of scores in the two separate orders, and it appears 
that data were pooled across the orders. Hence, it must be assumed that 
order effects were not viewed as being a problem. Finally, it is not 
surprising that the equipercentile method was viewed as superior to the 
linear method with these linkings, given that number-right scores and 
ability estimates were used in the linking. For any test scored via IRT and 
then scored in a conventional fashion, the relationship between number-
right and ability scores is nonlinear.

®

details of this study have been discussed in a previous section of this 
chapter. Noteworthy in this study is that the form used as the reference 
form in creating estimated true scores on the CAT was also used to 

final raw to scale conversions for the CATs and the paper-and-pencil 
forms, where the CAT estimated true scores were linked to paper-and-
pencil observed scores. Differences between the two conversion tables for 

conversions turned out to differ more than was expected, given the use of 
the same paper-and-pencil form to create scores. In retrospect, this is 
perhaps not surprising, given that the CAT reference form simply 
transforms ability estimates to a different metric. Differences between 
modes will still be evident after applying the transformation of the CAT 
ability estimates to the estimated true-score scale. 

8.6.4. Concordance Studies Done with the Single Group 
Counterbalanced Design 

A computerized version of the Test of English as a Foreign LanguageTM

(TOEFL®) was planned in order to introduce new item types that took 
advantage of computer administration, add an essay to the Writing section, 
and change the structure of the Reading and Listening sections. All of 
these changes made the sections of the new test significantly different from 
the comparable sections of the old paper-and-pencil test. Consequently, a 
calibration of scores between the sections could not be considered. Hence, 
new scales were defined for each of the sections of the new test and also 
for the total score. After much discussion, it was decided that the Listening 
section and the Writing multiple-choice section of the new test would be 
CATs, whereas the Reading section would be what is referred to as a 
linear-on-the-fly test (LOFT; see Carey, 1999). Note that Kolen and 
Brennan (2004) referred to such tests as computer-based randomized tests. 

counterparts using the single group counterbalanced design. Many of the 

Finally, Eignor (1993) did a linking study between SAT  CAT 

generate the raw scores on the paper-and-pencil version. Eignor compared 

prototypes in verbal and mathematics and their paper-and-pencil 

particular raw scores were then scrutinized for verbal and for math. These 
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A LOFT was chosen for Reading because it was felt that the level of item 
dependence among items within passages precluded the use of item-level 
CAT, and the details of testlet-based CAT had not been worked out at that 
time. Given that reporting scales were going to be discontinued for the 
paper-and-pencil test, there was interest in providing users with some idea 
as to where to set the cut-scores on the sections of the new test. Hence, it 
was decided that concordance relationships would be established to 
provide approximate cut-points on the computerized test sections that 
corresponded to the cut-points on the old paper-and-pencil test sections. 
The examinees in the study took the paper-and-pencil form at a TOEFL 
operational administration and then took the computerized form shortly 
afterward, in a nonoperational setting. Because order effects were expected 
to be minimal to nonexistent, only one order of the single groups 
counterbalanced design was used. 

Aware that concordance relationships are particularly sensitive to the 
groups used to create them (Dorans & Walker, Chapter 10; Kolen & 

Sawyer, Chapter 12), it was decided to estimate population score 
distributions on the computerized sections and use what could be assumed 
to be “representative of the population” distributions on the paper-and-
pencil sections to create the concordance for each section. This represents 
the unique feature of this study and is documented in Jiang (1999). The 
paper-and-pencil population distribution was based on a national sample of 
50,000 examinees that were representative of the complete population that 
had taken the paper-and-pencil test. The study sample of 7,057 examinees 
was a subset of the 50,000. From the paper-and-pencil population 
distribution along with the study-sample paper-and-pencil and 
computerized test distributions, an estimated population distribution was 
created for each computer-based test section. Then using the observed 
paper-and-pencil population distribution for each section along with the 
estimated population distribution for the corresponding CBT section and 
equipercentile linking, concordances were created and approximate cut-
scores were provided for the new test sections. Actually, what is described 
above is a simplification of what was done in that the estimation of the 
computer population distributions was treated in a multivariate fashion and 
all section distributions were estimated simultaneously rather than one by 
one. However, it is useful to think of the estimation in the univariate 
context because of its similarity to frequency estimation observed-score 
linking (see Kolen & Brennan, 2004). It should be noted that all of this 
work was motivated by the belief that the use of the population 
distributions in the concordances would provide more appropriate 
computerized test section cut-points than if the concordances had been 
based on the distributions provided by the study sample of 7000+ 

Brennan, 2004; Pommerich, Chapter 11; Pommerich & Dorans, 2004; 
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examinees. One issue of concern though was whether the examinees in the 
study sample were sufficiently familiar with computer-based testing to 
adequately represent the group of examinees who would later be taking the 
computerized test in an operational setting. Even though a fairly extensive 
tutorial accompanied the new CBT, there were concerns about computer 
familiarity. In many of the other studies described in this chapter, 
computer familiarity does not seem to have been considered an issue. 

8.7. Anchor Test: Nonequivalent Groups Design 

8.7.1. General Discussion 

An anchor-test design represents an alternative to use in lieu of collecting 
large examinee samples for the random groups design. In this context, an 
anchor-test design would involve two groups of examinees that are usually 
nonequivalent in ability. Under one possible scenario, one group would 
receive the CBT followed by the anchor test and the other group would 
receive the paper-and-pencil version followed by the anchor test. Under 
the other possible scenario, the anchor test would be given first in both 
groups, followed by the two tests for which scores will be linked. The 
anchor test could be a parallel form of the tests or it could be a shortened 
version of them. Additionally, the anchor test could be administered to 
both groups in either paper-and-pencil format or in computer-based 
format. Both groups would need to take exactly the same anchor test in 
exactly the same position and in exactly the same mode. It is this 
additional “wrinkle” that makes it difficult to conduct linkings when the 
test and anchor are to be given consecutively in one testing session. For 
one order, the test and the anchor would need to be given in different 
modes. Given this complication, this is not a design that would likely be 
considered in the linking of linear CBT and paper-and-pencil forms of an 
exam, where other designs work well. Given the necessity that the anchor 
test be parallel to both of the tests precludes the use of this design for test 
concordance purposes. Hence, this design would most likely be employed 
when calibrating scores on CAT and paper-and-pencil versions of an 
exam.

It should be noted that items could possibly be located to constitute an 
anchor test that operated in the same fashion regardless of the mode of 
administration. If this were possible, the anchor could be given via 
computer or via the paper-and-pencil mode. This is a design that has been 
employed in linking the scales of similar tests given in different languages, 
such as the English and Spanish versions of the SAT (Angoff & Cook, 
1988). Note that the Spanish version was not a direct translation of the 
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English version; rather, the tests were constructed separately to test the 
same content. The anchor test in this case was made up of a separate set of 
items that were not part of either of the two tests. However, in this 
particular situation, nothing prevents the anchor items from being internal 
to the tests themselves. If this is the case, concerns about the influence that 
the tests have on the anchor when the anchor is given last or the influence 
that the anchor has on the tests if the anchor is given first likely become 
nonproblems. Further, although this scenario would seem to best hold 
when linking linear CBTs to their paper-and-pencil counterparts, if one is 
willing to seed the common items into the CATs, nothing would prevent 
this scenario from being used in the linking of CATs and paper-and-pencil 
versions of the test. Here everything hinges on establishing that the 
common items function in the same way when given in the computer and 
paper-and-pencil modes. This would need to be established prior to the 
linking study itself. 

Like the single group counterbalanced design, the linking relationship of 
interest with this design is between scores on CAT and paper-and-pencil 
versions of the test that are uncontaminated by the effects of taking the 
anchor test. Given this, it makes some sense to give the anchor test after 
the tests for which scores are to be linked. Also, if the anchor test was 
given first, the possibility of nonequivalent practice effects exist. If it could 
be established that the groups were equivalent in ability, as might be the 
case if they were random groups from the same population, then when the 
anchor appeared last, it could be disregarded and the linking relationship 
estimated from the data from the two tests administered first. However, as 
with the single group counterbalanced design, the strength of the anchor-
test design is that under certain conditions, the data from the tests to be 
linked and the anchor test can be used in combination to provide a       
more precise estimate of the linking relationship of interest than could be 
obtained using the random groups design with a comparable sample size  
(i.e., disregarding the anchor test). 

The statistical theory behind the anchor-test design is based on some 
key assumptions regarding anchor-test performance. Specifically, the 
anchor test needs to be a comparable measure of the construct being 
assessed for both groups in the design. Scores on the anchor test must 
represent the same attribute being measured, apart from possible group 
differences in performance on that attribute. Such a condition implies that 
any order effects associated with the anchor test need to be the same for 
both groups. Thus, difficulties associated with the anchor test might not 
necessarily be circumvented by giving the anchor test after the two test 
versions for which scores are to be linked. 

Possible order effects associated with giving the anchor test last or 
possible practice effects associated with giving the anchor test first become 
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a nonproblem if the tests and the anchor are not given sequentially in one 
testing session. The time period between administration of the anchor and 
the tests to be linked would need to be such that no learning took place 
during the period. Also, if the anchor and the tests are given on separate 
occasions, the problem that the anchor will be given in a different mode 
than one of the tests in question also becomes a nonproblem. In fact, one 
study took advantage of just this sort of arrangement. 

One possible concern about the anchor test and the tests to be linked 
being given on separate occasions is whether this causes any of the 
assumptions underlying the nonequivalent groups anchor test design to be 
violated. After all, when this design and the single group counterbalanced 
design are discussed in the literature, the treatments have either the test and 
the anchor, or the two ordered tests, administered contiguously in a single 
testing session. However, it is often the case in the context of equating 
forms of paper-and-pencil tests that the external anchor is administered at a 
different point in time than either of the tests to be equated. An example of 
this occurs with certain SAT II Subject Tests that are equated through 

are the SAT scores from administrations at a different point in time than 
the SAT II adminstration, but the SAT scores themselves are from multiple 
different administrations. In sum, in the context of linking scores given in 
different modes, as long as the time period between the anchor 
administration and the test administration (or the two ordered test 
administrations) is such that no intervening learning of the test content can 
occur, noncontiguous administrations would appear not to cause problems 
with respect to underlying assumptions. 

Finally, it should be noted that statistical tests of differences in 
performance across the two modes of administration are not possible with 
this design if the groups are nonrandom groups. If the groups are random 
in nature and the anchor is given last, the data from the anchor can be 
disregarded for hypothesis testing purposes. It is unclear what benefits 
could be derived from including the anchor items with the test items in 
doing statistical tests with random groups. 

8.7.2. Calibration Studies Done with the Anchor Test Design 

Lawrence and Feigenbaum (1997) used an anchor-test design to link a 
computerized-adaptive version of the SAT to the paper-and-pencil test. 

appropriate item exposure controls. Also, the SAT was revised during this 

external anchors consisting of SAT verbal and SAT math scores. Not only 

The SAT CAT and test linking described earlier in this chapter (Eignor, 
1993) was never used for operational purposes. In the period between 1993 
AND 1997, the CAT system was improved upon by, for instance, putting in 
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period of time. In addition, the College Board made a decision that an SAT 
CAT would be used operationally with students who were seeking 
placement into talent search programs such as the Johns Hopkins Center 
for Talented Youth. Hence, it was felt that a linking study needed to be 
done with scores from the new SAT CAT system prior to operational 
implementation. The linking or calibration study was done using data from 
regular SAT examinees, although the test was later to be targeted for 
talented youth. 

To conduct the study, the researchers identified a group of examinees 
who had taken a paper-and-pencil SAT form at an operational SAT test 
administration. A subset of these examinees was invited to take a CAT 
version of the test 1 month later; those who subsequently took the CAT 
formed one of the nonrandom groups. The other nonrandom group was 
made up of those examinees from the original group who took another 
operational paper-and-pencil SAT 1 month later. Scores for these two 
groups were calibrated making use of an anchor-test design where the 
score from the original operational SAT administration was used as the 
anchor score. Distributions were smoothed via log-linear procedures and 
then the chained equipercentile method (see Kolen & Brennan, 2004; 
Kolen, Chapter 3) was used to link the scores from the CAT and the paper-
and-pencil test. New conversion tables were created for the CAT and 
compared to the paper-and-pencil conversion tables that existed for the 
paper-and-pencil form taken in the second administration. (As described 
earlier, with the CAT, the estimated abilities were transformed into 
estimated true scores on a reference form that already had a raw to scale 
conversion table.) The magnitude of the differences in the conversion 

is interesting to note that the magnitude of differences from the Eignor 
(1993) study, done using a different CAT system and data collection 
design, were also between 0 and 20 scaled-score points, and the nonzero 
differences in the conversion tables were in the same relative spots on the 
raw score scales in both studies. However, although the differences in the 

concerns about their study, including possible differential motivation 

subsequent SAT, for which scores were reported as usual. However, it 
should be noted that the examinees who took the CAT were given the 
option of keeping their scores or having them canceled. This should have 
helped to eliminate, to some extent, possible motivational differences.

tables for both verbal and math ranged from 0 to 20 scaled-score points. It 

two studies were in the same direction for verbal, they were in opposite 

levels between the examinees who took the CAT and those who took the 

directions for math. Lawrence and Feigenbaum (1997) had a number of 
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8.8. Summary 

A number of issues surrounding the linking of scores on computer-based 
and paper-and-pencil tests were discussed in this chapter. The linking 
relationship between the tests could be characterized as being an equating, 
a calibration, or a concordance, depending on the nature of the CBT. The 
linking for which the most issues surface involves scores on CAT and 
paper-and-pencil forms of a test. Although users would like to be able to 
use the scores from these two sorts of test interchangeably, as would be the 
case if the linking of these scores could be viewed as an equating, such a 
linking can be considered to be, at best, a calibration, primarily because it 
cannot be shown to satisfy the equity requirement of equating. This, 
however, has not stopped score users from treating calibration results as if 
they were equating results. In fact, because the calibration process 
typically yields scores that are reported on the same scale, it is only logical 
that users will treat the calibrated scores as if they were equated scores. At 
present, it is not exactly clear what the consequences are of treating a 
calibration in this context as if it were an equating. It might very well 
prove to be the case that such scores should be related via a concordance 
table. Separate scales would exist for the forms and there would be less 
inclination to use the results as if they came from an equating. However, 
unless specifically cautioned, users will often use the scores related via a 
concordance table as if they were equated scores, even though the scales 

similar concerns with concordance tables. 
The population invariance requirement for the equating of scores was 

not specifically discussed in this chapter. However, a number of reviewed 
studies took a look at the effects of linking transformations on subgroups. 
These include the studies done by Poggio et al. (2005), Schaeffer et al. 
(1993, 1995), Eignor et al. (1994), Segall (1995), and Lawrence and 
Feigenbaum (1997). In all of these studies the (sub)population invariance 
property was not specifically investigated because separate subpopulation 
linkings were not undertaken. This is partly because the invariance 
checking procedures (see Dorans & Holland, 2000) had not been 
developed at the time that most of the studies were done. It would be 
particularly interesting to see whether linkings between CATs and paper-
and-pencil tests, which have been shown not to satisfy the equity 
requirement, also do not satisfy the population invariance property. This 
would add additional strength to the assertion made in this chapter that the 
linking between scores on a CAT and a paper-and-pencil test does not 
qualify as an equating.

A significant portion of the chapter dealt with data collection designs 
necessary to link scores on CBTs and paper-and-pencil tests. This was 

themselves will likely be different. Pommerich (Chapter 11) expressed 
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done in hope that the chapter might provide some guidance to other 
practitioners faced with similar linking situations. It was seen that the 
random groups design provides a mechanism for linking scores on these 
tests that is basically free from the influence of practice or fatigue effects, 
or order effects in general. It was also shown, however, that nontraditional 
applications of the other designs, whereby tests to be linked are not given 
consecutively in one testing session, also provide viable options for linking 
scores.

One final caveat is in order. Much of the material in this chapter was 
based on the author's personal experiences in linking computer-based and 
paper-and-pencil forms of tests and on the experiences documented in 11 
articles located in the literature. This is clearly too small a set of articles on 
which to draw general conclusions of any sort, and it might prove to be the 
case when further studies are conducted that certain of the conclusions in 
this chapter might need to be altered. In fact, this has already happened, 
given that in earlier work this author and other authors considered the 
linking of scores on CATs and paper-and-pencil tests to qualify as 
equatings, whereas more recent work, such as the work of Wang and 
Kolen (2001), has shown this not to be the case. Finally, it should be 
pointed out that the number of studies in the literature addressing linking 
of this sort, and the related problems, will never be voluminous in nature 
because testing programs most often do these sorts of study only once, or 
perhaps a small number of times, as the programs are transitioned from 
paper-and-pencil to computer-based testing. 

Acknowledgments. The author thanks John Mazzeo and Lin Wang for 
their reviews of a draft version of this chapter. 
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In educational settings that focus primarily on student achievement, testing 
programs are almost always in a state of transition, or they should be! Over 
time, changes occur in curricula and student populations. It follows that if 
a testing program is to reflect what is happening in particular educational 
settings, it must evolve to align itself with those settings. Other evolutions 
occur when the conditions of test administration are modified. Movement 
to computer-based testing is an obvious example.

One of the ironies of educational measurement is that such changes in a 
testing program—even when they are widely viewed as improvements—
might jeopardize score comparability to some extent, which is usually 
viewed as anything but an improvement! One route around this problem is 
to adopt a new scale, but for numerous reasons rescaling is often viewed as 
an unacceptable alternative.2 So, frequently, it is decided to make certain 
adjustments to the testing program and/or psychometric “fixes” with the 
goal of keeping the score scale as unaltered as possible. Then the 
overarching question becomes, “Has the score scale been maintained 
adequately enough?” Psychometric evidence to address this question is 
primarily the focus of the chapters by Liu and Walker (Chapter 7) and by 
Eignor (Chapter 8).

Such psychometric evidence is generally viewed in terms of criteria for 
linking, for which there are many lists in the literature. For example, the 
list given by Liu and Walker (Chapter 7, Section 7.2.2) is as follows:

                                                     
1 Robert L. Brennan is E. F. Lindquist Chair in Measurement and Testing, and 
Director, Center for Advanced Studies in Measurement and Assessment, 
University of Iowa. The opinions expressed in this chapter are those of the 
author and not necessarily of the University of Iowa. 
2  Rescaling is considered in more detail in the last section of this discussion. 
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2. Equity 
3. Symmetry 
4. Subpopulation invariance  
5. Equal reliability  
6. Same inferences  
7. Same target population  
8. Same measurement characteristics/conditions  

The extent to which equity and subpopulation invariance are satisfied is 
largely a consequence of test-developer decisions that relate to the other 
six criteria. Both the Liu and Walker chapter and the Eignor chapter in this 
volume consider aspects of these other six criteria, but interestingly, Liu 
and Walker  focus primarily on subpopulation invariance without much 
direct consideration of equity, whereas Eignor focuses more on equity 
issues without much consideration of subpopulation invariance.

In the next two sections, I provide a summary of these two chapters that 
is interspersed with my own comments. The final section provides a brief 
consideration of the need for an integration of equity and subpopulation 
invariance, followed by a consideration of linking versus rescaling.

9.1. The Liu and Walker Chapter on Test Content Changes 

Liu and Walker discussed score linking issues related to test content 
changes, using the new SAT® to illustrate their points. Actually, in many 
respects, the new SAT plays such a central role in their chapter that the 
chapter itself might be viewed largely as a review of rationale, studies, and 
methodology used to support various decisions made about the new SAT.

Liu and Walker provide the following insightful focus for their chapter 
on score linking issues:

At some point early in the redesign process, before we begin to 
investigate issues of score comparability, the testing 
organization must make a conscious decision about what is most 
important in the test revision. … The determination of this most 
important factor will have strong implications for the rest of the 
redesign process. … We need to ask ourselves: What do we 
want to achieve with the new test? What are the constraints? All 
the revisions and data collections should be guided by this 
redesign principle.

As Liu and Walker noted, in the context of the new SAT, the College 
Board stated a priori that they wanted the new critical reading (CR) test 
and old verbal (OV) test to be “equatable,” as well as the new math (NM) 
test and the old math (OM) test. This a priori constraint influenced many 

1. Same construct 
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aspects of the work done by the Educational Testing Service (ETS). Note 
that the new SAT also consists of a new writing (NW) test, for which a 
score scale had to be established, but that is not the focus of the Liu and 
Walker chapter.

To examine “equatability” Liu and Walker considered the following:

Test specifications
Item characteristics
Empirical relationships between old and new tests
Reliability for old and new tests
Conditional standard errors of measurement ( CSEMs ) for old and new 
tests, and
Subpopulation invariance for males and females.

To provide data for various empirical analyses, ETS conducted an 
extensive, well-designed, and well-executed field trial. The basic structure 
was as follows:

Design 1: Equivalent groups. Each student took either a complete old 
SAT (OV + OM) or a complete new SAT (CR + NM + NW).
Design 2: Counterbalanced single group. Each student took an old and a 
new component (OV and CR, or OM and NM).

The field trial, however, had one important limitation: Sample sizes were 
not sufficient for separate linkings for subgroups other than males and 
females.

9.1.1. Content Specifications and Item Characteristics 

Liu and Walker provided a concise and excellent summary of content 
differences between the old and new SATs. Among the differences they 
cite between CR and OV are the following:

Analogy items in OV were replaced by short reading passages in CR.
There is a larger number of reading comprehension items in CR than in 
OV.
Test length was reduced from 78 items in OV to 67 items in CR.

Among the differences that Liu and Walker cited between NM and OM are 
the following: 

There are no quantitative comparison items in NM.
The content in NM was expanded to cover third-year college-
preparatory math.
Test length was reduced from 60 items in OM to 54 items in NM.
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Additional differences between the old and new SATs incude the 
following:

The introduction of NW that consists of both multiple-choice questions 
and a single essay prompt

Section timing changes

An increase in total testing time from three hours to 3 hours and 45 
minutes

Liu and Walker concluded that “the content specifications on the new test 

characteristics (deltas and biserials), OV and CR are very similar, as are 
OM and NM.

On balance, it appears that item statistics are more similar than are 
content specifications for the old and new SATs. This is not too surprising 
given the “redesign” context mentioned previously. Basically, most of the 
content changes were determined (tentatively) before the new SAT items 
were selected for the field trial; thus, it was possible to some extent to pick 
new SAT items that would likely perform similarly as a set to items in the 
old SAT.

9.1.2. Empirical Relationships 

Liu and Walker used Pearson product-moment correlations r  and 

reductions in uncertainty 2RiU 1 1 r  to quantify certain empirical 

relations between the old and new SAT. Dorans (2000, 2004d) argued that 
it is reasonable to require at least 50% reduction in uncertainty for test 
score linkage in high-stakes settings. This criterion requires that 866r .
Liu and Walker report that

(CR,OV) 912 RiU 59 (i.e. 59 )r %

and

(NM,OM) 922 RiU 61 (i.e. 61 )r %

Clearly, the two RiU  values exceed the 50% threshold, although this 
threshold is somewhat arbitrary. Another benchmark that can be 
considered is the old and new cross-test correlations

(OV,OM) (CR,NM) 79r r

do not suggest dramatic changes from the old test.” With respect to item 
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which are notably lower than (CR,OV) 912r  and (NM,OM) 922r ,
as one would hope and suspect.

Observed-score correlations can be informative for judging the 
adequacy of linking, but true-score correlations ( ) that approach unity 
are essential for an argument that a linking deserves to be characterized as 
equating. True-score correlations depend, of course, on reliabilities.

9.1.3. Reliability and CSEMs

With respect to reliability ( Rel ), Liu and Walker stated that “high 
reliability on both tests is needed to ensure that the equated scores are 
informative enough to be accepted by test users (Dorans, 2004d).” They go 
on to report that

Rel(OV)  Rel(CR) = ( 91 93). − .

and

Rel(OM) Rel(NM) ( 91 93)

These results are encouraging in two respects. First, letting  designate 
true-score correlation, these results mean that

(CR,OV) (NM,OM) 1

suggesting that the old and new tests are measuring similar constructs in an 
overall sense. Second, because the reliabilities are approximately equal, as 
are the standard deviations, the CSEMs  are also about equal (in the low 
30s on the SAT scale.) These are important results in supporting the view 
that the score scale is maintained reasonably well, although these results 
do not guarantee that scores for all examinees are interchangeable.

9.1.4. Subpopulation Invariance for Males and Females 

Liu and Walker pointed out that “when population invariance does not 
hold, it tells us that the differential difficulty of the two tests to be equated 
is not consistent across different subgroups.” Methodology for examining 
subpopulation invariance is evolving at a rapid rate. Perhaps the most 
salient initial discussion was by Dorans and Holland (2000); additional 
perspectives are provided by Kolen and Brennan (2004), among others.

For the new SAT, sample sizes from the field trial were adequate for 
examining subpopulation invariance for males and females, only. Liu and 
Walker provide results for OV and CR in great detail; they state that 
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stronger results (i.e., less subpopulation sensitivity) hold for OM and NM. 
Two types of statistics are reported by Liu and Walker:

1. The Dorans and Holland (2000) root mean square difference (RMSD) 
and root expected mean square difference (REMSD) statistics, which 
Liu and Walker usually evaluated relative to a “difference that 
matters” DTM of 5 .

2. Percentage indexes:  
Percent of formula scores for which the absolute value of the 
total and subgroup conversions differ by more than 5 points, 
which will be abbreviated PS  (i.e., percent of scores), and
Percent of examinees for whom the absolute value of the total 
and subgroup conversions differ by more than 5 points, which 
will be abbreviated PE  (i.e., percent of examinees).

An excellent feature of the Liu and Walker discussion of subpopulation 
invariance is that they first provide results for two parallel OV forms; these 
results serve as an informative baseline for subsequent results based on CR 
and OV. Stated briefly, the subpopulation invariance study of the two OV 
forms resulted in RMSD 5  at all scale score levels, and for both males 
and females PS 0  and PE 0 . These results strongly suggest that the 
linking of two OV forms deserves to be called an equating. Ideally, it 
would be desirable to have similar analyses for two CR forms, but two 
such forms were not available for the field trial.

The linking of OV and CR for males and females resulted in RMSD 5

for all but very low scale scores: for males, PS 3 5  and PE 0 7 , and 
for females, PS 1 2  and PE 0 4 . These results suggest minor evidence 
of subpopulation sensitivity with respect to gender. Liu and Walker 
summarize these results in the following terms: “… based on the 
equatability analyses discussed above, we think that the term equating
might be defended for the linkage from new critical reading to the old 
verbal, and for the linkage from new math to the old math.”

There is a somewhat different perspective on these analyses, however, 
that might lead to a slightly more tentative conclusion. The RMSD and 
REMSD statistics compare the male (M) and female (F) linkings to the 
total-group (T) linking; these statistics do not compare the male and female 
linkings directly. When there are more than two subgroups, comparing 
each of them to the total group using RMSD and/or REMSD is convenient 
because it gives a single result regardless of how many subgroups are 
involved. When there are only two subgroups, however, a direct 
comparison of the two linkings seems to me to be an obvious comparison 
to consider. (Kolen & Brennan, 2004, provide statistics for pairwise 
linkings.)
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Figure 7.2 in Liu and Walker plots scaled-score differences for M-T and 
F-T when two OV forms are linked. The difference between these two 
plots gives the M-F scaled-score differences. It appears from Figure 7.2 
that even when two OV forms are linked, the M-F differences suggest a 
hint of subpopulation sensitivity around scale scores of 500 and near 800, 
using DTM 5  as a benchmark. Using the same benchmark, when OV 
and CR are linked and the M-F differences are examined, Figure 7.3 
suggests that there is some evidence of subpopulation sensitivity 
throughout much of the scale score range.

I would argue that when we consider subpopulation sensitivity there are 
two questions that are typically of interest. First, how large are the 
differences between the linkings for the various subpopulations? In the 
context of the Liu and Walker chapter, this question is answered by 
examining directly the M-F scaled-score differences. Second, when a 
decision is made to use the total-group linking operationally, by how much 
are examinees in the various subpopulations advantaged/disadvantaged? In 
the context of the Liu and Walker chapter, this question is answered by 
examining the M-T and F-T differences. In most cases, both questions are 
relevant, but the answers will not be the same. There is no unqualified 
“correct” perspective; these are simply two different perspectives that 
answer different questions.

9.1.5. Other Comments 

issues that relate to linking, and an excellent review of the linking 
conducted for the new SAT. For this linking, the field-test design and data 
collection were superb, but it is important to keep in mind the practical 
constraints involved in the field test. One such constraint was that the data 
were not collected in an operational setting. For this reason and others, 
conclusions about subpopulation invariance for the new SAT are 
necessarily somewhat tentative. Firmer conclusions will be possible when 
a substantial body of operational data for the new SAT is available.

In their discussion of empirical relationships, reliability, and 
subpopulation invariance, Liu and Walker employed numerous statistics 
and often drew conclusions based in part on the magnitude of such 
statistics compared to some benchmark. Two obvious examples are the 
50% RiU  criterion, which requires that 866r  for test score linkage in 
high-stakes settings, and DTM 5  for the SAT. Although I believe that a 
DTM  standard provides a useful benchmark, I do not think that 
conclusions about subpopulation invariance should be based exclusively 
on a DTM  standard (see Brennan, 2006). Population sensitivity, like most 

The Liu and Walker chapter provided an excellent discussion of numerous 



168      Robert L. Brennan 

other psychometric issues, is a matter of degree. Exclusive use of any 
single benchmark can obscure this basic fact and lead to unwarranted or 
too firm conclusions. I am not quarrelling with the Liu and Walker 
discussion of these matters, but a word of caution seems in order.

9.2. Eignor Chapter on Mode of Administration 

Eignor discussed “linking scores derived under different modes of test 
administration,” with almost exclusive attention given to paper-and-pencil 
(P&P) testing and two varieties of computerized testing: computer-
adaptive testing (CAT) and other nonadaptive forms of computer-based 
testing (CBT). Eignor discussed these different modes of administration in 
the context of three types of linking (equating, calibration, and 
concordance) and three designs (random groups, single group 
counterbalanced design, and nonequivalent groups anchor-test design). See 
Holland (Chapter 2) and Kolen (Chapter 3) for detailed treatments of types 
of linking and data collection designs, respectively. 

9.2.1. Types of Linking 

In the terminology used by Eignor:

Equating requires that the two tests (or forms) measure the same 
construct at approximately the same level of difficulty and with the 
same reliability. Eignor noted that equity is satisfied for equated scores, 
and it is a matter of indifference to any examinee as to which form she 
or he takes. In this sense, scores that deserve to be called “equated” are 
“truly interchangeable,” to quote Eignor. As an example, Eignor cited 
linking a linear CBT version of an extant P&P test built to the same 
specifications.

Calibration also requires that the two tests measure the same construct at 
approximately the same level of difficulty, but reliabilities could differ. 
As an example, Eignor cited linking a CAT version of an extant P&P 
test. Eignor argued persuasively that in this case second-order equity 
will not be satisfied because conditional standard errors of measurement 
will differ for the CAT and P&P tests.

Concordance requires that the two tests measure similar constructs, with 
somewhat similar levels of difficulty and reliability. Eignor argued that 
“scores that have been concorded cannot be treated as being 
interchangeable.” As an example, Eignor cited a CBT test and a P&P 
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test constructed to somewhat different specifications (e.g., the use of 
innovative item types and/or updated test content for the CBT).

When Eignor argued that “scores that have been concorded cannot be 
treated as being interchangeable,” he could mean two things. First, such 
scores are not interchangeable; second, such scores should not be used 
interchangeably. The first statement is unarguable in the sense that such 
scores are not “equated.” The second statement, however, focuses on “use” 
of scores, which immediately engages a number of practical issues. For 
example, the quintessential example of concordance is the linking of ACT®

and SAT scores, which traditionally results in a single table of 
“equivalent” scores that are indeed used as if they were interchangeable. 
In my experience, arguing against such use is a lost cause, but cautioning 
users about potential errors in such use is both necessary and possible.

In my opinion, Eignor’s discussion of equating, calibration, and 
concordance is primarily in the context of equity issues (what might be 
called the “matter of indifference” criterion), but his chapter does not get 
into technical details about equity. It is difficult to treat equity in a manner 
that is both practically useful and technically defensible. Although much 
work in this area remains to be done, a particularly useful article is 
provided by Hanson, Harris, Pommerich, Sconing, and Yi (2001). They 
introduced the terms “closely equatable scores” (equating), “weakly 
equatable scores” (calibration), and “nonequatable” scores (concordance). 
They focused on construct dis/similarity, first-order equity, and second-
order equity, and they considered linkage at the level of individual scores 
and at the level of score distributions.

It seems that the above taxonomic terms and the examples might be 
misaligned sometimes. For example, it is not clear that linking scores for a 
P&P test and a linear CBT version of it will always result in “equated” 

differences in clarity between the presentation of items (particularly 
figures) in the two administrative modes. Kolen (Chapter 3, Section 3.2) 
explicitly included the conditions of administration as a formal component 

has direct relevance for mode of administration studies. 

scores in the sense used by Holland (Chapter 2, Section 2.4.1 ) and most
recent treatments of equating and linking (e.g., Kolen & Brennan, 2004). CBT 

in his treatment of linking relationships. As a consequence, his treatment 

constrains certain types of behavior in ways that some examinees might
consider frustrating or confusing, with a potential negative impact on at least 
some scores. Furthermore, some examinees’ scores might be influenced by 
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9.2.2. Designs 

The majority of the Eignor chapter focuses on three designs and examples 
of them that have been discussed in the literature on linking computerized 
and P&P tests. This is an excellent discussion that is noteworthy for its 
comprehensiveness and clarity, and I make no attempt to summarize it. 
Rather, I focus here primarily on a few issues that I think might be 
somewhat arguable or merit more consideration. My concerns are very 
minor, however, compared to the quality of Eignor’s discussion of designs.

Random groups design. For establishing a linkage between a 
computerized and P&P test, often a random groups design is preferable to 
other designs provided, as Eignor noted that differential dropout is not a 
significant problem and sample sizes are sufficient. Relative to a single 
group design, sample size requirements for a random groups design are 
larger. However, relatively small sample sizes are adequate using linear 
linking with a random groups design. 

Single group counterbalanced design. A distinct advantage of the 
random groups design is that each examinee takes only one test or test 
form, which means that administration conditions in the study mirror those 
that will be used operationally. By contrast, for the single group 
counterbalanced design, each examinee takes two tests or test forms, 
which raises the distinct possibility of contamination due to practice and/or 
fatigue effects. Eignor provided an excellent discussion of these effects in 
the context of the single group counterbalanced design.

Nonequivalent groups anchor test design.3 A crucial aspect of the 
nonequivalent groups anchor-test design is that, for this design to work 
well, the anchor test needs to mirror the full-length test in all respects (see 
Kolen & Brennan, 2004), including mode of administration. Also, in 
considering this design, it is helpful to consider the location of the anchor 
(before, after, or embedded) and whether the anchor is part of the score 
(interval or external). It appears that Eignor’s discussion usually makes an 
implicit assumption that the anchor is external.

Eignor correctly noted that

Both groups would need to take exactly the same anchor test in 
exactly the same position and in exactly the same mode. (The) 
same mode for the anchor test across tests … makes it difficult 
to conduct linkings with this design when the test and the anchor 
are to be given consecutively in one testing session. 

                                                     
3

(see Kolen & Brennan, 2004). See Kolen (Chapter 3) for further discussion of 
these designs. 

  This design is sometimes called the common-item nonequivalent groups design 
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There is one additional and potentially insurmountable problem when 
computerized and P&P tests are linked using the nonequivalent groups 
anchor test design. The crux of the matter is that the items in an anchor-test 
administered via computer will not necessarily function the same way in 
the P&P mode, and there is no way to circumvent this potential problem 
using the nonequivalent groups anchor-test design. See Kolen (Chapter 3, 
Section 3.2) for more on the role of mode of administration. 

9.2.3. Other Comments 

In at least two places Eignor noted that “estimated true scores on the 
reference form (for a CAT) can … be linked or calibrated with observed 
scores on the test given in the paper-and-pencil mode.” It is rather natural 
to do this because observed scores (rather than true scores) are usually 
reported for a P&P test, whereas for a CAT often item response theory 
(IRT) theta estimates are transformed to IRT estimated true scores. 
Logically, however, it seems rather inconsistent to link observed scores 
(on a P&P test) with true scores (on a CAT) when both tests are 
presumably measuring the same construct. Note that there is no reason to 
believe that this linkage would be the same as a true-score to true-score 
linking or an observed-score to observed-score linking.

Eignor noted that “samples used in the linking should be representative 
of the population,” which is clearly desirable. However, very often, linking 
is conducted using data outside an operational administration, and in such 
cases, practical data collection issues often render the data quite 
unrepresentative of the population that will take the new CBT. When this 
occurs, results need to be interpreted with caution.4

9.3. Additional Perspectives 

The two preceding chapters in this part are very well written and well 
reasoned. They are truly state-of-the-art considerations of linking scores 
for tests that are undergoing changes in content specifications and/or 

                                                     
4  Perhaps the quintessential example of unrepresentativeness is data typically used 

to create ACT–SAT concordances. By definition, the self-selected group of 
examinees who choose to take both tests is not the group for which the 
concordance will be used. There is no practical way to avoid this problem, but it 
does limit the scope of legitimate inferences.  These concerns were discussed 
directly in the chapters by Dorans and Walker (Chapter 10), Pommerich 
(Chapter 11), and Sawyer (Chapter 12) in the section on concordance. 
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administrative conditions. However, the state of the art is not as far 
advanced as we might like in all respects. In particular, it seems  that we 
need more integration of equity and subpopulation invariance in both 

at one important question that almost always arises when tests undergo 
transitions—namely should scores be linked or should a rescaling be 
undertaken?

9.3.1. Equity and Subpopulation Invariance 

As noted previously, the Liu and Walker chapter gives considerable 
attention to subpopulation invariance, whereas the Eignor chapter focuses 
more on equity issues in a general sense. Eignor, however, did make the 
insightful statement that “it would be particularly interesting to see 
whether linkings between CATs and paper-and-pencil tests, which have 
been shown not to satisfy the equity requirement, also do not satisfy the 
population invariance property.”

Stated more broadly, I suggest that a deep understanding of linking 
requires an integrated treatment of both subpopulation invariance and 
equity (as well as other criteria, of course). Such a treatment remains to be 
developed. In my opinion, subpopulation invariance is the simpler matter. 
We have more statistical and psychometric tools to quantify it and more 
consensus about how to study it. By contrast, it does not seem that the field 
of psychometrics has achieved any consensus about how to study equity, 
although I believe that Hanson et al. (2001) provides some useful 
perspectives, as does Kim, Brennan, and Kolen (2005).

A theoretically coherent and practically useful integration of equity and 
subpopulation invariance would be a tremendous contribution to the field 
of linking. In the meantime, I suggest that any linking of tests in transition 
should give at least some consideration to both subpopulation invariance 
and equity (as well as other criteria, of course), even if the treatment is not 
as integrated as we might like, given current limitations of the field. 

9.3.2. Linking Versus Rescaling 

One of the most sensitive and potentially volatile issues often encountered 
when tests undergo transition is whether scores should be linked or 
rescaled. The comments I offer here are intended as a brief, general 
consideration of this matter, not evaluative comments specifically directed 
at the chapters discussed here or any particular testing program.

Actually, it is not quite accurate to characterize the situation considered 
here simply as linking versus rescaling. Consider, for example, the 

theory and practice. Also, the two chapters discussed here only hint 
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rescaling of the “new” ACT first administered in 1989 (see Brennan, 
1989). Separate studies were conducted that led to a rescaling for each of 
the four tests in the ACT. In addition, for two of the tests, there were old-
scale to new-scale linkings in the sense of concordances that were made 
available to users to facilitate transition from the old score scale to the new 
score scale.5 In addition, of course, new forms of the tests in the new ACT 
were linked in the sense of equated. For the purposes of this discussion, the 
important point is that the new scales were indeed a break with the past in 

than linked.
As noted previously, in educational settings that focus primarily on 

student achievement, testing programs are almost always in a state of 
transition, or they should be. Sometimes the transitions are abrupt; 
sometimes they are more gradual. For example, the introduction of the 
“new” ACT in 1989 and the recentering of the SAT (Dorans, 2002) were 
rather abrupt changes that involved a rescaling of scores for these 
programs. For less abrupt changes, a central concern is often whether the 
linking can be defended as an “equating.”

In the usual course of events, from one year to the next, changes in 
testing programs are typically not dramatic, and seldom does anyone 
quarrel with calling the linking of scores from year to year an “equating.” I 
suggest, however, that this common view might merit some qualification 
from at least two (somewhat related) perspectives. First, for almost all 
testing programs, when any given form is equated, the links to past years 
are seldom older than 3–4 years, if that. So, there is only indirect evidence 
about the maintenance of the score scale for a longer period of time.6

Second, over an extended period of time, even small year-to-year changes 
could add up to substantial differences between old and new forms.

 The Standards for Educational and Psychological Testing
(American Educational Research Association, American Psychological 
Association, & National Council on Measurement in Education [AERA, 
APA, & NCME], 1999) addressed the matter of rescaling as follows:

Standard 4.16: If test specifications are changed from one 
version of a test to a subsequent version, such changes should be 
identified in the test manual, and an indication should be given 

                                                     
5 These concordances were used only for a limited period of time. 
6 The indirect evidence is based on transitivity assumptions. For example, if Form 
G administered in 2005 is equated to Form D administered in 2000, and Form D 
was previously equated to Form A administered in 1997, then we claim that 
Form G has been equated to Form A—but only if all relevant assumptions are 
fulfilled. 

the sense that particular scores on the old scales did not have the same 
meaning on the new scales. So, in that sense, scores were rescaled rather 



174      Robert L. Brennan 

that converted scores for the two versions may not be strictly 
equivalent. When substantial changes in test specifications 
occur, either scores should be reported on a new scale or a clear 
statement should be provided to alert users that the scores are 
not directly comparable with those on earlier versions of the 
test.

On the surface, this standard might seem unambiguously clear. In my 
opinion, however, this standard provides relatively little practical guidance 
for determining when a rescaling should be undertaken. For the reasons 
discussed next, I am not at all sure that this standard could be written in a 
manner that would provide practical guidance applicable to all testing 
programs.

Most of the problem is how to interpret the two key phrases: 
“substantial changes in test specifications” and “directly comparable.” A 
related problem involves the inferences drawn with test scores. For 
example, if comparisons are typically made among examinees within a 4-
year window, it might not matter much if test specifications change 
substantially only over a 10-year window. On the other hand, even 
relatively small changes in test specifications might influence a 20-year 
trend line.

The phrase “directly comparable” is also problematic. A strict 
interpretation of that phrase would seem to be that, for each and every 
examinee, it is a matter of indifference which form she or he takes. In this 
sense, “directly comparable” means that scores are “strictly 
interchangeable” (a phrase used in the comment to Standard 4.16) or, 
stated differently, the criterion of score equity is achieved in its fullest 
sense. As Lord (1980) noted decades ago, however, under this criterion, 
equating is either impossible or unnecessary! No one would argue about 
the ideal being equated scores in the strict sense of “directly comparable,” 
but this unachievable goal does not provide practical guidance with respect 
to when a linking can be justified as an “equating” or when changes in a 
testing program are so substantial that a rescaling should be undertaken. It 
is also worth noting that most of the literature on linking (except for 
equating) has been generated since the 1999 Standards (AERA, APA, & 
NCME, 1999) was published. It is not clear, of` course, whether this new 
linking literature would cause the authors of the Standards to modify 
Standard 4.16.

Rescaling might be a psychometric issue, but decisions about whether to 
rescale are seldom made by psychometricians. In my career, on several 
occasions I have suggested that rescaling be undertaken for particular 
testing programs. Usually that advice has been rejected outright or 
postponed, sometimes indefinitely. Resistance to rescaling is often 
visceral. Some reasons for this resistance are quite understandable (e.g., 
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time, cost, analysis difficulties, communication complexities); other 
reasons are more subtle or even misguided. For example, some view 
rescaling as an implied admission of mistakes in the previous scale. Others 
honestly believe that a test can be improved without in any way altering 
the meaning of the scores.

In the future, my guess is that rescaling will continue to be a relatively 
rare undertaking, and arguments about the merits of linking versus 
rescaling will continue. Whether scores are equated, linked in some 
weaker sense, or rescaled, however, the overarching consideration in my 
opinion is that users be given appropriate guidance about score 
interpretation and use. Part of that guidance ought to be explicit indications 
of the amount of error in scores and in the likely uses made of scores, as 
well as admonitions about likely misinterpretations of scores.
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How do we know whether we can achieve the interchangeability of scores 
associated with equating, the meaningful comparability of scales suggested 
by a concordance, or simply have to settle for the expected scores provided 
by prediction? 

Neil Dorans and Michael Walker in Sizing up Linkages, answer this 
question by contrasting equating, concordance, and prediction. Data about 
the size and shape of professional athletes are used to illustrate how 
measures of uncertainty reduction and population invariance can help us 
distinguish among settings in which it is better to equate, concord, or 
predict.

Mary Pommerich in Concordance: The Good, the Bad, and the Ugly
makes it clear that concordance is a weaker form of linking than equating. 
Concordance tables are often created as a convenience to test users, 
allowing them to link scores across tests that were never intended to be 
linked. Her chapter discusses a variety of practical issues that should be 
considered throughout the concordance process. She uses a linkage 
between ACT® and SAT® scores for use in undergraduate college 
admissions to illustrate her points.

In Some Further Thoughts on Concordance, Richard Sawyer discusses 
some general ideas on the uses of concordance tables. He relates them to 
points made in the two preceding chapters. He illustrates his ideas with the 
same example that Pommerich used. He ends his chapter with his own 
unique contribution to the mix of levity and serious scholarship that 
characterizes this part. 

Part 4:  Concordance 



10    Sizing Up Linkages 

Neil J. Dorans and Michael E. Walker1

Educational Testing Service 

10.1. Introduction 

A link between scores on two tests is a transformation from a score on one 
to a score on the other. Transformations that link the scores on two tests 
can be of different types. For example, any score can be predicted from 
any other score(s) via an asymmetric regression equation. Alternatively, 
symmetric relationships can be established between pairs of scores, given 
the correct data collection designs. Whether these symmetric relationships 
possess any interpretative value can be determined with the help of 
statistical indexes used in conjunction with reasoned thresholds. 

A variety of frameworks have been proposed for categories of score 
linking (Angoff, 1971; Dorans, 2000, 2004d; Feuer, Holland, Green, 
Bertenthal, & Hemphill, 1999; Flanagan, 1951; Kolen, 2004a; Linn. 1993; 
Mislevy, 1992). Holland and Dorans (2006) divided linking methods into 
three basic categories: predicting, scale aligning, and equating. In the 
Holland and Dorans framework, which is described in Holland (Chapter 2), 
equating represents the end point of a continuum that begins with methods 
that make no assumptions about the relationship between the tests being 
linked (prediction and battery scaling) and proceeds to methods that are 
appropriate for linking tests that measure similar constructs and could be 
built to the same set of specifications (concordances and equating). 

All linking frameworks define equating as the strongest form of linking 
between the scores on two tests. The goal of equating is to establish an 
effective equivalence between scores on two test forms such that the scores 
                                                     
1

of Educational Testing Service. 
  The opinions expressed in this chapter are those of the authors and not necessarily 
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from each test can be used as if they had come from the same test. To 
achieve this goal of interchangeable scores, strong requirements must be 
put on the blueprints for the two tests and on the method used for linking 
scores. Among other things, the two tests must measure the same construct 
at about the same level of difficulty and with nearly the same reliability.

Predicting is the oldest form of score linking. The goal of predicting is to 
estimate an examinee’s score on a test from other information about that 
examinee. The predictor is often multivariate in nature. It might include scores 
from several other tests, demographic information, and other types of 
information. When the predictor is multivariate and the model is compensatory, 
as is often the case, there is an asymmetry between the predictor and the 
predicted score, in that the predicted score can come from many combinations 
of the multivariate predictor. In the case of  univariate and multivariate 
predictors, there is also an asymmetry that results from the loss function used to 
predict the criterion. Asymmetry prevents prediction from meeting one of the 
fundamental prerequisites of equating, the goal of which is to produce scores 
that can be used interchangeably. All the same, predicting has been confused 
with equating since the earliest days of psychometrics, and continues to be 
confused with it. 

The goal of scale aligning is to transform the scores from two different 
tests onto a common scale. The statistical procedures used for scale 
alignment can also be used to equate tests. Holland (Chapter 2, Section 2.3) 
reported that scale aligning has many subcategories, including activities 
such as battery scaling (Kolen, 2004a), anchor scaling (Holland & Dorans, 
2006), vertical scaling (Kolen & Brennan, 2004), calibration (Holland & 
Dorans, 2006), and concordance (Pommerich & Dorans, 2004a). Concor-
dances represent scalings of tests that are very similar but that were not 
created with the idea that their scores would be used interchangeably. 

In this chapter, we present criteria and procedures that can be used to 
distinguish among equating, predicting, and concordance (the form of 
scale alignment that is closest to equating). We argue that scale alignment 
is the default linkage. We also maintain that prediction might be the 
preferred form of linkage among unreliable tests.

A critical question that we address in this chapter is: How do we know 
whether we can achieve the interchangeability of scores associated with 
equating or the meaningful comparability of scales suggested by a 
concordance, or do we have to settle for the expected scores provided by 
prediction?

In Section 10.2 we review the five critical requirements for equating and 
indicate which requirements are not met by predicting and scaling for 
concordance. In Section 10.3 we discuss the important role of reliability. 
In Section 10.4 we describe measures of uncertainty that can be used to 
evaluate whether the interchangeability of scores sought through equating 
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is within reach or whether the scale alignment provided by a concordance 
can be sensibly interpreted. In Section 10.5 indexes of population 
invariance are introduced that help separate equating from scaling for 
concordance. In Section 10.6 data about size and shape are used to 
illustrate how measures of uncertainty reduction and population invariance 
can help us distinguish among settings in which it is better to equate, 
concord, or predict. Finally, in Section 10.7 we summarize key points that 
help in making distinctions among equating, concording, and predicting. 

10.2. What Makes a Linking an Equating? 

What distinguishes test equating from other forms of linking is its goal. 
The goal of equating two tests is to allow the scores from both to be used 
interchangeably, for any purpose. This is a very demanding goal, and 
experience has shown that to achieve it, the two tests and the methods used 
to link them must satisfy very strong requirements. 

Dorans and Holland (2000) listed five requirements that are widely 
viewed as necessary for test equating to be successful: (a) The tests should 
measure the same constructs; (b) the tests should have the same reliability;
(c) the equating function for equating the scores of test Y to those of test X
should be the inverse of the equating function for equating the scores of X
to those of Y; (d) it should be a matter of indifference to an examinee to be 
tested by either one of two tests that have been equated; and (e) the choice 
of (sub)population used to estimate the equating function between the 
scores of tests X and Y should not matter; that is, the equating function 
used to link the scores of X and Y should be population invariant. For 
more details about these requirements, see Holland (Chapter 2, Section    
2. 4.1). 

If we examine the five requirements, we can see why concordance and 

tests that measure similar things according to different blueprints. 
Although the tests might have similar difficulty and reliability, they will 
satisfy requirement (a) only approximately: a limitation that might be 
reflected in the failure of requirement (e) and possibly requirement (d).

Prediction methods need not satisfy any of the five requirements. The 
asymmetry between predictors and outcomes violates requirement (c). 
Furthermore, requirements (a) and (b) of measuring the same construct and 
being equally reliable play no role in prediction. Requirement (d) is 
irrelevant in this context. Finally, it often makes sense to include subgroup 
membership as predictors to improve prediction. This incorporates 
population sensitivity directly into the prediction, whereas equating 

prediction will not meet the criteria for equating. Concordances are used with 
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To achieve the interchangeability of scores, two tests must measure the 
same construct, should have equal reliability, and their linkage must be 
invariant across populations. Dorans and Holland (2000) showed that the 
correlation between the two tests sets an upper bound on the population 
dependence of the linking. Thus, when the correlation between the two 
tests is high, which implies high test score reliability, then the linkage 
between the tests will be minimally variant across important subgroups. 

To assess whether two scores measure the same construct, we can 
evaluate the similarities of the processes that produced the scores to see if 
the constructs measured are similar. A careful content evaluation is needed 
to establish similarity. At the very least, a logical evaluation of test 
specifications can be done. Although this approach is a good first step, one 
should avoid the pitfall of assuming construct similarity based solely on a 
description of test content. English is a living language that has been fed 
by many sources (Winchester, 1998). Many words have multiple 
meanings. Our use of language is elastic. We see similarities among words 
that have little in common. For example, assuming that a verbal reasoning 
test measures the same thing as a test of English simply because the test 
titles make them sound like similar constructs is a mistake (Dorans, 

on the basis of differences in test specifications might not be reflected in 
empirical results when examinee performance is studied.

Examining the similarity of examinee performance on two measures 
rather than relying solely on the apparent similarity or dissimilarity of the 
test specifications provides the best evaluation of the similarity of the two 
measures. The ambiguity of language makes it all the more important to 
assess the strength of the empirical relationship between the scores to be 
linked. Ideally, an empirical evaluation will use procedures such as factor 
analysis or other variants of structural equation modeling. At the very 
least, correlations should be computed from a joint distribution of scores 
on the tests to be linked.

Requirement (e), which is easy to test in practice, also can be used to 
explain why requirements (a) and (b) are needed. If two tests measure 
different things or are not equally reliable, then the standard linking 
methods will not produce results that are invariant across certain 
subpopulations of examinees. Dorans and Holland (2000) used 
requirement (e), rather than requirement (d), to develop quantitative 
measures of equatability. Their measures indicate the degree to which 
equating functions depend on the subpopulations used to estimate them. 

Holland work to the multiple population case. Yin, Brennan, and Kolen 

functions should not depend on subpopulations, according to requirement (e). 

von Davier, Holland, and Thayer (2004a) extended the Dorans and 

2004d). Distinctions that are made between measures of the same construct 
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(2004) also extended the Dorans and Holland work. A special issue of 
Journal of Educational Measurement (Dorans, 2004a) contains further 
extensions of population sensitivity assessment. 

This section briefly outlined some ways to distinguish among equating, 
concordance, and prediction. Now that we know these distinctions, we can 
turn to statistics that can help determine which type of link is most 
appropriate given the data. 

10.3. Why Is Reliability Important? 

Adequate reliability is needed to ensure that the results associated with an 
equating are informative enough to be acceptable for practical use with 
individuals. Strictly speaking, equating only requires scores that are 
equally reliable. Hence, sets of random numbers generated by the same 
process and assigned to individuals are “equatable” in this formal sense of 
equating. The utility of these scores as “measures” of individual attributes 

Support for the importance of reliability can be extracted from the 
Holland and Hoskens (2003) treatment of classical test theory as a first-
order item response theory. They looked at predicting a true score on a test 
from an observed score on that test and another nonparallel test that 
measures a different construct. They noted that in both these cases it is 
necessary to condition on nontest information such as group membership 
whenever the reliability of the observed score is low and the nontest 
information is related to the observed score. In others words, to the extent 
that the reliability departs from unity, the estimate of the true score is 
subpopulation dependent. By implication, when the reliability is high, 
there is less opportunity for differences to exist between the observed score 
and the nontest information that is independent of the true score. 

Reliability is the squared correlation between an observed score and its 
expectation. The correlation between sets of scores can be used to 
distinguish formally equivalent but mostly meaningless scores from scores 
that are formally equivalent and potentially useful. Two measures with low 
and equal reliability and a true-score correlation close to unity might 
possess high levels of potential linkability, but it will take some effort to 
convert that potential linkability into actual linkability that can be used in 
practice. The degree of relationship needed will depend on the use of the 
scores. Randomly generated scores are fine if we only want to use the 
scores to estimate a score distribution. High correlations between measures 
and, consequently, high reliability are needed for settings in which scores 
are used to make significant decisions that affect the course of an 
individual’s life. Note that as the correlation between two measures 

is nonexistent, however.
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concordant, and equated scores will converge (Dorans & Holland, 2000). 
Thus, high correlations, and hence high reliabilities, are good and cause 
distinctions among classes of linkages to vanish. Unfortunately, these 
correlations are directly computable only in the single group design, which 

10.4. Uncertainty Reduction 

Dorans (2004d) used the concept of uncertainty reduction to assess the 
degree of alignment between two linked scores, X and Y. Reduction in 
uncertainty (RiU) is defined as 

2RiU 1 1
xy

,

where 2

xy
 is the squared correlation between scores on X and Y,

Alternatively, we can write 

2
(1 )

100 RiU 100 ,
Y

Y

xyYP P

P

where
YP

 is the standard deviation of Y in population P. This standard 
deviation represents the total uncertainty associated with predicting a score 
on Y given no other information. The right-hand term in the numerator is 
the familiar standard error of prediction (SEP), which indicates the amount 
of uncertainty in Y that remains after X is used to predict Y. The 
difference between the two terms gives the amount by which uncertainty in 
predicting Y has been reduced by using X as a predictor. In this form, RiU 
is seen to be the percentage of uncertainty in Y that is eliminated with 
knowledge of X.

Related to the SEP is the standard error of measurement (SEM): 

SEM 1 .
YP yy

Here
yy

 is the reliability of score on Y. The SEM of Y is less than or 

equal to the SEP. (The equality occurs when 2

xy yy
, in which case the 

true-score correlation between X and Y must be unity and X must be 
perfectly reliable.) This fact is hardly surprising. Recall that the reliability 
coefficient

yy
 is properly interpreted as the correlation between scores on 

is rarely used for data collection (see Kolen, Chapter 3, Section 3.5). 

approaches unity, population invariance will be achieved and the predicted, 
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a measure Y and scores on a parallel measure Y'. The reliability 
coefficient can also be interpreted as the squared correlation between 
observed scores on Y and the true scores that Y estimates. Interpreting the 
SEM in terms of reduction of uncertainty, we see that the true scores for 
measure Y (we can think of these as scores from a perfectly reliable 
measure of the construct that Y measures) are as good or better predictors 
of Y than any other possible predictor X.

Note that when 0
xy

, there is a zero reduction in uncertainty about 

scores on the measure to be predicted. For example, if the information in 
the predictor variable (say, a randomly selected student number) has no 
relationship with variation in scores on the variable to be predicted (e.g., 
high-school grade-point average [GPA]), then the predictor does nothing 
to reduce uncertainty about performance on the variable to be predicted 
(high-school GPA). In contrast, 100% reduction of uncertainty is achieved 
when 1

xy
.

A 50% reduction in uncertainty is halfway between 100% reduction 
( 1

xy
) and 0% reduction ( 0

xy
). A correlation coefficient of at least 

.866 between the predictor and the score to be predicted is needed to 
reduce the uncertainty of knowing a person’s score by at least 50%. If a 
predictor cannot reduce uncertainty by at least 50%, it is unlikely that the 
predictor can serve as a valid surrogate, via concordance or equating, for 
the score being predicted. 

The above is a strong statement that might engender dissent. It implies 
that two scores with a correlation of .866 are needed before useful equating 
or concordance can be obtained. Others might argue that this implied 
criterion is unnecessarily strict. Note, however, that whereas the number 
.866 in correlation units is 86.6% of the way to a perfect correlation, the 
corresponding number of .50 in RiU units is only halfway to zero 
uncertainty.

Comparison of the RiU to other measures might help to place the above 
suggestion into context. Table 10.1 provides such a comparison. It shows 
how RiU relates to the reliability of a measure Y (in the case of equating), 
the correlation between Y and a predictor X (in the case of concordance), 
and the SEM (or SEP) as a percent of standard deviation on Y. Table 10.1 
shows that an RiU of .50 corresponds to a reliability of .75 and an SEM of 
one-half the standard deviation. These reliability and SEM measures 
represent a test with fairly low precision. In a sense, scores from the same 
form of the test are not highly comparable to each other. It only stands to 
reason that any attempt to link such a test to another test of comparable 
reliability is bound to end in disappointment. As mentioned earlier, low 
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Table 10.1 also shows the signal-to-noise ratio (SNR). The SNR is the 
ratio of explained variance to unexplained variance in a measure Y. In the 
context of reliability, SNR is the ratio of true-score variance to error 

predicted score variance to residual variance. Consider the true score, error 
score case first. When the correlation of an observed score with its true 
score is .87, the reliability is .75. If we knew the true score and used it to 
predict an observed score, the SNR associated with this correlation of .87 
and reliability of .75 would be 3:1.

2

 The same reasoning leads to a SNR of 
3:1 for a correlation of .87 in the context of prediction. 

Perhaps the most provocative relationship in Table 10.1 involves the 
decibel (dB), which is a logarithmic translation of the SNR. This measure 
is quite familiar to physical scientists and engineers. The psychometric 
analogue is computed for the prediction case using 

2 2

10 2 2
dB 10log .

1

xy YP

xy YP

decibel levels. According to the table, a reliability (or squared correlation) 
of .5, a correlation of .71, and an RiU of .29 correspond to 0 dB, the 
threshold of human hearing. A reliability of .91, a correlation of .95, and 
an RiU of .70 are equivelant to 10 dB, which corresponds to an auditory 
stimulus with the intensity of gently rustling leaves. A reliability of .99 and 
an RiU of .90 correspond to 20 dB, the intensity of a whisper. Not until an 
RiU of .99 and a reliability close to 1.0 do we reach the intensity of normal 
human speech. 

                                                     
2 Recall  that reliability is defined as 2 2 ,

yy T YP
 where 2

YP
 is the  total 

score variance and 2

T
 is the true-score variance. Because by definition 

2 2 2 ,
YP T E

where 2

E
 is the error variance, the SNR (the ratio of true score to 

error variance) can be computed as 1 .
yy yy

reliability is likely to result in subpopulation dependence of the equating

variance; more generally, in the context of prediction, SNR is the ratio of 

functions (Dorans & Holland, 2000; Holland & Hoskens, 2003). 

Table 10.1 includes some common sounds, along with estimates of their 

If we push the auditory analogy, we would reach the conclusion that we 
should not even bother with a test with a reliability less than .50, that the 
reliability of .91 that people in the education field usually consider quite 
high results in measures that are soothing but far from informative, and 
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Table 10.1. Comparison of several measures of signal strength: RiU, correlation, 
reliability, SEM or SEP, SNR, and decibels 

RiU xy
         

SEM, SEP 
(as % of SD)     SNR      dB 

Reference
sound

0.999 1.000 1.000 0.1 999999:1 60.000 Normal speech 
0.997 1.000 1.000 0.3 99999:1 50.000  
0.990 1.000 40.000  
0.968 0.999 0.999 3.2 999:1 29.996  
0.929 0.997 0.995 7.1 199:1 22.989  
0.900 0.995 0.990 10.0 99:1 19.956 Whisper 
0.859 0.990 0.980 14.1 49:1 16.902  
0.827 0.985 0.970 17.3 32.3:1 15.097  
0.800 0.980 0.960 20.0 24.0:1 13.802  
0.776 0.975 0.950 22.4 19.0:1 12.788  
0.755 0.970 0.940 24.5 15.7:1 11.950  
0.735 0.964 0.930 26.5 13.3:1 11.234  
0.717 0.959 0.920 28.3 11.5:1 10.607  
0.700 0.954 0.910 30.0 10.1:1 10.048 Rustling leaves 
0.684 0.949 0.900 31.6 9.0:1 9.542  
0.613 0.922 0.850 38.7 5.7:1 7.533  
0.553 0.894 0.800 44.7 4.0:1 6.021  
0.500 0.866 0.750 50.0 3.0:1 4.771  
0.452 0.837 0.700 54.8 2.3:1 3.680  
0.408 0.806 0.650 59.2 1.9:1 2.688  
0.368 0.775 0.600 63.2 1.5:1 1.761  
0.329 0.742 0.550 67.1 1.2:1 0.872  
0.293 0.707 0.500 70.7 1.0:1 0.000

that only with reliability of .99 can our test convey information with any 
degree of certainty. It is a safe guess that few experts in the field would 
take so extreme a position as the above. Placed in this context, however, an 
RiU of 50% (and its correlation of .87, reliability of .75, and 4.77 dB) 
appears neither stringent nor unreasonable.

Another measure of uncertainty is the Holland-Hoskens prediction 
inflation factor, which measures the increase in prediction error when the 
true score for one construct is predicted using the observed measure of a 
separate construct, rather than using an observed score for the construct 
being predicted (Holland & Hoskens, 2003). A simplified approximation is 

1.000

Threshold of hearing 

xx

1.0 9999:1

Assuming unit variance for Y, the denominator is the squared SEM of Y,
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2
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1

xy
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yy

H

or the error variance associated with predicting the true scores on Y from 
the observed scores on Y. The denominator is also the proportion of total 
variance in Y that cannot be predicted by any means. The numerator is 
equal to 1 minus the ratio of the proportion of variance in Y that X can 
predict to the proportion of variance in Y that is predictable. Note that the 
right-hand term of the numerator is the correlation between scores on X
and Y corrected for the unreliability of Y; so that the right-hand term gives 
the squared correlation between scores on X and the true scores on Y.
Thus, the numerator gives the error variance associated with predicting the 
true scores on Y from the observed scores on X. The entire ratio gives an 
index of the increased error of prediction associated with relating measures 
of two different constructs.

It might be difficult to develop useful criteria for H; nonetheless, the 
index can be useful as a diagnostic tool. The prediction inflation factor H
is generally greater than 1. For equating situations, H should be very close 
to 1. For larger values of H, equating is less appropriate, but concordance 
might still be possible. As mentioned earlier, the magnitude of the 
correlation also plays a role. Lower values of H associated with low 
correlations suggest that the reliabilities of the measures stand in the way 
of a meaningful equating or concordance. Low values of H for high 
correlations suggest that equating might be possible. High values of H
associated with lower correlations suggest that prediction is the only 
option. High values of H for high correlations indicate highly reliable 
criterion variables.

10.5. Population Invariance of Linking Functions 

Linking is a relationship that is defined in a population. The degree to 
which two scores can be linked depends on the properties that the scores 
have in the population in which they are linked. Population-free linking, 
although of interest in a theoretical sense, is in practice unattainable. What 
is of interest is the degree to which a linking is population sensitive. 
Checking the equivalence of equating relationships across subpopulations 
is a sure way of assessing the population invariance requirement. The 
absence or presence of population invariance distinguishes a concordance 
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(absence of invariance) from an equating (presence of invariance). 
Equatings are essentially invariant across subpopulations from the 
population of interest. Concordances are expected to be sensitive to choice 
of population, as are predictions. 

Since the publication of Dorans and Holland (2000), there has been  a 
surge of interest in examining the sensitivity of linking functions to choice 
of population (Dorans, 2004e; Kolen, 2004b; von Davier & Liu, 2006; 
Yang, 2004; Yin et al., 2004, to cite a few). Population invariance is one of 
the requirements for equating. It is a necessary condition, but by itself, it is 
not sufficient to demonstrate that a linking is an equating. After all, the 
identity function, which is population invariant, is rarely useful as an 
equating. In the full application of the approach, equatings are performed 
at the total-group level, as is normally the case, and at subgroup levels. 
Typically, level is defined by gender or race/ethnicity. 

Dorans and Holland (2000) provided an extensive treatment of 
population invariance. They start from a system of subpopulations of P
that partitions P into {Pj: j = 1, 2, . . .}. They let wj denote the relative 
proportion of examinees from P that are in Pj, so that, 1

j

j

w , and they 

let G denote a variable that indicates to which subpopulation a given unit 
belongs , so that  G = j  denotes membership in population Pj . Thus, wj =
P{G = j}. Let 

j
P
e y  denote the linking function for Y to X on Pj and let 

e y
P
( )  denote the linking function for score Y to score X on the “whole” 

population, P. The authors emphasized that they intended this notation to 
apply to any linking function including two general measures of the 
population dependence of linking functions. 

The first measure of population dependence is defined for each Y score,
y. It is the standardized root mean square difference (RMSD) of the 
subpopulation linking functions from the overall population linking 
function for a given y value: 

2
[ ( ) ( )]

RMSD .

j

j

X

w e y e y

y

j
P P

P

This measure is sensitive to the amount of the difference between each of 
the separate linking functions, 

j
P
e y , and the overall linking function, 

P
e y . The measure is computed at each y value, and the contribution of 

each subpopulation is weighted by its proportional representation in the 
overall population, P. The square root is used to bring the measure back to 
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the scale of X score points.3 The divisor,
XP

 , is used to make the units of 
this measure the “proportion of the standard deviation of X scores in P.”
For example, a value of 0.1 for RMSD(y) is interpreted as a RMSD of 10% 
of the standard deviation of X scores in P in the linking functions at score 
y of Y. Thus, RMSD(y) is a type of effect size for each y value.

To obtain a single number summarizing the values of RMSD(y), Dorans 
and Holland (2000) introduced a related measure by averaging over the 
distribution of Y in P before taking the square root in RMSD(y). This is 
the root expected mean square difference (REMSD): 

where denotes a random Y score sampled from the base population, P,
and E

P
 denotes averaging over this distribution. The distribution used 

to compute this average is the discrete distribution of Y over P.
Dorans and Holland (2000) provided a special version of this general 

REMSD index for the special case in which there are two subpopulations 
(e.g., female and male), and the linkings across these two subpopulations 
and the total population are linear and share a common slope; 

1 2 1 2

1 2RMSD REMSD
X X Y Y

X Y

y w w
P P P P

P P

So for this special case of two groups and parallel-linear linking functions 
(i.e., where the linkings for the two groups are linear with the same slope), 
the REMSD is equal to the difference in standard score means between the 
two groups, multiplied by the square root of the relative sizes of the two 
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3 Earlier, we used a prediction equation to represent scores on test X in terms of 
scores on test Y. Now we use equating to represent scores on test Y in terms of 
scores on test X .  To some readers,  this change might appear inconsistent; 
however, it is not. We always consider Y to be the newer test and X to be the older 
test. Typically in a prediction setting, we progress in a forward direction, 
estimating scores on a new test Y from scores on an old test X. In equating, we 
transform scores on the new test Y to a scale that has properties similar to scores 
on the old test X. In other words, our notation has not changed; our focus has. 
Consequently, whereas in the prediction case the standard deviation of Y mattered 
more, in the case of equating the standard deviation of X in population P plays a 
prominent role. 

y y y y

y

j P P Σw E e
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groups. If the two groups are of equal size, such that w1 = w2, then the 
REMSD is half the difference in standardized means. 

One of the criticisms of the Dorans-Holland approach to measuring 
population invariance is the number of equatings involved. For number of 
groups G, each measure must be equated G + 1 times. One way to avoid 
an excessive amounts of equating is to equate in the total group, as is the 
usual practice, and to examine the distributions of the equated score Y in 
each subgroup to see if they match the distribution of scores on the 
reference test X across all relevant subgroups. If the equatings are in fact 
population invariant, then the equating that worked in the total group 
should hold in each subgroup. Measures of agreement such as percent 

equated score distributions match the distributions of a measure to which 
they were equated across various subgroups. If the population invariance 
requirement is met, then the match should be very good. 

A second approach entails performing several simple linear equatings. If 
the linkings of the tests are actually parallel linear in both populations and 
the differences in standardized means among subgroups (e.g., males and 
females) are equal on both tests, then population invariance would hold. 
To the extent that the linking relationships within each group are not well 
approximated by a parallel-linear form, this simple difference in 
standardized means will be misleading. However, it can be a quick and 
easy check on whether a serious linking problem exists by computing 
differences in standardized mean differences (Dorans, 2004d).

Earlier, a case was made for high correlations between the tests to be 
linked. Greater reductions in uncertainty are associated with higher 
correlations. Additionally, Dorans and Holland (2000) showed the 
correlation between the two scores places an upper bound on the RMSD: 

RMSD 2 1
xy

where
xy

 is the correlation between the scores to be linked. This bound 

agrees with the intuition that the higher the correlation between the two 
tests, the harder it is to violate the population invariance requirement. 
Also, as the correlation drops, the possibilities for divergence from 
equating grow. 

10.6. Sizing Up Linkages 

To size up whether a linking would best be served by concording, 
equating, or predicting, we could have used test data from the educational 

relative error (von Davier et al., 2004b) can be used to see how well the 
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assessment arena, most notably the ACT® and SAT®. Plenty has been 
written about relating these two measures (see Dorans, Lyu, Pommerich, & 
Houston, 1997; Pommerich & Dorans, 2004a). We prefer, however, to 
avoid the sensitive political and policy issues associated with linking 
scores from these two approaches to assessing collegiate academic 
preparedness. The construct of collegiate academic preparedness is too 
intangible for us. 

10.6.1. Coastal Aspirations and Midland Acquisitions 

{This section is fictional. Any resemblance to anything that this might 
resemble is just that— a resemblance.} 

Instead, we will use a construct that is tangible—a construct we know 
something about or at least know more about than most experts in 
education might know about the construct of academic preparedness. We 
choose to use the construct of “size and shape.” We think we know what 
this size and shape measure is. It is not complicated. We can see it directly. 
We must infer academic preparedness from indirect measures, such as 
numbers-based machine-scoring of answers to multiple-choice questions, 
or numbers based on human-scoring of examinee-produced responses to 
written prompts. In contrast, we can directly access size and shape through 
our senses. We can measure this construct reliably. Thus, we can ignore 
measurement precision considerations in this domain. 

Even given the advantages of physical versus psychological 
measurement, the construct of size and shape might be less accessible than 
it appears at first glance, as we will see. Consider a society in which the 
greatest opportunities presented themselves to individuals who had 
attained the greatest size and shape. Naturally, many institutions clamored 
for a quick and effective measure of size and shape.

Two alternative approaches to size assessment emerged, each 
championed by a corporate giant in the size assessment industry. One 
company, Coastal Aspirations (CA), believed that stature determined the 
individual’s merit and that stature was best expressed in inches or 

expressed purpose of assessing an individual’s stature. To emphasize the 
importance of stature (CA’s motto was “Why settle for the moon when 
you can reach for the stars?”), CA squared the length measure when 
reporting a person’s size. 

In contrast, Midland Acquisitions (MA) built their company on the 
principle that it is what you have acquired over years of digestion that 
determines your size. MA, like others in the size assessment community, 
argued that stature measures like those produced by CA made size appear 

centimeters. CA manufactured rulers and other measures of length for the 
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more determined by nature than by nourishment. Consequently, MA 
focused on weight and manufactured scales for measuring weight in 
pounds or grams. The company also provided test preparation regimens of 
beer and pasta, touting guaranteed weight gains. Mocking their competitor, 
MA proclaimed “Why chase the Ethereal when you can have The Real?” 

For a while, things were rather peaceful, as different institutions of 
higher size began using the AREA (Aspired Rectangularity Assessment) 
and the MASS (Midland Acquisitions Size Survey) to screen applicants. 
Some institutions (e.g., the NBA) favored the AREA; others (e.g., the 
NFL) preferred the MASS; whereas others (e.g., the MLB) accepted both 
measures without hesitation.4 As the applicant pool began to expand (no 
pun intended), the institutions realized that it might be useful to have some 
sort of concordance between the AREA and the MASS, so as to be able to 
compare applicants presenting either one or the other of the two measures. 
Section 10.6.2 reports on research conducted by the authors to assess the 
feasibility of constructing such a concordance. 

10.6.2. Data Description, Analyses, and Digestion 

The data consisted of 648 nonrandomly selected individuals who were 
currently enrolled in each of the three major institutions using the AREA 
and the MASS: the NFL, the NBA, and the MLB. Approximately equal 
numbers from each institution were included. Table 10.2 gives summary 

Table 10.2 indicates immediately that the AREA and the MASS do not 
align the groups in the same order. For example, the NBA has the highest 
mean scores on the AREA, whereas the other two groups do not differ 
much from each other. On the other hand, the NFL has the highest scores 
on the MASS, followed by the NBA, and, finally, the MLB. This 
reordering of the groups across the two measures gives initial evidence that 
they are measuring different constructs. 

The correlation between AREA and MASS for the total group is .44, 
considerably less than the correlations between AREA and MASS in the 
subgroups. The RiU for the total group is .10, indicating that a linkage 

                                                     
4 The NBA as an institution appeared to favor tall, lean individuals; the NFL 
favored fairly heavy, shorter people; and the MLB appeared to have a greater mix 
of stature and weight. Any similarity of the names of the organizations or of the 
summary statistics to the National Basketball Association, the National Football 
League, or Major League Baseball is purely intentional. 

information from the AREA and the MASS for each institution. 
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Table 10.2. Summary information for total group and for subgroups on AREA 
and MASS 

a

bThe MASS measure is equal to weight in pounds.
cThe groups correspond to professional sport played by the candidate: 
MLB = baseball, NBA = basketball, NFL = football. 

between AREA and MASS in the total group will not be very successful. 
The conclusions drawn from these indexes are reinforced by Figure 10.1, 
which shows the linear concordance line superimposed on the scatterplot 
for the three groups. The large degree of spread around the concordance 
line indicates a very weak relationship. 

As a next step, concordances between the two measures were computed 
in each group separately. Figure 10.2 shows the difference plots for the 
three subgroup concordance functions, with the total-group concordance as 
the criterion. We see the total-group concordance most closely matches the 
MLB concordance. The total-group concordance is less similar to the NBA 
concordance and quite dissimilar from the NFL concordance. The 
subgroup concordances differ quite a bit from each other. 

The AREA measure is a function of height in inches: AREA .02*50.

 Groupc 

  MLB NBA NFL Total 

AREAa     
N 220 212 216 648 
Mean 108.1 125.5 109.0 114.1 
SD 6.9 11.4 7.4 11.8 
Min 89.8 84.5 89.8 84.5 
Max 134.5 162.0 128.0 162.0 

MASS b     
N 220 212 216 648 
Mean 202.6 223.3 248.9 224.8 
SD 19.4 29.9 47.6 39.2 
Min 160.0 133.0 174.0 133.0 
Max 250.0 335.0 370.0 370.0 

     
AREA-MASS correlation 0.63 0.84 0.70 0.44 
Reduction in Uncertainty 0.22 0.45 0.29 0.10 
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Figure 10.1. Scatterplot of the MASS with AREA scores for three subgroups. The 

The RMSD and REMSD indexes formalize the dissimilarities among 
the group concordances. Figure 10.3 plots the RMSD and REMSD 
measures as a function of AREA score. The two indexes are shown on the 

(DTM; Dorans & Feigenbaum, 1994), operationalized here as a difference 
of 5 pounds on the MASS scale.5 The RMSD exceeds the DTM across the 
range of the AREA score scale, indicating that the differences among the 
group concordance functions are not trivial. This demonstrated lack of 
invariance presents a final piece of convincing evidence of the 
inappropriateness of using a common concordance for all groups. 

Table 10.3 gives information on the total-group and subgroup 
concordances. In addition to the slope and intercept parameters for each 
concordance, Table 10.3 shows the standard error of the estimate of MASS 
score from AREA score. As can be seen, the error associated with 
estimating MASS score from AREA score with the total-group 
concordance is much smaller for the MLB group than for the other two 
groups. The individual concordance computed in the MLB group produces 

                                                     
5 The difference that matters, as explained by Dorans & Feigenbaum, refers to 
half a reporting score unit on a test. The authors reasoned that any two unrounded 
scores that were within one-half unit of each other would round to the same 
reported score. Thus, any difference less than one-half unit could be treated as 
unimportant. In this chapter, the meaning of the DTM was altered slightly to 
accommodate the somewhat different data. We chose 5 pounds as the DTM, 
believing that any difference in people’s weights of less than 5 pounds could 
reasonably be treated as irrelevant. 

MASS scale. Both indexes are compared to the difference that matters 

solid line represents the total group concordance between MASS and AREA. 
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Figure 10.2. Difference plots of the concordance of MASS and AREA computed 
in three subgroups separately. The criterion is the total-group concordance. 

Figure 10.3. RMSD as a function of AREA score. The DTM of 5 score points on 

only a slight improvement in the error of estimate. The NBA concordance 
fares much better than the total-group concordance in the NBA group. The 
NFL concordance shows an improvement over the total-group con-
cordance for that group as well. However, the improvement is not as great 
for the NFL as for the NBA. The RiU values in Table 10.2 indicate that a 
concordance would be the most useful for relating MASS to AREA scores 
for the NBA group, as the correlation between the two scores is highest for 
this group. 

the MASS scale is shown for reference. 
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Table 10.3. Results of concording AREA to MASS in the total sample versus in 
each subgroup separately 

 Group 

  MLB NBA NFL Total 

Concordance parameters     
Slope 2.8 2.6 6.4 3.3 
Intercept 102.8 106.5 453.8 153.3

Standard error of estimate     
Total-group concordance 18.6 44.5 53.9 41.7 
Individual concordance 16.8 17.2 36.7 —

10.7. Summary 

The fictional example presented in this chapter illuminates some important 
points made earlier in the chapter. First, the equal construct requirement is 
key to equating. Without it, it is doubtful that the invariance requirement 
can be met. Care must be taken in assessing whether the two tests to be 
equated measure the same construct. We can have more confidence that 
they do if they are built to the same set of specifications. Claims that the 
two tests measure the same construct are generally not sufficient. In our 
example, both “tests” purportedly measure size. However, the MASS is 
really weight in pounds, whereas the AREA is a function of squared 
height. Given that the two tests measure different constructs, they cannot 
be equated. 

When two tests measure similar but not identical constructs, 
concordance is still a possibility. Often, there is a desire to produce a 
single concordance that can be applied to all populations. As noted earlier, 
population dependence of the linking function often results when the two 
tests do not measure the same construct. A natural consequence of this lack 
of invariance is the need to produce different concordance functions for 
each group. We saw that our total-group concordance performed poorly in 
two out of the three groups studied. The concordance functions for each 
group separately generally fared better. Separate concordances, however 
unpalatable, can result in more equitable treatment of test-takers. 

Even in the case of concordances, some minimum level of relationship 
between the tests to be concorded is needed. We have recommended an 
RiU of .50, corresponding to a correlation of .866, as the minimum 
requirement for equating or concording two tests. In many respects, the 
correlation is more crucial than the reliability. In our example, both 
measures had perfect reliability. However, this fact alone did not ensure a 
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successful linking. The strength of the relationship between the two 
measures determines whether we can successfully estimate the score on 
one test using the score on another. 

The ability to link two tests successfully via concordance does not mean 
that the scores on the two tests can therefore be used interchangeably. Our 
example makes this point very salient. The NBA group in particular 
exhibited a strong relationship between AREA (squared height) and MASS 
(weight). Few people, however, would make the mistake of considering 
weight and height equivalent. If the two measures were equivalent, then an 
NFL offensive lineman (generally a fairly heavy individual) would be an 
apt substitute for an NBA center (usually quite tall but not necessarily 
heavy). This lack of equivalence might not be so obvious with educational 
tests, but the point is just as valid. For this reason, caution should always 
be exercised in using and interpreting the results from concordances. 

10.8. Postscript 

We fully recognize that measuring size and shape is more than a matter of 
height or weight. Science fiction writers presume that sophisticated 

molecule structure to allow his archaeologists to flit back and forth to 
medieval times in Timeline. Finally, Gene Roddenberry presumed precise 

able to move molecules from one set of coordinates to another in every 
episode of Star Trek. Our assessment of size and shape was admittedly 
primitive, but appropriate for our purposes. 

Crichton (1999) required similar precise knowledge of size and shape and

measurement of size and shape. Otherwise, the transporter would not be 

measures of size and shape exist. H. G. Wells (1895) needed this infor-
mation to allow his Time Machine to traverse the dimension of time. Michael 



11    Concordance: The Good, the Bad,
and the Ugly 
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11.1 Background 

A long, long time ago, a group of people known as “equaters” ruled the 
earth. The equaters were so named because they were proponents of the 
practice of equating—the linking of scores across (nearly) parallel test 
forms, namely forms built to the same specifications. The equaters were a 
powerful group of people. They made the rules, and through the use of 
theory and assumptions, they intimidated nonequaters to ensure that score 
linkages would be conducted only between alternate forms of the same 
test.

As happens so often throughout history, power struggles ensued. Test 
users rebelled against the limitations that were invoked by the restrictive 
rules of the equaters. The public thirsted for more diverse types of linkage, 
and rogue measurement practitioners known as “linkers” began to 
advocate linking scores across tests built to different specifications that did 
not meet the (nearly) parallel forms assumption. The movement 
snowballed, and suddenly everyone except the equaters wanted to link 
scores across tests that were never intended to be linked! 

Now let us fast forward to the early 1960s to see what is happening in 
the equater camp. We find two influential measurement experts, William 
Angoff from the Educational Testing Service (ETS) and E. F. Lindquist 
from the American College Testing Program (now known as ACT, Inc.) 

                                                     
1 The views expressed are those of the author and not necessarily those of the 
Department of Defense or the United States Government. 
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addressing the issue of “equating” nonparallel tests. From Angoff (1962) 
we learn that “complaints have been heard from various sources that the 
amount of testing that is going on these days is excessive and burdensome 
to the schools” (p. 1). He proceeded to critique the proposed solutions of 
(a) creating equivalency tables between scores from tests by different 
publishers and (b) converting scores on tests produced by all publishers to 
a single, common score scale, and he presented a litany of problems 
inherent with these approaches.

From Lindquist (1964) we hear arguments against creating tables of 
comparable scores across the SAT® and ACT® test batteries. He takes a 
pessimistic stance, stating that “if the two agencies were jointly to provide 
an approved conversion table, no matter what precautions were taken to 
guard against misuses and misinterpretations, the total effect would 
probably be increased misuses of the test results, or a more widespread 
failure to use the test results in the best way possible” (p. 1). Lindquist 
presented a litany of reasons for why scores should not be linked across the 
ACT and SAT batteries. 

Let us fast forward again, this time to the late 1990s and early 2000s. 
Here we see that history both repeats itself and contradicts itself. A 
national committee studies the feasibility of developing a scale to link 
scores from commercial and state assessments to each other and to the 
National Assessment of Educational Progress (NAEP) and determines that 
it is not plausible (Feuer, Holland, Green, Bertenthal, & Hemphill, 1999). 
Various sources are complaining that the amount of testing is excessive 
and burdensome to the schools. The Student Testing Flexibility Act of 
2003 (S. 956, 2003) is introduced to Congress in April of 2003 in order to 
“give schools that are making the grade some relief from the burdensome 
testing requirements of No Child Left Behind” (Leahy, n.d.). Meanwhile, 
ACT, the College Board, and ETS have collaborated to produce a table of 

scores (Dorans, Lyu, Pommerich, & Houston, 1997). Although the litany 
of problems associated with tables of comparable scores outlined by 
Angoff (1962) and Lindquist (1964) in the 1960s have not changed, 
societal expectations have, necessitating changes in the practices of test 
developers.

Today we find ourselves in a period of transition as demand for linkages 
between nonparallel tests increases. The linkers and equaters live together 
in an uneasy peace. Still somewhat of the underdog, the linkers continue to 
strive for acceptance, whereas the equaters remain smug in the knowledge 
that they have left the linkers quite a legacy to follow. That legacy includes 
the following: 

comparable scores between ACT composite and SAT I verbal + math 
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1. Very high standards that are maintained across forms to be linked and 
across linkage results 

2. A rigorous and well-designed process for building forms, collecting 
data, and linking scores 

3. Scores that are interchangeable (i.e., have the same meaning) across 
different forms 

In an ideal world, this legacy would be upheld when linking scores across 
nonparallel tests. In the real world, this cannot happen. Thus, linkers run 
the risk of alienating either measurement practitioners (if they opt to 
conduct a linkage between distinct tests) or test users (if they opt not to 
conduct the linkage). A happy medium would be to conduct a linkage in 
such a way as to achieve a healthy balance between fulfilling the needs of 
test users and maintaining the standards that measurement practitioners 
have come to expect. This is the challenge for linkers. 

11.2. Definitions 

What is this term “concordance” and where does it fall in this new world 
order that is developing in the testing milieu? Let us start by first defining 
linking as the process of relating scores across different forms or tests. 
This is an umbrella term, under which both equating and concordance fall. 
Equating occurs when scores are linked across tests built to the same
specifications, whereas concordance occurs when scores are linked across 
tests built to different specifications. Equating and concordance are related 
in that methods used to equate parallel forms of a test (such as 
equipercentile linking) are commonly used to conduct concordances. 
Because nonparallel forms are linked in a concordance, corresponding 
scores are not viewed as interchangeable, as are scores linked via an 
equating. This is a somewhat simplistic representation of the relationship 
between equating and concordance, but it is sufficient for our needs. The 
reader is referred to Holland (Chapter 2) and Holland and Dorans (2006) 
for a more detailed delineation of categories of score linking methods. 

An example of a concordance is provided by the table of comparable 

to earlier. To create this concordance, ACT and SAT I scores were 
obtained from 14 institutions and two states for students taking both tests. 
After screening on a variety of factors, the final concordance sample size 
was 103,525. Equipercentile methods were used to link scores across the 
two tests. Results were published in Dorans et al. (1997) and made 
available nationwide by the test developers. This concordance will be used 
as an example to discuss relevant issues throughout this chapter. We often 
see ACT–SAT concordances utilized as an example when concordances 

scores between ACT composite and SAT I verbal + math scores referred 
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are discussed. This is likely because the ACT and SAT tests are well 
known, the linkage is widely used, and it is one of the best examples of a 
concordance out there.

11.3. The Concordance Process 

Now that we have given a definition for concordance, let us expand upon 
that definition to more clearly elaborate our vision of concordance. We 
prefer to think of concordance as an entire process rather than just a type 
of linkage or an outcome. In our conception, the actual linking of scores is 
but one component of the concordance process. Pommerich, Hanson, 
Harris, and Sconing (2004) proposed a four-stage process for conducting 
linkages that consists of the following: 

1. Choosing an appropriate linkage type and methodology 
2. Linking scores and computing summary measures 
3. Evaluating the quality of the linkage and determining what to report 
4. Making recommendations for the interpretation and use of the linkage 

results
Let us review these stages from the perspective of concordance to develop 
an understanding of the concordance process. 

11.3.1. Choosing an Appropriate Linkage Type and 
Methodology

The natural first step in any linkage is to choose an appropriate linkage 
type for the problem at hand. We do not just say “we shall conduct a 
concordance” and forge ahead. Clearly, there are situations in which the 
assumptions of equating do not hold. It might be less obvious to us that 
sometimes concordance is not appropriate either. How exactly can we 
evaluate whether concordance is appropriate? Dorans (2004d) provided a 
nice example. He demonstrated a number of tools that practitioners can use 
to evaluate the feasibility of concordance. He advocated extensive 
evaluation of factors such as (a) content similarity across the tests being 
linked, (b) the strength of the relationship between scores on the tests, and 
(c) the similarity of performance across demographic groups within each 
test. Using these criteria, he made recommendations for when concordance 
is not appropriate and suggests prediction as an alternative in such cases. 

The linkage types addressed in Dorans (2004d) are limited to equating, 
concordance, and prediction. A wider variety of linkage types have been 
defined in an assortment of sources, including Flanagan (1951), Angoff 
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(1971), Mislevy (1992), Linn (1993), Feuer et al. (1999), and Kolen and 
Brennan (2004). Kolen (2004a) compared and contrasted the linking 
frameworks that are defined in each of these articles and provided an 
historical perspective for concordance. Holland (Chapter 2) and Holland 
and Dorans (2006) presented a linking framework that builds on these 
preceding frameworks and provided a more detailed assessment of the 
factors that define a concordance situation. 

Once we have selected concordance as the appropriate linkage type for 
our situation at hand, the next step is to choose an appropriate 
methodology with which to conduct the linkage. There might be multiple 
methods for linking the scores that should be considered. For example, a 
variety of ACT–SAT concordances were conducted between 1966 and 
1980 using both linear and nonlinear linking methods. The results from 
these studies suggested that nonlinear linking methods were often needed 
to represent the relationship between scores on these two tests (Marco, 
Abdel-fattah, & Baron, 1992). In another example, Yin, Brennan, and 
Kolen (2004) conducted concordances between scores on the ACT and the 
Iowa Tests of Educational Development using linear, parallel-linear, and 
equipercentile methods. They compared the invariance of the results in 
order to evaluate the different linkage methods. 

11.3.2. Linking Scores and Computing Summary Measures 

Once a linkage type and methodology have been selected, the process of 
linking scores can begin. Again, we probably should not just forge ahead 
and conduct the linkage. Instead, we should first give some attention to our 
data. One of the reasons that equating is considered to be the most rigorous 
form of linkage is that studies are carefully designed and implemented to 
collect appropriate data. In a concordance, on the other hand, the sample is 
most likely to be a convenience sample of examinees that have taken both 
tests (a single group design). Some factors of concern in a single group 
design are the amount of time that occurs between the two tests, the order 
of administration of the two tests, and repeat testing on either test. In an 
equating with a single group design, these factors can be controlled in 
advance by the study design. In a concordance with a single group design, 
these factors are not typically controlled in advance. (See Kolen, Chapter 3, 
for a further discussion of commonly used data collection designs and 
issues associated with the different designs.) 

Thus, a concordance sample should be carefully screened so that the 
concordance results are not distorted by practice effects or learning that 
might occur between the administration of the two tests. In collecting a 
concordance sample, it is also important to note that linking relationships 
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can be affected by group characteristics. For example, males might display 
a different relationship between scores on the two tests than females. 
Likewise, examinees that choose to take both tests might not be typical of 
the population to which the concordance results will likely be applied—
namely, those who take only one of the tests. For these reasons, every 
attempt should be made to collect a concordance sample that is as similar 
as possible to the population to whom the results will be applied. 

Once the data collection and screening has been adequately addressed, 
the linking can proceed. For every linking method used (and for every 
concordance sample), there are likely to be unique methodological issues 
that will arise and should be considered. In the ACT–SAT concordance 
that we are using as our example (Dorans et al., 1997), equipercentile 
methods were used to link scores across the two tests. The equipercentile 
procedure matches scores on Test A and Test B that have the same 
percentile rank across the two tests. Thus, if concordant score points are 
used for selection, the same percentages of examinees will be selected 
using either test. (More detailed information on the method is available in 
Kolen, Chapter 3, and Kolen & Brennan, 2004.) Two methodological 
issues that were considered in conducting this concordance were whether 
to smooth the results of the equipercentile linkings and how to best 
compute the concordance standard errors. 

It is a common practice to smooth the results from equipercentile 
equatings in order to reduce the effect of sampling error on the results. 
This does not mean, however, that the results of an equipercentile 
concordance should automatically be smoothed, as smoothing can induce 
bias. In the case of the 1997 ACT–SAT concordance, the convenience 
sample was substantially larger (N = 103,525) than what you would see in 
a typical equating. As a result, evaluations of smoothed and unsmoothed 
results showed little difference, and smoothing was deemed unnecessary. 

Pommerich et al. (2004) provided an in-depth discussion of the issue of 
smoothing for the 1997 ACT–SAT concordance, along with a discussion 
of the issue of computing concordance standard errors. Standard errors are 
a summary measure that can be used to evaluate the quality of the linkage 
at individual score points. Pommerich et al. discussed the computation of 
both analytic and bootstrap standard errors and proposed a criterion that 
standard errors at each concordant score point should be no greater than 
the average standard error typically observed in a well-maintained 
equating. This criterion will be discussed more in Section 11.3.3. 
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11.3.3. Evaluating the Quality of the Linkage and Determining 
What to Report 

Once we have conducted our linkage and computed summary measures, 
what do we do next? This is where the issue of balance comes into play. 
Let us reiterate our earlier contention that the challenge for linkers is to 
achieve a healthy balance between fulfilling the needs of test users and 
maintaining the standards that measurement practitioners have come to 
expect. Lindquist’s (1964) concerns about the misuse and misinterpretation 
of ACT–SAT concordance results are no less pertinent today than they 
were when he raised them.

One means of achieving the desired balance is to restrict the results that 
are given to users, so as to minimize the possibility for misuse or 
misinterpretation. Two areas of evaluation can help determine whether 
such a step is warranted. The first is to evaluate the stability of the 
concordances at individual scores points. The second is to evaluate the 
generalizability of the concordance to other samples. These two types of 
evaluation are demonstrated in detail in Pommerich et al. (2004) and will 
be summarized more succinctly here. 

11.3.3.1. Evaluating the Stability of Concordances 

In evaluating the results of an equipercentile concordance, it is vital to note 
that the equipercentile function does not directly take into account the 
number of observations at individual score points. It operates on percentile 
ranks, which are aggregated over score points. Ideally, we would have 
sufficient observations at all scores points to obtain stable results 
throughout the entire score scale. Rarely is this the case in practice. 
Consequently, concordance results might be unstable at score points where 
very few examinees score, even though we might have a very large sample 
size overall. The smaller the concordance sample sizes, the more likely 
sparse data at individual score points are to be a concern. Although the 
equipercentile procedure identifies a corresponding score point on Test B 
for each score point on Test A, it does not mean that the correspondence is 
equally good across all score points on Test A. 

The proposed standard error criterion, mentioned earlier, comes into 
play here. We can evaluate the standard error for the concordance at each 
score point on Test A to see how stable the results are. If the standard error 
is not acceptable at a given score point, then we might choose not to report 
results for that score point. The practice of restricting the reporting of 
results might seem harsh, but this choice will be driven by the data; 
namely, the standard error criterion will be met at score points where there 
are sufficient observations to yield stable results. 
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Let us demonstrate with an example. Table 11.1 shows the average ACT 
and SAT scores for the national concordance sample and for an institution 
with 868 ACT–SAT examinees. The test scores suggest that the sample for 
this institution is quite a bit more academically able than the national 
concordance sample. Because of this performance difference, the 
institution might well be concerned about whether the national 
concordance adequately represents their examinee population. An 
institution-specific concordance might be warranted in this case. 

Figure 11.1 plots concordant SAT I V+M scores that correspond to ACT 
composite scores for the national concordance sample and for the 
institution. Note that the institution results are smoothed because of the 
small sample size, whereas the national results are unsmoothed. Note also 
that results are not reported for ACT composite scores below 11. This is 
because less than .05% of the national concordance sample scored below 
11 and because ACT composite scores of 10 or less are typically chance-
level scores.

The concordant score points for the institution are similar to those of the 
national concordance throughout much of the ACT composite score scale, with 
the results diverging at scores of 11–14. These are the score points for which it 
would seem to be most beneficial for the institution to use the institution-
specific concordance rather than the national concordance. However, if we look 
carefully at our data and standard errors for this institution, we see evidence that 
the concordance results are not stable at these score points. The N-counts show 
0–1 examinees at each ACT score point of 11–17. Overall, less than 2% of the 
sample scored below 21. The standard error criterion that we have devised is 
met only for scores of 21 or higher. These findings indicate that it is not 
warranted to report results based on this sample for scores below 21. If the 
institution would like to have institution-specific concordances for scores below 
21, then it would be necessary to obtain more data at the lower score points, so 
that those score points would be better represented and the concordance results 
more stable. 

Table 11.1. Average ACT and SAT scores for the national concordance sample 
versus an institution with 868 examinees 

  Average scores 
Sample N ACT SAT 
National 103,525 23.2 1071.4 
Institution 868 29.2 1230.4 
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Figure 11.1. Concordance between ACT composite and SAT I V+M scores for an 
institution sample versus the national sample. 

11.3.3.2. Evaluating the Generalizability of a Concordance 

Ideally, concordances would be conducted using a random sample from 
the population(s) of interest, rather than a self-selected sample of 
examinees that choose to take both tests. Unfortunately, this is just not 
practical. As a result, concordance results will likely be applied to samples 
that differ on some characteristics from the concordance sample. Thus, it is 
important to consider how well the results will generalize to other samples 
and whether it is suitable to use the concordances with a particular group 
of interest. 

One way to evaluate the generalizability of a concordance is to cross-
validate the concordance (i.e., use two separate samples or bootstrap 
sampling methods to see how much results differ across samples). Another 
way is to compare the concordance sample relative to national test 
populations (i.e., evaluate whether the dual-testing sample is representative 
of the single-testing sample). A third way is to assess the invariance of the 
concordance results across different subgroups such as males or females. 
In general, invariance is expected to hold in an equating but not in a 
concordance. However, if concordance results are widely variable across 
subgroups, then a concordance based on a pooled sample might not well 
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represent the subgroups. If any of the above evaluations suggest that the 
concordance results might not generalize well beyond the concordance 
sample, then the potential for misuse or misinterpretation of results is 
increased.

11.3.4. Making Recommendations for the Interpretation and 
Use of Linkage Results 

Once a linkage is publicly released, there is little control over how results 
are used. We can write extensive guidelines identifying proper and 
improper uses and interpretations, but we cannot ensure that all users will 
read them or even understand them. After all, how many of us thoroughly 
read and understand the manuals that come with the appliances and 
technological gadgets that we purchase? Developers of concordance tables 
must admit that some (if not many) users might misinterpret concordances, 
particularly concordances based on equipercentile methods. It might be a 
natural tendency to use equipercentile concordance results as a prediction 
of an individual’s score on the test not taken, although this is not a proper 
interpretation of the results.

As defined earlier, the equipercentile method identifies corresponding 
score points on Test A and Test B that result in the same percentages being 
selected using either test. This allows students to submit a score from 
either Test A or Test B. However, if an equipercentile-derived 
concordance table is used to establish comparable cut-scores on Test A and 
Test B, the same individuals would not necessarily be selected using 
scores on Test A versus scores on Test B (assuming the examinees took 
both tests). Hanson, Harris, Pommerich, Sconing, and Yi (2001) warned 
that “it is always possible to develop a link function that results in almost 
perfect comparability of distributions in one population, no matter how 
incomparable the two scores are for individuals” (p. 2). For these reasons, 
it is helpful to evaluate the consequences of using equipercentile 
concordance results at an individual level. Some ways to do so are to 
evaluate departure from equity and evaluate the consequences of 
misclassification. These types of evaluation will be briefly discussed here; 
the reader is referred to Pommerich et al. (2004) for a more detailed 
discussion.

11.3.4.1. Evaluating the Consequences for Individuals 

Let us start by assuming that the equipercentile method has been used to 
identify score points on Test B that are concordant with score points on 
Test A. Equity holds if the distributions of concordant and actual scores for 
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Test B are equal. This is a somewhat looser definition of equity than 
originally defined by Lord (1980) because it does not take into account 
true scores. However, our definition is suitable for our purpose of 
demonstration.  

The degree of departure from equity indicates the consequences of using 
equipercentile concordances at an individual level. There are no known 
means of measuring departure from equity directly, but it can be measured 
indirectly via observed score measures (Hanson et al., 2001). One means 
of doing so is to evaluate the consistency of classifications at concordant 
score points. For example, suppose an ACT composite score of X has a 
concordant SAT I V+M score of Y. At those two cut-scores, X on the ACT 
and Y on the SAT, evaluate what percent of decisions would be the same 
using individuals’ actual SAT scores versus using their ACT scores. 
Another means of measuring departure from equity is to evaluate the 
variability of observed scores on Test Y, given each score point on Test X 
(i.e., compute the mean, standard deviation, minimum, and maximum of 
observed SAT I scores for examinees at each given ACT score point). 
More variable results indicate a greater departure from equity. 
Equipercentile results can also be compared to results from regression, 
which is specifically designed for the purpose of predicting an individual’s 
score.  

If any of the above evaluations suggest there would be too much 
departure from equity if a concordant score point was used as a substitute 
for an individual’s actual score, you might want to recommend some 
alternatives to the concordance user. Alternatives could include the 
following: 

 
�� Using score ranges rather than a single concordant score point 
�� Using decision zones (i.e., identifying scores for which additional 

information or testing would be required) 
�� Placing less weight on test scores and more weight on other measures in 

making decisions 
�� Reporting regression results (prediction) rather than equipercentile 

results (concordance) 

Consideration should also be given to the consequences of 
misclassification. Classification error based on an ACT–SAT concordance 
could result in a qualified student not being admitted to an institution, 
placed in a course that is too easy, denied a scholarship, or declared 
ineligible to play sports. Likewise, a classification error could result in an 
unqualified student being admitted to an institution, placed in a course that 
is too difficult, given a scholarship, or declared eligible to play sports. As  
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the likelihood of misclassification increases, or as the consequences of 
classification error grow more severe, dependence on the concordance 
should be lessened accordingly. 

11.3.4.2. Contrasting Concordance with Prediction

A few comments on concordance versus prediction seem in order here 
before continuing with our discussion of concordance. Again, the linkage 
of ACT and SAT scores will serve as our example. Holland (Chapter 2) 
distinguished between three basic categories of linking methods: 
predicting, scale aligning, and equating. A prediction is obtained when 
linear regression methods are used to predict ACT scores from SAT scores 
and vice versa. A concordance is obtained when scale-aligning methods 
such as equipercentile linking are used to identify comparable distributions 
of scores across the ACT and SAT tests. Application of the equipercentile 
method would not be considered an equating in the ACT–SAT case 
because the equal construct requirement (Holland, Chapter 2, Section 
2.4.1; Holland & Dorans, 2006) is not upheld across the two tests. 

Regression methods and equipercentile methods serve very different 
purposes. Hence, the predictions that are yielded by regression differ from 
the concordances that are yielded by equipercentile linking. An important 
difference is that concordances are symmetric, whereas predictions are not. 
Table 11.2 demonstrates this point. In the 1997 national ACT–SAT 
concordance (derived by equipercentile methods), an ACT composite of 
33 has a concordant SAT I V+M score of 1470. Likewise, a SAT I V+M 
score of 1470 has a concordant ACT composite score of 33. However, 
when regression is applied to the same data, an ACT composite of 33 has a 
predicted SAT I V+M score of 1430, whereas an SAT I V+M score of 
1430 has a predicted ACT composite score of 31. 

Table 11.2. Demonstration of symmetry issue for equipercentile-defined 
concordances and regression-defined predictions 

Method/outcome ACT Ca  SAT I V+M 
Equipercentile/concordance 33 1470

33 1430
Regression/prediction

31 1430

aACT C=ACT composite. 

Regression-defined predictions also exhibit regression toward the mean, 
which is particularly noticeable in the tails of the score distribution. 
Equipercentile-defined concordances have essentially the same percentile 
rank; regression-defined predictions do not. Table 11.3 shows SAT I V+M 
scores that correspond to ACT composite scores of 11 and 36, for the case 



11    Concordance: The Good, the Bad, and the Ugly      211 

of concordance versus prediction. The prediction results are very close to 
the average SAT I V+M score observed in the sample (which can be 
thought of as the target prediction); the concordance results are not. The 
maximum possible ACT composite score (36) corresponds to the 
maximum possible SAT I V+M score (1600) in the case of concordance, 
but not prediction. Likewise, results for an ACT composite score of 11 are 
very different across the concordance and prediction cases. Clearly, using 
equipercentile concordances or regression predictions for purposes other 
than which they are intended could give very misleading results. A more 
detailed discussion of this issue is presented in Pommerich et al. (2004). 

Table 11.3. Corresponding SAT I V+M scores for ACT composite scores of 11 
and 36, by linkage type 

 Corresponding SAT I V+M 
ACT C a Concordance Prediction 

Average observed 
SAT I V+M 

11   500   630   633.08 
36 1600 1540 1540.00 

aACT C=ACT composite. 

11.4. The Concordance Dilemma 

The discussion of the concordance process emphasizes the complexity of 
concordances and highlights some of the concerns with using 
concordances to make important decisions. Simply by virtue of making 
such linkages available, we create the potential for misuse and 
misinterpretation of the results. Clearly, conducting a concordance is not a 
task that one should undertake lightly.

One might well ask what has shifted since the 1960s, when Lindquist 
(1964) took his wary stance against ACT–SAT concordances and Angoff 
(1962) wrote at length of the limitations of concordances. From the 
measurement practitioner’s perspective, not much has changed. Influential 
measurement experts continue to urge caution in conducting linkages 
between scores on nonparallel tests (e.g., Kolen, 2001). However, the 
balance of power seems to be shifting from the practitioners to the users. A 
psychologist might argue that the desire for instant gratification that 
prevails in today’s society is causing the balance to shift in favor of the 
consumer—in this case, the concordance user. Likewise, as many 
consumer goods are increasingly being viewed as a necessity rather than a 
luxury, so too are concordances (at least in the eyes of users). 

Let us attempt to make a distinction between necessity and luxury 
concordances from the perspective of a measurement practitioner. A 
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concordance might be considered a necessity in cases in which there is a 
clear psychometric rationale for providing the concordance, such as 
providing continuity for users between scores across previous and new 
versions of a test. However, even in such cases, the concordance must be 
justifiable (i.e., upheld by an evaluation in the manner advocated by 
Dorans, 2004d). In cases in which the psychometric rationale for the 
concordance is fuzzy and/or the concordance appears more influenced by 
user demand than by psychometric need, a concordance is more likely to 
be a luxury than a necessity. A worst-case example might be a 
concordance conducted in the hopes of increasing the marketability of one 
or both tests. This would seem to clearly fall in the category of a luxury 
concordance. If the balance of power is indeed shifting from practitioners 
to users, practitioners might find themselves increasingly fighting against 
conducting luxury concordances. 

A user’s perspective on necessity versus luxury concordances is likely 
to differ from a practitioner’s perspective. A user might well hold the 
belief that if a concordance is useful, then how can it not be viewed as a 
necessity? The concept of a luxury concordance might be 
incomprehensible to some users. On the other hand, some practitioners 
might argue that all concordances are a luxury. This perspective is likely to 
be driven by concerns about the limitations of concordances and the lack 
of awareness of those limitations on the part of users. The contrast in 
perspective between users and practitioners creates a concordance 
dilemma that is not easily resolved. How do we reconcile the benefits that 
users can gain from a concordance with the limitations of the linkage and 
the potential for misuse and misinterpretation of results? A review of the 
good, bad, and just plain ugly aspects of concordance might help 
illuminate the dilemma. 

11.4.1. Concordance: The Good 

First and foremost, it cannot be denied that concordances can be extremely 
beneficial to users. Consider the case of ACT–SAT concordances. They 
can give students and schools more flexibility in their testing options. They 
can reduce testing costs for students and allow students more choices in 
applying to college. They can reduce testing time for schools. They can 
allow students and schools to get a relative comparison of performance 
across the two tests. The extensive use of ACT–SAT concordances by 
schools, counselors, students, and parents speaks volumes of the actual 
benefit of the concordances to users.

Because the ACT–SAT concordances are so widely used, it is 
encouraging to see that there is increasing collaboration among the major 
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test developers in creating the concordances. In 1991, ACT, Inc., the College 
Board, and ETS collaborated to collect data for a concordance. ACT, Inc. and 
ETS each then produced separate concordance tables (Marco & Abdel-
fattah, 1991; Houston & Sawyer, 1991). The collaboration on data 
collection was unprecedented at the time; however, imagine the confusion 

different tables containing different results based on slightly different 
samples and different methods. In the 1997 ACT–SAT concordance 
(Dorans et al., 1997), not only did ACT, Inc., the College Board, and ETS 
collaborate to collect data for the concordance, but they also collaborated 
to produce a national concordance table. The scope of the data collection, 
along with the degree of collaboration, set a new precedent for developers 
of concordance tables. 

It is our belief that the collaboration among the test developers to 
conduct ACT–SAT concordances is setting the bar higher for 
concordances between other pairs of tests. The large-scale collaborations 
in 1991 and 1997 made results available to a larger audience, promoted 
greater awareness of appropriate uses and limitations of concordances 
through explicit documentation, and stimulated additional, important 
research and commentary on concordance (e.g., Dorans, 1999, 2000, 
2004d; Dorans & Walker, Chapter 10; Hanson et al., 2001; Marco et al., 
1992; Pommerich & Dorans, 2004a; Pommerich, Hanson, Harris, & 
Sconing, 2000, 2004; Sawyer, Chapter 12). Because of research conducted 
on ACT–SAT concordances and other types of linkage, the emphasis in 
the measurement field is shifting from an equating-only perspective to a 
more inclusive linking perspective. Researchers are not just writing about 
equating any more, instead they are writing about equating and linking 
(e.g., Holland & Dorans, 2006; Kolen & Brennan, 2004). This more 
inclusive perspective fits better with the reality of what is happening in the 
measurement field than does a rigid focus on equating. 

11.4.2. Concordance: The Bad 

Our earlier discussion of the concordance process gives an idea of some of 
the limitations and concerns associated with concordance. There are many 
practical issues in conducting concordances that will need to be addressed 
for each unique concordance. Aside from technical issues, a critical 
operational concern with concordances might be that once you get started 
with reporting a concordance, you can never really stop. Every time a 
scoring change is made to one of the tests, the concordances need to be 
updated. In the case of the ACT–SAT concordances, the 1997 concordance 
is probably not valid for use with the revised version of the SAT that was 

on the part of the users who contacted both ACT and ETS and received 
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introduced in March 2005, given the content changes that were made. It is 
likely that the test developers are working together to produce an updated 
concordance table, but in the meantime, what do users do before the table 
is completed? 

In a similar vein, the act of making one concordance available is likely 
to trigger additional requests for concordances between other pairs of tests. 
After all, once users see what is possible, why should they settle for 
anything less? Unfortunately, some requested concordances might not be 
warranted by the characteristics of the tests asked to be linked (recall our 
earlier discussion on choosing an appropriate linkage type). This could set 
up a conflict between the users and the test developers. Because user 
understanding of concordances varies widely, it is a risky business for test 
developers to go down that path of creating more and more concordances. 
The potential for misuse and misinterpretation of concordance results 
increases as the relationship decreases between the tests that are linked.

Regardless of the quality of a concordance, it seems that we will never 
be able to squash the fallacy that concordant scores are “equivalent.” A 
good case in point is a New York Times article about the revised SAT 
(Lewin, 2005) that discusses a student who received “an ACT score 
equivalent to 1520” on the SAT without identifying the source for this 
assertion. Concordance developers can say that concordant scores are not 
interchangeable or equivalent until they are blue in the face, but the 
prevailing interpretation by users appears to be one of equivalence. 

Another important concern with developers providing concordances 
between tests is that schools might defer to the developer-provided 
concordances rather than conducting their own research to link scores for 
their student population. This might be particularly pertinent in cases 
where the school population differs from the concordance sample, and the 
developer-provided concordance does not well represent the relationship 
between scores at that school. Conversely, in a bit of a catch-22, schools 
might develop their own linkages that have more limitations than 
developer-provided concordances. As highlighted earlier, there are likely 
to be more limitations in concordances associated with smaller sample 
sizes. Also, some schools might have less expertise in developing linkages 
than the test developers. 

11.4.3. Concordance: The Ugly 

The distinction between bad and ugly is a fine line; however, there are a 
couple of aspects of concordance that stand out as being particularly 
problematic. Unexpectedly, these problems are created and/or exacerbated 
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by the prevalence of technology in our society. To demonstrate, let us 
present our contention that 

Concordances + the Internet = Mass Confusion! 

interesting concordance tables on a variety of different Web sites. Some of 
these tables were outdated, contained incorrect linkages, did not identify 
the source of the table, or lacked any documentation beyond the table 
itself. There are a variety of interesting variations on the national 
concordance from who knows where floating about in the vast Internet 
space, available for anyone with access to a computer to find. Few Web 
sites (except for those sponsored by the test developers) list any 
information on how to use or interpret the results. All of the cautions taken 
by the test developer to develop explicit documentation against the misuse 
and misinterpretation of the concordance results might be gone by the 
wayside, lost to the whims of the user who developed the Web site. 

The Internet can be quite a boon for test developers, because it allows 
for the vast proliferation of concordance information to be disseminated to 
the public. Unfortunately, the Internet also allows for the vast proliferation 
of incorrect, undocumented, outdated, and incomplete concordance 
information. Closely related is the fact that there is no established means 
with which to get rid of outdated concordances that have been superseded 
by more recent concordances. Old concordances are a bit like hazardous 
waste. We must safely dispose of them when we no longer need them. 
Unfortunately, the proliferation of potential misinformation due to the 
availability of outdated and/or incorrect concordances is a problem that we 
might not be able to explicitly control, except through the passage of time. 

11.5. Conclusions 

The elucidation of the good, bad, and ugly aspects of concordance does not 
resolve our concordance dilemma, but, rather, serves to further identify 
factors that contribute to the dilemma. At a glance, the weaknesses of 
concordances appear to outnumber their strengths. However, the 
usefulness of a concordance is a powerful inducement, particularly if it 
creates a high demand for the concordance from users. Even knowing what 
we now know about the concordance process and the limitations inherent 
with concordances, it is difficult to ignore user demands, particularly if 
they are made by powerful clientele.

When considering whether to conduct a concordance, we would be well 
served to evaluate whether the concordance fits more into the necessity or 

A recent Internet search for “ SAT concordance” led to some very ACT–



216      Mary Pommerich 

luxury category. We would also be well served to evaluate whether a 
concordance is actually warranted by our data. If these evaluations suggest 
that a concordance might be in order, then our best counsel is to exert 
caution throughout the entire concordance process. As such, we propose 
five goals for developers of concordance tables to strive for when 
conducting concordances: 

1. Flexibility in linking practices 
2. Responsibility in creating and disseminating concordance tables 
3. Awareness of the limitations of concordances 
4. Notification as to proper interpretation and use of results 
5. Knowledge of users and their practices 

Henceforth, these goals will be known as the FRANK goals of 
concordance. It is our hope that realization of these goals will allow 
concordance developers to maintain a healthy balance between meeting 
user needs and upholding measurement standards. 

We would be remiss if we ended our discourse here, without any 
consideration for what the future might hold for concordance. Let us fast 
forward to the year 2050. We envision that that various sources will still be 
complaining that the amount of testing is excessive and burdensome to the 
schools. We envision that the feasibility of developing a common score 
scale for all tests will be revisited. We envision that measurement 
practitioners will continue to urge caution in conducting linkages between 
distinct tests because of potential for misuse and misinterpretation of 
results. Although history is certainly cyclical, it also evolves, so the 
outcome of these future complaints, considerations, and cautions remains 
to be seen. 



12    Some Further Thoughts on Concordance

Richard Sawyer1

ACT, Inc. 

Both preceding chapters in this part treat the limitations of concordance 
tables (tables that relate scores on tests that measure similar, but not 
identical, constructs). Dorans and Walker (Chapter 10) discussed 
requirements for equating and statistical indicators of concordance quality. 
The statistical indicators are based on correlation coefficients and on the 
root mean square difference between linking functions. Pommerich 
(Chapter 11) also addressed the quality of concordance, but emphasized 
how to do a good concordance study. 

In this chapter, I discuss some general ideas on the uses of concordance 
tables. In presenting the ideas, I comment on how they relate to points 
made in the two preceding chapters on concordance. I illustrate the ideas 
with the example that Pommerich used: linkage between the ACT® and the 
SAT® in undergraduate college admission. 

12.1. Four Common Score Uses in College Admission 

The effectiveness of a procedure is best evaluated in the context of a 
particular use: A procedure or tool that is adequate for one use might not 
be suitable for another use. For ACT–SAT concordance, therefore, we 
need to identify common uses. The uses should drive both the statistical 
procedure used to develop a table and the statistical criteria against which 
the quality of the table will be evaluated.

With regard to uses, I am referring specifically to decisions based on 
test scores, rather than to inferences about an examinee’s knowledge and 
skills. The problem of making inferences about an examinee’s standing 
with respect to the content domain of Test Y, given a score on Test X, is an 
                                                     
1 The opinions expressed in this chapter are those of the author and not 
necessarily of ACT, Inc. 
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interesting one, but I do not consider it here. It could be addressed by 
investigating the overlap and differences in the dimensional structures of 
Test X and Test Y.

One way to describe uses of concordance tables is according to who the 
user is. In using ACT–SAT concordance tables in college admission, two 
important groups of users are the following: 

Postsecondary institutions that use concordance tables in making 
admission selection decisions 
Students who are applying for admission to college, and the students’ 
parents and counselors who are advising them 

Table 12.1 shows four common uses of ACT–SAT concordance tables. I 
discuss each of them in turn.

Table 12.1. Four common uses of A concordance tables 

There are, of course, other uses of concordance tables for other tests and 
in other contexts. For example, an institution that currently uses a Test X 
for course placement might want to use another Test Y in place of, or in 
addition to, Test X. The institution has a validated cutoff score on X, but 
does not yet have a cutoff score on Y. The institution applies a 
concordance table, along with other information, to determine a temporary 

CT–SAT  

User 
Postsecondary Institutions Students, parents, and counselors 
Use 1: Use scores on different tests in 
making selection decisions based in part 
on probability of future academic 
success. 
 
Example: We use either ACT scores or 
SAT scores in making admission 
decisions. What scores on the ACT and 
the SAT result in acceptable 
probabilities of future success? 

Use 3: Compare scores on different tests 
for jointly tested students. 
 
 
 
Example: I’ve taken both the ACT and 
the SAT. Which of my scores is 
“better”? 

  

Use 2: Use scores on different tests 
interchangeably in an administrative 
system. 
 
Example: We accept both ACT scores 
and SAT scores in our admission 
system, and we want to use them 
interchangeably. (The key word here is 
interchangeably.) 

Use 4: Estimate a score for a single 
tested student. 
 
 
Example: I took the ACT, and don’t 
want to have to take another test. The 
college to which I am applying uses 
mostly SAT scores. What is the SAT 
score that corresponds to my ACT score?
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cutoff score on Y. The institution later adjusts the temporary cutoff score 
given the results of a validity study. 

Another common use of concordance tables is to simplify covariates in 
statistical studies. A test score might be a covariate in some model; the 
majority of students have data on test Y, but a minority has data on X.
Rather than trying to include both X and Y in the model, people will 
convert X to Y. I will not speak to either of these uses, but will confine my 
remarks to the college admission testing examples. 

12.1.1. Use 1: Making Selection Decisions Based on Estimated 
Probability of Success 

This is the scenario for Use 1: Test scores are one component of a system 
for making admission decisions. The scores are used to identify students 
who are likely to be successful in the first year of college. The institution 
accepts scores on both Test X and Test Y.

If you follow the Standards for Educational and Psychological Testing
(American Educational Research Association, American Psychological 
Association, & National Council on Measurement in Education, 1999), 
and if you have sufficient data, then you do not need a concordance table: 
Instead, you can do predictive validity studies for X and Y and use the 
results to develop separate decision rules for X and Y, each in the context 
of all other information that you use in making admission decisions. The 
University of Texas at Austin is an example of an institution that does this 
(Lavergne & Walker, 2001). By doing so, you improve on the accuracy of 
selection decisions: Predictions based on X and Y separately will likely be 
more accurate than predictions based on a mixture of actual scores and 
concordant scores. (An exception to this would occur if there were 
insufficient data to estimate separate predictions for X and Y, but X and Y
were highly correlated.) 

Another advantage is that the institution can also study the effectiveness 
of X and Y separately in making admission decisions. A key question is 
this: Does using X by itself increase the proportion of enrolled students 
who are academically successful over that which would occur if the 
institution used all other relevant variables, but not X? The same question 
could be asked about Y. Moreover, one could, with sufficient data, 
compare the effectiveness of X and Y.

Although standard statistics, such as regression coefficients and the 
change in squared multiple correlation, are related to this question, I 
believe it is preferable to calculate statistics that more directly address 
institutions’ reasons for using test scores. A principal reason that 
institutions use scores on college admission tests in making admission 
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decisions is their belief that by doing so, they will improve the academic 
success rate of admitted students. Given this goal, it makes sense for 
institutions to estimate a success rate (the proportion of applicants who, if 
admitted and enrolled, would succeed). An indicator of the effectiveness of 
a college admission test for achieving this goal would be the difference 
between the success rate associated with using the test and the success rate 
associated with not using the test (Sawyer, 2007). 

12.1.2. Use 2: Using Scores on Different Tests Interchangeably 
in an Administrative System 

In Use 2, scores on different tests are treated interchangeably in an 
administrative system. Here, the key word is interchangeably: Institutions 
often use concordance tables to convert scores on Test X to the scale on 
Test Y and then process all scores in a single system. 

This use is based mainly on practicality and convenience. An institution 
might not have the data or other resources to do separate validity studies 
for X and Y. Even if an institution has done validity studies for both X and 
Y , it might prefer the convenience of working with a single metric. Such 
institutions want to process all applications, regardless of which scores 
they contain, in the same way. They cannot or do not want to maintain 
separate admission decision rules and procedures. 

These institutions also want to make the same admission decision for an 
applicant, regardless of which test the applicant submits scores on. In 
practice, of course, this is not possible. Measurement error alone 
guarantees that taking the same test twice could yield test scores that 
would result in different admission decisions. Moreover, differences in the 
constructs measured by X and Y will add to the inconsistency. 

Most institutions understand that although they might like to make the 
same decision for each individual applicant, regardless of test score 
submitted, they cannot do so. Instead, institutions are satisfied if they can 
make the same decisions for a very large proportion of their total group of 
applicants. The consistency rate, described in the Pommerich chapter, 
speaks to this goal. 

One factor that affects the consistency rate is the proportion of 
applicants selected. If an institution selects a very high or a very low 
proportion of applicants, then it will obtain a high proportion of consistent 
decisions regardless of how well the equating requirements are satisfied. I 
return to this point later in the chapter. 

The practical importance of the concept of consistency itself depends on 
the proportion of applicants for which an institution applies a concordance 
table. If nearly all applicants submit scores on Test X (and just a few 
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submit scores on Test Y), then few applicants would be affected by 
inconsistency.

Institutions’ interest in making consistent decisions is related to the 
symmetry property of equating functions, which Dorans and Walker 

institution can see immediately whether the symmetry property is 
preserved. Evaluating the other properties (equal constructs, equal 
reliability, equity, and population invariance) requires examining other 
kinds of evidence, not as readily accessible to institutions. The 
equipercentile linking function preserves symmetry, and because it 
preserves percentile ranks, it satisfies a notion of equity. For this reason, 
institutions demand equipercentile concordance. 

12.1.2.1. Evaluating the Effectiveness of Concordance Tables for 
Use 2 

Reduction in uncertainty: 2RiU 1 1
XY

Signal-to-noise ratio: 2 2SNR / 1
XY XY

Decibel: dB = 10 log10(SNR)

Their recommended standard for concordance is 3 2
XY

 (about .87), 
or RiU = .50, or SNR = 3.0, or dB = 4.77. 

This proposed standard does not seem unreasonable, given the results 
that have been obtained in large-scale ACT–SAT concordance studies. The 
proposed standard might be too strict in some contexts, however. 
Depending on the use being made of the tests and depending on other 
contextual factors, a lower correlation might be sufficient. As stated 
earlier, my inclination is to evaluate statistical results in the context of 
particular uses and goals. In the case of undergraduate college admission 
testing, some issues that could be considered by an institution are the 
following: How much of a role do test scores have in making admission 
decisions? What proportion of applicants does the institution admit? 

Moreover, the correlation between X and Y (and the associated 
indicators RiU, SNR, and dB) addresses the issue of prediction accuracy in 
terms of reducing prediction error variance. I believe that for Use 2, 
consistency of decisions is a more important goal of users than is 
prediction accuracy, per se. As is discussed below, prediction accuracy and 
consistency of decisions are related, but they are not the same. 

(Chapter 10, Section 10.2) discussed.  On examining a concordance table, an 

XY� between X and Y , to describe the degree of 
alignment between linked scores on X and Y: 

Dorans and Walker (Chapter 10, Section 10.4) discussed several indicators, 
based on the correlation 
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For a group of examinees who have taken both Test X and Test Y, we 
can define a consistency rate as the proportion of examinees who would be 
selected on either test, or who would not be selected on either test: 

CR( ) [ , ] [ , ]
p p p p

p P X x Y y P X x Y y , (12.1)

where [ ] [ ] 1
p p

P X x P Y y p . In this scenario, xp and yp are cutoff 

scores on X and Y, and 1  p is the proportion of examinees selected. A 
consistency rate can be interpreted as a proportion of examinees, which I 
believe is easier than interpreting correlations or transformations of 
correlations.

The use of strict cutoffs on test scores is a mathematical idealization and 
simplification. In practice, institutions also typically use other quantitative 
variables (such as high school grades), other objective qualitative variables 
(e.g., extracurricular activities), as well as subjective criteria in making 
admission decisions. In principle, if one had data on all of the important 
components of admission decisions, one could estimate how concordance 
tables affect the consistency of the decisions, given all of the other 
components. It is unlikely, however, that institutions would be willing to 
invest their resources to assemble and analyze the required data. 

Note that we can obtain a high consistency rate simply by selecting 
nearly all (or almost none) of the examinees. One can show, by a 
differentiation argument, that for continuous random variables, CR(p) is 
minimized when p = 1/2. In general, the required strength of the statistical 
relationship between X and Y needed to achieve an acceptable consistency 
rate depends on the selection rate. 

If we assume that X and Y have a bivariate normal distribution, then 
CR(p) is also a function of

XY
:

CR( ; ) [ , ; ] [ , ; ]
XY p p XY p p XY

p z z z z (12.2)

In this equation,  is the bivariate normal distribution function for two 
variables with correlation XY and zp is the pth percentile of a normal 
distribution. Note that consistency rates could also be calculated for repeat 
administrations of the same test, given an assumed reliability. Brennan 
(1981) applied this procedure to coefficients of agreement in criterion-
referenced testing. 

I will now show an example of consistency rates2 for concordance 

The concordant scores were calculated from all students who took both the 
ACT and the SAT I and who graduated from high school in 1999. The data 

science tests) and the SAT verbal plus mathematics (V + M) sum score. 
between the ACT sum score (on the English, mathematics, reading, and 
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were assembled by Michael Nettles and his colleagues when he was at the 

correlation between the ACT sum score and the SAT V + M sum score 
was 0.90. The results are shown in Figure 12.1. 

Figure 12.1. Consistency rates between concordant ACT sum score and SAT V + 
M score. 

The curve on top corresponds to a reference consistency rate for the 
ACT sum score, assuming a reliability of .96:

CR( ; 0.96) [ , ; 0.96] [ , ; 0.96]
p p p p

p z z z z .

                                                     
2 Consistency rates are also sometimes reported in terms of Kappa ( ):

= [CR(p; ) – CR(p; 0)] / [1 – CR(p; 0)]. Kappa is a consistency rate normalized 
with respect to chance agreement: From the observed consistency rate, first 
subtract off the consistency of decisions resulting from hypothetical test scores 
that are statistically independent; then divide by the difference between 1.0 
(perfect consistency) and chance consistency. Rather than report normalized 
consistencies, I just show the bottom curve in Figure 12.1 for reference. For a 
summary and criticism of Kappa, see Uebersax (2006).

University of Michigan. There are 260,899 records in this dataset. The 

The second (solid) curve shows the consistency rate between 
classifications based on ACT and SAT scores calculated from the 
concordance data. The third curve shows the consistency rate referenced to 
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the standard of .87 proposed in the Dorans and Walker chapter. The 
bottom curve shows the consistency rate for two variables that are 
statistically independent: 

CR(p; 0) = (1 p)2 + p2.

There are several points worth noting about Figure 12.1: 

As we would expect, the least consistency occurs when the selection 
cutoff is near the median. 
The top reference curve, corresponding to the effects of measurement 
error, bottoms out at about 0.92. 
The observed concordance curve (solid line) bottoms out at about .88. 
Thus, a decrease of .04 in minimum consistency is the penalty an 
institution would incur in using concordant ACT and SAT scores. 

Finally, for high or low selection cutoffs, you will get high consistency, 
no matter what the correlation is. Thus, a correlation less than 0.87 
could be acceptable in certain situations. 

12.1.2.2. Institutional Variation in Concordance Relationships 

We know from the discussion in Dorans and Walker (Chapter 10) that 
concordance relationships might differ from group to group. The 
relationships might vary by demographic group (as Dorans & Holland, 
2000, and others have noted) and by other characteristics, such as previous 
educational preparation. Because different institutions can have markedly 
different applicant populations, background and educational differences 
among the applicant populations could show up as variation in 
concordance relationships among the institutions. 

The following example is based on data collected for an ACT–SAT 
concordance study (Dorans et al., 1997) following the recentering of SAT I 
scores in 1995. Figure 12.2 shows the concordance relationship between 
ACT sum scores and SAT V + M sum scores. Curves are given for the 
relationship estimated from the entire concordance sample of over 103,000 
records and for two particular institutions whose concordance relationships 

proposed standard of �XY = 0.87 bottoms out at about 0.83.

reliability standard. 

Stated another way, if the correlation between ACT and SAT scores had 

would incur for using concordant scores would be .09 below the
been 0.87, rather than 0.90, then the penalty in consistency an institution 

�� The consistency rate corresponding to Dorans and Walker’s (Chapter 10,
Section 10.4)  



12    Some Further Thoughts on Concordance      225 

differed from each other more than from the other institutions. The sample 
size for each institution was approximately 2,300 records. 

Figure 12.2. Concordant ACT sum and SAT V + M scores for two institutions. 

Note that for ACT sum scores between 76 and 80, the two institutions’ 
concordant SAT V + M sum scores differ from each other by 40 score 
units and from the total group concordant scores by 20 score units. 
Differences this large and larger also occurred for ACT sum scores below 
76; I truncated the range of ACT sum scores in Figure 12.2 to display the 
differences more clearly. If either of these two institutions used the total-
group concordance table for applicants with ACT sum scores below 80, it 
would misrepresent the concordant SAT V + M scores for its applicants by 
20 units. The estimated conditional standard errors for the concordant SAT 
V + M scores within institution were uniformly less than 3 SAT score 
units; therefore, differences among the three curves are very unlikely to 
have arisen by chance. 

One way to determine the practical significance of the differences is to 
calculate consistency rates near the admission cutoff scores separately 
using the national table and the institution-specific table. For either 
institution, the maximum decrease in consistency rate associated with 
using the general concordance table, rather than a local table, was 0.01. 
The maximum decrease in consistency occurred for ACT sum scores of 78 
to 90 (approximately the 35th to the 65th percentiles at this institution). 

A maximum decrease in consistency of only .01 is reassuring to 
institutions that want to use a generic concordance table, rather than to 
construct their own tables. This reassurance should be tempered, however, 
by the likelihood that the result was driven by the use of data only from 
jointly tested examinees. Examinees who have taken only the ACT, or 
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only the SAT, could differ from each other, and from jointly tested 
examinees, in the constructs measured by the two tests. These differences 
could then propagate to differences among institutions in concordance 
relationships for single-tested examinees. For further discussion of this 
issue, see Section 12.1.4. 

12.1.3. Use 3: Comparing Scores on Different Tests for Jointly 
Tested Students 

Now let us turn to a common use by students. The scenario for Use 3 is 
this: I have taken both the ACT (X) and the SAT (Y). Which of my scores 
is “better”? I want to submit the “better” score. We get this question very 
frequently from students, parents, and counselors. 

An exaggeration of this question is: “I have taken the SAT I. Did I do 

“Am I taller than I am heavier?” This relates to the playful example in 

Note that comparing an actual score to a regression-based predicted 
score could return an ambiguous answer to this question: The regression 
line of Y on X does not yield the same prediction as the regression line of X
on Y. For the region between the two regression lines, the answer would be 
“Y is better than X, and X is better than Y.” In terms of the five 
requirements for equating that Dorans and Walker discussed, regression-
based predictions violate the symmetry requirement. 

One way to compare X and Y unambiguously is to say, “Your score on X
is above those of PX % of the members of a given reference group. Your 
score on Y is above those of PY % of the members of the same reference 
group.” This is an equipercentile comparison. A more informative answer 
would be: “Given the measurement accuracy of X, your likely range of 
scores on X if you took a different form of X is x1 to x2. The range of Y
scores with similar percentile ranks among jointly tested students is y1 to 
y2.”

In general, examinees are not aware that if a different reference group 
(e.g., defined by gender, ethnicity, or region) were used to make the 
comparisons, one might get a different answer. But then, they do not  care, 
either: The reference group that they are concerned about is the total group 
of applicants among whom they are competing for admission. 

I have previously mentioned Dorans and Walker’s discussion of the 
equity requirement: It should be a matter of indifference to an examinee to 
be tested by either one of two tests that have been equated. The particular 
use of concordance tables that I am discussing now could be said to have 
an “anti-equity requirement”: Examinees are not indifferent to which test 

better on verbal (X) or on mathematics (Y)?” A greater exaggeration is, 

Dorans and Walker (Chapter 10, Section 10.6), to which I will return later. 
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scores they report. Examinees might not be well trained in the formal 
aspects of measurement theory, but they have a keen appreciation for its 
practical implications. In contrast to a college, which wants a high 
consistency rate, if you are an examinee who can choose which test score 
to submit, and if your scores are near the cutoff, you would want a low 
consistency rate. 

The practical advice ACT, Inc. gives is that students interested in the 
concordance table it constructed in cooperation with the College Board 
and ETS need to ask each institution they apply to what concordance table 
it uses. As Pommerich points out in her chapter, there are many tables 
floating around on the Internet. 

12.1.4. Use 4: Estimating a Score for Single-Tested Students 

Another common use of concordance tables is by students who have taken 
only one test (such as the ACT) and who want to estimate the score they 
would have received if they had taken another test (such as the SAT). The 
advice we give is the same as in Use 3, where students have taken both 
tests: ask the institution to which they are applying what table it uses. 
Although a regression-based estimate would seem to be appropriate here, 
students and institutions typically use equipercentile tables. 

What is interesting and problematic about this particular use is the 
typical design of concordance studies. As Pommerich noted in her chapter, 
concordance tables are based on available data from students who chose to 
take both tests. It would be risky, for example, to base an equipercentile 
concordance on the entire user group for each test, because the two user 
groups could differ on many characteristics that affect concordance. 

I believe that significant variation in concordant scores could exist 
according to whether a student elects to take only one test or to take both 
tests: My personal experience in talking with test users suggests that 
students are more likely to take the test on which they think (or that their 
advisors think) the students will do better. In Use 4 (estimating a score on
Test Y from a student who takes only Test X), therefore, there is a 
possibility that the concordance table (based on data from self-selected 
jointly tested examinees) is not appropriate for an important group to 
which it is applied (examinees who choose to take only one exam.) 

We also know that jointly tested examinees perform differently than the 
general group of examinees on either test. In the 1997 concordance study, 
the mean ACT composite score of jointly tested students was 
approximately 4/10 of a standard deviation higher than those of all ACT-
tested students (ACT, 1997b), and about 3/10 of a standard deviation lower 
than those of all SAT-tested students (The College Board, 1997). 
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This at least raises the possibility of variation in concordance 
relationships among students according to the test(s) they decide to take. 
Concordance tables are developed using data from jointly tested students. 
They are applied, however, to students who might have taken only one 
test. It is possible that the characteristics of the groups differ in significant 
ways and are related to the constructs measured by the ACT and the SAT. 
Unfortunately, we do not have the data required to study this. 

One way to overcome this potential limitation (and to determine 
whether it is practically important) would be to administer the ACT (or the 
SAT) to samples of students who have previously taken only the other test 
and to collect information from all students on their use of concordance 
tables. The complexity and cost of such a study makes it unlikely that it 
will be done. 

Another, more feasible, approach is similar to the projection method that 
Holland (Chapter 2, Section 2.2.2) described previously: Model the joint 
distribution of X and Y, given covariates. The covariates would consist of 
demographic variables, high school grades, and other variables that are 
collected on both X and Y and that are related to their test scores. Then 
weight the modeled joint distribution of X and Y by a specified distribution 
of the covariates in a population of interest. 

12.2. Other Thoughts on Concordance Tables 

The test publishing companies do alert users to the limitations of ACT–
SAT concordance tables. My subjective interpretation of conversations 
with students, parents, teachers, and institution officials is that they believe 
that in the big scheme of things, the ACT–SAT concordance tables are 
good enough for their uses. In the big scheme of things, they are probably 
right.

The greater concern is that users might think that concordance between 
any two tests is unproblematic. In part, this occurs from what Braun and 
Mislevy (2005) called the widely assumed truth that a test is a test is a test. 
For example, I have seen requests for concordances between a reading test 
designed for adults who dropped out of high school (many of whom can 
barely read and write) and a reading test designed for placing students in 
first-year courses in college. 

Pommerich (Chapter 11, Section 11.4) mentioned that test publishers create 
concordance tables in response to user demand. This is certainly true. Satis-

’
 

fying users  demands in the best way we can technically, but advising them of 
the limitations of what we do, is a requirement of doing business responsibly.
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Another potentially problematic practice is chaining concordances. 
Suppose that you do not have (and cannot feasibly obtain) data on students 
who have taken both X and Y. You do, however, have data on students who 
have taken both X and Z and (separately) on students who have taken both 
Y and Z. So, you relate X and Y through Z. This can produce misleading 
results, particularly when either sublink is weak or if the two tables are 
developed from different groups. 

12.3. Coastal Aspirations and Midland Acquisitions 

Dorans and Walker (Chapter 10, Section 10.6) concluded their chapter 
with an example of a test developed by two competing companies, Coastal 
Aspirations and Midland Acquisitions. These two companies develop 
assessments for professional athletes. Coastal Aspirations believes in 
measuring height, whereas Midland Acquisitions believes in measuring 
mass.

They show that the concordances for three groups of athletes (baseball 
players, basketball players, and football players) differed drastically, 
especially for large scores. One reason for the discrepancies is that the 
correlation between the two measures was only .44. I think another factor 
that drove these results is that there was extreme prior selection on the two 
measures. This extreme degree of prior selection would not occur in the 
ACT–SAT example. 

12.4. Conclusions 

Evaluating the adequacy of concordance tables depends on the particular 
use being made of them. Even in the general context of college admission, 
there are distinct uses of ACT–SAT concordance tables. If an institution is 
using a concordance table merely as an intermediate step in predicting 
academic success and if it has sufficient outcome data from students who 
have taken either test, then it would do better just to develop separate 
predictions for each test and to avoid concordance altogether. For 
institutions that want to use ACT and SAT scores interchangeably in an 
administrative system, the consistency rate is an informative indicator of 
the effectiveness of the table. Consistency rates estimated from past ACT–
SAT concordance data are high. 

Projection methods are a promising tool for estimating variation in 
concordance relationships over population subgroups. 
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12.5. Postscript 

Given the potential problems that we have identified with concordance, I 
would like to conclude my remarks on a note of optimism. Although I do 
not follow professional athletics closely, I do know that both Coastal 
Aspirations and Midland Acquisitions are fine companies. I am thoroughly 
convinced that the cause of the disappointing results presented in the 
Dorans and Walker chapter is not due to gross unreliability in either of the 
tests.

I did read in the newspaper that one of Coastal Aspirations’ principal 
customers pressured it to change the height construct of its test to 
something closer to the mass construct favored by Midland Acquisitions. 
As a result, Coastal Aspirations developed a new version of its test. 

Moreover, in response to user demand, both companies also developed 
new direct measures of sports performance. In contrast to the traditional 
height and mass measures, the direct measures ask examinees to shoot 
baskets, hit baseballs, and tackle opponents for approximately 30 min. 

I also have heard that Coastal Aspirations and Midland Acquisitions are 
apparently planning a new concordance study. If the reports about Coastal 
Aspirations’ new constructs are true, the new concordance study will likely 
yield better results than those reported by Dorans and Walker. I look 
forward to seeing them. 



Vertical scaling used to be practiced by a small group of psychometricians 
responsible for a few nationally standardized primary and secondary 
school achievement test batteries. It has received a great deal of attention 
since states have begun creating their own assessments.

Deborah Harris in Practical Issues in Vertical Scaling examines issues 
that a practitioner would encounter when developing a vertical scale for an 
operational testing program. She presents a framework of issues to 
consider when creating a vertical scale and demonstrates that practical and 
theoretical issues interact in context-specific ways. An example involving 
the scaling of two math tests provides an illustration of some of the issues. 

Richard Patz and Lihua Yao examine item response theory (IRT) 
methods for vertically scaling educational assessments in Methods and 
Models for Vertical Scaling. They compare “divide and conquer” and 
unified approaches to models and data analyses in this context. They 
introduce a unified multidimensional, multigroup IRT model that captures 
differences in dimensionality and scale definition across grade levels. They 
explore properties of this model using data from a cross-grade writing 
assessment and discuss limitations and alternatives to vertical scaling for 
assessment programs. 

Wendy Yen in Vertical Scaling and No Child Left Behind discusses 
concepts raised by the previous two chapters while she examines the role 
of vertical scaling in the pre-No Child Left Behind (NCLB) era and the 
NCLB era. An example is given of an alternative type of analysis that can 
provide answers to user questions about student growth over grades, 
without requiring the assumptions or expense of a vertical scale. 

Part 5:  Vertical Scaling 



13    Practical Issues in Vertical Scaling 

Deborah J. Harris1

ACT, Inc. 

13.1. Introduction 

The capability to measure students along a continuum, such as measuring 
growth in mathematics from grade 3 to grade 6, has become more and 
more important, especially with the recent federal legislation No Child 
Left Behind Act of 2001 (NCLB) and the concept of adequate yearly 
progress, by which it is to be determined if students are making sufficient 
gains as they advance through the education system. An assessment with a 
vertical scale is the most common way of evaluating growth from one 
grade level to another.

Vertical scaling refers to the process of linking different levels of an 
assessment, which measure the same construct, onto a common score scale 
(see Holland, Chapter 2, for placement of vertical scaling into a linking 
framework). Many elementary and secondary test batteries report scores 
on a vertical scale, such as the Iowa Tests of Basic Skills (ITBS; 

Why is there a need for a chapter addressing practical issues? Because 
when one constructs a vertical scale, decisions have to be made with 
respect to the definition of growth, scaling design, statistical methods, type 
of scales, and so forth (see Harris, Hendrickson, Tong, Shin, & Shyu, 
2004; Kolen, 2003). Different decisions can lead to different vertical 
scales, which in turn can lead to different reported scores and different 
decisions. The literature shows that vertical scaling is design dependent 
                                                     
1  The opinions expressed in this chapter are those of the author and not necessarily 
of ACT, Inc. 

Hoover, Dunbar, & Frisbie, 2001) and ACT, Inc. s’  Educational Planning 
and Assessment System (EPAS; ACT, 2000).
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(Harris, 1991), group dependent (Harris & Hoover, 1987; Skaggs & 
Lissitz, 1988; Slinde & Linn, 1979), and method dependent (Kolen, 1981; 
Skaggs & Lissitz, 1986).

This chapter examines issues that a practitioner would encounter when 
developing a vertical scale for an operational testing program. Although 
there is no single right way to develop a score scale, there are many 
options available, and the practitioner who chooses a method with a 
careful eye to both the purpose of the scale (i.e., how the resulting scores 
are intended to be used) and to the literature is more likely to create a scale 
that will facilitate appropriate decision-making. The chapter considers five 
sets of issues: conceptual, technical, implementation, maintenance, and 
other. An example involving the vertical scaling of two math tests is given 
throughout the chapter to provide an illustration of some of the issues that 
are discussed. The example uses data from the PLAN and ACT 
mathematics tests. However, the reader interested in a more complete 
summary should consult the PLAN and ACT technical manuals (ACT, 
1997a, 1999). 

 The literature cited in this chapter, as well as on Web sites and in 
technical manuals and in other documentation relating to operational 
verticals scales (although the latter are often scant on details), should be 
consulted for additional information. Specific papers are helpful to address 
specific issues; four sources are recommended for general treatments and 
overviews on vertical scaling: Kolen and Brennan (2004), a book on 
equating and scaling that covers many issues related to vertical scaling, 
Kolen (2003) a conference presentation that discusses several topics in 
vertical scaling that need to be addressed, Petersen, Kolen, and Hoover 
(1989), a chapter that covers basic scaling and linking information, and 
Harris et al. (2004), a conference presentation that discusses practical 
issues related to vertical scaling. Literature not specific to vertical scaling, 
such as equating literature, item parameter calibration literature, computer 
estimation program manuals, and score reporting literature, should also be 
consulted, as vertical scaling covers a wide range of issues. The 
companion chapters by Patz and Yao (Chapter 14) and Yen (Chapter 15) 
should also be consulted. 

It is also recommended that the reader consult multiple sources, because 
inconsistencies abound: for example, the Rasch model was found to be 
both acceptable (e.g., Schulz, Perlman, Rice, & Wright, 1992) and 
unacceptable (e.g., Phillips, 1983) for vertical scaling applications. 
Similarly, grade-to-grade variability in ability was shown to increase 
(Andrews, 1995; Yen, 1986), decrease (Hoover, 1984a), or remain stable 
across grade levels (Bock, 1983). Harris et al. (2004) contained the 
beginning of a comprehensive review of the literature related to vertical 
scaling, which might be useful to those readers who either have difficulty 
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gaining access to the original source material or who prefer to read a 
summarized version. In addition to providing information as to where 
various methods yield consistent, or inconsistent, results, a comprehensive 
summary of the literature also helps identify issues requiring further 
investigation.

As mentioned earlier, valuable information regarding vertical scaling is 
also found by examining current practice. Vertical scales continue to be 
built and used by test publishers, despite the lack of a commonly accepted 
set of procedures. Although research done using simulated conditions can 
be very informative, what is actually done in practice might be of most 
interest to potential practitioners. Harris et al. (2004) provided an appendix 
with an initial attempt to document how vertical scales were operationally 
implemented by various publishers for their testing programs.

13.2. Conceptual Issues 

The tendency is to jump into methodology immediately, but the conceptual 
issues really need to be considered first, both to ensure that there really is a 
need for a vertical scale and because the decisions made up front have 
tremendous impact on the resulting scales. 

13.2.1. Do You Really Need a Vertical Scale? 

The first issue to resolve is the actual need for a vertical scale. For 
example, if one is a grade-school administrator who wants to ensure that 
all graduating sixth graders know the capitols of all 50 states, there is no 
need for a vertical scale. All students can be given the same test, and raw 
scores can be used to monitor progress over time. However, for subjects 
where knowledge acquisition is gradual, or follows a sequence, moving 
students to where one wants them to end up is more of a process. For 
example, if one wants students to be able to multiply three-digit numbers, 
repeatedly testing on multiplying three-digit numbers is not really 
effective. Instead, one wants to monitor (know) if they know their basic 
multiplication facts, if they can multiply and carry, and so on. 
Administering the “final” test content at an earlier grade will not really 
enable one to target effective instruction. However, having a scale, or 
sequence, that follows the process from, say, numeral recognition through 
three-digit multiplication would allow one to monitor progress and provide 
intervention where needed. A vertical scale could be helpful for the later 
situation.

A vertical scale, therefore, is not the only option. A scale might not be 
needed (i.e., the raw score scale might be sufficient) or other options might 
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be preferable to a vertical scale. For example, Lissitz and Huynh (2003) 
advocated vertically moderated standards as being more useful than 
vertical scales in assessing adequate yearly progress. 

However, as mentioned earlier, a vertical scale is often helpful in 
guiding students along a continuum. As an example that will be followed 
throughout this chapter, consider the mathematics tests in the ACT and 
PLAN programs. They have a common philosophical basis in measuring 
students’ knowledge and skills typically attained during a student's 
secondary school experience. The ACT is intended primarily for 11th and 
12th graders; PLAN is primarily intended for 10th graders. It was 
determined that placing the two tests on the same scale would facilitate the 
goal of providing a longitudinal approach to educational planning, 
assessment, instructional support, and evaluation. See the PLAN and ACT 
technical manuals (ACT, 1997a, 1999) for details regarding the use of the 
PLAN/ACT scale.

13.2.2. Developing Test Specifications 

Issues such as what grades to include in the assessment, what content to 
cover, what item types to use, what time limits, who is writing the items, 
and so on can have a large impact on the resulting scale. How content is 
defined across the grades (i.e., the amount of overlapping content in, say, 
the third and fourth grades) has a major impact on the resulting score scale.

Issues such as how to model grade-to-grade overlap depends, in part, on 
how the assessment structures content across grades. Kolen (2003) listed 
“Over what test content should grade-to-grade growth be defined?” (p. 6) 
as an issue in need of further study, illustrating the relationship between 
test content and the nature of growth. 

Issues such as balancing completeness of coverage with motivation and 
frustration issues of administering too many items of inappropriate 
difficulty or interest to examinees in a given grade, deciding how many 
grade levels should receive particular items, the number of concepts that 
overlap, and so on are philosophical as well as practical or measurement 
issues. Construct dimensionality issues are also partially embedded in the 
nature of growth. The importance of content dimensionality in establishing 
vertical scales continues to be an issue.

The content specifications for the ACT and PLAN mathematics tests, 
taken from ACT (1999) are shown in Tables 13.1 and 13.2.

The test specifications make concrete some of the assumptions 
regarding growth concrete. For example, the inclusion of plane geometry 
in both PLAN and ACT specifications indicates this is a topic that one 
expects to be covered at both levels, whereas trigonometry is not. The 
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more detailed specifications that are actually used for forms construction 
(sublevels of topics within the broader area of plane geometry), as well as 
statistical specifications, such as average or target p-values, would indicate 
how the progression of plane geometry across levels is thought to occur. 
For example, topics intended for the PLAN assessment might be more 
difficult for 10th graders than for 12th graders, and more advanced topics 
might be included on the ACT and not included on the PLAN.

Table 13.1. Specifications for the ACT mathematics test 

Content area Proportion of test No. of items 
Pre-Algebraa .23 14 
Elementary Algebrab .17 10 
Intermediate Algebrac .15 9 
Coordinate Geometryd .15 9 
Plane Geometrye .23 14 
Trigonometryf .07 4 
Total 1.00 60 
aPre-Algebra. Items in this content area are based on operations using whole 
numbers, decimals, fractions, and integers; place value; square roots and 
approximations; the concept of exponents; scientific notation; factors; ratio, 
proportion, and percent; linear equations in one variable; absolute value and 
ordering numbers by value; elementary counting techniques and simple 
probability; data collection, representation, and interpretation; and understanding 
simple descriptive statistics. 
bElementary Algebra. Items in this content area are based on properties of 
exponents and square roots, evaluation of algebraic expressions through 
substitution, using variables to express functional relationships, understanding 
algebraic operations, and the solution of quadratic equations by factoring.
cIntermediate Algebra. Items in this content area are based on an understanding of 
the quadratic formula, rational and radical expressions, absolute value equations 
and inequalities, sequences and patterns, systems of equations, quadratic 
inequalities, functions, modeling, matrices, roots of polynomials, and complex 
numbers.
dCoordinate Geometry. Items in this content area are based on graphing and the 
relations between equations and graphs, including points, lines, polynomials, 
circles, and other curves; graphing inequalities; slope; parallel and perpendicular 
lines; distance; midpoints; and conics. 
ePlane Geometry. Items in this content area are based on the properties and 
relations of plane figures, including angles and relations among perpendicular and 
parallel lines; properties of circles, triangles, rectangles, parallelograms, and 
trapezoids, transformations, the concept of proof and proof techniques volume; 
and applications of geometry to three dimensions.
fTrigonometry. Items in this content area are based on understanding trigonometric 
relations in right triangles; values and properties of trigonometric functions; 
graphing trigonometric functions; modeling using trigonometric functions; use of 
trigonometric identities; and solving trigonometric equations. 
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Table 13.2. Specifications for the PLAN mathematics test 

Content area Proportion of test No. of items 
Pre-Algebraa    .35 14 
Elementary Algebrab    .20 8 
Coordinate Geometryc    .18 7 
Plane Geometryd    .27 11 
Total 1.00 40 
aPre-Algebra. Items in this category are based on operations with whole numbers, 
integers, decimals, and fractions. The topics covered include prime factorization, 
comparison of fractions, conversions, scientific notation, square roots, percent, 
absolute probability, mean, median, and mode.
bElementary Algebra. The items in this category are based on operations with 
algebraic expressions. The operations include evaluation of algebraic expressions 
by substitution; simplification of algebraic expressions, additions, subtraction and 
multiplication of polynomials; factorization of polynomials; and solution of 
quadratic equations by factoring. 
cCoordinate Geometry. Items in this category cover topics on graphing in the 
standard coordinate plane. The topics include graphs of linear equations, 
measurement of lines, and determination of the slope of a line. 
dPlane Geometry. Items in this category cover such topics as measurement of 
plane surfaces, properties of polygons, properties of triangles, the Pythagorean 
Theorem, and relationships involving circles. 

Vertical scales are often created after test forms for different levels are 
created. It should be understood that the nature of the forms themselves—
in particular, their content and statistical specifications in relation to each 
other—has a large impact on any resulting vertical scale, including ceiling 
and floor effects, and the amount of overlap between different levels. 

13.2.3. How Is Growth Defined? 

Perhaps the most publicized debate in the vertical scaling literature is in 
relation to using item response theory (IRT) as a scaling method. A key 
issue in the debate over scale shrinkage was the nature of growth and 
whether within-grade variance should increase, decrease, or remain 
constant as the grade increased. Camilli (1988) stated. 

The scale shrinkage controversy has opened up an important debate 
in educational measurement. It is not a debate between IRT methods 
and traditional scaling methods. In fact, it was shown in this paper 
that the two types of methods (IRT and percentage correct scores) 
could lead to similar conclusions about shrinkage within grades. The 
more interesting issue raised is how children learn, and this question 
goes far beyond measurement technology. (pp. 239–240). 
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The primary reason for creating vertical scales is to measure learning 
across time. Without an understanding of the nature of growth, it is not 
possible to clearly evaluate whether a vertical scale is functioning as it 
should. For example, if the true nature of growth shows increasing 
variability over time, then a vertical scale that shows constant variability 
over time would not be judged as adequate. These issues are philosophical 
and deal with child development, psychology, and how the educational 
curriculum is implemented. The pattern of growth might vary across 
grades (i.e., increase from, say, first to fourth grade, then remain constant) 
and across academic subjects (the nature of mathematics might yield a
different growth pattern than, say, English; punctuation might be different 
from comprehension). Different ways of constructing and implementing a 
curriculum might also impact growth across time. A spiral curriculum 
(where a concept is covered at multiple points in time, at increasing depth) 
might yield gradual growth, whereas a different implementation might 
yield a more stair-step pattern of growth. Additionally, how one chooses to 
assess growth will have an impact, as growth is generally operationally 
defined by some assessment tool. 

In addition, there is the interaction with test construction/design. Should 
specifications be developed to meet a preexisting growth model or should 
the model of growth be developed based on empirical information 
obtained from an assessment built to a philosophy of curriculum? Given 
that results will differ depending on choice of particular practices, scaling 
methods, assessment forms, and so forth, how does one decide what to do? 
For example, Harris and Hoover (1987) found that examinees received 
higher ability estimates if the test level they were administered was 
calibrated on less able examinees. How should this information be used in 
selecting procedures? Could findings like this be manipulated for 
advantage? Or, are aspects of these issues somewhat irrelevant to most 
practitioners, as Yen and Burket (1997) suggested, as long as most 
comparisons tend to be within a grade, using the same instrument (e.g., 
fourth graders administered the ITBS are compared to other fourth graders 
administered the ITBS)? 

One problem in trying to address the issue of defining growth is that test 
publishers rarely make the information explicit. It seems likely that most 
definitions are determined operationally, based on a combination of 
empirical data, the test development process, and preconceptions regarding 
the nature of growth. For example, a practitioner who believes within-
grade variance should remain constant over grades might not develop test 
specifications or a data collection design with this in mind, but might reject 
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scaling methods that resulted in large changes in within-grade variance 
over grades. 

In our example, the nature of growth for the PLAN and ACT 
mathematics scale was determined using two main sources of information: 
curriculum surveys, content experts, and educators, and empirical data. 
The former were used to develop the test specifications, which included 
the content covered on both assessments and the targeted difficulty and 
complexity of the content. Empirical data were then used to operationally 
define, for example, within-grade variability.

13.3. Technical Issues 

The separation of technical and implementation issues followed here is 
admittedly arbitrary. The intent is to separate the decision to use, say, the 
three-parameter logistic model in scaling from the particular choice of 
estimation program used to estimate item parameters. 

When initially developing a score scale, decisions need to be made as to 
the number of score points, how the scale will be anchored, how vertically 
scaled levels are mapped into the score scale, how equated raw scores or 
thetas are mapped onto the scale (linearly? normalized? arcsine 
transformation?), and how, where, or if gaps or clumping (multiple raw 
scores mapping into a single reported score) occur. Is the scale to have a 
target mean and standard deviation for a particular population or sample? 
Are the scale values integers? Two digits? Are the values chosen likely to 
be confused with some other scale? Does the scale aid in score 
interpretation or detract from it? Most scales are not equal interval, despite 
some claims to the contrary. Is this clear to users? What is the best scale to 
measure growth? 

Yen and  Burket  (1997) discussed the need for criteria regarding what 
makes for a desirable scale. Even if we could define the gold standard in 
terms of what characteristics a good scale should have, we are still left 
with the problem of how to obtain these properties. How do we manipulate 
the results obtained from some objective set of procedures and software? 
Do we smooth? If so, how much and with what method? What are the 
ideal characteristics that a scale should possess? Tomkowicz and Schaeffer 
(2002) provided a case study into manipulating results to obtain a final 
scale with what they viewed as desirable scale characteristics. How much 
subjective manipulation is acceptable? And as there really is little that is 
objective about the choice of software to use, the methods to use, the data 
to use, and so forth, does it really matter?
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13.3.1. Data Collection Design 

One of the most obvious choices in collecting data to scale a test is the data 
collection design (see Kolen, Chapter 3). According to Kolen and Brennan 
(2004), “It needs to be made explicit that the differences between the 
grade-equivalent scales of test publishers lie mainly in the method of data 
collection (e.g., scaling test versus anchor test), not in the statistical 
method used to link the test levels” (p. 235). 

Different data collection designs can be used to create vertical scales, 
such as scaling test, common items, or single group to scaling test (a 
separate test containing, for example, both third and fourth-grade items, 
which is administered to both third- and fourth-grade students in addition 
to the regular third- or fourth-grade test, respectively), common items (a 
set of anchor items appearing, e.g., in both the third- and the fourth-grade 
tests), or single group (where one group of students is administered, e.g., 
both a third-grade test and a fourth-grade test). Common items can be 
internal or external, they can span the entire range of content and 
difficulty, or any subset of the range. The number of items required to 
provide adequate linking using common items has not been determined. 
What characteristics the sample of examinees need to display has not been 
determined, nor has the number of examinees required for vertical scaling 
been agreed upon. No general rules exist in terms of how to edit items or 
data; there is no consensus on how to use goodness-of-fit indexes in 
determining whether to retain items or examinees in establishing vertical 
scales. No single combination of methodology, data collection design, and 
sample has been found to be superior to others to a generalizable extent, 
and most designs seem to work well in at least some of the settings 
studied.

It should be noted that the way a design is implemented also can vary. 
For example, a scaling test can cover the full range of, say, grade 3 to 
grade 8, or there can be two scaling tests that cover, say, grades 3 to 6 and 
5 to 8, and so on. In addition, some common-item designs are implemented 
with overlap to both a higher and lower level (e.g., grade 5 overlaps with 
both grade 6 and grade 4) or to only a lower level (e.g., grade 5 only 
overlaps with grade 4). At times, two distinct designs (e.g., scaling test and 
common item) on a particular battery might have more in common than 
the same method (e.g., common item, across two batteries). For example, 
the common-item design used in Boughton, Lorie, and Yao (2005), where 
the common items are scattered throughout a test form and the linking is 
one-directional in that a grade 5 test also includes grade 4 items, but a 
grade 4 test does not include grade 5 items, is very different from the 
common-item design used in Tong (2005) and Hendrickson, Wei, Kolen, 
and Tong (2005) where the common items are concentrated at the ends of 
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the test forms, and tests overlap with both the next higher and the next 
lower grade (i.e., a grade 5 test has both grade 4 and grade 6 items). (It 
should be noted that the determination of the common item pattern is not 
just a data collection issue, it is also impacted by the test specifications and 
the nature of growth.) 

Practical issues such as testing time and the nature of the items (it is 
difficult to have common-item designs with some types of passage-based 
item or constructed response item) as well as the nature and number of 
examinees available for scaling also impact how data are collected. 
Crocker and Algina (1986) stated that the these sorts of practical issue are 
often the “prime criterion” in selecting a data collection design for 
equating, but that the main criteria should be the tenability of the design 
assumptions, practicality, and accuracy. This is likely to also hold for 
vertical scaling. 

Hendrickson, Kolen, and Tong (2004) found an interaction between 
scaling design (common item vs. scaling test) and calibration procedure; 
Loyd and Plake (1987) also found that design can have a substantial 
influence on the results. Andrews (1995) found that score scales developed 
with different methods and different designs differed enough to consider 
scaling design as an “important factor” when creating a vertical scale. 

Raju, Edwards, and Osberg (1983) examined the effect of anchor-test 
size in vertical scaling with Rasch and 3PL and found that shorter anchors 
(as few as six items) could be as effective as longer ones. Barron and 
Hoover (2001) found context effects to be problematic in using common 
items to create a vertical scale. Harris (1991) found that although both 
designs appeared adequate, Angoff’s Design 2 (counterbalanced, single 
group design) exhibited more stability than Angoff’s Design 1 (random 
groups design). Kolen (Chapter 3) provided a current updated description 
of Angoff’s designs. Holmes (1982) compared a single group method and 
two external anchor common-item methods and found that the single 
group method consistently produced the most accurate results, although 
the advantage was small.

Various operational vertical scales have been established using different 
data collection designs. The Stanford Achievement Test Series (Harcourt 
Educational Measurement; 1985) and Metropolitan Achievement Tests 
(The Psychological Corporation, 1988) used a single group design variant: 
Each student was administered two adjacent levels. The Mississippi 
Curriculum Test (Tomkowicz & Schaeffer, 2002) used internal anchor 
items to link to the TerraNova K-12 assessment system. The Iowa Tests of 
Basic Skills (Iowa Tests of Basic Skills, 2003) used a scaling test design.

In our example, the goal of the scaling was to place PLAN scores on the 
existing ACT score scale. Data from a random groups design were used as 
the primary data (12th graders were randomly administered the ACT or the 
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PLAN), with data from a random groups design (10th graders were 
randomly administered the ACT or the PLAN) and two single group 
designs (11th graders and 12th graders administered both ACT and PLAN, 
in a counterbalanced order) used to evaluate potential scales and to check 
assumptions of the scaling.

13.3.2. Scaling Methods 

scaling (which might be unrealistic in practice; see Kolen & Brennan, 
2004, who suggested that the probabilistic approach is more likely to be 
appropriate in practice than the deterministic approach), Thurstone scaling, 
Hieronymus scaling, and IRT scaling. Kolen and Brennan, and Petersen et 
al. (1989) discussed these methods, and scale construction in general, 
including linear and nonlinear transformations, creating scales that 
incorporate content meaning, or normative meaning, or score precision 
information, as well as developmental score scales such as grade 
equivalents. The PLAN and ACT mathematics tests were scaled using an 
equal-standard-error-of-measurement property (see ACT, 1989).

13.3.3. Reported Scale 

Reported scores are generally integer scores or decimal scores rounded to a 
preset number of decimal places. When using IRT methodology, it would 
be possible to report ability estimates such as thetas or logits, rather than 
scores, although it generally is not done. It is assumed that examinees and 
general users of test results would have difficulty interpreting estimated 
theta or logit values. Commonly, some underlying scale is developed as a 
result of the scaling method, which is then transformed in some way to a 
reported scale. This can involve linear or nonlinear transformations, 
truncation, extrapolation, and rounding. 

Numerous examples of different types of scales exist. For example, 
Angoff (1971) listed percent mastery, standard scores, percentile ranks, 
normalized standard scores, age-equivalent scores, grade-equivalent 
scores, and IQ scores. Petersen et al. (1989) discussed having primary and 
secondary scales. They advocated creating reported scales that facilitate 
score meaning and minimize likely score misinterpretations, such as being 
confused with another score scale that already exists. 

Kolen and Brennan (2004) provided additional examples of scales based 
on psychometric models, including Thurstone and Rasch; domain scores 
are also discussed. Additional issues include how to compute raw scores 
on a test (e.g., number correct, pattern scoring, corrected for guessing) and 

Different methods of developing scores include normatively, Guttman 
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how to scale tests within a test battery. (Should all tests be scaled the same 
way and/or have the same range of score values, even if the range is not 
optimal for all tests within the battery?) Should estimated true scores be 
used? For multiple-choice tests, should scores below the “chance” level be 
truncated? If you use normative information in creating a scale, on what 
group should the norms be based? If you use an equal standard error of 
measurement (SEM) method, what reliability values should be used? For 
example, if the number of achievable scores differs for math and language 
arts, do we want the same number of reported scale score points? (Kolen & 
Brennan, p. 345, suggested some ways to determine a reasonable number 
of score points.) 

One important issue with some constructed response items is that raw 
scores for a prompt generally have meaning based on the scoring rubric. 
Depending on how those scores are combined with other items and then 
transformed into a reported score, this direct meaning might be lost. 

In our example, the reported scale for PLAN is 1-32 on the 1–36 ACT 
scale. Because the PLAN assessment does not contain the more difficult 
items that the ACT assessment does, it was determined that the maximum 
scale score achievable for PLAN should be less than the maximum score 
achievable for ACT. A top of 32 was arrived at empirically, from 
examining data, test specifications, and scale characteristics.

13.3.4. Criteria 

What are meaningful ways to compare different vertical scales resulting 
from different methodologies? What criteria do we use? Effect sizes? 
Heuristics/common sense? Is there some objective measure that could be 
applied, such as the reliability of gain scores on the scale, or empirical 
studies involving multiple test forms and multiple occasions? How do we 
determine if one scale is better than another or if a particular scale is 
acceptable? One very important and neglected area is how to evaluate if a 
scaling is acceptable or best. 

Harris and Crouse (1993) summarized the various criteria that have been 
applied in equating studies and gave an example of how different criteria 
change the resulting decision on what is best equating; something similar 
should be done for vertical scaling.

Arce-Ferrer, Frisbie, and Kolen (2002) used the standard error of 
proportions in reporting changes in school performance with achievement 
levels. Holland (2002) proposed two measures of distance to examine the 
difference between two cumulative distribution functions: the vertical 
(difference in percent at the same score) and horizontal (difference in 
percentiles for the same percentage) distances. Tong and Kolen (2005) 
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used effect sizes. Other studies have used cross-validation (e.g., Holmes, 
1982), “reasonableness,” such as grade-to-grade growth (e.g., Karkee, 
Lewis, Hoskens, Yao, & Haug, 2003), and first-order equity (e.g., Harris, 
1991). Simulations have been used, but as the data are simulated to fit a 
particular model, recovery of “truth” might be a more useful criterion for 
examining issues such as the effect of concurrent or separate calibrations 
than in evaluating the resulting scales themselves. Yen (1986) argued that 
“clearer criteria are needed for judging the appropriateness and usefulness 
of alternative scaling procedures and more information is needed about the 
qualities of the different scales that are available” (p. 299). 

Criteria need to be determined that will be generally accepted as a way 
to evaluate the acceptability of a vertical scale. Two primary criteria were 
used in evaluating placing PLAN on the existing ACT scale: how closely 
the same-scale property was met (meaning an obtained PLAN scale score 
can be interpreted as approximately the ACT scale score that an examinee 
would have obtained if he/she has taken the ACT at the same time that the 
PLAN was taken) and how equal the conditional SEM was across the 
score scale range. Other factors, such as gaps in the reported scale, were 
also considered.

13.4. Implementation Issues 

Many issues arise in the construction of vertical scales, which might be 
loosely grouped under the umbrella of “technical issues.” These include 
scale indeterminacy, calibration method (concurrent, separate, etc.), choice 
of item parameter linking (mean-sigma, a curvilinear method, etc.) for 
placing separate item parameter calibrations on the same scale, choice of 
model (classical, IRT, testlet, polytomous, number of parameters, etc.), 
choice of item parameter estimation procedure, and so on. Much of the 
vertical scaling literature that does exist compares and contrasts scales 
created using different technical methods. However, there is no definitive 
comparison study (it is unlikely that there could be), and the practitioner 
does not have any unequivocal guidelines to follow. 

There are a multitude of methodologies and variations on these 
methodologies that can be used to create vertical scales. If an assessment 
includes both constructed response and multiple-choice types of items, 
they might be scaled in a single calibration run, or scaled separately and 
combined later. Examinee raw scores might be computed by using a 
number correct score, a corrected-for-guessing score, or an IRT-based 
score (typically, theta). Different items or contents or sections can be 
weighted differentially, and combined in various ways, to form raw scores.
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Item calibrations can be conducted concurrently, or separately. Fixed 
item parameters can be used, or various item parameter linking procedures, 
such as item characteristic curve methods or mean-sigma, have been used 
to place item parameter estimates from separate calibrations on a common 
scale. Different approaches exist to chain different calibration runs 
together. Different “bases” can be used, such as scaling through a 
calibrated item pool or a base form approach. For, say, a K-8 battery, any 
grade test from K to 8 could be used as the base form to create the scale. 
No single combination of methodology, data collection design, and sample 
has been found to be superior to others to a generalizable extent; most 
designs seem to work well in at least some of the settings studied. 

New, innovative methods are also being explored, such as the 
hierarchical and multivariate modeling approaches discussed in Patz, Yao, 

hierarchical multigroup method allows the functional form of growth to be 
explicitly estimated, whereas the multidimensional multigroup model can 
consider the dimensionality differences that occur at different levels. 
Although the authors presented these models as exploratory, it is clear that 
they address some additional issues related to vertical scaling that bear 
further research. 

Research summaries should be created (along the lines of meta-
analyses?) to summarize when particular methods appear to work well. 
Research comparing the results of applying different combinations of 
methods should be continued. One of the best exchanges I am aware of 
were the IRT versus classical scaling exchanges: There were IRT 
advocates implementing classical methods and classical advocates 
implementing IRT methods, different data, different implementation 
decisions, inconsistent results, and so on. It was a relatively open exchange 
of impact (results of the two approaches) and we all benefited from it. For 
the PLAN–ACT example, details, including the strong true-score model 
used, specifics regarding the examinee samples, the formulas used in 
computing the SEM and the same-scale property are provided in ACT 
(1999). Note that not all operational vertical scalings are this well 
documented in the public domain. 

One implementation issue that is especially important is the choice of 
software. Although some vertical scaling can be done by hand, virtually all 
research and operational scaling makes use of computer programs. Most 
software programs make numerous options available, although many users 
likely implement only default settings. Although programs certainly differ 
in the extent of documentation and the ease of implementing alternatives, 
users frequently lack the knowledge to make an informed decision. For 
example, a smoothing program might offer degrees of .05 and .10, as 
defaults, yet provide no guidance to the user for determining which of 

Chi, Lewis, and Hoskens (2003) and Patz and Yao (Chapter 14). The 
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these would be a better alternative. Some programs provide limited 
information as to what algorithms are used, how to interpret output, and 
how truncation, interpolation, extrapolation, smoothing, and so on are 
handled, which can impact the final reported scale values.

Perhaps one of the less considered decisions is that of which IRT 
calibration program to use. Several authors found the particular software 
used for IRT parameter estimation could have an impact. In addition to the 
more obvious estimation method differences, (e.g., Hendrickson et al., 
2004, looked at three IRT proficiency estimation procedures: expected a 
posteriori [EAP], maximum a posteriori [MAP], and maximum likelihood 
estimate [MLE], even issues as subtle as the number of EM cycles in 
BilogMG or whether to use default settings might have an impact.

Programs are complex and the manuals are often obscure about what 
computations are actually being done, and for proprietary reasons, source 
code is generally not available. When a publisher uses a program 
developed in-house, there is generally even less information about the 
program made available, making it difficult to know the effect of the 
program (what options were used, how calculations were done, etc.) on the 
final scale. One solution is for the test developer to do comparison studies, 
although, admittedly, a case could be made that a disinterested party would 
be preferred. Fitzpatrick (1994), for example, compared parameter 
estimates produced by PARDUX and BIGSTEPS.

Way, Twing, and Ansley (1988) compared Bilog and Logist using two 
different calibration procedures, as did Omar and Hoover (1997). Omar 
(1997) followed up on the previous study, examining BilogMG. Childs 
and Chen (1999) described obtaining comparable item parameter estimates 
from MULTILOG and PARSCALE. Pomplun, Omar, and Custer (2004) 
compared WINSTEPS and BilogMG, finding that WINSTEPS tended to 
result in more accurate individual and mean measurement, whereas 
BilogMG resulted in more accurate standard deviations. Hendrickson et al. 
(2004) compared MUL IT LOG and ICL and found that the computer 
program/estimation method used impacted the resulting vertical scale. 

Limitations, such as the number of categories allowed for polytomous 
items, or the size of a data matrix that can be input, might also affect the 
final vertical scales, as they require collapsing of data categories or the 
winnowing of data. Bishop and Omar (2002) mentioned that in their study, 
a number of decisions had to be made, such as collapsing categories of 
data, because of limitations in the software used. Writing one’s own 
programs might eliminate this problem, but this leads to the issue of 
potential lack of comparability with other investigators, making 
consistencies and inconsistencies in different methods of scaling, and so 
forth more difficult to discern. 
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Most of the studies reported in the literature do not provide much detail 
on how computer runs were conducted, although some exceptions exist 
(e.g., Jodoin, Keller, & Swaminathan, 2003, provided information on the 
optional commands they used). Proprietary software was used in the 
scaling of PLAN and ACT; information on the algorithms used is provided 
in ACT (1999). 

To summarize, there is no clear guidance to a practitioner on what 
software to use in vertical scaling. When new versions of software appear, 
it is up to the practitioner to determine, for example, if parameter estimates 
calculated under the new and old versions are comparable. It is suggested 
that more use be made of open-source software, where, for good and bad, 
how calculations are done is publicly available. 

13.5. Scale Maintenance Issues 

One issue that has not been addressed much in the literature is that of 
maintaining vertical scales over time and over new forms. For example, 
should new grade 3 forms be equated to the original grade 3 form or 
should there be an attempt to link the entire range of, say, grade K to grade 
8 forms to the original set of forms on which the scale was set? What types 
of drift, or error, are we apt to see over time? How often should a vertical 
scale be monitored? Reevaluated? Reconstructed? Because of the different 
results that different procedures have lead to, what are the dangers of 
“mixing and matching” procedures over time? Also, what is the trade-off 
between what is practically possible and what is best from a consistency 
standpoint?

Issues such as data collection designs, equating methodologies, and 
examinee sample characteristics need to be considered in equating new 
forms to a vertical scale (see Kolen, Chapter 3 for additional discussion of 
these issues). How equating is defined, whether by Lord’s (1980) equity 
definition, Angoff’s (1971) equipercentile definition, Divgi’s (1981) two 
approaches, Morris’ (1982) method including conditional variance, an IRT 
true-score definition, or some other definition, should guide the equating 
of new forms (see Harris & Crouse, 1993). A choice of equating 
methodology needs to be made, which might or might not correspond to 
the methodology used to scale. For example, IRT could be used to create 
the vertical scale, but classical methods, such as equipercentile methods, 
could be used to equate new forms. However, if the assessment is 
constructed using IRT procedures, equating (and scaling) the test using 
IRT could take advantage of the test development procedures. 

An equating is always referenced to a particular population of 
examinees (Flanagan, 1964). The data collection design/samples 
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combination is the most important part of any equating study (assuming, of 
course, that the characteristics of the instruments make equating 
defensible). No equating methodology exists that can counteract bad data. 
One of the most important sample characteristics (in addition to size of the 
sample, motivation, and appropriateness for the test being equated) is that 
the sample be representative of the population in which one is interested.

There is no easy mechanism to apply to determine which equating 
method is preferable in any given situation. Additionally, there is no 
universally accepted criterion to know if an equating is best or even 
acceptable. When the new forms are part of a vertical scale, the issues are 
much more complex. Also, whether, say, new forms at one level are 
equated separately from new forms at a different level depends in part on 
how new forms are introduced. For example, if a new battery is introduced 
at a single point in time, and not very frequently, equating the new forms 
to the previous scale simultaneously might be done. However, if new 
forms are introduced frequently, and at different times, equating the forms 
separately is more practical.

Hoskens, Lewis, and Patz (2003) looked at maintaining a vertical scale 
over time, examining several approaches, including equating within each 
grade, an augmented approach that used both vertical and horizontal 
anchors, and a concurrent and a separate method of setting a new vertical 
scale for all grades concurrently and linking it to the previous vertical 
scale. They found that the method chosen had an impact, with the 
horizontal and augmented methods indicating grade-to-grade variability 
was relatively flat, and the other methods indicating an increase in 
variability.

There are additional practical issues that might also affect the stability 
of scales, such as changes in software used to calibrate items (e.g., a 
change from Bilog to BilogMG) or a change in a vendor (e.g., when a state 
department moves its test development from one testing company to 
another).

In our example, new forms of the PLAN and ACT mathematics 

was checked in 1995, using a scaling test design. Both the original 
methodology (equal SEM method) and IRT methodology were used to 
create PLAN scores, which were then compared to the existing PLAN 
scores. The resulting scales were somewhat different, which was expected 
because of the different design (there was a test length adjustment used in 
the 1988 scaling, as well as a difference from a random groups to a scaling 
test design) and a slight change in the test specifications for PLAN 
between the form used for the 1988 scaling and the form used in the 1995 
scale. It was determined, however, that the differences were not 
compelling. It should be noted this was not a traditional examination of 

assessments are equated. The stability of the PLAN-ACT scale over time 
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scale drift, but a comparison of an entirely new scale created under 
different circumstances, to the original scale. A change in administration 
policy to allow the use of calculators on the mathematics assessments in 

.

13.6. Other Issues 

Issues that arise in other contexts (e.g., single-grade-level testing) might be 
magnified in a vertical scaling context. Some of these issues were 
mentioned earlier, such as content dimensionality issues, but other issues, 
such as moving a paper-and-pencil test to a computer-based test, were not. 
(See Eignor, Chapter 8, for a discussion of issues related to moving from a 
paper mode to a computer mode.) The fact that multiple levels need to be 
considered simultaneously increases the complexity of dealing with issues 
such as these. Issues arise when not all examinees answer all items, 
whether from a matrix sampling design or from an examinee choice 
model, where an examinee chooses, for example, which two questions to 
answer of the five questions available. These issues become more complex 
when the consistency of scores needs to be maintained vertically (across 
grades) as well as horizontally (within a grade). This is also true for issues 
such as modifications in test specifications, conducting standard settings 
(assuming there is a desire for continuity across grades), translating the test 
into other languages, preequating test forms, pretesting items, and dealing 
with test speededness and guessing issues. Technical issues, such as 
establishing validity for score use or computing reliability coefficients, as 
well as operational issues such as training raters to grade essay responses 
are more problematic in a vertical scaling context. Although it is possible 
to establish a scale initially and then subsequently treat each grade 
separately, there still needs to be monitoring across the entire range of 
grades to ensure reasonableness (e.g., that a cutoff for adequate 
performance is not set at a score of 130 for grade 3 and at 120 for grade 4). 

Although these issues might (e.g., dimensionality) or might not (e.g., 
translation issues) directly impact the setting of the vertical scale, they all 
might impact the usefulness of the scale as it is put into operational use. 

13.7. Summary 

This chapter presents issues that a practitioner would encounter when 
developing a vertical scale for an operational testing program: using a 
framework of conceptual issues, technical issues, implementation issues, 

1996 also led to a reexamination of the PLAN-ACT scale
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maintenance issues, and other issues. The scaling of the PLAN and ACT 

underlying vertical scales. The practitioner who chooses methods with 
careful attention to his/her purpose of the scale (i.e., how the resulting 
scores are intended to be used) and to the literature and current practices of 
other test publishers is more likely to create a scale that will lead to scores 
on which appropriate decisions can be made. 

Vertical scaling is a complex process, involving philosophical, 
technical, and practical issues. Although it can be disconcerting that there 
is no consensus on the best way to create a scale, it is also comforting. 
Many assessments, such as ITBS (Iowa Test of Basic Skills, 2003), 
Stanford Achievement Test (Harcourt Educational Measurement, 1985), and 

2000), state-specific tests, and so on, have created vertical
 scales in different  ways,  yet  all  of  those scales appear to be functioning
 adequately for some of the same purposes. Perhaps there are many roads
 to  Rome. However,  that does not mean that all roads lead to Rome,
 or  that  all implementations  of  vertical  scaling  lead to acceptable
 scales for all purposes. Instead of arguing which single scaling method
 is  the best,  we might do better to see which slate of options work for
 which purposes, under which conditions.

mathematics tests is used as an example to demonstrate some of the issues 

 EPAS (ACT, 
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14.1. Introduction 

When one test form is significantly and intentionally more difficult than 
another, a link that places scores from these test forms on a common scale 
might be called a “vertical” link, and the scale on which the scores are 
reported will commonly be called a “vertical scale.” Tests might be scaled 
so that they support interpretations that are not available by examining or 
summarizing only the items answered correctly or incorrectly. Scaling 
allows one to compare scores from different test forms, and vertical 
scaling is intended to support the comparison of  scores obtained at each of 
a number of test forms (or “levels”) of systematically different difficulty. 
When differences in population proficiency at adjacent levels are modest 
in comparison to differences between examinees within levels and when 
the expectations or standards against which examinees are to be measured 
overlap extensively, then linking the adjacent test levels to a common scale 
will generally make sense and provide meaningful information. These 
conditions are satisfied in the case of achievement test batteries that 
measure development of proficiency in broad domains such as reading and 
mathematics. For a more formal way of examining content overlap that 
might support meaningful vertical scaling, see Wise and Alt (2006). Tests 
that are vertically scaled are intended to support valid inferences regarding 
growth over time, and they also support the use of “out-of-level” testing, 
which can be a prescribed accommodation for some students.

                                                     
1

necessarily of CTB/McGraw-Hill. 
 The opinions expressed in this chapter are those of the authors and not 
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There are significant limitations to the inferences supported by vertical 
scaling of test forms. Because adjacent test levels are not parallel forms, 
vertical scaling does not constitute an equating of forms in the sense 
defined in Holland (Chapter 2, Section 2.4.1). Rather, it represents a form 
of test linking. Furthermore, the validity of inferences based on such 
linkages will depend on the strength of the link. Under most vertical 
scaling research designs, the strength of the link will generally diminish as 
the distance between test levels increases; that is, although an achievement 
test battery might measure achievement in mathematics on a scale that 
spans grades 2 to 10, comparisons between scores based on the 2nd- and 
10th-grade forms will typically not be well supported, although 
comparisons based on adjacent forms (e.g., grades 2 to 3) might be very 
well supported.

In this chapter we examine the statistical modeling issues in analyzing 
and reporting information from vertically linked test forms. In Section 14.2 
we discuss general modeling issues that one must consider when 
evaluating approaches to vertical scaling. In Section 14.3 we develop and 
implement a multigroup multidimensional item response theory (IRT) 
model for vertical scaling. We conclude with a general discussion of the 
standard and emerging modeling approaches.

14.2. General Modeling Issues in Vertical
Scaling Contexts 

We will focus on IRT scales in this chapter, but it is worth noting at the 
start that assessments that measure growth over large grade spans on a 
common scale predate modern advances in item IRT. For example, 
editions of the California Achievement Tests published before 1980 (e.g., 
CTB/McGraw-Hill, 1979) used Thurstone scaling (Thurstone, 1928), as 
described in Gulliksen (1950, pp. 284–286). Under this version of 
Thurstone scaling, raw scores (i.e., number correct scores) for equivalent 
groups of examinees are normalized and linearly equated. 

Testing a nationally representative sample of students at a range of 
grade levels via common or linked test forms allows one to derive grade-
equivalent scales. A student’s grade-equivalent score is defined as the 
grade level for which the student’s performance is the national median. A 
special 1984 edition of Educational Measurement: Issues and Practice
(Hoover, 1984a, 1984b; Burket, 1984) presents a discussion of historical 
approaches to the development of vertical scales for achievement test 
batteries, with an emphasis on the advantages and disadvantages of grade-
equivalent scores. 
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The IRT scales are based on probabilistic models for examinee 
responses to individual items (Lord, 1980). Comparisons of IRT and 
Thurstone scales in a variety of contexts can be found in Yen (1986), Yen 
and Burket (1997), and Williams, Pommerich, and Thissen (1998).

Item response models describe the probability with which an examinee, 
with proficiency described by a score on a continuous scale, responds 
correctly (or provides a partially correct response) to each of a set of items. 
Examples include the one-parameter (Rasch, 1960), two-parameter, or 
three-parameter logistic models (Birnbaum, 1968) that one typically uses 
for dichotomously scored multiple-choice items, as well as (generalized) 
partial credit models (e.g., Fischer, 1995; Muraki, 1992; Yen, 1993) for 
polytomously scored constructed-response items.

When one fits any of these IRT models to examinee response data, the 
resulting “latent variable” proficiency estimate for any examinee is 
statistically identified as that variable that explains the statistical 
dependence of responses to multiple items by individual examinees. 
Conditional independence of item responses given proficiency is a 
fundamental IRT modeling assumption, and it has direct implications not 
only for model building and estimation but also for interpretation of 
reported scale scores. Scale scores have an immediate interpretation, not 
only as the general proficiency on the domain defined by the items on the 
exam but also in terms of the probability with which an examinee correctly 
responds to particular items. This observation is exploited, for example, in 
standard setting procedures that elicit judgments regarding required levels 
of mastery on a set of items that are ordered by difficulty (e.g., Bookmark 
standard setting as introduced by Lewis, Mitzel, & Green, 1995; see also 
Mitzel, Lewis, Patz, & Green, 2001).

Properly developed vertical scales add several compelling features to 
achievement tests. They facilitate the estimation and tracking of growth 
over time. For instance, we might obtain repeated measures on individual 
students using different age- and grade-appropriate test forms. These 
measures would help us determine how much growth has occurred at 
different intervals. Second, it would appear that vertically scaled 
achievement tests would allow more robust comparisons, relative to single, 
cross-grade administrations. In particular, vertical scales allow 
comparisons of one grade level to another and of one cohort to another.

Less obvious, but perhaps equally important, is the fact that vertical 
scaling allows additional comparisons between test items. Vertical scaling 
can lead to more efficient field testing of new content, as items targeted for 
one grade might be found to be of more appropriate difficulty for an 
adjacent grade. Final form selection for a target grade can then identify 
appropriate items from a larger pool. In addition, standard setting can be 
made more reliable, because a richer set of items (from adjacent levels of 



256      Richard J. Patz and Lihua Yao 

the test) might be ordered and the scale more finely segmented as the 
density of items increases.

All of these advantages that vertical scaling promise to deliver rest on 
the accuracy of the information provided by the vertical scaling analysis. 
In the case of IRT models, this information comes in the form of model 
parameters, the appropriateness and fit of the model, and the reliability 
with which model parameters can be estimated. For these reasons, we 
encourage extensive examination of modeling approaches that support 
vertical scaling.

14.2.1. Unified Versus Divide-and-Conquer Statistical Modeling 
and Analysis in Educational Assessment 

Complex inference problems lend themselves to “divide-and-conquer” 
analysis strategies, where one breaks the problem down into a series of 
simpler problems that are tackled in sequence. Educational assessment 
programs regularly employ this strategy.

The National Assessment of Educational Progress (NAEP), for example, 
has the complicated task of measuring and tracking, over time, the 
achievement of students in the nation as a whole as well as in selected 
subgroups of the nation. Divide-and-conquer features of the NAEP 
analyses include the following: (a) Errors in the rating process for 
constructed-response items are monitored during the scoring, but then 
assumed to not exist in subsequent analyses; (b) IRT item parameters are 
estimated using a simple (0 1)N  model for proficiency and then assumed 
to be fixed and known at their estimated values in subsequent analyses 
(Patz & Junker, 1999b).

Similarly, operational scoring of standardized tests typically proceeds 
under an assumption that the test’s characteristics (e.g., item parameters, 
raw-score to scale-score conversions) are known and fixed at values based 
on an earlier analysis. Although it would be possible to reestimate test 
characteristics for the population being scored, that would not be feasible 
in practice for many applications. Furthermore, for certain inferences 
regarding test scores (e.g., comparisons with a norm group), it would not 
be desirable to reestimate the item and test characteristics.

Divide-and-conquer analyses have advantages that extend beyond their 
ability to work where more unified or integrated approaches might fail. 
The results of each subanalysis will generally be easy to interpret, and this 
might be especially important for validity in assessment contexts. 
Furthermore, sources of uncertainty or model misspecification might be 
easier to identify and easier to isolate from other analyses. For example, if 
an IRT model does not fit response data well, this fact might be easier to 
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identify in an analysis that focuses on the IRT model and does not include 
parameters for rater accuracy or parameters for subpopulation effects. A 
clear disadvantage of a divide-and-conquer analysis, however, is the 
difficulty associated with propagating errors or uncertainty from one part 
of the analysis to another. For example, standard errors associated with 
mean achievement levels in NAEP do not reflect any uncertainty 
attributable to errors in the human rating process.

Vertical scaling data (i.e., data from tests administered at an ordered set 
of grade levels) lends itself to both divide-and-conquer and unified 
analyses. Unified analysis might take the form of the concurrent estimation 
of a single unidimensional IRT model that spans the grade levels and 
models the population proficiency distribution for each grade. Divide-and-
conquer approaches might involve separate unidimensional analysis of 
data from each grade level (or possibly pairs of levels), followed by an 
analysis focused on the relationships between the grade-by-grade results.

Several variations of divide-and-conquer are currently in use for vertical 
scaling. Karkee, Lewis, Hoskens, and Yao (2003) and Hoskens, Lewis, 
and Patz (2003) compared these methods to a unified (i.e., concurrent 
calibration) approach. These extensive analyses using real assessment data 
fail to indicate any advantage to the unified approach, but, instead, suggest 
that separate calibration by grade level might be superior. Patz and Hanson 
(2002) conjectured that whereas a concurrent calibration might produce 
more accurate results when the model is correctly specified, it might be 
that separate estimation or fixed estimation is more robust than concurrent 
estimation to model misspecification.

We next examine an extension of the concurrent calibration model in an 
effort to identify a modeling approach that will bring the advantages of 
unified analysis without the liability of model misfit. To do this and to aid 
in the comparisons, we next introduce a general model framework.

There has been some study of the relative performance of divide-and-
conquer versus unified analysis (i.e., separate vs. concurrent IRT 
estimation) in the case of equating (Hanson & B�guin, 2002; Kim & 
Cohen, 1998; Petersen, Cook, & Stocking, 1983). There is some evidence 
that when the model is correctly specified, concurrent calibration produces 
more accurate results than separate calibration. Hanson and B�guin 
provided some evidence to indicate that this is at least partly due to the fact 
that there is one set of parameter estimates for the common items, which is 
based on more data than the two separate sets of parameter estimates for 
the common items in separate calibration.  
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14.2.2. A General Hierarchical IRT Model Framework for 
Vertical Scaling 

It is helpful to introduce a formal statistical model for examining general 
statistical issues in vertical scaling. We find Patz and Junker’s (1999b) 
description useful here. Item response data consists of a set 
{ 1 2 1 2 }

ij
X i … N j … J  of J discrete observations (or measures) on 

each of N individual examinees or subjects. IRT models quantify examinee 
i ’s propensity to answer item j correctly based on the examinee’s location 

i
 on a latent scale and on characteristics of the items captured by 

parameters
j
. We allow covariates 1 2( )

N
Y Y Y …Y  on subjects (e.g., 

demographic or grade-level information) and covariates 1 2( )
J

Z Z Z … Z

on items (perhaps conditions under which the items were administered). 
Finally, we will let 1 2( , ,…, )

L
 represent the parameters of the 

distribution of  in the population; for example, if  is assumed to be 
Normally distributed, then perhaps (μ, ) , the usual normal mean and 
standard deviation parameters. We also assume independence of item 
responses within examinees given proficiency (i.e., local independence), 
and independence of item responses across subjects given  and the 
relevant covariates. These assumptions imply that

( , ) ( , , ) (  | , )p X Y Z p X Y Z p Y Z d

( , ) ( )p X Y Z p Y Z d

( ) ( )p X Z p Y d

1 1

( ) ( , )
N J

ij i j j i i i

i j

p X Z p Y d

(14.1)

where
ij

X  is the response of examinee i to item j. The second equality in 

Equation 14.1 embodies the assumptions stated earlier that (a)  contains 
parameters of the  distribution and not the item response functions 
(IRFs) and (b)  contains parameters of the item IRFs and not of the 
distribution. Similarly, the third equality states that Y contains covariates 
that can only affect X  through their effect on the  distribution, and Z
contains covariates that affect X directly, not through the  distribution. In 
general, any of the parameters, latent variables, or covariates in this setup 
can be multidimensional. Furthermore, all standard IRT models and 
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estimation methods can be characterized in relation to this general 
framework.

In a fully Bayesian analysis, a prior distribution ( )p Y Z  for the 
parameters  and  is specified. It is usually most convenient to also 
assume that all parameters are a priori independent, so that for J items and 
L parameters characterizing the population distribution of ,

1 1
( ) ( ) ( ) ( ) ( )

J L

j j
p Y Z p Z p Y p Z p Y .

Usually in IRT our interest is in features of the joint posterior 
( , , )p X Y Z , which under the above assumptions we can write as 

( ) ( ) ( ) ( ) ( )p X Y Z p X Y Z p Y Z p Y Z p Y Z

( ) ( ) ( ) ( )p X Z p Y p Z p Y

(14.2)

where the constant of proportionality is allowed to depend on X, Y, and Z
but not , , or . For example, we might be interested in the expected a 
posteriori (EAP) and maximum a posteriori (MAP) values of parameters, 
posterior standard errors, and so forth, all of which can be calculated from 
Equation 14.2 (Patz & Junker, 1999b).

All unknown quantities of interest in the model, including the expected 
or most probable values of parameters, their statistical dependence on one 
another, and the degree of precision with which they can be characterized, 
are captured in this posterior distribution. Estimation and examination of 
this distribution will support unified analyses as generally described 
earlier. If the joint posterior distribution ( )p X Y Z  could not be 
estimated easily, we might resort to a divide-and-conquer approach 
involving a sequence of analyses, each of which focuses on one part of the 
model and makes simplifying assumptions regarding others.

Item response theory models commonly estimated using marginal 
maximum likelihood via the E-M algorithm might be seen as a special case 
of the general model described earlier. In this case, ( , )p X  is a 
standard unidimensional IRT model (e.g., 3PL), and characteristics  of 
the proficiency distribution are fixed so that ( ) (0 1)p N . Separate 
calibration approaches to the vertical scaling problem might be viewed as 
repeated estimation of the simple IRT model (once for each grade), 
followed by a linear transformation of results based on a separate analysis 
of parameters of items common to two or more grades. (See, e.g., Hanson 
& B guin, 2002)

Concurrent estimation of a unidimensional, multigroup, IRT model, 
which is the standard unified analysis of vertical scaling data, might also 
be seen as a special case of the general framework. Here again, ( , )p X

é 
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is a unidimensional IRT model, the covariate Y of interest is the grade 
level of the student, and features of the proficiency distribution  are 

1{μ }G

g g g
, the mean and standard deviation of the population at each 

grade g.
In the remainder of this chapter we will investigate a model in which 

is multidimensional. For an alternative treatment in which the proficiency 
distribution is treated hierarchically with a parameterized, cross-grade 
growth trajectory, see Patz and Yao (2007).

In order to implement the multidimensional modeling approach and to 
retain flexibility to easily examine modeling alternatives, we develop 
Markov chain Monte Carlo (MCMC) algorithms. MCMC can be 
implemented in a straightforward manner for fitting item response models 
(Patz & Junker, 1999a), and variations of standard IRT models can be 
developed and examined with relative ease using MCMC method (Béguin 
& Glas, 2001; Patz & Junker, 1999b).

14.3. A Multidimensional, Multigroup IRT Model for 
Vertical Scaling 

We now examine an extension of unidimensional, multigroup IRT models 
for use in vertical scaling. We allow the ability distribution to be 
multidimensional and we estimate multidimensional item parameters.

An IRT assumption of unidimensionality is a convenient assumption 
with powerful implications. Measurement specialists generally recognize 
that unidimensionality will not hold exactly in real testing data and that 
violations of unidimensionality might be attributable to any number of 
factors: variations (or similarities) in content objectives, item formats, and 
response modes. One must consider carefully the threat that 
multidimensionality poses to the validity of unidimensional scores.

When calibrating items from a single test form, on which it has been 
determined that each student will receive a single score, the IRT 
assumption of unidimensionality must be viewed, not in relation to 
multidimensionality in general, but in relation to alternative ways of 
deriving a single score from analyzing responses to test content (e.g., 
creating an arithmetic average of several subscores). Mild deviations from 
unidimensionality might have only a very modest impact on the accuracy 
of scores.

When calibrating items from multiple test forms for the purpose of 
measuring students across a range of grade levels, the IRT assumption of 
unidimensionality would appear implausible. This is recognized implicitly 
by test publishers, who warn against making comparisons of scores arising 
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from nonadjacent test scores. It is clear that tests measuring seventh-grade 
mathematics achievement are measuring different constructs than tests 
measuring fourth-grade mathematics achievement.

Developing a unified approach to modeling growth across grades in a 
domain of knowledge must take some account of these large differences in 
test content and examinee skills. Failure to account for this complexity, in 
general, and multidimensionality, in particular, is very possibly the reason 
that concurrent calibration of a unidimensional IRT model fails to perform 
well in practice (Hoskens et al., 2003; Karkee et al., 2003).

In this section we develop and implement a multidimensional 
multigroup IRT model, and we explore the model characteristics and 
estimation properties by fitting the model to data from a state writing 
assessment program. This work builds on the work of Reckase (1985, 
1997), Reckase and McKinley (1991), and Bèguin and Glas (2001), but 
extends the multidimensional approach to the multigroup case for 
application to vertical scaling problems. We completely specify the model 
in Section 14.3.1, and we describe the estimation approach in Section 
14.3.2. In Section 14.3.3 we describe the dataset to which we fit the model, 
and in Section 14.3.4 we examine selected results. The data analyses are 
intended to assist in evaluating the modeling approach and estimation 
strategy. A thorough examination and discussion of the multidimensional 
properties of the dataset is not within the scope of this chapter.

14.3.1. Model Specification and Estimation 

Let D be the number of subscales or the number of dimensions that need to 
be measured; then 

i
 is a vector of dimension D for each examinee i.

For dichotomous item j , the probability of a correct response for an 

examinee with ability 
i
 for the multidimensional three-parameter logistic 

(3PL; Reckase, 1997) model is

2 1

3

3 ( + )

1
( 1| , )

1
T

j i j

j

i j i j i j j
P P x

e

(14.3)

where for each j,

0
ij
x  or 1 is the response of examinee i to item j.

22 1

DT

jl ilij l
 is a dot product.

2 1 22
( ,..., )

j jDj
 is a vector of dimension D of item discrimination 

parameters.
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1 j
 is the scale difficulty parameter.

3 j
 is the scale guessing parameter.

For polytomous item j, the probability of a response 1k  for an 
examinee with ability 

i
 is given by the multidimensional two-parameter 

partial credit model (2PPC) as

2 1

2 1

( 1)

[( 1) ]

1

( 1| , )

k
T

j i jtt

m
T

j i jj tt

k

i j k i j i j
mK

m

e
P P x k

e

(14.4)

where

0,..., 1
ij j
x K  is the response of examinee i to item j.

2 2 1 2( ,..., )
j j jD

 is a vector of dimension D for the item 

discrimination parameters.

k
j
 for 1 2

j
k … K  are the threshold or alpha parameters, 

1
0

j
,

and
j

K  is the number of response categories for the jth item.

A related multidimensional modeling approach for dichotomous and 
polytomous items, multidimensional random coefficients multinomial logit 
(MRCML) models, was developed by Adams, Wilson, and Wang (1997). 
These models are generalizations in the Rasch family of models, with 
slope parameters that are not estimated but can be specified. Comparisons 
between our approach and that of MRCML models would be possible in 
confirmatory applications.

Note that the multidimensional model we have specified is 
compensatory in nature, so that higher ability on one dimension might 
compensate for lower ability on another dimension; that is, the same dot 
product and success probability might be achieved with different profiles 
of abilities.

14.3.2. The Estimation Method 

We estimate the model using MCMC methods. The item and ability 
parameters are estimated using the Metropolis-Hasting algorithm that 
samples from the joint posterior distribution (Patz & Junker, 1999a, 
1999b). The estimation algorithms were implemented in the computer 
program BMIRT (Bayesian Multivariate Item Response Theory; Yao, 
2003).
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14.3.3. Data 

The data for this study were extracted from responses to the 2002 
Colorado Student Assessment Program (CSAP) writing assessments in 
grades 3 through 10. Illustrative results are presented here for grades 3 
though 7 only. Each assessment is composed of both multiple-choice and 
constructed-response items. Between 24% and 25%t of the items are 
constructed-response items in grades 4 through 7; constructed-response 
items composed 34% of the grade 3 assessment. The configurations of the 
2002 CSAP writing assessments for grades 3 through 7 are shown in 
Table 14.1.

Table 14.1. Configuration item types for 2002 Colorado Student Assessment 
Program

Grade Total no. 
of items 

Frequency of CR items 
with the given number 

of obtainable scores 
Maximum 
possible

MC CR 1 2 3 4 
3 56 35 18 15 3 0 0 
4 69 40 13 7 1 0 5 
5 70 41 13 7 1 0 5 
6 71 42 13 7 1 0 5 
7 67 38 13 7 1 0 5 

Note. MC: multiple choice; CR: constructed response. 

Writing is measured by two standards on the CSAP assessment: 

Standard 1. “Write for a Variety of Purposes.” Students write and speak 
for a variety of purposes and audiences.
Standard 2. “Write Using Conventions.” Students write and speak using 
conventional grammar, usage, sentence structure, punctuation, 
capitalization, and spelling.

As indicated in Table 14.2, the proportion of items measuring Standard 
1 and Standard 2 tends to change with grade. In grade 3, nearly two-thirds 
of the score points measure the use of writing conventions; the proportions 
of score points measuring Standards 1 and 2 are 34% and 66%, 
respectively. The relative contribution of each standard to the total score 
changes nearly uniformly; by grade 7, the proportions of score points 
measuring Standards 1 and 2 are 54% and 46%, respectively.

points
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14.3.3.1. Common-Item Design 

The assessments were constructed with common items between adjacent 
grades to support the establishment of a vertical scale. This was 
accomplished by (a) constructing a “core” test at each grade based on the 
test frameworks, (b) selecting items from each core test that were 
appropriate in terms of standards coverage, curriculum, and range of 
difficulty for the grade above (except in grade 10, for which there is no 
tested grade above), and (c) similarly selecting items appropriate for the 
grade below (except in grade 3, for which there is no tested grade below). 
The target of 10 items from the core test appropriate for the adjacent grade 
above and 10 items appropriate for the grade below was set to provide a 
target of 20 items in common between grades. In order to maintain the test 
framework at each grade, the set of common items was specified to be 
representative of the overall test in terms of standards representation, range 
of difficulty, and, when possible, item format. However, due to content 
constraints, this target was not always met.

Table 14.2. Number of obtainable score points and percent of total score by item 
type and standard for the CSAP assessments and common items 

Standard 1a Standard 2 b

Percent of 
total score 

by standard 

Test items Grade MC CR Total MC CR Total
Grand
total

St. 1 
total

St. 2 
total

Total 3 7 12 19 28 9 37 56 34 66 

Common  3–4 5  5 13  13 18 36 64 

Total  4 12 21 33 28 8 36 69 48 52 

Common  4–5 7 4 11 11  11 22 50 50 

Total  5 18 21 39 23 8 31 70 56 44 

Common  5–6 8  8 10  10 18 44 56 

Total  6 16 21 37 26 8 34 71 52 48 

Common  6–7 5 4 9 14  14 23 39 61 

Test  7 15 21 36 23 8 31 67 54 46 
Note. MC: multiple choice; CR: constructed response; St.: standard.
 aStandard 1 requires students to “Write for a Variety of Purposes.”
bStandard 2 requires students to “Write Using Conventions.” 

As indicated in Table 14.2, there are an average of 20 obtainable score 
points from common items between grades, with a range from 18 to 23. 
Both multiple-choice and constructed-response items were used as 
common items between grade levels 4–5 and 6–7, whereas adjacent grade 
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levels 3–4, and 5–6 had only multiple-choice items in common. The 
common items appeared in approximately the same location in each test in 
which the item appeared.

14.3.3.2. Sample 

A data sample of 2,500 cases per grade selected for preliminary calibration 
analyses was used in the current study. The sample was drawn to be 
representative of the state in terms of gender, ethnicity, and distribution of 
students across Colorado’s four performance levels.

14.3.4. Results of Model Fitting 

We fit the multidimensional model to a number of subsets of the full 
CSAP writing dataset in order to examine the model behavior. The 
dimensional structure observable within each grade was examined using 
both the BMIRT software written to fit the model in this chapter as well as 
the item factor analysis program TestFact (Wilson, Wood, & Gibbons, 
1987).  TestFact can only be used for a test of multiple-choice items with 
specified (not estimated) guessing parameters, but TestFact analyses 
provide some independent results that shed some light on the BMIRT 
analyses.  In addition, we examined the dimensional structure of the 
combined, multigrade dataset.  We review selected results that illustrate 
the types of analysis that the modeling approach supports. A complete 
examination of dimensionality issues in this CSAP data is beyond the 
scope of this chapter.

14.3.4.1. Grade 3 Students on Multiple-Choice Items Common to 
Grades 3 and 4 

We fit a two-dimensional model to the dataset consisting of responses by 
2,500 grade 3 examinees to the items in common between the grade 3 and 
grade 4 forms. Parameter estimates are given in Table 14.3. Also presented 
is the angle of the item in relation to the axes for the two dimensions. The 
angles are computed from the slope parameters according to

2

2 1 2

21

arcsin( )
( )

j

j D

jll

(14.5)

for item j.
Because this dataset consists of multiple-choice items only from a single 

population of examinees, it is also possible to fit a similar two-dimensional 
IRT model using TestFact. TestFact uses an ogive rather than logistic 
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function, and TestFact takes guessing parameters as input but does not 
estimate them. A reasonable comparison between the two fits might be the 
correlation between slope parameter estimated for each item on each 
dimension from BMIRT and the slope parameter estimated by TestFact. 
Table 14.4 presents those correlations. The TestFact fit was obtained by 
specifying a guessing parameter of 0 2  for each item. The fact that the 
correlation is so high suggests that TestFact and BMIRT are identifying 
and associating items with similar dimensions for this dataset.

Table 14.3. Parameter estimates (posterior means) from a two-dimensional fit of 
grade 3 examinees on items in common between grade 3 and grade 4 forms

 Slope  
Item Dim 1 Dim 2 Angle Location Guessing 
1 2.933 0.000 0 –0.176 0.304 
2 0.559 0.556 43 –1.140 0.289 
3 1.062 1.453 53 –2.563 0.230 
4 0.833 1.309 56 –2.244 0.224 
5 0.825 1.459 59 –3.076 0.211 
6 0.855 1.224 53 –2.327 0.212 
7 0.985 1.711 60 –0.058 0.206 
8 2.013 0.364 10 –0.827 0.267 
9 2.945 0.576 11 0.922 0.263 
10 1.361 1.028 36 –2.072 0.270 
11 1.043 1.428 53 –2.929 0.286 
12 0.815 1.663 64 –0.389 0.200 
13 1.102 0.809 36 –0.812 0.249 
14 1.062 1.287 51 –3.090 0.289 
15 0.850 1.926 65 –0.767 0.211 
16 0.938 1.378 55 –2.156 0.184 
17 0.874 0.586 33 –1.978 0.239 
18 1.015 0.724 35 –1.780 0.281 

Table 14.4. Correlation of BMIRT and TestFact slope parameters from two-
dimensional fit of grade 3 examinees on items in common between grade 3 and 
grade 4 forms

 TestFact 
Slope 1 

TestFact
Slope 2 

BMIRT Slope 1  .95 –.70 
BMIRT Slope 2  –.76 .98 
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14.3.4.2. Multidimensionality Within Level for Multiple-Choice Items 
Only and Multiple-Choice and Constructed-Response Combined 

We examined data separately by grade, fitting one-, two-, and three-
dimensional models. We fit these models to data using (a) multiple-choice 
items alone and (b) the complete test with multiple-choice and constructed 
response items. To examine the degree of multidimensionality, we used 
Akaike’s (1987) information criterion (AIC).  The AIC is a model 
selection statistic that rewards model-data fit but imposes a penalty for 
adding additional parameters to the model. The results, shown in Tables 
14.5 and 14.6, suggest that the addition of constructed-response items 
yields a distinct second dimension to otherwise unidimensional grade-by-
grade calibrations. For example, for grade 4, first column 1AIC  (the AIC 
statistic for the one-dimensional fit) in Table 14.5 is smaller (i.e., better) 
than AIC s from two- and three- dimensional fits.  We indicate that the 
one-dimensional fit is preferred in the last column of Table 14.5. By 
contrast, Table 14.6 indicates that the 2AIC (AIC statistic for the two-
dimensional fit) is smaller than AIC s from one- and three-dimensional fit 
for grades 4–7, and preference for a two-dimensional model at these 
grades is reflected in Table 14.6. 

Table 14.5. AIC model selection criteria based on only the multiple-choice item 
data for the one-, two-, and three-dimensional IRT models (number of dimensions 
for best-fitting model according to AIC is noted)

Table 14.6. AIC model selection criteria based on only the total test with 
multiple-choice and constructed-response items, for the one-, two-, and three-
dimensional IRT models (number of dimensions for the best-fitting model is 
noted)

 
 

Grade 
1AIC AIC 3AIC Number of Dimensions 

3 93395 95006 97429 1 
4  128205  125156  126203 2 
5  139091  137230  139170 2 
6  145260  144122  145008 2 
7  140045  138994  140080 2 

 

Grade 
1AIC  2AIC  3AIC  

3 65604 68914 72279 1 
4 85638 89353 94521 1 
5 97902 101497 106569 1 
6 107841 111716 116733 1 
7 94886 98871 104288 1 

Number of Dimensions 

2
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Also of interest is the question of how dimensionality differs for a set of 
items that is common to adjacent grade-level forms. We examine this by 
fitting and comparing two-dimensional models for these common items 
estimated using first the lower-grade students and then the upper-grade 
students. In particular, we estimate 90% posterior credible intervals for 
item angle, and we flag those items (0 indicates no overlapping; 1 indicates 
overlapping) for which intervals derived using adjacent grade-level data do 
not overlap. For example, we do a two-dimensional fit for items common 
to grades 3 and 4 using grade 3 data only and compare it to the same 
model fit using the grade 4 data only. We further examine this aspect of 
multidimensionality by making this same comparison regarding common 
items when they are calibrated with all of the items in each form. These 
comparisons are presented in Tables 14.7 and 14.8 for grades 3–4. The 
results suggest that some items do have different dimensional 
characteristics when calibrated in one grade versus another and that the 
number of such items differs across commonitem sets. 

Table 14.7. Comparison of item angles for items in common between Grades 3 
and 4, based on calibration using data from each grade separately, and using the 
full set of multiple-choice and constructed-response items in each grade level 

 Grade 3 
Calibrating with 
all grade 3 items 

Grade 4 
Calibrating with 
all grade 4 items 

Intervals
overlap

Items Mean SD 5% 95% Mean SD 5% 95%  
1 0 0 0 0 0 0 0 0 1 
2 29 7 17 41 16 5 8 24 1 
3 30 5 22 38 18 4 11 25 1 
4 25 5 17 33 19 5 11 27 1 
5 25 6 15 35 20 5 12 28 1 
6 30 5 22 38 25 6 15 35 1 
7 32 5 24 40 11 4 4 18 0 
8 5 3 0 10 10 3 5 15 1 
9 5 2 2 8 9 4 2 16 1 
10 20 4 13 27 15 3 10 20 1 
11 31 5 23 39 12 4 5 19 0 
12 31 5 23 39 13 3 8 18 0 
13 38 5 30 46 18 4 11 25 0 
14 24 6 14 34 12 4 5 19 1 
15 35 5 27 43 9 3 4 14 0 
16 33 5 25 41 12 4 5 19 0 
17 37 6 27 47 19 6 9 29 1 
18 33 5 25 41 14 5 6 22 0 
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Table 14.8. Comparison of item angles for items in common between grades 3 
and 4, based on calibration using data from each grade separately, and using 
common-items only

 Grade 3 
Calibrating with 

common items only 

Grade 4 
Calibrating with 

common items only 
Intervals
overlap

Items Mean SD 5% 95% Mean SD 5% 95%  
1 0 0 0 0 0 0 0 0 1 
2 43 8 30 56 54 6 44 64 1 
3 53 6 43 63 56 5 48 64 1 
4 56 6 46 66 55 7 43 67 1 
5 59 7 47 71 48 6 38 58 1 
6 53 6 43 63 54 7 42 66 1 
7 60 4 53 67 44 4 37 51 0 
8 10 4 3 17 8 3 3 13 1 
9 11 4 4 18 5 2 2 8 1 
10 36 5 28 44 30 4 23 37 1 
11 53 6 43 63 48 6 38 58 1 
12 64 5 56 72 40 3 35 45 0 
13 36 6 26 46 30 5 22 38 1 
14 51 7 39 63 34 6 24 44 1 
15 65 4 58 72 51 4 44 58 1 
16 55 5 47 63 55 5 47 63 1 
17 33 8 20 46 35 8 22 48 1 
18 35 8 22 48 23 7 11 35 1 

It is also clear from Tables 14.7 and 14.8 that the definition and 
affiliation of items with dimensions does depend on whether the common 
(multiple-choice only) items are used or if the complete set of (multiple-
choice and constructed-response) items are used in the calibrations. For 
example, item 18 in Table 14.7, one can see that the estimate of the angle 
is 33°, and the 90% credible interval ranges from 25 to 41 when estimated 
using grade 3 data only. This same item has an angle estimates of 14° and
a credible interval ranging from 6 to 22 using grade 4 data only. The fact 
that these credible intervals do not overlap suggests that the relationship of 
the item to the dimensions identified by responses to on-grade test forms 
does in fact differ across the grades. It is noteworthy, however, that the 
two credible intervals for the same item 18 do overlap if all the items 
(including constructed response items) in the test were used to do the 
estimation. A cursory review by content experts of the items demonstrating 
variable multidimensional characteristics across grades did not reveal a 
substantive explanation for the observed patterns. 
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14.3.4.3. A Five-Dimensional Fit Across Grades 3–7 CSAP Writing 

We fit a multigroup five-dimensional model to the combined data from 
grades 3–7, with the population distribution for grade 3 fixed as a standard 
multivariate Normal distribution of dimension 5. Visual inspection of the 
item angles suggests that some dimensions are associated with items from 
most of the grades, whereas other dimensions seem to associate with items 
clustered in a single grade. Table 14.9 summarizes the dimensions that 
appear to be relevant for the items in each grade-level test. A more 
complete set of model comparisons would elaborate on these observations 
and would be necessary to draw any strong conclusions about the 
dimensionality characteristics of the CSAP data.

Table 14.9. Primary dimensions for each grade indicated by inspection of the 
loading patterns resulting from the five-dimensional concurrent estimation of 
grades 3–7 

Grade  Dimension 1  Dimension 2  Dimension 3  Dimension 4  Dimension 5   
*  * * * 
*   * * 
*   *  
*    * 

3
4
5
6
7     * 

Finally, we note that we were able to use this multidimensional model-
fitting methodology to conduct additional exploratory analyses. For 
example, we fit a number of multidimensional models to the full Colorado 
grade 3–10 writing data, including models with ability dimensions 
numbering from 1 to 8. We also fit, for example, an eight-dimensional 
model in which the association of items with dimensions was constrained 
so that each grade had an associated dimension. Items unique to a grade 
level identified an on-grade dimension, and items common to adjacent 
grades were two dimensional. Fitting this last model is conceptually close 
to the standard “divide-and-conquer” approach of fitting a series of one-
dimensional models and then using common items in a separate linking 
procedure. Although a number of noteworthy patterns emerged, the 
specific nature of this dataset limits the generalizability and relevance of 
the findings. We have identified what we believe to be a useful tool for 
examining multidimensionality in vertical scaling (and other) contexts, and 
we have demonstrated its application to the analysis of practical 
assessment data. 
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14.4. Discussion 

In this chapter we have introduced vertical scaling methods and we have 
examined general issues in modeling educational assessment data for 
which vertical scaling might be appropriate. We have described the divide-
and-conquer and unified approaches currently in practice and we have 
developed and explored a unified multidimensional, multigroup IRT 
approach that might overcome significant limitations of existing 
approaches.

We developed MCMC fitting algorithms for the model and 
demonstrated that model fitting yields results consistent with those of 
TestFact when applied to multiple-choice items. We extended the model to 
allow simultaneous multidimensional scaling of multiple-choice and 
constructed-response items, an advance not seen elsewhere in the 
literature. We also explored multidimensionality features of writing 
assessment data from a multiple-grade administration using forms with 
items in common at adjacent grades.

These analyses suggest that multidimensionality exists in the assessment 
data and that a larger degree of multidimensionality might exist when: (a) 
multiple-choice and constructed-response items are scaled together and (b) 
when more grade levels are calibrated simultaneously.

Current divide-and-conquer approaches might provide a way of dealing 
constructively with multidimensionality by separately calibrating more 
nearly unidimensional models and linking the results in a separate linking 
step.  

The results of these analyses suggest that (a) comprehensive modeling 
approaches are possible, (b) modeling multidimensionality will be 
important, and (c) we have considerable work ahead of us before we are 
able to supplant existing divide-and-conquer approaches and reap the 
benefits that unified modeling might bring. It might well be that what is 
needed is a sufficiently multidimensional model with a layer for 
parameterizing growth by dimension.

Finally, we note that the real data that we have analyzed here come from 
a single administration of a cross-grade assessment. This type of data is of 
significant interest, and it is generally the only type of data that might be 
available when a vertical scale must be established. The growth that is 
modeled and analyzed captures changes in the distribution of proficiency 
from one grade level to the next. Perhaps the most powerful information 
available to inform us about growth over grade levels, however, will come 
from longitudinal data collected as students progress over years of 
schooling. Such data have just become more readily available as states in 
the United States increasingly establish assessment programs that annually 
test all students in a range of grades (e.g., 3–8, as required by No Child 
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Left Behind). These data will allow us to examine individual growth 
trajectories, as advocated by Willet (1994), Singer (1998), and Singer and 
Willet (2003). Such considerations will allow us to reexamine the 
definition of vertical scales for achievement tests. We expect the tools that 
we have developed here for multidimensional analysis to facilitate this 
promising area of study.



15    Vertical Scaling and No Child Left Behind 

Wendy M. Yen1

Educational Testing Service 

The chapters by Harris (Chapter 13) and by Patz and Yao (Chapter 14) are 
quite different examinations of vertical scaling issues. The Harris chapter 
surveys practical issues related to implementing vertical scales, and the 
Patz and Yao chapter primarily studies the complex technical issue of 
using multidimensional item response theory models with vertical scaling. 
Given the great differences between these chapters, it is difficult to provide 
an integrated discussion of them. Thus, although this chapter contains 
some brief comments on the Harris, and Patz and Yao chapters, most of 
this chapter contains general observations on vertical scaling, observations 
harvested from vertically scaling K-12 achievement tests for over 25 years. 
Over those years, interest in vertical scales has changed. In particular, the 
No Child Left Behind Act of 2001 (NCLB) has led to changes in both who 
is interested in developing vertical scales and why they want to develop 
them. These changes have produced differences in expectations, 
evaluations, and issues related to implementing vertical scales. 

15.1. Comments on the Other Vertical Scaling Chapters 

15.1.1. The Harris Chapter 

The Harris (Chapter 13) chapter is an excellent survey of the conceptual, 
technical, implementation, and maintenance issues related to the 
development and use of vertical scales, and the chapter provides a 
particularly valuable reference list. The Harris chapter should be read by 

                                                     
1 The opinions expressed in this chapter are those of the author and not 
necessarily of Educational Testing Service. 
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anyone interested in general issues of vertical scaling. One particularly 
useful aspect of the Harris chapter is that she raises questions that need to 
be answered by those creating vertical scales. Perhaps the most telling of 
these questions is, Do you really need a vertical scale? I will address that 
question in relation to NCLB requirements. 

15.1.2. The Patz and Yao Chapter 

The Patz and Yao (Chapter 14) chapter contrasts vertical scaling based on 
a “divide-and-conquer” approach with vertical scaling within a unified 
item response theory (IRT) model. In the divide-and-conquer approach, 
test levels are scaled independently. Then a procedure such as that of 
Stocking and Lord (1983) is employed to link the results of adjacent levels. 
In a unified approach, the test levels are scaled simultaneously. Patz and 
Yao discussed limitations of a common unified approach (concurrent, 
multigroup, unidimensional IRT calibration of test levels), and 
they examined a unified model alternative. A multidimensional multigroup 
model was employed, allowing scores to be weighted averages of 
underlying dimensions, with the weights varying by test level. Such a 
model permits the explanation, based on empirical results, of complex 
shifts in what tests are measuring grade by grade.

Multidimensional modeling holds promise for K-12 assessment, 
although, as the authors noted, more work is required on the models before 
they are ready for operational implementation. One caution that I would 
note is that K-12 test users are understandably very focused on NCLB 
accountability. For that reason, they have great interest in the scores and 
state standards against which they are being evaluated. They want to know 
how their students are doing relative to those standards and what they need 
to do to improve performance relative to those standards. They have 
minimal interest in any score or subscore that is empirically identified that 
they cannot directly relate to the state standards. Thus, to be useful to K-12 
educators, any dimensions empirically determined from a complex scaling 
model need to be related to state standards. 

15.2. Vertical Scales: An Historical Perspective 

15.2.1. A Folding Ruler: An Aside 

I have been interested in vertical scales for a bit more than 25 years. When 
I was about 5 years old, I used to follow my father around as he did home 
improvements. He had a folding ruler with which I would play. It was 
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thwacking sound) to 6 feet. If I held the extended ruler at one end, it would 
curve gracefully through space. To my disappointment, if I leaned it too 
much to the side, one of the looser hinges would suddenly bend sharply. 

A vertical scale is akin to a folding ruler. Although educational 
achievement tests tend to have very strong first factors, they are 
multidimensional, paralleling changes in the curriculum. This 
dimensionality changes both within and across test levels. The direction of 
the scale (i.e., the relative importance of the different dimensions) changes 
as the test levels become more difficult. Thus, the scale bends or curves 
through space. Connections between some levels are stronger (i.e., have 
tighter hinges) than others, and sometimes the links between levels are too 
loose to maintain a sturdy connection between the test levels. 

15.2.2. Pre-NCLB Interest in Vertical Scales 

Before NCLB, the K-12 norm-referenced test (NRT) test publishers (such 
as CTB/McGraw-Hill, Harcourt Educational Measurement, and Riverside 
Publishing) conducted the vast majority of the vertical scaling. They 
produced these scales to satisfy users and to facilitate internal business 
systems. The primary uses of vertical scales were grade equivalents, 
functional level testing, scale scores for growth analyses, and computer-
adaptive testing. 

A large-scale K-12 test publisher cannot stay competitive without grade 
equivalents, which are demanded by customers. Grade equivalents are 
developed through the combination of a vertical scale and norms (Petersen, 
Kolen, & Hoover, 1989). The development of grade equivalents requires 
that normative scale score averages increase by grade. The vast majority of 
uses of grade equivalents are low stakes; they basically are a means of 
communicating the main idea of test results to those with minimal testing 
background, such as students, parents, and some teachers. 

In functional level testing, a short locator test is used to identify the 
(vertically scaled) test level that is best matched to a student’s current 

yellow, with hinged 1-foot lengths that would unfold (making a nice 

achievement. That level is then administered to the student. Scores 
obtained on different test levels that are linked via the vertical scale (e.g., 
scale scores, normative results) can be pooled for group reporting. Results 
that are not vertically linked—such as number-correct scores on the full 
test or on its subscores—cannot be pooled for group reporting. The 
promise of functional level testing is to obtain the most accurate measure 
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of a student’s performance, given the multiple test levels that are available. 
The problem with functional level testing is that it is operationally 
cumbersome to administer different test levels to different students in the 
same classroom. The fact that raw scores cannot be pooled across test 
levels is also awkward. Despite its promise, users today rarely choose to 
use functional level testing in operational K-12 testing programs. 

When K-12 test levels are vertically scaled, these scale scores can be 
used to longitudinally track academic growth of individual students or 
cohorts. Before NCLB, there were a few sophisticated school districts that 
chose to conduct such growth analyses; however, the vast majority of users 
depended on cross-sectional results, for example, comparing this year’s 
fourth-grade students to last year’s. Some large-scale research studies on 
hierarchical modeling conducted by university researchers used vertical 
scales, and at least one state (Tennessee) used vertical scales, in 
combination with national norms, to conduct value-added evaluations of 
teacher effects on growth in student achievement test scores (Braun, 2005; 
Sanders, Saxton, & Horn, 1997). 

Vertical scales based on K-12 achievement tests or items can also be 
used in computer-adaptive testing (CAT). As with functional level testing, 
the goal is to get the most accurate measure of a student’s achievement as 
efficiently as possible. Use of CAT algorithms for item selection and 
terminating testing virtually require use of IRT to calibrate the items on 
one scale. Whereas in the late 1970s and early 1980s CAT appeared to 
hold tremendous promise for K-12 testing, as well as for testing in many 
other settings (Weiss, 1983), to date only a small minority of school 
systems have used CAT in K-12 (e.g., Northwest Evaluation Association; 
Kingsbury & Hauser, 2004).

K-12 publishers rely on vertical scales to organize their internal 
psychometric analysis systems. Publishers have very large numbers of 
items whose psychometric qualities need to be stored, accessed, and used. 
There might be items for 13 grades for 10 or so content areas (e.g., word 
analysis, reading vocabulary, reading comprehension, language exp-
ression, language mechanics, mathematics computation, mathematics 
problem solving, science, social studies.). In those systems that employ 
IRT, the items’ parameter(s) are stored in scale score units (i.e., based on 
the cross-grade vertical scaling). This greatly facilitates the selection of 
items to create test forms at a variety of appropriate difficulty levels for 
either shelf or custom assessments.

In addition, scoring systems are arranged using the (vertical) scale score 
system. For example, to score a particular test form/level, the item 
parameters or raw score-to-scale score conversion table is stored in scale 
score units. When a student’s test form/level is identified, the appropriate 
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scoring table or algorithm translates the student’s responses into a scale 
score. The normative tables contain scale score-to-norm conversions (e.g., 
scale score-to-grade equivalent, scale score-to-percentile). The norm tables 
are organized by grade/testing date (e.g., grade 3 fall, grade 3 spring) and 
are independent of the test form/level that the student took. Thus, the 
vertical scale provides an efficient backbone for the organization and 
access of items, test forms, and normative derived scores.

How successful were the pre-NCLB vertical scales in meeting the user 
and publisher needs? 

As described earlier, to develop grade equivalents, it is necessary that 
the vertical scales show increasing average performance over grades. In 
the development of test blueprints, the K-12 publishers carefully map 
content strands to provide overlap and connections between the 
measurements at different grades and test levels. To demonstrate between-
grade growth, this design must be accurately connected to typical or modal 
curricula across the nation. In the vast majority of cases, K-12 test 
publishers have been successful in producing measures that showed grade-
to-grade growth. This growth is not necessarily smooth, but smoothness is 
not expected when there can be variations over grades in the strength of 
the connection between tests and curricula. The last 2–3 years of high 
school typically show minimal growth between grades, perhaps due to a 
looser connection of norm-referenced tests to high-school curricula than 
elementary curricula. Lower motivation for older high-school students 
could also play an important role. Despite these difficulties, K-12 
publishers produced measures with vertical scales that demonstrated 
normative growth over grades. 

The vast majority of uses of NRT results are horizontal: to compare this 
year’s results (a) to a national norm at the same grade level or (b) to last 
year’s results for that grade for the same school/district/state. Other uses 
that rely on the vertical scale (e.g., grade equivalents) tend to be low 
stakes. Publishers do provide cautions about using results from different 
parts of a vertical scale (e.g., a student at a lower grade getting a high scale 
score is probably thinking about content differently than a higher grade 
student getting that same scale score). It is also generally acknowledged 
and accepted that cross-grade correlations of scores are lower than within-
grade (between parallel form) correlations of scores. 

It is worth mentioning that in the 1980s, a brouhaha arose about scale 
shrinkage that occurred with some IRT vertical scales (Camilli, 1988; 
Clemans, 1993; Yen, 1986; Yen & Burket, 1997; Yen, Burket, & 
Fitzpatrick, 1996). In scale shrinkage, scale score standard deviations and 
IRT item difficulty parameter standard deviations decrease over grades, 
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and IRT item discrimination parameter means increase over grades. Many 
hypotheses were generated to explain this phenomenon and there was 
much discussion about the implications of scale shrinkage. In actuality, 
because the vast majority of uses of NRT scores are horizontal, few test 
users were aware of the issue or cared about it, and scale shrinkage 
remained an issue primarily of academic interest. With the evolution of 
test design and IRT parameter estimation software, scale shrinkage 
disappeared.

Overall, the vertical scales developed by K-12 NRT publishers 
successfully addressed the needs of users and publishers. 

15.3. The NCLB Era 

Under NCLB, it is the responsibility of each state to develop its own 
challenging content standards and assessments to measure progress in 
achieving those standards. With the advent of NCLB, interest in NRTs has 
greatly declined, although some states do take an NRT core set of items 
(and vertical scale) and augment it to improve the coverage of unique state 
standards. There is interest in vertical scaling for Titles III and I of NCLB 
and for evaluation of growth.

15.3.1. Title III 

Title III of NCLB states, “A State shall approve evaluation measures…that 
are designed to assess…the progress of children in attaining English 
proficiency, including a child’s level of comprehension, speaking, 
listening, reading, and writing skills in English.” Title III generates interest 
in vertical scales, both explicitly and implicitly. Nonnative English-
speaking children enter our schools with a wide range of English skills, so 
in assessing these skills accurately, functional level testing (which assumes 
the existence of a vertical scale) can be particularly important. Behavioral 
scale anchoring (i.e., examples of what students know and can do at 
different scale scores) is of interest to those trying to attach meaning to the 
student scores. On these vertical scales of English proficiency, setting 
performance standards related to exiting English learner programs is of 
particular importance. 

At Educational Testing Service (ETS), we have recently developed 
vertically scaled assessments of English acquisition skills for two different 
clients (Comprehensive English Language Learning Assessment 
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[Educational Testing Service, 2005] and the New York State English as a 
Second Language Achievement Test [Wang & Smith, 2003]). These 
assessments display properties different from traditional measures of 
achievement. For example, the lowest test level, measuring introductory 
skills, can include a wide range of content (letters of the alphabet, words, 
sentences, paragraphs) and show much greater units of growth that those 
seen at higher test levels. These differences reinforce the advice given by 
Braun (1988) that growth is most accurately evaluated by comparing 
students who start at the same place; when students start at different places 
on a scale, differences in scale units can greatly complicate interpretations. 
At the group level, cross-sectional results show much different growth 

writing.  listening/speaking skills rise rapidly in the early grades and then 
top out. reading/writing, which are academic skills, continue to rise 
throughout the grades. For traditional achievement measures, “grade” is 
the most relevant time measure; however, for English acquisition skills, 
both “number of years in the United States” and “grade” are relevant time 
measures. In interpreting cross-sectional growth over grades for English 
acquisition tests, immigration patterns also need to be considered. For 
example, whereas for traditional achievement measures, growth is 
expected across virtually all grades, for English acquisition tests, 
performance can dip at grades where a large influx of students new to the 
United States can occur (e.g., grade 9, where students are coming to the 
United States for high school). Thus, growth expectations for vertically 
scaled English acquisition tests can differ from the expectations for 
traditional educational achievement tests. 

15.3.2. Title I 

Title I of NCLB focuses on the adequate yearly progress in the percents of 
students reaching the Proficient performance standard established in each 
state. Thus, comparisons are made from year to year in the percents of 
Proficient students at a given grade and no statistical connection is 
required between the tests at different grades.

Typically, the NCLB assessments and their performance standards have 
been developed in a piecemeal fashion, because the legislation eased in the 
assessment requirements over the years. For example, NCLB legislation  
started with a requirement (in reading and mathematics) of one assessment 
in each of three grade ranges (grades 3 to 5, 6 to 9, and 10 to 12). Later, 

patterns over the grades for listening and speaking than for reading and 

states were required to have assessments in each of grades 3 to 8. Also in 
the Title I legislation there is no requirement for longitudinal or growth 
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measures. For these reasons, few states have vertical scales for their NCLB 
assessments. Vertical scales that demonstrate cross-sectional growth over 
grades can be more difficult to develop if the content 
standards/curricula/test blueprints have not been designed from their 
inception to have hierarchical content strands with substantial between-
grade overlap. Furthermore, performance standards that are set 
independently by grade might not “grow” on a vertical scale (e.g., 
Proficient for grade 7 might not be at a higher scale score than Proficient 
for grade 8). Thus, it might be more difficult to develop vertical scales that 
produce expected progressions over grades for NCLB state assessments 
than it was for NRTs. 

Although the Title I legislation does not require it, there has been 
increasing interest in vertical scales among NCLB practitioners.2 Why is 
that? I can speculate on several reasons. First, there might be a mistaken 
impression among some practitioners that a vertical scale is required. 
Second, there are those who want to use NCLB assessment results within 
evaluation and accountability systems. Within such systems, being able to 
distinguish input (i.e., performance before a particular instructional 
treatment) from output is particularly helpful. Some of those interested in 
accountability are specifically interested in value-added models, and some 
of these models require the use of vertical scales. Finally, I believe that 
most educators care dearly about student growth, and vertical scale is a 
catch-all phrase that, for many people, includes any type of growth 
measure.

15.3.3. Educators’ Interest in Growth Measures

It became important to us to understand what educators wanted in terms of 
a growth measure in the NCLB era. Toward that end, we gathered in-depth 
information from educators in one state via phone interviews, large-group 
meetings, and a small working group (Smith & Yen, 2006). We discussed 
with them the pros and cons of three types of growth measure (vertical 
scales, state norms, and cross-grade regressions [expectations]) and 
listened to the issues that they were trying to address. Their interests 
seemed to center around answering the following questions: 

                                                     
2 In November 2005, the U.S. Department of Education invited states to submit 

with the principles of No Child Left Behind. In May 2006, the Department 
approved two programs as part of this pilot (U.S. Department of Education, 2006). 

proposals for developing growth models for adequate yearly progress consistent 
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Parents:
Did my child make a year’s worth of progress in a year? 
Is my child growing appropriately toward meeting state standards? 
Is my child growing as much in Math as Reading? 
Did my child grow as much this year as last year? 

Teachers:
Did my students make a year’s worth of progress in a year? 
Did my students grow appropriately toward meeting state standards? 
How close are my students to becoming Proficient? 
Are there students with unusually low growth who need special 
attention?

Administrators:
Did the students in our district/school make a year’s worth of progress 
in all content areas? 
Are our students growing appropriately toward meeting state standards? 
Does this school/program show as much growth as that one? 
Can I measure student growth even for students who do not change 
proficiency categories? 
Can I pool together results from different grades to draw summary 
conclusions?

Most of these questions are variations on one underlying question: Is the 
amount of growth observed reasonable or appropriate? There are two 
aspects inherent in answering such a question: the absolute and the 
normative. The absolute aspect compares a measurement to a fixed 
criterion, such as the score needed to be called Proficient. The normative 
aspect arises from interest in how the growth of this particular student (or 
group of students) compares with that of other students. A vertical scale by 
itself does not address either the absolute or normative aspect of growth 
questions.

Cross-grade growth expectations, which are connected to proficiency 
levels, answer these questions without the assumptions or development 
costs of a vertical scale. Such cross-grade growth expectations are obtained 
from longitudinal data, say from grade 3 to grade 4, that are analyzed using 
regression techniques; scores at a subsequent grade level are regressed 
onto scores at a previous grade level. Figure 15.1 provides one example of 
a report that could display the growth results for one district relative to the 
regression and the absolute performance criterion (Proficiency) established 
by the state. In this example, grade 3 and grade 4 have independent scales, 
with no vertical scale connecting them. The state regression line shows the 
relationship of the scores for the two grades when students are tracked 
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from grade 3 to grade 4. Results for one district can be compared to the 
state results. In this particular example, the district showed above-average 
growth (relative to the state) for low-scoring students and below-average 
growth for high-scoring students. It is also possible, using graphs such as 
this, to separate out results for different programs within a district and 
compare their relative amounts of growth. Examples of individual student 
score reports based on longitudinal regressions are presented in Smith and 
Yen (2006). 
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Figure 15.1. Sample longitudinal regressions of grade 4 Math on grade 3 Math at 
a state level and a district level. 

15.4. Summary 

Pre-NCLB, vertical scales were ubiquitous in K-12 assessment. The 
vertical scales developed by K-12 publishers satisfied general criteria for a 
usable scale; that is, their average scores increased by grade. The most 
common uses of vertical scales were embedded within grade equivalents, 
which were used in low-stakes settings. High-stakes usages that relied 
heavily on the vertical scale properties were fairly rare. Publishers did 
provide cautions about use of the vertical scale results. 

Under NCLB, Title III requires “evaluation measures…that are 
designed to assess…the progress of children in attaining English 
proficiency….” Vertical scales are an obvious means of satisfying this 
requirement. In evaluating the properties of vertical scales for English 
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language attainment, such as expectations of increasing scores by grade, 
special care is needed to consider the properties of the different scales 
(such as academic vs. nonacademic skills) and the special characteristics of 
this student population. Particular care is needed in comparing amounts of 
growth in different parts of these scales. 

In satisfying Title I of NCLB, vertical scales are not required. Vertical 
scales might not demonstrate grade-to-grade growth as clearly for state 
assessments developed under NCLB if the content of those tests, and the 
related curricula, have not been developed to be hierarchical. Under 
NCLB, users of the test scores are interested in evaluating academic 
growth in aspects that are both absolute (e.g., compared to a proficient cut-
score) and relative (e.g., relative to how much other students grow). A 
vertical scale by itself does not address either of these aspects, and 
alternative analysis procedures can be used. For example, cross-grade 
longitudinal growth expectations (regressions) based on nonvertically 
scaled tests can address most of the growth questions being asked without 
the assumptions or expense involved in the development of vertical scales. 



Assessments

Over the past two decades, the use of standardized tests in the nation’s 
schools has increased sharply. This has led to increased interest in results 
obtained by surveys of educational achievement that provide aggregate 
results; chief among those are the National Assessment of Educational 
Progress (NAEP). There have been a number of attempts to link other 
assessments to the NAEP scale.

David Thissen reviews several studies involving linkages with NAEP in
Linking Assessments Based on Aggregate Reporting: Background and 
Issues. He examines the procedures used and then gives consideration to 
some questions that have arisen about the validity of the results. He 
concludes that statistical procedures for accomplishing such linkages have 
advanced considerably in the past decade, but our understanding of 
nonrandom sources of variation lags behind. 

In An Enhanced Method for Mapping State Standards onto the NAEP 
Scale, Henry Braun and Jiahe Qian modify and evaluate a procedure 
developed to link state standards to the NAEP scale. The modification 
makes more efficient use of the available data and provides more 
comprehensive estimates of the variances to be attached to the NAEP scale 
score equivalents of the state standards. The method is applied to data from 
mathematics assessments. 

Daniel Koretz discusses the two preceding chapters briefly in Using 
Aggregate-Level Linkages for Estimation and Validation: Comments on 
Thissen and Braun & Qian. He comments on the linkage-based inferences 
they address, the evaluative evidence they bring to bear, and their 
conclusions. He also elaborates on the instability of aggregate linkages 
over time. He comments briefly on the extent of this instability problem, 
its causes, and its implications for validity.

Part 6:  Linking Group Assessments to Individual 
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Over the past two decades, the use of standardized tests in the nation’s 
schools has increased sharply. According to a report prepared for Congress 
more than 10 years ago by the Office of Technology Assessment, “The rise 
in testing reflects a heightened demand from legislators at all levels—and 
their constituents—for evidence that education dollars are spent 
effectively. Holding schools and teachers accountable has increasingly 
become synonymous with increased standardized testing” (U.S. Congress, 
Office of Technology Assessment [OTA], 1992, pp. 3–4). This trend 
culminated with the passage of the No Child Left Behind Act of 2001 
(NCLB) in 2002; that law requires that each state administer census 

least once during grades 10–12, beginning with the 2005–2006 academic 
year. Additional assessments of science are required by academic year 
2007–2008.

This increase in emphasis on the use of standardized tests to assess 
achievement in the schools has led to a corresponding increase in interest 
in the results obtained by national and international surveys of educational 
achievement that provide aggregate results for the nation and 
internationally. Chief among those are the National Assessment of 
Educational Progress (NAEP) and the Third International Mathematics and 
Science Study (TIMSS).

The NAEP is a widely respected indicator of educational performance 
(Beaton & Zwick, 1992), with a scale that offers national comparability 
and information on change over time.
                                                     
1 The opinions expressed in this chapter are those of the author and not necessarily 
of the University of North Carolina at Chapel Hill. 

assessments of reading and mathematics proficiency in grades  3 8, and at –
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NAEP has proven to be a valuable tool to track and understand 
educational progress in the United States. It was created in 1969 and 
is the only regularly conducted national survey of educational 
achievement at the elementary, middle, and high school levels. It was 
designed to be an educational indicator, a barometer of the Nation’s 
elementary and secondary educational condition. NAEP reports group 
data only, not individual scores. (U.S. Congress, Office of 
Technology Assessment, 1992, pp. 30–31)

Jones (1996) offered a capsule summary of the evolution of NAEP, and 
Jones and Olkin (2004) provided a book-length treatment of its 40-year 
history.

The administration of NAEP and the presentation of its results are 
unusual in that no scores are assigned to individual examinees. Instead, a 
complex sampling design is coupled with the models and methods of item 
response theory (IRT) to yield estimates of statistics that describe the 
population distribution of proficiency: the mean, various quantiles, and the 
percentages with proficiency in regions on the scale known as achievement 
levels.

TIMSS is the current incarnation of a series of international comparative 
studies conducted by the International Association for the Evaluation of 
Educational Achievement (IEA) since its inception in 1959 (Mullis et al., 
1997). Whereas TIMSS releases scores on several scales, its primary 
reporting, like that of NAEP, is for large demographic groups—in the case 
of TIMSS, nations. 

For a number of reasons and purposes to be discussed in subsequent 
sections, there have been several attempts to link the results and scales of 
NAEP and TIMSS (and other international assessments) to each other 
(Beaton & Gonzalez, 1993; Johnson, 1998; Johnson & Siegendorf, 1998; 
Pashley & Phillips, 1993) and to statewide assessments (Ercikan, 1997; 
Linn & Kiplinger, 1994; McLaughlin, 1998a, 1998b; Waltman, 1997; 
Williams, Rosa, McLeod, Thissen, & Sanford, 1998). These linkages differ 
from many other more common applications of equating and from the 
construction of concordance tables, in that for NAEP (and TIMSS, for the 
most part) there are no individual scores to put in a concordance or “cross-
walk” table. Instead, the goal is to use the results from the administration 
of some other assessment to make estimates of the aggregate results that an 
assessment like NAEP might produce. The idea that statistical linking 
might be used to accomplish that goal is relatively new, having its genesis 
in systematizations of test linking by Mislevy (1992) and Linn (1993); 
those descriptions of alternate forms of test linking are described in 
Section 16.1.



16    Linking Assessments Based on Aggregate Reporting      289 

16.1. Linking Methods 

Test linkage provides a mechanism to obtain from the results of one test, 
by statistical inference, the results that would have been obtained if a 
second test had been given. In the context of aggregate reporting, results
usually refers to the distribution of scores, although whether the scores 
might be treated as interchangeable is never far from consideration. 
Applications of this idea use the results from regularly administered tests, 
like those from a statewide testing program, to infer the results that would 
have been obtained had, say, NAEP measured that subject-matter area that 
year in that state. The idea is that if a test measuring mathematics 
proficiency is given, then one should be able to produce a reasonably good 
estimate of what would have happened had another test of mathematics 
proficiency been given, even if the second test is scored on a different 
scale. However, if the tests were constructed using different specifications 
and might not measure exactly the same aspects of mathematics 
proficiency, a number of technical problems arise when the tests are to be 
linked. Different linking methods might solve some of those technical 
problems.

Using slightly different terms, Mislevy (1992) and Linn (1993) 
described three levels of test linking that could be useful for different 
purposes; Holland and Dorans’ (2006) more recent codification used the 
terms equating, scale aligning, and predicting to describe essentially the 
same classes of statistical activities. See Holland (Chapter 2) for explicit 
definitions of these classes of linkage.

Equating is the term used to describe the strongest form of test linking. 
If two test forms are equated, scores on the two forms are interchangeable 
for any use; in equipercentile equating, probably the most common form, 
tables are constructed setting equal scores on the two test forms that 
correspond to the same percentiles in a common population. In practice, 
valid equating, in the sense of producing interchangeable scores, is limited 
to alternate forms of tests constructed from the same test specifications 
(Mislevy, 1992). Holland and Dorans (2006) and Dorans and Holland 
(2000) listed five requirements widely viewed as necessary for test 
equating to be successful. These requirements are as follows: (a) The tests 
should measure the same constructs; (b) the tests should have the same 
reliability; (c) the equating function should be symmetrical; (d) it should 
be a matter of indifference to an examinee to be tested by either test; (e) 
the equating function should be population invariant. Holland (Chapter 2) 
discussed each of these requirements in detail. 

Essentially none of those five requirements are met in any of the 
examples (to be described below) that link other assessments to the scales 
of NAEP or TIMSS. Nevertheless, some studies have used the statistical 
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mechanics of equipercentile equating to construct linkages; this kind of 
activity was called statistical moderation by Mislevy (1992). Holland 
(Chapter 2, Section 2.3.2) referred to this as anchor scaling. 

Holland (Chapter 2, Section 2.3) and Holland and Dorans (2006) 
described a large family of linkage activities under the superordinate term 
scale aligning; however, of the various contexts for linkage and statistical 
procedures included in that family such as concordance and vertical 
scaling, calibration has been most often considered (and, as we will see in 
subsequent sections, equally often rejected) as a mechanism to link other 
scales to that of NAEP. Calibration is used to provide comparable scores 
on tests that “measure the same thing” (Mislevy, 1992, p. 22), but with 
different degrees of precision, as might be the case with short and long 
forms of the same test. Calibration is usually based on IRT, which requires 
item-level data from one of the linking designs described by Holland and 
Dorans (2006). Revised forms of NAEP are calibrated with respect to each 
other (Yamamoto & Mazzeo, 1992). It is conceivable that another test 
could be calibrated to the scale of an aggregate-reporting measure like 
NAEP, but for such a linkage to be accurate, the two tests would have to 
match content specifications closely. We are not aware of any calibration 
of any other test to an aggregate-reporting measure. 

usually exhibit a strong positive relation between the scores, even if the 
test specifications and administration procedures are sufficiently different 
that they do not measure exactly the same thing. An empirically estimated 
bivariate relation between the test scores, and the known marginal 
distribution of the scores on the first test, both within subpopulations, if 
necessary, can be used to infer the marginal distribution for the second 
test. The projected marginal distribution can then be used to compute 
statistics.

In the taxonomy of Holland and Dorans (2006), described by Holland 
(Chapter 2, Section 2.2.2), projection is a specific form of prediction that 

sure the same thing in order to predict the distribution of one test (e.g., NAEP) 

If two tests are constructed to measure mathematics proficiency, they 

makes use of an empirical relation between scores on tests that do not mea- 

from the distribution of scores on another test (e.g., a state assessment). 
Mislevy (1992) described projection without attention to other, simpler 
prediction systems, and Linn (1993) discussed prediction without so much 
attention to the distributions of predicted scores that Holland and Dorans 
marked as the distinction between prediction and projection.  
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Figure 16.1. A schematized view of projection. The important feature of 
projection is that each score on the X-axis test is projected as a distribution of 
scores on the Y-axis test. 

Figure 16.1 shows a schematized view of projection, modeled after 
Figure 4 of Pashley and Phillips (1993). The important feature of 
projection is that each score on the X-axis test is transformed into a 
distribution of scores on the Y-axis test; those distributions are then totaled 
to provide the basis for the computation of aggregate results. The 
representation of the projected distributions might have some functional 
form (like the curve shown in Figure 16.1) or it might be a series of 
random draws (multiple random imputations, called plausible values in the 
nomenclature of NAEP [Mislevy, Johnson, & Muraki, 1992]) from that 
distribution. Many of the examples in the following sections involve 
projection.

and the ASVAB 

One of the first studies to use projection to link assessments characterized 
by aggregate reporting was the linkage of the 1991 International 
Assessment of Educational Progress (IAEP) and the 1992 NAEP 
mathematics assessment by Pashley and Phillips (1993). At the time, 
NAEP was just beginning to use achievement levels established by the 
National Assessment Governing Board (NAGB) as a primary reporting 

16.2.1. The Linkage of 1992 NAEP with 1991 IAEP 

16.2. The Seeds Are Sown: Linkages of NAEP with IAEP 
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scale. The goal of the study was to “predict the percentages of 13-year-olds 
in each of the 20 countries that participated in the 1991 IAEP in 
mathematics who would have performed at or above each of the three 
achievement levels established by NAGB for U.S. students” (Pashley & 
Phillips, p. 5). This study was regarded as a particularly opportune trial for 
test linking, because the IAEP had been constructed largely following 
NAEP blueprints, so the assessments themselves were very similar. 

A special sample of 1,609 U.S. grade 8 students (a subset of the 1992 
NAEP operational sample) was assessed with both instruments in early 
1992. After determining that IRT analysis of this special 1992 IAEP data 
produced results very similar to those obtained in the main analysis of the 
1991 IAEP data, Pashley and Phillips (1993) used the original 1991 IAEP 
item parameters to compute plausible values of proficiency for the IAEP 
data in the special sample. In parallel, the analysis of the national 1992 
NAEP data produced plausible values for NAEP proficiency for the same 
students. Similar conditioning variables were used in the computation of 
both sets of plausible values. 

The plausible values for proficiency from NAEP were regressed on the 
plausible values for proficiency from IAEP five times, once for each 
pairing of five plausible values on each test. Then, using one of each 
student’s plausible values for IAEP proficiency with the corresponding 
regression line, a predicted distribution of NAEP proficiency was 
computed using a Normal distribution and the assumption of homogeneous 
error variance; the predicted distributions were like that in Figure 16.1. 
Five such distributions were computed for each student, and the area above 
each achievement-level cut-score was computed; the average of those 
areas was taken as the probability that the student falls in each 
achievement level. The average of those probabilities across students gives 
the desired result: an estimate of the proportion in each NAEP 
achievement level, predicted from the results obtained from an 
administration of IAEP. 

Pashley and Phillips (1993) checked the consistency of the results across 
plausible value replications and found little variation. They used split-
sample techniques to estimate standard errors and confidence intervals for 
the aggregate statistics and obtained suitably narrow confidence intervals. 
(They also carefully concatenated several sources of random variation into 
their confidence intervals.) As another empirical check on the results, they 
used the entire linking sample to estimate the 1992 national U.S. 
proportions and found the actual percentages to be within the confidence 
intervals.

They then computed confidence intervals for the percentages in 
NAGB’s basic, proficient, and advanced achievement levels for each of 
the 20 other countries that had participated in IAEP in 1991. Pashley and 
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Phillips (1993) noted that some caveats should be kept in mind when 
considering the results: The first of these is that they “assumed that the 
relationship between the IAEP and NAEP assessments observed in the 
1992 U.S. linking sample also holds for other countries that were assessed 
in 1991” (p. 33); that is, relatively extreme population invariance of the 
linking function was assumed—between countries! That assumption would 
have been very difficult to check. The inference is basically, in some 
sense, about what would have happened had NAEP been administered in 
other countries. However, it is not exactly clear what that means. NAEP 
does not exist in other languages and has never been administered in other 
countries, so this is a very strong assumption about relatively unlikely 
population invariance. Further, Pashley and Phillips noted that “there were 
differences in IAEP and NAEP sample definitions, such as type of schools 
surveyed and age or grade of students” (p. 33). 

The study by Pashley and Phillips (1993) foreshadowed several 
subsequent studies in both their goal, to estimate the proportions of 
students in NAEP’s achievement levels, without administering NAEP and 
in the questions that haunt the results: Is it reasonable to assume that the 
regression of NAEP mathematics proficiency on IAEP mathematics 
proficiency would be the same in all countries? What are the effects of the 
fact that different countries actually define the population of students 
differently and/or administer the assessments under somewhat different 
conditions?

16.2.2. The Linkage of the ASVAB with NAEP 

The Armed Services Vocational Aptitude Battery (ASVAB) includes 
several tests that are administered to all applicants for military service in 
the United States. Because of the self-selected nature of this population, in 
the past, special surveys with nationally representative samples have     
been conducted to develop norms for the ASVAB and to submit the 
required report to Congress on the proficiency of the population of military 
recruits (U.S. Department of Defense, 1982). As part of an effort to 
obviate these special surveys by linking the ASVAB to the NAEP scale, 
Bloxom, Pashley, Nicewander, and Yan (1995) used projection technology 
to link the ASVAB to the NAEP mathematics scale for 12th-grade 
students.  

Data collection for this study took place in May 1992, only a few weeks 
after that for the NAEP-IAEP study; early reports of its results made it the 
second of the pair of path-breaking projects that were to set the stage, 
along with the Mislevy (1992) and Linn (1993) theoretical work, for the 
decade of linkages to NAEP. 
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Data for the Bloxom et al. (1995) ASVAB-NAEP linkage were 
extensive. The examinees, all applicants for military service, responded to 
the entire ASVAB, comprising 10 tests as well as the entire NAEP 
background-variable questionnaire and three blocks of NAEP items. The 
ASVAB was an operational test with very real consequences for the 
military applicants in the sample; the administration of the NAEP 
materials was presented as nonoperational but for research purposes. 
Although NAEP data collection also includes other questionnaires from 
which background demographic data are derived, ASVAB background 
data were merged from Department of Defense data files. After all of the 
records were matched, the total sample size was 8,239.

The projection of NAEP results from the ASVAB used the same IRT 
technology that is used to compute the NAEP results (Johnson & Allen, 
1992). The statistical results of NAEP are computed by combining the 
item responses with the data from the demographic background 
questionnaire to infer the posterior distribution for proficiency for each 
examinee. Plausible values are drawn from those posterior distributions; 
with the sampling weights, those plausible values are used to compute the 
reported statistics and their standard errors. 

To understand the projection technique employed by Bloxom et al. 
(1995), it is useful to list in more detail some of the stages of data analysis 
for NAEP. The parameters for IRT models are estimated for each item for 
the entire national NAEP sample (including linking data from the previous 
administration of NAEP). Those item parameters yield curves that 
represent the probability of each item response as a function of 
proficiency—for NAEP mathematics, on five dimensions. Then, given 
those curves and the item response data, optimal linear combinations for 
the background variables are formed for the regression of proficiency on 
the background variables, using theory developed by Mislevy (1984, 1985, 
1990) and Thomas (1993a) and computer software called MGROUP 
(Rogers, 1991; Sheehan, 1985, Thomas, 1993b). The regression of 
proficiency on the background variables, with an assumption of Gaussian 
error, is used to produce a distribution over proficiency for each 
combination of background-variable values. Finally, for each person, the 
(IRT) curves associated with their item responses are multiplied by the 
proficiency distribution associated with their background-variable values. 
That product represents the distribution of proficiency for persons with 
those item responses and those values of the background variables; 
plausible values are drawn from the product distribution, and subsequent 
statistics are computed as though the plausible values represented 
observations on the unobserved proficiency dimensions. 

An interesting feature of the NAEP scoring system is that after 
estimation of the parameters of the regression equations that relate the 
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background variables to underlying proficiency, it is not actually necessary 
to have item response data from the examinees to compute the proficiency 
distributions and all of the subsequent results. Bloxom et al. (1995) used 
this feature of the NAEP scoring system to project results from ASVAB 
data: In the projection system, they used ASVAB background variables 
and reliability-scaled ASVAB standard scores in place of the usual NAEP 
background variables and then computed projected NAEP results, omitting 
the NAEP item responses. Because the ASVAB data included scores on 
tests of various aspects of mathematics, regression of the NAEP 
mathematics dimensions on the ASVAB data in combination with the 
more usual background variables produced predictions of the NAEP 
results very nearly as accurate as those obtained when the NAEP item 
responses were included in the computation. 

The ASVAB projection used 46 variables (precluding any simple 
graphical presentation like Figure 16.1). The ASVAB projection used 
plausible values from the conditional distributions as data in the 
computation of the results. Bloxom et al. (1995) evaluated the ASVAB 
projection system in several ways. They split the sample and examined the 
cross-validation of the results from one-half the sample to the other. 
Additionally, they conducted an extensive simulation study that assumed 
that a model very much like the one that they fitted was true and they 
repeatedly generated data from that model to determine if the analysis 
would recover the true values of the parameters. In general, the results 
were favorable toward the accuracy of the projection. 

However, Bloxom et al. (1995) found that, although their sample 
performed at an above-average level for the mathematics items on the 
ASVAB with respect to the most recent ASVAB national norms, that same 
sample performed well below the national average on the NAEP items. 
The implication is that motivation might have been substantially reduced 
for these examinees for the NAEP items, relative to the ASVAB items or 
possibly relative to national samples administered NAEP items in other 
contexts. This problem leaves an open question on the actual relation 
between ASVAB scores obtained in the regular administration of that test 
and NAEP data obtained in their usual context. 

16.3. State Linkages with NAEP 

Even before No Child Left Behind (NCLB), statewide achievement testing 
programs were common. However, due to different responses to the spirit 
of reform in education and educational measurement in the 1980s and 
1990s, many of these statewide testing programs were unique. The 
motivation for the differences among the testing programs arose from the 
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fact that each state had increasingly well-specified curricular goals and 
there was a desire to measure progress toward those goals. This uniqueness 
has now been codified into law with the provisions and interpretations of 
NCLB. A penalty for the differences among local testing programs is that 
efforts to compare performance to any national standards have been 
frustrated by the lack of comparability of the results from different tests. 

The development of unique testing programs for purposes of 
accountability has led critics to suggest that a state had “developed its own 
tests so it could duck national comparison” (Simmons, 1995). One possible 
response to this criticism is to use nationally normed tests in addition to the 
tests already mandated—then one set of tests can be used to assess 
progress toward the state’s curricular goals, whereas another set of tests 
provide data that can be compared to other states and the nation. However, 
the U.S. Congress Office of Technology Assessment (1992) report 
correctly emphasized that large-scale testing is very costly, both in dollars 
and in opportunity cost; testing requires student and teacher time that could 
better be spent on other educational activities. The administration of more 
tests to serve the increasing demands for various kinds of accountability 
might in itself be detrimental to the performance of the educational system. 
Linkage of statewide tests to the NAEP scale was seen as a way to obtain 
national comparative data without additional testing. 

Additionally, since the expansion of NAEP in 1990 to provide state-
level data in the voluntary Trial State Assessment (TSA),2 there has been 
increasing pressure on NAEP to provide data for even smaller 
geographical units, including local school districts or even schools. In 
addition to the problems associated with ever-increasing amounts of 
testing, Jones (1997) noted that employing NAEP to produce state-, 
district-, or school-level results might threaten the integrity of NAEP for 
its primary purpose: “to monitor progress in educational attainment, 
nationally, by region, and for certain demographic subgroups” (p. 17). 
Jones suggested that linking procedures, whereby NAEP results could be 
estimated from findings from state testing programs, might serve as an 
alternative to any increased testing, including expansion of NAEP. 

16.3.1. The Linkage of the KIRIS with NAEP 

Among the earliest attempts to link a statewide assessment to NAEP was 
one that involved the Kentucky Instructional Results Information System 
                                                     
2 The expansion of NAEP to provide results for each state was originally 

designated the “Trial State Assessment” when Congress removed the previously 

existing prohibition of NAEP reports of results disaggregated below the national 

level.
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(KIRIS; Kentucky Department of Education, 1993), the statewide testing 
program in Kentucky from 1991–1992 until 1997–1998. KIRIS included 
tests of reading, mathematics, science, social studies, and writing, using 
multiple-choice items, open-ended items, performance assessments, and 
portfolio components. Tests were administered on a census basis in the 
accountability years (grades 4, 8, and 12) and on an optional basis in 
grades 2–3, 5–7, and 9–11. KIRIS was a high-stakes accountability system 
at the school level: Schools and teachers were rewarded financially for 
improvement in performance from year to year, and sanctions were 
imposed on schools and the staff within schools where test scores showed 
decreased performance. 

The primary reporting scale for KIRIS was a four-category system, 
dividing students into proficiency levels labeled distinguished, proficient,
apprentice, and novice. The percentage of “successful” students (the sum 
of those scoring in the distinguished and proficient categories) in each of 
the subject-matter areas was used as the primary statistic for score 
reporting and to implement accountability contingencies. The goal of the 
linkage of KIRIS with NAEP was to use NAEP data collected within and 
outside of Kentucky to estimate the corresponding percentage of 
“successful” students (by KIRIS criteria) in the nation as a whole, without 
administration of KIRIS outside of Kentucky. 

An equipercentile process was used to link the KIRIS categories to the 
NAEP score scale.3 The analysis was used to conclude that although 3.2% 
of Kentucky fourth-grade students were successful (distinguished or 
proficient) in 1992, 5.4% of the students in the nation would have been so 
classified had KIRIS been administered nationally. 

At the request of the Kentucky Department of Education, the 1992 
administration of NAEP–TSA included more subject-matter areas and 
grades in Kentucky than were scheduled nationally; similar linkages were 
developed for reading in grades 8 and 12 and mathematics in grades 4, 8, 
and 12. The NAEP data were collected and scored in the course of the 
scheduled administration of NAEP–TSA by the NAEP contractors, 
whereas the KIRIS data were derived from the scheduled census 
administration of that battery. Because the NAEP data collection did not 
include identifying information for individual students, it was not possible 
to match individual examinees’ results for NAEP and KIRIS. As a result, 
only limited analysis is possible to investigate the extent to which the 
NAEP and KIRIS tests with the same names measure the same aspects of 
proficiency. The correlations between the average scores for schools on the 

                                                     
3 No published description of the KIRIS–NAEP linkage has been provided. This 

description is based on information kindly provided by Earl Ogata of the 

Kentucky Department of Education (personal communication, July 1995). 
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NAEP and KIRIS scales for mathematics were 0.74, 0.78, and 0.79 for 
grades 4, 8, and 12, respectively. Those correlations are not as high as 
would usually be obtained between two tests that are to be equated or 
concorded. Dorans (2004d) maintained that correlations of .87 or higher or 
reductions in uncertainties of 50% or higher are desirable for scores that 
are to be equated or concorded. 

Subsequent KIRIS results indicate that, for fourth-grade reading, the 
percentage of students in Kentucky scoring in the proficient and 
distinguished categories increased from 3% in 1992 to 8% in 1993 and 
13% in 1994. If the concordance performed as desired, that should imply 
that 13% would score above the concorded score of 273 on NAEP reading 
in 1994, but the fact is that only 6% scored at the advanced level on NAEP 
in 1994.4 There were no statistically significant changes between 
Kentucky’s 1992 and 1994 NAEP reading scores. Ignoring the issue of 
statistical significance, Kentucky’s average decreased from 213 to 212 on 
the NAEP scale. Examining more subject areas and grade levels, 
Hambleton et al. (1995) and Koretz and Barron (1998) found that gains in 
scores on the KIRIS consistently exceeded Kentucky’s score gains on 
NAEP.

Before these results were available, the Kentucky Department of 
Education noted that gains in KIRIS scores relative to the 1992 national 
baseline could be due to any of three causes: 

Increased student learning that would be reflected in future 
administrations of NAEP 
Increased student learning to which NAEP is not sensitive because it 
might not measure higher order skills or ability to represent information 
as well as KIRIS 
Increased motivation to do well on KIRIS tests in subsequent years 
compared to 1991–1992 

The data suggest that the first scenario is unlikely, leaving the second two 
possibilities, neither of which is entirely compatible with strong 
conclusions about national comparisons based on the linkage of KIRIS and 
NAEP.

                                                     
4The tabulations of NAEP results include the percentage of students who score 

of students whose scores are 275 or higher, which is very near the cut-score of 273 

obtained in the KIRIS equating. 

in the category labeled advanced; for fourth-grade reading, that is the percentage 
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16.3.2. Equipercentile Linkages of Statewide Assessment 
Scales with NAEP 

Using data from the 1990 NAEP–TSA that measured mathematics 
achievement in 38 states (and 2 territories), and statewide results in 4 of 
those states that used assessments provided by CTB, Ercikan (1997) 
examined equipercentile linking functions between the statewide 
assessments and NAEP. Three of the states used different versions of the 
Comprehensive Tests of Basic Skills, Fourth Edition (CTBS/4; 
CTB/McGraw-Hill, 1993c), and the fourth used the California 
Achievement Test, Form E (CAT/E; CTB/McGraw-Hill, 1993b). In order 
to obtain comparable linking functions, Ercikan used a preexisting 
equating study among versions of the CAT and CTBS to convert all four 
states’ scores onto the CAT/5 scale (CTB/Macmillan/McGraw-Hill, 
1993a). Then equipercentile linking procedures were used to link the 
CAT/5 statewide mathematics scores (on the NCE scale) with the NAEP 
scale, matching the distribution of the approximately 2,500 students in the 
NAEP–TSA sample with the statewide population results (for populations 
that ranged from approximately 8,000 to 50,000). 

Linn and Kiplinger (1994) conducted a more elaborate investigation of 
the adequacy of linking statewide standardized test results to NAEP using 
equipercentile methods. They obtained statewide assessment data and 
NAEP–TSA results for four states for both 1990 and 1992. Two of the 
states used different forms of the Stanford Achievement Test, one state 
used the Iowa Tests of Basic Skills (ITBS), and one used the California 
Achievement Test (CAT). Linn and Kiplinger used the 1990 data to 
establish the linking functions and the 1992 data to evaluate the accuracy 
of those linking functions as “predictions” of the 1992 NAEP results from 
1992 statewide assessment results. 

Lacking a common metric for the four states’ tests, Linn and Kiplinger 
(1994) did not attempt to compare the linking functions across states. 
However, they did examine the invariance of the linkings between male 
and female examinees for two states for which gender identification was 
available for the statewide test data, and they found that the linking 
functions differed between the sexes. When the 1990 linking functions 

Ercikan (1997) found that the linking results differed substantially 
among the four states. She noted that these differences might be due to any 
or all of several differences between the two sets of tests. “These 
differences include different testing dates, motivational differences 
between students taking statewide tests and the NAEP test, and content 
differences that result in different abilities being assessed by each test” (p. 

administration conditions to the process of achieving equated scores. 
156). Kolen (Chapter 3, Section 3.2) discussed the critical importance of test 
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were used to predict the 1992 NAEP results from 1992 statewide 
assessment scores, Linn and Kiplinger found differences substantially 
larger than could be expected from sampling error in one or both tails of 
the distributions in all four states. This led Linn and Kiplinger  to the 
conclusion that linking relations between statewide assessment scores and 
NAEP are neither invariant across subgroups in the population nor stable 
across time. Describing the Linn and Kiplinger results, Glaser and Linn 
(1993) wrote, “In general, the equating did not hold, and analyses showed 
differences larger than chance along most parts of the achievement 
distribution” (p. 127). 

Waltman (1997) examined results obtained with an equipercentile 
linking of the 1992 administration of the ITBS in Iowa with the 1992 
NAEP–TSA mathematics assessments. The goal of Waltman’s study was 
to “investigate the extent to which performance regions on the ITBS and 
NAEP mathematics score scales could be identified that would classify 
students in a similar manner.” To this end, Waltman replicated NAGB’s 
standard-setting process with ITBS items in an attempt to obtain cut-scores 
on the ITBS scale that would correspond to NAGB’s basic, proficient, and 
advanced categories. She compared the results obtained from that 
standard-setting activity to those obtained using equipercentile linking of 
the ITBS to the NAEP scale and found that the results differed 
substantially. In contrast to the results obtained by Ercikan (1997) and 
Linn and Kiplinger (1994), Waltman did not find subgroup differences in 
the linking function. However, she did not examine either gender or 
between-state differences; the only subgroups considered were defined by 
the “type of community (TOC)” classification into “advantaged urban, 
disadvantaged urban, extremely rural, and other nonextreme” students. In 
addition, Waltman noted that both the ITBS and NAEP were tests with 
low-stakes outcomes in Iowa at that time, which might have increased the 
stability of the results. 

16.3.3. The Linkage of the NC EOG with NAEP 

The first edition of the North Carolina End-of-Grade (NC EOG) tests for 
grades 3–8 assessed the achievement of public school students in 
mathematics and reading. A special data collection effort was mounted in 
February 1994 to provide a linkage between the NC EOG and NAEP 
scales for eighth-grade mathematics (Williams, Rosa, McLeod, Thissen, & 
Sanford, 1998). The original goal of the linkage was to provide estimates 
of North Carolina statewide achievement results on the NAEP scale in 
years when NAEP was not administered; subsequently, the linkage was 
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briefly used to report estimates of results on the NAEP scale for individual 
school districts in North Carolina. 

There had been a planned 1994 administration of the NAEP–TSA in 
mathematics; however, that was subsequently canceled due to budgetary 
constraints. To develop a linkage between NC EOG and the NAEP scale 
and to partially replace the “lost” 1994 NAEP results, a special 
administration in 1994 involved a test comprising 78 items, including a 
short form of the NC EOG mathematics test for grade 8 (40 multiple-
choice items) and two blocks of released 1992 NAEP mathematics items 
(38 items: 29 multiple choice and 9 constructed response). Examinees 
were selected in a two-stage sampling design formulated by Westat, Inc., 
the sampling subcontractor for the NAEP–TSA, for what would have been 
the 1994 administration of NAEP–TSA had it been funded. A total of 
2,824 students were tested. 

This was the first of the state-NAEP linkage studies that provided 
matched individual-level scores on the statewide assessment and NAEP, 
permitting examination of the relation between the two. The correlation 
between the NC EOG and NAEP scores was .73, compared to internal 
consistency reliability coefficients of .82 for the NC EOG items and .88 
for the NAEP items; if the two tests measured the same thing, the 
correlation between them would more closely approach their reliability. In 
addition, the differences (in standard deviation units) between the average 
scores for students in two ethnic classifications (BHN [Black, Hispanic, 
and Native American examinees] and WA [White, Asian/Pacific Islander, 
and Other examinees]) differed between the two tests; that difference was 
substantially larger for the NAEP scores than for the NC EOG scores. 
These two pieces of evidence suggested that the two tests do not measure 
exactly the same aspects of mathematics proficiency, and so neither 
concordance nor calibration were considered viable alternatives for the 
linking. Therefore, the NC EOG–NAEP linkage was done using 
projection.

Two projections were made of the NAEP results from NC EOG scores. 
The first used the scores on the short version of the NC EOG mathematics 
test that was included in the February special linkage study, and the second 
predicted the February NAEP results from the May 1994 operational 
administration of the NC EOG tests (individual student responses were 
matched for the students in the special study). The average of the NC EOG 
scores from the February special administration of the NC EOG 
mathematics test was about 0.4 standard units lower than observed in the 
regular May administration. Because subsequent predictions of NAEP 
performance would be based on May operational testing, the results of the 
projection from the May administration of the NC EOG test to a putative 
February administration of NAEP were used. 
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The NC EOG–NAEP linkage analyses proceeded through two phases: 
(a) selection of a model for NAEP averages and standard deviations, 
conditional on EOG scores and the ethnic classification, and (b) bootstrap 
computation of standard errors for the regression coefficients. 

For the projection, students were categorized into groups based on 
ethnic classification and EOG scaled score. The projection equations fitted 
the NAEP posterior mean of each Ethnic classification  EOG score. The 
standard deviations of the posteriors were predicted from the EOG scores. 
After the regression equations were developed to predict the means and 
standard deviations for NAEP proficiency for each Ethnic classification 
EOG score category, Gaussian distributions with these means and standard 
deviations were used in the projection system as estimates of the 
conditional distribution of proficiency. When the projection was done for 
new observations on the NC EOG test, those distributions were weighted 
by the number of observations in each category and summed, to yield the 
projected NAEP distribution. 

Standard errors for the regression coefficients were computed using a 
bootstrap procedure described by Sitter (1992a, 1992b). The bootstrap plan 
included finite population corrections at the first and second sampling 
stages, for schools and for students within schools. Subsequently, 
simulation was used to estimate the precision of statistics computed from 
the projected distribution. 

In addition to its planned use to provide off-year estimates of 
mathematics proficiency on the NAEP scale for North Carolina, the NC 
EOG–NAEP projection was used for a short time to provide results on the 
NAEP scale for each of the school districts in the state (Triplett, 1995). 
However, both of those uses received mixed reviews from both the 
professional community and the public.

Subsequent use of the projection system to predict the 1996 NAEP–TSA 
results gave results that were relatively close to the mark, but erred in the 
direction that suggested that scores were increasing faster over time on the 
NC EOG than on NAEP, echoing what had been found earlier in Kentucky 
with KIRIS (Williams et al., 1998). After 1996, the NC EOG program 
came to have increasingly high stakes, which would have been expected to 
have an increasing differential effect on the NC EOG scores relative to 
NAEP.

Presentation of projected NAEP-scale results at the district level was not 
an unambiguous public relations success. A story in the Raleigh (NC) 
News & Observer (Simmons, 1995) quoted one school district testing 
specialist as saying, “The way they went about building these comparisons 
is so complex that I just don’t see the value in it. They built this Rube 

work out in the end. ” Another official from a school district that scored 
Goldberg machine of equations and then said, Trust us. The numbers will ’

’



16    Linking Assessments Based on Aggregate Reporting      303 

particularly low said, “Is it helpful for us to know this? No, I can’t say we 
really needed this information.” 

Additionally, more sophisticated statistically inclined reviewers of the 
system privately raised serious concerns: Given the clear lack of 
population invariance in the linking across the ethnic classification, one 
could question whether there were other, unmodeled, failures of population 
invariance that could have rendered the system inaccurate when applied to 
smaller groups, such as school districts. These concerns, coupled with 
accumulating evidence that such linkages would not be stable over time, 
and the extravagant cost of studies sufficiently large and detailed to check 
on potential problems led to the abandonment of the use of the linkage 
after reports were issued for only 2 years. 

16.3.4. The “Four-State Study” 

With the background of the several linkage studies with NAEP heretofore 
mentioned and the idea that states might want to translate their statewide 
assessment results onto the NAEP scale in years in which NAEP is not 
administered, the National Center for Education Statistics (NCES) called 
on the Educational Statistics Services to investigate the feasibility of 
linkage between four states’ mathematics assessments and NAEP 
(McLaughlin 1998a, 1998b). Because data from four states were involved, 
this has come to be known as the “four-state study” even though the 
studies by Linn and Kiplinger (1994) and Ercikan (1997) also involved 
data from two other sets of four states. 

McLaughlin’s (1998a, 1998b) study made use of more complex data 
and models than any previous linkage to NAEP, except, perhaps, the 
ASVAB linkage. With the cooperation of state education agencies in the 
four states, individual state assessment results were located and linked for 
most of the students in the 1996 NAEP mathematics samples in those 
states. The linkages used projection involving multilevel regression 
models that included both student-level and school-level terms. Although 
McLaughlin did not find significant school-level effects on the slope 
parameters relating the NAEP scores with the state assessment scores, 
there were effects on the school intercepts such that students in schools 
with higher average state scores were projected to have higher average 
NAEP scores. 

McLaughlin’s (1998a, 1998b) projections also included significant 
effects for minority status (in all states and both grades) and gender (in one 
state at grade 4 and three states at grade 8); school locale was considered 
but not found significant. McLaughlin found that differences between 
groups on NAEP’s results could be substantially underestimated using the 
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linkages, probably due at least in part to other, unmodeled effects such as 
parental educational level. 

In three of the four states, McLaughlin (1998a, 1998b) was able to use 
the linkage developed on the 1996 data to postdict NAEP school means in 
1992, using 1992 state assessment data. In two states, gains from 1992 to 
1996 were substantially larger on the state assessment than they were on 
NAEP, and in a third state, NAEP showed a gain while the state 
assessment showed a drop. 

Thus, this far more extensive study came to approximately the same 
conclusions that had been accumulating throughout the 1990s: Although it 
is possible to construct linkages of statewide assessments to the NAEP 
scale, the linkages are usually not invariant over subpopulations and not 
particularly stable over time and might require data components, such as 
school-level information or data on an extensive background variables, 
which complicate the usage of linkage as a replacement for administration 
of the “real assessment.” 

16.5. More Recent Linkages with NAEP 

16.5.1. The Linkage of the TIMSS with NAEP 

The Third International Mathematics and Science Study (TIMSS) 
conducted in 1995, and the administration of NAEP in 1996, provided an 
opportunity to compare the mathematics and science performance of states 
(based on their NAEP results) with countries (based on their TIMSS 
results) using a linkage between the scales of the two assessments. Johnson 
(1998) described the technical details of that linkage, and Johnson and 
Siegendorf (1998) provided an extensive set of tables comparing the 
performance of each state to 41 nations, with the tables answering the 
question “If the public schools in _________ participated in TIMSS, how 
would their average performance in mathematics [or science] compare to 
that of students in the 41 nations that took TIMSS at grade 8?” 

Only aggregate data were available to construct and evaluate the linkage 
of TIMSS as administered in 1995 with NAEP from 1996. The linkage 
was “statistical moderation” (Mislevy, 1992), a form of what Holland 
(Chapter 2, Section 2.3.2) called anchor scaling, making use of linear 
linking between the grade 8 NAEP distributions of mathematics and 
science proficiency for   the United States and the U.S. distribution of 

1–4-2) showed that the two pairs of distributions had very similar shapes. 
mathematics and science proficiency from TIMSS. Johnson (1998, pp. 4-
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Linear linking was used to transform scores on the 500-point across-grade 
NAEP scale to the 300-point within-grade metric used by TIMSS.

Johnson (1998) described the exhaustive estimation of the variance of 
the linking function (and, hence, of the linked results), including 
components of variance for sampling, measurement error, model 
misspecification (as determined from the variation in the linking functions 
across subgroups), and an estimate of the temporal shift (because TIMSS 
was conduced in 1995 and NAEP was conducted in 1996). It also 
happened that Minnesota had actually participated in TIMSS (as a 
countrylike state) in 1995. As validation, the linkage was used to postdict 
Minnesota’s 1995 TIMSS results from that state’s 1996 NAEP results, and 
the actual results were well within the confidence intervals around the 
prediction. Further, Missouri and Oregon participated in a state-level 
administration of TIMSS in 1998; Johnson (1998) reported that predicted 
TIMSS results for those states using the 1995 TIMSS/1996 NAEP linking 
functions were consistent with their actual TIMSS results. 

Johnson (1998) and Johnson and Siegendorf (1998) presented the results 
of the NAEP–TIMSS link with a number of cautions. Johnson (1998) 
wrote that “the linking was evaluated for a variety of demographic 
subgroups. While the predicted values from the various subgroup-based 
linkings were not significantly different from each other, there was still 
enough difference to suggest that caution be used in applying the links to 
subpopulations” (p. 11-1). Johnson and Siegendorf (1998) wrote that “the 
SOLE purpose of these profiles is to allow the comparison of the predicted 
TIMSS performance for individual states with the actual TIMSS 
performance of individual countries. It is NOT appropriate to use these 
profiles to compare performance between states or between countries”    
(p. 7). Johnson (1998) noted that “the link … assumes that the relationship 
between NAEP and TIMSS is the same within the states as it is in the 
country as a whole” and that “there is no guarantee that the link established 
in this report would hold in subsequent years” (p. 11-3). 

Johnson (1998) also noted that a parallel linkage was attempted for 
grade 4 mathematics, but that its results have not been released. One 
possible reason is that the results of that linkage might not have passed the 
very careful checks that were put in place to evaluate the grade 8 linkage. 
The linkage of disparate assessments remains a fragile enterprise. Another 
attempt to link the scales of NAEP and TIMSS is expected with the next 
nearly simultaneous administrations of the two assessments (E.G. Johnson, 
personal communication, March 22, 2005); it will be interesting indeed to 
compare that linkage with the results from 1995–1996, to examine the 
stability of such linkages over time. 
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16.5.2. Linkage to Compare States’ Standards 

In an extraordinarily influential unpublished paper, Musick (1996) 
compared the proportions labeled proficient (or some approximately 
equivalent term) in a number of statewide assessment systems and those 
estimated to be proficient by NAEP and found wide variation. That 
comparison suggested that some more formal linkage of state 
achievement-level standards with the scale and achievement-level 
standards of NAEP could be informative about the relative difficulty of the 
state standards. 

McLaughlin and Bandeira de Mello (2002, 2003) used school-level 
results from the NAEP samples for 2000 and 2002 and the proportion of 
students labeled proficient by their state in each of the NAEP-sampled 
schools to estimate cut-scores on the NAEP scale that were, in the 
equipercentile sense, equivalent to the state standards. As expected, they 
found wide variation across states in the linked NAEP-scale cut-scores for 
categories that were considered approximately equivalent to proficient. 

Braun and Qian (2006) offered a number of technical modifications to 
McLaughlin and Bandeira de Mello’s (2002, 2003) procedures, largely 
involving the more extensive use of NAEP’s sampling weights in the 
computation of the proportions “proficient” within schools. Braun and 
Qian also used the NAEP jackknife procedure to estimate the contribution 
of the sampling of schools and students to the variance of the estimates of 
the cut-scores, and they combine that variation with measurement error 
variance to obtain improved confidence intervals for the NAEP-scale cut-
scores corresponding to the state’s achievement levels. Braun and Qian 
(Chapter 17) discussed these contributions in more detail. 

16.6. Problems Requiring Further Research 

16.6.1. Motivational Effects 

Among the measurement problems that Wainer (1993) posed as pressing 
needs for research were the questions: “How can we separate demonstrated 
proficiency from motivation?” and “Are examinees poorly taught or just 
not trying?” (p. 12). Motivational differences that lead to differences in 
performance on two tests being linked might invalidate the attempt to infer 
what would have happened had one test been given from the results of 
another. If the data for two assessments in a linkage study arise from 
circumstances under which the examinees are more motivated on one than 
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the other, the average level of the projection might be too high or too low 
relative to that which would be obtained if the second test had actually 
been administered.

Bloxom et al. (1995) attributed the substantial difference they found 
between ASVAB and NAEP scores, relative to national norms for both 
tests, to motivational differences; this was suggested by the fact that the 
ASVAB scores had personal consequences for the participants in their 
research, whereas the NAEP results did not. A substantial difference, about 
0.4 standard units, was observed between average scores on the low-stakes 
special administration of the NC EOG mathematics test for the NAEP 
linkage described earlier and the operational administration (Williams      
et al., 1998). 

In a study of the effect of motivation on test scores, Wolf and Smith 
(1995) administered alternate forms of a college-level introductory 
psychology test under conditions that suggested that the score on the test 
would count toward the test-taker’s grade, or that it would not count. (The 
entire testing situation was within an experimental setting, with informed 
consent, so the extent of the motivational manipulation is not entirely 
clear.) Wolf and Smith found that scores were about 0.25 standard units 
higher for their more motivated group. Although Wolf and Smith 
considered that motivational effect on the outcome relatively small, we 
note that 0.25 standard units on the NAEP scale for eighth-grade 
mathematics is about 9 points, which  is more than enough to represent a 
reliable difference between state averages, for instance.

From a less experimental, but more realistic, context, Figure 16.2 shows 
the differences (for grades 3–8) between average scores from a low-stakes 
item tryout administration and a high-stakes operational administration on 
North Carolina’s statewide reading test. In the spring of 2002, one form of 
the first edition of the NC EOG reading test was administered to 
representative sample of North Carolina students as part of the item tryout 
for the second edition of the test. Very shortly thereafter, other forms of 
the first edition were administered operationally. Figure 16.2 shows the 
difference between average scores on the operational administration and 
those from the item tryout, plotted as a function of grade with a regression 
line superimposed to clarify the trend. The results in Figure 16.2 illustrate 
average score differences on the order of 0.2–0.4 standard units—as large 
as those found by Wolf and Smith (1995), or larger. 
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Figure 16.2. Differences (for grades 3–8) between average scores from a low-
stakes item tryout administration and a high-stakes operational administration on 
North Carolina’s statewide reading test, plotted as a function of grade. 

A rhetorical question that could haunt attempts to estimate proportions 
scoring in NAEP’s low-stakes achievement levels from a high-stakes 
statewide assessment is how many students would be classified as 
“proficient” by NAEP if they thought, when NAEP was administered, that 
it was their statewide assessment and that they might be retained in grade 
if they did not answer enough questions correctly? As the stakes 
surrounding statewide assessments escalate, one could argue that students 
become increasingly testwise, learning to expend effort only when it 
counts.

16.6.2. The Stability of Linking 

In the 1990s, one of the reasons for linking regularly administered tests to 
the NAEP scale was that linkages offered the opportunity to fill in the gaps 
between administrations of NAEP that cover a particular subject area at a 
particular grade level. To be valid for this purpose, the relation between 
proficiency as measured by NAEP and the test scores and background 
variables that are used in the linkage must remain constant over time. After 
a presentation on the NC EOG–NAEP linkage, Paul Williams (personal 
communication, January 1995) asked if we knew anything about the period 
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of time over which such linkages might wisely continue to be used. We did 
not.

Accumulated evidence now suggests that the answer is “not for very 
long.” As previously mentioned, Hambleton et al. (1995) and Koretz and 
Barron (1998) found that gains in scores on the KIRIS in the 1990s 
consistently exceeded Kentucky’s score gains on NAEP. Linn and 
Kiplinger (1994) reported that linkages of statewide tests to NAEP based 
on 1990 data did not predict 1992 results very well (in the tails of the 
distributions).

In addition to the NC EOG–NAEP linkage, we also linked reading and 
mathematics scores for the NC EOG reading and mathematics tests for 
grades 5 and 8 to the scale of the Iowa Tests of Basic Skills (ITBS), using 
sets of data collected in 1993 and 1994.5 The results for the 1993 and 1994 
datasets differed significantly in level, with the ITBS scores showing less 
improvement between 1993 and 1994 than did the NC EOG scores. The 
differences were sufficiently large that we judged the 1993 linkage not to 
be adequate to project the 1994 data. 

Why might scale linkages be so unstable over time? Instability over 
time is a kind of lack of invariance, specifically from one time to another. 
Green (2003) stated that “the most obvious explanation of the failure of 
invariance in equating is that the different test forms” (in our context, 
different assessments) “place different emphasis on different parts of 

differential interest in, various aspects of test content” (quoted by Kolen, 
2004b, pp. 11–12). Curricular emphases in, say, a state, can change very 
fast.

As an illustration, consider the data presented in Figure 16.3, which is a 
plot of the differences in average scores on the NC EOG (second edition) 
mathematics scale between 2000 and 2001, plotted as a function of grade, 
with a regression line superimposed to clarify the absence of any trend. In 
the spring of 2000, the items that were to comprise the second edition of 
the NC EOG mathematics tests were embedded in the operational 
administration of the first edition tests, whereas in 2001, the second edition 
was operational. Figure 16.3 shows the difference between the average 
scores obtained across grades for the two administrations. Unlike Figure 
16.2, Figure. 16.3 does not show a putative motivational effect; the 
students thought that both the item tryout second edition items and          
the operational first edition items were all part of a high-stakes test in 
2000.

                                                     
5 The NC EOG-ITBS linkages were done by Kathleen Rosa and Lori McLeod, 
in collaboration with the author. 

content, and that test takers have had differential exposure to, or 
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Figure 16.3. Differences in average scores on the NC EOG (second edition) 
mathematics scale between 2000 (when the second edition’s curriculum had not 
been fully implemented) and 2001 (the first year of full implementation of the new 
curriculum), plotted as a function of grade. 

However, Figure 16.3 does show a likely curricular effect: The new 
edition of the test was required because the statewide curriculum changed. 
The curricular change was substantial, including increased emphasis on 
computation, and there were corresponding changes in the content balance 
of the assessment. (Koretz, Bertenthal, & Green [1999, p. 32] included as 
their Figure 2-5 a graphic showing a sharp decrease on the computational 
subset of items of the ITBS during the 1990s, as mathematics curricula 
shifted away from emphasis on context-free computation. Results such as 
those have led to reemphasis on computation in some more recent 
mathematics curricula.) Students in 2000, who had probably followed the 
old curriculum, scored substantially lower than did students in 2001, who 
had followed the new curriculum for a year. As was the case with 
motivational differences, there is evidence that curricular differences can 
account for changes in averages of as much as 0.25 standard units or more. 

16.7. Conclusions 

Although fraught with difficulty, the linkage of disparate assessments 
characterized by aggregate reporting continues. As noted previously, 
although earlier attempts to link NAEP with international assessments 
have not been unambiguously successful, further linkages between NAEP 
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and TIMSS are planned. The use of NAEP’s scale to compare the meaning 
of different states’ achievement-level standards has high salience for the 
educational community, as shown by the fact that it was featured in Linn’s 
(2003) presidential address to the American Educational Research 
Association. Further use of school-level linkage of the scales of statewide 
assessments and NAEP is planned, to use such a linkage to create a hybrid 
across-state database placing the results of various statewide assessments 
on a common scale for the purpose of research on the relationships 
between school factors and school achievement (D. McLaughlin, personal 
communication, January 7, 2005). 

The continuing use of linkage between disparate assessments is not 
making the results easier to rely upon or even to interpret. The most 
difficult problem to solve might be variation in the unknown level of 
motivation with which students approach any large-scale standardized test 
that lacks direct personal consequences. (The fact is, we do not know very 
much about the effects of the level of motivation with which students 
approach tests with important personal consequences; we simply assume 
that it is high and hope that it is not so high as to create anxiety and reduce 
performance.) This problem has not newly arisen with linkage; link-      
age studies merely provide the opportunity to observe variation that might 
be due to differential motivation. We have never known the level of 
motivation for students responding to NAEP, or whether differences in that 
level of motivation, as opposed to differences in knowledge and skills, 
might account for observed differences in test scores. The data collected 
for purposes of test linkage serve as a reminder that it would be useful to 
obtain some measure of motivation, on some scale, in any large-scale 
testing program, as an index of validity; or that we at least attempt to 
convince ourselves that the level of motivation, whatever it is, does not 
covary with other aspects of the data that we might interpret. 

Where possible, it might be best to avoid special administrations of 
either test for purposes of linkage construction. If the motivational level of 
the examinees is unknown during the regular administration of a test like 
NAEP, it is doubly unknown when that test is administered in a different 
context. Planned database management could permit linkages to be 
developed from the regular administration of tests, by matching data after 
the fact. That has been done in most recent linkage attempts. 

The question of the stability of test linkage over time or populations is 
entirely empirical. We need to observe the extent to which the conditional 
relations between scores on the two tests being linked are constant or 
variable over time, or between groups. In principle, a partial answer to this 
question could be obtained retrospectively—with respect to NAEP, the 
students who have participated in NAEP over the past few years have also 
likely taken other tests, and those historical data could be used to produce 
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multiple linkages that could be compared. In practice, such retrospective 
analysis is unlikely to be possible because the data required to match 
observations on one test with those of the other (i.e., student identification 
of some sort) have not been readily available. Thus, this question must be 
left to future research, as time passes and multiple linkages are done. It 
would be wise if future administrations of NAEP recorded and 
incorporated in the dataset suitable individual identification for matching 
with data from other testing programs, using adequate safeguards for 
privacy.

Many of the issues that this chapter has raised with respect to linkage 
have been discussed in more detail in two National Research Council 
(NRC) reports, Uncommon Measures: Equivalence and Linking among 
Educational Tests (Feuer, Holland, Green, Bertenthal, & Hemphill, 1998) 
and Embedding Questions: The Pursuit of a Common Measure in 
Uncommon Tests (Koretz et al., 1999). Readers seeking an expanded 
treatment of these topics, as well as consideration of the issues as they 
apply to individual test scores, are encouraged to peruse those volumes. 
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17.1. Introduction 

During the 1990s, under the impetus of standards-based reform, many 
states established performance standards for their students in selected 
grades and subjects. Under the most recent reauthorization of the Elemen-
tary and Secondary Education Act (ESEA), the No Child Left Behind Act 
of 2001 (NCLB), all states are required to set such standards in reading and 
mathematics for grades 3–8 as well as in at least one grade in high school. 
NCLB, however, leaves to the states the responsibility of determining the 
curriculum, selecting the assessments, and setting challenging academic 
standards. Not surprisingly, the result has been substantial heterogeneity in 
both the quality and apparent stringency of the standards set by the states 
(Lane, 2004; Linn, 2003). One consequence is that in a particular grade, 
very different proportions of students in the various states have been de-
clared to have met a standard with the same label (e.g., proficient). These 
differences have occasioned much confusion and concern among stake-
holders.

A moment’s reflection shows that unambiguous comparisons of stan-
dards among states are problematic in view of the flexibility accorded to 
the states under NCLB; that is, were states using the same test, then deter-
mining the relative stringency of the standards could be accomplished by 
simply comparing the cut-points established by each state. In the present 

                                                     
1 The opinions expressed in this chapter are those of the authors and not necessarily of 
Boston College or Educational Testing Service.
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context, such direct comparisons are impossible. It is evident that there 
would be value in somehow placing all state standards on a common basis 
to facilitate approximate but credible comparisons in student test perform-
ance. As will be made clear below, any such effort cannot eliminate an es-
sential indeterminacy that must be taken into account in the interpretation 
of the results. Nonetheless, given the both the importance and visibility of 
the issue, it seems appropriate to address it as responsibly as one can. 

In the past, there have been a number of calls to somehow link all of the 
states’ test score scales directly or, failing that, to map them all on to the 
NAEP scale, inasmuch as the National Assessment of Educational Pro-
gress (NAEP) is the only test that is administered in a uniform manner 
across states. (Moreover, NAEP is generally regarded as meeting high 
standards with respect to test design, test content, and psychometric qual-
ity.2) If such linkages were possible, then comparisons among state stan-
dards would be relatively straightforward. Unfortunately, the literature is 
replete with arguments against the appropriateness of such mappings (e.g. 
Linn, 1993). More recently, two studies carried out under the auspices of 
the National Research Council (Feuer, Holland, Green, Bertenthal, & 
Hemphill, 1998; Koretz, Bertenthal, & Green, 1999) concluded that, for a 
number of reasons, mappings at the student level could not be validly con-
structed.

McLaughlin and his associates (McLaughlin & Bandeira de Mello, 
2002, 2003) made an innovative attempt to circumvent some of the diffi-
culties cited in the NRC studies. Their approach was to carry out the map-
ping to the NAEP scale only at the school level (at a single point) and then, 
by aggregation, to the state level. Specifically, they employed equipercen-
tile linking (Braun & Holland, 1982; Kolen, Chapter 3) in each school to 
find a point on the NAEP score scale that best corresponds to the state 
standard. That point represents the local estimate of the state standard on 
the NAEP scale. A simple average of these local estimates across all the 
schools in the NAEP sample (approximately 80–100 schools) yields the fi-
nal estimate of the NAEP scale score equivalent to the state standard. It 
should be noted that in their computations, they used the so-called full 
population estimates (FPE) of NAEP score distributions (McLaughlin, 
2000; Pitoniak & Mead, 2003), rather than the reported NAEP distribu-
tions. Evidence for the plausibility of most of these mappings of the state 
standards to the NAEP scale can be found in McLaughlin and Bandeira de 
Mello (2002). 

This chapter presents an alternative approach, albeit one that also relies 
on equipercentile linking. This method takes into account NAEP’s com-
plex sample design both in obtaining an estimate of the NAEP equivalent 

                                                     
2 For a general introduction to NAEP, see Jones & Olkin (2004). 
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of a state standard and in deriving an estimated variance of the NAEP 
equivalent. The method was applied to data from states’ 2000 mathematics 
assessment and the NAEP 2000 mathematics assessment, as well as to data 
from states’ 2002 reading assessment and the NAEP 2002 reading assess-
ment.3 Aside from our use of the reported NAEP distributions, the main 
difference between the approach adopted in this study and that of 
McLaughlin and his associates is that we obtain what might be termed a 
direct estimate of the NAEP equivalent by using appropriately weighted 
estimates of the state’s NAEP distribution and of the proportion of students 
meeting the state’s achievement standard(s). The rationale is that such a di-
rect estimate should be more precise than one that relies on a simple aver-
age of a large number of less precise estimates from a probability sample 
of schools.

We conduct a number of data analyses that support, on methodological 
grounds, a preference for this approach to that of McLaughlin and 
Bandeira de Mello (2003). We then assert that most of the observed differ-
ences among states in the proportions of students meeting states’ profi-
ciency standards are the result of differences in the stringency of their 
standards. This is followed by an examination of the evidence for the as-
sertion. If it is essentially correct, then it has important implications for 
education policy. In particular, it begs the question of whether all students 
deemed proficient are actually prepared to succeed once they leave the 
public school system. 

Underlying both the approach described here and McLaughlin’s ap-
proach is the assumption that, for a particular subject and grade, the state 
tests and NAEP are similar in content and structure. This is necessary so 
that the linking is not simply a meaningless exercise in numerology. It is 
also worth noting that both approaches treat as equivalent the proportions 
meeting a standard defined in terms of an estimate of the state score distribu-
tion and a cut-point defined in terms of an estimate of a NAEP score distribu-
tion. These two estimates are based on data at different levels of analysis: the 
former on cumulating scores of individual students and the latter on obtaining 
a direct estimate of the underlying true-score distribution. Of course, there are 
also differences in the use of a census rather than a sample, in exclusion rules, 
in the kinds of instruments used, and so on. However, inasmuch as state test 
forms are usually fairly long and have reasonably high reliabilities, we believe 
that for our purposes that we can ignore these differences. 

In the next two sections we provide a brief outline and a more detailed 
description of the proposed method. Section 17.4 describes the derivation 

                                                     
3 Data from both grades 4 and 8 were analyzed. Because of space limitations, only 
the results from grade 4 are presented here. The technical report by Braun and 
Qian (2006) contains the full set of results. 



of the variance estimates and Section 17.5 presents results for grade 4 in 
both mathematics and reading. Specifically, state-by-state results are pre-
sented for standards labeled proficient or its equivalent. Section 17.6 de-
scribes mapping NAEP standards into a state scale and Section 17.7 offers 
conclusions and recommendations. 

17.2. Outline of the Methodology 

The procedure is carried out separately for each state. In the description 
that follows, we refer to the mathematics data. An identical procedure was 
used for the reading data. Let P, which is formally defined in Section 
17.3.2, denote the statewide proportion of students meeting a particular 
standard. To emphasize the differences in the two approaches, we will re-
fer to our method as weighted aggregate mapping (WAM) and that of 
McLaughlin and associates as unweighted local mapping (ULM).

1. Based on the proportions of students who meet a state’s performance 
standard on that state’s own assessment in NAEP-sampled schools, 
estimate the proportion of students in the state as a whole who meet 
the state’s standard. First, we identify the schools in the state NAEP 
sample and match them with their records in the National Longitudi-
nal School-Level State Assessment Score Database.

4
 For each school, 

we obtain the proportion of students meeting the state standard. Using 
the school weights from the NAEP design, we obtain an estimate of P
using a ratio estimator, wp , which is a weighted average estimate of 
the number of students meeting the standard over a weighted average 
estimate of the number of eligible students. (See Section 17.3.1 for 
more detail.) 

2. Based on the NAEP sample of schools and students within schools, 
estimate the distribution of scores on the NAEP assessment for the 
state as a whole. This is the procedure that is carried out to generate 
the results contained in the NCES report that follows each NAEP as-

sessment. Let F̂  denote the estimated distribution. 
3. Find the point on the NAEP score scale at which the estimated pro-

portion of students in the state scoring above that point equals the 

                                                     
4 The National Longitudinal School-Level State Assessment Score Database 
(NLSLSASD; www.schooldata.org) is constructed and maintained by the Ameri-
can Institutes for Research (AIR) for NCES. Its purpose is to collect and validate 
data from state testing programs across the country. It contains assessment data for 
approximately 80,000 public schools in the United States and is updated annually. 
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proportion of students in the state meeting the state’s own perform-
ance standard. Using the results of 1 and 2, we map the performance 
standard to the NAEP scale, by finding the point WAMy  on the NAEP 

scale that is the 1 wp th quantile: 

1
WAM

ˆ 1 wy F p .

We take WAMy  to be the estimated NAEP equivalent score to the 
state standard. If the state employs more than one standard, the above 
procedure can be repeated for each one. 

4. Compute the variance of the estimated NAEP equivalent score. Using 
the jackknife procedure, we estimate the contribution of the sampling 
of schools and students to the variance of the estimator and combine 
it with an estimate of the contribution of measurement error to obtain 
a total variance estimate. 

Figure 17.1 illustrates the mapping procedure. The dashed curve on the 
left-hand side represents an estimate of the state distribution of scores on 
the state test, based on all students in the schools selected for the state’s 
NAEP sample. The area in the upper tail of this distribution above the state 
standard is an estimate of the proportion of students in the state meeting or 
exceeding that standard, and is denoted by ˆwp . In practice, only ˆwp  need 
to be obtained from the data. The curve on the right-hand side represents the 
estimated distribution of NAEP scores for the state. This is the usual re-
ported NAEP distribution based on students in the state’s NAEP sample 
who took the NAEP assessment. The estimated NAEP equivalent to the 
state standard, WAMy , is the point on the NAEP scale, such that the corre-

sponding upper tail area of the NAEP distribution also equals ˆwp .

The estimate WAMy  is derived from a single composite distribution of 
the scores of all assessed students in all NAEP selected schools in a state. 
The estimate proposed by McLaughlin and associates is the average of the 
mapped standards obtained from each of the schools in the NAEP sample. 
We denote this estimate by ULMz . (More detail can be found in Appendix 
A of Braun & Qian, 2006.) Although the empirical results generally show 
small differences between WAMy  and ULMz , there are important conceptual 
differences. Appendix B of Braun and Qian (2006) provided an analysis of 
these differences. In particular, the assumption underlying the calculation 
of ULMz  (namely that the estimates of the NAEP equivalent from the 
schools in a state participating in NAEP can be treated as a simple random 
sample) is not supported by the data. 
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Figure 17.1. The schematic of the mapping procedure. 

17.3. Details of the Methodology 

17.3.1. The Weights for NAEP Schools 

State NAEP samples are obtained through a two-stage probability 
sampling design. The first stage constitutes a probability sample of schools 
containing the relevant grade. The second stage involves the selection of a 
random sample of students within each school.

To account for the unequal probabilities of selection and to allow for 
adjustments for nonresponse, each school and each student were assigned 
separate sampling weights. If these weights are not employed in the 
computation of the statistics of interest, the resulting estimates can be 
biased. With this caution in mind, we applied appropriate weights in the 
estimation of the proportion of students in the state above the standard. In 
general, the student weight is inversely proportional to the product of the 
school selection probability and the student selection probability.

Formally, let N be the total number of schools in a state and kM  be the 
number of students who were grade-eligible at school k. Therefore, the to-
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tal number of eligible students in the state is 
1

N

l
l
M . Let n be the number of 

schools in the state NAEP sample. Let k  be the school selection 

probability, which is proportional to its size kM , and let |i k  be the 
conditional probability of selection for student i in school k. Suppose that b
students are randomly selected from school k. Then the unconditional 
selection probability of student i in school k is

|

1

,k
k i k i k N

k
l

l

a M b
MM

where a is a constant of normalization. Then the weight of student i in 
school k is

|

1

1 1 .
//

k i k i k N
k

k l
l

w w w
b Ma M M

This formula is only an approximation because students are selected 
without replacement and the vicissitudes of field work necessitate modifi-
cations to the ideal weights. For example, nonresponse adjustments to the 
weights are employed in NAEP to account for effects of schools and stu-
dents who were selected but did not participate. In any case, the weight of 
school k in a state NAEP sample is approximately 

1

1

/
k N

k l
l

w
a M M

,

which equals the inverse of the approximate school selection probability. 
Because school weights are not retained in the NAEP database, for this 
study the estimates of school weights were computed in two steps. First, 
the sum of the student design weights for each school was calculated and 
then this sum was divided by the number of eligible students. Details of 
the creation of school design weights for NAEP can be found in NAEP
1998 Technical Report (Qian, Kaplan, Johnson, Krenzke, & Rust, 2001, 
Chap. 11).
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17.3.2. The Ratio Estimator for the Target Proportion 

Let kP  be the proportion of students achieving the standard at school k.

The total number of students meeting the standard is 
1

N

l l
l
P M . The state-

wide target proportion of students meeting the standard is approximately

1

1

.

N

l l
l
N

l
l

P M
P

M

Using Horvitz–Thompson estimators, the numerator and denominator of 
P are estimated separately from the state’s NAEP school sample. For ex-

ample,
1

n

l l
l
w M  estimates the total number of eligible students in the state 

and
1

n

l l l
l
w P M  estimates the total number of students meeting the 

standard. The target proportion, P, of students meeting the standard can be 
estimated by a ratio estimator: 

1

1

.

n

l l l
l

w n

l l
l

w P M
p

wM

The Horvitz–Thompson estimators 
1

n

l l
l
w M  and 

1

n

l l l
l
w P M , are 

unbiased estimators of the corresponding population totals. Nevertheless, 
the ratio estimator wp  is biased with an order of 1/O n  (Cochran, 1977).

An interesting result can be derived by substituting for the school 
weight lw in wp  the inverse of the school selection probability. Simple al-

gebra shows that the corresponding estimate reduces to 
1

(1/ )
n

l
l

n P , which 

is denoted by p . Thus, with this simplification, the ratio estimator equals 

the simple average of lP  in the sample. Because the weights in NAEP 
samples reflect the effects of oversampling, nonresponse adjustments, and 
trimming, the actual school weight, lw , will differ somewhat from 
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1
/( )

N

l l
l
M a M  and, therefore, wp  will also differ slightly from p . How-

ever, since the school size data are not available for all schools in the states 
in the study, we have chosen to replace P by P , the population analog of 

p ; that is 
1

(1/ )
N

l
l

P N P .

We have chosen to use the ratio estimator wp  in our analysis. A plausi-
ble alternative would be to employ P , which is based on data from all the 
schools in the state containing the relevant grade. With our choice, the 
same schools contribute to the estimation of the relevant parameters of the 
state test score distribution and the NAEP score distribution. We believe 
that this match is more consistent with the logic underlying McLaughlin’s 
method and should yield results with smaller mean squared error. As we 
see below, the differences between wp  and P  are typically very small. 

17.3.3. Empirical Evaluation of the Estimates 

17.3.3.1. Data Resources

The data analyzed in this study consisted of the NAEP 2000 mathemat-
ics proficiency distributions for grade 4 students in the R35 sample. We 
also employed the 2000 state grade 4 mathematics tests. The state data 
were obtained from the NLSLSASD database. This database contains the 
proportions of students, by school, meeting each of the state’s standards, 
for nearly all states, beginning as early as the academic year 1994. How-
ever, it does not contain scores for individual students.

17.3.3.2. Evaluation of the Bias of the Estimates of the Target Proportions

We evaluate the approximate bias of the sample estimates of the propor-
tion proficient by analyzing the grade 4 (G4) 2000 mathematics standards. 
We compare the ratio estimator, wp , and the ordinary simple average of 

school proportions, p , to P , the statewide target proportion of students 
meeting the standard, which was defined in the previous section. For pre-
sent purposes, P  is treated as the true state percentage.

                                                     
5 For reporting purposes, two sample types, R2 and R3, were formed in the 2000 
operational NAEP assessment. The sample type R2 provides inferences for a less 
inclusive population where accommodations were not permitted; the sample type 
R3 provides inferences for a more inclusive population where accommodations 
were permitted. Since 2002, only the R3 sample type has been employed. 
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Table 17.1 summarizes, for each state standard of proficiency,
6
 the key 

statistics of the 2000 state mathematics test score distribution. The first and 
second columns of the tables contain the total number of (grade-relevant) 
schools in the state population and the number of NAEP schools in the 
sample for each state. The third column is the statewide target proportion 
of students meeting the standard. The fourth and fifth columns are the es-
timates denoted by wp  and p .

We now define the bias of the estimators wp  and p  as wp –P  and p –

P , respectively. The biases of both estimators are small: For G4 of 2000 
math, the bias of p  is larger than the bias of wp  for 11 out of 17 state pro-

ficient standards. The averages of the absolute biases for p  and wp  are 
1.2% and 1.5% and the maxima of the absolute biases are 6.7% and 6.0%, 
respectively. The average of the differences between two estimators is just 
1.1%.

17.3.3.3. Evaluation of the Estimates of the NAEP Equivalent to the State 
Standard

Because the target quantity, the NAEP scale score equivalent to the state 
standard, is not known, it is difficult to determine the bias of an estimate. 
However, both sampling theory and general NAEP empirical results indi-
cate that estimates using design weights provide superior results to those 
that do not. The estimate WAMy  defined in Section17.2 does employ these 
design weights.

In McLaughlin’s analysis, FPEs of the NAEP scale score distribution 
were used. A FPE adjusts the estimated NAEP score distribution to ac-
count for the exclusion of some students with disabilities (SD) or limited 
English proficiency (LEP) in the NAEP assessments. The FPE approach 
requires the imputation of the performance of those excluded students 
(McLaughlin, 2000). Because the imputed scale scores for excluded 
SD/LEP students usually fall at the low end of the distribution, the FPE of 
the NAEP distribution is stochastically smaller than the reported NAEP 
distribution. To study the impact of the FPE adjustment, we also applied 
McLaughlin’s procedure to the reported NAEP distribution. We use '

ULMz
to denote the latter results.

                                                     
6 Some of the state standards for proficiency were selected by their names and 
others were inferred by the authors. 
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State school 
population

NAEP school 
 sample 

State and
standard

 No. of
schools
in state 

 No. of
 schools 
 in NAEP
 sample 

Proportion
of students 
meeting the 
standard,

P

Weighted av-
erage
proportion
meeting the 
standard, wp

Unweighted
average
proportion
meeting the 
standard, p

 (1) (2) (3) (4) (5) 
CA PR50 4,827 77 0.50 0.53 0.51 
GA Meets 999 98 0.62 0.62 0.61 
KS Proficient 741 75 0.37 0.36 0.34 
LA Proficient 787 106 0.11 0.11 0.11 
MA Proficient 1,020 105 0.40 0.42 0.40 
ME Meets 343 105 0.23 0.24 0.23 
MI Satisfactory 1,910 84 0.75 0.77 0.76 
MO Proficient 1,097 99 0.37 0.36 0.36 
NC Consist Mastery 1,229 107 0.84 0.85 0.84 
NE Proficient 161 17 0.64 0.60 0.62 
NY Meets 1,476 40 0.67 0.68 0.67 
OH Pass 1,990 84 0.49 0.43 0.42 
RI Proficient 188 108 0.20 0.21 0.20 
SC Proficient 549 101 0.24 0.23 0.23 
TX Pass 3,417 99 0.87 0.89 0.88 
VT Meets 213 60 0.69 0.69 0.68 
WY Proficient 162 83 0.27 0.26 0.27 

Table 17.2 presents three estimates of the NAEP equivalents to the state 
standards for G4 of the 2000 state mathematics tests, for state standards of 
proficient. Columns (1) and (2) contain the results for ULMz  and '

ULMz , and 

column (3) presents those for WAMy . For G4 of 2000 math, on average, 

WAMy is about 0.7 points higher than ULMz , but about 2.1 points lower than 

the mean of '
ULMz , which is 229.8. Overall, of the 17 state proficient stan-

dards, for 10, ULMz  is lower than WAMy , and for 14, WAMy  is lower than 
'
ULMz . Although WAMy  is usually larger than ULMz , in some cases ULMz  is 

higher. For example, for G4 of 2000 math in California (CA PR50), ULMz

Table 17.1. G4 2000 math: The unweighted and weighted proportions of 
tested students with scores at or above the state standards of proficient 
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tematic differences, however, that are due to our use of school weights and 
of NAEP reported distributions (see Braun & Qian, 2006). 

17.4. Estimation of Variances 

17.4.1. Variance Estimation for a Simple Average of School Statistics 

Inasmuch as NAEP estimates are based on a sample from a finite popula-
tion, they are subject to uncertainty due to sampling. Schools are selected 
with probability proportional to size. Furthermore, because of the effects of 
clustering of students within schools and of nonresponse and poststratifica-
tion adjustments, observations made on different students cannot be as-
sumed to be independent of each other. To account for the differential 
probabilities of selection, each student has an associated sampling weight, 
which should be used in the computation of any statistic and which is itself 
subject to sampling variability. 

Ignoring the effects of a complex sample design usually results in un-
derestimating the true sampling variability. If the statistic does not use 
sampling weights (e.g., the simple average ULMz ), it implicitly treats 
schools as if they were collected by simple random sampling. Following 
this logic, an estimate of the variance of ULMz , including a finite popula-
tion correction, yields the following variance estimate:

2
SRS ULM ULM

1

1 ,
1

n

l
l

fv z z z
n n

where n is the number of schools in a sample, f is the fraction of schools 
selected, and lz  is the NAEP equivalent score for school l. Note that 
McLaughlin (2000) neither employed the finite population correction nor 
accounted for measurement error. 

is about 1.8 points higher than WAMy . This is the largest positive discrep-
ancy among all jurisdictions. It appears that the patterns in the mapped 
equivalents from the two methods are qualitatively similar. There are sys-

17.4.2. The Variances of Estimated NAEP Scale Score Equivalents 

Our approach to variance estimation is consistent with the procedures de-
veloped by NAEP for the estimation of the variances of reporting statistics 
(Allen, Donoghue, & Schoeps, 2001). The total variance of the estimate of 
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the NAEP equivalent of a state standard consists of two components: (a) 
the error due to sampling schools and students and (b) the error of meas-
urement that reflects the uncertainty in an assessed student’s performance. 
The sampling error is estimated by the jackknife replicate resampling pro-
cedure (JRR) applied both to schools (for the state data) and to students 
(for the NAEP data). The measurement error is estimated by utilizing the 
variability among the plausible values generated for each assessed student.  

17.4.2.1. The NAEP Jackknife Replicate Resampling Approach 

The JRR procedure for NAEP involves the formation of a large number 
of strata, typically consisting of pairs of schools. In NAEP, there are usu-
ally 62 strata. For the jth replicate, one school in the jth stratum is ran-
domly deleted and an appropriate set of weights is computed. The calcula-
tion of the 62 jackknife replicate weights for NAEP state samples can be 
found in the NAEP 1998 Technical Report (Allen et al., 2001) and in 
Wolter (1985).

To implement the JRR for this study, we not only need the jackknife 
replicate weights for students but also the jackknife replicate weights for 
schools. These are formed by the same procedure described in Section 
17.3.1. For the jth replicate, we apply the jth jackknife replicate weights 
for schools to estimate the corresponding proportion of students meeting 

the standard, ,w jp . Then we map ,w jp  to the NAEP scale and find the 

point WAM,( )jy , the ,1 w jp th quantile of the distribution of NAEP 

scores based on that same replicate and employing the corresponding rep-
licate weights for students. Finally, the variance of the estimate WAMy that
is due to sampling is estimated by

62 2

WAM WAM,( ) WAM
1

.J j
j

v y y y

17.4.2.2. Estimation of the Measurement Errors and Total Variances 

The measurement error component is estimated by carrying out the es-
timation procedure outlined in Section 17.2 for each of the M = 5 sets of 
plausible values. Let the NAEP equivalent of a state standard estimated by 
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the mth set of plausible values be WAM,my , m = 1,…, M, and denote the 

mean of WAM,my  by WAM,y . Finally, let
2

WAM, WAM,

1 1

M
m

m

y y
B

M
.

Then the total variance is estimated by 

1
WAM WAM 1T Jv M Bv y y ,

where -11 M is a finite population correction factor. The estimation 

process mimics that of operational NAEP: The calculation of WAMJv y is

based on the first plausible value, and the estimation of B is based on all 
five plausible values. For details, see Allen et al., 2001.

17.4.3. Evaluation of the Variance Estimates 

In Table 17.2, for G4 2000 math, column (6) displays the variance of 

ULMz , obtained by application of the formula SRS ULMv z  in Section 17.4.1, 

and columns (7), (8), and (9) display the variance due to sampling, the 
variance due to measurement uncertainty and the total variance of WAMy ,

respectively. We first compare the jackknifed variances, WAMJv y , of 

column (7) with the variances in column (6). On average, for G4 2000 
math, the jackknifed variance is 4.2, and the corresponding average of 

SRS ULMv z  is 2.2. Clearly, the effect of complex sampling on the variance 

of estimates is substantial and SRS ULMv z  underestimates the true sam-

pling variability. The average measurement error is 0.56 for G4 2000 math 
(representing 12% of the total variance). Although measurement error is 
only a small fraction of the total variance, ignoring measurement error 
would further underestimate the true variance of the estimators.

Kish (1965) defined the design effect (DEFF) as the ratio of the variance 
of a statistic from a complex sample to the variance of the statistic from a 
simple random sample of the same size. If SRS ULMv z  is treated as a vari-

ance estimate based on simple random sampling, the DEFF for the NAEP 
equivalent of the 2000 state mathematics standard ranges from 2.0 to 2.5. 
This is consistent with the DEFFs for reported NAEP statistics. It shows 
that the complex sampling effects cannot be ignored in the calculation of 
variances.
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The differences in the estimated variances for ULMz and WAMy  are illus-
trated in Figure 17.2, which contains two sets of plots for G4 2000 math: 
(a) a plot of WAMy  against an estimate of its total variance and (b) a plot of 

ULMz  against its estimated variance, using the formula SRS ULMv z .

Figure 17.2 G4 2000 math (proficient): NAEP equivalent scores (WAM or ULM) 
versus variance [Total variance or Var(SRS)]. 

Nearly all of the rhombus icons, representing the total variances of 

WAMy , are located to the right of the triangle icons representing the vari-

ances of ULMz . Even with the larger estimated variances, for most states 
the magnitudes of the estimated standard deviations of the mapped equiva-
lents are modest in comparison to the differences among the equivalents. 
Note that these variances address only one aspect of the stability of the es-
timated equivalents. Other relevant evidence would be obtained by carry-
ing out the linkage separately for different subgroups of the student popu-
lation. Unfortunately, the requisite data are generally not available. 

17.5. Results 

17.5.1. The State Standards for Grade 4 2000 Mathematics

Based on the analysis of the 2000 mathematics data, the results obtained 
through WAM show the same patterns as the results obtained through 
ULM. For WAM, these findings are illustrated in Figure 17.3. For exam-
ple, Louisiana has the highest mapped NAEP scale score. This state has 
11.4% at or above the proficiency standard and its NAEP equivalent is 
250.8. The second most stringent standard is Rhode Island’s proficient, 
with 21.9% at or above this standard and a NAEP equivalent of 250.6. The 
next most stringent is Maine’s meets, with 23.9% at or above this standard 
and a mapped standard of 248.2. The least stringent is Texas’ standard of 
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pass, with 88.8% of the students meeting the standard and a mapped stan-
dard of 200.6. These results are consistent with those obtained by ULM. 

Figure 17.3. G4 2000 math: NAEP equivalent scores to state proficient standards 
versus proportions at or above state proficient standards. 

An ordinary least squares regression line has been superimposed on 
Figure 17.3. There is relatively little scatter about the line, even at extreme 
values of percent above the standard. The pattern is clear: States with 
higher percentages above their standard tend to have a lower NAEP 
equivalent to that standard. The correlation in Figure 17.3 is –0.96. It is 
important to recognize that the observed pattern is not a logical conse-
quence of the methodology. Now, if one constructed a comparable figure 
based on the quantiles of a single, approximately normal distribution (e.g., 
the national NAEP distribution for G4 2000 math), then one would obtain 
a straight-line relationship, particularly for percents between 20 and 80. 
However, the data points in Figure 17.3 are drawn from many different 
states, each with its own test and distribution of test scores.

The availability of estimated variances for mapped standards makes 
possible the construction of confidence intervals. The confidence intervals 
are relatively wide because, on average, the total variance is 4.72 for the 
proficient standards of G4 2000 math. Typically, the bands cover the re-
gression line, supporting the inverse relationship between the percentages 
meeting the standard and the mapped standards. Although there are some 
reversals, they are usually within the margin of error indicated by the esti-
mated variances. For example, Vermont has 68.8% of students above its 
standard of meets, which is higher than the 67.8% of New York’s meets. 
However, the mapped standard for Vermont is 218.4, which is also higher 
than the 216.3 of New York’s. The standard errors of the NAEP equivalent 
scores are 2.1 and 3.0 for Vermont and New York. Therefore, the differ-
ence between 218.4 and 216.3 is not significant. At the same time, we 
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should recognize that such reversals might be due, at least in part, to real 
differences in distributions of achievement between states. 

We note that most of the NAEP equivalents in Figure 17.3 are lower 
than the NAEP standards for proficiency, which is 249 (Braswell et al., 
2001) and that the range of NAEP equivalent scores is about 50 points. 
Such differences are certainly very large in the context of NAEP scores. 
Thus, there appears to be a wide range of expectations for student 
achievement at the proficient level. Of course, such an inference requires 
that the pattern of differences among the mapped equivalents on the com-
mon scale (here, the NAEP scale) can be reasonably interpreted as reflect-
ing real differences in stringency. 

To the extent that interpretation is correct, one can draw useful conclu-
sions from Figure 17.3. Consider data points lying on a vertical line. These 
correspond to states with the same value of wp ; that is, they each have the 
same proportion of students above their respective standard. The higher a 
state’s point, the higher its corresponding NAEP equivalent and we infer that 
it has set a more stringent standard and, therefore, that its students have dem-
onstrated superior achievement. Now consider data points lying on a horizon-
tal line. These correspond to states with the same NAEP equivalent. The fur-
ther to the right a state’s point falls, the greater its value of wp , and we infer 
that its students have demonstrated superior achievement. Note that in Figure 
17.3 there is minimal vertical scatter but somewhat greater horizontal scatter 
(taking into account the different scales on the two axes). (To some degree, 
this is expected because the least squares line minimizes a function of the ver-
tical scatter.) That there is a modest amount of horizontal scatter suggests that 
the high negative correlation observed is not simply an artifact of the method-
ology.

Results for grade 8 mathematics (Braun & Qian, 2006) are very similar 
to those for grade 4. There is a strong negative linear relationship between 
the NAEP equivalents to the state standards and the percents above the 
standards. This holds true when only standards for proficiency are consid-
ered. In this case, the range of NAEP equivalent scores is about 70 points. 

17.5.2. The State Standards for Grade 4 2002 Reading

It is possible that the regularity apparent in the results for mathematics is 
due, in part, to the nature of the subject matter. Consequently, Braun and 
Qian (2006) carried out a parallel analysis for the G4 2002 reading data 
and obtained similar results. They reported a strong negative linear rela-

for G4 was about 64 points and there was a very substantial range of 
states’ standards.

tionship with a correlation of 0.87. The range of NAEP equivalent scores 
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Results for grade 8 reading (Braun & Qian, 2006) were very similar to 
those for grade 4 reading. There was a strong negative linear relationship 
between the NAEP equivalents to the state standards and the percents 
above the standard. This held true when only standards for proficiency 
were considered. In this case, the range of NAEP equivalent scores was 
about 80 points. 

17.6. Mapping the NAEP Achievement Standards onto a State 
Test Scale

When state standards are mapped onto the NAEP scale, we can compare 
and evaluate the different standards despite the differences in tests and 
standard-setting procedures. The application described in this section is a 
reverse mapping procedure—that is, finding a point on the state test score 
scale that best corresponds to the NAEP achievement cut-point. These 
state equivalents to the NAEP achievement levels could provide state edu-
cators and policy makers with useful information to directly compare their 
standards to national benchmarks.

Figure 17.4 illustrates the reverse mapping procedure, which, as earlier, 
is based on the principle of equipercentile linking. Although the figure is 
analogous to that of Figure 17.1, the direction of the mapping is reversed: 
going from right to left. The curve on the right-hand side represents the es-
timated distribution of NAEP scores for the students sampled in the state. 
The point on the NAEP scale is the cut-point of a NAEP achievement level, 
which represents one of the NAEP standards: basic, proficient, or advanced. 
Let the upper tail area be equal to ˆwp . The curve on the left-hand side 
represents the distribution of scores on the state test of all students in all 
schools in the state. The estimated state equivalent standard of the NAEP 
achievement level is the point on the state scale above which the tail area is 
also equal to ˆwp .

To accomplish the reverse mapping, the actual distribution of state test 
scores is required. (That is why the distribution is represented by a solid 
rather than a dashed line as in Figure 17.1.) Unfortunately, actual student 
scores for most states are not in the NLSLSASD database. Accordingly, 
we were only able to conduct a case study for the G4 2000 Michigan state 
mathematics test, for which the appropriate data were available.

7

The reverse mapping procedure also employs the JRR approach to esti-
mate the variances for the sampling and measurement errors, as described 

                                                     
7 The 2000–2001 Michigan student-level data was publicly available 
(http://www.schooldata.org).
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in Section 17.4. The procedure uses the distribution of student scores to 
calculate ˆwp , rather than the proportions of students in each school meet-
ing the standard. Therefore, the reverse procedure employs student design 
weights to estimate the distribution, and the replicate weights for the JRR 
procedure are also computed from student design weights. Again, meas-
urement error is estimated from repeating the procedure for each set of 
plausible values.

Table 17.3 presents the state equivalents to the NAEP mathematics 
achievement levels and their standard errors (SE). The mapped NAEP 
achievement levels on the Michigan state test scale are 518, 554, and 595 
for basic, proficient, and advanced levels,8 respectively. The corresponding 
percentages of students meeting these levels are about 70.2, 27.5, and 2.8, 
respectively.

Table 17.3. The state equivalents to the NAEP mathematics achievement levels 
and their SEs for the 2000 Michigan state mathematics test, grade 4 

aOn average, only 2.8% of Michigan students meet the mapped standard for ad-
vanced. Therefore, the number of students at each school meeting the standard is 
small and results in a jackknifed variance that is very large: 51.39. In particular, 
the 41st replicate contributes about 98% of the total sampling variation. Evidently, 
this is a very problematic estimate. After considering several approaches, we de-
cided to use the Winsorized variance estimate, which is listed in Table 17.3. In the 
calculation of the Winsorized estimate, the largest and smallest of the squared de-
viations are replaced by their nearest-neighbor values. 

                                                     
8 The three cut-points of NAEP achievement levels, basic, proficient, and ad-
vanced, are 214, 249, and 282, respectively (Braswell et al., 2001). 

 Basic Proficient Advanced

 NAEP achievement level 214 249 282 
 State equivalent standard  518 554 595 
 SE due to sampling error 1.21 3.14 0.98 a 
 SE due to measurement error 0.79 0.30 0.14 
 Total SE 1.45 3.16 0.99 

 

The Michigan state test score distribution indicates that the percentages 
of students meeting state standards, moderate and satisfactory, are 91.3 and 
75.1, respectively. It appears that the standard of satisfactory is set at a 
level lower than the basic standard of the NAEP mathematics assessment.
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Figure 17.4. Schematic of the reverse mapping. 

17.7. Conclusions and Recommendations 

The purpose of this study was to continue methodological development of 
an approach originally proposed by McLaughlin and associates for making 
useful comparisons among state standards. (We again emphasize that this 
mapping procedure should NOT be used to make high-stakes decisions 
about schools or districts.) It is assumed that the state assessment and the 
NAEP assessment reflect similar content and have comparable structures, 
although they differ in test and item formats as well as standard setting 
procedures. This development consisted of two modifications: (a) a shift 
from a school-based to a student-based strategy for estimating the NAEP 
equivalent to a state standard and (b) the derivation of a more refined esti-
mate of the variance of the NAEP equivalent by taking into account the 
NAEP design in the calculation of sampling error and by obtaining an es-
timate of the contribution of measurement error.

The new methodology was applied to four sets of data: (a) year 2000 
state mathematics tests and the NAEP 2000 mathematics assessments for 
grades 4 and 8 and (b) year 2002 state reading tests and the NAEP 2002 
reading assessments for grades 4 and 8. For the first dataset, we also 
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mathematics and reading, there is a strong negative linear relationship 
across states between the proportions meeting the standard and the appar-
ent stringency of the standard as indicated by its NAEP equivalent.

Comparable results can be found in a recent report by Kingsbury, Olson, 
Cronin, Hauser, and Houser (2003) describing an effort to map proficiency 
standards for 12 states onto a common scale, which is used to report test 
scores for the Northwest Evaluation Association (NWEA) assessment bat-
tery. This exercise was carried out in both reading and mathematics for 
grades 3–10, employing data collected between 1999 and 2003. In contrast 
to the present case, NWEA has available individual student scores on both 
the state test and the (common) NWEA scale. They found substantial het-
erogeneity among the NWEA equivalents of the state proficiency stan-
dards and a strong negative correlation between the percent proficient and 
the NWEA equivalent to the state’s proficiency standard. 

Although their linking methods as well as their data have both strengths 
and weaknesses in comparison to the exercise described in this chapter, it 
is instructive to compare the results of the two approaches. We did so for 
2000 mathematics in grades 4 and 8 and for 2002 reading in grades 4 and 
8.10 There is good agreement between the rankings of the states on the ap-
parent stringency of their proficiency standards, adding to the credibility of 
our findings. 

Recall that the motivation for attempting to map state standards onto a 
common scale was to account for the observed differences among states in 
the proportions of students declared proficient. The credibility and utility 
of the results depend on making two arguments: first, that the estimated 
NAEP equivalents are both well estimated and stable; second, that one can 
interpret the results as indicating that the most important factor in explain-
ing why two states have substantially different proportions of students 
meeting the proficiency standard is where they have set the standards, 
rather than substantial differences in the relevant skills in their student 
populations or the tests used. 

                                                     
9 The results of the McLaughlin method are more fully presented in the report by 
Braun and Qian (2006). The results of the two methods are qualitatively similar, 
although they did differ substantially in some cases. 
10 Unfortunately the overlap among states for which data is available is not as 
great as one would hope, being greater in grade 8 than in grade 4. 

applied the method due to McLaughlin and associates. We find that for both 
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With respect to the first argument, the estimated standard deviations of 
the NAEP equivalents, taking into account both sampling and measure-
ment errors, are generally small in comparison to the range of the NAEP 
equivalents. Stability is best addressed by implementing the linkage for 
different subgroups. As we have already indicated, that is possible only for 
a few states. An alternative is to examine, for each state, the correlation be-
tween performance on the state test and on NAEP. This can be done at the 
school level. For example, using the NLSLSASD files, for each state one 
can compute the raw Spearman correlation across schools between the per-
cent proficient on the state test and the estimated NAEP mean. For grade 4 
math, the median correlation is about 0.7. Ideally, one would like to sup-
plement the quantitative analysis with an intensive examination of the de-
gree of alignment between the state test frameworks and the NAEP 
frameworks. This has not been done. 

With respect to the second argument, the essential difficulty is that one 
must reason from the observed results (e.g. Figure 17.3) back to the true 
state of nature. It is possible to construct alternative scenarios that are con-
sistent with Figure 17.3 but lead to different inferences about the relative 
stringency of states’ standards. Although some of these alternative scenar-
ios can be ruled out by appeal to additional data at our disposal, others can 
only be addressed indirectly. 

Our preferred interpretation, that the variation in NAEP equivalents 
largely reflects differences in the stringency of states’ proficiency stan-
dards, is certainly consistent with Figure 17.3. It is also supported by the 
fact that there is no or, at best, a very weak relationship between states’ 
percent proficient and states’ performance on NAEP. Figure 17.5 displays 
the relevant scatter-plot for grade 4 math. Moreover, the heterogeneity 
among the NAEP equivalents is much greater than among NAEP means.11

These two features certainly contribute to the strong negative correlations 
evident in Figure 17.3 and its analogues. 

                                                     
11 For grade 4 math, the coefficient of variation of the NAEP equivalents is about 
19 times larger than that for the NAEP means. For grade 4 reading, the ratio is 
about 9. For grade 8 math, the ratio is about 18, and for grade 8 reading, it is about 
16.

What might be a possible alternative scenario? Suppose that two states 
(denoted A and B) employ the same test for accountability, which differs 
from NAEP in the relative emphasis placed on the different content 
strands. In particular, imagine that there is one strand that is strongly repre-
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Figure 17.5. G4 2000 math: NAEP equivalent scores to state proficient standards 
versus state mean NAEP scores. 

Now if the students in State A are better prepared for the state test (with 
special attention to that one strand) than students in State B, then the dis-
tribution of scores in State A will be stochastically larger than that in State 
B and, perforce, the percent proficient in State A will be greater than the 
percent proficient in State B. However, State A’s advantage is not reflected 
in the NAEP distributions of the two states. Consequently, the NAEP 
equivalent for State A will be lower than that for State B—and one would 
conclude (incorrectly) that State A’s proficiency standard is less stringent 
than State B’s. 

Could an approximation to such a scenario, aggregated over a number of 
pairs of states, have plausibly generated Figure 17.3? We argue in the 
negative: first, because assessment frameworks do not differ substantially 
in (say) grade 4 math. Consequently, differences in emphasis are not likely 
to lead to substantial differences in percent proficient that are not accom-
panied by corresponding differences in NAEP distributions; that is, observ-
ing the range in the percent proficient similar to that in Figure 17.3 is im-
plausible under this scenario. Moreover, under this scenario, if it were the 
case that states with the higher values of the percent proficient were being 
penalized by the linking method for their superior performance on the state 

sented on the state test but hardly at all on the NAEP assessment. Suppose 
further that the states set their proficiency thresholds at the same point on 
the scale. Thus, by construction, their standards are of equal stringency. 

tests that is not reflected in NAEP, then one might expect that those states 
would display lower within-state correlations between an indicator of state 
test performance and NAEP scores. We carried out this computation for 
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the states in Figure 17.3, after dividing them into two groups based on a 
median split on the percent proficient. For each state, we calculated the 
Spearman correlation across schools between the percent proficient on the 
state test and the estimated mean on NAEP. The mean correlations in the 
two groups were nearly identical.12

Clearly, one can posit different scenarios that offer alternative explana-
tions for the wide range in percent proficient that has been observed. We 
believe we are on safe ground with the assertion that our results support 
the contention that differences across states in performance expectations, 
as manifested in the apparent stringency of the proficiency standards, re-
main the most plausible explanation of the heterogeneity in percent profi-
cient. At the same time, we recognize that the issue cannot be settled di-
rectly unless states adopt a common content framework and implement a 
common examination based on that framework. Because that is unlikely, 
we must accommodate to the inherent ambiguity in the situation. Thus, we 
should certainly refrain from making fine distinctions among NAEP 
equivalents. At the very least, confidence bands, based on the estimated 
standard errors, should be used for all comparisons, with the recognition 
that they do not capture all of the uncertainty that attaches to the NAEP 
equivalents for the intended inferences. 

That state standards for proficiency can apparently differ by 50 or more 
points on the NAEP scale should give pause both to policy makers and 
educators. What, indeed, is expected of students in states with the lowest 
NAEP equivalents? How do these expectations differ from states with the 
highest NAEP equivalents? What does the achievement of proficiency sig-
nify in terms of what students know and can do? In our view, mapping 
state standards to the NAEP scale makes possible conversations that could 
be more constructive than simple comparisons of percent above standard. 
In particular, it should provide greater impetus to carry out an intensive 
cross-state analysis of content and performance standards. 

Finally, we note that under NCLB, a state’s NAEP results are to be used 
to confirm its success in achieving adequate yearly progress. Currently, 
such a confirmation is based on observing changes at the mean of the dis-
tribution of state test and changes at the mean of the state’s NAEP distribu-
tion. It is possible to use changes in the estimated NAEP equivalent over 
time in a similar manner. For example, if the proportion above the profi-
cient standard on a state’s test increases over time while the NAEP distri-

                                                     
12 The Spearman correlations for two groups are 0.69 and 0.73 separately. For this 
calculation, Nebraska was set aside as an outlier. 

bution remains constant, then the estimated NAEP equivalent would corre-
spondingly decrease. It is possible, but not obvious, that tracking changes 
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in the NAEP equivalent is to be preferred to tracking changes in the mean 
for the purpose of monitoring state outcomes. At the same time, interpret-
ing trends in state test scores is problematic in view of the many factors 
that can impact score levels. Attempting to do so in terms of linkages to 
another test (e.g., NAEP) is more problematic still because of the many 
ways in which the invariance of the linkage over time might fail. This is 
likely to be the case no matter which feature of the distributions is selected. 
For more on these issues, consult Thissen (Chapter 16) and Koretz (Chap-
ter 18).
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18    Using Aggregate-Level Linkages for 
Estimation and Validation: Comments on Thissen 
and Braun & Qian 

Daniel Koretz
1

Harvard Graduate School of Education 

Both of the preceding chapters (Thissen, Chapter 16, and Braun & Qian, 
Chapter 17) addressed the practicalities of linking aggregate-level results, 
but they are very different in tone and focus. The Thissen chapter carefully 
considered a variety of actual linkages and is pessimistic about the support 
that they offer for their intended inferences. The Braun and Qian chapter, 
by contrast, considered in greater depth only two variants of one type of 
link and is quite positive about the utility of the results. The two chapters 
also differ in the nature of the inferences that they address and the types of 
evidence that they put forward to evaluate them. 

I will discuss each chapter briefly, commenting on the linkage-based 
inferences that they address, the evaluative evidence that they bring to 
bear, and their conclusions. In a final section, I will elaborate on one 

aggregate linkages over time. I will comment briefly on the extent of this 
problem, its causes, and, more importantly, its implications for validity. 
The characteristics and severity of the instability of aggregate linkages 
over time are not only important for evaluating the traditional product of 
linkages (i.e., estimates of performance on an unadministered test) but they 
are also a key to validating certain inferences based on the administered 
test, including some of the most important inferences currently based on 
scores from large-scale assessments. 

                                                     
1The opinions expressed in this chapter are those of the author and not 
necessarily of the Harvard Graduate School of Education.

of the threats discussed by Thissen (Chapter 16): the instability of 
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18.1. Comments on the Thissen Chapter 

Thissen’s chapter is broad in scope, referencing nearly a dozen different 
uses of aggregate linkages. Although he classified them somewhat 
differently, the intended uses of the links he examined can be placed into 
three broad categories: 

Estimating a concurrent aggregate score on an unadministered test. In 
current practice, the aggregate score estimated is most often a percentage 
above a cut (PAC). In Thissen’s examples, and in current policy, this is 
most often done to gain normative information that that cannot be provided 
by the administered test alone—for example, to allow a state to obtain 
nationally normative information while administering a test tailored to its 
own standards. This category of inferences includes not only the 
estimation of state-level aggregate statistics but also the efforts to extend 
inferences from an assessment such as the National Assessment of 
Educational Progress (NAEP) to lower levels of aggregation.

Providing off-year estimates of performance on an infrequent 
assessment, such as NAEP. Despite the substantial efforts that have been 
put into it in the past, this function of linking no longer seems particularly 
valuable, given that NAEP is now scheduled biannually and state-level 
change in NAEP scores is typically very slow. However, these efforts, 
such as the one that Thissen discussed, remain relevant because they 
spurred substantial evaluative work, and the factors that could undermine 
these inferences are germane to other linkage-based inferences as well. 

Evaluating either the level of scores or score gains. Thissen discussed 
both: the evaluation of the level of ASVAB scores via a linkage to NAEP 
and the evaluation of gains on state tests in Kentucky and North Carolina, 
which, in both cases, were much steeper than those on NAEP. These 
inferences do not fit with Thissen’s general definition of aggregate 

statistical inference, the results that would have been obtained if a second 

observed performance on the second measure, and a question of interest 
(although not the one that motivated the linkage in at least two of 
Thissen’s three examples) is the consistency of observed performance on 
the first test with performance on the second estimated from the first by 
means of a link. Nonetheless, the methodological issues are for the most 
part the same.

The primary evaluative evidence adduced by Thissen is tests of 
invariance, and in every instance, the linkage failed at least one of them. 
These include failures of invariance across countries, across states within 

linkage—that is , “a mechanism to obtain from the results of one test, by 

test had been given” (p. 289). Rather, in these cases, one does have in hand 
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magnitude of the instability in linking functions and its causes. Thissen 
provided only limited information about the magnitude of the failures of 
invariance, but in at least several cases, the failure was large. Thissen or 
those he cited attributed these failures to differences in content, format, 
motivation, test-specific learning, learning with lagged effects on other 
tests, and test use. In a later section of these comments, I will argue that 
these various causes of instability of the linking function are not 
equivalent—specifically, that the implications of the instability of linkages 
over time for the validity of certain inferences about performance on the 
focal test depend on which factors induce it. 

Thissen used two other types of evaluative evidence as well, albeit with 
much less emphasis: correlations between the two linked tests and between 
each of the tests and nontest variables. The lesser prominence of this sort 
of evidence in Thissen’s chapter mirrors the field; few of the studies of 
aggregate linkages have included it. The linkage of the North Carolina 
end-of-grade (NC EOG) assessments with NAEP was unusual in that 
matched student-level scores were available. Thissen made use of this fact 
to provide both student-level correlations between the tests and a 
comparison of standardized mean differences between two racial/ethnic 
groups. The student-level correlation was .73, which is low relative to the 
reliabilities of the two tests, and the standardized mean difference was 
substantially larger for NC EOG than for NAEP.

2

 Thissen noted that   these 
findings indicated that the two tests did not measure precisely the same 
thing and that, therefore, neither equating nor calibration would be 
appropriate. Projection was used instead. The implications of these 
findings for aggregate linkages, however, go beyond the choice of linking 
method, particularly in the case of the equipercentile methods that 
predominate in aggregate linking. Depending on the specific inferences 
based on the link, low correlations such as these have important 
implications for validity, and this should be one focus of future work 
evaluating aggregate linkages. 

                                                     
2 Dorans (2004d) maintained that correlations of .87 or higher or reductions in 
uncertainties of 50% or higher are desirable for scores that are to be equated or 
linked. He also used differences between measures in standardized mean 
differences between groups to evaluate whether it is sensible to perform a 
concordance between two measures.

countries, across gender and race/ethnicity within states, and, especially, 
over time. The two obvious questions raised by these failures are the 
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18.2. Comments on Braun and Qian 

The chapter by Braun and Qian focuses only on one class of links: those 
between NAEP scale scores and state assessment results reported in terms 
of a PAC (the percentages above various state performance standards, 
particularly the “proficient” standard that is the crux of the No Child Left 
Behind accountability system). Unlike Thissen, Braun and Qian focused 
on the statistical nuts and bolts of these linkages. The chapter is more 
optimistic in tone than Thissen’s, offering several positive conclusions 
about both the feasibility and utility of these methods. 

Braun and Qian’s work is an effort to address the widespread interest in 
comparing PACs and changes in PACs across states, a concern that has 
been intensified by No Child Left Behind. They noted the pessimistic 
conclusions of the National Research Council Committee on Equivalency 
and linkage of Educational Tests (Feuer, Holland, Green, Bertenthal, & 
Hemphill, 1999) about the feasibility of linking the results of disparate 
state tests, and they specifically noted that differences in tests, standard-
setting methods, and the stringency of standards hinder the creation of 
useful links expressed in terms of PACs. Nonetheless, they draw a fairly 
strong inference from their linkage: “We then assert that most of the 
observed differences among states in the proportions of students meeting 
states’ proficiency standards are the result of differences in the stringency 
of their standards.” 

Although their method is an improvement over earlier ones and could 
have numerous uses, I am unconvinced that this strong inference is 
warranted. It would strain credulity to argue that between-state differences 
in the severity of standards do not contribute to Braun and Qian’s findings, 
and I am not making that argument here. Indeed, if we could ascertain the 
contribution of differences in the severity of standards, I would wager that 
its impact is large. My argument is that Braun and Qian’s method cannot 
fully answer this question. Moreover, exploring the uncertainties left by 
their findings helps clarify an inherent ambiguity in the meaning of 
“severe” or “lenient” standards. 

Braun and Qian’s work was an effort to improve methods that 
McLaughlin devised earlier for linking state assessments to NAEP 

noted that their method differs from McLaughlin’s in three respects: 

1. The use of reported NAEP distributions rather than the NAEP full 

2. The linking of weighted statewide distributions rather than the 

(McLaughlin, 2000; McLaughlin & Bandeira de Mello, 2002, 2003). They 

population estimates. 

mean of within-school links. 
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3. The use of NAEP methods for estimating sampling and 

Braun and Qian discussed a number of criteria for evaluating their 
linkages, including (a) estimated versus actual PACs, (b) comparisons of 
their estimates to McLaughlin’s, (c) state-level correlations between PACs 
and corresponding mapped NAEP scale scores, and (d) state-level 
correlations between mean NAEP scale scores and mapped NAEP scale 
scores. I will comment on criteria (b)–(d). 

The major effect of these differences in method was on estimated error 
variances. As one would expect, Braun and Qian’s estimates of variances, 
which take into account the clustering of the NAEP sample, are 
substantially larger than McLaughlin’s simple random sampling (SRS) 
estimates. Differences between the two methods in point estimates, on the 
other hand, were generally small and inconsistent. This implies that it is 
criterion (c) of the above differences between their method and 
McLaughlin’s that matters most. Given that Braun and Qian’s variance 
estimation reflects the specific design of the NAEP survey—the use of 
random draws from the posterior distribution to estimate proficiency as 
well as the clustered sample—they are on strong ground in arguing that, at 
least with respect to criterion (c) of their differences, their method is an 
improvement over McLaughlin’s. 

Braun and Qian’s interpretation of their linkage depends substantially 
on a very high negative correlation (approximately –.95) between state 
percents above proficient and their corresponding mapped NAEP scale 
scores in mathematics (Figure 17.3). This correlation indeed seems 
striking, even counterintuitive. Given that we already know that states use 
substantially different tests and that they impose substantially different 
standards, one might expect the correlation to be lower. Examined more 
closely, however, this correlation is less surprising than it first seems, and 
in my opinion, its interpretation is correspondingly murkier than Braun and 
Qian suggested.

To interpret the correlation found by Braun and Qian, it is first 
necessary to explore the impact of the equipercentile link that is at the core 

approach into logical steps that are quite different from the steps of the 
actual procedure that they employed. This alternative presentation is a 
simplification of their approach, but the analogy is close enough to 
highlight the importance of linking method. As a first step, consider the 
correlation one would obtain from a simple equipercentile linkage of the 
PACs on the two tests, assuming census testing. This correlation is, of 
course, perfect by construction. This is represented by the first row of 
Table 18.1. As a second step, still assuming census testing, we map the 

of their method and McLaughlin’s. To see this, it is helpful to break their 

measurement error rather than simple random sampling methods.
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NAEP PAC to a NAEP scale score, represented by the equation in the 
second row of Table 18.1. This appears to have a trivial effect on the 
correlation, which is exactly as one would expect. The distribution of 

the tails, where the mapping of p to z is substantially nonlinear. Finally, in 
the third row of Table 18.1, we add the estimation of both quantities from 
sample data. The impact of this on the correlation is unknown a priori, but 
it turned out to be very small. 

Table 18.1. Reduction of a perfect correlation between NAEP and state 
performance estimates in the Braun-Qian approach 

Logical step NAEP value (z)
State test 
value (y)

Reduction of 
correlation

Equipercentile linking z y
p p

y
p NA

Nonlinear transformation 
1 1

y
z F p

y
p Trivial

Estimation from sample 
1

WAM
ˆˆ 1

w
z F p ˆ

w
p ?

The fact that the levels of states’ standards does not enter into this 
process might seem counterintuitive, but a thought experiment helps 
clarify why they do not. To generate a minimal contrast, imagine a case in 
which two states are nothing but random samples from one state 
population, stratified by variables (such as major differences in 
curriculum) that substantially affect the alignment of the test with 
instruction. Further assume that that both states are administered the same 
test. However, the first state sets a low performance standard, whereas the 
second sets a higher one. This is an approximately minimal contrast for the 
severity of the standard. The equipercentile link in Braun and Qian’s 
method would make this difference in the level of standards largely 
irrelevant, unless one of the standards was very high or low, outside the 
range within which the mapping of p to z is almost linear. If you assume 
that the low state is on the regression line when the NAEP-mapped score is 
regressed on state PACs, the harder standard would move the data point to 
the left and up, keeping it close to the same line. These two states would 

NAEP scores is roughly normal, and the set of PACs includes no values in 
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show approximately the same fit to the regression line, regardless of the 
levels of the standards they set. 

One might object that this thought experiment compares two halves of a 
state using the identical test, whereas the actual data compare states that 
use different tests. Would not one expect differences among state tests to 
lower the between-state correlation, making the observed, nearly perfect 
correlation all the more remarkable? This objection raises a second 
primary source of the ambiguity in the interpretation of Braun and Qian’s 
nearly perfect correlation: the indeterminacy of the joint state-level 
distribution of NAEP and state test scores. Because states use different 
tests and different scales, this joint distribution is latent and can only be 
made manifest by means of a linkage. Thus, asking what effect the state-
level joint distribution of scores on NAEP and state tests would have on 
Braun and Qian’s results is, to some degree, putting the cart before the 
horse. The more important question is the reverse: What effects does the 
linking method used by Qian and Braun have on the observed joint 

generate the very high correlation that Braun and Qian found. 
I will give another example, but first I should comment on a less central 

but related point: Braun and Qian’s citation of Kingsbury et al. (2003). 
Within-state correlations between two tests, regardless of whether they are 
at the student or school level, do not help resolve the indeterminacy of the 
state-level joint distribution. Inferring between-state correlations from 
within-state relationships could be called the ecological fallacy in reverse. 
Any number of scenarios can be used to show that the between-state 
relationship can be fundamentally different than the within-state 
relationships, and these are not all hypothetical. For example, Koretz and 
Barron (1998) found that during the first years of Kentucky’s high-stakes 
KIRIS program, the state’s mean scores on the math component of the 
ACT® (the dominant college-admissions test in Kentucky) remained 
unchanged at the same time that the mean on the state test increased by 
about .7 standard deviation, a disparity that Koretz and Barron interpreted 
as evidence of score inflation on the state test. (Trends on the state test 
were nearly identical for the state as a whole and for the subset of students 
who took the ACT.) The effect of this sort of pattern, if nonuniform across 
states, would obviously be to reduce the state-level correlation between the 
ACT and state tests, if the state tests were on a common scale so that the 
correlation could be computed. Yet, Koretz and Barron found that the 
within-state student- and school-level correlations between the two tests 
remained largely stable over this period. Schools did not move up in 
lockstep on the state test; but correlations in the range that we found 
(around .7) do not necessitate that. As schools found ways to pump up 

distribution? This brings us back to the equipercentile link, which helps 
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their KIRIS scores, the general tendency for high-scoring students and 
schools to do better on both tests persisted. 

Braun and Qian noted that one could construct alternative explanations 
of the nearly perfect correlation that they found and then argued that one of 
them—a particular type of difference in the content of the state tests and 
NAEP—is implausible. Perhaps, although I am not convinced; there are a 
great many potential differences in alignment that could have a variety of 
effects. However, one other example is sufficient, I believe, to illustrate the 
ambiguity in the interpretation of their findings.

Start with a scenario in which all states administer the same test. 
Content differences between NAEP and the single state test are relatively 
minor and have no significant effects on scores that are differential across 
states. States use identical methods to set standards on the common state 
test but set them at various levels. Population differences among states 
have little effect on the distribution of scores beyond the first moment. 
There is no inflation of scores. Call this Year 1. 

In this case, one would obtain a graph similar to Figure 17.3. Because 
there are no differences among states beyond the first moment, the impact 
of substituting y for wp in Figure 17.3 would be trivial, and the result would 
be a very high negative correlation between the mapped NAEP score and 
P. Additionally, by construction, Braun and Qian’s interpretation would be 
correct: This correlation would be attributable to differences in severity of 
standards.

However, now add a single change in Year 2: Assume that there is 
severe inflation on the state test in several states, which is certainly not an 
unrealistic scenario given the sparse but consistent research on the topic. 
Call the states with inflation Group 1. Mean scores on the state test, P,
and wp go up in Group 1 states relative to the level warranted by mastery of 
the domain. The between-state correlation between NAEP and state-test 
means drops relative to what one would obtain in the absence of score 
inflation: The means on the state test for Group 1 move up relative to those 
of other states relative to what one would find in the absence of inflation, 
whereas their means on NAEP do not. (The within-state correlations need 
not be changed.)

However, the between-state correlation between P and y shown in 
Figure 17.3 would be preserved in Year 2. Group 1 states would move to 
the right on the abscissa because of the score inflation, but they would also 
move down on the ordinate, despite their lack of improvement on NAEP. 
The equipercentile link maintains their position in the joint distribution. 

In this case, what can we say about the “stringency” of the standards in 
Group 1 states? Braun and Qian’s procedure would lead to the conclusion 
that the standards in Group 1 states had become more lenient between 
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Year 1 and Year 2. In one very circumscribed sense, this is true: It has 
become easier for students to cross the cut-score. However, most people 
would use “more lenient standards” to mean “lowered expectations,” and 
in that sense, Braun and Qian’s inference would not be warranted. There 
has been no convening of new panels to redo the standards. There has been 
no post hoc adjustment by policy makers concerned that the previous panel 
set the standards too high. No one has decided to expect less of students. 
All that has happened is that some teachers have cut corners in preparing 
students for the test. Thus, in a substantive sense, the performance 
standards have not changed; what has change is the observed manifestation 
of the standard in the distribution, and this observed change represents a 
bias in scores on the state test, not an improvement in performance. 

This scenario does not imply that Braun and Qian’s interpretation of 
Figure 17.3 is wrong, but it does imply that their interpretation is 
insufficiently justified. The scenario illustrates that the high correlation is 
largely preordained by the equipercentile link and does not warrant the 
inference about differences in severity of standards that Braun and Qian 
offered and that users will want to make. Additional data would be needed 
to support that inference.

Perhaps more important for common inferences is the comparison 
Braun and Qian provided between states’ mean NAEP scale scores and 
their mapped NAEP scores. The correlation is nearly zero. Braun and Qian 
argued that this shows that between-state differences in PACs reflect 
differences in the severity of standards rather than differences in 
mathematics proficiency, as measured by NAEP. They could go further. If 
one simply correlates state means and PACs—either actual PACs or 
estimates obtained from sample data using Braun and Qian’s method—one 
finds small but nonzero correlations (about 0.4 in the two I calculated). 
Thus, the raw data suggest that a very modest impact of differences in 
mean mathematics proficiency on PACs might be plausible, but their 
linkage provides evidence suggesting that the raw data overstate this 
possibility. That is a valuable use of their method. 

In sum, I would argue that the inferences warranted by Braun and 
Qian’s work are as follows: 

In 2000, between-state differences in PACs in mathematics did not 
reflect differences in proficiency as measured by NAEP, despite a 
modest correlation in the raw data. 
The linkages do not clarify which other factors might contribute to 
differences in PACs. These might include differences in the severity of 
standards setting, content differences, and score inflation. 
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Inferences based on these links about years other than the one in which 
the link is calculated are not warranted because of likely failure of 
invariance of the linking functions over time. 

The first of these is important, but I suspect that most consumers of the 
linkages would like to go well beyond it, drawing inferences (such as those 
indicated by the second and third items) that the results do not justify. 

18.3. More on Failures of Invariance over Time 

I would like to extend Thissen’s chapter by addressing three questions 
about the failure of aggregate linkages over time: its severity, its causes, 
and the implications of these causes for validity. 

additional literature: research on the validity of gains obtained under high-
stakes conditions. Although there are only a handful of good studies of 
possible score inflation in high-stakes contexts, most contrast trends on 
high-stakes tests to trends on other measures designed to support similar 
inferences. In a few instances (Thissen, Chapter 16, provided one), a 
formal aggregate linkage was conducted and one could evaluate the 
stability of that link over time. In other studies, there was not a formal 
linkage at the outset, but one could evaluate, post hoc, the degree to which 
performance on a target measure (the high-stakes test) remained consistent 
with the aggregate patterns one would predict based on the relationship 
observed at the beginning of the study period. Most of these few studies 
showed a rapid divergence of means on the two tests, sometimes at a rate 
of more than one-fourth of a standard deviation per year. I will give only 
two examples. Both are from Kentucky’s KIRIS assessment program of 
the 1990s, which was also one of Thissen’s examples, but other results of 
other studies have been similar. 

During the first 2 years after the KIRIS assessment was first 
administered, fourth-grade reading scores went up a stunning three-fourths 
of a standard deviation. During that same 2-year period, however, the 
state’s mean score in fourth-grade reading on NAEP remained constant 
(Hambleton et al., 1995; see Table 18.2). This contrast was particularly 
important given that the frameworks for the state’s assessments in reading 
and mathematics were explicitly made similar to those of the NAEP. 

but less extreme story: Gains on KIRIS were again very large, although not 
as rapid as in reading, whereas NAEP means increased at about one-fourth 
the rate of KIRIS scores (Koretz & Barron, 1998). The implications of 

Information on failures of invariance over time can be found in an 

Results in fourth- and eighth-grade mathematics over 4 years told a similar 
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these results seem inescapable: Gains on KIRIS were substantially 
inflated; that is, they were considerably larger than improvements in the 
mastery of the domain about which inferences were drawn. 

Table 18.2. Changes in fourth-grade reading proficiency in Kentucky, KIRIS, and 
NAEP

Raw change Standardized change

KIRIS     18.8     0.76 
NAEP 1 0.03

Source: Hambleton et al., 1995. 

As noted earlier, 11th-grade mathematics scores on KIRIS also showed 
a rapid gain that appeared not to generalize. In this case, Koretz and 
Barron (1998) used the ACT as an audit test, restricting the comparison to 
students who took both tests and who attended schools in which at least 10 
students took both in order to control for changing selectivity bias. In this 
restricted sample, the mean score on KIRIS increased about 0.7 standard 
deviation in the space of only 3 years (roughly the increase shown in the 
entire state), whereas ACT scores remained flat (Figure 18.1).

(Source: Koretz & Barron, 1998) 

When the divergence in trends—the failure of invariance—is as 
egregious as in these cases, the implications for interpretation of gains on 
the high-stakes test seem clear. For example, the comparison of KIRIS 
with the ACT is harder to interpret than the comparison with NAEP 
because the frameworks and formats of the ACT and KIRIS were quite 
different, but Koretz and Barron (1998) argued that the overlap both in the 
frameworks and in the intended inferences about proficiency were, 

Figure 18.1. Trends in 11th-grade mathematics in Kentucky, KIRIS, and ACT. 
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nonetheless, large, more than sufficient to make this divergence evidence 
of inflated gains on KIRIS. 

Regardless of whether Koretz and Barron’s (1998) argument was 
correct in that particular instance, the more revealing case is one in which 
the failure of invariance is less marked and its interpretation 
correspondingly more ambiguous. When the failure of invariance is 
modest, what is the implication for the validity of inferences about change 
on the high-stakes test? What is the relevance of the causes of the 
divergence?

Koretz and Barron (1998) offered the Venn diagram in Figure 18.2 to 
illustrate the problem. The rectangle in the diagram represents total gains 
on the high-stakes test and the partially overlapping oval represents gains 
on the audit test—in this case, NAEP. The area of overlap represents gains 
that are unambiguous in that they generalize across tests. The upper left-
hand corner represents gains that arise from score inflation. The lower left-
hand area represents gains on the state test that fail to generalize but are 
meaningful regardless, because they represent improvements relevant to 
the intended inferences from the state test but not from NAEP. If this 
subset of gains is substantial, the simple divergence in trends would 
overstate score inflation. The final section, the portion of the oval on the 
right that is outside of the area of intersection, represents gains on NAEP 
that do not generalize to the state test because of improved mastery of 
content that does not appear on the state test and is not relevant to the 
inferences based on it. If this area is sufficiently large, the divergence in 
trends could understate the degree of inflation, but for purposes of 
discussion, assume that this area is negligible and that the lower left-hand 
area, nongeneralizable real gains on the state test, is appreciable. 

Figure 18.2. A schematic representation of partial generalizability of score gains. 
(Source: Koretz & Barron, 1998) 
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Thus, the task is to apportion the divergence of trends into two parts: 
score inflation and nongeneralizable but meaningful gains. Although this 
allocation is essential for validating aggregate gains obtained under high-
stakes conditions—arguably the single most important class of inferences 
based on large-scale assessments in the United States today—the field, as 
yet, lacks good methods for undertaking it. To make progress on this front, 
we need to consider the causes of failures of invariance over time. 

Failures of invariance of the linking functions between the tests over 
time could stem from all manner of factors. One set of possible causes 
comprises characteristics of the tests, for example, differences in content, 
format and item style (Koretz, 2002), difficulty, context (in particular, 
differences in the stakes attached to the two tests), scoring rubrics, 
administrative conditions, and timing of administration. A second set could 
be labeled behavioral responses to testing and includes several types of 
inappropriate test preparation that leads to score inflation: simple cheating, 
some forms of reallocation, and many forms of coaching (Koretz, 
McCaffrey, & Hamilton, 2001). These two sets overlap. For example, 
inappropriate test preparation can focus on specific details of content or 
scoring rubrics. Kolen (Chapter 3, Section 3.2) explicitly included these 
kinds of factor under the heading conditions of measurement in his 
discussion of equating requirements. In addition, characteristics of the 
population can also lead to a lack of invariance of linkages, as indicated by 
Thissen (Chapter 16). 

Early in the evolution of the No Child Left Behind legislation, it 
appeared as though NAEP might become the measure for auditing gains on 
the tests used in the new accountability system, and the National 
Assessment Governing Board convened an ad hoc panel to advise it on 
how NAEP should be used in this regard. The panel concluded that “any 
amount of growth on the National Assessment should be sufficient to 
‘confirm’ growth on state tests” (Ad Hoc Committee on Confirming Test 
Results, 2001, p. 9). One reason for the panel’s conclusion was their focus 
on the first class of possible causes of divergence, such as content, format, 
difficulty, standard setting, and student motivation, which they maintained 
“limit the convergence between NAEP and state test results” (p. 8). 
Divergence between state tests and NAEP should be seen as problematic 
only “when there is consistent, compelling contrary evidence from the 
National Assessment that cannot be explained simply by the differences 
between the two tests or other relevant factors” (p. 9). 

This argument is incorrect: Differences between a high-stakes test and 
an audit test do not necessarily excuse a divergence of trends. The 
implications of the failure of invariance depend on which specific 
differences between the tests contributed to the divergence. Before 
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considering the general explanation, recall the classic example from New 
Jersey test results offered by Shepard (1988) nearly 20 years ago: 

When students were asked to add decimals in vertical format, 
the state percent passing was 86 percent. In horizontal format 
for identically difficult decimals, the percent passing was 46 
percent. For subtraction of decimals in the two formats the 
passing rates were 78 percent and 30 percent, respectively. (p. 4) 

So now imagine a hypothetical high-stakes test that included only 
subtraction-of-decimals problems in the vertical format, paired with an 
audit test that included only problems in the horizontal format. Would one 
conclude that the disparity in performance on the two tests is unimportant 
because it can be explained by a difference between the tests, specifically 
the difference in formats? Clearly not. 

The key lies in examining the relationship between the aspects of the 
test that cause the divergence in performance and the inferences based on 
the test. Koretz et al. (2001) suggested a framework for doing so. They 
suggested conceiving of a test as comprising many performance elements. 
This is a deliberately vague term intended to subsume the diverse aspects 
of a test that contribute to variations in performance. These are both 
substantive (e.g., skills and knowledge relevant to the intended inferences) 
and nonsubstantive (e.g., many aspects of format and item style). The 
construction and scaling of a test assigns an “effective test weight” to each 
element, which is simply the partial derivative of scores with respect to 
performance on that element. The inferences based on scores reflect a 
similar but generally vague and tacit set of weights signaling the 
importance of each performance element to the inferences. The effective 
test weights of many performance elements important to the inferences are 
zero because of the necessity of omitting content to stay within time 
and budget constraints. The validity of gains hinges on the correspondence 
between changes in performance on elements with substantial test weights 
and changes in performance on the elements with substantial inference 

trivial test weights. 
In Shepard’s (1988) example, the performance element accounting for 

which the tests differed—has a near zero inference weight. One can 
hardly imagine a group of New Jersey parents saying, “Oh, that’s OK. 
When I concluded that our kids were doing better in subtraction, I only had 
in mind subtraction in the vertical format. In real life in New Jersey, we 
never encounter the horizontal format.” The substantive performance 
element (subtraction of decimals), however, does not have a trivial 

weights, even if the latter are unmeasured; that is, even if they have zero or 

the disparity in results—the particular aspect of item format in terms of 
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inference weight. The result is an invalid inference based on performance 
on the high-stakes test. 

Thus, failures of invariance between a high-stakes test and an audit test 
might undermine the validity of inferences based on the former even if we 
can fully explain the disparity by reference to characteristics of the test. 
One circumstance in which validity is undermined is when there is a 
failure of generalizability on a performance element with a substantial 
inference weight (subtraction) across levels of a performance element that 
is not relevant to the inference (horizontal vs. vertical format). Other cases 
might be less unambiguous. This example, however, makes it clear that 
one key to the puzzle is the importance of the performance elements 
involved in the failure of generalizability to the major inferences based on 
scores.

18.4. Conclusion 

As Thissen’s chapter and this discussion showed, aggregate linkages often 
fail to show invariance over time. This is hardly surprising, given the 
current incentives for educators and students to behave in ways that inflate 
test scores. This instability precludes many of the inferences about 
performance on unadministered tests that users would like to base on the 
linkages. The silver lining in this cloud is that failures of invariance also 
hold a key to evaluating the validity of gains on the tests administered for 
accountability.

For purposes of validation, it is not enough to identify the cases in 
which score inflation is egregious. To provide useful formative feedback 
and to evaluate cases in which the failure of invariance is moderate in size, 
we need to be able to identify the sources of the instability of the linking 
function and relate them to the specific inferences users base on scores. 
This will require close examination of the performance on the linked tests, 
more careful specification of users’ major inferences, and a better 
analytical toolkit than we currently have available for this purpose. 
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19.1. The Descent of Linking 

As we progressed from Part 2 to Part 6 in this volume, we moved from 
ideal linking conditions in which ample samples of motivated examinees 
are administered reliable tests that are built to the same set of 
specifications, to less than ideal conditions, in which content, examinees, 
testing conditions, or reliability might differ across the measures that we 
are attempting to link. A linkage conducted under ideal conditions is of 
such high quality that scores can be treated as interchangeable across 
linked forms. As we deviate from ideal linking conditions, the 
interpretation and usage of linked scores must shift to reflect the conditions 
under which the linkage is conducted. The assumption of score 
interchangeability might no longer be tenable. 

In equating, as indicated in Part 2, concerns are important but relatively 
mundane: definition of population, small sample sizes, and the adequacy 
of the anchor, to name a few. When tests are undergoing a systematic 
transition, as demonstrated in Part 3, linking becomes more challenging, 
but equatable scores can still be approximated if the transition is 
controlled. With concordances, the focus of Part 4, the tests differ but the 
scores produced by them might order individuals from a population in 
much the same way. Vertical scaling deviates from the ideal standards of 
equating in two important ways, as noted in Part 5. Not only are the tests 
different in content and difficulty, but the groups of examinees differ as 
well. Finally, the challenges associated with linking state assessments 
designed to assess proficiencies of individuals to a group-based national-
report-card assessment are manifold, as a reading of the chapters in Part 6 
reveals: Content differs, instructions differ, reliability differs, and 
difficulty differs.

If equating can be thought of as the apex of linking, each of these 
weaker forms of linking can be viewed as slipping down a slope from the 
apex. With tests in transition, it might be changes in content and statistical 
specifications or changes in mode of administration that lead to the 
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slippage. If the slope is shallow, then equating might remain within reach. 
Concordances are limited by the test differences in content and statistical 
specifications and enough slippage is expected to ensure loss of the 
interchangeability associated with equated scores. Vertical scales are 
unlikely to produce interchangeable scores because of differences in the 
tests and, more importantly, in the populations. Slippage due to content 
shifts is accompanied by slippage due to large differences in populations. 
Finally, the linking of a state assessment to a group measure like NAEP 
slips in several directions. Content differences, difficulty differences, 
reliability differences, examinee proficiency differences, and differences in 
motivation between the samples taking the state assessment and those 
taking the group assessment all conspire to make claims of interchange-
ability implausible. 

19.2. Extreme Linkages 

The appetite for applied linkages is not limited to the applications 
discussed in this volume. There is at least one area where linkages are 
developed under conditions that might be more challenging than those 
discussed here. For example, linking scores obtained from tests 
administered in different languages or test adaptation (Hambleton, 

issues like differential reliability and differential test difficulty are 
problematic when examinees who speak different languages are 
confronted by questions expressed in different languages and given under 
different conditions. It is reasonable to expect a test in one’s own language 
to be easier and more reliable than a test in another language. This fact 
makes it virtually impossible to compare groups who take tests in different 
languages via an anchor-test design. The use of bilingual examinees as an 
equivalent group is also problematic: This group is unlikely to be 
representative of either monolingual group. The use of a universal 
language is also problematic because it is hard to conceptualize thinking 
independently of language. Linking can slip down many slippery slopes 
from the apex of equating in this domain. Any attempts to link across 
languages should be done with great caution and low expectation. 

A quality linking cannot occur without adequate data. Methodological 
attempts to compensate for poor data collections, whether weakly linked 
test forms, small or unrepresentative samples, unmotivated examinees, or 
out-of-level testing, will continue to be made and continue to be 
problematic.

Merenda, & Spielberger, 2005) is a very difficult challenge. Assessing 
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19.3. IRT: Tool Versus Theory 

To some, linking refers to a process for putting item parameters on the 
same scale. In this volume, we have used linking to refer as a process for 
putting scores on the same scale. Item response theory (IRT) has been 
primarily treated in this volume as a tool in the service of score linking, not 
as a model for item performance. This has been intentional. As with other 
linking methods, IRT needs to be evaluated in terms of the quality of what 
it produces and the appropriateness of its assumptions. 

Linking results agree across different methods when they are based on 

with anchor test (NEAT) designs, in which ability differences on the 
anchor test are small. In such cases, IRT might be viewed as unnecessary. 
Indirect linking of scores via the item-level modeling of IRT is less 
parsimonious than directly linking scores. 

However, with incomplete, poorly connected item response data, IRT 
methods might be the only way to link scores. Compared to the observed 
score linking procedures, model-based IRT linking procedures possess the 
potential for addressing complex linking problems. Here the strong 
assumptions of IRT enable it to replace data with assumptions to provide 
an answer that might be a solution to an otherwise intractable problem.

In the context of score linking, it is helpful to think of using an item 
response tool rather than employing an item response theory that explains 
examinee performance on items. 

19.4. Future Trends 

Each year, millions of students take our tests, trusting that the score they 
receive will be an accurate reflection of their capabilities. As such, we are 
alarmed to note what appears to be a trend toward increased incidences of 
scoring errors that negatively impact students’ lives. Perhaps this 
perceived “trend” is simply an illusion, triggered by an ever-vigilant media 

industry. It is also feasible, however, that the trend reflects the reality of an 
increasingly market-driven industry. As government-mandated statewide 
testing forges ahead, the competition for state contracts leads marketers to 
make promises that the psychometricians cannot keep. In our haste to get 
products out the door, quality control suffers and costly mistakes happen.

strong data collections, such as equivalent groups and nonequivalent groups 

poised to pounce on any missteps by what is perceived to be an indifferent 
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Another alarming trend is the increased demand for linkages between 
tests that were not designed with the intention of being linked. It is 
difficult to pinpoint when exactly Pandora’s box was opened, but it is now 
wide open. Score users often mandate linkages that are of questionable 
validity. Just because we have the capability of conducting a linkage does 
not mean that we should actually do it. Just because we have a linkage 
between two sets of scores does not make it meaningful. As Feuer (2005) 
noted in E Pluribus Unum: Linking Tests and Democratic Education, test 
score linking will require psychometricians to address the question of how
much score meaning is compromised under various types of linking, rather 
than merely pointing out that it is compromised. The chapters in this 
volume should help clarify conditions under which different types of 
linkage are appropriate. In addition, tools have been presented that might 
be used to quantify the degree of compromise. 

19.5. Closing Comments 

In the first part of this volume, Kolen noted that the same data collection 
designs and methods can be applied to produce different types of linkage. 
Holland presented a framework for linking that helps us make distinctions 
among the different types of linking, which are described in Parts 2–6. As 
practitioners, we are gradually becoming aware of the importance of 
making finer distinctions among linkage types and linking scenarios that 
on the surface appear to be essentially the same.

Many people who take tests, use test scores, or write about trends in test 
scores lack an awareness and an appreciation for some of the distinctions 
made in this volume. It is important for us as practitioners to understand 
these distinctions and to convey them in simple language to the 
nonpractitioners. Testing appears to be receiving more attention from the 
press these days (positive and negative), which results in a greater need for 
us to explain our obscure craft to the growing number of people who (often 
unknowingly) rely on it.

In the last 100 years of testing, we have seen substantial changes in 
linking practices. Vast improvements in technology and the ready 
availability of sophisticated software have removed many technical 
limitations that hindered psychometricians 50 years ago. It is hard to 
believe in today’s computer-centric society that equatings were once 
conducted by hand. We interact with a worldwide testing community that 
exchanges ideas through international conferences, journals, and the 
Internet. Our field has benefited from the merging of expertise across 
diverse fields such as statistics, biostatistics, mathematics, cognitive 
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psychology, educational psychology, computer science, and human-
computer interactions. The testing industry is expanding and evolving at a 
rapid rate. 

As such, it is an exciting time to be a psychometrician and a participant 
in the growing discussion of the linking paradigm. The continuity of scores 
and scales is the crux of testing. If a linking fails, some validity goes out 
the window. Each part of this volume presented multiple perspectives of 
experienced practitioners on different linkage scenarios and linkage types. 
Although the chapters in this book reflected state-of-the-art linking 

of linking is still young. There is much growth yet to be exhibited in the 
field.

to users is a critical component to ensuring the validity of a linkage.  
Parsimony of explanation is essential to meeting our goal of helping policy 
makers appreciate the different meanings that can be attached to different 
linkages and the necessary requirements to achieve solid linkages. 
Correctness of explanation is also critical. We should present linking 
issues in as simple terms as possible, but no simpler. 

attitudes and practices, Holland  in Chapter 2 suggested that, in reality, the art 

In closing, we emphasize that the communication of linking issues 
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180, 290, 301, 341 
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143, 244 
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102, 104, 157 
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157, 162, 200, 213, 227 
CLEP [College Level Examination 

Program], 149, 150 
Colorado Student Assessment Program 
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design, see Anchor test / Common 
items design
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Comprehensive Test of Basic Skills 
[CTBS], 299

Computer adaptive / Computer-based test 
[CAT/CBT], 35, 43, 53, 78, 107, 110, 
135-161, 168-171, 250, 276 

Concordance, ix, 1, 5, 13, 19, 20, 24, 27, 
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53-55, 115, 137, 162, 182, 351
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design
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ivalent / Random groups design 
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Design effect [DEFF], 327 
Difference that matters [DTM], 63, 93, 94, 
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Differential Aptitude Test, 151 
Differential item functioning [DIF], 63, 93 
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259, 270, 271, 274 
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Interchangeable / Exchangeable scores, 1, 
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of Educational Achievement [IEA], 
288

Iowa Tests of Basic Skills [ITBS], 233, 
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341
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NEAT [Nonequivalent groups with anchor 
test] design, see Anchor test / Common 
items design 

No Child Left Behind Act [NCLB], 200, 
231, 233, 271-283, 287, 295, 296, 313, 
337, 342, 351 

Non-native English speakers, 20, 33, 68-70, 
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Out-of-level testing, 253, 356 
Parallel forms, 21, 76-79, 81-84, 94, 97-98, 

111, 137-141, 145, 154, 166, 185, 199, 
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Parallel-linear linking, 190, 191, 203 
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Performance / State standard(s), 2, 141, 

274, 278-281, 285, 296, 306, 311-317, 
321-337, 340-347 
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Plausible values, 291-295, 326, 327, 332 
Pool equating, 64, 65 
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Characteristics, 12-18, 25-28, 33, 45-
49, 61, 67, 70-72, 75, 76, 79-84, 
87, 97, 99-101, 155, 192-197, 204, 
207, 227, 228, 241, 248, 249,  283, 
306-308, 311, 334, 351 

Synthetic, 29, 51 
Reference, 12-14 
Target, 26-29, 35, 36, 40, 55, 69, 70,

79, 81, 84, 91, 95, 101, 115, 162 
Population invariance / sensitivity 

Assumption of, 9, 10, 16, 54, 70, 189, 
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Evaluation of, see also DTM, REMSD, 
RMSD, and SEA, 122, 127-134,
158, 165-167, 172, 177, 181-184, 
188-191, 203, 207, 221, 299 

Failure of, 30, 90-96, 188, 189, 195, 
197, 303, 309, 338, 340, 341, 348-
353

Requirement of equating, ix, 23, 30, 
60, 61, 77, 87, 90, 92, 107, 114, 
117, 126, 158, 162, 163, 189, 197 

Post-stratification equating methods, 16, 27, 
29, 51, 54, 102-104 

Practice effects, 150, 151, 155, 203 
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Prediction, 3, 5-11, 20, 24, 25, 31, 89, 123,

177-191, 202, 209-211, 219, 221, 226, 
229, 289, 290 

Projection, 7-10, 15, 16, 228, 229, 290-295, 
301-303, 307, 341 

PSAT/NMSQT, 9, 78 
Random groups, see Data collection 

designs
Reduction in uncertainty [RiU], 123, 124, 

129-134, 164, 167, 184-187, 193-197, 
221

Reliability
of Anchor tests, 62-68, 72, 84, 98 
in Calibration, 18, 19, 115, 136, 168, 

301
in Concordance, 19, 24, 115, 136, 168, 

185, 197, 221-224, 301 
in Equating, 20, 23, 24, 60-62, 66, 72-

76, 80, 90, 94, 95, 98, 114-117, 
121-125, 129, 132-136, 140, 162-
168, 180-186, 221, 289, 355, 356 

in Prediction, 180, 181, 185, 188 
in Projection, 301 
in Vertical scaling, 17, 244, 250 

Requirements of equating 
Equal reliability, see Reliability in 
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Equity, see Equity
Inverse equating functions, see Sym-

metry
Same / Equal construct, see Construct 
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Same inferences, 115, 162 
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conditions, 115, 162 
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(Sub) population invariance, see

Population invariance 
Symmetry, see Symmetry 

Rescaling, 161, 162, 172-175 
Riverside Publishing, 275 
Root expected mean square difference 

[REMSD], 127-131, 166, 190, 191, 
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Root mean square difference [RMSD], 92-
94, 127-131, 166, 189-191, 195, 196, 
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Sample size, 42, 67-69, 72, 96-98, 119-122, 
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SAT I, see SAT Reasoning Tests 
SAT II, see SAT Subject Tests 
SAT Reasoning Test(s) [SAT], ix, 9, 14-16, 

19-21, 35, 45, 53, 70, 73, 74, 78, 107-
134, 152-157, 162-169, 177, 192, 200, 
202, 206, 209, 210, 213, 214, 217, 
218, 222-229 
Critical Reading, 109, 110, 112-114, 

116, 118, 119, 123-126, 129-133, 
162-167

Mathematics, 9, 14, 16, 22, 34, 109-
113, 116-121, 124, 130, 152, 156, 
157, 162-166, 226 

Verbal, 9, 14, 16, 22, 109-126, 129-
133, 152, 156, 157, 162-167, 226 

Verbal + Math, 200, 201, 206-211, 
222-225

Writing 110, 112-114, 118, 119, 163, 
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SAT Recentering, 14, 116, 173, 224 
SAT Subject Tests, 16, 74, 121, 156 
Scale aligning 5, 6, 11, 12, 25-29, 31, 34, 

179, 180, 210, 289, 290 
Scale drift, 105, 250 
Scale shrinkage, 238, 277, 278 
Scaling function, 13, 128 
Scaling on a hypothetical population [SHP], 

13-17
Scaling test, 241, 242, 249 
Scaling to the anchor [STA], 13-17 
Score equity assessment [SEA], 93, 95, 

120, 122, 126-133 
Score gains, 298, 309, 340, 350 
Score inflation, 345-348, 350-353 
Signal-to-noise ratio [SNR], 186, 187, 221 
Single group design, 26, 27, 43, 45, 78, 91, 

92, 117, 121, 170, 184, 203, 241, 242 
Single group counterbalanced design, 26, 

41-45, 51, 91, 118-121, 124, 137, 141, 
142, 145-156, 163, 168, 170, 242, 243 

Smoothing
Cubic spline, 50, 51 
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204
Implementation, 240, 246, 247 
Kernel, 28, 92, 102, 104 
Log-linear, 50, 51, 97, 98, 103, 157 
Postsmoothing, 50-53, 101 
Presmoothing, 28, 50-53, 62, 96-98, 

101-103, 105 
and Sample size, 65, 67, 120, 206 

Stability of linking, 90, 96-98, 101-105, 
205-207, 249, 285, 300, 303, 305, 308-
311, 328, 335, 339, 341, 348, 353, see
also Standard error(s)

Standard error(s) 
Bootstrap, 204, 302 
of the Difference [SEED], 102-104 
of Equating [SEE], 63, 97, 101, 103, 

120, 121 
of Linking [SEL], 120-122, 204-206, 

225
of Measurement [SEM], 110, 140, 

184-187, 243-246, 249 
of Measurement, conditional [CSEM], 

119, 122, 125, 126, 136, 140, 
163, 165, 168, 245 

in NAEP, 257, 292-294, 329, 332, 337 
of Population invariance indices, 94, 

103
of Prediction estimate[SEP], 184-187, 

195, 197 
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Standard scores, 11, 21, 243, 295 
Standards for Educational and Psycholo-

gical testing, 173, 174, 219 
Stanford Achievement Test, 242, 251, 299 
State equivalents to the NAEP achievement 

levels, 295-304, 313-338 
Statistical moderation, 14, 17, 290, 304 
Student Testing Flexibility Act, 200 
Subpopulation / Subgroup invariance, see

Population invariance 
Symmetry / Asymmetry, 7-8, 11, 23, 24, 

27, 49, 60, 61, 90, 97, 114, 162, 179-
181, 210, 221, 226, 289 

Synthetic linking function, 66, 96-99
TerraNova K-12 assessment system, 242 
Test adaptation, 356 
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Content, 1-3, 20, 24, 32-50, 54, 55, 59-
62, 66, 68, 74-78, 81, 84, 85, 89, 
100, 101, 107-116, 123, 132-134, 
137, 139, 144, 151, 155, 156, 
162-164, 169, 171, 182, 202, 214, 
217, 235-245, 250, 253, 255, 260, 
261, 264, 276-283, 299, 309, 310, 
314, 315, 333-337, 341, 346, 347, 
350-356

Difficulty, 1, 12, 17-25, 39, 59-77, 85, 
91, 98, 100, 101, 110, 111, 115, 
123, 134-138, 143, 144, 165, 168, 
180, 181, 240, 241, 253, 255, 
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Reliability, see Reliability
Specifications / Blueprints, 1, 19, 22, 

24, 32-34, 60-62, 70, 71, 74, 82, 
85, 89, 95, 97, 109-116, 122, 123, 
132, 134, 139, 163, 164, 168-174, 
179-182, 197-201, 236-244, 249, 
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Thurstone scaling, 243, 254, 255 
TIMSS [Third International Mathematics 
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Language], 78, 152, 153 

Trial State Assessment [TSA], 296-302 
Tucker equating, 22, 51, 75, 80-85 
Unified analyses, 231, 256-261, 271, 274 
Unweighted local mapping [ULM], 316, 
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