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Preface

This proceedings volume grew out of the Workshop Analytical Methods in
Statistics (AMISTAT 2015) which was held in Prague during November 10–13,
2015. The workshop was organized by the Fulbright Commission in Prague, which
hosted Prof. Abram Kagan as the Fulbright Distinguished Chair at the Charles
University, together with the American Center in Prague which made their lecture
halls available for the workshop; our special thanks belong to both, the American
Center and the Fulbright Commission.

The workshop brought together many interesting points and discussions on sta-
tistical decisions, arising from new problems everyday. We appreciate that young
people could meet famous experts in the area and listen to their talks. The contri-
butions dealing with current points of interest and with exciting open problems were
presented by scholars from Belgium, France, Germany, India, Israel, Norway,
Russia, Serbia, Slovakia, Sweden, UK, USA, and the Czech Republic. A part of these
contributions, by those authors who considered their analyses as temporarily finished,
is contained in the present book. The joint motto of the talks and all discussions was
the “analytical statistics”. It emphasizes that the statistics provides mathematicians
with challenging and exciting problems, because it obtains its problems from the
real-life activities. For such problems one can rarely determine any axioms, and new
problems appear every day. The statisticians utilize knowledge from all parts of
mathematics, from those very abstract to numerical computation and interpretation
of the results. Moreover, every statistician is expected to find a solution to a real
problem and would not afford to reply that the optimal solution does not exist. He/she
should look at least for a solution optimal under acceptable constraints, and to find it is
again a challenge. Even thinking mathematically he/she has a feedback of practicality
of the conclusions in mind.
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We deeply appreciate the help and effort of Dr. Veronika Rosteck, Springer
Editor of Statistics, for her encouragement, help and for possibility of publication of
this book. We thank all the authors of the chapters and all referees for their work
and consideration.

Prague, Czech Republic Jaromír Antoch
September 2016 Jana Jurečková

Matúš Maciak
Michal Pešta
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AWeighted Bootstrap Procedure
for Divergence Minimization Problems

Michel Broniatowski

Abstract Sanov-type results hold for some weighted versions of empirical mea-
sures, and the rates for those Large Deviation principles can be identified as diver-
gences between measures, which in turn characterize the form of the weights. This
correspondence is considered within the range of the Cressie–Read family of statis-
tical divergences, which covers most of the usual statistical criterions. We propose
a weighted bootstrap procedure in order to estimate these rates. To any such rate
we produce an explicit procedure which defines the weights, therefore replacing
a variational problem in the space of measures by a simple Monte Carlo procedure.

Keywords Divergence ·Optimization ·Bootstrap ·MonteCarlo ·Large deviation ·
Weighted empirical measure · Conditional Sanov theorem

1 The Scope of This Paper

Recall that a sequence of random elements Xn with values in a measurable space
(T ,T ) satisfies a LargeDeviation Principlewith rateΦ whenever, for all measurable
set Ω ⊂ T it holds

Φ (int (Ω)) ≤ − lim inf
n→∞

1

n
logP (Xn ∈ Ω)

≤ − lim sup
n→∞

1

n
logP (Xn ∈ Ω) ≤ Φ (cl (Ω))

where int (Ω) (resp. cl (Ω)) denotes the interior (resp. the closure) of Ω in T and
Φ(Ω) := inf {Φ(t); t ∈ Ω} . The σ -fieldT is the Borel one defined by a given basis
on T . For subsets Ω in T such that

M. Broniatowski (B)
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2 M. Broniatowski

Φ (int (Ω)) = Φ (cl (Ω)) (1)

it follows by inclusion that

− lim
n→∞

1

n
logP (Xn ∈ Ω) = Φ (int (Ω)) (2)

= Φ (cl (Ω)) = inf
t∈Ω

Φ(t) = Φ(Ω).

Assume that we are given such a family of random elements X1,X2, . . . together
with a set Ω ⊂ T which satisfies (1). Suppose that we are interested in estimating
Φ (Ω). Then, whenever we are able to simulate a family of replicates Xn,1, . . . ,Xn,K

such that P (Xn ∈ Ω) can be approximated by the frequency of those Xn,i’s in Ω , say

fn,K (Ω) := 1

K
card

(
i : Xn,i ∈ Ω

)
(3)

a natural estimator of Φ (Ω) writes

Φn,K (Ω) := −1

n
log fn,K (Ω) . (4)

The rationale for this proposal is that visits of Ω by the random elements Xn,j’s tend
to concentrate on the most favorable domain in Ω , namely where Φ assumes its
minimal value in Ω , since (exp−nΦ(x)) dx is a good first-order approximation for
the probability that Xn belongs to a neighborhood of x with volume dx.We have sub-
stituted the approximation of the variational problem Φ (Ω) := inf (Φ (ω) , ω ∈ Ω)

by amuch simpler one, namely aMonte Carlo one, defined by (3). Notice further that
we do not need to identify the set of points ω in Ω which minimize Φ; indeed there
may be no such points even. Condition (1) provides an easy way to get statement
(2), which yields to our estimates (4). Sometimes we may obtain (2) bypassing (1).

This program can be realized whenever we can identify the sequence of random
elements Xi’s for which, given the criterion Φ and the set Ω , the limit statement
(2) holds. The present paper explores this approach in the case when the Xi’s are
empirical measures of some kind, and Φ(Ω) writes φ (Ω,P) which is the infimum
of a divergence between some reference probability measure P and a class of prob-
ability measures Ω. This technique may lead to inferential procedures: for example
assuming that Ω = {Qθ ∈ M1, θ ∈ Θ} is a statistical model such that d(Qθ ,P) ≥ ε

for some given distance d and some ε > 0 and all θ in Θ , then minimizing a proxy
of φ (Ωθ,P) as obtained in this paper over θ provides minimum distance estimators
of P within Ω.

The present paper presents estimators of φ (Ω,P), focusing on their construction.
We denote (P) the problem of finding an estimator for

φ (Ω,P) (5)
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where Ω is defined according to the context. But for simple convergence result of
the proposed estimators, we do not provide finite sample or asymptotic properties of
the estimators, which is postponed to future work; as seen later the method which
we propose holds for rather general sets Ω; henceforth specific limit results of the
estimator depend on the peculiar nature of the problem. Also the definition of the
estimator through (4) may be changed using a better estimator of P (Xn ∈ Ω) than
fn,K (Ω), the naive one, whichmay have poor statistical performances andwhichmay
require a long runtime for calculation, since (Xn ∈ Ω) is a rare event; Importance
Sampling procedures should be used. This is also out of the scope of this paper.

1.1 Existing Solutions for Similar Problems

Minimizing a divergence between an empirical measure pertaining to a data set and
a class of distributions is somehow synonymous as estimating the parent distribution
of the data (although other methods exist); for example the maximum likelihood
method amounts to minimize the likelihood (or modified Kullback–Leibler) diver-
gence between Pn and a parametrized model. Inspired by the celebrated Empirical
Likelihood approach, empirical divergence methods aim at finding solutions of the
minimization of the divergence between Pn and all distributions in Ω which are sup-
ported by the data points; see [1]. Those may exist or not, yielding (or not yielding)
to the estimation of the minimum value of the divergence. Besides the fact that Ω

may consists in distributions which cannot have the data as supporting points, the
resulting equations for the solution of the problem may be intractable. Also there
may be an infinity of solutions for this problem. The case when Ω is defined by
conditions on moments of some L−statistics is illuminating in this respect; indeed
the direct approach fails, and leads to a new problem, defining divergences between
quantile measures (see [2]). Instead, looking first for some estimator of the infimum
value of the divergence leads to awell posed problem of finding the set ofminimizers,
an algorithmic problem for which a solution can be obtained along the lines of the
present paper. Once obtained the minimal value of the divergence, minimizers may
sometimes be obtained by dichotomous search; this depends on the context.

2 Divergences

Let (X ,B) be a measurable space and P be a given reference probability measure
(p.m.) on (X ,B). The set X is assumed to be a Polish space. Denote M the real
vector space of all signed finite measures on (X ,B) andM (P) the vector subspace
of all signed finite measures absolutely continuous (a.c) with respect to (w.r.t.) P.
Denote alsoM1 the set of all p.m.’s on (X ,B) and M1(P) the subset of all p.m.’s
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a.c w.r.t.P. Let ϕ be a proper1 closed2 convex function from ] − ∞,+∞[ to [0,+∞]
with ϕ(1) = 0 and such that its domain domϕ := {x ∈ R such that ϕ(x) < ∞} is an
interval with endpoints aϕ < 1 < bϕ (which may be finite or infinite).

For any signed finite measure Q in M (P), a classical definition for the φ-
divergence between Q and P is defined by

φ(Q,P) :=
∫

X
ϕ

(
dQ

dP
(x)

)
dP(x). (6)

When Q is not a.c. w.r.t. P, we set φ(Q,P) = +∞; see [3]. The first definition of φ-
divergences between p.m.’s were introduced by I. Csiszar in [4] as “f -divergences”.
Csiszar’s definition of φ-divergences between p.m.’s requires a common dominating
σ -finite measure λ for Q and P. Note that the two definitions of φ−divergences
coincide on the set of all p.m.’s a.c w.r.t. P and dominated by λ. The φ-divergences
between any signed finite measure Q and a p.m. P were introduced by [5], which
proposes the following definition

φ(Q,P) :=
∫

ϕ(q) dP + bϕ∗σ+
Q (X ) − aϕ∗σ−

Q (X ), (7)

where

aϕ∗ = lim
y→−∞

ϕ(y)

y
, bϕ∗ = lim

y→+∞
ϕ(y)

y
. (8)

and
Q = qP + σQ, σQ = σ+

Q − σ−
Q

is the Lebesgue decomposition of Q, and the Jordan decomposition of the singular
part σQ, respectively. Definitions (6) and (7) coincide when Q is a.c. w.r.t. P or when
aϕ = −∞ or bϕ = +∞. Since we will consider optimization of Q 	→ φ(Q,P) on
sets of signed finite measures a.c. w.r.t. P, it is more adequate for our sake to use the
definition (7).

For all p.m.P, themappingsQ ∈ M 	→ φ(Q,P) are convex and take nonnegative
values. When Q = P then φ(Q,P) = 0. Furthermore, if the function x 	→ ϕ(x) is
strictly convex on a neighborhood of x = 1, then the following basic property holds

φ(Q,P) = 0 if and only if Q = P. (9)

All these properties are presented in [4, 6–8] Chap.1, for φ-divergences defined on
the set of all p.m.’s M1. When the φ-divergences are defined on M , then the same
properties hold making use of definition (7); see also [9].

1We say a function is proper if its domain is non void.
2The closedness of ϕ means that if aϕ or bϕ are finite numbers then ϕ(x) tends to ϕ(aϕ) or ϕ(bϕ)

when x ↓ aϕ or x ↑ bϕ , respectively.
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When defined on M1, the Kullback–Leibler (KL), modified Kullback–Leibler
(KLm), χ2, modified χ2 (χ2

m), Hellinger (H), and L1 divergences are respectively
associated to the convex functions ϕ(x) = x log x − x + 1, ϕ(x) = − log x + x − 1,
ϕ(x) = 1

2 (x − 1)2,ϕ(x) = 1
2 (x − 1)2/x,ϕ(x) = 2(

√
x − 1)2 andϕ(x) = |x − 1|. All

those divergences except the L1 one, belong to the class of power divergences intro-
duced in [10] (see also [8] Chap.2). They are defined through the class of convex
functions

x ∈]0,+∞[	→ ϕγ (x) := xγ − γ x + γ − 1

γ (γ − 1)
(10)

if γ ∈ R \ {0, 1}, ϕ0(x) := − log x + x − 1 and ϕ1(x) := x log x − x + 1. (For all
γ ∈ R, we define ϕγ (0) := limx↓0 ϕγ (x)). So, the KL−divergence is associated to
ϕ1, the KLm to ϕ0, the χ2 to ϕ2, the χ2

m to ϕ−1 and the Hellinger distance to ϕ1/2.
Those divergence functions defined in (10) are the Cressie–Read divergence func-

tions; see [10].
The Kullback–Leibler divergence (KL-divergence) is sometimes called Boltz-

mann Shannon relative entropy. It appears in the domain of large deviations and it is
frequently used for reconstruction of laws, and in particular in the classical moment
problem (see e.g. [5] and the references therein). The modified Kullback–Leibler
divergence (KLm-divergence) is sometimes called Burg relative entropy. It is fre-
quently used in Statistics and it leads to efficient methods in statistical estimation
and tests problems; in fact, the celebrate “maximum likelihood” method can be seen
as an optimization problem of the KLm-divergence between the discrete or contin-
uous parametric model and the empirical measure associated to the data; see [11,
12]. On the other hand, the recent “empirical likelihood” method can also be seen
as an optimization problem of the KLm-divergence between some set of measures
satisfying some linear constraints and the empirical measure associated to the data;
see [13] and the references therein, [1, 14]. The Hellinger divergence is also used
in Statistics, it leads to robust statistical methods in parametric and semi-parametric
models; see [1, 15–17].

The power divergences functions Q ∈ M1 	→ φγ (Q,P) can be defined on the
whole vector space of signed finite measures M via the extension of the definition
of the convex functions ϕγ : For all γ ∈ R such that the function x 	→ ϕγ (x) is not
defined on ] − ∞, 0[ or defined but not convex on whole R, we extend its definition
as follows:

x ∈] − ∞,+∞[	→
{

ϕγ (x) if x ∈ [0,+∞[,
+∞ if x ∈] − ∞, 0[. (11)

Note that for the χ2-divergence for instance, ϕ2(x) := 1
2 (x − 1)2 is defined and con-

vex on whole R. This extension of the domain of the divergence functions ϕγ to
] − ∞,+∞[ implies that (8) is well defined, with aϕ∗ = +∞.

The conjugate (or Fenchel–Legendre transform) of ϕ will be denoted ϕ∗,

t ∈ R 	→ ϕ∗(t) := sup
x∈R

{tx − ϕ(x)} ,
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and the endpoints of domϕ∗ (the domain of ϕ∗) are aϕ∗ and bϕ∗ with aϕ∗ ≤ bϕ∗ . Note
that ϕ∗ is a proper closed convex function. In particular, aϕ∗ < 0 < bϕ∗ , ϕ∗(0) = 0.
By the closedness of ϕ, the conjugate ϕ∗∗ of ϕ∗ coincides with ϕ, i.e.,

ϕ∗∗(t) := sup
x∈R

{
tx − ϕ∗(x)

} = ϕ(t), for all t ∈ R.

For proper convex functions defined on R (endowed with the usual topology), the
lower semi-continuity3 and the closedness properties are equivalent.

We say that ϕ (resp. ϕ∗) is differentiable if it is differentiable on ]aϕ, bϕ[ (resp.
]aϕ∗ , bϕ∗ [), the interior of its domain. We say also that ϕ (resp. ϕ∗) is strictly convex
if it is strictly convex on ]aϕ, bϕ[ (resp. ]aϕ∗ , bϕ∗ [).

The strict convexity of ϕ is equivalent to the condition that its conjugate ϕ∗ is
essentially smooth, i.e., differentiable with

limt↓aϕ∗ ϕ∗′(t) = −∞ if aϕ∗ > −∞,

limt↑bϕ∗ ϕ∗′(t) = +∞ if bϕ∗ < +∞.

Conversely, ϕ is essentially smooth if and only if ϕ∗ is strictly convex; see e.g. [18]
Sect. 26 for the proofs of these properties.

If ϕ is differentiable, we denote ϕ′ the derivative function of ϕ, and we define
ϕ′(aϕ) and ϕ′(bϕ) to be the limits (which may be finite or infinite) limx↓aϕ

ϕ′(x) and
limx↑bϕ

ϕ′(x), respectively. We denote Imϕ′ the set of all values of the function ϕ′,
i.e., Imϕ′ := {

ϕ′(x) such that x ∈ [aϕ, bϕ]}. If additionally the function ϕ is strictly
convex, then ϕ′ is increasing on [aϕ, bϕ]. Hence, it is a one-to-one function from
[aϕ, bϕ] onto Imϕ′; we denote in this case ϕ′−1 the inverse function of ϕ′ which is
defined from Imϕ′ onto [aϕ, bϕ].

Note that if ϕ is differentiable, then for all x ∈]aϕ, bϕ[,

ϕ∗ (
ϕ′(x)

) = xϕ′(x) − ϕ (x) . (12)

If additionally ϕ is strictly convex, then for all t ∈ Imϕ′ we have

ϕ∗(t) = tϕ′−1
(t) − ϕ

(
ϕ′−1

(t)
)

and ϕ∗′
(t) = ϕ′−1

(t).

On the other hand, if ϕ is essentially smooth, then the interior of the domain of ϕ∗
coincides with that of Imϕ′, i.e.,

(
aϕ∗ , bϕ∗

) = (
ϕ′(aϕ), ϕ′(bϕ)

)
.

The domain of the φ-divergence will be denoted domφ, i.e.,

domφ := {Q ∈ M such that φ(Q,P) < ∞} .

3We say a function ϕ is lower semi-continuous if the level sets {x such that ϕ(x) ≤ α}, α ∈ R are
closed.
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In the present paper we will deal with essentially smooth divergence functions,
so that all the above properties are fulfilled.

3 Large Deviations for the Bootstrapped Empirical
Measure

The present section aims at providing a solution to Problem (P) whenΩ is a subset of
M1, the class of all probability measures on (X ,B). Such a goal will be achieved in
two cases of interest, namely the Kullback–Leibler and the Likelihood divergence.

We first push forward some definition.
Let Y ,Y1,Y2, . . . denote a sequence of nonnegative independent real- valued ran-

dom variables with expectation 1. We assume that Y satisfies the so-called Cramer
condition, namely that the set

N := {
t ∈ R such that Λ(t) := logEetY < ∞}

contains a neighborhood of 0 with non-void interior. By its very definition, N
is an interval, say N := (a, b) which we assume to be open. We also assume
that the strictly convex function Λ is a steep function, namely that limt→a Λ(t) =
limt→b Λ(t) = +∞. It will also be assumed that t → Λ′(t) parametrizes the convex
hull of the support of the distribution of Y . We refer to [19] for those notions and
conditions.

Consider now the weights Wn
i , 1 ≤ i ≤ n defined through

Wn
i := Yi

(1/n)
∑n

i=1 Yi

which define a vector of exchangeable variables
(
Wn

1 , . . . ,Wn
n

)
for all n ≥ 1.

Define further the Legendre transform of Λ, say Λ∗ which is a strictly convex
function defined on ImΛ′ by

Λ∗(x) := sup
t
tx − Λ(t).

We assume that we are given an array of observations
(
xni

)
i=1,...,n,n≥1 in X which

we assume to be “fair,” meaning that there exists a probability measure P defined on
(X ,B) such that

lim
n→∞

1

n

n∑

i=1

δxni = P. (13)

When the observations are sampled under P we assume that the above condition (13)
holds almost surely. We define the bootstrapped empirical measure of

(
xn1, . . . , x

n
n

)
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by

PW
n := 1

n

n∑

i=1

Wn
i δxni .

Note thatPW
n is randomdue to theweightsWn

1 , . . . ,Wn
n and that the data set x

n
1, . . . , x

n
n

is considered as nonrandom. The following result provides a Sanov-type LDP state-
ment conditionally upon the array

(
xni

)
1 ≤ i ≤ n, n ≥ 1. Assuming that Y has no

atom at 0 and that t → ΛY (t) is steep at point

t+ := sup {t : ΛY (t) < +∞}

with t+ > 0, it holds

Theorem 1 Under the above hypotheses and notation the sequence PW
n obeys a LDP

on the space of all probability measures on X equipped with the weak convergence
topology with good rate function

φ (Q,P) := infm>0
∫

Λ∗
(
mdQ

dP (x)
)
dP(x) ifQ << P

+∞ otherwise
(14)

Remark 1 This Theorem is a variation on Corollary 3.3 in [20]. Indeed it holds

lim
x→−∞ Λ′

Y (t) = lim
x→−∞

((
Λ∗)′)−1

(x) = 0

and

lim
x→+∞ Λ′

Y (t) = lim
x→+∞

((
Λ∗)′)−1

(x) = +∞

The above Theorem does not meet our requirement that the rate should be a
divergence between probability measures. Two cases of upmost interest however
fulfill our quest.

We make use of independent copies of PW
n , obtained as follows: consider

(
Y1,1, . . . ,Y1,n

)
, . . . ,

(
Y,1, . . . ,YK,n

)

where all the Yi,j are i.i.d. copies of Y , and

Wk
i := Yk,i

∑k
i=1 Yk,i

,

PW
k,n :=

n∑

i=1

Wk
i δxni .

and for any set Ω inM1 define
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Pn,K(Ω) := 1

K
card

(
k ∈ {1, . . . ,K} : PW

k,n ∈ Ω
)

(15)

and denote

Ln,K (Ω) := −1

n
logPn,K (Ω) . (16)

3.1 Minimizing the Kullback–Leibler Divergence

Assume that the random variable Y is Poisson distributed with mean 1. Then

Λ∗(x) = x log x − x + 1

which is the Kullback–Leibler divergence function. For any couple of probability
measures (Q,P) it readily follows that the infimum upon m in (14) is reached at
m = exp−KL(Q,P), which yields

infm>0

∫
Λ∗

(
m
dQ

dP
(x)

)
dP(x) = 1 − exp−KL(Q,P). (17)

It follows that the rate (14) takes the form

φ (Q,P) = 1 − exp−KL(Q,P)

and that
φ (Ω,P) = 1 − exp−KL(Ω,P)

Proposition 1 Consider any set Ω of probability measures which satisfies

KL (intΩ,P) = KL (clΩ,P) ,

whereM1 is endowed with the weak topology. Consider Y a r.v. with Poisson distri-
bution with mean 1. Then the following expression

K̂L (Ω,P) := − log
[
1 − Ln,K (Ω)

]

estimates KL (Ω,P).

3.2 Minimizing the Likelihood Divergence

Let the r.v. Y have an exponential distribution with mean 1. Then
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Λ∗(x) = − log x + x − 1

which is the divergence function which defines the modified Kullback–Leibler diver-
gence, also named as Likelihood divergence, since its minimization in statistically
relevant contexts yields the celebrated maximum likelihood divergence estimators.

For all P and Q in M1 such that KLm(Q,P) is finite, the function (0, 1) � m →
∫

ϕ
(
mdQ

dP (x)
)
dP(x) is decreasing. Therefore the (14) takes the form

φ (Q,P) = KLm(Q,P)

and
φ (Ω,P) = KLm(Ω,P)

This yields an analogue of Proposition 1, namely

Proposition 2 With the same notation and hypotheses as in Proposition1, with Y a
random variable with Exponential (1) distribution, the following expression

K̂Lm (Ω,P) := Ln,K (Ω)

estimates KLm (Ω,P) .

Remark 2 When Y is exponentially distributed with expectation 1 then by Pyke’s
Theorem, the vector

(
Wn

1 , . . . ,Wn
n

)
coincides in distribution with

(
U1,n,U2,n − U1,n, . . . ,Un,n − Un−1,n

)
,

the spacings of the ordered statistics
(
U1,n,U2,n, . . . ,Un,n

)
of n i.i.d. uniformly dis-

tributed r.v’s on (0, 1), with uniformdistribution. This is indeed the simplestweighted
bootstrap variation of Pn based on exchangeable weights.

4 Wild Bootstrap

We now consider other random elements whose visits in Ω will define estimators of
minimum divergence between P and Ω for other useful divergence function, as the
Chi-square, the Hellinger, etc.

We may consider some wild bootstrap versions, defining the wild empirical mea-
sure by

PWild
n := 1

n

n∑

i=1

Yiδxi,n

where the r.v’s Y1,Y2, . . . are i.i.d. with common expectation 1. The use of the word
“wild” is relevant: PWild

n is not merely a probability measure; it can even put negative
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masses on some points of its support, since the r.’s Yi may assume negative values.
We will be able to solve Problem (P) whenΩ is a subset ofM , the class of all signed
finite measures on (X ,B) . Thus the estimator of φ (Ω,P) is typically smaller than
the estimator of φ (Ω ∩ M1,P), which cannot be estimated using the results of this
section, in contrast with just obtained in the previous section. Also we will needX
to be a compact set.

We assume that the Cramer condition holds for Y and define, as above,

ΛY (t) := logE exp tY .

4.1 A Conditional LDP for the Wild Bootstrapped
Empirical Measure

In this case we make use of the following result (see [21]) which holds when X is
compact.

Theorem 2 The wild empirical measure PWild
n obeys a LDP in the class of all signed

finite measures endowed by the weak topology with good rate function φ (Q,P)

defined in (7), where the function ϕ is defined by

ϕ(x) := Λ∗(x) = sup
t
tx − ΛY (t).

Remark 3 Making use of the results in [21], we may consider the constant aϕ∗ and
bϕ∗ in (7); by convexity, ϕ∗(x) := ΛY (x). The LDP rate (7) writes

φ (Q,P) :=
∫

X
Λ∗

(
dQa

dP

)
dP +

∫

X
ρ

(
dQs

dθ

)
dθ

where
ρ(z) := sup {λz : λ ∈ DomΛY }

and θ is any real-valued nonnegative measure with respect to which Qs is absolutely
continuous. Choosing

θ = ∣∣Q+
s − Q−

s

∣∣

yields

φ (Q,P) :=
∫

X
Λ∗

(
dQa

dP

)
dP + ρ(−1)Q−

s (X ) + ρ(+1)Q+
s (X )

so that aϕ∗ = inf {t : ΛY (t) < ∞} and bϕ∗ = sup {t : ΛY (t) < ∞} .
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Remark 4 Theorem2has been proved by numerous authors, under various regularity
conditions; see e.g. [21–23]. A strong result is as follows:

When Ω is a subset in M such that φ (cl (Ω) ,P) = φ (int (Ω) ,P) holds in the
τ−topology, then

lim
n→∞ −1

n
logP

(
PWild
n ∈ Ω

) = φ (Ω,P) . (18)

However that τ−open (resp. τ−closed sets) are not necessarily weakly open (resp
weakly closed); thus this latest result (18) is merely useful when Ω is defined as the
pre-image of some open (closed) set by some τ−continuous mapping from (X ,B)

onto some topological space; see Sect. 6.

4.2 Cressie–Read Divergences and Exponential Families

In this section we consider a reciprocal statement to Theorem 2. We first prove that
any Cressie–Read divergence function as defined in (11) is the Fenchel–Legendre
transform of some cumulant generating function ΛY for some r.v. Y . Henceforth,
we state a one-to-one correspondence between the class of Cressie–Read divergence
functions and the distribution of some Y which can be used in order to build a
bootstrap empirical measure of the form PWild

n .

4.3 Natural Exponential Families and Their
Variance Functions

We turn to some results due to Letac and Mora; see [24].
Forμ a positive σ−finitemeasure onR defineφμ(t) := ∫

etxdμ(x) and its domain
Dμ, the set of all values of t such that φμ(t) is finite, which is a convex (possibly void)
subset of R. Denote kμ(t) := logφμ(t) and let mμ(t) := (d/dt) kμ(t) and s2μ(t) :=(
d2/dt2

)
kμ(t). Associated with μ is the Natural Exponential Family NEF(μ) of

distributions

dPμ
t (x) := etxdμ(x)

φμ(t)

which is indexed by t. It is a known fact that, denoting Xt a r.v. with distribution
Pμ
t it holds EXt = mμ(t) and VarXt = s2μ(t).The mapping t → mμ(t) := EXt is a

strictly increasing homeomorphism from R
+ onto R

+, with inverse m←
μ .

The NEF(μ) is said to be generated by μ. The NEF(ν) generated by ν defined
through

dν(x) = exp(ax + b)dμ(x) (19)
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coincides with NEF(μ), which yields to the definition of the NEF generated by the
class of positive measures ν satisfying (19) for some constants a and b. Following
[24] for the notation and main results the class of such measures will be denotedB
and be called a base for NEF(μ), hence denoted NEF(B). Also it can be checked that
the range of mν does not depend on the very choice of ν in B, although its domain
depends on ν. The range ImmB of mν , which is the same for all ν inB, is called the
mean range of B since it depends only on the class of generating measures B.

Defined on ImmB, the function

x → V(x) := s2μom
←
μ (x)

is independent of the peculiar choice of μ in B (see [24]) and is therefore called
the variance function of the NEF(B). It can be proved that the variance function
characterizes the NEF. From the statistician point of view the functional form of the
function V is of relevant interest: it corresponds to models for which regression of
the variance on themean is considered, which is a common feature in heteroscedastic
models; see the seminal paper [25] which is at the origin of models characterized by
V , and [26].

Starting with [27], a wide effort has been developed in order to characterize the
basis of a NEF with given variance function.

4.4 Power Variance Functions and the Corresponding
Natural Exponential Families

Power variance functions have been explored by various authors; see e.g. [24, 28],
etc. Summarizing it holds (see [28]) the NEF with variance function V(x) = Cxα;
for sake of brevity with respect to the sequel we denote α = 2 − γ. NEF with vari-
ance function V are obtained through integration and identification of the resulting
moment-generating function. They are generated as follows:

• For γ < 0 by stable distributions onR
+ with characteristic exponent in (0, 1) .The

resulting distributions define the Tweedie scale family, which we briefly describe
in the next paragraph.

• For γ = 0 by the exponential distribution
• For 0 < γ < 1 by Compound Gamma–Poisson distributions
• For γ = 1 by the Poisson distribution
• For γ = 2 by the normal distribution

Other values of γ do not yield NEF’s.
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4.4.1 The Tweedie Scale

Let Z be a r.v. with stable distribution on R
+ with exponent τ , 0 < τ < 1. Denote p

its density and f (t) = E exp itZ its characteristic function, which satisfies

f (t) = exp {iat − c |t|τ (1 + iβsign (t) ω (t, τ ))}

where a ∈ R, c > 0 and ω (t, τ ) = tan
(

πτ
2

)
.

We consider the case when β = 1. It then holds:
For Z1, . . . ,Zn n i.i.d. copies of Z ,

Z1 + . . . + Zn
n1/τ

=d Z

where the equality holds in distribution. The Laplace transform of p satisfies

ϕ(t) :=
∫ ∞

0
e−txp(x)dx = e−tτ

for all nonnegative value of t; see [29].
Associated with p is the Natural Exponential family (NEF) with basis p namely

the densities defined for nonnegative t through

pt(x) := e−txp(x)/e−tτ

with support R
+. For positive t, a r.v. Xt with density pt has a moment-generating

function E exp λXt which is finite in a non-void neighborhood of 0 and therefore has
moments of any order.

Consider the density p1(x) = e−x+1p(x)with finitem.g.f. in (−∞, 1), expectation
μ = τ and variance σ 2 = τ(1 − τ). Finally set for all nonnegative x

q(x) := √
τ(1 − τ)p1

(
x
√

τ(1 − τ) + τ − 1
)

which for all 0 < τ < 1 is the density of some r.v. Y with expectation 1 and variance
1. The m.g.f. of Y is

E exp λY = e exp

[
1 − τ√

τ(1 − τ)

]
exp−

[
1 − λ√

τ(1 − τ)

]τ

.

For τ = 1/2, Y has the Inverse Gaussian distribution with parameters (1, 1) and
m.g.f

E exp λY = e
(
exp− [1 − 2λ]1/2

)
.

The variance function of the NEF generated by a stable distribution with index τ

in (0, 1) writes
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V(x) = Cτ x
2−τ
1−τ

with

Cτ :=
(
1 − τ

τ

) 2−τ
2(1−τ)

.

4.4.2 Compound Gamma–Poisson Distributions

We briefly characterize this compound distribution and the resulting weight Y . Let
μ denote the distribution of SN := ∑N

i=0 �i where S0 := 0, N is a Poisson (p) r.v.
independent of the independent family (�i)i≥1 where the �i’s are distributed with
Gamma distribution with scale parameter 1/λ and shape parameter −ρ. Here

ρ := γ − 1

γ

λ := ρ

p := (γ − 1)−1/γ

whereweused the results in [28] p. 1516.Consider the family of distributionsNEF(μ)
generated byμ, which has power variance function V(x) = xγ+1 defined onR

+. The
r.v. Y has distribution in NEF(μ) with expectation and variance 1. Its density is of
the form

fW (x) := exp (ax + b) f (x)

where f (x) := (dμ(x)/dx) is the density of SN . The values of the parameters a and
b are

a := −1

b := − (γ − 1)−1/γ

[(
1 − γ

γ − 1

)ρ

− 1

]
.

4.5 Cressie–Read Divergences, Weights and Variance
Functions

For

ϕγ (x) := C
xγ − γ x + γ − 1

γ (γ − 1)
(20)
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with γ �= 0, 1, the convex function ϕγ satisfies ϕγ (1) = ϕ′
γ (1) = 0 and ϕ′′

γ (1) = C,
being therefore a divergence function; it is customary to assume that the positive
constant C satisfies C = 1, a condition which we will not consider, still denoting
this class of functions the Cressie–Read family of divergence functions. Set ϕ0(x) =
− log x + x − 1 and ϕ1 (x) = x log x − x + 1, the likelihood divergence function and
the Kullback–Leibler one, noting that limγ→0 ϕα (x) = ϕ0(x) and limγ→1 ϕγ (x) =
ϕ1 (x) . The Cressie–Read family defined through (20) is the simplest system of
nonnegative convex functions satisfying the requirements for a divergence function.

We prove that any Cressie–Read divergence function is the Fenchel Legendre
transform of a moment-generating function of a random variable with expectation
1 and variance 1/C in a specific NEF, depending upon the divergence. Indeed we
identify such a r.v. Y as follows: let Y be a r.v. with a cumulant-generating function.
Λ(t) := logE exp tY such that

ϕγ (x) = Λ∗ (x) = sup
t
tx − ψ (t) ; (21)

then
1

d2
dx2 ϕγ (x)

= 1

C
xα = V(x) (22)

with α = 2 − γ for x → V(x) the variance function of the NEF generated by the
distribution of Y . Since the differential equation d2

dx2 ϕγ (x) = Cx−α defines ϕγ (x)
through (20) in a uniquewaywe have proved the one-to-one correspondence between
Cressie–Read divergences and NEF’s with power Variance functions.

Remark 5 Reproductible NEF’s with power variance functions and power normal-
izing factors are infinitely divisible (see [28]); reciprocally all reproductible NEF’s
with power normalizing factors are infinitely divisible. The Cressie–Read family of
divergences possesses, therefore, a quite peculiar property: they are the only ones
which are the Legendre transform of cumulant- generating functions of reproductible
infinitely divisible distributions with power normalizing constants. Reciprocally any
wild empirical measure with reproductible infinitely divisible weights with power
normalizing factors and with expectation 1 has LDP rate in the Cressie–Read family.

4.6 Examples

For example, the Tweedie scale of distributions defines random variables Y with
expectation 1 and variance Cτ corresponding to Cressie–Read divergences with neg-
ative index γ = −τ/ (1 − τ).
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For γ = −1, the resulting divergence is

ϕ−1 (x) = 1

2

(x − 1)2

x

which is the modified χ2 divergence (or Neyman χ2). The associated r.v. Y has an
Inverse Gaussian distribution with expectation 1 and variance 1.

For γ = 2 it holds

ϕ2 (x) = 1

2
(x − 1)2

which is the Spearman χ2 divergence. The resulting r.v. Y has a Gaussian distribution
with expectation 1 and variance 1. Note that in this case, Y is not a positive random
variable.

For γ = 1/2 we get
ϕ1/2 (x) = 2

(√
x − 1

)2

which is theHellinger divergence. The associated randomvariableY has aCompound
Gamma–Poisson distribution with ρ = −1, λ = −1, p = 4, a = −1 and b = 4.

When γ = 3/2 the distribution of Y belongs to the NEF generated by the stable
law μ on R

+ with characteristic exponent 1/3, hence with density the Modified
Bessel-type distribution

f (x) = (dμ(x)/dx) = (2π)−1 λK1/2
(
λx1/2

)
exp

(
−px + 3

(
λ2p/4

)1/3)

where λ and p are positive and K1/2 (z) is the modified Bessel function of order 1/2
with argument z.

When γ = 1 then
ϕ0 (x) = x log x − x + 1,

the Kullback–Leibler divergence function, and Y has a Poisson distribution with
parameter 1. Since the rate of the corresponding LDP coincides with the rate of
the LDP for the empirical distribution of the data (unconditionally), and since the
variance function characterizes the distribution of the weights, this is the only wild
bootstrap which is LDP efficient.

When γ = 0 then
ϕ0 (x) = − log x + x − 1,

the Likelihood divergence and Y has an exponential with parameter 1.
The L1 divergence function ϕ (x) = |x − 1| does not yield to any weighted sam-

pling; indeed ϕ∗ (t) = t1(−1,1)(t) + ∞1(−1,1)c(t) which is not a cumulan- generating
function.
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5 Monte Carlo Minimization of a Cressie–Read Divergence
Through Wild Bootstrap

Due to the preceding correspondence between the minimization problem (P) and
Large Deviation rates, we propose the following procedures for the estimation of
φ (Ω,P) .

Simulate nK i.i.d. random variables Y ,Y1,i,Y2,i, . . . ,YK,i, 1 ≤ i ≤ n with com-
mon distribution in correspondence with the divergence function ϕ, namely such
that

ϕ(x) = Λ∗(x)

for x ∈ Domϕ where Λ∗(x) := supt tx − Λ(t) and Λ(t) = logE exp tY . Define

Pn,K(Ω) := 1

K
card

(
j ∈ {1, . . . ,K} : PWild

n,j ∈ Ω
)

where

PWild
n,j := 1

n

n∑

i=1

Yj,iδxi

1 ≤ j ≤ K .

Define

φWild
n,K (Ω,P) := −1

n
logPn,K (Ω) .

6 Sets of Measures for Which the Monte Carlo
Minimization Technique Applies

We explore cases when

φ(int (Ω) ,P) = φ(cl (Ω) ,P) (23)

in the weak topology onM . Two conditions are derived; in the first case wemake use
of convexity arguments; wemake use of a similar argument as used in [30], Corollary
3.1. For Ω a subset ofM denote clw ((Ω)), resp. intw (Ω), the weak closure (resp.)
the weak interior of Ω inM .

A convex set Ω in M is strongly w−convex if for all Q in clw ((Ω)) and each
R in intw (Ω) it holds that

{αQ + (1 − α)R; 0 < α < 1} ⊂ intw (Ω) .

It holds



AWeighted Bootstrap Procedure for Divergence Minimization Problems 19

Proposition 3 Let P ∈ M1 and let Ω1, . . . ,ΩJ be subsets of M . Set Ω := Ω1 ∪
. . . ∪ ΩJ . Then when all Ωj s are strongly w−convex and φ(intw

(
Ωj

)
,P) < ∞ for

all j, (23) holds.

Proof For any j = 1, . . . , J , fix ε > 0. Let Q ∈ clw
((

Ωj
))

be such that

φ (Q,P) < φ
(
clw

(
Ωj

)
,P

) + ε

and R ∈ intw
(
Ωj

)
be such that φ (R,P) < ∞. Define Qα := αQ + (1 − α)R, 0 <

α < 1. Then Qα ∈ intw
(
Ωj

)
and the convexity of Q′ → φ

(
Q′,P

)
implies

φ(intw (Ωj) ,P) ≤ lim
α↑1

{αφ (Q,P) + (1 − α)φ (R,P)}
= φ (Q,P) < φ

(
clw

((
Ωj

))
,P

) + ε.

Hence φ(intw
(
Ωj

)
,P) = φ

(
clw

((
Ωj

))
,P

)
. Therefore, (23) holds for the finite

union of the Ωj’s, as sought.

Some other class of sets Ω ⊂ M for which (23) holds are defined as pre-images
of continuous linear functions defined from X onto some Hausdorff topological
space E. Adapting Theorem 4.1 in [30] we may state

Proposition 4 Let P ∈ M1 and E be a real Hausdorff topological space; let B1 ⊂
B2 ⊂ . . . be an increasing sequence of Borel sets in supp(P) such that

lim
m→∞P(Bm) = 1.

Let�m := {Q ∈ M : |Q| (Bm) = 1} for allm ∈ N andM ∗ := ∪m�m. Let T : M ∗ →
E a function such that its restriction T|�m is linear and weakly continuous at each
Q in M ∗ such that φ (Q,P) < ∞ for each m. Let A be a convex set in E with
φ

(
T−1 (intA) ,P

)
< ∞. Then

φ
(
T−1 (intA) ,P

) = φ
(
T−1 (clA) ,P

)
. (24)

Proof It proceeds following nearly verbatim the Proof of Theorem 4.1 in [30]. Con-
vexity arguments similar to the one in the Proof of Proposition 3 provide a version
of (24) for sets T−1

|�m
(A). Making use of Theorem 2, which substitutes Theorem 3.1

in [30] concludes the proof.

7 A Simple Convergence Result and Some Perspectives

All estimators of φ (Ω,P) considered in this paper converge strongly to φ (Ω,P) as
n tends to infinity, as does K . Indeed going back to the general setting presented in
Sect. 1, for fixed n it clearly holds that
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lim
K→∞

1

K
card

(
i : Xn,i ∈ Ω

) = Pr (Xn ∈ Ω)

a.s.
When

lim
n→∞

1

n
log Pr (Xn ∈ Ω) = −Φ (Ω)

it follows that

lim
n→∞ lim

K→∞
1

n
log fn,K = −Φ (Ω) a.s.

as sought. Since the estimators of KL (Ω,P) and KLm (Ω,P) considered in Sect. 3,
as well as the estimators of φγ (Ω,P) considered in Sect. 5 are obtained through
continuous transformations of the former estimates, all estimators considered in the
present article converge strongly to their respective limits as K tends to infinity and
n tends to infinity. This leaves a large field of investigations wide open, such as the
choice of some sequence K = Kn which would lead to a single limit procedure. Also
the resulting rate of convergence of these estimators as well as their distributional
limit would be of interest.

Also Importance Sampling (IS) techniques should be investigated in order to
reduce the calculation burden caused by the fact that any of the weighted empirical
measures considered in this article would visit the set Ω quite rarely, if P does
not belong to Ω. The hit rate can be increased substantially using some ad hoc
modification of the weights, resulting from an IS strategy.

Once estimated the minimum value of the divergence, one may be interested in
the identification of themeasuresQwhich achieve this minimum inΩ.Dichotomous
methods can be used, iterating the evaluation of the minimum divergence between
P and subsets of Ω where the global infimum on Ω coincides with the local ones,
leaving apart the subsets where they do not coincide, and iterating this routine.
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Asymptotic Analysis of Iterated 1-Step
Huber-Skip M-Estimators with Varying
Cut-Offs

Xiyu Jiao and Bent Nielsen

Abstract We consider outlier detection algorithms for time series regression based
on iterated 1-step Huber-skip M-estimators. This paper analyses the role of varying
cut-offs in such algorithms. The argument involves an asymptotic theory for a new
class of weighted and marked empirical processes allowing for estimation errors of
the scale and the regression coefficient.

Keywords The iterated 1-step Huber-skipM-estimator · Tightness ·A fixed point ·
Poisson approximation to gauge · Weighted and marked empirical processes

1 Introduction

We consider outlier detection methods that are based on iterated 1-step Huber-skip
M-estimators for linear regressionmodels with regressors that are stationary or deter-
ministically or stochastically trending. Each 1-step estimator relies on a cut-off value
when classifying observations as outliers or not. In this paper, we allow the cut-off
value to vary with sample size and iteration step. To analyze this asymptotically,
we generalize some recent results for residual empirical processes, which allow for
variation in location, scale and quantile. The model is a linear regression

yi = x′
iβ + εi, i = 1, 2, . . . , n, (1)

where εi/σ are independent ofFi−1 = σ(x1, . . . , xi, ε1, . . . , εi−1)with the common
density f. Outliers are pairs of observations that do not conform with the model.
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Iterated 1-step Huber-skip M-estimators mimic the Huber [14] skip estimator,
which has criterion function ρ(t) = min(t2, c2)/2 as opposed to the Huber estimator
with criterion function ρ(t) = t2/2 for |t| ≤ c and ρ(t) = c|t| − c2/2 otherwise, see
also [8, p. 104], [19, p. 175]. The 1-step Huber-skipM-estimator starts from an initial
estimator (β̃, σ̃ 2). This is used to decide which observations are outlying through

vi = 1(|yi−x′
i β̃|≤σ̃c), (2)

where the choice of the cut-off c is related to the known reference density f. For
those observations that are not outlying, we run a least squares regression and get
the 1-step Huber-skip estimator

β̂ =
(

n∑

i=1

xix
′
ivi

)−1 (
n∑

i=1

xiyivi

)

, (3)

σ̂ 2 = ς−2

(
n∑

i=1

vi

)−1 {
n∑

i=1

(yi − x′
iβ̂)2vi

}

, (4)

where ς2 is the consistency factor as in (8). This step can be iterated. The iteration
may be initiated by a robust estimator. More simply we get the Robustified Least
Squares and the Impulse Indicator Saturation starting with the full or split sample
least squares. The latter algorithm was introduced in the empirical work of US food
expenditure by Hendry, see [9, 10].

Outlier detection algorithms have a positive probability to find outliers evenwhen,
in fact, the data generation process has no outliers. We evaluate the performance of
such algorithms by the concept of a gauge, which is the expected retention rate of
falsely discovered outliers. This is a measure of type I error and it gives us an indirect
wayof choosing the cut-off c. It is defined as follows.The algorithms assign stochastic
indicators vi to all observations such as in (2) so that vi = 0 when observation i is
declared as an outlier, otherwise vi = 1. When the model has no contamination, the
sample and population gauge are

γ̂ = 1

n

n∑

i=1

(1 − vi), Eγ̂ = 1

n

n∑

i=1

E(1 − vi). (5)

Hoover and Perez [13] originally introduced the idea of a gauge in a simulation
study of general-to-specific variable selection algorithms. The concept of a gauge
was formally proposed by Hendry and Santos [12] as the expected retention rate of
irrelevant regressors in the context of model selection algorithms. Comprehensive
simulation studies on the gauge for the model selection algorithm Autometrics are
presented in [6, 10]. An asymptotic analysis for the gauge of some outlier detection
algorithms is presented in [18].
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One-step estimators have been considered before in [2, 23]. The 1-step Huber-
skip estimator was studied in [25]. Asymptotic distribution theory has been derived
for the location model in [11] and for the time series regression [15]. Iteration was
investigated in [16]. An asymptotic expansion for the sample gauge was established
in [18]. All these asymptotic analyses are restricted to the situation where the cut-off
and the number of iterations are not both increasing.

The purpose of this paper is to build an asymptotic theory which can explore
how variation in the cut-off affects the iterated 1-step Huber-skip M-estimator. In
particular, we prove the tightness and fixed point theorems for the iterated 1-step M-
estimator with the varying cut-off. Moreover, this paper demonstrates an asymptotic
Poisson distribution to the gauge in a situation where the cut-off increases with the
sample size while the number of iterations also increases.

The argument involves a theory for a new class of weighted and marked empirical
processes. This is defined from the generalized empirical distribution function

F̂g,p
n (a, b, c) = 1

n

n∑

i=1

ginε
p
i 1(εi≤σc+n−1/2ac+x′

inb), (6)

where the weights gin are combinations of the normalized Fi−1 measurable regres-
sors xin and ε

p
i are the Fi adapted marks, while a, b represent the normalized esti-

mation errors for σ , β. When p = 0 the mark is unity and we get the weighted
empirical distribution function considered by for instance [20]. Processes of the type
n−1/2 ∑n

i=1 εi1(xi≤c) are called marked processes, see [20, p. 43], but are not special
cases of the weighted and marked empirical distribution functions.

We derive asymptotic expansions that are uniform in a, b, c and allow for a near
n1/4 inefficiency in the estimation uncertainties a, b. This generalizes results by Koul
and Ossiander, see [20–22], who allowed unbounded weights gin but no marks ε

p
i .

They used a truncation argument for Fi−1 measurable weights gin. This together
with the boundedness of theFi measurable indicator function meant that they could
apply the Freedman [7] exponential inequality for bounded martingales. Here, we
use the iterated martingale inequality of [18] reported as Lemma 3 in the appendix.
This is based on the Bercu and Touati [1] exponential inequality for unbounded
martingales, so that we can avoid the truncation argument and more easily allow the
Fi measurable product of the mark and indicator to be unbounded. The result also
generalizes [15, 18] who did not allow joint variation of all of a, b, c.

The outline of this paper is the following. We first review the model and iterated
1-step Huber-skip M-estimator algorithm in Sect.2. Then, the main results follow
in Sect. 3. Section4 provides theory for the weighted and marked empirical process
with proofs in Appendix 1, 2, and 3. Proofs of the main theorems in Sect. 3 follow
in Appendix 4.
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2 Model and Outlier Detection Algorithms

The regression model with some notations is described first. We review the iterated
1-step Huber-skip M-estimators including the Robustified Least Squares and the
Impulse Indicator Saturation.

2.1 Model

Suppose we have data (yi, xi), i = 1, 2, . . . , n, where yi is univariate and xi is multi-
variate with dimension dim x. Assume the data satisfies the regression equation

yi = x′
iβ + εi, i = 1, 2, . . . , n.

This setting can represent both classical regression and time seriesmodels.Moreover,
regressors xi can be a deterministic or stochastic trend. Innovations εi are indepen-
dent of the filtrationFi−1 generated by (x1, . . . , xi, ε1, . . . , εi−1), and are identically
distributed with scale σ so that εi/σ has the known density f and distribution func-
tion F(c) = P(εi/σ ≤ c). In practice, the innovation distribution, characterized by
f,F, will often be assumed to be standard normal or at least symmetric. Outlier
detection algorithms use absolute residuals and then calculate robust least squares
estimators from the non-outlying sample. This implicitly assumes symmetry, while
non-symmetry leads to bias forms.We assume symmetrywhen analyzing the iterated
1-step Huber-skip M-estimator algorithm in Sect. 3, but not for the general empirical
process results in Sect. 4.

For the absolute error |εi|/σ we denote the density by g and the distribution func-
tion by G(c) = P(|εi|/σ ≤ c) for c > 0. Here we use c as notation for the quantile
of the distributionG(c). In the course of the analysis this will be linked to the cut-off
of the 1-step estimator in (3) and the argument of the weighted and marked empirical
distribution function in (6). Now, with a symmetry assumption, G(c) = 2F(c) − 1
and g(c) = 2f(c). Define ψ = G(c) so the probability of exceeding the cut-off c is
γ = 1 − ψ . Suppose the k-th moment of the density f exists, then introduce

τk =
∫ ∞

−∞
ukf(u)du, τ c

k =
∫ c

−c
ukf(u)du. (7)

Thus τ c
0 = ψ , τ2 = 1 while τk = τ c

k = 0 for odd k when assuming symmetry. Define
the conditional variance of εi/σ given (|εi|/σ ≤ c) as

ς2
c = τ c

2

ψ
=

∫ c
−c u

2f(u)du

P(|εi| ≤ σc)
. (8)



Asymptotic Analysis of Iterated 1-Step … 27

This will be used as a bias correction factor for the variance estimate computed from
the selected non-outlying sample. For a standard normal reference distribution, we
have τ c

2 = ψ − 2cf(c), τ c
4 = 3ψ − 2c(c2 + 3)f(c) and τ4 = 3.

2.2 The Iterated 1-Step Huber-Skip M-Estimator Algorithm

We first define the iterated 1-step Huber-skip M-estimator algorithm. Specific exam-
ples include the Robustified Least Squares and the Impulse Indicator Saturation.

Algorithm 1 Iterated 1-step Huber-skip M-estimator. Choose a cut-off c > 0.

1. Choose initial estimators β̂(0)
c , (̂σ (0)

c )2 and let m = 0.
2. Define indicator variables for selecting non-outlying observations

v(m)
i,c = 1

(|yi−x′
i β̂

(m)
c |≤σ̂

(m)
c c). (9)

3. Compute least squares estimators

β̂ (m+1)
c =

(
n∑

i=1

xix
′
iv

(m)
i,c

)−1 (
n∑

i=1

xiyiv
(m)
i,c

)

, (10)

(̂σ (m+1)
c )2 = ς−2

c

(
n∑

i=1

v(m)
i,c

)−1 {
n∑

i=1

(yi − x′
iβ̂

(m+1)
c )2v(m)

i,c

}

. (11)

4. Let m = m + 1 and repeat 2 and 3.

In Sect. 3 we show how to choose the cut-off c indirectly from the gauge defined
in (5). The algorithm could start with a robust estimator, while the Robustified Least
Squares is initiated using the full sample least squares. The latter is not robust with
respect to high leverage points in cross section data. Leverage points seem to be less
of a problem in time series models when lagged variables are included as regressors.

Another example is the Impulse Indicator Saturation which was initially proposed
in the empirical work [9]. The algorithm was studied comprehensively in [10, 11].
The idea is to divide full sample into two sub-samples and use regression estimates
calculated from each sub-sample to detect outliers in the other sub-sample.

Algorithm 2 Impulse Indicator Saturation. Choose a cut-off c > 0.

1.1. Split full sample into two setsIj , j = 1, 2 of nj observationswhere
∑2

j=1 nj = n.
1.2. Calculate least squares estimators based upon each sub-sampleIj for j = 1, 2

β̂j =
⎛

⎝
∑

i∈Ij

xix
′
i

⎞

⎠

−1 ⎛

⎝
∑

i∈Ij

xiyi

⎞

⎠ , σ̂ 2
j = 1

nj

∑

i∈Ij

(yi − x′
iβ̂j)

2. (12)
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1.3. Define the initial indicator variables for selecting non-outlying observations

v(−1)
i,c = 1(i∈I1)1(|yi−x′

i β̂2|≤σ̂2c) + 1(i∈I2)1(|yi−x′
i β̂1|≤σ̂1c). (13)

1.4. Compute β̂(0)
c , (̂σ (0)

c )2 using (10) and (11) with m = −1, and then let m = 0.
2. Follow the step 2,3,4 in Algorithm 1.

The Impulse Indicator Saturation is possibly more robust than the Robustified
Least Squares when we have prior knowledge that outliers are located in a particular
subset of the whole sample. The choice of the initial sets I1 and I2 should be
iterated since the location of contaminated observations is unknown inmost practical
situations, see [6].

3 The Main Results

We start by listing the assumptions. Then follows the new tightness and fixed point
result for the iterated estimator defined in Algorithm 1. Finally the gauge of the
iterated estimator is analyzed. The result is uniform in the cut-off value, which
generalizes [15, 16] which set the threshold fixed. This allows us to analyze the
gauge of the iterated estimator when the cut-off value is drifting.

3.1 Assumptions

We list the sufficient assumptions for asymptotic theory of iterated 1-step Huber-
skip M-estimators. These assumptions are somewhat stronger than they need to
be. In Sect. 4 on the one-sided empirical process, we will introduce some weaker
assumptions. For instance, we will then abandon the symmetry assumption of f.

Innovations εi and regressors ximust satisfy somemoment conditions so as to carry
out asymptotic analysis. Regressors xi can be temporally dependent and trending
deterministically or stochastically. We therefore need a normalisation matrix N that
allows for different behaviour of the components of the regressor vector xi. In the
case of a stationary regressor we need a standard n−1/2 normalisation so that N
must be proportional to the identity matrix of the same dimension as xi, that is N =
n−1/2Idim x. Likewise, if xi is a random walk we have N = n−1Idim x. If the regressors
are unbalanced as in xi = (1, i)′ we can choose N = diag(n−1/2, n−3/2).

Assumption 1 LetFi be an increasing sequence of σ -fields so εi−1 and xi areFi−1

measurable and εi is independent ofFi−1. Let εi/σ have a symmetric, continuously
differentiable density f which is positive on R. For some values of κ , η such that
0 ≤ κ < η ≤ 1/4, choose an integer r ≥ 2 so

2r−1 ≥ 1 + (1/4 + κ − η)(1 + dim x). (14)
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Let q = 1 + 2r+1. Denote c0 > 0 as a finite number. Suppose

(i) the density f satisfies

(a) uqf(u), |uq+1 ḟ(u)| are decreasing for large u;
(b) f(un − n−1/4A)/f(un) = O(1) as n → ∞ for some A > 0 and all sequences

un → ∞ so un = o(n1/4);
(c) f(u)/[u{1 − F(u)}] = O(1) for u → ∞;

(ii) the regressors xi satisfy

(a) Σn = ∑n
i=1 N

′xix′
iN

P→ Σ
a.s.
> 0;

(b) max1≤i≤n |n1/2−κN ′xi| = OP(1);
(c) n−1E

∑n
i=1 |n1/2N ′xi|q = O(1);

(iii) the initial estimator (β̃, σ̃ 2) satisfies

(a) N−1(β̃ − β) = OP(n1/4−η);
(b) n1/2(̃σ 2 − σ 2) = OP(n1/4−η).

There is a trade-off between κ , η, the dimension dim x and the required number of
moments r, see [17, Remark 3.1]. The conditions (i), (ii) are satisfied in a range of
situations. In particular, condition (ia) is satisfied by the normal and t distribution, see
[17, Example 3.1]; condition (ib, ic) is satisfied by the normal, see [18, Remark 2];
condition (ii) is satisfied by stationary, random walk and deterministically trending
regressors, see [17, Example 3.2]. Condition (iii) allows the standardized estimation
errors to diverge at a rate of n1/4−η rather than being bounded in probability. In
particular, η = 1/4 can be chosen for estimators with standard convergence rates.

3.2 Properties of the Iterated Estimators

The first result is a stochastic expansion of the 1-step Huber-skip M-estimator in
terms of the original estimator, a kernel, and a small remainder term.

Theorem 1 Consider the iterated 1-step Huber-skip M-estimator in Algorithm 1.
Suppose Assumption 1(ia, ii) holds, and that N−1(β̂(m)

c − β), n1/2(̂σ (m)
c − σ ) are

OP(1). Then uniformly in c ∈ [c0,∞) and as n → ∞

N−1(β̂(m+1)
c − β) = 2cf(c)

ψ
N−1(β̂(m)

c − β) + (ψΣ)−1
n∑

i=1

N ′xiεi1(|εi|≤σc) + oP(1),

n1/2(̂σ (m+1)
c − σ) = c(c2 − ς2

c )f(c)
τ c
2

n1/2(̂σ (m)
c − σ)

+ 1

2στ c
2

n−1/2
n∑

i=1

(ε2i − ς2
c σ

2)1(|εi|≤σc) + oP(1).
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Theorem 1 shows that the updated estimation error for β depends on the previous
estimation error for β, but not on the estimation uncertainty for σ . The estimation
error for σ has a similar property. This is a consequence of symmetry imposed on
the density f. More complex situations can also be analyzed where the reference
distribution f is non-symmetric and the cut-off c is chosen in a matching way, see
[15]. The proof uses the empirical process theory in Sect. 4.

The next result shows that the iterated estimator is tight in iteration m ∈ [0,∞)

and in the cut-off value c ∈ [c0,∞). This builds on [16].

Theorem 2 Consider the iterated 1-step Huber-skip M-estimator in Algorithm 1.
Suppose Assumption 1(ia, ii, iii) holds with η = 1/4. Then as n → ∞

sup
0≤m<∞

sup
c0≤c<∞

|N−1(β̂(m)
c − β)| + |n1/2(̂σ (m)

c − σ)| = OP(1).

Assumption 1(iii) with η = 1/4 corresponds to a standard convergence rate
for the initial estimator. Theorem 1 provides the 1-step relationship between the
updated estimator and the original estimator. Since supc0≤c<∞ |2cf(c)/ψ | < 1 and
supc0≤c<∞ |c(c2 − ς2

c )f(c)/τ
c
2 | < 1 implied by Assumption 1(ia), see [16, Theorem

3.5], a geometric argument and mathematical induction are used to show tightness.
The fixed point result can now be shown. Initially the tight estimator is assumed

available. This is iterated through the 1-step equation presented in Theorem 1.

Theorem 3 Consider the iterated 1-step Huber-skip M-estimator in Algorithm 1.
Suppose Assumption 1(ia, ii, iii) holds with η = 1/4. Then for all ε, δ > 0 a pair
m0, n0 > 0 exists, so for all m > m0 and n > n0

P
{

sup
c0≤c<∞

|N−1(β̂(m)
c − β̂∗

c )| + |n1/2(̂σ (m)
c − σ̂ ∗

c )| > δ

}
< ε,

where

N−1(β̂∗
c − β) = 1

ψ − 2cf(c)
Σ−1

n∑

i=1

N ′xiεi1(|εi|≤σc),

n1/2(̂σ ∗
c − σ) = 1

2σ {τ c
2 − c(c2 − ς2

c )f(c)}
n−1/2

n∑

i=1

(ε2i − ς2
c σ

2)1(|εi|≤σc).

Based on Theorem2, if the initial estimator is bounded in a large compact set with
large probability, then any iterated estimator takes values in the same compact set
no matter what value of the cut-off c is chosen in the interval [c0,∞). The proof of
Theorem 3 is to further argue the deviation between them-fold iterated estimator and
the fixed point is the sum of two terms vanishing exponentially and in probability
respectively when m and n are sufficiently large.

The iterated 1-step Huber-skip M-estimator can be seen as a special case of itera-
tively reweighted least squareswith binaryweights. Dollinger and Staudte [5] applied
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an influence function argument to demonstrate convergence of iteratively reweighted
least squares with smooth weights. Even if the spirit is similar, our proof is different
due to binary weights. The idea of iterating 1-step estimator can also be found in [4],
which analyzed the first order autoregression with infinite variance.

3.3 Properties of the Gauge

Johansen and Nielsen [18] proved the Poisson approximation to the gauge for the
finite step Huber-skip M-estimator. But the iterated result was not established, since
they did not have the empirical process theorywhich investigates the varying quantile
c and estimation errors for β and σ . This paper shows the Poisson approximation to
the gauge for the iterated 1-step Huber-skip M-estimator.

A Poisson exceedence theory arises in the scenario where the cut-off value c is
set to allow the fixed number λ of outliers regardless of the sample size n. For some
λ > 0, the cut-off value cn is set so as to let

nP(|εi| > σcn) = λ. (15)

Notice that cn → ∞ as n → ∞. Define v(m)
i,cn

, β̂(m+1)
cn , (̂σ (m+1)

cn )2 by replacing c by cn
in expressions (9–11). The corresponding sample gauge is

γ̂ (m)
cn = 1

n

n∑

i=1

(1 − v(m)
i,cn

) = 1

n

n∑

i=1

1
(|yi−x′

i β̂
(m)
cn |>σ̂

(m)
cn cn)

. (16)

Theorems 2 and 3 shows that any iterated estimator is tight, so lower and upper
bounds can be found for the indicators appearing in the gauge. By exploring these
bounds, the following Poisson limit theorem arises.

Theorem 4 Consider the iterated 1-step Huber-skip M-estimator in Algorithm 1.
Let cn be defined from (15). Suppose Assumption 1 holds with η = 1/4. Then for all
0 ≤ m < ∞ and as n → ∞, the sample gauge in (16) satisfies

nγ̂ (m)
cn

D→ Poisson(λ).

Table1 assumes that εi/σ follows a standard normal distribution. For a given
λ, the cut-off in (15) satisfies cn = �−1{1 − λ/(2n)}. Cut-off values are shown for
n = 100, 200. The Poisson approximation gives the probability of finding at most x
outliers. There is an increase from 62 to 90% for the probability of detecting at most
x = λ outliers as λ declines from 5 to 0.1. The reason is due to the left skewness of the
Poisson distribution. In particular, we focus on the case where λ = 1 and n = 100.
The cut-off is cn = 2.58 and the probability to find at most 1, 2 outliers are 0.74,
0.92. This means it regularly finds 2 outliers when there are none.
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Table 1 The probability of detecting at most x outliers approximated by a Poisson distribution for
a given λ, and the cut-off cn = �−1{1 − λ/(2n)} for n = 100, 200

x

λ c100 c200 0 1 2 3 4 5

5 1.960 2.241 0.01 0.04 0.12 0.27 0.44 0.62

1 2.576 2.807 0.37 0.74 0.92 0.98 1.00

0.5 2.807 3.023 0.61 0.91 0.98 1.00

0.25 3.023 3.227 0.78 0.97 1.00

0.1 3.291 3.481 0.90 1.00

The Robustified Least Squares and Impulse Indicator Saturation are special ver-
sions of iterated 1-step Huber-skip M-estimators with different starting points. Their
initial points do not depend on the cut-off, and thus satisfy the tightness property.
Therefore, Theorems 1–4 apply for these algorithms.

4 Weighted and Marked Empirical Process

Consider the weighted and marked empirical distribution function

F̂g,p
n (a, b, c) = 1

n

n∑

i=1

ginε
p
i 1(εi≤σc+n−1/2ac+x′

inb),

with Fi−1 adapted weights gin and Fi measurable marks ε
p
i . Let a ∈ R, b ∈ Rdim x

represent estimation errors ã = n1/2(̃σ − σ), b̃ = N−1(β̃ − β), while c ∈ R is the
quantile. Define normalized regressors xin = N ′xi so that

∑n
i=1 xinx

′
in converges. For

example, N = n−1/2Idim x if {xi}ni=1 is stationary, while N = n−1Idim x for a random
walk. Our interest focuses on weights gin given as either of 1, n1/2N ′xi, nN ′xix′

iN and
p as either of 0, 1, 2. To form the empirical process, introduce the compensator

F
g,p
n (a, b, c) = 1

n

n∑

i=1

ginEi−1ε
p
i 1(εi≤σc+n−1/2ac+x′

inb), (17)

where Ei−1(·) = E(·|Fi−1). Note that F
1,0
n (0, 0, c) = F(c) = P(εi ≤ σc).

We embed these processes in the space D[0, 1] of processes that are continuous
from the right and with limits of left, where the space is endowed with the Skorokhod
metric. We do this as follows. The indicator 1(εi≤c) and the distribution function
F(c) can be defined as 0 or 1 when c takes the values −∞ and ∞ respectively.
We can then define quantiles cψ = F−1(ψ) for 0 ≤ ψ ≤ 1. Correspondingly we can
continuously extend the definition of the weighted and marked empirical distribution
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function and its compensator by choosing F̂g,p
n (a, b,−∞) = F̄g,p

n (a, b,−∞) = 0
while F̂g,p

n (a, b,∞) = 1
n

∑n
i=1 ginε

p
i and F̄g,p

n (a, b,∞) = 1
n

∑n
i=1 ginEi−1ε

p
i .

We now define the empirical process, for 0 ≤ ψ ≤ 1,

Fg,p
n (a, b, cψ) = n1/2{̂Fg,p

n (a, b, cψ) − F
g,p
n (a, b, cψ)}. (18)

We will show convergence that is uniform in a, b, cψ for the above process. This
generalizes results in [22], which had no marks and no variation a in scale, in [20,
Theorem2.2.5], which had no marks, in [15, 17], which had marks, but no variation
in quantile c and no variation a in scale respectively.

In the following, we first present the new result concerning variation in the scale
a and the quantile c. Subsequently, we combine this with existing results concerning
variation in b, c in order to get a result that is uniform in all three arguments a, b, c.

4.1 The Case of Estimated Scale and Known Regression
Parameter

The main technical contribution of the paper is to analyze the empirical process
in the case of estimated scale, but known regression parameter. Thus, we establish
results for the empirical process that are uniform in a, c. Koul [20, Theorem 2.2.5]
established a similar result for the case of unbounded weights gin but no marks ε

p
i .

His proof exploits that the function 1(εi≤σc) is monotone in c and bounded. These
properties are not shared by ε

p
i 1(εi≤σc), so we follow a different strategy for the proof

that exploits the iterated martingale inequality from [18] reported as Lemma 3 in the
Appendix 1.

We first present the uniformity result for the empirical process and then a uniform
linearization result for the compensator. The proof involves a chaining argument.
For this, we apply an iterated martingale inequality, see Lemma 3, to explore the tail
behaviour of the maximum of a family of martingales.

Theorem 5 Let Fi be an increasing sequence of σ -fields so εi−1 and gin are Fi−1

measurable and εi is independent ofFi−1. Let εi/σ have a continuous density f. Let
p and η be given so p ∈ N0 and 0 < η ≤ 1/4. Suppose

(i) the density f satisfies

(a) moments:
∫ ∞
−∞ |u|4pf(u)du < ∞;

(b) boundedness: supu∈R |u|(1 + |u|4p)f(u) < ∞;

(ii) the weights gin satisfy n−1E
∑n

i=1 |gin|4 = O(1).

Let cψ = F−1(ψ) for 0 ≤ ψ ≤ 1. Then for any B > 0 and as n → ∞

sup
0≤ψ≤1

sup
|a|≤n1/4−ηB

|Fg,p
n (a, 0, cψ) − Fg,p

n (0, 0, cψ)| = oP(1).



34 X. Jiao and B. Nielsen

The second result provides a linearization of the compensator.

Theorem 6 Let Fi be an increasing sequence of σ -fields so εi−1 and gin are Fi−1

measurable and εi is independent of Fi−1. Let εi/σ have a differentiable density f.
Let p and η be given so p ∈ N0 and 0 < η ≤ 1/4. Suppose

(i) the density f satisfies

(a) moments:
∫ ∞
−∞ |u|pf(u)du < ∞;

(b) boundedness: supu∈R u2|up−1f(u) + up ḟ(u)| < ∞;

(ii) the weights gin satisfy n−1 ∑n
i=1 |gin| = OP(1).

Let cψ = F−1(ψ) for 0 ≤ ψ ≤ 1. Then for any B > 0 and as n → ∞

sup
0≤ψ≤1

sup
|a|≤n1/4−ηB

|n1/2{Fg,p
n (a, 0, cψ) − F

g,p
n (0, 0, cψ)}

−σ p−1cpψ f(cψ)n−1/2
n∑

i=1

ginn
−1/2acψ | = OP(n−2η).

4.2 The Case of Estimated Scale and Regression Parameter

We now turn to the general one-sided empirical process with estimated scale and
regression parameters. The case with known regression parameter was treated above
while the case with known scale was treated in [18]. Through an argument reported
in the appendix these results can be combined to prove the general result. For this
we need the union of the various assumptions. This is listed below as Assumption 2.
Note the density f is not necessarily symmetric in this section and Assumption 2 is
weaker than Assumption 1.

Assumption 2 Let Fi be an increasing sequence of σ -fields so εi−1, xi and gin
are Fi−1 measurable and εi is independent of Fi−1. Let εi/σ have a continuously
differentiable density f which is positive on R. Let p, η, κ be given so p ∈ N0 and
0 ≤ κ < η ≤ 1/4. Choose r ∈ N0 so

2r−1 ≥ 1 + (1/4 + κ − η)(1 + dim x). (19)

Suppose

(i) the density f satisfies

(a) moments:
∫ ∞
−∞ |u|2rpf(u)du < ∞;

(b) boundedness: supu∈R[{1 + |u|max(4p+1,2rp−1)}f(u) + (1 + u2
rp+2)|ḟ(u)|]

< ∞;
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(c) smoothness: a CH > 0 exists so that for all v > 0

supu≥v(1 + u2
rp)f(u)

inf0≤u≤v(1 + u2rp)f(u)
≤ CH,

supu≤−v(1 + u2
rp)f(u)

inf−v≤u≤0(1 + u2rp)f(u)
≤ CH;

(ii) the regressors xi satisfy max1≤i≤n |n1/2−κN ′xi| = OP(1);
(iii) the weights gin satisfy

(a) n−1E
∑n

i=1 |gin|2r (1 + |n1/2N ′xi|) = O(1);
(b) n−1 ∑n

i=1 |gin|(1 + |n1/2N ′xi|2) = OP(1).

Remark 1 Assumption 1(ia, iib, iic) implies Assumption 2 with r ≥ 2 satisfying
(14) when gin is either of 1, n1/2N ′xi, nN ′xix′

iN and p is either of 0, 1, 2. Details are
given in Lemma 4 in the appendix. �

We present two asymptotic results. The first theorem shows that the estimation
error for the scale and regression parameter is negligible uniformly in the quantile.

Theorem 7 Suppose Assumption 2 is satisfied. Let cψ = F−1(ψ) for 0 ≤ ψ ≤ 1.
Then for any B > 0 and as n → ∞

sup
0≤ψ≤1

sup
|a|,|b|≤n1/4−ηB

|Fg,p
n (a, b, cψ) − Fg,p

n (0, 0, cψ)| = oP(1).

The proof has two parts. First, we keep a fixed and consider variation in b, c.
This has been done in [17, Theorem 4.1]. Secondly, we keep b fixed and consider
variation in a, c as done in Theorem 5.

The second result provides a linearization of the compensator.

Theorem 8 Suppose Assumption 2(ia, ib, iiib) holds with r = 0. Let cψ = F−1(ψ)

for 0 ≤ ψ ≤ 1. Then for any B > 0 and as n → ∞

sup
0≤ψ≤1

sup
|a|,|b|≤n1/4−ηB

|n1/2{Fg,p
n (a, b, cψ) − F

g,p
n (0, 0, cψ)}

−σ p−1cpψ f(cψ)n−1/2
n∑

i=1

gin(n
−1/2acψ + x′

inb)| = OP(n−2η).

Finally, the tightness of the empirical process Fg,p
n (0, 0, cψ) was shown in [17,

Theorem 4.4], see tightness in [3].

4.3 A Result for the Two-Sided Empirical Process

The 1-step Huber-skip M-estimator involves indicators depending on the absolute
value of the residuals. We therefore present some results for a class of two-sided
weighted and marked empirical processes.
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Define the weighted and marked absolute empirical distribution function

Ĝg,p
n (a, b, c) = 1

n

n∑

i=1

ginε
p
i 1(|εi−x′

inb|≤σc+n−1/2ac). (20)

We suppose a so that σ + n−1/2a > 0, in which case it suffices to consider c ≥ 0.
This restriction on a is satisfied when choosing a as ã = n1/2(̃σ − σ) such that
σ + n−1/2̃a = σ̃ > 0. Introduce the compensator of Ĝg,p

n (a, b, c)

G
g,p
n (a, b, c) = 1

n

n∑

i=1

ginEi−1ε
p
i 1(|εi−x′

inb|≤σc+n−1/2ac). (21)

Note G
1,0
n (0, 0, c) = G(c) = P(|εi| ≤ σc). Then the absolute empirical process is

Gg,p
n (a, b, c) = n1/2{Ĝg,p

n (a, b, c) − G
g,p
n (a, b, c)}. (22)

We can now derive asymptotic theory for the absolute empirical process from
Theorems7 and 8. These results are presented under more restrictive Assumption1,
where the innovation distribution is symmetric, see Remark1 and Lemma4. In this
section, we only consider gin chosen as 1, n1/2N ′xi, nN ′xix′

iN and p as 0, 1, 2.

Theorem 9 Suppose Assumption 1(ia, iib, iic) holds. Let cψ = G−1(ψ) for 0 ≤
ψ ≤ 1. Then for all B > 0 and as n → ∞

sup
0≤ψ≤1

sup
|a|,|b|≤n1/4−ηB

|Gg,p
n (a, b, cψ) − Gg,p

n (0, 0, cψ)| = oP(1).

Theorem 10 Suppose Assumption 1(ia, iic) holds. Let cψ = G−1(ψ) for 0 ≤ ψ ≤
1. Then for all B > 0 and as n → ∞

sup
0≤ψ≤1

sup
|a|,|b|≤n1/4−ηB

|n1/2{Gg,p
n (a, b, cψ) − G

g,p
n (0, 0, cψ)}

−2σ p−1cpψ f(cψ)n−1/2
n∑

i=1

gin{1(p even)n
−1/2acψ + 1(p odd)x

′
inb}| = OP(n−2η).

5 Discussion

This paper contributes to the asymptotic theory of iterated 1-step Huber-skip
M-estimators. The results are derived under the null hypothesis that there are no
outliers in the model. It is well known that the first-order asymptotic approximation
is fragile in some small finite sample situations. Therefore, it would be of interest to



Asymptotic Analysis of Iterated 1-Step … 37

carry out simulation studies to evaluate the finite sample performance of the results
in this paper. Likewise it would be of interest to extend the result to situations where
outliers are actually present in the data generating process. Scenario possibly contain
single outliers, clusters of outliers, level shifts, symmetric or non-symmetric outliers.
In such situations, we would analyze the potency, which is the retention rate for rele-
vant outliers. Moreover, it would be possible to compare the potency of two distinct
outlier detection algorithms with the same gauge.

Acknowledgements The second author is grateful to the Programme of Economic Modelling,
which is part of Institute for New Economic Thinking at the Oxford Martin School. We thank Jana
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Appendix 1A Metric on R and Some Inequalities

The asymptotic theory uses a chaining argument. This involves a partitioning of the
quantile axis using a metric, which is presented first. Then follows some preliminary
inequalities including an iterated exponential martingale inequality.

Define the function

Ji,p(x, y) = (
εi

σ
)p{1(εi/σ≤y) − 1(εi/σ≤x)}. (23)

Our interest focus on Ji,p(x, y) of order 2r with r ∈ N. Note that u2
rp is non-negative

since 2rp is even for p ∈ N0 and r ∈ N. Introduce a positive and increasing function

Hr(x) =
∫ x

−∞
(1 + u2

rp)f(u)du. (24)

The derivative of this function is Ḣr(x) = (1 + x2
rp)f(x). Then, denote the constant

Hr = Hr(∞) =
∫ ∞

−∞
(1 + u2

rp)f(u)du, (25)

which is finite by Assumption 2(ia). Selection of the specific r ∈ N will be more
clear in proofs of the empirical process results. The intuition of Hr(x) is obtained
through setting p = 0 so that Hr(x) = 2F(x), Ḣr(x) = 2f(x) and Hr = 2. Therefore,
Hr(x) is the generalization of the distribution F(x) ∼ εi/σ . For x ≤ y and 0 ≤ s ≤ r,

0 ≤ |E{Ji,p(x, y)2s}| ≤ E{|Ji,p(x, y)|2s} ≤ Hr(y) − Hr(x), (26)

as |up| < |uq| + 1 for q ≥ p ≥ 0. Let |Hr(x) − Hr(y)| be theHr-distance for x, y ∈ R.
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In the context of chaining, partition the range of Hr(c) into K intervals of equal
size Hr/K . In other words, partition the support into K intervals by endpoints

− ∞ = c0 < c1 < · · · < cK−1 < cK = ∞, (27)

with c−k = c0 for k ∈ N so that for 1 ≤ k ≤ K

Hr(ck) − Hr(ck−1) = Hr

K
. (28)

We first present two preliminary inequalities.

Lemma 1 If |c̃ − c| ≤ |Ac + B| and |A| ≤ 1/2, then

|c| ≤ |c̃| + |B|
1 − |A| , (Ac + B)2 ≤ 16(A2c̃2 + B2).

Proof (Lemma 1) First inequality. Since |Ac + B| ≤ |A||c| + |B|, the assumption
implies c − |A||c| − |B| ≤ c̃ ≤ c + |A||c| + |B|. Suppose c ≥ 0, then the lower
inequality gives c(1 − |A|) − |B| ≤ c̃ so that c ≤ (c̃ + |B|)/(1 − |A|). Suppose c <

0, then the upper inequality gives c̃ ≤ c(1 − |A|) + |B| so that (c̃ − |B|)/(1 − |A|) ≤
c. Combine to get |c| ≤ max{|(c̃ + |B|)/(1 − |A|)|, |(c̃ − |B|)/(1 − |A|)|} ≤ (|c̃| +
|B|)/(1 − |A|).

Second inequality. The first inequality in the lemma, (x + y)2 ≤ 2(x2 + y2) and
|A| ≤ 1/2 imply c2 ≤ 8(c̃2 + B2) and (Ac + B)2 ≤ 2(A2c2 + B2). Combine to get
(Ac + B)2 ≤ 2(8A2c̃2 + 8A2B2 + B2) ≤ 16(A2c̃2 + B2). �

The following lemma concerns the Hr-distance of multiplicative shifts.

Lemma 2 Let r ∈ N0. Suppose f is a continuous density satisfying

(a) moments:
∫ ∞
−∞ |u|2rpf(u)du < ∞;

(b) boundedness: supc∈R |c|(1 + |c|2rp)f(c) < ∞.

Let cψ = F−1(ψ) for 0 ≤ ψ ≤ 1. Then, for any B > 0, there exists C > 0 so

sup
0≤ψ≤1

sup
|a|≤n1/4−ηB

|Hr
{
cψ

(
1 + n−1/2a/σ

)} − Hr(cψ)| ≤ Cn−1/4−η.

Proof (Lemma 2) DenoteH = |Hr{cψ(1 + n−1/2a/σ)} − Hr(cψ)|. Apply the first
order mean value theorem at the point cψ to get H = |σ−1n−1/2a||cψ ||Ḣr(c̃ψ)|,
where |c̃ψ − cψ | ≤ |σ−1n−1/2acψ | and Ḣr(c̃ψ) = (1 + c̃2

rp
ψ )f(c̃ψ).

There exists n0, so for any n > n0 we have |σ−1n−1/2a| ≤ 1/2 uniformly in |a| ≤
n1/4−ηB. First, for n > n0, we apply the first inequality in Lemma 1 to obtain |cψ | ≤
|c̃ψ |/(1 − |σ−1n−1/2a|) ≤ 2|c̃ψ |. It follows

H ≤ σ−1n−1/2n1/4−ηB2|c̃ψ ||Ḣr(c̃ψ)| ≤ 2σ−1B sup
c∈R

|c||Ḣr(c)|n−1/4−η.
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ThusH ≤ Cn−1/4−η by condition (b) that |cḢr(c)| = |c|(1 + |c|2rp)f(c) is bounded
uniformly in c.

Second, consider n ≤ n0. NoteHr(x) ≤ Hr(∞) = Hr for any x so that the triangle
inequality shows H ≤ 2Hr . With 0 < η ≤ 1/4, it follows

H ≤ 2Hrn
1/4+ηn−1/4−η ≤ 2Hrn

1/4+η

0 n−1/4−η = Cn−1/4−η,

where C = 2Hrn
1/4+η

0 is finite since Hr < ∞ by condition (a). �

The chaining argument involves the tail behaviour of the maximum of a fam-
ily of martingales which can be controlled using the following iterated martingale
inequality taken from [17]. It builds on an exponential martingale inequality derived
by Bercu and Touati [1, Theorem 2.1].

Lemma 3 ([17], Theorem 5.2) For l so 1 ≤ l ≤ L, let zl,i be Fi adapted satisfying
Ez2

r̄

l,i < ∞ for some r̄ ∈ N. Let Dr = max1≤l≤L
∑n

i=1 Ei−1z2
r

l,i for 1 ≤ r ≤ r̄. Suppose,
for some ς ≥ 0, λ > 0, that L = O(nλ) and EDr = O(nς ) for r ≤ r̄. If υ > 0 is
chosen such that

(i) ς < 2υ;
(ii) ς + λ < υ2r̄ ;

then, for all κ > 0 and as n → ∞

lim
n→∞P

{

max
1≤l≤L

|
n∑

i=1

(zl,i − Ei−1zl,i)| > κnυ

}

= 0.

Appendix 2 Proofs of Empirical Process Results Concerning
Scale

Here we prove the empirical process results concerning the variation in scale when
the regression parameter is known. We use the distance function Hr with r = 2.

Proof (Theorem 5)Let cψ† = cψ(1 + n−1/2a/σ) soFg,p
n (a, 0, cψ) = Fg,p

n (0, 0, cψ†).
Note cψ† can be greater or less than cψ , since a such that |a| ≤ n1/4−ηB and cψ can
be either positive or negative. Assume cψ < cψ† without loss of generality. Denote
R(cψ, cψ†) = Fg,p

n (0, 0, cψ†) − Fg,p
n (0, 0, cψ). The aim is to prove Rn = oP(1) for

n → ∞ where Rn = sup0≤ψ≤1 sup|a|≤n1/4−ηB |R(cψ, cψ†)|.
1. Partition the support. For δ, n > 0 partition the range of quantiles c as laid

out in (27) with K = int(Hrn1/2/δ) and r = 2 since Hr < ∞ by assumption
(ia).

2. Assign cψ and cψ† to the partitioned support. For each ψ and ψ† there
exist k ≤ k† and grid points so that ck−1 < cψ ≤ ck and ck†−1 < cψ† ≤ ck† .
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3. Apply chaining.Relate cψ to the nearest right grid point ck and cψ† to the near-
est left grid point ck†−1. Add and subtract F

g,p
n (0, 0, ck) and F

g,p
n (0, 0, ck†−1)

to R(cψ, cψ†). The triangle inequality gives

|R(cψ, cψ†)| ≤ |R(cψ, ck)| + |R(ck, ck†−1)| + |R(ck†−1, cψ†)|.

Note that if cψ , cψ† are in the same interval, then |R(ck, ck†−1)| = |R(ck−1, ck)|.
If cψ , cψ† are in the neighbouring intervals, then |R(ck, ck†−1)| = 0. Apply
chaining to obtain Rn ≤ Rn,1 + Rn,2 + Rn,3 + Rn,4, where

Rn,1 = max
1≤k<k†−1<K

|R(ck, ck†−1)|,
Rn,2 = max

1≤k≤K
|R(ck−1, ck)|,

Rn,3 = max
1≤k≤K

sup
ck−1<cψ≤ck

|R(cψ, ck)|,
Rn,4 = max

1≤k†≤K
sup

ck†−1<cψ†≤ck†
|R(ck†−1, cψ†)|.

Thus, it suffices to show Rn,j = oP(1) for j = 1, 2, 3, 4 as n → ∞.
4. The term Rn,1 is oP(1). UseLemma3withυ = 1/2.Let gin have coordinates

g∗
in = σ pgin. Recall the notation Ji,p(x, y) in (23). Write the coordinates of

R(ck, ck†−1) asn−1/2 ∑n
i=1(zl,i − Ei−1zl,i)with zl,i = g∗

inJi,p(ck, ck†−1), where
l represents the indices k, k† with L ≤ K2. Two conditions of Lemma 3 need
to be verified.
The parameter λ. The set of indices l has the size L = O(nλ) where λ = 1,
since L ≤ K2 and K = O(n1/2).
The parameter ς . Consider 1 ≤ s ≤ r = 2 (instead of 1 ≤ r ≤ r̄ = 2). By
construction of partition and assignment in steps 1, 2, then cψ ≤ ck < ck†−1 <

cψ† . Thus,

Ei−1J
2s
i,p(ck, ck†−1) ≤ Hr(ck†−1) − Hr(ck) ≤ Hr(cψ†) − Hr(cψ) ≤ Cn−1/4−η,

by Lemma 2 using assumption (i) for some finite C > 0. Since

Ds = max
1≤l≤L

n∑

i=1

Ei−1z
2s
l,i = max

1≤k<k†−1<K

n∑

i=1

g∗2s
in Ei−1J

2s
i,p(ck, ck†−1),

we then find Ds ≤ Cn−1/4−η
∑n

i=1 g
∗2s
in . Moreover, using assumption (ii) we

find that En−1 ∑n
i=1 g

∗2s
in = O(1). Thus, with ς = 3/4 − η, we have EDs =

O(nς ).
Condition (i) is that ς < 2υ. This holds since η > 0 so ς = 3/4 − η < 1 =
2υ.
Condition (ii) is that ς + λ < υ2r where r = 2. This is satisfied since η > 0
so ς + λ = 7/4 − η < 2 = υ2r .
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5. The term Rn,2 is oP(1).UseLemma3withυ = 1/2 and zl,i = g∗
inJi,p(ck−1, ck),

where index l = k has the size L = K . Two conditions of Lemma 3 need to
be shown.
The parameter λ. The size L = O(nλ) where λ = 1/2, since L = K =
O(n1/2).
The parameter ς . Consider 1 ≤ s ≤ r = 2. The equality (28) shows

Ei−1J
2s
i,p(ck−1, ck) ≤ Hr(ck) − Hr(ck−1) = Hr

K
= O(n−1/2).

Then, we find

Ds = max
1≤l≤L

n∑

i=1

Ei−1z
2s
l,i = max

1≤k≤K

n∑

i=1

g∗2s
in Ei−1J

2s
i,p(ck−1, ck) = O(n−1/2)

n∑

i=1

g∗2s
in .

It follows that EDs = O(nς ) where ς = 1/2 by assumption (ii).
Condition (i) holds, since ς = 1/2 < 1 = 2υ.
Condition (ii) holds, since ς + λ = 1 < 2 = υ2r .

6. Decompose the term Rn,3. Apply the triangle and Jensen’s inequality to
obtain,

|R(cψ, ck)| ≤ n−1/2
n∑

i=1

|g∗
in|{|Ji,p(cψ, ck)| + Ei−1|Ji,p(cψ, ck)|}.

For ck−1 < cψ ≤ ck where1 ≤ k ≤ K ,wehave |Ji,p(cψ, ck)| ≤ |Ji,p(ck−1, ck)|.
Then,

Rn,3 ≤ max
1≤k≤K

n−1/2
n∑

i=1

|g∗
in|{|Ji,p(ck−1, ck)| + Ei−1|Ji,p(ck−1, ck)|}.

Therefore, it can be argued that Rn,3 ≤ R̃n,3 + 2Rn,3, where

R̃n,3 = max
1≤k≤K

n−1/2
n∑

i=1

|g∗
in|{|Ji,p(ck−1, ck)| − Ei−1|Ji,p(ck−1, ck)|},

Rn,3 = max
1≤k≤K

n−1/2
n∑

i=1

|g∗
in|Ei−1|Ji,p(ck−1, ck)|.

Thus, it suffices to show R̃n,3 and Rn,3 are oP(1) as n → ∞.
7. The term R̃n,3 is oP(1). Argue along the lines of step 5 to show R̃n,3 = oP(1).
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8. Bounding the term Rn,3. Use the equality (28) and K = O(Hrn1/2/δ) to get

Ei−1|Ji,p(ck−1, ck)| ≤ Hr(ck) − Hr(ck−1) = Hr

K
= O(n−1/2δ).

We then find Rn,3 = O(n−1/2δ)n−1/2 ∑n
i=1 |g∗

in| = OP(δ) by the Markov
inequality and the assumption (ii) that n−1 ∑n

i=1 E|g∗
in|4 = O(1). Thus,

choose δ sufficiently small so thatRn,3 = oP(1).
9. The term Rn,4 is oP(1). This is similar as to show Rn,3 = oP(1). Thus the

same argument can be made through steps 6, 7, 8. �

Proof (Theorem 6) The term of interest is

Dn(a, cψ) = n1/2{Fg,p
n (a, 0, cψ) − F

g,p
n (0, 0, cψ)}

−σ p−1cpψ f(cψ)n−1/2
n∑

i=1

ginn
−1/2acψ,

where F
g,p
n is well-defined due to assumption (ia). Let w

a,cψ

i = 1(εi≤σcψ+n−1/2acψ ) −
1(εi≤σcψ ) and hi(a, cψ) = n−1/2acψ/σ and denote s(c) = cpf(c). Define Si(a, cψ) =
Ei−1ε

p
i w

a,cψ

i − σ phi(a, cψ)s(cψ) soDn(a, cψ) = n−1/2 ∑n
i=1 ginSi(a, cψ).WriteSi(a, cψ)

as an integral and apply the second order Taylor expansion at cψ to get

Si(a, cψ) = σ p

{∫ cψ+hi(a,cψ )

cψ

s(u)du − hi(a, cψ)s(cψ)

}

= σ ph2i (a, cψ)ṡ(c̃ψ)/2,

where |c̃ψ − cψ | ≤ |hi(a, cψ)|. There exists n0 > 0 so for any n > n0 we have
|σ−1n−1/2a| ≤ 1/2. We then apply the second inequality in Lemma 1 to obtain
h2i (a, cψ) ≤ 16n−1a2c̃2ψ/σ 2. Exploit the bound |a| ≤ n1/4−ηB to get

|Si(a, cψ)| = O(n−1/2−2η)c̃2ψ |ṡ(c̃ψ)| = O(n−1/2−2η)

uniformly in ψ , a, since c̃2ψ |ṡ(c̃ψ)| ≤ supc∈R c2|ṡ(c)| < ∞ by assumption (i) noting

that ṡ(c) = cp−1f(c) + cp ḟ(c). Then the triangle inequality gives

|Dn(a, cψ)| ≤ n−1/2
n∑

i=1

|gin||Si(a, cψ)| = O(n−2η)n−1
n∑

i=1

|gin|.

By assumption (ii), this term is of order OP(n−2η) uniformly in ψ , a. �
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Appendix 3 Proofs of General Empirical Process Results

Proof (Theorem 7) The term of interest is W = Fg,p
n (a, b, cψ) − Fg,p

n (0, 0, cψ).
Denote cψ† = cψ(1 + n−1/2a/σ). Notice that Fg,p

n (a, b, cψ) = Fg,p
n (0, b, cψ†) so that

W = Fg,p
n (0, b, cψ†) − Fg,p

n (0, 0, cψ). Add and subtract Fg,p
n (a, 0, cψ) =

Fg,p
n (0, 0, cψ†) and apply the triangle inequality to get

|W | ≤ |Fg,p
n (0, b, cψ†) − Fg,p

n (0, 0, cψ†)| + |Fg,p
n (a, 0, cψ) − Fg,p

n (0, 0, cψ)|.

Thus, the problem reduces to showing

sup
0≤ψ†≤1

sup
|b|≤n1/4−ηB

|Fg,p
n (0, b, cψ†) − Fg,p

n (0, 0, cψ†)| = oP(1), (29)

sup
0≤ψ≤1

sup
|a|≤n1/4−ηB

|Fg,p
n (a, 0, cψ) − Fg,p

n (0, 0, cψ)| = oP(1). (30)

Then (29) is shown in [17, Theorem 4.1] by Assumption 2(i, ii, iiia) with r ≥ 2
such that (14) holds. Further, (30) was considered in Theorem 5, which requires
Assumption 2(ia, ib, iii) with r = 2. �

Proof (Theorem 8) We generalize the proof of Theorem 6. We note F
g,p
n is well-

defined due to Assumption 2(ia). The term of interest is

Dn(a, b, cψ) = n1/2{Fg,p
n (a, b, cψ) − F

g,p
n (0, 0, cψ)}

−σ p−1cpψ f(cψ)n−1/2
n∑

i=1

gin(n
−1/2acψ + x′

inb).

Let w
a,b,cψ

i = 1(εi≤σcψ+n−1/2acψ+x′
inb) − 1(εi≤σcψ ), hi(a, b, cψ) = (n−1/2acψ + x′

inb)/σ

and s(c) = cpf(c). Define Si(a, b, cψ) = Ei−1ε
p
i w

a,b,cψ

i − σ phi(a, b, cψ)s(cψ) so that
Dn(a, b, cψ) = n−1/2 ∑n

i=1 ginSi(a, b, cψ). Write Si(a, b, cψ) as an integral

Si(a, b, cψ) = σ p

{∫ cψ+hi(a,b,cψ )

cψ

s(u)du − hi(a, b, cψ)s(cψ)

}

.

Second order Taylor expansion at cψ shows Si(a, b, cψ) = σ ph2i (a, b, cψ)ṡ(c̃ψ)/2,
where |c̃ψ − cψ | ≤ |hi(a, b, cψ)|. There exists n0 > 0 so for any n > n0 we have
|σ−1n−1/2a| ≤ 1/2. We then apply the second inequality in Lemma 1 to obtain
h2i (a, b, cψ) ≤ 16{n−1a2c̃2ψ + (x′

inb)
2}/σ 2. Exploit bounds |a|, |b| ≤ n1/4−ηB and the

inequality x2 + y2 ≤ (1 + x2)(1 + y2) to get

|Si(a, b, cψ)| = O(n−1/2−2η)(1 + |n1/2xin|2)(1 + c̃2ψ)|ṡ(c̃ψ)|.
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Since (1 + c̃2ψ)|ṡ(c̃ψ)| ≤ supc∈R(1 + c2)|ṡ(c)| < ∞ by Assumption 2(ib) with
r = 0, we have |Si(a, b, cψ)| = O(n−1/2−2η)(1 + |n1/2xin|2) uniformly in ψ , a, b.
Then the triangle inequality gives

|Dn(a, b, cψ)| ≤ n−1/2
n∑

i=1

|gin||Si(a, b, cψ)| = O(n−2η)n−1
n∑

i=1

|gin|(1 + |n1/2xin|2).

ByAssumption 2(iiib), this term is of order OP(n−2η) uniformly inψ , a, b. �

The absolute empirical process results are given under more restrictive Assump-
tion 1, so the next lemma concerns the relationship between Assumptions 1 and 2.

Lemma 4 Suppose gin is either of 1, n1/2N ′xi, nN ′xix′
iN and p is either of 0, 1, 2.

Then Assumption 1(ia, iib, iic) implies Assumption 2 with r ≥ 2 satisfying (14).

Proof (Lemma 4) Assumption 1(ia) shows Assumption 2(ia, ic), while Assump-
tion 2(ib) further needs continuous differentiability of f, see discussion in [17,
Remark 4.1(c)]. Assumption 1(iib) is the same as Assumption 2(ii). Assumption
1(iic) implies Assumption 2(iiia) and (iiic) by Markov inequality. �

Proof (Theorem 9) The term of interest is G = Gg,p
n (a, b, cψ) − Gg,p

n (0, 0, cψ). Our
focus is on the absolute quantile cψ = G−1(ψ) > 0 rather than the one-sided quantile
cψ∗ = F−1(ψ∗) ∈ R. Note |εi|/σ ∼ G and εi/σ ∼ F. Since

1(|εi−x′
inb|≤σc+n−1/2ac) = 1(εi≤σc+n−1/2ac+x′

inb) − 1(εi≤−σc−n−1/2ac+x′
inb)

and by (18) and (22), we haveGg,p
n (a, b, c) = Fg,p

n (a, b, c) − limc†↓c F
g,p
n (a, b,−c†)

for any c > 0. By this and the triangle inequality, then for any cψ = G−1(ψ) > 0,

|G | ≤ |Fg,p
n (a, b, cψ) − Fg,p

n (0, 0, cψ)| + lim
c†ψ↓cψ

|Fg,p
n (a, b,−c†ψ) − Fg,p

n (0, 0,−c†ψ)|.

These vanish uniformly inψ , a, b by Theorem 7 using Assumption 2 with r ≥ 2 such
that (14) holds. Lemma 4 shows that Assumption 1(ia, iib, iic) suffices. �

Proof (Theorem 10)Argue as in the proof of Theorem 9 but using Theorem 8 instead
of Theorem 7. Due to the symmetry of f, the correction term is then

σ p−1cpψ f(cψ)n−1/2
n∑

i=1

gin[{1 + (−1)p}n−1/2acψ + {1 − (−1)p}x′
inb].

This reduces as desired. �
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Appendix 4 Proofs of the Main Results

We first present an axillary result for asymptotic expansions of product moments.
Then, the tightness and fixed point result are shown for the iterated estimators. At
last, we provide the proof of the Poisson exceedence theory for the gauge.

The 1-step Huber-skip M-estimators are least squares estimators for selected
observations. The following result describes the asymptotic behaviour of the cor-
responding product moments. For this purpose introduce the indicators

va,b,ci = 1(|εi−x′
inb|≤σc+n−1/2ac). (31)

Lemma 5 Suppose Assumption 1(ia, ii) holds. Then we have expansions

n−1/2
n∑

i=1

va,b,ci = n−1/2
n∑

i=1

1(|εi|≤σc) + 2f(c)
ac

σ
+ Rv(a, b, c),

n−1/2
n∑

i=1

ε2i v
a,b,c
i = n−1/2

n∑

i=1

ε2i 1(|εi|≤σc) + 2σ 2c2f(c)
ac

σ
+ Rvεε(a, b, c),

n∑

i=1

N ′xiεiva,b,ci =
n∑

i=1

N ′xiεi1(|εi|≤σc) + 2cf(c)Σb + Rvxε(a, b, c),

n1/2
n∑

i=1

N ′xix′
iNv

a,b,c
i = n1/2

n∑

i=1

N ′xix′
iN1(|εi|≤σc) + 2f(c)Σ

ac

σ
+ Rvxx(a, b, c).

Let R(a, b, c) = |Rv(a, b, c)| + |Rvεε(a, b, c)| + |Rvxε(a, b, c)| + |Rvxx(a, b, c)|.
Then for any B > 0 and as n → ∞

sup
0<c<∞

sup
|a|,|b|≤n1/4−ηB

|R(a, b, c)| = oP(1).

Remark 2 The first and fourth item in Lemma 5 adjusted by n−1/2 have expansions

n−1
n∑

i=1

va,b,ci = ψ + R′
v(a, b, c),

n∑

i=1

N ′xix′
iNv

a,b,c
i = ψΣ + R′

vxx(a, b, c),

where for any B > 0 and as n → ∞

sup
0<c<∞

sup
|a|,|b|≤n1/4−ηB

|R′
v(a, b, c)| + |R′

vxx(a, b, c)| = oP(1).
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Indeed, for the first expansion, we apply the law of large numbers to obtain
n−1 ∑n

i=1 1(|εi|≤σc) = ψ + oP(1),while supc∈R |c|f(c) < ∞byAssumption1(ia) and
n−1/2a vanishes. For the second expansion, decompose

n∑

i=1

N ′xix′
iN1(|εi|≤σc) =

n∑

i=1

N ′xix′
iN{1(|εi|≤σc) − ψ} +

n∑

i=1

N ′xix′
iNψ.

The first item vanishes by theChebyshev inequality andAssumption 1(iia, iic), while
the second converges to ψΣ . �

Proof (Lemma 5) The general class of empirical processes is

Mn = n−1/2
n∑

i=1

ginε
p
i v

a,b,c
i , va,b,ci = 1(|εi−x′

inb|≤σc+n−1/2ac).

1. Decompose Mn. WriteMn = Mn,1 + Mn,2 + Mn,3, where

Mn,1 = n−1/2
n∑

i=1

ginε
p
i 1(|εi|≤σc), Mn,2 = n−1/2

n∑

i=1

ginEi−1ε
p
i {va,b,ci − 1(|εi|≤σc)},

Mn,3 = n−1/2
n∑

i=1

ginε
p
i {va,b,ci − 1(|εi|≤σc)} − n−1/2

n∑

i=1

ginEi−1ε
p
i {va,b,ci − 1(|εi|≤σc)}.

Therefore, the first term in stochastic expansion is Mn,1. We will linearize Mn,2 to
obtain the second term, and argue that Mn,3 is small in probability.

2. Linearize Mn,2. Note Mn,2 = n1/2{Gg,p
n (a, b, c) − G

g,p
n (0, 0, c)}, see (21).

Theorem 10 by Assumption 1(ia, iic) shows Mn,2 = M n,2 + OP(n−2η), where

M n,2 = 2σ p−1cpf(c)n−1/2
n∑

i=1

gin{1(p even)n
−1/2ac + 1(p odd)x

′
inb}.

This reduces as desired by Assumption 1(iia). Note 0 < η ≤ 1/4. Thus, we have
Mn,2 = M n,2 + oP(1) uniformly in 0 < c < ∞ and |a|, |b| ≤ n1/4−ηB.

3. Bounding Mn,3. Note Mn,3 = Gg,p
n (a, b, c) − Gg,p

n (0, 0, c), see (22). Due
to Assumption 1(ia, iib, iic), Theorem 9 shows Mn,3 = oP(1) uniformly in a,
b, c. �

Proof (Theorem 1) The m + 1 step estimators for β, σ 2 are defined in (10), (11).
These are least squares estimators for the non-outlying observations and satisfy
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N−1(β̂(m+1)
c − β) =

(
n∑

i=1

N ′xix′
iNv

(m)
i,c

)−1 (
n∑

i=1

N ′xiεiv(m)
i,c

)

, (32)

n1/2{(̂σ (m+1)
c )2 − σ 2} = ς−2

c

(

n−1
n∑

i=1

v(m)
i,c

)−1

n−1/2

{
n∑

i=1

(ε2i − ς2
c σ 2)v(m)

i,c (33)

−
(

n∑

i=1

εix
′
iNv

(m)
i,c

) (
n∑

i=1

N ′xix′
iNv

(m)
i,c

)−1 (
n∑

i=1

N ′xiεiv(m)
i,c

)⎫
⎬

⎭
.

We express the weight v(m)
i,c in (9) as

v(m)
i,c = 1

(|yi−x′
i β̂

(m)
c |≤σ̂

(m)
c c) = 1

(|εi−x′
inb̂

(m)
c |≤σc+n−1/2â(m)

c c) = v
â(m)
c ,̂b(m)

c ,c
i ,

where b̂(m)
c = N−1(β̂(m)

c − β) and â(m)
c = n1/2(̂σ (m)

c − σ) are the m step estimation
errors for β and σ .

Since |̂b(m)
c | + |̂a(m)

c | = OP(1) and by Assumption 1(ia, ii), then Lemma 5 and
Remark 2 with κ = 0, η = 1/4 show asymptotic expansions for product moments.
Substitute these expansions into (32), (33) to first get

b̂(m+1)
c = 2cf(c)

ψ
b̂(m)
c + (ψΣ)−1

n∑

i=1

N ′xiεi1(|εi|≤σc) + Rβ (̂a(m)
c , b̂(m)

c , c),

where the remainder Rβ(a, b, c) vanishes uniformly in c0 ≤ c < ∞ and |a|, |b| ≤ B.
A key to this is that c is bounded away from zero and that Σ is positive definite by
Assumption 1(iia) so that the denominator ψ , ψΣ is bounded away from zero.

Secondly, we get an expression for σ̂ (m+1)
c . By Taylor expansion, first note that

n1/2(̂σ (m+1)
c − σ) = 1

2σ
n1/2{(̂σ (m+1)

c )2 − σ 2} + n−1/2O[n{(̂σ (m+1)
c )2 − σ 2}2].

Then apply arguments as above to get

â(m+1)
c = c(c2 − ς2

c )f(c)
τ c
2

â(m)
c + 1

2στ c
2

n−1/2
n∑

i=1

(ε2i − ς2
c σ

2)1(|εi|≤σc)

+Rσ (̂a(m)
c , b̂(m)

c , c),

where the remainder Rσ (a, b, c) also vanishes uniformly. �
To prove the tightness and fixed point result, let | · | refer to the usual Euclidean

vector norm, while ‖M‖ = max{eigen(M ′M)}1/2 is the spectral norm for any matrix
M. Note that the norms are compatible so that |Mx| ≤ ‖M‖|x| for any vector x.

Proof (Theorem 2) Due to Assumption 1(ia, ii), Theorem 1 shows

û(m+1)
c = Γĉu

(m)
c + Kc + Ru(̂u

(m)
c , c), (34)
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where the remainder term satisfies supc0≤c<∞ sup|u|≤B |Ru(u, c)| = oP(1) and

û(m)
c =

(
b̂(m)
c

â(m)
c

)
=

{
N−1(β̂(m)

c − β)

n1/2(̂σ (m)
c − σ)

}
, Γc =

{
2cf(c)

ψ
Idim x 0

0 c(c2−ς2
c )f(c)

τ c
2

}

, (35)

Kc =
{

(ψΣ)−1 0
0 (2στ c

2 )
−1

} n∑

i=1

{
N ′xiεi

n−1/2(ε2i − ς2
c σ

2)

}
1(|εi|≤σc). (36)

Apply the difference Eq. (34) recursively to obtain the representation

û(m+1)
c = Γ m+1

c û(0)
c +

m∑

l=0

Γ l
c {Kc + Ru(̂u

(m−l)
c , c)}. (37)

Use the triangle inequality and |Mx| ≤ ‖M‖|x| to get

|̂u(m+1)
c | ≤ ‖Γ m+1

c ‖|̂u(0)
c | + {|Kc| + max

0≤l≤m
|Ru(̂u

(l)
c , c)|}

m∑

l=0

‖Γ l
c ‖.

Assumption 1(ia) shows supc0≤c<∞ max{|2cf(c)/ψ |, |c(c2 − ς2
c )f(c)/τ c

2 |} < 1, see
[16, Theorem 3.5], so supc0≤c<∞ ‖Γc‖ < 1. Gelfand’s formula in [24, Theorem 3.4]
gives limm→∞ ‖Mm‖1/m = max |eigen(M)|. Therefore for some ω satisfying that
supc0≤c<∞ ‖Γc‖ < ω < 1 there exists m0 > 0 so for all m > m0

sup
c0≤c<∞

‖Γ m
c ‖ < ωm < 1. (38)

Also note (Idim x+1 − Γc)
−1 = ∑∞

l=0 Γc. This in turn implies for some 1 < B0 < ∞

sup
0≤m<∞

sup
c0≤c<∞

‖Γ m
c ‖ < B0, sup

c0≤c<∞
‖(Idim x+1 − Γc)

−1‖ ≤
∞∑

l=0

sup
c0≤c<∞

‖Γ l
c ‖ < B0.

(39)
Therefore, (39) shows for all m ∈ [0,∞)

|̂u(m+1)
c | < B0{|̂u(0)

c | + |Kc| + max
0≤l≤m

|Ru(̂u
(l)
c , c)|}. (40)

For any c ∈ [c0,∞), Assumption 1(iii) with η = 1/4 guarantees tightness of û(0)
c ,

while the kernel Kc is tight by [17, Theorem 4.4] using Assumption 1(ia, iib, iic).
Thus, for all ε, δ > 0 there exist n0,U0 > 0 so that the set

An = {B0 sup
c0≤c<∞

(|̂u(0)
c | + |Kc|) ≤ U0/3,B0 sup

c0≤c<∞
sup

|u|≤U0

|Ru(u, c)| < δ/2} (41)

has probability larger than 1 − ε for all n > n0.
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Mathematical induction over m is used to show sup0≤m<∞ supc0≤c<∞ |̂u(m)
c | ≤ U0

on the set An. For m = 0 as induction starts, supc0≤c<∞ |̂u(0)
c | ≤ B−1

0 U0/3 < U0

holds since B0 > 1. The induction assumption is that sup0≤l≤m supc0≤c<∞ |̂u(l)
c |

≤ U0. This implies B0 max0≤l≤m |Ru(̂u(l)
c , c)| < δ/2, and then the bound in (40)

becomes supc0≤c<∞ |̂u(m+1)
c | < 2U0/3 + δ/2 < U0 so sup0≤l≤m+1 supc0≤c<∞ |̂u(l)

c | ≤
U0. �

Proof (Theorem 3) Due to Assumption 1(ia, ii, iii), Theorem 1 provides the recur-
sive Eq. (34). Then, Theorem 2 shows sup0≤m<∞ supc0≤c<∞ |̂u(m)

c | = OP(1), so the
remainder term in (34) is oP(1). Thus, for m, n → ∞ the fixed point should satisfy
û∗
c = Γĉu∗

c + Kc so that
û∗
c = (Idim x+1 − Γc)

−1Kc. (42)

Substitute (35), (36) of û∗
c , Γc and Kc into (42) to obtain

{
N−1(β̂∗

c − β)

n1/2(̂σ ∗
c − σ)

}
=

[ 1
ψ−2cf(c)Σ

−1 ∑n
i=1 N

′xiεi1(|εi|≤σc)

1
2σ {τ c

2−c(c2−ς2
c )f(c)}n

−1/2 ∑n
i=1(ε

2
i − ς2

c σ
2)1(|εi|≤σc)

]

.

Replace (37) and (42) into the deviation Δ̂(m+1)
c = û(m+1)

c − û∗
c , and then apply∑m

l=0 Γ l
c = (Idim x+1 − Γ m+1

c )(Idim x+1 − Γc)
−1 to attain

Δ̂(m+1)
c = Γ m+1

c {̂u(0)
c − (Idim x+1 − Γc)

−1Kc} +
m∑

l=0

Γ l
c Ru(̂u

(m−l)
c , c).

To bound Δ̂(m+1)
c , use the triangle inequality and |Mx| ≤ ‖M‖|x| to get

|Δ̂(m+1)
c | ≤ ‖Γ m+1

c ‖{|̂u(0)
c | + ‖(Idim x+1 − Γc)

−1‖|Kc|} + max
0≤l≤m

|Ru (̂u
(l)
c , c)|

m∑

l=0

‖Γ l
c ‖.

By Assumption 1(ia) and Gelfand’s formula, (38) and the second inequality in (39)
imply for m > m0

|Δ̂(m+1)
c | < ωm+1(|̂u(0)

c | + B0|Kc|) + B0 max
0≤l≤m

|Ru(̂u
(l)
c , c)|.

On the set An as in (41), since sup0≤m<∞ supc0≤c<∞ |̂u(m)
c | ≤ U0 by Theorem 2, we

then have supc0≤c<∞ |Δ̂(m+1)
c | < ωm+1(B−1

0 U0/3 + U0/3) + δ/2 < ωm+1U0 + δ/2.
As 0 < ω < 1, ωm+1 declines exponentially so m0 can be chosen sufficiently large
that for all m > m0 then ωm+1U0 < δ/2. Thus P(supc0≤c<∞ |Δ̂(m+1)

c | < δ) > 1 − ε

for all m > m0 and n > n0. �

Proof (Theorem 4) Assumption 1(ia) implies E|εi/σ |l < ∞ for some l > 4. Apply
(15) and the Chebyshev inequality to get λ/n = P(|εi| > σcn) ≤ E|εi/σ |lc−l

n . Thus
cn ≤ (E|εi/σ |l)1/lλ−1/ln1/l so that the divergence rate of cn is O(n1/l) = o(n1/4).
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1. A bound on the sample space. By Assumption 1(ia, ii, iii) with η = 1/4,
Theorems 2 and 3 show that β̂(m)

cn , (̂σ (m)
cn )2 are tight. Assumption 1(iib) gives

max1≤i≤n |xin| = OP(nκ−1/2) = oP(n−1/4) for some 0 ≤ κ < 1/4. Thus, for all ε > 0
there exists a large constant A0 so that the set

Bn = { sup
0≤m<∞

(|̂b(m)
cn | + |̂a(m)

cn |) + n1/4 max
1≤i≤n

|xin| ≤ A0}

has the probability larger than 1 − ε for all n. Note that b̂(m)
cn = N−1(β̂(m)

cn − β) and
â(m)
cn = n1/2(̂σ (m)

cn − σ).
2. Bound the indicator. Define the random quantity,

s(m)
i,cn

= σ̂ (m)
cn cn − yi + x′

iβ̂
(m)
cn + εi = σcn + n−1/2â(m)

cn cn + x′
in̂b

(m)
cn .

On the setBn and as cn = o(n1/4), we have for some A1 > 0

s(m)
i,cn

≤ σcn + n−1/2A0cn + n−1/4A2
0 ≤ σ(cn + n−1/4A1),

s(m)
i,cn

≥ σcn − n−1/2A0cn − n−1/4A2
0 ≥ σ(cn − n−1/4A1).

Since the sets (yi − x′
iβ̂

(m)
cn > σ̂ (m)

cn cn) and (εi > s(m)
i,cn

) are equal, we find

1(εi/σ>cn+n−1/4A1) ≤ 1
(yi−x′

i β̂
(m)
cn >σ̂

(m)
cn cn)

≤ 1(εi/σ>cn−n−1/4A1).

A similar argument shows

1(εi/σ<−cn−n−1/4A1) ≤ 1
(yi−x′

i β̂
(m)
cn <−σ̂

(m)
cn cn)

≤ 1(εi/σ<−cn+n−1/4A1).

Thus, we get the lower and upper bound for indicators uniformly in iteration m so

1(|εi/σ |>cn+n−1/4A1) ≤ 1
(|yi−x′

i β̂
(m)
cn |>σ̂

(m)
cn cn)

≤ 1(|εi/σ |>cn−n−1/4A1). (43)

3. Expectation of indicator bounds. The aim is to prove

nE1(|εi/σ |>cn+n−1/4A1) → λ, nE1(|εi/σ |>cn−n−1/4A1) → λ. (44)

Since nE1(|εi/σ |>cn) = λ by (15), it suffices to show

En = nE{1(|εi/σ |>cn−n−1/4A1) − 1(|εi/σ |>cn+n−1/4A1)} → 0.

Note |εi/σ | ∼ g,G and g = 2f,G = 2F − 1. By this and (15), 2{1 − F(cn)} = λ/n.
Write En as integral, apply the mean value theorem and use the above identity to get

En = n
∫ cn+n−1/4A1

cn−n−1/4A1

2f(u)du = 4nn−1/4A1f(c̃) = 4λn−1/4A1f(c̃)
2{1 − F(cn)} ,
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where |c̃ − cn| ≤ n−1/4A1. Then, we find

En = 2λA1
f(c̃)

f(cn − n−1/4A1)

f(cn − n−1/4A1)

f(cn)
f(cn)

cn{1 − F(cn)}n
−1/4cn.

Since cn − n−1/4A1 ≤ c̃ and f has the decreasing tail by Assumption 1(ia), the first
ratio is bounded by 1. Since cn = o(n1/4), Assumption 1(ib, ic) shows the second
and third ratio are bounded. Then use n−1/4cn = o(1) to get En = o(1).

4. Poisson approximation. On the setBn, apply (43) to obtain

n∑

i=1

1(|εi/σ |>cn+n−1/4A1) ≤
n∑

i=1

1
(|yi−x′

i β̂
(m)
cn |>σ̂

(m)
cn cn)

≤
n∑

i=1

1(|εi/σ |>cn−n−1/4A1).

Using (44), the Poisson limit theorem shows that the lower and upper bound

have the Poisson limit with mean λ. By (16), nγ̂ (m)
cn

D→ Poisson(λ) for all 0 ≤ m
< ∞. �
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Regression Quantile and Averaged
Regression Quantile Processes

Jana Jurečková

Abstract We consider the averaged version B̃n(α) of the two-step regression α-
quantile, introduced in [6] and studied in [7]. We show that it is asymptotically
equivalent to the averaged version B̄n(α) of ordinary regression quantile and also
study the finite-sample relation of B̃n(α) to B̄n(α). An interest of its own has the
fact that the vector of slope components of the regression α-quantile coincides with
a particular R-estimator of the slope components of regression parameter. Under
a finite n, the stochastic processes B̃n = {B̃n(α) : 0 < α < 1} and Bn = {B̄n(α) :
0 < α < 1} differ only by a drift.

Keywords Averaged regression quantile · Regression quantile process · Two-step
regression quantile process

1 Introduction

Consider the linear regression model

Yn = Xnβ + Un (1)

with observations Yn = (Y1, . . . ,Yn)�, i.i.d. errors Un = (U1, . . . ,Un)
� with an

unknown distribution function F, and unknown parameter β = (β0, β1, . . . , βp)
�.

The n × (p + 1)matrixX = Xn is known and xi0 = 1 for i = 1, . . . , n (i.e., β0 is an
intercept). The α-regression quantile β̂n(α) of model (1) was introduced by Koenker
and Bassett [10] as a solution of the minimization

α

n∑

i=1

(Yi − x�
i b)+ + (1 − α)

n∑

i=1

(Yi − x�
i b)− := min (2)
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with respect to b = (b0, . . . , bp)
� ∈ IRp+1, where x�

i is the i-th row of Xn,

i = 1, . . . , n. The population counterpart of β̂n(α) is the vector β(α) = (β0 +
F−1(α), β1, . . . , βp)

�. For the brevity, we shall occasionally use the notation

x∗
i = (xi1, . . . , xip)

�, i = 1, . . . , n and X∗
n =

[
x∗
1, . . . , x

∗
n

]�

β∗ = (β1, . . . , βp)
�, β̂∗

n (α) = (β̂1(α), . . . , β̂p(α))�.

The asymptotic behavior of α-regression quantile was studied in [2, 10, 14],
among many others. The two-step regression α-quantile, asymptotically and numer-
ically close to β̂n(α), was proposed and studied in [6].

We impose the following regularity conditions on matrix Xn and on distribution
function F(x) of the errors Ui :

A1 limn→∞ Qn = Q, where Qn = n−1X�
n Xn and Q is a positive definite matrix.

The first column of Xn consists of ones.
A2 n−1 ∑n

i=1 x
4
i j = O(1), as n → ∞, for j = 1, . . . , p.

B1 F has a continuous Lebesgue density f, which is positive and finite on
{t : 0 < F(t) < 1}.

For two processes An, Bn with realizations in Dq(0, 1), we shall write

An = Bn + o∗
p(1) [ or O∗

p(1), o
∗(1), O∗(1), respectively], if

‖An − Bn‖ε = sup
ε≤α≤1−ε

‖An(α) − Bn(α)‖
= op(l) [ or Op(1), o(l),O(l), respectively]

for all ε ∈ (0, 1/2). If Bn
D→ B and An = Bn + o∗

p(1), then An
D→ B.

Let Wx
n denotes the weighted empirical process

Wx
n = n−1/2

n∑

i=1

xni (a∗
i (α) − (1 − α)), where a∗

i (α) = I [Ui > F−1(α)]

i = 1, . . . , n, and consider the regression quantile process

Zn =
{
Zn(α) = n1/2(β̂n(α) − β(α)), 0 < α < 1

}
, (3)

β(α) = β + F−1(α)e1, e1 = (1, 0, . . . , 0)� ∈ IRp+1.

For the sake of completeness, let Z (0)
n denote the ordinary quantile process:
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Z (0)
n =

{
Z (0)
n (α) = n1/2(F−1

n (α) − F−1(α)), 0 < α < 1
}

(4)

where F−1
n is the empirical quantile function.

A uniform asymptotic representation of Zn up to the remainder term of order
0(n−1/4 log n) was derived in [13]. The Bahadur-type representation of Zn under
weaker conditions, and its convergence to a Gaussian process was proven in [2].
More precisely,

Theorem 1 Under the conditions A1 and A2,

Zn(α) = 1

f (F−1(α))
Q−1

n

n∑

i=1

Wx
n(α) + o∗

p(1) (5)

as n → ∞.

Moreover,

Zn
D→

(
f ◦ F−1

)−1
Q−1W∗

(p) as n → ∞, (6)

where W∗
(p) is a vector of p independent Brownian bridges on (0, 1).

Theweighted empirical processes of type (5) and their asymptotic properties were
systematically studied in Koul’s monograph [11] with a rich bibliography.

2 Averaged Regression Quantile Process

The regression quantiles were widely applied in the statistical and econometric infer-
ence; here we refer to Koenker’s monograph [9] and to the references cited in, among
others. Their extension to the autoregression processes was studied in [12].

The scalar statistic

B̄n(α) = x̄�
n β̂n(α), x̄n = 1

n

n∑

i=1

xni (7)

is called the averaged regression α-quantile; it was first considered in [1]. It is in
α ∈ (0, 1) a.s., and scale and regression equivariant in the sense that

B̄n(α;Y + Xb) = B̄n(α,Y) + x̄�b ∀b ∈ R
p+1.

For every fixed n, B̄n(α) equals to a linear combination of p + 1 components of the
vector of responsesY, corresponding to the optimal base of the linear programming,
leading to calculation of β̂n(α) or of its dual.

As it was shown in [8], B̄n(α) is asymptotically equivalent to the [nα]-quantile
of the location model. More precisely, under the conditions of Theorem 1,
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n1/2
[
x̄�
n (β̂n(α) − β̃(α)) − (Un:[nα] − F−1(α))

] = Op(n
−1/4) (8)

as n → ∞, where Un:1 ≤ · · · ≤ Un:n are the order statistics corresponding to
U1, . . . ,Un .

Let us now consider the average regression quantile process

B̄n =
{
n1/2x̄�

n

(
β̂n(α) − β(α)

)
; 0 < α < 1

}
.

Its trajectories are step functions, nondecreasing in α ∈ (0, 1), and for each n they
have finite numbers of discontinuities. As was shown in [1],

B̄n(α1) �= B̄n(α2) with probability 1, provided 1 > α2 − α1 >
p + 1

n
> 0.

Combining (8) with Theorem 1, we come to the conclusion that the process B̄n is
asymptotically equivalent to the location quantile process, and that it converges to a
Gaussian process in the Skorokhod topology. More precisely,

Theorem 2 Under the conditionsA1,A2, andB1, the process B̄n admits the asymp-
totic representation

B̄n = n−1/2 1

f (F−1(α))

n∑

i=1

(
I [Ui > F−1(α)] − (1 − α)

)
+ o∗

p(1). (9)

Moreover,

B̄n
D→ ( f ◦ F−1)−1W ∗ as n → ∞ (10)

where W ∗ is the Brownian bridge on (0,1).

The weak convergence of process B̄n extends to various functionals, what has use-
ful applications, e.g., in models with nuisance regression. The representation (9)
coincides with the representation of the ordinary quantile process (4), hence B̄n

is asymptotically equivalent to the ordinary quantile process. Moreover, B̄n(0) ≤
B̄n(α) ≤ B̄n(1), where B̄n(0) and B̄n(1) are extreme averaged regression quantiles,
studied in [5]. As such, the inversion of {B̄n(α), 0 < α < 1}

Hn(z) = inf{α : B̄n(α) ≥ z, z ∈ R}

makes a sense. It is again a nondecreasing step function with a finite number
of discontinuities, Hn(−∞) = 0, Hn(∞) = 1, hence it is a discrete distribution
function on R

1. Portnoy [13] demonstrated its tightness with respect to the Sko-
rokhod topology and that of its smoothed version in C (0, 1). We can conclude that
n1/2(Hn(F−1(α)) − α) converges weakly to the Brownian bridge W ∗ on (0, 1).

In the following section, we shall parallely consider the two-step regression α-
quantile β̃n(α), introduced in [6], and its averaged version B̃n(α); they are asymp-
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totically equivalent to β̂n(α) and to B̄n(α), respectively. B̃n(α) can be equivalently
expressed as the [nα]-th order statistic of residuals of Yi ’s from specific R-estimators
of the slope components; this enables to look more closely in the structure of the
considered concepts. Moreover, we shall also describe the finite sample relation of
B̃n(α) to B̂n(α).

For everyfixedn, B̄n(α) equals to a linear combination of p + 1 components of the
vector of responsesY, corresponding to the optimal base of the linear programming,
leading to calculation of β̂n(α) or of its dual.

Let us now consider the average regression quantile process

B̄n =
{
n1/2x̄�

n

(
β̂n(α) − β̃(α)

)
; 0 < α < 1

}
.

Its trajectories are step functions, nondecreasing in α ∈ (0, 1), and for each n they
have finite numbers of discontinuities. As was shown in [1],

B̄n(α1) �= B̄n(α2) with probability 1, provided 1 > α2 − α1 >
p + 1

n
> 0.

Combining (8) with Theorem 1, we come to the conclusion that the process B̄n is
asymptotically equivalent to the location quantile process, and that it converges to a
Gaussian process in the Skorokhod topology. More precisely,

Theorem 3 Under the conditionsA1,A2 andB1, the process B̄n admits the asymp-
totic representation

B̄n = n−1/2 1

f (F−1(α))

n∑

i=1

(
I [Ui > F−1(α)] − (1 − α)

)
+ o∗

p(1). (11)

Moreover,

B̄n
D→ ( f ◦ F−1)−1W ∗ as n → ∞ (12)

where W ∗ is the Brownian bridge on (0,1).

The weak convergence of process B̄n extends to various functionals, what has use-
ful applications, e.g. in models with nuisance regression. The representation (9)
coincides with the representation of the ordinary quantile process (4), hence B̄n

is asymptotically equivalent to the ordinary quantile process. Moreover, B̄n(0) ≤
B̄n(α) ≤ B̄n(1), where B̄n(0) and B̄n(1) are extreme averaged regression quantiles,
studied in [5]. As such, the inversion of {B̄n(α), 0 < α < 1}

Hn(z) = inf{α : B̄n(α) ≥ z, z ∈ R}

makes a sense. It is again a nondecreasing step function with a finite number
of discontinuities, Hn(−∞) = 0, Hn(∞) = 1, hence it is a discrete distribution
function on R

1. Portnoy [13] demonstrated its tightness with respect to the Sko-
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rokhod topology and that of its smoothed version in C (0, 1). We can conclude that
n1/2(Hn(F−1(α) − α) converges weakly to the Brownian bridge W ∗ on (0,1).

In the following section, we shall parallely consider the two-step regression α-
quantile β̃n(α), introduced in [6], and its averaged version B̃n(α); they are asymp-
totically equivalent to β̂n(α) and to B̄n(α), respectively. B̃n(α) can be equivalently
expressed as the [nα]-th order statistic of residuals of Yi ’s from specific R-estimators
of the slope components; this enables to look more closely in the structure of the
considered concepts. Moreover, we shall also describe the final sample relation of
B̃n(α) to B̂n(α).

3 Averaged Two-Step Regression Quantile Process

The slope component of the two-step regression α-quantile β̃n(α) is a specific
R-estimate β̃∗

nR(α) of the slope parameter vector β∗; the intercept component
is the [nα]-quantile of residuals of Yi ’s from β̃∗

nR(α). The result is a consistent
estimator of (β0 + F−1(α), β1, . . . , βp)

�, is asymptotically equivalent to the regres-
sion α-quantile β̂n(α), and very close to the same even for finite samples.

Consider the model (1) under the following conditions on F and on Xn:

(A1) F has a continuous density f that is positive on the support of F and has finite
Fisher’s information, i.e.

0 <

∫ (
f ′(x)
f (x)

)2

dF(x) < ∞.

(A2) (Generalized Noether condition.)
limn→∞ max1≤i≤n x∗�

ni

(∑n
k=1 x

∗
nkx

∗�
nk

)−1
x∗
ni = 0.

(A3) limn→∞ n−1 ∑n
i=1 xnix

�
ni = Q, where xni = (1, x∗

n,i1, . . . , x
∗
n,i p)

�, i = 1,
. . . , n, and Q is a positively definite (p + 1) × (p + 1) matrix.

Let β̃∗
nR(α) be the R-estimator of the slope components β∗ = (β1, . . . , βp)

� based
on the score-generating function

ϕα(u) = α − I [u < α], 0 < u < 1. (13)

It is a minimizer of Jaeckel’s [4] measure of rank dispersion

β̃nR(α) = argminb∈RpDn(b), (14)

Dn(b) =
n∑

i=1

(Yi − x∗�
i b)ϕα

(
Rni (Yi − x∗�

i b)

n + 1

)
,

where Rni (Yi − x∗�
i b) is the rank of the i-th residual, i = 1, . . . , n.
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Having estimated β∗ by R-estimate β̃∗
nR(α), we define the intercept component

β̃n0(α) of the two-step regression quantile as the [nα]-order statistic of the residuals
Yi − x∗�

i β̃∗
nR(α), i = 1, . . . , n.The two-step α-regression quantile is then the vector

β̃n(α) =
(

β̃n0(α)

β̃∗
nR(α)

)
∈ R

p+1. (15)

As shown in [6], β̃n(α) is asymptotically equivalent to the Koenker–Bassett α-
regression quantile, uniformly over (ε, 1 − ε) ⊂ (0, 1), ∀ε ∈ (0, 1

2 ), hence

n
1
2 ‖β̂n(α) − β̃n(α)‖ = o∗

p(1) as n → ∞. (16)

We shall show that, under finite n, the slope components of β̃n(α) and of β̂n(α)

exactly coincide for every fixed α ∈ (0, 1). It is expressed in the following lemma:

Lemma 1 Let β̂n(α) and β̃n(α) be the α-regression quantile and two-step α-
regression quantile in model (1), α ∈ (0, 1). Then, their slope components coincide,
i.e., β̂∗

n (α) ≡ β̃∗
nR(α) for every fixed α ∈ (0, 1).

Proof The minimum in (14), being attained for β̃∗
nR(α), can be rewritten as

n∑

i=1

(Yi + x̄�
n β̃∗

nR(α) − x∗�
i β̃∗

nR(α))[ai (α, β̃∗
nR(α)) − (1 − α)] (17)

with respect to b ∈ R
p, where for b ∈ R

p

ai (α,b) =

⎧
⎪⎨

⎪⎩

0 . . . Rni (Yi − x∗�
i b) < nα

Ri − nα . . . nα ≤ Rni (Yi − x∗�
i b) < nα + 1

1 . . . nα + 1 ≤ Rni (Yi − x∗�
i b).

(18)

The ai (α,b) are known as Hájek’s [3] rank scores. Remind that they are invariant to
the translation and satisfy

n∑

i=1

ai (α,b) = n(1 − α).

Moreover, due to the linear programing duality tominimization (2) for locationmodel
and Yi �→ Yi − x∗�

i b, i = 1, . . . , n, vector an(α,b) = (a1(α,b), . . . , an(α,b))�
solves the maximization

n∑

i=1

(Yi − x∗�
i b)[ai (α,b) − (1 − α)] = max
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under the constraint

n∑

i=1

ai (α,b) = n(1 − α), 0 ≤ ai (α,b) ≤ 1, i = 1, . . . , n.

Hence, combining the minimization with respect to b ∈ R
p and maximization with

respect to 0 ≤ ai (α,b) ≤ 1, i = 1, . . . , n,
∑n

i=1 ai (α,b) = n(1 − α), we obtain
for a fixed α

α

n∑

i=1

(Yi − x�
i β̂n(α))+ + (1 − α)

n∑

i=1

(Yi − x�
i β̂n(α))−

=
n∑

i=1

Yi [âi (α) − (1 − α)] (19)

=
n∑

i=1

(Yi + x̄∗�
n β̃∗

nR(α) − x∗�
i β̃∗

nR(α))[âi (α) − (1 − α)]

≤
n∑

i=1

(Yi + x̄∗�
n β̃∗

nR(α) − x∗�
i β̃∗

nR(α))[ai (α, β̃∗
nR(α)) − (1 − α)]

≤
n∑

i=1

(Yi − x�
i β̂n(α))[ai (α, β̃∗

nR(α)) − (1 − α)]

≤
n∑

i=1

(Yi − x�
i β̂n(α))[ai (α, β̂∗

n (α)) − (1 − α)]

where âi (α), i = 1, . . . , n are regression rank scores, dual to β̂n(α), defined as a
solution of the linear program

n∑

i=1

Yi âi (α) := max

under the constraint
n∑

i=1

âi (α) = n(1 − α),

n∑

i=1

xi j âi (α) = (1 − α)

n∑

i=1

xi j , j = 1, . . . , p,

0 ≤ âi (α) ≤ 1, i = 1, . . . , n, 0 ≤ α ≤ 1.

Let r̂i (α) = Yi − x�
i β̂n(α), i = 1, . . . , n and r̂n:1(α) ≤ r̂n:2(α) ≤ . . . ≤ r̂n:n(α).

Then the last term in (19) can be rewritten as
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(α − 1)
�nα�−1∑

i=1

r̂n:�nα�(α) + α

n∑

i=�nα�
r̂n:i (α). (20)

Consider the difference of the first term in (19) and of (20), which is nonpositive. If
r̂n:�nα�(α) > 0, then this difference equals to

n∑

i=1

r̂i (α)I [0 < r̂i (α) < r̂n:�nα�(α)] ≥ 0.

Similarly, if r̂n:�nα�(α) < 0, then the difference equals

−
n∑

i=1

r̂i (α)I [r̂n:�nα�(α) < r̂i (α) < 0] ≥ 0

and the difference equals 0 otherwise. Hence, the first and the last terms, and also all
terms in (19) coincide. This further implies that β̂∗

n (α) minimizes (17) and equals to
β̃∗
nR(α). �

Define the averaged two-step regression α-quantile B̃n(α), analogous to B̄n(α)

in (7), as

B̃n(α) = x̄�
n β̃n(α), x̄n = 1

n

n∑

i=1

xni (21)

B̃n(α) is scale equivariant and regression equivariant generally not monotone in α.
By (15), for every fixed α ∈ (0, 1) is B̃n(α) equal to the [nα]-order statistic of the
residuals

B̃n(α) = (
Yni − (xni − x̄n)�β̃∗

nR(α)
)
n:[nα]. (22)

The following theorem describes the finite-sample relation of B̃n(α) to B̄n(α):

Theorem 4 Let B̄n(α) and B̃n(α) be the averaged regression α-quantile and the
averaged two-step regression α-quantile, respectively. Then, for every fixed α ∈
(0, 1)

B̃n(α) = B̄n(α) + (
Yni − x�

ni β̂n(α)
)
n:[nα]. (23)

Proof By (22) and by Lemma 1

B̃n(α) = (
Yni − (xni − x̄n)�β̃∗

nR(α)
)
n:[nα]

= (
Yni − β̂0(α) − x∗�

ni β̃∗
n (α)

)
n:[nα] + β̂0(α) + x̄∗�

n β̂∗
n (α)

= (
Yni − x�

ni β̂n(α)
)
n:[nα] + x̄�

n β̂n(α) = B̄n(α) + (
Yni − x�

ni β̂n(α)
)
n:[nα]. �
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Corollary 1 Let B1
n and B2

n be the processes

B1
n = {B̄n(α) : 0 < α < 1}

B2
n = {B̃n(α) : 0 < α < 1}.

Then
B2

n(α) − B1
n(α) − (

Yni − x�
ni β̂n(α)

)
n:[nα] = o∗

p(1) as n → ∞. (24)

Corollary 2 Let β̂n0(α) and β̃n0(α) be the intercept components of the α-regression
quantile and of the α-two-step regression quantile, respectively. Then for every fixed
α ∈ (0, 1)

β̃n0(α) − β̂n0(α) = (
Yi − x�

ni β̂n(α)
)

n:[nα]
. (25)

Remark 1 The asymptotic relation of the α-regression quantile and of the α-two step
regression quantile is numerically illustrated in [6].
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Stability and Heavy-Tailness

Lev B. Klebanov

Abstract We discuss some simple statistical models leading to some families of
probability distributions. These models are of specific interest because the desirable
statistical property leads to functional equations having a large set of solutions. It
appears that a small subset only of the set of all the solutions has probabilistic sense.

Keywords Characterization problems · ν-stable distributions ·Heavy-tailed distri-
butions

1 Introduction: A Little Bit of Naive Philosophy

When we were students, I heard the sentence that Probability is a part of measure
theory, studying special case of positive normalized measure and a notion of inde-
pendence. But what are typical results, showing the difference of Probability from
Analysis? To me, typical results of such kind are Theorems by Cramér, Raikov, and
Linnik on decompositions of Normal, Poisson, and the composition of Normal and
Poisson distributions. These theorems provide us with very nice probability results
whose proofs essentially use the analytic functions theory. They give also examples,
which are not typical for classical Analysis. Namely, without positiveness property
of the measures such results are impossible. Do we have analytical results typical
for Mathematical Statistics?

2 Polya Theorem

I think, such results arise in Characterization of Probability distributions. The aim
of Characterization is to describe all distributions of random variables possessing a
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desirable property, which may be taking as a base of probabilistic and/or statistical
model. Let us start with an example leading to Polya theorem. Suppose that we
have a gas whose molecules are chaotically moving, and the space is isotropic and
homogeneous. Denote by X1 and X2 projections of the velocity of a molecule on
the axis in x − y plain. In view of space property we have the following properties:

(a) X1 and X2 are independent random variables; (b) X1
d= X2. After rotation of the

coordinate system counterclockwise on the angle π/4 we obtain, that a projection
on new coordinate axes has to be identically distributed with the old one. That is,

X1
d= (X1 + X2)/

√
2. Polya Theorem says that in this situation X1 has normal (or

degenerate) distribution with zero mean.
Let us note that there are no moment conditions in Polya Theorem. This Theorem

states that such general properties of the space like isotropy and homogeneity imply
normality of corresponding velocity distribution. This model contains one parameter
(the variance of Gaussian distribution), and a statistician has tomake some inferences
on this parameter. Polya theorem is a sophisticated result in the sense that it uses
essentially the probabilist character of corresponding measures. Actually, to prove
this theorem it is necessary to solve the following functional equation

f (t) = f 2(t/
√
2),

where f (t) is characteristic function of X1. The general solution of this equation has
the form

f (t) = exp{−at2h(t)},

where h(log t) is arbitrary continuous (log 2)/2-periodic function. The probabilist
character f (t) allows to prove that h(t) = const and a ≥ 0.

3 ν-normality and ν-stability

Suppose thatU = {X, X1, . . . , Xn, . . .} is a sequence of i.i.d. random variables. Let
Δ be a subset of (0, 1). Let {νp, p ∈ Δ} be a family of positive integer-valued
random variables independent with U . Let p = 1/Eνp < 1 for all p ∈ Δ. We say,
X has ν-strictly stable distribution if there exist positive α such that

X
d= p1/α

νp∑

k=1

Xk

for all p ∈ Δ. The definition in this form and description of all ν-strictly stable
distribution belongs to L.B. Klebanov and S.T. Rachev [7]. The particular case of
geometrically distributed νp was considered by L.B. Klebanov, G.M. Manija and
I.A. Melamed [5]. The same authors gave a generalization for the case of other νp

under additional conditions in 1987 (see, [6]).
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For the case of α = 2, we are talking about ν-Gaussian (or ν-normal) distribu-
tion, and for the case of positive random variables and α = 1 about ν-degenerate
distribution (but they are nondegenerate as probability distributions).

Let us note that stable distributions in classical case (that is for the case of non-
random number of summands) may be defined in two ways. The first one uses the
property of identical distribution of a random variable with normalized sum of its
i.i.d. copies (algebraic definition). The second way consists in defining stable distri-
butions as limit laws for sums of i.i.d. random variables (analytic or limit definition).
For the case of random number of summands, these definitions appears to be differ-
ent. Given definition has algebraic character. Limit definition (which is now different
with algebraic one) belongs to B.V. Gnedenko [2, 3].

The condition for existence of algebraic ν-strictly stable distribution has the fol-
lowing form. LetG be a semigroup, generated by all probability generating functions
of {νp, p ∈ Δ} with superposition as semigroup operation. ν-strictly stable distri-
bution exists if and only if G is commutative. Let us note that notion and properties
of ν-stable distributions are identical for the case of the family {νp, p ∈ Δ} and for
that of the semigroup, generated by this family. However, the sets Δ for these cases
may be different. For example, the set Δ connected to G always contains zero as
a limit point. Everywhere below we suppose, that the set Δ is connected with the
semigroup G.

An analogue of Polya theorem may be formulated in the following way. Suppose
that the semigroupG is commutative. Suppose that U and {νp, p ∈ Δ} are as above.
The equality in distribution

X
d= √

p
νp∑

k=0

Xk

is true for a fixed p ∈ Δ if and only if X has ν-Gaussian distribution. This theorem is
also sophisticated in the sense that corresponding functional equation has infinitely
many nonprobabilistic solutions.

In the case of

X
d= p

νp∑

k=0

Xk

and positive random variables, we have similar characterization of ν-degenerate
distribution.

In a very natural way one can define ν-infinite divisible distributions.
Let ϕ(s) is Laplace transform of ν-degenerate random variable (see, for Example,

[8]). Characteristic function f (t) is infinite divisible in classical sense if and only
if ϕ(− log f (t)) is ν-infinite divisible. This is obviously true for strictly stable and
ν-strictly stable distributions, too.

Consider some examples of ν-degenerate and ν-Gaussian distributions.

Example 1 The random variable νp has geometric distribution: P{νp = k} = p(1 −
p)k−1, k = 1, 2, . . ., p ∈ (0, 1). In this case, ν-degenerate random variable has
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exponential distribution, and the ν-Gaussian distribution is the Laplace distribution
(see, [5]).

Example 2 The random variable νp, p ∈ {1/n2, n = 1, 2, . . .} has probability gen-
erating function

Pp(z) = 1/Tn(1/z), n = 1/
√
p,

where Tn(z) is Chebyshev polynomial of the first kind ([5]). In this case, characteristic
function of the ν-Gaussian distribution has form

f (t) = 1/ cosh(at), a > 0.

Laplace transform of ν-degenerate distribution is

ϕ(s) = 1/ cosh(
√
2as), s > 0, a > 0.

It is clear that the both distributions are absolutely continuous and have exponential
tails. The ν-Gaussian distribution is so-called hyperbolic secant distribution with
density

p(x) = 1
/ (

2 cosh
(πx

2

))
.

The density of ν-degenerate random variable is identical with that of random variable
ξ = ∫ 1

0 W 2
1 (t)dt + ∫ 1

0 W 2
2 (t)dt , where W1(t), W2(t) are two independent Wiener

processes (see, [8]).

4 Further Examples of ν-Gaussian Distributions

Example 3 Consider random variable νp with probability generating function

Pp(z) = p1/mz

(1 − (1 − p)zm)1/m
, p ∈ (0, 1), m ∈ N,

which is a modification of that of negative binomial distribution. In this case, the
Laplace transform of ν-degenerate (standard) distribution is

ϕ(s) = 1

(1 + ms)1/m
,

that is Laplace transform of gamma distribution. Characteristic function of
ν-Gaussian distribution is

f (t) = 1

(1 + mat2)1/m
,
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with parameter a > 0. This is characteristic function of symmetrized Gamma-
distribution. Let us note that negative binomial distribution does not posses ν-
Gaussian distribution in algebraic sense, but has such distribution is limit sense.
This is also symmetrized Gamma-distribution.

Example 4 Consider now the family of random variables {νp, p ∈ {1/n2, n =
2, 3, . . .} with probability generating functions

Pp(z) = 1

(Tn(1/zm))1/m
,

where p = 1/n2, n = 2, 3, . . . andm ≥ 1 is an integer parameter. For corresponding
standard ν-degenerate and ν-Gaussian random variables, we have Laplace transform
and characteristic function

ϕ(s) = 1

(cosh
√
2mt)1/m

and f (t) = 1

(cosh at)1/m
,

where a > 0. Both ν-degenerate and ν-Gaussian distributions have exponential tails.

5 Toy-Model of Capital Distribution

In physics, under toy-model usually understand a model, which does not give com-
plete description of a phenomena, but is rather simple and provides explanation of
essential part of the phenomena.

Let us try to construct a toy-model for capital distribution. Assume that there is an
output (business) in which we invest a unit of the capital at the initial moment t = 0
at the moment t = 1 we get a sum of capital X1 (the nature of the r.v. X1 depends on
the nature of the output and that of the market). If the whole sum of capital remains
in the business, then to the moment t = 2 the sum of capital becomes X1 · X2, where
r.v. X2 is independent of X1 and has the same distribution as X1 (provided that
conditions of the output and of the market are invariable). Using the same arguments
further on, we find that to the moment t = n the sum of capital equals to

∏n
j=1 X j ,

and also r.v.s X1, . . . , Xn are i.i.d.
From the economical sense it is clear that X j > 0, j = 1, . . . , n. Now assume

that there can happen a change of output or of the market conditions which makes
further investment of capital in the business impossible. We assume that the time till
the appearance of the unfavorable event is random variable νp, p = 1/Eνp. The sum
of capital to the moment of this event equals to

∏νp

j=1 X j . And the mean time to the
appearance of the unfavorable event is Eνp = 1/p. Therefore, “mean annual sum of
capital” is

Z p =
( νp∏

j=1

X j

)p
.
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The smaller is the value of p > 0 the rarely is the unfavorable event. If p is small
enough, we may approximate the distribution of Z p by its limit distribution for
p → 0. To find this distribution it is possible to pass from X j to Y j = log X j , and
change the product by a sum of random number νp of random variables Y j .

If probability generating functions of νp generate a commutative semigroup, the
limit distribution of the sum will coincide with ν-stable or with ν-degenerate distri-
bution.

The most simplest case is that of geometric distribution of νp. In this situation,
the probability of unfavorable event is the same for each time moment t = k. If there
exists positive first moment of Y j = log X j , then the limit distribution of random
sum coincides with ν-degenerate distribution, and is Exponential distribution. This
means, that limit distribution of Z p is Pareto distribution F(x) = 1 − x−1/γ for
x > 1, and F(x) = 0 for x ≤ 1. Here γ = E log X1 > 0. This distribution has power
tail. For γ ≥ 1 this distribution has infinite mean. Pareto distribution was introduced
by Wilfredo Pareto to describe the capital distribution, but he used empirical study
only, and had no toy-model. About hundred years ago this distribution gave a very
good agreement with observed facts. Let us mention that our toy-model shows, that
such distribution of capitals may be explained just by random effects. This is an
essential argument against Elite Theory, because the definition of elite becomes not
clear.

But what about capital distribution nowadays? Analysis of capitals of the first
hundred billionaires (Forbes dataset) gives not bad agreement with Pareto distribu-
tion, too. However, the tail in themodel is a little bit heavier than for real data (Fig. 1).

Some better agreement on the tail gives log-gamma distribution, which is log-
transformation of ν-degenerate distribution for negative binomial distributed number
of multipliers. In this situation, power tail of Pareto distribution is slightly corrected
by logarithmic multiplier (Fig. 2).

I tried to consider capital distribution of all billionaires. Corrected Pareto distrib-
ution provides good agreement at the tail, but does not work in the central part of the
distribution. This is so because the random number of summands may be considered

Fig. 1 Plot of Pareto
distribution function (dashed
line) versus empirical
distribution of the capital of
highest 100 billionaires.
Forbes dataset
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Fig. 2 Plot of log-gamma
distribution function (dashed
line) versus empirical
distribution of the capital of
highest 100 billionaires.
Forbes dataset
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Fig. 3 Plot of ν-degenerate
distribution function (dashed
line) versus empirical
distribution of the capital of
all billionaires. Bloomberg
dataset
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now as a sum of few geometric distributions, which corresponds to “Chebyshev”
probability generating function with the use of ν-degenerate distribution as possible
approximation (see Example 2) (Fig. 3).

6 Few Words on the Distribution of Asset Returns

I will start with a citation from “Financial Risk and Heavy Tails” by Brendan
O. Bradley and Murad S. Taqqu: “It is of great importance for those in charge of
managing risk to understand how financial asset returns are distributed. Practition-
ers often assume for convenience that the distribution is normal. Since the 1960s,
however, empirical evidence has led many to reject this assumption in favor of var-
ious heavy-tailed alternatives. In a heavy-tailed distribution the likelihood that one
encounters significant deviations from the mean is much greater than in the case
of the normal distribution. It is now commonly accepted that financial asset returns
are, in fact, heavy-tailed. The goal of this survey is to examine how these heavy tails
affect several aspects of financial portfolio theory and risk management. We describe
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some of the methods that one can use to deal with heavy tails and we illustrate them
using the NASDAQ composite index” (see [1]).

This motivation is, in a sense, typical for papers in analysis of distributions for
asset returns.

However, for asset returns distribution are used not the sums of money, but corre-
sponding logarithms.Wehave seen, the distributions of logarithms of capital amounts
of billionaires have exponential (so, not heavy!) tails. Therefore, it will be a little bit
strange to expect heavy tails for asset returns distributions. In a preprint [9], there
was given detailed analysis of all arguments supporting the choice of heavy tailed
variant of asset returns distribution. The authors went to decision, which arguments
do not really support this choice. Below I will give an analysis of the first argument
of this kind.

The first argument usually arises when considering some of the time series, such
as the Dow Jones Industrial Average index (say, for the interesting Period from the
January 3, 2000 to December 31, 2009), daily ISE-100 Index (November 2, 1987–
June 8, 2001) and many others. The observed fact is that quite a lot of data not only
fall outside the 99% confidence interval on the mean, but also outside the range of
±5 σ from the average, or even ±10 σ . On the assumption of this circumstance
authors propose to the readers to make two conclusions.

First (and absolutely correct) conclusion consists in the fact that the observations
under assumption of their independence and identical distribution are in contradiction
with their normality.

The second conclusion is that the distribution of these random variables is heavy-
tailed. This decision is not based on any mathematical justification. Indeed, the
first thing that comes to mind is to apply the Chebyshev’s inequality to the random
variables with non-normal distributions. An exact inequality can be found in the book
by Karlin and Studden [4]. There is also shown extremal distribution, for which the
inequality becomes equality.

Letme quote the corresponding result:Gauss Inequality. In this example we desire
to determine the maximum value of

P{X ∈ (−∞, μ − d] ∪ [μ + d,∞)}, d > 0

over the class of unimodal distribution functions with mode and mean located at μ

and variance equal to σ 2. The solution for the case d2 ≥ 4σ 2/3 is given by 4σ 2/9d2,
with rectangular part of the distribution on interval [μ − 3d/2, μ + 3d/2] plus mass
at μ. By a rectangular distribution on [a, b] we mean a distribution F whose density
is 1/(b − a) for x ∈ (a, b) and 0 otherwise.

Let us apply this result to the studied case supposing that the distribution is
unimodal (in the same sense as in [4]) with finite variance (e.g., σ = 1), i.e., not
a heavy-tailed distribution. We choose μ = 0, σ = 1 and d = 10σ = 10. From the
earlier mentioned follows

P{|X | > 10} ≤ 1

225
,
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and the equality is reached for the above-written distribution. It is clear that the
probability of 1/225 is not so small. Exactly in the case of a sample size of 50,000
average number of exceeds of level 10σ is more than 222 times.

Notice that samples of 50,000 are not uncommon in financial problems.Moreover,
in sample such as thiswith d = 40σ = 40, an average number of exceeds of level 40σ
will be somewhat more than 13.8. It is clear, that in this case we are not talking about
the heavy tail (σ = 1 !). Thus, the first argument of the appearance of heavy-tailed
distributions is rejected.

Of course, used extremal distribution does not seem to be natural for describing
the fluctuations of financial indexes. Especially strange looks existence of the mass
at μ. Therefore, we will give an example of continuous distribution, which seems to
be more natural in this case.

Let Y be a random variable with a gamma distribution with shape parameter
1/m and scale parameter m, where m is a positive integer. Assume Y1,Y2 are two
independent variables and follow the distribution of Y . Define X as Y1 − Y2, this
is the random variable we need. It follows symmetrized gamma distribution with
the characteristic function 1/(1 + mt2)1/m , and is, therefore, ν-Gaussian random
variable for ν from Example 3, or for negative binomial ν.

It is easy to see, that this distribution has an exponential tail and hence there
exist finite moments of all orders. The variance of this distribution is equal to two
(i.e., σ = √

2) for all m > 0. Let us give the probability×10000 of deviations of the
randomvariable X larger than 10σ from the averagem = 10, p = 0.589843; n = 30,
p = 4.01799; n = 50, p = 6.63305; n = 70, p = 8.33146; n = 90, p = 9.44249.
Now we can say that for this distribution will be observed large deviations from
mean, but the tails are exponential. We say the distribution has pseudo-heavy tails.
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Smooth Estimation of Error Distribution
in Nonparametric Regression Under Long
Memory

Hira L. Koul and Lihong Wang

Abstract We consider the problem of estimating the error distribution function in a
nonparametric regression model with long memory design and long memory errors.
This paper establishes a uniform reduction principle of a smooth weighted residual
empirical distribution function estimator. We also investigate consistency property
of local Whittle estimator of the long memory parameter based on nonparametric
residuals. The results obtained are useful in providing goodness of fit test for the
marginal error distribution and in prediction under long memory.

Keywords Kernel estimation · Uniform reduction principle

1 Introduction

The nonparametric regression models with long memory errors have been discussed
extensively in the recent years. See, e.g., Csörgo and Mielniczuk [1], Masry and
Mielniczuk [14], Guo and Koul [6], Robinson [19], and the references therein. The
main focus in these papers has been on the estimation of the regression function.
It is often of interest and of practical importance to know the nature of the error
distribution. The knowledge of the error distribution can improve inference about
various underlying parameters in the model.

Kulik and Wichelhaus [11] studied the standard Parzen–Rosenblatt error den-
sity estimator for a nonparametric regression model with long memory errors and
covariates. Lorel and Kulik [13] obtained an asymptotic expansion of the nonpara-
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metric residual empirical process under broad conditions on the covariate process in
nonparametric regression models with long memory moving average errors.

In this paper,we investigate the smooth estimators of the error distribution function
(d.f.) in the same set up as in Kulik and Wichelhaus [11]. The proposed estimator is
a weighted kernel type estimator based on nonparametric residuals where regression
function is estimated by a modified Nadaraya–Watson estimator.

More precisely, consider a random process defined as a collection of random vec-
tors (Xi , Yi ) ∈ R × R, where Xi denotes the i th covariate and Yi the corresponding
response. We assume that the process {Xi , Yi ; i ∈ Z}, Z := {0,±1,±2, · · · } is sta-
tionary and E|Y0| < ∞. With μ(x) = E(Y0|X0 = x), the data consists of (Xi , Yi ),
1 ≤ i ≤ n, obeying the model

Yi = μ(Xi ) + εi , εi =
∑

j≤i

ai− jζ j , i ∈ Z, (1)

where ζ j , j ∈ Z, are i.i.d. standardized r.v.’s.
Moreover, a j , j ∈ Z, are nonrandom weights such that for some d ∈ (0, 1/2) and

0 < c < ∞,
a j ∼ cjd−1, j → ∞.

By Proposition 3.2.1 of Giraitis, Koul and Surgailis [5],

γ (i) = Cov(ε0, εi ) ∼ c2B(d, 1 − 2d)|i |2d−1, |i | → ∞, (2)

where B(α, β) = ∫ 1
0 xα−1(1 − x)β−1dx , α > 0, β > 0. This implies that the error

process {εi , i ∈ Z} has long memory in the covariance sense.
We additionally assume that the covariate process {Xi , i ∈ Z} satisfy

Xi = μX +
∑

j≤i

bi− jη j , i ∈ Z, μX ∈ R, (3)

where η j , j ∈ Z, are i.i.d. standardized r.v.’s, independent of {ζi , i ∈ Z}, and b j ∼
cX jdX −1, j ∈ Z, as j → ∞ for some dX ∈ (0, 1/2) and 0 < cX < ∞. Thus, the
process {Xi , i ∈ Z} is independent of the process {εi , i ∈ Z}, and has long memory
because for some 0 < CX < ∞,

γX (i) = Cov(X0, Xi ) ∼ CX |i |2dX −1, |i | → ∞.

Additional needed assumptions will be described in the next section.
Now, let f and F denote the common marginal density function and d.f. of ε0,

respectively. The problem of interest is to provide a goodness-of-fit test for F . Koul
and Surgailis [8, 9] observed that in the one sample location model, and more gen-
erally in the parametric multiple linear regression models with non-zero intercept
and long memory errors, the first order asymptotic behavior of the residual empiri-

http://dx.doi.org/10.1007/978-3-319-51313-3_3
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cal process based on the least square residuals is degenerate. Kulik and Wichelhaus
[11] also showed this degeneracy phenomenon for the weak limit of the kernel error
density estimator. Because of this first order degeneracy, these estimators can not be
used to develop useful goodness-of-fit tests for F or f in these models. To overcome
this deficiency, Koul, Mimoto, and Surgailis [7] proposed a modified estimator of the
location parameter so that the corresponding residual empirical process in the one
sample location model is not the first order degenerate asymptotically, and inves-
tigated some tests for fitting an error d.f. based on this estimator. In this paper we
extend this methodology to long memory nonparametric regression set up.

To proceed further, we need to obtain nonparametric residuals. Let K̃ be a kernel
density function on R, hn be a bandwidth sequence, and let K̃hn (·) = h−1

n K̃ (·/hn).
Let φ be a piece-wise continuously differentiable function on [0, 1] and define

φni = n
∫

((i−1)/n,i/n]
φ(u)du, 1 ≤ i ≤ n, (4)

fn,X (x) = 1

n

n∑

i=1

K̃hn (x − Xi ), μ̂n(x) = 1

n

n∑

i=1

Yi (1 + φni )K̃hn (x − Xi )/ fn,X (x), x ∈ R,

Note that fn,X and μ̂n are the kernel estimators of the density fX of X0 and the
regression function μ, respectively. Use μ̂n to define the residuals

ε̂i := Yi − μ̂n(Xi ), 1 ≤ i ≤ n.

The classical estimator of F is the empirical d.f. However, for continuous F it
seems more appropriate to use a smooth estimator. As proposed in Fernholz [3], Liu
and Yang [12] and Wang et al. [20], we use a kernel type estimator to estimate the
function F . In addition, as noted in Müller, Schick and Wefelmeyer [15], since the
performance of the estimator μ̂n(x) will be poor for large values of x , we shall use
only the residuals ε̂i forwhich Xi falls into an interval [τ1n, τ2n], where τ1n < 0 < τ2n ,
and −τ1n and τ2n tend to infinity slowly.

Letw(·) be a continuous weight function that vanishes off [τ1n, τ2n], is 1 on [τ1n +
r, τ2n − r ] for some fixed small positive r and is linear on the intervals [τ1n, τ1n + r ]
and [τ2n − r, τ2n]. Define the random weights

wi = w(Xi )∑n
j=1 w(X j )

, 1 ≤ i ≤ n. (5)

Let K be another kernel density function and bn be another bandwidth sequence
tending to zero, and define

F̂(x) =
n∑

i=1

wi

∫ x

−∞
Kbn (u − ε̂i )du, x ∈ R. (6)



76 H.L. Koul and L. Wang

This estimator can be used to fit a known error d.f. This will be elaborated further
on in the next section. It may be also used to construct prediction intervals as fol-
lows. Given an observation X∗ of the covariate, the predication of the corresponding
response Y∗ can be defined as Ŷ∗ = μ̂n(X∗). Then, using the estimator F̂(x), we
can construct a prediction interval [Ŷ∗ + F̂−1(α1), Ŷ∗ + F̂−1(α2)] for Y∗, with the
asymptotic confidence level α2 − α1, 0 < α1 < α2 < 1, provided that we know the
asymptotic distribution of the estimator F̂ . The asymptotic properties of F̂(x) are
described in Sect. 2 below, along with the needed assumptions.

Throughout the paper, all limits are taken as n → ∞, unless specified otherwise,
→D denotes convergence in distribution, →p denotes convergence in probability,
‖ · ‖ denote the supremumnorm, and Z stands for a standard normal randomvariable.

2 Main Results

In this section we describe the first order large sample behavior of the above F̂ . To
begin with, we state the needed assumptions for the kernels K , K̃ , the density fX ,
the function μ, and the bandwidths hn and bn . Let i := √−1.

Assumption (K): K is a symmetric, bounded, and differentiable density with
bounded derivative K ′ and

∫ ∞
−∞ u2K (u)du < ∞.

Assumption (K̃): K̃ is a symmetric differentiable density with derivative K̃ ′ sat-
isfying

∫ ∞
−∞ |K̃ ′(u)|du < ∞ and

∫ ∞
−∞ u2 K̃ (u)du < ∞.

Assumption (A): The distribution of ζ j in (1) satisfies the following two condi-
tions: there exists constants C, δ > 0 such that |Eei tζ j | ≤ C(1 + |t |)−δ , t ∈ R and
E|ζ j |3 < ∞.

Assumption (B):

(B1) The functionμ is twice differentiable with bounded integrable derivatives, and
Eμ2(X0) < ∞.

(B2) The density fX is positive on R with derivative f ′
X having finite Fisher infor-

mation for location, i.e.,
∫ ∞
−∞ | f ′

X (x)|2/ fX (x)dx < ∞.
(B3) The distribution of η j in (3) satisfies the following two conditions: there exists

constantsCX , δX > 0 such that |Eei tη j | ≤ CX (1 + |t |)−δX , t ∈ R and E|η j |3 <

∞.
(B4) The interval [τ1n, τ2n] is such that −τ1n = o(nδ) and τ2n = o(nδ) tend to

infinity slowly enough so that (log n) · inf x∈[τ1n ,τ2n ] fX (x) ≥ M , for some
0 < M < ∞ and any δ > 0.

(B5) h1/2
n b−1

n → 0, n−d h−1/2
n b−1

n log n → 0, n1/2−d h2
nb−1

n log n → 0, ndX −db−1
n

log n → 0, ndX −1/2h−1
n b−1

n log n → 0, n1/2−db2
n → 0, and 0 < dX < d <

1/2.

Remark 1 Assumption (B5) actually implies the following assumption:
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(B5′) n−d h−1/2
n log n → 0, n1/2−d h2

n log n → 0, ndX −1/2h−1
n log n → 0, and 0 <

dX < d < 1/2.

As an example, considerhn ∼ n−a, a > 0.Then assumption (B5′)will be satisfied
as long as 1/4 − d/2 < a < min(2d, 1/2 − dX ) for 1/10 < d < 1/2 and dX < d.
In addition, if bn ∼ n−ρ, ρ > 0, then Assumption (B5) holds for 1/4 − d/2 < ρ <

min(a/2, d − a/2, d + 2a − 1/2, d − dX , 1/2 − dX − a). For example, if d = 0.4,
dX = 0.2, then 0.05 < a < 0.3. Let a = 0.2, then 0.05 < ρ < 0.1.

The Assumptions (K) and (K̃) are the usual standard conditions for the kernel
type estimation. Assumption (K) implies that

∫ ∞
−∞ |u|1/2K (u)du < ∞ and Assump-

tion (K̃) implies that
∫ ∞
−∞ |u| j K̃ 2(u)du < ∞, j = 0, 1, 2. Examples of the kernels

satisfying Assumptions (K) and (K̃) are the Gaussian kernel and the uniform kernel
vanishing off (−1, 1).

Assumptions similar to (A) and (B3) are imposed for thefirst time inGiraitis,Koul,
and Surgailis [4] for studying the empirical processes of long memory sequences.
Under Assumptions (A) and (B3), Koul and Surgailis [8] (see also Lemma 10.2.4 of
Giraitis et al. [5]) showed that the densities f and fX are bounded and continuously
infinitely differentiable, having bounded derivatives of all orders. Perhaps it is worth
mentioning that Gaussian distribution satisfies Assumptions (A), (B2), and (B3).

Furthermore, from Lemma 2 of Giraitis et al. [4], Assumption (A) implies that as
|i | → ∞, | j | → ∞ and |i − j | → ∞,

f0,i (x, y) − f (x) f (y) = γ (i) f ′(x) f ′(y) + O(|i |2d−1−α),

f0,i, j (x, y, z) − f (x) f0, j−i (y, z) = γ (i) f ′(x)
∂ f0, j−i (y, z)

∂y
+ γ ( j) f ′(x)

∂ f0, j−i (y, z)

∂z

+ O(|i |2d−1−α) + O(| j |2d−1−α),

uniformly in x, y, z ∈ R, for any small positive number α. Here, f0,i and f0,i, j are
the joint densities of (ε0, εi ) and (ε0, εi , ε j ), respectively, and ∂ f0, j−i (y, z)/∂y and
∂ f0, j−i (y, z)/∂z are the partial derivatives of f0, j−i (y, z).

In addition, we shall prove in the Appendix that Assumption (B3) implies that as
|i | → ∞, | j | → ∞ and |i − j | → ∞,

(B3′) fX,0,i (x, y) − fX (x) fX (y) − γX (i) f ′
X (x) f ′

X (y) = O(|i |2dX −1−α),

fX,0,i, j (x, y, z) − fX (x) fX,0, j−i (y, z) − γX (i) f ′
X (x)

∂ fX,0, j−i (y, z)

∂y

− γX ( j) f ′
X (x)

∂ fX,0, j−i (y, z)

∂z
= O(|i |2dX −1−α) + O(| j |2dX −1−α),

uniformly x, y, z ∈ R, where α is a small positive number, fX,0,i and fX,0,i, j are the
joint densities of (X0, Xi ) and (X0, Xi , X j ), respectively, and ∂ fX,0, j−i (y, z)/∂y and
∂ fX,0, j−i (y, z)/∂z are the partial derivatives of fX,0, j−i (y, z). This property actually
defines the longmemory behavior in distribution for the error and covariate processes.
The proof of the claim (B3) implies (B3′) is given in the Appendix.

We now state some needed preliminaries. With φni as in (4), let
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ε̄n = 1

n

n∑

i=1

εi , W̄n = 1

n

n∑

i=1

εiφni . (7)

Let c20 = c2B(d, 1 − 2d)/(d(1 + 2d)) and Z be a standard normal r.v., and

c2(φ) = c2B(d, 1 − 2d)

∫

[0,1]2
φ(u)φ(v)|u − v|2d−1dudv.

From Lemma 2.1 of Koul et al. [7],

n1/2−d ε̄n →D c0Z , n1−2dEε̄2n = c20 + o(1), (8)

n1/2−d W̄n →D W = c(φ)Z . (9)

Theorem 1 below establishes the uniform reduction principle, and hence the
asymptotic distribution of the proposed kernel estimator F̂(x).

Theorem 1 Suppose that the Assumptions (K), (K̃ ), (A), and (B) hold. Let φ(u),
u ∈ [0, 1] be a piecewise continuously differentiable function satisfying φ̄ = 0. Then

sup
x∈R

|F̂(x) − F(x) − W̄n f (x)| = op(n
d−1/2). (10)

Consequently, n1/2−d
(
F̂(·) − F(·)) converges weakly, in Skorokhod space D(R) and

uniform metric, to the degenerate Gaussian process f (·)c(φ)Z.

An immediate application of the above theorem is to the goodness-of-fit testing.
Let F0 be a known d.f. satisfying the conditions of the above theorem, with f0 denot-
ing its density. Consider the problem of testing H0 : F = F0, versus the alternative
that H0 is not true. Let d̂ be an estimator of d such that (log n)(d̂ − d) →p 0, and
let ĉ(φ) be a consistent estimator of c(φ), under H0. Let

Dn := n1/2−d̂‖F̂ − F0‖
/[ĉ(φ) ‖ f0‖].

By (9) and (10), under H0, Dn →D |Z |. Hence, the test that rejects H0 whenever
Dn > zα/2 will have the asymptotic size α, where zα/2 is (1 − α/2)100th percentile
of the standard normal distribution. Section3 below discusses some estimators of d
and c(φ), which satisfy the said consistency conditions.

Now we turn to the proof of Theorem 1. The claim about the weak convergence
readily follows from (9) and (10). The proof of (10) is facilitated by the following
several lemmas. Before stating the lemmas, we first describe some properties of the
random weights wi of (5), which will be used in the proofs later. The indices in all
sums vary from 1 to n, unless mentioned otherwise.

Let nw̄ = ∑n
i=1 w(Xi ). By definition, 0 ≤ w(x) ≤ 1 and |w(X0) − 1|2 ≤

|w(X0) − 1|. Hence, stationarity of Xi ’s implies
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E |w(X0) − 1| ≤ ∣∣
∫ τ2n−r

τ1n+r
fX (x)dx − 1

∣∣ +
∫ τ1n+r

τ1n

fX (x)dx +
∫ τ2n

τ2n−r
fX (x)dx

→ 0,

E |w(X0) − 1|2 → 0,

E |w̄ − 1|2 ≤ E |w̄ − 1| ≤ E |w(X0) − 1| → 0. (11)

These facts in turn imply

w̄ = 1 + op(1), max
1≤i≤n

|wi − n−1w(Xi )| = op(1), max
1≤i≤n

|wi | = Op(n
−1). (12)

max
1≤i≤n

E
∣∣w̄(n−1 − wi )

∣∣2 = n−2 max
1≤i≤n

E|w̄ − w(Xi )|2 (13)

≤ 2n−2E|w̄ − 1|2 + 2n−2E|w(X0) − 1|2 = o(n−2).

Moreover,

∫ ∞

−∞
w(x)dx = r−1

∫ τ1n+r

τ1n

(x − τ1n)dx +
∫ τ2n−r

τ1n+r
dx + r−1

∫ τ2n

τ2n−r
(τ2n − x)dx

= (τ2n − τ1n) − r.

In view of this fact, (B3′) and assumption (B4), we also have

n∑

t,s=1

∣∣Cov(w(Xt ), w(Xs))E(εtεs)
∣∣ (14)

= nVar(w(X0))E(ε20)

+
∑

s �=t

|γ (t − s)|
∣∣∣
∫ ∞

−∞
w(x)w(y)

[
fX,s,t (x, y) − fX (x) fX (y)

]
dxdy

∣∣∣

= O(n) +
∑

s �=t

O(|t − s|2d+2dX −2)
( ∫ ∞

−∞

∣∣ f ′
X (y)

∣∣dy
)2

+
∑

s �=t

O(|t − s|2d+2dX −2−α(τ2n − τ1n)
2)

= O(n) + O(n2d+2dX ),

upon choosing δ = α/2 in (B4). The finiteness of the integral
∫ ∞
−∞ | f ′

X (y)|dy is
guaranteed by (B2).

We are now ready to state and prove the first lemma.

Lemma 1 Under Assumptions (K̃) and (B3),

sup
x∈R

| fn,X (x) − fX (x)| = Op(max{ndX −1/2h−1
n , hn}).
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Proof Let Ui := Xi − μX , Ūn = n−1 ∑n
i=1 Ui , G denote the d.f. of U0, g its den-

sity, and let Gn(y) := n−1 ∑n
i=1 I (Ui ≤ y). From (10.3.31), (10.3.32) and Theorem

10.2.3 of Giraitis et al. [5], we obtain that under (3) and assumption (B3),

|Ūn| = Op(n
dX −1/2), sup

y∈R

∣∣∣Gn(y) − G (y) + g(y)Ūn

∣∣∣ = op(n
dX −1/2). (15)

Now write

fn,X (x) = 1

nhn

n∑

i=1

K̃ (
x − Xi

hn
) = 1

nhn

n∑

i=1

K̃ (
x − μX − (Xi − μX )

hn
)

= 1

hn

∫ ∞

−∞
K̃

( x − μX − y

hn

)
dGn(y),

E fn,X (x) = 1

hn

∫ ∞

−∞
K̃

( x − μX − y

hn

)
dG (y).

Hence, integration by parts and a change of variables yield

fn,X (x) − E fn,X (x)

= 1

hn

∫ ∞

−∞
K̃

( x − μX − y

hn

)
d(Gn(y) − G (y))

= 1

hn

∫ ∞

−∞
[Gn(x − μX − hnz) − G (x − μX − hnz)]K̃ ′(z)dz

= 1

hn

∫ ∞

−∞
[Gn(x − μX − hnz) − G (x − μX − hnz)+g(x − μX − hnz)Ūn]K̃ ′(z)dz

− 1

hn

∫ ∞

−∞
g(x − μX − hnz)K̃ ′(z)dz Ūn.

Thus, by (15) and assumptions (K̃ ) and (B3), which implies g is bounded,

sup
x∈R

∣∣ fn,X (x) − E fn,X (x)
∣∣ = op(h

−1
n ndX −1/2) + Op(h

−1
n ndX −1/2).

The proof of the lemma is completed upon noting that the boundedness of fX and
its derivative (see Remark 1) implies supx∈R |E fn,X (x) − fX (x)| = O(hn).

To state the next result, recall (5) and (7) and let

Ẑi = εi − ε̂i , 1 ≤ i ≤ n, Zn = ε̄n + W̄n, (16)

γn = max(h2
n log n, n−1/2h−1/2

n log n, ndX −1/2 log n, nd−1/2h1/2
n ),

ξn = max(γn, nd+dX −1h−1
n log n).

We are now ready to state and prove
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Lemma 2 Assume (K̃), (B1)–(B4), (B5′), and that φ is a piecewise continuously
differentiable function satisfying φ̄ = 0. Then the following holds.

n∑

i=1

(Ẑi − Zn)
2wi = Op(ξ

2
n ).

The proof of this lemma is facilitated by the following lemma.

Lemma 3 Under the conditions of Lemma 2, the following holds.

n∑

i=1

( fn,X (Xi )

fX (Xi )
Ẑi − Zn

)2
wi = Op(γ

2
n ). (17)

Proof Let K̃ j (Xi ) = K̃ ((Xi − X j )/hn). From (1) and (4), we obtain

fn,X (Xi )

fX (Xi )
Ẑi − Zn = fn,X (Xi )

fX (Xi )
(μ̂n(Xi ) − μ(Xi )) − Zn (18)

= 1

nhn

n∑

j=1

ε j (1 + φnj )
K̃ j (Xi )

fX (Xi )
− Zn

+ 1

fX (Xi )

1

nhn

n∑

j=1

(μ(X j ) − μ(Xi ))K̃ j (Xi )

+ 1

fX (Xi )

1

nhn

n∑

j=1

μ(X j )φnj K̃ j (Xi ).

Let

Hni = 1

nhn

n∑

j=1

(μ(X j ) − μ(Xi ))K̃ j (Xi ) = 1

nhn

∑

j �=i

(μ(X j ) − μ(Xi ))K̃ j (Xi ).

Then

E
(
H 2

ni

) = 1

n2hn

∑

j �=i

∫ ∞

−∞
[μ(x − hnu) − μ(x)]2 K̃ 2(u) fX,i, j (x, x − hnu)dudx

+ 1

n2

∑

j �=k; j,k �=i

∫ ∞

−∞
(μ(x − hnu) − μ(x))(μ(x − hnv)−μ(x))K̃ (u)K̃ (v)

× fX,i, j,k(x, x − hnu, x − hnv)dxdudv

=: I1i + I2i , say.

By (B1) and (B3) (or (B3′)), the fact dX < 1/2, for some large enough N ,
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n∑

i=1

I1i (19)

≤ Cn−2hn

n∑

i=1

∑

j �=i

∫ ∞

−∞
|u|2 K̃ 2(u)μ′2(ξ) fX,i, j (x, x − hnu)dudx

= Cn−2hn

n∑

i=1

∑

j �=i

∫ ∞

−∞
|u|2 K̃ 2(u) fX (x) fX (x − hnu)dxdu

+ Cn−2hn

n∑

i=1

∑

j �=i

∫ ∞

−∞
|u|2 K̃ 2(u)μ′2(ξ)

×
[

fX,i, j (x, x − hnu) − fX (x) fX (x − hnu)
]
dxdu

= O(hn) + O(n−1hn) + Cn−2hn

∑

| j−i |>N

(
| j − i |2dX −1 + o(| j − i |2dX −1)

)

= O(hn) + O(n2dX −1hn) = O(hn),

where ξ is between x and x − hnu.
To deal with I2i terms, note that by (B1),

(μ(x − hnu) − μ(x))(μ(x − hnv) − μ(x)) fX (x) fX (x − hnu) fX (x − hnv) (20)

= h2
nuvμ′(x)2 fX (x) fX (x − hnu) fX (x − hnv)

+ 1

2
h3

nuv2μ′(x)μ′′(ξv) fX (x) fX (x − hnu) fX (x − hnv)

+ 1

2
h3

nu2vμ′(x)μ′′(ξu) fX (x) fX (x − hnu) fX (x − hnv)

+ 1

4
h4

nu2v2μ′′(ξu)μ
′′(ξv) fX (x) fX (x − hnu) fX (x − hnv),

where ξu , ξv are between x and x − hnu and x and x − hnv, respectively. Moreover,

h2
nuvμ′(x)2 fX (x) fX (x − hnu) fX (x − hnv)

= h2
nuvμ′(x)2 f 3X (x) − h3

nuv2μ′(x)2 f 2X (x) f ′
X (x)

− h3
nu2vμ′(x)2 f 2X (x) f ′

X (x) + O(h4
n)u

2v2 fX (x).

Similar equations are valid for the second and third terms on the right side of (20).
Therefore, by (K̃ ), since

∫
uK̃ (u)du = 0, we obtain

I2i ≤ Ch4
n

n2

∑

j �=k; j,k �=i

∫ ∞

−∞
|uv|2 K̃ (u)K̃ (v) fX (x)dxdudv
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+ Ch2
n

n2

∑

j �=k; j,k �=i

∫ ∞

−∞
|uv|K̃ (u)K̃ (v)|μ′(x)|∣∣ fX,i, j,k(x, x − hnu, x − hnv)

− fX (x) fX, j,k(x − hnu, x − hnv)
∣
∣dxdudv

+ Ch2
n

n2

∑

j �=k; j,k �=i

∫ ∞

−∞
|uv|K̃ (u)K̃ (v)|μ′(x)| fX (x)

×∣
∣ fX, j,k(x − hnu, x − hnv) − fX (x − hnu) fX (x − hnv)

∣
∣dxdudv

=: R1i + R2i + R3i , say.

Clearly,
n∑

i=1

R1i = O(nh4
n).

By Assumption (B3) and arguing as in the proof of (19),

n∑

i=1

R2i ≤ Ch2
n + C ′n−1h2

n

{ ∑

| j−i |>N

(
| j − i |2dX −1 + o(| j − i |2dX −1)

)

+
∑

|k−i |>N

(
|k − i |2dX −1 + o(|k − i |2dX −1)

)}

= O(h2
n) + O(n2dX h2

n).

Similarly,

n∑

i=1

R3i = O(h2
n) + O(n2dX h2

n).

Combine these bounds with the fact n2dX h2
n/nh4

n = n2dX −1h−2
n → 0, to obtain

n∑

i=1

I2i = O(nh4
n).

This bound together with (19) yields

E
( n∑

i=1

H 2
ni

)
= O(max{hn, nh4

n}).

Then it follows from (12) and Assumption (B4) that
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n∑

i=1

wi

f 2X (Xi )

( 1

nhn

n∑

j=1

(μ(X j ) − μ(Xi ))K̃ j (Xi )
)2

(21)

≤ max
1≤i≤n

wi

f 2X (Xi )

n∑

i=1

H 2
ni = Op(max{n−1hn log

2 n, h4
n log

2 n}).

Next, consider the third term in the right hand side of (18). Note that

E
( 1

nhn

n∑

j=1

μ(X j )φnj K̃ j (Xi )
)2

= φ2
ni K̃ 2(0)

n2h2
n

Eμ2(Xi ) + 1

n2h2
n

∑

j �=i

φ2
njE

(
μ(X j )K̃ j (Xi )

)2

+ 2φni K̃ (0)

n2h2
n

∑

j �=i

φnjE
(
μ(Xi )μ(X j )K̃ j (Xi )

)

+ 1

n2h2
n

∑

j �=k; j,k �=i

φnjφnkE
(
μ(X j )K̃ j (Xi )μ(Xk)K̃k(Xi )

)

= Q0i + Q1i + Q2i + Q3i , say.

Standard kernel arguments yield that

n∑

i=1

Q0i = O(n−1h−2
n ),

n∑

i=1

Q2i = O(h−1
n ),

n∑

i=1

Q1i = 1

n2h2
n

n∑

i=1

∑

j �=i

φ2
nj

∫ ∞

−∞
μ2(y)K̃ 2

( x − y

hn

)
fX,i, j (x, y)dxdy = O(h−1

n ).

For the sake of brevity, let d K (u, v) := K̃ (u)K̃ (v)dudv. Then, by Assumption (B3)
and φ̄ = 0, we obtain

Q3i = 1

n2

∑

j �=k; j,k �=i

φnj φnk

∫ ∞

−∞
μ(x − hnu)μ(x − hnv) (22)

× fX,i, j,k(x, x − hnu, x − hnv)dxd K (u, v)

= 1

n2

∑

j �=k; j,k �=i

φnj φnk

∫ ∞

−∞
μ(x − hnu)μ(x − hnv){ fX,i, j,k(x, x − hnu, x − hnv)

− fX (x) fX, j,k(x − hnu, x − hnv)}dxd K (u, v)

+ 1

n2

∑

j �=k; j,k �=i

φnj φnk

∫ ∞

−∞
μ(x − hnu)μ(x − hnv) fX (x)

×{ fX, j,k(x − hnu, x − hnv) − fX (x − hnu) fX (x − hnv)}dxd K (u, v)
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+ 1

n2

∑

j �=k; j,k �=i

φnj φnk

∫ ∞

−∞
μ(x − hnu)μ(x − hnv)

× fX (x) fX (x − hnu) fX (x − hnv)dxd K (u, v)

≤ Cn−2
[
n +

∑

| j−i |>N

(
| j − i |2dX −1 + o(| j − i |2dX −1)

)

+
∑

|k−i |>N

(
|k − i |2dX −1 + o(|k − i |2dX −1)

)

+
∑

| j−k|>N

(
| j − k|2dX −1 + o(| j − k|2dX −1)

)]

+ φ̄2
∫ ∞

−∞
μ2(x) f 3X (x)dx(1 + O(hn)) + O(n−1)

= O(n2dX −1), not depending on i .

This together with (12) and Assumption (B4) implies that

n∑

i=1

wi

f 2X (Xi )

( 1

nhn

n∑

j=1

μ(X j )φnj K̃ j (Xi )
)2

(23)

= Op(max{n−1h−1
n log2 n, n2dX −1 log2 n}).

Now consider the first term in the right hand side of (18). Let

Di j = 1

hn
E
( K̃ j (Xi )

fX (Xi )

)
− 1, 1 ≤ j ≤ n.

We have

1

nhn

n∑

j=1

ε j (1 + φnj )
K̃ j (Xi )

fX (Xi )
− Zn (24)

= 1

n

K̃ (0)

hn fX (Xi )
εi (1 + φni ) + 1

nhn

∑

j �=i

ε j (1 + φnj )
K̃ j (Xi )

fX (Xi )
− Zn

= 1

n

( K̃ (0)

hn fX (Xi )
− 1

)
εi (1 + φni ) + 1

n

∑

j �=i

ε j (1 + φnj )Di j

+ 1

nhn

∑

j �=i

ε j (1 + φnj )
[ K̃ j (Xi )

fX (Xi )
− E

( K̃ j (Xi )

fX (Xi )

)]

= A0i + A1i + A2i , say.

First, by (12) and Assumption (B4),
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n∑

i=1

wi A2
0i = 1

n2

n∑

i=1

wi

( K̃ (0)

hn fX (Xi )
− 1

)2
ε2i (1 + φni )

2

= Op(n
−2h−2

n log2 n). (25)

Next, consider the term A1i . Note that, for j �= i ,

Di j =
∫ ∞

−∞

∫ τ2n

τ1n

K̃ (u)

fX (x)
fX,i, j (x, x − hnu)dudx − 1

=
∫ ∞

−∞

∫ τ2n

τ1n

K̃ (u)

fX (x)
fX (x) fX (x − hnu)dudx − 1

+
∫ ∞

−∞

∫ τ2n

τ1n

K̃ (u)

fX (x)

[
fX,i, j (x, x − hnu) − fX (x) fX (x − hnu)

]
dudx

= O(hn) +
∫ ∞

−∞

∫ τ2n

τ1n

K̃ (u)

fX (x)

[
fX,i, j (x, x − hnu) − fX (x) fX (x − hnu)

]
dudx .

Then

E(A2
1i ) = 1

n2

∑

j �=i

(1 + φnj )
2D2

i jEε2j + 1

n2

∑

j �=k; j,k �=i

(1 + φnj )(1 + φnk)Di j DikE(ε jεk)

= A11i + A12i , say.

But,

A11i ≤ C

n2

∑

j �=i

D2
i j = C

n2

( ∑

0<| j−i |≤N

+
∑

| j−i |>N

)
D2

i j

≤ O(n−2) + 1

n2

∑

| j−i |>N

(
O(h2

n) + C
(
| j − i |2dX −1 + o(| j − i |2dX −1)

)2)

= O(n−2) + O(n−1h2
n) + O(n4dX −3), ∀ 1 ≤ i ≤ n,

n∑

i=1

A11i = O(n−1) + O(h2
n) + O(n4dX −2).

For the sake of brevity, we omit the o(| j − i |2dX −1), o(|k − i |2dX −1) and o(| j −
k|2dX −1) terms in the following derivations.

A12i ≤ C

n2

∑

j �=k; j,k �=i

|Di j Dik ||γ ( j − k)|
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≤ C

n2

[
n +

∑

| j−k|>N ; j,k �=i

(
hn + 1 + |i − j |2dX −1

)

×
(

hn + |i − k|2dX −1
)
| j − k|2d−1

]

≤ Cn−1 + C

n2

∑

| j−k|>N ; j,k �=i

{
hn| j − k|2d−1 + | j − k|2d−1|i − k|2dX −1

+ hn| j − k|2d−1|i − j |2dX −1 + | j − k|2d−1|i − j |2dX −1|i − k|2dX −1

}

= O(n2d−1hn) + O(n2d+2dX −2) + O(n2d+4dX −3), ∀ 1 ≤ i ≤ n,
n∑

i=1

A12i = O(n2d hn) + O(n2d+2dX −1) + O(n2d+4dX −2).

Hence, by (12) and the fact that n2d+2dX −1/n2d hn → 0,

n∑

i=1

wi A2
1i = Op(n

2d−1hn). (26)

Next, we shall show that

n∑

i=1

wi A2
2i = Op(max{n−1h−1

n log2 n, n2d−1hn}). (27)

Note that

A2
2i = 1

n2h2
n

∑

j �=i

ε2j (1 + φnj )
2
( K̃ j (Xi )

fX (Xi )
− E

( K̃ j (Xi )

fX (Xi )

))2

+ 1

n2h2
n

∑

j �=k; j,k �=i

(1 + φnj )(1 + φnk)ε jεk

×
( K̃ j (Xi )

fX (Xi )
− E

( K̃ j (Xi )

fX (Xi )

))( K̃k(Xi )

fX (Xi )
− E

( K̃k(Xi )

fX (Xi )

))

=: A21i + A22i , say.

Fix an 1 ≤ i ≤ n. By Assumption (K̃), we obtain

E
( 1

n2h2
n

∑

j �=i

ε2j (1 + φnj )
2 K̃ 2

j (Xi )
)

= n−2h−1
n E(ε21)

∑

j �=i

(1 + φnj )
2
∫ ∞

−∞
K̃ 2(u) fX,i, j (x, x − hnu)dudx = O(n−1h−1

n ).
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Then by (12) and Assumption (B4),

n∑

i=1

wi A21i = Op(n
−1h−1

n log2 n).

Moreover, by the independence of {ε j } and {X j },

∣∣E(A22i )
∣∣ ≤ Cn−2h−2

n

∑

j �=k; j,k �=i

∣∣∣E(ε jεk)Cov
( K̃ j (Xi )

fX (Xi )
,

K̃k(Xi )

fX (Xi )

)∣∣∣.

Arguing as for (22), by Assumptions (B2) and (B3),

h−2
n

∑

j �=k; j,k �=i

∣∣∣E(ε jεk)Cov
( K̃ j (Xi )

fX (Xi )
,

K̃k(Xi )

fX (Xi )

)∣∣∣

≤
∑

j �=k; j,k �=i

|γ ( j − k)|
∣∣∣
∫ ∞

−∞
K̃ (u)K̃ (v)

f 2X (x)
fX,i, j,k(x, x − hnu, x − hnv)dxdudv

−
∫ ∞

−∞
K̃ (u)

fX (x)
fX,i, j (x, x − hnu)dxdu

∫ ∞

−∞
K̃ (v)

fX (x)
fX,i,k(x, x − hnv)dxdv

∣∣∣

≤ C
[
n +

∑

| j−k|>N ; j,k �=i

| j − k|2d−1
{

C ′|i − j |2dX −1 + C ′|i − k|2dX −1

+
∫ ∞

−∞
K̃ (u)K̃ (v)

f 2X (x)
fX (x) fX, j,k(x − hnu, x − hnv)dxdudv

−
(

C |i − j |2dX −1 +
∫ ∞

−∞
K̃ (u)

fX (x)
fX (x) fX (x − hnu)dxdu

)

×
(

C |i − k|2dX −1 +
∫ ∞

−∞
K̃ (v)

fX (x)
fX (x) fX (x − hnv)dxdv

)}]

≤ O(n) + C
∑

| j−k|>N ; j,k �=i

| j − k|2d−p
{

C ′|i − j |2dX −1 + C ′|i − k|2dX −1

+ C | j − k|2dX −1 +
∫ ∞

−∞
K̃ (u)K̃ (v)

fX (x)
fX (x − hnu) fX (x − hnv)dxdudv

−
(

C |i − j |2dX −1 +
∫ ∞

−∞
K̃ (u) fX (x − hnu)dxdu

)

×
(

C |i − k|2dX −1 +
∫ ∞

−∞
K̃ (v) fX (x − hnv)dxdv

)}

≤ O(n) + C

{ ∑

| j−k|>N ; j,k �=i

| j − k|2d−1|i − j |2dX −1 +
∑

| j−k|>N

| j − k|2(d+dX )−2
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+
∑

| j−k|>N ; j,k �=i

| j − k|2d−1|i − k|2dX −1 +
∑

| j−k|>N

| j − k|2d−1O(hn)

+
∑

| j−k|>N ; j,k �=i

| j − k|2d−1|i − j |2dX −1|i − k|2dX −1

}

= O(n2(d+dX )) + O(n2d+4dX −1) + O(n2d+1hn) = O(n2d+1hn).

This implies the claim in (27).
Assumptions (B5′) combined with (24)–(27) yield

n∑

i=1

wi

( 1

nhn

n∑

j=1

ε j (1 + φnj )
K̃ j (Xi )

fX (Xi )
− Zn

)2 = Op(max{n−1h−1
n log2 n, n2d−1hn}).

Claim (17) is now established upon combining this bound with (18), (21), and (23).

Now we begin the proof of Lemma 2.

Proof Recall Assumption (B4) and let In := [τ1n, τ2n]. Clearly,

max
1≤i≤n;Xi ∈In

∣∣∣1 − fn,X (Xi )

fX (Xi )

∣∣∣ ≤ max
1≤i≤n;Xi ∈In

| fn,X (Xi ) − fX (Xi )| · max
1≤i≤n;Xi ∈In

1/ fX (Xi )

= Op(max{ndX −1/2h−1
n log n, hn log n}).

The last claim above follows from Lemma 1 and Assumption (B4), which imply that
the second factor above is Op(log(n)). Hence, by (12),

max
1≤i≤n

∣∣∣1 − fn,X (Xi )

fX (Xi )

∣∣∣
2
wi = Op(max{n2dX −2h−2

n log2 n, n−1h2
n log

2 n}).

Recall the results from (8) and (9),

Zn = ε̄n + W̄n = Op(n
d−1/2). (28)

Thus it follows from Lemma 3 that
∑n

i=1(Ẑi − Zn)
2wi is bounded from the above

by 2 times the sum

n∑

i=1

( fX (Xi )

fn,X (Xi )

)2( fn,X (Xi )

fX (Xi )
Ẑi − Zn

)2
wi +

n∑

i=1

( fX (Xi )

fn,X (Xi )

)2(
1 − fn,X (Xi )

fX (Xi )

)2
wi Z2

n

= Op(γ
2
n ) + Op(n

2d )Op(max{n2dX −2h−2
n log2 n, n−1h2

n log
2 n}) = Op(ξ

2
n ).

This completes the proof of Lemma 2.

We also need the following uniform reduction lemma.
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Lemma 4 With wi ’s as specified in (5) and under assumptions (A) and (B3),

sup
x∈R

∣∣
n∑

i=1

wi [I (εi ≤ x) − F(x) + f (x)εi ]
∣∣ = op(n

d−1/2).

The proof of this lemma is very similar to that of Theorem 10.2.3 of Giraitis
et al. [5], which uses a chaining argument that heavily depends on Lemma 10.2.5
dealing only with terms involving εi ’s. One uses the same chaining argument and
Lemma 10.2.5 together with the independence of {Xi } and {ε j } and the fact that
0 ≤ wi ≤ 1, 1 ≤ i ≤ n, and

∑n
i=1 wi = 1, to prove the above result. We leave out

the details for an interested reader. The only difference between this Lemma and
Theorem 10.2.3 is that there the weights γnj are nonrandom whereas here wi are
random, but independent of εi ’s.

Now we begin the proof of Theorem 1.

Proof of Theorem 1 Let

G(x) =
∫ x

−∞
K (u)du, Fn(x) = n−1

n∑

i=1

I (εi ≤ x), Fnw(x) =
n∑

i=1

wi I (εi ≤ x).

Recall Ẑi = εi − ε̂i and Zn = ε̄n + W̄n from (16), and let Δi = Ẑi − Zn . By the
definition of F̂(x), we have

F̂(x) − F(x) − W̄n f (x)

=
n∑

i=1

wi

[
G

( x − ε̂i

bn

)
− F(x) − W̄n f (x)

]

=
n∑

i=1

wi

[
G

( x + Ẑi − εi

bn

)
− G

( x + Zn − εi

bn

)]

+
∫ ∞

−∞

[
G

( x + Zn − u

bn

)
− F(x) − W̄n f (x)

]
d Fnw(u)

=
n∑

i=1

wi

[
K

( x + Zn − εi

bn

)Δi

bn
+ Ri (x)

]

+
∫ ∞

−∞

[
G

( x + Zn − u

bn

)
− F(x) − W̄n f (x)

]
d Fnw(u)

=
n∑

i=1

w j K
( x + Zn − εi

bn

)Δi

bn
+

n∑

i=1

wi Ri (x)

+
∫ ∞

−∞

[
G

( x + Zn − u

bn

)
− F(x) − W̄n f (x)

]
d Fnw(u)

=: I1(x) + I2(x) + I3(x), say.
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Here

Ri (x) := G
( x + Ẑi − εi

bn

)
− G

( x + Zn − εi

bn

)
− Δi

bn
G ′

( x + Zn − εi

bn

)

=
∫ Δi /bn

0

(Δi

bn
− s

)
K ′

( x + Zn − εi

b
+ s

)
ds.

Note that

|wi Ri (x)| ≤ |wiΔi |
bn

∫ |Δi |/bn

−|Δi |/bn

∣∣
∣K ′(

x + Zn − εi

bn
+ s)

∣∣
∣ds, ∀ 1 ≤ i ≤ n, x ∈ R.

Hence, by Lemma 2,

sup
x∈R

|I2(x)| ≤ Cb−2
n sup

x∈R
|K ′(x)|

n∑

i=1

wiΔ
2
i = Op(ξ

2
n b−2

n ) = op(n
d−1/2).

Next, similarly,

sup
x∈R

|I1(x)| ≤ Cb−1
n sup

x∈R
|K (x)|

n∑

i=1

|wiΔi | = Op(ξnb−1
n ) = op(n

d−1/2).

Note that

I3(x) =
∫ ∞

−∞

(
Fnw(x + Zn − ubn) − F(x) − W̄n f (x)

)
K (u)du

=
∫ ∞

−∞

(
Fnw(x + Zn − ubn) − F(x − ubn) − W̄n f (x)

)
K (u)du

+
∫ ∞

−∞

(
F(x − ubn) − F(x)

)
K (u)du

=
3∑

i=1

ψni (x) + O(b2
n),

where

ψn1(x) =
∫ ∞

−∞
(
Fnw(x + Zn − ubn) − F(x + Zn − ubn) + f (x + Zn − ubn)ε̄n

)
K (u)du,

ψn2(x) =
∫ ∞

−∞
(
F(x + Zn − ubn) − F(x − ubn) − f (x + Zn − ubn)Zn

)
K (u)du,

ψn3(x) = W̄n

∫ ∞

−∞
( f (x + Zn − ubn) − f (x))K (u)du.
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Note that for any y ∈ R,

Fnw(y) − F(y) + f (y)ε̄n =
n∑

i=1

wi [I (εi ≤ y) − F(y) + f (y)εi ] + f (y)

n∑

i=1

(n−1 − wi )εi .

From (13), we obtain

E
( n∑

i=1

w̄(n−1 − wi )εi

)2

=
n∑

i=1

E|w̄(n−1 − wi )|2Eε2i +
∑

i �= j

E
{
w̄2(n−1 − wi )(n

−1 − w j )
}
γ (i − j)

≤ o(n−1) + max
1≤i≤n

E
∣∣w̄(n−1 − wi )

∣∣2
∑

i �= j

|γ (i − j)|

= o(n−1) + o(n−2)O(n2d+1) = o(n2d−1).

This, together with (12), implies that

n∑

i=1

(n−1 − wi )εi = op(n
d−1/2).

Hence by Lemma 4,

sup
x∈R

|ψn1(x)| = op(n
d−1/2).

Next consider the ψn2 term. Following the proof of Theorem 2.2 of Koul et al.
[7], we obtain

ψn2(x) = −
∫ Zn

0

∫ Zn

v

∫ ∞

−∞
f ′(x − ubn + w)K (u)dudwdv.

Therefore,

sup
x∈R

|ψn2(x)| ≤ C Z2
n = Op(n

2d−1) = op(n
d−1/2).

Finally,

sup
x∈R

|ψn3(x)| ≤ |W̄n||C Zn + Cbn| = Op(n
2d−1) + O(bnnd−1/2) = op(n

d−1/2).

This concludes the proof of (10), and hence of Theorem 1.
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3 Estimation of d and c(φ)

In practice, in order to be able to use the studentized version of the estimator F̂ to
make the large sample inference about F , or to use the uniform reduction principle
to propose a goodness of fit test for F , a log n-consistent estimator of d and a
consistent estimator of c(φ) are needed. Several approaches for estimating the long
memory parameter d have been suggested in the literature. For a recent review on the
estimators of the long memory parameter, see Giraitis et al. [5]. For semiparametric
models, popular estimators are the local Whittle estimators studied by Robinson
[16–18]. Proceeding as in Robinson [18], let λ j = 2π j/n, and define

Q j = 1

2πn

∣∣
∣

n∑

t=1

ωt ε̂t exp(i tλ j )

∣∣
∣
2
, Q̃ j = 1

2πn

∣∣
∣

n∑

t=1

εt exp(i tλ j )

∣∣
∣
2
,

where ωt = w(Xt ) with w as in (5). Fix 0 < r1 < r2 < 1/2. With an integer
m ∈ [1, n/2), for r1 ≤ ψ ≤ r2, let

R(ψ) = log
( 1

m

m∑

j=1

λ
2ψ−1
j Q j

)
− (2ψ − 1)

m∑

j=1

log λ j .

As pointed out in Robinson [17], the spectral density of the error process {εi , i ∈ Z}
satisfies g(λ) ∼ Gλ−2d , as λ → 0+, with G being some positive constant. Let r1 ≤
d ≤ r2. Then the local Whittle estimator of d based on the residuals {ε̂i } is defined
as

d̂ = argminψ∈[r1,r2] R(ψ).

Theorem 2 In addition to the assumptions of Lemma 2, we assume that m → ∞,
nm−2 logm = o(1), m2dn2dX −1 logm = o(1), and in a neighborhood of the ori-
gin, a(λ) = ∑∞

j=0 a j ei jλ is differentiable and da(λ)/dλ = O(|a(λ)|/λ) as λ → 0+.

Then, (log n)(d̂ − d) →p 0.

To prove Theorem 2, we need the following lemma. Let D j = (Q j − Q̃ j )/g(λ j ),
1 ≤ j ≤ m.

Lemma 5 Under the conditions of Theorem 2, if the following three claims hold,
then (log n)(d̂ − d) →p 0.

m−1∑

i=1

( i

m

)2(r1−d)+1 1

i2
∣∣

i∑

j=1

D j

∣∣ = op(1), (29)

(log n)2
m−1∑

i=1

( i

m

)1−2δ 1

i2
∣
∣

i∑

j=1

D j

∣
∣ = op(1),

(log n)2

m

m∑

j=1

D j = op(1),
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where δ is a small positive constant.

Proof The proof is the same as the part (ii) proof of Theorem 3 in Robinson [18].

Proof of Theorem 2 According to Lemma 5, to prove Theorem 2, it suffices to verify
the three claims in (29). Since the proofs of the last two claims are similar to the first
one, we shall only prove the first claim in (29). Note that

|Q j − Q̃ j | ≤ Q̃ j,w + Q j,z + 2|Q̃ j Q j,z |1/2 + 2|Q̃ j Q̃ j,w|1/2 + 2|Q̃ j,w Q j,z |1/2, (30)

where

Q̃ j,w = 1

2πn

∣∣
∣

n∑

t=1

(ωt − 1)εt exp(i tλ j )

∣∣
∣
2
, Q j,z = 1

2πn

∣∣
∣

n∑

t=1

ωt Ẑt exp(i tλ j )

∣∣
∣
2
.

Dalla, Giraitis and Hidalgo [2] proved that

m∑

j=1

Q̃ j

g(λ j )
= Op(m). (31)

In addition, from Zygmund ([21], page 90),

∣∣
∣

n∑

t=1

ei tλ
∣∣
∣ ≤ C |λ|−1, 0 < |λ| ≤ π. (32)

Lemma 2 with (28) and Assumption (B5′) implies the bound

n∑

t=1

wt Ẑ2
t = Op(ξ

2
n ) + Op(n

2d−1) = Op(n
2d−1). (33)

Since ωt = nw̄ wt , where w̄ = 1
n

∑n
t=1 w(Xt ), and by (12),

n∑

t=1

ω2
t Ẑ2

t ≤ (nw̄)2 max
1≤t≤n

|wt |
n∑

t=1

wt Ẑ2
t = Op(n

2d).

This yields

|Q j,z|
g(λ j )

≤
Cn−1

∣∣∣
∑n

t=1 ω2
t Ẑ2

t

∑n
t=1 ei t2λ j

∣∣∣

g(λ j )
(34)

≤ Op(n
2d−1)Cλ2d−1

j = Op( j2d−1).
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Next, we consider Q̃ j,w. Recall g(u) is the spectral density of the error process {εi },
E(εtεs) = ∫ π

−π
g(u) exp(−i (t − s)u)du. Let J (λ) = ∑n

t=1 E(ωt − 1) exp(i tλ).
Then

2πnE(Q̃ j,w) (35)

=
n∑

t,s=1

E
(
(ωt − 1)(ωs − 1)

)
exp(i (t − s)λ j )E(εtεs)

=
n∑

t,s=1

(
E(ωt − 1)E(ωs − 1) + Cov(ωt , ωs)

)
exp(i (t − s)λ j )E(εtεs)

=
∫ π

−π

g(u)|J (λ j − u)|2du + O(n) + O(n2d+2dX )

≤ g(λ j )

∫ π

−π

|J (λ j − u)|2du +
( ∫ π

3λ j /2
+

∫ λ j /2

−π

)
g(u)|J (λ j − u)|2du

+
∫ 3λ j /2

λ j /2
|g(u) − g(λ j )||J (λ j − u)|2du + O(n) + O(n2d+2dX )

=: R1 + R2 + R3 + O(n) + O(n2d+2dX ), say.

The claim in the third equality above follows from (14).
By (11) and (32), for 0 < |λ| ≤ π ,

|J (λ)| ≤ CE|ωt − 1|/|λ| = o(|λ|−1).

Then, for some u ∈ [−π, π ],

R1 = 2πg(λ j )|J (λ j − u)|2 ≤ Cg(λ j )|λ j − u|−2 = O(g(λ j )n
2 j−2).

We split the first part of R2 into two components, the second part can be treated
similarly. For all d ∈ (0, 1/2) and sufficiently small λ j , there exists ε ∈ (3λ j/2, π)

such that g(u)/u1/2−d = O(g(λ j )/λ
1/2−d
j ), for λ j < u < ε, and

∫ π

3λ j /2
g(u)|J (λ j − u)|2du

=
∫ ε

3λ j /2
g(u)|J (λ j − u)|2du +

∫ π

ε

g(u)|J (λ j − u)|2du

= O
( g(λ j )

λ
1/2−d
j

∫ ε

3λ j /2

u1/2−d

(λ j − u)2
du + 1

(λ j − ε)2

∫ π

−π

g(u)du
)

= O(g(λ j )λ
−1
j + ε−2) = O(g(λ j )λ

−1
j ).
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Hence
R2 = O(g(λ j )nj−1).

Note that g(λ) = 1
2π

∣∣∑∞
j=0 a j ei jλ

∣∣2. Then by the assumption,

sup
λ j /2≤u≤3λ j /2

|g(λ j ) − g(u)|/|λ j − u| = O(g(λ j )/λ j ),

so that R3 is bounded by

Cg(λ j )

λ j

∫ 3λ j /2

λ j /2
|J (λ j − u)|du ≤ Cg(λ j )

λ j

∫ λ j /2

0
|J (μ)|du

= Cg(λ j )

λ j

( ∫ 1/n

0
+

∫ λ j /2

1/n

)
|J (μ)|du ≤ Cg(λ j )

λ j
O

(1
n

n + log j
)

= O(g(λ j )nj−1(1 + log j)).

These bounds, together with (35), imply that

Q̃ j,w

g(λ j )
= Op( j−1 log j + nj−2 + j2dn−2d + j2dn2dX −1). (36)

By changing the order of summation, the left hand side of (29) is bounded above
by Cm−2(r1−d)−1 ∑m

j=1 j2(r1−d)|D j |, for d > r1, and by Cm−1 logm
∑m

j=1 |D j |, for
d = r1. Combining (30), (31), (34) and (36) yields, for d > r1,

Cm−2(r1−d)−1
m∑

j=1

j2(r1−d)|D j |

≤ Cm−1

⎧
⎨

⎩

m∑

j=1

Q̃ j,w

g(λ j )
+

m∑

j=1

Q j,z

g(λ j )
+

( m∑

j=1

Q̃ j

g(λ j )

m∑

j=1

Q j,z

g(λ j )

)1/2

+
( m∑

j=1

Q̃ j

g(λ j )

m∑

j=1

Q̃ j,w

g(λ j )

)1/2

+
( m∑

j=1

Q̃ j,w

g(λ j )

m∑

j=1

Q j,z

g(λ j )

)1/2
}

= Op(m
−1 logm) + op(nm−2) + Op(m

2d−1) + Op(m
2dn−2d) + Op(m

2dn2dX −1)

= op(1).

Similarly, for d = r1,

Cm−1 logm
m∑

j=1

|D j | = op(1).

This completes the proof of Theorem 2.
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Now we turn to estimate c(φ). Note that

c2(φ) = lim
n→∞ n−2d−1

n∑

j,k=1

φnjφnkγ ( j − k).

This suggests the estimator

ĉ2(φ) = q−2d̂−1
q∑

j,k=1

φq jφqk γ̂ ( j − k),

based on the sample auto-covariance function of the residuals, where q → ∞, q =
o(n) is a bandwidth sequence, and γ̂ (k) = n

∑n
i=1 wi wi+k ε̂i ε̂i+k (here we again use

the random weights wi defined in (5) to estimate γ (k)). Theorem 3 below shows that
ĉ2(φ) is a consistent estimator of c2(φ).

Theorem 3 In addition to the assumptions imposed in Lemma 2, we assume that
E|ζ0|3 < ∞ and q = o(n1/2). Then ĉ2(φ) →p c2(φ).

Proof As discussed above, d̂ is log(n)-consistent estimator of d. Hence, to prove
Theorem 3, it suffices to show that

c̃2(φ) →p c2(φ),

where c̃2(φ) = q−2d−1 ∑q
j,k=1 φq jφqk γ̂ ( j − k).

We will follow the argument as in the proof of Lemma 2.2 of Koul and Sur-
gailis [10]. Write c̃2(φ) = c̃21(φ) + c̃22(φ), c̃2i (φ) = q−2d−1 ∑q

j,k=1 φq jφqk γ̂i ( j − k),
i = 1, 2, where

γ̂1(k) = 1

n

n∑

i=1

εiεi+k, γ̂2(k) = γ̂ (k) − γ̂1(k).

By Lemma 2.2 of Koul and Surgailis [10], c̃21(φ) →p c2(φ). Hence, Theorem 3 will
follow if we show that

nq−2d−1
q∑

j,k=1

n∑

i=1

φq jφqkεiεi+ j−k(wi wi+ j−k − n−2) = op(1), (37)

nq−2d−1
q∑

j,k=1

n∑

i=1

φq jφqkεi wi Ẑi+ j−kwi+ j−k = op(1), (38)

nq−2d−1
q∑

j,k=1

n∑

i=1

φq jφqkεi+ j−kwi+ j−k Ẑi wi = op(1), (39)

http://dx.doi.org/10.1007/978-3-319-51313-3_2
http://dx.doi.org/10.1007/978-3-319-51313-3_2
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nq−2d−1
q∑

j,k=1

n∑

i=1

φq jφqk Ẑi wi Ẑi+ j−kwi+ j−k = op(1). (40)

Write the left hand side of (37) as

nq−2d−1
q∑

j,k=1

n∑

i=1

φq jφqkγ ( j − k)(wi wi+ j−k − n−2) + R,

where

R = nq−2d−1
q∑

j,k=1

n∑

i=1

φq jφqk
(
εiεi+ j−k − γ ( j − k)

)
(wi wi+ j−k − n−2).

The facts (12) and (13) imply that

max
1≤i, j,k≤n

|wi wi+ j−k − n−2| ≤ max
1≤i, j,k≤n

|wi+ j−k(wi − n−1) + n−1(wi+ j−k − n−1)|
= op(n

−2).

Then it follows from the proof of Lemma 2.2 of Koul and Surgailis [10] that

R = op(1).

These facts yield

nq−2d−1
q∑

j,k=1

n∑

i=1

φq jφqkεiεi+ j−k(wi wi+ j−k − n−2)

≤ Cn2q−2d−1 max
1≤i, j,k≤n

|wi wi+ j−k − n−2|
q∑

j,k=1

|γ ( j − k)| + op(1)

≤ Op(n
2q−2d−1)op(n

−2)O(q2d+1) + op(1) = op(1).

Next, (33) implies

nq−2d−1
q∑

j,k=1

n∑

i=1

φq jφqkεi wi Ẑi+ j−kwi+ j−k

≤ Cnq1−2d
{ n∑

i=1

ε2i w2
i

n∑

i=1

Ẑ2
i w2

i

}1/2 ≤ Cq1−2dnd−1/2 = op(1).

This implies (38), while (39) follows in a similar way. Finally, the left hand side of
(40) is bounded from the above by

http://dx.doi.org/10.1007/978-3-319-51313-3_2
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Cnq1−2d
n∑

i=1

Ẑ2
i w2

i ≤ Cq1−2dn2d−1 = op(1).

This completes the proof of Theorem 3.
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Appendix

In this Appendix, we shall prove that Assumption (B3) implies Assumption (B3′).
Letφ(u) = Eei uη0 , f̂ X (u) = Eei u X0 = ∏

j≥0 φ(ub j ) and let fX,0,t (x1, x2)be the joint
probability density of (X0, Xt ).

Lemma A. Under Assumption (B3), the joint probability density fX,0,t1,t2(x1, x2, x3)
of (X0, Xt1 , Xt2) exists and

fX,0,t1,t2(x1, x2, x3) − fX (x1) fX,0,Δt (x2, x3) (41)

− γX (t1) f ′
X (x1) f ′

X,Δt ,x2(x2, x3) − γX (t2) f ′
X (x1) f ′

X,Δt ,x3(x2, x3) = O(t2dX −1−α),

uniformly in x1, x2, x3 as t1 → ∞, t2 → ∞ and Δt → ∞, where 0 < α < min
(dX/7, (1 − 2dX )/8), t = min(t1, t2), Δt = |t2 − t1|, f ′

X,Δt ,x2
(x2, x3) = ∂ fX,0,Δt

(x2, x3)/∂x2 and f ′
X,Δt ,x3

(x2, x3) = ∂ fX,0,Δt (x2, x3)/∂x3.

Proof We extend the proof of Lemma 2 in Giraitis et al. [4] to the trivariate case.
We shall first show that for any integer k ≥ 0,

∫

R3
|u|k | f̂ X,t1,t2(u)|du = O(1), t1, t2,Δt → ∞, (42)

where

f̂ X,t1,t2(u) = f̂ X,t1,t2(u1, u2, u3) = Eei (u1X0+u2Xt1+u3Xt2 )

=
∏

j

φ(u1b− j + u2bt1− j + u3bt2− j )

is the trivariate characteristic function. In particular, (42) implies that the trivari-
ate density fX,0,t1,t2 exists and belongs to Ck(R3), provided t1, t2 and Δt are large
enough. Given 0 < δX < 1 and k ≥ 0, there exist disjoint finite sets J1, J2 ∈ Z ,
|J1| = |J2|, c1, c2 > 0 independent of t1, t2, and t0 = t0(k, δX ) > 0 such that, for
any t1, t2,Δt ≥ t0, |b− j | > 2|bt1− j | + c1 ( j ∈ J1), |b− j | > 2|bt2− j | + c2 ( j ∈ J1),
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|bt1− j | > 2|b− j | + c1 ( j ∈ J2), |bt1− j | > 2|bt2− j | + c2 ( j ∈ J2) and [δX |Ji |] = k +
3, i = 1, 2. By Assumption (B3),

f̂ X,t1,t2(u1, u2, u3) ≤ C
∏

J1∪J2

(1 + |u1b− j + u2bt1− j + u3bt2− j |)−δX

≤ C
∏

J1

(1 + |u1 + u2r1 j + u3r2 j |)−δX
∏

J2

(1 + |u2 + u1r
′
1 j + u3r

′
2 j |)−δX ,

where |ri j | ≤ 1/2 ( j ∈ J1), |r ′
i j | ≤ 1/2 ( j ∈ J2), i = 1, 2. Note that for any u1, u2,

u3 ∈ R, and any |ri | ≤ 1/2, |r ′
i | ≤ 1/2, i = 1, 2,

(1 + |u1 + u2r1 + u3r2|)(1 + |u2 + u1r ′
1 + u3r ′

2|) ≥ C(1 + |u|) ≡ C(1 + (u2
1 + u2

2 + u2
3)

1/2),

where the constant C is independent of r1, r2, r ′
1, r ′

2. Hence we obtain

f̂ X,t1,t2(u1, u2, u3) ≤ C(1 + |u|)−k−3,

where the constant C = C(k) does not depend on t1, t2. This in turn implies (42).
Write pt1,t2(x1, x2, x3) for the left-hand side of (41). Let

p̂t1,t2(u1, u2, u3) (43)

= f̂ X,t1,t2(u1, u2, u3)− f̂ X (u1) f̂ X,Δt (u2, u3) + γX (t1)u1u2 f̂ X (u1) f̂ X,Δt (u2, u3)

+ γX (t2)u1u3 f̂ X (u1) f̂ X,Δt (u2, u3),

and f̂ X,Δt (u2, u3) = Eei (u2Xt1+u3Xt2 ) = ∏
j φ(u2bt1− j + u3bt2− j ). Then

pt1,t2(x1, x2, x3) = (2π)−3
∫

R3
e−i x ·u p̂t1,t2(u1, u2, u3)du.

For any α > 0, with k ≥ (1 − 2dX + α)/α, we obtain that

∫

R3
| f̂ X,t1,t2(u1, u2, u3)|I (|u| > tα)du (44)

≤ t−kα

∫

R3
|u|k | f̂ X,t1,t2(u1, u2, u3)|du ≤ Ct−kα = O(t2dX −1−α).

From (2.7) in the proof of Lemma 1 of Giraitis et al. [4], for any k ≥ 0 and r > k + 1,

∫

R

|u|k | f̂ X (u)|du ≤ C
∫

R

|u|k/(1 + |u|)r du = O(1),

and (2.13) in the proof of Lemma 2 of Giraitis et al. [4] yields that,

http://dx.doi.org/10.1007/978-3-319-51313-3_2
http://dx.doi.org/10.1007/978-3-319-51313-3_2
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∫

R2
|u|k | f̂ X,Δt (u)|du = O(1).

Then a similar estimate as in (44) is valid for the three other terms on the right-hand
side of (43). Thus

∫

R3
| p̂t1,t2(u)|I (|u| > tα)du = O(t2dX −1−α).

Then it remains to show that for any 0 < α < min(dX/7, (1 − 2dX )/8),

sup
|u|≤tα

| p̂t1,t2(u)| = O(t2dX −1−4α), (45)

as
∫

R3
e−i x ·u p̂t1,t2(u1, u2, u3)I (|u| ≤ tα)du ≤ Ct3αt2dX −1−4α = O(t2dX −1−α).

To prove (45), write

f̂ X,t1,t2 (u1, u2, u3) =
∏

i

φ(u1b−i + u2bt1−i + u3bt2−i ) =
∏

I1

· · ·
∏

I2

· · ·
∏

I3

· · ·
∏

I4

· · ·

=: a1 · a2 · a3 · a4, say,

f̂ X (u1) f̂ X,Δt (u2, u3) =
∏

i

φ(u1b−i )φ(u2bt1−i + u3bt2−i ) =
∏

I1

· · ·
∏

I2

· · ·
∏

I3

· · ·
∏

I4

· · ·

=: a′
1 · a′

2 · a′
3 · a′

4, say,

where

I1 = {i ∈ Z : |i | ≤ t2α}, I2 = {i ∈ Z : |i − t1| ≤ t2α},
I3 = {i ∈ Z : |i − t2| ≤ t2α}, I4 = Z \ (I1 ∪ I2 ∪ I3).

Then,

f̂ X,t1,t2(u1, u2, u3) − f̂ X (u1) f̂ X,Δt (u2, u3) = a1a2a3a4 − a′
1a

′
2a′

3a
′
4

= (a1 − a′
1)a2a3a4 + a′

1(a2 − a′
2)a3a4

+a′
1a

′
2(a3 − a′

3)a4 + a′
1a

′
2a′

3(a4 − a′
4).

Hence, (45) will follow from the facts

ai − a′
i = O(t2dX −1−4α), i = 1, 2, 3, (46)

a4 − a′
4 = −a′

4u1u2γ (t1) − a′
4u1u3γ (t2) + O(t2dX −1−4α), (47)

uniformly in |u| ≤ tα .
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Using the inequality |∏ ci − ∏
c′

i | ≤ ∑ |ci − c′
i |, for |ci | ≤ 1, |c′

i | ≤ 1, one
obtains

|a1 − a′
1| ≤

∑

|i |≤t2α

|φ(u1b−i + u2bt1−i + u3bt2−i ) − φ(u1b−i )φ(u2bt1−i + u3bt2−i )|.

Moreover, for |u2| ≤ tα , |u3| ≤ tα , |i | ≤ t2α , and 0 < α < dX/7,

|u2bt1−i + u3bt2−i | ≤ Ct2dX −1−6α.

Therefore, as |φ(y1 + y2) − φ(y1)φ(y2)| ≤ C |y2|, we obtain

|a1 − a′
1| = O

( ∑

|i |≤t2α

t2dX −1−6α
)

= O(t2dX −1−4α).

The cases i = 2, 3 are analogous.
It remains to prove (47). For sufficiently large t1, t2, the left-hand side of (47) can

be represented as

a4 − a′
4 = a′

4(exp{Qt1,t2(u1, u2, u3)} − 1),

where
Qt1,t2(u1, u2, u3) :=

∑

I4

ψ(u1b−i , u2bt1−i + u3bt2−i )

with
ψ(x, y) := logφ(x + y) − logφ(x) − logφ(y), (x, y) ∈ R2.

Hence,

ψ(u1b−i , u2bt1−i + u3bt2−i )

=
∫ u1b−i

0

∫ u2bt1−i +u3bt2−i

0

[
(logφ)′′(0) + (x + y)(logφ)(3)(z)

]
dxdy

= −u1u2b−i bt1−i − u1u3b−i bt2−i + O
(
(u1b−i )

2|u2bt1−i + u3bt2−i |
+ |u1b−i |(u2bt1−i + u3bt2−i )

2
)
,

where z is between 0 and x + y. Consequently,

Qt1,t2(u1, u2, u3) = −u1u2γX (t1) − u1u3γX (t2) + q1 + q2,
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where

q1 = O
(
|u1u2|

∑

I1∪I2∪I3

|b−i bt1−i | + |u1u3|
∑

I1∪I2∪I3

|b−i bt2−i |
)
,

q2 = O
(
|u2

1u2|
n∑

i=1

|b2
−i bt1−i | + |u2

1u3|
n∑

i=1

|b2
−i bt2−i | + |u1u2

2|
n∑

i=1

|b−i b
2
t1−i |

+ |u1u2
3|

n∑

i=1

|b−i b
2
t2−i |

)
.

As |ui | ≤ tα , i = 1, 2, 3,

q1 = O
(

t2α max|i |≤tα
(|bt1−i |, |bt2−i |)

)
= O(t2dX −1−5α),

q2 = O
(

t3α max
i

(|bt1−i |, |bt2−i |)
)

= O(t2dX −1−4α),

provided 0 < α < dX/7. Thus

Qt1,t2(u1, u2, u3) = −u1u2γX (t1) − u1u3γX (t2) + O(t2dX −1−4α) = O(t2dX −1+2α),

uniformly in ]u1|, |u2|, |u3| ≤ tα , which implies that

exp{Qt1,t2(u1, u2, u3)} − 1 = Qt1,t2(u1, u2, u3) + O
(
Q2

t1,t2(u1, u2, u3)
)

= −u1u2γX (t1) − u1u3γX (t2) + O(t2dX −1−4α)

as α < (1 − 2dX )/8. This proves (47) and the lemma too.
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Testing Shape Constraints in Lasso
Regularized Joinpoint Regression

Matúš Maciak

Abstract Joinpoint regression models are very popular in some practical areas
mainly due to a very simple interpretation which they offer. In some situations, more-
over, it turns out to be also useful to require some additional qualitative properties
for the final model to be satisfied. Especially properties related to the monotonicity
of the fit are of the main interest in this paper. We propose a LASSO regularized
approach to estimate these types of models where the optional shape constraints can
be implemented in a straightforward way as a set of linear inequalities and they are
considered simultaneously within the estimation process itself. As the main result
we derive a testing approach which can be effectively used to statistically verify the
validity of the imposed shape restrictions in piecewise linear continuous models. We
also investigate some finite sample properties via a simulation study.

Keywords Joinpoint regression ·Regularization ·Shape constraints ·Post-selection
inference

1 Introduction

There are many different areas and practical situations where an easy interpretation
of some statistical model is of the key interest. This especially happens if statistical
models are about to be used by nonstatisticians or people with a lack of statistical
skills. If possible, in such cases, statisticians should have a tendency to go for models
which are flexible enough to capture an assumed underlying structure behind the
data, but, on the other hand, the final models should be simple enough to be easily
explained and interpreted.
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Joinpoint regression1 models definitely belong among this type of models. Each
joinpoint regression model is a piecewise linear model where each single piece can
be interpreted in a classical sense of an ordinary linear regression line. The linear
pieces join together obeying the continuity condition over the whole domain of
interest. Locations atwhich the linear segments join together are called change-points
(sometimes also structural breaks, join points, slope breaks or transition points). The
locations of these change-points are usually left unknownand they are also considered
to be the subjects of the estimation process.

The joinpoint regression models take an advantage of changes in the slope para-
meter to adapt for existing alternations in the overall structure in the data. However,
in order to keep the final model simple, it is usually assumed that only some change-
points are present in the model and thus, only some breaks in the slope are observed
in the final fit. From the theoretical point of view it turns out to be convenient to know
the number of change-points in advance as this knowledge improves the asymptotic
performance of themodel. Frompractical reasons however, aswe alreadymentioned,
this is not the case in real situations nor it is possiblemany times. On the other hand, if
the number of change-points (slope breaks) is unknown one needs to use somemodel
selection procedures to perform a model selection step: a proper decision needs to
be made in order to choose one model from a set of all allowable models. There
are of course various techniques to perform this model selection step: considering
a selection of a final model from some class of plausible joinpoint linear regression
models (a set of models with different number of breaks in the slope, or equiva-
lently, models with the corresponding number of linear segments) one can either use
classical statistical tests (e.g. permutation tests investigated in [10, 11] or likelihood
ratio tests discussed in [4, 8]) or instead some alternative approaches mostly based
on a Bayesian framework (see, e.g. [2] or [15]). In this context, there are especially
permutations tests gaining a lot of popularity (see [1, 19]) as they are commonly
used as standard tools in different areas where joinpoint models are applied.

Another idea to perform the model selection step, which we also use in this paper,
is based on theLASSO regularization approach originally proposed in [20]. The same
idea of using the LASSO approach in joinpoint regression estimation is investigated
in [14] and also in [7] where, however, the authors considered a slightly different
but still very analogous scenario with a locally constant model which represents the
simplest structure one can consider in this setup. The main idea behind the LASSO-
based selection step is to use the L1 norm penalty implemented in the minimization
of some objective function and to let the penalty itself to select one model from a
set of all plausible ones. To put this in other words, the L1 penalty is responsible for
choosing only important breaks (change-points) in the slope from some much larger
set of all hypothetical slope breaks. Only a small subset of important change-points
should play the role in the final fit—the rest of the change-points will stay inactive.

1Different names can be used in literature to refer to joinpoint regression models, among others,
for instance segmented regression models, piecewise linear models, threshold models, sequential
linear models, etc.
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The solution is called to be sparse (i.e. only a small subset of all corresponding
parameters are nonzero in the final model) and creating sparse solutions is the main
property of the LASSO regularized approach (see, e.g. [20] for more details). The
main advantage of using the LASSO approach is that the regularized estimation
somehow considers all possible model alternatives and the L1 penalty selects the
most suitable model in a data-driven manner. In contrast, the permutation tests and
Bayesian approaches as well are quite limited in this context as they mostly consider
only some small number of different alternatives. In permutation tests one usually
tests one specific model against some other one and in the Bayesian framework the
prior is usually also defined over a small set of different models only. From this point
of view the LASSO-based selection step seems to be muchmore appropriate strategy
especially if the number of slope breaks in the true model is unknown (see also [14]
for further discussion).

The main idea of this paper is to derive a testing approach to verify some addi-
tional qualitative constrains which might be (optionally) imposed on the shape of
the constructed fit. As far as we assume the piecewise linear models only the most
reasonable restrictions which can be formulated with respect to the overall shape
are those related to monotonic properties. One can, for example, requires that the
final fit should be increasing or non-decreasing over the whole domain of interest.
Such models have practical applications especially in production function estima-
tion, different cost and performance functions, but they are also useful in economics,
medicine, social sciences and many other areas.

In addition to the tests of qualitative properties the designed testing approach can
be also applied in a straightforward way to verify statistical importance of change-
points being estimated in the model.

The rest of the paper is organized as follows: in the next session we discuss
the LASSO regularized joinpoint models and we propose an algorithm to estimate
these models. Different shape constraints which can be automatically considered
in the estimation procedure are also discussed in Sect. 2. In Sect. 3 we discuss the
main result of the paper: the testing approach based on some modifications of some
recent results in [21]. All necessary details are also provided. Finally, finite sample
properties and applications are presented and discussed in Sect. 4.

2 Joinpoint Regression Model with Shape Constrains

Let us consider a bivariate random sample {(Xi , Yi ); i = 1, . . . , n} drawn from some
unknown population (X, Y ), where the design points X1, . . . , Xn are assumed to be
drawn from some continuous marginal distribution from some domain of interest,
e.g. interval [0, 1]. Thus, all Xi points are unique almost surely and with any loss
of generality we can assume that Xi < Xi+1, for all i = 1, . . . , n − 1. The unknown
dependence structure between each pair of the random variables Yi ’s and Xi ’s is
assumed to be piecewise linear and continuous, and the unknown linear pieces are
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allowed to join at the design points X1, . . . , Xn only.Under this assumptions a general
joinpoint regression model with no further shape restrictions can be expressed as

Yi = ai + bi Xi + εi , for i = 1, . . . , n, (1)

where we assume independent random error terms εi ∼ N (0, σ 2), for some given
constant σ 2 > 0. The overall continuity condition can be imposed as

ai + bi Xi = ai+1 + bi+1Xi , for i = 1, . . . , n − 1. (2)

Using this model formulation we are firstly interested in estimating the unknown
parameters ai , bi ∈ R, for i = 1, . . . , n. However, as far as we only assume some
small number of slope breaks to occur in the final model we can consider parameters
bi ’s to be sparse in a sense that equalities bi = bi+1 hold for all but some small subset
of indexes from {1, . . . , n − 1}. Therefore, it sounds reasonable to apply the estima-
tion idea based on the LASSO regularization principlewhere the parameters included
in the L1 penalty are the corresponding differences between two neighbouring slope
parameters bi and bi+1, for i = 1, . . . , n − 1.

Once there is some index j such that b j �= b j+1 the estimation procedure auto-
matically estimates a slope change in the model and the corresponding location of
the slope break is estimated at the design point X j . The overall slope changes at
this location from b j to b j+1 to adjust for an existing structural change in the data.
The intercept parameters ai , for i = 1, . . . , n, are then responsible for obeying the
continuity condition over the whole domain.

Let β = (β0, β1, β2, . . . , βn−1)
� = (a1, b1, (b2 − b1), . . . , (bn−1 − bn−2))

� ∈
R

n and I = {2, . . . n − 1} the subset of indexes from {0, 1, . . . , n − 1} for which
the vector of parameters β is assumed to be sparse. Then, using some simple algebra
calculations one can easily verify that an appropriate estimation procedure for the
model in (1) under the continuity conditions in (2) can be formulated as

Minimize
β ∈ R

n

1

n
‖Y − Xβ‖22 + λn

∥∥β(−2)

∥∥
1
, (3)

where Y = (Y1, . . . , Yn)
� is the response vector, β ∈ R

n is the vector of unknown
parameters to be estimated and β(−2) = (β2, . . . , βn−1)

� denotes the sparse subset
of parameters (i.e. the whole parameter vector without its first two elements) which
are regularized by the LASSO penalty in (3). If there are some non-zero elements
estimated for β(−2) these estimates are responsible for slope breaks, respectively,
changes in the direction of the dependence of Y on X . One can also easily verify that
the design matrix in (3) takes the form
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X =

⎛

⎜⎜⎜⎜
⎜
⎝

1 X1 0 0 . . . 0
1 X2 0 0 . . . 0
1 X3 (X3 − X2) 0 . . . 0
...

...
...

. . .
. . .

...

1 Xn (X3 − X2) (X4 − X3) . . . (Xn − Xn−1)

⎞

⎟⎟⎟⎟
⎟
⎠

. (4)

The first two columns in X are identical with the columns used in the design
matrix for a classical linear regression case where Y is regressed on X . Thus, the
first two parameters can be interpreted as the overall intercept and slope parameters.
All other parameter estimates, where only some of them are expected to be nonzero
due to the L1 penalty in (3), are responsible for estimating existing slope changes.
The value of the regularization parameter λn > 0 in (3) controls the number of these
slope changes in the final model: for λn close to zero there should be slope changes
expected at each Xi while for λn → ∞ (respectively, large enough) the final fit will
perfectly correspond with a classical linear regression line.

The minimization problem in (3) is convex and thus it can be easily solved using
some standard minimization toolboxes. Moreover, one can also take an advantage
of very effective solution approaches like LARS–LASSO algorithm (see [3]) or the
coordinate decent algorithm proposed in [5]. The whole minimization problem in
(3) can be also reparametrized in a sense of the classical LASSO problem (see [14]).
More details about the model in (1) including some theoretical properties of the
estimates constructed by minimizing (3) are discussed in [14].

Next, we would like to point our attention to situations where it may be natural
to expect some specific shape of the unknown dependence structure. In order to
obtain the same structure in the final estimate one needs to impose some additional
constraints in order to enforce the required shape. As far as we only deal with the
dependence structures which are piecewise linear it is reasonable to mainly consider
restrictions based on monotonicity. One can still assume some isotonic constraints
but let us remind that with piecewise modelling approach it is not possible to obtain
any strictly convex or concave shapes.

Using the notation already introduced above, it is easy to see, for example, that for
an (strictly) increasing form of the dependence between Y and X it needs to hold that
bi ≥ 0 (or bi > 0, respectively.) for each i ∈ {1, . . . , n}. Considering the vector of
parameters β ∈ R

n it gives that
∑�

j=1 β j ≥ 0 (or
∑�

j=1 β j > 0, respectively.) which
needs to hold for any � ∈ {1, . . . , n − 1}. Analogously, if the underlying shape of
the function is supposed to be (strictly) decreasing the same inequalities should hold
with opposite signs. For a convex shape of the piecewise linear dependence one
can again verify that it needs to hold that bi+1 ≥ bi for all i ∈ {1, . . . , n − 1} which
again can be equivalently reformulated in terms of the vector of parameters β ∈ R

n

as β j ≥ 0 for each j ∈ {2, . . . , n − 1}. Similarly, for the concave shape we need
opposite inequalities to be satisfied. Note that no role is indeed played by the overall
intercept parameter β1 in case of isotonic restrictions, and thus, this parameter is not
present in the corresponding constraints. In some situations it may be reasonable to
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even combine the monotonic and isotonic restrictions together. This can be done in
a straightforward way using the inequalities already defined.

In order to obtain an estimate of the unknown dependence structure between Y
and X which will in addition fully comply with the imposed shape constraints, the
corresponding inequalities need to be taken into account simultaneously with the
estimation process. Again, it is easy to see that in order to fit a LASSO regularized
shape-constrained joinpoint regressionmodel one needs to consider theminimization
problem which can be expressed as

Minimize
β ∈ R

n

1

n
‖Y − Xβ‖22 + λn

∥
∥β(−2)

∥
∥
1
, (5)

subject to Aβ(−1) ≥ 0, (6)

for some appropriatematrix2 A, where in additionβ(−1) ∈ R
n−1 denotes analogously

a subset of β given by the vector itself without its first element (the overall intercept
parameter). The inequality in (6) is meant elementwise.

The minimization problem under the constraints given in (5) and (6) looks very
similar to the CLASSO problem proposed in [6] where a classical LASSO problem
with additional linear constraints imposed on estimated parameters is considered.
However, unlike the CLASSO problem we have different subsets of parameters
playing now their role in different parts of the minimization problem: the whole
set of parameters (vector β ∈ R

n) contributes to the minimization of the L2 loss
criterion function in (5) while only a subset of parameters (i.e. vector β(−2) ∈ R

n−2)
is considered in the L1 penalty term. Finally, in the shape restriction imposed via
inequalities in (6) another subset of parameters is used to define the required shape—
either parameters in β(−1) ∈ R

n−1 in case of the monotonic restrictions or parameters
in β(−2) ∈ R

n−2 in case of the isotonic restrictions.
Unfortunately, the minimization problem under the linear constraints defined in

(5) and (6) can not be re-parametrized to fit the classical LASSO problem as we
could do it in case of the unrestricted version stated in (3). Theminimization problem
which we consider for the regularized and shape-constrained joinpoint models does

2If the shape constraints in (6) refer to the monotonic property of the final fit (e.g.non-decreasing
function), the corresponding matrix A equals to A1 below. If the constraints in (6) are supposed to
refer to isotonic property (e.g. convex function) the corresponding matrix A should be equal to A2
(the estimate for the overall slope β1 is irrelevant for isotonic properties of the final fit, thus the first
line in A2 are either zeros or it can be deleted with β(−2) being considered instead of β(−1)).

A1 =

⎛

⎜⎜
⎜⎜
⎜
⎝

1 0 . . . . . . 0
1 1 0 . . . 0
.
.
.

.

.

.
. . .

.

.

.
.
.
.

1 . . . 1 1 0
1 . . . . . . 1 1

⎞

⎟⎟
⎟⎟
⎟
⎠

∈ R
(n−1)×(n−1) and A2 =

⎛

⎜⎜
⎜⎜
⎜
⎝

0 0 . . . . . . 0
0 1 0 . . . 0
.
.
.

.

.

.
. . .

.

.

.
.
.
.

0 . . . 0 1 0
0 . . . . . . 0 1

⎞

⎟⎟
⎟⎟
⎟
⎠

∈ R
(n−1)×(n−1). Analo-

gous matrices for other scenarios can be obtained in similar ways as an easy exercise.
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not fit any standard LASSO problems considered in literature therefore, it needs to
be considered separately.

Moreover, one can not even apply classical LASSO estimation tools like LARS–
LASSO approach or coordinate decent algorithm (see the discussion, e.g. in [6]). On
the other hand, the shape restricted LASSO minimization problem as we consider it
in this paper is still a convex problem and thus, it can be solved using some standard
optimization toolboxes and iterative algorithms.3

3 Statistical Test for Testing Shape Constraints Validity

In this section we propose a suitable testing approach which can be used to decide
whether some shape constraints considered for the unknown joinpoint model are
statistically relevant or not. To be precise, the main idea of this section is to provide
a statistical test to decide about the following pair of hypothesis

H0 : Aβ(−1) ≥ 0; (7)

H1 : H0 does not hold;

where the inequality is again assumed in the element-wise manner and the matrix A
in the null hypothesis is some appropriate matrix with the corresponding dimensions:
it is used to expresses the required shape constraints in terms of some linear combi-
nation of the unknown parameters. Note that any general matrix form is allowable for
the testing procedure discussed in this section, however, we only concentrate on such
forms which have some straightforward interpretation with respect to monotonic or
isotonic properties of the LASSO regularized joinpoint regression model.

Considering an analogous set of hypotheses in a classical linear regression model
one can use a whole variety of different statistical tools to decide whether the null
hypothesis in (7) should be rejected or not. Indeed, one can use for example a classical
test based on estimated residuals in the model which corresponds with H0 and the
other model corresponding with H1 and to compare both. The test statistics then
follows Fisher F-distribution with some appropriate degrees of freedom. Another
option is to go for a likelihood ratio test and again we need to compare two models
against each other. The corresponding test statistics then follows χ2 distribution
with some degrees of freedom. Last but not least, one can also use a series of tests
where for each element-wise inequality in (7) a separate t-test is performed, however,
with some additional correction in order to keep a predefined level of the first type
error probability. Unfortunately, none of these approaches can be used in case of the
LASSO regularized estimates as one can not guarantee the overall first type error
probability any more.

3In order to solve the minimization problem in (6) with respect to the constraints stated in (7) we use
The MOSEK optimization toolbox and Mosek-to-R interface available in the R package Rmosek.
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Let us briefly discuss somemain issues and problemswhich commonly arisewhen
performing statistical inference about LASSO regularized estimates in general. The
same issues also occur for the shape constraint test in (7) as the corresponding
estimates are also obtained by the LASSO regularized minimization in (6) and (7).
We also discuss some recent proposals which can avoid some of these problems and
finally, we introduce an adaptation which perfectly suits our scenario: we propose a
test which can be effectively used to verify whether the imposed shape constraints
are statistically relevant in the joinpoint model or not.

3.1 Significancy Test for LASSO Regularized Estimates

There is a huge discussion in literature on different approaches on how to perform
statistical inference and statistical tests about some parameters estimated within the
LASSO regularized regression framework. A pioneering work illustrating a whole
series of problems arising when testing LASSO regularized parameters is discussed
in [13].

Thewhole drawback is hidden in the fact that in theLASSO regularized estimation
process the non-zero parameters enter the model at random. In other words, selecting
a covariate, respectively, a column from the design matrixX in (3), is a random event
and all classical testing approaches are not able to take this into account. This results
in a poor performance with respect to the ability to keep the predefined level of the
test (see [13] for an illustration).

There is a recent and extensive development in the area of the post-selection
inference and a whole series of different approaches are proposed: e.g. methods
based on splitting the sample and re-sampling discussed in [16] or ideas derived
from debiasing the LASSO estimates proposed by [23] or [22]. In this paper we use
the idea presented in [21] where the authors showed that the problem of random
selection in LASSO models can be effectively taken care of by conditioning on the
actual LASSOpath history.4 In addition, this LASSOpath history can be expressed in
terms of somewell-defined linear constraintswhich define a polyhedral set as a subset
ofRn for the vector of observations Y = (Y1, . . . , Yn), which gives the same LASSO
history path. Thus, instead of considering all possible data scenarios Y ∈ R

n we only
consider those which give the same LASSO solution path. We condition on Y ∈ B

where B ⊂ R
n is some well-defined polyhedral set which fully defines the actual

LASSO history path.
Thus, considering a set of LASSO regularized parameters β(−2) ∈ R

n−2 and some
general statistical test

4ByLASSOpath historywe understand a sequence of variableswhich progressively enter themodel
as we proceed with estimation. In each step of the estimation procedure only one parameter can
either enter the current model (if it is not in the model yet) or an active parameter steps off the model
(if it was active). Only one of these events can happen at each step. The LASSO history follows
this entering/stepping off process starting with a zero model where all regularized parameters are
set to zero.
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H0 : v�β(−2) = 0;
H1 : v�β(−2) < 0; (8)

for some arbitrary vector v ∈ R
n−2, we can apply the aforementioned theory based

on conditioning on the LASSO history path to replace the conditional probability
under the null hypothesis

PH0(·| f ull L ASSO history path)

by a more appropriate (mathematical) expression

PH0(·|Y ∈ B) = PH0(·|{Y ∈ R
n; Γ Y ≥ b}), (9)

for some appropriate polyhedral setB = {Y ∈ R
n; Γ Y ≥ b} ∈ R

n which fully spec-
ifies the LASSO history path in terms of some linear constraints imposed on Y being
expressed as Γ Y ≥ b. Finally, an appropriate test statistic denoted as T (Y ,B, v) can
be derived for the set of hypothesis in (8) and it is proved in [21] that under the null
hypothesis it holds that

T (Y ,B, v)
PH0∼ Uni f orm(0, 1).

We use this result in the next session to propose a modification which we later use
to decide on statistical significancy of the proposed shape constraints in the LASSO
regularized joinpoint regression model.

3.2 Shape Constraints Inference for LASSO Joinpoint
Models

Let us start with some technical details on how to transform the full LASSO history
path into a polyhedral expression which is used for the conditional probability in (9).
This will be needed to calculate the distribution of the test statistic under the null
hypothesis discussed later.

Let X j for j = 1, . . . , n denotes the corresponding column of the design matrix
X. Then for some vector of coefficient estimates β̂ = (β0, . . . , βn−1)

� ∈ R
n and

the vector of signs5 ŝ = (s1, . . . , sn−2)
� ∈ [−1, 1](n−2) to be the solution of (5) with

additional constraints (6) it is necessary and sufficient than theKarush–Kuhn–Tucker
(KKT) optimality conditions hold. They can be expressed as

5The vector of estimated signs ŝ is only relevant for the LASSO regularized estimates in β(−2) and

it holds that ŝ j = sign(β̂ j+1), for all j = 1, . . . , n − 2.
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X�
j (Xβ̂ − Y) = 0 for j = 1, 2,

X�
j (Xβ̂ − Y) + λnŝ j−2 = 0 for j = 3, . . . , n,

ŝi = sign(β̂i+1) if β̂i+1 �= 0 for i = 1, . . . , n − 2,
ŝi ∈ [−1, 1] if β̂i+1 = 0,

where in addition we require the shape constraints to hold, thus Aβ̂(−1) ≥ 0 again
for β̂(−1) = (β̂1, . . . , β̂n−1)

�. Using now Lemma 4.1 and Theorem 4.3 from [12]
we can use the KKT conditions above to derive the LASSO selection history in
terms of some affine restrictions imposed on Y ∈ R

n . Thus, a random event that
we obtain a model with the same active set A = { j ∈ J ; β̂ j �= 0} and the same
vector of corresponding signs ŝ, where ŝ j = sign(β̂ j+1), for j = 1, . . . , n − 2, can
be expressed as in terms of a polyhedral restriction on Y ∈ R

n , respectively

B = {Y ∈ R
n|A , ŝ} = {Y ∈ R

n; Γ Y ≥ b},

where both, matrix Γ and vector b depends on the LASSO selection history given
by the active set of indexes A and the corresponding sign vector ŝ.

Next, we state Lemma 1 from [21] which will be useful to define the test statistic
for the test.

Lemma 1 Let Y ∼ N (θ,Σ) for some general mean vector θ ∈ R
n and variance–

covariance matrix Σ such that v�Σv �= 0 for an arbitrary fixed vector v ∈ R
n. Then

a polyhedral restriction {Γ Y ≥ b} can be equivalently expressed as

VL(Y) ≤ v�Y ≤ VU (Y) and at the same time V0(Y) ≤ 0,

where for VL(Y), VU (Y) and V0(Y) we have

VL(Y) = max
j :ρ j >0

u j − (Γ Y) j + ρ jv�VL(Y)

ρ j

VU (Y) = max
j :ρ j <0

u j − (Γ Y) j + ρ jv�VL(Y)

ρ j

and finally, V0(Y) = max
j :ρ j =0

u j − (Γ Y) j , where ρ = (ρ j ) j = Γ Σv/v�Σv.

Moreover, (VL(Y), VU (Y), V0(Y)) is independent of v�Y .

Proof See the proof of Lemma 1 in [21]. �

Now, we only need to realize that Y follows by our assumption the normal dis-
tribution with the corresponding variance–covariance matrix Σ which we assume is
known. A linear combination v�Y for an arbitrary v ∈ R

n follows again the normal
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distribution and thus, a conditional distribution when conditioning on the polyhedral
set {Γ Y ≥ b} can be equivalently expressed as a conditional distribution of

v�Y
∣∣∣ VL(Y) ≤ v�Y ≤ VU (Y)

∧
V0(Y) ≤ 0,

which can be shown is a truncated normal distribution6 where the boundaries of the
truncation are random and depend on the selection.

Finally, to construct the test statistic which can be later used to test the set of
hypotheses in (8) we state the following theorem.

Theorem 1 Let the model Y ∼ N (Xβ, σ 2 I ) holds for some general mean vector
Xβ ∈ R

n and some given variance σ 2 > 0. Let moreover, v ∈ R
n be an arbitrary

fixed vector such that v�(X�
X)−1v �= 0. Then the random variable

T (Y ,B, v) = 1 − F [VL (Y),VU (Y)]
v�β,v�(X�X)−1v

(
v�β̂

)
, (10)

can be used to test the null hypothesis H0 : v�β = 0 against the alternative H1 :
v�β > 0 and it holds that

PH0

(
T (Y ,B, v) ≤ α| f ull L ASSO history path

)

= Pv�β=0

(
T (Y ,B, v) ≤ α|Γ Y ≥ b

)
= α.

Proof The proof follows as a special case of the proof of Lemmas 2 and 3 in [21].
�

Comparing now the set of hypothesis in (7) with the post-selection tests discussed
in the previous section one should note two major differences: there is only a simple
null hypothesis considered in (8) but the formulation in (7) states a more complex
hypothesis which can not be directly dealt with using the discussed post-selection
inference above.And second, unlike thenull hypothesis in (8)where onlyone equality
is given one needs to consider awhole set of inequalities in the expression Aβ(−1) ≥ 0
in the null hypothesis in (7) as this inequality is considered in the element-wise
manner. Indeed, there are actually n − 1 inequalities to test in total. Unfortunately,
the post-selection tests can not be easily adapted for such complex hypotheses and
therefore, some necessary modifications and ways around need to be investigated.

On the other hand, we apriori assume that only a small number of parameters
in β(−2) ∈ R

n−2 are estimated as non-zero elements and thus, we can equivalently
rewrite the original test in (7) using only those parameters where non-zero elements
occur in the estimate of β(−2). In addition, we can also limit our attention to a more

6By a truncated normal distribution we understand a distribution with a cumulative distribution
function F [a,b]

μ,σ 2 (x) truncated to the interval [a, b] ⊂ R where F [a,b]
μ,σ 2 (x) = φ((x−μ)/σ)−φ((a−μ)/σ)

φ((b−μ)/σ)−φ((a−μ)/σ)
,

for φ(·) being the cumulative distribution function of the standard Gaussian random variable.
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specific scenario, where we only test a simple null hypothesis against a complex
alternative. Given the fact that the testing approach is based on the post-selection
inference where we condition on the full LASSO history path (which means that
we condition on scenarios which give the same final model) we can rewrite the set
of hypothesis in (7) using A = { j ∈ J ; β̂ j �= 0}, which is the set of indexes of
regularized parameters which are active in the final fit, as

H0 : AA(1)βA(1)
= 0; (11)

H1 : AA(1)βA(1)
> 0;

where A(1) = A ∪ { j = 1} to also include the intercept parameter β1 into the test,7

and AA(1) is a submatrix of A consisting only of the rows and columns which cor-
respond with the set of indexes in A(1). The same also applies for βA(1)

which is a
subvector of β(−1) ∈ R

n−1 with only those elements which correspond with indexes
in A(1). The equality sign in the null hypothesis as well as the inequality sign in the
alternative hypothesis are considered again element-wise.

One can easily see that the hypotheses test in (11) differs from the original test
formulated in (7) but there is still some common sense in the later formulation pre-
sented in (11). Indeed, if the true function is increasing the final fit should correspond
and thus by rejecting the null we actually confirm the imposed shape constraints. On
the other hand, if the true function is rather decreasing, the final fit will result in a
simple overall mean and under the imposed restrictions the null hypothesis should
not be rejected as the true parameters are supposed to be zeros indeed. An analogous
argumentation can be also used in case of some isotonic shape restrictions.

As far as we assume only limited, a small number of slope breaks to occur in
the final model we have that |A | = #{ j ∈ J ; β̂ j �= 0} is small and thus we only
have a small number of the element-wise inequalities in (11). Using the post-selection
approach discussed in Sect. 3.2 we only need to consider each inequality in a separate
test andwe can calculate the corresponding p-value for each test separately: applying
Theorem 1 we can use the test statistic defined in (10) to calculate the corresponding
p-values for individual tests H0 j : a�

j βA(1)
= 0 against H1 : a�

j βA(1)
> 0, for each

j = 1, . . . , J , where a�
j are the corresponding columns of AA(1) = (a1, . . . , a p)

�
and J = |A(1)|.

Note, however, that the overall slope parameter β1 is not penalized in the LASSO
penalty in (3) and thus, there is no need to apply the polyhedral conditioning for
calculating the corresponding p-value for this parameter. Indeed, it is easy to see from
theKKT conditions that the estimate of the overall slope parameter is given in a sense
of an ordinary linear regression and therefore, classical inference techniques can be
applied. For other parameters which are penalized in the LASSO penalty we need

7In case of the isotonic constraints where the intercept parameter does not play any role in the test
one can consider the set of indexes for active parameters only, the set A .
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to adjust for the randomness in the model selection step and thus, the corresponding
p-values need to be obtained using the post-selection inference approach.

To conclude, we need to deal with a relatively small set ofmultiple tests while con-
trolling for the overall first type error probability. Multiple comparisons techniques
need to be used but one needs to be aware of the fact that given the structure of the
matrix in (11) these multiple tests are not independent. There are many approaches
and different techniques which can be applied to correctly control and manage the
overall first type error probability: the simplest approach is so called Bonferroni cor-
rectionwhich is however, known to be quite conservative inmany situations. Another
techniques are discussed, e.g. in [17] and more sophisticated approaches based on
nonparametric combination of tests are summarized in [18]. For our purposes we
use a simple modification of the Bonferroni correction, so called Holm-Bonferroni
correction (see [9] for details): for J ∈ N being the number of comparisons in (11)
(equivalently the number of rows in AA(1)) and α ∈ (0, 1) being the overall first type
error probability we sort the corresponding p-values p(1) ≤ · · · ≤ p(J ) andwe search
for the smallest j ∈ {1, . . . , J } such that p( j) > α/(J − j + 1). If j = 1 then we do
not reject the null hypothesis. If there is no such j ∈ {1, . . . , J } then we reject the
null hypothesis in (11) and thus, we confirm the imposed shape constraints.

4 Finite Sample Results

In this section we investigate some final sample properties of the proposed estimation
and testing approach. Specifically, we are interested in estimating some unknown
regression function which is assumed to be piecewise linear and continuous on its
domain and in addition we impose non-decreasing8 restriction on the constructed fit.
Using the estimated model we would like use the proposed test to verify whether the
shape restrictions are likely to be fulfilled or not.

For this purpose we consider three different models with piecewise linear and
continuous underlying regression functions:

Model A : f1(x) = 1 + xI(x<0.3) + (4x − 0.9)I(x∈[0.3,0.5)) + (0.5x + 0.85)I(x≥0.5);
Model B : f2(x) = 1 + 1.5xI(x<0.4) + 0.6xI(x∈[0.4,0.8)) − (0.75x − 3.2)I(x≥0.8);
ModelC : f3(x) = (3x + 1.2)I(x<0.4) − (5x − 4.4)I(x∈[0.4,0.8)) − (x − 2)I(x≥0.8);

It is easy to verify that Model A satisfies the non-decreasing property over the
whole domain— interval (0, 1); Model B is increasing in the first part of the domain,
constant in the second part and finally, slightly decreasing in the last part of the
domain; Finally, Model C is similar as the second one but the decreasing segments
aremuchmore obvious, therefore, there should bemore evidence in favour of the null

8One can assume different shape constraints. In this paper, however, we only present a small part
of the simulation results for this specific restriction.
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(d)Model A(shapeconstrained)
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Fig. 1 Three underlying models (true functions with black solid lines) fitted with the LASSO reg-
ularized joinpoint regression approach (red solid lines): firstly, under no shape restrictions given by
(3) and displayed in subfigures a–c; secondly, under the additional non-decreasing shape restriction
as defined by (6) given in subfigures d–f

hypothesis (alternative means non-decreasing). The data were generated using the
corresponding model where n = 20 design points were equidistantly placed over the
whole domain and the random noise followed the normal distribution N (0, 0.12). All
design points were assumed to be hypothetical change-point locations for the slope
break, however, we apriori considered two change-points only (resp. slope breaks)
and we used the unrestricted estimation approach as defined in (3) (see Fig. 1a–c)
and the shape-constrained estimation procedure in sense of (6) (Fig. 1d–f). Both
estimation approaches are used to compare the effect of imposing the additional
shape constraints.

It is clear from Fig. 1 that once the constraints are true, the model estimated under
the constraints and the model estimated without constraints are identical (compare
Fig. 1a, d). On the other hand, if the imposed constraints are validated by the true
model then these two estimation approaches clearly differ. Indeed, one model tries
to fit the underlying data and to reveal the true structure while the second one stays
limited within the imposed restrictions (compare Fig. 1b, e and c, f).

As we are also interested in some statistical decision whether given constraints
hold or not we consider a set of hypothesis defined in (11).We assume only two slope
breaks by default, therefore, there are only three rows in AA(1) and three non-zero
parameters β̂A(1)

= (β̂1β̂ j1 , β̂ j2)
� (the overall intercept and two slope breaks). Next,

we calculate the corresponding p-values for simple tests of linear combinations of

parameters with each line of the matrix AA(1) =
(
1 0 0
1 1 0
1 1 1

)

.

Thuswe obtain three p-values one for each row in AA(1) : the first correspondswith
the partial test H01 : β1 = 0 against H11 : β1 > 0 for the overall slope parameter β1
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and the remaining two correspond with analogous tests for the linear combinations
β1 + β j1 and β1 + β j1 + β j2 , where j1, j2 ∈ A are the only two indexes of two
active parameters. The corresponding p-values are calculated via the post-selection
frameworkusingTheorem1.The corresponding p-values for eachof the threemodels
(A, B and C) are presented in Table1.

All three models were also considered repeatedly in additional simulations in
order to investigate the overall behaviour: the results are averaged for 100 repetitions
and they are given in the last two columns of the corresponding partial table (one for
each model) in Table1.

To finally conclude, for α = 0.05 the null hypothesis in case ofModel A is clearly
rejected in favour of the alternative which states that β1 > 0 as well as β1 + β j1 > 0
and β1 + β j1 + β j20 > 0 and thus, all three slope parameters of the three segments in
themodel are positive. For the remaining twomodels the null hypothesis in (11) is not
rejected. Thus, the estimated parameters which would otherwise cause the estimated
function to take a decreasing shape can be considered to be zero. Comparing this
with the shape-constrained fits in Fig. 1e, f we can conclude that the slope parameters
are mostly indeed being estimated as zeros.

5 Conclusion

Piecewise continuous linear regression models are popular modelling approaches in
various practical applications where the final interpretation of the model should be
kept as easy as possible.Weconsidered theLASSOregularized estimation framework
for fitting suchmodels. However, due to an evident lack of sufficient statistical theory
in the area of the LASSO estimation it is not easy to approach such models from the
perspective of some valid inference.

In this paper we proposed an adaptation of the idea being recently presented in
[20] and we introduced a statistical test which can be used to verify some qualitative
properties of the final fit. Specifically, we consider some common shape constraints
like monotonic or isotonic properties and we use the proposed statistical testing
approach to validate such assumptions.

There are still some limitations involved in both, theoretical and practical aspects
of this methodology. First of all, we can not directly consider the statistical test
defined by hypotheses in (7) as we can only deal with simple null hypotheses as
formulated for instance in (8). On the other hand, however, we showed that there is
still some common sense even behind the later formulation and the problem can be
still adopted to verify the imposed structural constraints in the joinpoint model: one
just need to reconsider the problem and instead of testing the validity of the shape
constraints in the null hypothesis as stated in (7) we rather test the null hypothesis on
the corresponding parameters begin zero (meaning that the final model fit under the
null will coincide with the considered shape restriction even though the true model
may not) against the alternative that the model fit truly estimates the unknown model
and they both comply with the given shape restriction.
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There is still a way to improve the proposed testing approach in order to provide
a more complex approach similar to, e.g. an F test or likelihood ratio test which
are both effectively used in the classical linear regression framework. We believe
however, that the proposed multi-stage test discussed in this paper can be still used
in some practical situations where a decision on some imposed constraints needs to
be done.
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Shape Constrained Regression in Sobolev
Spaces with Application to Option Pricing

Michal Pešta and Zdeněk Hlávka

Abstract A class of nonparametric regression estimators based on penalized least
squares over the sets of sufficiently smooth functions is elaborated. We impose
additional shape constraint—isotonia—on the estimated regression curve and its
derivatives. The problemof searching for the best fitting function in an infinite dimen-
sional space is transformed into a finite dimensional optimization problem making
this approach computationally feasible. The form and properties of the regression
estimator in the Sobolev space are investigated. An application to option pricing is
presented. The behavior of the estimator is improved by implementing an approxi-
mation of a covariance structure for the observed intraday option prices.

Keywords Constrained regression · Sobolev spaces · Isotonic constraints ·
Monotonicity · Covariance structure · Option price

1 Introduction

Suppose we need to estimate an unknown regression curve and the only restriction
is that it should be sufficiently smooth. Therefore, we do not want to prescribe any
functional form and a nonparametric approach is suitable. For obtaining a reasonable
fit with plausible smoothness, penalized least squares are chosen, cf. [12]. We are
interested in a regression model based on functions with specific features (quality).

An estimator of the regression curve will be an element of a Sobolev space, a class
of functions with smooth high-order derivatives. Such approach was proposed for
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random design by [13]. Nevertheless, considering the option pricing problem, the
fixed design seems to be more appropriate.

Our primary goal is to investigate the form, asymptotic properties, and computa-
tional feasibility of the estimated regression curve in the Sobolev space. In addition,
we also include shape constraints on the regression curve following from the put-call
option price duality: obviously, isotonicity, i.e., [3], is nonnegativity (or nonpositiv-
ity) of certain higher order derivatives (e.g., monotonicity, convexity, or concavity).

The investigation is based on a shape-constrained regression in Sobolev spaces.
In Sect. 2, we describe the mathematical foundation of the method. In Sect. 3, we
introduce the estimator and investigate its consistency and computational availability.
Specific problems arising in the real-life application on the observed option prices
are discussed in Sect. 4 considering also an approximation to covariance structure
for the observed call and put option prices proposed in Sect. 5. Finally, state price
density (SPD) estimates based on the observed DAX option prices are calculated in
Sect. 6. The proofs of all theorems are given in Appendix.

2 Sobolev Spaces’ Framework

In this section, necessary preliminaries and some theorems for statistical regression
in Sobolev spaces are assembled. The crux of this section lies in Theorem 1 (Repre-
sentors in Sobolev Space). Compared to [13], we examine the so-called representors
in more detail (see also Proof of Theorem 1).

The symbol Lp(Ω) shall denote the Lebesgue space Lp(Ω) := { f : ‖ f ‖Lp(Ω)
<

∞}, 1 ≤ p ≤ ∞, where ‖ f ‖Lp(Ω)
:= [∫

Ω
f p(x)dx

]1/p
for 1 ≤ p <∞ and

‖ f ‖L∞(Ω) := inf{C ≥ 0 : | f | ≤ C a.e.} for a measurable real-valued function f :
Ω → R on a given Lebesgue-measurable domain Ω , i.e., a connected Lebesgue-
measurable bounded subset of an Euclidean space R

q with nonempty interior. The
symbol C m(Ω), m ∈ N0 denotes the space of m-times continuously differentiable

scalar functions upon bounded domain Ω , i.e., C m(Ω) :=
{
f : Ω → R

∣∣Dα f ∈
C 0(Ω), |α|∞ ≤ m

}
, where |α|∞ = maxi=1,...,q |αi |. Let us denote by Dα f (x) :=

∂ |α|1 f (x)/∂xα11 . . . ∂x
αq
q the partial derivative of the function f : Ω → R in x ∈

int(Ω)(≡ Ω◦ := Ω\∂Ω), where α = (α1, . . . , αq)
 ∈ N
q
0 is a multi-index of the

modulus |α|1 =
∑q

i=1 αi .

Definition 1 (Sobolev norm) Let f ∈ C m(Ω) ∩ Lp(Ω). We introduce a Sobolev
norm ‖·‖p,Sob,m as

‖ f ‖p,Sob,m :=
⎧
⎨

⎩

∑

|α|∞≤m

∫

Ω

∣∣∣Dα f (x)
∣∣∣
p
dx

⎫
⎬

⎭

1/p

, where |α|∞ = max
i=1,...,q

αi . (1)
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The Sobolev norm is a correctly defined norm, because the triangle inequality for
the Sobolev norm (1) follows easily from the triangle inequality for the p-norms on
Lp(Ω) and l p ({α : |α|∞ ≤ m}).
Definition 2 (Sobolev space) A Sobolev space of rankm,W m

p (Ω), is the completion
of the intersection ofC m(Ω) and Lp(Ω)with respect to the Sobolev norm ‖·‖p,Sob,m .

Note that C m(Ω) ∩ Lp(Ω) is dense in W m
p (Ω) according to ‖·‖p,Sob,m .

Definition 3 (Sobolev inner product) Let f, g ∈ W m
2 (Ω). The Sobolev inner prod-

uct 〈·, ·〉Sob,m is defined as

〈 f, g〉Sob,m :=
∑

|α|∞≤m

∫

Ω

Dα f (x)Dαg(x)dx.

The correctness of Definition 3 is guaranteed by the denseness of the spaceC m(Ω) ∩
L2(Ω) in W m

2 (Ω). The Sobolev inner product 〈·, ·〉Sob,m induces the Sobolev norm
‖·‖2,Sob,m in W m

2 (Ω) and we denote the Sobolev space H m(Ω) := W m
2 (Ω). For

simplicity of notation, we denote the Sobolev norm ‖·‖2,Sob,m := ‖·‖Sob,m . It is
straightforward to verify that H m(Ω) is a normed linear space. By construction,
H m(Ω) is complete and, hence, it is a Banach space. Next, the inner product
〈·, ·〉Sob,m has been defined on H m(Ω) and it follows that H m(Ω) is a Hilbert
space.

2.1 Construction of Representors in Sobolev Space

The Hilbert space H m(Ω) can be expressed as a direct sum of subspaces that are
orthogonal to each other. For the nonparametric regression, see Sect. 3, it is very
important that we can take projections of the elements ofH m(Ω) into its subspaces.

The followingTheorem1 is the representation theorem for Sobolev spaces derived
in [13], an analogy to the well-known Riesz representation theorem. From now on,
we suppose that m ∈ N. The symbol Qq denotes the closed unit cube in R

q .

Theorem 1 (Representors in Sobolev space) For all f ∈ H m(Qq), a ∈ Qq and
w ∈ N

q
0 , |w|∞ ≤ m − 1, there exists a representor ψ (x) ∈ H m(Qq) at the point

a with the rank w such that
〈
ψ , f

〉
Sob,m

= D f (a). Moreover, ψ (x) = ∏q
i=1

ψwi
ai (xi ) for all x ∈ Qq , where ψwi

ai (·) is the representor in the Sobolev space of
functions of one variable on Q1 with the inner product

∂wi f (a)

∂xwi
i

=
〈
ψwi

ai , f (x1, . . . , xi−1, ·, xi+1, . . . , xq)
〉

Sob,m

=
m∑

α=0

∫

Q1

dαψwi
ai (xi )

dxαi

dα f (x)

dxαi
dxi . (2)



126 M. Pešta and Z. Hlávka

The proof of Theorem 1 given in Appendix is based on the ideas of [13]. In addition,
we derive the exact form of the representor for Sobolev spacesH m(Ω) in this proof,
which provides the computational feasibility of the whole approach.

In order to derive the representor ψa ≡ ψ0
a of f ∈ H m [0, 1], we start with func-

tions La and Ra defined in Appendix in (47)–(50). The coefficients γk(a) of the rep-
resentor are obtained as the solution of a system of linear equations corresponding
to the boundary conditions (35)–(39) of the differential equation (34). The existence
and uniqueness of the coefficients γk(a) are shown in the proof of Theorem 1.

Theorem 2 (Obtaining coefficients γk(a)) The coefficients γk(a) of the representor
ψa are the unique solution of the following 4m × 4m system of linear equations

m∑

k = 0
k �= κ

γk(a)
{
ϕ
(m− j)
k (0)+ (−1) jϕ(m+ j)

k (0)
}

+
m∑

k = 0
k �= κ

γm+1+k(a)
{
ϕ
(m− j)
m+1+k(0)+ (−1) jϕ(m+ j)

m+1+k(0)
}
= 0 for j = 0, . . . ,m − 1, (3)

m∑

k = 0
k �= κ

γ2m+2+k(a)
{
ϕ
(m− j)
k (1)+ (−1) jϕ(m+ j)

k (1)
}

+
m∑

k = 0
k �= κ

γ3m+3+k(a)
{
ϕ
(m− j)
m+1+k(1)+ (−1) jϕ(m+ j)

m+1+k(1)
}
= 0 for j = 0, . . . ,m − 1, (4)

m∑

k = 0
k �= κ

{γk(a)− γ2m+2+k(a)}ϕ( j)k (a)

+
m∑

k = 0
k �= κ

{γm+1+k(a)− γ3m+3+k(a)}ϕ( j)m+1+k(a) = 0, for j = 0, . . . , 2m − 2, and (5)

m∑

k = 0
k �= κ

{γk(a)− γ2m+2+k(a)}ϕ(2m−1)
k (a)

+
m∑

k = 0
k �= κ

{γm+1+k(a)− γ3m+3+k(a)}ϕ(2m−1)
m+1+k (a) = (−1)m−1, (6)

where κ is the integer part of (m + 1)/2 and ϕk are defined in Appendix in (41)–(46).
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Let 0n denote column vector of zeros of length n and γ (a) a column vector of the
coefficients γk(a) from Eqs. (3)–(6), i.e.,

γ (a) = [
γ0(a), . . . , γκ−1(a), γκ+1(a), . . . , γm+κ(a), γm+2+κ (a), . . . , γ2m+1+κ (a),

γ2m+3+κ(a), . . . , γ3m+2+κ (a), γ3m+4+κ (a), . . . , γ4m+3(a)
]

.

The systemof the 4m linear equations (3)–(6) can nowbewritten in amore illustrative
way

⎡

⎢⎢
⎢
⎣

ϕ
(m− j)
k (0)+ (−1) jϕ(m+ j)

k (0) 0m−10
m−1

0m−10
m−1 ϕ
(m− j)
k (1)+ (−1) jϕ(m+ j)

k (1)

ϕ
( j)
k (a) −ϕ( j)k (a)

ϕ
(2m−1)
k (a) −ϕ(2m−1)

k (a)

⎤

⎥⎥
⎥
⎦

︸ ︷︷ ︸
{Γ j,k (a)} j,k

γ (α) =

⎡

⎢⎢
⎣

0m
0m

02m−1

(−1)m−1

⎤

⎥⎥
⎦ .

(7)

Hence, the coefficients can be expressed as γ (a) = (−1)m−1
[{Γ (a)}−1]

•,4m , which
provides a direct way for the calculation of the representors. Furthermore, the form
of representorψ (x) does not depend on the boundaries of the closed cube. In Fig. 1,
one can see representors in Sobolev space for 11 data points.

3 Penalized Least Squares

A combination of properties of the L2 andC m space yields an interesting background
for nonparametric regression. The L2 space is a special type of Hilbert space that
facilitates the calculation of least squares projection. On the other hand, theC m space
contains classes of smooth (m-times continuously differentiable) functions suitable
for nonparametric regression.

The investigated regression model is

Yi = f (xi )+ εi , i = 1, . . . , n, (8)

where xi are q-dimensional fixed design points (knots), εi are correlated random
errors such that Eεi = 0 and Varε = Σ = (σi j )i, j=1,...,n with σ 2

i = σi i > 0, and f ∈
F , where F is a family of functions in the Sobolev space H m(Qq) from R

q

to R
1, m > q

2 , F = {
f ∈ H m(Qq) : ‖ f ‖2Sob,m ≤ L

}
. From now on, we denote

H m ≡ H m(Qq).
For heteroscedastic and correlated data, the estimation of f is carried out as

f̂ = arg min
f ∈H m

1

n

[
Y − f (x)

]

Σ−1

[
Y − f (x)

]+ χ ‖ f ‖2Sob,m , (9)
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Fig. 1 The full lines in both plots are the representors in the Sobolev space H 4 [0, 1] for data
points � = [0.05, 0.27, 0.41, 0.53, 0.57, 0.75, 0.81, 0.83, 0.87, 0.9, 0.96]
 marked by dashed ver-
tical lines. The limits of the horizontal axis in the upper and the lower graph are [0, 1] and
[−4.5,+5.5], respectively

where x is (n × q) matrix containing in its rows the q-dimensional design points
x1, . . . ,xn ,Σ > 0 is n × n symmetric (variance) matrix,Y is n × 1 vector of obser-
vations, f (x) = [ f (x1), . . . , f (xn)]


, and χ > 0.
In order to derive the estimator of the unknown regression curve, one needs to

define a representor matrix.

Definition 4 (Representormatrix) Letψ 1 , . . . , ψ n be the representors for function
evaluation at x1, . . . ,xn , respectively. i.e.,

〈
ψ i , f

〉
Sob,m = f (xi ) for all f ∈ H m ,

i = 1, . . . , n. The representor matrix Ψ is the (n × n) matrix such that its columns
and rows are the representors evaluated atx1, . . . ,xn , i.e.,Ψ = (Ψi, j )i, j=1,...,n , where
Ψi, j =

〈
ψ i , ψ j

〉
Sob,m

= ψ i (x j ) = ψ j (xi ).

The forthcoming theorem transforms the infinite dimensional problem into a finite
dimensional quadratic optimization problem, which makes the approach computa-
tionally efficient. Similar result derived by [13] uses different penalization.

Theorem 3 (Infinite to finite)Assume thatY = [Y1, . . . ,Yn]
 andΣ > 0 is (n × n)
symmetric matrix. Define
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σ̂ 2 = min
f ∈H m

1

n

[
Y − f (x)

]

Σ−1

[
Y − f (x)

]+ χ ‖ f ‖2Sob,m , (10)

s2 = min
∈Rn

1

n
[Y − Ψ c]
 Σ−1 [Y − Ψ c]+ χc
Ψ c (11)

where c is a (n × 1) vector, f is defined in (9), andΨ is the representor matrix. Then
σ̂ 2 = s2. Furthermore, there exists a solution to (10) of the form f̂ = ∑n

i=1 ĉiψ i ,
where ĉ = [ĉ1, . . . , ĉn]
 solves (11). The estimator f̂ is unique a.e.

Additionally, we give a closed form of the regression function estimator using the
objects defined in Appendix.

Corollary 1 (Form of the regression function estimator) In one-dimensional case
(q = 1), the regression function estimator f̂ defined in Theorem 3 can be written as

f̂ (x) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

n∑

i=1

ĉi Lxi (x), 0 ≤ x ≤ x1,

n∑

i= j+1

ĉi Lxi (x)+
j∑

i=1

ĉi Rxi (x), x j < x ≤ x j+1, j = 1, . . . , n − 1;
n∑

i=1

ĉi Rxi (x), xn < x ≤ 1,

(12)
where ĉ = [ĉ1, . . . , ĉn]
 solves (11) and Lxi (x) and Rxi (x) are defined in (30).

Corollary 1 can be easily extended for a q-dimensional vector variable x if we
recall how the representor ψ is produced in the proof of Theorem 1. We apply (30)
on the form of each factor ψa of the product of representors ψ as defined in part (ii)
of the proof of Theorem 1. The only difference in (12) will be the number of cases.
We will obtain (n + 1)q decision conditions (vector x has q components) instead of
actual number n + 1 (0 ≤ x ≤ x1, . . . , x j < x ≤ x j+1, . . . , xn < x).

Alternatively, the regression function estimator f̂ can be written as

f̂ (x) =
n∑

j=1

ĉ j

2m∑

k=1

exp
[�(

eiθk
)
x
]

{
I[x≤x j ]γk(x j ) cos

[�(eiθk )x]+ I[x>x j ]γ2m+k(x j ) sin
[�(eiθk )x]

}
.

Note that the estimator f̂ is not calculated using trigonometric splines neither kernel
functions.

Theorem 4 (Symmetry and positive definiteness of representor matrix) The repre-
sentor matrix is symmetric and positive definite.
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In the linear model, the unknown coefficients are estimated using least squares.
Gauss–Markov Theorem [10, Chap.4] says that the least squares estimator is the best
linear unbiased estimator and underlies the normal equations. The normal equations
for our model are derived in Theorem 5.

Theorem 5 (Normal equations for ĉ) Let us consider the general single equation
model (8). Let Y denote the response vector [Y1, . . . , Yn]
 and Ψ the representor
matrix. Then, the vector ĉ = [c1, . . . , cn]
 of the coefficients of the minimizer f̂ =∑n

i=1 ĉiψ i derived in Theorem 3 is the unique solution of the system of equations(
Ψ Σ−1Ψ + nχΨ

)
c = Ψ Σ−1Y.

The fitted values Ŷ can be expressed as Ŷ = f̂ (x) = Ψ ĉ. From the normal equa-
tions for ĉ (Theorem 5), hat matrix Λ := Ψ

(
Ψ Σ−1Ψ + nχΨ

)−1
Ψ Σ−1 satisfying

Ŷ = ΛY can be obtained.
Using Theorem 3 and the Lagrange multipliers, a one-to-one correspondence

between the Sobolev bound L and the smoothing parameter χ can be easily shown.
Optimization problem (9) can be equivalently rewritten as

arg min
f ∈H m

1

n

[
Y − f (x)

]

Σ−1

[
Y − f (x)

]
s.t. ‖ f ‖2Sob,m ≤ L . (13)

The Sobolev norm bound L and the smoothing (or bandwidth) parameter χ control
the trade-off between the infidelity to the data and the roughness of the estimator.

The consistency result for the estimator is provided as a guarantee of the estima-
tor’s suitability.

Theorem 6 (Asymptotic behavior) Suppose that ε̃ := Σ−1/2ε is an (n × 1) vector
of random variables. Then

1

n

[
f̂ (x)− f (x)

]

Σ−1

[
f̂ (x)− f (x)

] = OP

(
n−

2m
2m+q

)
, n → ∞.

3.1 Choice of the Smoothing Parameter

The smoothing parameter χ corresponds to the diameter of the set of functions over
which the estimation takes place. Heuristically, for large bounds (i.e., smaller χ ), we
obtain consistent but less efficient estimator. On the other hand, for smaller bounds
(i.e., large χ ) we obtain more efficient but inconsistent estimators.

A well-known selection method for the smoothing parameter χ is based on the
minimization of the cross-validation criterion

CV (χ) = 1

n

[
y − f̂ ∗(x)

]

Σ−1

[
y − f̂ ∗(x)

]
,
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Fig. 2 The left plot shows how the fitted curve in H 2 changes depending on the smoothing
parameter χ . The right plot displays the cross-validation criterion as function of χ . The optimal
value of the smoothing parameter is marked by a vertical line

where f̂ ∗ = [
f̂−1, . . . , f̂−n

]

is the usual leave-one-out estimator obtained by

solving

f̂−i = arg min
f ∈H m

1

n − 1

n∑

j = 1
j �= i

[
Ξ j,•y − Ξ j,• f (x)

]2 + χ ‖ f ‖2Sob,m , i = 1, . . . , n

and Ξ denotes the square root matrix of Σ−1. The smoothing parameter χ ≡ χ(L),
which in-turn corresponds to unique Sobolev bound L , is chosen as the minimizer
of the cross-validation function CV . Hence, the smoothing parameter χ (and the
Sobolev bound L as well) is chosen based on the data prior to the estimation of f .
The relationship between the fit and the smoothness of the estimator is plotted in
Fig. 2.

Detailed information concerning the choice of the smoothing parameter χ can be
found in [5]. Apart of the cross-validation, there exist many other methods based on
penalizing functions or plug-in selectors.

4 Application to Option Prices

In Sect. 3, we have imposed only smoothness constraint on the estimated regression
function f ∈ F = {

f ∈ H m(Qq) : ‖ f ‖2Sob,m ≤ L
}
. However, in practice we often

have a prior knowledge concerning the shape of the regression function. In this
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section, we focus on the inclusion of additional constraints, such as isotonia or
convexity, in the nonparametric regression estimator.

More formally, we are interested in the estimation of f ∈ F̃ ⊆ F where F̃ com-
bines smoothness with further properties such as monotonicity of particular deriva-
tives of the function. The following discussion concerns only the one-dimensional
case (q = 1).

Definition 5 (Derivative of the representor matrix) Let ψx1 , . . . , ψxn be the rep-
resentors for function evaluation at x1, . . . , xn , i.e.,

〈
ψxi , f

〉
Sob,m = f (xi ) for all

f ∈ H m , i = 1, . . . , n. The k-th derivative of the representor matrixΨ is the matrix
Ψ (k) whose columns are equal to the k-th derivatives of the representors evaluated
at x1, . . . , xn , i.e., Ψ

(k)
i, j = ψ(k)x j

(xi ), i, j = 1, . . . , n.

Contrary to Theorem 4, the derivatives of the representor matrix do not have to be
symmetric.

Definition 6 (Estimate of the derivative) The estimate of the derivative of the regres-
sion function is defined as the derivative of the regression function estimate, i.e.,

f̂ (s) := f̂ (s), s ∈ N.

Extending Theorem 6, the uniform consistency for the regression curve estimator
and regression curve’s derivatives estimator is proved for the fixed design setup.

Theorem 7 (Consistency of the estimator) Suppose that ε̃ := Σ−1/2ε is a (n × 1)
vector of iid random variables, the design points are equidistantly distributed on the
interval [a, b] such that a = x1 < · · · < xn = b and Σ > 0 is a covariance matrix
of ε such that its largest eigenvalue is less or equal than a positive constant ϑ > 0

for all n ∈ N. Then supx∈[a,b]
∣
∣∣ f̂ (s)(x)− f (s)(x)

∣
∣∣

P−−−→
n→∞ 0 for s = 0, . . . ,m − 2.

4.1 State Price Density

Let Yt (�, T ) denote the price of a European Call with strike price � on day t and
with expiry date T . The payoff at time T is given by (ST −�)+ = max(ST −�, 0),
where ST denotes the price of the underlying asset at time T . The price of such an
option may be expressed as the expected value of the payoff

Yt (�, T ) = exp{−r(T − t)}
+∞∫

0

(ST −�)+h(ST )dST , (14)

discounted by the known risk-free interest rate r . The expectation in (14) is evalu-
ated with respect to the so-called State Price Density (SPD) h(·). The SPD contains
important information on the expectations of the market and its estimation is a sta-
tistical task of great practical interest, see [8]. Similarly, we can express the price
Zt (�, T ) of the European Put with payoff (� − ST )+ as
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Zt (�, T ) = exp{−r(T − t)}
+∞∫

0

(� − ST )+h(ST )dST . (15)

Calculating the second derivative of (14) and (15) with respect to the strike price� ,
we can express the SPD as the second derivative of the European Call and Put option
prices as in [4]:

h(�) = exp{r(T − t)}∂
2Yt (�, T )

∂� 2
= exp{r(T − t)}∂

2Zt (�, T )

∂� 2
. (16)

Both parametric and nonparametric approaches to the SPD estimation are described
in [8]. Nonparametric estimates of the SPD based on (16) are considered, among
others, in [1, 2, 6, 14]. Furthermore, the SPD was also estimated using the Kalman
filter by [7], but the resulting estimate does not have to be smooth.

4.2 Call and Put Options

Suppose that Call and Put option prices are observed repeatedly for fixed distinct
strike prices �i , i = 1, . . . , ω. The points �i are called the strike price knots.

In each strike price knot �i , we observe ni ∈ N0 Call option prices Yik with
strikes xik = �i , for k = 1, . . . , ni . We observe altogether n = ∑ω

i=1 ni I[ni≥1] Call
options in ωY = ∑ω

i=1 I[ni≥1] distinct strike price knots. Similarly, in each strike
price knot� j , j = 1, . . . , ω, we observe m j Put option prices Z jl with strike prices
x jl = � j , for l = 1, . . . , n j . In ωZ = ∑ω

j=1 I[m j≥1] distinct strike price knots, we
observe m = ∑ω

j=1 m j I[m j≥1] Put option prices.
Let us now denote by Y the vector of all observed Call option prices and by

xα = (xα,1, . . . , xα,n)
 the vector of the corresponding strike prices.Next, the symbol
Δ = (Δi j )i=1,...,n; j=1...,ωY denotes the connectivitymatrix forCall option strike prices
such that Δi j = I[xα,i=� j]. The symbol Z denotes the observed Put option prices.
The vector xβ = (xβ,1, . . . , xβ,m)
 of the strike prices corresponding to Z leads
the connectivity matrix Θ = (Θi j )i=1,...,m; j=1...,ωZ for Put option prices defined as
Θi j = I[xβ,i=� j].

Our model for the observed Call and Put options prices can be written as:

Yi = f (xα,i )+ εi , where xα,i ∈ {�1, . . . ,�ω} and i = 1, . . . , n, (17)

Z j = g(xβ, j )+ ν j , where xβ, j ∈ {�1, . . . ,�ω} and j = 1, . . . ,m. (18)

under the assumptions:

(i) εi and ν j are random variables such that Eεi = Eν j = 0, ∀i, j , Cov (εi , εk) =
ξi,k , Cov

(
ν j , νl

) = ζ j,l , and Cov
(
εi , ν j

) = σi, j . For simplicity, we will write
ξ 2i = ξi,i and ζ 2j = ζ j, j .
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(ii) f, g ∈ F , where F = {
f ∈ H p : ‖ f ‖2Sob,p ≤ L

}
and p > 1

2 .

We assume that the second derivatives of functions f and g have to be the same
SPD, see equations (14)–(16) in the introduction. Theorem 3 allows to handle mul-
tiple (repeated) observations in our option prices setup (17)–(18).

Theorem 8 (Call and put option optimizing) Invoke the assumptions from Call and
Put Option Model (17)–(18). Define

σ̂ 2 = min
f ∈H p,g∈H p

[(
Y
Z

)
−

(
Δ 0
0 Θ

)(
f (xα)
g
(
xβ

)
)]


Σ−1

[(
Y
Z

)
−

(
Δ 0
0 Θ

)(
f (xα)
g
(
xβ

)
)]

+ χ ‖ f ‖2Sob,p + θ ‖g‖2Sob,p (19)

subject to

−1 ≤ f ′ (�α) ≤ 0, 0 ≤ g′
(
�β

) ≤ 1, f ′′ (�α) ≥ 0, g′′
(
�β

) ≥ 0, f ′′
(
�γ

) = g′′
(
�γ

)
(20)

and

s2 = min
∈RωY , ∈RωZ

[(
Y
Z

)
−

(
Δ 0
0 Θ

)(
Ψ 0
0 Φ

)(
c
d

)]


Σ−1

[(
Y
Z

)
−

(
Δ 0
0 Θ

)(
Ψ 0
0 Φ

)(
c
d

)]
+ χc
Ψ c+ θd
Φd (21)

subject to

−1 ≤ Ψ (1)c ≤ 0, 0 ≤ Φ(1)d ≤ 1, Ψ (2)c ≥ 0, Φ(2)d ≥ 0, Ψ (2)cγ = Φ(2)dγ ,
(22)

whereχ > 0, θ > 0,Σ is (n + m)× (n + m) positive definite and symmetric covari-
ance matrix, Δ and Θ are respectively the connectivity matrices for Call and Put
options, Ψ is the ωY × ωY representor matrix at [xι]
ι∈{ι | nι≥1}, Φ is the ωZ × ωZ rep-
resentor matrix at [xι]
ι∈{ι |mι≥1}, Y = [Y1, . . . ,Yn]
, Z = [Z1, . . . , Zm]
, f (xα) =
[ f (xι)]



ι∈{ι | nι≥1}, g(xβ) = [g(xι)]



ι∈{ι |mι≥1} and γ := α ∩ β = [ι | nι ≥ 1&mι ≥ 1]


is the vector of indices in increasing order.
Then σ̂ 2 = s2. Furthermore, there exists a solution to (19) with respect to (20) of

the form
f̂ =

∑

{i | ni≥1}
ĉiψxi and ĝ =

∑

{ j |m j≥1}
d̂ jφx j , (23)

where ĉ = [ĉi ]
i∈{i | ni≥1} and d̂ = [d̂ j ]
j∈{ j |m j≥1} solves (21), ψxi is the representor

at xi for vector [xι]
ι∈{ι | nι≥1} and φx j is the representor at x j for vector [xι]
ι∈{ι |mι≥1}.
The estimators f̂ and ĝ are unique a.e.
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The structure of the (n + m)× (n + m) covariancematrixΣ of the random errors
(ε1, . . . , εn, ν1, . . . , νm)


 will be investigated in Sect. 5. The minimization prob-
lem (21) under the constraints (22) can be implemented using, e.g., R statistical
software with function pcls() in the library mgcv.

5 Covariance Structure

Let us denote the vector of the true SPD in the ω distinct observed strike prices
�1, . . . ,�ω as h = [h(�1), . . . , h(�ω)]
. Assume that the expected values of the
option prices given in (14) and (15) can be approximated by a linear combination of
this discretized version of the SPD, i.e., we assume a linear model

Yi = α(xα,i )
h + εi , i = 1, . . . , n and Z j = β(xβ, j )
h + ν j , j = 1, . . . ,m

for the Call and Put option prices, respectively. We assume that the vectors of the
coefficients α(x) and β(x) depend only on the strike price x and can be interpreted
as rows of design matrices Xα and Xβ so that the observed option prices can be
written as (

Y
Z

)
=

(
Xα

Xβ

)
h +

(
ε

ν

)
. (24)

In the following, the SPD may depend on the time of the observation and hk =
[hk(�1), . . . , hk(�ω)]
 will denote the true value of the SPD at the time of the k-
th trade, k = 1, . . . , n + m. Such a time-ordering of the trades naturally orders the
strike prices. Thus, the strike prices’ ranks can be defined as follows: the strike price
xα,i of the i-th Call option price corresponding to the k-th trade has rank r(α, i) = k.
Similarly, the strike price xβ, j of the j-th Call option price corresponding to the k-th
trade has rank r(β, j) = k.

5.1 Constant SPD

Assuming that the random errors
(
ε
, ν


) = (ε1, . . . , εn, ν1, . . . , νm) in the linear
model (24) are, the model (24) for the i-th observation, corresponding to the strike
price xα,i , can be written as

Yi = α(xα,i )
hr(α,i) + εi , where hr(α,i) = h and i = 1, . . . , n, (25)

for the i-th Call option price or

Z j = β(xβ, j )
hr(β, j) + ν j , where hr(β, j) = h and j = 1, . . . ,m, (26)



136 M. Pešta and Z. Hlávka

for the j-th Put option price.
Here, the SPD h = h1 = · · · = hn+m is constant in the observation period. This

simplified model has been investigated in [14] only for the Call option prices.

5.2 Dependencies Due to the Time of the Trade

Let us now assume that the observations are sorted according to the time of the trade
tk ∈ (0, 1) and denote by δk = tk − tk−1 > 0 the time between the (k − 1)-st and the
k-th trade (t0 ≡ 0). The models (25) and (26) can now be generalized by considering
a different error structure

Yi = α(xα,i )
hr(α,i), i = 1, . . . , n,

Z j = β(xβ, j )
hr(β, j), j = 1, . . . ,m,

hk = hk−1 + δ1/2k ηk, k = 1, . . . , n + m,

where η1, . . . , ηn+m are independent and identically distributed random vectors with
values in R

ω having zero mean and variance matrix equal to ς2I such that I is the
ω × ω identity matrix. Expressing all observations in terms of an artificial parameter
h = h0, corresponding to the time 0 that can be interpreted as, e.g., “beginning of the
day,” it follows that the covariance of any two-observed call option prices depends
only on their strike prices and on the time of the trade

Cov(Yu,Yv) = Cov
(
α(xα,u)


hr(α,u), α(xα,v)
hr(α,v)
)

= ς2α(xα,u)
α(xα,v)
min{r(α,u),r(α,v)}∑

s=1

δs . (27)

Similarly, we obtain the covariances between the observed Put option prices

Cov(Zu, Zv) = Cov
(
β(xβ,u)


hr(β,u), β(xβ,v)
hr(β,v)
)

= ς2β(xβ,u)
β(xβ,v)
min{r(β,u),r(β,v)}∑

s=1

δs . (28)

and the covariance between the observed Put and Call option prices

Cov(Yu, Zv) = Cov
(
α(xα,u)


hr(α,u), β(xβ,v)
hr(β,v)
)

= ς2α(xα,u)
β(xβ,v)
min{r(α,u),r(β,v)}∑

s=1

δs . (29)
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Hence, the knowledge of the time of the trade allows us to approximate the covari-
ance matrix of the observed option prices. Using this covariance structure, we can
estimate arbitrary future value of the SPD. It is quite natural that more recent obser-
vations are more important for the construction of the estimator and that observations
corresponding to the same strike price obtained at approximately same time will be
highly correlated.

6 DAX Option Prices

In this section, the theory developed in the previous sections is applied on real data
set consisting of intra-day Call and Put DAX option prices in year 1995. The data set,
Eurex Deutsche Börse, was provided by the Financial and Economic Data Center
(FEDC) at Humboldt-Universität zu Berlin in the framework of the SFB 649 Guest
Researcher Program for Young Researchers.

From econometric theory, e.g., [14] or [6] with the discussions therein, follows
that a practical choice is p = 4 inH p, which is used here as well. In Figs. 3 and 4,
we present the analysis for the first two trading days in January 1995. On the first
trading day, the time to expiry was T − t = 0.05 years, i.e., 18 days. Naturally, on
the second trading day, the time to expiry was 17 days.

In both figures, the first two plots contain the fitted Put and Call option prices
and the estimated SPD. Both smoothing parameters were chosen using the cross-
validation as 2× 10−5 leading to a reasonably smooth SPD estimate in the upper
right plot in Figs. 3 and 4. Moreover, smaller values of the smoothing parameters
would lead to a more variable and less smooth SPD estimates that would be difficult
to interpret.

The second two plots in Figs. 3 and 4 show ordinary residual plots separately for
the observed Put and Call option prices. The size of each plotting symbol denotes
the number of residuals lying in the respective area. The shape of the plotting sym-
bols corresponds to the time of the trade. The circles, squares and stars correspond,
respectively, to morning, lunchtime, and afternoon prices. Clearly, we observe both
heteroscedasticity and strong dependency due to the time of the trade.

In the last two plots in Figs. 3 and 4, we plot the same residuals transformed
by Mahalanobis transformation, i.e., multiplied by the inverse square root of their
assumed covariance matrix, see Sect. 5.2. This transformation removes most of the
dependencies caused by the time of the trade. However, some outlying observations
have now appeared. For example, for the Call options on the second day, plotted in
Fig. 4, we can see a very large positive and a very large negative residual at the same
strike price 2050.

The outlying observations can be explained if we have a closer look at the original
data set. In Table1, we show the Call option prices, times of the trades, and the trans-
formed residuals for all trades with the strike price K = 2050. The two observations
with large residuals, 358.7 and−342.2, occurred at approximately the same time, the
time difference between them is approximately 0.13h, i.e., approximately 5 minutes.



138 M. Pešta and Z. Hlávka

1950 2000 2050 2100 2150 2200

0
50

10
0

15
0

1950 2000 2050 2100 2150 2200

0.
00

1
0.

00
2

0.
00

3
0.

00
4

2000 2050 2100 2150 2200

−
2

0
2

4

Residuals (Call Options)

strike

pr
ic

e

1950 2000 2050 2100 2150 2200

−
4

−
2

0
2

4
6

Residuals (Put Options)

strike

pr
ic

e

2000 2050 2100 2150 2200

−
10

0
0

10
0

20
0

Transformed Residuals (Call Options)

strike

pr
ic

e

1950 2000 2050 2100 2150 2200

−
10

0
−

50
0

50
10

0

Transformed Residuals (Put Options)

strike

pr
ic

e

Fig. 3 Estimates and residual plots on the first trading day in 1995 (January 2). The first plot shows
fitted Call and Put option prices, the estimated SPD is plotted in the second plot. The remaining
four graphics contain, respectively, residual plots for Call and Put option prices on the left and right
hand side. The residuals plotted in the last two plots were corrected by the inverse square root of
the covariance matrix
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Fig. 4 Estimates and residual plots on second trading day in 1995 (January 3). The first plot shows
fitted Call and Put option prices, the estimated SPD is plotted in the second plot. The remaining
four graphics contain, respectively, residual plots for Call and Put option prices on the left- and
right-hand side. The residuals plotted in the last two plots were corrected by the inverse square root
of the covariance matrix
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Table 1 Subset of observed prices of Call options on second trading day in 1995 for strike price
K = 2050, time of the trade in hours and residuals transformed by theMahalanobis transformation.
The fitted value for the strike price K = 2050 is f̂ (2)(2050) = 42.37. This value can be interpreted
as an estimate corresponding to 16:00 o’clock

Call price (K = 2050) Time (in hours) Transformed residual

50.62296 9.690 337.4

51.12417 9.702 73.2

50.62296 9.785 33.8

50.02150 9.807 6.5

48.11687 9.826 −10.3

46.61322 9.864 −11.5

47.31492 10.121 −6.9

48.11687 10.171 26.5

49.01906 10.306 24.3

49.01906 10.361 26.3

50.32223 10.534 358.7

46.61322 10.666 −342.2

47.61565 10.672 32.8

45.00932 11.187 −62.2

48.11687 11.690 28.2

45.10957 12.100 −72.6

48.11687 12.647 53.9

48.11687 12.766 13.3

48.11687 13.170 28.3

47.51541 14.205 11.2

44.10713 14.791 −4.8

42.10226 15.137 −34.1

42.10226 15.138 −93.4

40.99958 15.232 −32.4

41.60104 15.250 −14.2

42.10226 15.283 −2.4

42.10226 15.288 −87.6

40.69885 15.638 −31.2

41.60104 15.658 −48.9

42.60348 15.711 −46.6

42.10226 15.715 6.7

41.60104 15.796 −39.2

42.10226 15.914 −49.5
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Fig. 5 Estimates and residual plots on the first trading day in 2002 (January 2). The first plot shows
fitted Call and Put option prices, the estimated SPD is plotted in the second plot. The remaining
four graphics contain respectively residual plots for Call and Put option prices on the left and right
hand side. The residuals plotted in the last two plots were corrected by the inverse square root of
the covariance matrix

Simultaneously, the price difference of these two observations is quite large. Hence,
the large correlation of these two very different prices leads to the large (suspicious)
residuals appearing in the residual plot.
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An example of a more recent data set is plotted in Fig. 5. In year 2002, the range of
the traded strike prices was much wider than in 1995. The estimated SPD is plotted
in the upper right plot. The estimate could be described as a unimodal probability
density function with the right tail cut off. It seems that, especially on the right hand
side, the traded strike prices do not cover the entire support of the SPD.

The residual plots in Fig. 5 look very similar to the residual plots in Figs. 3 and 4.
The residual analysis suggests that the simple model for the covariance structure pre-
sented in Sect. 5 is more appropriate for this estimation problem than the unrealistic
iid assumptions. In practice, the traded strike prices do not cover the entire support
of the SPD. Hence, our estimators recover only the central part of the SPD in Figs. 3
and 4 or the left hand part of the SPD in Fig. 5. Unfortunately, this implies that we
cannot impose any conditions on the expected value of the SPD without additional
distributional assumptions.

7 Conclusions

A nonparametric regression estimator for an unknown smooth regression curve with
shape constraints is proposed. First, the penalized least squares are used in order to
find a compromise between the best fit and satisfactory smoothness. Sobolev spaces
allow us to transform the infinite-dimensional optimization problem into a finite-
dimensional optimization. The estimator is derived in an alternative form compared
to [13], more suitable from a computational point of view. We also consider fixed
design that is more plausible for the data structure of observed option prices. We
show that the estimator is consistent and establish its rate of convergence.

Second, isotonic constraints are placed on the estimator of the smooth regression
curve in order tomeet the requirements for the put–call option price duality. A covari-
ance structure for the option prices, reflecting the time dependence, is suggested as
well. Hence, an additional achievement of this paper is simultaneous estimation of
the SPD from both put and call option prices and incorporation of the proposed
dependence structure into the nonparametric estimator.
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Appendix: Proofs

Proof (Proof of Theorem 1) We divide the proof into two steps. The proof follows
closely the proof of Theorem 2.2 given in [13]. However, we repeat it here since
we need to introduce the notation needed for expressing the coefficients given in
Theorem 2. This is, indeed, essential to derive the closed form of the estimator.
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(i)Construction of a representor ψa(≡ ψ0
a ). For simplicity, let us setQ1 ≡ [0, 1].

For functions of one variable we have 〈g, h〉Sob,m = ∑m
k=0

∫
Q1 g(k)(x)h(k)(x)dx . We

are constructing a representorψa ∈ H m [0, 1] such that 〈ψa, f 〉Sob,m = f (a) for all
f ∈ H m [0, 1]. It suffices to demonstrate the result for all f ∈ C 2m because of the
denseness of C 2m . The representor is defined as

ψa(x) =
{
La(x) 0 ≤ x ≤ a,
Ra(x) a ≤ x ≤ 1,

(30)

where La(x) ∈ C 2m [0, a] and Ra(x) ∈ C 2m [a, 1]. As ψa ∈ H m [0, 1], it suffices
that L(k)a (a) = R(k)a (a), 0 ≤ k ≤ m − 1. We get

f (a) = 〈ψa, f 〉Sob,m =
∫ a

0

m∑

k=0

L(k)a (x) f
(k)(x)dx +

∫ 1

a

m∑

k=0

R(k)a (x) f
(k)(x)dx .

(31)
Integrating by parts and setting i = k − j − 1, we obtain

m∑

k=0

∫ a

0
L(k)a (x) f

(k)(x)dx =
m−1∑

i=0

f (i)(a)

{
m∑

k=i+1

(−1)k−i−1 L(2k−i−1)
a (a)

}

−
m−1∑

i=0

f (i)(0)

{
m∑

k=i+1

(−1)k−i−1 L(2k−i−1)
a (0)

}

+
∫ a

0

{
m∑

k=0

(−1)k L(2k)a (x)

}

f (x)dx

(32)

and, similarly,

m∑

k=0

∫ 1

a
R(k)a (x) f

(k)(x)dx=
m−1∑

i=0

f (i)(1)

{
m∑

k=i+1

(−1)k−i−1 R(2k−i−1)
a (1)

}

−
m−1∑

i=0

f (i)(a)

{
m∑

k=i+1

(−1)k−i−1 R(2k−i−1)
a (a)

}

+
∫ 1

a

{
m∑

k=0

(−1)k R(2k)a (x)

}

f (x)dx .

(33)

This holds for all f (x) ∈ C m [0, 1]. We require that both La and Ra are solutions of
the constant coefficient differential equation

m∑

k=0

(−1)k ϕ(2k)k (x) = 0. (34)

The boundary conditions are obtained by the equality of the functional values of
L(i)a (x) and R

(i)
a (x) at a and the coefficient comparison of f (i)(0), f (i)(1) and f (i)(a),

compare (31) to (32) and (33). Let f (i)(x) �� c denotes that the term f (i)(x) has the
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coefficient c in a certain equation. We can write

ra ∈ H m [0, 1] ⇒ L(i)a (a) = R(i)a (a), 0 ≤ i ≤ m − 1, (35)

f (i)(0) �� 0 ⇒
m∑

k=i+1

(−1)k−i−1 L(2k−i−1)
a (0) = 0, 0 ≤ i ≤ m − 1, (36)

f (i)(1) �� 0 ⇒
m∑

k=i+1

(−1)k−i−1 R(2k−i−1)
a (1) = 0, 0 ≤ i ≤ m − 1, (37)

f (i)(a) �� 0 ⇒
m∑

k=i+1

(−1)k−i−1
{
L(2k−i−1)
a (a)− R(2k−i−1)

a (a)
}
= 0,

1 ≤ i ≤ m − 1, (38)

f (a) �� 1 ⇒
m∑

k=1

(−1)k−1
{
L(2k−1)
a (a)− R(2k−1)

a (a)
}
= 1; (39)

together m + m + m + (m − 1)+ 1 = 4m boundary conditions. To obtain the gen-
eral solution of this differential equation, we need to find the roots of its characteristic
polynomial Pm(λ) = ∑m

k=0(−1)kλ2k . Hence, it follows that

(1+ λ2)Pm(λ) = 1+ (−1)mλ2m+2, λ �= ±i. (40)

Solving (40), we get the characteristic roots λk = eiθk , where

θk ∈
⎧
⎨

⎩

(2k+1)π
2m+2 m even, k ∈ {0, 1, . . . , 2m + 1} \ {m

2 ,
3m+2

2

}
,

kπ
m+1 m odd, k ∈ {0, 1, . . . , 2m + 1} \ {m+1

2 ,
3m+3

2

}
.

We have altogether (2m + 2)− 2 = 2m different complex roots but each has a pair
that is conjugate with it. Thus, for meven, we have m complex conjugate roots with
multiplicity one. We also have 2m base elements alike complex roots

ϕk(x) = exp
{(�(λk)

)
x
}
cos

[(�(λk)
)
x
]
, k ∈ {0, 1, . . . ,m} \

{m
2

}
; (41)

ϕm+1+k(x) = exp
{(�(λk)

)
x
}
sin

[(�(λk)
)
x
]
, k ∈ {0, 1, . . . ,m} \

{m
2

}
. (42)

Ifm is odd, we have 2m − 2 different complex roots (each has a pair that is conjugate
with it) and two-real roots. The two real roots are±1. Them − 1 complex conjugate
roots have multiplicity one. We also have 2(m − 1)+ 2 = 2m base elements alike
all roots. These base elements are
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ϕ0(x) = exp {x} ; (43)

ϕk(x) = exp
{(�(λk)

)
x
}
cos

[(�(λk)
)
x
]
, k ∈ {1, 2, . . . ,m} \

{
m + 1

2

}
;
(44)

ϕm+1(x) = exp {−x} ; (45)

ϕm+1+k(x) = exp
{(�(λk)

)
x
}
sin

[(�(λk)
)
x
]
, k ∈ {1, 2, . . . ,m} \

{
m + 1

2

}
.

(46)

These vectors generate the subspace of C m [0, 1] of solutions of the differential
equation (34). The general solution is given by the linear combination

La(x) =
m∑

k = 0
k �= m

2

γk(a) exp
{
�(λk)x

}
cos

[
�(λk)x

]

+
m∑

k = 0
k �= m

2

γm+1+k(a) exp
{
�(λk)x

}
sin

[
�(λk)x

]
, for m even; (47)

La(x) = γ0(a) exp {x} +
m∑

k = 1
k �= m+1

2

γk(a) exp
{
�(λk)x

}
cos

[
�(λk)x

]

+ γm+1(a) exp {−x} +
m∑

k = 1
k �= m+1

2

γm+1+k(a) exp
{
�(λk)x

}
sin

[
�(λk)x

]
, for m odd; (48)

Ra(x) =
m∑

k = 0
k �= m

2

γ2m+2+k(a) exp
{
�(λk)x

}
cos

[
�(λk)x

]

+
m∑

k = 0
k �= m

2

γ3m+3+k(a) exp
{
�(λk)x

}
sin

[
�(λk)x

]
, for m even; (49)

Ra(x) = γ2m+2(a) exp {x} +
m∑

k = 1
k �= m+1

2

γ2m+2+k(a) exp
{
�(λk)x

}
cos

[
�(λk)x

]

+ γ3m+3(a) exp {−x} +
m∑

k = 1
k �= m+1

2

γ3m+3+k(a) exp
{
�(λk)x

}
sin

[
�(λk)x

]
, for m odd; (50)
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where the coefficients γk(a) are arbitrary constants that satisfy the boundary con-
ditions (35)–(39). It can be easily seen that we have obtained 4(m + 1)− 4 = 4m
coefficients γk(a), because the first index of γk(a) is 0 and the last one is 4m + 3.
Thus, we have 4m boundary conditions and 4m unknowns of γks that lead us to the
square 4m × 4m system of the linear equations. Does ψa exist and is it unique? To
show this, it suffices to prove that the only solution of the associated homogeneous
system of linear equations is the zero vector. Suppose La(x) and Ra(x) are functions
corresponding to the solution of the homogeneous system, because in linear system
of equations (35)–(39) the right side has all zeros—coefficient of f (a) in the last
boundary condition is 0 instead of 1. Then, by the exactly the same integration by
parts, it follows that 〈ψa, f 〉Sob,m = 0 for all f ∈ C m [0, 1]. Hence, ψa(x), La(x)
and Ra(x) are zero almost everywhere and, by the linear independence of the base
elements ϕk(x), we obtain the uniqueness of the coefficients γk(a).

(ii) Producing a representor ψ . Let us define the representor ψ by setting
ψ (x) = ∏q

i=1 ψ
wi
ai (xi ) for all x ∈ Qq , where ψwi

ai (xi ) is the representor at ai in
H m

(
Q1

)
. We know that C m is dense inH m , so it is sufficient to show the result for

f ∈ C m(Qq). For simplicity let us suppose Qq ≡ [0, 1]q . After rewriting the inner
product and using Fubini theorem we have

〈
ψ , f

〉
Sob,m =

〈 q∏

i=1

ψwi
ai , f

〉

Sob,m

=
m∑

i1=0

∫ 1

0

∂ i1ψw1
a1 (x1)

∂xi11

[
· · ·

[ m∑

iq=0

∫ 1

0

∂ iqψ
wq
aq (xq)

∂x
iq
q

.
∂ i1,...,iq f (x)

∂xi11 . . . ∂x
iq
q

dxq

]
. . .

]
dx1.

According to Definition 3 and notation in Definition 1, we can rewrite the center
most bracket

m∑

iq=0

∫ 1

0

∂ iqψ
wq
aq (xq)

∂x
iq
q

.
∂ i1,...,iq f (x)

∂xi11 . . . ∂x
iq
q

dxq =
〈
ψ

wq
aq , D

(i1,...,iq−1) f (x1, . . . , xi−1, ·)
〉

Sob,m

= D(i1,...,iq−1,wq ) f (x−q , aq).

Proceeding sequentially in the same way, we obtain that the value of the above
expression is D f (a). �

Proof (Proof of Theorem 2) Existence and uniqueness of coefficients γk(a) has
already been proved in the proof of Theorem 1. Let us define

Λ
(l)
a,I :=

⎧
⎨

⎩

L(l)a (0), for I = L;
R(l)a (1), for I = R;
L(l)a (a)− R(a)a (a), for I = D.

(51)

From the boundary conditions (36)–(39), we easily see that
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m∑

k=i+1

(−1)k−i−1Λ
(2k−i−1)
a,I = 0, 0 ≤ i ≤ m − 1, I ∈ {L , R, D} , [i, I ] �= [0, D] ; (52)

m∑

k=1

(−1)k−1Λ
(2k−1)
a,D = 1. (53)

Form = 1 it follows from (52) to (53) thatΛ(1)a,I = 0, I ∈ {L , R} andΛ(1)a,D = 1. For

m = 2, we have from (52) to (53):Λ(2)a,I = 0, ∀I ;Λ(1)a,I −Λ(3)a,I = 0, I ∈ {L , R}; and
Λ
(1)
a,D −Λ(3)a,D = 1. Let us now suppose that m ≥ 3. We would like to prove the next

important step:

Λ
(m− j)
a,I + (−1) jΛ(m+ j)

a,I = 0, j = 0, . . . ,m − 2, ∀I, (54)

Λ
(1)
a,I + (−1)m−1Λ

(2m−1)
a,I = 0, I ∈ {L , R} , (55)

Λ
(1)
a,D + (−1)m−1Λ

(2m−1)
a,D = 1, (56)

where j := m − i − 1. For j = 0, we obtain i = m − 1 and (52) and (53) implies

Λ
(m)
a,I = 0, ∀I, (57)

which is correct according to (54). Consider j = 1 and thus i = m − 2. In the same
way we get

Λ
(m−1)
a,I −Λ(m+1)

a,I = 0, ∀I. (58)

For j = 2 and thus i = m − 3, we have Λ(m−2)
a,I −Λ(m)a,I +Λ(m+2)

a,I = 0, ∀I , and we

can use (57). For j = 3 and thus i = m − 4 we have Λ(m−3)
a,I −Λ(m−1)

a,I +Λ(m+1)
a,I −

Λ
(m+3)
a,I = 0, ∀I , where we can apply (58). We can continue in this way until j =

m − 1.The last step ensures the correctness of (55) in case that I ∈ {L , R}, eventually
(56) if I = D instead of (54).

To finish the proof, we only need to keep in mind (35). From (35), it follows that
Λ
( j)
a,D = 0, j ∈ {0, . . . ,m − 1}. According to (54) for I = D and (56), we further

see

Λ
( j)
a,D = 0, j ∈ {m + 1, . . . , 2m − 2} ;

Λ
(2m−1)
a,D = (−1)m−1.

Altogether we have obtained the following system of 4m linear equations:

Λ
(m− j)
a,L + (−1) jΛ(m+ j)

a,L = 0, j = 0, . . . ,m − 1,

Λ
(m− j)
a,R + (−1) jΛ(m+ j)

a,R = 0, j = 0, . . . ,m − 1,

Λ
( j)
a,D = 0, j = 0, . . . , 2m − 2,

Λ
(2m−1)
a,D = (−1)m−1,
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which, after rewriting them using (51), (47)–(50) and (41)–(46), completes the
proof. �

Proof (Proof of Theorem 3) Let M = span
{
ψ i : i = 1, . . . , n

}
and its orthog-

onal complement M⊥ =
{
h ∈ H m : 〈ψ i , h

〉
Sob,m = 0, i = 1, . . . , n

}
. Represen-

tors exist by Theorem 1 and we can write the Sobolev space as a direct sum of
its orthogonal subspaces, i.e.,H m = M ⊕ M⊥ sinceH m is a Hilbert space. Func-
tions h ∈ M⊥ take on the value zero at x1, . . . ,xn . Each f ∈ H m can be written as
f = ∑n

j=1 c jψ j + h, h ∈ M⊥. Then,

[
Y − f (x)

]

Σ−1

[
Y − f (x)

]+ χ ‖ f ‖2Sob,m

=
⎡

⎣Y• −
〈

ψ • ,

n∑

j=1

c jψx j + h

〉

Sob,m

⎤

⎦




Σ−1

⎡

⎣Y• −
〈

ψ • ,

n∑

j=1

c jψx j + h

〉

Sob,m

⎤

⎦

+ χ
∥
∥∥∥∥∥

n∑

j=1

c jψ j + h

∥
∥∥∥∥∥

2

Sob,m

=
⎡

⎣Y• −
n∑

j=1

〈
ψ • , c jψx j

〉
Sob,m

⎤

⎦




Σ−1

⎡

⎣Y• −
n∑

j=1

〈
ψ • , c jψx j

〉
Sob,m

⎤

⎦

+ χ
∥
∥∥∥∥∥

n∑

j=1

c jψ j

∥
∥∥∥∥∥

2

Sob,m

+ χ ‖h‖2Sob,m

=
⎡

⎣Y• −
n∑

j=1

c j
〈
ψ • , ψx j

〉
Sob,m

⎤

⎦




Σ−1

⎡

⎣Y• −
n∑

j=1

c j
〈
ψ • , ψx j

〉
Sob,m

⎤

⎦

+ χ
〈

n∑

j=1

c jψ j ,

n∑

j=1

c jψ j

〉

Sob,m

+ χ ‖h‖2Sob,m

=
⎡

⎣Y• −
n∑

j=1

Ψ•, j c j

⎤

⎦




Σ−1

⎡

⎣Y• −
n∑

j=1

Ψ•, j c j

⎤

⎦

+ χ
n∑

j=1

n∑

k=1

c j
〈
ψ j , ψ k

〉
Sob,m

ck + χ ‖h‖2Sob,m

= [Y − Ψ c]
 Σ−1 [Y − Ψ c]+ χc
Ψ c+ χ ‖h‖2Sob,m ,

where
〈
ψ • , g

〉
Sob,m =

[〈
ψx1 , g

〉
Sob,m , . . . ,

〈
ψxn , g

〉
Sob,m

]

for an arbitrary g ∈ H m .

Hence, there exists a function f ∗, minimizing the infinite dimensional optimiz-
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ing problem, that is a linear combination of the representors. We note also that
‖ f ∗‖2Sob,m = c
Ψ c.

Uniqueness is clear, since ψ i are the base elements of M , and adding a func-
tion that is orthogonal to the spaces spanned by the representors will increase the
norm. �

Proof (Proof of Corollary 1) It follows directly from (30) and from Theorem 3. �

Proof (Proof of Theorem 4) The representor matrix is symmetric by Definition 4
since

Ψi, j =
〈
ψ i , ψ j

〉
Sob,m

= 〈
ψ j , ψ i

〉
Sob,m

= Ψ j,i ,

i.e., Ψ = Ψ 
.
We give the proof of positive definiteness of the representor matrix only for one-

dimensional variable x . The extension into the multivariate case is straightforward.
For an arbitrary c ∈ R

n , we obtain

�

Ψ � =

∑

i

ci
∑

j

Ψi j c j =
∑

i

∑

j

ci
〈
ψxi , ψx j

〉
Sob,m

c j =
∑

i

∑

j

〈
ciψxi , c jψx j

〉
Sob,m

=
〈
∑

i

ciψxi ,
∑

j

c jψx j

〉

Sob,m

=
∥∥
∥∥
∥

∑

i

ciψxi

∥∥
∥∥
∥

2

Sob,m

≥ 0.

Hence, c
Ψ c = 0 iff
∑

i ciψxi = 0 a.e.
For x > xi , we define

γ (xi ) =
[
γ0, . . . , γκ−1, γκ+1, . . . , γm+κ , γm+2+κ , . . . , γ2m+1

]

(xi ).

Otherwise, we define

γ (xi ) =
[
γ2m+2, . . . , γ2m+1+κ , γ2m+3+κ , . . . , γ3m+2+κ , γ3m+4+κ , . . . , γ4m+3

]

(xi ).

Similarly, we look at elements of the vector
[{Γ (xi )}−1]

•,4m . According to (47)–(50),
(41)–(46) and (7), we have

ψxi (x) = γ (xi )

ϕ(x) = (−1)m−1

[{Γ (xi )}−1]

•,4m ϕ(x)

where ϕ(x) is vector containing the base elements of the space of the solutions of the
differential equation (34), i.e., ϕk(x), cf. (41)–(46). From the linear independence of
ϕk(x) it follows that
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∑

i

ciψxi = (−1)m−1
∑

i

ci
[{Γ (xi )}−1]


•,4m ϕ

= (−1)m−1
∑

i

∑

k

ci
[{Γ (xi )}−1]

4m,k ϕk = 0 a.e.

�

ϕk = 0 a.e. k ∈ {0, 1, . . . , 2m + 1} \
⎧
⎨

⎩

{
m
2 ,

3m+2
2

}
m even,

{
m+1
2 ,

3m+3
2

}
m odd;

⇓
ψxi = 0 a.e. i = 1, . . . , n.

And ψxi = 0 a.e. is a zero element of the space H m . �

Proof (Proof of Theorem 5) According to the Theorem 3, we want to minimize the
function

L (c) := 1

n
[Y − Ψ c]
 Σ−1 [Y − Ψ c]+ χc
Ψ c.

Therefore, the first partial derivatives ofL (c) have to be equal zero at the minimizer

ĉ, i.e., ∂
∂ci

L (c)
!= 0, i = 1, . . . , n. Denoting Σ−1 =: [φi j

]n,n
i, j=1, we can write

nL (�) = �

Σ−1

� − 2�
Σ−1Ψ �+ �

Ψ Σ−1Ψ �+ nχ�
Ψ �

=
n∑

r=1

n∑

s=1

YrφrsYs − 2
n∑

r=1

n∑

s=1

n∑

t=1

YrφrsΨst ct +
n∑

r=1

n∑

s=1

n∑

t=1

n∑

u=1

crΨrsφstΦtucu

+ nχ
n∑

r=1

n∑

s=1

crΨrscs

and, hence,

0
!= −2

n∑

r=1

n∑

s=1

YrφrsΨsi + 2
n∑

r = 1
r �= i

n∑

s=1

n∑

t=1

crΨrsφstΦti

+ 2
n∑

r=1

n∑

s=1

ciΨisφstΦti + 2nχ
n∑

r = 1
r �= i

crΨri + 2nχciΨi i

= −2Y
Σ−1Ψ •,i + 2c
Ψ Σ−1Ψ •,i + 2nχc
Ψ •,i , i = 1, . . . , n.
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Then, we obtain our system of the normal equations

c

(
Ψ Σ−1Ψ •,i + nχΨ •,i

) = Y
Σ−1Ψ •,i , i = 1, . . . , n.

�

Proof (Proof of Theorem 6) Let us have fixed χ > 0. Hencewe have obtained unique
f̂ and also ĉ according to Theorem 3. Theorem 3 and the Lagrange multipliers say
that there exists a unique L > 0 such that ĉ is also a unique solution of optimizing
problem

ĉ = arg min
∈Rn

1

n
[Y − Ψ c]
 Σ−1 [Y − Ψ c] s.t. c
Ψ c = L .

Let us define

f̃ (x) := Ξ f (x), Ỹ := ΞY,

̂̃c := arg min
˜∈Rn

1

n

[
Ỹ − Ψ c̃

]

Σ−1

[
Ỹ − Ψ c̃

]
s.t. c̃
Ψ Ξ−1Ψ −1Ξ−1Ψ c̃ ≤ L .

We can easily find out that ̂̃c = Ψ −1ΞΨ ĉ and, hence, ̂̃f (x) = Ξ̂̃c. Finally, there
must exists L̃ > 0 such that

̂̃c = arg min
˜∈Rn

1

n

[
Ỹ − Ψ c̃

]

Σ−1

[
Ỹ − Ψ c̃

]
s.t. c̃
Ψ c̃ = L̃

and hence this ̂̃c has to be a unique solution of the optimizing problem

̂̃c = arg min
˜∈Rn

1

n

[
Ỹ − Ψ c̃

]

Σ−1

[
Ỹ − Ψ c̃

]
s.t. c̃
Ψ c̃ ≤ L̃

sinceΨ is a positive definitematrix (̃c
Ψ c̃ is the volume of n-dimensional ellipsoid).
Now, we think of model

Ỹi = f̃ (xi )+ ε̃i , ε̃i ∼ i id, i = 1, . . . , n

with least-squares estimator ̂̃f . As in the proof of Lemma 1 in [13], using [9], it can be
shown that there exists A > 0 such that for δ > 0, we have log N (δ;F ) < Aδ−q/m ,
where N (δ;F ) denotes the minimum number of balls of radius δ in sup-norm
required to cover the set of functions F . Consequently, applying [11, Lemma 3.5],
we obtain that there exist positive constants C0, K0 such that for all K > K0

P

⎡

⎢
⎣ sup

‖g‖2Sob,m≤L̃

√
n
∣∣− 2

n

∑n
i=1 ε̃i

(
f̃ (xi )− g(xi )

)∣∣
(
1
n

∑n
i=1

(
f̃ (xi )− g(xi )

)2) 1
2− q

4m

≥ K A1/2

⎤

⎥
⎦ ≤ exp

{−C0K
2} .
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Since f̃ ∈ F̃ = {
g ∈ H m(Qq) : ‖g‖2Sob,m ≤ L̃

}
and ̂̃f minimizes the sum of

squared residuals over g ∈ F̃ ,

1

n

n∑

i=1

[
Ỹi − ̂̃f (xi )

]2 ≤ 1

n

n∑

i=1

[
Ỹi − g(xi )

]2
, g ∈ F̃

1

n

n∑

i=1

[(
f̃ (xi )− ̂̃f (xi )

)
+ ε̃i

]2 ≤ 1

n

n∑

i=1

[(
f̃ (xi )− g(xi )

)+ ε̃i
]2
, g ∈ F̃

⇓ realize that f̃ ∈ F̃

1

n

n∑

i=1

(
f̃ (xi )− ̂̃f (xi )

)2 ≤ −2

n

n∑

i=1

ε̃i

(
f̃ (xi )− ̂̃f (xi )

)
. (59)

Now combine (8) and (59) to obtain the result that ∀K > K0

P

[
1

n

n∑

i=1

(
f̃ (xi )− ̂̃f (xi )

)2 ≥
(
K 2A

n

) 2m
2m+q

]

≤ exp
{−C0K

2
}
.

Thus,

1

n

[
f̂ (x)− f (x)

]

Σ−1

[
f̂ (x)− f (x)

]

= 1

n

n∑

i=1

(
f̃ (xi )− ̂̃f (xi )

)2 = OP

(
n−

2m
2m+q

)
, n → ∞.

�

Lemma 1 Suppose ( fn)
∞
n=1 are nonnegative Lipschitz functions on interval [a, b]

with a constant T > 0 for all n ∈ N. If fn
L1−−−→

n→∞ 0 then

‖ fn‖∞,[a,b] := sup
x∈[a,b]

| fn(x)| −−−→
n→∞ 0.

Proof (Proof of Lemma 1) Suppose that

∃ρ > 0 ∀n0 ∈ N ∃n ≥ n0 ∃x ∈ [a, b] fn(x) ≥ ρ.
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Then according to Lipschitz property of each fn ≥ 0, we have for fixed ρ, n0, n and
x ∈ [a, b] that

‖ fn‖L1[a,b] =
∫ b

a
fn(t)dt

≥ min

{
fn(x)

2
(x − a)+ fn(x)

2
(b − x),

fn(x)

2
(x − a)+ fn(x)

2

fn(x)

T
,

fn(x)

2

fn(x)

T
+ fn(x)

2
(b − x),

fn(x)

2

fn(x)

T
+ fn(x)

2

fn(x)

T

}

≥ min

{
ρ

2
(b − a),

ρ

2
(x − a)+ ρ2

2T
,
ρ2

2T
+ ρ

2
(b − x),

ρ2

T

}
=: K > 0.

But K is a positive constant which does not depend on n and its existence would
contradict the assumptions of this lemma, i.e.,

∀δ > 0 ∃n1 ∈ N ∀n ≥ n1 ‖ fn‖L1[a,b] < δ.

�

Proof (Proof of Theorem 7) We divide the proof into two steps.
(i) s = 0. The covariance matrix Σ is symmetric and positive definite with

equibounded eigenvalues for all n. Hence it can be decomposed using Schur
decomposition: Σ = Γ Υ Γ 
, where Γ is orthogonal, Υ is diagonal (with eigen-
values on this diagonal) such that 0 < Υi i ≤ ϑ , i = 1, . . . , n, ∀n. Hence Σ−1 =
Γ diag

{
Υ −1
1 , . . . , Υ −1

n

}
Γ 
. Then

1

n

[
f̂ (x)− f (x)

]

Σ−1

[
f̂ (x)− f (x)

]

≥ 1

n

[
f̂ (x)− f (x)

]

Γ ϑ−1 IΓ 
 [

f̂ (x)− f (x)
] = 1

nϑ

n∑

i=1

[
f̂ (xi )− f (xi )

]2
.

(60)

Let us define hn :=
∣∣ f̂ − f

∣∣.We know
∥∥ f̂

∥∥2
Sob,m ≤ L for all n and

∥∥ f
∥∥2
Sob,m ≤ L .

For every function t ∈ H m[a, b] with ∥∥t
∥∥2
Sob,m ≤ L , it holds that

∥∥t ′
∥∥

L2[a,b] ≤ ‖t‖Sob,1 ≤ ‖t‖Sob,m ≤ √
L. (61)

Then, t has equibounded derivative and hence there exists a Lipschitz constant T > 0
such that

|t (ξ)− t (ζ )| < T |ξ − ζ | , ξ, ζ ∈ [a, b].

We easily see
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|hn(ξ)− hn(ζ )|
|ξ − ζ | =

∣∣
∣
∣∣ f̂ (ξ)− f (ξ)

∣∣− ∣∣ f̂ (ζ )− f (ζ )
∣∣
∣∣
∣

|ξ − ζ |

≤
∣∣∣
[
f̂ (ξ)− f (ξ)

]− [
f̂ (ζ )− f (ζ )

]∣∣∣

|ξ − ζ |

≤
∣∣ f̂ (ξ)− f̂ (ζ )

∣∣+ ∣∣ f (ξ)− f (ζ )
∣∣

|ξ − ζ | < 2T, ξ, ζ ∈ [a, b].

Since hn is T -Lipschitz function for all n and

‖hn‖L2[a,b] =
∥∥ f̂ − f

∥∥
L2[a,b] ≤

∥∥ f̂ − f
∥∥
Sob,1 ≤

∥∥ f̂ − f
∥∥
Sob,m

≤ ∥∥ f̂
∥∥
Sob,m + ∥∥ f

∥∥
Sob,m ≤ 2

√
L, ∀n,

we obtain that hn is equibounded for all n with a positive constant M such that
‖hn‖∞,[a,b] ≤ M > 0, ∀n. Hence, h2n is also a Lipschitz function for all n, because
for ξ, ζ ∈ [a, b]
∣∣h2n(ξ)− h2n(ζ )

∣∣

|ξ − ζ | = |hn(ξ)− hn(ζ )|
|ξ − ζ | [hn(ξ)+ hn(ζ )]

≤ T × 2 ‖hn‖∞,[a,b] = 2MT =: U > 0, ∀n.

Since h2n is U -Lipschitz function for all n and design points (xi )ni=1 are equidis-
tantly distributed on [a, b], we can write that

∫ b

a
h2n(u)du ≤

n−1∑

i=1

xi+1 − xi
2

{
h2n(xi )+

[
h2n(xi )+U (xi+1 − xi )

]}

≤ 1

2n

[

2
n−1∑

i=1

h2n(xi )+U (b − a)

]

≤ 1

n

n∑

i=1

h2n(xi )+
U (b − a)

2n
.

(62)

According to Theorem 6,

∀ρ > 0 P
{
1

n

[
f̂ (x)− f (x)

]

Σ−1

[
f̂ (x)− f (x)

]
> ρ

}
−−−→
n→∞ 0,

so it means

∀ρ > 0 ∀δ > 0 ∃n0 ∈ N ∀n ≥ n0 :
P
{
1

n

[
f̂ (x)− f (x)

]

Σ−1

[
f̂ (x)− f (x)

]
> ρ

}
< δ. (63)
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Let us fix an arbitrary ρ > 0 and δ > 0. Next, we fix n0 :=
⌈

U
ρ2

⌉
and for all n ≥ n0

we can write

δ > P
{
1

n

[
f̂ (x)− f (x)

]

Σ−1

[
f̂ (x)− f (x)

]
>
ρ2(b − a)

2ϑ

}
by (63)

≥ P

{
1

n

n∑

i=1

[
f̂ (xi )− f (xi )

]2
>
ρ2(b − a)

2

}

by (60)

≥ P

⎧
⎪⎪⎨

⎪⎪⎩
‖hn‖2L2[a,b] >

ρ2(b − a)

2
+ U (b − a)

2n︸ ︷︷ ︸
ρ̃

⎫
⎪⎪⎬

⎪⎪⎭
by (62)

≥ P

{

‖hn‖L1[a,b] >
√
ρ̃

‖1‖L2[a,b]

}

≥ P
{‖hn‖L1[a,b] > ρ

}
Cauchy–Schwarz.

Thus, ‖hn‖L1[a,b]
P−−−→

n→∞ 0. According to Lemma 1 and the fact that the almost sure

convergence implies convergence in probability, we have

sup
x∈[a,b]

∣
∣ f̂ (x)− f (x)

∣
∣ P−−−→

n→∞ 0.

(ii) s ≥ 1. Ifm = 2, we are done. Let gn := f̂ − f . According to the assumptions
of our model, gn ∈ H m[a, b]. By [13, Theorem 2.3], all functions in the estimating
set have derivatives up to order m − 1 uniformly bounded in sup-norm. Then, all the
g′′n are also bounded in sup-norm (m ≥ 3) and this implies the uniform boundedness
of g′′n :

∃M > 0 ∀n ∈ N
∥
∥g′′n

∥
∥∞,[a,b] < M.

Let us have fixed M > 0. For any fixed ρ > 0, define ρ̃ := Mρ and there exists
n0 ∈ N, such that ∀n ≥ n0 : [cn, dn] ⊂ [a, b] and

g′n(cn) = g′n(dn) = ρ̃ & g′n(ξ) > ρ̃, ξ ∈ (cn, dn)

because g′n is continuous on [cn, dn] (drawing a picture is helpful). If such [cn, dn]
does not exist, the proof is finished.

Otherwise there exists n1 ≥ n0 such that ∀n ≥ n1 holds

|ρ̃(dn − cn)| ≤
∣∣∣∣

∫ dn

cn

g′n(ξ)dξ
∣∣∣∣ = |gn(dn)− gn(cn)| ≤ 2ρ2
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Fig. 6 Uniform convergence
of g′n

because gn
n→∞−−−→ 0 uniformly in sup-norm on the interval [a, b]. Hence, |dn − cn| ≤

2ρ
M . The uniform boundedness of g′′n implies Lipschitz property (see Fig. 6):

∣∣g′n(x)
∣∣ ≤

∣
∣∣∣ρ̃ + M

dn − cn
2

∣
∣∣∣ ≤ Mρ + M

ρ

M
≤ ρ(M + 1).

We can continue in this way finitely times (formally we can proceed by something
like a finite induction). In fact, if (m − 1)-th derivatives are uniformly bounded
(gn ∈ H m[a, b]), then this ensures that f̂ (s) for s ≤ m − 2 converges in sup-norm.
Finally, we have to realize that convergence almost sure implies convergence in
probability and each convergent sequence in probability has a subsequence that
converges almost sure. �

Proof (Proof of Theorem 8) The proof is very similar to the proof of the Infinite
to Finite Theorem 3 and the same arguments can be used. Each f, g ∈ H m can be
written in the form:

f =
∑

{i | ni≥1}
ciψxi + h f , h f ∈

{
span

{
ψ i : ni ≥ 1

}}⊥
,

g =
∑

{ j |m j≥1}
d jφx j + hg, hg ∈

{
span

{
φ j : m j ≥ 1

}}⊥
.

For 1 ≤ ι ≤ n, we easily note that

[(
Y
Z

)
−

(
Δ 0
0 Θ

)(
f (xα)
g
(
xβ

)
)]

ι

= Yι −
⎧
⎨

⎩

∑

{i | ni≥1}
Διi f (xi )+

∑

{i |mi≥1}
Θιi g(xi )

⎫
⎬

⎭

= Yι −
∑

{i | ni≥1}
Διi

〈

ψxi ,
∑

{ j | n j≥1}
c jψx j + h f

〉

Sob,m

−
∑

{i |mi≥1}
Θιi

〈

φxi ,
∑

{ j |m j≥1}
d jφx j + hg

〉

Sob,m
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= Yι −
∑

{i | ni≥1}
Διi

∑

{ j | n j≥1}
Ψi j c j −

∑

{i |mi≥1}
Θιi

∑

{ j |m j≥1}
Φi j d j

=
[(

Y
Z

)
−

(
Δ 0
0 Θ

)(
Ψ 0
0 Φ

)(
c
d

)]

ι

.

We can proceed in the same way also for n < ι ≤ n + m.
Finally, it remains to rewrite the constraints using (2) from Theorem 1:

f ′(xι) =
〈

ψxι ,
∑

{i | ni≥1}
ciψ

′
xi + h f

〉

Sob,m

= [
Ψ (1)c

]
ι

∀ι : nι ≥ 1.

Similarly, we obtain g′(xι) =
[
Φ(1)d

]
ι
∀ι : mι ≥ 1; f ′′(xι) =

[
Ψ (2)c

]
ι
∀ι : nι ≥ 1;

and g′′(xι) =
[
Φ(2)d

]
ι
∀ι : mι ≥ 1. �
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On Existence of Explicit
Asymptotically Normal Estimators
in Nonlinear Regression Problems

Alexander Sakhanenko

Abstract Explicit asymptotically normal estimators for two new classes of non-
linear regression problems are constructed. The survey of such estimators and of
methods for their construction is presented. Several new properties of previously
established estimators are found.

Keywords Nonlinear regression ·Explicit estimators ·Asymptotically normal esti-
mators · Improvement of estimators

1 Introduction

Let Y1,Y2, . . . ,Yn, . . . be independent observations which may be represented in
the following form:

Yi = gi (θ) + εi with Eεi = 0 and 0 < var εi < ∞, (1)

for all i = 1, 2, . . . , where {gi (θ)} are known functions, whereas random variables
{εi } are independent andunobservable.Note that quite oftenonehas gi (θ) = g(xi , θ),
where {xi } are known numbers or vectors.

Our aim is to estimate the unknown parameter θ ∈ R or θ = (θ1, . . . , θk) ∈ Rk

using only the first n observations. If for all i = 1, 2, . . .

Eεi = 0 and 0 < var εi = σ 2/woi < ∞, (2)

where {woi } are known positive numbers, then the standard advice is to use the
famous Weighted Least Square Estimator θ̂n which may be defined as a solution of
the following equation:
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n∑

i=1

woi (Yi − gi (θ̂n))
2 = min

θ

n∑

i=1

woi (Yi − gi (θ))2. (3)

In case of the linear regression the famous solution θ̂n of Eq. (3) may be found in
an explicit way as the solution of a system of linear equations. In particular, if the
parameter θ is one-dimensional and

Yi = θxi + εi , i = 1, 2, . . . ,

then

θ̂n =
n∑

i=1

woi xiYi
/ n∑

i=1

woi x
2
i = θ +

n∑

i=1

woi xiεi
/ n∑

i=1

woi x
2
i . (4)

Thus, if random variables {woi xiεi } satisfy Lindeberg condition then the estimator
θ̂n is asymptotically normal, i.e.,

(θ̂n − θn)/Dn ⇒ N (0, 1) as n → ∞, (5)

where the asymptotic variance D2
n has the following form:

D2
n = σ 2

∑n
i=1 wiox2i

= 1
∑n

i=1(g
′
i (θ))2

/
var εi

→ 0. (6)

Simple Explicit Estimators

The natural conjecture may arise that the explicit asymptotically normal estimators
exist only in the linear regression problems. But in 2000 in [1], it was shown that if

Yi = ai
1 + biθ

+ εi for each i = 1, 2, . . . ,

where ai > 0 and bi > 0 are known numbers, then the following estimator

θ∗
n =

n∑

i=1

ci (ai − Yi )
/ n∑

i=1

cibiYi (7)

is asymptotically normal (see details in Sect. 2) for a large class of constants {ci }.
That is,

(θ∗
n − θ)/dn ⇒ N (0, 1) as n → ∞

for some asymptotic variance d2
n → 0. We would like to stress that the estimators

in (7) are not Weighted Least Square Estimators no matter which weights {woi } are
chosen.
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Furthermore, note that even in the classical case when {woi = 1}, the search for
the Least Square Estimators could present a substantial computational burden since
potentially there could be a growing random number of local extremes of the function
in the right-hand side of the Eq. (3). The monograph [2] contains a good survey of
the issues that arise and ways to overcome them. There one can also find several
examples of seemingly simple regression problems for which it is very complicated
to find the Least Square Estimators.

However, while considering these examples in [2] it occurred to the author of
this paper to try to find sufficiently exact explicit asymptotically normal estimators
using different methods and get analogous results as in [1]. Three such examples of
estimators were found in 2013–2015 in papers [3–5] in cases when

Yi = xiθ + zi g(θ) + εi , i = 1, 2, . . . , (8)

where numbers {xi } and {zi } are known (see details in Sect. 3); also in cases when

Yi = √
1 + xiθ + δi , i = 1, 2, . . . (9)

(see Sect. 4 for details); and, at last, in cases (see Sect. 5) when we have independent
observations

Yi = ln(1 + xiθ) + δi , i = 1, 2, . . . . (10)

Let us stress that in (9) and (10) and later on all {xi } are given numbers and
we denote by {δi } a sequence of i.i.d. unobservable random variables (with some
additional properties on their common distribution, of course).

In the present paper, we construct explicit asymptotically normal estimators for
two new classes of regression problems when

Yi = (1 + xiθ)r + εi = (1 + xiθ)r (1 + δi ), i = 1, 2, . . . , (11)

where r �= 0 is a known number (see Sect. 6), and when

Yi = exi θ + εi = exi θ (1 + δi ), i = 1, 2, . . . (12)

(see details in Sect. 7).
In Sects. 9 and 10, several multidimensional explicit estimators are also consid-

ered.

Larger Classes of Explicit Estimators

Note, that all explicit estimators θ∗
n constructed in Sects. 2–7, 9, and 10 are elementary

functions of finite number of linear statistics
∑n

i=1 hki (Yi ) with specially chosen
functions {hki (·)}. But if we constructed a “sufficiently good” initial estimator θ∗

n ,
thenwemay introduce a larger class of explicit estimators θ∗∗

n thatmay be represented
as functions of a finite number of statistics

∑n
i=1 Hki (Yi , θ∗

n ) with specially chosen
functions {Hki (·, ·)}.
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Suppose now that for all i = 1, 2, . . .

Eεi = 0 and 0 < var εi = σ 2/wi (θ) < ∞, (13)

where 0 < σ < ∞ may be unknown. Introduce

D2
n,o := σ 2

∑n
i=1 wi (θ)(g′

i (θ))2
= 1

∑n
i=1(g

′
i (θ))2

/
var εi

. (14)

One of our aims in one-dimensional case is to find such asymptotically normal
explicit estimator θ∗∗

n that

(θ∗∗
n − θ)

/
Dn,o ⇒ N (0, 1) as n → ∞. (15)

Our interest of finding this kind of estimators is motivated by the observation that
D2

n,o is the minimal asymptotic variance for various well-known classes of statistical
estimators.Wewill discuss this point later in Sect. 8. For example, it follows from (5)
and (6) that the simplest optimal estimator θ̂n from (4) satisfy (15) with the minimal
asymptotic variance D2

n = D2
n,o introduced in (14).

Everywhere in the paper limits are taken with respect to n → ∞.

2 Fractional-Linear Regression

Suppose we have independent observations

Yi = ai
1 + biθ

+ εi , i = 1, 2, . . . , (16)

where {ai > 0} and {bi > 0} are given numbers. We assume that independent vari-
ables {εi } may have different distributions with

Eεi = 0 and 0 < σ 2
i := var εi < ∞, i = 1, 2, . . . . (17)

We want to construct an explicit estimator for the unknown parameter θ > 0.

Construction of Estimators

First of all, we rewrite (16) in the following way:

(1 + biθ)Yi = ai + (1 + biθ)εi , or ai − Yi = θbiYi + ε̃i , (18)

where

ε̃i = −(1 + biθ)εi , Eε̃i = 0, var ε̃i = (1 + biθ)2 var εi . (19)
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Now, for any constants {ci } we obtain from (18) that

n∑

i=1

ci (ai − Yi ) = θ

n∑

i=1

cibiYi +
n∑

i=1

ci ε̃i .

So, we have the following representation:

θ =
n∑

i=1

ci (ai − Yi )
/ n∑

i=1

cibiYi −
n∑

i=1

ci ε̃i
/ n∑

i=1

cibiYi . (20)

It follows from (20) that it is natural to define an estimator θ∗
n in the following way:

θ∗
n :=

n∑

i=1

ci (ai − Yi )
/ n∑

i=1

cibiYi . (21)

Asymptotic Normality of Estimators

It follows from (20) and (21) that

θ∗
n − θ =

∑n
i=1 ci ε̃i∑n

i=1 cibiYi
=

∑n
i=1 ci ε̃i∑n

i=1 ciaiβi + ∑n
i=1 ciβi ε̃i

, (22)

where βi := bi/(1 + biθ) < 1/θ . Assume that

d2
n ({ci }) :=

∑n

i=1
c2i var ε̃i

/(∑n

i=1
ciaiβi

)2 → 0. (23)

It is not difficult to derive the following assertion from the representation (22).

Theorem 1 Suppose that independent {ci ε̃i } satisfy Lindeberg condition and that
(19) and (23) hold. Then the statistic θ∗

n from (21) is an asymptotically normal
estimator for θ :

(θ∗
n − θ)/dn({ci }) ⇒ N (0, 1). (24)

Corollary 1 Suppose that {εi/σi } are i.i.d. and for some constants {ci }

inf
i
min{ai , bi , ci , σi } > 0, sup

i
max{ai , bi , ci , σi } < ∞.

Then (24) holds with dn({ci }) = O(1/
√
n).

Improved Estimators

Together with the preliminary estimators (22), let us introduce a larger class of
estimators
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θ∗∗
n =

n∑

i=1

γi (θ
∗
n )(ai − Yi )

/ n∑

i=1

γi (θ
∗
n )biYi . (25)

Theorem 2 Under assumptions of Corollary1 suppose that all functions {γi (t)}
have derivatives {γ ′

i (t)} and

inf
i

γi (θ) > 0, sup
i

γi (θ) < ∞, sup
i

sup
θ/2≤t≤2θ

|γ ′
i (t)| < ∞.

Then
(θ∗∗

n − θ)/dn({γi (θ)}) ⇒ N (0, 1).

Optimization of Estimators

Theorem 3 For each n ≥ 1

inf{ci }
d2
n ({ci }) = inf

{γi (θ)}
d2
n ({γi (θ)}) = 1

∑n
i=1 a

2
i β

2
i / var ε̃i

= d2
n

({γo,i (θ)}),

where

γo,i (θ) = γo,i (θ, var εi ,C) = C
aiβi

var ε̃i
= C

aibi
(1 + biθ)3 var εi

∀ C �= 0.

Corollary 2 If var εi = σ 2/wi (θ) for all i , then

d2
n,opt = σ 2

∑n
i=1 a

2
i b

2
i wi (θ)/(1 + biθ)4

with γopt,i (θ) = aibiwi (θ)

(1 + biθ)3
. (26)

Corollary2 follows from Theorem3 with C = σ 2.

Partial Cases

Example 1 If conditions (2) hold then

γopt,i (θ) = aibiwoi/(1 + biθ)3.

In this case, we may recommend to take ci = γopt,i (θ0) for some θ0 ≥ 0.

Example 2 If (17) holds with

Eεi = 0 and 0 < var εi = σ 2

woi (1 + biθ)3
, i = 1, 2, . . . (27)

then we have γopt,i (θ) = aibiwoi . So, we do not need to improve the estimator θ∗
n in

this case if only we take ci = aibiwoi .
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Example 3 The simplest choice for ci is to take ci = ai . But this choice is optimal
only in the case when (27) holds with woi = 1/bi .

Note that the simple Theorem1 is a new result. All other assertions in this section
may be easily derived from the corresponding results in [1].

3 Partially Linear Regression

We have independent observations

Yi = xiθ + zi g(θ) + εi , i = 1, 2, . . . , (28)

where numbers {xi } and {zi } are known, and independent variables {εi } may have
different distributions satisfying (17). We do not assume that the function g(·) is
known. Our aim is to estimate the unknown parameter θ .

Construction of Explicit Estimators

First of all, we need to choose constants {cni } such that

n∑

i=1

cni zi = 0 and
n∑

i=1

cni xi �= 0 ∀ n ≥ n0 (29)

for some n0 < ∞. It follows from (28) and (29) that

n∑

i=1

cniYi = θ

n∑

i=1

cni xi + 0 · g(θ) +
n∑

i=1

cniεi .

So that

θ =
n∑

i=1

cniYi
/ n∑

i=1

cni xi −
n∑

i=1

cniεi
/ n∑

i=1

cni xi . (30)

It is natural from (30) to introduce an estimator θ∗
n in the following way:

θ∗
n = θ∗

n (cn•) =
n∑

i=1

cniYi
/ n∑

i=1

cni xi . (31)

Asymptotic Normality of Estimators

It follows from (30) and (31) that

θ∗
n (cn•) − θ =

n∑

i=1

cniεi
/ n∑

i=1

cni xi .
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Thus, we are ready to prove asymptotic normality.

Theorem 4 (See [3]) Suppose that independent {cniεi } satisfy Lindeberg condition
and that (17) and (29) hold. Then

θ∗
n (cn•) − θ

dn(cn•)
⇒ N (0, 1) where d2

n (cn•) := var θ∗
n (cn•) =

∑n
i=1 c

2
niσ

2
i(∑n

i=1 cni xi
)2 .

Moreover, if independent random variables {εi } have normal distributions with zero
means then (θ∗

n (cn•) − θ)/dn(cn•) has the standard normal distribution.

Optimization of Estimators

If conditions (2) hold and
∑n

i=1 woi z2i > 0 we may introduce numbers

cni,opt = woi (xi − knzi ) with kn =
∑n

i=1 woi zi xi∑n
i=1 woi z2i

.

And we set kn = 0 when
∑n

i=1 woi z2i = 0. Note that if

Kn :=
n∑

i=1

woi (xi − knzi )
2 > 0 (32)

then numbers {cni,opt } satisfy both conditions in (29).

Theorem 5 (See [3]) Let conditions (2) and (32) hold for some n. Then for all
constants {cni } satisfying (29) we have the following property:

var θ∗
n (cn•) ≥ d2

n,opt := var θ∗
n (cn•,opt ) = σ 2/Kn > 0.

Remark 1 If we have no information about the behavior of the unknown {var εi }we
may advise to use numbers {cni = cni,opt } with {woi = 1} as in the case of i.i.d. {εi }.
Possible Generalizations

Remark 2 Note that in Theorem5we have found optimal asymptotic variances d2
n,opt

only for the estimators of the form (31). If we know the function g(·), then we may
improve θ∗

n , using ideas from Sect. 8. In this case, we may obtain asymptotically
normal estimators with better asymptotic variances than in Theorem5 (at least in the
case when condition (13) holds).

Remark 3 Of course, generalizations to the case

Yi =
m∑

j=1

x jiθ j +
m∑

k=1

zki gk(θ) + εi i = 1, 2, . . . ,

with unknown m-dimensional parameter (θ1, . . . , θm), are also possible.
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4 Power Regression of Order 1/2

Suppose we have independent observations

Yi = √
1 + xiθ + δi , i = 1, 2, . . . , (33)

where {xi > 0} are known numbers and {δi } are i.i.d. with

Eδ1 = 0, Eδ41 < ∞, σ 2 := var δ1 > 0. (34)

Our aim is to construct an explicit estimator for the unknown parameter θ > 0.

Construction of Estimators

Rewrite (33) as
Y 2
i = 1 + σ 2 + xiθ + ε̃i , i = 1, 2, . . . , (35)

where
ε̃i := 2δi

√
1 + xiθ + δ2i − σ 2 = Y 2

i − EY 2
i .

It is easy to see that

Eε̃i = 0, var ε̃i = 4σ 2(1 + xiθ) + 4
√
1 + xiθEδ31 + Eδ41 − σ 4. (36)

Now, introduce constants {cni } such that
n∑

i=1

cni = 0 and
n∑

i=1

cni xi �= 0 ∀ n≥n0. (37)

It is possible to do if n0 := min{n : xn �= x1} < ∞. Multiplying (35) by {cni } we
obtain

n∑

i=1

cniY
2
i =

n∑

i=1

(1 + σ 2)cni +
n∑

i=1

cniθxi +
n∑

i=1

cni ε̃i = θ

n∑

i=1

cni xi +
n∑

i=1

cni ε̃i .

Thus, we have

θ =
n∑

i=1

cniY
2
i

/ n∑

i=1

cni xi ,−
n∑

i=1

cni ε̃i
/ n∑

i=1

cni xi . (38)

So, it is natural to introduce an estimator

θ∗
n :=

n∑

i=1

cniY
2
i

/ n∑

i=1

cni xi . (39)
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Asymptotic Normality of Estimators

It follows from (38) and (39) that

θ∗
n − θ =

n∑

i=1

cni ε̃i
/ n∑

i=1

cni xi .

Thus, we are ready to investigate asymptotic normality.

Theorem 6 (See [4]) Let independent random variables {cni ε̃i } satisfy Lindeberg
condition and (34), (37) hold. Then

θ∗
n − θ

dn(cn•)
⇒ N (0, 1), where dn(cn•) =

√∑n
i=1 cni var ε̃i

∑n
i=1 cni xi

. (40)

The Simplest Partial Case

Here we set

x̄n = 1

n

n∑

i=1

xi , Y 2
n = 1

n

n∑

i=1

Y 2
i .

Theorem 7 (See [4]) Suppose that {δi } are i.i.d. with

Eδ1 = Eδ31 = 0, Eδ41 < ∞, var δ1 > 0.

Also assume

max
i≤n

x3i
/ n∑

i=1

(xi − x̄n)
2 → 0.

Then (40) is true for {cni = xi − x̄n}. That is the following estimator

θ∗
n =

n∑

i=1

(xi − x̄n)(Y
2
i − Y 2

n )
/ n∑

i=1

(xi − x̄n)
2. (41)

is asymptotically normal.

Optimization and Generalizations

Remark 4 The transformed equation (35) may be rewritten in the form

Ỹi := Y 2
i − 1 = σ 2 + xiθ + ε̃i , i = 1, 2, . . . .

So, it is the well-known equation of the linear regression with two unknown para-
meters. But this equation is heteroscedastic with the complicated formula (36) for
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var ε̃i . Nevertheless, in [4] a formula for values {cni = cni,opt
(
xi , {var ε̃i }

)} was
found which minimizes the asymptotic variance d2

n (cn•) defined in (40). But there
is no use of this formula because it essentially depends on the unknown parameters
(var ε̃1, . . . , var ε̃n).

In such a situation,we advise to use the simplest estimator from (41) as preliminary
and after that introduce an improved estimator described in Sect. 8. For example we
may advise to use

θ∗∗
n = θ∗

n − 2
n∑

i=1

(

xi − xiYi√
1 + xiθ∗

n

)/ n∑

i=1

x2i
1 + xiθ∗

n

.

A paper with properties of the estimator θ∗∗
n is now in preparation.

Remark 5 Of course, all these resultsmay be extended to cases of amultidimensional
parameter θ when

Yi = √
x0i + x1iθ1 + · · · + xmiθm + εi , i = 1, 2, . . . ,

where (θ1, . . . , θm) is an m-dimensional unknown parameter.

5 Logarithmic Regression

We have observations

Yi = ln(1 + xiθ) + δi , i = 1, 2, . . . , (42)

where {xi > 0} are known numbers. We assume that unobservable random variables
δ1, δ2, . . . are i.i.d. with

0 < var eδ1 < ∞ and n0 := min{n : xn �= x1} < ∞.

Our aim is to construct a simple explicit estimator for the main unknown parameter
θ > 0 using the first n ≥ n0 observations from (42).

Construction of Explicit Estimators

Our idea is as follows. First of all, we rewrite (42):

eYi = (1 + xiθ)eδi , i = 1, 2, . . . . (43)

Introduce notations:

Zi := eYi , β := Eeδ1 , δ̃i := eδi /β − 1.
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Here we have introduced a new parameter β. It is easy to see that

{δ̃i } are i.i.d. with Eδ̃1 = 0 and 0 < σ̃ 2 := var δ̃1 < ∞. (44)

Let us stress that Eqs. (42) and (43) are equivalent to the following one:

Zi = β(1 + xiθ)(1 + δ̃i ) = β + xiβθ + ε̃i , i = 1, 2, . . . (45)

with ε̃i = β(1 + xiθ)δ̃i .
Next we choose constants {ani } and {bni } such that

∑n

i=1
ani = 0 and An :=

∑n

i=1
ani xi �= 0, (46)

∑n

i=1
bni xi = 0 and Bn :=

∑n

i=1
bni �= 0. (47)

Multiplying (45) by {ani } and {bni } we obtain
n∑

i=1

ani Zi =
n∑

i=1

ani ((1 + xiθ)β + σiηi ) = θβAn +
n∑

i=1

ani ε̃i , (48)

n∑

i=1

bni Zi =
n∑

i=1

bni ((1 + xiθ)β + σiηi ) = βBn +
n∑

i=1

bni ε̃i . (49)

Thus, we have from (48) and (49) that

θ = θβ

β
=

∑n
i=1 ani Zi/An − ∑n

i=1 ani ε̃i/An∑n
i=1 bni Zi/Bn − ∑n

i=1 bni ε̃i/Bn
. (50)

So, it is natural to introduce the estimator θ∗ in the following way:

θ∗
n = θ∗

n (an•, bn•) :=
∑n

i=1 ani Zi/An∑n
i=1 bni Zi/Bn

= Bn
∑n

i=1 ani Zi

An
∑n

i=1 bni Zi
. (51)

Asymptotic Normality of Estimators

It follows from (51), (50), and (49) that

θ∗
n (an•, bn•) − θ =

∑n
i=1 uni ε̃i

β + ∑n
i=1 bni ε̃i/Bn

, where uni := ani
An

− θ
bni
Bn

.

So, we are ready to prove the asymptotic normality of θ∗.

Theorem 8 (See [5]) Suppose that conditions (44)–(47) hold. Furthermore assume
that



On Existence of Explicit Asymptotically Normal … 171

max
i≤n

u2ni (1 + xi )
2
/ n∑

i=1

(1 + xi )
2u2ni → 0,

Qn(bn•) :=
n∑

i=1

b2ni (1 + xi )
2
/
B2
n → 0.

Then θ∗
n (an•, bn•) is asymptotically normal:

θ∗
n (an•, bn•) − θ

σ̃dn(an•, bn•)
⇒ N (0, 1), where d2

n (an•, bn•) :=
n∑

i=1

u2ni (1 + xiθ)2.

Optimization of Estimators

For all α > 0 introduce notations

Ckn(α) :=
n∑

i=1

xki
(1 + xiα)2

, k = 0, 1, 2.

āni (α) := C0(α)xi − C1(α)

(1 + xiα)2
, b̄ni (α) := C2(α) − C1(α)xi

(1 + xiα)2
, i = 1, . . . , n.

(52)
It is not difficult to verify that for all α > 0 numbers {ani = āni (α)} and {bni =
b̄ni (α)} satisfy assumptions (46) and (47) with An = Bn = Δn(α) where

Δn(α) := C0n(α)C2n(α) − C2
1n(α) = C0n(α)

n∑

i=1

(
xi − C1n(α)/C0n(α)

)2

(1 + xiα)2
.

And Δn(α) > 0 for all n ≥ n0 = min{n : xn �= x1}.
Theorem 9 (See [5]) If θ is the true value of the main unknown parameter and
n ≥ n0 then for all numbers {ani } and {bni } satisfying assumptions (46) and (47), the
following inequalities hold:

d2
n (an•, bn•) ≥ d2

n,opt (θ) := n/Δn(θ) = d2
n (ān•(θ), b̄n•(θ)),

Qn(bn•) ≥ Qn,opt (θ) := C2n(θ)/Δn(θ) = Qn(b̄n•(θ)).

Partial Cases

For an arbitrary α > 0 consider an estimator θ∗
n,α = θ∗

n (ān•(α), b̄n•(α)). Note θ∗
n,α

is the estimator which we obtain once we set {ani = āni (α)} and {bni = b̄ni (α)} in
the definition (52). It follows from Theorem9 that this estimator has the minimal
asymptotic variance in case when θ = α. Due to this reason, we may recommend
to use it at least in the case when we know that α is in some sense close to the
unknown θ .
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In particular, we may recommend to use the estimator

θ∗
n,0 := n

∑n
i=1 xi Zi − ∑n

i=1 xi
∑n

i=1 Zi∑n
i=1 x

2
i

∑n
i=1 Zi − ∑n

i=1 xi
∑n

i=1 xi Zi
,

if we suppose that θ is small in some sense. And for a large θ we may apply

θ∗
n,∞ :=

∑n
i=1 1/x

2
i

∑n
i=1 Zi/xi − ∑n

i=1 1/xi
∑n

i=1 Zi/x2i
n

∑n
i=1 Zi/x2i − ∑n

i=1 1/xi
∑n

i=1 Zi/xi
.

Remark 6 By Theorem9 the random variable θ∗
n,θ minimizes the asymptotic vari-

ance in the class of random variables defined in (51) for all θ and at the same time
it makes the quantity Qn(bn•) in Theorem8, as small as possible. Unfortunately,
we cannot use this variable θ∗

n,θ as an estimator since it depends on the unknown
parameter θ .

Possible Generalizations

Remark 7 If Eδ1 = 0 then we may try to improve the estimator θ∗
n using ideas from

Sect. 8 with gi (t) = log(1 + xi t) and wi (t) = 1.

Remark 8 Of course, all these results may be extended to the case when

Yi = log(x0i + x1iθ1 + · · · + xmiθm) + εi ,

where (θ1, . . . , θm) is an m-dimensional unknown parameter.

6 General Power Regression

Supposed that we have observations which may be represented in the following form

Yi = (zi + siθ)r + εi = (zi + siθ)r (1 + δi ) > 0, i = 1, 2, . . . , (53)

where {zi , si > 0} and r �= 0 are known numbers. We assume that unobservable
random variables δ1, δ2, . . . are i.i.d. with

0 < var (1 + δ1)
1/r < ∞ and n1 := min{n : sn/zn �= s1/z1} < ∞.

Our aim is to construct a simple explicit estimator for the unknown parameter θ > 0
using the first n ≥ n1 observations from (53).
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Construction of Explicit Estimators

First of all, we rewrite (53) in the following way:

Y 1/r
i = (zi + siθ)(1 + δi )

1/r , i = 1, 2, . . . . (54)

Introduce notations:

Zi := Y 1/r
i /zi , xi := si/zi , β := E(1 + δi )

1/r , δ̃i := (1 + δi )
1/r/β − 1.

(55)
Here we have defined a new parameter β. Notations from (55) allow us to rewrite
(54) in the following form:

Zi = β(1 + xiθ)(1 + δ̃i ) = β + xiβθ + ε̃i , i = 1, 2, . . . .

But this formula coinsides with (45).
Let us stress that under notations from (55), Eqs. (53) and (54) are equivalent to

(45). Moreover, it is easy to see that conditions (44) hold again for {δ̃i } introduced
in (55).

Later on in this section we will use estimators θ∗
n = θ∗

n (an•, bn•) introduced in
(50) with any numbers {ani } and {bni } satisfying (46) and (47). But we assume that
in this section all {Zi } and {xi } are from (55).

Main Assertions

Theorem 10 All assertions of Theorems8 and 9 are true with {Zi } and {xi } defined
in (55).

Remark 9 Careful study of the procedures of the estimators’ construction in Sects. 5
and 6 shows quite easily that in Sect. 5we actually constructed the estimator θ∗

n for the
parameter θ from the simplified Eq. (45), which is equivalent to the original Eq. (42).
Similarly, in Sect. 6 we estimated the parameter from the simplified Eq. (45), which
is now turned out to be equivalent to the considered in this section Eq. (53).

Note that the properties of the estimators θ∗
n in Sects. 5 and 6 coincide since we

only use the same assumptions (44) and (45). This observation immediately leads to
Theorem10.

Furthermore we note that all derivations in Sect. 5 from Theorem10 remain true
for the estimators considered in the present Sect. 6.

Possible Generalizations

Remark 10 If Eδ1 = 0 then we may try to improve the estimator θ∗
n using the ideas

from Sect. 8 with functions gi (t) = (zi + si t)r and wi (t) = 1/gi (t).

Remark 11 Of course, all these results may be extended to the case when
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Yi = (x0i + x1iθ1 + · · · + xmiθm)r (1 + δi ) > 0, i = 1, 2, . . . ,

where (θ1, . . . , θm) is an m-dimensional unknown parameter.

7 Exponential Regression

Suppose that we have observations of the form

Yi = exi θ + εi = exi θ (1 + δi ) > 0, i = 1, 2, . . . , (56)

where {xi > 0} are known numbers. We assume that unobservable random variables
δ1, δ2, . . . are i.i.d. with

0 < σ̃ 2 := var log(1 + δ1) < ∞ and n0 := min{n : xn �= x1} < ∞.

Our aim is to construct a simple explicit estimator for the main unknown parameter
θ > 0 using the first n ≥ n0 observations from (56).

Construction of Explicit Estimators

First of all, we rewrite (56) in the following way:

Zi := log Yi = xiθ + β + δ̃i , i = 1, 2, . . . , (57)

where we use notations:

β := E log(1 + δ1), δ̃i := log(1 + δi ) − β. (58)

It is easy to see that random variables {δ̃i } again satisfy conditions (44).
Let us stress that the Eq. (57) is the standard equation of the linear regression with

two unknown parameters. So, we may take the following estimator:

θ∗
n :=

n∑

i=1

Zi (xi − x̄n)
/ n∑

i=1

(xi − x̄n)
2, (59)

which coincides with the famous Least Square Estimator for the parameter θ in
Eq. (57), and due to this reason it is optimal in some sense. In (59) and later on we
use the following notations:

x̄n :=
n∑

i=1

xi
/
n, s2n :=

n∑

i=1

(xi − x̄n)
2.

After that we may introduce the following more complicated estimator:
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θ∗∗
n := θ∗

n +
n∑

i=1

xi
(
Yie

−xi θ∗
n − 1

)/ n∑

i=1

x2i . (60)

Asymptotic Normality of Estimators

Theorem 11 Suppose that conditions (44) hold and

s2n → ∞, max
i≤n

(xi − x̄n)
2
/
s2n → 0. (61)

Then θ∗
n is unbiased and asymptotically normal:

(θ∗
n − θ)/dn ⇒ N (0, 1), where d2

n := σ̃ 2
/
s2n → 0. (62)

Theorem 12 Suppose that assumptions (44) hold and

s2n → ∞,
(
max
i≤n

x2i + √
nx̄2n

)/
s2n → 0, (63)

{δi } are i.i.d. with Eδ1 = 0 and 0 < σ 2 := var δ1 < ∞. (64)

Then (62) takes place and θ∗∗
n is also asymptotically normal:

θ∗∗
n − θ

Dn
⇒ N (0, 1), where D2

n := σ 2

∑n
i=1 x

2
i

= σ 2

s2n + nx̄2n
→ 0. (65)

Remark 12 Both assumptions in (61) follow from conditions (63) of Theorem12
since

n∑

i=1

x2i = s2n + nx̄2n . (66)

In particular,
if nx̄2n/s

2
n → ∞ then D2

n/d
2
n → 0. (67)

So, in this case the estimator θ∗∗
n is sharper than θ∗

n for sufficiently large n.
Moreover,

if σ 2 ≤ σ̃ 2 then D2
n ≤ d2

n ∀n ≥ n0. (68)

On the other hand, if

σ̃ 2 ≤ σ 2 and nx̄2n
/
s2n → 0, (69)

then the estimator θ∗
n is sharper than θ∗∗

n for sufficiently large n.
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Examples

Here we present examples when all the situations (67)–(69) take place.

Example 4 Let for all k = 1, 2, . . .

xk = 1 − 1/kα, where 0 < α < 1/4. (70)

Then (67) holds and

d2
n = (1 − 2α)(1 − α)2n2α−1/α2 → 0, D2

n ∼ σ 2/n = o(d2
n ). (71)

Example 5 Let δ̃1 have a normal distribution with zero mean. Then the first assump-
tion in (69) is true since

σ 2 = var δ1 = eσ̃ 2 − 1 > σ̃ 2 = var δ̃1 > 0. (72)

Example 6 Let
P(δ̃1 = σ̃ ) = 1/2 = P(δ̃1 = −σ̃ ). (73)

Using hyperbolic functions we obtain that

0 < σ 2 = var δ1 = tanh2 σ̃ < σ̃ 2 = var δ̃1. (74)

So, (68) takes place.

Assertions of Theorems11 and 12 will be proved in Sect. 11 together with the
facts from Examples4–6.

8 General Remarks About One-Dimensional Estimators

If we constructed a “sufficiently good” initial estimator θ∗
n andwant to find an estima-

tor with property (15) then, first of all, we may consider a class of explicit estimators
defined by the formula:

θ∗∗
n = θ∗

n +
∑n

i=1 hi (θ
∗
n )ε∗

i∑n
i=1 hi (θ

∗
n )g′

i (θ
∗
n ) + ∑n

i=1 μi (θ∗
n )ε∗

i

with ε∗
i = Yi − gi (θ

∗
n ) (75)

for some sufficiently smooth functions {hi (·)} and {μi (·)}.
In [6, 7] it is easy to find many arguments to use such estimators with

hi (t) = wi (t)g
′
i (t) if var εi = σ 2/wi (θ), i = 1, 2, . . . . (76)
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For example, using Taylor formula it is possible to obtain from (75) that under
appropriate conditions

θ∗∗
n − θ ≈

∑n
i=1 hi (θ)εi∑n

i=1 hi (θn)g
′
i (θ)

. (77)

So, under some assumptions θ∗∗
n is asymptotically normal:

(θ∗∗
n − θ∗

n )/Dn ⇒ N (0, 1) as n → ∞, (78)

where the asymptotic variance D2
n has the following form

D2
n =

∑n
i=1 h

2
i (θ) var εi

(∑
hi (θ)g′

i (θ)
)2 ≥ 1

∑n
i=1(g

′
i (θ))2

/
var εi

. (79)

Thus, under assumptions (76) we have Dn = Dn,o with Dn,o defined in (14).
So, if conditions (13) are satisfied and hi (t) = wi (t)g′

i (t) are optimal, then we
have the equality in (79). If {wi (·)} are known only approximately, or {g′

i (·)} are not
sufficiently smooth, then we may try to use smooth approximations {hi (t)} of such
optimal functions {wi (t)g′

i (t)}.
Let us also note another argument in favor of the estimators from (75). Denote by

θ̌n the so called “quasy likelihood estimator” (see [6] or [7]) which we define as the
solution of the following equation:

n∑

i=1

hi (θ̌n)(Yi − gi (θ̌n)) = 0. (80)

Substituting (1) into (80) and using Taylor formula yield easily

0 =
n∑

i=1

hi (θ̌n)(εi + gi (θ) − gi (θ̌n)) ≈
n∑

i=1

hi (θ)εi + (θ − θ̌n)

n∑

i=1

hi (θ)g′
i (θ)

under appropriate conditions. So, relations (77)–(79) remain true with θ̌n instead of
θ∗∗
n . And it follows from (79) that functions hi (t) = wi (t)g′

i (t) from and (76) are
again optimal.

In this case the estimator θ∗∗
n may be treated as a Newton–Raphson approxima-

tion of θ̌n . Note, that in partial cases interesting investigations of distances between
estimators θ̌n and θ∗∗

n may be found in [8, 9].

Remark 13 It follows from the constructions in Sects. 2–7 that explicit asymptot-
ically normal estimators for the parameter of Eq. (1) may exist only for a limited
number of “lucky” functions {gi (·)} when some special tricks with this Eq. (1) can
be performed.

Moreover, in case of Eqs. (9)–(12) special assumptions about {var εi } must take
place together with the property that {δi := εi/

√
var εi } are i.i.d.
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Remark 14 The presence of significant additional conditions on the distributions
of the variables {εi } makes possible the existence of estimators which are better
than θ∗∗

n with the condition (15). For this reason, in some of the problems (9)–(12)
the estimator θ∗∗

n with the condition (15) may be worse than the estimator θ∗
n . The

possibility of this at the first glance unexpected situation follows from Example5
and Remark12. By the last reasoning in Sects. 4–7, we avoid calling the estimators
θ∗∗
n as the improvements of the estimators θ∗

n .

Remark 15 Estimator (60), which was introduced and investigated in Sect. 7, is a
partial case of the estimators from (75) for the Eq. (12). The author in collaboration
with his students is planning to perform similar investigation for Eqs. (8)–(11) too.

Note that the estimator introduced in (25) is not a partial case of the estimators
from (75) for the Eq. (18). Nevertheless, the optimal version of this estimator satisfies
the equality d2

n,opt = D2
n,o as it follows from (26) and (14).

9 Multidimensional Case

Suppose that we have observations

Yi = αi (θ)

βi (θ)
+ εi , i = 1, . . . , n, (81)

where θ = (θ1, . . . , θm) is the unknown parameter which we want to estimate and

αi (θ) ≡ a0i +
m∑

j=1

a jiθ j , βi (θ) ≡ 1 +
m∑

j=1

b jiθ j

with θ j > 0 and b ji ≥ 0 for all j and i .

Construction of Explicit Estimators

Rewrite (81) as

Yi +
m∑

j=1

b jiYiθ j = a0i +
m∑

j=1

a jiθ j + βi (θ)εi . (82)

Introduce notations

X ji = a ji − b jiYi , Zi = Yi − a0i , ε̃i = βi (θ)εi .

So, (81) is equivalent to (82) and is equivalent to
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Zi =
m∑

j=1

X jiθ j + ε̃i , i = 1, . . . , n. (83)

For any constants {cki } we have from (83) that

n∑

i=1

cki Zi −
m∑

j=1

θ j

n∑

i=1

cki X ji =
n∑

i=1

cki ε̃i , (84)

where k = 1, . . . ,m and i = 1, . . . , n. Now, define the estimator θ∗ = (θ∗
1 , . . . , θ∗

m)

as the solution of m linear equations:

m∑

j=1

θ∗
j

n∑

i=1

cki X ji =
n∑

i=1

cki Zi , k = 1, . . . ,m. (85)

After that we may choose appropriate functions {γki (·)} and introduce improved
estimators θ∗∗ = (θ∗∗

1 , . . . , θ∗∗
m ) as the solution of the following m linear equations:

m∑

j=1

θ∗∗
j

n∑

i=1

γki (θ
∗)X ji =

n∑

i=1

γki (θ
∗)Zi , k = 1, . . . ,m. (86)

Remark 16 Thus, in the case of the m-dimensional unknown parameter we call
the solutions of m linear equations whose coefficients are previously found explicit
statistics,which donot dependon anyunknownparameters or statistics, as the explicit
estimators.

Asymptotic Normality and Optimization of Estimators

It follows immediately from (84) and (85) that

m∑

j=1

(θ∗
j − θ j )

n∑

i=1

cki X ji =
n∑

i=1

cki ε̃i , k = 1, . . . ,m.

Using (86)wemayobtain similar representations for the differences {θ∗∗
j − θ j }. Thus,

we are ready to prove the asymptotic normality of estimators θ∗ = (θ∗
1 , . . . , θ∗

m) and
θ∗∗ = (θ∗∗

1 , . . . , θ∗∗
m ). Using assumption (13) introduce notation

γ j i,opt (θ) := (
a ji − b jiαi (θ)/βi (θ)

)
wi (θ). (87)

Theorem 13 Let (81) and (13) hold. Then under appropriate additional assump-
tions the estimators θ∗ = (θ∗

1 , . . . , θ∗
m) and θ∗∗ = (θ∗∗

1 , . . . , θ∗∗
m ) are asymptotically

normal with some asymptotic covariance matrices B({c ji }) and B({γ j i (θ)}) corre-
spondingly. Moreover, the matrices
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B({c ji }) − B({γ j i,opt (θ)}) and B({γ j i (θ)}) − B({γ j i,opt (θ)})

are nonnegatively definite.

Note, that numbers {cki } and functions {γki (·)} used in the definitions (85) and
(86) may depend on the number n of observations whereas the optimal functions
from (87) which we recommend to use in (86) does not depend on n.

The proof of Theorem13 together with detailed descriptions of the associated
asymptotic covariance matrices may be found in [10].

A partial Case

The following example is taken from [7, p. 77].

Example 7 Suppose that we have independent observations

Yi = V θ2(x2i − x3i/1.632)

1 + x1iθ1 + x2iθ2 + x3iθ3
+ εi , i = 1, . . . , n, (88)

where {x1i , x2i , x3i > 0} are given numbers. Our aim is to estimate the unknown
parameters θ1, θ2, θ3, V > 0.

Introduce new variables

θ4 := V θ2 and x4i = x2i − x3i/1.632, i = 1, . . . , n.

So, Eq. (88) turn into a particular case of Eq. (81) and we may find estimators
θ∗
1 , θ∗

2 , θ∗
3 , θ∗

4 using a version of the system (85) with four linear equations. After
that we need only to define

V ∗ := θ∗
4 θ∗

2 since θ4 = V θ2.

Themost knownpartial case ofEq. (81) is the famousMichaelis–Menten equation,
which will be considered in the following section.

10 Michaelis–Menten Equation

For some known si > 0 let

Yi = V si
K + si

+ εi = V

1 + K/si
+ εi , i = 1, 2, . . . . (89)

We want to estimate unknown parameters K > 0 and V > 0.

Construction of Explicit Estimators

Rewrite (89) in the following way:
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KYi/si + Yi = V + ε̃i with ε̃i = (1 + Kxi )εi . (90)

For any constants {ai } and {bi } such that

n∑

i=1

ai = 0 and
n∑

i=1

bi = 1

we have from (90)

K
n∑

i=1

aiYi/si +
n∑

i=1

aiYi = 0 +
n∑

i=1

ai ε̃i ,

K
n∑

i=1

biYi/si +
n∑

i=1

biYi = V · 1 +
n∑

i=1

bi ε̃i .

Ignoring the sum of the approximation errors in the equalities above, it is natural to
define K ∗ and V ∗ as solutions of equations:

K ∗
n∑

i=1

aiYi/si +
n∑

i=1

aiYi = 0, K ∗
n∑

i=1

biYi/si +
n∑

i=1

biYi = V ∗.

So, we have

K ∗ = −
n∑

i=1

aiYi
/ n∑

i=1

aiYi/si , V ∗ =
n∑

i=1

bi (1 + K ∗/si )Yi .

In particular, if bi = 1/n and ai = si − s̄n with s̄n = n−1 ∑n
i=1 si then

K ∗ =
n∑

i=1

(s̄n − si )Yi
/ n∑

i=1

(1 − s̄n/si )Yi , V ∗ = n−1
n∑

i=1

(Yi + K ∗Yi/si ).

Construction of Optimal Explicit Improved Estimators

It is evident that Eq. (89) is a partial case of (88). Hence we may apply Theorem13
and find optimal improved estimators K ∗∗ and V ∗∗.

Suppose that assumption (13) holds then rewrite it in the following form:

Eεi = 0 and 0 < var εi = σ 2/wi (K , V ) < ∞, i = 1, 2, . . . .

Introduce
γ ∗
i := wi (K

∗, V ∗)/(1 + K ∗/si )3, i = 1, 2, . . . .
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Define now estimators K ∗∗ and V ∗∗ as solutions of the following system with two
linear equations:

K ∗∗
n∑

i=1

γ ∗
i Yi/si +

n∑

i=1

γ ∗
i Yi = V ∗∗

n∑

i=1

γ ∗
i , (91)

K ∗∗
n∑

i=1

γ ∗
i Yi/s

2
i +

n∑

i=1

γ ∗
i Yi/si = V ∗∗

n∑

i=1

γ ∗
i /si . (92)

It was shown in [11] that two-dimensional estimator (K ∗∗, V ∗∗) is asymptotically
optimal in the sense of Theorem13.

Remark 17 If for some known {w0i > 0}

var εi = σ 2

w0i (1 + K/si )3
, i = 1, 2, . . . ,

then γ ∗
i = w0i for all i and we may find optimal estimators (K ∗∗, V ∗∗) as solutions

of Eqs. (91) and (92).
Note that it is the only casewhere one does not need to search for initial estimators.

Remark 18 Since1913 (see [12])Michaelis–Menten equation is popular in biochem-
istry where it describes rates of enzymatic reactions. The most interesting cases for
chemistry are var εi = σ 2

/
(1 + K/si )2 and var εi = σ 2.

On Explicit Estimators of Johansen and Lumry

The author’s interest to search for explicit estimators in Michaelis–Menten equation
is motivated by the following explicit estimators

Ṽ =
∑n

i=1 Y
2
i /s2i

∑n
i=1 Y

2
i − (∑n

i=1 Y
2
i /si

)2
∑n

i=1 Y
2
i /s2i

∑n
i=1 Yi − ∑n

i=1 Y
2
i /si

∑n
i=1 Yi/si

,

K̃ =
∑n

i=1 Y
2
i

∑n
i=1 Yi/si − ∑n

i=1 Y
2
i /si

∑n
i=1 Yi∑n

i=1 Y
2
i /s2i

∑n
i=1 Yi − ∑n

i=1 Y
2
i /si

∑n
i=1 Yi/si

which may be found, for example, in Chap.10 of [13]. There these estimators were
derived from some heuristic considerations if the following assumptions hold

Eεi = 0 and 0 < var εi = σ 2(1 + K/si )
2 < ∞, i = 1, 2, . . . . (93)

However, a more detailed theoretical investigation shows a series of shortcomings
of these estimators.
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Theorem 14 Let the values {si } be i.i.d. random variables with a nondegenerate
common distribution. Suppose that independent random variables {εi } have normal
distributions and (93) holds. Additionally, assume that sequences {si } and {εi } are
independent. Then

Ṽ
p−→ V + σ 2/V �= V .

So, Ṽ is inconsistent.
This statement is proven in [14].

11 Proofs

We need only to prove several assertions from Sect. 7.

Proof of Theorem11

Substituting (57) into (59) yields

δ∗ := θ∗
n − θ =

n∑

i=1

(xi − x̄n)δ̃i/s
2
n .

So, from (57) we obtain:

θ∗
n − θ

dn
=

n∑

i=1

cni δ̃i
σ̃

with cni = xi − x̄n
sn

. (94)

The following fact is well known.

Lemma 1 Let η1, η2, . . . be i.i.d. random variables with Eη1 = 0 and var η1 = 1.
Assume that for all n we are given the real numbers {cni } such that

n∑

i=1

c2ni = 1 and max
i≤n

c2ni → 0. (95)

Then
∑n

i=1 cniηi ⇒ N (0, 1),

Lemma1 with η1 = δ̃i/σ̃ and the representation (94) yield the convergence (62)
since the condition (95) follows from (61).

Representation for θ∗∗
n

Below in this section we suppose that all assumptions of Theorem12 are fulfilled.
Let

z2n :=
n∑

i=1

x2i , fi (t) = e−xi t − 1 + xi t. (96)
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It follows from (63), (66) and Lemma1 with ηi = δi/σ and cni = xi/zn that

ρ0 :=
n∑

i=1

xiδi/(σ zn) ⇒ N (0, 1). (97)

Now, by substituting (56) into (60) we obtain:

θ∗∗
n − θ = δ∗ +

n∑

i=1

xi (e
−xi δ∗

(1 + δi ) − 1)/z2n. (98)

Introduce notations:

ρ1 :=
n∑

i=1

xi fi (δ
∗), ρ2 :=

n∑

i=1

xi fi (δ
∗)δi , ρ3 :=

n∑

i=1

x2i δi . (99)

Now, we may rewrite (98) in the following way:

ρ∗∗ := θ∗∗
n − θ

Dn
= ρ0 + ρ1 + ρ2 − δ∗ρ3

σ zn
, (100)

since Dn = σ/zn by (65).

Auxiliary Lemmas

Introduce notations

λn := max
i≤n

|xi |, ρ4 :=
n∑

i=1

|xi |3, ρ5 :=
n∑

i=1

|xi |3|δi |.

Lemma 2 For all n ≥ n0

|ρ1| ≤ |δ∗|2eλn |δ∗|ρ4, |ρ2| ≤ |δ∗|2eλn |δ∗|ρ5. (101)

In addition
ρ4 ≤ 8λnsnzn + 4

√
nzn x̄

2
n , (102)

Eρ5 ≤ σρ4, E|ρ3| ≤ σλnzn, E|δ∗
n | ≤ σ/sn. (103)

Proof Using Taylor formula we easily obtain from the definition (96) that for all
i ≤ n

| fi (δ∗)| ≤ |xiδ∗|2e|xi δ∗|/2 ≤ x2i |δ∗|2eλn |δ∗|.
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This fact and definitions (99) give us inequalities (101).
It is easy to see that

xi = (xi − x̄n) + x̄n and |xi |3 ≤ 4|xi − x̄n|3 + 4|x̄n|3.

Hence

ρ4 ≤ 4
n∑

i=1

|xi − x̄n|3 + 4n|x̄n|3 ≤ 8λns
2
n + 4

√
nzn x̄

2
n . (104)

Here we used that |xi | ≤ λn for i ≤ n and that |x̄n| ≤ λn , nx̄2n ≤ z2n . We obtain (102)
from (104) since sn ≤ zn by (66).

Estimates (103) follow from the corresponding definitions and the following facts:

Eδ2i = 1, Eρ2
3 = σ 2

n∑

i=1

x4i ≤ σ 2λ2
nz

2
n, E|δ∗

n |2 = σ 2/s2n .

Lemma 3 If random variables {ζn} are such thatE|ζn| < ∞ for all sufficiently large
n then

ζn = Op(E|ζn|).

This fact follows from the Chebyshev’s inequality with the first moment.

Proof of Theorem12

It follows from (103) and Lemma3 that

ρ5 = Op(ρ4), ρ3 = Op(λnzn), δ∗
n = Op(1/sn). (105)

Since λn/sn → 0 by condition (63), we have that λn|δ∗| = Op(λn/sn) = op(1). This
fact together with (103) and (105) yield

ρ1 = Op(ρ4/s
2
n ), ρ2 = Op(ρ4/s

2
n ), δ∗ρ3 = Op(λnzn/sn).

Now, from these relationships and (100) we obtain:

zn(ρ
∗∗ − ρ0) = Op(ρ4/s

2
n + ρ4/s

2
n + λnzn/sn).

Thus, using (102) we have

ρ∗∗ − ρ0 = Op(λn/sn + √
nx̄2n/s

2
n + λn/sn)

p−→ 0. (106)

The latter convergence in (106) follows from the conditions (63). But (106) shows
that the random variables ρ∗∗ have the same limit as ρ0 in (97).

So, the desired convergence (65) is proved.
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Proof of Assertions from Example4

First of all, note that

s2n =
n∑

k=1

v2k −
( n∑

k=1

vk
)
/n for vk = 1 − xk = k−α. (107)

Next, for α > 1/2

n∑

k=1

v2k =
n∑

k=1

k−2α ∼ n1−2α/(1 − 2α),

n∑

k=1

vk =
n∑

k=1

k−α ∼ n1−2α/(1 − α).

Thus, by (107)

s2n ∼ n1−2α
( 1

1 − 2α
− 1

(1 − α)2

)
= α2

(1 − 2α)(1 − α)2
n1−2α → ∞.

By this fact we obtain (71) since x̄n → 1 and
∑n

i=1 x
2
i ∼ n by (70).

Proofs of Assertions from Examples5 and 6

It follows from (58) that

1 + δ1 = eβeδ̃1 and Eδ1 = eβEδ̃1 − 1.

Thus, we have from (64) that Eδ1 = 0 and hence

e−β = Eeδ̃1 and var δ1 = Ee2δ̃1
/(

Eeδ̃1
)2 − 1. (108)

So, if δ̃1 has a normal distribution with zero mean, then Eeλδ̃1 = eλ2σ̃ 2/2 and we
have (72) since

var δ1 = e2
2σ̃ 2/2/(eσ̃ 2/2)2 − 1 = eσ̃ 2 − 1 > σ̃ 2.

In the case when (73) is true we have that

Eeδ̃1 = cosh σ̃ , Ee2δ̃1 = cosh(2σ̃ ) = cosh2 σ̃ + sinh2 σ̃ .

These facts and (108) yield (74).
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On the Behavior of the Risk
of a LASSO-Type Estimator

Silvelyn Zwanzig and M. Rauf Ahmad

Abstract We introduce a LASSO-type estimator as a generalization of the classical
LASSO estimator for non-orthogonal design. The generalization, named the SVD-
LASSO, allows the design matrix to be of less than full rank.We assume fixed design
matrix and normality but otherwise the properties of the SVD-LASSO do not neces-
sarily rest on any strong conditions, particularly sparsity.We derive exact expressions
for the risk of the SVD-LASSO and compare it with that of the corresponding ridge
estimator.

Keywords Shrinkage estimation · High-dimensional inference · Linear models ·
SVD · MSE

1 Introduction

In the context of the theory of inference for the general linear model, the LASSO
estimator is one of the most frequently used alternatives to the classical least-squares
theory. Introduced by [1], the LASSO offers a regularized least-squares estimator,
thus setting itself in competition with the ridge estimator [2, 3]. Deviating from each
other on the basis of apparently a small difference, namely that the LASSO replaces
the L2 penalty of ridge estimation with a L1 penalty on the unknown parameter vec-
tor to be estimated, the two shrinkage estimation methods lead to seriously different
consequences. Probably the most attractive feature of LASSO is its simultaneous
estimation-and-selection property lacked by its competitors. This, however, is also
the most crucial aspect of LASSO that lends itself to critical evaluation.

Whereas ridge estimator is based on a simple algebraic solution to an ill-posed
problem (hence equivalent to Tikhonov regularization in the general framework of
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optimization theory), the LASSO estimator takes its strongest support from the bifur-
cation of the estimated parameter vector into an active set and the rest that is virtually
forced to vanish by the edges of the L1 ball. The active set thus simultaneously does
dimension reduction and makes LASSO applicable in high-dimensional settings.
On the other hand, whereas the ridge estimator is computationally easily amenable
using a few simple tools of linear algebra, theL1 penalty makes the LASSO problem
mathematically intractable at several important fronts.

The point that we are interested to focus in this manuscript pertains to the
aforementioned applicability of LASSO in high-dimensional or, more contextually
speaking, sparse settings. As witnessed from the literature, the treatment of LASSO
problem is almost invariably subjected to sparsity conditions under which the esti-
mator is computed and its properties are studied. The sparsity condition comes in
various ways with as many connotations, e.g., as sparsistency condition or restricted
eigenvalue condition [4, 5].

Intrigued by this special feature of the LASSO, we are interested to evaluate its
properties without particularly resorting much to the inevitability of the sparsity con-
dition. In this context, we begin in the present study by introducing a LASSO-type
estimator through an orthogonal transformation, assuming the design matrix to be
fixed. A more detailed treatment of original, nontransformed, LASSO, for both fixed
and random designs, is adjourned for further work.

2 Model, Assumptions and Some Basic Results

Consider the general linear model

Y = Xβ + ε, (1)

with design matrix Xn×p, response vector Yn×1, parameter vector β p×1 =
(β1, . . . , βp)

T and the error vector εn×1. The rows of X, Xi = (Xi1, . . . , Xip)
′,

i = 1, . . . , n, consist of p concomitant variables which can be categorial or con-
tinuous or mixed. We writeX = (X(1), . . . ,X(p)) withX( j) : n × 1 as j th column of
X, j = 1, . . . , p. With X fixed, we set the following assumptions on ε.

(A1) E(ε) = 0, Cov(ε) = I.

For inferential purposes, the model will be subjected to further assumptions in the
sequel. Given the objectives detailed in Sect. 1 above, we also have p � n with

r(X) = k ≤ n � p, (2)

where r(·) denotes the rank of a matrix. The most preferred way of estimating β

under A1, particularly without resorting to any distributional assumption, is through
the well-known least-squares estimation (LSE). The LS estimator is defined as
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β̂LSE ∈ arg min
β∈Rp

‖Y − Xβ‖2 ,

where ‖a‖2 = a′a is the squared L2-norm of a (see [6], Chaps. 2–3 for details). This
gives the solution set of the normal equations XTY = XTXβ as

{(
XTX

)−
XTY + Qz : z ∈ R

p
}

,

whereQ = Ip − (XTX)−(XTX) is the projection fromR
p to the orthogonal space of

L (XTX), and (·)− denotes a g-inverse [7]. Theminimum-variance estimator follows
then at z = 0 as

β̃ = (XTX)−XTY. (3)

In the classical case where p < n and X is of full rank so that r(XTX) = p, (·)−
is replaced with the regular inverse (·)−1 leading to the unique solution β̂LSE. Note
that, by the invariance of the projection P = X(XTX)−XT to g-inverse, the predicted
vector PY = Ŷ is always unique even when β̂LSE is not.

When XTX is ill-conditioned, e.g., under multicollinearity, with a special case
of X being not of full rank, [3] introduced ridge estimator, β̂Ridge. Given λ > 0, it
minimizes a penalized LS objective function,

β̂Ridge = arg min
β∈Rp

(‖Y − Xβ‖2 + λ ‖β‖2) ,

so that the normal equations XTY = (
XTX + λIp

)
β are solved for

β̂Ridge = (
XTX + λIp

)−1
XTY.

Ridge regression uses L2-norm penalty, ‖β‖2, and results into inflating the diagonal
of the ill-conditionedXTX by a spherical matrix to guarantee its regular inverse. The
ridge estimator reduces to β̃ for λ = 0. For some recent studies on ridge estimator,
see e.g., [8, 9]. As another alternative to the LSE, [1] introduced LASSO which uses
L1 norm of β, i.e., ‖β‖1 ([6], Chaps. 2–3), as penalty, so that

β̂LASSO ∈ arg min
β∈Rp

(‖Y − Xβ‖2 + λ‖β‖1
)
. (4)

The LASSO estimator is a solution to the Karush–Kuhn–Tucker (KKT) conditions

XTY − XTXβ = λω or XT
( j)Y − XT

( j)Xβ j = λω j , j = 1, . . . , p,

with ω j as defined below where sgn(·) denotes the sign function

ω j ∈
{
sgn(β j ) if β j �= 0
[−1, 1] if β j = 0.
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A unique feature of LASSO, and one of the foremost reasons of its use in practice,
is that it does model estimation and selection simultaneously, hence the name (least
absolute shrinkage and selection operator). This is a consequence of the L1 penalty
which forces several β̂ j ’s to be exactly zero. Thus, the target of LASSO is the set of
nonzero estimators, the so-called active set, defined as

S = {
j : ∣∣XT

( j)(Y − Xβ̂LASSO)
∣
∣ = λ

}
.

Now, let XS = (X( j)) j∈S denote the n × s design matrix corresponding to the set S
with its cardinality s = #(S) and the s × 1 vector sgn = sgn

(
XT

S (Y − Xβ̂LASSO)
)
,

where β̂LASSO, j = 0 for j /∈ S. When r(XS) = s, we can solve the KKT

XT
S (Y − XSβ̂LASSO,S) = λ sgn ⇒ β̂LASSO,S = (

XT
SXS

)−1
(XT

SY − λ sgn),

where β̂LASSO,S denotes the nonzero estimators corresponding to the set S, so that
β̂LASSO,−S = 0,where−S denotes the complementary set to S. Note that, the LASSO
estimator is not invariant, not even under an orthogonal transformation. In the next
section, we introduce a LASSO-type estimator using an orthogonal transformation,
i.e., a two-step estimator where the first step decomposes the design matrix through
its SVD and the second step consists of LASSO-estimation of the transformedmodel.
We study the properties of this estimator, particularly its risk, and compare it with
the corresponding ridge estimator.

3 The SVD-LASSO

Consider Model (1) with X fixed. Given a singular value decomposition of X

X = ULVT (5)

where U : n × n and V : p × p are composed of orthonormal eigenvectors of XXT

and XTX, respectively, so that UTU = In , VTV = Ip, and L = diag(λ1, . . . , λk, 0,
. . . , 0) is n × p diagonal matrix with λ2

1, . . . , λ
2
k as nonzero eigenvalues of XX

T (or
of XTX) or, correspondingly, λ1, . . . , λk as the singular values. Define

Z = UL, (6)

so that
ZTZ = LTL = diag(λ2

1, . . . , λ
2
k, 0, . . . , 0) (7)

is the p × p diagonal matrix. Moreover, writing Xβ = Zα, we have

ULVTβ = ULα ⇒ α = VTβ ⇒ β = Vα. (8)
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The transformed model can now be stated as

Y = Zα + ε, (9)

with the LASSO estimator of α defined as

α̂ ∈ argmin F(α) = argmin
(‖Y − Zα‖2 + λ‖α‖1

)
. (10)

The corresponding estimator under the transformation, heretofore called the SVD-
LASSO estimator, is obtained as β̂ = Vα̂. Following definition sums up both cases.

Definition 1 ConsiderModel (9) and the SVD in (5), whereβ = Vα. Then, α̂ in (10)
is the LASSO estimator and β̂ = Vα̂ is the corresponding SVD-LASSO estimator.

Recall that, for LS and Ridge estimators it holds, for any arbitrary orthogonal matrix
Q, that β̂LSE = Qα̂LSE and β̂Ridge = Qα̂Ridge, where

α̂LSE ∈ arg min
α∈Rp

‖Y − Zα‖2 (11)

α̂Ridge = arg min
α∈Rp

(‖Y − Zα‖2 + λ ‖α‖2) . (12)

But the same does not hold for LASSO. By Definition 1, it, however, does hold
for the proposed SVD-LASSO under the specific transformation given in (5), i.e.,
β̂SVD-LASSSO = Vα̂LASSO; see also Theorem 2. Note also that, α̂ = β̂ if V = I.

We begin with our main results by stating the following theorem on some general
identities that will be subsequently specialized. All proofs are in Appendix.

Theorem 1 Given Model (1). Let W be an n × n positive semi-definite matrix and
A be an arbitrary p × p matrix. Then, we have the following.

(a) The objective function

F(β) = (Y − Xβ)TW(Y − Xβ) + λ‖Aβ‖1 (13)

is convex and its sub-differential is the set

∂F(β) = {−2XTW(Y − Xβ) + λATω : ω ∈ L (Aβ)}, (14)

where L (b) = {ω : ω j = sgn(b j ) for b j �= 0, ω j ∈ [−1, 1] for b j = 0} with
{ω = (ω1, . . . , ωp)

T }; we can write

ω j (b) =
⎧
⎨

⎩

−1 if b j < 0
1 if b j > 0
a j if b j = 0, a j ∈ [−1, 1].

(15)

(b) For F(β) in (13), β̂ ∈ argmin F(β) ⇔ ∃ a j ∈ [−1, 1] such that
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XT
( j)WX( j)β̂ = XT

( j)WY − λ

2
AT ω̂ j , (16)

with ω̂ j = ω j (Aβ̂) as in (15).

The following theorem formally juxtaposes the estimators given in Definition 1.

Theorem 2 Let Models (1) and (9) hold with α = VTβ. Then α̂ = VT β̂ with

α̂ = argmin
{‖Y − Zα‖2 + λ‖α‖1

}
(17)

β̂ = argmin
{‖Y − Xβ‖2 + λ‖VTβ‖1

}
. (18)

Benefiting from the results of Theorem 1, we now develop basic identities for the
transformedmodel. For amore comprehensive treatment, we reduce all computations
at the column level of the design matrix, i.e., Z( j), j = 1, . . . , p. Consider then

ZT
( j)Zα̂ = ZT

( j)Y − λ

2
ω j (̂α), j = 1, . . . , p, (19)

where, for j = 1, . . . , k,

ZT
( j)Xβ = ZT

( j)Zα = α jλ
2
j and ZT

( j)Z( j) = λ2
j , (20)

so that, from (19), λ2
j α̂ j = ZT

( j)Y − (λ/2)ω j (̂α). Thus, for j = 1, . . . , k,

α̂ j > 0 ⇔ λ2
j α̂ j > 0 ⇒ ZT

( j)Y − λ/2 > 0 ⇒ ZT
( j)Y > λ/2.

Likewise, α̂ j < 0⇔ZT
( j)Y < −λ/2 and α̂ j = 0⇔ ‖ZT

( j)Y‖ ≤ λ/2.Moreover, from
(19) and Z = UL in (6), it follows for j = k + 1, . . . , p that Z( j) = 0 ⇒ 0 = 0 −
(λ/2)ω j (̂α) so that ω j (̂α) = 0 which implies α̂ j = 0. Now, define

z( j) = λ−2
j ZT

( j)Y, j = 1, . . . , k, (21)

with E(z( j)) = α j , Var(z( j)) = λ−2
j . Then we can write

α̂ j = z( j) − a j (λ)ω̂ j (̂α), (22)

where
a j (λ) = λ/2λ2

j . (23)

Using these computations, we define the following conditional moments.

μ j (λ) = E
(
z( j) | ∣∣z( j)

∣
∣ > a j (λ)

)
(24)

σ 2
j (λ) = Var

(
z( j) | ∣∣z( j)

∣∣ > a j (λ)
)

(25)

e j (λ) = E
(
z( j) | z( j) > a j (λ)

) − E
(
z( j) | z( j) < −a j (λ)

)
. (26)
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Further, in this context, we define the following probabilities

p+ j = P
(
z( j) > a( j)

)
, p− j = P

(
z( j) < −a( j)

)
, p0 j = P

(∣∣z( j)

∣∣ < a( j)
)
, (27)

which, alongwith (21)–(26)will help us prove severalmain resultswithout depending
on any serious distributional assumptions. In fact, this point needs to be emphasized
more clearly before we proceed further.What this essentiallymeans is that, (21)–(27)
will suffice for us to prove all but only one or two of the results in the sequel without
requiring normality of z( j) or any other similar distributional assumption. For this,
we begin with the following result which summarizes α̂ j as a special consequence
of Theorem 1.

Corollary 1 Given Theorem 1(b). Let W = In and A = Ip. Then (see 22)

α̂ j = z( j) − a j (λ)ω̂ j , j = 1, . . . , k (28)

= 0, j = k + 1, . . . , p. (29)

Corollary 1 gives component-wise regularized estimators for Model (9). Consid-
ering the rank condition in (2) and noting that r(X) = r(ZVT ) = r(Z) = r(ZTZ),
Corollary 1 implies a flexibility in the form and rank of ZTZ; e.g., we do not assume
ZTZ = I or any other structure that might limit the rank, hence the cardinality of the
active set of α j ’s.

The following theorem uses the conditions on α̂ j to establish conditions on the
bilinear form z( j) = ZT

( j)Y in terms of tuning parameter λ. These conditions will
drastically help us prove several results and study the risk of α̂ in Sect. 4. The proof
of Theorem 3 follows from the computations given above and is therefore omitted.

Theorem 3 Given Theorem 2 with α̂ = argmin F(α). Then, for j = 1, . . . , k,

α̂ j

⎧
⎨

⎩

> 0 ⇔ z( j) > a j

< 0 ⇔ z( j) < −a j

= 0 ⇔ |z( j)| < a j

(30)

with z( j) in (21) and a j in (23). Further, α̂ j = 0 for j = k + 1, . . . , p.

4 Computation of the Risk

In this section, we study mean-squared error of α̂ and compare it with that of ridge
estimator. First note that ‖α̂ − α‖2 = ‖β̂ − β‖2 by the orthogonality ofV sinceMSE
is invariant under the orthogonal transformation, i.e., MSE(̂α) = MSE(β̂). That is,
MSEs of estimated parameter vectors for Models (1) and (9) are same under the
transformation, even if the estimators themselves are not. Now, recall that,

MSE(θ̂) = E‖θ̂ − θ‖2 = [bias(θ̂)]2 + Var(θ̂) = ‖E(θ̂) − θ‖2 + E‖θ̂ − E(θ̂)‖2,



196 S. Zwanzig and M.R. Ahmad

for any estimator θ̂ of θ , where E(θ̂) − θ = bias(θ̂). In the following, Theorem 4
gives the moments of α̂ j under general conditions and Corollary 2 specializes these
results to the normal case and adds the corresponding expressions for MSE.

Theorem 4 Given (23)–(27) and α̂ as in Theorem 2 with α̂ = VT β̂. Then

E
(
α̂ j

) = μ j (λ) − a j (λ)
p+ j − p− j

1 − p0 j
j = 1, . . . , k, (31)

Var(̂α j ) = σ 2
j (λ) + 2a j (λ)

p+ j p− j

(1 − p0 j )2
{
2a j (λ) − e j (λ)

}
j = 1, . . . , k. (32)

[bias(̂α)]2 =
k∑

j=1

[
bias(̂α j )

]2 +
p∑

j=k+1

α2
j (33)

MSE(β̂) = MSE(̂α) =
k∑

j=1

E
(
α̂ j − α j

)2 +
p∑

j=k+1

α2
j , (34)

with E
(
α̂ j − α j

)2 = Var(̂α j ) + [
bias(̂α j )

]2
and bias(̂α j ) = E

(
α̂ j
) − α j .

Corollary 2 Given Theorem 4 and let the normality assumption holds. Then

E
(
α̂ j
) = α j (1 − p0 j ) + λ−2

j d j − a j (λ)
(
p+ j − p− j

)
j = 1, . . . , k, (35)

Var(̂α j ) = 1

λ2
j

[
1 − p0 j + v j + 1

1 − p0 j
d2
j + 2λ

p+ j p− j

1 − p0 j

(
a j (λ) − e j

)]
(36)

[bias(̂α)]2 =
k∑

j=1

(
α j p0 j − λ−2

j d j + a j (λ)(p+ j − p− j )
)

+
p∑

j=k+1

α2
j (37)

MSE(̂α) =
k∑

j=1

(
Var(̂α j ) + [

bias(̂α j )
]2) +

p∑

j=k+1

α2
j (38)

with bias(̂α j ) = α j p0 j + a j (λ)(p+ j − p− j ) − λ−2
j d j . Further, d j = d j (λ, λ j , α),

ν j = d j (λ, λ j , α) and e j = d j (λ, λ j , α) are defined as following.

d j = ϕ(α j ,λ
−2
j )

(
a j (λ)

) − ϕ(α j ,λ
−2
j )

(−a j (λ)
)

(39)

ν j = (
a j (λ) − α j

)
ϕ(α j ,λ

−2
j )

(
a j (λ)

) + (
a j (λ) + α j

)
ϕ(α j ,λ

−2
j )

(−a j (λ)
)

(40)

e j = 1

λ2
j

(
1

p+, j
ϕ(α j ,λ

−2
j )

(
a j (λ)

) − 1

p−, j
ϕ(α j ,λ

−2
j )

(−a j (λ)
))

. (41)

Before we evaluate the risk of LASSO estimator, we develop the same for ridge
estimator in order to compare the two later. For this, consider the model

(
Y
0

)
=

(
X√
λB

)
β +

(
ε

δ

)
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with B and δ of appropriate order so that the LSE criterion gives

∥∥∥∥

(
Y
0

)
−
(

X√
λB

)
β

∥∥∥∥

2

= ‖Y − Xβ‖2 + λ ‖0 − Bβ‖2

and we can write

β̂Ridge =
((

X√
λB

)T ( X√
λB

))− (
X√
λB

)T (
Y
0

)
= (XTX + λBTB)−XTY (42)

and Xβ̂Ridge = X(XTX + λBTB)−XTY, where β̂Ridge and Xβ̂Ridge reduce to the
usual ridge estimation and prediction when B = I, the case that will be followed
in the sequel. Further, in this case

Xβ̂Ridge = X(XTX + λIp)−1XTY = Z(ZTZ + λVVT )−1ZTY = Zα̂Ridge.

Note that, the MSE of ridge estimator is invariant under any arbitrary orthogonal
transformation, i.e.,MSE(̂αRidge) =MSE(β̂Ridge). The following theorem summarizes
the results for ridge estimator.

Theorem 5 Let α̂Ridge = VT β̂Ridge be the ridge estimator where β̂Ridge is as defined
in (42) with B = I. Then

E
(
α̂Ridge, j

) = λ2
j

λ2
j + λ

α j j = 1, . . . , k, (43)

= 0 j = k + 1, . . . , p.

[
bias

(
α̂Ridge

)]2 =
k∑

j=1

(
α jλ

λ2
j + λ

)2

+
p∑

j=k+1

α2
j (44)

Var
(
α̂Ridge

) =
k∑

j=1

(
λ j

λ2
j + λ

)2

(45)

MSE
(
α̂Ridge

) =
k∑

j=1

⎡

⎣

(
α jλ

λ2
j + λ

)2

+
(

λ j

λ2
j + λ

)2
⎤

⎦ +
p∑

j=k+1

α2
j . (46)

Further, the limiting values of MSE of α̂Ridge are given as

lim
λ→0

MSE(̂αRidge) =
k∑

j=1

1

λ2
j

+
p∑

j=k+1

α2
j (47)

lim
λ→∞MSE(̂αRidge) =

p∑

j=1

α2
j . (48)



198 S. Zwanzig and M.R. Ahmad

From the preceding computations, it is obvious that the bias and variance of LASSO
estimator α̂ are functions of both the true parameter, α, and the regularization para-
meter, λ, so that the behavior of the risk must be studied in terms of both arguments.
The following theorem summarizes important properties of the risk of α̂. Note that,
like Corollary 2, Theorem 6 also requires normality assumption.

Theorem 6 Let ε ∼ Nn(0, I). The following holds for bias and MSE of α̂.

I. For every λ > 0, bias(̂α j ) = Eα(̂α j ) − α j is an odd function with respect to α j ,
i.e., bias(α j ) = −bias(−α̂ j ), j = 1, . . . , k.

II. For everyλ > 0,
[
bias(̂α j )

]2
is amonotonically increasing functionwith respect

to α j , j = 1, . . . , k.
III. For every α > 0, [bias(̂α)]2 = ∑k

j=1[bias(̂α j )]2 is a monotonically increasing
in λ.

IV. For the variance as function of λwith true parameter vanishing, i.e., Var0(λ) :=∑k
j=1 Var(̂α j ) for α j = 0, j = 1, . . . , k, we have the following: ∃ λ0 > 0 such

that

d

dλ
Var0(λ) =

⎧
⎨

⎩

> 0 for λ < λ0

= 0 for λ = λ0

< 0 for λ > λ0.

(49)

V. For every α, we have the following limits of MSE(̂α).

lim
λ→0

MSE(̂α) =
k∑

j=1

1

λ2
j

+
p∑

j=k+1

α2
j (50)

lim
λ→∞MSE(̂α) =

p∑

j=1

α2
j . (51)

Discussion, Comparisons, and Conclusions

This paper presents a LASSO-type estimator using an orthogonal transformation
through the SVD of the design matrix. To study its risk behavior, the mean-squared
error of the proposed estimator is computed, its properties are theoretically evaluated,
and compared with the risk of corresponding ridge estimator.

Whereas the MSE of LASSO and ridge estimators approach the same values in
the limit (Theorem 6), the differential features of the two estimators need a comment
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Fig. 1 Effect of tuning
parameter λ on the risk of
Ridge estimator
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or two. First, as already mentioned around Definition 1, the ridge estimator is invari-
ant under any arbitrary orthogonal transformation, whereas the proposed LASSO
estimator depends on the special orthogonal transformation under the SVD of the
design matrix as given in (5).

Further, concerning the risk of two estimators as function of the tuning parameter,
we first notice that the variance of the ridge estimator does not depend on the true
parameter. We then observe that the bias of ridge estimator increases with λ whereas
the variance decreases. We also notice an improvement in the estimator for small λ
values. The bias for LASSO estimator also increases, but the variance has opposite
trend for small true parameter values (first increasing then decreasing), where it
improves for large λ values. Moreover, its variance increases when considered with
a combination of small λ values and small values of the true parameter α (See also
Figs. 1 and 2).

AsymptoticMSE for two extreme cases is also studied.When λ → 0, the variance
reduces to be inversely proportional to the nonzero eigenvalues, λ j , of X′X where
bias becomes directly proportional to the squared true parameters, so that it vanishes
when the true parameter is zero. On the other hand, for λ → ∞, the variance vanishes
completely and the entire MSE is formulated by the bias component, now ‖α‖2.
Althoughwe have not dedicatedmuch space to the case of LSE estimator, particularly
its comparison to the proposed LASSO estimator, but it can be verified that the results
reduce to those of LSE, β̃, under respective conditions. For example, the MSE of
LASSO, Ridge and LSE β̃ are all same for λ = 0.
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Fig. 2 Effect of tuning parameter λ on the risk of LASSO estimator
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Appendix

4.1 Two Basic Results

We begin by stating two fundamental results that are essentially needed to prove the
main theorems. The first of these (Lemma 1) is on the covariance between a continu-
ous random variable and a discrete random variable with two-point distribution. The
second result (Theorem 7) provides mean and variance of a truncated distribution.
For basic introduction to truncated distributions, see [10].

Lemma 1 Let X be a continuous random variables with E(X) = μ. Let Y be a
discrete random variable following a two-point distribution with support {−1, 1},
where P(Y = 1) = p. Then

Cov(X, Y ) = 2p(1 − p)[E(X | Y = 1) − E(X | Y = −1)]. (52)

Proof First note that E(Y ) = 2p − 1. Now, by definition,

Cov(X,Y ) = E(X − μ)(Y − 2p + 1) = E[Y (X − μ)]
= E[Y (X − μ) | Y = −1](1 − p) + E[(Y (X − μ) | Y = 1)]p
= (1 − 2p)μ − E(X | Y = −1)(1 − p) + E(X | Y = 1)p.

Since μ = EX = E(X | Y = −1)(1 − p) + E(X | Y = 1)p, it follows that

Cov(X,Y ) = (1 − 2p)E(X | Y = −1)(1 − p) + (1 − 2p)E(X | Y = 1)p

= 2p(1 − p)[E(X | Y = 1) − E(X | Y = −1)].
�

Theorem 7 Let X ∼ N (μ, σ 2) with its pdf ϕ(μ,σ 2)(x). Let A = {X | |X | > a}, a ∈
R. The moments of the truncated distribution of X given A are

μ(λ) = E(X |A) = μ + σ 2

P(|X | > a)

[
ϕ(μ,σ 2)(a) − ϕ(μ,σ 2)(−a)

]

σ 2(λ) = Var(X |A) = σ 2 + σ 2

P(|X | > a)

[
(a − μ)ϕ(μ,σ 2)(a) + (a + μ)ϕ(μ,σ 2)(−a)

]

− (μ − μA)
2.

Further, the expected value for one-sided conditions is given as
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E(X | X > a) = μ + σ 2

P(X > a)

[
ϕ(μ,σ 2)(a)

]
(53)

E(X | X < −a) = μ − σ 2

P(X < −a)

[
ϕ(μ,σ 2)(−a)

]
. (54)

Proof For X ∼ N (μ, σ 2) with density ϕ(μ,σ 2), we have

d

dx
ϕ(μ,σ 2)(x) = − x − μ

σ 2
ϕ(μ,σ 2)(x).

Now, for A = {X < −a ∧ X > a}, we use
∫ −a

−∞
d

dx
ϕ(μ,σ 2)(x)dx = ϕ(μ,σ 2)(−a) and

∫ ∞

a

d

dx
ϕ(μ,σ 2)(x)dx = −ϕ(μ,σ 2)(a),

and obtain

E (X IA(X)) =
∫

A
xϕ(μ,σ 2)(x)dx = σ 2

[
ϕ(μ,σ 2)(a) − ϕ(μ,σ 2)(−a)

] + μP(A)

which gives

E(X | |X | > a) = μ + σ 2

P(|X | > a)

[
ϕ(μ,σ 2)(a) − ϕ(μ,σ 2)(−a)

]
. (55)

Equations (53) and (54) follow analogously. Now, using

d2

dx
ϕ(μ,σ 2)(x) = 1

σ 4

(
(x − μ)2 − σ 2

)
ϕ(μ,σ 2)(x)

the variance of truncated normal distribution can be derived as

Var(X | X ∈ A) = 1

P(A)

∫
(x − μ)2ϕ(μ,σ 2)(x)IA(x)dx − (μ − μA)2 = V1 − (μ − μA)2.

In particular, for A = {|X | > a}, the integral part, V1, follows as

V1 = 1

P(A)

(
σ 4

∫

A

d2

dx
ϕ(μ,σ 2)(x)dx + σ 2P(A)

)

= σ 2 + σ 4

P(|X | > a)

(∫ −a

−∞
d2

dx
ϕ(μ,σ 2)(x)dx +

∫ ∞

a

d2

dx
ϕ(μ,σ 2)(x)dx

)

= σ 2 + σ 4

P(|X | > a)

(
d

dx
ϕ(μ,σ 2)(−a) − d

dx
ϕ(μ,σ 2)(a)

)

= σ 2 + σ 2

P(|X | > a)

[
(a − μ)ϕ(μ,σ 2)(a) + (a + μ)ϕ(μ,σ 2)(−a)

]
.

�
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Proof of Theorem 1

Write F(β) = F1(β) + F2(β), where F1 is quadratic form and F2 is L1 norm. For
(a), the convexity of F follows from that of F1 and F2 [11, Proposition B.24(d),
p. 732]. Now, ∂F1(β) = −2XTW(Y − Xβ) [7, Chap. 15]. For the sub-differential
of F2(β), first note that [11, Proposition B.24(a), p. 732] ∂F2(β) = AT ∂F2(β).
Then, with DomF2(β) ∈ R

p, ∂F2(β) = ω ∈ L (Aβ), where ω = (ω1, . . . , ωp)
T is

the sign function [12, p. 354]withω j = sgn(b j ) if b j �= 0 andω j ∈ [−1, 1] if b j = 0.
Combining the two components gives ∂F(β) as in (14).

For (b), following the theory of convex analysis, the KKT conditions

−2〈X( j),Y − Xβ〉W + λω j , j = 1, . . . , p,

provide necessary and sufficient condition for the solution of F(β), where ω j =
ω j (β) is defined above and 〈·, ·〉 denotes the inner product. Slightly rearranged, the
solution can be written as in (16). �

Proof of Theorem 2

The proof holds easily for both α̂ to β̂ or vice versa where the later is easier. In this
case, first the proof for β̂ follows from that of Theorem 1(a) using A = VT . This
givesXTWXβ = XTWY − (λ/2)Vω. By the SVD in (5),X = ULVT , the result for
α̂ follows for X = ZVT with Z = UL and VTβ = α. �

Proof of Corollary 1

For givenW and A, with V orthonormal, Theorem 1(b) gives ZTZα̂ = ZTY − λ
2 ω̂.

The result then follows from (20). �

Proof of Theorem 4

For (31), consider E (̂α j ) = E
(
α̂ j | α̂ j �= 0

)
(1 − p0 j ) with (see 22)

E
(
α̂ j | α̂ j �= 0

) = E
(
z( j) − a j (λ)ω̂ j | α̂ j �= 0

)
, j = 1, . . . , k.

The conditional distribution of ω̂ j is a two-point distribution with support {−1, 1},
so that, for j = 1, . . . , k,
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P
(
ω̂ j=1 | α̂ j �= 0

)=P
(
α̂ j > 0

)

P
(
α̂ j �= 0

) = p+ j

1 − p0 j
⇒ E

(
ω̂ j | α̂ j �= 0

) = p+ j − p− j

1 − p0 j
,

which gives (31), where p+ j , p− j and p0 j are as defined in (27). For (32), we note
that

Var(̂α j ) = Var
(
α̂ j | α̂ j �= 0

)
(1 − p0 j ) + Var

(
α̂ j | α̂ j = 0

)
p0 j

= Var
(
α̂ j | α̂ j �= 0

)
(1 − p0 j )

where

Var
(
α̂ j | α̂ j �= 0

) = Var
(
z( j) − a j (λ)ω̂ j | α̂ j �= 0

) = V1 + V2 − 2C12

with

V1 = Var(z( j) | α̂ j �= 0) = Var(z( j) | ∣∣z( j)

∣∣ > a j (λ))

V2 = a j (λ)2Var(ω̂ j | α̂ j �= 0)

C12 = a j (λ)Cov(z( j), ω̂ j | α̂ j �= 0).

Applying Lemma 1 with p = p+ j/(1 − p0 j ),

V2 = 4a j (λ)2
p+ j p− j

(1 − p0 j )2
and C12 = 2a j (λ)

p+ j p− j

(1 − p0 j )2
e j

where e j = E(z( j) | α̂ j �= 0, ω j = 1) − E(z( j) | α̂ j �= 0, ω j = −1) = e j1 − e j2.
Since α̂ j �= 0, ω j = 1 ⇔ α̂ j > 0 and α̂ j �= 0, ω j = −1 ⇔ α̂ j < 0, therefore

e j1 = E
(
z( j) | α̂ j > 0

) = E
(
z( j) | z( j) > a j (λ)

)

and similarly e j2 = E(z( j) | α̂ j < 0) = E(z( j) | z( j) < −a j (λ)), and e j is as given in
(26). This gives C12. Combining the results, we get (32) for j = 1, . . . , k. �

Proof of Corollary 2

We specialize the proof of Theorem 4 to the normal case. First, using truncated
moments from Theorem 7, we get

E
(
z( j) | α̂ j �= 0

) = E
(
z( j) | |z( j)| > a j (λ)

) = α j + 1

λ2
j (1 − p0 j )

d j = μ j (λ),

with d j as in (39). Substitution in (31) gives (35). For variance, consider V1, V2, C12

in the proof of Theorem 4 and note, using again Theorem 7, that
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V1 = Var
(
z( j) | ∣∣z( j)

∣
∣ > a j (λ)

) = 1

λ2
j

[

1 + 1

1 − p0 j
v j − 1

λ2
j (1 − p0 j )2

d2
j

]

,

with v j as in (40). V2 andC12 follow similarly. Substitution in (25) gives (36). Finally,
MSE(̂α) = E‖α̂ − α‖2 = ∑k

j=1 E(̂α j − α j )
2 + ∑p

j=k+1 α2
j with E(̂α j − α j )

2 sim-
plifying to the expression given in Theorem 4. �

Proof of Theorem 6

Given z( j) ∼ N (α j , λ
−2
j ) and d j , v j , e j as in (39)–(41). For simplicity, we may omit

index j and write α. Further, we shall assume λ j = 1 ∀ j and refer to it as the special
case below. In this case, z( j) ∼ N (α, 1), a j (λ) = λ/2, d j = d(λ, 1, α) = ϕ(c2) −
ϕ(c1), e j = e(λ, 1, α) = ϕ(c2)/p+ − ϕ(c1)/p−, v j = v(λ, 1, α) = −c2
ϕ(c2) + c1ϕ(c1), where c1 = α + λ/2, c2 = α − λ/2. Further, p0 (λ) = Φ(c1) −
Φ(c2), p+(λ) = Φ(c2), p−(λ) = 1 − Φ(c1) and d(λ) = ϕ(c2) − ϕ(c1). Here, ϕ(·)
and Φ(·) denote, respectively, the density and distribution functions of the standard
normal distribution.

To begin with the proofs, note that

p0 (−α) = Φ(−c1) − Φ(−c2) = p0(α), p+(−α) = 1 − Φ(c2) = p−(α);

similarly, p−(−α) = p+(α) and d(α) = −d(−α). This proves I. Now consider (37).
For II, we first write

bias
(
α j
) = α j p0 j + a j (λ)

(
p+, j − p− j

) − d j/λ
2
j , j = 1, . . . , k.

Considering the expressions in I now as functions of α, we have

d[d(α)]
dα

= −c1ϕ(c1) + c2ϕ(c2),
d[p0(α)]

dα
= ϕ(c2) − ϕ(c1) = −d(α),

similarly d[p−(α)]/dα = −ϕ(c1), so that d[bias(α)]/dα = p0(α) > 0. To prove III,
the bias, considered as function of λ, reduces to

bias(λ) = αp0 (λ) + λ
[
p+ (λ) − p− (λ)

]
/2 − d (λ)

which, using p0 + p+ + p− = 1, can be rewritten as

bias(λ) = c2 p0(λ) + λ/2 − [
d(λ) + λp−(λ)

]
.

With d[Φ(c1)]/dλ = ϕ(c1)/2, d[ϕ(c1)]/dλ = −c1ϕ(c1)/2, similarly for c2, we get
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d

dλ
p0 (λ) = 1

2
ϕ(c1) + 1

2
ϕ(c2),

d

dλ
p− (λ) = −1

2
ϕ(c1),

so that d[d(λ) + λp−(λ)]/dλ = c2[ϕ(c2) + ϕ(c1)]/2 + p−(λ). It eventually follows
that d[bias(λ])/dλ = (p+ − p−)/2 > 0. Note that, with α > 0 w.o.l.o.g., p+ > p−.

For IV, consider the variance as function of λ, i.e.,

Var0(λ) = 1 − p0(λ) + λϕ

(
λ

2

)
+ λ2

2
p+(λ).

Then, using the computations above, it follows that d[p0(λ)]/dλ = ϕ(λ/2) and
d[p+(λ)]/dλ = − 1

2ϕ(λ/2), so that

d

dλ
Var0(λ) = −λ2

4
ϕ

(
λ

2

)
+ λ

(
1 − Φ

(
λ

2

))
− λ2

4
ϕ

(
λ

2

)

= −λ2

2
ϕ

(
λ

2

)
+ λΦ

(
−λ

2

)
.

It can then be verified that, d[Var0(λ)]/dλ � 0 for λ � 1.5036, respectively.
Finally V, where we evaluate the MSE for λ → 0 and λ → ∞. For the first case,

it can be verified that both p−(λ) and p+(λ) converge to 1/2, making p0(λ) → 0.
Further, φ(c1) = φ(c2) and d(λ), e(λ), ν(λ) and a j (λ) all vanish, so that bias(̂α j )
→ α2

j or bias(̂α) → ∑p
j=k+1 α2

j , which vanish for α j = 0. Using the same set up for

variance, we get var(̂α j ) → 1/λ2
j or var(̂α) → ∑k

j=1 1/λ
2
j which reduces to k for

λ j = 1 ∀ j . Combined, this gives (50).
The computations are relatively more involved for the case λ → ∞, particularly

for variance. First, a j (λ) → ∞ and φ(∞) = 0. Moreover, d(λ) and ν(λ) vanish
whereas e(λ), by an application of L’Hospital rule, simplifies to −2α j and thus
vanish if α = 0. Then, the first part of bias converges to α j and the rest vanish so that
bias(̂α)→∑p

j=k+1 α2
j . For variance, we particularly need to take care of the last two

components. Using Bernstein’s inequality [13], P(|X − μ| ≥ τ) ≤ 2 exp(−τ 2/2σ 2)

for X ∼ N (μ, σ 2), it follows, after some simplification, that

d2

1 − p0 j
≤ exp

(
(a(λ) + |α|)2

2/λ2

)
ϕ(α,λ2−2)(a(λ))2,

or exp({λ/2 + |α j |2}/2)ϕ(α,1)(λ/2)2 for the special case, and thus vanishes. The last
component likewise vanishes using e(λ) above.Combining all components, it implies
that the variance vanishes for λ → ∞. This gives (51). �
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