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Preface

This book has a traditional yet modern approach to teaching statistics. When
combined with my newly developed system for collaborate learning, it is well suited
for modern teaching formats like flipped classrooms, but it also serves well if the
lecturer prefers a more traditional approach.

My system for collaborative learning can be downloaded from the book’s
website. The files are available for lecturers only and contain supplementary
problems with separate solution files for each chapter. The system is particularly
targeted at the average student, and my own students like it a lot. Many of them
report back that it is great fun!

I strongly believe that the best way to learn statistics is by doing. As a
consequence of this, the main body of each chapter is shorter than what has been
common. The idea is to let students work with exercises as soon as possible, and
most of my efforts have been invested in developing interesting, relevant, and to
some extent challenging exercises. The exercises are divided into two parts. The
exercises in the first part of each chapter are straightforward. From my experience
even excellent students struggle a lot when they study new material, and to quickly
gain momentum it is necessary that the first few exercises are very simple. Only
when the basic framework is in place is it time to move on to more interesting
problems.

As a motivation for further studies, students need to see interesting applications
from the start. Throughout the book I have picked bits and pieces of theory that
are usually taught on a much higher level and organized them such that they are
suitable for beginners. These exercises are all equipped with a short label providing
lecturers with hints of what type of theory/issues they discuss. My approach is
much appreciated by students, who at an early stage see that statistics is essential to
any serious study of economics. In the beginning of the book there are only a few
such problems, but as we learn more there is more room for relevant applications.
Some of these exercises are challenging, but complexity was never a goal. Nontrivial
problems tend to have nontrivial solutions, but my intent is to present theory in the
simplest possible way. The labeled exercises are not always difficult. Indeed, some
of the exercises that have given me the most pleasure have a very simple solution.

My book is one of the very few that makes some use of nonlinear theory, in
particular theory related to logarithms and exponential functions. I have often heard
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that such theory should be avoided since it is too difficult for students, but from my
experience this is not true. Why at all do we teach beginner courses in mathematics,
if none of this theory is to be used later? To keep things simple, however, I have
mainly included computations that would have been considered straightforward
when encountered in a beginner course in mathematics.

Many textbooks now focus on software applications. Statistical software is an
indispensable tool once the theory is understood. Very often, however, the users do
not properly understand the limitations of the theory, and misinterpretations are all
too common. The problem is increasing at all levels in science. I refer to and use
software applications only sparingly throughout the book. To hedge various forms
of malpractice, I discuss several pitfalls I have come across, in the exercises.

A lot of people have contributed to this book, and I will mention only a few. First
of all I wish to thank all my former students at Norwegian School of Economics.
These students have been my fortune in life, and few of the exercises in this book
would ever materialized had it not been for such abundance of ability and talent.
Second I should thank Per Oscar Andersen for his never ending encouragement for
the Norwegian edition and Arve Michaelsen for endless hours of typesetting and
preparation of figures. Bernt Øksendal deserves a special thanks for teaching me
probability theory and for being a constant source of inspiration. Jostein Lillestøl
deserves a special thanks for teaching me statistics, and Jostein’s brilliant textbook
in statistics has no doubt served as a template for my own presentation. Jonas
Andersson deserves a special thanks for the many times he clarified points I did
not fully understand.

Last I wish to thank the editorial staff at Springer for a very positive, swift, and
professional handling of my manuscript.

Bergen, Norway Jan Ubøe
October 2017
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Abstract

In this chapter we will look at very basic statistical concepts. The material is
facilitated to make it available to a wide audience and does not require any
prerequisites. For some readers this will mean that they are already familiar
with the contents and it may be sufficient to browse quickly through the chapter
before continuing to the next chapters. Otherwise it can be necessary to study the
material in detail, and it might be wise to invest some time on the exercises.

1.1 Population and Samples

Most statistical surveys start out with a collection of numbers in some form. We
can imagine that we collect data for a poll, or that we collect data to examine the
earnings of a company, the possibilities are endless. Such collection of data can,
however, be done in two principally different ways.

One option is that we collect all the relevant information. In a poll this means
that we ask everybody, or that we examine every single earning of a company. The
task for a statistician is then to find a good way to present the numbers to make the
contents easy to interpret for everyone.

In many cases it may not be practical or even possible to collect all the
information. In such cases we must settle with a sample. In a poll this means that
we only ask a part of the population, and in accounting we might only check some
randomly selected earnings. This puts the statistician in a different position. He or
she must examine the results, but in addition judge if the effects within the sample
can be generalized to the rest of the population. How much confidence can we have
in the effects seen in the sample? The problem is that elements in the sample may
differ from the rest of the population in a systematic way. We call such differences
selection bias.

© Springer International Publishing AG 2017
J. Ubøe, Introductory Statistics for Business and Economics, Springer Texts
in Business and Economics, https://doi.org/10.1007/978-3-319-70936-9_1

1

https://doi.org/10.1007/978-3-319-70936-9_1


2 1 Descriptive Statistics

A B C D E

Fractions

Fig. 1.1 A bar chart

Fractions

A B C D E Others

Fig. 1.2 A pie chart

Example 1.1 During an election a total of 2;521;879 votes were cast. Party A
received 612;632 votes, party B received 534;852 votes, party C received 369;236

votes, party D received 316;456 votes, and party E received 312;839 votes. These
numbers are facts. How can we present them in a transparent fashion?

A common solution is to transfer the numbers into percentages, i.e.

A 24:3% B 21:3% C 14:6% D 12:5% E 12:4%

A graphical display in terms of a bar chart gives a better overview, see Fig. 1.1.
When we have sorted the numbers such that the biggest number comes first with

the other numbers following in descending order, it is usual to call the graph a Pareto
chart. This makes the information easy to read and is often a good idea. Alternatively
we may display the numbers in terms of a pie chart, see Fig. 1.2.
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In a pie chart the size of the numbers is represented by the area of the pie. That
gives a visual impression of the numbers. We can, e.g., see that parties A and B did
not receive a majority of the votes together.

We have seen that it is possible to display the same information in several
different ways. There is, however, no reason to question the numbers. The facts
are undisputed and give the exact outcome of the election. In this case there is no
selection bias.

Example 1.2 In a poll we have asked 1000 randomly chosen people what party they
would prefer if there was an election today. 203 would have voted A, 201 B, 160 C,
134 D, and 120 E.

It is of course possible to display these numbers as in Example 1.1, but there is
a principal difference. What would have happened if we asked somebody else? To
what extent does the poll generalize to the whole population? These are important
questions for a statistician. In a poll we run the risk of selection bias, and a
statistician must be able to judge the size of this bias. The answers to these questions
will have to wait, but we will return to them later in the book.

In a statistical survey we use the word population to denote all possible
alternatives that could have been examined, while the word sample is used to
signify only those alternatives that were in fact examined. In a poll the population
is typically all the people with the right to vote, while the sample is those people
who were in fact asked about their opinion. Since it is quite important to distinguish
the two notions, we will throughout the book use the uppercase letter N when we
talk about the whole population, while the lowercase letter n refers to the number of
observations in a sample.

In most applications we only have information on the sample, but wish to make
decisions based on the properties of the population. In the book we will see how
properties of the sample can be used to compute what properties we are likely to
find in the population. This is a central topic in statistics and has a special name:
statistical inference. Statistical inference is central to any decision process. We have
to ask if the probability is sufficiently large to make a decision. The process prior to
a decision can be displayed as shown in Fig. 1.3.

It is important to keep in mind that the sample should represent the population.
The selection needs to be random, and we should seek to avoid that the members
of the sample influence each other. We should, for example, not ask members of
a protest march as those people may have opinions that are not typical for the
population.

When we ask questions, it is important that formulations are neutral. In many
situations it may be important that the members of the sample are anonymous. If we
forget to take such matters into account, chances are that the answers are affected
by the way we carried out the survey.

When we have collected all the data, we need to analyze them. We can rarely be
sure of what the population means. Sometimes the tendency is so weak that we are
unable to draw any conclusions. In other cases tendencies are so strong that they
probably apply to the population.
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Fig. 1.3 The process prior to a decision

When the statistical analysis is ready, we have to determine if the basis is strong
enough to make a decision. This is something that should be discussed prior to the
survey. When we are planning a survey, we should think through if we are likely to
end up with a clear conclusion. If it later becomes clear that our data are insufficient,
we are not free to simply repeat the survey. If we repeat a survey sufficiently many
times, we are likely to obtain results supporting quite divergent views. In such cases
it is necessary to consider all examinations in conjunction, and we are not free to
pick out a single observation set supporting a particular point of view. Violations of
this principle are considered to be scientific fraud, but mistakes are common among
people with insufficient knowledge of statistics. It is a serious problem that people
unintentionally misinterpret statistical findings, and later in the book we will discuss
several common pitfalls.

1.2 TheMedian

When we have collected data, it is important to present the findings in a transparent
fashion. Let us assume that we have collected data on the return of 7 different stocks.
The numbers we collected were as follows:
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2:7%; 9:2%; 11:4%; 4:6%; 5:2%; 5:6%; �2:4%:

This gives a rather messy picture of the data. The picture becomes more clear if we
sort the numbers in ascending order:

�2:4%; 2:7%; 3:6%; 5:2%; 5:6%; 9:2%; 11:4%:

We are now able to conclude that the returns varied from �2:4% to 11:4%. We
can proceed in this way to describe the extremes in the data. The extremes do not
necessarily give a good picture of the entire dataset. It can very well happen that the
extremes are somewhat special and not really typical for the data. We need other
concepts which offer more precise information. The median is an example of this
kind and is roughly defined as a number such that half of the observations are smaller
while the second half are larger. The median for the dataset above is hence 5:2%.
This number tells us that half of the unit trusts performed at 5.2% or better, and that
the other half performed at 5.2% or worse. The precise definition of the median is
as follows:

Definition 1.1 The median of a collection of n numbers/observations ordered
in ascending order is:

• Observation number nC1
2

if n is an odd number.
• The midpoint between observation n

2
and observation n

2
C 1 if n is even.

Example 1.3 Find the median of the numbers

1:5%; 2:3%; �3:4%; �5:6%; 0:3%; �3:4%; 3:2% 2:2%:

Solution: We first write these numbers in ascending order

�5:6%; �3:4%; �3:4%; 0:3%; 1:5%; 2:2%; 2:3%; 3:2%:

In this case we have n D 8 observations. Since n is even, the median is the
midpoint between observation 4 and 5, i.e.

Median D 0:3% C 1:5%

2
D 0:9%:

Strictly speaking there is no need to process the numbers when we have just a
few observations. The situation is quite different if we have a huge number of data.
We can for example imagine that we have collected data from 1451 different unit
trusts. It serves no purpose to print out all these numbers. If it turns out that the
returns vary from �11:9% to 7:7% with a median of �10:5%, we can quickly form
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an image of the data. We can conclude that at least half of these trusts performed
quite badly, i.e., not better than �10:5%. We do not, however, possess a clear picture
of how many trusts had a good performance. Was the trust with 7:7% return a rare
exception or did many trusts perform at that level? To answer such questions, we
need information beyond the median.

1.3 Quartiles andMode

Quartiles provide additional information about the data. Roughly speaking we find
the quartiles when we divide the numbers (sorted in ascending order) into four
equally large groups. We call the transition between the first two groups as the first
quartile, the transition between the two groups in the middle is the median, and the
transition between the last two groups is the third quartile.

If nC1 is divisible by 4, the first quartile is observation number nC1
4

and the third

quartile is observation number 3.nC1/

4
. The general definition is a bit cumbersome,

see Exercise 1.15, but the computations are fully automated in computer programs
and there is no reason to study this in detail. The concept provides only a rough
picture of the data anyway, and the roughness does not change if we focus the
details.

We return to the example above where we observed the return of 1451 unit trusts.
If we sort the returns in ascending order, we get

1451 C 1

4
D 363 and

3.1451 C 1/

4
D 1089:

The first quartile is hence observation number 363 and the third quartile is
observation 1089. As an example let us assume that the first quartile is �10:7%
and that the third quartile is �9:8%. We then know that about half of the trusts are
performing between these two levels. This improves the picture compared with the
case where we only knew the median. We are also able to conclude that at most one
quarter of the funds (those above the third quartile) are performing well. This shows
us that information on the quartiles clarifies the major trends in our data.

The distance between the first and third quartile is called the interquartile range.
If the interquartile range is small, we know that about half of the data are close to
each other. The interquartile range is one of several examples of how to measure
the spread in our data. We have seen that the quartiles make it possible to get a
better overview of the data, but certainly not a full solution. We can always proceed
to present more details. The challenge is to focus the main features of the dataset
without entering into too much detail.

In some connections we are likely to observe the same number multiple times.
It can then be useful to know which observation is the most frequent. The most
frequent observation is called the mode.
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Table 1.1 The length of stay at an hotel

Days 1 2 3 4 5 6 7 8 9 10

Frequency 419 609 305 204 177 156 103 105 62 35

Example 1.4 We have collected data from n D 2175 visitors at an hotel. Table 1.1
shows the number of days people stayed.

Find the mode, median, and first and third quartiles for this observation set.

Solution: The most frequent observation is 2 days, which is registered 609 times.
The mode is hence 2 days. The median is observation number 1088. We see that the
sum of the two first categories is 1028, hence the median must be in category 3, i.e.,
the median is 3 days. To find the first and third quartiles we compute

2175 C 1

4
D 544 3 � 544 D 1632:

We see that observation number 544 must be in category 2, the first quartile is
hence 2 days. If we compute the sum of the first 4 categories, we see that they sum
to 1537. That means that the third quartile must be in category 5. Third quartile is
hence 5 days.

1.4 Relative Frequency and Histograms

Instead of frequencies we can compute how many percent of the observations we
find in each category. We call these numbers relative frequencies. In general we
define relative frequency as follows:

Relative frequency D Number of observations within a group

Number of observations in total
:

In Example 1.4 we had 2175 observations in total. We find the relative frequen-
cies if we divide the numbers in Table 1.1 by 2175. The results are displayed in
Table 1.2.

In cases where there are lots of different outcomes, it may be beneficial to
aggregate data in groups. It is then possible to make a new frequency table with
the relative frequencies of each group. If we use the data from Example 1.4, we get
Table 1.3.

Table 1.2 The length of stay at an hotel

Days 1 2 3 4 5 6 7 8 9 10

Relative frequency 0.19 0.28 0.14 0.09 0.08 0.07 0.05 0.05 0.03 0.02
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Table 1.3 The length of stay
at an hotel

Days 1–2 3–4 5–6 7 or more

Relative frequency 0.47 0.23 0.15 0.15

1 2 3 4 5 6 7 8 9 10
Days

0.1

0.2

1 2 3 4 5 6 7 8 9 10
Days

0.1

0.2

Fig. 1.4 Histograms

Tables of relative frequencies are often displayed by histograms. When we make
histograms, we divide the sorted data into a number of nonoverlapping intervals and
find relative frequencies within each interval. The result is displayed in a bar chart
where:

• Each bar has a width equal to the width of the corresponding data.
• Each bar has a height defined by

Height of bar D Relative frequency

Width of interval
:

• All bars are adjacent.

It is possible to make several different histograms from the same dataset. Most
common is to divide the range of the data into 5–15 equally spaced intervals.
Figure 1.4 shows two different histograms using the data from Example 1.4.

From the expressions above we see that

Area of bar D Width of interval � Relative frequency

Width of interval
D Relative frequency:

The area of each bar shows how big fraction of the observations that are related
to the bar. In particular we note that the sum of the areas is 1, i.e., 100%. That is a
property common to all probability densities, a concept we will study in detail later.

1.5 TheMean

The mean is probably the single most important concept in statistics, and we will
return to this concept several times throughout this book. We first consider a simple
example.
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Example 1.5 What is the mean of the numbers

0; 1; 2; 3; 4; 5; 6; 7; 8; 9; 10; 11; 12; 13; 14; 15; 16; 17; 17; 18; 19; 20‹

Solution: The mean is the middle value of the numbers, and even though we
have not yet formulated a precise definition, it is clear that the answer must be 10.

One reason why the mean is so central to statistics is that it is suited to describe
large datasets. If we compute the mean of the numbers

0; 100; 200; 300; : : : ; 1800; 1900; 2000;

the answer is 1000. Even if we did not know the numbers behind the computations,
it is easy to understand that numbers with mean 10 must be very different from
numbers with mean 1000; in the latter case most of the numbers need to be
considerably larger. In many statistical surveys there are enormous amounts of data
behind the computations. The purpose of using means is to present basic findings in
the simplest possible way. It is, however, important to understand that the usefulness
is limited. The use of means is a crude simplification that by far does not say
everything about the data in question.

We find the arithmetic mean of a series of numbers/observations when we add
the numbers and divide the result by the number of observations. We can imagine
that we observe the values X of a stock on 5 consecutive days. If we find

X1 D 2; X2 D 3; X3 D 2; X4 D 1; X5 D 2;

the mean is

X D 1

5
.2 C 3 C 2 C 1 C 2/ D 2:

This principle is true in general as the mean is defined as follows:

Definition 1.2 Given n observations of a variable X, the mean X is defined
by

X D 1

n
.X1 C X2 C � � � C Xn/ D 1

n

nX

iD1

Xi:

In this definition we have made use of the mathematical symbol
P

. That does
not present any complications since it simply means we should sum all the numbers
indicated by the indices marked out at the top/bottom of the symbol. If we use this
definition on the numbers we considered in Example 1.5, we have 21 numbers in
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total. If we sum all these numbers, we find

X1 C X2 C � � � C X21 D 0 C 1 C � � � C 21 D 210:

The mean is hence

X D 1

21
� 210 D 10:

This corresponds well with the more intuitive approach above. As we already
mentioned, the mean is far from containing all the relevant information. If we
consider the two sequences:

1:8 2 2:2 (1.1)

1 2 3; (1.2)

both have mean 2. As the spread of the sequences are quite different, it is clear that
we need more information to separate them.

1.6 Sample Variance and Sample Standard Deviation

In statistics we usually make use of the sample variance and the sample standard
deviation to quantify the spread in a dataset. When it is clear from context that we
speak about a sample, we sometimes drop the prefix sample and talk about variance
and standard deviation. The purpose of these quantities is to measure how much the
numbers deviate from the mean. Using these measures we will see that the spreads
in (1.1) and (1.2) are quite different.

Definition 1.3 The sample variance S2
X of a series of numbers/observations

is defined by the formula

S2
X D 1

n � 1

�
.X1 � X/2 C � � � C .Xn � X/2

� D 1

n � 1

nX

iD1

.Xi � X/2:

The formula is a bit complicated but this is of no consequence in practical
applications. Computations of this sort are almost exclusively carried out by
computer software, see the section on Excel at the end of this chapter. The formula is
abstract, and it is definitely possible to misinterpret it. It is important to understand
that the order of the operations is crucial, and that only one order provides the correct
answer.
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Table 1.4 Sum of squared
errors

i Xi .Xi � X/ .Xi � X/2

1 1 �6 36

2 8 1 1

3 10 3 9

4 4 �3 9

5 7 0 0

6 12 5 25

Sum 0 80

Example 1.6 Assume that X1 D 1; X2 D 8; X3 D 10; X4 D 4; X5 D 7; X6 D 12. It
is easy to see that X D 7. The sample variance can then be computed as in Table 1.4.

In the third column in Table 1.4 we see how much the observations deviate from
the mean. We see that the sum of the deviations is zero. This is in fact true for any
dataset, which explains why the sum of the deviations is useless as a measure of
spread. When we square the deviations, we make sure that all the terms contribute
to the sum. When we have computed the sum of squares, we use the formula from
the definition to see that

S2
X D 1

5

nX

iD1

.Xi � X/2 D 1

5
� 80 D 16:

From the definition we see that the sample variance is small when all the
deviations from the mean value are small, and that the sample variance is large when
several terms are positioned far from the mean. Small sample variance is hence the
same as small spread in the data, while the sample variance will be large if the
observed values are far apart.

The size of the sample variance is often difficult to interpret. We often report the
spread in terms of the sample standard deviation SX which is defined as follows:

SX D
q

S2
X:

The advantage of the standard deviation is that it usually has a more transparent
interpretation. We often think of the standard deviation as the typical spread around
the mean value, see the exercises where we elaborate further on this interpretation.
For the dataset reported in Example 1.6, we get

SX D p
16 D 4;

and we interpret that the deviation from the mean 7 is typically 4. From the table
above we see that some deviations are smaller than 4 and some are bigger, but 4 is
roughly the right size of the deviations.
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Table 1.5 Sum of squared
errors

i Xi .Xi � X/ .Xi � X/2

1 5 0 0

2 2 �3 9

3 4 �1 1

4 4 �1 1

5 10 5 25

Sum 0 36

If we return to the numbers

1:8 2 2:2

1 2 3;

we see that the first series has variance S2
X D 0:04 and standard deviation SX D 0:2,

while the second series has variance S2
X D 1 and standard deviation SX D 1. The

standard deviation is hence 5 times bigger for the second series. This makes good
sense since the distance between the numbers is 5 times bigger. A large standard
deviation means that the numbers are far apart, while a small value indicates that the
values are approximately equal. A special case occurs when the standard deviation
is zero. This can only happen when all the values are identical.

Example 1.7 Let X1 D 5; X2 D 2; X3 D 4; X4 D 4; X5 D 10. Find the mean, the
sample variance, and the sample standard deviation.

Solution: We use the formulas to see that

X D 1

5
.5 C 2 C 4 C 4 C 10/ D 5;

S2
X D 1

4
� 36 D 9; SX D p

9 D 3: See Table 1.5:

1.7 Sample Covariance and Coefficient of Variation

The sample variance is used whenever we want to measure the spread within a
sample. Often, however, we need to compare two different samples.

Example 1.8 Table 1.6 shows corresponding values of X and Y.
If we take a brief look at the numbers in Table 1.6, we see that they correspond.

There is a clear tendency that small X-values are found together with small Y-values,
and that large X-values are found together with large Y-values. Figure 1.5 displays
the corresponding pairs.
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Table 1.6 The data for
Example 1.8

X1 X2 X3 X4 X5 X6 X7 X8 X9 X10

2 12 1 1 10 25 3 9 27 2

Y1 Y2 Y3 Y4 Y5 Y6 Y7 Y8 Y9 Y10

3 11 3 1 12 21 6 4 31 2

Fig. 1.5 Corresponding
values

5 10 15 20 25 X
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10

15

20

25

30

Y

There are some exceptions that do not have a clear interpretation, but the main
tendency appears to be clear. The question is then if we can find a method to measure
how strongly the values correspond to each other. The sample covariance turns out
to be useful in this respect, and we can use this quantity to judge if two samples pull
in the same direction.

Definition 1.4 If our two samples are X1; : : : ; Xn and Y1; : : : ; Yn, the sample
covariance SXY is defined by

SXY D 1

n � 1

�
.X1 � X/. Y1 � Y/ C � � � C .Xn � X/. Yn � Y/

�

D 1

n � 1

nX

iD1

.Xi � X/.Xi � X/:

It is interesting to note that if the two samples happen to be equal, then the sample
covariance equals the variance. When it is clear from context that we speak about
samples, we sometimes drop the prefix sample and speak about covariance.

Example 1.9 Let X1 D 242; X2 D 266; X3 D 218; X4 D 234 and Y1 D 363; Y2 D
399; Y3 D 327; Y4 D 351. Find SXY .
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Solution: We first compute X D 240 and Y D 360. We then use the formula to
see that

SXY D 1

3

�
.X1 � X/. Y1 � Y/ C .X2 � X/. Y2 � Y/

C.X3 � X/. Y3 � Y/ C .X4 � X/. Y4 � Y/
�

D 1

3

�
.242 � 240/.363 � 360/ C .266 � 240/.399 � 360/

C.218 � 240/.327 � 360/ C .234 � 240/.351 � 360/
�

D 600:

The main purpose of the covariance is to measure how two variables correspond.
If it is mainly the case that a large value of X (large here means bigger than the
mean) is found together with a large value of Y, while small values (smaller than the
mean) of X largely are found together with small values of Y, most of the terms in
the covariance will be positive. A positive covariance indicates that the terms pull
in the same direction. We call this positive covariation. The opposite will happen if
small X is usually found together with large Y and large X usually are together with
small Y. When this happens most terms in the covariance will be negative, often
leading to a negative total value. With negative covariance the terms pull in opposite
directions, and we call this negative covariation. A borderline case happens if the
covariance is zero. There is then no tendency in any direction, and we say that the
results are uncorrelated.

Even though the sign of the covariance is quite informative, the size is more
difficult to interpret. What is big depends to a great extent on the context. In some
cases a covariance of 1;000;000 may be big, but not always. If we, e.g., consider
distances in space measured in km, a covariance of 1;000;000 may be approximately
zero. There is, however, a simple way to measure the impact of the covariance; the
coefficient of variation.

Maximum linear covariation is obtained whenever the observation pairs are on a
line with nonzero slope. When the slope is positive, an increase in one variable will
always lead to an increase in the other variable, this is positive covariation. If the
slope is negative, an increase in one variable will always lead to a decrease in the
other variable, this is negative covariation. The coefficient of variation measures the
amount of linear covariation.

Definition 1.5 The coefficient of variation RXY is defined by

RXY D SXY

SX � SY
:
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In this formula we must compute the standard deviations SX and SY separately. It
is possible to prove that for any pair of samples, then

�1 � RXY � 1:

If we return to Example 1.9 and compute SX and SY , we get

RXY D 600

20 � 30
D 1:

This means that in this case the linear covariation is maximal. If we look closer at
the numbers, it is easy to see why. For any i, we have

Yi D 3

2
� Xi:

Even in cases with few observations, a relation of this sort is by no means easy to
detect. This shows that the coefficient of variation is an efficient tool to reveal such
relations, in particular if the number of observations is large.

The values �1 and 1 are extremes, and such values can only be obtained in special
cases. It is possible to show that RXY D 1 if and only if there is a constant k > 0 and
another constant K such that

Xi D k � Yi C K; for all i D 1; 2; : : : ; n;

and that RXY D �1 if and only if there is a constant k < 0 and another constant K
such that

Xi D k � Yi C K; for all i D 1; 2; : : : ; n:

In both cases the observations .Xi; Yi/ are confined to a straight line, and this is the
only way we can obtain maximum linear covariation. If we return to Example 1.8,
we can compute

RXY D 0:96:

We see that this value is close to maximum positive covariation, and we have thus
confirmed the tendency that we saw in the dataset.

Example 1.10 Assume that we have observed the values of 4 different stocks, A, B,
C, and D at 100 different point in time. We wonder if there is a connection between
the stock price of A and any of the other stock prices. To see if there is a connection
between A and B, we plot the numbers .A1; B1/; .A2; B2/; : : : ; .A100; B100/ in the
same figure. We do the same with A and C and with A and D. The results are shown
in Fig. 1.6.
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Fig. 1.6 Corresponding
stock prices
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From Fig. 1.6 we see that there is clearly positive covariation between A and B;
when the price on A is low, so is the price on B, and a high price on A typically
is seen together with a high price on B. The coefficient of variation confirms this,
RAB D 0:98. We can’t see much connection between A and C. For the numbers
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reported in the figure we have RAC D �0:01. There seems to be a clear connection
between A and D. The tendency is that the stock price of D is high when the stock
price of A is low and the reverse is also true. This is negative covariation and for the
numbers reported in the figure RAD D �0:62.

1.8 Using Excel

At a first glance it may seem as if there are lots of work involved when we
compute mean, variance, and covariance. This is not so. Such computations are
almost exclusively carried out via computer software which makes computation fast
and simple. There are several programs we could use. In this book we will use
Excel since this is a program most people have access to. Computations are hardly
different in other programs.

We return to the computations in Example 1.9, but this time we will use Excel to
carry out the calculations. We start typing X1 D 242; X2 D 266; X3 D 218; X4 D
234 and Y1 D 363; Y2 D 399; Y3 D 327; Y4 D 351 in columns A and B in the
worksheet. We then click in C1 and write “=Average(A1:A4).” If we push return, we
get the result shown in Fig. 1.7. The mean of B1 through B4 is computed similarly,
see Fig. 1.8.

Fig. 1.7 Average of
column A

Fig. 1.8 Average of
column B
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Fig. 1.9 The sample variance of column A and B, the sample covariance of A and B, and the
coefficient of variation

The sample variances, covariance, and coefficient of variation are computed in
the same way, see Fig. 1.9. To compute the sample standard deviation we may use
the command STDEV.S. Instead of writing the commands in full it is possible to
click and drag the corresponding menus. This is simple, but is not something we
will discuss here.

1.9 Summary of Chap. 1

• The median of n observations in ascending order

Median D Observation number
n C 1

2
:

Interpretation: Roughly one half of the observations are below the median, and
the other half above.

• The first and third quartiles of n observations in ascending order

First quartile D Observation number
n C 1

4
;
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First quartile D Observation number
3.n C 1/

4
:

Interpretation: Roughly half of the observations are found between the 1. and 3.
quartiles.

• The mode of a set of observations: The most frequent observation.
• The mean of a set of observations

X D 1

n
.X1 C X2 C � � � C Xn/ D 1

n

nX

iD1

Xi:

• The sample variance of a set of observations

S2
X D 1

n � 1

�
.X1 � X/2 C � � � C .Xn � X/2

� D 1

n � 1

nX

iD1

.Xi � X/2:

Interpretation: A large value means that the observations are far apart.
• The sample standard deviation of a set of observations

Sx D
q

S2
X:

Interpretation: The typical deviation from the mean.
• The sample covariance

SXY D 1

n � 1

�
.X1 � X/. Y1 � Y/ C � � � C .Xn � X/. Yn � Y/

�

D 1

n � 1

nX

iD1

.Xi � X/.Xi � X/:

Interpretation: When SXY > 0, the quantities pull in the same direction. When
SXY < 0, the quantities pull in opposite directions.

• Coefficient of variation

RXY D SXY

SX � SY
:

Interpretation: Strong positive covariation when RXY is close to 1, strong negative
covariation when RXY is close to �1, uncorrelated when RXY is close to zero.

• Excel commands
Mean: AVERAGE(A1:AN)
Sample variance: VAR.S(A1:AN)
Sample standard deviation STDEV.S(A1:AN)



20 1 Descriptive Statistics

Sample covariance: COVAR.S(A1:AN;B1:BN)
Coefficient of variation: CORREL(A1:AN;B1:BN).

1.10 Problems for Chap. 1

1.1 Table 1.7 gives a survey of the willingness to pay for n D 675 customers. The
customers were asked about the maximum price they would be willing to pay for a
specific good. Find the mode, median, and 1. and 3. quartiles for the numbers in the
table.

1.2 Table 1.8 shows how frequent people visit their local food store. We have access
to n D 1275 observations in total.

(a) Find the mode, median, and 1. and 3. quartiles for the numbers in the table.
(b) Find the mean of the observations.

1.3 Table 1.9 shows the stock price for 5 different companies.

(a) Find the mean of the 5 prices in the table.
(b) Company A has a total of 140;000 stocks, company B 50;000 stocks, company

C 20;000 stocks, company D 10;000 stocks, and company E 30;000 stocks. Find
the total market value of the five companies. How many stocks are there in total?
What is the mean value of each stock in total? Compare with the result in (a).

1.4 (a) Find the mean of the numbers
i) 1; 3; 4; 2; 7; 9; 2

ii) 2; 6; 8; 4; 14; 18; 4

iii) 10; 30; 40; 20; 70; 90; 20.
(b) How do the results in (a) connect?

Table 1.7 Data for
Problem 1.1

Price in USD 100 110 120 130 140 150

Frequency 90 115 121 162 109 78

Table 1.8 Data for
Problem 1.2

Number of days per week 0 1 2 3 4 5 6 7

Frequency 257 241 459 103 84 62 47 22

Table 1.9 Data for
Problem 1.3

Company A B C D E

Stock price in USD 100 200 400 300 500
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Table 1.10 Data for
Problem 1.8

Day 1 2 3 4 5

Stock price in USD 99 101 97 101 102

1.5 (a) Find the mean of the numbers
i) 1; 2; 3; 4; 5; 6; �21

ii) �2; 4; 3
2
; �4; 1

2
.

(b) Do you see any connections between the numbers in (a)?

1.6 (a) Find the sample variance for the numbers
i) 8; 3; 7; 1; 11

ii) 2; �3; 1; �5; 5.
(b) Are there any connection between the numbers in (a)?

1.7 Let X1 D 12; X2 D 1; X3 D 7; X4 D 5; X5 D 5. Find the mean, sample
variance, and sample standard deviation.

1.8 Table 1.10 shows the stock price of a company through 5 consecutive days. Find
the mean, sample variance, and sample standard deviation for these stock prices.

1.9 Let X1 D 1; X2 D 4; X3 D 5; X4 D 7; X5 D 13.

(a) Use the formula

S2 D 1

5

�
.X1 � X/2 C .X2 � X/2 C .X3 � X/2 C .X4 � X/2 C .X5 � X/2

�
;

to compute S2 and S.
(b) Use the formula

S2 D 1

4

�
.X1 � X/2 C .X2 � X/2 C .X3 � X/2 C .X4 � X/2 C .X5 � X/2

�
;

to compute S2
X and SX .

(c) Use your calculator to compute the standard deviation. Does the answer coincide
with (a) or (b)?

1.10 Assume that

S2 D 1

n

nX

iD1

.Xi � X/2 and that S2
X D 1

n � 1

nX

iD1

.Xi � X/2:
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Table 1.11 Data for
Problem 1.13

Price X1 D 71 X2 D 47 X3 D 23 X4 D 27

Demand Y1 D 58 Y2 D 106 Y3 D 154 Y4 D 146

Table 1.12 Data for Problem 1.14

Portfolio 1 X1 D 18 X2 D 22 X3 D 14 X4 D 10 X5 D 11

Portfolio 2 Y1 D 36 Y2 D 44 Y3 D 28 Y4 D 20 Y5 D 22

Show that

S D
r

n � 1

n
:

Is S greater or smaller than SX?

1.11 Let .X1; : : : X5/ D .140; 126; 133; 144; 152/ and .Y1; : : : ; Y5/ D
.248; 252; 254; 244/. Find SXY .

1.12 Let .X1; : : : X5/ D .140; 126; 133; 144; 152/ and .Y1; : : : ; Y5/ D
.253; 221; 239; 229; 233/. Find SX; SY ; SXY and RXY .

1.13 Table 1.11 shows 4 matching values of price (in USD) and demand (in units)
of a good.

Find SX; SY ; SXY and RXY . What is the relation between demand and price?

1.14 Table 1.12 shows 5 matching values of the returns (in % per year) of two
portfolios of stocks.

Find SX; SY ; SXY and RXY . What is the relation between Yi and Xi? How can you
put together two portfolios that behave like this?

1.15 This Exercise Provides the Rigorous Definitions of Quartiles: If n is the
number of observations, we find the position of the quartiles computing k1 D nC1

4

and k3 D 3.nC1/

4
. Depending on n we get two reminders which are 0; 1

4
; 1

2
, or 3

4
.

i) If the remainder is zero, we use observation k.
ii) If the reminder is 1

4
we start at observation k � 1

4
(an integer) and increase this

value by 25% of the distance to the next observation.
iii) If the reminder is 1

2
we start at observation k � 1

2
(an integer) and increase this

value by 50% of the distance to the next observation.
iv) If the reminder is 3

4
we start at observation k � 3

4
(an integer) and increase this

value by 75% of the distance to the next observation.
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Find the 1. and 3. quartiles for the observations

(a) 2; 6; 10; 14; 18; 22

(b) 2; 6; 10; 12; 14; 18; 22

(c) 2; 6; 10; 11; 13; 14; 18; 22

(d) 2; 6; 10; 11; 12; 13; 14; 18; 22.

1.16 You have made 25 observations of the price of a good. The results are shown
below.

123 156 132 141 127 136 129 144 136 142 126 133 141

154 143 121 138 125 137 123 133 141 127 126 149

Type these observations in Excel, and use Excel commands to answer the
questions.

(a) Find the mean of the observations.
(b) Find the sample variance and the sample standard deviation.
(c) Use the command QUARTILE.A1 W A25I 1/ to find the 1. quartile, and figure out

how you can modify the command to find the 2. and the 3. quartiles. What is a
different name for the 2. quartile?

1.17 Portfolio Optimization: Table 1.13 shows the development of the stocks in
the two companies ALPHA and BETA. The price on the stocks (in USD) has been
observed monthly over a period of 20 consecutive months. The stock prices on
ALPHA are quoted by a1; : : : ; a20 and the stock prices for BETA are quoted by
b1; : : : ; b20.

(a) Compute the mean stock price for the stocks in ALPHA and BETA (separately).
(b) Make a plot of the time development of the two stock prices in the same figure.

Which stock do you consider to be the most unsure?

Table 1.13 Stock prices for
company ALPHA and BETA

a1 a2 a3 a4 a5 a6 a7 a8 a9 a10

92 86 90 86 95 92 96 102 106 96

a11 a12 a13 a14 a15 a16 a17 a18 a19 a20

95 102 101 107 106 110 103 107 116 112

b1 b2 b3 b4 b5 b6 b7 b8 b9 b10

127 114 141 113 128 115 84 101 96 119

b11 b12 b13 b14 b15 b16 b17 b18 b19 b20

93 88 79 103 63 60 116 82 82 96
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(c) Compute the sample variances S2
a and S2

b, you might prefer to use Excel to do
this. Do the values on S2

a and S2
b coincide with the conclusions you could draw

in (b)?
(d) Can a large sample variation be an advantage? Which of the stocks ALPHA and

BETA do you consider the best?
(e) Compute the covariance Sab, you may prefer to use Excel.
(f) You want to invest 1;000;000 USD in these stocks. We assume that you buy

each stock at their mean value, and that you invest x% of the money in ALPHA
and y% D 100% � x% in BETA. Let an and bn denote the price on the stocks at
any time n. Show that the value cn of your investment is given by

cn D 100xan C 100ybn:

(g) We cannot say anything for sure about the future, but it may sometimes be
reasonable to assume that the mean and the sample variance will remain
constant. What would the mean value of cn be based on the data above?

(h) Show that S2
c D 10;000.x2S2

a C 2xySab C y2S2
b, and use this to find a value for

x such that S2
c is as small as possible. How much must you buy of each stock if

you prefer low risk?

1.18 Market Segments and Profit Optimization: You have carried out a market
survey to identify travel habits of young and old people. The results are shown in
Table 1.14. We wish to identify if there are notable differences between different
groups of customers. We will divide the customers by two criteria.

• Young, 30 years or younger/Old, 31 years or more.
• Low season (fall and winter)/high season (spring and summer).

We divide the customers into four categories:

1: Young in low season 1: Young in high season

3: Old in low season 4: Old in high season

(a) Compute the mean expense p for all the observations in the table.
(b) Find the sample variance S2

p for all the observations in the table.
(c) Now divide the data into 4 groups as indicated above and compute the mean

expense and sample variance within each group. Compare the sample variances
with S2

p. Give a short comment/tentative explanation to the differences. How
do people behave in a group where the sample variance is zero? Is there a
connection between the sample variance and a uniform behavior within a group?

A travel agency wants to survey possible profits from the sales in low season.
They reserve 5000 first class tickets. In addition they plan to sell x low price
tickets to young people and y low price tickets to old people. On average it takes
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Table 1.14 Survey on total expenditure (USD) for travelers

Number Season Age Expense Number Season Age Expense

1 Winter 22 3018 21 Summer 23 1687

2 Winter 66 4086 22 Summer 45 7011

3 Winter 19 3034 23 Summer 75 6643

4 Winter 51 3730 24 Summer 15 1915

5 Winter 17 2623 25 Summer 16 2006

6 Winter 15 2757 26 Summer 36 7678

7 Winter 29 2927 26 Summer 17 1796

8 Winter 50 3844 28 Summer 71 7159

9 Winter 15 3569 29 Summer 49 7403

10 Winter 76 4102 30 Summer 65 7325

11 Spring 64 6949 31 Fall 22 3029

12 Spring 38 6885 32 Fall 72 4240

13 Spring 76 6839 33 Fall 27 3242

14 Spring 16 1577 34 Fall 16 3390

15 Spring 34 6746 35 Fall 24 3204

16 Spring 24 1965 36 Fall 58 4146

17 Spring 57 7387 37 Fall 50 3854

18 Spring 21 2077 38 Fall 71 4089

19 Spring 18 2091 39 Fall 15 2959

20 Spring 68 6985 40 Fall 37 3817

20 min to process a low price ticket for young people, while the corresponding
number for old people is 35 min. To process the tickets the company has 3 people
each of whom works 37.5 hours per week. The managers have decided that low
price tickets for young people should not exceed 20% of the total number of
tickets.

(e) The price per ticket for first class is 7500 USD. To calculate the price on the
other tickets, we use that mean values we computed above. The price for young
people should be 10% lower than the average expense reported from the data,
while the price for old people should be 5% below the reported mean for this
category. How many tickets should you sell to each customer group to maximize
total profit? Note: This is a linear programming problem and requires knowledge
on how to solve such problems. If you don’t have this knowledge, proceed to (g).

(f) Assume that the price on tickets for young people is fixed. How much must you
raise the price on tickets for old people so that it is most profitable to sell all low
price tickets to old people?

(g) The young people can be subdivided into two new categories A and B. We have
carried out a supplementary survey indicating that the two subgroups have a
similar mean expenditure over time. The two subgroups have different sample
variances S2

A D 20;000 and S2
B D 40;000. In addition we have computed that

the sample covariance is SAB D �20;000. We will sell ˛% to group A and
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ˇ% D 100% � ˛% to group B. This gives a combined sample variance

S2
˛ˇ D 1

10;000
.˛2S2

A C 2˛ˇSAB C ˇ2S2
B/:

(you may take this for granted). Compute values for ˛ and ˇ to minimize the
sample variance for the combination.
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Abstract

In this short chapter we will go through the basic definitions of probability. To
ease the exposition, we will only discuss very simple examples. It is important to
notice that the concepts we develop in this chapter are central to all thinking about
statistics. Regardless of level and purpose these concepts provide tools that can be
used to describe statistical methods. From this point of view the theory provides
us with a framework that can be used to study any statistical phenomenon.

2.1 Sample Space

When we carry out an experiment, we get a result. This result is called the outcome.
If we test 10 goods and find 3 defective items, the outcome is 3 defective items. An
experiment can have several possible outcomes, and the collection of all of these is
called the sample space. If we test 10 goods if they are defective or not, the outcome
can be anything from 0 to 10 defectives. The sample space is the set of all the
individual outcomes, i.e.

f0 defective; 1 defective; : : : ; 10 defectivesg:

We usually use the letter ˝ to denote a sample space. If an experiment can have
the outcomes !1; !2; : : : ; !m, the sample space is the set ˝ D f!1; !2; : : : ; !mg.
We use the following definition:
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Definition 2.1 A sample space is a list of the outcomes of an experiment.

• The list must cover any possible outcome.
• The outcomes must be mutually exclusive.

When these two conditions are satisfied, we say that the sample space is
complete and distinguishing.

Example 2.1 Assume that we toss a dice once and look at the result. The sample
space is ˝ D f1; 2; 3; 4; 5; 6g.

Example 2.2 Assume that we watch a soccer match and consider the number of
points for the home team. The sample space is ˝ D f0; 1; 3g.

Example 2.3 Assume that we watch a soccer match and consider the goals made by
both teams separately. The sample space is

˝ D f.0; 0/; .0; 1/; .1; 0/; .2; 0/; .1; 1/; .0; 2/; .3; 0/; : : :g:

By the notation j˝j we mean the number of elements in the sample space. In
Examples 2.1 and 2.2 we have j˝j D 6 and j˝j D 3, respectively. In Example 2.3,
however, there is no limit to how many goals can be scored. In practice it might be
difficult to imagine cases with millions of goals, but no matter how many goals are
scored, it is in theory possible to score once more. In this case it is natural to define
j˝j D 1.

Example 2.4 We measure the temperature in a room in ıC. In that case ˝ D
Œ�273; 1/, i.e., an interval. In this case, too, j˝j D 1.

Even though j˝j D 1 in Example 2.3 and in Example 2.4, there is an important
difference between the two cases. In Example 2.3 it is possible to sort all outcomes
in a sequence where each outcome is given a specific number, while no such
enumeration is possible in Example 2.4.

A sample space ˝ where all outcomes can be enumerated in a sequence is
called discrete. In this case we may write ˝ D f!1; !2; : : : ; !ng, where n D
1 signifies a case with infinitely many outcomes.
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2.2 Probability

One of the most important concepts in statistics is the probability for the different
outcomes in the sample space. Somewhat simplified these numbers express how
often we can expect to observe the different outcomes.

The probability for an outcome is an idealized quantity which defines the relative
frequency we will observe in the long run, i.e., in the course of infinitely many trials.
It is of course impossible to carry out an experiment infinitely many times, but the
idea is that the more repetitions we make, the closer will the relative frequency be to
the probability of the outcome. Imagine that we have repeated an experiment a large
number of times, and observed that the relative frequency of one of the outcomes is
10%. We then have a clear impression that this outcome will occur in 10% of the
cases no matter how many times we repeat the experiment. We then say that the
probability of the outcome is 10%.

Definition 2.2 By a probability on a discrete sample space ˝ , we mean a set
of real numbers

p1; p2; : : : ; pn

with the properties

• 0 � pi � 1, for all i D 1; 2; : : : ; n.
• p1 C p2 C � � � C pn D 1.

Here p1 is the probability of outcome !1, p2 is the probability of outcome !2,
and so on, so we write

pi D p.!i/; i D 1; : : : ; n:

The last expression makes it clear that a probability is a function defined on the
sample space. Verbally we can express the conditions as follows: A probability is
a number between 0 and 1, and the probability of all the outcomes must sum to
1. In some cases we speak about subjective probabilities, which are more or less
well-founded suggestions of how often an outcome will occur. We will return to
subjective probabilities in Chap. 4.
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2.2.1 Events

By an event in statistics we mean a subset of the sample space. The use of the word
may seem strange at a first glance, but quickly makes more sense if we consider an
example.

Example 2.5 We toss a dice twice. The sample space is ˝ D f.1; 1/; .1; 2/; : : : ;

.6; 6/g. Consider the subset A D f.1; 6/; .2; 6/; .3; 6/; .4; 6/; .5; 6/; .6; 6/g. Since A
is a subset of the sample space, it is an event. Verbally we can see that A expresses
that something very explicit has happened: “The second toss was a 6.”

The probability P.A/ of an event A is defined as the sum of the probabilities
of all outcomes which are elements in A, i.e.

P.A/ D
X

!2A

p.!/:

Example 2.6 We toss a fair dice twice. The sample space is

˝ D f.1; 1/; .1; 2/; : : : ; .6; 6/g:

The dice is fair when all these outcomes are equally probable, i.e., when p.!/ D 1
36

.
The probability of the event

A D f.1; 6/; .2; 6/; .3; 6/; .4; 6/; .5; 6/; .6; 6/g

is hence

P.A/ D 1

36
C 1

36
C 1

36
C 1

36
C 1

36
C 1

36
D 1

6
:

2.2.2 Uniform Probability

We will often study cases where all outcomes are equally probable. If there are
n different outcomes, the probability of each outcome is hence 1

n . We call this a
uniform probability. When the probabilities are uniform, it is particularly easy to
figure out the probability of an event. We can simply count the number of elements
in the subset. If A has a elements, then

P.A/ D a

n
:
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Example 2.7 In a market segment of 1000 persons we know that 862 persons are
worthy of credit. What is the probability that a randomly selected person is worthy
of credit?

Solution: When we choose a randomly selected person, we are tacitly assuming
a uniform probability. The subset of persons worthy of credit has 862 elements,
while there are 1000 outcomes in total. The probability p that a randomly selected
person is worthy of credit is hence p D 862

1000
D 82:6%.

Example 2.8 We toss a dice once. A uniform probability on the sample space is

p.1/ D p.2/ D p.3/ D p.4/ D p.5/ D p.6/ D 1

6
:

2.2.3 Set Theory

Since sample spaces are formulated as sets and events as subsets, set theory
is a natural tool in this context. The classical set operations have very specific
interpretations in statistics, and we will now briefly consider how this is done. When
we carry out an experiment and get an outcome ! which is an element of a subset A,
we say that the event A has occurred. Each set operation has a similar interpretation
(Figs. 2.1, 2.2, 2.3, 2.4, 2.5, and 2.6).

• Intersection

A \ B D The event that A and B both occurs:

• Union

A [ B D The event that either A or B or both occurs:

• Complement

Ac D The event that A does not occur:

Fig. 2.1 A \ B

A

B
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Fig. 2.2 A [ B

A

B

Fig. 2.3 Ac is here the blue
shaded area

A

Fig. 2.4 B � A

A

B

Fig. 2.5 B 6� A

A

B

Fig. 2.6 A \ B D ;
A

B

The notation A, too, is often used with exactly the same meaning, i.e., when A
is a set, A D Ac.

• Subset
When B � A it means that when B occurs, A will always occur.

• Not subset
When B 6� A it means that when B occurs, A will not always occur.

• Empty intersection

A \ B D ;; when A and B never occurs simultaneously:
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Example 2.9 We toss a dice once, and define the following subsets.

A W I tossed 1, 3, or 4: B W I tossed 3, 4, or 5: C W I did not toss 5:

Then

A \ B D f3; 4g; A \ C D f1; 3; 4g; B \ C D f3; 4g;
A [ B D f1; 3; 4; 5g; A [ C D f1; 2; 3; 4; 6g; B [ C D f1; 2; 3; 4; 5; 6g;
Ac D f2; 5; 6g; Bc D f1; 2; 6g; Cc D f5g:

Here A � C, while C 6� A; C 6� B; B 6� C; B 6� A; A 6� B. Notice that the list does
not provide all subsets we can find combining A, B, and C using set operations.

2.2.4 Computing Probabilities

The special addition principle is useful when we want to compute the probability of
a union. If the two sets do not intersect, we can simply sum the probability of each
subset, i.e.

If A \ B D ;, then P.A [ B/ D P.A/ C P.B/:

Example 2.10 We toss a dice once. A D f1; 2; 3g; B D f5; 6g; C D f2; 3; 4; 5; 6g.
Here A \ B D ;, and we get

P.A [ B/ D P.f1; 2; 3; 5; 6g/ D 5

6
D 3

6
C 2

6
D P.A/ C P.B/:

If we add P.A/ C P.C/, however, we find

P.A/ C P.C/ D 3

6
C 5

6
D 4

3
:

There is nothing wrong with this, but the sum is not the probability of an event. The
problem is that the two subsets intersect, and we need to take this into account. To
carry out the calculation correctly, we need to apply the general addition principle,
which can be stated as follows:

P.A [ B/ D P.A/ C P.B/ � P.A \ B/:
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If we use this rule, we find

P.A [ C/ D P.f1; 2; 3; 4; 5; 6g/ D 1 D 3

6
C 5

6
� 2

6
D P.A/ C P.C/ � P.A \ C/:

The general addition principle can be extended to cover unions of more than two
subsets. If we have three subsets A, B, and C, the result can be stated as follows:

P.A [ B [ C/ D P.A/ C P.B/ C P.C/

�P.A \ B/ � P.A \ C/ � P.B \ C/

CP.A \ B \ C/:

Example 2.11 In a customer survey all the people who participated used at least
one of the three products A, B, or C. All three products were used by 60% of the
customers. 95% of the customers used at least one of the products A and B, 85%
used at least one of the products B and C, and 30% used both A and C. How big
share of the customers used all the three products?

Solution: In this example there are lots of information, and we need to find a
systematic way of dealing with this. Since all the customers used at least one of the
products A; B or C, we know that

P.A [ B [ C/ D 1 D 100%:

Since all three products were used by 60% of the customers, we know that

P.A/ D P.B/ D P.C/ D 60%:

From the text we have

P.A [ B/ D 95%; P.B [ C/ D 85%; P.A \ C/ D 30%:

If we use the general addition principle for two subsets, we get

95% D 60% C 60% � P.A \ B/ ) P.A \ B/ D 25%:

85% D 60% C 60% � P.B \ C/ ) P.B \ C/ D 35%:

If we plug all the above into the general addition formula for 3 subsets, we get the
equation

100% D 60% C 60% C 60% � 25% � 30% � 35% C P.A \ B \ C/:
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Solving this equation, we get P.A\B\C/ D 10%. It is hence 10% of the customers
who use all the three products.

2.2.5 The Negation Principle

Since A and Ac never intersect and A [ Ac D ˝ , it follows from the special addition
principle that

P.A/ C P.Ac/ D P.A [ Ac/ D P.˝/ D 1:

If we view this as an equation, we can solve for P.A/ or P.Ac/ to see that

P.A/ D 1 � P.Ac/ P.Ac/ D 1 � P.A/:

Hence to find the probability that A occurs, we can instead find the probability
that A does not occur. At a first glance this not appear to be very useful, but we
will throughout this book see many cases where this angle of approach simplifies
calculations.

2.3 Summary of Chap. 2

• Sample space:

˝ D The set of all outcomes:

• Event: A subset of a sample space.
• General addition principles:

P.A [ B/ D P.A/ C P.B/ � P.A \ B/:

P.A [ B [ C/ D P.A/ C P.B/ C P.C/

�P.A \ B/ � P.A \ C/ � P.B \ C/

CP.A \ B \ C/:

• The negation principle:

P.A/ C P.Ac/ D 1:
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2.4 Problems for Chap. 2

2.1 A bank serves three customers in succession. The customers are either worthy
of credit or not worthy of credit. Suggest a suitable sample space for this situation.
Write down the events:

A: At least one customer is worthy of credit.
B: Customer number 2 is worthy of credit.
C: All the customers have the same credit rating.

2.2 We observe the Dow Jones Index over two consecutive days and will consider
a sample space with four different outcomes:

!1: The index rises both days.
!2: The index rises the first day and does not rise the second day.
!3: The index does not rise the first day and rises the second day.
!4: The index does not rise the first day and does not rise the second day.

Define two events A and B by:

A: The Dow Jones rises the first day.
B: The Dow Jones rises the second day.

(a) Find the events A [ B, A \ B, Ac, and Bc.
(b) Show that .A \ B/ [ .Ac \ B/ D B.
(c) Show that A [ .Ac \ B/ D A [ B.

2.3 An auditing firm regularly inspects the accounting done by a large company. In
many such inspections the firm reveals one or more errors, see Table 2.1.

Let A denote the event “There is at least one error,” and let B denote the event
“There are less than 10 errors.”

(a) Find the probabilities for A and Ac.
(b) Find the probabilities for B and Bc.
(c) Find the probability for A [ B.
(d) Find the probability for A \ B. How would you express this event in words?

Table 2.1 Data for Problem 2.3

Number or errors 0 1 to 3 4 to 6 7 to 9 10 to 12 More than 12

Probability in % 10 30 25 20 10 5
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Table 2.2 Data for Problem 2.4

Processing time in days 1 2 3 4 5 6 or more

Probability in % 10 40 30 10 5 5

Table 2.3 Data for Problem 2.5

Warehouse/Type Regular Superior Superior extra

Warehouse 1 12 9 10

Warehouse 2 25 16 5

Warehouse 3 9 9 3

2.4 A company uses at least one day to process a particular type of order. A survey
of the processing time is shown in Table 2.2.

(a) Define a suitable sample space for this situation and explain why the numbers
in the table define a probability on this sample space.

(b) Find the probability of the events:

A: Processing time shorter than 3 days.
B: Processing time at least 3 days.

(c) What is the connection between A and B?

2.5 A company produces a good in three different types: Regular, Superior, and
Superior Extra. The goods are stored in three different warehouses. The distribution
of the production is shown in Table 2.3.

(a) We choose a good randomly. How many outcomes are there in the sample space?
Explain why the table defines a probability.

(b) We choose a good randomly, and let A, B, and C denote the events

A W The good is of type Regular

B W The good is of type Superior

C W The good is stored at warehouse 3

Express the following events in words, and find the probability for each event.

(i) A \ C
(ii) A [ C

(iii) A \ B
(iv) A [ B
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2.6 In a customer survey 70% of the customers used at least one of the products
A and B. 60% used product A and 40% used product B. 50% used product B. How
many % of the customers used both products?

2.7 In a customer survey 70% of the customers used at least one of the products
A and B, while 40% used both products. 50% used product B. How many % of the
customers used product A?

2.8 In a customer survey 30% of the customers used both products A and B. 60%
used product A and 40% used product B. 50% used product B. How many % of the
customers used none of the products?

2.9 In this exercise we will consider the stocks in 5 companies. Company A has
140;000 stocks, company B has 50;000 stocks, company C has 20;000 stocks,
company D has 10;000, and company E has 30;000 stocks. In total there are 250;000

stocks. We choose a stock randomly among the 250;000 stocks. Suggest a suitable
sample space, and define a probability which describes this situation.

2.10 Unions of 3 Subsets: In a customer survey 89% of the customers used at least
one of the products A, B, and C. 60% used product A, 50% used product B and 45%
used product C. 82% of the customers used at least one of the products A and B,
73% used at least one of the products A and C, and 74% used at least one of the
products B and C.

(a) How big share of the customers used
(i) Both A and B?

(ii) Both A and C?
(iii) Both B and C?
(b) How big share of the customers used all the three products?

2.11 A Practical Illustration: In a customer survey we asked 80 customers if they
liked the products A or B. The customers liking product A were numbers

1; 2; 3; 4; 5; 7; 8; 9; 10; 11; 13; 15; 16; 17; 18; 19; 20; 22; 23; 24; 27; 28; 30; 31; 33; 34;

35; 36; 37; 39; 40; 42; 43; 47; 48; 49; 50; 51; 52; 53; 56; 57; 58; 59; 60; 61; 62; 65; 67;

70; 71; 72; 73; 74; 75; 76; 77; 78; 79; 80:

while the customers liking product B were numbers

3; 6; 7; 11; 12; 18; 19; 20; 25; 27; 32; 33; 34; 38; 39; 41; 42; 43; 44; 45; 49; 53; 54; 55;

56; 57; 60; 61; 62; 65; 67; 68; 69; 71; 72; 73; 74; 76; 78; 80:
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(a) Which customers liked both A and B?
(b) Which customers liked at least one of the two products?
(c) How big share of the customers liked
(i) Product A?

(ii) Product B?
(iii) Both A and B?
(iv) At least one of the two products?
(d) How do the numbers in (c) connect?
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Abstract

In this chapter we will study certain types of random selection within a uniform
model. Such samples can occur when we select a representative from an
audience, when we sample for errors, play lotteries, or generally when we choose
between alternatives which are equally probable. The main problem is then to
figure out how many combinations there are of a particular type. When we know
the number of combinations, it is easy to figure out the probabilities, since in a
uniform model all alternatives are equally probable. We then find the probability
as the fraction between the number of combinations of the type we are looking
for and the number of combinations in total.

3.1 Counting Combinations

The simplest basic principle in combinatorics takes its starting point in a sequence
of choices where there are no connections between each choice. When choices
are connected, certain outcomes may influence the other choices. When there are
no connections, we find the total number of combinations when we multiply the
number of possible outcomes of each choice.

Example 3.1 We want to select one girl and one boy from a class consisting of 15
girls and 12 boys. Since there are no connections, we have a total of 15 � 12 D 180

different combinations.
This principle applies in general: If we have c1 possibilities in choice number 1,

c2 possibilities in choice number 2,. . . , cm possibilities in choice number m, and the
choices do not connect, there is a total of c1 � c2 � � � cm different combinations.

In combinatorics it is hence crucial to identify if there are connections or not.
When the choices connect, the situation quickly becomes rather complex. In the
following we will consider some standard connections which are not too complex,
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and in these cases we can compute the number of different combinations by explicit
formulas.

3.1.1 Ordered Selections

In some selections the order of choices may be crucial. If we select a team, the
first one selected may be the leader, while the next few members may take on
predefined positions. Each sequence will then define a unique outcome. Sometimes
the same person can be selected multiple times, and that may influence the number
of different combinations. If no object can be selected more than once, we say that
the choice is without replacement. When the same object can be selected again every
time we make a new choice, we say that the choices are with replacement.

Example 3.2 We want to elect CEO and board leader for a company. There are 4
candidates, and all candidates are eligible for both positions. We first elect the CEO,
and there are 4 possible outcomes. Next we should select the board leader, and then
the situation is not clear. We have two different options:

• If the CEO can become board leader, the selection is with replacement, and we
have a total of 4 � 4 D 16 different outcomes.

• If the CEO cannot become board leader, the selection is without replacement,
and we have a total of 4 � 3 D 12 different outcomes (Fig. 3.1).

These simple principles apply in general:

If we have n different elements in our choice set, and want to choose s of
these elements with replacement, there are n � n � n D ns different ordered
combinations.

Fig. 3.1 12 different outcomes
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If we have n different elements in our choice set, and want to choose s of these
elements without replacement, there are

n.n � 1/ � � � .n � s C 1/

different ordered combinations.

Example 3.3 In how many ways can we make an ordered selection of 5 persons
from a group of 20 people?

Solution: If the choice is with replacement, there are

20 � 20 � 20 � 20 � 20 D 3;200;000

different ordered combinations.
If the choice is without replacement, there are

20 � 19 � 18 � 17 � 16 D 1;860;480

different ordered combinations.
Since we often need to compute the number of ordered combinations in a

sequence of choices without replacements, there is a special symbol for this:

.n/s D n.n � 1/ � � � .n � s C 1/:

The symbol .n/s can be expressed in terms of the factorial function. This function
is defined as follows:

nŠ D n.n � 1/ � � �3 � 2 � 1;

where we in addition define

1Š D 1 0Š D 1:

Example 3.4 5Š D 5 � 4 � 3 � 2 � 1 D 120.
We hence compute the factorial of a positive integer n multiplying all the integers

from 1 up to n. The definition 0Š D 1 is an exception and may appear a bit strange
at a first glance, but several relevant formulas simplify with this convention. If we
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look at Example 3.3 again, we see that

20 � 19 � 18 � 17 � 16 D 20 � 19 � 18 � 17 � 16 � 15 � 14 � � �3 � 2 � 1

15 � 14 � � �3 � 2 � 1
(3.1)

D 20 � 19 � 18 � � �3 � 2 � 1

15 � 14 � � �3 � 2 � 1
D 20Š

15Š

This principle applies in general and

.n/s D n.n � 1/ � � � .n � s C 1/ D nŠ

.n � s/Š

In the example above, we used n D 20 and s D 5. Then the calculation ended
with the factor .n � s C 1/ D 16, and the nominator was .n � s/Š D 15Š. Notice that
when we use a calculator to carry out the computations, it is often better to use the
original definition as the factorials may become so large that the calculator cannot
handle them. Using the definition we see that

.1000/3 D 100 � 999 � 998 D 997;002;000

while

1000Š

997Š

may lead to trouble as 1000Š � 4:0 � 102567, which is a number that is too large for
most calculators to handle.

3.1.2 Unordered ChoicesWithout Replacement

In some types of choices the order does not matter. If we are to select two board
members instead of CEO and board leader, the order makes no difference. If Smith
and Johnson are selected, it does not matter who is selected first. The ordered
choices fSmith; Johnsong and fJohnson; Smithg both lead to the same result. When
the order does not count, we will in general end up with fewer combinations. To
figure out how many unordered combinations that are genuinely different, we need
to be able to compute how many ordered combinations lead to the same unordered
result (Fig. 3.2).

It is easy to understand that n different objects can be sorted in nŠ different ways.
In the first position we have n different options, in the second position .n�1/ options
remains, and we may continue like this until we reach the last position where there
is only one object left.
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Fig. 3.2 Outcomes come in two versions

Example 3.5 In the Lotto lottery (England) the players select 6 out of 59 numbers
without replacement. 6 out of 59 numbers are then drawn randomly without
replacement, and any player who selected the same 6 numbers wins the Jackpot.
What is the probability of winning the Jackpot?

Solution: The number of unique ordered outcomes is .59/6 D 32;441;381;280,
but each time we select 6 numbers they can be sorted in 6Š D 720 different ways
that all lead to the same result. This means that the number of unordered outcomes
is reduced by a factor 720, and the number of unique unordered outcomes is

32;441;381;280

720
D 45;057;474:

As each such combination has the same probability of winning, the probability of
winning the Jackpot is hence

1

45;057;474
:

The same line of reasoning can be used in general. Whenever we pick s elements
from n unique objects, there are .n/s different ordered combinations. Each such
combination can be sorted into sŠ different ordered combinations, all of which are
leading to the same unordered outcome. The number of ordered combinations is
reduced by a factor sŠ, and the number of unique unordered combinations is hence

.n/s

sŠ
D nŠ

sŠ.n � s/Š
:

The number of unique unordered combinations coincides with the binomial coeffi-
cient

� n
s

�
used in mathematics, and we use the same notation, i.e.

�n

s

�
D .n/s

sŠ
D nŠ

sŠ.n � s/Š
:
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Example 3.6

�
10

3

�
D 10 � 9 � 8

1 � 2 � 3
D 120:

Note that s D 3 and there are three terms both in the nominator and the denominator.
The principles above can be summarized as follows: When we select s elements

from a set with n unique elements, we get the following number of unique
combinations

Ordered with replacement:

ns D n � n � n � � � n„ ƒ‚ …
s terms

:

Ordered without replacement:

.n/s D n.n � 1/ � � � .n � s C 1/ D nŠ

.n � s/Š
:

Unordered without replacement:

�n

s

�
D .n/s

sŠ
D nŠ

sŠ.n � s/Š
:

If we make efficient use of these principles we are able to solve many different
problems related to combinatorics. One question remains, however: What about
unordered selections with replacement? Curiously, this case becomes much more
complex than any of the others. We will illustrate the problem with an example.

Example 3.7 How many unique unordered combinations exist when we select 3
elements out of 5 with replacement?

Solutions: Obviously there are 5 � 5 � 5 D 125 ordered combinations. In the
case without replacement, any ordered combination could be sorted into sŠ different
variants, but this is no longer true. The ordered combination .1; 1; 1/ only exists
once, the ordered combination .1; 1; 2/ can be sorted in 3 different versions, and the
ordered combination .1; 2; 3/ can be sorted in 6 different versions. We hence have
to treat all such cases separately. There are 5 different ordered cases where all the
elements are equal, and they are also different as unordered combinations. If we
count carefully, we can figure out 60 ordered combinations where two elements
are equal while the third is different. All such combinations can be sorted in 3
different ordered combinations which all lead to the same unordered outcome. This
gives 60=3 D 20 different unordered combinations. Finally there are 60 ordered
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combinations where all the three elements are different. These cases can be sorted
in 6 different ordered versions, all leading to the same unordered outcome. This
leads to 60=6 D 10 unique unordered combinations. To summarize we end up with
5 C 20 C 10 D 35 unique unordered combinations.

As we can see from the example, computation of the number of such unordered
combinations is possible but quite cumbersome. It is possible to make a systematic
treatment of this topic, but since we rarely will encounter such cases in practice, we
will not enter more deeply into this.

3.1.3 Combinatorial Probabilities

In many connections it is reasonable to assume that all the different combinations are
equally probable. This corresponds to a uniform probability as defined in Chap. 2.
In particular it applies to situations where you guess possible outcomes without any
prior information. In such cases we can compute probabilities simply by counting
the number of cases with a specified outcome.

Example 3.8 A group of 300 students were given a list of 10 imaginary companies
and asked to pick 4 different companies from the list. After all the students had made
their choice, the stock price was simulated on a computer and the values of certain
call options were calculated from this. The worth of 10;000 such call options are
displayed in Table 3.1.

It turned out that 1 student had picked all the four best, i.e., NoWonder,
DataFriends, UnitedMath, and SlowFix. 8 students had picked all the 3 best, 42
students had picked the two best, and 120 students had picked the best. The question
is now if this was a good or bad achievement.

Since the students had no prior information about the companies, it may be
reasonable to assume that the choices are purely random. Since the order makes no
difference, the choices are unordered. The students should pick different companies,

which means that the selection is without replacement. There is hence
�

10
4

�
D 210

Table 3.1 Values of 10;000

options
Groggy USD 6700

Phrazebook USD 0

Externet USD 9500

NoWonder USD 191; 700

McHeaven USD 0

DataFriends USD 241; 900

UnitedMath USD 17; 100

AllStats USD 0

LowTech USD 0

SlowFix USD 147; 000
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unique outcomes, all of which are equally probable. We can then ask the following
questions:

• What is the probability of picking all the four best?
• What is the probability of picking the three best?
• What is the probability of picking the two best?
• What is the probability of picking the best?

Solution: What is the probability of picking all the four best? As there is just one
such combination, the probability is 1

210
.

What is the probability of picking the three best? If we are to pick the three best,
the last company can be picked arbitrarily among the 7 companies that are left, and

this can be done in
�

7

1

�
D 7 different ways. The probability is hence 7

210
D 1

30
.

What is the probability of picking the two best? If we are to pick the two best, the
last two companies can be picked arbitrarily among the 8 companies that are left,

and this can be done in
�

8
2

�
D 28 different ways. The probability is hence 28

210
D 2

15
.

What is the probability of picking the best company? If we are to pick the best
company, the last three companies can be picked arbitrarily among the 9 companies

that are left, and this can be done in
�

9
3

�
D 84 different ways. The probability is

hence 84
210

D 2
5
.

If 300 students pick 4 out of 10 companies at random, we expect that about
300
210

� 1 pick all the four best, that about 300 � 1
30

D 10 pick the three best, that about
300 � 2

15
D 40 pick the two best, while 300 � 2

5
pick the best. We see that the reported

numbers do not differ much from what we would expect.

Example 3.9 We now consider a modified version of Example 3.8. Assume that the
list contains 6 technology companies and 4 other, and assume that the students must
pick exactly two technology companies and two other. How many combinations are
there now, and what is the probability that the students pick the best company from
both groups?

Solution: We can view this as two independent choices, where both are
unordered without replacement. Since the choices do not connect, we can use
the principle in the start of this chapter to compute the number of combinations
within each choice, and then simply multiply them. This gives

�
6

2

��
4

2

�
D 15 � 6 D 90

different combinations. The best technology company can be realized in 5 different
ways, and the best other company in 3 different ways. The probability is hence

5 � 3

90
D 1

6
:
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Proceeding as in Example 3.9, we can break down many problems in combi-
natorics into unconnected parts. The number of combinations within each part can
often be found from the simple formulas we have been through, and when there are
no connections we can just multiply the number of combinations within each part
to find the total number of unique combinations.

3.2 Summary of Chap. 3

When we select s elements from a set with n unique elements, the number of unique
combinations can be found as follows:

• Ordered with replacement:

ns D n � n � n � � � n„ ƒ‚ …
s terms

:

• Ordered without replacement:

.n/s D n.n � 1/ � � � .n � s C 1/ D nŠ

.n � s/Š
:

• Unordered without replacement:

�n

s

�
D .n/s

sŠ
D nŠ

sŠ.n � s/Š
:

• If the choices are unordered with replacement, the problem can be broken down
into separate cases as in Example 3.7.

3.3 Problems for Chap. 3

3.1 You should put together a portfolio consisting of one mutual fund, one bond
fund, and one money market fund. There is in all 103 different mutual funds, 43
bond funds, and 39 money market funds. In how many different ways can you put
together your portfolio?

3.2 You are to invest in 3 different out of 10 different mutual funds. In the first fund
you should invest 10%, in the second 30%, and in the third 60%. In how many ways
can this be done?

3.3 You want to rank 5 out of 20 different products. In how many ways can this be
done?



50 3 Combinatorics

3.4 You are to invest in 4 different out of 10 different mutual funds. In all the funds
you should invest 25%. In how many different ways can this be done?

3.5 You should choose 4 different out of 15 different products. In how many ways
can this be done?

3.6 You should answer 5 different questions. Every question has the alternatives
Yes and No, and only one of these answers is correct. How many combinations end
up with exactly 3 correct answers?

3.7 You should answer 20 different questions. Every question has the alternatives
Yes and No, and only one of these answers is correct. How many combinations end
up with exactly 5 correct answers?

3.8 You invest in 6 out of 30 different mutual funds, and do not have any prior
information about the funds. We hence assume that they are selected randomly.

(a) How many different combinations of funds are there?
(b) At the end of the year you examine your investment. Compute the probability

that you have
(i) the best fund.

(ii) the two best funds.

3.9 In the area where you live, there are 10;000 different households. A company
sends a questionnaire to 1000 randomly selected households.

(a) What is the probability that you receive the questionnaire?
(b) What is the probability that you and your nearest neighbor receive the question-

naire?

3.10 In the area where you live there are N households. A company sends a
questionnaire to n randomly selected households. What is the probability that you
receive the questionnaire?

3.11 In a collection of 8 companies, all companies have a cooperation agreement
with each of the other companies.

(a) How many cooperation documents are there?
(b) In each company there is an executive officer who has the responsibility of each

cooperation document. We assume that no one has the responsibility of more
than one document. How many executive officers are there?

3.12 A warehouse contains 105 crates. 14 of these crates contains goods with
errors. We pick 2 crates randomly from the warehouse.
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(a) What is the probability that none of the two crates contains errors?
(b) What is the probability that at least one of the crates contains errors?

3.13 A warehouse contains 13 crates with the product Regular, 7 crates with the
product Superior, and 6 crates with the product Superior Extra. All the goods are
stored in equally looking crates. We pick three crates at random.

(a) What is the probability that all the three crates contain the product Regular?
(b) What is the probability that all the crates contain different products?

3.14 8 persons buy one of the three products A, B, and C.

(a) How many different outcomes are there?
(b) How many different outcomes are there where exactly one person buys

product A?
(c) How many cases are there where exactly 5 persons buy product A?
(d) How many cases are there where exactly 2 persons buy A, 3 persons buy B, and

3 persons buy C?
(e) How many cases are there where product A is bought by more persons than the

number sold of products B and C in total?

3.15 A fund company offers investments in 30 different mutual funds. 18 of these
invest in the USA, while 12 invest in China. A customer wants to invest in 4 funds
from the USA and 3 funds from China.

(a) How many different combination of funds can the customer choose between?
(b) Assume that two of the US funds will give bad returns the next few years. What

is the probability that the customer has these two funds in her portfolio?
(c) Assume that the customer evaluates her investment after one year. What is the

probability that she has invested in the two best US funds and in the best China
fund?

3.16 Nonuniform Combinations: In a customer survey the customers may select
products from 4 different product groups. They must select 2 products, but can only
select at most one product from each group.

(a) A customer selects two products, and we register which products have been
selected. How many different combinations of 2 product groups are there?
Group 1 has 4 different products.
Group 2 has 2 different products.
Group 3 has 3 different products.
Group 4 has 6 different products.
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All the products in the survey are considered to be different, hence there are
15 different products that can be selected.

A customer selected products from groups 1 and 4. In how many ways can
this be done?

(b) How many different combinations of products can the customer end up with?
(c) Assume that the first product is selected randomly among the 15 products, and

that the second product is selected among the remaining products the customer
can select. Explain why not all the different combinations are equally probable.

(d) What is the probability that the customer selects products from groups 1 and 4?

3.17 Passing a Multiple Choice Test: You participate in a test where there are 20
questions, and each question has 3 alternatives. Each question has one and only one
correct answer.

(a) How many different answer combinations are there in all? How many of these
have 19 correct answers and 1 wrong answer?

(b) Assume that you are guessing (picking the answers randomly) on all the
questions. What is the probability that you get exactly 14 correct answers?

(c) Assume that you know the answers to 10 of the questions, but have to guess the
rest. What is the probability that you get at least 13 correct answers?

3.18 Random Investments: A finance company plans to focus a portfolio of 10
different mutual funds. In the market that that company wishes to focus, there are in
all 75 different mutual funds.

(a) Assume that the company picks all the 10 funds randomly. How many different
combinations of funds are possible?

The 75 funds have different historical performance. Table 3.2 shows how
many funds performed, very bad, bad, average, good, and very good in relation
to the reference index.

What is the probability that the company has focused 4 average, 3 good, and
3 very good funds?

(b) What is the probability that all the 10 funds performed average or worse? What
is the probability that the company has focused at least one of the very good
funds?

3.19 Finding the Most Probable Outcome in Terms of Entropy: In a market
with only one good we assume there are 10 potential buyers and 5 potential sellers.
We assume for simplicity that each buyer can buy 0 or 1 unit of the good, and that

Table 3.2 Data for
Problem 3.18

Very bad Bad Average Good Very good

25 20 15 10 5
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each seller can sell 0 or one unit. In this market we can hence have 0; 1; 2; 3; 4; 5

transactions.
By a sales outcome we mean a list which specifies which persons have bought

one unit and which persons have sold one unit. Two lists give the same outcome if
the same persons are on both lists.

(a) How many different sales outcomes are there with 5 transactions?
(b) Make a complete table which specifies how many sales outcomes there are

with 0; 1; 2; 3; 4; 5 transactions. Assume for simplicity that any such outcome
is equally probable. Use this to find the probabilities of each number of
transactions. How many transactions are most probable?

(c) Alternatively we can make lists which specify which persons have bought one
unit and who they bought the unit from. Two such lists are assumed equal if they
consist of the same pairs. Make a complete table showing how many different
lists have pairs of buyers/sellers leading to 0; 1; 2; 3; 4; 5 transactions.

3.20 Multinomial Outcomes: 10 customers can buy 3 different goods. We call the
goods A, B, and C. We imagine that the customers come in succession, choose a
good, and leave the place in the cue for the next customer. The shop has more than
10 goods of each type, so it can always satisfy demand.

(a) Assume that x customers buy A, y customers buy B, and z customers buy C. Let
K.x; y; z/ be the number of sequences leading to the outcome .x; y; z/. Explain
why

K.x; y; z/ D
�

10

x

�
�
�

10 � x

y

�
�
�

10 � x � y

z

�
;

and use this to show that

K.x; y; z/ D 10Š

xŠyŠzŠ
:

(b) Assume that all trades are unrelated, and the probabilities are
• 30% for buying A,
• 20% for buying B,
• 50% for buying C.

Assume that 3 customers bought A, 2 customers bought B, and 5 customers
bought C. How probable is this outcome?

(c) Assume that all trades are unrelated and that the probabilities are as in (b). Find
the probability that at least 8 customers bought A.
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Abstract

In most cases where we study probabilities, we have some additional information
about what has happened. Information of this sort will often pose a restriction on
the sample space. In this chapter we will show how to compute probabilities
under such restrictions.

4.1 Conditional Probability

Before we consider the definition of conditional probability, we take a look at a
simple example.

Example 4.1 During the years 2016 and 2017 a total of 100 students participated in
the exam for the course STAT000. The results are depicted in Fig. 4.1. Each square
represents the result of one student.

From Fig. 4.1 we see that 20% of the students received the grad A, 30% got B,
30% got C, and 20% got D. Half of the students took the exam in 2017. The results
of these students are indicated by the shaded squares in Fig. 4.2.

We see that 18 students got the grade A in 2017. This corresponds to 18% of
the total number of students in 2016 and 2017. If we want to find the fraction of
the students that got A in 2017, we must take into account that 50 students took the
exam that year. The fraction is hence 36%.

Example 4.1 shows the underlying principle behind conditional probabilities;
when we condition the probabilities, we must take into account that we change the
outcomes under consideration.
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Fig. 4.1 Exam results from
2016 and 2017, each square
corresponds to one student

Fig. 4.2 Exam results from
2017, each shaded square
corresponds to one student

Definition 4.1 If B is an event with P.B/ 6D 0 and A is any event, we define
the conditional probability P.AjB/ as follows:

P.AjB/ D P.A \ B/

P.B/
:

We say that P.AjB/ is the probability for A given B.
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If we use this definition in Example 4.1, the computation is as follows:

P.Aj2017/ D P.A \ 2017/

P.2017/
D 0:18

0:5
D 0:36 D 36%:

We see that this is exactly what we want to know when we restrict attention to only
those who took the exam in 2017. Note that the order of the events is important. If
we change the order, we get

P.2017jA/ D P.2017 \ A/

P.A/
D 0:18

0:20
D 0:90 D 90%:

This number tells us that 90% of the students who obtained an A took the exam in
2017.

Example 4.2 In a customer survey we found that 60% of the customers used the
brand Favorite, while 30% used the brand Super. 15% of the customers used both
brands. How many percent of the Favorite users use Super, and how many percent
of the Super users use Favorite?

Solution: We use the formulas for conditional probabilities to see that

P.Sj F/ D P.S \ F/

P. F/
D 15%

60%
D 25%:

P. FjS/ D P. F \ S/

P.S/
D 15%

30%
D 50%:

This means that 25% of the Favorite users use Super, and that 50% of the Super
users use Favorite.

4.1.1 Computing Conditional Probabilities

When we compute conditional probabilities, we can work with complements just as
before. This can be seen as follows:

P.AjB/ C P.AcjB/ D P.A \ B/ C P.Ac \ B/

P.B/
D P.B/

P.B/
D 1:

From this we see that

P.AcjB/ D 1 � P.AjB/:
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The formula for conditional probability also provides us with some useful
rearrangements which help in special situations. If we multiply the definition of
P.AjB/ with P.B/ on both sides, we get

P.A \ B/ D P.AjB/ � P.B/:

Correspondingly

P.B \ A/ D P.BjA/ � P.A/

Since P.A \ B/ D P.B \ A/, we get

P.AjB/ � P.B/ D P.BjA/ � P.A/:

If we divide by P.A/ on both sides, we have proved Bayes’ rule which is an
important tool in statistics.

Bayes’ rule:

P.BjA/ D P.AjB/ � P.B/

P.A/
:

Returning to Example 4.2, we now have an alternative way of finding the second
answer:

P.FjS/ D P.SjF/ � P.F/

P.S/
D 25% � 60%

15%
D 50%

This way of rearranging the probabilities turns out to be useful in many connections.
We will return to this later in this chapter.

Example 4.3 A car dealer wanted to try some new incentives to increase sales.
All visitors would be offered a scratch card if they were willing to participate in
a meeting with a customer advisor. The new incentives were examined after one
year. 10% of the visitors ended up buying a car. 30% of the visitors who bought a
car received a scratch card, and 10% of the customers who did not buy a car received
a scratch card.

The car dealer wanted to find the answer to the following question: Have
customers receiving scratch cards, a higher probability of buying a car?

Solution: We define the events B W The customer bought a car, S W The customer
received a scratch card. From the information in the text, we know that

P.B/ D 0:1; P.Bc/ D 0:9; P.SjB/ D 0:3; P.SjBc/ D 0:1:
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Since ˝ D B [ Bc, we can split the sample space in two disjoint pieces. This can
be used as follows:

P.S/ D P.S \ B/ C P.S \ Bc/

D P.SjB/ � P.B/ C P.SjBc/ � P.Bc/

D 0:3 � 0:1 C 0:1 � 0:9 D 0:12:

Hence

P.BjS/ D P.SjB/ � P.B/

P.S/
D 0:3 � 0:1

0:12
D 0:25 D 25%:

We conclude that customers receiving scratch cards have a higher probability of
buying a car.

4.1.2 Splitting the Sample Space

The technique used in Example 4.3 can be formulated as a general principle.
Assume that the sample space

˝ D B1 [ B2 [ � � � [ Bn

where B1; B2; : : : ; Bn are disjoint. For any subset A we have, see Fig. 4.3, that

P.A/ D P.A \ B1/ C P.A \ B2/ C � � � P.A \ Bn/:

If we use the formulas for conditional probabilities, this can be rewritten as
follows:

P.A/ D P.AjB1/ � P.B1/ C P.AjB2/ � P.B2/ C � � � P.AjBn/ � P.Bn/:

Fig. 4.3 Splitting the probability space into disjoint parts
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The case where we split ˝ into two pieces B and Bc is particularly important. The
formula then reads as:

P.A/ D P.AjB/ � P.B/ C P.AjBc/ � P.Bc/:

At a first glance this may not appear very useful. Quite the contrary in fact,
as the expression for A seems more complicated than where we started. Our
notation, however, is playing us a trick here; A may be a complicated set, while
the intersections may be more simple to handle. When this happens, the splitting
principle is very useful, and that is just what we could see happen in Example 4.3.

4.1.3 Probability Trees

In many cases complex situations with several conditional probabilities can be made
more manageable if we draw a tree showing the different cases.

Example 4.4 We want to study the investments made by a mutual fund. The fund
invests in the USA, and the investments have been placed with 75% on NASDAQ
(National Association of Securities Dealers Automated Quotations System) and
25% on NYSE (New York Stock Exchange). Of the funds invested on NASDAQ
100% are invested in technology, while 40% of the money invested on NYSE are
invested in tech firms.

The text is relatively complex, and the information becomes more transparent if
we draw a tree as in Fig. 4.4.

To illustrate how to use the figure, we try to answer an explicit question: How
many percent of the US stocks are invested in technology?

Solution: The problem can be solved in several different ways. We define ˝ D
USA; A D Technology; B1 D NASDAQ and B2 D NYSE. Then B1 and B2 are
disjoint and ˝ D B1 [ B2. The splitting principle gives

P.A/ D P.AjB1/ � P.B1/ C P.AjB2/ � P.B2/ (4.1)

D 1 � 0:75 C 0:4 � 0:25 D 0:85 D 85%:

Fig. 4.4 The tree of
conditional probabilities from
Example 4.4

USA

NASDAQ NYSE

75 25

Technology Other

100 0

Technology Other

40 60
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Fig. 4.5 Total investments
using the rules from
Example 4.4

USA

NASDAQ NYSE

75 M $ 25 M $

Technology Other

75 M $ 0

Technology Other

10 M $ 15 M $

There is, however, an alternative approach which most people find to be simpler.
Let us imagine that we invest 100 M USD in the fund. It is then very simple to write
down a tree displaying how much money we are investing, see Fig. 4.5.

From the information in Fig. 4.5, the question above has an almost trivial answer.
We have invested 100 M USD and 85 M USD have been invested in technology.
Hence the share of investments in technology is

85

100
D 0:85 D 85%:

Example 4.5 We consider a new question based on the same information as in
Example 4.4: How many percent of the technology funds are invested on NYSE?

Solution: Again the solution is straightforward from Fig. 4.5. 85 M USD have
been invested in technology, and 10 M USD of these have been invested on NYSE.
The share is hence

10

85
� 11:76%:

Strictly speaking we have until now looked at shares and not probabilities. The
point is now that we can reason with probabilities in exactly the same way.

Example 4.6 A firm has two main machines, Machine 1 and Machine 2. 60% of
the goods are produced using machine 1, while the rest is produced on machine 2.
The goods that are produced on machine 1 is in the next step finished on machine
3 or machine 4. 75% of these goods continue to machine 3, while the rest continue
to machine 4. The goods that have been produced on machine 3 is in the next step
finished on machine 5 or 6. 50% of these goods continue to machine 5, while the rest
is treated on machine 6. All the goods produced on machine 3 are without errors. Of
the goods produced on machine 4, 40% are OK. Of the goods treated by machine
5, 60% are OK, while only 10% of the goods treated on machine 6 are OK. A tree
depicting all this information is shown in Fig. 4.6.
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Production

Machine 1 Machine 2

60 40

Machine 3 Machine 4

75 25

Machine 5 Machine 6

50 50

OK Error

100 0

OK Error

40 60

OK Error

60 40

OK Error

10 90

Fig. 4.6 Conditional probabilities

Just as in the examples above, it will in most cases help if we convert the condi-
tional probabilities in Fig. 4.6 to absolute probabilities. When 60% of the goods are
produced on machine 1 and 75% of these are fished on machine 3, there is in total
0:6 � 0:75 D 0:45 D 45% of the total that are produced on machines 1 and 3. If we
translate all the numbers in this way, we end up with the tree in Fig. 4.7.

From the tree in Fig. 4.7 it is easy to answer several relevant questions.

Example 4.7 What is P.OKjProduced on machines 1 and 3/?

Solution:

P.OKjProduced on machines 1 and 3/ D P.OK \ machine 1 \ machine 3/

P.machine 1 \ machine 3/
(4.2)

D 45%

45%
D 1 D 100%:

What is P.Produced on machines 1 and 3jOK/?

Solution:

P.Produced on machines 1 and 3jOK/ D P.OK \ machine 1 \ machine 3/

P.OK/
(4.3)

D 45%

45% C 6% C 12% C 2%
� 69:23%:
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Production

Machine 1 Machine 2

60 40

Machine 3 Machine 4

45 15

Machine 5 Machine 6

20 20

OK Error

45 0

OK Error

6 9

OK Error

12 8

OK Error

2 18

Fig. 4.7 Absolute probabilities

We can also find the answer to the last question using Bayes’ rule:

P.Produced on machines 1 and 3jOK/

D P.OKjmachine 1 \ machine 3/ � P.machine 1 \ machine 3/

P.OK/

D 100% � 45%

45% C 6% C 12% C 2%
� 69:23%:

From the examples above, we see that it is often a good idea to convert a tree with
conditional probabilities to a tree of absolute probabilities. We now look at how we
can do this quickly.

Example 4.8 To the left in Fig. 4.8 we show a part of a tree with conditional
probabilities. We wish to compute the absolute probability of reaching the nodes
shown to the right.

The node in the bottom of the tree represents 100%, and since 20% of this is
transferred to A, P.A/ D 20%. The probability of reaching node B is

P.A \ B/ D P.BjA/ � P.A/ D 50% � 20% D 10%:

Furthermore

P.A \ B \ C/ D P.CjA \ B/ � P.A \ B/ D P.CjA \ B/ � P.BjA/ � P.A/ (4.4)

D 50% � 50% � 20% D 5%:



64 4 Conditional Probability

20

50

50

20

A

B

C

D

?

?

?

?

Fig. 4.8 A part of a probability tree

20

10

5

1

Fig. 4.9 Multiplying probabilities along branches

We can continue like this until we reach the end of the branch. Even though the
derivation is somewhat complicated, we end up with a simple and transparent
principle:

We find the absolute probabilities multiplying the conditional probabilities in
succession along each branch.

The end result is hence as shown in Fig. 4.9.

4.2 Subjective Probabilities

We often hear people make more of less wild guesses on the probabilities of
something happening. Such probabilities are often based on wishful thinking; the
person feels that a probability is large, or claims to have reason to believe that a
probability is small. When a person speaks in public on such matters, it is easy to
make contradictory statements.

Example 4.9 Two teams A and B are playing the final, and a supporter of team
A claims that the chance of A winning the final is P.A/ D 80%. One of the best
players on team B is injured however, and it is not clear that he will recover to play
in the final. The supporter believes that the chance of recovery is P.B/ D 0:1. If
he recovers, the supporter claims that the chance of winning falls to 60%, while the
chance of team A winning is 90% if he does not recover.
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We let B denote the event that the best player on team B recovers, and the
supporter has made the statements

P.A/ D 0:8; P.B/ D 0:1; P.AjB/ D 0:6; P.AjBc/ D 0:9:

What are the consequences of these subjective statements?
We know that

P.AjB/ D P.A \ B/

P.B/
D 0:6 ) P.A \ B/ D 0:6 P.B/ D 0:06:

P.AjBc/ D P.A \ Bc/

P.Bc/
D 0:9 ) P.A \ Bc/ D 0:9 P.Bc/ D 0:81:

Hence

P.A/ D P.A \ B/ C P.A \ Bc/ D 0:06 C 0:81 D 0:87;

which is quite disturbing as the supporter already claimed that P.A/ D 0:8. The
numbers do not add up, and there must be something wrong with the subjective
assessments. The reader is encouraged to check that only the value P.B/ D 1=3 is
consistent with the three other values.

4.3 Independence

Independence is one of the most central concepts in statistics. Broadly speaking
we can say that two events are independent when there are no connections
between them. Independence is particularly important when we conduct scientific
experiments. It is important to carry out the experiments in a way such that the
outcome of a new experiment does not depend on what has happened in the previous
cases. Technically the definition of independence is surprisingly simple:

Two events A and B are independent if and only if P.A \ B/ D P.A/ � P.B/.

Independence is intimately related to conditional probability. If P.B/ 6D 0, and A
and B are independent events, then

P.AjB/ D P.A \ B/

P.B/
D P.A/ � P.B/

P.B/
D P.A/:
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Hence if A and B are independent the probability of A does not change when
we condition on B. The multiplicative rule makes it simple to compute independent
events, and the definition is easily extended to cases with more than two events.

A collection of events are mutually independent if and only if the probability
of any intersection is equal to the product of the probabilities of the events
included in the intersection.

Example 4.10 Assume that the events A; B; C; D are mutually independent.
Then, e.g.

P.A \ B \ C \ D/ D P.A/ � P.B/ � P.C/ � P.D/

and

P.B \ D/ D P.B/ � P.D/:

Example 4.11 Assume that an experiment has the outcome r with probability 0.2,
s with probability 0.5, and t with probability 0.3. Assume that we repeat the
experiment 4 times, and that the outcomes of each repetition are independent. What
is the probability of the sequence rrts?

Solution: Since each repetition is independent from the rest, we get

P.rrts/ D P.r/ � P.r/ � P.t/ � P.s/ D 0:2 � 0:2 � 0:3 � 0:5 D 0:006:

We notice that independence leads to the same simplicity we exploit in combina-
torics when the choices are unconnected.

4.4 Summary of Chap. 4

• Definition of conditional probability

P.AjB/ D P.A \ B/

P.B/
:

• Bayes’ rule:

P.BjA/ D P.AjB/ � P.B/

P.A/
:
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• The splitting principle

P.A/ D P.AjB1/ � P.B1/ C P.AjB2/ � P.B2/ C � � � C P.AjBn/ � P.Bn/:

• Two events are independent when P.A \ B/ D P.A/ � P.B/.

4.5 Problems for Chap. 4

4.1 In a customer survey we have found that 35% of the customers use the brand
Favorite, while 56% use Super. 14% of the customers use both brands. How many
percent of the Favorite users use Super, and how many percent of the Super users
use Favorite?

4.2 In a customer survey we have found that 50% of the Favorite users use Super,
while 25% of the Super users use Favorite. 20% of the customers use both brands.
How many percent of the customers use Favorite, and how many percent of the
customers use Super?

4.3 In a survey 160 men and 240 women were asked if they liked a particular
product. 40% of the men and 20% of the women liked the product. How many
percent of the participants liked the product?

4.4 You want to invest some money. 60% should be invested in mutual funds and
40% in money market funds. Of the money invested in mutual funds, 30% should
be invested in China and 70% in other countries. Of the money invested in money
market funds, 80% should be invested in Chinese funds and 20% in other countries.

(a) Make a tree displaying the information.
(b) How many percent of the money is invested in China?
(c) How many percent of the money invested in China are in mutual funds?

4.5 A company has 3 departments. 20% of the reports are from department A, 45%
from department B, and 35% from department C. An examination revealed that 3%
of the reports for A contained errors, 6% of the reports from B contained errors, and
2% of the reports from C contained errors.

(a) Make a tree displaying the information.
(b) How many percent of the reports contained errors?
(c) A report contained errors. What is the probability that the report came from

department A?
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4.6 We look at the stock price in two companies, and define the following events:

A: The stock price in company 1 increases.
B: The stock price in company 2 increases.
C: The stock price in company 2 does not increase.

We assume that there is 60% probability of an increase in the stock price of
company 1, 40% probability of an increase in the stock price of company 2, and
24% probability of an increase in the stock price of both companies?

(a) Are A and B independent?
(b) Are A and C independent?
(c) Are B and C independent?

4.7 Show that if A and B are independent, then A and C D Bc are independent.

4.8 We consider two events:

A: The stock price in company 1 increases.
B: The interest rate falls.

Assume that there is 60% probability for an increase in stock price, and that this
probability does not change if the interest rate falls.

(a) Show that A and B are independent events.
(b) Try to formulate a general version of this result.

4.9 A shop has three goods on offer, A, B, and C. Each customer buys at most one
of these goods. If a customer buys one of the goods on offer, then there is

• 50% probability for buying A.
• 20% probability for buying B.
• 30% probability for buying C.

4 customers buy goods on offer, and we assume that buys are independent.

(a) What is the probability that customer 1 buys A, customer 2 buys A, customer 3
buys B, and customer 4 buys C?

(b) What is the probability that at least 3 customers buy A?
(c) What is the probability that 2 customers buy C?

4.10 A company has two departments, department A with 60 employees and
department B with 90 employees. Each department is divided into groups of 30
people, A1 and A2 at department A and B1; B2; B3 at department B. During the last
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Table 4.1 Performance at departments A and B in Problem 4.10

Group Good Average Bad

A1 50% 25% 25%

A2 10% 70% 20%

B1 40% 50% 10%

B2 20% 60% 20%

B3 30% 60% 10%

Table 4.2 Fractions liking the product in Problem 4.11

Fractions liking the product

Women Younger than 25 years 25–40 years Older than 40 years

60% 30% 80%

Fractions liking the product

Men Younger than 25 years 25–40 years Older than 40 years

20% 40% 60%

Fractions of the participants

Women Younger than 25 years 25–40 years Older than 40 years

15% 30% 15%

Fractions of the participants

Men Younger than 25 years 25–40 years Older than 40 years

20% 10% 10%

year the performance of each group has been examined, and the results are shown
in Table 4.1.

We assume that the observed fractions represent the probabilities for the respec-
tive performances, and the probability that a project is carried out at a department is
proportional to the number of workers at the department.

(a) Make a tree displaying the information.
(b) What is the probability that a project done at department A is good?
(c) A project is good. What is the probability that it has been done at department B?
(d) Is the probability of good performance independent of department?

4.11 Structuring Complex Information: In a customer survey a large number of
people were asked if they liked a product. The question was posed to 6 different
groups of the population. The fractions liking the product are shown in Table 4.2.
The table also shows how large fractions of the participants belonged to each group.

(a) How large fraction of the participants liked the product?
(b) How large fraction of the women were in the group Younger than 25 years old?
(c) How large fraction of the women and how large fraction of the men liked the

product?
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Table 4.3 Investing
strategies in Problem 4.12

Fund USA Europe China

Global A 50% 30% 20%

Global B 20% 70% 10%

Aggressive C 30% 50% 20%

4.12 Extracting Information from Trees: A broker sells shares from three differ-
ent global funds: Global A, Global B, and Aggressive C. 30% of the investments are
placed in Global A, 60% in Global B, and 10% in Aggressive C. The funds diversify
their investments and invest in the USA, Europe, and China. The fractions invested
in these markets are shown in Table 4.3.

(a) Draw a tree displaying the information given above.
(b) How large share of the two funds Global A and B in total is invested in the USA?
(c) How large fraction of the US investments is invested in Global A?
(d) From the information provided above, is it possible to determine how many

percent of the customers who invest more than 40% of their investments in the
USA?

4.13 Untangling Conditional Information: In surveys focusing private/sensitive
information it is important that the participants feel they are anonymous. A simple
strategy taking this into account can be outlined as follows:

Split the participants into two categories:

• Category 1: Persons with date of birth from January 1 to August 31.
• Category 2: Persons with date of birth from September 1 to December 31.

The participants in Category 1 answer Yes/No to the question: Is your year of
birth an even number?

The participants in Category 2 answer Yes/No to the question: Have you ever
used illegal drugs?

The participants should not reveal their category, and the people conducting the
survey hence do not know which question has been answered.

(a) We assume that all relevant dates/year of birth are equally probable, and we
ignore leap years. How large fraction does each category make up? What is the
probability of answering Yes, given that the person is in Category 1?

(b) We ask the questions to a large number of people, and find that in total 60% of
the participants answered Yes. Assume that the answers were honest. How large
fraction of Category 2 admitted using illegal drugs?

(c) Alternatively we could swap the questions for Category 1 and 2. Discuss if there
can be advantages/disadvantages in swapping.
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4.14 True/False Positives: A medical test gives a true positive in 77% of the cases
where the patient has the illness, and a false positive in 2% of the cases where
the patient does not have the illness. We assume that at any given time 2% of the
population has the illness.

(a) The test is used on a randomly chosen patient. In how many percent of the cases
will the test return a positive result? Given that the test returns a positive value,
how large is the probability that the person has the illness?

(b) A person is tested and the test returns a positive value. Discuss circumstances
that can influence the probability that the person has the illness.

(c) Can there exist circumstances where a positive value implies more than 77%
chance that the person has the illness?

4.15 The Chance of True Positives Can Be Strongly Misleading: An auditing
firm has developed a diagnostic tool to predict which firms will go bankrupt the next
year. The model has been tested on old data and returned the following results:

• Of the companies that went bankrupt, 80% were flagged by the tool.
• Of the companies that did not go bankrupt, 95% were not flagged by the tool.

We assume that 10% of the firms will go bankrupt the next year, and that the
performance of the diagnostic tool will stay in line with the performance on the old
data.

(a) What is the probability that the firm is flagged given that it will not go bankrupt?
How large percent of bankruptcies will the model predict?

(b) A firm has been flagged by the tool. What is the probability that the firm will in
fact go bankrupt?

4.16 Markov Chains: A bank has some good and some bad customers.

• The probability that a good customer is downgraded to a bad customer during
one time period is 30%.

• The probability that a bad customer is upgraded to a good customer during one
time period is 20%.

We assume for simplicity that the development during any time period is
independent of what has happened in the previous time periods, and that the time
development of different customers is independent.

(a) A customer is rated as good. How probable is it that:
(i) The customer is rated as good in the next two time periods?

(ii) The customer is rated as good two time periods from now?
(b) A customer is rated as good. How probable is it that the customer is rated as

good in exactly 9 of the 10 next time periods?
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(c) Point to circumstances that can make the assumptions of independence ques-
tionable.

4.17 Simpson’s Paradox: During the first six months of the year auditing firm
A inspected 2000 documents and detected 120 errors. In the next 6 months they
inspected 8000 documents and detected 240 errors. In the first six months auditing
firm B inspected 4000 documents and detected 200 errors. In the next six months
they inspected 1000 documents and detected 20 errors. We assume that the numbers
are representative in that they reflect the probabilities of finding errors in the two
periods.

(a) Which firm had the largest probability of finding errors in the first six months?
Which firm had the largest probability of finding errors in the next six months?
Which firm had the largest probability of finding errors during the whole year?

(b) Try to explain the connection between the results in (a).

4.18 Combining Splitting and Bayes’ Rule: We classify firms into three different
groups: Gr 1: Solvent, Gr 2: Worrisome, Gr 3: Bankrupt.

A bank gives the firms rating A, B, or C (A is the best rating.) Figures from
previous years:

• 2:5% of the firms that went bankrupt had rating A.
• 15% that ended up as worrisome had rating A.
• 30% that ended up as solvent had rating A.

We assume that these numbers are stable from year to year. The numbers for
rating B and C are omitted since they are not needed to answer the questions.

(a) How many percent of the firms get rating A?
(b) A firm has rating A. How large is the probability that it will go bankrupt?

4.19 Few False Positives Might Still Be Bad: An auditing firm has developed a
tool to predict bankruptcy. The tool is very conservative. Among companies that do
not go bankrupt, 5% are flagged for bankruptcy. We assume in this problem that a
randomly selected firm has 0:1% probability of bankruptcy.

(a) Explain why

P.The firm is flagged for bankruptcy/ � 1 � 0:001 C 0:05 � 0:999

(b) A firm has been flagged for bankruptcy with this tool. Show that the probability
that the firm does not go bankrupt is larger than 98%.

4.20 Polls May Be Misleading: Assume that 60% of the viewers of TV program
think that the level of taxation should be decreased, while 40% would like to see
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an increase. Assume further that 2% of those in favor of a reduction participate in a
poll, while 7% of the viewers in favor of a tax raise participate in the poll.

(a) How large fraction of the viewers participate in the poll?
(b) How large fraction of the participants in the poll would like to see an increase

in the tax level? Comment the result.

4.21 Combining Splitting and Bayes’ Rule: There is often a connection between
economic growth in a country and a strengthening of the currency. Assume that the
probabilities for economic growth are as follows:

P.High growth/ D 0:3 P.Medium growth/ D 0:5 P.Low growth/ D 0:2:

• When growth is high, there is a 70% chance of strengthening the currency.
• When growth is medium, there is a 50% chance of strengthening the currency.
• When growth is low, there is a 20% chance of strengthening the currency.

(a) How large is the probability that the currency will strengthen?
(b) The currency is strengthening. What is the probability of high economic growth?
(c) Are the events “High economic growth” and “The currency is strengthening”

independent in this case. Justify the answer.

4.22 Spam Filtering: The frequency of special words is very different in e-mail
spam than in ordinary e-mail. In e-mail spam the frequency of the word “debt”
is 30.9%, while the frequency of the word is 0.447% in ordinary e-mail. In this
problem we will assume that e-mail spam make up 50% of the e-mail that you
receive.

(a) How large is the frequency of the word “debt” in all e-mail?
(b) An e-mail contains the word “debt.” What is the probability that the e-mail is

spam?

4.23 Untangling Conditional Probabilities: Assume that a special group of
workers makes up 5% of the tax payers within a city. The taxation authorities have
estimated that about 10% of the workers commit tax fraud. Previous data suggest
that 1% of the workers who do not commit tax fraud belong to the special group.

(a) Use the information in the text to suggest how big share the special group makes
up of those committing tax fraud.

(b) Use the answer in (a) to find the probability that a person in the special group
commits tax fraud.

4.24 A Simpson’s Paradox fromReal Life: In a statistical survey from the period
1972–1974, 1316 women were interviewed regarding their smoking habits. The
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Table 4.4 Mortality rates in age groups

Age 18–24 25–34 35–44 45–54 55–64 65–74 75+

Mortality in % smokers 3:6 2:4 12:8 20:8 44:3 80:6 100

Mortality in % nonsmokers 1:6 3:2 5:7 15:4 33:1 78:3 100

Table 4.5 Number of participants in each age group

Age 18–24 25–34 35–44 45–54 55–64 65–74 75+

Number of participants smokers 55 124 109 130 115 36 13

Number of participants nonsmokers 62 157 123 78 121 129 64

sample was drawn randomly and there were 582 smokers and 734 nonsmokers in
the sample. 20 years later, the scientists recorded how many of the participants that
were still alive. The results are shown in Tables 4.4 and 4.5. Age refers to the age at
the start of the survey.

(a) What was (according to the tables) the probability of death given that the
participant was a smoker in the age group 18–24? How big share of the smokers
did this group make up? Use the splitting principle to compute the probability
for death among smokers.

(b) What was (according to the tables) the probability of death given that the
participant was a nonsmoker in the age group 18–24? How big share of the
smokers did this group make up? Use the splitting principle to compute the
probability for death among nonsmokers.

(c) The survey shows that the probability for death was considerably lower for
smokers than for nonsmokers. Explain, using the tables above, that this does
not show that smoking is healthy.



5RandomVariables, Mean, and Variance

Abstract

In this chapter we will introduce a general framework we will use to study
statistical distributions. A statistical distribution specifies the probability of the
different outcomes that can occur. We can, e.g., ask about the probability for
exactly x defective items in a sample of 10 items. We let x run from 0 to
10, and compute 11 probabilities. The set of these probabilities we call the
distribution. When the distribution is known, we are usually able to compute
all the probabilities we may need. The distribution is hence the key to our
calculations.

5.1 Random Variables

In many cases we wish to study a number which comes as a result of a random
outcome. We call any such number a random variable. We first consider a few
examples.

Example 5.1 Let ˝ be the set of outcomes from one roll of a dice, and define a
function X by

X.!/ D
(

1 if ! D 1; 3; 5

�1 if ! D 2; 4; 6
:

Hence if the outcome is odd, the result is 1, and the result is �1 when the outcome
is even. In any case X will be a real number.

© Springer International Publishing AG 2017
J. Ubøe, Introductory Statistics for Business and Economics, Springer Texts
in Business and Economics, https://doi.org/10.1007/978-3-319-70936-9_5

75

https://doi.org/10.1007/978-3-319-70936-9_5


76 5 Random Variables, Mean, and Variance

Example 5.2 Let ˝ be the set of outcomes from two rolls of a dice, and define a
function

X.!1; !2/ D !1 C !2;

where !1 is the result of the first roll and !2 is the result of the second roll. Any
outcome of the two tosses leads to a real number.

Example 5.3 Let v1; v2; v3 denote the stock price for three different companies, and
let the sample space ˝ be all possible combinations of values that the stock prices
can have tomorrow. We can then define a function

X.v1; v2; v3/ D 1

3
.v1 C v2 C v3/:

Whatever stock prices will occur tomorrow, the resulting value of X will be a real
number.

All the three examples above have that in common that they define a function
on the sample space leading to a real number. We call any such function a random
variable.

Definition 5.1 By a random variable we mean a function defined on the
sample space which returns a well-defined real number from any outcome.

In this chapter we will only consider random variables defined on a discrete
sample space. When the sample space is discrete, we can define a random variable
specifying the values X.!1/; X.!2/; : : : . The same value can occur multiple times,
and this is something we need to take into account.

Definition 5.2 The probability distribution of a random variable X is defined
by

P.x/ D P.X D x/;

where x is any value that X can have.

The probability distribution hence specifies the probability of the different
values that X can have. The probability distribution P.x/ is also called the point
probabilities of X. In statistics it is common to use capital letters to define random
variables, and use lowercase letters about constants. In the definition above X is a
random variable, while x is used about all the constant values that X can have.
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Example 5.4 Let ˝ D f!1; !2; !3g with uniform probabilities, and define a random
variable by

X.!1/1; X.!2/ D �2; X.!3/ D 1:

Then P.X D �2/ D 1
3

and P.X D 1/ D 2
3
. For any other values of x, P.X D x/ D 0.

Example 5.5 Let X be the number of heads in two tosses of a fair coin. There are
three possible values for X: 0; 1; 2. The value 1 can be realized in two different ways,
and the probability distribution is hence:

P.X D 0/ D 1

4
; P.X D 1/ D 1

2
; P.X D 2/ D 1

4
:

For any other values of x, P.X D x/ D 0.
To get an overview of the distribution, we can display these values as bars in a

histogram. The histogram in Fig. 5.1 shows the relative frequencies we would expect
to find if we did a large number (ideally infinitely many) of independent tosses.

Example 5.6 Assume that ˝ D f!1; !2; !3; !4; !5g,

p.!1/ D 0:2; p.!2/ D 0:3; p.!3/ D 0:1; p.!4/ D 0:1; p.!5/ D 0:3;

and that

X.!1/ D 1; X.!2/ D 2; X.!3/ D 1; X.!4/ D 2; X.!5/ D 3:

Fig. 5.1 The distribution in
Example 5.5
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Fig. 5.2 The distribution in
Example 5.6

1 2 3

0.1

0.2

0.3

0.4

0.5
P(x)

x

Fig. 5.3 The distribution of
the sum of two dice tosses
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Then

P.X D 1/ D p.!1/ C p.!3/ D 0:3;

P.X D 2/ D p.!2/ C p.!4/ D 0:4;

P.X D 3/ D p.!5/ D 0:3:

The histogram is displayed in Fig. 5.2.

Example 5.7 Let ˝ be the set of all outcomes of two tosses of a dice with uniform
probability, and let S denote the sum of the two tosses. Here there are lots of different
cases, and it is tedious to go through them all. The end result is displayed in Fig. 5.3,
and looking at the figure we quickly get an overview of the distribution. We can, e.g.,
see that the result S D 7 is the most probable, and that the value is about 0.17.
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Sometimes it may be convenient to organize the information a bit differently.
Instead of giving the probability for each possible value of X, we might give the
probability that X is below a threshold x. The probability that the random variable
is less than or equal to a constant x, we call the cumulative distribution.

Definition 5.3 The cumulative distribution of a random variable X is defined
by

F.x/ D P.X � x/;

which is defined for any real number x.

When the distribution of X is known, we see that

F.x/ D
X

xi�x

P.X D xi/:

That means that we find the value of the cumulative distribution adding the
probability of all cases where xi � x. Figure 5.4 shows the principle behind the
function. It is piecewise constant and increases in jumps at x1; x2; x3 : : : : The sizes
of the jumps are equal to the corresponding values of P.X D xi/.

Example 5.8 Assume that ˝ D f!1; : : : ; !5g, and

p.!1/ D 0:2; p.!2/ D 0:3; p.!4/ D 0:1; p.!4/ D 0:1; p.!5/ D 0:3;

Fig. 5.4 A cumulative
distribution
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Fig. 5.5 The cumulative
distribution of Example 5.8
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and that

X.!1/ D 1; X.!2/ D 2; X.!3/ D 1; X.!4/ D 2; X.!1/ D 3:

Find the cumulative distribution.

Solution: If x < 1, then F.x/ D P.X � x/ D 0.

If 1 � x < 2, then F.x/ D P.X � x/ D p.!1/ C p.!3/ D 0:3:

If 2 � x < 3, then F.x/ D P.X � x/ D p.!1/ C p.!2/ C p.!3/ C p.!4/ D 0:7:

If 3 � x, then F.x/ D P.X � x/ D p.!1/ C p.!2/ C p.!3/ C p.!4/ C p.!5/ D 1:

We see that the function is piecewise constant, and that it increases everywhere. The
graph is shown in Fig. 5.5.

5.2 Expectation

In Chap. 1 we computed the mean of a sequence of numbers. The mean is
one of the major practical concepts in statistics, and we will now look at the
corresponding theoretical concept. The expectation EŒX� of a random variable X
is a theoretical quantity with the following property: If we make a large number of
independent observations of X, the mean of these observations will approach EŒX�.
The expectation is hence an idealized quantity which we intuitively may think of as
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the mean of infinitely many observations. The rigorous definition reads as follows:

Definition 5.4 If X is a random variable with possible values x1; x2; : : : ; xm,
then

EŒX� D x1 � P.X D x1/ C x2 � P.X D x2/ C � � � C xm � P.X D xm/:

We call EŒX� the expectation of X, or the expected value when it is clear form
context which random variable we are considering.

It is sometimes cumbersome to write the terms like this, and as an alternative we
may use the summing symbol instead. Then the expression is

EŒX� D
mX

iD1

xi � P.X D xi/:

Verbally we may express this as follows: We consider all the values that X can
achieve, and multiply each such value by the probability that X has this particular
value. The expected value is the sum of all such terms.

Example 5.9 Let X be the result from one toss of a dice. Find EŒX�.

Solution: Using the formula above, we find

EŒX� D 1 � 1

6
C 2 � 1

6
C 3 � 1

6
C 4 � 1

6
C 5 � 1

6
C 6 � 1

6
D 3:5:

Example 5.10 X is the number of items that a randomly selected customer buys in
a special shop. We assume the following distribution:

P.X D 0/ D 0:3; P.X D 1/ D 0:2; P.X D 0/ D 0:4; P.X D 0/ D 0:1:

Find EŒX�.

Solution:

EŒX� D 0 � P.X D 0/ C 1 � P.X D 1/ C 2 � P.X D 2/ C 3 � P.X D 3/

D 0 � 0:3 C 1 � 0:2 C 2 � 0:4 C 3 � 0:1 D 1:3:
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Example 5.11 Let ˝ be the outcome of two tosses of a fair dice, and let S be the
sum of the two rolls. S has the values 2; 3; 4; 5; 6; 7; 8; 9; 10; 11; 12, and

p.2/ D 1

36
; p.3/ D 2

36
; p.4/ D 3

36
; p.5/ D 4

36
; p.6/ D 5

36
; p.7/ D 6

36
; (5.1)

p.8/ D 5

36
; p.9/ D 4

36
; p.10/ D 3

36
; p.11/ D 2

36
; p.12/ D 1

36
:

Using the definition, we find

EŒS� D 2 � 1

36
C 3 � 2

36
C 4 � 3

36
C � � � C 12 � 1

36
D 7:

We will, however, soon see that this was not an efficient way of computing the
expectation. Using some general principles, we can avoid most of the work.

5.2.1 Computing Expectations

If X and Y are two random variables, and a and b are two constants, then the
following rules may be used:

EŒX C Y� D EŒX� C EŒ Y�; EŒa� D a; EŒb � X� D b � EŒX�:

The proofs of these rules are straightforward and we omit them. We see that
the expectation of a sum is the sum of the expectations, and that the expectation
of a constant is equal to the constant itself. The last rule says that constants may
be moved outside the expectation. To see how to apply these rules, we return to
Example 5.11. This time we define

X D Result of the first toss; Y D Result of the second toss:

It is easy to see (Example 5.9), that

EŒX� D EŒ Y� D 3:5:

Since S D X C Y, we get

EŒS� D EŒX C Y� D EŒX� C EŒ Y� D 3:5 C 3:5 D 7:

Comparing the two methods, we see that the second method is much simpler.
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5.2.2 General Expectations and Variance

Sometimes we need to compute the expectation of a function of a random variable.
We may, e.g., consider the quantity Q we could sell of a certain good. From
microeconomic theory it is well known that the price P is a function P.Q/. If Q
is a random variable, we would like to find the expected price; EŒ P.Q/�.

If X is a random variable and h is a function, then Y D h.X/ is a new random
variable. The expectation of Y can be found as follows:

EŒh.X/� D h.x1/ � P.X D x1/ C h.x2/ � P.X D x2/ C � � � C h.xm/ � P.X D xm/:

This can be expressed as follows: We find the expectation of a function of a
random variable when we compute the function value for any value that X can have
and multiply the function value by the probability that X has this particular value.
The expectation is the sum of all such terms.

Example 5.12 Let X be the result of one toss of a dice, and let h.x/ D x2. Then

EŒX2� D 12 � 1

6
C 22 � 1

6
C 32 � 1

6
C 42 � 1

6
C 52 � 1

6
C 62 � 1

6
D 91

6
:

In Chap. 1 we introduced the sample variance, which is very useful in practical
applications. We will now consider its theoretical analogue. Intuitively the theoreti-
cal variance is the sample variance we would have obtained if we could do infinitely
many independent observations. The rigorous definition reads as follows:

Definition 5.5 The variance VarŒX� of a random variable is defined via

VarŒX� D EŒ.X � EŒX�/2�:

We see that the variance is a measure of the deviation from the expected value; if
all the values of the random variable are close to EŒX�, then all the values .X�EŒX�/2

are small positive numbers, and the variance will be small. Once the variance is
defined, we can define the standard deviation just as in Chap. 1.
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Definition 5.6 The standard deviation �ŒX� of a random variable is defined
via

�ŒX� D
p

VarŒX�:

Example 5.13 We assume that X is a random variable with the values 2; 4; 6; 8 and
that the distribution is p.2/ D p.4/ D p.6/ D p.8/ D 1

4
. Then

EŒX� D 2 � 1

4
C 4 � 1

4
C 6 � 1

4
C 8 � 1

4
D 5:

If we define Y D X � EŒX� D X � 5, Y becomes a new random variable with the
values �3; �1; 1; 3. We find the variance of X by

VarŒX� D EŒ Y2� D .�3/2 � 1

4
C .�1/2 � 1

4
C 12 � 1

4
C 32 � 1

4
D 5:

When we want to compute the variance, it may be convenient to rearrange the
terms. If we do that properly, we can find the relation

VarŒX� D EŒX2� � .EŒX�/2

We are generally not very concerned with proofs, but this time we make an
exception. The reason is that the proof makes use of some central techniques, and it
is valuable to see how they are applied. The proof goes as follows:

VarŒX� D EŒ.X � EŒX�/2� D EŒX2 � 2X � EŒX� C .EŒX�/2�

D EŒX2� � 2EŒX � EŒX�� C EŒ.EŒX�/2�

D EŒX2� � 2EŒX� � EjX� � .EŒX�/2 EŒ1�

D EŒX2� � 2.EŒX�/2 � .EŒX�/2 D EŒX2� � .EŒX�/2 :

In the first line we used that .a � b/2 D a2 � 2ab C b2, in the second line we used
EŒU C V C W� D EŒU� C EŒV� C EŒW�, and in the third line k D EŒX� is a constant,
which gives EŒk � U� D k � EŒU�. In addition we used EŒ1� D 1.

We return to Example 5.13 to see how the computation looks like when we use
this new technique. We have

EŒX2� D 22 � 1

4
C 42 � 1

4
C 62 � 1

4
C 82 � 1

4
D 30:
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This gives

VarŒX� D EŒX2� � .EŒX�/2 D 30 � 52 D 5:

We see that the computation becomes a bit simpler since we need not consider the
Y � s.

The variance has some basic properties which we list below:

• If X D k is a constant, then VarŒX� D 0.
• If Y D X C k where k is a constant, then VarŒ Y� D VarŒX�.
• If k is a constant, then VarŒk � X� D k2VarŒX�.
• VarŒX� � 0.
• VarŒX� D VarŒ�X�.

We omit the proofs of the first two properties, but take a brief look at the third.
The reason why we want to highlight this is that students often make errors when
they apply this principle. It is possible to move constants outside the variance, but
then the constant needs to be squared.

VarŒk � X� D EŒ.k � X � EŒk � X�/2� D EŒ.k � X � k � EŒX�/2� (5.2)

D EŒ.k � .X � EŒX�//2� D EŒk2 � .X � EŒX�/2�

D k2 � EŒ.X � EŒX�/2� D k2 � VarŒX�:

Example 5.14

VarŒ10X� D 102VarŒX� D 100VarŒX�:

5.3 Some Simple Facts About Option Pricing

Most people have heard about options, but some definitions may be appropriate.
There are many different kinds of options, and we will only discuss a special case:
a European call option. A European call option gives the right but not the obligation
to buy a stock for a certain price at some specific point in time.

Example 5.15 Assume that we own a European call option which gives us the right
to buy a stock for 100 USD one year from now. If the stock price is above 100
USD one year from now, we use the option to buy the stock. Afterwards we can sell
the stock and make a profit. If the stock price is less than 100 USD, the option is
worthless and we do not buy the stock.

Clearly it is possible to profit from an option, so a right of this sort can’t be free.
We consider a strongly simplified example.
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Example 5.16 A stock costs today 100 USD. Tomorrow only two cases can occur.
Either the stock rises to 140 USD or it will fall to 90 USD. The probability that the
price rises is p D 0:6 and the probability that it falls is q D 0:4. A customer comes
to a bank and wants to purchase 100 call options which gives the right to buy 100
stocks for 100 USD each tomorrow. The bank demands 800 USD for the options.

Initially we disregard transaction costs, and wish to answer the following
questions:

• The customer buys 8 stocks for 800 USD. What is the expected value of the stock
tomorrow?

• The customer uses 800 USD to buy 100 call options. What is the expected value
of the call options tomorrow?

Solution: We let X be the stock price. The expected value of 8 stocks tomorrow
is

EŒ8X� D 8 � EŒX� D 8 � .140 � 0:6 C 90 � 0:4/ D 960:

We see that the expected value of the stock increases from 800 USD to 960 USD,
which is an increase of 20%.

We let Z denote the value of the options. If the stock price rises to 140 USD, we
use the options to buy the stock for 100 USD each. This leaves us with a profit of 40
USD for each option. If the stock price falls, the options are worthless. The expected
value of the options is

EŒZ� D 40 � 100 � 0:6 C 0 � 100 � 0:4 D 2400:

We see that the expected value of the investment increases from 800 USD to 2400

USD, which is an increase of 200%.

5.3.1 Hedging Portfolios

At a first glance the example above might appear speculative, and one could question
if banks should be involved in such businesses. Is the bank gambling with our
savings? The rather surprising answer is no, the bank has no risk writing this
contract. The reason is that the bank can eliminate all risk if it make special
investments. The strategy the bank applies is the following: Receive 800 USD from
the customer, take up a loan of 7200 USD from a bank account, and use the 8000

USD to buy 80 stocks. What happens if the bank employs this strategy?
If the stock rises to 140 USD, the bank owns 80 stock with a total worth of 11;200

USD. It has a debt of 7200 USD and need to pay the customer 4000 USD for the
100 options the customer redeems. When all is settled, the bank breaks even. If the
stock falls to 90 USD, the bank owns 80 stocks with a total worth of 7200 USD
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which just matches the debt. The options are worthless in this case, so the bank do
not need to pay anything to the customer. We see that the bank breaks even in this
case as well.

Note that p and q have no influence on the strategy, and the bank will break
even no matter what values p and q have. To set up a strategy of this kind is called
hedging, where the idea is that the bank protects (hedges) itself from risk.

The numbers above may appear as pure magic, but there is a simple mathematical
explanation: The strategy has three unknowns, the price x that the customer need to
pay for the option, then number y of stock the bank should buy, and z the amount of
money the bank should lend from the bank account. To decide these three unknowns,
we need three equations:

y � 100 D x C z

y � 140 � z � .140 � 100/ � 100 D 0

y � 90 � z D 0:

The first equation says that we use x C z USD to buy y stocks, and the other two
equations say that the bank breaks even when the contract is settled. In this case the
solution of the system of equations is x D 800; y D 80; z D 7200. In the example
we ignored interests on the bank account, but it poses no problem to take this into
account. If the per day interest rate is r%, we can modify the equations as follows:

y � 100 D x C z

y � 140 � z � .1 C r=100/ � .140 � 100/ � 100 D 0

y � 90 � z � .1 C r=100/ D 0:

Regardless of the value we put on r, it is straightforward to solve these equations.

Example 5.17 Here is a slightly more advanced example: A customer wants to buy
60 call options which gives the right to buy a stock for 100 USD two days from now.
The time development of the stock is shown in Fig. 5.6. The following strategy turns
out to solve the problem: The price of the options is 840 USD. The bank initially
buys 54 stocks and lends 4560 USD on a bank account. If the stock price rises to
140 USD, the bank sells 4 stocks. If the stock price falls to 90 USD, the bank sells
39 stocks. If you take the time to check all the outcomes, you will see that the bank
breaks even in all the four cases. We omit the computations, but the main point is
that the system is described by 5 unknowns which are settled from 5 equations, see
Problem 5.19.
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Fig. 5.6 Price evolution
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Even though the examples above are simplified to the extreme, they still
capture the main essence of the theory. In a real world stock market there is
an unlimited number of possibilities for the stock price. Nevertheless it is often
possible to construct trading strategies that eliminate all risk. R. C. Merton and
M. S. Scholes were in 1997 awarded The Sveriges Riksbank Prize in Economic
Sciences in Memory of Alfred Nobel (often wrongly referred to as the Nobel Prize
in Economics) for the development of such models. Even though this theory is
complicated beyond our imagination, what comes out of the theory is a quite simple
procedure we will study closely in Chap. 7.

5.4 Summary of Chap. 5

• Random variable: Any function defined on the sample space which to each
possible outcome defines a unique real number.

• The probability distribution of a random variable X:

P.x/ D P.X D x/:

• The cumulative distribution of a random variable X:

F.x/ D P.X � x/ D
X

xi�x

P.X D xi/:

• The expectation of a discrete random variable X:

EŒX� D
X

x

x � P.X D x/:

• The expectation of a function of a discrete random variable X:

EŒh.X/� D
X

x

h.x/ � P.X D x/:

• The variance of a discrete random variable X:

VarŒX� D EŒ.X � EŒX�/2� D EŒX2� � EŒX�2:
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• Computational rules for expectation and variance (a and b are constants):

EŒX C Y� D EŒX� C EŒ Y�; EŒa� D a; EŒb � X� D b � EŒX�:

VarŒb � X� D b2VarŒX�:

5.5 Problems for Chap. 5

5.1 Which of the following quantities are random variables?

(i) The price of a stock in USD.
(ii) The number of units sold of a good.

(iii) The fraction of “Yes” in a poll.
(iv) The result of a soccer match.
(v) The fraction of stocks rising.

(vi) The number of defective items.

5.2 Assume that the stock price X in USD is a random variable with probability
distribution

P.X D 95/ D 20%; P.X D 100/ D 70%; P.X D 110/ D 10%:

(a) Which values can the stock price have?
(b) We let F.x/ denote the cumulative distribution of X. Compute the following

values:

F.90/; F.95/; F.100/; F.105/; F.110/; F.115/:

5.3 The stock prices in the companies A; B, and C were all 100 USD. We used 200
USD to buy 2 stocks. The stocks were selected randomly.

(a) How many different outcomes are there? Find the probability of each such
outcome.

(b) After we bought the stocks, the stock price of A was unchanged, the stock price
on B rose to 104 USD, and the stock price of C rose to 102 USD. Let X denote
the total value of our two stocks. Which values can X have? Find the probability
distribution of X.

(c) Find the cumulative function F.x/ of X. How can we interpret F.x/ in this case?

5.4 A company has at most 6 days of delivery of a good. The fastest delivery time
is 1 day, and the probabilities for the different delivery times are shown in Table 5.1.
Let X be the number of days of delivery.
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Table 5.1 Delivery times Delivery time in days 1 2 3 4 5 6

Probability in % 55 20 10 5 5 5

Table 5.2 Stock prices Company A B C D E

Stock price in USD 100 200 400 300 500

Table 5.3 Number of units
sold

Number of units sold 0 1 2 3

Probability 2.5% 5% 82.5% 10%

(a) Explain why X is a random variable.
(b) Find the cumulative distribution F.x/ of X. How can we interpret F.x/ in this

case?
(c) Find the expected days of delivery EŒX�.

5.5 The number of defective items X in a random shipment of 100 items has the
following distribution:

P.X D 0/ D 65%; P.X D 1/ D 25%; P.X D 1/ D 5%; P.X D 3/ D 5%:

(a) What is the probability of 4 or more defective items?
(b) Find the expected number of defectives EŒX�.

5.6 Table 5.2 shows the stock price in 5 different companies. Company A has in
all 140;000 stocks, company B has 50;000 stocks, company C has 20;000 stocks,
company D has 10;000, and company E has 30;000. We pick a stock randomly
from the 250;000 stocks, and let X be the price of the stock. Find the probability
distribution of X and use it to compute the expected value EŒX�.

5.7 A customer comes to a shop, and we let X denote the number of items the
customer buys of a certain good. The distribution of X is as follows:

P.X D 0/ D 0:2; P.X D 0/ D 0:2; P.X D 0/ D 0:6:

Find the expected value EŒX�, the variance VarŒX�, and the standard deviation �ŒX�.

5.8 Table 5.3 shows the number of units sold at a warehouse during a randomly
selected week. Find the expected value EŒX�, the variance VarŒX�, and the standard
deviation �ŒX�.

5.9 Table 5.4 shows the number of days for delivery of an order.
Find the expected value EŒX�, the variance VarŒX�, and the standard deviation

�ŒX�.
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Table 5.4 Delivery times Number of days for delivery 1 2 3 4 5

Probability 10% 10% 60% 10% 10%

5.10 Let X1; X2; X3 be random variable with EŒX1� D EŒX2� D EŒX2� D 25:

(a) What is

EŒX1 C X2 C X3�‹

(b) Assume that p; q; r are constants such that p C q C r D 1. What is EŒ pX1 C
qX2 C rX3�?

5.11 X is a random variable with EŒX� D 100 and VarŒX� D 100. Assume that p
and q are constants such that p C q D 1. Define a new random variable Y by

Y D pX C q � 100:

Find EŒ Y� and VarŒ Y�. How should you choose p and q if you want that VarŒ Y� is as
small as possible?

5.12 A stock cost today 100 USD. The company negotiates a new contract. If the
contract is accepted, the stock price tomorrow will rise to 130 USD, if it fails the
price tomorrow will fall to 90 USD. The probability that the contract is accepted
is p.

(a) Assume that p D 60%. What is the expected stock price tomorrow?
(b) How large must p be if the expected stock price tomorrow is at least 120 USD?

5.13 Queueing Theory: You wait in line outside an office that has just opened, and
there are three people before you in the queue. Let X denote the processing time of
a randomly selected client (in minutes), and assume that X has the distribution

P.X D 1/ D 0:5; P.X D 2/ D 0:3; P.X D 3/ D 0:2:

We assume for simplicity that the processing time is an entire number of minutes
and that the officials do not take breaks between clients. Let X1; X2; X3 denote the
processing time of the three first clients, and assume that these processing times are
all independent.

(a) We first assume that the office only has one counter, and that you must wait until
the three people before you have finished their business. The time you need to
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wait before you reach the counter Z is hence given by

Z D X1 C X2 C X3:

Find the expected waiting time EŒZ�.
(b) Assume that the office only has one counter. What is the probability that the

waiting time is less than or equal to 7 min.
(c) Assume instead the office has two counters, and that the clients draw queue

tickets. Find the expected waiting time until you reach a counter.

5.14 Conditional Expectation: A bank make credit ratings of their customers.
Previous data show that the bank has 75% good customers and 25% customers with
payment difficulties. In a survey of the good customers it turned out that 10% of
those were unmarried men with low income, while it was 50% unmarried men with
low income among the customers with payment difficulties. We will assume that
these numbers apply for new customers.

(a) How large percentage of the customer group were unmarried men with low
income? What is the probability that an unmarried man with low income will
have payment difficulties?

(b) Assume that the bank makes a profit of 6000 USD on good customers, but makes
a 4000 USD loss on customers with payment difficulties. Is it profitable to offer
new loans to young men with low income? Compute the expected profit on loans
to this group.

5.15 Option Pricing: A stock cost today 100 USD. Tomorrow the price either rises
to 120 USD or falls to 80 USD. A customer wants to buy 100 call options which
gives the right to buy the stock for 100 USD tomorrow.

(a) What is the price for these call options, and how can the bank hedge against
losses? We ignore interests and transaction costs.

(b) Let p denote the probability that the stock price rises. How large must p be such
that the expected value of the options is as least as big as the price for them?

5.16 Option Pricing: A stock cost today 100 USD. Tomorrow the price either rises
to 110 USD or falls to 70 USD. A customer wants to buy 100 call options which
gives the right to buy the stock for 100 USD tomorrow.

(a) What is the price for these call options, and how can the bank hedge against
losses? We ignore interests and transaction costs.

(b) Let p denote the probability that the stock price rises. How large must p be such
that the expected value of the options is as least as big as the price for them?
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5.17 Option Pricing: A stock costs today 300 USD. In a year the price can either
rise to 330 USD or fall to 280 USD. A customer wants to buy 100 call options which
gives the right to buy the stock for 100 USD one year from now. The bank interest
rate is 5%. What must the customer pay for the options, and how can the bank hedge
against losses? We ignore transaction costs.

5.18 Conditional Expectation: A stock has today the value X0 D 100 (USD).
Tomorrow it is 50% probable that the stock rises to X1 D 110 (USD), while it is
50% probable that it falls to X1 D 95 (USD). If X1 D 110 (USD), there is 60%
probability that X2 D 120 (USD), and 40% probability that X2 D 100 (USD).
If X1 D 95, there is 20% probability that X2 D 100 (USD), and 80% probability
that X2 D 80 (USD). X2 is the price the day after tomorrow.

(a) Draw a tree showing the price development for the stock, and use the results to
compute EŒX2�. Is this stock a good investment?

(b) A stock holder which has all his wealth in this stock owns 1000 stocks at time
t D 0. She has decided to use the following trading strategy:
• If the stock rises to 110 USD at time t D 1, she keeps all the stocks.
• If the stock falls to 95 USD at time t D 1, she will sell half of the stocks and

put the money in a bank account.

Let V denote the total wealth of the stock holder at t D 2, i.e., the value of
the stocks plus any bank deposits. Since money is only deposited one day in the
bank, we ignore interests. Find the expected wealth EŒV�. Can you find an alternative
trading strategy which provides even larger expected wealth? Justify our answer.

5.19 Option Pricing, Two Time Periods: The time development of a stock is
displayed in Fig. 5.7. A customer wants to buy 60 call options which gives the
right to buy the stock for 100 USD in two days. We ignore interests and transactions
costs. We let x denote the price the customer needs to pay for the 60 options, y the
number of stocks the bank needs to purchase to set up a perfect hedge, and z the
amount of money the bank needs to lend from a bank account to set up the hedge.
Furthermore, u is the number of stocks the bank sells at day 1 if the stock rises the
first day, and v is the number of stocks the bank sells if the stock falls the first day.

(a) Explain that x; y; z; u; v satisfy the equations

100y D x C z

200. y � u/ C 140u � z � 6000 D 0

80. y � u/ C 140u � z D 0

110. y � v/ C 90v � z � 600 D 0

70. y � v/ C 90v � z D 0:
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Fig. 5.7 Price evolution
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(b) Solve the system in (a).
(c) Assume that there is 60% probability that the stock rises the first day, 50%

probability that the stock rises on day 2 if it rose on day 1, and that there is 25%
probability that the price rises on day 2 if it fell on day 1. Find the expected
value of the 60 options.

5.20 Bounded Rationality:A buyer with limited information about the market can
choose between 5 different, but equally useful objects. That they are equally useful
means that the buyer has the same utility of any of the objects. Assume that the costs
of buying the objects are

c1 D 20; c2 D 25; c3 D 22; c4 D 18; c5 D 30:

A fully rational buyer will of course always buy object number 4, but our buyer is
not fully informed about the costs. A commonly used model for limited information
is the multinomial logit model. This model can be formulated as follows:

The probability of buying object i D e�ˇci

P5
jD1 e�ˇcj

:

Here ˇ � 0 is a parameter measuring the amount of information about the market.

(a) Assume that ˇ D 0. What kind of distribution does this lead to? What is the
expected cost in this case?

(b) Assume that ˇ D 0:5, and compute the probabilities for buying the different
goods. What is the expected cost? Assume that 4 buyers are trading indepen-
dently. What is the probability that at least one of them does not buy the cheapest
good? What happens to this probability when ˇ increases?

(c) Assume that ˇ ! C1. What kind of distribution do we get in the limit? What
is the expected cost if we use this distribution?

5.21 Bounded Rationality/Discrete Choice: We want to study a group of n agents
where each agent can make four different choices. Assume that the four choices
have utility values u1 D 3; u2 D 8; u3 D 2, and u4 D 4. The agents are not fully
informed and do not always choose the best alternative (number 2). Let p1; p2; p3; p4

be the probabilities for the four different choices.
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(a) Assume that n D 5, that

p1 D 0:1; p2 D 0:4; p3 D 0:2; p4 D 0:3;

and that each agent makes his or her choice independent of the rest. Find the
probability that agent 1 chooses alternative 1, agent 2 chooses 3, agent 3 chooses
2, agent 4 chooses 1, and agent 5 chooses 2. We call a specification of this sort
a specific outcome.

When the n agents have made their choices, we can count the frequencies of
each different outcome. Let f1 be how many chose alternative 1, f2 how many
chose alternative 2, and so on. Explain that we, regardless of the value of n, can
find the probability P of a specific outcome by

P D p f1
1 � p f2

2 � p f3
3 � p f4

4 :

(b) We find the total utility U of a specific outcome from U D f1u1 C f2u2 C f3u3 C
f4u4. A group of agents are called boundedly rational if the probability of a
specific outcome with lower total utility is always smaller than the probability
of a specific outcome with higher total utility. Find a counterexample proving
that the agents in (a) are not boundedly rational.

5.22 Bounded Rationality/Discrete Choice: We want to study a group of n agents
where each agent can make four different choices. Assume that the four choices
have utility values u1 D �1; u2 D 1; u3 D 1, and u4 D �1. The agents are not
fully informed and do not always choose the best alternatives (number 2 and 3). Let
p1; p2; p3; p4 be the probabilities for the four different choices.

(a) Assume that n D 5, and that

p1 D 0:1; p2 D 0:4; p3 D 0:4; p4 D 0:1:

Show that for i D 1; : : : ; 4, then pi D 2ui

5
.

(b) When the n agents have made their choices, we can count the frequencies of
each different outcome. Let f1 be how many chose alternative 1, f2 how many
chose alternative 2, and so on. Regardless of the value of n, we can find the
probability P of a specific outcome by

P D p f1
1 � p f2

2 � p f3
3 � p f4

4 :

Show that

P D 2 f1u1Cf2u2Cf3u3Cf4u4

5n
:
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(c) We find the total utility U of a specific outcome from U D f1u1 C f2u2 C f3u3 C
f4u4. A group of agents are called boundedly rational if the probability of a
specific outcome with lower total utility is always smaller than the probability
of a specific outcome with higher total utility. Use the result in (b) to prove that
the agents in (a) are boundedly rational.

5.23 Adjusting Independent Orders Is a Bad Idea: You want to sell a good, and
the demand for the good is a random variable D. We assume that D can have the
values 10; 20; 30; 40; 50, and that the distribution is uniform. If you order X units,
while the customers demand D units, you have a deviation

� D jD � Xj:

If, e.g., you have ordered 10 units too much or 10 units too little, the deviation
� D 10 in both cases.

(a) Show that the expected deviation is 20 if you order X D 10 units of the good.
(b) Repeat the calculation in (a) for the cases where you order 20; 30; 40; 50 units.

Which order minimizes the expected deviation?
(c) You are about to sell the goods in two periods, and adjust the orders for the

second period from the observed demand in the first period. If, e.g., the demand
in the first period turned out to be D1 D 20, you order X2 D 20 units for period
number two. Assume that D1 and D2 are independent. Use the splitting principle
to compute P.�2 D 10/.

(d) Use similar expressions to compute the probability distribution of �2, and use
this to find the expected deviation in period 2. Is this a strategy reducing the
deviation? What assumption must be changed for this to be a good idea?
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Abstract

In this chapter we will look at situations that occur when we study two discrete
random variables at the same time. One example of that sort could be that X is
the price of a stock, while Y is the number of that stock that is sold each day. In
many cases there can be more or less strong relations between the two variables,
and it is important to be able to decide to what extent such relations are present.
The theory has much in common with the theory in Chap. 1. In this case we need
to take into account that different outcomes are not in general equally probable.

6.1 Simultaneous Distributions

When we study two random variables X and Y, we first make a list of all the possible
values X and Y can have. The next step is to consider all the possible combinations
that can occur, and to figure out the probability of each such combination.

Example 6.1 Let X be the price in USD on a good and let Y be the number of units
we sell of the good. We assume that the price is 10 USD, 11 USD, and 12 USD, and
that we can sell between 0 and 10 units of the good. Here there are in all 33 possible
combinations. To make an overview of the interaction between the two variables, we
have to make a table defining the probability of all these 33 different combinations.
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A table providing explicit values for each of the 33 combinations in Example 6.1,
we call a joint distribution. The mathematical definition reads as follows:

Definition 6.1 By the joint distribution of two random variables X and Y, we
mean the function

P.x; y/ D P.X D x; Y D y/:

The only thing this means is that we need to specify the possibility of all possible
pairs of x and y. In Example 6.1 it would be possible to get arbitrary many different
tables depending on the situation we want to model. We can, e.g., assume that all
combinations are equally probable, i.e., a uniform distribution. In the real world it is
usually reasonable to assume that the distribution of demand will change when we
change the price, and a uniform distribution is not realistic in this case.

Example 6.2 In a town there are two different firms with about the same number
of customers. We refer to these firms as Firm 1 and Firm 2. We let X denote which
firm is chosen by a randomly selected customer, and let Y denote the number of
days it takes to process an order. Based on a large number of previously recorded
observations, the joint distribution is provided in Table 6.1.

From the numbers in Table 6.1 we can easily find the distribution of X and Y
separately. For any value of x, we must have

P.X D x/ D P.X D x; Y D 1/ C P.X D x; Y D 2/ C P.X D x; Y D 3/:

The different values are hence found adding the numbers in each row. The end result
is:

PX.1/ D 50%; PX.2/ D 50%:

Here we add X as a subscript to emphasize that it is the probability distribution of X
we talk about. If we instead add the numbers in each column, we get the distribution
of Y, i.e.:

PY.1/ D 30%; PY.2/ D 20%; PY.3/ D 50%:

Table 6.1 Number of days
for delivery

Firm/Number of days for delivery Y D 1 Y D 2 Y D 3

X D 1 10% 10% 30%

X D 2 20% 10% 20%
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Table 6.2 Marginal distributions

Firm/Number of days for delivery Y D 1 Y D 2 Y D 3 P.X D x/

X D 1 10% 10% 30% 50%

X D 2 20% 10% 20% 50%

P.Y D y/ 30% 20% 50%

We often call these distributions the marginal distributions of X and Y, respectively.
It is often convenient to include the marginals in the table of the joint distribution,
see Table 6.2.

When we discussed combinatorics in Chap. 3, it was crucial to identify if the
choices were connected or not. Equally central in the theory of joint distributions
is the independence of random variables. For each value of x, the statement X D x
defines an event, namely

f!jX.!/ D xg:

Correspondingly the statement Y D y defines an event for each value of y.

Definition 6.2 We say that two random variables X and Y are independent if
and only if the events implied by X D x and Y D y are independent for any x
and y. When this happens

P.X D x; Y D y/ D P.X D x/ � P.Y D y/:

If the probability distributions of X and Y are known, the joint distribution is
given by the product, i.e.

P.x; y/ D PX.x/ � PY.y/;

when X and Y are independent.

Looking at the marginal distributions of X and Y in Example 6.2, we easily see
that these random variables are not independent. For example, we see that

P.1; 1/ D 0:1 6D 0:15 D 0:5 � 0:3 D PX.1/ � PY.1/:

In general we find the marginal distributions as follows: When X has the different
values x1; : : : ; xL and Y has the different values y1; : : : ; yM , then

pX.x/ D p.x; y1/ C p.x; y2/ C � � � C p.x; yM/;
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Fig. 6.1 The joint
distribution in Example 6.2
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Table 6.3 The joint
distribution in Example 6.3

X=Y Y D 2 Y D 4 Y D 6 P.X D x/

X D 1 10% 5% 15% 30%

X D 2 4% 7% 22% 33%

X D 4 11% 17% 9% 37%

P.Y D y/ 25% 29% 46%

and

pY.y/ D p.x1; y/ C p.x2; y/ C � � � C p.xL; y/:

This may seem complicated, but the content is simple; we find the marginal
distributions when we sum the rows or the columns in the joint distribution
(Fig. 6.1).

Example 6.3 We have two random variables X and Y where X can have the values
1; 2; 4, while Y can have the values 2; 4; 6. Assume that the joint distribution is as
in Table 6.3.

The marginal distribution of X we find when we add the numbers in the rows, i.e.

PX.1/ D 30%; PX.2/ D 33%; PX.4/ D 37%:

The marginal distribution of Y we find when we add the numbers in the columns,
i.e.

PY.1/ D 25%; PY.2/ D 29%; PY.4/ D 46%:

When the joint distribution is known, we can in principle compute the expectation
of any function of the two random variables. The expression below may seem very
complicated, but the main principle is no different from what we have been using
before. We compute all the values that can occur and multiply these values by the
probability that they occur.
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Definition 6.3 The expectation of a function of two random variables X and
Y we find by

EŒh.X; Y/�

D h.x1; y1/P.x1; y1/ C h.x1; y2/P.x1; y2/ C � � � C h.x1; yM/P.x1; yM/

C h.x2; y1/P.x2; y1/ C h.x2; y2/P.x2; y2/ C � � � C h.x2; yM/P.x1; yM/

:::

C h.xL; y1/P.xL; y1/ C h.xL; y2/P.xL; y2/ C � � � C h.xL; yM/P.xL; yM/:

Example 6.4 Assume that X can have the values 0 and 1, that Y can have the values
1 and 2, and that the joint distribution is

P.0; 1/ D 0:3; P.0; 2/ D 0:1;

P.1; 1/ D 0:2; P.1; 2/ D 0:4:

Compute EŒh.X; Y/� when h.x; y/ D .x C 1/.y C 5y2/:

Solution: We compute the four different values that can occur to get

EŒh.X; Y/� D .0 C 1/.1 C 5 � 12/ � 0:3 C .0 C 1/.2 C 5 � 22/ � 0:1 (6.1)

C.1 C 1/.1 C 5 � 12/ � 0:2 C .1 C 1/.2 C 5 � 22/ � 0:4

D 24:

An important case occurs when X and Y are independent. In that case

EŒX � Y� D EŒX� � EŒY�:

The proof for this is not terribly important, but is sufficiently short to be included:

EŒX � Y�

D
LX

iD1

MX

jD1

xi � yj � P.xi; yj/ D
LX

iD1

MX

jD1

xi � yj � PX.xi/ � PY.yj/

D
LX

iD1

xi � PX.xi/ �
MX

jD1

yj � PY.yj/ D EŒX� � EŒY�:
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As these definitions are hard to digest for most people, we will look at a
transparent example to see how they are used in practice.

Example 6.5 We let

X D The number of stocks in a firm traded during a day;

Y D The stock price in USD:

The daily trading volume we find when we multiply X and Y. If, e.g., one day we
have X D 80;000 and Y D 100, the daily trading volume is 8;000;000 (USD). The
daily trading volume is simply the total value of the stocks traded during a day. If X
and Y are independent with EŒX� D 100;000, EŒY� D 100, then the expected trading
volume is

EŒX � Y� D EŒX� � EŒY� D 10;000;000:

In most cases, however, it is not reasonable to assume that these quantities are
independent. We will consider an example of this sort, and assume that the joint
distribution is as in Table 6.4.

We first compute the marginal distributions of X and Y, and find

P.X D 80;000/ D 1

12
C 1

6
C 3

12
D 1

2
;

P.X D 120;000/ D 3

12
C 1

6
C 1

12
D 1

2
;

P.Y D 70/ D 1

12
C 3

12
D 1

3
;

P.Y D 100/ D 1

6
C 1

6
D 1

3
;

P.Y D 130/ D 3

12
C 1

12
D 1

3
:

From these we find

EjX� D 80;000 � 1
2

C 120;000 � 1
2

D 100;000:

EjY� D 70 � 1
3

C 100 � 1
3

C 130;000 � 1
3

D 100:

Table 6.4 A joint
distribution of trades
and prices

Number of stocks traded/Stock price in USD 70 100 130

80,000 1
12

1
6

3
12

120,000 3
12

1
6

1
12
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If we want to compute the expected trading volume, however, we need to take all
the six cases into account.

EŒX � Y� D 80;000 � 70 � 1

12
C 80;000 � 100 � 1

6
C 80;000 � 130 � 3

12

C 100;000 � 70 � 3

12
C 100;000 � 100 � 1

6
C 100;000 � 130 � 1

12

D 9;800;000:

We see that EŒX � Y� D 9;800;000 6D 10;000;000 D EŒX� � EŒY�. We are hence
able to conclude that X and Y are not independent. Where did the 200;000 USD
“disappear”? Of course nothing has disappeared here, but it is nevertheless possible
to explain the difference in more detail, see the next section.

6.2 Covariance

To measure the amount of covariation, we need a new definition:

By the covariance between two random variables X and Y we mean

CovŒX; Y� D EŒ.X � EŒX�/.Y � EŒY�/�:

The purpose of the covariance is to provide a measure of the tendency that X and
Y move in the same direction. To compute the covariance we need to compute all the
values that .X �EŒX�/.Y �EŒY�/ can have, multiply with the respective probabilities,
and add all those values. Using the values from Example 6.5, we get

EŒ.X � EŒX�/ � .Y � EŒY�/�

D .�20;000/ � .�30/ � 1

12
C .�20;000/ � 0 � 1

6
C .�20;000/ � 30 � 3

12

C 20;000 � .�30/ � 3

12
C 20;000 � 0 � 1

6
C 20;000 � 30 � 1

12

D �200;000:

The covariance between two random variables is interpreted in the same way as
the covariance between two samples. If the covariance is positive, it is mostly the
case that small values of X are found together with small values of Y, and when
X is large, Y is usually large as well. Broadly speaking, the two variables pull in
the same directions. The opposite happens when the covariance is negative, then the
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variables pull in the opposite direction. To getter a better understanding of the degree
of covariation, we use the coefficient of variation, which is defined as follows:

Definition 6.4 The coefficient of variation �ŒX; Y� between two random
variables X and Y is defined by

�ŒX; Y� D CovŒX; Y�p
VarŒX� �pVarŒY�

:

The coefficient of variation is always a real number between �1 and 1, and
the extremes define the maximum amount of negative and positive covariation. If
CovŒX; Y� D 0, we say that X and Y are uncorrelated.

If we compute the coefficient of variation using the values in Example 6.5, we
get CovŒX; Y� � �0:41. In this case we have a clear, but not extreme amount of
negative covariation.

6.2.1 An Alternative Formula for the Covariance

When we worked with the variance, we showed that terms could be rearranged
to simplify computations. In fact, the same argument can be used to rewrite the
expression for the covariance. We omit the details, but the end result reads as
follows:

CovŒX; Y� D EŒX � Y� � EŒX� � EŒY�:

Using the formula above, we can see in detail how the results in Example 6.5
are related. In that example we found EŒX � Y� D 9;800;000, and EŒX� � EŒY� D
10;000;000. The difference between the two quantities is precisely the covariance,
which is �200;000.

When X and Y are independent, we know that EŒX � Y� D EŒX� � EŒY�.
From the formula above, we see that such random variables are uncorrelated, i.e.,
CovŒX; Y� D 0. It is of some importance to notice that two random variables can be
uncorrelated even in cases where they are not independent. Students often tend to
think that CovŒX; Y� D 0 implies independence, but this is not true in general.
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6.2.2 Sums of RandomVariables

The principles we just discussed are also useful when we want to consider sums
of random variables. When we add such variables, the covariance pops up in the
formula for the variance:

VarŒX C Y� D VarŒX� C VarŒY� C 2CovŒX; Y�:

A quick look at the proof is of some value here, since it makes it easier to
remember why we need to add the covariance in the formula.

VarŒX C Y� D EŒ.X C Y � EŒX C Y�/2�

D EŒ.X � EŒX� C Y � EŒY�/2�

D EŒ.X � EŒX�/2 C 2.X � EŒX�/.Y � EŒY�/ C .Y � EŒY�/2�

D VarŒX� C 2CovŒX; Y� C VarŒY�:

From the proof we see that this principle follows directly from the common rules
we use to square binomials. A particular feature of this addition rule is that it can
be generalized to sums of more than two variables. We omit the proof, but the final
result reads as follows:

Var
� nX

iD1

Xi
	 D

nX

iD1

VarŒXi� C
nX

i 6Dj
i;jD1

CovŒXi; Xj�:

Of particular importance is the case where X1; X2; : : : ; Xn are all independent.
Then all the covariances equal zero, and we get the following result:

When X1; X2; : : : ; Xn are all independent, then

Var
� nX

iD1

Xi
	 D

nX

iD1

VarŒXi�:

When the variables are independent, it is hence the case that the variance of the
sum equals the sum of the variances. This is a central result in statistics which we
will use repeatedly throughout the book.
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6.3 Summary of Chap. 6

• The joint distribution of two random variables

P.x; y/ D P.X D x; Y D y/:

• The marginal distribution of X: PX.x/ D P.X D x/ D P
y P.x; y/:

• The marginal distribution of Y: PY.y/ D P.Y D y/ D P
x P.x; y/:

• The expectation of a function of two random variables

EŒh.X; Y/� D
X

x;y

h.x; y/P.x; y/:

• The covariance of X and Y:

CovŒX; Y� D EŒ.X � EŒX�/.Y � EŒY�/� D EŒX � Y� � EŒX� � EŒY�:

• When X and Y are independent, then

P.x; y/ D PX.x/ � PY.y/; CovŒX; Y� D 0; VarŒX C Y� D VarŒX� C VarŒY�:

• For all random variables X and Y

VarŒX C Y� D VarŒX� C VarŒY� C 2CovŒX; Y�:

• The coefficient of variation

�ŒX; Y� D CovŒX; Y�p
VarŒX� �pVarŒY�

2 Œ�1; 1�:

6.4 Problems for Chap. 6

6.1 Table 6.5 shows the probability that a randomly selected person has a given
number of credit cards, and use the cards a given number of times per week.

We let X denote the number of credits cards (1–3) and Y the number of uses per
week (0–4).

Table 6.5 Joint distribution of uses and number of credit cards

Number of credit cards/Number of uses per week 0 1 2 3 4

1 3% 7% 6% 9% 3%

2 2% 6% 5% 15% 9%

3 2% 3% 8% 10% 12%
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(a) Find the marginal distributions of X and Y.
(b) What is the probability that a randomly selected person has more than one credit

card?
(c) What is the probability that a randomly selected person uses her cards at least

twice per week?

6.2 Table 6.6 shows how often two stores sell a good for the prices 9.0 USD, 9.1
USD, or 9.2 USD.

We let X denote the price at store A, and Y denote the price at store B.

(a) Find the marginal distributions of X and Y.
(b) What is the probability that the stores sell the goods for the same price?
(c) Find EŒX� and EŒY�.

6.3 We consider the stock price for two different companies A and B, and let X
denote the stock price for company A and Y the stock price for company B. The
joint distribution is shown in Table 6.7.

(a) Find the marginal distributions of X and Y.
(b) Are X and Y independent?
(c) Find EŒX� and EŒY�.

6.4 A shop sells a good. We let X denote the number of units bought by a randomly
selected customer, and let Y denote the price of the good. The joint distribution is
shown in Table 6.8.

Table 6.6 The joint
distribution in Problem 6.2

Store A/Store B 9 USD 9.1 USD 9.2 USD

9.0 USD 27% 4% 2%

9.1 USD 5% 22% 6%

9.2 USD 3% 8% 23%

Table 6.7 The joint
distribution in Problem 6.3

Stock prices for company B Stock prices for company A

80 USD 120 USD

80 USD 10% 20%

120 USD 30% 40%

Table 6.8 The joint
distribution in Problem 6.4

Number of units bought/Price 100 USD 240 USD

0 5% 35%

1 10% 20%

2 20% 10%
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Table 6.9 The joint
distribution in Problem 6.5

Price for A Price for B

34 USD 24 USD

20 USD 25% 15%

30 USD 45% 15%

Table 6.10 The joint
distribution in Problem 6.6

Price/Number of units bought 100 80 50

20 USD 20% 0% 0%

24 USD 0% 50% 0%

30 USD 0% 0% 30%

(a) Find the marginal distributions of X and Y.
(b) Find EŒX� and EŒY�.
(c) Find EŒX � Y� and CovŒX; Y�.

6.5 We consider the price of two goods, let X denote the price of good A, and let Y
denote the price of good B. The joint distribution is shown in Table 6.9.

(a) Find the marginal distributions of X and Y.
(b) Find EŒX�; VarŒX�; EŒY�; VarŒY�.
(c) Find EŒX � Y�; CovŒX; Y�, and �ŒX; Y�.

6.6 Table 6.10 shows the relationship between price X and demand Y for a good.

(a) Find the marginal distributions of X and Y.
(b) Find EŒX� and EŒY�.
(c) Find EŒX � Y� and CovŒX; Y�.
(d) Find the coefficient of variation �ŒX; Y�. How are X and Y related?

6.7 Let X1; X2; X3, and X4 be independent, random variables with

EŒX1� D 100; EŒX2� D 120; EŒX3� D 90; EŒX4� D 115:

VarŒX1� D 230; VarŒX2� D 170; VarŒX3� D 260; VarŒX4� D 240:

We define Y D X1 C X2 C X3 C X4.

(a) Find EŒY�; VarŒY� and �ŒY�.
(b) Compute EŒX1 � Y� and CovŒX1; Y�. Are X1 and Y independent?

6.8 Conditional Expectations: We let X denote the number of units we sell of a
good, and Y the price of the good. The joint distribution is shown in Table 6.11.
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Table 6.11 The joint
distribution in Problem 6.8

Number of units bought/Price 10 USD 15 USD 20 USD

90 5% 10% 15%

150 10% 20% 10%

210 15% 10% 5%

Table 6.12 The joint
distribution in Problem 6.9

Number of units bought/Price Y D 100 Y D 120 Y D 140

X D 110;000 10% 25% 15%

X D 150;000 15% 25% 10%

(a) Find the marginal distributions of X and Y and use these to compute EŒX� and
EŒY�.

(b) Find the expected trading volume EŒX � Y�. Are X and Y independent random
variables?

(c) The price is fixed at Y D 10 (USD). What is the expected trading volume
conditional on this fixation? Also find the expected trading volumes conditional
on Y D 15 and Y D 20. Is it possible to change the values in the joint
distribution such that the expected trading volume conditional on Y D 20 is
smaller than the corresponding value conditional on Y D 15?

6.9 Conditional Expectations: In this problem X denotes the number of stocks that
is traded per day in a particular company, and Y is the price of the stock. We assume
that X only can have the values 110;000 (low turnover) or 150;000 (high turnover),
and that the stock price only can have the values 100 (low), 120 (medium), and 140
(high). In a particular market X and Y have the joint distribution given in Table 6.12.

(a) Find the marginal distributions of X and Y, and compute the values EŒX� and
EŒY�.

(b) Compute the conditional probabilities P.X D xjY D y/ and P.Y D yjX D x/

for all possible pairs of .x; y/.
(c) The condition expectation EŒUjV D v� of a random variable U given the value

of another random variable V is found from the expression

EŒUjV D v� D
X

u

u � P.U D ujV D v/:

Find the three conditional expectations EŒXjY D 100�; EŒXjY D 120�;

EŒXjY D 140�, and the conditional expectations EŒYjX D 110;000�; EŒYjX D
150;000�.

(d) Are X and Y independent random variables? Try to offer a short verbal
interpretation of this market based on the results from (c).
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6.10 Dummy Variables: A company has three types of workers, A, B, and C. 30%
are of type A, 40% are of type B, and 30% are of type C. A worker is selected
randomly, and we define three random variables as follows:

X D
(

1 if the worker is of type A

0 otherwise

Y D
(

1 if the worker is of type B

0 otherwise

Z D
(

1 if the worker is of type C

0 otherwise
:

(a) Find EŒX�; EŒY�; EŒZ�; VarŒX�; VarŒY�; VarŒZ�.
(b) Find EŒX �Y�, and use this value to compute CovŒX; Y�. Are X and Y independent?

Justify your answer. Find the joint distribution of X and Y.

6.11 PortfolioManagement:The stocks in companies A and B both cost 100 USD
today. We let X and Y denote the stock price in the two companies one year from
now. We assume that X and Y are independent random variables with

EŒX� D 110; EŒY� D 110; VarŒX� D 100; VarŒY� D 400:

We want to invest 10 million USD in the two stocks. Let p denote the fraction
invested in company A.

(a) Show that the total value Z of the stocks one year from now is

Z D 105 � p � X C 105 � .1 � p/ � Y:

(b) Find EŒZ� and VarŒZ�. How should you choose p if you want as little variation as
possible in your investment?

6.12 Portfolio Management: We want to invest 10 million USD in three different
companies, A, B, and C. All the stocks cost 100 USD each today. The stock price (in
USD) one year from now is X in company A, Y in company B, and Z in company C.
All the stocks have an expected price of 120 USD each one year from now. Assume
that we invest x% in company A, y% in company B, and z% in company C. Short-
selling is not allowed, hence x � 0; y � 0; z � 0.

(a) Explain why the total value V of the stocks one year from now is given by the
expression

V D 1000x � X C 1000y � Y C 1000z � Z:

and use this to find the expected total value of the stocks one year from now.
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(b) Assume VarŒX� D 100; VarŒY� D 200, and VarŒZ� D 600. In which stock should
you place most of your funds if you want that the variance in the total value is
as small as possible?

(c) Assume that the variances are as in (b) and that the stock prices are independent.
Compute how much you should invest in each of the stocks if you want that
the variance in the total value is as small as possible. Compare the final result
with (b).

(d) Assume that the stock prices are dependent, and that

X D 120 C 10�; Y D 120 C 10
p

2 � �; Z D 120 C 10
p

6 � �;

where � is a distribution with EŒ�� D 0; VarŒ�� D 1. Find EŒX�; EŒY�; EŒZ�, and
VarŒX�; VarŒY�; VarŒZ�.

(e) Assume that stock prices are as in (d). Show that

V D 12;000;000 C 10;000.x C p
2y C p

6z/�:

Compute how much you should invest in each of the stocks if you want that the
variance in the total value is as small as possible. Compare the result with the
answers from (b) and (c).
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Abstract

In this chapter we will discuss some of the most commonly used probability
distributions. We will discuss basic properties of these distributions; in particular,
we will provide explicit formulas for the mean and variance. We focus the
binomial distribution, the hyper geometric distribution, the Poisson distribution,
and the normal distribution. The literature making use of these distributions is
really huge. The normal distribution alone is applied in thousands of scientific
papers yearly. A full treatment is hence impossible, so we limit our ambitions to
a basic survival kit.

7.1 The Indicator Distribution

To be able to discuss properties of the other distributions, we start out with a
description of the indicator distribution. This distribution is defined as follows:

I D
(

1 with probability p

0 with probability 1 � p:

All computer programming rely on series of 0 and 1, so we should not underestimate
the usefulness of this simple distribution. As there are only two outcomes, we see
that

EŒI� D 0 � .1 � p/ C 1 � p D p;

and

VarŒI� D EŒI2� � EŒI�2 D 02 � .1 � p/ C 12 � p � p2 D p.1 � p/:
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In applications it is sometimes useful to think about the outcome 1 as “YES” and 0
as “NO.” The indicator is typically triggered by an event. i.e., the set of outcomes
where the value is 1.

7.2 The Binomial Distribution

As we could see in Chap. 4, it is easy to compute probabilities when we have
independent trials. These computations are particularly simple if there are only two
possible outcomes. Such situations arise in several different contexts. We can check
if an item is defective or not, we can check if a computation is correct or not, or if a
student passed an exam or not. The possibilities are endless. In all these cases there
are only two possible outcomes.

An experiment where a trial with 2 possible outcomes is repeated a certain
number of times, where the trials are independent and the probability of the each
outcome is constant, is called binomial trials. The criteria for binomial trials can be
emphasized as follows:

• Each trial has two outcomes, s (success) or f (failure).
• The probability of success is a constant p in all trials.
• All trials are independent.
• The number of trials is a constant n.

Since the trials are independent, it is easy to compute the probability of any
sequence of outcomes. Using the principles from Chap. 4, we see that, e.g.

P.ssfsff / D p � p � .1 � p/ � p � .1 � p/ � .1 � p/ D p3.1 � p/3:

A central question is the following: What is the probability of exactly x successes in
n trials? To answer this, we must first figure out how many sequences there are with
x successes. We first consider a simple example.

Example 7.1 We do 5 trials. How many outcomes have exactly 3 successes?

Solution: In this case the situation is so simple that we can write down all 10
possibilities:

sssff ; ssfsf ; ssffs; sfssf ; sfsfs; sffss; fsssf ; fssfs; fsfss; ffsss

To understand it better, we think about this as a combinatorial problem where we
select the positions of each success. Each position can only be selected once, so
the selection is without replacement. We choose 3 of the 5 positions. The selection
of the positions is unordered. If we choose the numbers 4, 3, and 2, we have s in
position 2, 3, and 4, i.e., the outcome fsssf . The order of the numbers 2, 3, and 4 does
not matter. The number of different combinations is hence equal to the number of
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different outcomes when we select 3 out of 5 different elements, unordered without

replacement. From the theory in Chap. 3, we know that there are
�

5
3

�
D 10 different

outcomes. We see that this coincides with the number of combinations we wrote
down.

The advantage with the combinatorial reasoning above is that it applies in
general. The number of different sequences with x successes in n trials is

� n
x

�
.

Each of these specific sequences has the same probability: px.1 � p/n�x. Since the
outcomes are disjoint, we can simply add the probabilities (we are using the addition
principle from Chap. 2), and adding

� n
x

�
equal numbers with value px.1�p/n�x gives

the result
� n

x

�
px.1 � p/n�x. The argument can be summarized as follows:

P.x successes in n independent trials/ D
�n

x

�
px.1 � p/n�x:

The expression above is often called a binomial probability.

Example 7.2 We want to produce 100 watches. The probability that a watch is
defective is 5%. We assume that the outcomes of the production are independent.
What is the probability of exactly 5 defective watches?

Solution: This is a binomial trial, where “success” means that a watch is
defective. The probability P of exactly 5 defectives is hence:

P D
�

100

5

�
� 0:055 � 0:9595 � 18%:

If we move one step further, we may ask about the probability of at most 5
defective watches. The calculation is more elaborate, but the principle is simple; we
compute the probabilities for exactly 0, 1, 2, 3, 4, and 5 defective watches separately.
If we let X denote the number of defective watches, we get:

P.X � 5/ D P.X D 0/ C P.X D 1/ C P.X D 2/

C P.X D 3/ C P.X D 4/ C P.X D 5/

D
�

100

0

�
0:050 � 0:95100 C

�
100

1

�
0:051 � 0:9599

C
�

100

2

�
0:052 � 0:9598 C

�
100

3

�
0:053 � 0:9597

C
�

100

5

�
0:055 � 0:9595

� 61:6%:
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Binomial trials are applied in just about every possible connection where we
count the number of successes in a series of independent trials. Here are some
examples:

• The number of successes in n independent trials.
• The number of Yes in a poll.
• The number of defect items in a consignment.
• The number of students attending a lecture.

With a binomial distribution we mean a random variable X defined by

X D The number of outcomes s in n binomial trials:

It is usual to think about the outcome s as success and the outcome f as failure,
X is then simply counting the number of successes in n trials. A distribution of this
kind is also called binomial .n:p/, and we sometimes write

X D BinŒn; p�:

The probability distribution is given by

P.X D x/ D
�n

x

�
px.1 � p/n�x:

We now wish to compute the expectation and variance for the binomial distribu-
tions. Using the definition, we see that

EŒX� D
nX

xD0

x � P.X D x/ D
nX

xD0

x �
�n

x

�
px.1 � p/n�x:

This expression can be simplified by brute force using recursive formulas for the
binomial coefficients. It is quite a challenge to get through along this route, but it is
not necessary to resort to such excesses. We can instead proceed as follows: If we
add n independent indicator distributions, the sum provides us with the total number
of 1-s in n trials using the indicator distribution. If we interpret 1 as a success, the
sum equals the number of successes. Hence if X is a binomial distribution:

X D I1 C I2 C � � � C In;

where I1; I2; : : : ; In are independent indicator distributions. From Chap. 6 we know
that the expected value of a sum is the sum of the expected values of each term.
Hence

EŒX� D EŒI1� C EŒI2� C � � � C EŒIn� D p C p C � � � C p D n � p:
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Moreover, the theory from Chap. 6 says that the variance of a sum of independent
distributions equals the sum of the variances of each term. This can be applied here
to see that

VarŒX� D VarŒI1� C VarŒI2� C � � � C VarŒIn�

D p.1 � p/ C p.1 � p/ C � � � C p.1 � p/ D n � p.1 � p/: (7.1)

The results can be summarized as follows:

If X is BinŒn; p�, then

EŒX� D n � p; VarŒX� D n � p.1 � p/:

See Fig. 7.1 for a display of a binomial distribution with n D 6; p D 0:4.

Example 7.3 Let X denote the number of defective items in a shipment of 7600

items, and assume that the probability of an item being defective is p D 5%. What
is the distribution of X, and what is the expectation, variance, and standard deviation
for this distribution?

Solution: If we interpret the outcome “defective” as a success s, this is a binomial
distribution with n D 7600; p D 0:05. The formulas above give

EŒX� D n � p D 7600 � 0:05 D 380;

VarŒX� D n � p.1 � p/ D 7600 � 0:05 � 0:95 D 361;

Fig. 7.1 Binomial
distribution with n D 6 and
p D 0:4
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and

�ŒX� D
p

VarŒX� D p
361 D 19:

7.3 The Hypergeometric Distribution

Assume that we have 25 items and that 10 of these items are defective. If
we randomly select an item, the probability of the item being defective is 10

25
.

If, however, we select two items, the outcomes of the two selections are not
independent. The probability of a defective second item depends on the first item
we selected. If the first item was defective, the probability of the second item being
defective is 9

24
, while this probability is 10

24
if the first item was not defective. The

conditions for binomial trials are not satisfied in this case.
Strictly speaking, the dilemma above arises in many different contexts. In general

we can describe the context as follows: Assume that we have N elements in the
population and that M of these elements is special, while the rest, i.e., N�S elements
are ordinary. From the population we randomly select a sample with n objects. The
selection is unordered without replacement. We define a random variable X by

X D The number of special elements in the sample:

This random variable is called hypergeometric, and we will now derive its
probability distribution. The foundations for this theory were established in Chap. 3,

and the argument goes as follows: There is in total
�

N
n

�
different unordered

outcomes. A random selection means these outcomes are equally probable. The
probability of each different outcome is hence 1

. N
n /

. How many of these outcomes

gives X D x? To clarify this we consider a simple example.

Example 7.4 How many different combinations end up with X D 3 if N D 30; M D
20, and n D 10?

Solution: In total there are 20 special elements and we must select 3 of these.

Since the order does not matter, we can do this in
�

20
3

�
different ways. In addition

we need to pick 7 of the 10 ordinary elements, and this can be done in
�

10
7

�
different

ways. All these choices can be combined with each other, and hence there are in all�
20
3

�
�
�

10
7

�
different combinations where X D 3.

Exactly the same argument goes through in general. Hence there is a total of�
M
x

�
�
�

N�M
n�x

�
different combinations where X D x. Since all these combinations are
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equally probable with probability 1

. N
n /

, the distribution of X is as follows:

P.X D x/ D
�

M
x

�
�
�

N�M
n�x

�

�
N
n

� :

Any random variable with this probability distribution is called hypergeometric
.N; M; n/. For the example above we get

P.X D 3/ D
�

20
3

�
�
�

10
7

�

�
30
10

� :

Example 7.5 We receive a shipment of 25 items where 10 items are defective. We
sample 10 of the items, and let

X D Number of defective items in the sample:

Then X is hypergeometric .25; 10; 10/, and the distribution is

P.X D x/ D
�

10
x

�
�
�

15
10�x

�

�
25

10

� :

For example we have

P.X D 1/ D
�

10
1

�
�
�

15
9

�

�
25
10

� � 1:5%;

and

P.X D 3/ D
�

10
3

�
�
�

15
7

�

�
25
10

� � 23:6%:
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Fig. 7.2 A hypergeometric
distribution with
N D 30; M D 20; n D 6
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We now know the formula for the hypergeometric distribution. An example of a
hypergeometric distribution is shown in Fig. 7.2. From this formula it is possible to
derive the formulas for the expected value and variance for this distribution. Since
the details are tedious, we state the final results without proof:

If X is hypergeometric .N; M; n/, then

EŒX� D n � M

N
; VarŒX� D

�
N � n

N � 1

�
� n � M

N
�
�

1 � M

N

�
:

When we conduct a survey where the answers are Yes/No, we do not ask the
same person multiple times. The distribution is then hypergeometric. The population
is all the people in the town/country, and the special elements are the people who
will answer Yes to the question. In total we sample n observations. The selection
is without replacement since we only ask each person once. In most such cases the
sample is only a tiny fraction of the total population, and it is hence of interest to
see what happens to the distribution when n is relatively small and N very big.

We define p D M
N equal to the probability of selecting a special element the first

time we select an element. If, e.g., N D 100;000; M D 5000, and n D 10, we find

EŒX� D n � p;

VarŒX� D
�

100;000 � 10

100;000 � 1

�
� n � p � .1 � p/ D 0:9999 � n � p � .1 � p/ :

We see that these values are almost exactly the same as we get in a binomial
distribution with the same n and p. This makes good sense. When N is very big,
the odds of choosing a special element hardly change if we remove a moderate
number of elements. In such cases we can use the binomial distribution, even if,
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strictly speaking, the true distribution is hypergeometric. The binomial distribution
is simpler to handle, and we only use the hypergeometric distribution when n and
N have the same order of magnitude. In general approximating a hypergeometric
distribution by a binomial distribution is acceptable if N � 20n. Another advantage
of using the binomial approximation is that we need not know the values on N and
M. We only need to know the fraction between them.

Example 7.6 We receive a shipment of 100;000 items where a fraction p is
defective. We inspect 10 items and have decided to accept the shipment if the
number of defective items is less than or equal to two. What is the probability that
we accept the shipment?

Solution: There are two issues of interest here. First, the answer will depend on
the actual value of p, second, strictly speaking we are dealing with a hypergeometric
distribution. Since we only inspect 10 items, the probability of choosing a defective
item does not change much. A binomial approximation is legitimate in this case. To
get an overview of the situation, we try out a few different values for p.

• p D 0:05. We put X D BinŒ10; 0:05�, and wish to find

P.X � 2/ D P.X D 0/ C P.X D 1/ C P.X D 2/:

Here we can of course use the binomial distribution function to compute these
values, but it is more efficient to use a table. Tables for the binomial distribution
can be found at the end of the book. If we use the table (Table A (continued)),
we find

P.X � 2/ D 0:5987 C 0:3151 C 0:0746 D 98:8%:

• p D 0:2. We put X D BinŒ10; 0:2� and use the table to get

P.X � 2/ D 0:1074 C 0:2684 C 0:3020 D 67:8%:

We have provided a survey which can be used to make an opinion of the
usefulness of our inspection. The next question is if the inspection is sufficient for
our purposes. Questions of this type are intimately related to hypothesis testing that
is something we study in detail later on.

The use of tables for the binomial distribution is not important for applications.
Quite soon, however, we will enter situations where statistical tables are crucial
for computation. Some practice using tables for the binomial distribution serves as
a gentle introduction to the more advanced tables, and they hardly have any use
beyond that.
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7.4 The Poisson Distribution

Example 7.7 We receive a shipment of 1;000;000 items where 0:1% are defective.
We inspect 1000 items and have decided to accept the shipment if the number of
defective items is less than or equal to 4. What is the probability that we accept the
shipment?

Solution: This is clearly an approximate binomial distribution with n D 1000

and p D 0:001, where

P.X D x/ D
�

1000

x

�
px.1 � p/1000�x:

There are no tables that can be used here, and it may also happen that calculators
have trouble with the large factorials involved here. There is, however, another
distribution, the Poisson distribution, which is well suited to deal with this situation.
The Poisson distribution arise as the limit of a sequence of binomial distributions
when p ! 0C; n ! 1 in such a way that n � p D � is constant.

A Poisson distribution X with parameter � has the distribution

P.X D x/ D �x

xŠ
e��:

To see how this works, let us compare the values of the Poisson distribution with
the binomial distribution in Example 7.7. If we use the formulas for the binomial
distribution, we see that

P.X D 0/ D 0:3677 P.X D 1/ D 0:3681

P.X D 2/ D 0:1840 P.X D 3/ D 0:0:0613:

If we instead compute the values from the Poisson distribution using � D n � p D
1000 � 0:001 D 1, we get

P.X D 0/ D 0:3679 P.X D 1/ D 0:3679

P.X D 2/ D 0:1839 P.X D 3/ D 0:0:0613:

We see that there is a difference, but the difference is so small that it is of no
practical consequence. The numbers we found for the Poisson distribution can be
computed directly from the definition, but it is also possible to find these values in
the tables at the end of the book (Table B).
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The conditions p ! 0C; n ! 1 can be interpreted as follows: In practice it
means that p is very small while n is very large. A small p means that success is a
rare event. Roughly speaking the Poisson distribution arises when we try to achieve
a rare outcome a large number of times. The Poisson distribution is sometimes called
the law of rare events.

Approximating a BinŒn; p� distribution with a Poisson distribution with parameter
� D n � p is passable when n � 50 and p � 0:05. The approximation improves if we
increase n or decrease p.

The Poisson distribution admits explicit formulas for expectation and variance.
We state the final results without proofs:

If X is a Poisson distribution with parameter �, then

EŒX� D �; VarŒX� D �:

An example of a Poisson distribution with � D 2:5 is shown in Fig. 7.3. In this
book we will only consider cases where the Poisson distribution is related to the
binomial distribution. The Poisson distribution may, however, also arise in contexts
that have nothing to do with the binomial distribution. It is hence a distribution of
independent interest.

Example 7.8 Every day a large and relatively constant number of customers visit a
shopping center. In the center there is a shop that sells a very special product. Few
customers buy this product, but since many people are visiting, the shop sells one
such product per day on average. What is the probability that the shop sells 2 or
more such products during a day?

Solution: This is clearly a situation where we can apply the law of rare events.
If X is the number of items sold of the special product, it is reasonable to assume
that X has Poisson distribution. Since the shop sells one such product per day on
average, we assume EŒX� D 1. As the expectation equals the parameter � in this
case, we use � D 1. Hence

P.X D x/ D 1x

xŠ
e�1 D 1

xŠ
e�1:

Moreover

P.X � 2/ D 1 � P.X � 1/ D 1 � P.X D 0/ � P.X D 0/:

Using the table for the Poisson distribution at the end of the book (Table B), we get

P.X � 2/ D 1 � 0:3678 � 0:3679 D 26:42%:
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Fig. 7.3 A Poisson
distribution with � D 2:5
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If we return to Example 7.7, we can solve this problem in exactly the same way.
The distribution is an approximate Poisson distribution. Since n �p D 1000 �0:001 D
1, we use the parameter � D 1. Hence

P.X � 4/ D P.X D 0/ C P.X D 1/ C P.X D 2/ C P.X D 3/ C P.X D 4/

D 0:3679 C 0:3679 C 0:1839 C 0:0613 C 0:0153 D 0:9963 D 99:63%:

The probability of accepting the shipment is as high as 99:63%.

7.5 The Normal Distribution

All the random variables we have considered so far had a discrete distribution. The
next distribution is different in that it can attain any value on the interval .�1; 1/,
i.e., any real number. We will consider continuous distributions and need a different
line of approach. We first introduce the density of a continuous random variable.
The basic idea is that the area under the density function between a and b defines
the probability that a continuous random variable has values in the interval Œa; b�.

Definition 7.1 The density function g.x/ of a standard normal distribution is
defined by

g.x/ D 1p
2�

e� x2

2 :

This function is defined for any real number x, and the graph is shown in Fig. 7.4.
At a first glance the formula looks a bit odd, but it turns out that this density function
is one of the most important tools we have available in statistics.
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Fig. 7.4 The density
function of a standard normal
distribution
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When the density function fX.x/ of a random variable X is known, we define

P.a � X � b/ D
Z b

a
fX.x/dx:

The probability that X is between a and b is hence equal to the area under the
density function between a and b. For this to be a sensible definition, we need to
require that the area under the full graph is 1, i.e., that

lim
a!�1;b!1 P.a � X � b/ D

Z 1

�1
fX.x/dx D 1:

It may seem cumbersome that we need integration to compute probabilities, but
this is not much of a complication. The reason is that all the values we will need are
available through statistical tables. The table for the standard normal distribution is
available at the end of the book (Tables C and D). The table shows the values of the
integral

G.z/ D
Z z

�1
1p
2�

e� x2

2 dx:

G.z/ is hence the area under the graph of the density function to the left of z, see
Fig. 7.5. The table only contains the values for G.z/ when z � 0. The reason is that
when z is negative, the value can be found by a simple symmetry argument. The
density function is symmetric about zero, and hence the area to the right of z must
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Fig. 7.5 The area to the left of z. The area to the left of �z equals the area to the right of z

be equal to G.�z/, see Fig. 7.5. Hence

G.z/ C G.�z/ D Area under the full graph D 1:

and from this relation it follows that

G.�z/ D 1 � G.z/:

Example 7.9 How do we find G.�1/ from the table?

Solution: We use the formula G.�1/ D 1�G.1/. From the table we find G.1/ D
0:8413. Hence

G.�1/ D 1 � 0:8413 D 0:1587:

Example 7.10 Find the probability that a standard normal distribution has values
between �2 and 1.

Solution: It follows from the definitions that

P.�2 � X � 1/ D G.1/ � G.�2/:

From the table we get G.1/ D 0:8413. To find the value of G.�2/, we use the
relation G.�2/ D 1 � G.2/. From the table we get G.2/ D 0:9772, which gives

P.�2 � X � 1/ D 0:8413 � .1 � 0:9772/ D 0:8185:
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7.5.1 The General Normal Distribution

The expectation of a continuous random variable X with density fX.x/ is defined by

EŒX� D
Z 1

�1
x � fX.x/dx;

and the variance is defined by

VarŒX� D
Z 1

�1
.x � EŒX�/2 � fX.x/dx:

From these definitions it is possible to prove that a standard normal distribution
X has

EŒX� D 0; VarŒX� D 1:

This, however, is a special case, and the general normal distribution X has a density
function

fX.x/ D 1p
2��2

e� .x�	/2

2�2 :

With this density it is possible to show that

EŒX� D 	; VarŒX� D �2;

and we say that X is an N.	; �2/ random variable (Figs. 7.6 and 7.7).

Fig. 7.6 Density functions
of normal distributions with
	 D 2, � D 0:6 and � D 1:4
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Fig. 7.7 Density functions
of normal distributions with
� D 0:6, 	 D 2 and 	 D 5
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7.5.2 Standardizing RandomVariables

It turns out that we do not need new tables to compute probabilities related to the
general normal distributions. A useful technical procedure solves the problem. If X
is any random variable with

EŒX� D 	 VarŒX� D �2;

we can define a new random variable Z by

Z D X � 	

�
:

Then EŒZ� D 0; VarŒZ� D 1.

Proof We use the general rules for expectation and variance to see that

EŒZ� D E



X � 	

�

�
D 1

�
EŒX � 	� D 1

�
.EŒX� � EŒ	�/ D 0;

VarŒZ� D Var



X � 	

�

�
D 1

�2
VarŒX � 	� D 1

�2
VarŒX� D 1

�2
� �2 D 1:

The usefulness of this procedure will be clear from the following example.
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Example 7.11 Assume that X is a normal distribution with EŒX� D 20 and �2 D 16.
Find P.X � 28/ and P.24 � X � 28/.

Solution: Z D X�20
4

is a standard normal distribution. Hence

P.X � 28/ D P

�
X � 20

4
� 28 � 20

4

�
D P.Z � 2/ D G.2/ D 0:9972:

Correspondingly (Note that P.X D 24/ D 0 since X is a continuous distribution)

P.24 � X � 28/ D P.X � 28/ � P.X � 24/

D P

�
X � 20

4
� 28 � 20

4

�
� P

�
X � 20

4
� 24 � 20

4

�

D P.Z � 2/ � P.Z � 1/ D G.2/ � G.1/

D 0:9772 � 0:8413 D 0:1359:

The method we used in the previous example is very useful in applications. It can
also be used in cases where X is approximately normal, meaning that the distribution
is very close to a normal distribution. The final result can be stated as follows:

If X is approximately normal with EŒX� D 	 and VarŒX� D �2, then

P.X � z/ � G
� z � 	

�

�
:

If X is a normal distribution, we get the same result but with equality instead
of approximation.

7.5.3 The Central Limit Theorem

We will now consider one of the most important results in statistics. The results
explain clearly why a standard normal distribution has such a prominent place. A
rigorous proof is too difficult, so we omit the details. We will instead focus the
meaning of the statement and explain how it can be applied in practical cases.

Example 7.12 Assume that we toss a coin 10 times. If we do this only once the
result will be quite random. If we repeat this multiple times, it might happen that we
see a pattern. The table below shows the result of a computer simulation where we
have repeated the 10 coin tosses 1000 times.
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10 tails W once

9 tails; 1 heads W 8 times

8 tails; 2 heads W 56 times

7 tails; 3 heads W 115 times

6 tails; 4 heads W 206 times

5 tails; 5 heads W 247 times

4 tails; 6 heads W 190 times

3 tails; 7 heads W 117 times

2 tails; 8 heads W 51 times

1 tails; 9 heads W 8 times

10 heads W once

The frequencies have been plotted to the left in Fig. 7.8. We see that the plot
forms a curve resembling the density of a normal distribution. The effect is even
more pronounced in the graph to the right in Fig. 7.8. Here the results are based on
100 coin tosses in 100;000 repeated experiments.

The results in Fig. 7.8 are typical when we add the results from several repeated
experiments. Regardless of what distribution we start out with, the sum of the results
from many independent experiments will be close to a normal distribution. More
precisely the following theorem holds:
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Fig. 7.8 Frequencies of heads in repeated coin tosses
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Theorem 7.1 Let X1; : : : ; Xn be independent random variables with the same
distribution, and assume that EŒXi� D 	; VarŒXi� D �2 for all i D 1; : : : ; n.
Put

Sn D X1 C X2 C � � � C Xn:

Then for all z

P

�
Sn � EŒSn�

�ŒSn�
� z

�
� G.z/; when n is sufficiently big.

Theorem 7.1 is often called the central limit theorem and is one of the most
important results in statistics. How big n needs to be depends on the distribution,
but a crude rule of thumb says n > 30. In some special cases we can give a more
precise answer. The proof of the central limit theorem is too difficult to be included
here, so we will focus on applications.

Example 7.13 Assume that we know that S D X1 CX2 C� � �CXn, where X1; : : : ; Xn

all are independent with the same distribution. We don’t know the precise value of
n, but we know that the value is large. Find an approximate value for P.S � 8/ when
EŒS� D 2; VarŒS� D 9.

Solution: We want to use the central limit theorem. First we find

�ŒS� D
p

VarŒS� D 3:

Next we subtract EŒS� and then divide by �ŒS� on both sides of the inequality to see
that

P.S � 8/ D P

�
S � EŒS�

�ŒS�
� 8 � 2

3

�
� G.2/ D 0:9772:

The principle we used in this example is useful, and we formulate a general
version of it:

Assume that n is big, and that S D X1 C X2 C � � � C Xn, where X1; : : : ; Xn all
are independent with the same distribution. Then

P.S � s/ � G

�
s � EŒS�

�ŒS�

�
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The central limit theorem also applies to the mean and can be stated as follows:

Theorem 7.2 Let X1; : : : ; Xn be independent random variables with the same
distribution, and assume that EŒXi� D 	; VarŒXi� D �2 for all i D 1; : : : ; n. If
n is big and we put

S D X1 C X2 C � � � C Xn

X D 1

n
.X1 C X2 C � � � C Xn/;

then

S � NŒn	; n�2� and X � N



	;

�2

n

�
:

When the conditions in Theorem 7.2 hold, we can show that

EŒS� D n	; VarŒS� D n�2;

and

EŒX� D n	; VarŒX� D �2

n
:

The last relation is particularly useful in applications.

Example 7.14 Assume that 400 customers come to a shop every day and that their
purchases are independent. They often buy milk, and we assume that the number of
liters bought by each customer is a random variable X with distribution

P.X D 0/ D 0:3; P.X D 1/ D 0:5; P.X D 2/ D 0:2:

Find an approximate value for the probability that the shop sells between 341
and 390 liters.

Solution: We call the total number of liters sold S, and have

S D X1 C X2 C � � � C X400:

To solve the problem, we need to compute

P.341 � S � 390/ D P.S � 390/ � P.S � 340/:
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We can find approximate values for these probabilities from the central limit
theorem, but we need to know EŒS� and VarŒS�. To find these values we first need to
compute EŒX� and VarŒX�. We get

EŒX� D 0 � 0:3 C 1 � 0:5 C 2 � 0:2 D 0:9

EŒX2� D 02 � 0:3 C 12 � 0:5 C 22 � 0:2 D 1:3

VarŒX� D EŒX2� � EŒX�2 D 1:3 � 0:92 D 0:49:

We use these values to see that

EŒS� D EŒX1� C EŒX2� C � � � C EŒX400�

D 0:9 C 0:9 C � � � C 0:9 D 400 � 0:9 D 360:

Since X1; X2; : : : ; X400 all are independent

VarŒS� D VarŒX1� C VarŒX2� C � � � C VarŒX400�

D 0:49 C 0:49 C � � � C 0:49 D 400 � 0:49 D 196:

Hence

�ŒS� D
p

VarŒS� D p
196 D 14:

Now we have all the information we need to use the central limit theorem, and we
get

P.341 � S � 390/ D P.S � 390/ � P.S � 340/

� G

�
390 � 360

14

�
� G

�
340 � 360

14

�

� G.2:14/ � G.�1:43/ D G.2:14/ � .1 � G.1:43//

D 0:9838 � .1 � 0:9236/ D 0:9074:

The probability that the customers buy between 341 and 390 liters of milk is hence
about 90%.

In the previous calculation we tacitly assumed that n D 400 is sufficient to
apply the central limit theorem. A general problem in applications of the central
limit theorem is the following: How many terms are sufficient? There is no simple
answer to this question. In many cases our random variables come from a binomial
distribution, and in that particular case it is possible to give a fairly precise rule for
how many terms are needed. Note that a binomial distribution can always be viewed
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Fig. 7.9 Approximating a
binomial distribution where
n D 50; p D 0:4 by a normal
distribution
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as a sum of n independent indicator distributions, and the central limit theorem can
hence be applied directly to the distribution. The following result holds:

If X is binomial .n; p/, then

P.X � x/ � G

 
x � n � pp
n � p.1 � p/

!
:

The approximation can be used if n � p.1 � p/ � 5 and is good if n � p.1 � p/ �
10. When these conditions fail, we should not approximate X by a normal
distribution.

An example where a binomial distribution is approximated by a normal distribu-
tion is shown in Fig. 7.9. Note that EŒX� D n � p and VarŒX� D n � p.1 � p/ if X is
binomial .n; p/.

Example 7.15 400 customers drop by a shop during a day. The probability that a
customer makes a buy is p D 0:1. Find the probability that at least 30 customers
make a buy during the day.

Solution: Let X be the number of customers who make a buy during a day. Then
X D BinŒ400; 0:1�. In this case n � p.1 � p/ D 400 � 0:1 � 0:9 D 36. Since this number
is bigger than 10, we can expect that the normal approximation works well. Hence

P.X � 30/ D 1 � P.X � 29/ � 1 � G

�
29 � 40p

36

�

D 1 � G.�1:83/ D G.1:83/ D 0:9664:
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7.5.4 Integer Correction

When a random variable has a continuous distribution, the probability for any
specific value is zero. The probability that X D 2, e.g., is smaller than the probability
that 1:9999 � X � 2:0001. The last probability is given by

Z 2:0001

1:9999

fX.x/dx � 0;

since in all but exceptional cases the area under the graph is small. When we use
the normal distribution to approximate a random variable with integer values, we
sometimes need to handle inequalities with care. If X only has integer values, then

P.X � 30/ D 1 � P.X � 29/

while

P.X � 30/ D 1 � P.X � 30/

if X has a continuous distribution. If X is integer valued, then

P.X � 10/ D P.X � 10:9999/

but the normal approximation will give different answers for left- and the right-
hand side. We can hope that the difference is small, but in general it is difficult
to judge which of the approximations provides the best approximation to the exact
probability. In some cases the approximation

P.X � 10/ � G

�
10 � EŒX�

�ŒX�

�

is best, while it may also happen that

P.X � 10/ � G

�
10:9999 � EŒX�

�ŒX�

�

is closer to the exact answer. It is sometimes seen that a good option is to meet
halfway, i.e.

P.X � 10/ � G

�
10:5 � EŒX�

�ŒX�

�

This method is called integer correction. Integer correction must be handled with
care, and it frequently happens that the “correction” provides a worse result.
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Definition 7.2 If X is integer valued with an approximate normal distribution,
the integer correction is defined via

P.X � x/ � G

 
x C 1

2
� EŒX�

�ŒX�

!
:

If X is binomial .n; p/ where 20 � n � 50, then integer correction always
improves the result in comparison with the standard approximation. In other cases
it happens frequently that the “correction” leads to a larger error. Integer correction
is somewhat obsolete. The reason why we still include some material on this topic
is that it focuses an important difference between continuous and discrete variables.
This difference can also be illustrated as follows: Assume that we quote stock prices
and that the smallest unit is 1 USD. Then

P.X � 10/ D 1 � P.X � 9/:

If, however, the smallest unit is 1 cent, then

P.X � 10/ D 1 � P.X � 9:99/:

We see that the resolution matters. A continuous distribution has a resolution which
is arbitrarily fine. Then

P.X � 10/ D 1 � P.X � 10/:

In computations we often need to reverse inequalities as above. In doing so we need
to focus on the resolution of the variable.

7.5.5 Normal Approximation of Hypergeometric and Poisson
Distributions

We mentioned above that a hypergeometric distribution is approximately binomial
when N � 20n. Moreover a binomial distribution is approximately Poisson when
n � 50 and p � 0:05. If we in addition assume that np.1 � p/ � 10, we know
that the binomial distribution is approximately normal (Figs. 7.10 and 7.11). This
means that there cannot be much difference between the normal distribution and
the hypergeometric distribution or between the normal distribution and the Poisson
distribution in such cases. The final results can be summarized as follows:
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Fig. 7.10 Approximating a hypergeometric distribution where N D 1000; M D 600; n D 50

with a normal distribution
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Fig. 7.11 Approximating a Poisson distribution where � D 20 with a normal distribution

A hypergeometric distribution is approximatively normal if

N � 20n; n � M

N

�
1 � M

N

�
� 10:

A Poisson distribution is approximatively normal if � � 10.

7.5.6 Summing Normal Distributions

As we have seen in Chap. 6, the sum of two random variables X and Y can be quite
complicated. If X and Y are normally distributed, it is possible to prove that the
sum Z D X C Y also has normal distribution. The situation is particularly simple
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if X and Y are independent. In that case Z is normally distributed with expectation
EŒX� C EŒY� and variance VarŒX� C VarŒY�. The result can be generalized to sums of
arbitrary length, and the main result can be formulated as follows:

If X1; X2; : : : ; Xn all are independent and normally distributed, then the sum is
a normal distribution with expected value equal to the sum of the expectations
and variance equal to the sum of the variances.

7.5.7 Applications to Option Pricing

As we mentioned in Chap. 5, there are explicit formulas to price options in real
world markets. We now have tools to take a brief look at this. To avoid too high
levels of abstraction we will consider some special cases where most numbers are
given. The principles we use, however, are true in general, and it is not very difficult
to figure out what to do when we change some of these numbers.

Let us consider a stock with the following technical data:

• Stock price today: K0 D 100 (USD).
• Volatility: ˇ D 10%.
• Expected annual return: ˛ D 5%.
• Bank interest rate: r D 5% (annually, continuously compounded).

The volatility, ˇ, is a technical parameter often used in finance. It can be
translated to the more common concept of standard deviation by the following
formula

Standard deviation of the stock price Kt at time t D K0e˛t
p

eˇ2 t � 1

We see that the standard deviation changes with time t. That makes good sense. We
know the stock price at time t D 0. If we put t D 0 in the formula we get:

K0e˛�0peˇ2�0 � 1 D K0e0
p

e0 � 1 D 0:

As time passes, the standard deviation increases. At time t D 1 (years), we get

100e0:1�0pe0:12�0 � 1 D 11:08 (USD):

The standard deviation in the stock price one year into the future is hence 11.08
USD.
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A commonly used model for the time development of stock prices can be
formulated as follows:

Kt D K0e.˛� 1
2 ˇ2/tCˇXt ;

where Xt is normally distributed with EŒXt� D 0 and VarŒXt� D t.

Now assume that we want to consider the distribution of possible stock prices
one year into the future. We put t D 1 and get

K1 D e0:095C0:1X1 ;

where X1 is NŒ0; 1�. This is an example of a lognormal distribution. The distribution
of K1 follows easily from the distribution of X1 if we use logarithms.

P.K1 � k/ D P.100 e0:095C0;1X1 � k/

D P.e0:095C0;1X1 � k=100/

D P.0:095 C 0; 1X1 � lnŒk=100�/

D P.X1 � 10 � lnŒk=100� � 0:95/: (7.2)

Since X1 is a standard normal distribution, we get

P.K1 � k/ D G.10 � lnŒk=100� � 0:95/:

Instead of buying the stock, we could buy a call option to be redeemed one year
from the start. If the strike of the option is, e.g., 110 USD, we have the right to buy
the stock for 110 USD at time t D 1. Hence if the stock price raises by more than
10 USD, the option will pay out money. The price of a call option can be computed
by the procedure below, which is often referred to as the Black and Scholes pricing
formula.

The price V of a call option with strike K at time T is calculated as follows:

1: Compute R D ln



K

K0

�
C �1

2
ˇ2 � r

�
T: 2: Compute S D ˇ

p
T:

3: V D K0 � .1 � G.R=S � S// � K � e�rT.1 � G.R=S//:
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We now want to use the Black and Scholes formula to compute the price of
10;000 call options with strike K D 110 (USD) at time T D 1. When we insert the
given quantities into the formulas, we get

R D lnŒ110=100� C 0:005 � 0:05 D 0:0503; S D 0:1:

The price on one call option is

V D 100 � .1 � G.0:0503=0:1 � 0:1// � 110 � e�0:05.1 � G.0:0503=0:1//

D 100 � .1 � G.0:40// � 110 � e�0:05.1 � G.0:50//

D 100 � .1 � 0:6554/ � 110 � e�0;05.1 � 0:6915/

D 2:18:

The price on 10;000 call options is hence 21;800 USD.
A question of interest is to figure out the probability that the investment is

profitable. We make a profit when the value of the options exceeds 21;800 USD.
The limiting stock price K1 is determined by the equation

10;000 � .K1 � 110/ D 21;800;

and we see that the stock price must be at least 112.18 USD before we begin to
make a profit. The probability that we make a profit is

P.K1 � 112:18/ D 1 � P.K1 � 112:18/

D 1 � G.10 � lnŒ112:18=100� � 0:95/ D 1 � G.0:20/

D 42:1%:

Note that the calculations critically depend on the given parameters. If the
economy enters a recession, the parameters will most certainly change and this in
turn will change the stock prices. Questions of this type will be discussed in the
exercises.

7.6 Summary of Chap. 7

• X D Binomial.n; p/: Total number of successes in n independent trials when the
probability of success is p.

P.X D x/ D
�n

x

�
px.1 � p/n�x; EŒX� D n p; VarŒX� D n p.1 � p/:
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• X D Hypergeometric.N; M; n/: Total number of special elements when we
sample n elements from a population of N elements, where M elements are
special.

P.X D x/ D
�

M
x

� �
N�M
n�x

�

�
N
n

� ; EŒX� D n � M

N
:

VarŒX� D N � n

n � 1
� n � M

N
�
�

1 � M

N

�
:

• X D Poisson �: Total number of successes when an experiment where success is
a rare outcome is repeated many times.

P.X D x/ D �x

xŠ
e��; EŒX� D �; VarŒX� D �:

• X D NŒ0; 1� D Standard normaldistribution: A continuous distribution where

P.X 2 Œa; b�/ D
Z b

a

1p
2�

e�x2=2dx; EŒX� D 0; VarŒX� D 1:

The cumulative distribution for the standard normal distribution is listed in tables
and is defined by

G.z/ D
Z z

�1
1p
2�

e�x2=2dx:

The following relations are useful in applications:

G.�z/ D 1 � G.z/; P.a � X � b/ D G.b/ � G.a/

• The central limit theorem: Let Sn D X1 C � � � C Xn, where X1; : : : ; Xn are
independent variables with the same distribution. Then

lim
n!1 P

�
Sn � EŒSn�

�ŒSn�

�
D G.z/:

• Any random variable S which (roughly speaking) appears as a sum of many inde-
pendent effects will according to the central limit theorem lead to an approximate
normal distribution. How many terms are needed for a satisfactory approximation
depend on the situation. Some guidelines are provided in Table 7.1.
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Table 7.1 Criteria for
normal approximation

Binomial np.1 � p/ � 5 OK

Binomial np.1 � p/ � 10 Good

Hypergeometric N � 20n and n � M
N � �1 � M

N

� � 5 OK

Hypergeometric N � 20n and n � M
N � �1 � M

N

� � 10 Good

Poisson � � 5 OK

Poisson � � 10 Good

• When S is approximately normal, then

P.S � s/ � G

�
s � EŒS�

�ŒS�

�
:

with equality if S is a normal distribution.
• Integer correction (somewhat obsolete): Is S and s are integer valued, and S is

approximately normal, then

P.S � s/ � G

 
s C 1

2
� EŒS�

�ŒS�

!
:

The values improve (in comparison with the usual approximation) when S is
binomial with 20 � n � 50 and np.1 � p/ � 10. The method is otherwise
unreliable, in particular at the tails of the distribution.

7.7 Problems for Chap. 7

7.1 We have a shipment with 9 items and the probability that an item is defective is
10%. Let X be the number of defective items in the shipment.

(a) Find the probability that at most 3 items are defective.
(b) Find the probability that at least 2 items are defective.
(c) Find EŒX�; VarŒX�; and �ŒX�.

7.2 We have randomly selected 25 documents during an audit of a company.
Assume that the probability that a document contains errors is 2%, and let X be
the number of documents containing errors.

(a) Find the probability that there are less than 2 documents with errors.
(b) Find the probability that there is at least one document with errors.
(c) Find EŒX�; VarŒX�; and �ŒX�.
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7.3 We ask a sample of 16 persons if they like a good. The probability that a
randomly selected person likes the good is 20%. X is the number of people in the
sample that like the good.

(a) Find the probability that 3 persons like the good.
(b) Find EŒX�; VarŒX�; and �ŒX�.

7.4 We have a shipment with 26 items and know that half of the items, i.e., 13
items are defective. We randomly select 8 items from the shipment. X is the number
of defective items in the sample.

(a) Find the probability that 4 items are defective.
(b) Find EŒX�; VarŒX�; and �ŒX�.

7.5 A political party has 65 representatives, and we know that 20% of the
representatives are negative to a proposal. We select 20 people randomly, and let
X denote the number of representatives that are negative to the proposal.

(a) Find the probability that at least 2 representatives in the sample are negative to
the proposal.

(b) Find EŒX�; VarŒX�; and �ŒX�.

7.6 A company handles every day a large and relatively constant number of
orders. On average the company receives 4 complaints per day. X is the number
of complaints the company receives a randomly selected day.

(a) Find the probability that the company receives at most 3 complaints.
(b) Find EŒX�; VarŒX�; and �ŒX�.

7.7 We receive a consignment of 2;000;000 items where the probability of an item
being defective is 0:05%. We sample 500 items, and accept the consignment if the
number of defective items in the sample is at most one.

(a) What is the probability that we accept the consignment?
(b) Find EŒX�; VarŒX�; and �ŒX�.

7.8 Assume that X is a standard normal distribution.

(a) Find the probability that X � 1:64.
(b) Find the probability that X D 1:64.
(c) Find the probability that X < 1:64.
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7.9 Assume that X is a standard normal distribution.

(a) Find the probability that 0 � X � 0:44.
(b) Find the probability that �1:96 � X � 1:96.
(c) Find the probability that X > �2:33.

7.10 Assume that X is a random variable with EŒX� D 5 and VarŒX� D 16. Define a
new random variable Y D X�5

4
. Prove that

EŒY� D 0; VarŒY� D 1:

7.11 Assume that S D X1 C X2 C � � � C Xn where X1; : : : ; Xn are independent with
the same distribution and n is very large. EŒS� D 3 and VarŒS� D 16.

(a) Find the probability that S � 7.
(b) Find the probability that �1 � S � 11.
(c) Find the probability that S � 5.
(d) Is there a good reason to use integer correction in this problem?

7.12 Assume that S is normally distributed with EŒS� D 10 and VarŒS� D 25. How
large must z be if

P.S � z/ D 95%‹

7.13 We have a consignment with 225 items and the probability that an item is
defective is 20%. Let X be the number of defective items in the consignment.

(a) Find EŒX�; VarŒX�; and �ŒX�.
(b) Find the probability that at most 50 items are defective.
(c) Find the probability that at least 35 items are defective.

7.14 We ask a sample of 48 persons if they like a good. Assume that the probability
that a randomly selected person likes the good is 25%. X is the number of people in
the sample who like the good.

(a) Find EŒX�; VarŒX�; and �ŒX�.
(b) Why could integer correction be a good idea in this problem?
(c) Use integer correction to find the probability that at least 15 persons like the

good.
(d) Find the probability that at least 15 persons likes the good using a normal

approximation without integer correction. The exact answer is P.X � 15/ D
87:68%. Comment the answers in (c) and (d).
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7.15 Assume that X1; X2; X3; X4 are independent and normally distributed with

EŒX1� D 100 EŒX2� D 90 EŒX3� D 95 EŒX4� D 105

VarŒX1� D 30 VarŒX2� D 20 VarŒX3� D 25 VarŒX4� D 15:

(a) What is the distribution of S D X1 C X � 2 C X3 C X4? Can we use the central
limit theorem in this case?

(b) Find EŒS�; VarŒS�; and �ŒS�.
(c) Compute P.S � 390/. Is the answer different from P.S < 390/?

7.16 Option Pricing Theory: A stock has today a price K0 D 100 USD, and it has
an expected annual return ˛ D 15% and a volatility ˇ D 20%. The bank interest
rate is r D 5%.

(a) Find the standard deviation in the stock price 6 months from now.
(b) What is the price of a call option that gives the right to buy the stock for 112

USD 6 months from now?

7.17 Option Pricing Theory: A stock has today a price K0 D 200 USD, it has an
expected annual return ˛ D 9% and a volatility ˇ D 2%. The bank interest rate is
r D 5%.

(a) What is the price of a call option that gives the right to buy the stock for 205
USD 3 months from now?

(b) What is the probability that the option will be worthless?
(c) A short time after the option was bought, the company met serious problems.

The stock price fell instantly to 198 USD and the expected annual return went
down to 5%. What is the probability that the option will be worthless?

7.18 Option Pricing Theory: A stock has today a price K0 D 98 USD, and it has
an expected annual return ˛ D 12% and a volatility ˇ D 12%. The bank interest
rate is r D 5%.

(a) What is the price of a call option that gives the right to buy the stock for 109
USD 1 year from now?

(b) You spend 10;000 USD to buy options like in (a). Instead of buying the options
you could have made a safe investment putting your money in the bank. What
must the stock be worth one year from now so that you get at least as much
profit as you would have gotten from a bank deposit?

(c) What is the probability that the options give at least as much profit from the
options as you would get from a bank deposit?



146 7 Basic Probability Distributions

7.19 Option Pricing Theory: The price of a stock at time t (in years) is given by
the formula

Kt D 100e0:08tC0:2Xt ;

where Xt is normally distributed with expected value zero and standard deviation
p

t.

(a) Find the probability that the stock price is above 115 USD when t D 4.
(b) What is the volatility of the stock? Assume that the bank interest rate is r D 3%.

Use the Black and Scholes pricing formula to find the price on a call option that
gives the right to buy the stock for 115 USD 4 years from now.

7.20 Applications of the Central Limit Theorem: Every day about 10;000 people
walk past an ice cream store. We let X1; X2; : : : ; X10;000 denote the number of ice
cream bought by each person. Assume that X1; X2; : : : ; X10;000 are independent with
the same distribution, and that the distribution is given by

P.X D 0/ D 86% P.X D 1/ D 8% P.X D 2/ D 2% P.X D 3/ D 4%

(a) Find EŒX� and VarŒX�.
(b) Put S D X1 C X2 C � � � C X10;000. Find EŒS�; VarŒS�, and �ŒS�.
(c) Find the probability that the store sells more than 2450 ice cream.
(d) How many ice cream must the store have in stock to be 99% sure that they can

meet the demand?

7.21 Applications of the Central Limit Theorem: A building plot area is planned
for 900 houses. Let X be the number of cars per household, and assume that

P.X D 0/ D 0:1 P.X D 1/ D 0:6 P.X D 2/ D 0:3:

(a) Find EŒX� and VarŒX�.
(b) Is it reasonable to assume that the number of cars in each household are

independent random variables? Point (shortly) to issues for and against this
assumption.

(c) Assume that the number of cars in each household are independent random
variables, and define Y D P900

iD1. Find EŒY� and VarŒY�. How many parking
lots are needed if we require 90% probability that all the cars can park
simultaneously? Approximate Y by a normal distribution in your calculations.

7.22 Applications of the Central Limit Theorem: The probability that a ran-
domly selected customer in a bookstore buys a textbook in statistics is p D 0:001.
During a day the store has about 10;000 customers. We assume that the customers
shop independently and let X denote the number of textbooks in statistics bought
during a day.
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(a) What is the exact distribution of X? Find EŒX� and VarŒX�.
(b) Use a normal approximation with and without integer correction to compute an

approximate value for P.X � 3/.
(c) The exact answer in (b) is P.X � 3/ D 0:0103. Let Y be a Poisson random

variable with � D 10. Compute the probability P.Y � 3/ and compare the
results in (b) and (c).

7.23 Portfolio Computations: You want to invest 400;000 USD in two stocks, A
and B. The two stocks cost today

A W 100 USD per stock B W 200 USD per stock

(a) Let a be the number of A stocks and b be the number of b stocks. Find a and b
when you want to invest the same total amount in the two stocks.

(b) We assume that the prices on the two stocks one year from now are independent
random variables XA and XB. The total value V of your portfolio one year from
now is given by

V D a XA C b XB;

where a and b are the values you found in (a). Find EŒV� and VarŒV� if we assume
that EŒXA� D 200; EŒXB� D 300; VarŒXA� D 1500, and VarŒXB� D 400. Also find
the standard deviation �ŒV�.

(c) Assume that XA and XB are normally distributed. What is the probability that the
value of the portfolio exceeds 800;000 USD after one year?

7.24 Poisson Versus Normal Approximation: A shop sells a good. We let X be
a random variable showing how many units each customer buys of the good. The
probability distribution of X is given by

P.X D 0/ D 0:905 P.X D 1/ D 0:090 P.X D 2/ D 0:005:

(a) Find EŒX� and VarŒX�.
(b) During one day 100 customers visit the shop. We can compute the total number

of units the customers buy of the good, and denote this number by Y. We assume
that the customers shop independently. Find EŒY� and VarŒY� and use normal
approximation to compute the probability that the shop sells at most 5 units of
the good during a day.

(c) Since the distribution of X is special, we don’t have any simple criteria to decide
if the normal approximation is good or not. The distribution of X is, however,
quite close to a Poisson random variable Z with parameter �. Suggest a value
for � and compute P.Z � 3/.

(d) A sum of 100 independent Poisson random variables, all with parameter �, is
a Poisson random variable with parameter 100�. Use this result to compute the
probability that the shop sells at most 5 units of the good during a day, without
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the use of normal approximation. Compare with the exact answer P.Y � 5/ D
6:72% and give a comment.

7.25 Extreme Values: A company has 5 relatively equal production units, and each
unit produces 10 items. We assume that the probability that an item is defective is
10% and that the number of defective items at each unit are independent random
variables.

(a) We assume that outcomes (defective/not defective) of each item are independent
random variables, and let X denote the number of defective items at randomly
selected unit. What is the distribution of X? What is P.X � 4/?

(b) Let Y be the number of defective items at the unit with the worst result, i.e., the
unit with the most defective items. What is P.Y � 4/?

7.26 Stochastic Game Theory:

(a) Assume that X is a normal distribution with expectation 	 and variance �2, and
that C is a constant. What is P.X � 	/ and P.X D C/?

A simplified model for a wage negotiation can be formulated as follows: The
employer presents an offer o and the workers (simultaneously) present a demand
d. The outcome is decided by a mediator who thinks that a fair outcome of the
negotiations is X. The value of X is a random variable which is unknown to the
parties. The party which comes closest to X gets full acceptance for their claim.
If the parties are equally close to X, X will be the outcome of the negotiations.
The expected result EŒR� from the negotiations is given by the formula

EŒR� D o �P
�

X <
o C d

2

�
Cd �P

�
X >

o C d

2

�
C 1

2
.oCd/ �P

�
X D o C d

2

�
:

(b) Explain the terms in the formula for EŒR� (o and d are constants). How can
you simplify this expression if you know that X is a normal distribution with
expected value 	 and variance �2?

(c) If the employer wishes to minimize the expected result while the workers want
to maximize it, it is possible to prove that equilibrium is obtained if and only if

.d � o/ � fX

�
o C d

2

�
D 2 � P

�
X � o C d

2

�
;

.d � o/ � fX

�
o C d

2

�
D 2 � P

�
X >

o C d

2

�
:

where fX is the density of X. Explain why this leads to P.X � oCd
2

/ D 1
2
. How

would you interpret this result?
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(d) If X is normally distributed with expected value 	 and variance �2, the density
is given by

fX.x/ D 1p
2��2

e� .x�	/2

2�2 :

Show that the solution to the system of equations in (c) is

o D 	 �
r

�

2
� �; d D 	 C

r
�

2
� �:

What happens to the distance between the parties when � increases?

7.27 Stochastic Game Theory: A simplified model for a wage negotiation can
be formulated as follows: The employer presents an offer o and the workers
(simultaneously) present a demand d. The outcome is decided by a mediator who
thinks that a fair outcome of the negotiations is X. The value of X is a random
variable which is unknown to the parties. The party which comes more close to X
gets full acceptance for their view. If the parties are equally close to X, X will be the
outcome of the negotiations. The expected result EŒR� from the negotiations is given
by the formula

EŒR� D o � P

�
X <

o C d

2

�
C d � P

�
X >

o C d

2

�
C 1

2
.o C d/ � P

�
X D o C d

2

�
:

(a) Assume that the employer offers o D 3% while the workers demand d D
6%. Compute the expected outcome of the negotiations when X is a normal
distribution with 	 D 5% and standard deviation � D 0:5%.

(b) Assume that the employer offers o D 3% while the workers demand d D
6%. Compute the expected outcome of the negotiations when X is a normal
distribution with 	 D 5% and standard deviation � D 2%. Compare the answer
with (a) and comment the results.

7.28 Poisson Versus Normal Distribution: In this problem X denotes the total
quantity of a good that is sold during a day.

(a) We first assume that X is a normal distribution with expected value 	 D 1 and
standard deviation � D 1. What is the probability that X � 3?

(b) We now assume that the good is sold at a shopping center where there are a huge
number of customers every day. The customers either buy one unit or nothing
of the good, and all customers have the same probability of buying one unit.
What distribution do you assume for X in this case? We assume as above that
expected value is 	 D 1 and standard deviation � D 1. Find P.X � 3/ under
these new assumptions.
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(c) Compare the results from (a) and (b) and try to explain the difference. Why do
we in (b) need to assume that all customers have the same probability of buying
one unit?

7.29 Stocks That Fail in the Long Run: In a standard model for stock prices the
stock price Kt (in USD) at time t (in years) is given by

Kt D K0e.˛� 1
2 ˇ2/tCˇXt ;

where Xt is normally distributed with EŒXt� D 0; VarŒXt� D t; and X0 D 0. K0 is
the stock price at t D 0 and ˛; ˇ are constants. We will in this problem assume that
K0 D 100; ˛ D 0:03; ˇ D 0:5. In addition we will assume that the bank interest rate
is r D 2:5% annually. We disregard transaction costs.

(a) Find the price of a call option that gives the right to buy a stock of this sort for
100 USD after 9 years.

(b) Find the probability that the stock price exceeds 1 USD after 100 years.
(c) It is possible to prove that

EŒeˇXt � D e
1
2 ˇ2

:

Use this to compute the expected stock price after 100 years. This result is in
sharp contrast to the result in (b). Try to explain how this is possible.

7.30 Expected Utility: A game has 6 different outcomes all of which are equally
probable. The first 5 outcomes give a reward equal to one unit, while the last
outcome results in a loss of 4 units.

(a) Compute the expected result of the game.
(b) The players participating in the game have a utility function

u.x/ D
p

x C a2 � a:

We interpret u.x/ as the utility of winning x units (a negative x is a loss), and
2 � a � 4 is a constant that can differ from player to player. Compute the
expected utility of the game in the two cases (i) a D 2 and (ii) a D 4. Also
find the expected utility of not playing for arbitrary a (this we may interpret as
a game that pays 0 units on all the 6 outcomes).

(c) It is possible to prove (you can take that for granted) that expected utility is an
increasing function of a. Assume that a player participates in the game only if
he or she has greater expected utility from playing than for not playing. Explain
that there exists a constant a0 such that a player participates in the game if
and only if a > a0. Compare the result with (a) and try to explain this from a
behavioral point of view.
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7.31 Life Insurance: When insurance companies price life insurances, they use a
death rate function

	x D ˛ C ˇcx:

Here 	x is the probability that a man of age x dies in the course of one year given
that he is x years today, ˛; ˇ; and c are constants. Commonly used values are

˛ D 9:0 � 10�4; ˇ D 4:4 � 10�5; c D 1:10154:

(a) Explain that the death rate increases with x. Compute the value 	50.
(b) Let Tx be the remaining lifetime of a man with age x (this is a random variable

which varies between individuals). It is possible to show that Tx has a cumulative
distribution Fx given by

Fx.t/ D P.Tx � t/ D 1 � e� R t
0 	xCsds:

You can take this for granted. Use the result to compute the value

P.T40 > 10/:

(c) Compute the conditional probability

P.10 < T40 � 11jT40 > 10/:

Compare the result with (a), and try to interpret these results.

7.32 Binomial Distribution Conditional on Events: A company has 6 main
collaborating companies. The probability that a collaborating company takes contact
during one week is 70%. We assume that the collaborating companies act indepen-
dently.

(a) Let X be the number of collaborating companies that takes contact during one
week. What is the distribution of X? Find the probability that X D 4.

(b) The probability that a collaborating company taking contact writes a contract is
60%. Find the probability that the company writes 4 contracts with collaborators
during one week.

7.33 The Distribution of a Sum: 10 men and 10 women apply for admission to
a study. The admission is divided into two rounds. In the first round 4 men and 6
women apply, while the rest apply in the second round. In the first round 3 students
will be admitted, while 7 will be admitted in the second round. We assume that all
applicants have the same chance to be admitted in each round.
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(a) Find the probability that 2 men are admitted in the first round. Find the
probability that at least 5 men are admitted in the second round.

(b) Find the probability that at least 5 men are admitted in total. Is this procedure
discriminating with regards to gender? Explain your answer and try to suggest
what causes the difference.

7.34 Put Options: A stock has today a price K0 D 400 USD, it has an expected
annual return ˛ D 15% and a volatility ˇ D 12%. The bank interest rate is r D 5%
(continuously compounded).

(a) Find the price of a call option that gives the right to buy the stock for 390 USD
one year from now.
A (European) put option is a right (but not a duty) to sell a stock for a certain
price (strike) after a time T. An option of this sort makes it possible to profit
when prices are falling.

(b) We will compare two contracts. Contract A consists of one put option and one
stock. Contract B consists of one call option and a bank deposit B. Both options
have strike 390 USD and the size of the bank deposit B is given by

B D strike � e�rT :

Disregard any transaction costs and explain why the two contracts pay out the
same amount regardless of the stock price KT at time T. Take into account that
you get interest on the bank deposit.

(c) Since the two contracts in (b) pays out the same amount of money, they must
have the same price at t D 0. Use this to find the price of a put option with strike
390 USD at time T D 1.

(d) Expected annual return is adjusted down to ˛ D �5%. What happens to the
price of the options after the adjustment? Find the probability that the value of
the put option is at least 8 USD.

7.35 Basic Properties of Brownian Motion: Most models for financial markets
use a Brownian motion Bt where 0 � t < 1. At each point in time Brownian
motion is a random variable with the properties

• For every t 2 Œ0; 1/, Bt is a normal distribution.
• B0 D 0; EŒBt� D 0 and VarŒBt� D t.
• If t1 � t2 � t3 � t4, then the two differences Bt2 �Bt1 and Bt4 �Bt3 are independent

random variables.

(a) Explain why VarŒBt� D EŒB2
t � for all values of t.

(b) Let t D 100 and find P.B100 � 10/.
(c) Assume t � s. Use the two last bullet points above to compute EŒBs.Bt � Bs/�.

Hint: Put t1 D 0; t2 D s; t3 D s; t4 D t.
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(d) Assume t � s. Show that EŒBtBs� D s, and use this expression to find an
expression for EŒ.Bt � Bs/

2�.

7.36 Basic Properties of Brownian Motion: Most models for financial markets
use a Brownian motion Bt where 0 � t < 1. At each point in time Brownian
motion is a random variable with the properties

• For every t 2 Œ0; 1/, Bt is a normal distribution.
• B0 D 0; EŒBt� D 0 and VarŒBt� D t.
• If t � s, then EŒ.Bt � Bs/

2 D t � s.
• If t1 � t2 � t3 � t4, then the two differences Bt2 �Bt1 and Bt4 �Bt3 are independent

random variables.

(a) Let Xt D 2Bt C 6. Find EŒXt�, and explain why VarŒXt� D 4t for any t.
(b) Let Xt D 2Bt C 6. Find P.X25 � 16/.
(c) Assume t � s. Use the last 3 bullet points above to compute

EŒB2
s B2

t � 2BtB
3
s C B4

s �:

7.37 Basic Properties of Brownian Motion: Most models for financial markets
use a Brownian motion Bt where 0 � t < 1. At each point in time Brownian
motion is a random variable with the properties

• For every t 2 Œ0; 1/, Bt is a normal distribution.
• B0 D 0; EŒBt� D 0 and VarŒBt� D t.
• If t � s, then EŒ.Bt � Bs/

2 D t � s.
• If t1 � t2 � t3 � t4, then the two differences Bt2 �Bt1 and Bt4 �Bt3 are independent

random variables.

(a) Find the probability P.100eB9 � 2000/.
(b) Assume t � s, and find an expression for EŒB2

s .Bt � Bs/
2�.

(c) Assume 0 D t0 < t1 < � � � < tnC1 D T. Find the value for

EŒBti Btj.BtiC1
� Bti/.BtjC1

� Btj/�

for each of the cases (i) i < j, (ii) i D j, and (iii) i > j. The answers must be
justified in detail.

7.38 Bayesian Priors: In this problem X is a binomial .n; p/ variable.

(a) We first assume that p D 1
3

and that n D 6. Compute P.X D 2/.
(b) We now assume that p is unknown, but we know that p can only have the

values 0; 1
3
; 2

3
; 1. We assume a priori that these four values are equally probable.



154 7 Basic Probability Distributions

Assume n > 2 and prove that

P.X D 2/ D
�n

2

� �1

3

�2 �
2

3

�n�2

� 1

4
C
�

2

3

�2 �
1

3

�n�2

� 1

4

!
:

Explain why this formula is wrong if n D 2.
(c) Now assume that n D 6. We observe X D 2. Compute the conditional

probability

P

�
p D 1

3

ˇ̌
ˇX D 2

�
:

7.39 Lognormal Distribution and Expected Stock Prices: A random variable Y
is called lognormal if it can be written on the form

Y D eX;

where X is a normal distribution N.	; �2/.

(a) Assume that Y D eX , where X is N.2; 22/, i.e., 	 D 4 and � D 2. Compute the
probability

P. Y � 403:43/:

(b) If Y is lognormal, it is possible to prove that

EŒY� D e	C 1
2 �2

:

You can take this formula for granted. Use the formula to find the expected
value of Y D eX , where X is N.2; 22/. Compare the answer with (a) and give a
comment.

(c) Assume that Kt is given by

Kt D K0e.˛� 1
2 ˇ2/tCˇZt :

where Zt is N.0; t/, and where ˛ and ˇ are two constants. Explain why Kt has a
lognormal distribution for each t, and find EŒKt�.

7.40 Distributions Conditional on Events: A newspaper has two types of buyers,
regular buyers and special buyers. We assume throughout this exercise that the
newspaper is printed in more than 16;000 copies. The regular buyers have a total
demand D1 which is normally distributed with expectation 	1 and variance �2

1

where

	1 D 10;000; �2
1 D 30002:



7.7 Problems for Chap. 7 155

(a) Find the probability that at most 16;000 regular buyers buy the newspaper.
(b) The special buyers only buy the newspaper if a special event S occurs. If S

occurs, the special buyers have a total demand D2 which is normally distributed
with expected value 	2 and variance �2

2 , where

	2 D 16;000; �2
2 D 40002:

We assume that D1 and D2 are independent, and that D1 is independent of S.
Assume that S occurs and find expectation and variance for the total demand

D D D1 C D2. What is the probability of selling at most 16;000 newspapers
under this condition?

(c) Assume that P.S/ D 0:2. Find the probability of selling at most 16;000

newspapers. Hint: When D1 is independent of S it is also independent of Sc.

7.41 About the Newsvendor Problem:A retailer wants to order a number of items
from a manufacturer. The demand D is a random variable. We first assume that D
only can have the values

1; 2; 3; 4; 5; 6; 7; 8; 9; 10:

all with probability 0:1 (i.e., a uniform distribution).

(a) Assume that the retailer has ordered q items. Then he can sell

S D minŒD; q�

items. If for example q D 5, the sales get the distribution

1; 2; 3; 4; 5; 5; 5; 5; 5; 5:

with uniform probability. Find the expected sale EŒS� when q D 5. It is possible
to prove that if q D x, then

EŒS� D 1

20
.21x � x2/:

You can take this formula for granted. Use the formula to check the answer
when q D 5.

(b) The items are sold for a retail price R per item and are bought from the
manufacturer for a wholesale price W per item. The profit ˘ is given by the
expression

˘ D R � minŒD; q� � Wq:
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Find an expression for the expected profit when the retailer orders q D x items.
Assume that R D 20 and W D 5, and find x such that the profit is maximal.
Hint: R; W; q are constants with respect to the expectation.

(c) It is possible to prove that if D has a continuous distribution with cumulative
distribution FD, then maximal expected profit is obtained when

FD.x/ D 1 � W

R
:

You can take this for granted. Assume that D is a normal distribution with
expected value 	 D 5:5 and variance �2 D 1, and that R D 20; W D 5.
Find x such that expected profit is maximal. Why is the optimal order less than
in (b)?

7.42 Hinting at Significance: You want to sell a good and assume that a randomly
selected person demands D units of the good, where D is normally distributed with
expectation 	 D 10 and variance �2 D 10.

(a) In all there are 1000 people demanding the good. We assume that the demands
are all independent with the distribution above. Let Z denote the total demand
from 1000 people. Compute EŒZ� and VarŒZ�.

(b) First assume that the market is as in (a). How many units do you need to order if
you want at least 95% probability of satisfying the total demand? Now assume
that a large number of people demand the good, and that the market is otherwise
as above. How many units do you need to order if you want at least 95%
probability of satisfying the demand?

7.43 Adjusting Random Fluctuations Is a Bad Idea: Assume that the weekly
surplus from a branch of a company is a random variable. Let Xi denote the surplus
in week i, where i D 1; 2; : : : . We assume that X1; X2; : : : are independent random
variables all with the same expectation 	 and variance �2.

(a) Assume that Xi is normally distributed with 	 D 45; �2 D 900. Find the
probability that Xi � 0.

(b) The managers of the company want to reduce bad results for this particular
branch and suggest the following strategy: If the result is below the expected
value, the management injects extra amounts of cash the next week. If the
result is above the expected value, the management withdraws a corresponding
amount of cash. We assume that the injections/withdrawals are proportional to
the deviation from the expected result, i.e.

Adjusted surplus in the next period D YiC1 D XiC1 � ˛.	 � Xi/;

where ˛ is the constant of proportionality.
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Assume that Xi and XiC1 are normally distributed with 	 D 45; �2 D 900,
and that ˛ D 0:75. Find the probability that YiC1 � 0.

(c) Assume that 	; � , and ˛ are arbitrary numbers. Is it possible to find a
combination of these numbers such that the branch gets higher adjusted surplus
after adjustment? What value on ˛ should the company use if they want to
minimize the probability of deficit?

7.44 Adjusting Random Fluctuations Can Be Very Costly: A producer of
machine parts has a lathe. The lathe produces sleeves with diameter 100 mm. Since
the material may vary, the sleeves differ slightly in diameter. We assume that the
diameter is a random variable which is normally distributed with expected value
	 D 100 and standard deviation � D 0:1, measured in mm.

(a) The sleeves are discarded if the deviation is more than 0.2 mm. Find the
probability that a sleeve is discarded. Hint: P.jX � 100j � 0:2/ D 2 � P.X �
100:2/.

(b) The management wants to improve quality by letting the worker adjust the
machine after every sleeve they produce. Assume that the first sleeve has a
diameter X1, where

X1 D 	1 C �1;

	1 D 100 and �1 is normally distributed with expected value zero and standard
deviation �1 D 0:1. The value after the first adjustment is

X2 D 	2 C �2;

where �2 is normally distributed with expected value zero and standard deviation
�1 D 0:1 and independent of �1. The adjusted expectation is

	2 D 	1 � .X1 � 	1/:

Show that X2 D 	1 � �1 C �2, and use this to find expectation and variance for
X2. How probable is it that X2 must be discarded? Comment the result.

(c) Correspondingly

X3 D 	3 C �3;

with adjusted expectation 	3 D 	2 � .X2 � 	1/. Find a simple expression for
X3 and use it to show that X3 has the same distribution as X2.
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Abstract

In this chapter we will try to find the values of unknown parameters in our models
from observations. We know for example that there is a probability p of errors in
a shipment of goods, but we do not know the exact value. This requires a line of
approach which is different from what we have been using so far. In the previous
chapters the distribution was known, and the purpose of the distribution was to
compute the probabilities of special events. Now we will assume that only parts
of the distribution are known, and we need to develop strategies to fill the gaps.

8.1 Estimation

Imagine that we toss a coin 10 times and get 7 heads and 3 tails. Is this a fair coin?
Obviously we cannot be sure about this. The observation is slightly skewed, but that
might be a coincidence. If the coin is fair, then the probability of coins is p D 1=2.
From the information we have so far, we cannot decide if the coin is fair or not. We
hence hold the opportunity open that p might have another value.

Since we got 70% coins in our 10 tosses, we have estimated p to have the value
Op D 0:7. This does not mean that we know that p D 0:7, it only means that the
value 0.7 is our best shot given the information we have available. To examine our
coin in more detail we carried out several series of n coin tosses, each series with an
increasing value on n. Assume that we see the results below:

n D 100 Op D 0:53

n D 1000 Op D 0:507

n D 10;000 Op D 0:4915
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n D 100;000 Op D 0:50104

n D 1;000;000 Op D 0:499127:

For each new series we get a new suggestion Op, and since each new series is
based on more tosses, we imagine that our suggestions improve. With one million
coin tosses we get Op D 0:499127. Note that we still do not know for sure that the
coin is fair, but it now seems likely that the true value for p is very close to 1=2.

When we make observations to find the value of one or more unknown constants,
we say that we estimate the unknowns. Typically our estimates will improve when
we make more observations. Nonetheless there will always be room for errors, we
usually never obtain certainly about the value.

8.1.1 Estimators

Expected values and variances are examples of numbers that we often would like
to know. Constants in our models are usually called parameters. If the constants
	 D EŒX� and �2 D VarŒX� are unknowns, we wish to estimate their values from
observations. An estimator O
 is a random variable we use to estimate the value of
an unknown constant 
 . In this chapter we will use the symbols 
 and O
 when we
discuss general properties of estimators, while symbols like O	 and O�2 are used in
specific contexts.

Example 8.1 The most widely used estimator is the mean

X D 1

n
.X1 C X2 C � � � C Xn/:

The mean is used to estimate the expected value 	 D EŒX�, and we write
O	 D X when we use the mean to estimate the expected value. If we assume
that X1; X2; : : : ; Xn are random variables which all have the same expected value
	 D EŒXi�, then

EŒ O	� D E
�1

n
.X1 C X2 C � � � C Xn/

	

D 1

n
.EŒX1� C � � � C EŒXn�/ D 1

n
.	 C � � � C 	/ D 	:

If the expectation of an estimator equals the unknown constant under consideration,
we say that the estimator is unbiased. We have hence seen that the mean is often an
unbiased estimator for the expected value.
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Definition 8.1 An estimator O
 for a constant 
 is called unbiased if EŒ O
� D 
 .
A biased estimator is an estimator where EŒ O
� 6D 
 .

When we want to estimate a constant, we can often choose between several
unbiased estimators. If X1; X2; : : : ; Xn are independent random variables which all
have the same expected value 	 D EŒXi� and variance �2 D VarŒXi�, then

VarŒX� D Var



1

n
.X1 C X2 C � � � C Xn/

�

D 1

n2
VarŒX1 C X2 C � � � C Xn�

D 1

n2
.VarŒX1� C � � � VarŒXn�/

D 1

n2
.�2 C � � � C �2/ D 1

n2
� n�2 D �2

n
:

In this case the mean is an unbiased estimator for the expected value regardless
of the value of n, but larger n leads to smaller variance. This makes perfect sense
from a practical point of view; the more observations we have, the better is the
performance of the estimator.

If we are to choose between two unbiased estimators, we will usually prefer the
one with the smallest variance. In some special cases we might even prefer a biased
estimator over an unbiased one. This might happen when the variance of the biased
estimator is much smaller than the variance of the unbiased one.

Example 8.2 Assume that X and Y are two random variables with EŒX� D 	 and
EŒ Y� D 2	, and that a is a constant. Show that for any value of a, then

Z D .1 � 2a/X C aY;

is an unbiased estimator of 	. We further assume that X and Y are independent and
that VarŒX� D 1; VarŒ Y� D 4. Find a value for a such that the variance of Z is as
small as possible.

Solution:

EŒZ� D EŒ.1 � 2a/X C aY� D .1 � 2a/	 C a � 2	 D 	:
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Hence Z is an unbiased estimator for 	. Since X and Y are independent, we get

VarŒZ� D VarŒ.1 � 2a/X C aY� D VarŒ.1 � 2a/X� C VarŒaY�

D .1 � 2a/2VarŒX� C a2VarŒ Y� D .1 � 2a/2 C 4a2

D 1 � 4a C 4a2 C 4a2 D 1 � 4a C 8a2:

We have to find minimum for the function f .a/ D 1 � 4a C 8a2: The derivative
is zero when a D 1

4
, and since f 00.a/ D 16 > 0, this is a global minimum for the

function. The preferred estimator is hence Z D 1
2
X C 1

4
Y.

8.1.2 Reporting Estimates

The standard deviation of an estimator is important to discuss the amount of
uncertainty related to an estimate. In a scientific survey the authors often report

estimated value ˙ standard deviation of the estimator:

It is important to notice that this does not mean that the true value is between these
extremes. The notation focuses the estimated value, and the last term just quotes the
standard deviation. We will later in this chapter be able to form an opinion on where
we expect to find the true value we have estimated.

8.1.3 TheMeasurement Model

We have already seen that the mean is usually an unbiased estimator for the expected
value. In most cases we also face an unknown variance, and we might need to
estimate this quantity as well. The sample variance S2

X which we studied in Chap. 1
is a natural candidate. We recall

S2
X D 1

n � 1

�
.X1 � X/2 C .Xs � X/2 C � � � C .Xn � X/2

�
:

By tedious verification, we omit the details, and it is possible to prove the
following result:

If X1; X2; : : : ; Xn are independent random variables which all have the same
expected value 	 D EŒXi� and variance �2 D VarŒXi�, then

EŒS2
X� D �2:
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The conclusion of the above result is hence that the sample variance is an
unbiased estimator of the (theoretical) variance �2. We sometimes write O�2 D S2

X
to emphasize that S2

X is an estimator of �2. The results above can be summarized as
follows:

Assume that X1; : : : ; Xn are independent random variables with EŒXi� D 	

and VarŒXi� D �2 for all i D 1; : : : ; n. When we carry out a survey where
	 and �2 are unknowns, we make n independent observations/measurements
and compute

O	 D X D 1

n
.X1 C X2 C � � � C Xn/;

and

O�2 D S2
X D 1

n � 1

�
.X1 � X/2 C .Xs � X/2 C � � � C .Xn � X/2

�
:

These estimators are unbiased estimators for 	 and �2.

In many scientific surveys we want to compute O	 and O�2. To estimate the standard
deviation � we use

O� D SX D
p

O�:

Curiously, O� is not in general an unbiased estimator for � , and that is one reason
why we prefer to work with the variance instead.

Example 8.3 Let X be the production at a department a randomly selected day. We
observe

X1 D 210; X2 D 220; X3 D 210; X4 D 225; X5 D 220; X6 D 217:

Find unbiased estimates for 	 D EŒX� and VarŒX� D �2:

Solution: We know that X and S2
X are unbiased estimates for 	 D EŒX� and

VarŒX� D �2: Inserting the observations into the formulas we get O	 D 217 and
O�2 D 36.



164 8 Estimation

8.2 Confidence Intervals

For obvious reasons, any given interval either contains an unknown parameter or it
does not. A confidence interval is an interval where the limits are random variables,
and prior to the observations there is a certain probability that the interval covers the
unknown parameter. Once observations have been made, the interval either covers
the unknown parameter, or it does not.

A 95% confidence interval hence has 95% chance of covering the unknown
parameter, prior to the observations. When observations have been made, the limits
of the confidence interval can be computed, and we are quite confident that a 95%
confidence interval does indeed contain the unknown parameter. In most cases we
have no way of finding the true value for the unknown parameter, and a confidence
interval is then our best shot of where the parameter is likely to be.

Correspondingly, a .1 � ˛/100% confidence interval has .1 � ˛/100% chance of
covering the unknown parameter, prior to the observations. The smaller the value
of ˛, the better is the chance that the confidence interval does indeed cover the
unknown parameter. Hence when we decrease ˛ we get more confidence, since it
rarely happens that the interval does not cover the unknown value.

8.2.1 Constructing Confidence Intervals

Assume that O
 is an estimator for an unknown parameter 
 . Even though intervals
need not be symmetric about the estimated value, symmetry is our preferred choice.
To find a .1 � ˛/100% confidence interval we hence seek a number d such that

P.j O
 � 
 j � d/ D .1 � ˛/:

If such a value of d can be found, the interval Œ O
 � d; O
 C d� has probability 1 � ˛

of covering 
 . Here ˛ is the probability that the interval does not contain 
 , and we
want that this probability is rather small. Most commonly used is the case where
˛ D 0:05, which yields a 95% confidence interval.

Example 8.4 Assume for the sake of discussion that we know that 
 D 0 and that
a 95% confidence interval has limits O
 ˙ 0:1. If we observe O
 D 0:12, a common
misconception is that we are 95% sure that 
 is in the interval Œ0:01; 0:22�. This
makes no sense since we know for sure that 
 is not in this interval. Occasionally
it might even happen that another researcher carries out the same experiment and
find O
 D �0:12, leading to a 95% confidence interval from Œ�0:22; �0:02�. Clearly
they cannot both be 95% sure that the unknown value is covered by their intervals.
The randomness of confidence intervals makes such cases possible. A good way of
thinking about this case is that each repetition of the experiment will lead to a new
confidence interval, and that 5% of these intervals will not contain zero.



8.2 Confidence Intervals 165

To construct formulas for confidence intervals we will now assume that the esti-
mator O
 is unbiased, with known standard deviation �Œ O
 � and that O
 is approximately
normal. If we put d D z � �Œ O
�, we get

P.j O
 � 
 j � d/ D P

 ˇ̌
ˇ̌
ˇ

O
 � 


�Œ O
�

ˇ̌
ˇ̌
ˇ � z

!
� G.z/ � G.�z/

D G.z/ � .1 � G.z// D 2G.z/ � 1:

To find a .1 � ˛/100% confidence interval, we need to solve the equation

2G.z/ � 1 D 1 � ˛:

We find a 95% confidence interval as follows:

2G.z/ � 1 D 0:95 , G.z/ D 0:975 , z D 1:96:

Figure 8.1 illustrates this result and also shows the corresponding result for a 99%
confidence interval. We conclude that the interval with limits O
 ˙ 1:96 � �Œ O
� has a
95% chance of covering 
 , prior to observations.

Example 8.5 Assume that O
 is unbiased, approximately normal, and that �Œ O
� D
25. Find a 95% confidence interval for 
 when we have observed O
 D 210.

Solution: From the discussion above, we know that the limits are O
 ˙1:96 ��Œ O
�.
If we insert the given values, we get

O
 � 1:96 � �Œ O
� D 210 � 1:96 � 25 D 161;

Fig. 8.1 Standard normal distribution with confidence limits
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and

O
 C 1:96 � �Œ O
� D 210 C 1:96 � 25 D 259:

A 95% confidence interval is hence Œ161; 259�.
The argumentation above requires that �Œ O
� is known and that approximation

by a normal distribution can be used. In cases where we have a large number of
independent observations, it follows from the central limit theorem that the mean
X satisfies these conditions. Strictly speaking the standard deviation is not known,
but when we have a large number of observations, then �ŒX� � SXp

n
. The following

result is very useful in applications:

Assume that X1; : : : ; Xn are independent random variables with EŒXi� D 	

and VarŒXi� D �2 for all i D 1; : : : ; n, and that 	 and � are both unknown. If
n is large, an approximate 95% confidence interval is given by the limits

X ˙ 1:96 � SXp
n

:

In cases with many observations, we estimate � by SX and assume that the
approximation is sufficiently good to treat SX as a constant. Often, however, we will
encounter cases with relatively few observations, and then the formulas above do
not apply. Since this is a common situation in statistical surveys, statisticians have
developed methods to deal with this. Surprisingly, cases with few observations can
be dealt with using more or less the same line of approach. The solution is to replace
the normal distribution with a new distribution which is called the t-distribution.

8.2.2 The t-Distribution

To find confidence intervals for the expected value in cases with few observations,
we consider a new random variable T defined by

T D X � 	

SŒX�
;

where

SŒX� D SXp
n

:
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Fig. 8.2 t-distributions

In these expressions, X is the mean and SX is the sample standard deviation. In cases
with many observations, we could appeal to the central limit theorem and treat SX

as a constant, but these principles no longer apply. To deal with this case, we need
to assume that each Xi; i D 1; : : : ; n is approximately normal. The reader should
notice that this is a much stronger restriction than what we have been using so far.
Since linear combinations of normal distributions are normal, it follows that X � 	

is approximately normal, but that does not make T approximately normal. When n
is small, the nominator SŒX� can change considerably if we repeat the experiment,
and hence T is a fraction between two random variables. These fractions are well
behaved, however, and their statistical distributions can be found directly from tables
for the t-distribution.

The t-distribution is a statistical distribution with a parameter �. The parameter
really means that we are talking about a family of distributions, one for each value
of the parameter. Once the parameter is known, we can look up the distribution in
a statistical table. The shape of t-distributions are all quite similar to the standard
normal distribution, see Fig. 8.2. In fact as � ! 1, the t-distributions converge to
the standard normal distribution. The convergence is quite fast, and the difference
from the standard normal distribution is hardly noticeable when � � 100. It is also
useful to note that the t- distributions are always symmetric about zero, since this is
something we need to make confidence intervals.

The t-distributions have several uses in statistics, and they are hence an object
of independent interest. They let us deal with confidence intervals via the following
result:

Assume that X1; : : : ; Xn are independent, approximately normal, with expec-

tation EŒXi� D 	 and variance VarŒX� D �2. Then T D X�	

SŒX�
is t-distributed

with parameter � D n � 1.
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To see how this can be used to construct confidence intervals, we consider the
following example.

Example 8.6 Assume that X1; : : : ; Xn are independent, approximately normal, with
expectation EŒXi� D 	 and variance VarŒX� D �2. We make n D 9 independent
experiments and observe

43; 11; 16; 34; 40; 25; 35; 22; 44:

Find a 95% confidence interval for 	.

Solution: From the result above we know that T is t-distributed with parameter
� D 9�1 D 8, and write T.8/ to emphasize that we are talking about a t-distribution
with this parameter. We look up the 2.5% level in this table to find

P.T.8/ � 2:306/ D 2:5%:

Hence by symmetry, with 95% probability jT.8/j � 2:306 (prior to observations).
Now

ˇ̌
ˇ
X � 	

SŒX�

ˇ̌
ˇ � 2:306 , �2:306 � X � 	

SŒX�
� 2:306

, �2:306 SŒX� � X � 	 � 2:306 SŒX�

, X � 2:306 SŒX� � 	 � X C 2:306 SŒX�: (8.1)

We conclude that the limits in a 95% confidence interval is

X ˙ 2:306 SŒX�:

Using Excel or a direct approach, we find X D 30 and SX D 12. Using this
information in the formulas above, we get

SŒX� D SXp
n

D 12p
9

D 4:

The limits in a 95% confidence interval are hence 30 ˙ 2:306 � 4 which gives the
interval Œ20:8; 39:2�.

The line of approach used in Example 8.6 can of course be used in general:

To construct a .1 � ˛/100% confidence interval, we first look up a number
t.n�1/

˛=2 such that

P.T.n�1/ � t.n�1/

˛=2 / D ˛=2:

(continued)
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The limits in a .1 � ˛/100% confidence interval are then

X ˙ t.n�1/

˛=2 � SŒX� D X ˙ t.n�1/

˛=2 � SXp
n

:

Example 8.7 Assume that X1; : : : ; Xn are independent, approximately normal, with
expectation EŒXi� D 	 and variance VarŒX� D �2. We make n D 100 independent
experiments and observe X D 30 and SX D 12. Find a 95% confidence interval
for 	.

Solution: Here the parameter in the t-distribution is 99. We don’t have a table for
this case, but see that there is hardly any difference between the numbers for � D 90

and � D 100. We hence use the table for � D 100 to see that t.99/
0:025 D 1:984. From

the observations we find

SŒX� D 12p
100

D 1:2:

The limits in a 95% confidence interval is 30 ˙ 1:984 � 1:2, which gives the interval
Œ27:6; 32:4�.

For the sake of comparison let us assume that we know that � D 12 in
the previous example. If we use the corresponding framework for cases with
many observations, the limits in a 95% confidence interval are 30 ˙ 1:96 � 1:2,
which (rounded to one decimal) gives the interval Œ27:6; 32:4�, i.e., the same as in
Example 8.7. The reason is that 100 observations is enough to invoke the central
limit theorem, and t-tables are no different from the standard normal distribution in
this case.

8.3 The LotteryModel

So far in this chapter we have assumed independent observations. In some cases this
assumption may not be appropriate. In particular this happens when the population
is small. Sampling without replacement may then put new restrictions on the next
outcomes. An extreme case happens when we sample the entire population, in that
case there is no randomness left. The effect originates from the same core that leads
to hyper-geometric distributions in Chap. 7. This context is typical for a lottery
where each ticket can be drawn only once. The word lottery model is a collective
name for such kind of models, though we should note that applications go beyond
pure lotteries.

In general the lottery model can be described as follows: Assume that we have
a population with N elements, v1; : : : ; vN . Here N is a constant. The population has
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an (unknown) mean

	 D v D 1

N
.v1 C � � � C vN/;

and an (unknown) variance

�2 D 1

N
..v1 � v/2 C � � � .vN � v/2/:

From the population we draw (without replacement) random elements Y1; : : : ; Yn.
A natural estimator for 	 is then

O	 D Y D 1

n
. Y1 C � � � C Yn/:

It is then possible to prove (we omit the details) that

EŒ O	� D 	; VarŒ O	� D N � n

N � 1
� �2

n
:

We see that the sample mean is an unbiased estimator for the population mean.
Since the factor N�n

N�1
< 1 when n > 1, the variance is smaller than what we would

get when we sample random elements with replacement. As already noted above,
all randomness disappear when N D n, and we see that VarŒ O	� D 0 in that case.

Example 8.8 A company has 50 production units of the same type and wants to
check 10 of these units. As it would be quite unnatural to check the same unit twice,
the 10 units are drawn randomly without replacement. Previous work with these
units suggested � D 0:4: The results are shown in Table 8.1.

This is a lottery model, and we find Y D 2:067. If we use the formulas above
with � D 0:4, we find

VarŒY� D 40

49
� 0:42

10
D 0:013;

which gives �ŒY � D 0:11: In comparison an assumption of independence would

have given VarŒY � D
q

�2

n D 0:13: We see that the effect of dependence is moderate,
but the direction is clear; we get less variance when we take into account that the
population is small.

Table 8.1 Data for Example 8.8

Y1 Y2 Y3 Y4 Y5 Y6 Y7 Y8 Y9 Y10

2.11 1.99 2.35 1.64 1.32 2.84 2.21 2.28 1.92 2.01
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In most cases the population variance �2 will be unknown, and it is possible to
prove that

S2 D N

N � 1
� 1

n � 1
.. Y1 � Y/2 C � � � C . Yn � Y/2/;

is an unbiased estimator for �2. We see that when N is large, there is hardly any
difference from the expression

1

n � 1
.. Y1 � Y/2 C � � � C . Yn � Y/2/;

which we use to estimate the variance when observations are independent. If we use
the unbiased estimator in the example above, we get

S D
r

50

49
� 1

9
.. Y1 � Y/2 C � � � C . Y10 � Y/2/ D 0:41:

In other words there is no reason to believe that the variance has changed.

8.4 Summary of Chap. 8

• An unbiased estimator for a number 
 : A random variable O
 with EŒ O
� D 
 .
When we choose between several unbiased estimators we usually prefer the one
with the smallest variance.

• A biased estimator for a number 
 : A random variable O
 with EŒ O
� 6D 
 .
• A .1�˛/100% confidence interval for 
 : A random interval that with probability

.1 � ˛/100% covers 
 prior to observations.
• When we have a large number of independent variables with the same distribu-

tion, the limits of a 95% confidence interval for the mean 	 is given by

X ˙ 1:96
SXp

n
:

• If we have a small or moderate number of independent variables with the same
distribution, and that distribution is approximately normal, we find confidence
intervals from the t-distribution: First we find t.n�1/

˛=2 such that

P.T.n�1/ � t.n�1/

˛=2 / D ˛

2
:
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A .1 � ˛/100% confidence interval for the mean 	 is given by

X ˙ t.n�1/

˛=2

SXp
n

:

8.5 Problems for Chap. 8

8.1 Let X denote the income (in USD) of a randomly selected person. We observe

X1 D 30;000; X1 D 40;000; X1 D 28;000; X1 D 20;000; X1 D 60;000:

Find unbiased estimates for EŒX� D 	 and VarŒX� D �2 based on these observations.

8.2 Let X denote the income (in USD) of a randomly selected person. We have
made 10;000 independent observations and found

X D 35;600; S2
X D 441;000;000:

Find a 95% confidence interval for EŒX� D 	.

8.3 Let X denote the wealth (in USD) of a randomly selected person. We have made
2500 independent observations and found the values

X D 120;000; S2
X D 90;000;000;000:

Find a 95% confidence interval for EŒX� D 	.

8.4 Let p be the probability that a randomly selected person wants to buy a specific
good.

(a) Let X be the number of people in a random selection of 40;000 persons who
want to buy the good. What is the distribution of X?

(b) Define

O
 D X

40;000
:

Show that EŒ O
� D p and VarŒ O
� D p.1�p/

40;000
.

(c) We asked 40;000 people, and 14;400 of them wanted to buy the good. Find a
99% confidence interval for p. Hint: Assume that �Œ O
� is constant.

(d) What values will �Œ O
 � get if p is at the endpoint of the confidence interval. Can
this affect the answers in this problem?
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8.5 The probability that a certain document has errors is p. 5 consecutive days we
check 10 randomly selected documents per day, and note how many documents have
errors.

(a) Let

X D 1

5
.X1 C X2 C X3 C X4 C X5/

S2
X D 1

4
..X1 � X/2 C .X2 � X�/2 C .X3 � X�/2 C .X4 � X/2 C .X5 � X/2/:

What is EŒX� and VarŒS2
X� in this case?

(b) We observe

X1 D 2; X2 D 1; X3 D 2; X4 D 2; X5 D 3:

Compute X and S2
X . Are these values in conflict with the results from (a)?

(c) Define O
 D X
10

. Show that O
 is an unbiased estimator for p. What is VarŒ O
�?

8.6 Assume that X1; X2; X3; X4 are independent variables, all with the same distri-
bution. Let EŒXi� D 	 and VarŒXi� D �2. Define

V D X1 C X2 C X3 C X4:

(a) Compute EŒV� and VarŒV�. Can V be used as an estimator for 	?
(b) Define W D V � 3	. Show that W is an unbiased estimator for 	. What is the

problem using W as an estimator?

8.7 Let X denote the income (in USD) of a randomly selected person. We have
made 25 independent observations and found

X D 35;600; S2
X D 441;000;000:

Assume that X is approximately normal and find a 95% confidence interval for
EŒX� D 	.

8.8 Let X denote the wealth (in USD) of a randomly selected person. We have made
9 independent observations and found the values

X D 120;000; S2
X D 90;000;000;000:

Assume that X is approximately normal and find a 90% confidence interval for
EŒX� D 	.
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8.9 A producer of a good claims that the net contents of a pack is more than 100
gram in average. Let X be the net contents of a randomly drawn pack. We bought 4
such packs and weighed the net contents. The results were as follows:

X1 D 96; X2 D 93; X3 D 96; X4 D 94:

Assume that X is approximately normal. Find a 99% confidence interval for EŒX�.
Comment the result.

8.10 In a special group of workers there are 1014 persons in total. We make calls to
gather information about their income, and manage to get replies from 312 people.
We assume that our sample is representative in that it is purely random whether a
person can be reached on the phone or not. Computations show that

Y D 1

312

312X

iD1

Yi D 678;995;

S2 D 1014

1013
� 1

311

312X

iD1

. Yi � Y/2 D 1:04814 � 1010:

Assume that Y has normal distribution, and find a 95% confidence interval for the
mean income of this group of workers. Hint: Regard S as a constant and put

VarŒY� D N � n

N � 1
� S2

n
:

8.11 In a special industry a total of 522 firms are registered. We manage to get
information about the net return after tax from 478 firms. We assume that our
sample is representative in that it is purely random if results are missing or not.
Our computations show that

Y D 1

478

478X

iD1

Yi D 2;133;190;

S2 D 522

521
� 1

477

478X

iD1

. Yi � Y/2 D 6:7123 � 1011:

(a) Assume that Y is approximatively normal, and find a 95% confidence interval
for the mean net return after tax for these firms. Hint: Regard S as a constant and
put

VarŒY� D N � n

N � 1
� S2

n
:
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(b) Assume that Y D 2;133;190 and that S2
Y D 6:7123 � 1011: What would the

confidence interval be if the 478 firms instead were a random sample from a
large number of firms?

8.12 Merging Two Observation Sets: Two researchers make independent obser-
vations of a random variable X with mean EŒX� D 	 and VarŒX� D �2. The first
researcher makes 100 independent observations, while the second researcher makes
400 new and independent observations. They use

O
1 D 1

100

100X

iD1

Xi;

O
2 D 1

400

400X

iD1

X0
i :

as estimators for the mean.

(a) What are EŒ O
1�; EŒ O
2�; VarŒ O
1� and VarŒ O
2� in this case?
(b) To extract as much information as possible from the observations, we would like

to use a combination of the two estimators. We let c be any constant and define

O
c D c O
1 C .1 � c/ O
2:

Show that O
c is an unbiased estimator for 	 regardless of the value on c, and
show that

VarŒ O
c� D .4c2 C .1 � c/2/ � �2

400
:

(c) Find a value c D c� such that VarŒ O
c� � is as small as possible. Give a verbal
description of the optimal estimator O
c� and comment the result.



9Hypothesis Testing

Abstract

In this chapter we will study statistical testing of a hypothesis. Hypothesis testing
has found widespread applications in many different fields. We can, e.g., ask
if a poll confirms that voters have changed their opinion, or if a manager of
mutual funds is performing systematically better than another. To test different
hypotheses against each after, we need to make observations. From observations
we can determine which hypothesis is more likely, but we can seldom draw
a certain conclusion. The best we can achieve is to say that a hypothesis is
most likely false. We sometimes have to settle with a conclusion stating that
the observed difference is too small to decide which hypothesis is the better, i.e.,
we can’t say anything for sure.

9.1 Basic Ideas

Hypothesis testing is often viewed as technically demanding, but the theory rests
on very simple ideas which we can understand without the use of mathematical
formulas. In many cases it may be difficult, or simply not possible, to offer a direct
proof that a hypothesis is true. To prove that a hypothesis is wrong, however, all we
need to do is to come up with a convincing counter example. In statistical hypothesis
testing the basic line of approach is to provide strong evidence against a hypothesis.

All hypothesis testing originates from a null hypothesis and an alternative
hypothesis. The two hypotheses should be mutually exclusive; if one of them is
wrong the other should be true. We aim to find strong evidence against the null
hypothesis. If we succeed, we can claim that the alternative hypothesis probably is
true. The direction is crucial and should be taken into account when we design
a hypothesis test. Designing a test of this sort, we usually take the alternative
hypothesis as our starting point, it is this hypothesis we hope to prove.
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When we execute a test of this sort, the test sometimes succeeds, sometimes not.
If we fail to find strong evidence against the null hypothesis, this does not mean that
the null hypothesis is true. It does not exclude the possibility that we later may find
such evidence. From that point of view, failure to reject a null hypothesis makes
us unable to progress. Our alternative hypothesis may still be true, but we have not
found sufficient evidence to support it. It is only when we are able to reject the null
hypothesis that we have something interesting to say, i.e., the alternative hypothesis
is then probably true.

All hypothesis tests have a test static and a rejection region. The test static is
a random variable we can evaluate from empirical data. If the value of the test
static falls in the rejection region, it means that we believe we have found sufficient
evidence to reject the null hypothesis. In all but exceptional cases we are unable to
be 100% certain about the conclusion. No matter how we organize the test, there is
always a chance that we reject a true null hypothesis. This type of mistake is called
a false positive or type 1 error.

The probability of a false positive is called the significance level and should,
for obvious reasons, be small. In practice statisticians very often use a significance
level of 5%. While there is little or no scientific support for this convention, it is a
fruitful rule of thumb. If the significance level is too low, it leads to paralysis. If it
is too high, conclusions are drawn from weak evidence. A significance level of 5%
provides a proper balance between the two effects. It is a guideline supporting the
correct result in 19 out of 20 cases, and most decision makers will be comfortable
with that level of precision. It is certainly not sufficient to convict a person for a
serious offense, in such cases the significance level should be much, much smaller.

A false negative or type 2 error occurs when the test fails to reject a false null
hypothesis. No matter how we organize a test, errors of this kind cannot completely
be avoided. The probability of a type 2 error should of course be small, but contrary
to the type 1 errors, there are no simple guidelines on how to proceed. The alternative
hypothesis is usually a collection of many different outcomes, and to be able to
compute the probability of a type 2 error, we usually need to specify a proper subset
of those outcomes. If we specify an alternative too close (measured in terms of the
test static) to the null hypothesis, the test will often fail to detect the difference.
The probability of a type 2 error is then large. If we specify an alternative far from
the null hypothesis, however, we can expect that the probability of a type 2 error
is very small. Hence the probability of a type 2 error will usually depend on which
alternative we believe to be true.

The strength of a statistical test is the complement of the probability of a type
2 error. The strength hence depends on which alternative we believe is true. The
strength is high when the probability of a type 2 error is low. Conversely, high
strength means low probability of a type 2 error.

When we execute a statistical test, we use the test static to measure how much
the observed value deviates from the null hypothesis. We reject the null hypothesis
when the deviation is too large. In this connection it may be valuable to know how
probable the deviation is. We measure this probability in terms of P-value. The
P-value is the probability of a deviation which is larger than or equal to the observed
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deviation, given that the null hypothesis is true. We should reject the null hypothesis
when the P-value is less than or equal to the significance level, but the P-value offers
information beyond rejection/non-rejection. The lower the P-value, the less likely
it seems that the null hypothesis can be true. Hence if the P-value is very small
we are quite confident that the null hypothesis is false. The reader should note the
resemblance in logic with confidence intervals. The P-value is not the probability
that the null hypothesis is true; this probability is either 0 or 1.

Some of the material in this chapter is quite technical. If you are to use hypothesis
testing in practice, it is of some importance to notice that computations of this sort
are often fully automated in statistical software. Hence in applications the hardship
of mathematical computation can often be avoided. The reader should hence focus
the rather nonmathematical concepts we have just been through.

9.2 Motivation

To motivate the discussion later in this chapter, we consider an example. The
example is not a hypothesis test. Nevertheless it contains much of the logic behind
such tests.

Example 9.1 Assume that the stock price K of a stock in a collection of some
particular companies is a random variable which is normally distributed with mean
zero and variance �2. The mean and variance are both unknown.

We start to assume that 	 D 100 and �2 D 100. We pick a random stock and
observe K D 131. Since this value is rather high, we wonder if we can really believe
our assumptions. We hence ask the following question: If our assumptions are true,
what is the probability of observing K � 131? As K is normally distributed

P.K � 131/ D 1 � P.K � 131/ D 1 � G

�
131 � 100p

100

�
D 0:001:

Since an observation as large as 131 or more only occurs in 1 out of 1000 cases, it is
difficult to believe in our assumptions. We hence reject these assumptions. Reading
through some old surveys of these stocks, we find some results suggesting that
	 D 127 and �2 D 85 might be reasonable. Assuming that these new assumptions
are true, what is then the probability of observing 131 or more? Here we get

P.K � 131/ D 1 � P.K � 131/ D 1 � G

�
131 � 127p

85

�
D 0:332:

With these new parameters we then expect to observe 131 or more in 1 out of 3 cases.
As this is very common, we no longer have a just cause for rejection. A frequent
misconception is to interpret P.K � 131/ as the probability that our assumptions
(our hypothesis) are true. That interpretation is wrong. The basic idea in hypothesis
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testing is to reject when our observation would be rare if the assumptions were true.
Something that happens in 1 out of 3 cases is not rare in any meaningful sense.

Believing that 	 D 127 and �2 D 85 might be sensible values, we make 100
independent observations. We call these K1; : : : ; K100. As mentioned in Chap. 7, a
sum of normally distributed variables is normally distributed. K hence has normal
distribution. If our assumptions are true, then

EŒK� D 	 D 127;

and

VarŒK� D �2

n
D 85

100
D 0:85:

We carry out the observations, and find, e.g., K D 128:6. How should we interpret
that? Ideally the mean and the expected value should match, and we should ask if it
is common to see a difference of 1.6 when our assumptions are true. We compute
the probability

P.K � 128:6/ D 1 � P.K � 128:6/ D 1 � G

�
128:6 � 127p

0:85

�
D 0:04:

This case is more awkward to interpret. A deviation of this magnitude is slightly
uncommon, but not very rare. In statistics it is common to draw a line at probabilities
less than 5%, and the rule of thumb is to reject our assumptions in such cases.
Even though rejection appears to be the right decision, we should proceed with
care. Rejection is the correct decision in 19 out of 20 cases, but we keep in mind
that in 1 out of 20 cases rejection would be wrong.

Since the basis for rejection was slightly fragile, we decide to make a closer
examination. This time we make 10;000 observations. Assume that we, e.g., observe
K D 127:05. This time too, the mean deviates somewhat from the expected value.
We should examine how common the deviation could be. The computations are
similar to the previous case, the only difference is that the variance is reduced to

VarŒK� D �2

n
D 85

10;000
D 0:0085:

Hence

P.K � 127:05/ D 1 � P.K � 127:05/ D 1 � G

�
127:05 � 127p

0:0085

�
D 0:293:

Assuming that we make 10;000 observations and that our assumptions are true, we
would expect a deviation of C0:05 or more in about 1 out of 3 cases. By symmetry
we would expect a deviation of �0:05 or more in roughly 1 out of 3 cases.
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A deviation of this magnitude is hence very common, and we have no reason
to expect that something is wrong. We have not proved that our assumptions are
true, but taking into account that we now have 10;000 observations and that our
assumptions are supported by old surveys, we seem to be on the right track.

Seemingly we have two surveys that are logically inconstant, the first survey
with 100 observations says reject, and the second with 10;000 observations says
not reject. Since the latter survey is based on much more data, it is our preferred
choice. The deviation we observed in the first survey would appear in 1 out of 20
cases, and it seems reasonable to assume that by coincidence we encountered one
of those cases. The inconsistency is resolved if we interpret the first observation
as a false positive, i.e., that we rejected a true assumption. The reader should note
that rejection is nevertheless the right decision after the first survey. Based on the
information we had at that point, the deviation was too large to be accepted. That
does not exclude the possibility that we later may find information supporting the
opposite view. The dilemma does not disappear if probabilities are much smaller.
Even if we observe a deviation that only occurs in 1 out of 1000 cases, it is
nevertheless possible that we are rejecting a true assumption.

The simple discussion above focuses a clear distinction between mathematics
and statistics. Mathematicians make a calculation, and, assuming that no mistake
is done, they can be 100% sure about the result. Statisticians, however, can seldom
draw certain conclusions. There is always a risk that a decision will turn out to be
wrong, but we should strive to make that risk as small as possible.

9.3 General Principles for Hypothesis Testing

A statistical hypothesis test consists of the following elements:

• A null hypothesis, which we signify by the symbol H0.
• An alternative hypothesis, which we signify by the symbol HA.
• A random variable T, which we call the test statistic.
• A rejection region. When the value of the test statistic falls in the rejection region,

we reject the null hypothesis.

When we formulate hypotheses, it is often natural to state HA first, and then H0.
When HA is decided, H0 should include all outcomes that are not covered by HA.
The leading idea is that we hope to prove that HA is true, and we achieve that if we
are able to demonstrate that H0 probably is false.

From a statistician’s point of view it is more interesting if we can reject the
null hypothesis, it is only in this case we have something interesting to say. If our
observations do not support rejection, this does not prove that the null hypothesis is
true. It only means that from the data we have collected so far, we have no sufficient
evidence to support HA. That does not exclude the possibility that such evidence can
turn up later.
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Fig. 9.1 A typical rejection
region
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The example we discussed in the motivation section has much in common with
a hypothesis test. The context there could have been formulated as follows:

• H0: The parameters in the normal distribution are 	 D 100 and �2 D 100.
• HA: 	 6D 100 or �2 6D 100.
• T D K.
• Reject H0 if T � 80:3 or T � 119:7.

If we formulate a test as above, what is then the probability of a false positive? To
answer that, we should assume that H0 is true, and find the probability that the test
static T falls in the rejection region see Fig. 9.1, i.e.

P.T � 80:2/ C P.T � 119:7/ D G

�
80:3 � 100p

100

�
C 1 � G

�
80:3 � 100p

100

�

D G.�1:97/ C 1 � G.1:97/

D 1 � G.1:97/ C 1 � G.1:97/

D 2:5% C 2:5% D 5%:

From this computation we see that the rejection region was designed in such a way
that the probability of a false positive is 5%. The probability of a false positive, given
that the null hypothesis is true, is called the significance level. The significance level
is here 5%, which, as we have already remarked, is a typical choice.

The probability of a false negative will depend on which alternative that is true.
In this context we could, e.g., ask about the probability of a false negative if 	 D 127

and �2 D 85, i.e., the values we decided to use after rejecting our initial choice. We
do not reject the null hypothesis when 80:3 < T < 119:7, and, conditional on our
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specific alternative, the probability is computed as follows:

P.80:3 < T � 119:7/ D P.T < 119:7/ � P.T � 80:3/

D G

�
119:7 � 127p

85

�
� G

�
80:3 � 127p

85

�

D G.�0:79/ � G.�5:07/

D 1 � G.0:79/ � .1 � G.5:07//

D G.5:07/ � G.0:79/ D 1:000 � 0:7852 D 21:48%:

We see that the probability of making a false negative is more than 20% in this
case. The strength is the complement of this quantity, and we conclude that the
strength is 78:52% when we consider this particular alternative.

The significance level of a hypothesis test is ˛ when the maximum probability
for a false positive is ˛. The strength of a specific alternative is the probability
that we reject the null hypothesis when the alternative is true.

9.4 Designing Statistical Tests

When we are in the process of designing a test to analyze a given set of observations,
there are several pitfalls we could walk into. The conditions for most statistical test
are violated if we inspect the data first and then decide which test to use. While
seemingly innocent, this sequence of events is actually a serious mistake. To explain
why this is a mistake, we consider an example.

Example 9.2 Assume that we have collected data from 10 different departments.
We inspect the data and observe, e.g., that department number 3 performed quite
badly. It could then be tempting to try to test if department 3 is performing worse
than average. A reasonable null hypothesis is that all departments are equally good.
When H0 is true, any department will be the worst in 1 out of 10 cases. Inspecting the
data and selecting the worst department, we have tacitly increased the probability of
testing the worst department to 100%. If H0 is true, the probability of a bad result
will be much higher than for a randomly selected department, and most statistical
tests do not take this into account.

Unusual events will always pop up randomly when we inspect sufficiently many
cases, and, moreover, unusual events will become common when we do so. Rarity
must always be seen in comparison with how many cases we have inspected, and
most statistical tests are tacitly assuming that we are inspecting only one case.
A legitimate line of action in Example 9.2 would be to state an alternative hypothesis
that department 3 is performing worse than average. To examine this hypothesis,
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What is the 
alternative 
hypothesis?

What is 
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static should 
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Fig. 9.2 The line of events in hypothesis testing

however, we then need to collect an entirely new set of observations, and use this
new set to determine the performance. If the performance of department 3 continues
to be bad, we then have legitimate evidence in favor of the alternative.

When we design statistical tests, it is important to find a proper balance between
high strength and a sufficiently low level of significance. In most cases good
strength comes at the expense of unsatisfactory significance levels, and vice versa.
The only way we can increase both is by collecting more observations, but that
option is frequently too costly or time consuming. As mentioned above all such
considerations should be done prior to the collection of data.

The proper line of events in hypothesis testing is outlined in Fig. 9.2.
Only when all of these questions have been answered, should we begin to collect

data. In practice we often need to analyze data that already has been collected. That
is perfectly OK as long as we do not inspect the data before we decide which tests
to use.

Example 9.3 We are flipping coins with a friend, and after loosing 50 times in a
row, we get a sneaking feeling that something is wrong. To examine this in detail
we formulate our problem in terms of a hypothesis test. The test is made as follows:

H0 W The probability of heads is p D 1=2:

HA W The probability of heads is p > 1=2:

The test is executed by flipping the coin 1000 times, and we let

Xi D
(

1 if the result is heads in flip number i

0 if the result is tails in flip number i
:

Each Xi is hence an indicator distribution with EŒXi� D p and VarŒXi� D p.1 � p/

where p is unknown. As test static we use the mean

Op D 1

1000
.X1 C X2 C � � � C X1000/:
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Here:

EŒ Op� D p; VarŒ Op� D p.1 � p/

1000
:

We should reject the null hypothesis if we observe too many heads, but where should
we draw the line? The rejection region should be an interval Œ plimit; 1/, where plimit

is the exact place where we draw the line.
With a 5% significance level, we should design the test such that the probability

of a false positive is 5%. Hence when H0 is true, i.e., p D 1=2, the probability of
ending up in the rejection region should be 5%. We are then in the fortunate situation
that p is known, and we can consider the statement

P. Op � 
limit/ D 0:05:

From the central limit theorem we know that Op is approximately normal. Hence

P. Op � plimit/ D 1 � P. Op < plimit/ � 1 � G

0

B@
plimit � pq

p.1�p/

1000

1

CA D 0:05:

Since we know that p D 0:5, we can view this as an equation with a single unknown,
plimit. From the table for the standard normal distribution, we see that G.z/ D 0:95

if and only if z D 1:6449. Hence

plimit � 0:5q
0:5.1�0:5/

1000

D 1:6449 , plimit D 0:5 C 1:6449 �
r

0:5.1 � 0:5/

1000
D 0:526:

In other words, we reject the null hypothesis if we carry out the test and observe at
least 526 heads.

Example 9.4 In Example 9.3 we were fortunate that H0 identified a single value for
p. This will not always be the case. To examine this in detail, we modify the example
as follows:

H0 W The probability of heads is p � 1=2:

HA W The probability of heads is p > 1=2:

We use the same test static Op and the same rejection region as before. What is the
significance level of the new test?
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Solution: We assume that H0 is true, and want to compute P. Op � 0:526/: The
problem now is that p is unknown. The only information we have is that p � 1=2.
The smaller the true value of p, the smaller is the probability P. Op � 0:526/: Hence
for any p < 1=2, then

P. Op � 0:526/ � P pD1=2. Op � 0:526/ D 5%:

We see that p D 1=2 is an extreme case, and that all other cases lead to lower
risk of type 1 error. The maximum probability of a false positive is hence 5%. In
accordance with the general definition of significance level, the significance level
remains at 5% in this extended case.

Example 9.4 demonstrates why we need to consider the maximum probability
of false positives in the general definition of significance level, and also explains
how we might compute the significance level in such extended cases. The basic idea
is to consider the most extreme case, and, with luck, that makes the computation
sufficiently explicit to be carried out.

To proceed, we continue to consider the test in Example 9.4, but now we want
to figure out the strength of alternatives. As we remarked above, the strength will
depend on which alternative that is true. We hence look at some explicit cases.

Case 1 Assume that the true value of p D 0:58. What is the probability of a false
negative?

Solution: A false negative occurs when the outcome of the test leads to non-
rejection of the null hypothesis. In our case we do not reject when Op < 0:526. If
p D 0:58, then

P. Op < 0:526/ � G

0

B@
0:526 � 0:58
q

0:58�0:42
1000

1

CA D G.�3:46/ D 1 � G.3:46/ D 0:03%:

We see that test is really strong in that case, i.e., we will nearly always reject H0 if
the true value of p is 0.58.

Case 2 Assume that the true value of p D 0:51. What is the probability of a false
negative?

Solution: We still do not reject when Op < 0:526. If p D 0:51, then

P. Op < 0:526/ � G

0
B@

0:526 � 0:51q
0:51�0:49

1000

1
CA D G.1:01/ D 84%:
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Fig. 9.3 The strength
function of Example 9.4
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We see that test is not at all strong when the true value of p is 0.51. In a majority of
outcomes, we will not detect the difference.

Note that as long as we keep the number of observations fixed at 1000, we reduce
the probability of false positives if we increase plimit. This, however, will come at the
expense of less strength of any alternative. The only way of improving both strength
and significance level is to increase the number of observations.

In a test with one unknown parameter 
 , the strength function � is defined as
follows:

�.
/ D Probability of a false negative given that the true value is 
:

The graph of the strength function for the test in Example 9.4 is shown in Fig. 9.3.
From Fig. 9.3 we see that the strength is nearly zero when p is less than 0:47 and

nearly 100% when p is larger than 0.6.

9.4.1 One-Sided and Two-Sided Tests

A test involving one unknown parameter 
 is called one-sided if the hypotheses are
on one of the forms

H0 W 
 � 
0; HA W 
 > 
0;

H0 W 
 D 
0; HA W 
 > 
0;

H0 W 
 � 
0; HA W 
 < 
0;

H0 W 
 D 
0; HA W 
 < 
0:

In theory other versions are possible, but are generally avoided.
The test is called two-sided when it is on the form

H0 W 
 D 
0; HA W 
 6D 
0:
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For computational simplicity we have only considered one-sided tests so far.
One-sided tests should, however, only be used in special situations. Typically there
should be some kind of information available that excludes certain outcomes.

Example 9.5 Imagine you wish to examine if some special form of training leads to
improved production. We measure production in terms of an unknown parameter 
 ,
which increases when production improves. It may be unreasonable to assume that
this special form of training can lead to lower production. Hence the alternative


after training < 
before training

is excluded by common sense. In that case it is legitimate to consider

H0 W 
after training D 
before training; HA W 
after training > 
before training:

Example 9.6 Imagine that you wish to examine if some form of new security
measure affects production. In this case there is nothing to exclude that production
can go up or down, and hence a two-sided test is then appropriate.

9.4.2 Confidence Intervals and Hypothesis Testing

We should notice that symmetric confidence intervals are closely connected to two-
sided tests. To see how this works, we consider the following example.

Example 9.7 Assume that we have made several independent observations of a ran-
dom variable with unknown 	 and variance �2. The observations are approximately
normal, and we have used the t-distribution to find a 95% confidence interval for the
unknown expectation. The resulting interval was Œ6:2�1:4; 6:2C1:4�. Next assume
that we want to test the null hypothesis H0 W 	 D 4 against the two-sided alternative
HA W 	 6D 4. What conclusion can we draw from this if we use 5% significance
level?

Solution: From the confidence interval we can see that X D 6:2. We don’t know
n; t.n�1/

0:025 or SŒX�, but we know that t.n�1/
0:025 � SŒX� D 1:4. In a two-sided test we use the

test static X and should reject H0 if X > 4 C 1:4 or if X < 4 � 1:4. In conclusion we
reject H0.

If we look more closely on the previous example, we see that we keep H0 if and
only if the expected value defined by H0 is an element of the confidence interval. If
the expectation defined by H0 is outside the confidence interval, it always leads to
rejection.
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9.4.3 P-Value

The single most important concept in applications of hypothesis testing is the P-
value. The reason for this is that most statistical software reports the outcomes of
statistical tests in terms of P-values. The definition reads as follows:

Definition 9.1 Assuming that the null hypothesis is true, the P-value is the
probability of a deviation (from the null hypothesis) which is greater than or
equal to the observed deviation.

The somewhat awkward part of this definition is to understand what we mean by
a deviation from the null hypothesis. To examine this more closely, we first consider
a one-sided test where we reject when T � Tlimit. The larger the value of T, the larger
is the deviation from the null hypothesis. This means that the P-value is defined by

P-value D PH0 .T � Tobserved/:

The notation PH0 means that when we compute the probability, we assume that H0

is true.
If the level of significance is ˛ and the P-value is less than ˛, this combination

of values can only occur if Tobserved � Tlimit, which means that the observed value
leads to rejection. One advantage of this approach is that we need not find an explicit
value for Tlimit, it suffices to see that the P-value is less than the confidence level.
Another advantage of P-values is that they offer information about the quality of
rejection. The smaller the P-value, the less we believe in the null hypothesis.

When the P-value is smaller than the confidence level, but rather close to this
level, the rejection is weak. We are much more confident if the test returns a very
small P-value. In that case the rejection is strong.

Example 9.8 Assume that the test static is T D 131, and that the conditions in the
null hypothesis imply that PH0 .T � 131/ D 0:001: This means that our observation
is very rare given that the null hypothesis is true. The P-value is 0.001, and we will
reject the null hypothesis at any reasonable significance level. See Fig. 9.4.

Example 9.9 Assume that the test static is T D 131, and that the conditions in the
null hypothesis imply that PH0 .T � 131/ D 0:332: This means that our observation
is very common given that the null hypothesis is true. This gives no reason to reject,
and we keep the null hypothesis at any reasonable significance level. See Fig. 9.5.

If we instead consider one-sided tests where we reject when T � Tlimit, we
proceed in the same way. The only difference is that smaller observed values are
interpreted as larger deviations. The P-value is hence defined via

P-value D PH0 .T � Tobserved/:
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Considering two-sided tests with symmetric distribution, deviation can work in two
directions. We reject if the value is too large, but also when it is too small. Under
symmetry, we reject when T � Tlimit and also when T � �Tlimit. When that happens,
we need to modify the computation of P-value accordingly, i.e.

P-value D PH0 .T � jTobservedj/ C PH0 .T � �jTobservedj/:

Example 9.10 We want to test if the expected value is 4, and use a two-sided test
with test static

T D 1

1000
.X1 C X2 C � � � C X1000/ � 4:

We observe the value T D �0:1. The P-value we then find as

P-value D PH0.T � �0:1/ C PH0 .T � 0:1/:
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We should reject the null hypothesis when the P-value is less than or equal to
the significance level. The smaller the P-value, the more confident we are that
rejection is the right thing to do. Conversely, we keep the null hypothesis when
the P-value is greater than the significance level. The greater the P-value, the
less reason we have for rejection.

Example 9.11 We carry out a survey, and find that the P-value is 0:1%. This means
that if H0 is true, then we would only expect to see a deviation as large as the one
we have observed in 1 out of 1000 cases. This makes it hard to believe in H0, and
we will almost always reject it.

Example 9.12 We carry out a survey and find that the P-value is 40%. This means
that if H0 is true, then we would expect to see a deviation as large as the one we
have observed in 4 out of 10 cases. As this is very common, there is no indication
that something is wrong with the null hypothesis, and we will never reject H0 based
on this information.

Example 9.13 We carry out a survey and find that the P-value is 4%. This means
that if H0 is true, then we would expect to see a deviation as large as the one we have
observed in 1 out of 20 cases. This is quite rare, but there is a nonzero chance that
we observed a large deviation by coincidence. We will reject H0 if the significance
level is 5%, but will not reject H0 if the significance level is 1%.

Example 9.14 A firm with many customers considers to introduce a new product.
The firm think they will be able to make a profit if more than 20% of their customers
will buy the product. The firm asks 40 randomly selected customers, and 10 of those
confirm that they want to buy the product.

Question: Based on this survey, is it likely that more than 20% of the customers
will buy the product?

Solution: We let p be the fraction of the customers who want to buy the product,
and formulate our question as a hypothesis test. The null hypothesis is that p � 20%,
and the alternative is p > 20%. We ask 40 randomly selected customers, and let X be
the number of these customers who want to buy the product. Since the firm has many
customers, it is reasonable to assume that X has binomial distribution with n D 40.
With this information we can compute the P-value of the observation X D 10.

P-value D P pD0:2.X � 10/ D
40X

iD10

�
40

i

�
0:2i0:840�i D 26:82%:

Since the P-value is quite large, we keep the null hypothesis. There is a considerable
risk that the project will not make a profit.
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If, for the sake of argument, we instead had observed, e.g., X D 17, the
conclusion would be different. Then

P-value D P pD0:2.X � 17/ D
40X

iD17

�
40

i

�
0:2i0:840�i D 0:01%:

Here the P-value is so small that it seems very unlikely that the null hypothesis can
be true, and we are hence confident that the project will profit.

9.5 Summary of Chap. 9

• A hypothesis test has the following elements:
(i) A null hypothesis H0.

(ii) An alternative hypothesis HA.
(iii) A test static T.
(iv) A rejection region.

The test is executed by an observation of OT . If OT falls in the rejection
region, we reject H0 and claim that HA is probably true. If OT is outside the
rejection region, we keep H0, but that does not mean that we have found
proof that H0 is true.

• A false positive or type 1 error occurs when we reject a true null hypothesis.
• A test has significance level ˛ if the probability of a false positive is at most ˛.
• A false negative or type 2 error occurs if we keep a false null hypothesis. The

probability will depend on which alternative is true.
• The strength of an alternative is the probability of not getting a false negative

when the alternative that is true.
• The P-value is the probability of a deviation (from the null hypothesis) that is at

least as large as the observed value, given that the null hypothesis is true.
• We reject the null hypothesis if the P-value is at least as small as that of the

significance level, and are more confident about rejection the smaller the P-value
is.

• We keep the null hypothesis when the P-value is larger than the significance level,
and are more confident about keeping it the larger the P-value is.

9.6 Problems for Chap. 9

9.1 In this problem we want to study the power consumption in a small city.
We assume that the power consumption X (in kWh) of a randomly selected con-
sumer in the first quarter of the year has expectation 	 and variance �2 D 4;000;000.
Last year the average power consumption was 8000 kWh. To test if the expected
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power consumption has decreased, we checked the power consumption for 100
randomly selected customers.

(a) What is the natural null hypothesis and alternative hypothesis?
(b) As test static we use

T D X D 1

100
.X1 C X2 C � � � C X100/:

What is EŒT� and �ŒT�?
(c) What is the rejection region if we use a significance level of 5%?
(d) We observe T D 7800 (kWh). Which conclusion can we draw from this?

9.2 In this problem we study the fee usage in a bank. We assume that the total fee
X (in USD) of a randomly selected customer has expectation 	 and variance �2 D
1600. Last year the average fee was 120 USD. To test if the fees have increased, we
checked 400 randomly selected customers.

(a) What is the natural null hypothesis and alternative hypothesis?
(b) As test static we use

T D X D 1

400
.X1 C X2 C � � � C X400/:

What is EŒT� and �ŒT�?
(c) What is the rejection region if we use a significance level of 5%?
(d) We observe T D 130 (USD). Which conclusion can we draw from this?

9.3 A company claims that firms buying their new Internet package improve their
sales by 10% on average. We doubt that this can be true, and check the sales at 25
randomly selected firms. Let X be the sales improvement (in percent of previous
sales volumes) of a randomly selected customer that bought the new Internet
package. Assume that X is normally distributed with expectation 	 and variance
�2. We assume that trade volumes at different firms are roughly equal.

(a) What is the natural null hypothesis and alternative hypothesis?
(b) As test static we use

T D X � 0:1

SŒX�
:

What is the distribution of T when H0 is true?
(c) What is the rejection region if we use a significance level of 5%?
(d) We observe X D 0:09 and SX D 0:05. Which conclusion can we draw from

this?
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9.4 A small company has introduced flextime as a means to reduce absence due to
illness. Before the introduction of flextime, the average absence due to illness was
11 days per year. Let X be the total number of days a randomly selected worker
is absent due to illness during a whole year. Assume that X is normally distributed
with expectation 	 and variance �2. The company has 36 workers.

(a) What is the natural null hypothesis and alternative hypothesis?
(b) As test static we use

T D X � 11

SŒX�
:

What is the distribution of T when H0 is true?
(c) What is the rejection region if we use a significance level of 5%?
(d) We observe X D 10 and SX D 3. Which conclusion can we draw from this?

9.5 A firm claims that more than 50% of the population prefer their new product.
We ask 5 randomly selected people if they prefer the new product. Let X be the
number of people in the sample who answer yes.

(a) We believe that the company may be right, and wish to execute a test where it
will be possible to conclude that the firm probably is right. What is the natural
null hypothesis and alternative hypothesis in this test?

(b) We use X as a test static. What is the distribution of X when H0 is true?
(c) 5 out of 5 people say that they prefer the new product. Which conclusion can

we draw from this? Use 5% significance level.

9.6 A firm claims that at most 10% of the customers are dissatisfied with the items
they have bought from the firm. We ask 400 randomly selected customers if they are
dissatisfied. Let X be the number of customers who are dissatisfied.

(a) We believe the firm is mistaken and want to execute a test where it is possible to
conclude that the firm probably is mistaken. What is the natural null hypothesis
and alternative hypothesis in this test?

(b) We use X as a test static. What is the distribution of X when H0 is true?
(c) 53 persons answer that they are dissatisfied. Find the P-value of this observation

by normal approximation. What is the conclusion if the significance level is 5%?

9.7 An accountant checks 400 randomly selected documents from a firm. The
accounting is approved if at most 3 documents contain errors. Let X be the number
of documents with errors, and let p be the true fraction of documents with errors.

(a) Find the strength of the alternative p D 1% by
(i) The Poisson distribution. (ii) The binomial distribution.
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(b) What result would normal approximation give in this case? Try with and without
integer correction.

9.8 A finance institution offers a special type of contracts. It takes very long time
to find the exact price for a contract of this type, but the company has developed
a system for approximate prices, and offer to sell the contracts at the approximate
price. We assume that the error has expectation 	 and variance �2 D 100;000;000,
and wish to examine the hypothesis H0 W 	 D 0 against HA W 	 6D 0.

(a) The company tests their method on 400 randomly chosen contracts, and
compute X. Find the rejection region. Use 5% significance level.

(b) What is the strength of the alternative 	 D 2000?

9.9 Simultaneous Strength and Significance: A company believes that less than
2.5% of the items they produce contain errors. We want to design a test where we
test n items. Let p be the fraction of the tested items that contain errors. The test
should have 5% significance level, and the produce is approved if there is no reason
to reject the null hypothesis H0 W p � 2:5%.

How large must n be if we want that the strength of the alternative p D 5% is
at least 95%? Hint: Use normal approximation. Formulate two equations that n and
Tlimit must satisfy, and eliminate Tlimit from these equations.

9.10 Logarithmic Transformation: Table 9.1 shows daily observations of the
stock price in a company.

(a) Discuss shortly if it is reasonable to assume that Xi are independent?
(b) We define new data

Yi D ln



Xi

Xi�1

�
; i D 1; : : : ; 10;

and the values of these transformed data are shown in Table 9.2.
Assume that all Yi have the same distribution with expectation 	. Use the

values in the table to find an estimate for 	.

Table 9.1 Data for Problem 9.10

X0 X1 X2 X3 X4 X5 X6 X7 X8 X9 X10

100 92 96 117 120 126 149 152 176 196 184

Table 9.2 Logarithmic transformed data

Y1 Y2 Y3 Y4 Y5 Y6 Y7 Y8 Y9 Y10

�0:083 0.043 0.198 0.025 0.049 0.168 0.020 0.147 0.108 �0:063



196 9 Hypothesis Testing

(b) The company claims that the numbers clearly demonstrate considerable poten-
tial for growth. Technically this is equivalent to the claim 	 > 0. Assume that
all Yi are independent, normally distributed with expectation 	 and variance
�2 D 0:01. We want to test H0 W 	 � 0 against HA W 	 > 0. Execute this test.

(c) Find the P-value for the test in (b).

9.11 Strength and t-Distribution: A mutual fund has invested in 10 different
stocks. The fund achieved a return of 20.3% last year. The fund is compared with
a reference index showing that stocks of this type had a mean return of 15%. The
fund manager claims that this clearly demonstrates outstanding abilities in finding
good investment opportunities.

For simplicity we assume that the fund has invested equally much in each stock.
The return is hence decided from X D 1

10

P10
iD1 Xi, where X1; : : : ; X10 is the return

of each of the individual stocks.

(a) Assume that X1; : : : ; X10 are independent random variables with expectation 	

and variance �2. Find EŒX� and VarŒX�.
(b) Assume that X1; : : : ; X10 are independent, normally distributed with expectation

	 and variance �2. Let S2
X be the sample variance. What is the distribution of

Y D X�	

SX=
p

10
?

(c) We want to formulate a hypothesis test which is able to support the managers
point of view, i.e., where rejection of the null hypothesis implies that the
manager probably performs above average. We let H0 W 	 � 15%; HA W 	 >

15%. Find the rejection region using a 5% significance level.
(d) We execute the test and observe the results in Table 9.3.

If we process these observations, we find

X D 0:203; SX D 0:099:

Use the results to compute the test static Y. What can you conclude from
this?

(e) If we want to consider the strength of the alternative A W 	 D 0:023, we need to
compute

PA. Y � Ylimit/ D PA

 
X � 	

SX=
p

10
> Ylimit � 0:053

SX=
p

10

!
:

When A is true, we know that X�	

SX=
p

10
is t-distributed. Why can’t we use the

t-table to compute this probability?

Table 9.3 Data for
Problem 9.11

X1 X2 X3 X4 X5 X6 X7 X8 X9 X10

17.8 4.3 13.9 21.7 25.7 38.9 12.2 14.3 28.2 26.2
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9.12 Using Poisson Distribution in Accounting: An auditing firm checks samples
from the accounting of a large company. There are 100;000 documents, and 1000

randomly selected documents are inspected. We assume that a share p of the
documents contains errors, and the accountant approves the accounting, if there is
no valid reason to reject the claim p � 1 at 5% significance level.

(a) Let X be the total number of checked documents containing errors. What is the
exact distribution of X? What distributions can be used as approximations to the
exact distribution?

(b) Formulate a hypothesis test where you specify the null hypothesis, alternative
hypothesis, test static, and rejection region. Use normal approximation to
compute the rejection region.

(c) The auditing firm finds 11 documents with errors. Find the P-value for this
observation. What is your conclusion?

(d) In reality 2% of the 100;000 documents contained errors. Find the probability
that the auditing firm approves the accounting.

(e) In auditing it is usual to work with Poisson approximations. Use this to find the
rejection region. Comment the finding.

9.13 Variable “Constants”: We want to test if the transaction volumes for a stock
are different on Mondays than on Wednesdays. We have data for the 10 last years,
and select randomly 16 Mondays and 16 Fridays. We let X1; : : : ; X16 denote the
transaction volumes on Mondays, and Y1; : : : ; Y16 denote the transaction volumes
on Wednesdays. We estimate mean and variance for these data, and find

X D 1200; Y D 1020;

and

S2
X D 75;000; S2

Y D 85;000:

(a) Assume that X1; : : : ; X16; Y1; : : : ; Y16 are independent, normally distributed and
define new variables S2; T; and U by

S2 D S2
X C S2

Y

2
; T D X � Yp

S2=8
; U D X � Yp

80;000=8
:

What kind of distribution has U? Are T and U different random variables?
Justify the answer.

(b) We want to test the hypotheses

H0 W Trade volumes on Mondays and Wednesdays have the same expectation;

HA W Trade volumes on Mondays and Wednesdays have different expectations.
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Table 9.4 Data for
Problem 9.14

1 2 3 4 5 6 7 8

149 150 134 155 104 147 147 123

You can take for granted that when H0 is true, then T is t-distributed with
parameter � D 30. Find the rejection region. What conclusion can you draw?
Use 5% significance level.

(c) What is the problem using U as a test static?

9.14 One-Sided Test Versus Two-Sided Confidence Interval: The production at
a department was observed 8 consecutive working days. The results are shown in
Table 9.4.

Processing these numbers we get

X D 138:625; SX D 17:3612:

(a) Assume that the observations are approximately normal and find a 95%
confidence interval for expected production.

(b) A few years before, the company carried out an extensive survey at the same
department. This survey found a mean production 125 (units/day). Use a one-
sided test. Can we claim that production has increased? Compare with the result
from (a) and comment the answer.

9.15 Testing Extremes: In this problem we will study a food chain with 100
branches. We assume that the branches are equally large. Previous surveys con-
cluded that yields were approximately normal with expectation 5% and standard
deviation 2%.

(a) Let X denote the yield of a randomly selected branch. Compute the probabilities
i) P.X < 2%/ ii) P.X < �1%/.

(b) The management decided at the start of the year to follow a certain department.
At the end of the year the department had a yield equal to 2%. From this
information, can you reject a null hypothesis saying that the branch had the
same expected yield as the others? Use a two-sided test and find the P-value.
Use 5% significance level.

(c) The management collected numbers from all the branches, and it turned out
the worst department had a yield of �1%. From this number can you reject a
hypothesis claiming that all the departments have the same expected yield as
before? Use a two-sided test with 5% significance level. Use a two-sided test
and find the P-value. Use 5% significance level.

(d) The branch with the worst result in (c) reported a yield of �1% also the
following year. From this number can you reject a hypothesis claiming that all
the departments have the same expected yield as before?
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9.16 Testing Extremes: A company has 10 different production units. When the
production equipment functions properly, all the units have an expected production
of 100 items per day. The standard deviation is 5 items. All produced units are
checked, and only approved items are included in the production numbers. We let
X1; : : : ; X10 denote the number of produced items at the 10 different units, and we
assume that these values are approximately normal. Throughout the problem we
will use 5% level of significance.

(a) Unusual production numbers indicate that the equipment does not function
properly. Why is it natural to use one-sided tests to examine this?

(b) Assume that Z is a normal distribution with expectation 	 and standard
deviation � . Explain why

P.Z � z/ D 0:05 , z D 	 � 1:645 �:

(c) How low must the value of X1 be before you would reject the null hypothesis
	1 D 100 against 	 < 100?

(d) Assume that the production equipment functions properly, and that all units have
an expected production of 100 items with a standard deviation of 5 items. What
is the probability that at least one of the units produces less than 92 items?

(e) Let Xmin be the number of items produced at the worst unit. How low must the
value of Xmin be before you would reject the null hypothesis

H0 W 	1 D 	2 D � � � D 	10 D 100;

against the alternative that at least one of the expectations is less than 100?

9.17 Misinterpreting Randomness: In this problem we will assume that the
probability of bankruptcy (during one year) for a certain type of company is 5%.
We also assume that bankruptcy or not are independent events among the different
companies.

(a) Assume that there are in total 120 companies of this type, and that X is the
number of companies going bankrupt during one year. What is the distribution
of X?

(b) i) Find the probability that exactly 2 of 120 companies go bankrupt. ii) Find the
probability that at most 2 of such companies go bankrupt.

(c) Assume that 2 of the 120 companies went bankrupt the last year. A journalist
points out that only 1:7% of the companies went bankrupt, and this shows that
the probability of bankruptcy is not 5%. Comment this claim.

(d) Point at circumstances that would make the assumption of independence among
companies unreasonable. How would that affect the distribution of X?
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9.18 P-Values in Repeated Samples: You want to examine if a new training has
effect, and carry out a statistical test of the effect. The null hypothesis is that the
training has no effect, and the alternative hypothesis is that it has effect. We use 5%
significance level.

(a) A randomly selected school has completed this training, and after completion
the statistical test returns a P-value equal to 25%. How would you interpret this
result, and what conclusion would you draw?

(b) 25 different schools have completed this training. At one of the schools the
test returned a P-value of 4%. How would you interpret that result, and what
conclusion would you draw?
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Abstract

In this chapter we will look at some special hypothesis tests. These tests have
found widespread applications and are used by almost everyone that need to
process statistical data. The tests we consider are: A test for binomial variables,
the t-test for expected value, the t-test for comparison of two populations,
Wilcoxons’ distribution free tests, the U test, and the chi-square tests. The tests
are presented in terms of recipes, i.e., step by step explanations on how to execute
the test and how to interpret the outcomes. As we focus applications, we make no
attempt to explain in detail why these tests work. They are based on quite lengthy
mathematical derivations, but these details are omitted.

10.1 Testing Binomial Distributions

In many cases we need to test the probability for success in a binomial distribution.
This can be carried out if we make n independent trials and observe the total number
of successes X. To test H0 W p D p0 against HA W p 6D p0, we compute the
standardized test static

Z D X � np0p
np0.1 � p0/

:

If we have reasonably many observations, then Z is an approximate standard normal
distribution. The test can be summarized as follows:
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Two-sided test for binomial trials where np0.1 � p0/ is at least 5.

H0 W p D p0 against HA W p 6D p0:

Significance level ˛.

1. Compute

Z D X � np0p
np0.1 � p0/

:

2. Find z˛=2 from the table of the standard normal distribution such that

P.Z � z˛=2/ D z˛=2:

3. Reject H0 if Z � z˛=2 or if Z � �z˛=2.

If we can use one-sided tests instead, we proceed similarly.

One-sided test for binomial trials where np0.1 � p0/ is at least 5.

H0 W p � p0 against HA W p > p0:

Significance level ˛.

1. Compute

Z D X � np0p
np0.1 � p0/

:

2. Find z˛ from the table of the standard normal distribution such that

P.Z � z˛/ D z˛:

3. Reject H0 if Z � z˛ .
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One-sided test for binomial trials where np0.1 � p0/ is at least 5.

H0 W p � p0 against HA W p < p0:

Significance level ˛.

1. Compute

Z D X � np0p
np0.1 � p0/

:

2. Find z˛ from the table of the standard normal distribution such that

P.Z � z˛/ D z˛:

3. Reject H0 if Z � �z˛ .

Example 10.1 We have carried out 100 binomial trials and observed a total of 56
successes. We want to test H0 W p D 0:5 against HA W p 6D 0:5. What is the
conclusion from the test?

Solution: We use the recipe above:

Z D 56 � 100 � 0:5p
100 � 0:5.1 � 0:5/

D 1:2:

When no significance level is stated, we tacitly assume that the significance level is
5%, i.e., ˛ D 5%. Since the test is two-sided, we need to look up the 2.5% level. We
find z0:025 D 1:96. Since the observed test static is smaller than the rejection limit,
we keep H0. There is no sufficient evidence to claim that p is different from 0.5.

10.2 t-Test for Expected Value

It happens frequently that we want to test an unknown expected value, and the most
common situation is that the variance, too, is unknown. If we assume that we have
n independent and approximately normal observations, we know that

T D X � 	

SŒX�
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is t-distributed with parameter � D n �1. A test for H0 W 	 D 	0 against HA W 	 6D
	0 can then be executed as follows:

Two-sided t-test for expected value. Independent and approximately normal
observations with unknown expectation and variance.

H0 W 	 D 	0 against HA W 	 6D 	0:

Significance level ˛.

1. Find X.
2. Find SX .
3. Compute SŒX� D SX=

p
n.

4. Compute T D X�	0

SŒX�
.

5. Use the t-table with parameter � D n � 1 to find t.n�1/

˛=2 such that

P.T.n�1/ � t.n�1/

˛=2 / D ˛=2:

6. Reject H0 if T � t.n�1/

˛=2 or if T � �t.n�1/

˛=2 .

The one-sided versions read as follows:

One-sided t-test for expected value. Independent and approximately normal
observations with unknown expectation and variance.

H0 W 	 � 	0 against HA W 	 > 	0:

Significance level ˛.

1. Find X.
2. Find SX .
3. Compute SŒX� D SX=

p
n.

4. Compute T D X�	0

SŒX�
.

5. Use the t-table with parameter � D n � 1 to find t.n�1/
˛ such that

P.T.n�1/ � t.n�1/
˛ / D ˛:

6. Reject H0 if T � t.n�1/
˛ .
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One-sided t-test for expected value. Independent and approximately normal
observations with unknown expectation and variance.

H0 W 	 � 	0 against HA W 	 < 	0:

Significance level ˛.

1. Find X.
2. Find SX .
3. Compute SŒX� D SX=

p
n.

4. Compute T D X�	0

SŒX�
.

5. Use the t-table with parameter � D n � 1 to find t.n�1/
˛ such that

P.T.n�1/ � t.n�1/
˛ / D ˛:

6. Reject H0 if T � �t.n�1/
˛ .

Example 10.2 We have 9 independent observations and have found X D �11:2 and
SX D 9:6. We assume that observations are approximately normal and want to test
H0 W 	 � 0 against HA W 	 < 0. What is the conclusion from the test?

Solution: We follow the recipe above. The first two steps follow from the text,
so we proceed to step 3.

SŒX� D 9:6p
9

D 3:2:

Since 	0 D 0, we get

T D �11:2 � 0

3:2
D �3:5:

The rejection limit we find from a t-table with parameter 8. If we use 5%
significance, we must find the 5% level in this table. This gives t.8/

0:05 D 1:86. We
should hence reject H0 if T < �1:86. As this is certainly true, we reject H0 and
claim that the expected value is probably negative.
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10.3 Comparing Two Groups

In statistics we often need to compare properties of two different groups. We will
now consider some special techniques that can be used to decide if the groups are
different.

10.3.1 t-Test for Comparison of Expectation in Two Groups

Assume that we have two groups. In the first group we observe X and in the second
group we observe Y. Expectations and variances are unknown, and we want to test
if EŒX� D EŒ Y� or not. As in the previous t-test we need to assume that observations
are approximately normal.

We let X1; : : : ; Xn1 denote the observations from the first group, while Y1; : : : ; Yn2

denote observations from the second group. We assume that

EŒXi� D 	X ; VarŒXi� D �2
X ; i D 1; : : : ; n1;

and

EŒ Yi� D 	Y ; VarŒXi� D �2
Y ; i D 1; : : : ; n2:

Two- and one-sided tests can then be executed as follows:

Two-sided test for comparison of expectations in two groups. Independent and
approximately normal observations with unknown expectation and variance.
Equal variances in the two groups.

H0 W 	X D 	Y against HA W 	X 6D 	Y :

Significance level ˛.

1. Find X and Y.
2. Find S defined via

S2 D 1

n1 C n2 � 2

 
n1X

iD1

.Xi � X/2 C
n2X

iD1

. Yi � Y/2

!
:

(continued)
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3. Compute

SŒ Oı� D S �
s

1

n1

C 1

n2

:

4. Compute

T D X � Y

SŒ Oı�
:

5. Use the t-table with parameter � D n1 C n2 � 2 to find t.�/

˛=2 such that

P.T.�/ � t.�/

˛=2/ D ˛=2:

6. Reject H0 if T � t.�/

˛=2 or if T � �t.�/

˛=2.

Extra: The limits for a .1 � ˛/100% confidence interval for the difference
	X � 	Y are given by

X � Y ˙ t.�/

˛=2 � SŒ Oı�:

One-sided test for comparison of expectations in two groups. Independent and
approximately normal observations with unknown expectation and variance.
Equal variances in the two groups.

H0 W 	X � 	Y against HA W 	X > 	Y :

Significance level ˛.

1. Find X and Y.
2. Find S defined via

S2 D 1

n1 C n2 � 2

 
n1X

iD1

.Xi � X/2 C
n2X

iD1

. Yi � Y/2

!
:

(continued)
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3. Compute

SŒ Oı� D S �
s

1

n1

C 1

n2

:

4. Compute

T D X � Y

SŒ Oı�
:

5. Use the t-table with parameter � D n1 C n2 � 2 to find t.�/
˛ such that

P.T.�/ � t.�/
˛ / D ˛:

6. Reject H0 if T � t.�/
˛ .

One-sided test for comparison of expectations in two groups. Independent and
approximately normal observations with unknown expectation and variance.
Equal variances in the two groups.

H0 W 	X � 	Y against HA W 	X < 	Y :

Significance level ˛.

1. Find X and Y.
2. Find S defined via

S2 D 1

n1 C n2 � 2

 
n1X

iD1

.Xi � X/2 C
n2X

iD1

. Yi � Y/2

!
:

3. Compute

SŒ Oı� D S �
s

1

n1

C 1

n2

:

(continued)
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4. Compute

T D X � Y

SŒ Oı�
:

5. Use the t-table with parameter � D n1 C n2 � 2 to find t.�/
˛ such that

P.T.�/ � t.�/
˛ / D ˛:

6. Reject H0 if T � �t.�/
˛ .

Remark In these tests we had to assume that the variances are equal in the two
groups. Modern statistical software can easily handle situations where the variances
are different.

Example 10.3 Assume that a factory can use two different methods in production.
We make 10 independent observations of the production, 5 using method 1 and 5
using method 2. Method 1 gave the results:

4:7; 3:5; 3:3; 4:2; 3:6;

while the corresponding numbers for method 2 was

3:2; 4:2; 3:3; 3:9; 3:0:

Assuming that we have normally distributed observations with equal variances, we
compute

X D 3:86; Y D 3:52; S D 0:543; SŒ Oı� D 0:344:

We insert these quantities into the formula, and get

T D X � Y

SŒ Oı�
D 0:34

0:344
D 0:99:

In this case we should refer to a t-table with parameter

� D n1 C n2 � 2 D 5 C 5 � 2 D 8:

From this table we find t.8/
0:025 D 2:306. Since the observed T value is well within

the non-rejection region, there is no reason to reject H0. We hence keep the null
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Fig. 10.1 t-test executed in
Excel

hypothesis saying there is no difference in expectation. The limits for a 95%
confidence interval for the difference 	X � 	Y are given by

X � Y ˙ t.�/

˛=2 � SŒ Oı� D 0:34 ˙ 2:306 � 0:344:

The confidence interval is hence Œ�0:45; 1:13�. We notice that the value zero is
contained in this interval, which is consistent with our null hypothesis.

10.3.2 t-Test Executed in Excel

Using the Excel command TTEST.A1 W AnI B1 W BnI 2; 2/, we can easily execute
the two-sided test we examined in Example 10.3. We write the observations from
method 1 in the first column, and the corresponding results for method 2 in the
second column. The final result is displayed in Fig. 10.1.

The result displayed in C1 is the P-value for this test, and we see that the P-value
is as large as 35%. There is hence no reason to suspect that the null hypothesis is
wrong, and we keep the hypothesis about equal expectations.

10.3.3 t-Test for Comparison of Expectation in Two Groups, Paired
Observations

It sometimes happens that we want to compare observations from two different
groups where the observations are paired in a natural way. Let .X1; Y1/; : : : ; .Xn; Yn/

denote the observed pairs. In the previous t-test we assumed that all observations
were independent. In our new case X1 and Y1 may be dependent, and the same
applies for any pair. The different pairs, however, are independent of each other.
With a structure like this, we need to modify the procedure to take the pairing into
account. This is done as follows:
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Two-sided test for comparison of expectations in two groups, paired obser-
vations. Independent pairs and approximately normal observations with
unknown expectation and variance.

H0 W 	X D 	Y against HA W 	X 6D 	Y :

Significance level ˛.

1. Find X and Y.
2. Find S defined via

S2 D 1

n � 1

n1X

iD1

.Xi � Yi � X C Y/2:

3. Compute

SŒ Oı� D S=
p

n:

4. Compute

T D X � Y

SŒ Oı�
:

5. Use the t-table with parameter � D n � 1 to find t.�/

˛=2 such that

P.T.�/ � t.�/

˛=2/ D ˛=2:

6. Reject H0 if T � t.�/

˛=2 or if T � �t.�/

˛=2.

Extra: The limits for a .1 � ˛/100% confidence interval for the difference
	X � 	Y are given by

X � Y ˙ t.�/

˛=2 � SŒ Oı�:
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Two-sided test for comparison of expectations in two groups, paired obser-
vations. Independent pairs and approximately normal observations with
unknown expectation and variance.

H0 W 	X � 	Y against HA W 	X > 	Y :

Significance level ˛.

1. Find X and Y.
2. Find S defined via

S2 D 1

n � 1

n1X

iD1

.Xi � Yi � X C Y/2:

3. Compute

SŒ Oı� D S=
p

n:

4. Compute

T D X � Y

SŒ Oı�
:

5. Use the t-table with parameter � D n � 1 to find t.�/
˛ such that

P.T.�/ � t.�/
˛ / D ˛:

6. Reject H0 if T � t.�/
˛ .

Two-sided test for comparison of expectations in two groups, paired obser-
vations. Independent pairs and approximately normal observations with
unknown expectation and variance.

H0 W 	X � 	Y against HA W 	X < 	Y :

Significance level ˛.

1. Find X and Y.

(continued)
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2. Find S defined via

S2 D 1

n � 1

n1X

iD1

.Xi � Yi � X C Y/2:

3. Compute

SŒ Oı� D S=
p

n:

4. Compute

T D X � Y

SŒ Oı�
:

5. Use the t-table with parameter � D n � 1 to find t.�/
˛ such that

P.T.�/ � t.�/
˛ / D ˛:

6. Reject H0 if T � �t.�/
˛ .

Example 10.4 We now return to the numbers used in Example 10.3, but this time
we assume that the same workers first used method 1 and then method 2. X1 and Y1

are hence the results of the same worker using two different methods. If we order
the results in the same order as the workers, it turned out that the workers obtained
the following results:

4:7; 3:5; 3:3; 4:2; 3:6

with method 1, and

4:2; 3:2; 3:0; 3:9; 3:3

with method 2. By inspection we notice that all the workers reported larger numbers
by method 1 than by method 2. The unpaired test we used in the previous section
did not take this into account. Our new test does, and it makes a lot of difference. If
we carry out a two-sided test using the recipe above, we get

n D 5; X D 3:86; Y D 3:52; S D 0:089:
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With

T D X � Y

S=
p

n
;

we get T D 8:5. Using a t-table with parameter � D n � 1 D 4, we see that
t.4/
0:025 D 2:775 which is the rejection limit with 5% significance level. The observed

T falls deep into the rejection region, and there is good reason to claim that the two
methods lead to different expected production.

We should notice that this does not mean that the analysis from the unpaired test
was wrong. The information regarding the pairs provides new evidence, and it is
not surprising that more evidence can alter the conclusion. When we fail to reject
a null hypothesis, it does not mean that we have proved that the null hypothesis is
true. Furthermore it does not exclude the possibility that we later may come up with
more convincing evidence. Statistical data can often be analyzed using different
tests, and it is not uncommon that different tests provide different conclusions. In
such situations we should put more weight on the test that best makes use of the
available information.

10.3.4 t-Test with Paired Observations Executed in Excel

Using the Excel command TTEST.A1 W AnI B1 W BnI 2; 1/, we can easily execute the
two-sided test we examined in Example 10.4. The only difference is that we change
the last digit in the command from 2 to 1. This makes Excel understand that we
want to use a paired test (Fig. 10.2).

We see that the P-value for the paired test is as small as 0:1% meaning that we
are very confident in rejecting the null hypothesis. It seems very probable that the
two methods lead to different expected production.

Fig. 10.2 Paired t-test
executed in Excel
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10.4 Wilcoxon’s Distribution Free Tests

A general weakness with the t-tests we have discussed so far is that they assume
approximately normal observations. This assumption may not be true, and we can
then not trust the results. In cases where the assumption may be questionable, we
can use what is called distribution free tests, i.e., tests that do not assume that
the observations have a particular distribution. The price for doing so is that we
withdraw invalid evidence, and with less evidence the chances of rejection are
reduced.

We will now consider Wilcoxon’s tests for the comparison of two different
groups. The basis for these tests is exactly the same as for the t-test for comparison
of expected values in two different groups. The only difference is that we no longer
assume that observations are normally distributed.

The Wilcoxon rank-sum test takes its starting point in the so-called rank-sum of
the observations. A simplistic procedure for finding the rank-sum can be described
as follows: First write all the observations from the two groups in ascending order.
The next step is to underline the observations from the first group. The rank-sum is
defined as the sum of the positions of the underlined numbers. The basic idea is that
W will be small if the numbers from group 1 are largely smaller than the numbers
from group 2, and large if the differences go in the opposite direction.

Example 10.5 We have observed working times (measured in seconds) for workers
in two different groups. In group 1 the working times were:

47; 59; 43; 50; 45; 45; 49; 41; 47; 95; 50;

while the working times for group 2 were

45; 48; 61; 52; 48; 63; 52; 54; 50; 58:

To compute the rank-sum of these observations, we sort all the observations in
ascending order and underline the observations from group 1:

41; 43; 45; 45; 45; 47; 47; 48; 48; 49; 50; 50; 50; 52; 52; 54; 58; 59; 61; 63; 95:

The rank-sum W is found from the sum of the positions of the underlined numbers,
i.e.

W D 1 C 2 C 3 C 5 C 6 C 7 C 10 C 11 C 13 C 18 C 21 D 97:

Remark When we write the observations in ascending order, it may happen that
some observations are equal. It is then not clear which one to write first. It is
common practice to swap the order every second time, i.e., the first time we have
equality, we write down the value from group 1 first, and the next time we have
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equality, we write down the observation from group 2 first. Modern computer
software uses a more refined version where the program computes the rank-sum
for any possible permutation of equal numbers, and takes the mean over all these
rank-sums. The difference is often negligible.

The Wilcoxon rank-sum two-sided test for comparison of expectations in two
groups. Independent observations with any distribution.

H0 W 	X D 	Y against HA W 	X 6D 	Y :

Significance level ˛.

1. Compute EŒW� D 1
2
n1.n1 C n2 C 1/.

2. Compute VarŒW� D 1
12

n1n2.n1 C n2 C 1/.
3. Compute

Z D W � EŒW�
p

VarŒW�
:

4. Find z˛=2 from the table of the standard normal distribution such that

P.Z � z˛=2/ D ˛=2:

5. Reject H0 if Z � z˛=2 or if Z � �z˛=2:

The Wilcoxon rank-sum one-sided test for comparison of expectations in two
groups. Independent observations with any distribution.

H0 W 	X � 	Y against HA W 	X > 	Y :

Significance level ˛.

1. Compute EŒW� D 1
2
n1.n1 C n2 C 1/.

2. Compute VarŒW� D 1
12

n1n2.n1 C n2 C 1/.
3. Compute

Z D W � EŒW�p
VarŒW�

:

(continued)
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4. Find z˛ from the table of the standard normal distribution such that

P.Z � z˛/ D ˛:

5. Reject H0 if Z � z˛ .

The Wilcoxon rank-sum one-sided test for comparison of expectations in two
groups. Independent observations with any distribution.

H0 W 	X � 	Y against HA W 	X < 	Y :

Significance level ˛.

1. Compute EŒW� D 1
2
n1.n1 C n2 C 1/.

2. Compute VarŒW� D 1
12

n1n2.n1 C n2 C 1/.
3. Compute

Z D W � EŒW�p
VarŒW�

:

4. Find z˛ from the table of the standard normal distribution such that

P.Z � z˛/ D ˛:

5. Reject H0 if Z � �z˛ .

Remark Even though these tests rest on the central limit theorem, the number of
observations need not be very large. As stated above, there should be at least 8–10
observations in each group. Modern statistical software, however, can handle cases
with fewer observations.

Example 10.6 We want to carry out a two-sided test for the observations in
Example 10.5. We use the values n1 D 11 and n2 D 10 to get:

1. EŒW� D 1
2

� 11 � 22 D 121:

2. VarŒW� D 1
12

� 11 � 10 � 22 D 201:667:

3. Z D 97�121p
201:667

D �1:69:
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Using 5% significance level, we get z0:025 D 1:96, and we conclude that we have
to keep our null hypothesis of no difference in expected values.

10.4.1 TheWilcoxon Signed-Rank Test

When we studied t-test previously in this chapter, we could see that it made a lot
of difference if the observations were paired. There is a Wilcoxon test dealing with
this situation, and it is called the Wilcoxon signed-rank test. A simplistic version of
the procedure can be described as follows:

Compute the differences between each pair of number, i.e.

difference D value from group 2 � value from group 1;

and write all these differences in ascending order with respect to absolute value. The
rank V is the sum of the positions of the negative terms. The idea behind the test is
that V is small if the numbers from group 1 is largely smaller than the numbers from
group 2, and V will be large if the effect goes in the opposite direction.

Example 10.7 10 workers performed the same working operation twice, the first
time without training and the second time after training. The required working times
were as follows:

Without training:

48; 53; 52; 57; 43; 83:59; 71; 40; 61;

while the working times after training were

45; 42; 58; 50; 41; 47; 53; 66; 45; 53:

If we compute the differences between each such pair, we get:

�3; �11; 6; �7; �2; �36; �6; �5; 5; �8:

We sort these numbers in ascending order with respect to absolute value and
underline the negative numbers. We get:

�2; �3; �5; 5; 6; �6; �7; �8; �11; �36:

We find the rank V when we compute the sum of the positions of the underlined
numbers, i.e.

V D 1 C 2 C 3 C 6 C 7 C 8 C 9 C 10 D 46:
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Once the rank is computed, the tests are carried out using the recipes below:

The Wilcoxon signed-rank two-sided test for comparison of expectations in
two groups, paired observations. Independent pairs with any distribution.

H0 W 	X D 	Y against HA W 	X 6D 	Y :

Significance level ˛.

1. Compute EŒV� D 1
4
n.n C 1/.

2. Compute VarŒV� D 1
24

n.n C 1/.2n C 1/.
3. Compute

Z D V � EŒV�p
VarŒV�

:

4. Find z˛=2 from the table of the standard normal distribution such that

P.Z � z˛=2/ D ˛=2:

5. Reject H0 if Z � z˛=2 or if Z � �z˛=2:

The Wilcoxon signed-rank one-sided test for comparison of expectations in
two groups, paired observations. Independent pairs with any distribution.

H0 W 	X � 	Y against HA W 	X > 	Y :

Significance level ˛.

1. Compute EŒV� D 1
4
n.n C 1/.

2. Compute VarŒV� D 1
24

n.n C 1/.2n C 1/.
3. Compute

Z D V � EŒV�
p

VarŒV�
:

4. Find z˛ from the table of the standard normal distribution such that

P.Z � z˛/ D ˛:

5. Reject H0 if Z � z˛ .
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The Wilcoxon signed-rank one-sided test for comparison of expectations in
two groups, paired observations. Independent pairs with any distribution.

H0 W 	X � 	Y against HA W 	X < 	Y :

Significance level ˛.

1. Compute EŒV� D 1
4
n.n C 1/.

2. Compute VarŒV� D 1
24

n.n C 1/.2n C 1/.
3. Compute

Z D V � EŒV�p
VarŒV�

:

4. Find z˛ from the table of the standard normal distribution such that

P.Z � z˛/ D ˛:

5. Reject H0 if Z � �z˛ .

Remark The number of observations need not be very large, but is recommended to
have at least 20 observations of each pair. Modern statistical software, can, however,
handle cases with fewer observations.

Example 10.8 If we want to test if the training in Example 10.7 had effect, we can
make use of a one-sided test. This is natural since it seems unlikely that training can
have a negative impact. Here we have n D 10 pairs of observations, and we get:

1. EŒV� D 1
4

� 10 � 11 D 27:5:

2. VarŒV� D 1
24

� 10 � 11 � 21 D 96:25:

3. Z D 46�27:5p
96:25

D 1:88:

If we use 5% significance level, then z0:05 D 1:64. In this one-sided test we
should reject H0 if Z � 1:64. Since this is the case, we are confident that training
reduced expected working time. Strictly speaking, we have too few observations to
use the simple version of the Wilcoxon signed-rank test. If we run the same data
using modern statistical software, however, we get the same conclusion.
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10.4.2 Comparison of t-Tests andWilcoxon Test

In cases where the observations are approximately normal, we can use both t-tests
and the Wilcoxon tests. In such cases it might happen that the tests lead to opposite
conclusions. When this occurs, we put more weight on the results from the t-tests.
In general the Wilcoxon tests are weaker, i.e., the deviation from the null hypothesis
needs to be larger before we can confidently reject it. In other words, the deviation
from the null hypothesis needs to be stronger before the Wilcoxon tests lead to
rejection.

It might happen that we have run both tests, and only later understand that the
assumption of normally distributed observations may be questionable. In such cases
we should disregard the results from the t-tests and only rely on the results from the
Wilcoxon tests.

10.5 TheU-Test for Comparison of Success Probabilities

Instead of comparing expected values, we might want to compare success probabil-
ities in two groups. To study this in detail, we proceed as follows:

• We make n1 binomial trials in the first group, and n2 in the second group.
• We let p1 denote the probability of success in the first group, and p2 the

probability of success in the second group.
• X1 is the total number of successes in the first group, and X2 is the total number

of successes in the second group.

We want to test if the success probabilities are different, and can use the following
test:

Two-sided U-test for comparison of success probabilities. Binomial trials.

H0 W p1 D p2 against HA W p1 6D p2:

Significance level ˛.

1. Find

Op1 D X1

n1

; Op2 D X2

n2

:

(continued)
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2. Find Op defined by

Op D X1 C X2

n1 C n2

:

3. Compute

U D Op1 � Op2r�
1
n1

C 1
n2

�
Op.1 � Op/

:

4. When the numbers of observations are sufficiently large, see note below, U
is approximately normal. Use the table for the standard normal distribution
to find z˛=2 such that

P.Z � z˛=2/ D ˛=2:

5. Reject H0 if U � z˛=2 or if U � �z˛=2.

Extra: The limits for a .1 � ˛/100% significance interval for p1 � p2 are

Op1 � Op2 ˙ z˛=2

s
Op1.1 � Op1

n1

C Op2.1 � Op2/

n2

:

One-sided U-test for comparison of success probabilities. Binomial trials.

H0 W p1 � p2 against HA W p1 > p2:

Significance level ˛.

1. Find

Op1 D X1

n1

; Op2 D X2

n2

:

2. Find Op defined by

Op D X1 C X2

n1 C n2

:

(continued)
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3. Compute

U D Op1 � Op2r�
1
n1

C 1
n2

�
Op.1 � Op/

:

4. When the numbers of observations are sufficiently large, see note below, U
is approximately normal. Use the table for the standard normal distribution
to find z˛ such that

P.Z � z˛/ D ˛:

5. Reject H0 if U � z˛.

One-sided U-test for comparison of success probabilities. Binomial trials.

H0 W p1 � p2 against HA W p1 < p2:

Significance level ˛.

1. Find

Op1 D X1

n1

; Op2 D X2

n2

:

2. Find Op defined by

Op D X1 C X2

n1 C n2

:

3. Compute

U D Op1 � Op2r�
1
n1

C 1
n2

�
Op.1 � Op/

:

4. When the numbers of observations are sufficiently large, see note below, U
is approximately normal. Use the table for the standard normal distribution

(continued)
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to find z˛ such that

P.Z � z˛/ D ˛:

5. Reject H0 if U � �z˛ .

Note: These tests all require that the numbers of observations are sufficiently
large. More precisely it is usual to require that n1 Op1; n1.1 � Op1/; n2 Op2; n2.1 � Op2/ are
all greater than 5.

Example 10.9 40 men and 60 women have been asked if they think statistics is
an interesting subject. 11 men and 14 women answered No, the rest Yes. What
conclusion can we draw from this?

Solution: We use a two-sided U-test to answer this. We have

Op1 D 11

40
; Op2 D 14

60
:

Op1 D 11 C 14

40 C 60
D 25

100
:

We insert these quantities in the formula below and get

U D Op1 � Op2r�
1
n1

C 1
n2

�
Op.1 � Op/

D 0:47:

At 5% significance level, z0:025 D 1:96. The observed U is well within the non-
rejection region. We keep the null hypothesis saying there is no difference in opinion
between men and women.

10.6 Chi-Square Test for Goodness-of-Fit

The chi-square test for probabilities is a useful test when we want to examine a given
set of probabilities. The starting point is a sample space with m different outcomes.
We want to test if the different outcomes occur with frequencies that are compatible
with a given set of probabilities. To settle this, we make n independent observations
and record how many times we got each outcome. Here

Xi D Number of times we observed outcome i; i D 1; : : : ; m:
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The test is executed as follows:

Chi-square test for a given set of probabilities p1; p2; : : : ; pm (goodness-of-fit).

H0 W The probability distribution of the outcomes equals p1; p2; : : : ; pm:

HA W The probability of at least one outcome differs from the given distribution:

Requires n independent observations where npi > 5 for i D 1; : : : ; m.
Significance level ˛.

1. Compute

Q D .X1 � np1/
2

np1

C .X2 � np2/
2

np2

C � � � C .Xm � npm/2

npm
:

2. Use a chi-square table with parameter � D m � 1 to find q.�/
˛ such that

P.Q.�/ � q.�/
˛ / D ˛:

3. Reject H0 if Q � q.�/
˛ .

Notice that this test does not have a two-sided version. The chi-square distribu-
tion is always positive, and a two-sided test makes no sense. We should also notice
that the distribution is not approximately normal, so we cannot use the standard
normal distribution in this case.

Example 10.10 A country has 5 political parties, A,B,C,D,E. In the previous
election votes were distributed as follows:

A W 20%; B W 30%; C W 20%; D W 2%; E W 28%:

In our model we hence have p1 D 0:2; p2 D 0:3; p3 D 0:2; p4 D 0:02; p5 D
0:28. To see if the distribution has changed, we asked n D 1000 randomly selected
persons. The results of the poll were:

X1 D 220; X2 D 280; X3 D 225; X1 D 25; X1 D 250:

Has the distribution of votes changed?
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Solution: We compute

Q D .220 � 200/2

200
C .280 � 300/2

300
C .225 � 200/2

200
C .25 � 20/2

20
C .250 � 280/2

280

D 10:92:

Since we have m D 5 different outcomes, we should use a chi-square table with
parameter � D m � 1 D 4. Using 5% significance level we find q.4/

0:05 D 9:49. Since
the observed Q > 9:49, we reject the null hypothesis. We are confident that the
distribution of votes has changed (Fig. 10.3).

10.6.1 The Chi-Square Test Executed in Excel

Using the Excel command CHITEST, we can easily carry out the test in Exam-
ple 10.10. We write the observed frequencies in the first column. In the second
column we write the corresponding probabilities multiplied by n, i.e., we multiply
the given probabilities with the total number of observations (Fig. 10.4).

The test reports the P-value 2:7448%. Since the P-value is less than 5%, we
reject the null hypothesis at 5% significance level. In Example 10.10 we computed

Fig. 10.3 Chi-square
distribution with parameter
� D 4

fQ(x)

x
9.49

5 %
0.05

0.10

0.15

0.20

Fig. 10.4 Chi-square test
executed in Excel
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Q D 10:92. The P-value is then

P.Q.4/ � 10:92/ � P.Q.4/ � 11:0/ D 0:027:

where we could find the last probability in the chi-square table. We see that our
calculations coincide with those made by Excel.

10.7 The Chi-Square Test for Independence

Assume that you have a population of 10;000 persons, half of which are men and
the other half women. Furthermore, assume that 20% of those people have problems
paying their bills. If the distribution of people with payment problem is independent
of gender, we would expect the distribution displayed in Table 10.1.

If the observed distribution is very different from this, we would think that
gender makes a difference. This simple idea is the basis for the chi-square test for
independence. In general we proceed as follows:

Assume that we have a sample with a total of n objects, and where each object
has two factors. The first factor has I different versions, while the second factor has
J different versions. We can then write a table with elements Xij where

Xij D Number of objects where the first factor is version i, and the second j:

To assess these numbers, we need all the marginals, i.e.

Ai D
JX

jD1

Xij; i D 1; : : : ; I; Bj D
IX

iD1

Xij; j D 1; : : : ; J:

Here Ai is the total number of object where the first factor is version i, and Bj is the
total number of objects where the second factor is version j. To see what this means
in practice, we consider an explicit example.

Example 10.11 A traveling agency has asked n D 10;000 customers if they were
satisfied with their holiday. The holidays took place in 4 different towns, and the
customers could choose the alternatives: Satisfied, Not satisfied, Don’t know. The
results are shown in Table 10.2 which also shows the marginals.

In this example factor 1 is the town the customer stayed in, and factor 2 is the
reply to the question. Is there a connection between these factors?

Table 10.1 Distribution of
customer under independence

Payment problems No payment problems Total

Women 1000 4000 5000

Men 1000 4000 5000

Total 2000 5000 10;000
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Table 10.2 Observed
satisfaction levels

Town 1 Town 2 Town 3 Town 4 Total

Satisfied 1100 800 400 1400 3700

Not satisfied 1700 1000 800 2100 5600

Don’t know 200 100 100 300 700

Total 3000 1900 1300 3800 10;000

Table 10.3 Expected
satisfaction levels under
independence

Town 1 Town 2 Town 3 Town 4 Total

Satisfied 1110 703 481 1406 3700

Not satisfied 1680 1064 728 2128 5600

Don’t know 210 133 91 266 700

Total 3000 1900 1300 3800 10;000

Solution: From the table we see that the choice of town has the distribution:

Town 1:30%; Town 2:19%; Town 3:13%; Town 4:38%;

while the answers had the distribution:

Satisfied:37%; Not satisfied:56%; Don’t know:7%:

If the distribution of replies is independent of the locations, it would have been
possible to calculate the expected number in each entry multiplying the total number
of observations by the corresponding probabilities, e.g., in the first entry we would
expect:

10;000 � 0:3 � 0:37 D 1110:

If we carry out similar computations for all the other entries, we end up with the
expected values shown in Table 10.3.

We see that the numbers in Tables 10.2 and 10.3 are somewhat different, but
is the difference significant in the sense that we can reject a null hypothesis of
independence? We can answer this question by a chi-square test for independence,
and the recipe for this test reads as follows:

Chi-squared test for independence of two factors. We have n independent
observations, and the test requires that all expected values are at least 5.
Significance level ˛.

H0 W The factors are independent;

(continued)



10.7 The Chi-Square Test for Independence 229

against

HA W The factors are dependent:

I D Number of different versions of factor 1:

J D Number of different versions of factor 2:

Xij D Number of observations with ith version of factor 1, jth of factor 2:

1. Find all marginals

Ai D
JX

jD1

Xij; i D 1; : : : ; I; Bj D
IX

iD1

Xij; j D 1; : : : ; J:

2. Compute the table of expectations:

Eij D AiBj

n
; i D 1; : : : ; I; j D 1; : : : ; J:

3. Compute Q by

Q D
IX

iD1

JX

jD1

.Xij � Eij/
2

Eij
:

4. Use a chi-square table with parameter � D .I � 1/. J � 1/ to find q.�/
˛ such

that

P.Q.�/ � q.�/
˛ / D ˛:

5. Reject H0 if Q � q.�/
˛ .

If we use this test in Example 10.11, we see that we already did most of the
work. The observations Xij are shown in Table 10.2 and the expected values Eij are
shown in Table 10.3. We see that the smallest expected value is 100, so we meet the
requirements for the test. All what remains is to use these numbers to compute Q.

Q D .1100 � 1110/2

1110
C .800 � 703/2

703
C � � � C .300 � 266/2

266
D 52:62:

In this case we should refer to a chi-square table with parameter � D 3�2 D 6: Using
5% significance level, we see that q.6/

0:05 D 12:6: The observed value Q D 52:62 is
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Fig. 10.5 Chi-square test for independence

much larger than the rejection limit. We should hence reject the null hypothesis,
and we are confident that there is a connection between the towns and the answers
that have been given. If we look a bit closer on the numbers, we see, e.g., that there
are far more satisfied customers than we expected in town 2, and far less satisfied
customers than we expected in town 3. The differences are so huge that they are
probably not due to chance. The value

.800 � 703/2

703
D 13:38;

is alone sufficient to bring Q above the rejection limit.

10.7.1 The Chi-Square Test for Independence Executed in Excel

Using the Excel command CHISQ.TEST, we can easily carry out the test in
Example 10.11. We write the observed values from Table 10.2 in the first 4 columns,
and the expected values from Table 10.3 below.

The test reports the P-value 1:4 � 10�9 (Fig. 10.5), which is very small indeed. It
is hence clear that we should reject the null hypothesis of independence.

10.8 Summary of Chap. 10

• Test for probability in binomial trials.
– Keywords: Is the probability of success different from before?
– Model assumptions: H0 W p D p0 or p � p0 or p � p0.
– Alternatives: HA W p 6D p0 or p > p0 or p < p0.
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• t-test for expected value.
– Keywords: Is the expectation different from before?
– Approximately normal observations.
– Model assumptions: H0 W 	 D 	0 or 	 � 	0 or 	 � 	0.
– Alternatives: HA W 	 6D 	0 or 	 > 	0 or 	 < 	0.

• t-test for comparison of expectations in two groups.
– Keywords: Are the expectations in two groups equal?
– Approximately normal observations.
– Model assumptions: H0 W 	X D 	Y or 	X � 	Y or 	X � 	Y .
– Alternatives: HA W 	X 6D 	Y or 	X > 	Y or 	X < 	Y .

• The Wilcoxon tests for comparison of expectations in two groups.
– Keywords: Are the expectations in two groups equal?
– Observations may have any distribution.
– Model assumptions: H0 W 	X D 	Y or 	X � 	Y or 	X � 	Y .
– Alternatives: HA W 	X 6D 	Y or 	X > 	Y or 	X < 	Y .

• The U test for comparison of probabilities.
– Keywords: Are the probabilities in two groups equal?
– Model assumptions: H0 W p1 D p2 or p1 � p2 or p1 � p2.
– Alternatives: HA W p1 6D p2 or p1 > p2 or p1 < p2.

• The chi-square test for goodness-of-fit.
– Keywords: Are the probabilities the same as before?
– Model assumption: H0 W The outcomes have the given probabilities.
– Alternative: HA W The outcomes do not have the given probabilities.

• The chi-square test for independence.
– Keywords: Are two factors independent?
– Model assumption: H0 W The factors are independent.
– Alternative: HA W The factors are dependent.

10.9 Problems for Chap. 10

10.1 We have made 200 independent binomial trials and have observed 132
successes. We want to test H0 W p D 0:5 against HA W p 6D 0:5. What conclusion
can we draw?

10.2 We have made 50 independent binomial trials and have observed 25 successes.
We want to test H0 W p D 0:6 against HA W p 6D 0:6. What conclusion can we draw?

10.3 We have made 120 independent binomial trials and have observed 70 suc-
cesses. We want to test H0 W p D 0:5 against HA W p � 0:5. What conclusion can
we draw?
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Table 10.4 Data for
Problem 10.7

Women 200 210 185 290 225

Men 205 190 180 220 195 160

Table 10.5 Data for
Problem 10.8

Department 1 Department 2

123 113

129 124

125 132

126 128

133 127

139 131

143 119

130 118

10.4 We have made 12 independent observations and have found the values X D
106:3 and SX D 13:6. We assume that observations are approximately normal and
want to test H0 W 	 D 100 against HA W 	 6D 100. What conclusion can we draw?

10.5 We have made 20 independent observations and have found the values X D
16:9 and SX D 22:1. We assume that observations are approximately normal and
want to test H0 W 	 D 0 against HA W 	 6D 0. What conclusion can we draw?

10.6 We have made 11 independent observations and have found the values X D
12:96 and SX D 3:22. We assume that observations are approximately normal and
want to test H0 W 	 D 10 against HA W 	 < 10. What conclusion can we draw?

10.7 In a small survey in a shop we have asked 6 men and 5 women how much
money they have spent on food the last week. The answers (in USD) are shown in
Table 10.4.

Use a t-test for comparison of expected values to decide if gender makes a
significant difference. Use 5% significance level, and assume that variances in the
two groups are equal.

10.8 A company wants to compare the production at two departments. The
company has observed how many units were produced during one hour at some
randomly selected points in time. They have made 8 observations for each depart-
ment, and the results are reported in Table 10.5.

Department 1 has gotten some new production equipment, and hence the
company wants to test if department 1 is doing significantly better than department
2. Assume that observations are approximately normal and use Excel to execute a
one-sided t-test to see if the effect is significant.

Hint: A one-sided test can either be executed by TTEST(A1:A8;B1:B8;1,2) or
you can divide the P-value for TTEST(A1:A8;B1:B8;2,2) by 2. Excel do not take
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Table 10.6 Data for
Problem 10.9

Month Department 1 Department 2

January 125 126

February 122 128

March 131 129

April 142 145

May 139 135

June 145 151

July 152 160

August 147 145

September 142 148

October 138 137

November 129 130

December 130 134

into account which mean is the largest, so to reject the null hypothesis you need to
verify that the mean for department 1 is greater than the mean for department 2.

10.9 A company has two sales departments. We have observed the sales from each
department every month during one year. The results are shown in Table 10.6.

(a) A two-sided t-test for two groups reported a P-value of 60%, while a two-sided
t-test for paired observations reported a P-value of 8%. Which of the two tests
do you trust? What conclusion could you draw from the test?

(b) Data from previous years indicate that the departments has had the same
expected sales volumes for a number of years. Prior to the survey above,
department 2 ran a comprehensive advertising campaign for their products. May
this information be of importance here?

10.10 In a survey the participants were asked if they believed that the annual
inflation would surpass 2.5%. 250 people in group 1 were asked this question, while
225 people in group 2 got the same question. In group 1, 60 people answered YES,
while 78 of the people in group 2 gave the same answer. Examine if the two groups
are different using the U-test. What is the P-value?

10.11 In a survey people in two different working groups were asked if the wage
level was decisive for their choice of profession. The question was posed to 120
persons in group 1 and to 140 persons in group 2. In group 1 there were 68 people
answering YES, while 65 people answered YES in group 2. Examine if the two
groups are different using the U-test. What is the P-value?
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10.12 In a market survey 500 people should choose which out of 4 different
products they liked the best. The distribution of answers was as follows:

A W 129 B W 140 C W 113 D W 118:

Use a chi-square test to determine if all the 4 products had the same probability of
being chosen. Hint: When the null hypothesis is true, then p1 D p2 D p3 D p4 D
0:25.

10.13 In a market survey 300 people should choose which out of three products
they liked the best. The distribution of answers was as follows:

A W 98 B W 120 C W 92:

Use a chi-square test to determine if all the three products had the same probability
of being chosen.

10.14 1000 persons chose which out of 10 products they liked the best. The
distribution of answers was as follows:

115 112 44 72 320 9 42 152 61 73:

In a previous survey, the distribution of preferences was as follows:

12% 11% 5% 7% 30% 1% 4% 14% 7% 9%:

Use Excel to execute a chi-square test to determine if preferences have changed.

10.15 In a market survey 800 people were asked about their view on their bank.
The answers were distributed as follows:

Dissatisfied W 345 Neither satisfied nor dissatisfied W 238 Satisfied W 217:

A previous survey reported the following distribution:

Dissatisfied W 40% Neither satisfied nor dissatisfied W 30% Satisfied W 30%:

Use a chi-square test to determine if preferences have changed.

10.16 In an election the votes were distributed as follows:

Party A W 24:3% Party B W 21:3% Party C W 14:6%

Party D W 12:5% Party E W 12:4% Party F W 14:9%:
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A survey with 400 participants reported the following distribution:

Party A W 23% Party B W 18% Party C W 17%

Party D W 16% Party E W 10% Party F W 16%:

Use a chi-square test to determine if the distribution in the survey differs signif-
icantly from the election. Hint: Find how many people in the survey would have
voted for the respective parties.

10.17 To check for quality in production, we regularly check 3 consecutive units.
The distribution of errors in 1000 checks was as follows:

No errors W 829 One error W 163 Two errors W 6 Three errors W 2:

Use a chi-square test to determine if errors are independent and occur randomly with
probability 6%. Hint: Under the null hypothesis we have a binomial distribution.

10.18 The customers in a bank are classified using two characteristics: marital
status and credit rating. Marital status is 1 (unmarried) or 2 (married). Credit rating
is A, B, or C. Classifying 1000 customers, we found results in Table 10.7.

Use a chi-square test for independence to determine if there is a connection
between marital status and credit rating.

10.19 A travel agency has carried out a customer survey. A total of 1000 customers
did not want to return to the hotel they had visited. The customers who did not want
to return, was asked to point out a primary reason for this. The replies are shown in
Table 10.8.

Use a chi-square test for independence to determine if there is a connection
between which hotel the customers visited and the reason why they did not want
to return.

Table 10.7 Data for
Problem 10.18

Credit rating Unmarried Married

A 200 300

B 140 260

C 40 60

Table 10.8 Data for
Problem 10.19

Reason Hotel A Hotel B Hotel C

Too expensive 50 100 150

Bad attractions 100 200 100

Poor cleaning 150 100 50
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10.20 Merging Observations: A travel agency has changed their primary collab-
orator. A survey carried out before the change reported the following distribution:

Very satisfied W 20% Quite satisfied W 10% Somewhat satisfied W 50%

Somewhat dissatisfied W 15% Very dissatisfied W 5%:

After the change they carried out a similar survey with n D 740 customers. The
answers were as follows:

Very satisfied W 188 Quite satisfied W 80 Somewhat satisfied W 330

Somewhat dissatisfied W 92 Very dissatisfied W 50:

(a) Use a chi-square test with 5% significance level to determine if the customers
have changed opinions.

(b) Carried out a similar test using the merged data, i.e.

Satisfied W 80% Dissatisfied W 20%:

Satisfied W 598 Dissatisfied W 142:

How would you interpret this?
(c) Let X5 denote the number of very dissatisfied customers in a survey with

n participants where the probability of being very dissatisfied is p5. What
approximative distribution has

X5 � n p5p
n p5.1 � p5/

;

if n is large? Use this to approximate P.X5 � 50/ under the condition that the
customers have the same opinions as before the change. Comment the answer.

10.21 Testing Binomial Distribution: A questionnaire has 6 questions. Each
question has two alternatives, and only one alternative is correct.

(a) Let R be the number of correct answers from a person guessing the answer on all
questions. What is the distribution of R? Write a table showing the probability
for each possible value of R.

(b) 300 persons answered the questionnaire. The number of correct answers
were distributed as shown in Table 10.9. We assume that the answers were
independent, and want to test if the observed distribution is consistent with pure
guessing. Find a test suitable for this purpose, and execute the test on these
observations. Use 5% significance level. What do you conclude?
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Table 10.9 Data for
Problem 10.21

Number of correct answers Number of persons

0 7

1 34

2 54

3 85

4 79

5 34

6 7

Table 10.10 Data for Problem 10.23

Product 1 2 3 4 5 6

Number of people choosing the product 28 42 25 52 25 28

Table 10.11 Previous
observations

Product 1 2 3 4 5 6

Percentages choosing the product 10 20 15 30 10 15

10.22 Is One Manager Significantly Better Than Another? Two finance compa-
nies sell mutual funds. Company A offers a total of n1 D 100 different funds, while
company B offers n2 D 110 different funds. We assume that all funds within the
same company have a constant probability of beating the reference index during a
given year. We call these probabilities pA and pB. Let XA be the number of funds
from company A that beat the reference index, and XB be the corresponding number
at company B.

(a) Assume that the results for each fund are different random variables. What is
the distribution of XA and XB?

(b) Last year 30 of the funds in A and 23 of the funds in B beat their reference index.
Find a suitable test for this situation, execute the test and find the P-value. What
is your conclusion? Use 5% significance level.

(c) The analysis above assumes that the results for each fund are independent. Point
at circumstances where this assumption may be unrealistic.

10.23 Did Preferences Change? 200 persons should choose which product they
liked the best among 6 different products. Each person could only choose one
product. The answers were distributed as shown in Table 10.10.

In a previous survey the distribution was as in Table 10.11.

(a) We want to examine if the customers have changed their opinion. Find a suitable
test for this. State the null hypothesis, alternative hypothesis, test static, and
rejection region. Use 5% significance level.

(b) Execute the test in (a). How large (approximately) is the P-value? What is your
conclusion?
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10.24 Checking Normality: We have observed the production at two different
departments. At department 1 the production numbers were:

101; 103; 105; 102; 101; 100; 117; 100; 102; 104:

At department 2 we recorded:

107; 106; 108; 125; 112; 108; 107; 106; 104; 105:

In the tests below we will use 5% significance level.

(a) We have used a two-sided t-test to compare the two sets of observations. With
data as above, the P-value for this test is 4.8% (you can take this for granted).
What is the null hypothesis and the alternative hypothesis in this test? What
conclusion can you draw from the test?

(b) If we join the two observation sets, the mean value is 106:15 and the sample
variance is S2

X D 36:87. Imagine that we make 20 independent draws from a
normally distributed random variable with expectation 	 D 106:15 and variance
�2 D 36:87. What is the probability that the largest value is greater than or equal
to 125?

(c) A Shapiro test can be used to determine if data are normally distributed. The
hypotheses in this test are:

H0 W Data are normally distributed

HA W Data are not normally distributed:

A Shapiro test based on the numbers from department 1 and 2 returns the P-
value 0:14%. What conclusion can you draw from this? Does this conclusion
have any consequences for the analysis in (a)?

10.25 Can Different Tests Lead to Different Conclusions? We have observed
production before and after training at a department. The observation was not paired.
Before training the production numbers were:

113; 124; 132; 128; 127; 131; 119; 118:

After training the results were as follows:

123; 129; 125; 126; 133; 139; 140; 130:

(a) Use a one-sided t-test with 5% significance level to determine if the training
affected expected production. You can make use of the results X D 124; Y D
130:63, and S2 D 42:71.
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(b) Use a one-sided Wilcoxon test with 5% significance level to determine if the
training affected expected production. You can make use of the result W D 53.

(c) Compare the results from the two tests above. Assume that you have information
indicating that production numbers are not normally distributed. What conclu-
sion would you draw?

10.26 Unpaired/Paired Observations: We have examined working times (in
seconds) before and after training at a department. Before training we got the results:

239; 237; 235; 224; 259; 227; 220; 268; 228; 252;

238; 288; 283; 248; 285; 279; 245; 210; 251; 286:

After training the results were as follows:

218; 240; 241; 206; 247; 211; 212; 263; 214; 253;

219; 264; 276; 246; 260; 275; 232; 195; 229; 296:

(a) Use a one-sided Wilcoxon test with 5% significance level to determine if
training has had effect.

(b) Used a one-sided Wilcoxon test for paired observations with 5% significance
level to determine if training has had effect.

(c) The observations were done in pairs. The order of the results corresponds to
the same workers in both observation sets. What conclusion can you draw from
this?

10.27 When Can We Use One-Sided Tests? The workers at a factory have gotten
training with the intention of reducing the number of defective items. To examine
the effect of training, we observed the number of defective units before and after
training. The results before training were:

Among 100 items, we found 10 defective items.

After training the results were as follows:

Among 120 items, we found 8 defective items.

(a) Use a one-sided U-test to examine the effect of training. Why can we use a one-
sided test in this situation? What is the P-value for the test. What conclusion can
you draw from the results? Use 5% significance level.

(b) Alternatively we can imagine a different scenario where the workers have
received training to improve the security at the department. What kind of test
is appropriate in this situation?
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10.28 Outliers: We have examined the effect of training, and observed the
production of each worker before and after training. X is the results before training,
while Y is the result after training. The results are listed such that the production of
worker 1 is listed first, then the result for worker 2, and so on.

X W 12; 11; 15; 17; 12; 14; 15; 11; 12; 14; 11; 11; 15; 12; 56

Y W 20; 21; 20; 19; 18; 22; 20; 18; 18; 17; 19; 22; 17; 19; 19:

To examine if training has had effect, we first executed a one-sided t-test for paired
observations, then a one-sided Wilcoxon test for paired observations.

(a) Why can we use one-sided test in this situation? What is the null hypothesis and
the alternative hypothesis for these tests?

(b) The P-value for the t-test was 13.53% and the P-value for the Wilcoxon test was
0.57%. What conclusion can you draw from the two tests? Use 5% significance
level.

(c) The two tests give conflicting conclusions. What conclusion would you draw in
total? Hint: Inspect the observed pairs. Do you notice a pattern?

10.29 Sorting Paired Observations: You want to consider production numbers
before and after training, and have collected 50 production numbers from 50
workers before and after training. The observations are paired, i.e., production
numbers from the same worker occur in the same position in the two sequences.

(a) We have no information indicating that data has normal distribution, and we will
first use a Wilcoxon rank-sum test with rank-sum W to examine the data. We let
	X be the expected production before training, and 	Y the expected production
after training. What is the null hypothesis and the alternative hypothesis in this
case? Find the values for EŒW� and VarŒW� under the null hypothesis.

(b) We observe W D 2455 in the test from (a). What is your conclusion? Use 5%
significance level.

(c) Since the observations are paired, we will also use a one-sided Wilcoxon signed-
rank test with rank V . Find EŒV� and VarŒV� under the null hypothesis.

(d) We observe V D 604 in the test from (c). What is your conclusion? Use 5%
significance level.

(e) It is suggested that you alternatively might proceed as follows:
• Sort the data prior to training in ascending order.
• Sort the data after training in ascending order.
• Compute the signed-rank for the sorted data.

After sorting we observed V D 364. What conclusion do you draw from this?
(f) The tests in (d) and (e) give conflicting answers. Which answer is the right one?
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10.30 Equivalence Testing: We have examined average wages in two different
regions, and have collected data from 5000 persons in region 1 and 7000 persons in
region 2. In region 1 we found X D 31;200 (USD), while Y D 31;000 (USD) in
region 2. Estimated standard deviation was S D 4300 (USD), where

S D 1

n1 C n2 � 2

 
n1X

iD1

.Xi � X/2 C
n2X

iD1

. Yi � Y/2

!
:

(a) Use a two-sided t-test with 5% significance level to determine if there is a
significant difference between the regions.

(b) Equivalence tests have been suggested in situations where we want to compare
the expectations of two random variables X and Y, and where we want to
examine if the difference is so small that it is of no practical relevance. In this
test we define 	X D EŒX� and 	Y D EŒ Y�, and define

ı D 	X � 	Y :

In a test of this kind we need to specify how small ı need to be before we can
say the difference is of no practical relevance. We call this quantity �, and we
say that the two expected values are equivalent when

�� < ı < �:

An equivalence test can then be formulated as follows:

H0 W ı � �� or ı � �; HA W �� < ı < �:

The test is executed via

T1 D
Oı C �

SŒ Oı�
; T2 D � � Oı

SŒ Oı�
:

where Oı and SŒ Oı� are computed in exactly the same way as we do in a t-test for
the comparison of two expectations. We reject H0 at significance level ˛ if

min.T1; T2/ � t.n1Cn2�2/
˛ :

Choose � D 500 (USD) and carry out an equivalence test for the two regions.
Compare the results from (a) and (b).

10.31 Strength Considerations:

(a) Assume that Q is chi-square distributed with parameter 20. Find q such that
P.Q � q/ D 5%:
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Let X denote the time it takes to serve one randomly selected customer. We
will assume that X is exponentially distributed with expectation 
 > 0, i.e., it is
a continuous distribution with density

fx.x/ D 1



e� x


 :

To estimate 
 we will make 10 independent observations and observe X.
(b) We want to test if expected service time 
 is larger than 10 (minutes), and

formulate the hypotheses

H0 W 
 D 10 HA W 
 > 10:

For simplicity we assume that a one-sided test can be used here. It is possible to
show (you can take this for granted) that if we make n observations, then

Q D 2nX




is chi-square distributed with parameter 2n. How large must X be before we can
reject H0? Use 5% significance level and n D 10. We observe X D 15. What
conclusion can we draw from this?

(c) What do we mean by the strength of the alternative 
 D 20? What (approxi-
mately) is the strength of this alternative when n D 10? How large must n be if
the strength of the alternative 
 D 12:5 is at least 50%? Hint: Examine different
values of n using trial and error.

10.32 Confidence Intervals Provides More Information: We have collected data
for wages from two different regions. In region 1 we collected n1 D 15;000

observations and found X D 32;378 (USD). In region 2 we collected n2 D 10;000

observations and found Y D 32;209 (USD). For the spread (as defined in the t-test)
we computed S D 2900 (USD).

(a) We want to test if expected wages are significantly different in the two regions.
Execute a two-sided t-test with 5% significance level. What is your conclusion?

(b) Find a 95% confidence interval for the difference in expected wages. Comment
the result.

10.33 Misinterpreting Unscaled Variables: A travel agency has collected data on
the level of satisfaction among their customers. The answered were ranked 1 to 5:

Very dissatisfied D 1

Somewhat dissatisfied D 2

Neither satisfied nor dissatisfied D 3
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Table 10.12 Data for
Problem 10.33

Answer 1 2 3 4 5 Number of respondents

Before 160 240 160 240 160 960

After 264 310 230 115 460 1379

Somewhat satisfied D 4

Very satisfied D 5:

The agency has carried out a new arrangement where the customers have received
more support than before, and wants to examine the effect of the new arrangement.
They collected the data shown in Table 10.12.

(a) Let X denote the reply from a customer. We want to use data to compute
the average value before and after the new arrangement. Compute X D
Average before, and Y D Average after:

(b) Use a one-sided t-test to examine if the expected answer has increased signifi-
cantly under the new arrangement.

(c) Point to problems related to the test in (b).
(d) As an alternative to the test in (b) we can use one-sided U-tests. Use U-tests

with 5% significance level to answer the following:
• Is the fraction of very satisfied customers significantly higher than before?
• Is the fraction of satisfied customers significantly higher than before?
• Is the fraction of very dissatisfied customers significantly higher than before?

(e) Are the tests in (d) more credible than the test in (b)?

10.34 Extreme Values: 100 randomly selected pupils participate in a standardized
test at a school. We assume that the skill of a randomly selected pupil is normally
distributed with mean 489 and standard deviation 90, and that the skill of different
pupils are independent random variables.

(a) Let X be the average score at the school. Explain why EŒX� D 489 and VarŒX� D
81.

(b) How probable is it that the average score for the school is 463 or below?
(c) The test is executed at 500 different schools. Assume that the pupils at all

these schools have skills with the distribution above. How probable is it that
the average score at all schools are 463 or better?

(d) How probable is it that the worst of the 500 schools have a score that is 463 or
below? Compare with (b) and comment the answer.

10.35 Interpreting Random Fluctuation: A large industrial company has 100
relatively similar production units.
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(a) A t-test of the production numbers from the worst department against the
production numbers from all the other departments leads to a P-value of 4%.
Is that normal? What should the management do?

(b) A t-test of the production numbers from the worst department against the
production numbers from all the other departments leads to a P-value of 0.01%.
Is that normal? What should the management do?

(c) Assume that the production numbers Zi; i D 1; : : : ; 100, all are independent and
log normally distributed with

Zi D eXi ; where EŒXi� D 10; VarŒXi� D 9; Xi are normally distributed:

How probable is it that the result at the worst department is less than or equal to
10?

10.36 Strength Is a Strong Issue: In this problem we will use t-tests for the
comparison of expected values in two groups. We assume for simplicity that the
issue is such that we can ignore the case 	X < 	Y , i.e., that we are allowed
to use one-sided tests. We assume that data are normally distributed and use 5%
significance level.

(a) A researcher has collected data from two different groups. There were 40
observations from each group, but the observations were not paired. For group 1
she found X D 101:75 and for group 2 Y D 112:12. The S-value was S D 23:23.
Use a one-sided t-test to determine if we have significant support for the claim
	X < 	Y . Suggest an approximate P-value for the test. What conclusion would
you draw from this?

(b) To confirm the finding, the researcher was advised to repeat the study with 10
observations in each group. The observed values turned out as follows:

X D 103:62; Y D 110:88; S D 19:91:

What conclusion would you draw if you see these results in isolation from the
first study?

(c) It is possible to show that if the true values equal the observed values in (a), i.e.

	X D 101:75; 	Y D 112:12; �X D 23:23; �Y D 23:23;

then the strength of the test in (b) is about 25%. What does that mean in practice?
Is it a good idea to try to confirm the finding in this way?

(d) If we see the two studies in conjunction, i.e., we merge the datasets into two
datasets with 50 observations in each, we get

X D 102:12; Y D 111:88; S D 22:42:

What conclusion can you draw from the two studies seen in conjunction?
Compare the result with (a) and (b).
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Abstract

When we make observations, we often encounter cases where the size of
observations appears to change in some systematic way. One possible cause for
this is that we have done the observations over a period of time, and as time
passes the distribution of values may change. To determine if such changes are
random or systematic, we can use linear regression. Linear regression is a widely
used technique that has a lot to offer, in particular since we are often able to
quantify systematic changes.

11.1 Linear Correspondence

In this section we take a new look on the relation between two variables. Previously
we used the covariance or the coefficient of variation to determine a relationship. We
now proceed a step further; we want to see if there is a linear relationship between
the two variables. Before we try to write down any expressions, we take a look at
some figures.

In Fig. 11.1 we have observed the values of two different stocks at 100 different
points in time. We let X be the stock price of company A and Y the stock price
of company B. From the figure we see there is strong covariation between the two
stock prices. The coefficient of variation confirms this. We have �ŒX; Y� D 0:98.
If we look at the numbers, we see that Y is largely twice as big as X. That we can
express mathematically by

Y D 2 � X:

This function is a straight line through the origin with slope 2. In Fig. 11.2 we have
included this line.
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Fig. 11.1 Pairs of stock
prices
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Fig. 11.2 A regression line
through the data
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The figure confirms that the expression Y D 2 � X provides a good assessment,
but it is not 100% correct. We hence write

Y D 2 � X C “error”;

where the term “error” is a random variable which explains the deviations from the
straight line. This example is particularly simple, but it tells us what we are after.
When we have data which are distributed as a band around a straight line, we want
the formula for the line, and we want to use the formula to study the connection
between the two quantities.

Example 11.1 In Fig. 11.3 we have again studied the values of two stocks at 100
different points in time. We see that the observations are located in a band around a
straight line, and this line is included in Fig. 11.4.
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Fig. 11.3 Pairs of stock
prices
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Fig. 11.4 A regression line
through the data
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Since we need to find a formula for the straight line, we read the values at two
different points on the line. We choose X D 20 and read Y D 160, and when
X D 140 we read Y D 520. We can now use a two-point formula for a straight line,
i.e.

y D y1 � y0

x1 � x0

.x � x0/ C y0:

If we insert the values into the formula, we get

Y D 520 � 160

140 � 20
.X � 20/ C 160 D 3 � .X � 20/ C 160 D 3 � X C 100:

We conclude that

Y D 3 � X C 100 C “random errors”:
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A relation of that sort might be useful when we want to make predictions. If the
stock price of company A rises to 200 (USD), what can we expect the price for
stocks in company B to be? The formula offers an answer to this question.

Y D 3 � 200 C 100 C “random error” D 700 C “random error”:

11.2 Linear Regression

An important field within statistics is centered around phenomena which are
connected via a systematic coupling. The key word is trend. The typical framework
is two quantities x and y related through a fully or partially known function, i.e.,
y D f .x/. Here we will focus the linear case

y D ˛ C ˇx:

In this case the graph is a straight line, ˛ is the intercept with the y-axis and ˇ is
the slope. A common problem is that ˛ and ˇ are unknowns, and we need to make
observations to settle the values. In many cases the observations are not prefect but
subject to errors. Instead of points on a perfect straight line, we might have a band
of observations as in Fig. 11.5.

Clearly it is not possible to draw a straight line through all these points, so we
must settle for less. The best we can achieve is to draw a line with the best possible
fit. What we mean by the best possible fit is not clear, but it is usual to construct a
line with the property that the sum of all squared errors is as small as possible. The
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Fig. 11.5 Corresponding values of x and y
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method is commonly called the ordinary least squares method or OLS for short.
Since our primary concern is to study properties of the optimal line, we will not
explain in detail why the construction below works. Some details are provided in
Exercises 11.23 and 11.18.

Construction of the OLS line:
Assume we have n observation pairs .X1; Y1/; : : : ; .Xn; Yn/.

1. Compute

X D 1

n
.X1 C � � � C Xn/:

2. Compute

Y D 1

n
. Y1 C � � � C Yn/:

3. Compute the sum of squares

M D .X1 � X/2 C � � � C .Xn � X/2:

4. Compute

Ǒ D 1

M

�
.X1 � X/. Y1 � Y/ C � � � C .Xn � X/. Yn � Y/

�
:

5. Compute

Ǫ D Y � ǑX:

6. The OLS line is

OY D Ǫ C Ǒ � X:

Technically we assume that all X and Y are related through

Y D ˛ C ˇ � X C �
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where � are independent random variables (one variable for every X) with EŒ�� D 0

and VarŒ�� D �2 (the same variance regardless of X). Under these assumptions it is
possible to prove that Ǫ is an unbiased estimator for the (unknown) constant ˛, and
that Ǒ is an unbiased estimator for the (unknown) constant ˇ. We will often need to
estimate the unknown constant �2, and the following expression is useful:

An unbiased estimator for �2 is

S2 D 1

n � 2

�
. Y1 � OY1/

2 C � � � C . Y1 � OY1/2
�

:

where OYi D Ǫ C Ǒ � Xi; i D 1; : : : ; n.

In this context X is often called an explanatory variable, and Y a dependent
variable. The idea is that when we know X, we can suggest a reasonable value for
Y. We say that X explains Y since the value of Y depends on X.

The formulas above require considerably manual labor to compute, but we will
hardly ever need to carry them out. Computations of this sort are fully automated in
statistical software, and we only need a broad view of how the expressions work.

Example 11.2 Find the OLS line when we have the observations (1,1), (2,3), (3.3).

Solution: Here n D 3 and X1 D 1; X2 D 2; X3 D 3 and Y1 D 1; Y2 D 3; Y3 D 3.
If we use these numbers in the formulas above, we find

X D 2;

Y D 7

3

M D .1 � 2/2 C .2 � 2/2 C .3 � 2/2 D 2;

Ǒ D 1

2

�
.1 � 2/

�
1 � 7

3

�C .2 � 2/
�
3 � 7

3

�C .3 � 2/
�
3 � 7

3

�� D 1;

Ǫ D 7

3
� 1 � 2 D 1

3
:

The regression line is hence OY D 1
3

C X; see the straight line in Fig. 11.6.
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Fig. 11.6 The regression
line in Example 11.2
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11.3 Residuals and Explanatory Power

The regression line will usually not go through all the points. For each Xi we
will usually see a difference between the observed value Yi and the point on the
regression line OYi D Ǫ C Ǒ � Xi. This difference we call the i-th residual, and we use
the symbol Ri. That is,

Ri D Yi � OYi; i D 1; : : : ; n:

The residuals hence measure the errors we make when we replace the observed
values by the corresponding values on the regression line. To quantify the overall
error, statisticians use the quantity SSE (sum squared errors) which is the sum of the
squares of all residuals, i.e.

SSE D
nX

iD1

. Yi � OYi/
2:

A measure for the total variation in Y is the SST (sum squares total) which is defined
by

SST D
nX

iD1

. Yi � Y/2;

see Fig. 11.7.
The idea is now that if the total squared error is much smaller than the total

squared variation, then the regression line captures most of the variation in Y.
Phrased differently, we can say that the explanatory variable X explains most of
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Fig. 11.7 Residuals and total variation
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Fig. 11.8 Small explanatory power

the variation in Y. We define the explanatory power R2 of the model as follows:

R2 D 1 � SSE

SST
:

It is possible to show mathematically that R2 D 100% if and only if all the observed
points lie on the regression line. In practice that means that if the explanatory
power is nearly 100%, then nearly all the observation points must be very close
to the regression line. The explanatory power R2 is relatively easy to interpret, and
the value gives a good impression of how close the observations are to a linear
relationship. Consider the plots in Figs. 11.8, 11.9, and 11.10.

In Fig. 11.8 there hardly seems to be a relationship between X and Y. The
explanatory power R2 D 2:3% for this dataset. In Fig. 11.9 there seems to be a
relation between the variables, and an explanatory power R2 D 30:7% confirms
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Fig. 11.9 Some explanatory
power
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Fig. 11.10 Large
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that there is some relationship. In Fig. 11.10 the relationship is quite strong, here
R2 D 98:3%.

11.3.1 Naming Variables

In the general exposition of the theory we have used the notation X for the
explanatory variable and Y for the dependent variable. In practical cases it is useful
to equip the variables with more descriptive names. Some examples:

• If we want to examine if there is a linear relationship between a stock price
and time, then S (short for stock) and t are natural names, i.e., we consider the
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regression line

OS D Ǫ C Ǒ � t:

• Sometimes it may be appropriate to write some variable names in full. If we want
to examine a relation between quantity Q and price, P is not a good variable
name, since it can be confused with probability. In such cases we might write

OQ D Ǫ C Ǒ � price:

Full names on variables are quite common when we use statistical software. Later
in this chapter we will use convenient variable names when we study regressions,
and that does not affect the mathematical formulas we will use.

11.4 Hypothesis Testing in the RegressionModel

One of the most important questions in statistics is the following: Does X affect Y?
If the answer is yes, the distribution of Y changes when we change X. When X and
Y have a linear relation

Y D ˛ C ˇ � X C �;

we want to know if ˇ D 0 or not. If ˇ D 0, then Y never changes when we change
X. In most cases ˛ and ˇ are unknown constants, and we make observations to
estimate those constants. Even in cases where ˇ D 0, we will usually find Ǒ 6D 0. If
Ǒ is small, it appears quite likely that the true value for ˇ may be zero. This problem

is well suited for hypothesis testing, where

H0 W ˇ D 0; HA W ˇ 6D 0:

If we can reject H0, we are able to conclude that ˇ is probably not zero, which in
turn means that X probably affects Y.

Formally the test is executed as follows:

Two-sided hypothesis test for the slope ˇ in a linear regression:

H0 W The explanatory variable has no impact, i.e., ˇ D 0:

HA W The explanatory variable has impact, i.e., ˇ 6D 0:

(continued)
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The test requires either many independent observations or that the residuals
are independent and normally distributed. Significance level � .

1. Find the values for Ǒ; S; and M using the formulas from the OLS
regression.

2. Compute

SŒ Ǒ� D S=
p

M:

3. The test static is

T D Ǒ=SŒ Ǒ�:

4. Use the t-table with parameter � D n � 2, and find t.�/

�=2 such that

P
�

T.�/ � t.�/

�=2

�
D �=2:

5. Reject H0 if T � t.�/

�=2 or if T � �t.�/
� :

Extra: The limits for a .1 � �/100% confidence interval for ˇ are given by

Ǒ ˙ t.�/

�=2 � SŒ Ǒ�:

Note that we here use � to denote the significance level. This is to avoid confusion
with the intercept ˛ in the OLS regression.

One-sided hypothesis test for the slope ˇ in a linear regression:

H0 W The explanatory variable has no impact, i.e., ˇ � 0:

HA W The explanatory variable has impact, i.e., ˇ > 0:

The test requires either many independent observations or that the residuals
are independent and normally distributed. Significance level � .

1. Find the values for Ǒ; S; and M using the formulas from the OLS
regression.

(continued)
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2. Compute

SŒ Ǒ� D S=
p

M:

3. The test static is

T D Ǒ=SŒ Ǒ�:

4. Use the t-table with parameter � D n � 2, and find t.�/
˛ such that

P
�

T.�/ � t.�/
�

�
D �:

5. Reject H0 if T � t.�/
� :

One-sided hypothesis test for the slope ˇ in a linear regression:

H0 W The explanatory variable has no impact, i.e., ˇ � 0:

HA W The explanatory variable has impact, i.e., ˇ < 0:

The test requires either many independent observations or that the residuals
are independent and normally distributed. Significance level � .

1. Find the values for Ǒ; S; and M using the formulas from the OLS
regression.

2. Compute

SŒ Ǒ� D S=
p

M:

3. The test static is

T D Ǒ=SŒ Ǒ�:

4. Use the t-table with parameter � D n � 2, and find t.�/
� such that

P
�

T.�/ � t.�/
�

�
D �:

5. Reject H0 if T � �t.�/
� :
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If H0 can be rejected at 5% significance level, we say that the explanatory variable
is significant. If the explanatory variable can be rejected at any sensible significance
level, we say that the explanatory variable is strongly significant. The wording is
commonly used when the P-value is less than 0.1%, but values other than 0.1%
are used sometimes. We should note that statistical software reports the P-values of
such tests.

The value of M is usually not reported in printouts. As we sometimes need this
value to do calculations, it may help to note that:

• M D .n � 1/VarŒX�.
• M D S2

SŒ Ǒ� . The values of S and SŒ Ǒ� are often reported.

Example 11.3 In a regression with n D 10 independent and normally distributed
observations we have found the regression line

OY D 104:28 C 4:409 � X:

Furthermore we have computed S D 25:53 and M D 110. What is the conclusion
of a two-sided test for zero slope? We use 5% significance level.

Solution: We compute

SŒ Ǒ� D 25:53p
110

D 2:43:

From the regression line we see that Ǒ D 4:409. That gives

T D 4:409

2:43
D 1:81:

Using a t-table with parameter � D 10 � 2 D 8, we find t.8/
0:025 D 2:306 (the test is

two-sided). The test static is well within the non-rejection region. The effect of X is
not significant, and we keep the null hypothesis saying that X has no impact on Y.

11.5 Prediction/Estimation

An important application of linear regression is to suggest the value of the dependent
variable Y when we know the value of the explanatory variable X. We have, e.g.,
observed the time development over the last 12 months, and want to predict the value
at some specific point in the future. We should note that there are two somewhat
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different angles of approach:

• We can predict the value of Y itself when X D x.
• We can estimate the expectation EŒ Y� when X D x.

The reader should notice the exact wording here. Statisticians use the word
predict when they talk about random variables, and the word estimate when they talk
about constants. The two versions have much in common, but there is a principal
difference. The uncertainty in Y itself is larger than the uncertainty in the expectation
EŒY�. Confidence intervals are hence smaller in the latter case.

By definition we have

Y D ˛ C ˇ � x C �;

and hence

EŒY� D EŒ˛ C ˇ � x C �� D ˛ C ˇ � x;

since we always assume EŒ�� D 0. The principal difference is that Y contains the
term � causing it to vary a lot more. In both cases our best shot is the value on the
regression line, i.e., OY D Ǫ C ˇ � x: There is some uncertainty in EŒY� as well.
This uncertainty is caused by a finite number of observations. If we repeat the
experiment with a similar number of observations, we will probably end up with
a slightly different regression line. The uncertainty in the regression line is depicted
in Fig. 11.11.

If we want to predict the value of Y itself, we should imagine what would happen
if we made several new observations of Y when X D x. In Fig. 11.12, we see that
Y varies with a certain bandwidth in the interval Œ0; 10� (it is here we have our
observations). There is no reason to expect that Y will vary less at X D 20. Hence
if changing X from 10 to 20 does not change the behavior of Y, we would expect

Fig. 11.11 Uncertainty in
the line of regression
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Fig. 11.12 Uncertainty in
the line of regression plus the
natural variation
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to see a variation in Y like in Fig. 11.12. The uncertainty in Fig. 11.12 is caused by
two effects, uncertainty in the regression line plus the fluctuations in Y.

If we assume that we have independent observations with normal distribution,
it is possible to show that the uncertainty follows a t-distribution with parameter
� D n � 2. Explicit formulas for the confidence intervals can then be found as
follows:

Estimated value EŒ Y� when X D x, we find by

OY D Ǫ C ˇ � x:

We compute

SŒ OY� D S �
s

1

n
C .x � X/2

M
;

and the limits for a .1 � �/100% confidence interval is found from

OY ˙ t.n�2/

�=2 � SŒ OY�:

Predicted value of Y when X D x, we find by

OY D Ǫ C ˇ � x:

We compute

(continued)
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SŒ Y � OY� D S �
s

1 C 1

n
C .x � X/2

M
;

and the limits for a .1 � �/100% confidence interval is found from

OY ˙ t.n�2/

�=2 � SŒ Y � OY�:

Example 11.4 We have made n D 401 observations of the price of a good
at different times t, and notice that the prices grow over time. The regression
equation is

Oprice D 101:773 C 4:733 � t:

Furthermore we have computed

S D 25:85; t D 5; M D 3358:38:

Use this information to predict the price at time t D 20, and find a 95% confidence
interval for the price. Then estimate the expected price at time t D 20, and find a
95% confidence interval for the expected price.

Solution: When t D 20, then

bprice D 101:773 C 4:733 � 20 D 196:43:

We have

SŒprice � bprice� D 25:85 �
r

1 C 1

20
C .20 � 5/2

3358:58
D 26:73;

and

SŒbprice� D 25:85 �
r

1

20
C .20 � 5/2

3358:58
D 6:81:

To find the confidence intervals we should use tables for a t-distribution with
parameter � D 399, but with so many observations we can just as well use the
table for the standard normal distribution. We get t.399/

0:025 D z0:025 D 1:96: The limits
for the confidence intervals are

196:43 ˙ 1:96 � 26:73;
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and

196:43 ˙ 1:96 � 6:81:

A 95% confidence interval for the price itself at t D 20 is then Œ144; 249�, and a
95% confidence interval for the expected price at t D 20 becomes Œ183; 210�. We
notice that the latter interval is much smaller.

11.6 Regression Using Excel

As we already mentioned, calculation of the regression line is fully automated in
statistical software. If we use Excel, we first enter the x-coordinates in column A
and the y-coordinates in column B. Using the values from Example 11.2, we get the
display in Fig. 11.13.

We then click Data and choose Data Analysis. If you don’t see this option, you
must load the Data Analysis package, see Options in the File tab. In the Data
Analysis package choose Regression and a dialog box will open. Mark the input
Y-range and the input X-range, and click OK. We then get a detailed summary of
the results as shown in Figs. 11.14 and 11.15

There are lots of details in the output, and we only comment the most relevant
information.

• R Square: The value is 0.75, which means that the explanatory power R2 D 75%.
• Standard Error. This is the value of S in the regression model, and S D 0:81645.
• The numbers under Coefficients are the regression coefficients, i.e., Ǫ D 0:3333

and Ǒ D 1.
• The numbers to the right of X variable offer important information about Ǒ.

Under Standard Error we find SŒ Ǒ� D 0:57735. The value under t Stat is the
test static for a hypothesis test of ˇ D 0, i.e., T D 1:732051, and the two
following numbers are the limits for a 95% confidence interval for ˇ, i.e., the
interval Œ�6:33593; 8:335931�.

Fig. 11.13 Input data for
linear regression
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Fig. 11.14 Dialogue box in Excel

Fig. 11.15 Final results reported by Excel
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11.7 Multiple Regression

In the linear regression model above we used one explanatory variable X to explain
the development of a dependent variable Y. In many situations it makes good sense
to use more than one explanatory variable. We then get a model on the form

Y D ˛ C ˇ1X1 C ˇ"X2 C � � � C ˇrXr C �:

Here ˛ is the intercept, X1; : : : ; Xr are called explanatory variables, and ˇ1; : : : ; ˇr

called regression coefficients. The major part of the theory works just as before. We
need to collect n observations of .X1; X2; : : : ; Xr; Y/ and find the coefficients such
that the total squared error is as small as possible. The construction is more or less
the same as we used in the case with one explanatory variable. In practice we will
always use statistical software to compute the coefficients, and we omit the details
of the construction.

11.7.1 Explanatory Power

The explanatory power R2 works just as before and shows the fraction of the
variation in Y that can be explained by the explanatory variables. We illustrate this
by a few examples.

Example 11.5 During 9 consecutive days we sold

1 3 2 4 2 2 3 5 2;

units of a good, respectively. The total prices we obtained were

12 39 31 55 34 38 50 76 45:

How big fraction of the variation in total prices can be explained by changes in sold
quantities and time?

Solution: We let Q denote the quantities we sold each day. A regression with Q
as explanatory variable gives

3total price D 6:296 C 13:472 � Q;

with explanatory power R2 D 86:9%. The P-value from a test of ˇ D 0 is 0:025%.
This shows, not surprisingly, that Q explains much of the variation in total prices.
To see if time also matters, we carry out a new regression using time as explanatory
variable. This gives

3total price D 20:22 C 4:40 � time;
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Table 11.1 Data for Example 11.6

Crop size in kg per area unit 70 60 80 80 90 60 70 50

Rainfall in centimeters 10 20 25 20 18 15 30 25

Mean temperature in degrees Celsius 25 18 22 22 25 18 16 16

with explanatory power R2 D 46:3%. The P-value from a test of ˇ D 0 is 4.36%.
We conclude that time probably matters and that the variation in time explains a
large portion of the variation in total prices. Even though the two models above
provide some relevant information, it is better to use a joint model which makes use
of both explanatory variables. We then get the following

3total price D �0:6541 C 11:3871 Q C 2:5022 � time:

The explanatory power is now R2 D 99:8%. The P-value from a test of ˇ1 D 0

is as small as 2:9 � 10�8, and P-value from a test of ˇ2 D 0 is only 2:0 � 10�6.
The conclusion is that both variables are strongly significant and that they together
explain almost all the variation in total prices.

Example 11.6 We want to see if there is a connection between the size of crops,
rainfall, and temperature. We have observations from 8 different years, and the
numbers are shown in Table 11.1.

We first want to see if there is a connection between crop size and rainfall. A
regression gives the result

3crop size D 72:93 � 0:1439 � rainfall:

The explanatory power R2 D 0:5%, and the P-value for ˇ D 0 is 87%. We notice
that the regression coefficient is negative, but it is strongly insignificant and the
model explains nothing. That seems rather strange. A regression against temperature
works better. In that case

3crop size D 16:00 C 2:667 � temperature;

with explanatory power R2 D 57%. The P-value for ˇ D 0 is 2.86%. Temperature
hence seems to explain a good deal of the crop size. A multiple regression using
both variables yields a surprising result

3crop size D �38:35 C 1:3159 � rainfall C 4:0265 � temperature:

Here the explanatory power increases to R2 D 82:8%. The P-value for the
coefficient ˇ1 D 0 is 4.2%, and the P-value for ˇ2 D 0 is 0.44%. In conclusion
both variables are significant, and together they explain a lot more than a model
only using temperature.



11.8 Causality 265

At first sight the result above may seem surprising, but there is a simple
explanation. Temperature is the primary cause here. If we compare years with the
same amount of rainfall, crops are larger when there is more rainfall. A lot of rain
is hence good for crops, but lots of rain lead to lower temperature, which is bad.
Seen in isolation the effect of rainfall is negligible since the benefit of more water
balances the loss due to lower temperature.

11.8 Causality

From the examples above we have seen that regression can be used to measure the
extent that one variable explains another. High explanatory power, however, does not
in general imply causality. There exist lots of cases where one can find a systematic
relation between two variables and where changes in one of the variables do not
cause changes in the other.

Example 11.7 In a survey of several small towns it turned out that there were more
newborn children in towns with many storks. The explanatory power was nearly
100%. Does that mean that the number of storks causes more newborn children?

Solution: For obvious reasons the answer is no. A more likely explanation is
the number of houses in each town. When a town has more houses, there are more
families living there and hence more children are born. Storks build their nests on
roofs, and with more houses there are more places to nest. Hence in larger towns
there are more storks. Both variables increase more or less in proportion to the size
of the towns. When a town is twice as big as another, we expect twice as many
newborns and twice as many storks. If planners want more newborns, they should
not try to increase the number of storks!

Example 11.8 In a survey of car ownership we found that older people had more
sport cars. Does that mean that the interest for sport cars increases with age?

Solution: The answer is probably no. A more reasonable explanation is that older
people tend to have more wealth. As wages/wealth often increases with age, the
opportunities for owning sport cars increases with age. If we compare car owners
with the same wages/wealth, it may happen that the covariation changes direction,
i.e., that the interest for owning sport cars decreases with age.

The examples above show that we must not jump to conclusions when we have
demonstrated significant covariation between variables. To prove that changes in
one variables causes variation in another variable, we must be able to argue that there
are no other relationships that can explain the connection. A statistical regression is
never sufficient evidence of causality.



266 11 Linear Regression

11.9 Multicollinearity

In a regression with several explanatory variables it is undesirable if some of the
variables have the same cause. When this happens, numerical results are unstable,
and sometimes the coefficients may have signs that appear to make no sense.

Example 11.9 We have made observations in a group of people between 6 and 18
years old. Our explanatory variables are X1 D age and X2 D months of education.
Assuming that holidays are counted as education, we largely have

X2 D 12.X1 � 6/:

Is it possible to see a difference between the regressions

Y D 100 C 10X1 C X2 and Y D 28 C 22X1‹

Solution: If X2 D 12.X1 � 6/, then

100 C 10X1 C X2 D 100 C 10X1 C 12X1 � 72 D 28 C 22X1:

Due to rounding and a small number of people dropping out from school, the
relation X2 D 12.X1 � 6/ is only approximatively true. For some data the best fit
may be Y D 100 C 10X1 C X2. If we change one single observation in that dataset,
it may happen that Y D 28 C 22X1 provides the best fit.

Ideally all explanatory variables should be independent. Deviations from this
requirement is called multicollinearity. If we suspect that one of the explanatory
variables, e.g., Xj, may be expressed by the others, we can check the explanatory
power R2 of the regression

Xj D ˛ C ˇ1X1 C � � � C ˇj�1Xj�1 C ˇjC1XjC1 C � � � C ˇrXr:

If R2 of this regression exceeds 90%, it means that problems with multicollinearity
probably are so severe that it may be better to remove the variable Xj from the
regression.

If the primary use of the regression is prediction, multicollinearity need not
be a problem. Admittedly marginally different datasets may lead to very different
coefficients, but if we use these to predict a new value for the dependent variable,
we will get approximately the same answer. The predicted value is only slightly
affected by those differences.

Example 11.10 We have made 10 observations of monthly allowances (USD), age
and months of education. The results are shown in Table 11.2.
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Table 11.2 Monthly allowances

Pocket money 50 70 75 55 60 75 35 50 60 65

Age in years 12 17 18 13 15 18 8 12 15 16

Months of education 72 120 144 84 108 144 24 72 108 120

A regression of this dataset gave the result

6pocket money D 1:032 C 4:222 � age � 0:235 � education;

with explanatory power R2 D 99:1%. The P-value for ˇ1 D 0 was 2.2%, and the
P-value for ˇ2 D 0 was 85.4%. We conclude that months of education appear to
have no impact. To check for multicollinearity, we regress education against age.
The result of this regression is

3education D �86:23 C 11:655 � age;

with explanatory power R2 D 99:0%. Since the explanatory power of this regression
exceeds 90%, we conclude, as expected, that there are multicollinearity between age
and months of education. If we remove education as explanatory variable, we get

6pocket money D 2:6327 C 3:9491 � age;

with explanatory power R2 D 99:1%. The P-value for a test of ˇ D 0 is 1:71 �
10�9: We see that explanatory power remains at the same level when we use less
parameters. Less parameters imply a simpler explanation, which is something we
usually prefer. The reduced model is hence better than the first one.

11.10 Dummy Variables

In a regression explanatory variables should be quantities that can be measured on a
scale in a meaningful way. We call such variables as scale variables. Variables that
do not possess a clear size and direction should not be used.

Example 11.11 We want to study if there is a connection between wages Y and
country X. We have coded X such that X D 0 means a person living in Norway,
X D 1 means a person from Denmark, while X D 2 denotes a person from Sweden.
We have 12 observations, shown in Table 11.3.

Notice that country is not a scale variable. It makes no sense to say that Swedes
are twice as good as Danes. As mentioned above, such variables cannot be used in
regressions, at least not directly. What happens if we try this anyway? With data as
above, we get

1wages D 33;2727 C 181:8 � country;
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Table 11.3 Observation for
Example 11.11

Salary in USD Country Salary in USD Country

30,000 0 32,000 2

31,000 0 32,500 2

29,000 0 31,500 2

40,500 1 32,000 2

40,000 1 32,500 2

39,500 1 31,500 2

with explanatory power R2 D 0:15%. P-value for a test of ˇ D 0 is 90.5%. The
conclusion is that country does not matter, and that country does not explain any of
the variation. Mathematically that is correct, but nevertheless entirely wrong. The
reason is that such explanatory variables cannot be used in regressions.

What happens if we try to change the coding? We may instead use the coding
X D 0 is Norwegian, X D 1 is Swedish, and X D 2 is Danish. Then

1wages D 28;500 C 5000 � country;

with explanatory power R2 D 83:1%. P-value for a test of ˇ D 0 is 3:7 � 10�5. Now
country appears to be significant and country seems to explain the major part of the
variation. This analysis is just as bad as the first one. There is, however, a legitimate
way of coding this using dummy variables. We proceed as follows:

X1 D
(

1 if Norwegian

0 otherwise
; X2 D

(
1 if Danish

0 otherwise
; X3 D

(
1 if Swedish

0 otherwise
:

Such variables may be used in regressions, but some care must be taken. Notice that
the three variables exhibit multicollinearity, e.g.

X3 D 1 � X1 � X2:

To avoid this problem, we have to delete one of these variables, e.g., we can delete
X3. Using X1 and X2 as explanatory variables, a multiple regression returns

1wages D 32;000 � 2000 X1 C 8000 X2;

with explanatory power R2 D 98%. P-value for a test of ˇ1 D 0 is 0:14%, and
P-value for a test of ˇ2 D 0 is 2:14 � 10�8. The correct conclusion is that country
is significant and explains almost everything. If we take a closer look at our data,
we see that the new model makes good sense. In our dataset all Norwegians earn
around 30;000 USD, all the Danes around 40;000 USD, and all the Swedes around
32;000 USD. If a person is Norwegian, then X1 D 0; X2 D 0 and our model predicts

1wages D 32;000 � 2000 � 1 C 8000 � 0 D 30;000:
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If the person is Danish, then X1 D 0; X2 D 1 and our model predicts

1wages D 32;000 � 2000 � 0 C 8000 � 1 D 40;000:

The person is Swedish if and only if X1 D 0; X2 D 0, and then we get the value

1wages D 32;000 � 2000 � 0 C 8000 � 0 D 32;000:

We see that the model returns values that make sense in all cases, and that will
always be the case when we make use of dummy variables for such cases.

11.11 Analyzing Residuals

Regression analysis using t-tests takes for granted that the residuals are

• Independent.
• Normally distributed with expectation zero.
• Same variance for all values of the explanatory variables.

We can use diagnostic plots of the residuals to examine these assumptions. We
will inspect four different plots here; histogram, normal score, residuals in observed
order, and residuals sorted with respect to the size of the dependent variable. We
assess these plots by visual inspection. In practice it takes years of experience to
analyze such plots with confidence, so we start out with some particularly easy
cases.

11.11.1 Histogram

The histogram of the residuals should resemble the density of a normal distribution.
Frequently we only have a relatively small number of observations, and cannot
expect a perfect fit. We are content if we see a fairly symmetric distribution centered
at zero. The plot in Fig. 11.16 is acceptable.

In Fig. 11.17, however, the distribution appears to be skewed, suggesting that the
residuals are not normally distributed.

11.11.2 Normal Score Plot

The normal score plot also tests for normal distribution. Ideally, this plot should be
a straight line. We are content with the shape we see in Fig. 11.18.

In Fig. 11.19, however, the plot has a profound banana shape, suggesting that the
residuals are not normally distributed.
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Fig. 11.17 Histogram of residuals

11.11.3 Residuals in Observed Order

The residuals should be evenly spread around zero and the spread should not change
along the axis. The plot in Fig. 11.20 is satisfactory.

In Fig. 11.21, however, we see a clear trend where the shape changes along the
axis. It does not appear that the residuals have expectation zero for all values of the
explanatory variable.

11.11.4 Residuals Sorted with Respect to Size

Sometimes trends that we do not notice when the residuals are plotted in the same
order as the observations may appear if we rearrange them. The standard approach
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Fig. 11.19 Normal score plot of residuals

is to sort the residuals according to the size of the observed values. Again we hope
to see an even spread around zero which do not change along the axis. The plot in
Fig. 11.22 is satisfactory.

In Fig. 11.23, however, we see a clear trend where the shape changes along the
axis. It does not appear that the residuals have expectation zero for all values of the
explanatory variable.

11.12 Summary of Chap. 11

• Ordinary least squares (OLS) is a method to find the best line through a set of
observation pairs.
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Fig. 11.20 Residuals sorted
in observed order
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Fig. 11.21 Residuals sorted
in observed order
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• The intercept Ǫ and the slope Ǒ are unbiased estimators of a relationship

Y D ˛ C ˇ � X C �:

Y is called the dependent variable and X the explanatory variable.
• The explanatory power R2 is interpreted as the fraction of the variation of the

dependent variable that can be explained by the explanatory variable.
• To check if an explanatory variable matters, we can perform a statistical test

with null hypothesis ˇ D 0. If this hypothesis is rejected, then the value of the
explanatory variable matters.

• The regression line can be used to predict values for the dependent variable
outside the observation set. Such predictions should in general be used close
to the set where we have observations.
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Fig. 11.22 Residuals sorted with respect to the size of the dependent variable
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Fig. 11.23 Residuals sorted with respect to the size of the dependent variable

• In multiple regression we have more than one explanatory variables and use a
model on the form

Y D ˛ C ˇ1X1 C ˇ"X2 C � � � C ˇrXr C �:

• A significant linear relationship does not in general prove that a change in an
explanatory variable will cause a change in the dependent variable.

• Explanatory variables with a common cause may lead to collinearity and should
be avoided.

• Explanatory should be scalable, but non-scale variables can sometimes be coded
in terms of dummy variables.

• Diagnostic plots are tools for visual inspection. They can be used to assess the
assumptions in the OLS model.
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11.13 Problems for Chap. 11

11.1 Figure 11.24 displays four different sets of data. Which of these are suitable
for linear regression?

11.2 Choose two points and draw a line that fits reasonably well with the
observations in Fig. 11.25. Use the two-point formula to find the formula for this
line.

a) 5 10 15 20 25 30
t

20

40

60

80

100
x

b) 5 10 15 20 25 30
t

20
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80

100
x

c) 5 10 15 20 25 30
t

20

40

60

80

100
x
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Fig. 11.24 Data sets for Problem 11.1
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Fig. 11.25 Data set for Problem 11.2
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11.3 Find the formula for the OLS regression line when we have the observations

.1; 3/; .3; 7/; .5; 9/; .7; 9/:

11.4 In a regression with n D 21 observations we have found the regression line

OX D 52:47 C 2:06 t:

Furthermore

S D 5:70; M D
21X

iD1

.ti � t/2 D 770:

We want to test the null hypothesis ˇ D 0 against the alternative ˇ 6D 0 using 5%
significance level. What is the conclusion?

11.5 In a regression with n D 16 observations we have found the regression line

OX D 104:10 � 0:32 t:

Furthermore

S D 5:37; M D
21X

iD1

.ti � t/2 D 340:

We want to test the null hypothesis ˇ D 0 against the alternative ˇ 6D 0 using 5%
significance level. What is the conclusion?

11.6 We have made n D 12 observations and the regression line is

OX D 78:32 � 3:01 t:

Furthermore

S D 5:81; t D 5:5; M D
21X

iD1

.ti � t/2 D 143:

(a) Use this information to estimate the expected value EŒX� at t D 15.
(b) Make a prediction of X at t D 15.
(c) Compute 95% confidence intervals for the quantities in (a) and (b).
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11.7 We have made n D 32 observations and the regression line is

OX D 64:37 C 1:81 t:

Furthermore

S D 5:76; t D 15:5; M D
21X

iD1

.ti � t/2 D 2728:

(a) Use this information to estimate the expected value EŒX� at t D 40.
(b) Make a prediction of X at t D 40.
(c) Compute 95% confidence intervals for the quantities in (a) and (b).

11.8 Find the values for the residuals when the observations are

.1; 3/; .3; 7/; .5; 9/; .7:9/;

with the regression line OX D 3 C t:

11.9 We have collected data from 1000 persons in four different professions. For
each person we know

• Number of years in the occupation: practice.
• Gender: gender coded 0 (man) 1 (woman).
• Number of years with higher education: education.
• Profession: Coded as dummy variables: prof1, prof2, prof 3, prof4.
• Yearly wages in USD: wages.

Employment in profession 1 requires 4 years of formal education, profession 2
requires 5 years, profession 3 requires 6 years, while profession 4 does not require
any formal higher education.

(a) A linear regression of wages against education gives

1wages D 27;405 C 1896 � education;

with explanatory power R2 D 22:7%. The P-value of a test for ˇ D 0 is 2�10�16.
How will you interpret these results?

(b) Why should we not use all the four dummy variables prof1, prof2, prof 3, prof4
in a linear regression?
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(c) We have carried out a multiple regression of wages against practice, gender,
education, prof1, prof2, prof3. The results read as follows

1wages D 14;970 C 506 � practice C 5171 � gender � 98 � education

C2705 � prof 1 C 15;380 � prof 2 C 10;658 � prof 3:

R2 D 95:7%, and the P-values for the explanatory variables were

practice W P -value 2 � 10�16;

gender W P -value 2 � 10�16;

education W P -value 43:5%;

prof 1 W P -value 4 � 10�7;

prof 2 W P -value 2 � 10�16;

prof 3 W P -value 2 � 10�16:

How will you interpret these results? Compare the answers with the conclu-
sion in (a) and try to explain the difference.

(d) To examine if there is collinearity between education and professions, we have
made a new regression. The results read as follows:

3education D 0:496 C 4:03 � prof 1 C 5:04 � prof 2 C 6:00 � prof 3:

R2 D 95:6%, and the P-values for the explanatory variables were

prof 1 W P -value 2 � 10�16;

prof 2 W P -value 2 � 10�16;

prof 3 W P -value 2 � 10�16:

What conclusion can you draw from this analysis?
(e) We have made a new regression where we have deleted education as explanatory

variable. The results read as follows

1wages D 14;924 C 506 � practice C 5167 � gender

C2312 � prof 1 C 14;889 � prof 2 C 10;721 � prof 3:

R2 D 95:7%, and the P-values for the explanatory variables were

practice W P -value 2 � 10�16;

gender W P -value 2 � 10�16;
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prof 1 W P -value 2 � 10�7;

prof 2 W P -value 2 � 10�16;

prof 3 W P -value 2 � 10�16:

How will you interpret these results? Compare with the conclusions in
(a) and (c).

(f) Use one of the regressions above to predict the salary of a woman with 12 years
practice, 6 years of higher education, and working in profession 3.

11.10 We have used three different production methods, and the production (in
units) was registered on nine consecutive days. The 27 results are shown in
Table 11.4.

Table 11.4 Data for
Problem 11.10

Method Day Production

1 1 1 162

2 2 1 208

3 3 1 172

4 1 2 168

5 2 2 221

6 3 2 180

7 1 3 181

8 2 3 232

9 3 3 189

10 1 4 192

11 2 4 242

12 3 4 201

13 1 5 198

14 2 5 249

15 5 5 208

16 1 6 210

17 2 6 208

18 3 6 221

19 1 7 222

20 2 7 268

21 3 7 230

22 1 8 231

23 2 8 279

24 3 8 238

25 1 9 240

26 2 9 291

27 3 9 252
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(a) To examine if there is a connection between production, method, and time, we
carried out a linear regression. The results read as follows

4production D 106:2 C 4:83 � method C 9:67 � time:

R2 D 59:9%. The P-value for ˇ1 D 0 was 35.9%, and the P-value for ˇ2 D 0

was 4:2 � 10�6. Comment these results.
(b) We have introduced two new variables

X1 D
(

1 if we use method 1

0 otherwise
; X2 D

(
1 if we use method 3

0 otherwise
:

A regression of production against time, X1, and X2 gave the result

4production D 195:9 C 9:67 � time � 43:77 � X1 � 34:11 � X2:

R2 D 91:5%, and P-values for all explanatory variables were less than 10�6.
Comment these results.

(c) Compare the results in (a) and (b). Which method is best?

11.11 Figure 11.26 displays diagnostic plots from a regression. To what extent are
the assumptions on normality and independence satisfied in this case?

11.12 Figure 11.27 displays diagnostic plots from a regression. To what extent are
the assumptions on normality and independence satisfied in this case?

11.13 Double Logarithmic Transformation: In this exercise we will study the
connection between sold quantity Q and the price p for a good. We have observed
Q3; Q4; : : : ; Q100 for p D 3; 4; : : : ; 100, respectively. The results are shown below.

(a) We have carried out a regression of Q against p, and got the following results:
Regression line

OQ D 775 � 8:55 � p; S D 198:1; R2 D 59:9%:

Figure 11.28 displays diagnostic plots for the residuals. Comment to what extent
you think the assumptions for the regression model are satisfied in this case.

(b) Alternatively we have carried out a new regression where we observe ln.Q/ as
a function of ln.p/.
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Fig. 11.26 Residual plots for Problem 11.11

Regression line

Oln.Q/ D 8:91 � 0:914 � ln. p/; S D 0:2162; R2 D 91:3%:

Diagnostic plots for the residuals are shown in Fig. 11.29. Comment to what
extent you think the assumptions for the regression model is satisfied in this
case.

(c) Use the results from (b) to suggest a value for OQ D e Oln.Q/ for the expected value
of Q when p D 110. You need not consider the uncertainty in this value.

(d) Assume that Q D K � pˇ � U, where K and ˇ are (unknown) constants and U > 0

is a random variable. Show that ln.Q/ can be written in the form

ln.Q/ D � C ˇ � ln. p/ C �;

where � is a constant and � is a random variable with EŒ�� D 0.
(e) If � in (d) is normally distributed N.0; �2/, then EŒln.U/� D ln.EŒU�/ � 1

2
�2.

You can take that relation for granted. Show that

EŒQ� D e�Cˇ ln. p/C 1
2 �2

;

and use this to estimate EŒQ� again when p D 110.
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Fig. 11.27 Residual plots for Problem 11.12

11.14 Logarithmic Transformation:We have observed the price of a stock on 100
consecutive days. The price is increasing and there is a clear tendency of increasing
growth. The plot has a convex profile.

(a) Why is it futile to use linear regression on these observations? Why is it
reasonable to assume that the prices on stocks, bonds, and bank deposits grow
exponentially?

(b) As an alternative to linear regression we have plotted ln.X/ against t for t D
0; 1; : : : ; 100 and carried out a linear regression on the transformed data.

Regression line

Oln.X/ D 4:23 C 0:0175 � t; S D 0:3025; R2 D 74:4%:

Diagnostic plots for the regression are displayed in Fig. 11.30. To what extent
are the assumptions on normality and independence satisfied in this case?

(c) Assume that ln.X/ D � C ˇ � t C � where � and ˇ are constants and � is
normally distributed with expectation zero and variance �2. It is possible to
show that EŒe�� D e

1
2 �2

(you can take that for granted). Use this formula to
find an expression for EŒX�, and write down a general estimator for the expected
value. Estimate the expectation of X when t D 110.
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Fig. 11.28 Observation and residual plots for Problem 11.13

(d) Why is it reasonable to assume that the variance of a stock price changes when
there is a considerable change in the price? How and in what direction can this
influence a prediction of expected value into the future?

11.15 Cyclic Behavior: We have made weekly observations of the daily power
consumption in a small city. Data were obtained each Monday starting in week 10
and ending in week 26. The results of the survey are displayed in Fig. 11.31.
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Fig. 11.29 Observation and residual plots for the transformed data in Problem 11.13

(a) Does it seem that the usual assumptions for the regression model are satisfied in
this case? Justify your answer.

(b) Find a 95% prediction interval for the power consumption Tuesday in week 18.
(c) We supply the survey by collecting data from week 5 to 9 and week 27 to 31 in

addition to our original data. We run a new regression, and the results are shown
in Fig. 11.32. Comment the differences from the first printout and try to explain
what happens here.

(d) How would you predict the daily power consumption Tuesday in week 18
the following year? Try to suggest effects that increase the uncertainty in this
prediction.
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Fig. 11.30 Observation and residual plots for the transformed data in Problem 11.14

11.16 Autocorrelation: In an analysis of productivity we have made daily observa-
tions of the production over a period of 100 days. A regression of production against
time gave the result:

Regression line

4production D 1:07 C 2:09 � t; S D 6:802; R2 D 98:8%:

Diagnostic plots are displayed in Fig. 11.33.
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Fig. 11.31 Observation and residual plots for Problem 11.15

(a) Does it seem that the usual assumptions for the regression model are satisfied in
this case? Justify your answer.

(b) Offer a prediction of the productivity at time t D 110 based on the linear
regression of productivity as a function of time. What kinds of uncertainty do
we have in this prediction? You need not quantify the uncertainty.

(c) A precise study of the residuals in the previous regression reveals that they are
autocorrelated, i.e., dependent. In normal cases the degree of autocorrelation
must be estimated. We will here, however, look at a simplified version where
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Fig. 11.32 Observation and residual plots for the extended data in Problem 11.15

the degree of autocorrelation is known. In a model of that kind we assume that

Xi D � C ˇ � t C Rt;

where

Rt D � � Rt�1 C �t;
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Fig. 11.33 Observation and residuals plots for Problem 11.16

where � is a known constant and where �1; �2; : : : are independent, normally
distributed, with expectation zero and constant variance �2. We define a new set
of observations Y1; Y2; : : : ; Y100 by

Yt D Xt � � � Xt�1:

Show that

Yt D �.1 � �/ C � � ˇ C .1 � �/ˇ � t C �t:

Explain why Yt satisfies the usual conditions in a linear regression model.
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Fig. 11.34 Observation and residual plots for the transformed data in Problem 11.16

(d) The results from a linear regression of Y against t were:
Regression line

OY D 2:30 C 0:201 � t; S D 3:252; R2 D 71:6%:

Diagnostic plots are displayed in Fig. 11.34. Does it seem that the usual
assumptions for the regression model are satisfied in this case? Justify your
answer.



11.13 Problems for Chap. 11 289

Table 11.5 Data for Problem 11.17

Location Number of mobile phones sold Number of cars sold

City 1 33,739 20; 664

City 2 28,646 17; 168

City 3 12,624 7890

City 4 17,885 11; 067

City 5 20,518 12; 349

City 6 14,035 8513

City 7 28,067 16; 990

City 8 16,697 9870

City 9 14,713 9197

City 10 27,202 16; 130

(e) In our calculations of Y1; Y2; : : : ; Y100 we have used � D 0:9. Use the formula
for Yt in (c) together with the printout to estimate values for the constants � and
ˇ. Use this to make a new prediction of the productivity X110 at time t D 110.

11.17 Causality: We want to see if there is a connection between sales of mobile
phones and cars. We have collected data from 10 relatively small cities. The
observations are shown in Table 11.5.

We have carried out a linear regression of car sales against sales of mobile
phones, and the results were as follows:

2carsales D 201:8 C 0:59694 � mobilesales; S D 231:0; R2 D 99:8%:

The P-value for a test of ˇ D 0 was 0.000.

(a) Do the results give reason to claim that there is a connection between sales of
cars and sale of mobile phones? Justify your answer.

(b) Diagnostic plots for the residuals are displayed in Fig. 11.35. Does it seem that
the usual assumptions for the regression model are satisfied in this case? Justify
your answer.

(c) How large share of the variation in car sales can be explained by the variation
in sales of mobile phones?

(d) Predict the number of care sales in a city where sales of mobile phones are
150;000. What kind of uncertainties are attached to this prediction?

(e) A consultant for the car industry claims there is a clear connection between care
sales and sales of mobile phones. He suggests to raise the car sales by giving
away a large number of mobile phones. Is this a good idea?
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Fig. 11.35 Diagnostic plots of the residuals in Problem 11.17

11.18 Nonlinear Regression: A monopolist wishes to optimize his profit. The
profit has a random fluctuation which may be due to, e.g., varying prices on raw
materials. The profit is simulated selling 1 to 100 units of the good, and the result is
shown in Fig. 11.36.

(a) Discuss statistical and economical issues which speak against using linear
regression in this case.

(b) This case is well suited for quadric regression. In quadratic regression we use a
model where the profit X and the production q is given by

X D a C b � q C c � q2 C �;

and where � denotes independent, normally distributed random variables with
constant variance. Having observed .X1; q1/; : : : ; .Xn; Qn/, we want to fit a
quadratic curve such that

errorŒa; b; c� D
nX

iD1

.Xi � a � b � qi � c � q2
i /2;
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Fig. 11.36 Observation and residual plots for Problem 11.18

is as small as possible. Explain that we achieve optimal fit when a; b; c are
solutions of the 3 linear equations

nX

iD1

.Xi � a � b � qi � c � q2
i / D 0

nX

iD1

.Xi � a � b � qi � c � q2
i /qi D 0

nX

iD1

.Xi � a � b � qi � c � q2
i /q2

i D 0
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Fig. 11.37 Residual plots for the quadratic regression in Problem 11.18

(c) For the data above the solution of the system was

Oa D �2482:2; Ob D 243:275; Oc D �2:003:

Figure 11.37 displays diagnostic plots of the residuals from the quadratic
regression. Does it seem that the statistical assumptions are valid? How many
units should we produce to obtain maximum expected profit?

11.19 Disaggregation: In this problem we want to discuss what happens when we
disaggregate data into subgroups. Here income denotes annual wages in USD and
educ denotes number of years of education. We have collected data from 700 women
(W) and 1221 men (M). Aggregating the data for men and women, we get

2income D 10;241 C 1114 � educ;

with

S D 10;072; R2 D 8:8%; P-value of ˇ D 0 D 0:000:
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If we consider the data for men and women separately, we get

2incomeM D 9974 C 1371 � educM;

with

S D 10;969; R2 D 11:2%; P-value of ˇ D 0 D 0:000:

2incomeW D 11;223 C 621 � educW;

with

S D 5368; R2 D 9:3%; P-value of ˇ D 0 D 0:000:

(a) How do you interpret the P-values? Are there differences between men and
women, and how does this turn out?

(b) The explanatory power is relatively low in all three cases. Is this something we
would expect?

(c) Predict income for a woman with 17 years of education. Find a 95% confidence
interval for this income. Here educW D 11:86361 and SŒ Ǒ� D 73:26. Hint: The
formula M D S2

SŒ Ǒ�2 will be useful.

11.20 Explains Everything—Predicts Nothing: In a survey we asked 500 hotel
guests how satisfied they were with their stay. There were 6 alternatives as shown in
Table 11.6.

The guests also answered the question “How likely is it that you will visit the
same hotel again?” Alternatives: 0%,5%,10%,. . . ,95%,100%. As it appears there is
a connection between the two questions, we have carried out a linear regression of
the satisfaction level SL against the probability of returning PR.

cPR D 14:4 C 14:8 � SL;

with

S D 7:50500; R2 D 91:5%; P-value (of ˇ D 0/ D 0:000:

Table 11.6 Satisfaction
levels n Problem 11.20

Very dissatisfied 0

Dissatisfied 1

Somewhat dissatisfied 2

Neutral 3

Somewhat satisfied 4

Satisfied 5
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Fig. 11.38 Observation and residual plots for Problem 11.20

Diagnostic plots are displayed in Fig. 11.38.

(a) Does it seem that the usual assumptions for the regression model are satisfied in
this case? Justify your answer.

(b) We can imagine that we introduced a new alternative: 6—very satisfied. Is it
reasonable to use the regression model to predict the number of very satisfied
guest?

(c) As an alternative we have used polynomial regression with a third degree
polynomial:

cPR D 5:710 C 40:06 � SL � 11:66 � SL2 C 1:389 � SL3;
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Fig. 11.39 Observation and residual plots for the cubic regression in Problem 11.20

with

S D 5:12662; R2 D 96:1%:

Some diagnostic plots are displayed in Fig. 11.39. Does this model appear to
function better?

(d) Alternatively we could use the third degree polynomial from (c) to predict the
outcome of the alternate SL D 6. Would that solve the problem in (b)?

11.21 Logistic Regression: A large number of people between 15 and 75 years old
have been asked if they ever used a certain product. The answers were distributed as
shown in Table 11.7.

(a) It seems reasonable to assume that the fraction that has ever used the product
increases with age. To examine this further we have carried out a linear
regression of fractions against age. Comment the results in this regression.

2fraction D �8:12 C 1:78 � age;
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Table 11.7 Data for
Problem 11.21

Age group Fraction in % that has used the product

15–20 Y15 D 10:0

20–25 Y20 D 11:0

25–30 Y25 D 31:2

30–35 Y30 D 52:2

35–40 Y35 D 61:3

40–45 Y40 D 77:0

45–50 Y45 D 86:7

50–55 Y50 D 92:2

55–60 Y55 D 93:5

60–65 Y60 D 97:3

65–70 Y65 D 98:7

70–75 Y70 D 99:6

with

S D 11:7844; R2 D 89:1%; P-value (of ˇ D 0/ D 0:000:

Diagnostic plots are displayed in Fig. 11.40.
(b) Use the model from (a) to predict the fraction of 80 years old that has ever used

the product. There are several problems connected to this prediction. Point out
some of these problems.

(c) We define f .x/ as the expected fraction (in %) of persons of age x that has ever
used the product. We assume that f .x/ can be written in the form

f .x/ D 100 e�Cˇ x

1 C e�Cˇ x
;

where � and ˇ are unknown constants. Use this expression to show that

ln

�
f .x/

100 � f .x/

�
D � C ˇ x:

(d) To estimate the values for � and ˇ, we have replaced Y15; : : : ; Y70 in the table
above with the transformed values

Z15 D ln

�
Y15

100 � Y15

�
; : : : ; Z70 D ln

�
Y70

100 � Y70

�
:

We have then carried out a linear regression of Zx against x. The results are
shown below. Comment the results in this new regression.

1values D �4:31 C 0:135 � age;
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Fig. 11.40 Observation and residual plots for Problem 11.21

with

S D 0:2853; R2 D 98:8%; P-value (of ˇ D 0/ D 0:000:

Diagnostic plots are displayed in Fig. 11.41.
(e) Use the model from (c) and (d) to predict the fraction of 80 years old that has

ever used the product. Comment the answer.

11.22 Outliers: We have collected data for the value of sales and sales costs. Data
were observed on a weekly basis and we have data for 30 weeks. The observations
are plotted in Fig. 11.42.
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(a) The figure indicates that there is a linear relationship between sales costs and
the value of the sales. Is this something we could expect, and what could be the
reason for that?

(b) We have carried out a linear regression, and the results were as follows:

4sales costs D 5212:6 C 0:0145 � sale;

with

S D 193:985; R2 D 94:6%; P-value (of ˇ D 0/ D 0:000:

Diagnostic plots are displayed in Fig. 11.43.
What kind of information can we draw from the printouts? Comment the

results and the plots in detail.
(c) The week after the survey we observed a sales of 500;000 USD, while the

reported sales costs were 14;500 USD. Find a 95% prediction interval for the
sales costs, and discuss if the reported number seems reasonable. To compute
the prediction interval you need to know that mean value of the sales were
499;110 USD and that SŒ Ǒ� D 0:0006543. Use the formula M D S2

SŒ Ǒ�2 :
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11.23 Solving the OLS Equations: In this problem the aim is to find the best
possible linear fit to the points .1; 1/; .2; 3/; .3; 3/: A straight line has the formula

x D ˛ C ˇ � t:

The errors we make at the three given values of t are

error1 D ˛ C ˇ � 1 � 1;

error2 D ˛ C ˇ � 2 � 3;

error3 D ˛ C ˇ � 3 � 3:

(a) Show that

error2
1 C error2

2 C error2
3 D 3˛2 C 12˛ˇ C 14ˇ2 � 14˛ � 32ˇ C 19:

(b) Find ˛ and ˇ such that

F.˛; ˇ/ D error2
1 C error2

2 C error2
3;

is as small as possible. Hint: compute @F
@˛

and @F
@ˇ

, and solve the first order

conditions @F
@ˇ

D 0, @F
@ˇ

D 0.

11.24 Bid Auctions: Many special items are today traded via bid auctions. The
bidders often have different valuations of the item. A high bid has a good chance
of winning the auction, but gives less profit. We will consider a simplified setting
where the bidders only can place one bid (the bids are secret), and where the highest
bid wins. We will let x denote the size of the bid, while y is the valuation of the
item. The profit is defined as y � x. Expected profit F.x; y/ placing the bid x can be
computed by the expression

F.x; y/ D . y � x/ � probability of winning the auction:

For the rest of this problem we will assume that y D 10;000 USD, and we imagine
that we have carried out many auctions and registered how often we have won the
auction bidding x (USD). The results are shown in Fig. 11.44.

(a) A regression of winning probability against bid gives

bwinning probability D �0:164 C 0:000138 � bid;
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with

S D 0:168797; R2 D 86:1%; P-value (of ˇ D 0/ D 0:000:

Diagnostic plots are displayed in Fig. 11.45.
Comment this information in detail.

(b) Alternatively we have carried out a new regression where we only consider bids
in the interval Œ3000; 7000�. Why is that a good idea here?

bwinning probability D �0:164 C 0:000138 � bid;
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Fig. 11.46 Residual plots for the reduced data set in Problem 11.24

with

S D 0:0:175523; R2 D 79:0%; P-value (of ˇ D 0/ D 0:000:

Diagnostic plots are displayed in Fig. 11.46.
Comment the new information in detail.

(c) Use the results above to compute a bid x which provides maximum expected
profit when the valuation of the item is y D 10;000 USD.

(d) Make crude estimates using the information above and argue that it is unlikely
that maximum expected profit can be obtained in the intervals Œ0; 3000� and
Œ7000; 10;000�.

11.25 Faking Explanatory Power: You manage a stock of fish and need to
estimate the growth potential. You make use of the following model

�Zt D ˛ C ˇ � Zt � Ct C �:

In this model Zt is the size of the stock at time t, �Zt D ZtC1 � Zt, Ct is the amount
caught in year t, ˛ and ˇ are constants, and � are independent, normally distributed
with expectation zero and constant variance.
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Fig. 11.47 Observation and residual plots for Problem 11.25

(a) We have carried out a linear regression of gross growth, i.e., �Zt C Ct against
stock, i.e., Zt. The results read as follows:

5gross growth D �438 C 0:262 � stock;

with

S D 2655:31; R2 D 68:3%; P-value (of ˇ D 0/ D 0:0032:

Diagnostic plots are displayed in Fig. 11.47.
Comment the information in detail.
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(b) The P-value of a test of H0 W ˛ D 0 against HA W ˛ 6D 0 is 93.8%. Is this
something we would expect in this case? How would you interpret the number
0.262?

(c) We have also made a regression where the dependent variable is ZtC1 C Ct, i.e.,
how large the stock would have been in the next period if we did not fish. The
results read as follows:

1catch adjusted stock D �437 C 1:262 � stock;

with

S D 2655:31; R2 D 98%; P-value (of ˇ D 0/ D 0:0032:

Diagnostic plots are displayed in Fig. 11.48.
Comment the new information in detail.

11.26 Price Versus Demand for Substitute Goods: A company sells a good in
two different versions; Superior and Extra. The price for Superior is x1 per unit, and
the price for Extra is x2 per unit.

(a) Suppose that the price for Extra is fixed at x2 D 50 USD. We observe the
demand for Superior for different values of x1. The results were as follows:

8Demand Superior D 155:1 C 2:102 � Price Superior;

with

S D 0:9956; R2 D 99:4%; P-value (of ˇ D 0/ D 0:0000:

Diagnostic plots are displayed in Fig. 11.49.
Comment the information in detail. How will you explain this connection

from an economic point of view?
(b) Assume that the price for Superior is fixed at x1 D 40 USD. We observed the

demand Superior for different values of the price for Extra. The results were as
follows:

8Demand Superior D 66 C 0:1 � Price Superior;

with

S D 0:9090; R2 D 30:0%; P-value (of ˇ D 0/ D 0:0000:

Diagnostic plots are displayed in Fig. 11.50.
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Fig. 11.48 Observation and residual plots for the adjusted data in Problem 11.25

Comment the information in detail. How will you explain this connection
from an economic point of view?

(c) Assume that the connection is such that

Expected demand Superior D ˛ � 2:1x1 C 0:1x2:

What value must ˛ have for this to be consistent with the results from (a) and
(b)?
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(d) The corresponding numbers for the demand of Extra is

Expected demand Extra D 216 C 0 � 2x1 � 1:9x2:

Find an expression for total expected sales value as a function of x1 and x2, and
use this expression to determine values for x1 and x2 giving maximum expected
sales value.
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11.27 Non-existing Trends: Figure 11.51 shows the price of a stock over a period
of 100 days.

In the period t D 30 to t D 60 there appears to be a linearly decreasing trend,
and we have carried out a linear regression using data in that time span. The results
were as follows:

4Stock price D 121 � 0:37 � time;
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with

S D 0:9302; R2 D 92:3%; P-value (of ˇ D 0/ D 0:0000:

Diagnostic plots are displayed in Fig. 11.52.

(a) Comment the information above in detail. Is this a model we can have
confidence in?
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(b) Use the regression model above to predict the stock price at time t D 80, and
compare with the observed value. Is this a result we should trust?

11.28 Multiplicative Models: We have data for 100 different companies within a
special industry and have observed

• Production Y (measured in million units).
• Capital K (measured in million USD).
• Labor L (measured in number of workers).

Data were analyzed by linear regression, and the results are shown below.

(a) Comment the following results in detail

bY D �1:63913 C 0:0197683 � K C 0:0126971 � L;

with

S D 0:119558; R2 D 99:32%; P-value (of ˇ D 0/ D 0:000:

Diagnostic plots are displayed in Fig. 11.53.
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(b) An alternative to the linear regression model is

Y D ˛Kˇ1 Lˇ2 � �;

where ˛; ˇŠ; ˇ2 are constants and � a random variable. Explain how we can use
logarithms to transform this model into a model suitable for linear regression.
What kind of distribution must � have for this to work?

(c) We have used multiple regression to study the relation between the variables

• log Y D ln.Y/.
• log K D ln.K/.
• log L D ln.L/.

Comment the printout in detail and try to explain why the regression in (c)
works better.

1log Y D �5:06822 C 0:299762 � log K C 0:900619 � log L;

with

S D 0:001023; R2 D 99:99%; P-value (of ˇ D 0/ D 0:000:

Diagnostic plots are displayed in Fig. 11.54.
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(d) Use the printout in (c) to estimate the values for the constants ˛; ˇ1; ˇ2 in (b).
Hint: When you compute ˛, you need to take into account that the numbers for
K and Y are given in millions, as this affects the original value for ˛.

11.29 Multicollinearity: We have studied the relation between grades on a stan-
dardized test and the fraction of the population that has higher education. We have
data from 19 different regions. In each region we know the fraction that has short
higher education (EdSh, defined as � 4 years) and long higher education (EdL,
defined as > 4 years). The sum of these two fractions gives the fraction with either
short or long higher education, Ed for short.

(a) We have used multiple regression to study the average result in each region as a
function of EdSh and EdL (each measured in %). The results were as follows:

1result D 1:65345 C 0:0650691 � EdSh � 0:0150208 � EdL;

with

S D 0:121993; R2 D 52:97%;

P-value (of ˇ1 D 0/ D 13:47%; and P-value (of ˇ2 D 0/ D 64:87%:

We have also made a regression of EdSh as a function of EdL. The results
were as follows:

1EdSh D �16:3735 C 0:754853 � EdL;

with

S D 2:604113; R2 D 92:85%; P-value (of ˇ D 0/ D 0:000:

Comment the two regressions in detail. What type of problem do we have
here, and how can we deal with that problem?

(b) We merge the two variables EdSh and EdL into Ed. Using Ed as the only
explanatory variable we get

1result D 2:38286 C 0:0200711 � Ed;

with

S D 0:121724; R2 D 49:43%;

P-value (of ˇ D 0/ D 0:000:

Diagnostic plots are displayed in Fig. 11.55.
Comment the new results in detail.
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Fig. 11.55 Residual plots for Problem 11.29

(c) Use the model from (b) to predict the average result in a region where 47.5%
of the population have higher education, and compute a 95% prediction interval
for this value. To compute this interval we need the values Ed D 27:86; SŒ Ǒ� D
0:00492369. Use one decimal to specify the limits for the prediction interval.
In the central region where 47.5% of the population had higher education, the
result was 3.3. Do we have sufficient reason to claim that this result was weaker
than expected?

11.30 Polynomial Regression: We want to study the relation between demand and
price. Data are shown in Fig. 11.56 together with the best line fit.

(a) A linear regression of demand against price produced the results reported below.
Comment these results in detail.

2Demand D 911:713 � 112:057 � Price;

with

S D 120:1707; R2 D 85:73%; P-value (of ˇ D 0/ D 0:000:

Diagnostic plots are displayed in Fig. 11.57.
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Fig. 11.56 Observed demand as a function of price in Problem 11.30

(b) We try to improve our model using polynomial regression, where we use second
order and third order polynomials. The results were as follows:

2Demand D 1281:78 � 356:953 � Price C 27:2106 � Price2;

with

S D 80:752; R2 D 94:17%;

P-value (of ˇ1 D 0/ D 0:000; and P-value (of ˇ2 D 0/ D 0:000:

and

2Demand D 1513:62 � 581:236 � Price C 84:7985 � Price2 � 4:26577 � Price3;

with

S D 74:295; R2 D 95:33%;

P-value (of ˇ1 D 0/ D 0:000; P-value (of ˇ2 D 0/ D 0:68%; and

P -value (of ˇ3 D 0/ D 4:9%:

Which of the three models is the best?
(c) Use the three models to estimate expected demand when Price D 10. Compare

the estimated values with the plot above. Which of the three models is the best?
What kind of problems do we face here, and what causes these problems?
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Problems of Chap. 1

1.1 The most frequent observation is 130, and the mode is hence 130 USD. The
median is observation 338. By a little trial and error we see that 90 C 115 C 121 D
326. Then observation 338 must belong to category number 4. The median is hence
130 USD. To find the 1. and 3. quartile we compute

675 C 1

4
D 169; 169 � 3 D 507:

We see that observation 169 must belong to category 2, i.e., the 1. quartile is 110
USD. Furthermore we see that 90 C 115 C 121 C 162 D 488. This means that
observation 507 must belong to category 5, i.e., the 3. quartile is 140 USD.

1.2

(a) The most frequent observation is 2, which we recorded 459 times. The median is
observation 638. There is in total 257 C 241 D 498 observations in the two first
categories. Then observation 638 must be in category 3. The median is hence 2.
To find the 1. and 3. quartile we compute

1275 C 1

4
D 319; 319 � 3 D 957:

We see that observation 319 must be in category 2, i.e., the 1. quartile is 1.
Furthermore we see that in total 257 C 241 C 459 D 957 observations are in
categories 1,2,3. The 3. quartile must then be in category 3, and the 3. quartile
is hence 2.

(b) To compute the mean, we have to remember that the same observation is listed
multiple times.

X D 1

1275
.0 C � � � C 0 C 1 C � � � C 1 C 2 C � � � C 2
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C3 C � � � C 3 C 4 C � � � C 4 C 5 C � � � C 5 C 6 C � � � C 6 C 7 C � � � C 7/

D 1

1275
.0 � 257 C 1 � 241 C 2 � 459

C3 � 103 C 4 � 84 C 5 � 62 C 6 � 47 C 7 � 22/ D 2:

1.3

(a) The mean value of the 5 stock prices is

1

5
.100 C 200 C 400 C 300 C 500/ D 300:

(b) The total market value is

100 � 140;000 C 200 � 50;000 C 400 � 20;000 C 300 � 10;000 C 500 � 30;000 D 50;000;000:

(c) In total there are

140;000 C 50;000 C 20;000 C 10;000 C 30;000 D 250;000;

stocks in the companies. The mean value of a stock in these companies is hence

50;000;000

250;000
D 200:

The average in (a) is mathematically feasible, but does not make much sense
economically as it does not reflect the total market value of the companies.

1.4

(a) i) X D 4 ii) X D 8 iii) X D 40.
(b) In case ii) all the numbers are twice as big as in case i), and the mean is also

twice as big. In case iii) all the numbers are 10 times as big as in case i), and
correspondingly the mean becomes 10 times as big.

1.5

(a) i) X D 0 ii) X D 0.
(b) The two sequences both have mean zero. Apart from that there are hardly any

resemblances between them.
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1.6

(a) i) S2
X D 16 ii) S2

X D 16.
(b) All the numbers in the second sequence are 6 less than the corresponding

numbers in the first sequence. The two series have the same variance.

1.7 X D 6, the sample variance is S2
X D 16, and the sample standard deviation

SX D 4.

1.8 X D 100, the sample variance is S2
X D 4, and the sample standard deviation

SX D 2.

1.9

(a) S2 D 16 and S D 4.
(b) S2

X D 20 and SX D p
20 � 4:47:

1.10 We have .n � 1/S2
X D Pn

iD1.Xi � X/2 D n � S2. Hence

S D
r

n � 1

n
SX:

Since
q

n�1
n < 1, then S will always be somewhat smaller than SX . When n is large,

the difference becomes negligible.

1.11 SXY D �45.

1.12 SX D 10; SY D 12; SXY D 30; RXY D 0:25.

1.13 SX D 22; SY D 44; SXY D �968; RXY D �1. The points must be on a
decreasing straight line. If we, e.g., use the two-point formula for a straight line,
we find

Yi D 200 � 2Xi:

1.14 SX D 5; SY D 10; SXY D 50; RXY D 1. The points must be on an increasing
straight line.

Yi D 2Xi:

We can let the first portfolio be arbitrary. The relation will always be satisfied if we
invest twice as much in all the stocks.
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1.15

(a) nC1
4

D 1 C 3
4
. The reminder is 3

4
. We then start at observation number 1, i.e., 2

and move 75% of the distance to 6. The 1. quartile is hence

2 C 0:75 � .6 � 2/ D 5:

Furthermore 3.nC1/

4
D 5C 1

4
. and the reminder is 1

4
. We then start at observation

number 5, i.e., 18 and move 25% of the distance to 22. The 3. quartile is hence

5 C 0:25 � .22 � 18/ D 19:

(b) Here nC1
4

D 2 and 3.nC1/

4
D 6. Both reminders are zero and the 1. quartile is 6

and the 3.quartile is 18.
(c) Here nC1

4
D 2:25 and 3.nC1/

4
D 6:75. The 1. quartile is hence

6 C 0:25 � .10 � 6/ D 7;

and the 3. quartile is

14 C 0:75 � .18 � 14/ D 17:

(d) Here nC1
4

D 2:5 and 3.nC1/

4
D 7:5. The 1. quartile is hence

6 C 0:5 � .10 � 6/ D 8;

and the 3. quartile is

14 C 0:5 � .18 � 14/ D 16:

1.16

(a) X D 135:32. Write the data in column A from A1 to A25. Click in any entry
outside column A and write the command “=Average(A1:A25)” in the entry.
Remember to write “=” in front of the command. If you press the return button,
the answer 135.32 should be displayed in the entry.

(b) The sample variance is 93.31 and the sample standard deviation is 9.65971.
(c) The quartiles are 127, 136, and 141. The 2. quartile is called the median.

Remark Excel does not use the definitions in Problem 1.15 to compute the
quartiles. Instead it, e.g., computes the 1. quartile as the median of the
observations to the left of the median of the data. The difference is of no
practical significance but is part of the reason why we never entered into details
about quartiles in Chap. 1. As a rough thumb of rule a division by 4 will work
fine to find the entry of the first quartile.
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Fig. 1 Prices as functions of
time
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1.17

(a) a D 100; b D 100.
(b) The result is shown in Fig. 1. The solid line shows the stock prices for ALPHA,

while the dashed line shows the stock prices for BETA. From the figure we see
that the values of BETA vary considerably more than the values of ALPHA, and
BETA is hence the most insecure stock.

(c) S2
a D 73:16; S2

b D 471:05. We see that S2
b is considerably bigger than S2

a,
reflecting the larger spread we see in the plot.

(d) A risk seeking investor will prefer a stock with a larger spread as it provides a
bigger chance of high returns. A risk averse investor will prefer a low spread.
Which of the stocks ALPHA or BETA that is better is hence a matter of opinion.

(e) Sab D �122:26.
(f)

Value of stocks D Number of stocks in ALPHA � Price per stock ALPHA

CNumber of stocks in BETA � Price per stock BETA

D Money used to buy ALPHA

Selling price ALPHA
� an C Money used to buy BETA

Selling price BETA
� bn

D 1;000;000 � x
100

100
� an C 1;000;000 � y

100

100
� bn

D 100x � an C 100y � bn:

(g) c D 1;000;000.
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(h) Note that c D 100xa C 100yb and that y D 100 � x.

S2
c D 1

19

20X

nD1

.cn � c/2 D 1

19

20X

nD1

.100 x an C 100 y bn � c/2

D 1

19

20X

nD1

.100 x .an � a/ C 100 y .bn � b//2

D 1

19

20X

nD1

1002 x2 .an � a/2 C 2 � 1002 x y .an � a/.bn � b/

C1002 y2 .bn � b/2

D 104
�

x2 1

19

20X

nD1

.an � a/2 C 2 x y
1

19

20X

nD1

.an � a/.bn � b/

Cy2 1

19

20X

nD1

.bn � b/2
�

D 104.x2 S2
a C 2x y Sab C y2 S2

b/

D 10;000.x273:16 C 2x .100 � x/.�122:26/ C .100 � x/2471:05/

D 1;000;000.7:8873 x2 � 1186:62 x C 47105/:

The minimum for this function is obtained at x � 75, i.e., if we want to
minimize the variance of the investment we should buy 7500 stock in ALPHA
and 2500 stocks in BETA.

1.18

(a) p D 4244:60 .USD/.
(b) S2

p D 4;082;771:73.
(c) Young people in low season: Mean category 1 D 3068:36 .USD/; S2

1 D
74;256:62.

Young people in high season: Mean category 2 D 1889:25 .USD/; S2
2 D

33;761:88.
Old people in low season: Mean category 3 D 3989:78 .USD/; S2

3 D
31;572:53.
Old people in high season: Mean category 4 D 7084:17 .USD/; S2

4 D
97;390:52.

(d) The variance within each category is considerably smaller than the variance for
the whole sample. This means that the behavior within the categories is more
uniform than for the group seen as a whole. If the variance within a subgroup is
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Fig. 2 Constrained linear
optimization
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zero, all people must spend the same amount. The variance is small only if all
the members of a category spend approximately the same amount of money.

(e) Optimization constraints

x � 0 y � 0 20x C 35y � 175;500

x � 20

100
.5000 C x C y/ ) 4x � y � 5000:

See Fig. 2. The prices: Young people 2761:52 USD, Old people 3790:29

USD. We should then find the maximum of the function

f .x; y/ D 2761:52x C 3790:29;

under the constraints shown in the figure. LP-theory says that the maximum
is obtained at the corners which are .0; 0/; .1250; 0/; .2191; 3763/; .0; 5014/. If
we insert these points into f .x; y/, we see that the biggest value is obtained using
.2191; 3763/. With these prices maximum profit is hence obtained selling 2191

tickets to young people and 3763 tickets to old.
(f) Call the unknown price for old people w, and find a value for w resulting in the

same profit in the two last corners reported in (e).

2191 � 2761:52 C 3763 � w D 0 � 2761:52 C 5014 � w:

We hence obtain equal profit in the two corners if w D 4836:52 (USD). If the
price on tickets to old people goes above this value, it will be more profitable to
sell all the low price tickets to old people.

(g) Note that ˇ D 100�˛. The variance is hence a function of ˛. Using the numbers
given in the text we obtain V.˛/ D 2˛2 � 4˛.100 � ˛/ C 4.100 � ˛/2. Then
V 0.˛/ D 20˛ � 1200. If we solve V 0.˛/ D 0, we find ˛ D 60; ˇ D 40. These
values give the smallest possible variance.
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Problems of Chap. 2

2.1

˝ D fKKK; KKI; KIK; IKK; KII; IKI; IIK; IIIg
A D fKKK; KKI; KIK; IKK; KII; IKI; IIKg
B D fKKK; KKI; IKK; IKIg
C D fKKK; IIIg:

2.2

(a) A [ B D f!1; !2; !3g; A \ B D f!1g; Ac D f!3; !4g; Bc D f!2; !4g.
(b) .A \ B/ [ .Ac \ B/ D f!1g [ f!3g D f!1; !3g D B.
(c) A [ .Ac \ B/ D f!1; !2g [ f!3g D f!1; !2; !3g D A [ B.

2.3

(a) P.A/ D 90%; P.Ac/ D 10%.
(b) P.B/ D 85%; P.Bc/ D 15%.
(c) P.A [ B/ D 1.
(d) P.A \ B/ D 75%, A \ B D “There are between 1 and 9 errors”.

2.4

!1: Processing time is 1 day.
!2: Processing time is 2 days.
!3: Processing time is 3 days.
!4: Processing time is 4 days.
!5: Processing time is 5 days.
!6: Processing time is 6 or more days.

We have

p1 D 0:1; p2 D 0:4; p3 D 0:3; p4 D 0:1; p5 D 0:05; p6 D 0:05:

These are all numbers between 0 and 1. In addition we see that

p1 C p2 C p3 C p4 C p5 C p6 D 0:1 C 0:4 C 0:3 C 0:1 C 0:05 C 0:05 D 1

This means that both conditions in the definition of a probability are satisfied.
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(b)

P.A/ D 0:1 C 0:4 D 0:5 D 50%:

P.B/ D 0:3 C 0:1 C 0:05 C 0:05 D 0:5 D 50%

(c) A D Bc.

2.5

(a) We have a sample space with 9 possible outcomes. For this to define a
probability p, we must have

0 � pi � 1; i D 1; : : : ; 9

and

p1 C p2 C � � � p9 D 1 D 100%:

The first requirement is clear. For the second we see that

9X

iD1

pi D 12%C9%C10%C25%C16%C5%C11%C9%C3% D 100% D 1:

Since the probabilities sum to 1, both conditions are satisfied.
(b) (i) The good is of type Regular and is stored in warehouse 3.

P.A \ C/ D 11%:

(ii) The good is either of type Regular or it is stored in warehouse 3 (or both).

P.A [ C/ D 12% C 25% C 11% C 9% C 3% D 60%:

(iii) The good is of type Regular and Superior. This is impossible.

P.A \ B/ D 0:

(iv) The good is of type Regular or Superior.

P.A [ B/ D 12% C 25% C 11% C 9% C 16% C 9% D 82%:

Alternatively we use complements to see that

P.A [ B/ D 1 � 11% � 9% � 3% D 82%;

which is slightly more efficient.
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2.6 We use the formula

P.A [ B/ D P.A/ C P.B/ � P.A \ B/;

to get the equation

70% D 60% C 40% � P.A \ B/:

This gives P.A \ B/ D 30%. 30% of the customers use both products.

2.7 We use the formula

P.A [ B/ D P.A/ C P.B/ � P.A \ B/;

to get the equation

70% D P.A/ C 50% � 40%:

This gives P.A/ D 60%. 60% of the customers use product A.

2.8 We use the formula

P.A [ B/ D P.A/ C P.B/ � P.A \ B/;

to get

70% D 60% C 40% � 30% D 70%:

This means that 70% of the customers use at least one of the products. Hence 30%
do not use any of the two products.

2.9 There are 5 possible outcomes

!1: The stock is in company A.
!2: The stock is in company B.
!3: The stock is in company C.
!4: The stock is in company D.
!5: The stock is in company E.

When we select a stock randomly, we are tacitly assuming that the probability is
uniform. Hence

p1 D 140000

250000
D 56%; p2 D 50000

250000
D 20%;

p3 D 20000

250000
D 8%; p4 D 10000

250000
D 4%; p5 D 30000

250000
D 12%:
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2.10

(a) (i)

P.A \ B/ D P.A/ C P.B/ � P.A [ B/ D 60% C 50% � 82% D 28%:

(ii)

P.A \ C/ D P.A/ C P.C/ � P.A [ C/ D 60% C 45% � 73% D 32%:

iii)

P.B \ C/ D P.B/ C P.C/ � P.B [ C/ D 50% C 45% � 74% D 21%:

(b)

P.A \ B \ C/

D P.A [ B [ C/

� . P.A/ C P.B/ C P.C/ � P.A \ B/ � P.A \ C/ � P.B \ C//

D 89% � 60% � 50% � 45% C 28% C 32% C 21% D 15%:

2.11

(a) The customers liking both A and B were numbers

3; 7; 11; 18; 19; 20; 27; 33; 34; 39; 42; 43; 49; 53; 56; 57; 60; 61; 62; 65; 67; 71;

72; 73; 74; 76; 78; 80:

(b) The customers liking at least one of the two products were

1; 2; 3; 4; 5; 6; 7; 8; 9; 10; 11; 12; 13; 15; 16; 17; 18; 19; 20; 22; 23;

24; 25; 27; 28; 30; 31; 32; 33; 34; 35; 36; 37; 38; 39; 40; 41; 42; 43; 44;

45; 47; 48; 49; 50; 51; 52; 53; 54; 55; 56; 57; 58; 59; 60; 61; 62; 65; 67;

68; 69; 70; 71; 72; 73; 74; 75; 76; 77; 78; 79; 80:

(c) (i) A total of 60 customers liked A, i.e., 60%.
(ii) A total of 40 customer liked B, i.e., 40%.

(iii) A total of 28 customers liked both A and B, i.e., 35%.
(iv) A total of 72 customers liked at least one of the two products, i.e., 90%.
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(d)

90% D 75% C 50% � 35%;

which illustrates the general addition principle.

Problems of Chap. 3

3.1 As there are no connections between the choices, there are in all

103 � 43 � 39 D 172731;

different ways of making the portfolio.

3.2 The order makes a difference for how the money is invested, and since the funds
must be different, the choices are without replacements. The number of different
combinations is hence

.10/3 D 10 � 9 � 8 D 720:

3.3 This is an ordered choice, since the order of the ranking makes a difference.
For example will the ranking 7; 2; 11; 19; 15 (where product 7 is best) be different
from the ranking 2; 7; 11; 19; 15 (where product 2 is best). A product can only be
ranked once, and hence the choice is without replacement. The number of different
combinations is

.20/5 D 20 � 19 � 18 � 17 � 16 D 1;860;480:

3.4 In this problem the order makes no difference for how the money are invested,
and the choices are without replacements. The number of different combinations is

�
10

4

�
D 210:

3.5 This is an unordered choice, since the order makes no difference for the result.
For example will the sequence 2; 5; 11; 12 provide the same result as the sequence
5; 2; 11; 12 since the same goods have been chosen in both cases. The number of
different combinations is

�
15

4

�
D 1365:

3.6 We choose 3 of the numbers 1–5, unordered without replacement. We interpret
the 3 numbers as the position of our correct answers. The choices are unordered
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since the order makes no difference. For example will the sequence 1; 3; 5 lead to
the same result as the sequence 5; 1; 3 since they both have the same interpretation:
Answers 1, 3, and 5 are correct, while answers 2 and 4 are wrong. The choice
is without replacements since the positions must be different. Any such choice
corresponds to a combination of answers with exactly 3 correct answers. The
number of different combinations is

�
5

3

�
D 10:

3.7 We choose 5 of the numbers 1–20, unordered without replacement. These
5 numbers we interpret as the position of our correct answers. Any such choice
corresponds to an answer combination with exactly 5 correct answers, hence the
number of different combinations is

�
20

5

�
D 15;504:

3.8 In this problem the order of the funds makes no difference, so we use the
formulas for unordered choices without replacements.

(a) There is in all
�

30

6

�
D 593;775 different combinations of funds.

(b) (i) The probability that you have selected the best fund is

�
29
5

�

�
60

6

� D 20%:

(ii) The probability that you have selected the two best funds is

�
28
4

�

�
60
6

� D 1

29
� 3:4%:

3.9

(a) The probability that you receive the questionnaire is

�
1
1

� �
9999
999

�

�
10000
1000

� D 1

10
:

You hence have 10% probability of receiving the questionnaire.
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(b) The probability that you and your nearest neighbor receive the questionnaire is

�
2
2

� �
9998
998

�

�
10000
1000

� D 111

11;110
� 0:009991:

Note that the answer is slightly different from the seemingly obvious (and
wrong) answer 1

100
.

3.10 The probability that you do not receive the questionnaire is

�
N�1

n

�

�
N
n

� D
.N�1/Š

nŠ.N�n�1/Š

NŠ
nŠ.N�n/Š

D nŠ.N � n/Š.N � 1/Š

nŠ.N � n � 1/ŠNŠ
D N � n

N
D 1 � n

N
:

The probability that you receive the questionnaire is hence n
N .

3.11

(a) There are
�

8
2

�
D 28 different cooperation documents.

(b) There are .8/2 D 56 different executive officers.

3.12

(a) The probability that none of the crates contain errors is

�
91
2

�

�
105
2

� D 75%:

(b) The probability that at least one of the crates contain errors is

�
14
1

� �
91
1

�

�
105
2

� C
�

14
2

�

�
105
2

� D 25%:

Notice that a much simpler solution is to take the complement of the answer
from (a).
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3.13 There is in all
�

26
3

�
D 2600 ways of selecting 3 crates.

(a) There is in all
�

13
3

�
D 286 different choices leading to 3 crates containing

Regular. The probability of this happening is

286

2600
D 11%:

(b) There is in all 13 � 7 � 6 D 546 different choices leading to different products in
all the three crates. The probability of this happening is

546

2600
D 21%:

3.14

(a) There is in all 38 D 6561 different outcomes.
(b) There is in all 8 � 27 different outcomes where one person buys product A.

(c) There is in all
�

8
5

�
�23 D 448 different outcomes where 5 persons buy product A.

(d) There is in all
�

8
2

� �
6
3

� �
3
3

�
D 560 different outcomes where 2 persons buy A,

3 persons buy B, and 3 persons buy C.
(e) If it is sold more of product A than of product B and C in total, we must sell

5; 6; 7, or 8 of product A. This can happen in

�
8

5

�
� 23 C

�
8

6

�
� 22 C

�
8

7

�
� 21 C

�
8

8

�
� 20 D 577

different ways.

3.15

(a)
�

18
4

�
�
�

12
3

�
D 673;200.

(b) . 2
2 /. 16

2 /
. 18

4 /
D 2

51
.

(c) . 2
2 /. 16

2 /�. 1
1 /. 11

2 /
. 18

4 /�. 12
3 /

D 1
102

.

3.16

(a) There is
�

4

2

�
D 6 different combinations of two product groups. The customer

can choose products from group 1 and 4 in 4 � 6 D 24 different ways.
(b) • Group 1 and 2 can be selected in 4 � 2 D 8 ways.

• Group 1 and 3 can be selected in 4 � 3 D 12 ways.
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• Group 1 and 4 can be selected in 4 � 6 D 24 ways.
• Group 2 and 3 can be selected in 2 � 3 D 6 ways.
• Group 2 and 4 can be selected in 2 � 6 D 12 ways.
• Group 3 and 4 can be selected in 3 � 6 D 18 ways.

There is hence a total of 80 different combinations.
(c) When we choose the second product, the number of products we can choose

between will depend on which group we selected first. If we order the products
from number 1 to number 15, is, e.g., the probability of the combination .1; 5/

equal to 1=15 � 1=11 C 1=15 � 1=13 and the probability of the combination .5; 7/

equal to 1=15 � 1=13 C 1=15 � 1=12. Those probabilities are not equal.
(d) The probability of this is 4=15 � 6=11 C 6=15 � 4=9 D 32=99.

3.17

(a) There are 320 different combinations.
�

20
19

�
� 2 D

�
20
1

�
� 2 D 40 of these contain

19 correct and one wrong answer.
(b) X D BinŒ20; p� with p D 1

3
.

P.X D 14/ D
�

20

14

�
p14.1 � p/6 D

�
20

14

�
26

320
:

(c)

P.X D 14/ D
�

10

4

�
p4.1 � p/6 D 22:8%:

P.X � 13/ D 1 � P.X � 12/

D 1 � P.X D 10/ � P.X D 11/ � P.X D 12/

D 1 �
�

10

0

�
210

310
�
�

10

1

�
29

310
�
�

10

2

�
28

310
D 70:1%:

3.18

(a) There are
�

75
10

�
D 828931106355 different portfolios. The probability that

the company has 4 average, 3 good, and 3 very good funds is given by the
expression:

�
15
4

� �
10
3

� �
5
3

�

�
75
10

� � 2:0 � 10�6:
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(b) If none of the funds are good or very good, the selection must be made from the
remaining 60 funds. The probability is hence

�
60
10

�

�
75
10

� � 9:1%:

To find the probability of at least one very good fund, we first find the probability
of none very good funds and consider the complement. Hence the probability is

1 �
�

70

10

�

�
75
10

� � 52:1%:

3.19

(a) If there are 5 transactions, the list needs to contain all the 5 sellers. In addition
we need to select 5 buyers from the 10 potential buyers. The order makes no
difference, hence the selection is unordered without replacement. There is

�
10

5

��
5

5

�
D 252:

different combinations with 5 transactions.
(b) With x transactions, the number of different combinations is given by

�
10

x

��
5

x

�
:

This leads to Table 1.
There are in all 3003 different combinations. If all of these are equally

probable, we find the probabilities dividing the numbers in the previous table
by 3003, Table 2.

The most probable number of transactions is hence 3 units.

Table 1 Number of combinations as a function of the number of transactions

Number of transactions 0 1 2 3 4 5

Number of combinations 1 50 450 1200 1050 252

Table 2 Probability as a function of the number of transactions

Number of transactions 0 1 2 3 4 5

Probability 0.0003 0.0167 0.1499 0.3996 0.3497 0.0839
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Table 3 Number of different lists as a function of the number of transactions

Number of transactions 0 1 2 3 4 5

Number of different lists 1 50 900 7200 25;200 30;240

(c) When the number of transactions is x, any choice of x buyers can be combined
with any choice of x sellers in xŠ different ways. The number of unique lists is
hence given by the expression

�
10

x

��
5

x

�
xŠ:

This leads to Table 3.

3.20

(a) We can, e.g., reason as follows: First we select which customers buy A. This
can be done in

�
10
x

�
different ways. After selection of these customers, there are

10 � x customers left. Among these we choose y customers buying B. This can
be done in

�
10�x

y

�
different ways. Finally we are left with 10 � x � y customers

and z of these buy C. Note that z D 10�x�y, and the last factor is always equal
to 1.

Using the definition of the binomial coefficients, we get

 
10

x

! 
10 � x

y

! 
10 � x � y

z

!
D 10Š

xŠ.10 � x/Š

.10 � x/Š

yŠ.10 � x � y/Š

.10 � x � y/Š

zŠ.10 � x � y � z/Š

D 10Š

xŠyŠzŠ0Š
D 10Š

xŠyŠzŠ

since 0Š D 1.
(b) The probability of each combination leading to 3 customers buying A, 2

customers buying B, and 5 customers buying C is 0:33 � 0:22 � 0:55. There are
10Š

3Š2Š5Š
different such combinations, and since these are all disjoint, the probability

becomes

10Š

3Š2Š5Š
0:33 � 0:22 � 0:55 D 8:5%:

(c) There are 6 different outcomes leading to at least 8 customers buying A:

.8; 0; 2/; .8; 1; 1/; .8; 2; 0/; .9; 0; 1/; .9; 1; 0/; .10; 0; 0/:
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The probability P for these outcomes is computed as follows:

P D 10Š

8Š0Š2Š
0:38 � 0:20 � 0:52 C 10Š

8Š1Š1Š
0:38 � 0:21 � 0:51

C 10Š

8Š2Š0Š
0:38 � 0:22 � 0:50 C 10Š

9Š0Š1Š
0:39 � 0:20 � 0:51

C 10Š

9Š1Š0Š
0:39 � 0:21 � 0:50 C 10Š

10Š0Š0Š
0:310 � 0:20 � 0:50 D 0:16%:

Problems of Chap. 4

4.1 We use the definition of conditional probability to get

P.Sj F/ D P.S \ F/

P.F/
D 14%

35%
D 40%:

P.FjS/ D P.F \ S/

P.S/
D 14%

56%
D 25%:

Hence 40% of the Favorite users use Super, and 25% of the Super users use Favorite.

4.2 We use the definition of conditional probability to get

P.Sj F/ D P.S \ F/

P.F/
) 0:50 D 0:20

P.F/
:

P.FjS/ D P.F \ S/

P.S/
) 0:25 D 0:20

P.S/
:

This gives P.F/ D 0:4 and P.S/ D 0:8. Hence 40% use Favorite and 80% use
Super.

4.3 We use the formulas for splitting to see that

P.L/ D P.LjM/ � P.M/ C P.LjK/ � P.K/ D 40% � 160

400
C 20% � 240

400
D 28%:

Hence 28% like the product.

4.4

(a) The result is displayed in Fig. 3.
(b) The fraction invested in China is 18% C 32% D 50%:



334 Solutions

Fig. 3 Solution to
Problem 4.4 (a)

Investments

30 70 80 20

Mutual funds Money market

60 40

China Other

18 42

China Other

32 8

Fig. 4 Solution to
Problem 4.5 (a)

Company

3 97 6 94 2 98

A B C

20 45 35

Error OK Error OK

0.6 19.4

Error OK

2.7 42.3 0.7 34.3

(c) The fraction of mutual funds among the investments in China is

P.MjCh/ D P.M \ Ch/

P.Ch/
D 0:18

0:5
D 36%:

4.5

(a) The result is displayed in Fig. 4.
(b) The fraction of reports with errors is

0:6% C 2:7% C 0:7% D 4%:

(c) The probability that a report with errors has been made at department A is

P.AjErr/ D P.A \ Err/

P.Err/
D 0:006

0:04
D 15%:

4.6

(a) Here we have

P.A/ � P.B/ D 0:6 � 0:4 D 0:24 D P.A \ B/;

which means that A and B are independent events.
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(b) We have

P.A/ D P.A \ B/ C P.A \ Bc/ D P.A \ B/ C P.A \ C/:

This gives

P.A \ B/ D P.A/ � P.A \ B/ D 0:6 � 0:24 D 0:36:

Hence

P.A/ � P.C/ D 0:6 � 0:6 D 0:36 D P.A \ C/;

which means that A and B are independent events.
(c) Here

P.B/ � P.C/ D 0:4 � 0:6 6D 0 D P.B \ C/:

This means that B and C are not independent events.

4.7 We have

P.A/ D P.A \ B/ C P.A \ Bc/ D P.A \ B/ C P.A \ C/:

That gives

P.A \ C/ D P.A/ � P.A \ B/:

Furthermore

P.A/ � P.C/ D P.A/.1 � P.B// D P.A/ � P.A/ � P.B/

D P.A/ � P.A \ B/ D P.A \ C/:

Hence A and C are independent.

4.8

(a) We have

P.AjB/ D 60% D P.A \ B/

P.B/
;

which gives

P.A \ B/ D 60% � P.B/ D P.A/ � P.B/:

This shows that A and B are independent.
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(b) In general, when P.B/ 6D 0, then A and B are independent if and only if P.A/ D
P.AjB/. This can be seen as follows:
(i) Assume that A and B are independent, then

P.AjB/ D P.A \ B/

P.B/
D P.A/ � P.B/

P.B/
D P.A/:

(ii) Assume P.A/ D P.AjB/, then

P.A/ D P.AjB/ D P.A \ B/

P.B/
:

If we multiply with P.B/ on both sides, we find

P.A/ � P.B/ D P.A \ B/;

proving that A and B are independent.

4.9

(a)

P.AABC/ D 0:5 � 0:5 � 0:2 � 0:3 D 1:5%:

(b) The following combinations provide the required result:

AAAA; AAAB; AABA; ABAA; BAAA; AAAC; AACA; ACAA; CAAA:

The probability is hence

P.At least 4 customers buy A/ D 0:5 � 0:5 � 0:5 � 0:5

C4 � 0:5 � 0:5 � 0:5 � 0:2 C 4 � 0:5 � 0:5 � 0:5 � 0:3 D 31:25%:

(c) The following combinations provide the required result:

CCAA; CACA; CAAC; ACCA; ACAC; AACC;

CCAB; CACB; CABC; ACCB; ACBC; ABCC;

CCBA; CBCA; CBAC; BCCA; BCAC; BACC;

CCBB; CBCB; CBBC; BCCB; BCBC; BBCC:
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Fig. 5 Solution to
Problem 4.10 (a)

Company
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0.5
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0.5
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0.1

0.7

0.2

0.4

0.5

0.1

0.2

0.6

0.2

0.3

0.6

0.1
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Good

Average

Bad

Good

Average

Bad
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Bad
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Average

Bad
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0.05

0.05

0.02

0.14

0.04

0.08

0.10

0.02

0.04

0.12

0.04

0.06

0.12

0.02

The probability is hence

P.2 customers buy C/ D 6 � 0:3 � 0:3 � 0:5 � 0:5

C12 � 0:3 � 0:3 � 0:5 � 0:2 C 6 � 0:3 � 0:3 � 0:2 � 0:2 D 26:46%:

4.10

(a) The result is displayed in Fig. 5.
(b)

P.GjB/ D P.G \ B/

P.B/
D 0:08 C 0:04 C 0:06

0:6
D 0:3:

(c)

P.AjG/ D P.A \ G/

P.G/
D 0:1 C 0:02

0:1 C 0:02 C 0:08 C 0:04 C 0:06
D 0:4:
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(d) We compute

P.G \ B/ � P.G/ � P.B/

D .0:08 C 0:04 C 0:06/

�.0:1 C 0:02 C 0:08 C 0:04 C 0:06/ � .0:6/ D 0:

This means that P.G \B/ D P.G/ � P.B/ which means that the event G D Good
is independent of the event B D Executed at department B.

4.11

(a) We use the formulas for splitting to see that

P.L/ D P.LjK25�/P.K25�/ C P.LjK25 � 40/P.K25 � 40/

CP.LjK40C/P.K40C/ C P.LjM25�/P.M25�/

CP.LjM25 � 40/P.M25 � 40/ C P.LjM40C/P.M40C/

D 0:6 � 0:15 C 0:3 � 0:3 C 0:8 � 0:15

C0:2 � 0:2 C 0:4 � 0:1 C 0:6 � 0:1 D 44%:

(b) The women made up 60% of the participants, hence

P.K25�jK/ D P.K25�/

P.K/
D 0:15

0:60
D 25%:

(c) The fraction of the women liking the product, we find from

P.LjK/ D P.LjK25�/P.K25�jK/ C P.LjK25 � 40/P.K25 � 40jK/

CP.Lj40C/P.40CjK/

D 0:6 � 0:15

0:60
C 0:3 � 0:3

0:60
C 0:8 � 0:15

0:60
D 50%:

The fraction of the men liking the product, we find from

P.LjM/ D P.LjM25�/P.M25�jM/ C P.LjM25 � 40/P.M25 � 40jM/

CP.Lj40C/P.40CjM/

D 0:2 � 0:20

0:40
C 0:4 � 0:1

0:40
C 0:6 � 0:1

0:40
D 35%:
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Fig. 6 Solution to
Problem 4.12 (a)
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4.12

(a) The result is displayed in Fig. 6.

(b) P.USAjGlobal/ D P.USA\Global/
P.Global/ D 0:15C0:12

0:3C0:6
D 30%.

(c) P.Global AjUSA/ D P.USA\Global A/

P.USA/
D 0:15

0:15C0:12C0:03
D 50%:

(d) No. The customers may invest amounts of unequal size. If, e.g., 99 customers
have invested a small amount in Global A, and one large investor the rest,
the answer will be different from the case where everybody invested the same
amount in all the different funds.

4.13

(a) Ignoring leap years, there are 243 possible days of birth from January 1 to
August 31. This gives P.Category 1/ D 243

365
� 66:6% and P.Category 2/ D

122
365

� 33:4%. (An answer based on months is sufficient). P.YesjCategory 1/ D
0:5.

(b) We get the equation

P.Yes/ D P.YesjCategory 1/ � P.Category 1/

CP.YesjCategory 2/ � P.Category 2/:

Inserting the information provided in the text, we get

0:60 D 0:5 � 0:666 C P.YesjCategory 2/ � 0:334

If we solve this equation, we find P.YesjCategory 2/ � 80%.
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(c) The advantage of swapping is that twice as many will answer the relevant
question. A disadvantage can be less feeling of anonymity. After swapping a
majority will answer the sensitive question, and more might answer No hiding
the true answer to the person who carries out the survey.

4.14

(a) We let I mean that the person has the illness, and C denote that the test is
positive. The information in the text says P.CjI/ D 0:77; P.CjIc/ D 0:02 and
that P.I/ D 0:02. Hence P.Ic/ D 0:98, and we find

P.C/ D P.CjI/ � P.I/ C P.CjIc/ � P.Ic/ D 0:77 � 0:02 C 0:02 � 0:98 D 3:5%:

We use the result above to find

P.IjC/ D P.CjI/ � P.I/

P.C/
D 0:77 � 0:02

0:035
D 44%:

(b,c) If the person is not randomly selected, the analysis in (a) does not apply. If the
person is tested because he or she has symptoms, the test is executed within
a subpopulation where the probability of P.I/ can be much larger than 2%.
In the most extreme case the symptoms can be so strong that we know for
sure that the person has the illness, i.e., P.I/ D 1, in which case P.IjC/ D 1

as well. The probability that the person has the illness can hence be arbitrary
large.

4.15 Let B denote the event “The company goes bankrupt,” and let F denote the
event “The company is flagged for bankruptcy.” The information given in the text
can be formulated as follows:

P.FjB/ D 0:8; P.FcjBc/ D 0:95:

(a) P.FjBc/ D 1 � P.FcjBc/ D 0:05 D 5%, i.e., 5% of the firms that do not go
bankrupt are flagged for bankruptcy.

P.F/ D P.FjB/ � P.B/ C P.FjBc/ � P.Bc/ D 0:8 � 0:1 C 0:05 � 0:9 D 0:125 D 12:5%:

The model will hence predict that 12.5% of the firms will go bankrupt.
(b) We use Bayes’ formula to get

P.Bj F/ D P.B/

P.F/
� P.FjB/ D 0:1

0:125
� 0:8 D 0:64 D 64%:

There is hence 64% probability a firm flagged for bankruptcy will in fact go
bankrupt.
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4.16

(a) (i) We have a time development Good-Good-Good. The probability of remain-
ing good after one time step is 0.7, and the probability of this happening
twice is 0:7 � 0:7 D 49%.

(ii) There are two possibilities: GGG with probability 0:7 � 0:7 D 0:49, and
GBG with probability t 0:3 � 0:2 D 0:06. The total probability is 55%.

(b) There are 10 different variants. The first is GGGGGGGGGGD with probability
0:79 � 0:3. All the 9 other variants have probability 0:78 � 0:3 � 0:2. In total the
probability becomes

0:79 � 0:3 C 9 � 0:78 � 0:3 � 0:2 D 4:32%:

(c) Several different issues can be discussed here. Causes for things going bad are
important for independence. If, e.g., the person has lost his or her job, it is likely
that payments will continue to be bad. If the economy goes bad in general, it is
likely that many customers will be affected, leading to dependence.

4.17

(a) In the first six months company A found 6% errors, while company B found 5%
errors. Company A had hence the best results in the first six months. In the next
six months company A found 3% errors, while company B found 2% errors.
Company A had hence the largest probability of finding errors in the second
half of the year.

The year seen as a whole, company A found 3.6% errors, while company B
found 4.4% errors. Company B hence have the best results for the year seen as
a whole.

(b) The explanation is that there were a lot more errors in the first six months, and
company B comes out as the overall winner since they focused their activity
to the most important time period. Remark: The phenomenon is well known in
statistics and is commonly referred to as the Yule-Simpson paradox.

4.18

(a) We use splitting to see that

P.A/ D P.AjB/P.B/ C P.AjW/P.W/ C P.AjS/P.S/

D 0:025 � 0:1 C 0:15 � 0:15 C 0:30 � 0:75

D 0:25 D 25%:
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(b) Here we use Bayes’ law

P.BjA/ D P.AjB/ � P.B/

P.A/
D 0:025 � 0:1

0:25
D 0:01 D 1%:

4.19 F D The company is flagged for bankruptcy. B D The company does in fact
go bankrupt.

(a)

P.F/ D P.FjB/P.B/ C P.FjBc/P.Bc/ D P.FjB/ � 0:001 C 0:05 � 0:999

� 1 � 0:001 C 0:05 � 0:999 D 0:05095:

(b)

P.Bcj F/ D P.FjBc/ � P.Bc/

P.F/
D 0:05 � 0:999

P.F/
� 0:05 � 0:999

0:05095
D 0:9804:

This means that a huge majority of the firms that are flagged for bankruptcy will
in fact not go bankrupt.

Remark The tool flags 5% of the companies that do not go bankrupt. As we can see
from the calculations, this does not mean that 95% of the flags are correct. Quite the
contrary, at least 98% of the flagged companies will not go bankrupt. Regrettably,
this confusion of terms is a common misconception.

4.20

(a) Let p denote participation in the poll, and let up mean that the person would like
to see an increase in taxes. Then

P. p/ D P. pjup/P.up/ C P. pjupc/P.upc/ D 0:02 � 0:6 C 0:07 � 0:4 D 4%:

(b) We use Bayes’ law:

P.upj p/ D P. pjup/ � P.up/

P. p/
D 0:07 � 0:4

0:04
D 70%:

We see that 70% of the participants in the poll would like to see an increase in
taxes, while a majority of the viewers do not want that.

4.21 We let S denote the event that the currency is strengthening, H denotes high
economic growth, A denotes average economic growth, and L denotes low economic
growth.
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(a) From the splitting principle we get

P.S/ D P.SjH/P.H/ C P.SjA/P.A/ C P.SjL/P.L/

D 0:7 � 0:3 C 0:5 � 0:5 C 0:2 � 0:2 D 0:5 D 50%:

The probability of strengthening of the currency is hence 50%.
(b) We use Bayes’ law and find

P.HjS/ D P.SjH/ � P.H/

P.S/
D 0:7 � 0:3

0:5
D 0:42 D 42%:

If the currency is strengthening, it is hence 42% probability of high economic
growth.

(c) We have

P.S \ H/ D P.SjH/P.H/ D 0:7 � 0:3 D 0:21

P.S/ � P.H/ D 0:5 � 0:3 D 0:15:

Since the two values do not match, the events S and H are dependent.

4.22

(a)

P.debt/ D P.debtjspam/P.spam/ C P.debtjspamc/P.spamc/

D 0:309 � 0:5 C 0:00447 � 0:5 D 15:67%:

(b)

P.spamjdebt/ D P.debtjspam/ � P.spam/

P.debt/
D 0:309 � 0:5

0:1567
D 98:6%:

4.23

(a) We define S: a tax payer is in the special group, F: the tax payer commits tax
fraud. With this notation the information in the text can be stated as follows:

P.S/ D 0:05; P.F/ D 0:1; P.Sj Fc/ D 0:01:

(b)

P.S/ D P.Sj F/P.F/ C P.Sj Fc/P.Sc/:
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This leads us to the equation

0:05 D P.Sj F/ � 0:1 C 0:01 � 0:9:

Solving this equation, we find P.Sj F/ D 0:41 D 41%:

(c) Bayes’ rule gives

P.FjS/ D P.Sj F/ � P.F/

P.S/
D 0:41 � 0:1

0:05
D 82%:

4.24

(a) P.DjS18 � 24/ D 3:6%, P.S18 � 24/ D 55=582 D 9:45%.

P.DjS/ D P.DjS18 � 24/ � P.S18 � 24/ C P.DjS25 � 34/ � P.S25 � 34/

CP.DjS35 � 44/ � P.S35 � 44/ C P.DjS45 � 54/ � P.S45 � 54/

C � � � C P.DjS75C/ � P.S75C/

D 0:036 � 55

582
C 0:024 � 124

582
C 0:128 � 109

582
C 0:208 � 130

582

C0:443 � 115

582
C 0:806 � 36

582
C 1:0 � 13

582
D 23:87%:

(b) P.DjNS18 � 24/ D 1:6%, P.NS18 � 24/ D 62=734 D 8:45%.

P.DjNS/ D P.DjNS18 � 24/ � P.NS18 � 24/ C P.DjNS25 � 34/ � P.NS25 � 34/

CP.DjNS35 � 44/ � P.NS35 � 44/ C P.DjNS45 � 54/ � P.NS45 � 54/

C � � � C P.DjNS75C/ � P.NS75C/

D 0:16 � 62

734
C 0:032 � 157

734
C 0:057 � 123

734
C 0:154 � 78

734

C0:331 � 121

734
C 0:783 � 129

734
C 1:0 � 64

734
D 31:35%:

(c) We see that the death rate for smokers (23.87%) is considerably lower than
for nonsmokers (31.35%). If we compare the numbers in the tables, we see
(with a marginal exception for the group 25–34) that the death rate for smokers
is considerably higher than for nonsmokers. The reason why we come to the
opposite conclusion for the groups seen as a whole is that there are relatively
fewer elderly smokers among the participants. Regrettably, the elderly smokers
were already dead when the sample was drawn.
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Problems of Chap. 5

5.1 (i), (ii), (iii), (v), and (vi) all give out a real number as the result, and hence
define random variables. The outcome of a soccer match, e.g., 2–2, is a pair of
numbers and does not define a random variable (but the results for each team are
random variables).

5.2

(a) The stock price can only have the values 95;100, and 110.
(b) The definition of the cumulative distribution is F.x/ D P.X � x/. F.90/ is

hence the probability that the stock price is at most 90 USD. Since the stock
price is never less than 95 USD, F.90/ D 0. Furthermore,

F.95/ D 20%; F.100/ D 20% C 70% D 90%; F.105/ D 90%;

F.110/ D 20% C 70% C 10% D 100%; F.115/ D 100%:

5.3

(a) There are 6 different outcomes: AA; BB; CC; AB; AC; BC. Note that AB and BA
give the same outcome here. The probabilities of AA; BB; CC are all 1

9
, while

the probabilities of AB; AC; BC are all 2
9
.

(b) AA gives X D 200, BB gives X D 208, CC gives X D 204, AB gives X D 204,
AC gives X D 202, and BC gives X D 206. X can hence achieve 5 different
values; 200; 202; 204; 206; 208. The distribution of X is as follows:

P.X D 200/ D 1

9
; P.X D 202/ D 2

9
; P.X D 204/ D 3

9
;

P.X D 206/ D 2

9
; P.X D 208/ D 1

9
:

(c) We find the cumulative distribution when we progressively add the values in the
probability distribution, i.e.

F.200/ D 1

9
; F.202/ D 1

9
C 2

9
D 3

9
; F.204/ D 1

9
C 2

9
C 3

9
D 6

9
;

F.206/ D 1

9
C 2

9
C 3

9
C 2

9
D 8

9
; F.208/ D 1

9
C 2

9
C 3

9
C 2

9
C 1

9
D 1:

The interpretation is that F.x/ is the probability that the value of the stocks is at
most x USD.
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5.4

(a) Regardless of outcome, X becomes an integer between 1 and 6 and is hence a
random variable.

(b) We find the cumulative distribution when we progressively add the probabilities
in the table, i.e.

F.1/ D 55%; F.2/ D 55% C 20% D 75%;

F.3/ D 55% C 20% C 10% D 85%

F.4/ D 55% C 20% C 10% C 5% D 90%;

F.5/ D 55% C 20% C 10% C 5% C 5% D 95%;

F.6/ D 55% C 20% C 10% C 5% C 5% C 5% D 1:

When x is an integer, we can interpret F.x/ as the probability that the delivery
time is at most x days.

EŒX� D 1 � 0:55 C 2 � 0:2 C 3 � 0:1 C 4 � 0:05 C 5 � 0:05 C 6 � 0:05 D 2:

The expected delivery time is hence 2 days.

5.5

(a) We have

P.4 or more errors/

D 1 � P.X D 0/ � P.X D 1/ � P.X D 2/ � P.X D 3/

D 1 � 0:65 � 0:25 � 0:05 � 0:05 D 0:

(b)

EŒX� D 0 � 0:65 C 1 � 0:25 C 2 � 0:05 C 3 � 0:05 D 0:5:

5.6

p.100/ D 140000

400000
D 56%; p.200/ D 50000

400000
D 20%;

p.300/ D 10000

400000
D 4%; p.400/ D 20000

400000
D 8%;

p.500/ D 30000

400000
D 12%:

EŒX� D 100 � 0:56 C 200 � 0:2 C 300 � 0:04 C 400 � 0:08 C 500 � 0:12 D 200:
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5.7

EjX� D 0 � 0:2 C 1 � 0:2 C 2 � 0:6 D 1:4:

VarŒX� D EŒX2� � EŒX�2

D 02 � 0:2 C 12 � 0:2 C 22 � 0:6 � 1:42 D 0:64:

�ŒX� D p
VarŒX� D p

0:64 D 0:8:

5.8

EjX� D 0 � 0:025 C 1 � 0:05 C 2 � 0:825 C 3 � 0:1 D 2:

VarŒX� D EŒX2� � EŒX�2

D 02 � 0:025 C 12 � 0:05 C 22 � 0:825 C 32 � 0:1 � 22 D 0:25:

�ŒX� D p
VarŒX� D p

0:25 D 0:5:

5.9

EjX� D 1 � 0:1 C 2 � 0:1 C 3 � 0:6 C 4 � 0:1 C 5 � 0:1 D 3:

VarŒX� D EŒX2� � EŒX�2

D 12 � 0:1 C 22 � 0:1 C 32 � 0:6 C 42 � 0:1 C 52 � 0:1 � 92 D 1:

�ŒX� D p
VarŒX� D p

1 D 1:

5.10

(a)

EŒX1 C X2 C X3� D EŒX1� C EŒX2� C EŒX3� D 25 C 25 C 25 D 75:

(b)

EŒ pX1 C qX2 C rX3� D pEŒX1� C qEŒX2� C rEŒX3� D 25. p C q C r/ D 25:
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5.11

EŒ Y� D EŒ pX Cq �100� D pEŒX�Cq �100 D p �100Cq �100 D 100. p Cq/ D 100:

VarŒ Y� D VarŒ pX C q � 100� D VarŒ pX� D p2VarŒX� D 100p2:

The variance becomes as small as possible when we choose p D 0 and q D 1.

5.12

(a)

EŒX� D 30 � 0:6 C 90 � 0:4 D 114:

(b) We need to solve

130 � p C 90 � .1 � p/ D 120:

This implies

130p C 90 � 90p D 120 ) 30p D 40;

which gives p D 75%. The probability that the contract is accepted must be at least
75%.

5.13

(a) We first find EŒX� D 1 � 0:5 C 2 � 0:3 C 3 � 0:2 D 1:7: That gives

EŒZ� D EŒX1� C EŒX2� C EŒX3� D 1:7 C 1:7 C 1:7 D 5:1:

The expected waiting time is 5.1 min in this case.
(b)

P.Z � 7/ D 1 � P.Z D 8/ � P.Z D 9/:

Z D 8 in the three cases .X1; X2; X3/ D .3; 3; 2/; .3; 2; 3/; .2; 3; 3/. That gives

P.Z D 8/ D 0:2 � 0:2 � 0:3 C 0:2 � 0:3 � 0:2 C 0:3 � 0:2 � 0:2 D 0:036:

Z D 9 only in the case .X1; X2; X3/ D .3; 3; 3/, giving

P.Z D 9/ D 0:2 � 0:2 � 0:2 D 0:008:

In total we get

P.Z � 7/ D 1 � 0:036 � 0:008 D 95:6%:
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(c) Let W denote the new waiting time. W D 1 only occur if X1 D X2 D 1, and the
probability for this is

P.W D 1/ D 0:5 � 0:5 D 0:25:

If .X1; X2/ D .1; 2/; .2; 1/; .2; 2/, then W D 2. The probability for this is

0:5 � 0:3 C 0:3 � 0:5 C 0:3 � 0:3 D 0:39:

In addition W D 2 if .X1; X2; X3/ D .1; 3; 1/; .3; 1; 1/, and the probability for
this is

0:5 � 0:2 � 0:5 C 0:2 � 0:5 � 0:5 D 0:1:

In total we get

P.W D 2/ D 0:39 C 0:1 D 0:49:

W D 3 in all other cases. Hence

P.W D 3/ D 1 � P.W D 1/ � P.W D 2/ D 1 � 0:25 � 0:49 D 0:26:

Hence

EŒW� D 1 � 0:25 C 2 � 0:49 C 3 � 0:26 D 2:10:

5.14

(a) We use the following abbreviations U D unmarried; L D low income; G D
good; B D payment difficulties.

P.UL/ D P.ULjG/P.G/ C P.ULjB/P.B/ D 0:1 � 0:75 C 0:50 � 0:25 D 0:2:

Unmarried men with low income hence make up 20% of the customers.

P.BjUL/ D P.ULjB/ � P.B/

P.UL/
D 0:50 � 0:25

0:2
D 0:625:

The probability that an unmarried man with low income has payment difficulties
is hence 62.5%.

(b) First observe that P.GjUL/ D 1 � P.BjUL/ D 0:375: The expected profit by
approving a loan is hence

EŒprofitjUL� D 6000 � 0:375 � 4000 � 0:625 D �250:
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It is hence not profitable to approve a loan. Remark: It is nevertheless not
obvious that a decision to reject such customers is optimal. A policy of this
kind can lead to a loss of goodwill that can be very costly, and such additional
issues must be taken into account.

5.15

(a) We let x be the price for 100 options, y the number of stocks that the bank buys
today, and z the number of USD that the bank lends from a bank account. We
solve the system of equations:

y � 100 D x C z

y � 120 � z � 20 � 100 D 0

y � 80 � z D 0:

This system of equations has the solution x D 1000; y D 50; z D 4000. The
customer hence needs to pay 1000 USD, the bank buys 50 stocks and lends
4000 USD (free of charge) from a bank account. The bank then breaks even in
both cases.

(b) We let Y be the value of the options tomorrow. The customer paid 1000 USD
for the options, and the expected value for Y is

EŒ Y� D p � 2000 C q � 0 D 2000p:

We solve the equation

2000p D 1000;

and find p D 50%. The probability of a rise must then be at least 50% if the
expected value of the stock is to exceed the price paid by the customer.

5.16

(a) We let x be the price for 100 options, y the number of stocks that the bank buys
today, and z the number of USD that the bank lends from a bank account. We
solve the system of equations:

y � 100 D x C z

y � 110 � z � 10 � 100 D 0

y � 70 � z D 0:

This system of equations has the solution x D 750; y D 25; z D 1750. The
customer hence needs to pay 750 USD, the bank buys 25 stocks and lends 1750
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USD (free of charge) from a bank account. The bank then breaks even in both
cases.

(b) We let Y be the value of the options tomorrow. The customer paid 750 USD for
the options, and the expected value for Y is

EŒ Y� D p � 1000 C q � 0 D 1000p:

We solve the equation

1000p D 750;

and find p D 75%. The probability of a rise must then be at least 75% if the
expected value of the stock is to exceed the price paid by the customer.

5.17

(a) We let x be the price for 100 options, y the number of stocks that the bank buys
today, and z the number of USD that the bank lends from a bank account. We
solve the system of equations:

y � 300 D x C z

y � 330 � z � 1:05 � 30 � 100 D 0

y � 280 � z � 1:05 D 0:

This system of equations has the solution x D 2000; y D 60; z D 16;000. The
customer hence needs to pay 2000 USD, the bank buys 60 stocks and lends
16;000 USD (5% interest per day) from a bank account. The bank then breaks
even in both cases.

5.18

(a) The result is displayed in Fig. 7.

EŒX2� D 120 � 0:3 C 100 � 0:2 C 100 � 0:1 C 80 � 0:4 D 98:

Fig. 7 Solution to
Problem 5.18 (a)

100 USD

Today Day 1

110 USD

95 USD

Day 2

120 USD 30

100 USD 20

100 USD 10

80 USD 40

50

50

60

40

20

80
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Even though it might seem as if this is a bad investment, it will be clear from
(b) that this is not the case. The investment is bad if the buyer stays inactive, but
there is nothing preventing an active approach.

(b)

EŒV� D 1000 � 120 � 0:3 C 1000 � 100 � 0:2

C.500 � 95 C 500 � 100/ � 0:1 C .500 � 95 C 500 � 80/ � 0:4

D 100;750:

An even better strategy is to sell all the stocks if they fall the first day. Then

EŒV� D 1000 � 120 � 0:3 C 1000 � 100 � 0:2

C1000 � 95 � 0:1 C 1000 � 95 � 0:4

D 103;500:

5.19

(a) The equation 100y D x C z expresses that the bank uses x C z USD to buy y
stocks. The other four equations express that the bank must break even in all the
four cases.

(b) The solution of the system is x D 840; y D 54; z D 4560; u D 4; v D 39.
(c) The probabilities for the four end states is

P.X2 D 200/ D 0:6 � 0:5 D 0:3;

P.X2 D 80/ D 0:6 � 0:5 D 0:3;

P.X2 D 110/ D 0:4 � 0:25 D 0:1;

P.X2 D 70/ D 0:4 � 0:75 D 0:3:

The expected value of the 60 options is hence

60 � 100 � 0:3 C 60 � 0 � 0:3 C 60 � 10 � 0:1 C 60 � 0 � 0:3 D 1860:

5.20

(a) If ˇ D 0, then

Probability of buying object number i D expŒ�ˇci�P5
jD1 expŒ�ˇcj�

D 1

1 C 1 C 1 C 1 C 1
D 1

5
;
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which is a uniform distribution corresponding to the case where the buyer has
no information. The expected cost is

20 � 1

5
C 25 � 1

5
C 22 � 1

5
C 18 � 1

5
C 30 � 1

5
D 23:

(b) We insert ˇ D 0:5 in the formula, and find

p1 D 0:2395; p2 D 0:01966; p3 D 0:08812; p4 D 0:6511; p5 D 0:00161:

The expected cost becomes

20 � 0:2395 C 25 � 0:01966 C 22 � 0:08812 C 18 � 0:6511 C 30 � 0:00161 D 18:99:

At least one buyer does not buy the cheapest item

D 1 � Probability that they all buy the cheapest item D 1 � 0:6510884

D 82:03%:

When ˇ increases (more information), the probability of buying the cheapest
item increases, and the probability that at least one does not buy the cheapest
item decreases.

(c) To find the limit we can multiply by e18ˇ both in the nominator and the
denominator:

The probability of buying item number 4

D expŒ�18ˇ�

expŒ�20ˇ� C expŒ�25ˇ� C expŒ�22ˇ� C expŒ�18ˇ�� C expŒ�30ˇ�

D 1

expŒ�2ˇ� C expŒ�7ˇ� C expŒ�4ˇ� C 1 C expŒ�12ˇ�
! 1:

The same computation gives that the other probabilities approach zero. In the
limit the buyer is fully informed and always buys the cheapest alternative. The
expected cost is then 18.

5.21

(a)

P D 0:1 � 0:2 � 0:4 � 0:1 � 0:4 D 0:032%:

Since the value of the product does not change when we rearrange the terms, we
can (after completion of all choices) put the ones choosing 1 first, then the ones
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choosing 2, and so on, i.e.

P D 0:1 � � �0:1„ ƒ‚ …
f1

� 0:4 � � �0:4„ ƒ‚ …
f2

� 0:2 � � �0:2„ ƒ‚ …
f3

� 0:1 � � �0:1„ ƒ‚ …
f4

:

The frequencies are just how many such terms we have of each type, and hence

P D 0:1f10:4 f20:2 f30:1 f4 :

If we change the choice probabilities, we can use the same argument to see that
in general

P D p f1
1 � p f2

2 � p f3
3 � p f4

4 :

(b) We notice that alternative number 3 has less utility than number 1, but larger
probability. If . f1; f2; f3; f4/ D .5; 0; 0; 0/, total utility is 15 while the probability
is 0:15. If . f1; f2; f3; f4/ D .0; 0; 5; 0/, total utility is 10 while the probability is
0:25. This contradicts our definition of bounded rationality. These agents are not
boundedly rational, they are irrational.

5.22

(a)

p1 D 2�1

5
D 0:1; p2 D 21

5
D 0:4; p3 D 21

5
D 0:4; p4 D 2�1

5
D 0:1:

(b)

P D p f1
1 � p f2

2 � p f3
3 � p f4

4

D
�

2u1

5

�f1 �2u2

5

�f2 �2u3

5

�f3 �2u4

5

�f4

D 2f1u1Cf2u2Cf3u3Cf4u4

5f1Cf2Cf3Cf4
D 2f1u1Cf2u2Cf3u3Cf4u4

5n
:

since f1 C f2 C f3 C f4 D n.
(c) Assume that U1 < U2 where

U1 D f .1/
1 u1 C f .1/

2 u2 C f .1/
3 u3 C f .1/

4 u4

U2 D f .2/
1 u1 C f .2/

2 u2 C f .2/
3 u3 C f .2/

4 u4:
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Then

P.1/ D 2U1

5n
<

2U2

5n
D P.2/:

This means that all outcomes with frequencies . f .1/
1 ; f .1/

2 ; f .1/
3 ; f .1/

4 / are less

probable that outcomes with frequencies . f .2/
1 ; f .2/

2 ; f .2/
3 ; f .2/

4 /. Smaller total utility
implies smaller probability for those outcomes. The agents are hence boundedly
rational according to our definition.

5.23

(a) If the order B D 10, the deviations become 0; 10; 20; 30; 40, each with
probability 1/5. This gives

EŒAjB D 10� D 0 � 1

5
C 10 � 1

5
C 20 � 1

5
C 30 � 1

5
C 40 � 1

5
D 20:

(b) If B D 20, we get deviations 10; 0; 10; 20; 30 in the 5 cases. This gives

EŒAjB D 20� D 10 � 1

5
C 0 � 1

5
C 10 � 1

5
C 20 � 1

5
C 30 � 1

5
D 14:

If B D 30, we get deviations 20; 10; 0; 10; 20 in the 5 cases. This gives

EŒAjB D 30� D 20 � 1

5
C 10 � 1

5
C 0 � 1

5
C 10 � 1

5
C 20 � 1

5
D 12:

If B D 40, we get deviations 30; 20; 10; 0; 10 in the 5 cases. This gives

EŒAjB D 40� D 30 � 1

5
C 20 � 1

5
C 10 � 1

5
C 0 � 1

5
C 10 � 1

5
D 14:

If B D 50, we get deviations 40; 30; 20; 10; 0 in the 5 cases. This gives

EŒAjB D 50� D 40 � 1

5
C 30 � 1

5
C 20 � 1

5
C 10 � 1

5
C 0 � 1

5
D 20:

We see, not surprisingly, that we get the smallest expected deviation if we order
30 units of the good.

(c) Here we need to consider all the variants that can occur. The formula for splitting
gives

P.A2 D 10/ D P.A2 D 10jD1 D 10/P.D1 D 10/ C P.A2 D 10jD1 D 20/P.D1 D 20/

CP.A2 D 10jD1 D 30/P.D1 D 30/ C P.A2 D 10jD1 D 40/P.D1 D 40/
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CP.A2 D 10jD1 D 50/P.D1 D 50/

D 1

5
� 1

5
C 2

5
� 1

5
C 2

5
� 1

5
C 2

5
� 1

5
C 1

5
� 1

5
D 8

25
:

(d) The principle is the same as in (c), but requires more work. The answers
become:

P.A2 D 0/ D 1

5
� 1

5
C 1

5
� 1

5
C 1

5
� 1

5
C 1

5
� 1

5
C 1

5
� 1

5
D 5

25
:

P.A2 D 20/ D 1

5
� 1

5
C 1

5
� 1

5
C 2

5
� 1

5
C 1

5
� 1

5
C 1

5
� 1

5
D 6

25
:

P.A2 D 30/ D 1

5
� 1

5
C 1

5
� 1

5
C 0

5
� 1

5
C 1

5
� 1

5
C 1

5
� 1

5
D 4

25
:

P.A2 D 40/ D 1

5
� 1

5
C 0

5
� 1

5
C 0

5
� 1

5
C 0

5
� 1

5
C 1

5
� 1

5
D 2

25
:

This gives

EŒA2� D 0 � 5

25
C 10 � 8

25
C 20 � 6

25
C 30 � 4

25
C 40 � 2

25
D 16:

We see that this strategy is relatively bad. It is not the worst strategy, but is
inferior to the second best strategy in (b). A strategy of this kind can be a
good idea if there is strong positive correlation between the demands in the
two periods, but that is not the case here.

Problems of Chap. 6

6.1

(a)

PX.1/ D 3% C 7% C 6% C 9% C 3% D 28%;

PX.2/ D 2% C 6% C 5% C 15% C 9% D 37%;

PX.3/ D 2% C 3% C 8% C 10% C 12% D 35%;

PY.0/ D 3% C 2% C 2% D 7%;

PY.1/ D 7% C 6% C 3% D 16%;
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PY.2/ D 6% C 5% C 8% D 19%;

PY.3/ D 9% C 15% C 10% D 34%;

PY.4/ D 3% C 9% C 12% D 24%:

(b)

P.X � 1/ D 1 � PX.1/ D 1 � 28% D 72%:

(c)

P. Y � 2/ D PY.2/ C PY.3/ C PY.4/ D 19% C 34% C 24% D 77%:

6.2

(a)

PX.9; 00/ D 27% C 4% C 2% D 33%;

PX.9; 10/ D 5% C 22% C 6% D 33%;

PX.9; 20/ D 3% C 8% C 23% D 34%;

PY.9; 00/ D 27% C 5% C 3% D 35%;

PY.9; 10/ D 4% C 22% C 8% D 34%;

PY.9; 20/ D 2% C 6% C 23% D 31%:

(b)

P.X D Y/ D 27% C 22% C 23% D 72%:

(c)

EŒX� D 9:00 � 0:33 C 9:10 � 0:33 C 9:20 � 0:34 D 9:101:

EŒ Y� D 9:00 � 0:35 C 9:10 � 0:34 C 9:20 � 0:31 D 9:096:
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6.3

(a)

PX.80/ D 10% C 30% D 40%;

PX.120/ D 20% C 40% D 60%;

PY.80/ D 10% C 20% D 30%;

PY.120/ D 30% C 40% D 70%:

(b) X and Y are not independent. For example

PX.80/ � PY.80/ D 0:4 � 0:3 D 0:12 6D 0:1 D P.80; 80/:

(c)

EŒX� D 80 � 0:4 C 120 � 0:6 D 104:

EŒ Y� D 80 � 0:3 C 120 � 0:7 D 108:

6.4

(a)

PX.0/ D 5% C 35% D 40%;

PX.1/ D 10% C 20% D 30%;

PX.2/ D 20% C 10% D 30%;

PY.100/ D 5% C 10% C 20% D 35%;

PY.240/ D 35% C 20% C 10% D 65%:

(b)

EŒX� D 0 � 0:4 C 1 � 0:3 C 2 � 0:3 D 0:9:

EŒ Y� D 100 � 0:35 C 240 � 0:65 D 191:
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(c)

EŒX � Y� D 0 � 100 � 0:05 C 0 � 240 � 0:35

C1 � 100 � 0:10 C 1 � 240 � 0:20

C2 � 100 � 0:20 C 2 � 240 � 0:10 D 146:

CovŒX; Y� D EŒX � Y� � EŒX� � EŒ Y� D 146 � 191 � 0:9 D �25:9:

6.5

(a)

PX.20/ D 25% C 15% D 40%;

PX.30/ D 45% C 15% D 60%;

PY.34/ D 25% C 45% D 70%;

PY.24/ D 15% C 15% D 30%:

(b)

EŒX� D 20 � 0:4 C 30 � 0:6 D 26:

VarŒX� D 202 � 0:4 C 302 � 0:6 � 262 D 24:

EŒ Y� D 34 � 0:7 C 24 � 0:3 D 31:

VarŒ Y� D 342 � 0:7 C 242 � 0:3 � 312 D 21:

(c)

EŒX � Y� D 20 � 34 � 0:25 C 20 � 24 � 0:15

C30 � 34 � 0:45 C 30 � 24 � 0:15 D 809:

CovŒX; Y� D EŒX � Y� � EŒX� � EŒ Y� D 809 � 26 � 31 D 3:

�ŒX; Y� D CovŒX; Y�p
VarŒX� � VarŒ Y�

D 3p
24 � 21

D 0:134:
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6.6

(a)

PX.10/ D 20%;

PX.12/ D 50%;

PX.15/ D 30%;

PY.50/ D 20%;

PY.40/ D 50%;

PY.25/ D 30%:

(b)

EŒX� D 20 � 0:2 C 24 � 0:5 C 30 � 0:3 D 25:

EŒ Y� D 100 � 0:2 C 80 � 0:5 C 50 � 0:3 D 75:

(c)

EŒX � Y� D 20 � 100 � 0:2 C 24 � 80 � 0:5 C 30 � 50 � 0:30 D 1810:

CovŒX; Y� D EŒX � Y� � EŒX� � EŒ Y� D 1810 � 25 � 75 D �65:

(d)

VarŒX� D 202 � 0:2 C 242 � 0:5 C 302 � 0:3 � 252 D 13

VarŒ Y� D 1002 � 0:2 C 802 � 0:5 C 502 � 0:3 � 752 D 325:

�ŒX; Y� D CovŒX; Y�
p

VarŒX� � VarŒ Y�
D �65p

13 � 325
D �1:

Y is a linear function of X. Using the two-point formula for a straight line, we
find

Y D 200 � 10X:
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6.7

(a)

EŒ Y� D 100 C 120 C 90 C 115 D 425:

Since X1; X2; X3; X4 all are independent, we get

VarŒ Y� D VarŒX1 C X2 C X3 C X4�

D VarŒX1� C VarŒX2� C VarŒX3� C VarŒX4�

D 230 C 170 C 260 C 240 D 900:

(b) Note that VarŒX1� D EŒX2
1 � � EŒX1�2 gives

EŒX2
1 � D VarŒX1� C EŒX1�

2 D 10;230:

EŒX1 � Y� D EŒX2
1 C X1X2 C X1X3 C X1X4�

D EŒX2
1� C EŒX1� � EŒX2� C EŒX1� � EŒX3� C EŒX1� � EŒX4�

D 10230 C 100 � 120 C 100 � 90 C 100 � 115

D 42;730:

CovŒX1; Y� D EŒX1 � Y� � EŒX1� � EŒ Y� D 42;730 � 100 � 425 D 230:

Since CovŒX1; Y� 6D 0, X1 and Y are not independent.

6.8

(a)

P.X D 90/ D 0:3; P.X D 150/ D 0:4; P.X D 210/ D 0:3;

P. Y D 10/ D 0:3; P. Y D 12/ D 0:4; P. Y D 20/ D 0:3:

This gives EŒX� D 150 and EŒ Y� D 15.
(b) EŒX � Y� D 2190. Since EŒX� � EŒ Y� D 150 � 15 D 2250 6D 2190 D EŒX � Y�, X

and Y cannot be independent.
(c) If Y D 10, the expected trade volume is 1700, Y D 15 gives expected trade

volume 2250, and Y D 20 gives expected trade volume 2600. The largest
expected trade volume occurs when Y D 20. It is not necessarily so that the
highest price implies the largest trade volume. If, e.g., the joint distribution is
as in Table 4, then expected trade volume is 1800 when Y D 20. As the other
expected trade volumes do not change, maximum is obtained at Y D 15.
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Table 4 Example of a joint
distribution

Number of units bought/Price 10 USD 15 USD 20USD

90 5% 10% 30%

150 10% 20% 0%

210 15% 10% 0%

6.9

(a)

P.X D 110;000/ D 10% C 25% C 15% D 50%;

P.X D 150;000/ D 15% C 25% C 10% D 50%;

EŒX� D 110;000 � 0:5 C 150;000 � 0:5 D 130;000:

P. Y D 100/ D 10% C 15% D 25%;

P. Y D 120/ D 25% C 25% D 50%;

P. Y D 140/ D 15% C 10% D 25%;

EŒ Y� D 100 � 0:25 C 120 � 0:5 C 140 � 0:25 D 120:

(b)

P.X D 110;000j Y D 100/ D 0:1

0:25
D 0:4;

P.X D 150;000j Y D 100/ D 0:15

0:25
D 0:6;

P.X D 110;000j Y D 120/ D 0:25

0:5
D 0:5;

P.X D 150;000j Y D 120/ D 0:25

0:5
D 0:5;

P.X D 110;000j Y D 140/ D 0:15

0:25
D 0:6;

P.X D 150;000j Y D 140/ D 0:10

0:25
D 0:4;
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P. Y D 100jX D 110;000/ D 0:10

0:5
D 0:2;

P. Y D 120jX D 110;000/ D 0:25

0:5
D 0:5;

P. Y D 140jX D 110;000/ D 0:15

0:5
D 0:3;

P. Y D 100jX D 150;000/ D 0:15

0:5
D 0:3;

P. Y D 120jX D 150;000/ D 0:25

0:5
D 0:5;

P. Y D 140jX D 150;000/ D 0:10

0:5
D 0:2:

(c)

EŒXj Y D 100� D 110;000 � 0:4 C 150;000 � 0:6 D 134;000;

EŒXj Y D 120� D 110;000 � 0:5 C 150;000 � 0:5 D 130;000;

EŒXj Y D 140� D 110;000 � 0:6 C 150;000 � 0:4 D 126;000;

EŒ YjX D 110;000� D 100 � 0:2 C 120 � 0:5 C 140 � 0:3 D 122;

EŒ YjX D 150;000� D 100 � 0:3 C 120 � 0:5 C 140 � 0:2 D 118:

(d) No. If X and Y are independent, then, e.g., the conditional expectation EŒXj Y D
y� will not change with y, and here we see that the value changes. In this market
there is a clear tendency of high turnover when the price is low, and low turnover
when the price is high.

6.10

(a)

EŒX� D 1 � 0:3 C 0 � 0:4 C 0 � 0:3 D 0:3;

EŒ Y� D 0 � 0:3 C 1 � 0:4 C 0 � 0:3 D 0:4;

EŒZ� D 0 � 0:3 C 0 � 0:4 C 1 � 0:3 D 0:3:
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EŒX2� D 12 � 0:3 C 02 � 0:4 C 02 � 0:3 D 0:3;

EŒ Y2� D 02 � 0:3 C 12 � 0:4 C 02 � 0:3 D 0:4;

EŒZ2� D 02 � 0:3 C 02 � 0:4 C 12 � 0:3 D 0:3:

That gives

VarŒX� D EŒX2� � EŒX�2 D 0:21;

VarŒ Y� D EŒ Y2� � EŒ Y�2 D 0:24;

VarŒZ� D EŒZ2� � EŒZ�2 D 0:21:

(b)

EŒX � Y� D 1 � 0 � 0:3 C 0 � 1 � 0:4 C 0 � 0 � 0:3 D 0:

CovŒX; Y� D EŒX � Y� � EŒX� � EŒ Y� D �0:12:

When two variables are independent, the covariance is always zero. Since this is
not the case here, X and Y are not independent. The joint distribution is shown
in Table 5.

6.11

(a) When we invest p � 10;000;000 USD in company A, we get in all

p � 10;000;000

100
D 105 � p

stocks in the company. The value of those stocks one year from now is

105 � p � X:

Correspondingly the values of the stocks in company B becomes

105 � .1 � p/ � Y:

Table 5 The joint
distribution in Problem 6.10

Y D 0 Y D 1

X D 0 0.3 0.4

X D 1 0.3 0
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(b)

EŒZ� D EŒ105 � p � X C 105 � .1 � p/ � Y�

D 105 � p � EŒX� C 105 � .1 � p/ � EŒ Y�

D 107p C 107.1 � p/ D 107:

Since X and Y are independent, pX and .1 � p/Y are independent. Then

VarŒZ� D 1010VarŒ p � X C .1 � p/Y� D 1010. p2VarŒX� C .1 � p/2VarŒ Y�/

D 1012. p2 C 4.1 � p/2/:

(c) We need to find the minimum of

f . p/ D p2 C 4.1 � p/2:

Since this function is a parabola, we find the minimum where f 0.p/ D 0.

f 0. p/ D 2p � 8.1 � p/ D 10p � 8 D 0:

This gives p D 80%. We should invest 8 million in company A and 2 million in
company B.

6.12

(a) Since each stock costs 100 USD, we are to buy 100;000 stocks. For each percent
we invest, we get 1000 stocks. We hence buy 1000x stocks in company A,
1000y stocks in company B, and 1000z stocks in company C. The total value
V becomes

V D number of stocks in A � price per stock A

Cnumber of stocks in B � price per stock B

Cnumber of stocks in C � price per stock C

D 1000x � X C 1000y � Y C 1000z � Z:

EŒV� D EŒ1000x � X C 1000y � Y C 1000z � Z�

D 1000xEŒX� C 1000yEŒ Y� C 1000zEŒZ�

D 1000 � 120 � .x C y C z/ D 12;000;000:

since x C y C z D 100.
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(b) Since the stocks in A have the smallest variance, we should buy more of these
stocks than the others.

(c) We first compute the variance of V:

VarŒV� D VarŒ1000x � X C 1000y � Y C 1000z � Z�

D 1;000;000x2VarŒX� C 1;000;000y2VarŒ Y� C 1;000;000z2VarŒZ�

D 100;000;000.x2 C 2y2 C 6z2/:

We have to find x; y; z such that x2 C 2y2 C 6z2 is as small as possible. Since
z D 100 � x � y, we can find the minimum for the function

f .x; y/ D x2C2y2C6.100�x�y/2 D 60000�1200xC7x2�1200yC12xyC8y2:

We compute the partial derivatives to get the system

14x C 12y D 1200

12x C 16y D 1200:

This system of equations has the solution x D 60; y D 30, which gives the
minimum of the function. If we want that the variance is as small as possible,
we should invest 60% in company A, 30% in company B, and 10% in company
C. We see that we invest most of the money in A (as indicated by (b)), but we
also need to invest some of the money in the other companies.

(d) Since EŒ�� D 0, then EŒX� D EŒ Y� D EŒZ� D 120 as before. If we use the rule

VarŒa C b�� D b2VarŒ��;

we get

VarŒX� D 100; VarŒ Y� D 200; VarŒZ� D 600;

as in (b) and (c).
(e) We insert the expressions for X; Y, and Z into the formula to get:

V D 1000x � X C 1000y � Y C 1000z � Z

D 1000x.120 C 10�/ C 1000y.120 C 10
p

2�/ C 1000z.120 C 10
p

6�//

D 120;000.x C y C z/ C 10;000.x C p
2 � y C p

6 � z/�

D 12;000;000 C 10;000.x C p
2 � y C p

6 � z/�:

In this case

VarŒV� D 100;000;000.x C p
2 � y C p

6 � z/2:
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This function has its minimum in x D 100; y D 0; z D 0. In this particular case
we get minimum variance when we invest all the money in A. This agrees with the
result from (b). Here the stock prices are 100% correlated and there is nothing to
gain by diversifying the investments as we did in (c).

Remark � can be viewed as a market indicator. “Things are going well” when this
indicator is positive, but correspondingly bad when it is negative. Company A is
the company where the indicator has least influence, and we get minimum variance
when we invest all the money there. If short-sale had been permitted, we could have
eliminated almost all variation if we, e.g., bought about 169;000 stocks in company
A, while at the same time shorting about 69;000 stocks in company C.

Problems of Chap. 7

7.1 This is a binomial distribution with p D 10% and n D 9.

(a) We use the table and find

P.X � 3/ D P.X D 0/ C P.X D 1/ C P.X D 2/ C P.X D 3/

D 0:3874 C 0:3874 C 0:1722 C 0:0446 D 99:16%:

(b) We use the table and find

P.X � 2/ D 1 � P.X D 0/ � P.X D 1/ D 1 � 0:3874 � 0:3874 D 22:52%:

(c)

EŒX� D n � p D 9 � 0:1 D 0:9;

VarŒX� D n � p.1 � p/ D 9 � 0:1 � 0:9 D 0:81;

�ŒX� D
p

VarŒX� D p
0:81 D 0:9:

7.2 This is a binomial distribution with p D 2% and n D 25.

(a)

P.X � 1/ D P.X D 0/ C P.X D 1/

D
�

25

0

�
p0.1 � p/25 C

�
25

1

�
p1.1 � p/24

D 0:6035 C 0:3079 D 91:14%:
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(b)

P.X � 1/ D 1 � P.X D 0/ D 1 � 0:6035 D 39:65%:

(c)

EŒX� D n � p D 25 � 0:02 D 0:5;

VarŒX� D n � p.1 � p/ D 25 � 0:02 � 0:98 D 0:49;

�ŒX� D p
VarŒX� D p

0:49 D 0:7:

7.3 This is a binomial distribution with p D 20% and n D 16.

(a)

P.X D 3/ D
�

16

3

�
p3.1 � p/13 D 24:63%:

(b)

EŒX� D n � p D 16 � 0:2 D 3:2;

VarŒX� D n � p.1 � p/ D 16 � 0:2 � 0:8 D 2:56;

�ŒX� D p
VarŒX� D p

2:56 D 1:6:

7.4 This is a hypergeometric distribution with n D 8; M D 13, and N D 26.

(a)

P.X D 4/ D
�

13
4

� �
26�13
8�4

�

�
26

8

� D 32:72%:

(b)

P.X � 2/ D 1 � P.X D 0/ � P.X D 1/

D 1 �
�

13
0

� �
26�13
8�0

�

�
26

8

� �
�

13
1

� �
26�13
8�1

�

�
26

8

� D 98:49%:
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(c)

EŒX� D n � M

N
D 8 � 13

26
D 4;

VarŒX� D N � n

N � 1
� n � M

N
� �1 � M

N

�

D 26 � 8

26 � 1
� 8 � 13

26
� �1 � 13

26

� D 1:44;

�ŒX� D p
VarŒX� D p

1:44 D 1:2:

7.5 This is a hypergeometric distribution with n D 20; M D 13, and N D 65.

(a)

P.X � 2/ D 1 � P.X D 0/ � P.X D 1/

D 1 �
�

13
0

� �
65�13
20�0

�

�
65
20

� �
�

13
1

� �
65�13
20�1

�

�
65
20

� D 96:05%:

(b)

EŒX� D n � M

N
D 20 � 13

65
D 4;

VarŒX� D N � n

N � 1
� n � M

N
� �1 � M

N

�

D 65 � 20

65 � 1
� 20 � 13

65
� �1 � 13

65

� D 2:25;

�ŒX� D p
VarŒX� D p

2:25 D 1:5:

7.6 This is a Poisson distribution with parameter � D 4.

(a)

P.X � 3/ D P.X D 0/ C P.X D 1/ C P.X D 2/ C P.X D 3/

D 40

0Š
e�4 C 41

1Š
e�4 C 42

2Š
e�4 C 43

3Š
e�4 D 43:35%:
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(b)

EŒX� D � D 4;

VarŒX� D � D 4;

�ŒX� D p
VarŒX� D p

4 D 2:

7.7 This is a Poisson distribution with parameter � D 500 � 0:0005 D 0:25.

(a)

P.X � 1/ D P.X D 0/ C P.X D 1/

D 0:250

0Š
e�0:25 C 0:251

1Š
e�0:25 D 97:35%:

(b)

EŒX� D � D 0:25;

VarŒX� D � D 0:25;

�ŒX� D p
VarŒX� D p

0:25 D 0:5:

7.8

(a) We find the answer from the table of the standard normal distribution.

P.X � 1:64/ D
Z 1:64

�1
1p
2�

e�x2=2dx D G.1:64/ D 0:9495:

(b)

P.X D 1:64/ D
Z 1:64

1:64

1p
2�

e�x2=2dx D G.1:64/ � G.1:64/ D 0:

Remark For any continuous random variable the probability of a point value is
zero.

(c)

P.X < 1:64/ D P.X � 1:64/ � P.X D 1:64/ D 0:9495:

Remark For continuous random variables it does not matter if inequalities are strict
or not.



Solutions 371

7.9

(a)

P.0 � X � 0:44/ D G.0:44/ � G.0/ D 0:6700 � 0:5000 D 17%:

(b)

P.�1:96 � X � 1:96/ D G.1:96/ � G.�1:96/

D G.1:96/ � .1 � G.1:96//

D 0:9750 � .1 � 0:9750/ D 95%:

(c)

P.X > �2:33/ D 1 � P.X � �2:33/

D 1 � .1 � G.2:33//

D 1 � .1 � 0:9901/ D 99:01%:

7.10

EŒ Y� D E



X � 	

�

�
D 1

�
EŒX � 	� D 1

�
.EŒX� � 	/ D 1

�
.	 � 	/ D 0;

VarŒ Y� D Var



X � 	

�

�
D 1

�2
VarŒX � 	� D 1

�2
VarŒX� D 1

�2
�2 D 1:

7.11 Here we apply the central limit theorem.

(a)

P.S � 7/ � G

�
7 � 3

4

�
D G.1/ D 84:13%:

(b)

P.�1 � S � 11/ D P.S � 11/ � P.S < �1/

� G

�
11 � 3

4

�
� G

��1 � 3

4

�

D G.2/ � G.�1/ D G.2/ � .1 � G.1//

D 0:9772 � .1 � 0:8413/ D 81:85%:
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(c)

P.S � 5/ D 1 � P.S < 5/ � 1 � G

�
5 � 3

4

�

D 1 � G.0:5/ D 1 � 0:6915 D 30:85%:

7.12 We have

P.S � z/ � G

�
z � 10

5

�
D 95% D G.1:64/:

Then

z � 10

5
D 1:64 ) z D 10 C 1:64 � 5 D 18:2:

7.13 This is a binomial distribution with n D 225 and p D 0:2. The problem is that
we do not have tables for such cases. Moreover there are numerous values that need
to be checked. Since np.1 � p/ D 36 > 10, a normal approximation works well.

(a)

EŒX� D np D 225 � 0:2 D 45;

VarŒX� D np.1 � p/ D 225 � 0; 2 � 0:8 D 36;

�ŒX� D
p

VarŒX� D p
36 D 6:

(b)

P.S � 50/ � G

�
50 � 45

6

�
D G.0; 83/ D 79:67%:

(c) Notice that S is an integer. If S < 35, then S � 34.

P.S � 35/ D 1 � P.S < 35/ D 1 � P.S � 34/

D 1 � G

�
34 � 45

6

�
D 1 � G.�1:83/

D 1 � .1 � G.1:83// D G.1:83/ D 96:64%:

(d) Since n > 50, we are outside the domain where we know for sure that the result
improves. With modern software we can easily compute the exact values. It then
turns out that integer correction improves the result in (b) while the error in (c)
increases slightly if we use this method.
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7.14 This is a binomial distribution with n D 48 and p D 0:25. The problem is that
we do not have tables for such cases. Moreover there are numerous values that need
to be checked. Since np.1 � p/ D 9 > 5, a normal approximation works well.

(a)

EŒX� D np D 48 � 0:25 D 12;

VarŒX� D np.1 � p/ D 48 � 0:25 � 0:75 D 9;

�ŒX� D
p

VarŒX� D p
9 D 3:

(b) Since 20 � n � 50, integer correction will improve the result.
(c)

P.S � 15/ � G

�
15:5 � 12

3

�
D G.1:17/ D 87:90%;

(d)

P.S � 15/ � G

�
15 � 12

3

�
D G.1/ D 84:13%:

Since the exact answer is 87.68%, we see that integer correction improves the
result in this case.

7.15

(a) S is a normal distribution since it is a sum of normal distributions. The central
limit theorem can’t be used since the conditions fail.

(b)

EŒS� D 100 C 90 C 95 C 105 D 400:

Since X1; X2; X3; X4 are independent, then

VarŒS� D VarŒX1 C X2 C X3 C X4�

D VarŒX1� C VarŒX2� C VarŒX3� C VarŒX4�

D 30 C 20 C 25 C 15 D 100;

�ŒS� D p
100 D 10:
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(c)

P.S � 390/ D G

�
390 � 400

10

�
D G.�1/

D 1 � G.1/ D 1 � 0:8413 D 15:87%:

Since S is a normal distribution P.S D 390/ D 0, and there is no difference
between P.S � 390/ and P.S < 390/.

7.16

(a)

�ŒK0;5� D 100e0:15�0:5
p

e0:22�0:5 � 1 D 15:32 (USD):

(b) We compute

R D lnŒ112=100� C �1

2
0:22 � 0:05

� � 0:5 D 0:0983;

S D 0:2 � p
0:5 D 0:1424:

The price of the option is then

V D 100 � .1 � G.R=S � S// � 112 � e�0:05�0:5.1 � G.R=S//

D 100 � .1 � G.0:55// � 112 � e�0:05�0:5.1 � G.0:70//

D 100 � .1 � 0:7088/ � 112 � e�0:05�0:5.1 � 0:7580/

D 2:69:

Remark The answer is somewhat inaccurate since 2 decimal accuracy is too little
here.

7.17

(a) We compute

R D lnŒ205=200� C �1

2
0:022 � 0:05

� � 0:25 D 0:01224;

S D 0:02 � p
0:25 D 0:01:
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The price of the option is

V D 200 � .1 � G.R=S � S// � 205 � e�0:05�0:25.1 � G.R=S//

D 200 � .1 � G.1; 21// � 205 � e�0;05�0:25.1 � G.1:22//

D 200 � .1 � 0:8869/ � 205 � e�0:05�0:25.1 � 0:8888/

D 0:107:

(b) The options are worthless when

K0:25 � 205:

This gives

200e
�
0:09� 1

2 0:022
�

�0:25C0:02X0:25 � 205

�
0:09 � 1

2
0:022

� � 0:25 C 0:02X0:25 � lnŒ1:025�

0:02245 C 0:02X0:25 � 0:02469

X0:25 � 0:02469 � 0:02245

0:02
D 0:112:

We know that EŒX0:25� D 0 and that VarŒX0:25� D 0:25. This gives �ŒX0:25� D
0:5. Since X0:25 is a normal distribution, we find

P.K0;25 � 205/ D P.X0:25 � 0:112/ � G

�
0:112

0:5

�

D G.0:22/ D 58:71%:

(c) The same computation as above gives

K0:25 � 205;

if and only if

198e
�
0:05� 1

2 0:022
�

�0:25C0:02X0:25 � 205

�
0:05 � 1

2
0:022

� � 0:25 C 0:02X0:25 � lnŒ1:035�

0:01245 C 0:02X0:25 � 0:03440

X0:25 � 0:03440 � 0:01245

0:02
D 1:10:
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EŒX0:25� D 0; VarŒX0:25� D 0:25 and �ŒX0:25� D 0:5. Since X0:25 is a normal
distribution, we find

P.K0:25 � 205/ D P.X0:25 � 1:10/ � G

�
1:10

0:5

�

D G.2:20/ D 98:61%:

7.18

(a) We compute

R D lnŒ109=98� C �1

2
0:122 � 0:05

� � 1 D 0:06358:

S D 0:12 � p
1 D 0:12:

The price of the option is then

V D 98 � .1 � G.R=S � S// � 109 � e�0:05�1.1 � G.R=S//

D 98 � .1 � G.0:41// � 109 � e�0:05.1 � G.0:53//

D 98 � .1 � 0:6591/ � 109 � e�0:05.1 � 0:7019/

D 2:50:

(b) We use 10;000 USD to buy 4000 options. If we put the money in the bank, we
can withdraw 10;500 USD after one year. If the options are at least as profitable
as putting the money in the bank, the stock price K1 must fulfill the relation

10;500 � .K1 � 109/ � 4000:

This gives K1 � 111:63. The probability that this occurs is computed as follows

K1 � 111:63;

if and only if

98e
�
0:12� 1

2 0:122
�

�1C0:12X1 � 111:63

�
0:12 � 1

2
0:122

�C 0:12X1 � lnŒ1:1391�

0:1128 C 0:12X1 � 0:1302

X1 � 0:1302 � 0:1128

0:12
D 0:15:
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EŒX1� D 0; VarŒX1� D 1, and �ŒX1� D 1. Since X1 is a standard normal
distribution, we find

P.K1 � 111:63/ D P.X1 � 0:15/ D 1 � G.0:15/

D 1 � 0:5596 D 44:04%:

7.19

(a)

P.K4 � 115/ D P.100 e0:32C0:2X4 � 115/ D P

�
X4 � lnŒ1:15� � 0:32

0:2

�

D P.X4 � �0:90/ D 1 � P.X4 � �0:90/

D 1 � G


�0:90 � 0

2

�
D 1 � GŒ�0:45� D GŒ0:45� D 67:36%:

(b) The volatility ˇ D 0:2. We compute

R D ln



115

100

�
C
�

1

2
0:22 � 0:03

�
� 4 D 0:1; S D 0:2 � p

4 D 0:4:

The Black-Scholes pricing formula gives

V D 100 �
�

1 � G



0:1

0:4
� 0:4

��
� 115 � e�0:12 �

�
1 � G



0:1

0:4

��

D 100 � .1 � G Œ�0:15�/ � 115 � e�0:12 � .1 � G Œ0:25�/

D 100 � G Œ0:15� � 115 � e�0:12 � .1 � G Œ0:25�/

D 100 � 0:5596 � 115 � e�0:12 � .1 � 0:5987/ D 15:03:

The price of this option is hence 15.03 USD.

7.20

(a)

EŒX� D 0 � 0:86 C 1 � 0:08 C 2 � 0:02 C 3 � 0:04 D 0:24;

VarŒX� D 02 � 0:86 C 12 � 0:08 C 22 � 0:02 C 32 � 0:04 D �0; 242 D 0:4624:
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(b)

EŒS� D EŒX1� C EŒX2� C � � � C EŒX10;000�

D 0:24 C 0:24 C � � � C 0:24 D 10;000 � 0:24 D 2400:

Since X1; : : : ; X10;000 are independent, then

VarŒS� D VarŒX1� C VarŒX2� C � � � C VarŒX10;000�

D 0:4624 C 0:4624 C � � � C 0:4624 D 10;000 � 0:4624 D 4624:

�ŒS� D p
VarŒS� D p

4624 D 68:

(c)

P.S > 2450/ D 1 � P.S � 2450/ � 1 � G
�

2450�2400
68

�

D 1 � G.0:74/ D 1 � 0:7704 D 22:96%:

(d)

P.S � s0/ � G

�
s0 � 2400

68

�
D 99% D G.2; 33/:

Then

s0 � 2400

68
D 2:33 ) s0 D 2400 C 2:33 � 68 D 2558:44:

The ice cream shop must order at least 2559 ice cream to be 99% sure that they
satisfy the demand.

7.21

(a) EŒX� D 0 � 0:1 C 1 � 0:6 C 2 � 0:3 D 1:2.
VarŒX� D EŒX2� � EŒX�2 D 02 � 0:1 C 12 � 0:6 C 22 � 0:3 � 1:22 D 0:36.

(b) A condition that speaks against independence is that a household can be
influenced by the actions of their neighbors. Here we are in the planning phase,
so people moving in are hardly aware of any such circumstances. In any case it
does not seem as if any particular choice will influence many other decisions.

(c) EŒ Y� D 900 � EŒX� D 1080. By independence VarŒ Y� D 900 � VarŒX� D 324.
That gives �Œ Y� D 18. We call the unknown capacity Z0. We use the central
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limit theorem to see that

P. Y � Z0/ D P

�
Y � 1080

18
� Z0 � 1080

18

�
� G

�
Z0 � 1080

18

�

D 0:9 � G.1:28/:

This gives the equation

Z0 � 1080

18
D 1:28 ) Z0 D 1080 C 1:28 � 18 � 1103:

7.22

(a) X D BinŒ10;000; p�. EŒX� D np D 10, and VarŒX� D np.1 � p/ D 9:99.

(b) Without integer correction

P.X � 3/ � G

�
3 � 10p

9:99

�
D G.�2:21/ D 1 � G.2:21/ D 0:0136:

With integer correction

P.X � 3/ � G

�
3:5 � 10p

9:99

�
D G.�2:06/ D 1 � G.2:06/ D 0:0197:

(c) We use the table for the Poisson distribution, and get

P. Y � 3/ D P. Y D 0/ C P. Y D 1/ C P. Y D 2/ C P. Y D 3/

D 0:0000 C 0:0005 C 0:0023 C 0:0076 D 0:0104:

We see that the Poisson distribution gives the best result, and that integer
correction increases the error.

7.23

(a) a D 2000 and b D 1000.
(b)

EŒV� D aEŒX1� C bEŒX2� D 2000 � 200 C 1000 � 300 D 700;000:

Since X1 and X2 are independent,

VarŒV� D VarŒaX1� C VarŒbX2� D a2VarŒX1� C b2VarŒX2� D 6;400;000;000:

That gives �ŒV� D 80;000.
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(c) When X1 and X2 are normally distributed, then V has normal distribution. Hence

P.V > 800;000/ D 1 � P.V � 800;000/ D 1 � P

�
V � eŒV�

�ŒV�
� 800;000 � 700;000

80;000

�

D 1 � G

�
800;000 � 700;000

80;000

�
D 1 � G.1:25/ � 10:56%:

7.24

(a) EŒX� D 0:1; VarŒX� D 0:1.
(b) EŒ Y� D 10; VarŒ Y� D 10.

P. Y � 5/ � G

�
5 � 10p

10

�
D G.�1:58/ D 1 � G.1:58/ D 5:71%:

With integer correction we get the answer 7:78%, which can also be approved
as an answer to the problem.

(c) � D 0:1. That gives

P.Z � 3/ D 1 � P.Z D 0/ � P.Z D 1/ � P.Z D 2/

D 1 � 0:9048 � 0:0905 � 0:0045 D 0:0002 D 0:02%:

(d) The distribution of Y can be approximated by a Poisson distribution W with
parameter � D 10. That gives

P. Y � 5/ � P.W � 5/

D P.W D 0/ C P.W D 1/ C P.W D 2/ C P.W D 3/ C P.W D 4/

CP.W D 5/

D 0:000 C 0:0005 C 0:0023 C 0:0076 C 0:0189 C 0:0378 D 6:71%:

We see that the approximation is very close to the exact answer, and consid-
erably closer than the normal approximation. This is what we expect since the
distribution of X is very close to a Poisson distribution with parameter � D 0:1.
It follows from (c) that outcomes where Z � 3 are very rare, and have little
impact on the final results.

7.25

(a) X is binomial with n D 10 and p D 0:1. We use the table for the binomial
distribution to find

P.X � 4/ D 1 � P.X � 3/ D 1 � 0:3487 � 0:3874 � 0:1937 � 0:0574

D 1 � 0:9872 D 1:28%:
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(b) We let Xi be the number of defective items produced at unit i. These variables are
assumed to be independent with binomial distribution. We note that the result
by the worst unit has at most 3 defective items if and only if all the all units have
at most 3 defective items, and that

P.Xi � 3/ D 0:9872:

This gives

P. Y � 4/ D 1 � P. Y � 3/

D 1 � P.X1 � 3/ � P.X2 � 3/ � P.X3 � 3/ � P.X4 � 3/ � P.X5 � 3/

D 1 � 0:98725 D 6:24%:

7.26

(a) P.X � 	/ D G
�

	�	

�

� D G.0/ D 50% and P.X D C/ D 0 since X has a
continuous distribution.

(b) The result R can have the values o, d, and 1
2
.o C d/. R gets the value o if and

only if o is closer to X than d. This happens if and only if the midpoint between
o and d is to the left of X, i.e., X < oCd

2
. The first term is hence the value of

R multiplied with the probability that this value occurs. This applies to all the
terms, and the sum gives us the expected value. If X is a normal distribution, the
last term vanishes. Then

EŒR� D o � G

 
oCd

2
� 	

�

!
C d �

 
1 � G

 
oCd

2
� 	

�

!!

D o � G

�
o C d � 2	

2�

�
C d �

�
1 � G

�
o C d � 2	

2�

��
:

Alternatively one can use the distribution of X. Then the expression is as
follows:

EŒR� D o � FX

�
o C d

2

�
C d �

�
1 � FX

�
o C d

2

��
:

Remark The last expression can easily be used to derive the equations for
equilibrium. Nash equilibrium is obtained if and only if

@EŒR�

@o
D 0;

@EŒR�

@d
D 0:
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If we use the product rule and the chain rule for the derivatives, we find

@EŒR�

@o
D FX

�
o C d

2

�
C o � F0

X

�
o C d

2

�
� 1

2
� d � F0

X

�
o C d

2

�
� 1

2

Here we put FX
�

oCd
2

� D P
�
X � oCd

2

�
and F0

X.x/ D fX.x/, and get

@EŒR�

@o
D P

�
X � o C d

2

�
C o � d

2
� fX

�
o C d

2

�
:

A corresponding calculation gives

@EŒR�

@d
D P

�
X >

o C d

2

�
C o � d

2
� fX

�
o C d

2

�
;

and we find the system of equations if we simplify the equations

@EŒR�

@o
D 0;

@EŒR�

@d
D 0:

(c) From the equation we see that we must have

P

�
X >

o C d

2

�
D P

�
X � o C d

2

�
:

That gives

1 � P

�
X � o C d

2

�
D P

�
X � o C d

2

�
:

Hence

P

�
X � o C d

2

�
D 1

2
:

The result can be interpreted as follows: At equilibrium the parties will have
the same distance to the expected view of the mediator. This principle serves to
moderate the parties. An unreasonably low offer or unreasonably high demand
will be punished since the opponent will usually get full support for a moderate
claim.

(d) From (a) we know that P
�
X � oCd

2

� D 1
2

if and only if oCd
2

D 	. That provides
us with the equation

.d � o/ � fX .	/ D 2 � 1

2
D 1:
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If we insert x D 	 in the expression for fX.x/, we find fX .	/ D 1p
2��2

. We must
hence solve the system

d � o D
p

2��2d C t D 2	:

If we add the two equations, we get

2d D 2	 C
p

2��2 ) d D 	 C
r

�

2
� � ) o D 	 �

r
�

2
� �:

When � increases, the distance between the parties gets bigger. When the
uncertainty in X is large, it will not pay to be close to the expected view. If
the opponent is less moderate, he or she might still get full support in almost
50% of the cases, and profit from this strategy in the long run.

7.27

(a) We compute

P

�
X <

o C d

2

�
D P.X < 0:045/ D G



0:045 � 0:05

0:005

�

D GŒ�1� D 1 � GŒ1� D 1 � 0:8413 D 0:1587:

That gives P
�
X > oCd

2

� D 0:8413. Since X is continuous, P
�
X D oCd

2

� D 0. If
we insert this in the given formula, then

EŒR� D 0:03 � 0:1587 C 0:06 � 0:8413 D 5:52%:

(b) We compute

P

�
X <

o C d

2

�
D P.X < 0:045/ D G



0:045 � 0:05

0:02

�

D GŒ�0:25� D 1 � GŒ0:25� D 1 � 0:5987 D 0:4013:

This gives P
�
X > oCd

2

� D 0:5987. If we insert this in the given formula, then

EŒR� D 0:03 � 0:4013 C 0:06 � 0:5987 D 4:80%:

Remark We see that when the insecurity in the view of the mediator is low
(0.5%), it pays to be close to the expected view. When the insecurity is high
(2%), however, the probability increases to get full support for a bold claim. It
then pays to present a claim further from the expected view of the mediator.
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7.28

(a) If we assume that the good is sold in continuous quantities, we get

P.X � 3/ D 1 � P.X < 3/ � 1 � G

�
3 � 1

1

�
D 1 � 0:9772 D 0:0228:

The probability of selling at least 3 units during a randomly selected day is
hence about 2:3%. If the good is only sold in integer units, then

P.X � 3/ D 1 � P.X � 2/ � 1 � G

�
2 � 1

1

�
D 1 � 0:8413 D 0:1587:

From the text we used to formulate the problem, it is natural to use the first
interpretation, but the second interpretation, too, is considered a full solution to
the problem.

(b) The distribution arise as a limit of a binomial .n; p/ variable where n is large
and p is small, and a distribution of this sort will be Poisson distributed. For the
Poisson distribution we have EŒX� D � and �2ŒX� D �, and from the numbers
given in the problem we can conclude that � D 1. This gives

P.� 3/ D 1 � P.X D 0/ � P.X D 1/ � P.X D 2/

D 1 � 0:3679 � 0:3679 � 0:1839 D 0:0803:

The probability of selling at least 3 units during a randomly selected day is about
8% in this case.

(c) The answers are quite different. The reason is that the Poisson distribution is
approximately normal only when � is sufficiently large, and this is not the case
here. If the customers do not have the same probability of buying the good,
the resulting distribution need not be of Poisson type. It might, e.g., happen
that there is a small but devoted group of customers that buy the good relatively
often, while that rest never buy it. In this case we cannot appeal to the law of rare
events, and it may be more natural to use a binomial distribution where p is not
small. The information 	 D 1; � D 1, however, speak against an interpretation
where p is not small.

7.29

(a) We use the Black and Scholes pricing formula. We compute

R D ln.110=100/ C
�

1

2
0:52 � 0:025

�
� 9 D 0:9; S D 0:5 � p

9 D 1:5:
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This gives R=S D 0:6. The price of the option is then

V D 100.1 � GŒ�0:9�/ � 100e�0:225.1 � GŒ0:6�/

D 100GŒ0:9� � 100e�0:025�9.1 � GŒ0:6�/

D 100 � 0:8159 � 100e�0:225.1 � 0:7257/

D 59:69 (USD):

(b)

100e
�
0:03� 1

2 0:52
�

100C0:5X100 � 1

m
�
0:03 � 1

2
0:52

�
100 C 0:5X100 � lnŒ0:01�

m

X100 � 9:79:

This gives

P.K100 � 1/ D P.X � 9:79/ D 1 � P.X100 � 9:79/

D 1 � G



9:79 � 0p

100

�
D 1 � GŒ0:98� D 1 � 0:8365

D 16:35%:

It is hence only 16:35% probability that the stock price exceeds 1 USD after 100
years.

(c)

EŒKt� D EŒK0e.˛� 1
2 ˇ2/tCˇXt � D K0e.˛� 1

2 ˇ2/tEŒeˇXt �

D K0e
�

˛� 1
2 ˇ2
�

te
1
2 ˇ2t D K0e˛ t:

This gives

EŒK100� D 100e0:03�100 D 2008:55 (USD):

From (b) we see that the stock price will usually be less than 1 USD after 100
years. This seems to contradict an expected value of 2000 USD. The reason why
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this is possible is that while most outcomes lead to small values this is balanced
by some outcomes leading to extremely large values.

7.30 We call the outcome of the game X.

(a)

EŒX� D 5=6 � 1 C 1=6 � �4 D 1=6:

(b) a D 2

EŒU.X/� D 5=6�.
p

1 C 22�2/C1=6�.
p

�4 C 22�2/ D 5
p

5=6�2 � �0:137:

a D 4

EŒU.X/� D 5=6�.
p

1 C 42 �4/C1=6�.
p

�4 C 42 �4/ D 5
p

17=6Cp
3=3�5 � 0:013:

The expected utility of not playing, we find as

EŒU.X/� D 5=6 � .
p

a2 � a/ C 1=6 � .
p

a2 � a/ D 0:

(c) Since the expected utility of not playing is zero, a rational player chooses to
participate if and only if he has strictly positive expected utility of playing.
Expected utility is an increasing function of a. We call this function e.a/. From
(b) we know that e.2/ < 0 and that e.4/ > 0. Since the function is increasing,
it has exactly one point a0 2 .2; 4/ where it is zero. When a > a0, expected
utility is strictly positive proving the claim. From (a) we know that the game
has positive expected outcome. Players who are sufficiently risk averse will
nevertheless choose not to play. We can divide the population into two parts:
those with high risk aversion (a � a0) do not play, and those with low risk
aversion (a > a0) choose to play.

7.31

(a) We see that the base c D 1:10154 in the exponential function is bigger than 1.
Then the value increases with x. We put x D 50, and find

	50 D 9:0 � 10�4 C 4:4 � 10�5 � 1:1015450 D 0:644%:

(b)

P.T40 > 10/ D 1 � P.T40 � 10/ D 1 � .1 � e� R 10
0 ˛Cˇc40Csds/

D e� R 10
0 ˛Cˇc40Csds D e�10˛� ˇ

ln.c/ .c50�c40/ D 95:65%:
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(c)

P.T40 > 11/ D 1 � P.T40 � 11/ D 1 � .1 � e� R 10
0 ˛Cˇc40Csds/

D e� R 11
0 ˛Cˇc40Csds D e�10˛� ˇ

ln.c/ .c51�c40/ D 95:01%:

The conditional probability is computed as follows:

P.10 < T40 � 11jT40 > 10/ D P.10 < T40 � 11 \ T40 > 10/

P.T40 > 10/

D P.10 < T40 � 11/

P.T40 > 10/

D P.T40 > 10/ � P.T40 > 11/

P.T40 > 10/

D 95:65% � 95:01%

95:65%
D 0:669%:

We can interpret this quantity as the probability that the man dies in the course
of the year of insurance given that he was 50 years old and alive when the year of
insurance started. This probability is approximately equal to the death rate in (a).
There is a slight difference which is caused by the rate in (a) being an instant rate,
while the rate in (c) is an average rate.

Remark Insurance companies do not always use the same tables for men and
women. The death rates of women are lower than for men, and for some types of
life insurance, women pay the same amount as a man who is 3 years younger.

7.32

(a) X er Bin[6,0.7].

P.N D 4/ D
 

6

4

!
0:740:32 D 32:41%:

(b) Let Y be the number of contracts that are signed. The simplest way to solve
the problem is to see that the probability for a collaborator writing a contract is
0:7 � 0:6 D 0:42. Y is hence Bin[6,0.42], and

P. Y D 4/ D
 

6

4

!
0:4240:582 D 15:70%:
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Alternatively, the conditional probabilities can be computed as follows: If the
collaborators sign 4 contracts, then X D 4; 5, or 6.

P. Y D 4/

D P. Y D 4jX D 4//P.X D 4/ C P. Y D 4jX D 5/P.X D 5/

C P. Y D 4jX D 6/P.X D 6/

D
 

4

4

!
0:640:40 �

 
6

4

!
0:740:32

C
 

5

4

!
0:640:41 �

 
6

5

!
0:750:31

C
 

6

4

!
0:640:42 �

 
6

6

!
0:760:30 D 15:70%:

7.33 We let X denote the number of men admitted in the first round and Y the
number of men admitted in the second round. In general

P.X D x/ D
�

4

x

��
6

3�x

�
�

10
3

� ; P. Y D y/ D
�

6
y

��
4

7�y

�
�

10
7

� :

(a)

P.X D 2/ D
�

4

2

��
6

1

�
�

10

3

� D 0:3:

P. Y � 5/ D P. Y D 5/ C P. Y D 6/ D 1=3:

(b) In the second round at least 3 men are admitted, hence P.Y � 3/ D P.Y �
2/ D P.Y � 1/ D 1.

P.X C Y � 5/ D P.X D 0/P. Y � 5/ C P.X D 1/P. Y � 4/

CP.X D 2/P. Y � 3/ C P.X D 3/P. Y � 2/

CP.X D 4/P. Y � 1/ D 80:56%:

The men have a larger chance of being admitted. This scheme is in favor of men.
The majority of the men are allowed to apply in the second round where the chance
of being admitted in higher than in the first round.
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7.34

(a) We use the Black and Scholes formula and find

R D lnŒ390=400� C .1=2 � 0:122 � 0:05/ � 1 D �0:06812;

S D 0:12 � p
1 D 0:12:

This gives

V D 400.1 � GŒ�0:69�/ � 390e�0:05 � .1 � GŒ�0:57�/

D 400 � GŒ0:69� � 390e�0:05 � GŒ0:57�

D 400 � 0:7549 � 390e�0:05 � 0:7157 D 36:45:

(b) After T years of continuous interest r, the value of a bank deposit of 390e�rT

USD is equal to 390 USD.
If KT � 390, then the put option is worthless and the value of contract A is

0 C KT D KT :

The value of the call option is KT � 390 in this case, and the total value of
contract B is

.KT � 390/ C 390 D KT :

If KT � 390, the value of the put option is 390 � KT , and the total value of
contract A is

.390 � KT/ C KT D 390:

The call option is worthless in this case, and hence the value of contract B is

0 C 390 D 390:

We see that the values of contract A and B are equal no matter what happens.
(c) We call the price of the put option W. Since we can buy the stock for 400 USD,

the price of contract A is W C400. The call option costs 36.45 USD, and a bank
deposit of 390e�0:05 D 370:98 USD costs exactly this amount. Since the two
contracts must have the same price, we get the equation

W C 400 D 36:45 C 370:98: (*)

If we solve this equation, we get W D 7:43 (USD).

Remark The equation (*) is referred to as put/call parity in the literature.
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(d) The prices on the options do not depend on the expected return, so they do
not change. If we are to profit at least 8 USD on the put options, the price of
the stock must be at most 382 USD after one year. We must hence find which
values of XT lead to

400e.˛�1=2ˇ2/TCˇXT � 382:

A standard rewriting of this expression gives

XT � 0:09:

Since XT is normally distributed with 	 D 0 and variance �2 D T D 1, then

P.KT � 382/ D P.XT � 0:09/ D GŒ0:09� D 53:59%:

7.35

(a) In general

VarŒX� D EŒX2� � EŒX�2:

but in this case EŒBt� D 0 and the second term is zero.
(b) B100 is a normal distribution with expectation zero and variance �2 D 100.

Hence

P.B100 � 10/ D G

�
10 � 0

10

�
D G.1/ D 84:13%:

(c) It follows from the third bullet point that Bs and Bt �Bs are independent random
variables. Hence

EŒBs.Bt � Bs/� D EŒBs� � EŒBt � Bs� D 0 � .0 � 0/ D 0:

(d) From (c) we have

EŒBs.Bt � Bs/� D 0:

If we expand the left-hand side, we see that

EŒBsBt� � EŒB2
s � D 0:

This gives

EŒBsBt� D EŒBtBs� D EŒB2
s � D s:
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Furthermore

EŒ.Bt � Bs/
2� D EŒB2

t � 2BtBs C B2
s � D t � 2s C s D t � s:

7.36

(a) EŒXt� D EŒ2Bt C 6� D 2EŒBt� C 6 D 6.

VarŒXt� D VarŒ2Bt C 6� D VarŒ2Bt� D 22VarŒBt� D 4t:

(b) X25 is a normal distribution with EŒX25� D 6 and VarŒX25� D 4 � 25 D 100. This
gives

P.X25 � 16/ D G

�
16 � 6p

100

�
D G.1/ D 84:13%:

(c)

EŒB2
s B2

t � 2BtB
3
s C B4

s � D EŒB2
s .B2

t � 2BtBs C B2
s /� D EŒB2

s .Bt � Bs/
2�

D EŒB2
s � � EŒ.Bt � Bs/

2� D s.t � s/:

7.37

(a)

P.100eB9 � 2000/ D P.B9 � lnŒ20�/ D G



lnŒ20� � 0p

9

�
D GŒ1:00� D 84:13%:

(b) Here the terms B2
s and .Bt � Bs/

2 are independent, and we get

EŒB2
s .Bt � Bs/

2� D EŒB2
s � � EŒ.Bt � Bs/

2� D s.t � s/:

(c) i) Assume i < j. Then the term .BtjC1
� Btj/ is independent of the three other

terms Bti ; Btj , and .BtiC1
� Bti/. That gives

EŒBti Btj.BtiC1
�Bti/.BtjC1

�Btj/� D EŒBti Btj.BtiC1
�Bti/��EŒ.BtjC1

�Btj/� D 0:

ii) If i D j, we get

EŒBti Btj.BtiC1
� Bti/.BtjC1

� Btj/� D EŒB2
ti
.BtiC1

� Bti/
2� D ti.tiC1 � ti/:

(the last equality follows from (b)).
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iii) Assume i > j. Then the term .BtiC1
� Bti/ is independent of the three other

terms Bti ; Btj and .BtjC1
� Btj/. This gives

EŒBti Btj.BtiC1
�Bti/.BtjC1

�Btj/� D EŒBti Btj.BtjC1
�Btj/��EŒ.BtiC1

�Bti/� D 0:

Remark The calculations above are central to the construction of a stochastic
integral which plays an important part of mathematical finance.

7.38

(a)

P.X D 2/ D
�

6

2

��
1

3

�2 �
2

3

�4

D 32:92%:

(b)

P.X D 2/ D P.X D 2j p D 0/P. p D 0/ C P.X D 2j p D 1=3/P. p D 1=3/

CP.X D 2j p D 2=3/P. p D 2=3/ C P.X D 2j p D 1/P. p D 1/:

If n > 2, the first and the last term are both zero. Then we get

P.X D 2/ D
�n

2

��1

3

�2 �
2

3

�n�2

� 1

4
C
�n

2

��2

3

�2 �
1

3

�n�2

� 1

4
:

If we put
� n

2

�
outside as a common factor, we have proved the claim. If n D 2,

then P.X D 2j p D 1/ D 1, and this term comes in addition.
(c) We use Bayes’ formula to get

P

�
p D 1

3

ˇ̌
ˇ̌X D 2

�
D P

�
X D 2

ˇ̌
ˇ̌ p D 1

3

�
� P
�

p D 1
3

�

P.X D 2/
:

If we insert n D 6 in the formula from (b), we get P.X D 2/ D 10:29%. This
together with the answer for (a) gives

P

�
p D 1

3

ˇ̌
ˇ̌X D 2

�
D 0:3292 �

1
4

0:1029
D 0:800 D 80%:

Remark This problem is a simple example of Bayesian statistics. Prior to the
examination we have what we call an a priori distribution:

P. p D 0/ D 1=4 P. p D 1=3/ D 1=4 P. p D 2=3/ D 1=4 P. p D 1/ D 1=4:
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After we have done 6 trials and observed X D 2 successes, we modify the
distribution to what we call an a posteriori distribution:

P. p D 0jX D 2/ D 0 P. p D 1=3jX D 2/ D 80%

P. p D 2=3jX D 2/ D 20% P. p D 1jX D 2/ D 0:

We now believe there is a large probability (80%) that p D 1
3
, but we still hold it

possible (20%) that p can be 2
3
.

7.39

(a)

P. Y � 403:43/ D P.eX � 403:43/ D P.X � lnŒ403:43�/

D G
h

lnŒ403:43��4

2

i
D GŒ1� D 84:13%:

(b) If we put 	 D 4; � D 2 in the formula, we find

EŒ Y� D e4C 1
2 22 D e6 D 403:43:

We see that the answer is the same as in (a). The explanation is that the
distribution is skewed, it is much more likely (84.13%) that the value of Y is
below EŒ Y� than above the same value (15.87%).

(c) We can rewrite the expression as follows:

Kt D elnŒK0�C.r� 1
2 ˇ2/tCˇZt :

If we put X D lnŒK0�C .r � 1
2
ˇ2/t CˇZt , then X is a normal distribution with

	 D lnŒK0� C .r � 1
2
ˇ2/t and � D ˇ

p
t. The formula from (b) gives

EŒKt� D e	C 1
2 �2 D elnŒK0�C.r� 1

2 ˇ2/tC 1
2 ˇ2 t D elnŒK0�Crt D K0ert:

7.40

(a)

P.D1 � 16;000/ D G



16;000 � 10;000

3000

�
D GŒ2� D 97:72%:

(b)

EŒD� D EŒD1� C EŒD2� D 10;000 C 16;000 D 26;000:
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Since D1 and D2 are independent, then

VarŒD� D VarŒD1� C VarŒD2� D 30002 C 40002 D 25;000;000 D 50002:

which gives

P.D � 16;000jS/ D G



16;000 � 26;000

5000

�
D GŒ�2� D 1 � 0:9772% D 2:28%:

(c)

P.Sell at most 16,000 newspapers/ D P.D � 16;000jS/P.S/

CP.D1 � 16;000jSc/P.Sc/

D 0:0228 � 0:2 C 0:9772 � 0:8 D 78:63%:

7.41

(a) The expected sale is given by

EŒS� D 1 � 0:1 C 2 � 0:1 C 3 � 0:1 C 4 � 0:1 C 5 � 0:6 D 4:

If we instead put x D 5 in the formula, we get

EŒS� D 1

20
.21 � 5 � 52/ D 4:

The two answers are in agreement.
(b)

EŒ˘� D EŒR minŒD; q� � W q� D R EŒS� � W q D R � 1

20
.21x � x2/ � Wx:

If R D 20; W D 5, then

EŒ˘� D .21x � x2/ � 5x D 16x � x2:

If we compute the derivative of this function and set it equal to zero, we find
that maximum is achieved when x D 8.

(c) Maximum is achieved when x is such that

FD.x/ D P.D � x/ D 1 � 5

20
D 0:75:
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If D is normally distributed N.	; �2/, then

P.D � x/ D G
�x � 	

�

�
:

From the table of the normal distribution we find

G
�x � 	

�

�
D 0:75 , x � 	

�
D 0:6745:

This gives

x D 	 C 0:6745 � D 5:5 C 0:6745 � 1:0 D 6:1745:

When the sales distribution is normal, it is not probable (2.5%) that the value
is larger than 5:5 C 1:96 � 1:0 D 7:46. In comparison this probability is more
than 25% for the uniform distribution. We order less since high demand is less
probable.

7.42

(a) We have

EŒZ� D E

"
1000X

iD1

Di

#
D

1000X

iD1

EŒDi� D 1000 � 10 D 10;000:

Since the variance of a sum of independent variables is equal to the sum of the
variances, we get

VarŒZ� D Var

"
1000X

iD1

Di

#
D

1000X

iD1

VarŒDi� D 1000 � 10 D 10;000:

(b)

P.D � z/ D 0:95 , G



z � 10;000

100

�
D 0:95 , z � 10;000

100
D 1:6449:

If we order 10;165 units, we have at least 95% probability of satisfying the
demand. If the number of people in the market is very large, we need to order
more than 10 units for each person. The variance will in this case be very small
in comparison to the expected value. Hence if we order just slightly more than
expected, we can be quite sure to satisfy the demand.
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7.43

(a)

P.Xi � 0/ D G

�
0 � 45

30

�
D G.�1:5/ D 1 � G.1:5/ D 1 � 0:9332 D 6:68%:

(b) We first need to find expectation and variance for YiC1. We have

EŒ YiC1� D EŒXiC1� C ˛.	 � EŒXi�/ D 	 C ˛.	 � 	/ D 	 D 45:

Since XiC1 and Xi are independent, we find

VarŒ YiC1� D VarŒXiC1� C VarŒ˛	 � ˛Xi� D VarŒXiC1� C VarŒ�˛Xi�

D VarŒXiC1� C .�˛/2VarŒXi� D .1 C ˛2/�2 D 1406:25:

That leads to a standard deviation

�Œ YiC1� D p
1406:25 D 37:5:

A linear combination of normal distributions is normal, and hence

P. YiC1 � 0/ D G

�
0 � 45

37:5

�
D G.�1:2/ D 1 � G.1:2/ D 1 � 0:8849 D 11:51%:

(c) No, all values of ˛ give the same expected surplus. The larger the value of ˛, the
larger will the standard deviation be. This in turn leads to a larger probability of
deficit. Even though the intention is good, the best strategy is to do nothing, i.e.,
˛ D 0. Any other strategy will be worse.

7.44

(a)

P.jX � 100j � 0:2/ D 2 � P.X � 100:2// D 2.1 � P.X � 100:2//

D 2

�
1 � G

�
100:2 � 100

0:1

��
D 2.1 � G.2// D 2.1 � 0:9772/

D 4:56%:
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(b)

X2 D 	2 C�2 D 	1 � .X1 �	1/C�2 D 	1 �	1 � �1 C	1 C�2 D 	1 � �1 C�2:

EŒX2� D EŒ	1� � EŒ�1� C EŒ�2� D 	1 � 0 C 0 D 100:

Since �1 and �2 are independent, then

VarŒX2� D VarŒ��1 C �2� D VarŒ��1� C VarŒ�2� D VarŒ�1� C VarŒ�2� D �2
1

C�2
2 D 2 � 0:12 D 0:02:

P.jX2 � 100j � 0:2/ D 2 � P.X2 � 100:2// D 2.1 � P.X2 � 100:2//

D 2

�
1 � G

�
100:2 � 100p

0:02

��

D 2.1 � G.1:41// D 2.1 � 0:9207/ D 15:86%:

We see that this attempt to improve quality is a disaster as the parts that need to
be discarded are more than tripled.

(c) Since X2 D 	2 C �2, we get

X3 D 	3 C �3 D 	2 � .X2 � 	1/ C �3 D 	2 � 	2 � �2 C 	1 C �3 D 	1 � �2 C �3;

leading to the same distribution as before.

Remark By induction it is possible to prove that

Xn D 	1 � �n�1 C �n;

which shows that the distribution does not change when we carry on with the
procedure. Note that it is the adjustment, not the measurement that creates the
problem. A basic idea in the control of processes is to measure continuously, but
to adjust only if the deviation is statistically significant.

Problems of Chap. 8

8.1 We know that X and S2 are unbiased estimators for 	 and �2. If we compute
the values, we find

X D 35;600; S2 D 236;800;000:
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8.2 Since we have lots of observations, we can appeal to the central limit theorem.
We can also assume that S2

X is a quite accurate estimate for �2. We can hence assume

that X is approximately normal with EŒX� D 	 and VarŒX� D �2

10;000
. We have to find

z such that

P

 
X � 	

�ŒX�
� z

!
D 2:5%:

That gives z D 1:96. A 95% confidence interval is then

X ˙ 1:96 � �ŒX� D 35;600 ˙ 1:96 � 210:

This gives the interval Œ35;188; 36;012�.

8.3 Since we have lots of observations, we can appeal to the central limit theorem.
We can also assume that S2

X is a quite accurate estimate for �2. We can hence assume

that X is approximately normal with EŒX� D 	 and VarŒX� D �2

2500
. We have to find

z such that

P

 
X � 	

�ŒX�
� z

!
D 2:5%:

That gives z D 1:96. A 95% confidence interval is then

X ˙ 1:96 � �ŒX� D 120;000 ˙ 1:96 � 6000:

This gives the interval Œ108;240; 131;760�.

8.4

(a) X is a binomial distribution with n D 40;000 and p D p.
(b)

EŒ O
� D 1

40;000
EŒX� D 1

40;000
� 40;000 � p D p:

VarŒ O
� D 1

40;0002
VarŒX� D 1

40;0002
� 40;000 � p.1 � p/ D p.1 � p/

40;000
:

(c) We have observed O
 D 0:36. Since we have lots of observations, we can assume
that O
 is approximately normal and that

�Œ O
 � D
s

p.1 � p/

40;000
�
s

0:36.1 � 0:36/

40;000
D 0:0024:
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We must find z such that

P

 O
 � 	

�Œ O
 �
� z

!
D 0:5%:

That gives z D 2:5758. A 99% confidence interval is then

O
 ˙ 2:5758 � �Œ O
� D 0:36 ˙ 2:5758 � 0:0024:

That gives the interval Œ0:354; 0:366�.
(d) If p D 0:354, then �Œ O
� D 0:00239, and if p D 0:366, then �Œ O
� D 0:00241. If

we use these values instead, the confidence interval still becomes Œ0:354; 0:366�.
The error we make when we use the constant �Œ O
� D 0:0024 can hence be
ignored.

8.5 In this problem X is a binomial distribution with n D 10 and p D p.

(a) We know that X and S2 are unbiased estimators for EŒX� and VarŒX�. Then

EŒX� D EŒX� D n � p D 10p:

EŒS2� D VarŒX� D n � p.1 � p/ D 10p.1 � p/:

(b) We insert the values to find

X D 1

5
.2 C 1 C 2 C 2 C 3/ D 2:

S2 D 1

4
..2 � 2/2 C .1 � 2/2 C .2 � 2/2 C .2 � 2/2 C .3 � 2/2/ D 1

2
:

There is no conflict between these results. The result in (b) is the consequence
of one single execution of the experiment, while the result in (a) tells us what to
expect when we repeat it several times.

(c)

EŒ O
� D 1

10
EŒX� D 1

10
� 10p D p:

VarŒ O
� D 1

102
VarŒX�

D 1

102
� 1

52
VarŒX1 C X2 C X3 C X4 C X5�
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D 1

102
� 1

52
.VarŒX1� C VarŒX2� C VarŒX3� C VarŒX4� C VarŒX5�/

D 1

102
� 1

52
� 5 � 10p.1 � p/ D p.1 � p/

50
:

Remark The results in this problem coincide with what we would have gotten from
a single binomial variable with n D 50.

8.6

(a)

EŒV� D EŒX1 C X2 C X3 C X4�

D EŒX1� C EŒX2� C EŒX3� C EŒX4�

D 	 C 	 C 	 C 	 D 4	:

VarŒV� D VarŒX1 C X2 C X3 C X4�

D VarŒX1� C VarŒX2� C VarŒX3� C VarŒX4�

D �2 C �2 C �2 C �2 D 4�2:

From a formal point of view, V is an estimator, but there is no reason to expect
that the value is close to 	.

(b) We have

EŒW� D EŒV � 3	� D EŒV� � 3	 D 4	 � 3	 D 	:

W is hence unbiased. The problem is that W contains the unknown number that
we want to find. This is not useful, and in more advanced textbooks we can find
definitions excluding constructions of this type.

8.7 Since we have few, but normally distributed observations, we can use the t-
distribution. We know that

T D X � 	

SŒX�

is t-distributed with parameter � D 24. We must find z such that

P
�
T.24/ � z

� D 2:5%:
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That gives z D 2:064. A 95% confidence interval is hence given by

X ˙ 2:064 � SŒX� D 35;600 ˙ 2:064 � 4200

That gives the interval Œ26;931; 44;269�.

8.8 Since we have few, but normally distributed observations, we can use the t-
distribution. We know that

T D X � 	

SŒX�

is t-distributed with parameter � D 8. We must find z such that

P
�
T.8/ � z

� D 5%:

That gives z D 1:86. A 90% confidence interval is hence given by

X ˙ 1; 86 � SŒX� D 120;000 ˙ 1; 86 � 100;000:

That gives the interval Œ�66;000; 306;000�.

8.9 We compute

X D 94:75; S2 D 1

3

4X

iD1

.Xi � X/2 D 2:25:

That gives

SŒX� D
r

S2

4
D 0:75:

We know that

T D X � 	

SŒX�

is t-distributed with parameter � D 3. We must find z such that

P
�
T.3/ � z

� D 0:5%:

That gives z D 5:841. A 99% confidence interval is hence given by

X ˙ 5:841 � SŒX� D 94:75 ˙ 5:841 � 0:75:
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That gives the interval Œ90:37; 99:13�. The value 100 is outside the confidence
interval. If the claim was true, that would only happen in 1 out of 100 such
experiments. It hence seems unlikely that the claim is true.

8.10 We use the formula and find

VarŒY� D N � n

N � 1
� S2

n
D 1014 � 312

1014 � 1
� 1:04814 � 1010

312
D 2:32805 � 107:

That gives

�ŒY� D 4825:

For the normal distribution a 95% confidence interval is given by

Y ˙ 1:96�ŒY� D 678;995 ˙ 1:96 � 4825:

That gives the interval Œ669;498; 688;412�.

8.11

(a) We use the formula and find

VarŒY� D N � n

N � 1
� S2

n
D 522 � 478

522 � 1
� 6:7123 � 1011

478
D 1:18593 � 108:

That gives

�ŒY � D 10;890:

For the normal distribution a 95% confidence interval is given by

Y ˙ 1:96�ŒY� D 2;133;190 ˙ 1:96 � 10;890:

That gives the interval Œ2;111;846; 2;154;534�.
(b) If N is very large, we can use the formula

VarŒY � D S2

n
D 6:7123 � 1011

478
D 1:40425 � 109:

That gives

�ŒY � D 37;473:
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For the normal distribution a 95% confidence interval is then given by

Y ˙ 1:96�ŒY� D 2;133;190 ˙ 1:96 � 37;473:

That gives the interval Œ2;059;743; 2;206;637�. We see that the confidence
interval is much wider when we ignore the previous information.

8.12

(a) EŒ O
1� D EŒ O
2� D 	, VarŒ O
1� D �2

100
and VarŒ O
2� D �2

400
.

(b)

EŒ O
c� D EŒc O
1 C .1 � c/ O
2� D cEŒ O
1� C .1 � c/EŒ O
2� D c	 C .1 � c/	 D 	:

VarŒ O
c� D VarŒc O
1 C .1 � c/ O
2� D c2VarŒ O
1� C .1 � c/2VarŒ O
2�

D c2 � �2

100
C .1 � c/2 � �2

400
D .4c2 C .1 � c/2/ � �2

400
:

(c) We define

f .c/ D .4c2 C .1 � c/2/ � �2

400
:

This is a parabola, and minimum is found where f 0.c/ D 0. That gives

f 0.c/ D .8c C 2.1 � c/ � �1/ � �2

400
D 0:

10c � 2 D 0 ) c D 1

5
:

When c� D 1
5
, then


c� D 1

5
� 1

100

100X

iD1

Xi C 4

5
� 1

400

400X

iD1

X0
i D 1

500

� 100X

iD1

Xi C
400X

iD1

X0
i

�
:

This is just the mean of all the 500 observations, and we see that it is not possible
to improve the estimator by combining the observations in a particularly clever
way.
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Problems of Chap. 9

9.1

(a) We have H0 W 	 D 8000 and HA W 	 < 8000.
(b) EŒX� D 	 and VarŒX� D �2

n D 4;000;000
100

D 40;000. That gives �ŒX� D 200.
(c) We reject H0 when X � xlimit where

PH0.X � xlimit/ D 5%:

Since we have many observations, we can use the central limit theorem. When
H0 is true, then

PH0 .X � xlimit/ � G

�
xlimit � 8000

200

�
D G.�1:6449/:

That gives

xlimit D 8000 � 1:6449 � 200 D 7671:

The rejection region is hence the interval .�1; 7671�.
(d) Since the observed value of X is outside the rejection region, we must keep H0.

There is not sufficient evidence to conclude that the power consumption has
decreased.

9.2

(a) We have H0 W 	 D 1200 and HA W 	 > 1200.
(b) EŒX� D 	 and VarŒX� D �2

n D 160;000
400

D 400. That gives �ŒX� D 20.
(c) We reject H0 when X � xlimit where

PH0.X � xlimit/ D 5%:

Since we have many observations, we can use the central limit theorem. When
H0 is true, then

PH0.X � xlimit/ � 1 � G

�
xlimit � 1200

20

�
D 5%:

Hence

G

�
xlimit � 1200

20

�
D 0:95 D G.1:6449/:
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That gives

xlimit D 1200 C 1:6449 � 20 D 1232:90:

The rejection region is hence the interval Œ1232:90; 1/.
(d) Since the observed value of X is inside the rejection region, we reject H0.

There is hence sufficient evidence to conclude that the fee usage probably has
increased.

9.3

(a) We have H0 W 	 D 0:1 and HA W 	 6D 0:1.
(b) T is t-distributed with parameter � D 24.
(c) We reject H0 when jT.24/j � tlimit where

PH0 .jT.24/j � tlimit/ D 5%:

Hence

PH0 .T.24/ � tlimit/ D 2:5%:

That gives tlimit D 2:064. The rejection region is hence the interval
.�1; �2:064� [ Œ2:064; 1/.

(d) Here we have

S2ŒX� D S2

n
D 0:052

25
D 0:0001:

That gives SŒX� D 0:01. If we insert this, we find that the observed value for T
is

T D 0:09 � 0:1

0:1
D �1:

Since this value is outside the rejection region, we keep H0. There is not
sufficient evidence to claim that 	 6D 0:1.

9.4

(a) We have H0 W 	 D 11 and HA W 	 < 11.
(b) T is t-distributed with parameter � D 35.
(c) We reject H0 when T.35/ � tlimit where

PH0 .T.35/ � tlimit/ D 5%:
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That gives tlimit D �1:69. The rejection region is hence the interval
.�1; �1; 69�.

(d) Here we have

S2ŒX� D S2

n
D 32

36
D 0:25:

That gives SŒX� D 0:5. If we insert this, we find that the observed value for T is

T D 10 � 11

0:5
D �2:

Since the observed value of X is inside the rejection region, we reject H0. There is
hence sufficient evidence to conclude that the absence due to illness probably has
decreased.

9.5

(a) Let p denote the probability that a randomly selected person prefers the new
product. We have H0 W p � 50% and HA W p > 50%.

(b) X is a binomial distribution with parameters n D 5 and p D p.
(c) P-value of the observed result is

PH0 .X � 5/ D PH0 .X D 5/ D
�

5

5

�
p5 � .1 � p/0 �

�
5

5

�
0:55 D 3:1%:

Since the P-value is smaller than the significance level, we reject H0. There is hence
sufficient evidence to conclude that more than 50% of the population probably prefer
the new product.

Remark When the tendency in the data is strong, it is sometimes possible to draw
conclusions based on very few observations.

9.6

(a) Let p denote the probability that a randomly selected person is dissatisfied. We
have H0 W p � 10% and HA W p > 10%.

(b) X is a binomial distribution with parameters n D 400 and p D p.
(c) P-value for the observations is

PH0 .X � 53/ � PpD10%.X � 53/ D 1 � PpD10%.X � 52/

� 1 � G

�
52 � 40

6

�
D 1 � G.2/ D 1 � 0:997

D 2:28%:
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Since the P-value is less than the significance level, we reject the null hypothe-
sis. There is sufficient evidence to conclude that more than 10% of the customers
probably are dissatisfied.

9.7

(a) We assume that p D 1%, and find the probability that the accounting is not
rejected, i.e.

P.X � 3/ D P.X D 0/ C P.X D 1/ C P.X D 2/ C P.X D 3/:

i) Using the table for the Poisson distribution with parameter � D n � p D 4,
we find

P.X � 4/ D 0:0183 C 0:0733 C 0:1465 C 0:1954 D 43:35%:

ii) Exact computation gives

P.X � 4/ D
�

400

0

�
0:010 � 0:99400 C

�
400

1

�
0:011 � 0:99399

C
�

400

2

�
0:012 � 0:99398 C

�
400

3

�
0:013 � 0:99397

D 43:25%:

This is the probability that the accountant approves an accounting with too many
errors. The strength of this alternative is the probability that the accounting is
not approved, i.e.

Strength D 1 � 43:25% D 56:75%:

(b) Using normal approximation, we find n � p.1 � p/ D 3:96 and get

P.X � 3/ � G

�
3 � 4p

3:96

�
D G.�0:50/

D 1 � G.0:50/ D 1 � 0:6915 D 30:85%:

and

P.X � 3/ � G

�
3:5 � 4p

3:96

�
D G.�0:25/

D 1 � G.0:25/ D 1 � 0:5987 D 40:13%:

We see that integer correction gives a better result, but that both answers are
somewhat wrong. The reason is that n � p.1 � p/ D 3:96 < 5, and we are hence
considering a case where normal approximation is not recommended.
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9.8

(a) We have H0 W 	 D 0 and HA W 	 6D 0.
(b) We have VarŒX� D �2

n D 100;000;000
400

D 250;000. Which gives �ŒX� D 500. We
reject H0 when jXj � xlimit, where

PH0 .X � xlimit/ D 2:5%:

Since we have lots of observations, we can use the central limit theorem. When
H0 is true, then

PH0 .X � xlimit/ � G
�xlimit

500

�
D G.1:96/:

That gives

xlimit D 1:96 � 500 D 980:

(c) The strength of the alternative 	 D 2000, we find as follows:

P.X � 980/ � G

�
980 � 2000

500

�
D G.�2:04/

D 1 � G.2:04/ D 1 � 0:9793 D 2:07%:

This is the probability of a false negative. The strength is the complement, and
hence the strength is 97:93%.

9.9 The following conditions must be satisfied

PpD2:5%.X � xlimit/ D 95%; PpD5%.X � xlimit/ D 5%:

X is a binomial distribution, and we have EŒX� D n� ; �ŒX� D p
n � p.1 � p/: If

p D 2:5%, then EŒX� D n � 0:025; �ŒX� D p
n � 0:025 � 0:975: Using normal

approximation, we find

PpD2:5%.X � xlimit/ D 95% D G

�
xlimit � EŒX�

�ŒX�

�
D G.1:6449/:

This gives

xliimit D EŒX� C 1:6449 � �ŒX�;
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which gives rise to the equation

xlimit D n � 0:025 C 1:6449 �
p

n � 0; 025 � 0:975:

Similarly we can use p D 5% to find a new equation

xlimit D n � 0:05 � 1:6449 � p
n � 0:05 � 0:95:

If we equate the two expressions for xlimit and collect terms, we find

0:025n D 1:6449 � .
p

0:025 � 0:975 C p
0:05 � 0:95/

p
n;

i.e.,

p
n D 1:6449 � .

p
0:025 � 0:975 C p

0:05 � 0:95/

0:025
� 24:61;

which implies n D 606. Note: Since 606�0:025�0:975 D 14:77 > 10, approximation
with the normal distribution works fine.

9.10

(a) It is not reasonable to assume that Xi are independent. If, e.g., the stock price is
120 today, it is more likely that the price is 125 tomorrow than if the price
had been 80 today. There is hence reason to believe that the stock price in
the near future depends quite strongly on previous prices. The logarithmic
transformation below removes this problem.

(b) O	 D Y D 1
10

P10
iD1 Yi D 0:0612:

(c) VarŒY� D 1
100

P10
iD1 VarŒ Yi� D 0:001 ) �ŒY� � 0:0316.

0:05 D P.Y � Ylimit/ ) P.Y � Ylimit/ D 0:95:

G.1:645/ � 0:95 D P

 
Y � 	

�ŒY�
� Ylimit � 	

�ŒY �

!
D G

�
Ylimit � 	

�ŒY �

�
:

Hence

Ylimit D 	 C 1:645�ŒY� D 0:052:

Since O	 D 0:0612 > 0:052 D Ylimit, we reject the null hypothesis at 5%
significance level. There is hence reason to believe that the stock price increases.

(d) The P-value is found via P.Y � O	/ assuming that the null hypothesis is true.
Here
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P.Y � O	/

D P

 
Y � 	

�ŒY �
� O	 � 	

�ŒY �

!
D G

� O	 � 	

�ŒY�

�
D G.

0:0612

0:0316
/ D G.1:94/ � 0:974;

i.e.

P-value D P.Y � O	/ D 1 � P.Y � O	/ D 2:6%:

In other words we would reject H0 at 5% significance level, but we would not
be able to reject at 1% significance level.

9.11

(a) EŒX� D 	 and VarŒX� D �2

10
:

(b) Y is t-distributed with parameter 9.
(c) H0 W 	 D 0:15; HA W 	 > 0:15. We reject H0 when Y � Ylimit where

P. Y � Ylimit/ D 5%;

which using the 5% level in the t-table gives Ylimit D 1:833.
(d) We compute the observed value for Y assuming that H0 is true.

Y D 0:203 � 0:15
0:099p

10

D 1:19:

Since Y < Ylimit, we keep H0 at 5% significance level. There is reason to assume
that the result may be due to pure chance.

(e) The expression at the right side of the inequality, i.e., Ylimit � 0:053

SX=
p

10
is not a

constant. If we repeat the experiment, the value of the right-hand side would
probably change. This problem can be solved using theory of asymmetric t-
distribution.

9.12

(a) X is hypergeometric with parameters N D 100;000, M D 100;000 � p, and n D
1000. This distribution is very close to a binomial distribution with parameters
n D 1000 and p D p. When p is relatively small, we can approximate by a
normal distribution with parameters 	 D 1000 � p, �2 D 100;000�1000

100;000�1
� 1000 � p �

.1 � p/ (the first factor can be skipped). When p is relatively small, we can also
approximate by a Poisson distribution with parameter � D 1000 � p.

(b) H0 W p � 1%; Ha W p > 1%. Rejection limit: Find x such that

P.X � x/ D 5%:
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Put p D 0:01, � D 3:13

P.X � x/ � G

�
x � 10

3:13

�
D 5%;

i.e.

x � 10

3:13
D 1:645 ) x D 10 C 3:13 � 1:645 D 15:15:

Since the rejection limit must be an integer, we keep H0 if X � 15 and reject if
X � 16.

(c) To find the P-value we compute

P.X � 11/ D 1 � P.X � 10/ � 1 � G

�
10 � 10

3:13

�
D 50%:

Since the P-value is very large, there is no reason to reject H0.
(d) We need to compute P.X � 15/ assuming that p D 0:02. Then we get

P.X � 15/ � G

�
15 � 20

4:43

�
D G.�1:13/ D 1 � G.1:13/ D 1 � 0:8708 D 12:9%:

(e) When p D 1%, we can use the Poisson distribution with parameter � D 10.
Then we get

P.X � 15/ D 0:9513:

This corresponds well with 16 as rejection limit.

9.13

(a) Since X and Y both have normal distribution and the denominator is constant,
then U has normal distribution. The variables T and U are different; if we repeat
the experiment we will probably observe S2

X 6D 80;000.
(b) This is a two-sided test, and we use T as a test static. We reject if T � �z and

T � z, where P.T � z/ D 2:5%. Using the t-table with parameter 30, we find
z D 2:042. The rejection region is hence .�1; �2:042� [ Œ2:042; 1/. When
we compute T for our particular observation, we find T D 1:8. Since this value
is outside the rejection region, we cannot reject H0 at 5% significance level.

(c) U has normal distribution, but we have problems computing probabilities on the
form

P

�
U � EŒU�

�ŒU�
� z

�
:
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When the null hypothesis is true, EŒU� D 0, but we do not know �ŒU�. To
circumvent this problem we might use an estimated variance, but then we revert
to the original T static.

9.14

(a) We first compute SŒX� D SXp
8

D 6:13811: To find a 95% confidence interval, we
use the t-table with parameter � D 8 � 1 D 7. The 2.5% level in that table is
t D 2:365, and the limits for the confidence interval are

138:625 C ˙2:365 � 6:13811:

This provides us with the interval Œ124; 153�.
(b) Here we can try a one-sided test of H0 W 	 � 125 against HA W 	 > 125. As test

static we use T D X�125

SŒX�
. We insert the numbers from (a) and get T D 2:22. We

know that if H0 is true, then T is t-distributed with parameter 7. The rejection
limit for a one-sided alternative in that table is 1.895. Since T is in the rejection
region, we reject the null hypothesis.

If we compare with the confidence interval from (a), we see that the observed
value falls inside a 95% confidence interval. There is hence not sufficient evidence
to reject H0 in a two-sided test. This may seem as a contradiction, but one-sided
tests should only be used if we have additional information excluding alternatives
in the opposite direction. The conclusion in (b) is only valid if we can argue that
expected production cannot decline. If we have no such arguments, we should use a
two-sided test and keep a null hypothesis of no change.

9.15

(a)
(i)

P.X < 2%/ D G

�
2% � 5%

2%

�
D G.�1:5/ D 1 � G.1:5/ D 1 � 0:9332 D 6:68%:

(ii)

P.X > �1%/ D 1 � P.X < �1%/ D 1 � G

��1% � 5%

2%

�

D 1 � G.�3/ D G.3/ D 0:9987:

(b) We do not have reason to assume that this department are worse than the
others, hence the alternative hypothesis is that department has an expected yield
different from 5%. We let X denote the result for this department. From (a)
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we get

P.X < 2%/ D 6:68%:

Since the test is two-sided, the P-value is twice as big, i.e., 13.36%. There is
hence no reason to reject the null hypothesis.

(c) We let Y denote the result for the worst department and find

P. Y < �1%/ D 1�P. Y > �1%/ D 1�P.X > �1%/100 D 1�0:9987100 D 12:20%:

In a two-sided test, the P-value is twice as big, i.e., 24.40%. There is no reason
to reject the null hypothesis.

(d) In this case we are in some sense back to the case in (b). We have

P.X < �1%/ D 1 � 0:9987 D 0:13%:

The result the first year will further reduce the P-value, and hence the P-value
for a two-sided test must be less than 0:26%. We hence reject the null hypothesis
stating that this department was as good as all the others.

9.16

(a) Since we only include items of approved quality, it is hard to imagine that
the equipment suddenly performs better than normal. We can hence disregard
cases where expected production increases. If there is a change in expected
production, the change must be negative, and there is hence good reason to
use a one-sided test.

(b) Since Z has normal distribution

P.Z � z/ D G
� z � 	

�

�
D 0:05 D G.�1:645/:

That gives

z � 	

�
D �1:645 , z D 	 � 1:645 �:

(c) We must place the rejection limit such that

P.X1 < xgrense/ D 0:05:

Since X1 is normally distributed, we have from (b) that

xlimit D 100 � 1:645 � 5 D 91:78:

We reject H0 if the production is less than 91.78 units.
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(d) Let

Y D min
iD1;:::;10

Xi:

Then

P. Y � 92/ D 1 � P. Y � 92/ D 1 � P.X � 92/10:

We compute

P.X � 92/ D 1�P.X � 92/ D 1�G

�
92 � 100

5

�
D 1�G.�1:6/ D G.1:6/ D 0:9452:

That gives P.Y � 92/ D 1 � 0:945210 D 0:4308. The probability of this
happening is hence 43.08%.

(e) We should reject H0 when

P. Y � ygrense/ D 0:05:

That gives

P.X � ylimit/
10 D 0:95 ) P.X � ylimit/ D 1 � 0:951=10 D 0:0051:

Which implies

ylimit � 100

5
D �2:57 ) ylimit D 87:15:

We reject H0 when production is not more than 87.15 units.

9.17

(a) X is Bin[120,0.05].
(b)

P.X D 2/ D
 

120

2

!
0:0520:95118 D 4:2%:

P.X � 2/ D P.X D 0/ C P.X D 1/ C P.X D 2/

D
 

120

0

!
0:0500:95120 C

 
120

1

!
0:0510:95119

C
 

120

2

!
0:0520:95118 D 5:8%:
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(c) We cannot say anything sure about the probability for bankruptcy from only
one observation. A statistician would interpret this statement in terms of a
hypothesis test. With a null hypothesis stating p D 5%, we see that an
observation where X D 2 is not very rare (occurs in 4.2% of the cases). From
the computation in (b) we see that the P-value for a one-sided test is 5.8%.
In normal cases we would keep a null hypothesis stating p D 5%. We cannot
claim that the journalist is wrong, but can point out that 2 or less bankruptcies
will occur quite often even when p is as large as 5%.

(d) If the firms are relatively similar, the probability of bankruptcy will largely
depend on the market for such firms. Even when firms are quite different,
market prospects may depend on the general economic development. When the
economy is growing, we will see less bankruptcies than when it falls. If the
probability of bankruptcy depends on such external circumstances, we will see
more extreme distributions. In some years very few, while in other years they
may appear in large numbers. We cannot assume that X is binomial, and in any
case it will be much harder to reject p D 5% since the distribution is not clear.

9.18

(a) Since the P-value is very large, we cannot reject the null hypothesis. There is no
indication that the training has effect.

(b) If the school had been selected randomly, then a P-value of 4% would lead
to rejection when it is seen in isolation. Here, however, we have repeated the
experiment 25 times. If training has no effect, we expect to observe a P-value
of 4% in 1 out of 25 cases. The result is hence not surprising, and there is no
reason to assume that the training has effect when we see all the 25 cases in
conjunction.

Problems of Chap. 10

10.1 This is a binomial test and we compute

Z D 132 � 200 � 0:5
p

200 � 0:5 � .1 � 0:5/
D 4:53:

Since the test is two-sided, we look up z0:025 D 1:96 in the table over the standard
normal distribution. The observed value is greater than the rejection limit, and we
reject the null hypothesis. The conclusion is that p is probably not equal to 0.5.

10.2 This is a binomial test and we compute

Z D 25 � 50 � 0:6
p

50 � 0:6 � .1 � 0:6/
D �1:44:
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Since the test is two-sided, we look up z0:025 D 1:96 in the table over the standard
normal distribution. The observed value is well within the non-rejection region, and
we keep the null hypothesis that p D 0:6.

10.3 This is a binomial test and we compute

Z D 70 � 120 � 0:5p
120 � 0:5 � .1 � 0:5/

D 1:83:

Since the test is one-sided, we look up z0:05 D 1:65 in the table over the standard
normal distribution. The observed value is greater than the rejection limit, and we
reject the null hypothesis. The conclusion is that p is probably greater than 0.5.

10.4 We compute

SŒX� D 13:6p
12

D 3:93:

Since 	0 D 100, we find

T D 106:3 � 100

3:93
D 1:6:

The rejection limits we find from the t-table with parameter 11. We have a two-
sided test. Using 5% significance level, we look up the 2.5% level in the table.
This gives t.19�

0:025 D 2:201. The non-rejection region is hence .�2:201; 2:201/. Since
the observed value 1:6 is well within this region, we must keep the null hypothesis.
There is not sufficient evidence to support a claim that the expected value is different
from 100.

10.5 We compute

SŒX� D 22:1p
20

D 4:94:

Since 	0 D 0, we find

T D 16:9 � 0

4:94
D 3:42:

The rejection limits we find from the t-table with parameter 19. We have a two-sided
test. Using 5% significance level, we look up the 2.5% level in the table. This gives
t.19�
0:025 D 2:093. Since the observed value 1:6 is greater than the rejection limit, we

reject the null hypothesis. We have sufficient evidence to claim that the expected
value is probably different from zero.
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10.6 We compute

SŒX� D 3:22p
11

D 0:97:

Since 	0 D 10, we find

T D 12:96 � 10

0:97
D 3:05:

The rejection limits we find from the t-table with parameter 10. We have a one-sided
test. Using 5% significance level, we look up the 5% level in the table. This gives
t.19�
0:05 D 1:812. In this case we should reject H0 only if T � �1:812. This is not

the case here, so we have not sufficient evidence to claim that the expected value is
smaller than 10.

10.7 We compute X D 222 and Y D 192. We then calculate

S D
vuut 1

5 C 6 � 2

 
5X

iD1

.Xi � X/2 C
6X

iD1

. Yi � Y/2

!
D 30:98;

which gives

SŒ Oı� D S �
r

1

5
C 1

6
D 18:76:

The value of the test static is then

T D 222 � 192

18:76
D 1:60:

When the null hypothesis is true, T is t-distributed with parameter � D 5C6�2 D 9.
The rejection limit for a two-sided test is then 2.26 (using 5% significance level).
We keep the null hypothesis that there is no difference w.r.t. gender.

10.8 The mean value for department 1 is 131, and the mean value for department 2
is 124. A one-sided t-test in Excel returns a P-value equal to 3.06%. The difference
is hence significant, and we conclude that the expected production at department 1
is probably greater than the expected production at department 2.

10.9

(a) In this case the observations are paired, and the paired test is the one that makes
best use of the information. As the P-value from both tests fails to be significant,
we have no sufficient evidence to claim that the expectations are different.
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(b) It is hard to imagine that advertising might have a negative effect. We have
hence good reason to use a one-sided test for paired observations. H0 W 	1 D
	2 against HA W 	2 > 	1. The P-value for this test is half the value for a
two-sided test, i.e., 4%. At 5% significance level we have sufficient evidence to
claim that the expected sales volume is probably greater at department 2 than at
department 1.

10.10

(a) We have

Op1 D 190

250
; Op2 D 147

225
; Op D 337

475
:

We insert these quantities into the formula for U to get

U D Op1 � Op2r�
1
n1

C 1
n2

�
Op.1 � Op/

D 2:56:

Since we have a two-sided test, we use the table of the standard normal
distribution to look up z0:025 D 1:96. Since the observed value is greater than
the rejection limit, we conclude that the two groups probably have different
expectations. The P-value equals

2 � P.U � 2:56/ D 2 � .1 � 0:9948/ D 1:04%:

10.11

(a) We have

Op1 D 52

120
; Op2 D 75

140
; Op D 127

260
:

We insert these quantities into the formula for U to get

U D Op1 � Op2r�
1
n1

C 1
n2

�
Op.1 � Op/

D �1:65:

Since we have a two-sided test, we use the table of the standard normal
distribution to look up z0:025 D 1:96. Since the observed value is within the
non-rejection region, we do not have sufficient evidence to claim that the two
groups have different expectations.
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10.12 In the chi-square test we have n D 500 and p1 D p2 D p3 D p4 D 0:25. We
then get

Q D .129 � 125/2

125
C .140 � 125/2

125
C .113 � 125/2

125
C .118 � 125/2

125
D 3:472:

When H0 is true, then Q is chi-square distributed with parameter 3. At 5%
significance level we should reject if Q � 7:81. As this is not the case here, we
keep the null hypothesis. There is no sufficient evidence to claim that any of the
products are more liked than the others.

10.13 In the chi-square test we have n D 300 and p1 D p2 D p3 D 1=3. We then
get

Q D .98 � 100/2

100
C .120 � 100/2

100
C .92 � 100/2

100
D 4:68:

When H0 is true, then Q is chi-square distributed with parameter 2. At 5%
significance level we should reject if Q � 3:89. As this is the case here, we reject
the null hypothesis. There is sufficient evidence to claim that some of the products
are probably more liked than the others.

10.14 We first write the observed numbers in the first column. Then we multiply
the percentages with 1000 and write these numbers in the second column. The
command =CHITEST(A1:A10;B1:B10) returns the P-value 53.90%. There is hence
no reason to reject the null hypothesis.

10.15 In the chi-square test n D 800; p1 D 0:4; p2 D 0:3; p3 D 0:3. Then

Q D .345 � 320/2

320
C .238 � 240/2

240
C .217 � 240/2

240
D 4:174:

When H0 is true, then Q is chi-square distributed with parameter 2. At 5% level of
significance we should reject H0 if Q � 5:99. This is not the case here, so the test
does not provide sufficient evidence that opinions have changed.

10.16 In the chi-square test n D 400 and

p1 D 0:243; p2 D 0:213; p3 D 0:146; p4 D 0:125; p5 D 0:124; p6 D 0:149:

In the poll 92 people answered party A, 72 B, 68 C, 40 D, and 64 E. Then we get

Q D .92 � 0:234 � 400/2

0:234 � 400
C .72 � 0:213 � 400/2

0:213 � 400
C .68 � 0:146 � 400/2

0:146 � 400

C .64 � 0:125 � 400/2

0:125 � 400
C .40 � 0:124 � 400/2

0:124 � 400
C .64 � 0:149 � 400/2

0:149 � 400

D 10:00:
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When H0 is true, then Q is chi-square distributed with parameter 5. At 5% level of
significance we should reject H0 if Q � 11:11. This is not the case here, so the test
does not provide sufficient evidence that opinions have changed.

10.17 In the chi-square test n D 1000. The probability of X errors in 3 independent
trials in a binomial distribution. Hence

P.X D 0/ D
�

3

0

�
0:0600:943 D 0:8306;

P.X D 1/ D
�

3

1

�
0:0610:942 D 0:1590;

P.X D 2/ D
�

3

2

�
0:0620:941 D 0:0102;

P.X D 3/ D
�

3

3

�
0:0630:940 D 0:0002:

Then

Q D .829 � 830:6/2

830:6
C .163 � 159/2

159
C .6 � 10:2/2

10:2
C .2 � 0:2/2

0:2
D 18:03:

When H0 is true, then Q is chi-square distributed with parameter 3. At 5%
significance level we should reject if Q � 7:81. As this is the case here, we reject the
null hypothesis. There is sufficient evidence to claim that some of the distribution is
probably not binomial.

10.18 We first need to find the marginals. The results are shown in Table 6.

Table 6 Marginal totals Credit rating Unmarried Married Total

A 200 300 500

B 140 260 400

C 40 60 100

Total 380 620 1000

To execute the test, we also need to make a table over the expected values in each
entry. Formally we use the formula Eij D AiBj

n , but we might just as well multiply
the fractions and multiply these answers with n D 1000. In both cases we end up
with Table 7.

Now we can compute the Q-value:

Q D .200 � 190/2

190
C .300 � 310/2

310
C .140 � 152/2

152



Solutions 421

Table 7 Expected ratings
under independence

Credit rating Unmarried Married Total

A 190 310 500

B 152 248 400

C 38 62 100

Total 380 620 1000

C .260 � 248/2

248
C .40 � 38/2

38
C .60 � 62/2

62

D 2:55:

To find the rejection limit we must use a chi-square table with parameter � D
.2 � 1/.3 � 1/ D 2. Using 5% significance level, the rejection limit in that table is
5.99. Our observed Q is smaller than the rejection limit, and we are unable to reject
the null hypothesis stating independence. In other words we do not have sufficient
evidence to claim that there is a connection between marital status and credit rating,

10.19 We first need to find the marginals. The results are shown in Table 8.

Table 8 Marginal totals Reason Hotel A Hotel B Hotel C Total

Too expensive 50 100 150 300

Bad attractions 100 200 100 400

Bad cleaning 150 100 50 300

Total 300 400 300 1000

To execute the test, we also need to make a table over the expected values in each
entry. Formally we use the formula Eij D AiBj

n , but we might just as well multiply
the fractions and multiply these answers with n D 1000. In both cases we end up
with Table 9.

Table 9 Expected results
under independence

Reason Hotel A Hotel B Hotel C Total

Too expensive 90 120 90 300

Bad attractions 120 160 120 400

Bad cleaning 90 120 90 300

Total 300 400 300 1000
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Now we can compute the Q-value:

Q D .50 � 90/2

90
C .100 � 120/2

120
C .150 � 90/2

90

C .100 � 120/2

120
C .200 � 160/2

160
C .100 � 120/2

120

C .150 � 90/2

90
C .100 � 120/2

120
C .50 � 90/2

90

D 138:89:

To find the rejection limit we must use a chi-square table with parameter � D .3 �
1/.3 � 1/ D 4. Using 5% significance level, the rejection limit in that table is 9.49.
Our observed Q is far above the rejection limit, and we reject the null hypothesis
stating independence. In other words there is probably a connection between the
hotel that was used and the answer that was given.

10.20

(a) The null hypothesis is that there is no change in the distribution of answers,
while the alternative hypothesis is that there has been a change. We should make
use of a chi-square table with parameter 4, and at 5% significance level we
should reject the null hypothesis if Q � 9:49:

Q D .188 � 148/2

148
C .80 � 74/2

74
C .330 � 370/2

370

C .92 � 111/2

111
C .50 � 37/2

37
D 23:44:

Since Q � 9:49 we reject the null hypothesis, and we have sufficient evidence
to claim that the customers probably have changed opinions.

(b) We should make use of a chi-square table with parameter 1, and at 5%
significance level we should reject the null hypothesis if Q � 3:84:

Q D .598 � 592/2

592
C .142 � 148/2

148
D 0:304:

Since Q < 3:84, we keep the null hypothesis. We do not have evidence that
the distribution of satisfied/dissatisfied has been altered. This suggests that
the changes reported in (a) is due to internal changes within the two groups
satisfied/dissatisfied.

(c) X5�np5p
np5.1�p5

is approximately standard normal under these assumptions. That gives

P.X5 � 50/ D 1�P.X5 � 49/ D 1�G

�
49 � 37p
37 � 0:95

�
D 1�G.2:02/ D 0:0217:
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If the customers have the same opinions as before, there is only 2% probability
of finding as many very dissatisfied customers as we observed. There is hence
reason to believe that the fraction of very dissatisfied customers has increased.

10.21 R is Bin[6,0.5]. We can find the values from a table or directly from the
definition of binomial probabilities. We get

p0 D 0:015625; p1 D 0:09375; p2 D 0:234375; p3 D 0:3125;

p4 D 0:234375; p4 D 0:09375 p6 D 0:015625:

(b) A chi-square test can be formulated as follows:

H0 W The probabilities are equal to the probabilities from (a).

HA W The probabilities are not equal to the probabilities from (a).

Let Xi be the number of persons with exactly i correct answers. As test static we
use

Q D
6X

iD0

.Xi � 300 � pi/
2

300 � pi
:

When the null hypothesis is correct, Q is approximately chi-square distributed with
parameter 6. Using 5% significance level, we should reject H0 if Q � 12:6. If we
insert the observed numbers, we get Q D 10:41. We keep the null hypothesis, and
cannot be reasonably sure that the distribution of answers are different from what
we would expect if all participants were guessing the answers.

10.22

(a) X1 D BinŒn1; p1� and X2 D BinŒn2; p2�.
(b) H0 W p1 � p2 against HA W p1 > p2. We insert the values and find U D 1:51.

Since U is approximately standard normal, the P-value is given by

P D P.U � 1:51/ D 1 � P.U � 1:51/ D 1 � G.1:51/ D 1 � 0:9345 D 6:5%:

At 5% significance level we would keep the null hypothesis, which means that
the results may be coincidental.

(c) It may happen that a company focuses funds within a particular branch, i.e.,
information technology. If information technology companies are doing well,
all the funds will be doing well, and if the market for such companies declines,
the majority of the funds will perform badly. The result of each different fund is
hence strongly dependent on how the other funds are doing.
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10.23

(a) A chi-square test is well suited for this situation. The null hypothesis is that
the probability that a randomly chosen customer prefers product number i is
given by

p1 D 0:1; p2 D 0:2; p3 D 0:15; p4 D 0:3; p5 D 0:1; p6 D 0:15:

The alternative hypothesis is that the probabilities are not like that. As test static
we use

Q D
6X

iD1

.Xi � n pi/
2

n pi
:

When H0 is true, this test static is approximately chi-square distributed with
parameter 5. Using 5% significance level, we should reject H0 if Q � 11:1. The
rejection region is Œ11:1; 1/.

(b) We find

Q D .28 � 20/2

20
C .42 � 40/2

40
C .25 � 30/2

30

C .52 � 60/2

60
C .25 � 20/2

20
C .28 � 30/2

30

D 6:58:

Since the value of Q is below the rejection limit, we keep the null hypothesis.
The tendency in our data material is not sufficient strong to support a claim that
opinions have changed. From the table we see that the P-value is slightly larger
than 25%. (25% gives Q D 6:63).

10.24

(a) Any t-test takes the t-distribution as a starting point, which requires data to be
approximately normal. Since the P-value is lower than the significance level,
we should reject the null hypothesis. If all the requirements are satisfied, we
conclude that the two departments probably have different expected production.

(b)

P.X � 125/ D G

�
125 � 106:15p

36:87

�
D G.3:1/ D 0:999:

P.Largest � 125/ D 1 � P.All � 125/ D 1 � P.X � 125/20

D 1 � 0:99920 D 1:98%:
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(c) Since the P-value is far less than the significance level, we confidently reject
the null hypothesis. Our data are probably not normally distributed. This means
that we cannot trust the test in (a). We hence do not have sufficient evidence to
claim that the two departments have different expected production.

10.25

(a) We first find

SŒ Oı� D
s

42:71 �
�

1

8
C 1

8

�
D 3:27:

That gives

T D 124 � 130:63

3:27
D �2:03:

This is a one-sided test with 5% significance level. The parameter is � D 8 C
8 � 1 D 14, and from this t-table we find t.14/

0:025 D 1:761. The training has effect
if 	X < 	Y , and we use the hypotheses H0 W 	X � 	Y and HA W 	X < 	Y . We
can reject H0 if T � �1:761. Since this is the case, we reject the null hypothesis
and claim that the training probably had effect.

(b) To compute W we sort the values in ascending order and underline the values
from the first group. That gives

113; 118; 119; 123; 124; 125; 126; 127; 128; 129; 130; 131; 132; 133; 139; 140:

To compute W we sum the positions of the underlined numbers, i.e.

W D 1 C 2 C 3 C 5 C 8 C 9 C 12 C 13 D 53:

We compute

EŒW� D 1

2
� 8.8 C 8 C 1/ D 68:

VarŒW� D 1

12
.8 � 8.8 C 8 C 1/ D 90:67:

That gives

Z D 53 � 68p
90:67

D �1:58:



426 Solutions

This is a one-sided test with 5% significance level. From the table of the standard
normal distribution we get z0:05 D 1:6449: The hypotheses are the same as in
(a), and we should reject H0 if Z � �1:6449. This is not the case, so we keep
H0 as we are not sufficiently sure there is an effect.

(c) We see that the two tests give opposite conclusions. If we have information that
implies that data are not normally distributed, the assumptions for the t-test fails
and we must disregard that result. The only valid conclusion is the one from (b).

10.26

(a)

EŒW� D 1

2
� 20 � .20 C 20 C 1/ D 410:

VarŒW� D 1

12
� 20 � 20 � .20 C 20 C 1/ D 1366:67:

We sort the observations in ascending order and underline the observations from
group 1:

195; 206; 210; 211; 212; 214; 218; 219; 220; 224;

227; 228; 229; 232; 235; 237; 238; 239; 240; 241;

245; 246; 247; 248; 251; 252; 253; 259; 260; 263;

264; 268; 275; 276; 279; 283; 285; 286; 288; 296:

W is the sum of the positions of the underlined numbers, i.e.

W D 3 C 9 C 10 C 11 C 12 C 15 C 16 C 17 C 18 C 21

C24 C 25 C 26 C 28 C 32 C 35 C 36 C 37 C 38 C 39

D 452:

This gives

Z D 452 � 410p
1366:67

D 1:14:

Since this is a one-sided test with 5% significance level, we find z0:05 D 1:6449:

We should hence reject H0 if Z � 1:6449. As this is not the case, we keep the
null hypothesis and do not have sufficient evidence to claim that the expected
working time has been reduced.
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(b)

EŒW� D 1

4
� 20 � .20 C 1/ D 105:

VarŒW� D 1

24
� 20 � .20 C 1/ � .2 � 20 C 1/ D 717:5:

We take the numbers from group 2 and subtract the corresponding numbers
from group 1. That gives

�21; 3; 6; �18; �12; �16; �8; �5; �14; 1;

�19; �24; �7; �2; �25; �4; �13; 15; �22; 10:

The next step is to sort the observation in ascending order with respect to
absolute value, and then underline the negative numbers.

1; �2; 3; �4; �5; 6; �7; �8; 10; �12; �13�14;

�15; �16; �18; �19; �21; �22; �24; �25:

V is the sum of the positions of the underlined items:

V D 2C4C5C7C8C10C11C12C13C14C15C16C17C18C19C20 D 191:

That gives

Z D 191 � 105p
717:5

D 3:21:

Since this is a one-sided test with 5% significance level, we find z0:05 D 1:6449:

We should hence reject H0 if Z � 1:6449. This is true, and we hence reject
the null hypothesis and claim that the expected working time has probably been
reduced.

(c) The test in (b) is the one that best makes use of the given information. The
observations are paired, and the test in (a) does not take this into account. There
is no contradiction here. The conclusion in (a) is that we do not have sufficient
evidence to reject the null hypothesis. When more precise information is given,
we can execute a more refined test. We conclude that the expected working time
has probably been reduced.
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10.27

(a)

Op1 D 10

100
Op2 D 8

120
Op D 18

220:

That gives

U D Op1 � Op2q�
1

100
C 1

120

� Op.1 � Op/
D 0:90:

We let p1 be the probability for error before training and p2 be the probability
for error after training, In this case H0 W p1 D p2 and HA W p1 > p2. It is not
reasonable that training of this sort will increase the probability for errors. We
can hence disregard cases where p1 < p2. That means that it is legitimate to use
a one-sided test in this case.

P-value D P.U � 0:90/ D 1 � P.U � 0:90/ D 1 � G.0:90/ D 1 � 0:8159 D 18:41%:

Since the P-value is large, there is no reason to reject the null hypothesis saying
that training had no effect.

(b) It is easy to realize that training of this kind might reduce the efficiency of
production, and hence a two-sided test is appropriate here.

10.28

(a) It is unreasonable that training should lead to lower production, and we can then
use one-sided tests.

H0 W Expected production is the same before and after training:

HA W Expected production is larger after training:

(b) t-test: The P-value is large and we must keep the null hypothesis that expected
production is the same as before. Training does not appear to have had effect.

The Wilcoxon test: The P-value is very small, and we reject the hull
hypothesis and claim that expected production probably has increased.

(c) If we inspect to observed pairs, we see that in all cases except the last pair,
production has increased after training. The last pair is very different from all
the others and pulls the conclusion in the opposite direction. Either the last pair
is a mistyping, or data are probably not normally distributed. In either case we
should rely on the result from the Wilcoxon test. A general advantage of the
Wilcoxon test over t-tests is that it is less sensitive with respect to outliers, i.e.,
observations that are very different from the rest.
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10.29

(a) Here we have H0 W 	X � 	Y and HA W 	X < 	Y . Using the formulas for the
Wilcoxon test, we get

EŒW� D 1

2
� 50 � .50 C 50 C 1/ D 2525:

VarŒW� D 1

12
� 50 � 50 � .50 C 50 C 1/ D 21;041:67:

(b) We find

Z D 2455 � 2525p
21;041:67

D �0:48:

In this case we should reject H0 if Z � �1:6449. This is not the case here, so
we keep the null hypothesis saying that training has no effect.

(c) EŒV� D 1
4
50 � 51 D 637:5, VarŒV� D 1

24
50 � 51 � 101 D 10;731:25:

(d) We get Z D 604�637:5p
10;731:25

D �0:32: In this case, too, we should reject H0 if Z �
�1:6449: This is not the case here, so we keep the null hypothesis saying that
training has no effect.

(e) After sorting we find Z D 664�637:5p
10;731:25

D �2:64: If this value had made sense, it
would have lead to rejection. The problem is that the sorting breaks the pairing
of the data, and we are not allowed to use a paired test on the sorted data.

(f) As mentioned under (e), a paired test cannot be used on the sorted data. The
only valid conclusion comes from (d), which do not find sufficient evidence to
claim that training had effect.

Remark The sorting in (e) will in general create strong effects. We typically get
values for Z in the interval Œ�25; 25� even when there is no effect present, and Z will
not be approximately normal (under H0) in this case. Such creative processing of
data is a very serious mistake.

10.30

(a) We compute

SŒ Oı� D S �
s

1

n1

C 1

n2

D 43;000 �
r

1

5000
C 1

7000
D 796:21:

T D 312;000 � 310;000

796:21
D 2:51:
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Since we have a two-sided test with 5% significance level, we find
t.11;998/
0:025 D 1:96 (with so many observations there is no difference between

the t-distributions and the standard normal distribution). Since T D 2:51 >

1:96 D t.11;998/
0:025 , we reject the null hypothesis stating equal expected wages, and

conclude that expected wages probably are different in the two regions.
(b) We compute

T1 D 2000 C 5000

796:21
D 8:79; T2 D 5000 � 2000

796:21
D 3:77:

In this case we find t.11;998/
0:05 D 1:645. Since minŒT1; T2� D 3:77,

minŒT1; T2� > 1:645 D t.11;998/
0:05 ;

and we reject the null hypothesis stating that expected wages are not equivalent,
and conclude that the difference in expected wages is probably so small that it
is unimportant.

Remark The exercise illustrates a general weakness of classical hypothesis testing.
If we have many observations, even the slightest difference will lead to rejection of
a null hypothesis stating equality. In such cases an equivalence test may be more
suited to shed light on the situation. It should be noted, however, that an equivalence
test is to some extent in conflict with basic principles of classical hypothesis testing
where one nearly always starts out with a null hypothesis stating equality.

10.31

(a) The answer q D 31:4 we find from the chi-square table with parameter � D 20.
(b) The rejection limit follows from (a). We reject if

2 � 10 � X

10
� 31:4 , X � 15:7:

Since the observed value X D 15 is below the rejection limit, we keep H0.
We note that even though the observed value appears to be quite far from the
expected value 
 D 10, this is not sufficient for rejection.

(c) By the strength of the alternative 
 D 20, we mean the probability of rejecting
H0 when the true value of 
 is 20. We reject when X � 15:7, and that gives

P.X � 15:7/ D P

 
2 � 10 � X

20
� 2 � 10 � 15:7

20

!
D P.Q20 � 15:7/ � 75%;

(the closest number we find in the table is 15.5, and the strength is hence slightly
smaller that 75%). To answer the last question, we must try out different values
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of n. If n D 50, we should use the chi-square table with parameter 100. We
reject when Q � 12:4, and the strength of the alternative 
 D 12:5 becomes

P.X � 12:4/ D P

�
Q100 � 2 � 50 � 12:4

12:5

�
D P.Q100 � 99:2/ � 50%;

(the closest number we find in the table is 99.3, and the strength is hence slightly
above 50%).

10.32

(a) We compute

SŒ Oı� D S �
s

1

n1

C 1

n2

D 2900 �
s

1

15;000
C 1

10;000
D 37:44:

That gives

T D 32;378 � 32;209

37:44
D 4:51:

Here we have lots of observations, and there is no difference between the t-
distributions and the standard normal distribution. Hence t.�/

2:5% D 1:96. Since T
is far above the rejection limit, we reject H0 and conclude that the difference
in expected wages is strongly significant. The wording strongly significant
is sometimes used when the P-value is less than 1%, but note that strongly
significant does not in any way mean the same as very important.

(b) A 95% confidence interval we find by

X � Y ˙ t.�/

˛=2 � SŒ Oı� D 32;378 � 32;209 ˙ 1:96 � 37:44:

which gives the interval Œ95; 242�. We see that the difference in expected wages
is quite modest even though the difference is strongly significant. In cases with
many observations, confidence intervals are often more informative as they
provide a clear indication of how large the difference can be expected to be.

10.33

(a)

Xbefore D 1 � 160

960
C 2 � 160

960
C 3 � 160

960
C 4 � 160

960
C 5 � 160

960
D 3:

Xafter D 1 � 264

1379
C 2 � 310

1379
C 3 � 230

1379
C 4 � 115

1379
C 5 � 460

1379
D 3:14:
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(b)

SŒ Oı� D 1:47 �
r

1

960
C 1

1379
D 0:062; T D 3 � 3:14

0:062
D �2:25:

From the table of the standard normal distribution, the rejection limit at 5%
significance level is �1:65. Since the observed value is less than this, we reject
the null hypothesis and claim that the expected answer (whatever that might be)
has increased significantly.

(c) The test in (b) is problematic. Data are not scaled; we probably do not mean that
5 (very satisfied) is 5 times better than 1 (very dissatisfied) or 25% better than 4
(somewhat satisfied). It is not even clear that the mean value has any meaningful
interpretation. Overall the whole analysis is questionable.

(d) (i) Here we have Op1 D 160
960

; Op2 D 460
1379

, and Op D 160C460
960C1379

. Inserting these
values, we find

U D Op1 � Op2q�
1

960
C 1

1379

� Op.1 � Op/

D �9:00:

The effect is strongly significant, and we conclude that there are probably
more very satisfied customers than before.

(ii) Here we merge the data from answers 4 and 5. That gives

Op1 D 240 C 160

960
; Op2 D 115 C 460

1379
; Op D 240 C 160 C 115 C 460

960 C 1379
:

Inserting these values, we find

U D Op1 � Op2q�
1

960
C 1

1379

� Op.1 � Op/

D �0:015:

This value is well inside the non-rejection region, and there is no reason to
claim that there are more satisfied customers than before.

(iii) Here we have Op1 D 160
960

; Op2 D 264
1379

, and Op D 160C264
960C1379

. Inserting these
values, we find

U D Op1 � Op2q�
1

960
C 1

1379

� Op.1 � Op/

D �1:53:

Here we notice a tendency that the fraction of very dissatisfied customers
has increased, but the effect is not sufficient for rejection. The result
may be due to chance, and we must keep the null hypothesis stating no
difference. Note that when we use one-sided tests here, we tacitly assume
that more support cannot lead to more dissatisfaction. That strengthens the
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impression that the increase is due to chance. Strictly speaking the test in
(iii) does not make sense under these assumptions.

(e) The serious problems that we pointed out with the test in (b) are not present
here. Quite the contrary, these tests are credible and are clearly the right tools
for handling these data.

10.34

(a)

EŒX� D E

"
1

100

100X

iD1

Xi

#
D 1

100

100X

iD1

EŒXi� D 1

100

100X

iD1

489 D 489:

VarŒX� D Var

"
1

100

100X

iD1

Xi

#
D 1

1002

100X

iD1

VarŒXi� D 1

1002

100X

iD1

902 D 81:

It is not necessary to show these calculations. Alternatively we can just refer to
well-known principles from the book.

(b) From (a) we have EŒX� D 489 and �ŒX� D 9. That gives

P.X � 463/ D G

�
463 � 489

9

�
D G.�2:89/ D 1 � G.2:89/ D 1 � 0:9981 D 0:0019:

(c) From (b) we see that

P.X � 463/ D 0:9981:

The probability that all the 500 schools have a mean score above 463 is hence

0:9981500 D 0:386392:

(d) We use the equivalence

The worst school has a result � 463 , Not all schools have a score > 463

The score has normal distribution, and hence the probability of a mean score
equal to 463 is zero. That gives

P.The worst school has a result � 463/ D 1 � 0:9981500 D 61:36%:

Even though a randomly selected school has very little probability of scoring
463 or less, it is very likely that at least one of the schools performs at such low
level.



434 Solutions

10.35

(a) This result is perfectly normal. If all the departments are equally good, a P-value
of 4% will occur in one out of 25 cases. Since the company has 100 production
departments, there is nothing strange with this value. The management should
not take any action.

(b) This result is not normal. If all departments are equally good, a P-value of 0.01%
will only occur in 1 out of 10;000 cases. Even when we take into account that
the company has 100 production departments, this result is unusually bad. The
management should take swift action and see if they are able to identify a cause
for this.

(c) Independence gives

P

�
min

1�i�100
Z1 � 10

�
D 1 � P.Zi � 10/100:

We need to compute

P.Zi � 10/ D 1 � P.Zi � 10/ D 1 � P.Xi � lnŒ10�/ D 1 � G

�
lnŒ10� � 10

3

�

D 1 � G.�2:57/ D G.2:57/ D 0:9949:

That gives

P

�
min

1�i�100
Z1 � 10

�
D 1 � 0:9949100 D 40:03%:

10.36

(a) We compute SŒ Oı� D 23:23 �
q

1
40

C 1
40

D 5:19. That gives

T D 101:75 � 112:12

5:19
D �2:00:

Rejection is decided from a t-table with parameter 78, the table with parameter
80 suggests rejection when T � �1:664. We see from the table that the P-value
is about 2.5%. We are able to reject the null hypothesis, and draw the conclusion
that the expected value is probably greater in group 2.

(b) If we repeat the computations from (a) using new values, we get

SŒ Oı� D 19:91 �
r

1

10
C 1

10
D 8:90:
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That gives

T D 103:62 � 110:88

8:90
D �0:82:

Rejection is decided from a t-table with parameter 18, and the table suggests
rejection when T � �1:734. Seen in isolation, this result does not give cause
for rejection.

(c) That the strength is as low as 25% means that we in 3 out of 4 cases will do a type
II error, i.e., keep a wrong null hypothesis. We should hence not be surprised
when the new test does not confirm the result from (a). Quite the contrary, this
is something that will happen in a majority of cases. It is hence not a good idea
to try to confirm the result in this way. To avoid seemingly contradictory results
as this, it is important that the confirmation has sufficient strength. In our case
a confirmation should build on more than 100 observations in each group. If we
simply repeat the data collection in (a) with 40 observations in each group, the
strength is still no more than about 65%, meaning that 1 out of 3 samples does
not confirm a significant effect.

(d) If we merge the data from (a) and (b), we find

SŒ Oı� D 22:42 �
r

1

50
C 1

50
D 4:48:

This gives

T D 102:12 � 111:88

4:48
D �2:18:

Rejection is decided from a t-table with parameter 98, the table with parameter
100 suggests rejection when T � �1:660. We see that the two datasets in
total gives a clear rejection, and that the rejection is even clearer than in (a).
It may appear contradictory that (b) in fact supports the finding in (a), but the
explanation is that (b) too gives a result in the same direction as (a), i.e., X < Y .

Problems of Chap. 11

11.1 (a) Suitable. (b) Nonlinear, unsuitable. (c) Suitable. (d) No particular pairing,
partly unsuitable.

11.2 We choose the points t D 0; x D 10 and t D 20; x D 0. The two point formula
gives

x D 10 � 0

0 � 20
� .t � 0/ C 10 D �1

2
� t C 10:
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11.3 Here we have t1 D 1; t2 D 3; t3 D 5; t4 D 7 and X1 D 3; X2 D 7; X3 D
9; X4 D 9. We insert those values into the formulas

t D 1

4
.1 C 3 C 5 C 7/ D 4;

X D 1

4
.3 C 7 C 9 C 9/ D 7;

Ǒ D 1

.1 � 4/2 C .3 � 4/2 C .3 � 4/2 C .7 � 4/2

�..3 � 7/.1 � 4/ C .7 � 7/.3 � 4/ C .9 � 7/.5 � 4/ C .9 � 7/.7 � 4//

D 1

20
� 20 D 1:

Ǫ D X � Ǒ t D 7 � 1 � 4 D 3:

The regression line is

OX D 3 C t:

11.4 We compute

SŒ Ǒ� D
r

5:702

770
D 0:205:

If ˇ D 0, then

T D
Ǒ � ˇ

SŒ Ǒ� D 2:06

2:43
D 10:05:

Under H0, T is t-distributed with parameter � D 19. In a two-sided test with 5%
significance level, we should reject H0 when

jTj � 2:093:

The rejection criterion is satisfied, and we claim that the effect of time t is
statistically significant.

11.5 We compute

SŒ Ǒ� D
r

5:372

340
D 0:291:
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If ˇ D 0, then

T D
Ǒ � ˇ

SŒ Ǒ� D �0:32

0:291
D 1:10:

Under H0, T is t-distributed with parameter � D 14. In a two-sided test with 5%
significance level, we should reject H0 when

jTj � 2:145:

The rejection criterion is not satisfied, and we are unable to claim that time t has
significant effect.

11.6

(a) When t D 15, then

OX D 78:31 � 3:01 � 15 D 33:16:

We have

SŒ OX� D 5:81 �
r

1

12
C .15 � 5:5/2

143
D 4:91:

We hence estimate

EŒX� D 33:16 ˙ 4:91:

(b) Here we compute

SŒ OX � X� D 5:81 �
r

1 C 1

12
C .15 � 5:5/2

143
D 7:61:

The predicted value is

X D 33:16 ˙ 7:61:

(c) Since the variance is unknown, we use the t-distribution with parameter � D 10.
The two 95% confidence intervals hence have the limits

33:16 ˙ 2:228 � 4:91 ! Œ22:22; 44:10�;

and

33:16 ˙ 2:228 � 7:61 ! Œ16:20; 50:12�:
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11.7

(a) When t D 40, then

OX D 64:37 C 1:81 � 40 D 136:77:

We have

SŒ OX� D 5:76 �
r

1

32
C .40 � 15:5/2

2728
D 2:89:

We hence estimate

EŒX� D 136:77 ˙ 2:89:

(b) Here we compute

SŒ OX � X� D 5:76 �
r

1 C 1

32
C .40 � 15:5/2

2728
D 6:44:

The predicted value is

X D 136:77 ˙ 6:44:

(c) Since the variance is unknown, we use the t-distribution with parameter � D 30.
The two 95% confidence intervals hence have the limits

136:77 ˙ 2:042 � 2:89 D Œ130:87; 142:67�;

and

136:77 ˙ 2:042 � 6:44 D Œ123:61; 149:92�:

11.8 The residual is the difference between the point on the regression line and the
corresponding observed value. We have t1 D 1 and X1 D 3.

OX1 D 3 C t1 D 3 C 1 D 4:

The first residual is hence

OR1 D X1 � OX1 D 3 � 4 D �1:
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Similarly we find

OR2 D X2 � OX2 D 7 � 6 D 1;

OR3 D X3 � OX3 D 9 � 8 D 1;

OR4 D X4 � OX4 D 9 � 10 D �1:

11.9

(a) We see that education is strongly significant. The explanatory power is about
23%, and one year of extra education offers an increase of 1896 USD in
expected wages.

(b) The four variables exhibit multicollinearity. For example is

prof 4 D 1 � prof 1 � prof 2 � prof 3:

When dummy variables are used in regression, one of the dummies must be
deleted.

(c) We see that the variables practice, gender, and profession are strongly signif-
icant. Education is clearly nonsignificant, even the sign makes no sense. The
explanation is multicollinearity between education and profession. This is later
confirmed by the findings in (d). The reason why education is significant in (a)
is not that extra education is good in itself, but it is likely that long education is
needed to get work in the professions that pay more. The profession is probably
the primary cause for high salary, and education fails to be significant when
profession is included as explanatory variable.

(d) Since R2 > 90%, we interpret this as multicollinearity between education and
profession. This suggest that we may delete education as explanatory variable.

(e) Now all explanatory variables are strongly significant. The explanatory power
is 96% and has not been reduced by deleting the variable education. This is a
better model.

(f) We use the model from (e), and find

1wages D 14;924 C 506 � 12 C 10;072 � 1 D 31;063:

All the other terms are zero.

11.10

(a) Method is not a scale variable and cannot be used directly in a regression. The
results here are all without meaning.

(b) Using X1 and X2 we have coded method via dummy variables. Contrary to (a)
this is a valid construction, and the results show that time and method are both
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strongly significant. In addition we see that the model has explanatory power
91.5%, which is great.

(c) As mentioned above (a) is pointless and only the model in (b) carries weight.
From the regression

4production D 195:9 C 9:67 � time � 43:77 � X1 � 34:11 � X2;

we see that the coefficients in front of X1 and X2 are both negative. That means
that maximum expected/predicted value is obtained when X1 and X2 are both
zero. This case occurs when we use method 2. Method 2 is hence the one with
the best expected/predicted value.

11.11 The histogram resembles the normal distribution, normal score is approxi-
mately a straight line, and the residuals are fairly symmetric and do not change along
the axes. In total the assumptions of independent, normally distributed residuals
appear to be satisfied.

11.12 The histogram does not resemble the normal distribution, the normal score
is not a straight line, and the residuals exhibit noticeable trends. Everything goes
wrong here, and the assumption of independent, normally distributed residuals does
not appear to be satisfied.

11.13

(a) The observations do not lie in the vicinity of a straight line, the normal score
is not a straight line, the histogram does not resemble the normal distribution,
and the residuals have obvious trends. Conclusion: None of the standard criteria
appears to be satisfied, and linear regression serves no purpose in this case.

(b) The observations lie in the vicinity of straight line, the normal score is a fairly
straight line, and the residuals are fairly symmetric without noticeable trends.
Residual versus fitted values is maybe not fully symmetric at the right side, but
that is due to a low number of observations, and does not indicate that something
is wrong. Conclusion: All the standard criteria appears to be satisfied, and a
linear regression appears to make good sense.

(c) If we insert p D 110, we find

blnŒQ� D 8:91 � 0:914 lnŒ110� D 4:61:

That gives

OQ D e4:61 D 100:

An estimate for the expectation of Q hence 100.
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(d) The trick is to add and subtract EŒln.U/� at the right place. Using standard rules
for logarithms we get

lnŒQ� D ln.K � pˇ � U/

D ln.K/ C ln. pˇ/ C ln.U/ D ln.K/ C ˇ ln. p/ C ln.U/

D .ln.K/ C EŒln.U/�/ C ˇ ln. p/ C .ln.U/ � EŒln.U/�/;

i.e., � D lnŒK� C EŒln.U/� and � D ln.U/ � EŒln.U/�. Strictly speaking we also
need to assume that EŒln.U/� < 1.

(e) Since

� D ln.K/ C EŒln.U/� ) K D e��EŒln.U/� D e��lnŒEŒU��C 1
2 �2 D e�C 1

2 �2

EŒU�
:

The expected value is hence given by

EŒQ� D K � pˇ � EŒU� D e�C 1
2 �2

EŒU�
� eˇ ln. p/ � EŒU� D e�Cˇ ln. p/C 1

2 �2

:

If we use this formula to estimate EŒQ�, we find

EŒQ� � e O�C Ǒ ln.110/C 1
2 S2 D e8:91�0:914 ln.110/C 1

2 �0:21622 D 103:

11.14

(a) When data form a strictly convex profile, the data cannot be described by a
straight line. Linear regression is unsuitable in such situations.

Stock prices, mutual bonds, and bank deposits usually exhibit exponential
growth. When the value doubles, a percentage increase typically doubles the
increase. For example, 5% growth will increase the price by 6 USD when the
price is 120 USD, while the increase will be 12 USD when the price is 240
USD. This in turn will lead to exponential growth.

(b) The transformed data are fairly linear. The histogram is slightly skewed, but
still acceptable. The normal score is fairly straight, and the residuals are fairy
symmetric and homogeneous. There is a tendency that the residuals increase at
the right side, but all in all we conclude that the standard assumptions for linear
regression are satisfied.

(c) We have

X D e�Cˇ tC� D e�Cˇ t � e�:
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Since e�Cˇ t is a constant, we have

EŒX� D EŒe�Cˇ t � e�� D e�Cˇ t � EŒe�� D e�Cˇ t � e1=2 �2 D e�Cˇ tC1=2 �2

:

An estimator for this is

OX D e O�C Ǒ tC1=2 S2

:

An estimate for expected value at t D 110 is hence

OX D e4:2332C0:017524�110C1=2�0:30252 D 496:

(d) The standard deviation is usually a fraction of the price. If the price falls by 5%,
we expect that the change depends on the price level. If, e.g., the price is 10
USD, the price falls to 9.5 USD, while a price of 100 USD will fall to 95 USD.
The change in price is 10 times larger in the latter case. If we try to predict prices
far into the future, the price can be much higher than what we observe today. In
such cases we expect that S, too, can be much larger. The estimate in (c) will then
give a too low estimate. This only works if the underlying growth conditions
are fixed. If we try to make a prediction far into the future, this assumption
is probably not reasonable. In general we should seek to avoid predictions far
outside where we have data.

11.15

(a) The observations are fairly linear, the histogram resembles the normal distribu-
tion, and the normal score is approximatively a straight line. The residuals are
fairly homogeneous with no apparent trends. In total the standard assumptions
appear to be satisfied.

(b) We have n D 17 observations and want to make a prediction at time t D 18 C
1
7

D 18:14. That gives the value

Energy D 242 � 7:83 � 18:14 D 99:96:

Since we want to predict the value of X itself, we need to compute

SŒ OX � X� D S �
s

1 C 1

n
C .t � t/2

P17
iD1.ti � t/2

:

Here S D 3:181; n D 17; t D 18; t D 18:14 and
P17

iD1.ti � t/2 D 408. That
gives

SŒ OX � X� D 3:273:
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We know that

T D OX � X

SŒ OX � X�

is t-distributed with parameter � D n � 2 D 15. We find the 2.5% level in that
t-table, and find the value 2:131. The limits for a 95% confidence interval are
hence

99:96 ˙ 2:131 � 3:273:

This gives the interval Œ93; 107�.
(c) We see that the observations begin to exhibit an S-profile. The histogram no

longer resembles the normal distribution, the normal score is somewhat shaky.
The residuals have crystal clear trends. There is no support for independence
and normal distribution here. The explanation is very simple, the power
consumption is stabilizing to reach a minimum in late summer, after which it
will begin to increase since the temperature falls as winter is approaching.

(d) Regression serves no purpose here. It is reasonable to assume that power
consumption is largely periodic with a cycle of one year. Systematic deviations
from this pattern can occur if the consumers change their habits. If we assume
that the underlying conditions are fixed, we might suggest the same interval as
in (b). If consumption changes, the interval could be different, but there is no
way to tell how large it could be unless we have more information.

11.16

(a) The observations are approximatively linear, the histogram resembles the
normal distribution, and the normal score is approximatively a straight line. The
residuals, however, have crystal clear trends, which is not OK. The assumptions
about constant variance appears to be violated here.

(b) Since the observations are relatively linear, we use the regression line to make a
prediction. We predict

OX110 D 1:07 C 2:09 � 110 D 230:97:

The standard assumptions are not satisfied here, so we cannot trust error
estimates relying on the t-distribution. On the other hand, it seems as if the
deviations from the regression line are relatively small. On the positive side we
make a prediction in the near future, and have some reason to believe that the
prediction error is moderate.
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(c)

Yt D Xt � � � Xt�1

D � C ˇ � t C Rt � �.� C ˇ.t � 1/ C Rt�1/

D � C ˇ � t � �� � �ˇ � t C �ˇ C Rt � � � Rt�1

D �.1 � �/ C �ˇ C .1 � �/ˇ � t C �t

D a C b � t C �t;

where a and b are constants given by

a D �.1 � �/ C �ˇ; b D .1 � �/ˇ:

Since a and b are constants, and �t are independent, normally distributed with
constant variance, Yt satisfy all the standard requirements.

(d) The observations are fairy linear even though the spread around the regression
line is relatively large. The histogram resembles the normal distribution, and the
normal score is a straight line. The residuals are fairly symmetric and do not
change much along the axes. The standard assumptions in the regression model
appear to be satisfied here.

(e) From the printout and the equation above, we get the equations

2:30 D �.1 � �/ C �ˇ; 0:201 D .1 � �/ˇ:

The value of � D 0:9 by assumption. That gives

2:30 D � � 0:1 C 0:9 � ˇ; 0:201 D 0:1 � ˇ:

If we multiply both equations by 10 on each side, we get

23:0 D � C 9 � ˇ; 2:01 D ˇ:

Hence � D 4:91 and ˇ D 2:01. Using these as estimators, we get

OX D 4:91 C 2:01 � t:

Note that EŒRt� D 0 for all t (a formal proof can be made by induction) and
that � and ˇ are unbiased since � is a known constant. An unbiased predictor of
X110 is

OX D 4:91 C 2:01 � 110 D 226:01:
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11.17

(a) From the printout we see that the P-value (for ˇ D 0) is very small. We hence
conclude that the sales of mobile phones probably relates to the sales of cars.

(b) The histogram somewhat resembles the normal distribution. The normal score
is somewhat shaky, but still acceptable. The residuals are fairly symmetric and
do not change much along the axes. With only 10 observations, we cannot
expect more than this, and conclude that there is no indication of violation of
the standard assumptions.

(c) From the printout we see that the explanatory power is 99.8%. Nearly all the
variation in the number of car sales can be explained by the variation in the
sales of mobile phones.

(d) The formula for the regression line is

y D 0:59694 � x C 201:8:

If we insert x D 150;000, we find y D 89;743. In a town where the dealers sold
150;000 mobile phones, we predict 89,743 car sales. There is uncertainty in this
prediction since the coefficients are uncertain. In addition we cannot be sure
that the pattern of demand is the same in this town as in the others. This town is
substantially larger than the towns in our dataset, and that could mean that the
population has a different socioeconomic distribution. That in turn could lead to
a different relation between sales of mobile phones and car sales.

(e) From a statistical point of view this is an unusually bad idea. The regression
shows that there is a relation between the two quantities. That does not mean
that the one causes the other. In this case there is a third variable, the number of
people living in the towns, that governs the sales. The towns differ in population
size and this is what causes the relation. If the car dealers want to increase car
sales, they could seek to increase the population. Giving away mobile phones
could have a slight goodwill effect, but is unlikely to affect the sales of cars.

11.18

(a) We see from the printout that data are nonlinear. The normal score is not too
bad, but bends at the right side. The histogram is right skewed. The residuals
have crystal clear trends breaking the assumption of independence and constant
variance. From an economic point of view it is unreasonable to assume that the
profit is linear. It is more natural to assume that it is strictly concave. In this
connection we should seek to maximize profit, and a linear model is unsuitable
for that purpose.
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(b) If we differentiate with respect to a; b, and c, we get

@error

@a
D

nX

iD1

2.Xi � a � bxi � cx2
i / � �1

@error

@b
D

nX

iD1

2.Xi � a � bxi � cx2
i / � �xi

@error

@c
D

nX

iD1

2.Xi � a � bxi � cx2
i / � �x2

i :

The suggested set of equations is nothing but the first order conditions for this
problem.

(c) The normal score is reasonably straight. The histogram is slightly skewed, but
still acceptable. The residuals are evenly distributed around zero and do not
change along the axes. All in all the standard assumptions appear to be satisfied.
Expected profit is estimated by the function

˘Œx� D �2482:2 C 243:275 x � 2:003 x2:

We differentiate to find

˘ 0Œx� D 243:275 � 4:006 x:

This function has a maximum at x D 243:275
4:006

D 60:73. Since we can only
produce an integer number of items, maximum expected profit is obtained at
x D 61.

11.19

(a) All the three P-values are very small, and we conclude that the number of years
of education is strongly significant for wages. The numbers for men and women
are quite different. From the printout we see that one year of extra education
increases expected income by 1371 USD for men, but only 621 USD for women.
The gender difference is somewhat reduced since the constant term is higher for
women. The difference 1249 USD is balanced by two years of education, and
men are clearly ahead when they have more than two years of education.

(b) The model tries to explain differences in wages by the number of years of
education. Many other aspects contribute to explain such differences. Two
persons with the same years of education can have very different salaries. In
addition to purely individual differences, the type of education clearly matters.
For example, there are huge differences between financial analysts and school
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teachers. The majority of the variation is hence caused by effects not included
in the model, and this explains the relatively moderate explanatory power.

(c) We predict the value

2income D 11;223 C 621 � 17 D 21;780:

To measure the variation we need to compute

M D S2

SŒ Ǒ�2 D 53682

73:262
D 5368:97:

This we insert into the formula

SŒ OX � X� D 5368 �
p

1 C 1=700 C .17 � 11:86361/2=5368:97 D 5385:

We should use a t-table with parameter � D 698. When the parameter is so
large, there is hardly any difference between the t-distribution and the normal
distribution. The limits for a 95% prediction interval are hence given by

21;780 ˙ 1:96 � 5385 D
(

11;225:4

32;334:6
:

11.20

(a) The plot shows that data to some extent can be approximated by a straight line,
but there seems to be systematic deviations. The histogram seems strange, but
that might be due to the resolution, and need not be a problem. The normal score
could have been better, but may be acceptable. The residuals versus fitted values
show tendencies of trends, while the residuals versus order of the data are OK.
All in all it is somewhat shaky, maybe not totally unacceptable, but we should
not have too much faith in the conclusions.

(b) This question is awkward. The problem is that there is no linear correspondence
between the degrees of satisfaction. “Satisfied (5)” is, e.g., not 5 times better
than “Dissatisfied (1).” The explanatory variable is not a scale variable, which
makes it questionable to use linear regression in this case. If we insert the value
SL D 6, in the regression line, we get

OPR D 14:40 C 14:8 � 6 D 103:2:

That value is meaningless. Customers who are satisfied (5) appear to have
about 90% probability of returning. It seems reasonable that customers who
are very satisfied (6) should have an even larger probability of returning, but it
is impossible to say how much larger.
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(c) The residuals versus observations are OK. Residuals versus fitted values still
have slight trends, but less than the first model. The curve appears to fit well
with the observations, the explanatory power has increased, and all in all we
seem to have a better model.

(d) No. The problem from (b) is still present. The reason is that we have no control
on how much a one unit increase will affect the result. It may well happen that
a third degree polynomial only makes matters worse. If we insert SL D 6 into
the regression, we get

OPR D 5:710 C 40:06 � 6 � 11:66 � 62 C 1:389 � 63 D 126:334;

which is even more meaningless than before.

Remark This exercise illustrates a common paradox in econometrics. When we
increase the number of parameters, the explanatory power will always increase. The
ability to predict, however, do not always increase. In some cases the ability to
predict can be reduced. A model with lots of parameters often explains everything,
but predicts nothing.

11.21

(a) The points are not well adapted to a straight line. It is not reasonable to assume
a linear relationship here. A fraction (measured in percent) is always a number
between 0 and 100. Sooner or later the increase must flatten out, which violates a
linear model. From the diagnostic plots we see the following: The normal score
is OK, but the histogram does not resemble the normal distribution, and the
residuals have crystal clear trends. This suggests clear violations of the standard
assumptions.

(b) If we use the model from (a) to predict the fraction of 80-year olds who have
used the product, we find

fraction in percent D �8:12 C 1:78 � 80 D 134:

This result makes no sense. In addition it may well happen that 80-year olds
might have a completely different way of behavior than younger generations,
which focuses that it might be problems using a model of this kind outside
where we have observations.

(c)

ln



f .x/

100 � f .x/

�
D ln

2

4
100e�Cˇx

1Ce�Cˇx

100 � 100e�Cˇx

1Ce�Cˇx

3

5

D ln



100e�Cˇx

100.1 C e�Cˇx/ � 100e�Cˇx

�

D lnŒe�Cˇx� D � C ˇx:
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(d) These printouts look much better. We see that the curve fits well with data, and
that it flattens out in a convincing way. The diagnostic plots are also easier to
accept as we cannot expect too much regularity with only 12 observations. All
in all this looks like a good model.

(e) With this model we get a fraction (in percent)

f .80/ D 100e�4:31C0:135�80

1 C e�4:31C0:135�80
D 99:85:

It might still be a problem that 80-year olds may have a completely different
behavioral pattern, but the fraction is in line with what we see in our data. In
conclusion this a kind of product that everyone get to use sooner or later. We
don’t have much confidence in 99.8%, but that the true answer is close to 100%
seems right.

11.22

(a) Yes, this is something we could expect. The intercept can be interpreted as fixed
costs connected with the sales (e.g., wages for vendors), while the slope can be
interpreted as marginal costs. From the plot we see that the number does not
change much from week to week. It is then reasonable to assume that the fixed
costs are fairly constant. The marginal costs, which, e.g., might be determined
from a fixed amount per unit, also seems to be constant. If we some weeks sell
very much or very little, we could see deviations from a linear relationship, but
that does not seem to be the case.

(b) From the printout we see that fixed costs are

5212:6 C 0:0145 � 500;000 D 12;477:6:

We find M D 193:9852

0:00065432 D 8:79 � 1010. In the formulas we need the term

.500;000 � 499;110/2

M

but the value is so small that we can comfortably ignore it. We find

SŒ OX � X� D 193:985 �p1 C 1=30 C 0 D 197:2:

We should make use of the t-table with parameter 28. From that table we find
t D 2:048. The limits for the prediction interval are hence

12;477:6 ˙ 2:048 � 197:2 D
(

12;073:7

12;881:5:
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We see that the observed value is far outside a 95% prediction interval. It hence
seems very likely that there is something special behind these costs.

(d) From the analysis in (c) we conclude that expenses are much higher than normal.
The deviation is more than 10 standard deviations, and it seems very unlikely
that this happened by coincidence. We should first check if the high reported
costs are due to a typo. If that is not the case, we need to go through all the posts
in search of a plausible explanation.

11.23

(a)

FŒ˛; ˇ� D error1
2 C error2

2 C error3
2

D .˛ C ˇ � 1/2 C .˛ C 2ˇ � 3/2 C .˛ C 3ˇ � 3/2

D ˛2 C ˛ˇ � ˛ C ˇ˛ C ˇ2 � ˇ � ˛ � ˇ C 1

C˛2 C 2˛ˇ � 3˛ C 2ˇ˛ C 4ˇ2 � 6ˇ � 3˛ � 6ˇ C 9

C˛2 C 3�ˇ � 3� C 3ˇ� C 9ˇ2 � 9ˇ � 3� � 9ˇ C 9

D 3˛2 C 12˛ˇ C 14ˇ2 � 32ˇ � 14˛ C 19:

(b) We compute

@F

@˛
D 6˛ C 12ˇ � 14 D 0;

and

@F

@̌
D 12˛ C 28ˇ � 32 D 0:

Solving this system, we find ˇ D 1 and ˛ D 1
3
.

11.24

(a) We see that the plot is not linear. The normal score is acceptable, and so is also
the histogram. The residuals, however, have crystal clear trends which are due
to a nonlinear relationship. This case is unsuitable for linear regression.

(b) From the plot we see that data are fairly linear in the interval Œ3000; 7000�. The
diagnostic plots are all acceptable. This case is suitable for linear regression.

(c) We use the regression from (b) and need to find maximum for the function

f .x/ D .10;000 � x/.0:000232x � 0:587/:

This function has a maximum for x D 6265 with value equal to 3236.
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(d) From the plot we see that in the interval Œ0; 3000� the probability of winning the
bidding is less than 10%. Since the profit is bounded by 10;000, the expected
profit cannot exceed 1000 USD. In the interval Œ7000; 10;000�, the profit cannot
exceed 3000 USD. We hence conclude that in both these intervals, the best value
is less than the value we found in (c).

11.25

(a) Data have a relatively large spread around the regression line, but that in
itself need not be a problem. The histogram is not much different from the
normal distribution. The normal score is fairly straight, and the residuals are
fairly homogeneous with no apparent trends. As the number of observations
are modest, we cannot expect anything better than this. We conclude that the
standard conditions appear to be satisfied.

(b) Since the P-value is very high, we cannot reject a null hypothesis saying ˛ D 0.
This makes sense in this situation. If the stock is close to zero and we do not
fish, the change in the stock must be small. That corresponds to ˛ D 0. The
number 0:262 is the percentage natural growth rate. If we do not fish, we expect
that the stock grows by about 26% per year.

(c) We see that data seemingly have a smaller spread around the regression line
and that the explanatory power has increased for 68.3% to 98.0%. This effect
is purely cosmetic and do not provide any new insights. It is hardly surprising
that the size of the stock affects the size of the stock the year after. A priori
we expect that the explanatory power of this relation is very close to 100%.
The number 98% is hence without practical value. The number 68.3% is much
more informative since it says that other effects explain about one-third of the
variation in our data. This information would have been lost if we only carried
out the second regression. If we look at the residual plots, we see that the
spread is exactly the same as before. In the first model we study the growth
potential directly, while this quantity is only implicit in the second model. In
the second model we only achieve to disguise the spread in the data, and the
second regression is not in any way better than the first.

11.26

(a) We see that the observations are fairly linear, normal score is a straight line,
the histogram is acceptable, and the residuals are homogeneous with no clear
trends. The standard assumptions appear to be satisfied. The explanatory power
is very high, 99.4%. P-value for the slope is very small, which means that price
is strongly significant for demand. This is classic economic theory, demand is
falling when the price increases.

(b) The spread around the regression line is larger than in (a), but that is not a
problem in itself. The increased spread is reflected in the explanatory power,
which is 30%, considerably less than in (a). Normal score is a straight line,
the histogram is acceptable, and the residuals are homogeneous with no clear
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trends. The standard conditions appear to be satisfied. Increasing the price on
Extra appears to increase the demand for Superior, but the model only explains a
part of the variation. This is classical economic theory, the goods are substitutes,
and the demand for the one good is expected to grow when the price on the
substitute increases.

(c) We assume that expected demand after Superior is ˛ � 2:1x1 C 0:1x2. When
x2 D 50, this gives

˛ � 2:1x1 C 0:1 � 50 D .˛ C 5/ � 2:1x1:

This result is consistent with (a) if ˛ D 150. When x1 D 40, the model gives

˛ � 2:1 � 40 C 0:1 � x2 D .˛ � 84/ C 0:1x2:

That is consistent with (b) if ˛ D 150. The value ˛ D 150 is hence the only
value which makes the results consistent.

(d)

Expected sales value D EŒx1 � Demand Superior C x2 � Demand Extra�

D x1 � EŒDemand Superior� C x2 � EŒDemand Extra�

D x1.150 � 2:1x1 C 0:1x2/ C x2.216 C 0:2x1 � 1:9x2/:

If we define

f Œx1; x2� D x1.150 � 2:1x1 C 0:1x2/ C x2.216 C 0:2x1 � 1:9x2/;

then

@f

@x1

D 150 � 4:2x1 C 0:3x2;

and

@f

@x2

D 216 C 0:3x1 � 3:8x2:

Using first order conditions, we find x1 D 40 and x2 D 60, which gives the
maximum for the function.

11.27

(a) The normal score is fairly straight. The histogram is slightly skewed, but still
acceptable. The residuals have obvious trends, which is a clear violation of the
standard assumptions. If we consider the price development outside the interval
Œ30; 60�, the price function is not at all linear. Even though the P-value for the
slope is small and the explanatory power is good, we should seriously doubt if
linear regression is the right tool here.
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(b) If we insert t D 80 into the formula for the regression line, we get

4Stock price D 120:985 � 0:3702 � 80 D 91:37:

If we compare with the observed value at t D 80, we see that the difference
is not very large. This, however, is pure luck. At best, we could use the model
for predictions within the interval Œ30; 60�, but we should not even consider
using the model for predictions outside this interval. The usual formulas for
confidence intervals do not apply here. In this case we have systematic problems
with even using the model, and the randomness is likely to be much larger than
what is suggested by the standard formulas. There is no reason to trust this
prediction.

Remark The plot we used in this problem was generated by a numerical process
which, by definition, was free from trends. At each time-step it was equally probable
that the trend continued or was broken. Such processes will very often generate
fictitious trends. When we look at the data in retrospect, it seems to be possible to
exploit the trends to make lots of money. This is false, any profit from such analysis
is pure luck, and on average it is impossible to find strategies that produces extra
profit.

11.28

(a) The histogram is skewed, and the normal score is not a straight line. The residu-
als are not symmetric. In total this model seems very shaky. The explanatory
power is as high as 99.3%, which suggests that the model nevertheless can
be used for prediction. We should not trust the P-values since they rest on
assumptions which are clearly not satisfied.

(b) Using standard rules for logarithms, we get

ln. Y/ D ln.˛Kˇ1 Lˇ2 � �/

D ln.˛/ C ln.Kˇ1/ C ln.Lˇ2/ C ln.�/

D ln.˛/ C ˇ1 ln.K/ C ˇ2 ln.L/ C ln.�/;

which means that ln.Y/ is a linear function of ln.K/ and ln.L/. The intercept is
ln.˛/ and the slopes are ˇ1 and ˇ2. The error term is ln.�/. If this model is to
satisfy the standard assumptions for linear regression, the error term must have
normal distribution. Then it must be possible to write � on the form

� D eX;

where X has normal distribution. Such distributions are called log-normal.
(c) The histogram resembles the normal distribution. The normal score could have

been better, but is still acceptable. The residuals are homogeneous and free of
trends. In total this looks very good. The P-values are extremely small, and we
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conclude that ln.K/ and ln.L/ are strongly significant. This means that changes
in K and L probably affects the value of Y. The relation is nonlinear (concave),
which explains why we get problems in (a).

(d) From the computation in (b) we see that

ln. Y=106/ D ln. Y/ � ln.106/ D ln.˛/ C ˇ1 ln.K/ C ˇ2 ln.L/ C ln.�/ � ln.106/

D ln.˛/ C ˇ1.ln.K=106/ C ln.106// C ˇ2 ln.L/ C ln.�/ � ln.106/

D ln.˛/ C .ˇ1 � 1/ ln.106/ C ˇ1 ln.K=106/ C ˇ2 ln.L/ C ln.�/:

From the printout we see directly that ˇ1 D 0:30 and ˇ2 D 0:90. Furthermore
the intercept leads to the equation

ln.˛/ C .ˇ1 � 1/ ln.106/ D �5:06822:

Here everything is known except ln.˛/, and we can solve to get

ln.˛/ D �.0:30 � 1/ ln.106/ � 5:06822 D 4:60264:

Hence

˛ D e4:60264 D 99:75:

11.29

(a) We see that the coefficient for EdSh is positive, which means that the larger
fraction that has short higher education, the better are the scores. The coefficient
for EdL is negative, however, which is rather weird. None of the coefficients are
significant, so we cannot claim they are important for the results. On the positive
side the model explains about 50% of the variation.

The problem with this regression is multicollinearity between EdSh and EdL.
This is confirmed by the second printout where EdL explains more than 90% of
the variation in EdSh. That suggests that we should not use both EdSh and EdL
as explanatory variables in the same model. Common practice is to delete one of
the variables, but in this context we may also merge the results as we do below.

(b) This regression is much better. We have removed the problem with collinearity,
and Ed is strongly significant. It seems quite clear that the fraction of the
population with higher education affects the results. If we increase Ed by 10,
we expect that results improve by 0.2. We see that the explanatory power is
about 49%, almost the same as in (a). Taking into account that we only have
19 observations, the diagnostic plots are all OK. The normal score has a slight
bend, but not more than we can accept. The residuals versus order are OK. The
residuals versus fitted values are not uniform, but the plot is partly misleading
since many observations have the same value. To the extent that we can see
trends, those are caused by two outliers, which happen to be skewed. This is
normal when we have few observations.
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(c) The predicted value we find from the regression line

predicted value D 2:38286 C 0:0200711 � 47:5 D 3:34:

The variation we find using the formula

SŒ OY � Y� D S �
s

1 C 1

n
C .X � X/2

M
:

In our case we have S D 0:122724; n D 19; X D 47:5; X D 27:86. The value
for M we find by

M D S2

SŒ Ǒ�2 D 0:1227242

0:004923692
D 621:266:

Inserting these number into the formula, we get SŒ OY�Y� D 0:158761. The limits
for the prediction interval we find using a t-table with parameter � D n�2 D 17,
giving t.17/

2:5% D 2:11. The limits for a 95% prediction interval are hence

3:34 ˙ 2:11 � 0:158761;

which rounded gives Œ3:0; 3:7�. The observed value, 3.3, is slightly lower than
the predicted value 3.34. The value is safely near the center of the prediction
interval, so we have no reason to claim that the result is significantly weaker
than expected.

11.30

(a) We see that the P-value for the coefficient of Price is very low, hence Price (not
unexpected) is strongly significant for demand. The explanatory power is good,
about 86%. We see that the regression coefficient is negative. This means that
demand falls when the price increases, which seems logical. The normal score
is supposed to be a straight line; it could have been better, but is still acceptable.
The histogram resembles the normal distribution and is OK. The residuals
should be homogeneous and free of trends; they could have been better, but
deviations probably appear as a consequence of very few observations. In total
the model can be accepted.

(b) In both models we see that all the regression coefficients are significant.
The explanatory power increases from 86% with linear regression, to 94%
for quadratic regression, and further to 95% for cubical regression. Cubical
regression is best in the sense that it offers the best fit to data, but is only slightly
better than quadratic regression.

(c) Model 1: Demand D 911:713 � 112:057 � 10 � �209.
Model 2: Demand D 1281:78 � 356:953 � 10 C 27:2106 � 102 � 433.
Model 3: Demand D 1513:62�581:236 �10C84:7985 �102�4:26577 �103 �

�85.
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Models 1 and 3 produce negative values, which must be wrong. Model
2 produces a positive value, but the value is much higher than the observed
values at the right side of the plot. That, too, must be wrong. It is reasonable
to assume that expected demand is a positive and monotonically decreasing
function of price, but no polynomial has those properties over the whole real
axis. Even though polynomial regression gives better fit to data, it is unsuitable
for prediction outside the set where we have observations.

Table of the Binomial Distribution

Table A gives the probability P.X D x/ when X is a binomial distribution with
parameters .n; p/. Example: n D 8; p D 0:1 gives P.X D 2/ D 0:1488.

Table A Binomial
distribution

n x p D 0:05 p D 0:1 p D 0:2 p D 0:3 p D 0:4 p D 0:5

2 0 0:9025 0:8100 0:6400 0:4900 0:3600 0:2500

1 0:0950 0:1800 0:3200 0:4200 0:4800 0:5000

2 0:0025 0:0100 0:0400 0:0900 0:1600 0:2500

3 0 0:8574 0:7290 0:5120 0:3430 0:2160 0:1250

1 0:1354 0:2430 0:3840 0:4410 0:4320 0:3750

2 0:0071 0:0270 0:0960 0:1890 0:2880 0:3750

3 0:0001 0:0010 0:0080 0:0270 0:0640 0:1250

4 0 0:8145 0:6561 0:4096 0:2401 0:1296 0:0625

1 0:1715 0:2916 0:4096 0:4116 0:3456 0:2500

2 0:0135 0:0486 0:1536 0:2646 0:3456 0:3750

3 0:0005 0:0036 0:0256 0:0756 0:1536 0:2500

4 0:0000 0:0001 0:0016 0:0081 0:0256 0:0650

5 0 0:7738 0:5905 0:3277 0:1681 0:0778 0:0312

1 0:2036 0:3280 0:4096 0:3602 0:2592 0:1562

2 0:0214 0:0729 0:2048 0:3087 0:3456 0:3125

3 0:0011 0:0081 0:0512 0:1323 0:2304 0:3125

4 0:0000 0:0005 0:0064 0:0284 0:0768 0:1562

5 0:0000 0:0000 0:0003 0:0024 0:0102 0:0312

6 0 0:7351 0:5314 0:2621 0:1176 0:0467 0:0156

1 0:2321 0:3543 0:3932 0:3025 0:1866 0:0938

2 0:0305 0:0984 0:2458 0:3241 0:3110 0:2344

3 0:0021 0:0146 0:0819 0:1852 0:2765 0:3125

4 0:0001 0:0012 0:0154 0:0595 0:1382 0:2344

5 0:0000 0:0001 0:0015 0:0102 0:0369 0:0938

6 0:0000 0:0000 0:0001 0:0007 0:0041 0:0156

(continued)
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Table A (continued) n x p D 0:05 p D 0:1 p D 0:2 p D 0:3 p D 0:4 p D 0:5

7 0 0:6983 0:4783 0:2097 0:0824 0:0280 0:0078

1 0:2573 0:3720 0:3670 0:2471 0:1306 0:0547

2 0:0406 0:1240 0:2753 0:3176 0:2613 0:1641

3 0:0036 0:0230 0:1147 0:2269 0:2903 0:2734

4 0:0002 0:0026 0:0287 0:0972 0:1935 0:2734

5 0:0000 0:0002 0:0043 0:0250 0:0774 0:1641

6 0:0000 0:0000 0:0004 0:0036 0:0172 0:0547

7 0:0000 0:0000 0:0000 0:0002 0:0016 0:0078

8 0 0:6634 0:4305 0:1678 0:0576 0:0168 0:0039

1 0:2793 0:3826 0:3355 0:1977 0:0896 0:0312

2 0:0515 0:1488 0:2936 0:2965 0:2090 0:1094

3 0:0054 0:0331 0:1468 0:2541 0:2787 0:2188

4 0:0004 0:0046 0:0459 0:1361 0:2322 0:2734

5 0:0000 0:0004 0:0092 0:0467 0:1239 0:2188

6 0:0000 0:0000 0:0011 0:0100 0:0413 0:1094

7 0:0000 0:0000 0:0001 0:0012 0:0079 0:0312

8 0:0000 0:0000 0:0000 0:0001 0:0007 0:0039

9 0 0:6302 0:3874 0:1342 0:0404 0:0101 0:0020

1 0:2985 0:3874 0:3020 0:1556 0:0605 0:0176

2 0:0629 0:1722 0:3020 0:2668 0:1612 0:0703

3 0:0077 0:0446 0:1762 0:2668 0:2508 0:1641

4 0:0006 0:0074 0:0661 0:1715 0:2508 0:2461

5 0:0000 0:0008 0:0165 0:0735 0:1672 0:2461

6 0:0000 0:0001 0:0028 0:0210 0:0743 0:1641

7 0:0000 0:0000 0:0003 0:0039 0:0212 0:0703

8 0:0000 0:0000 0:0000 0:0004 0:0035 0:0176

9 0:0000 0:0000 0:0000 0:0000 0:0003 0:0020

10 0 0:5987 0:3487 0:1074 0:0282 0:0060 0:0010

1 0:3151 0:3874 0:2684 0:1211 0:0403 0:0098

2 0:0746 0:1937 0:3020 0:2335 0:1209 0:0439

3 0:0105 0:0574 0:2013 0:2668 0:2150 0:1172

4 0:0010 0:0112 0:0881 0:2001 0:2508 0:2051

5 0:0001 0:0015 0:0264 0:1029 0:2007 0:2461

6 0:0000 0:0001 0:0055 0:0368 0:1115 0:2051

7 0:0000 0:0000 0:0008 0:0090 0:0425 0:1172

8 0:0000 0:0000 0:0001 0:0014 0:0106 0:0439

9 0:0000 0:0000 0:0000 0:0001 0:0016 0:0098

10 0:0000 0:0000 0:0000 0:0000 0:0001 0:0010
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Table of the Poisson Distribution

Table B gives the probability P.X D x/ when X is a Poisson distribution with
parameter �. Example: � D 5 gives P.X D 4/ D 0:1755.

Table B Poisson distribution

�

x 0:1 0:2 0:3 0:4 0:5 0:6 0:7 0:8 0:9 1:0

0 0:9048 0:8187 0:7408 0:6703 0:6065 0:5488 0:4966 0:4493 0:4066 0:3679

1 0:0905 0:1637 0:2222 0:2681 0:3033 0:3293 0:3476 0:3595 0:3659 0:3679

2 0:0045 0:0164 0:0333 0:0536 0:0758 0:0988 0:1217 0:1438 0:1647 0:1839

3 0:0002 0:0011 0:0033 0:0072 0:0126 0:0198 0:0284 0:0383 0:0494 0:0613

4 0:0000 0:0001 0:0003 0:0007 0:0016 0:0030 0:0050 0:0077 0:0111 0:0153

5 0:0000 0:0000 0:0000 0:0001 0:0002 0:0004 0:0007 0:0012 0:0020 0:0031

6 0:0000 0:0000 0:0000 0:0000 0:0000 0:0000 0:0001 0:0002 0:0003 0:0005

7 0:0000 0:0000 0:0000 0:0000 0:0000 0:0000 0:0000 0:0000 0:0000 0:0001

�

x 1 2 3 4 5 6 7 8 9 10

0 0:3679 0:1353 0:0498 0:0183 0:0067 0:0025 0:0009 0:0003 0:0001 0:0000

1 0:3679 0:2707 0:1494 0:0733 0:0337 0:0149 0:0064 0:0027 0:0011 0:0005

2 0:1839 0:2707 0:2240 0:1465 0:0842 0:0446 0:0223 0:0107 0:0050 0:0023

3 0:0613 0:1804 0:2240 0:1954 0:1404 0:0892 0:0521 0:0286 0:0150 0:0076

4 0:0153 0:0902 0:1680 0:1954 0:1755 0:1339 0:0912 0:0572 0:0337 0:0189

5 0:0031 0:0361 0:1008 0:1563 0:1755 0:1606 0:1277 0:0916 0:0607 0:0378

6 0:0005 0:0120 0:0504 0:1042 0:1462 0:1606 0:1490 0:1221 0:0911 0:0631

7 0:0001 0:0034 0:0216 0:0595 0:1044 0:1377 0:1490 0:1396 0:1171 0:0901

8 0:0000 0:0009 0:0081 0:0298 0:0653 0:1033 0:1304 0:1396 0:1318 0:1126

9 0:0000 0:0002 0:0027 0:0132 0:0363 0:0688 0:1014 0:1241 0:1318 0:1251

10 0:0000 0:0000 0:0008 0:0053 0:0181 0:0413 0:0710 0:0993 0:1186 0:1251

11 0:0000 0:0000 0:0002 0:0019 0:0082 0:0225 0:0452 0:0722 0:0970 0:1137

12 0:0000 0:0000 0:0001 0:0006 0:0034 0:0113 0:0264 0:0481 0:0728 0:0948

13 0:0000 0:0000 0:0000 0:0002 0:0013 0:0052 0:0142 0:0296 0:0504 0:0729

14 0:0000 0:0000 0:0000 0:0001 0:0005 0:0022 0:0071 0:0169 0:0324 0:0521

15 0:0000 0:0000 0:0000 0:0000 0:0002 0:0009 0:0033 0:0090 0:0194 0:0347

16 0:0000 0:0000 0:0000 0:0000 0:0000 0:0003 0:0014 0:0045 0:0109 0:0217

17 0:0000 0:0000 0:0000 0:0000 0:0000 0:0001 0:0006 0:0021 0:0058 0:0128

18 0:0000 0:0000 0:0000 0:0000 0:0000 0:0000 0:0002 0:0009 0:0029 0:0071

19 0:0000 0:0000 0:0000 0:0000 0:0000 0:0000 0:0001 0:0004 0:0014 0:0037

20 0:0000 0:0000 0:0000 0:0000 0:0000 0:0000 0:0000 0:0002 0:0006 0:0019

21 0:0000 0:0000 0:0000 0:0000 0:0000 0:0000 0:0000 0:0001 0:0003 0:0009

22 0:0000 0:0000 0:0000 0:0000 0:0000 0:0000 0:0000 0:0000 0:0001 0:0004

23 0:0000 0:0000 0:0000 0:0000 0:0000 0:0000 0:0000 0:0000 0:0000 0:0002

24 0:0000 0:0000 0:0000 0:0000 0:0000 0:0000 0:0000 0:0000 0:0000 0:0001
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Table of the Normal Distribution—Area Table

Table C gives the area G.z/ under the standard normal density to the left of z.
Example: z D 1:54 gives G.z/ D 0:9382.

Table C Normal distribution

z 0:00 0:01 0:02 0:03 0:04 0:05 0:06 0:07 0:08 0:09

0 0:5000 0:5040 0:5080 0:5120 0:5160 0:5199 0:5239 0:5279 0:5319 0:5359

0:1 0:5398 0:5438 0:5478 0:5517 0:5557 0:5596 0:5636 0:5675 0:5714 0:5753

0:2 0:5793 0:5832 0:5871 0:5910 0:5948 0:5987 0:6026 0:6064 0:6103 0:6141

0:3 0:6179 0:6217 0:6255 0:6293 0:6331 0:6368 0:6406 0:6443 0:6480 0:6517

0:4 0:6554 0:6591 0:6628 0:6664 0:6700 0:6736 0:6772 0:6808 0:6844 0:6879

0:5 0:6915 0:6950 0:6985 0:7019 0:7054 0:7088 0:7123 0:7157 0:7190 0:7224

0:6 0:7257 0:7291 0:7324 0:7357 0:7389 0:7422 0:7454 0:7486 0:7517 0:7549

0:7 0:7580 0:7611 0:7642 0:7673 0:7704 0:7734 0:7764 0:7794 0:7823 0:7852

0:8 0:7881 0:7910 0:7939 0:7967 0:7995 0:8023 0:8051 0:8078 0:8106 0:8133

0:9 0:8159 0:8186 0:8212 0:8238 0:8264 0:8289 0:8315 0:8340 0:8365 0:8389

1:0 0:8413 0:8438 0:8461 0:8485 0:8508 0:8531 0:8554 0:8577 0:8599 0:8621

1:1 0:8643 0:8665 0:8686 0:8708 0:8729 0:8749 0:8770 0:8790 0:8810 0:8830

1:2 0:8849 0:8869 0:8888 0:8907 0:8925 0:8944 0:8962 0:8980 0:8997 0:9015

1:3 0:9032 0:9049 0:9066 0:9082 0:9099 0:9115 0:9131 0:9147 0:9162 0:9177

1:4 0:9192 0:9207 0:9222 0:9236 0:9251 0:9265 0:9279 0:9292 0:9306 0:9319

1:5 0:9332 0:9345 0:9357 0:9370 0:9382 0:9394 0:9406 0:9418 0:9429 0:9441

1:6 0:9452 0:9463 0:9474 0:9484 0:9495 0:9505 0:9515 0:9525 0:9535 0:9545

1:7 0:9554 0:9564 0:9573 0:9582 0:9591 0:9599 0:9608 0:9616 0:9625 0:9633

1:8 0:9641 0:9649 0:9656 0:9664 0:9671 0:9678 0:9686 0:9693 0:9699 0:9706

1:9 0:9713 0:9719 0:9726 0:9732 0:9738 0:9744 0:9750 0:9756 0:9761 0:9767

2:0 0:9772 0:9778 0:9783 0:9788 0:9793 0:9798 0:9803 0:9808 0:9812 0:9817

2:1 0:9821 0:9826 0:9830 0:9834 0:9838 0:9842 0:9846 0:9850 0:9854 0:9857

2:2 0:9861 0:9864 0:9868 0:9871 0:9875 0:9878 0:9881 0:9884 0:9887 0:9890

2:3 0:9893 0:9896 0:9898 0:9901 0:9904 0:9906 0:9909 0:9911 0:9913 0:9916

2:4 0:9918 0:9920 0:9922 0:9925 0:9927 0:9929 0:9931 0:9932 0:9934 0:9936

2:5 0:9938 0:9940 0:9941 0:9943 0:9945 0:9946 0:9948 0:9949 0:9951 0:9952

2:6 0:9953 0:9955 0:9956 0:9957 0:9959 0:9960 0:9961 0:9962 0:9963 0:9964

2:7 0:9965 0:9966 0:9967 0:9968 0:9969 0:9970 0:9971 0:9972 0:9973 0:9974

2:8 0:9974 0:9975 0:9976 0:9977 0:9977 0:9978 0:9979 0:9979 0:9980 0:9981

2:9 0:9981 0:9982 0:9982 0:9983 0:9984 0:9984 0:9985 0:9985 0:9986 0:9986

3:0 0:9987 0:9987 0:9987 0:9988 0:9988 0:9989 0:9989 0:9989 0:9990 0:9990

(continued)
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Table C (continued)

z 0:00 0:01 0:02 0:03 0:04 0:05 0:06 0:07 0:08 0:09

3:1 0:9990 0:9991 0:9991 0:9991 0:9992 0:9992 0:9992 0:9992 0:9993 0:9993

3:2 0:9993 0:9993 0:9994 0:9994 0:9994 0:9994 0:9994 0:9995 0:9995 0:9995

3:3 0:9995 0:9995 0:9995 0:9996 0:9996 0:9996 0:9996 0:9996 0:9996 0:9997

3:4 0:9997 0:9997 0:9997 0:9997 0:9997 0:9997 0:9997 0:9997 0:9997 0:9998

3:5 0:9998 0:9998 0:9998 0:9998 0:9998 0:9998 0:9998 0:9998 0:9998 0:9998

3:6 0:9998 0:9998 0:9999 0:9999 0:9999 0:9999 0:9999 0:9999 0:9999 0:9999

3:7 0:9999 0:9999 0:9999 0:9999 0:9999 0:9999 0:9999 0:9999 0:9999 0:9999

3:8 0:9999 0:9999 0:9999 0:9999 0:9999 0:9999 0:9999 0:9999 0:9999 0:9999

3:9 1:0000 – – – – – – – – –

Table of the Normal Distribution—Percentage Points

Table D gives z such that P.X � z/ D a, when X is a standard normal distribution.
Example: P.X � 1:6449/ D 5%.

Table D Normal distribution a z a z a z

0:50 0:0000 0:30 0:5244 0:10 1:2816

0:49 0:0251 0:29 0:5534 0:09 1:3408

0:48 0:0502 0:28 0:5828 0:08 1:4051

0:47 0:0753 0:27 0:6128 0:07 1:4758

0:46 0:1004 0:26 0:6434 0:06 1:5548

0:45 0:1257 0:25 0:6745 0:050 1:6449

0:44 0:1510 0:24 0:7063 0:045 1:6954

0:43 0:1764 0:23 0:7389 0:040 1:7507

0:42 0:2019 0:22 0:7722 0:035 1:8119

0:41 0:2275 0:21 0:8064 0:030 1:8808

0:40 0:2534 0:20 0:8416 0:025 1:9600

0:39 0:2793 0:19 0:8779 0:020 2:0538

0:38 0:3055 0:18 0:9154 0:015 2:1701

0:37 0:3319 0:17 0:9542 0:010 2:3264

0:36 0:3585 0:16 0:9945 0:005 2:5758

0:35 0:3853 0:15 1:0364 0:0010 3:0902

0:34 0:4125 0:14 1:0803 0:0005 3:2905

0:33 0:4399 0:13 1:1264 0:0001 3:7190

0:32 0:4677 0:12 1:1750

0:31 0:4959 0:11 1:2265
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Table of the Chi-Square Distribution—Percentage Points

Table E gives q such that P.X � q/ D a, when X is a chi-square distribution with
parameter �. Example: � D 10 gives P.X � 9:342/ D 50%.

Table E Chi-square distribution

a

� 99:9% 99:5% 99:0% 97:5% 95:0% 90:0% 87:5% 80:0% 75:0% 66:6% 50:0%

1 0:000 0:000 0:000 0:001 0:004 0:016 0:025 0:064 0:102 0:186 0:455

2 0:002 0:010 0:020 0:051 0:103 0:211 0:267 0:446 0:575 0:811 1:386

3 0:024 0:072 0:115 0:216 0:352 0:584 0:692 1:005 1:213 1:568 2:366

4 0:091 0:207 0:297 0:484 0:711 1:064 1:219 1:649 1:923 2:378 3:357

5 0:210 0:412 0:554 0:831 1:145 1:610 1:808 2:343 2:675 3:216 4:351

6 0:381 0:676 0:872 1:237 1:635 2:204 2:441 3:070 3:455 4:074 5:348

7 0:598 0:989 1:239 1:690 2:167 2:833 3:106 3:822 4:255 4:945 6:346

8 0:857 1:344 1:646 2:180 2:733 3:490 3:797 4:594 5:071 5:826 7:344

9 1:152 1:735 2:088 2:700 3:325 4:168 4:507 5:380 5:899 6:716 8:343

10 1:479 2:156 2:558 3:247 3:940 4:865 5:234 6:179 6:737 7:612 9:342

11 1:834 2:603 3:053 3:816 4:575 5:578 5:975 6:989 7:584 8:514 10:341

12 2:214 3:074 3:571 4:404 5:226 6:304 6:729 7:807 8:438 9:420 11:340

13 2:617 3:565 4:107 5:009 5:892 7:042 7:493 8:634 9:299 10:331 12:340

14 3:041 4:075 4:660 5:629 6:571 7:790 8:266 9:467 10:165 11:245 13:339

15 3:483 4:601 5:229 6:262 7:261 8:547 9:048 10:307 11:037 12:163 14:339

16 3:942 5:142 5:812 6:908 7:962 9:312 9:837 11:152 11:912 13:083 15:338

17 4:416 5:697 6:408 7:564 8:672 10:085 10:633 12:002 12:792 14:006 16:338

18 4:905 6:265 7:015 8:231 9:390 10:865 11:435 12:857 13:675 14:931 17:338

19 5:407 6:844 7:633 8:907 10:117 11:651 12:242 13:716 14:562 15:859 18:338

20 5:921 7:434 8:260 9:591 10:851 12:443 13:055 14:578 15:452 16:788 19:337

21 6:447 8:034 8:897 10:283 11:591 13:240 13:873 15:445 16:344 17:720 20:337

22 6:983 8:643 9:542 10:982 12:338 14:041 14:695 16:314 17:240 18:653 21:337

23 7:529 9:260 10:196 11:689 13:091 14:848 15:521 17:187 18:137 19:587 22:337

24 8:085 9:886 10:856 12:401 13:848 15:659 16:351 18:062 19:037 20:523 23:337

25 8:649 10:520 11:524 13:120 14:611 16:473 17:184 18:940 19:939 21:461 24:337

26 9:222 11:160 12:198 13:844 15:379 17:292 18:021 19:820 20:843 22:399 25:336

27 9:803 11:808 12:879 14:573 16:151 18:114 18:861 20:703 21:749 23:339 26:336

28 10:391 12:461 13:565 15:308 16:928 18:939 19:704 21:588 22:657 24:280 27:336

29 10:986 13:121 14:256 16:047 17:708 19:768 20:550 22:475 23:567 25:222 28:336

30 11:588 13:787 14:953 16:791 18:493 20:599 21:399 23:364 24:478 26:165 29:336

35 14:688 17:192 18:509 20:569 22:465 24:797 25:678 27:836 29:054 30:894 34:336

40 17:916 20:707 22:164 24:433 26:509 29:051 30:008 32:345 33:660 35:643 39:335

45 21:251 24:311 25:901 28:366 30:612 33:350 34:379 36:884 38:291 40:407 44:335

50 24:674 27:991 29:707 32:357 34:764 37:689 38:785 41:449 42:942 45:184 49:335

55 28:173 31:735 33:570 36:398 38:958 42:060 43:220 46:036 47:610 49:972 54:335

60 31:738 35:534 37:485 40:482 43:188 46:459 47:680 50:641 52:294 54:770 59:335
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Table of the Chi-square Distribution—Continued

Table F gives q such that P.X � q/ D a, when X is a chi-square distribution with
parameter �. Example: � D 10 gives P.X � 18:307/ D 5%.

Table F Chi-square distribution

a

� 40.0% 33.3% 25.0% 20.0% 12.5% 10.0% 5.0% 2.5% 1.0% 0.5% 0.1%

1 0:708 0:936 1:323 1:642 2:354 2:706 3:841 5:024 6:635 7:879 10:828

2 1:833 2:197 2:773 3:219 4:159 4:605 5:991 7:378 9:210 10:597 13:816

3 2:946 3:405 4:108 4:642 5:739 6:251 7:815 9:348 11:345 12:838 16:266

4 4:045 4:579 5:385 5:989 7:214 7:779 9:488 11:143 13:277 14:860 18:467

5 5:132 5:730 6:626 7:289 8:625 9:236 11:070 12:833 15:086 16:750 20:515

6 6:211 6:867 7:841 8:558 9:992 10:645 12:592 14:449 16:812 18:548 22:458

7 7:283 7:992 9:037 9:803 11:326 12:017 14:067 16:013 18:475 20:278 24:322

8 8:351 9:107 10:219 11:030 12:636 13:362 15:507 17:535 20:090 21:955 26:125

9 9:414 10:215 11:389 12:242 13:926 14:684 16:919 19:023 21:666 23:589 27:877

10 10:473 11:317 12:549 13:442 15:198 15:987 18:307 20:483 23:209 25:188 29:588

11 11:530 12:414 13:701 14:631 16:457 17:275 19:675 21:920 24:725 26:757 31:264

12 12:584 13:506 14:845 15:812 17:703 18:549 21:026 23:337 26:217 28:300 32:910

13 13:636 14:595 15:984 16:985 18:939 19:812 22:362 24:736 27:688 29:819 34:528

14 14:685 15:680 17:117 18:151 20:166 21:064 23:685 26:119 29:141 31:319 36:123

15 15:733 16:761 18:245 19:311 21:384 22:307 24:996 27:488 30:578 32:801 37:697

16 16:780 17:840 19:369 20:465 22:595 23:542 26:296 28:845 32:000 34:267 39:252

17 17:824 18:917 20:489 21:615 23:799 24:769 27:587 30:191 33:409 35:718 40:790

18 18:868 19:991 21:605 22:760 24:997 25:989 28:869 31:526 34:805 37:156 42:312

19 19:910 21:063 22:718 23:900 26:189 27:204 30:144 32:852 36:191 38:582 43:820

20 20:951 22:133 23:828 25:038 27:376 28:412 31:410 34:170 37:566 39:997 45:315

21 21:991 23:201 24:935 26:171 28:559 29:615 32:671 35:479 38:932 41:401 46:797

22 23:031 24:268 26:039 27:301 29:737 30:813 33:924 36:781 40:289 42:796 48:268

23 24:069 25:333 27:141 28:429 30:911 32:007 35:172 38:076 41:638 44:181 49:728

24 25:106 26:397 28:241 29:553 32:081 33:196 36:415 39:364 42:980 45:559 51:179

25 26:143 27:459 29:339 30:675 33:247 34:382 37:652 40:646 44:314 46:928 52:620

26 27:179 28:520 30:435 31:795 34:410 35:563 38:885 41:923 45:642 48:290 54:052

27 28:214 29:580 31:528 32:912 35:570 36:741 40:113 43:195 46:963 49:645 55:476

28 29:249 30:639 32:620 34:027 36:727 37:916 41:337 44:461 48:278 50:993 56:892

29 30:283 31:697 33:711 35:139 37:881 39:087 42:557 45:722 49:588 52:336 58:301

30 31:316 32:754 34:800 36:250 39:033 40:256 43:773 46:979 50:892 53:672 59:703

35 36:475 38:024 40:223 41:778 44:753 46:059 49:802 53:203 57:342 60:275 66:619

40 41:622 43:275 45:616 47:269 50:424 51:805 55:758 59:342 63:691 66:766 73:402

45 46:761 48:510 50:985 52:729 56:052 57:505 61:656 65:410 69:957 73:166 80:077

50 51:892 53:733 56:334 58:164 61:647 63:167 67:505 71:420 76:154 79:490 86:661

55 57:016 58:945 61:665 63:577 67:211 68:796 73:311 77:380 82:292 85:749 93:168

60 62:135 64:147 66:981 68:972 72:751 74:397 79:082 83:298 88:379 91:952 99:607
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Table of the t-Distribution—Percentage Points

Table G gives t such that P.X � t/ D a, when X is a t-distribution with parameter
�. Example: � D 10 gives P.X � 3:169/ D 5%.

Table G t-distribution

a

� 40.0% 33.3% 25.0% 20.0% 12.5% 10.0% 5.0% 2.5% 1.0% 0.5% 0.1%

1 0:325 0:577 1:000 1:376 2:414 3:078 6:314 12:706 31:821 63:657 318:31

2 0:289 0:500 0:816 1:061 1:604 1:886 2:920 4:303 6:965 9:925 22:327

3 0:277 0:476 0:765 0:978 1:423 1:638 2:353 3:182 4:541 5:841 10:215

4 0:271 0:464 0:741 0:941 1:344 1:533 2:132 2:776 3:747 4:604 7:173

5 0:267 0:457 0:727 0:920 1:301 1:476 2:015 2:571 3:365 4:032 5:893

6 0:265 0:453 0:718 0:906 1:273 1:440 1:943 2:447 3:143 3:707 5:208

7 0:263 0:449 0:711 0:896 1:254 1:415 1:895 2:365 2:998 3:499 4:785

8 0:262 0:447 0:706 0:889 1:240 1:397 1:860 2:306 2:896 3:355 4:501

9 0:261 0:445 0:703 0:883 1:230 1:383 1:833 2:262 2:821 3:250 4:297

10 0:260 0:444 0:700 0:879 1:221 1:372 1:812 2:228 2:764 3:169 4:144

11 0:260 0:443 0:697 0:876 1:214 1:363 1:796 2:201 2:718 3:106 4:025

12 0:259 0:442 0:695 0:873 1:209 1:356 1:782 2:179 2:681 3:055 3:930

13 0:259 0:441 0:694 0:870 1:204 1:350 1:771 2:160 2:650 3:012 3:852

14 0:258 0:440 0:692 0:868 1:200 1:345 1:761 2:145 2:624 2:977 3:787

15 0:258 0:439 0:691 0:866 1:197 1:341 1:753 2:131 2:602 2:947 3:733

16 0:258 0:439 0:690 0:865 1:194 1:337 1:746 2:120 2:583 2:921 3:686

17 0:257 0:438 0:689 0:863 1:191 1:333 1:740 2:110 2:567 2:898 3:646

18 0:257 0:438 0:688 0:862 1:189 1:330 1:734 2:101 2:552 2:878 3:610

19 0:257 0:438 0:688 0:861 1:187 1:328 1:729 2:093 2:539 2:861 3:579

20 0:257 0:437 0:687 0:860 1:185 1:325 1:725 2:086 2:528 2:845 3:552

21 0:257 0:437 0:686 0:859 1:183 1:323 1:721 2:080 2:518 2:831 3:527

22 0:256 0:437 0:686 0:858 1:182 1:321 1:717 2:074 2:508 2:819 3:505

23 0:256 0:436 0:685 0:858 1:180 1:319 1:714 2:069 2:500 2:807 3:485

24 0:256 0:436 0:685 0:857 1:179 1:318 1:711 2:064 2:492 2:797 3:467

(continued)
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Table G (continued)

a

� 40.0% 33.3% 25.0% 20.0% 12.5% 10.0% 5.0% 2.5% 1.0% 0.5% 0.1%

25 0:256 0:436 0:684 0:856 1:178 1:316 1:708 2:060 2:485 2:787 3:450

26 0:256 0:436 0:684 0:856 1:177 1:315 1:706 2:056 2:479 2:779 3:435

27 0:256 0:435 0:684 0:855 1:176 1:314 1:703 2:052 2:473 2:771 3:421

28 0:256 0:435 0:683 0:855 1:175 1:313 1:701 2:048 2:467 2:763 3:408

29 0:256 0:435 0:683 0:854 1:174 1:311 1:699 2:045 2:462 2:756 3:396

30 0:256 0:435 0:683 0:854 1:173 1:310 1:697 2:042 2:457 2:750 3:385

35 0:255 0:434 0:682 0:852 1:170 1:306 1:690 2:030 2:438 2:724 3:340

40 0:255 0:434 0:681 0:851 1:167 1:303 1:684 2:021 2:423 2:704 3:307

45 0:255 0:434 0:680 0:850 1:165 1:301 1:679 2:014 2:412 2:690 3:281

50 0:255 0:433 0:679 0:849 1:164 1:299 1:676 2:009 2:403 2:678 3:261

55 0:255 0:433 0:679 0:848 1:163 1:297 1:673 2:004 2:396 2:668 3:245

60 0:254 0:433 0:679 0:848 1:162 1:296 1:671 2:000 2:390 2:660 3:232

1 0:253 0:431 0:674 0:842 1:150 1:282 1:645 1:960 2:326 2:576 3:090



Index

addition principle, general, 33
addition principle, special, 33
alternative hypothesis, 177

bar chart, 2
Bayes’ rule, 58
biased, 161
binomial distribution, 114
Black and Scholes formula, 140

call option, 85
causality, 265
central limit theorem, 129
Chi-square test, goodness-of-fit, 224
Chi-square test, independence, 227
coefficient of variation, 14, 104
conditional probability, 56
confidence intervals, 164
covariance, 13
covariance of random variables, 103
cumulative distribution, 79
cumulative standard normal distribution, 125

density of normal distribution, 127
density of standard normal distribution, 124
dependent variable, 250
diagnostic plots, 269
discrete sample space, 28
dummy variables, 268

estimation, 257
estimator, 160
event, 30
Excel, 17
expectation, 81

expectation of a function of two random
variables, 101

explanatory power, 252
explanatory variable, 250

fair dice, 30
false negative, 178
false positive, 178

histogram, 8, 77
histogram, residuals, 269
hypergeometric distribution, 118
hypothesis testing, 177

independence, 65
independence of random variables, 99
indicator distribution, 113
inference, 3
integer correction, 135
intercept, 248
interquartile range, 6

joint distribution, 98

lottery model, 169

marginal distribution, 99
mean, 9
median, 5
mode, 6
multicollinearity, 266
multiple regression, 263
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466 Index

negation principle, 35
normal approximation, 142
normal distribution, 124
normal score, 269
null hypothesis, 177

OLS, 249
option pricing, 138
options, 85
ordered, 42
ordinary least squares, 249
outcome, 27

P-value, 178
pie chart, 2
Poisson distribution, 122
population, 3
prediction, 257
probability, 29
probability distribution, 76
probability tree, 60

quartile, 6

random selection, 31
random variable, 76
regression, 248
regression, Excel, 261
rejection region, 178
relative frequency, 7
residuals, 251
residuals, plot, 270

sample, 3
sample space, 27
scale variable, 267
slope, 248
splitting principle, 60
standard deviation, 10, 84
standardized random variables, 128
strength, of a test, 178
subjective probability, 64

t-distribution, 166
t-test, comparison of two groups, 206
t-test, expected value, 203
t-test, paired observations, 210
test of binomial probability, 201
test static, 178
type 1 error, 178
type 2 error, 178

U-test of success probabilities, 222
unbiased, 160
uniform probability, 30
unordered, 44

variance, 10, 83
variance, sum of random variables, 105
volatility, 138

Wilcoxon’s rank-sum test, 216
Wilcoxon’s signed-rank test, 218
with replacement, 42
without replacement, 42
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