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PREFACE

Numerical computing has come a long way since the discovery of the first comput-
er in the early 1940s. Computers have brought changes to the world through their
capability to handle and solve problems that were previously not solvable. Because
of the improvements in information and communications technology that comput-
ers have brought, the world looks smaller. There have been vast improvements in
the way computers are used for solving numerical problems in which hardware and
software together form the building blocks.

This book has been written to discuss both problems in numerical methods and
simulations, and their solutions using Visual C++. There are several objectives for
doing this. First, there is a gap between a problem and its computing elements. A
problem normally comes from a practitioner, whereas the computing elements are
the work of a programmer. A practitioner understands the problem and its manual
solution well but may encounter problems in implementing the idea through pro-
gramming. A programmer, on the other hand, has strong analytical skills for pro-
gramming but may be lacking in providing the expected solution to the problem as
it is not his or her area of expertise. As a result, students end up buying some books
on Visual C++ and another few books on numerical methods, but still have prob-
lems in combining both. A bridge is needed to close this gap. Most books on the
market discuss either Visual C++ or the problem exclusively, not both of them at
the same time. There are many books specializing in numerical methods and simu-
lations but almost none of them connect to the resources in Visual C++, particularly
the Microsoft Foundation Class, or MFC, library. Only a handful of them discuss
the problems using the standard C++. For example, the problem of solving a system
of linear equations is a fundamental problem in numerical methods. Unfortunately,
there are no known books on the market that discuss this problem in depth, espe-
cially using the rich resources in MFC. MFC has a large collection of library func-
tions for serving many requirements in programming, but the absence of books in
the numerical simulations area may reduce its audience. Today, C++ is facing stiff
competition from other languages such as Visual Basic and Java. There is also a rel-
atively new language, C#, which has been mentioned to take over from C++. The
issue here is no longer an option, it is survival. Therefore, to remain competitive,

xi



xii PREFACE

MFC needs to be promoted so that it takes care of areas such as numerical simula-
tions. We have looked at this deficiency and present this book as a solution.

Our second objective is to discuss a problem and its solution and present the so-
lution in a friendly manner. Visualization is the keyword here. A problem will re-
main a problem as long as its friendliness form is not there. It takes time for people
to appreciate a given problem if there is no tool to present its solution in a friendly
manner. Today’s requirements are very challenging to a problem solver. A numeri-
cal solution that displays only a series of numbers will not be appreciated anymore,
not like in the time when FORTRAN dominated the programming world in the
1960s and 1970s. Instead, the solution must be presented in the form of charts,
graphs, animation, and, sometimes, multimedia. Not only that, the interface on the
computer should be friendly to the user when the use of windows, dialog boxes,
mouse, menus, and images are necessary.

Our third objective is to put more emphasis on the problem and try to minimize
the coding using MFC. This is necessary since an approach that involves too many
codes often distracts the reader from understanding the method for solving the
problem. We embark on this idea by implementing the nonwizard approach in MFC
for most problems. The wizard, or guided approach, is presented in one chapter to
compliment the nonwizard approach. Only one application class is involved in the
program design in most examples. This is necessary in order to reduce the complex-
ity in coding. The advantage of our approach can be seen from the small number of
codes required in each application. This benefits the reader, as small lines of codes
make the solution easier to understand. The interface for each problem has also
been designed to be as simple as possible for this purpose. We do not add things
like animation and sound to a typical numerical problem as this approach may be
overreacting. Instead, some relevant things such as edit boxes and a list view win-
dow will be more practical for this application. The problem itself may require a
lengthy discussion and coding. Also, the idea behind this approach is to have the
readers understand the solution to each problem and use the method in their work.
The minimum coding provided in each example will serve as a good beginning for
the reader. It is expected that the readers will pick up the code and expand it in their
real work.

The book is not intended for use as a beginning text book for learning MFC. The
concepts of MFC are not discussed in depth in this book because this is not our
main objective. There are dozens of books on the market today that provide lengthy
discussions on MFC, and we do not wish to compete against them. However, the
MFC concepts related to the topics discussed are explained. Also, it is assumed that
the reader has acquired some programming skills using C++ and understands the
object-oriented approach to programming prior to using this book. This is necessary
since MFC requires some understanding of concepts such as inheritance, polymor-
phism, and overloading.

The programming work in this book has been developed wholly using Microsoft
Visual C++.Net version 2002. The code is also compatible with version 2003 of the
software and Microsoft Visual C++ version 6. The topics discussed in this book
consist of several selected numerical methods and simulation problems. We chose
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problems that are fundamental in nature, and ones that will benefit a large audience.
The topics range from trivial problems such as the fourth-order Runge—Kutta prob-
lem to something quite tricky such as the multiprocessor scheduling problem. We
anticipate that the audience for this book will mostly be third-year undergraduate
and beginning graduate students. The topics discussed are intended to help students
develope their projects at the final-year undergraduate level, intermediate Masters,
and beginning Ph.D. degree courses. The book is also suitable for use by practition-
ers, working professionals, researchers, and lecturers working in the simulation
areas.

The work in this book is the result of some years of collaborative research and
teaching between Universiti Teknologi Malaysia, University of Sydney, and Old
Dominion University. Many materials in this book were developed by the first au-
thor for the SSM 3323 and MSM 5023 classes at the Department of Mathematics,
Universiti Teknologi Malaysia. The authors would like to thank Professor Ariffin
Samsuri, Dean of the Research Management Center at Universiti Teknologi
Malaysia, for his support in completing this book. Special thanks also to Michael
Till and his group at the CISCO Internetworking Unit, School of Information Tech-
nologies at the University of Sydney, Australia; and Kurt Maly, head of the Com-
puter Science Department at Old Dominion University in the United States.

SHAHARUDDIN SALLEH
ALBERT Y. ZOMAYA
STEPHAN OLARIU
BAHROM SANUGI

April 2005






CHAPTER 1

DEVELOPING APPLICATIONS
USING VISUAL C++.NET

1.1 OBJECT-ORIENTED APPROACH TO VISUAL C++.NET

An object is an instance of a class. A class is a set of entities that share the same par-
ent. Object-oriented programming is a programming approach based on objects.
C++ is one of the most popular object-oriented programming languages in the
world. The main reason for its popularity is due to the fact that it is a high-level lan-
guage but, at the same time, it runs as powerfully as the assembly language. In addi-
tion, C++ has its roots in ANSI C, which has been a very nicely crafted procedural
language, popular in the 1970s and 1980s. But the real strength of C++ lies in its
takeover from C to move to the era of object-oriented programming in the late
1980s. This conquest provides C++ with the powerful features of the procedural C
and an added flavor for object-oriented programming.

The original product from Microsoft consists of the C compiler that runs under
the Microsoft DOS (disk operating system), and it has been designed to compete
against Turbo C, which was produced by the Borland Corp. In 1988, C++ was
added to C and the compiler was renamed Microsoft C++. In early 1989, Microsoft
launched the Microsoft Windows operating system, which includes the Windows
API (Application Programming Interface). This interface is based on 16 bits and
supports the procedural mode of programming using C. Improvements were made
over the following years that include the Windows Software Development Kit
(SDK). This development took advantage of the API for the graphical user interface
(GUI) applications with the release of the Microsoft C compiler. As this language is
procedural, the demands in the applications required an upgrade to the object-ori-
ented language design approach, and this contributed to the release of the Microsoft
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2 DEVELOPING APPLICATIONS USING VISUAL C++.NET

C++ compiler. With the appearance of the 32-bit Windows API (or Win32 API) in
early 1990s, C++ was reshaped to tackle the extensive demands on Windows pro-
gramming and this brought about the release of the Microsoft Foundation Classes
(MFC) library. The library is based on C++ and it has been tailored with the object-
oriented methodology for supporting the application architecture and implementa-
tion.

The Net platform refers to a huge collection of library functions and objects for
creating full-featured applications both on the desktop and the enterprise Web.
The classes and objects provide support for friendly user interface functions like
multiple windows, menus, dialog boxes, message boxes, buttons, scroll bars, and
labels. Besides, the platform also includes several tedious task-handling jobs like
file management, error handling, and multiple threading. This platform also sup-
ports advanced frameworks and environments such as Passport, Windows XP, and
Tablet PC. The strength of the Net platform is obvious in providing the Internet
and web enterprise solutions. Web services include information sharing, e-com-
merce, HTTP, XML, and SOAP. XML, or Extensible Markup Language, is a plat-
form-independent approach for creating markup languages needed in a web appli-
cation.

Managed Extension Features

A new approach in Visual C++.Net is the Managed Extension, which performs
automatic garbage collection for optimizing the code. Garbage collection involves
the removal of memory and resources not used any more in the application, which
is often neglected by the programmer. The managed extension is a more struc-
tured way of programming, and it is now the default in Visual C++.Net. Central
to the .Net platform is the Visual Studio integrated development environment
(IDE). It is in this platform that applications are built from a choice of several
powerful programming languages that include Visual Basic, Visual C++, Visual
C#, and Visual J++.

In addition, IDE also provides the integration of these languages in tackling a
particular problem under the .Net banner. Visual C++.Net is one of the high-perfor-
mance compilers that make up the .NET platform. This highly popular language has
its roots in C, improved to include the object-oriented elements, and now, with the
.Net extension, it is capable of creating solutions for Web enterprise requirements.
A relatively new language called Visual C# in the .Net family was developed by
combining the best features of Visual Basic visual tools with the programming
power of Visual C++.

In addition to its single-machine prowess, Visual C++.Net presents a powerful
approach to building applications that interact with databases through ADO.NET.
This product evolved from the earlier ActiveX Data Objects (ADO) technology,
and it encompasses XML and other tools for accessing and manipulating databases
for several large-scale applications. This feature makes Visual C++.Net an ideal
tool for several Web-based database applications.
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1.2 MFC FUNDAMENTAL FEATURES

MEFC is a library that consists of more than 200 classes. Each class has more than a
dozen member functions that handle tasks ranging from a simple text display to the
more challenging web data manipulation. The MFC library is arranged in a hierar-
chical manner, as shown in part in Figure 1.1. This hierarchy makes possible a class
to derive common member functions from its predecessor classes, thus eliminating
redundancies in the classes. The hierarchy also identifies the ranking of each class
with respect to other classes, where a class in a higher level is a base class to the
given class. In addition, the hierarchy system makes possible further extensions to
several new functions of a class, and for the addition of new classes or removal of
some obsolete classes. In other words, MFC has been designed in a very modular
form so that its future releases will cater to the programming needs of the time.
One of the highest-ranking classes in MFC is CObject. This class is responsi-
ble for several general duties, particularly for supporting handle runtime, serializa-

CObject
CDC CFile CException CCmdTarget
CGdiObject CWnd
CPen
CBrush
CBitmap CFrameWnd Chialog CView
CFont
CPalette
CCtrlview
CEdit
CPaintDC CListBox
CClientDC CComboBox
CWindowDC
CButton CEditView
CHOtK?thrl CListView
CStatic CTreeView
CScrollBar
CTabCtrl
CSliderCtrl

Figure 1.1 Hierarchy of some selected classes in MFC.
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tion, and performing diagnostic output for several derived objects. It is from this
base class that several other classes are derived, as shown in Figure 1.1.

Graphics Device Interface

The GDI, or Graphics Device Interface, is a layer in the Windows architecture that
insulates the application from direct interaction with the hardware. A class that is
commonly derived from CObject is the CDC class. In MFC, the CDC class is the
base class for providing an interface with other classes, including CPaintDC,
CClientDC, and CWindowDC. Each of these classes makes use of GDI to pro-
vide all the basic graphical and drawing functions for an application on Windows
through an object abstraction called device context.

A device context is a data structure that is responsible for displaying text and
graphics as output on Windows. The tools in the data structure are represented as
graphic objects such as pens, brushes, fonts, and bitmaps. In reality, a device con-
text is a logical device that acts as an interface between a physical device (such as
the monitor and printer) and the application. A device context is a set of tools or at-
tributes for putting text and drawing graphics on the screen using GDI functions.

There are four types of device contexts in GDI: display context, memory context,
information context, and printer context. A display context supports operations for dis-
playing text and graphics on a video display. Before displaying text and graphics, a dis-
play context links with MFC functions for creating a pen, brush, font, color palette, and
other devices. A memory context supports graphics operations on a bitmap and inter-
faces with the display context by making it compatible before displaying the image on
the window. An information context supports the retrieval of device data. A printer
context provides an interface for supporting printer operations on a printer or plotter.

In Windows, everything including text is drawn as a graphics object. This is
made possible as every text character and symbol is formed from pixels that may
vary in shapes and sizes. This facility allows flexibility in the shape of the text by
allowing it to be displayed from a selection of dozens of different typefaces, styles,
and sizes. Text and graphics are managed by GDI functions that are called on every
time a graphic needs to be displayed on the screen.

A device context object is created from one of the classes as listed in Table 1.1.
For example, the device context (dc) in the main window is obtained by deriving
this object from CPaintDC, as follows:

CPaintDC dc(this);

Table 1.1 Server/client classes derived from the CDC class

Class Description

CPaintDC Device context for the server area in Windows
CClientDC Device context for the client area in Windows
CWindowDC Device context for the whole window

CMetaFileDC Device context for representing a Windows metafile, or a

device-independent file for reproducing an image
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Table 1.2 GDI objects for text and graphics

GDI object Class Description

Pen CPen To draw a line, rectangle, circle, polyline, etc.
Brush CBrush To brush a region with a color

Color palette CPalette Color palettes for pens and brushes

Font CFont To create a font for the text

Bitmap CBitmap To store a bitmap object

This object can then be linked with the available functions for displaying text,
drawing lines, circles, rectangles, and so on. Some of the primitive objects for dis-
playing text and graphics in Windows are pen, brush, font, bitmap, and color
palette; these are described briefly in Table 1.2.

GDI Functions

There are dozens of GDI functions for displaying text and graphics. Table 1.3 de-
scribes some of the most commonly used GDI functions for displaying text and
graphics. These functions are derived from the CDC class. Basically, a pen is a GDI
device for drawing a line. The object is created from the class CPen. The default
pen consists of a solid black line with a thickness of one pixel. This shape can be
modified by changing the parameters in the class’s constructor, CPen (). A brush
is another GDI device for painting and filling a region using the current color. By

Table 1.3 Commonly used functions in the CDC class

Function Description

Arc () Draws an arc

BitBlt () Copies a bitmap to the current device context
llipse() Draws an ellipse (and a circle)

FillRect () Fills a rectangular region with the indicated color
FillSolidRect () Creates a rectangle using the specified fill color
GetPixel () Gets the pixel value at the current position

LineTo () Draws a line to the given coordinates

MoveTo () Sets the current pen position to the indicated coordinates
Polyline() Draws a series of lines passing through the given points
Rectangle() Draws a rectangle according to the given coordinates
RGB () Creates color from the combination of red, green, and blue palettes
SelectObject () Selects the indicated GDI drawing object
SetBkColor () Sets the background color of the text

SetPixel () Draws a pixel according to the chosen color
SetTextColor () Sets the color for the text

TextoOut () Displays a text message at the indicated coordinates
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default, white is the color of the brush. This setting can be changed by modifying
the parameters in the brush’s constructor, CBrush ().

Text is displayed using the function TextOut (). By default, text is displayed
using black color with a font of size of 12. These default settings can be changed by
calling the appropriate functions. Color is created using the function RGB (). The
color of the text and its background can be changed using the function SetText-
Color () and SetBkColor (), respectively. For example, the following state-
ments change the text color to green and the background to black:

dc.SetTextColor (RGB(0,255,0)) ;
dc.SetBkColor (RGB(0,0,0));

Numerical Functions

MFC does not have special numerical functions for performing scientific computa-
tions, as the functions in the standard C++ library are sufficient for most applica-
tions. Some of the most common functions in the C++ library are listed and de-
scribed in Table 1.4. These functions are available for use in an application by
inserting their prototype file, math.h, in the preprocessing area. In using the func-
tions, care must be taken in considering their domain and range correctly. For ex-
ample, log (-2) will result in a crude answer as this function supports only posi-
tive numbers in its argument.

1.3 WRITING APPLICATIONS USING MFC

MFC provides powerful support for creating desktop or Web applications. This
feature is observed through the rich features in MFC that allow the application to
include a lot of advanced routines. Applications using Microsoft Visual C++ can
be developed either on a guided or nonguided basis. In a guided approach, a tool
called a wizard is provided to help in writing the code for the application. The
wizard provides the initial skeleton of the program, and, therefore, the program-
mer does not have to worry about the detail steps in Windows such as calling
functions for serializing objects and registering the application on the Windows
interface. The programmer can concentrate on writing the code for the application.
Many tedious jobs, ranging from a simple task like declaring a variable to some-
thing more difficult like creating a dialog box for an application, are done using
the friendly menus provided by the wizard. Programming looks easier and more
appealing this way.

However, a full guided tour has its drawbacks. The programmer may not benefit
too much from the “free ride.” It is important for us to know how to walk the stairs
instead of using the elevator all the time. Climbing stairs is a generic skill every hu-
man being must possess. Taking a ride on the elevator is a luxury in the sense that
elevators may not be available in many places. Therefore, persons lacking in this
generic skill may not survive under certain conditions. The person may also not be
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Table 1.4 Some of the most common numerical functions available in the standard C++
library

Function Description

double exp (double x) Returns the exponent value of its argument. For example,
exp (-1) returns 0.3679.

double log(double x) Returns the logarithm value of its argument. For
example, log (4.5) returns 0.6532.

double sin(double x) Returns the sine value of its argument. For example,
sin(4.5) returns —0.9775.

double cos (double x) Returns the cosine value of its argument. For example,
cos (4.5) returns —0.2108.

double tan(double x) Returns the tangent value of its argument. For example,
tan(4.5) returns 4.6373.

double sinh(double x)  Returns the Ayperbolic sine value of its argument. For

example, sinh (-1) returns —1.1752.

double cosh(double x)  Returns the hyperbolic cosine value of its argument. For
example, cosh (-1) returns 1.5431.

double tanh(double x)  Returns the hyperbolic tangent value of its argument.
For example, tanh (-1) returns —0.7616.

double asin(double x)  Returns the arc sine value of its argument. For example,
asin(0.4) returns 0.4115.

double acos (double x) Returns the arc cosine value of its argument. For
example, acos (0.4) returns 1.1592.

double atan(double x)  Returns the arc tangent value of its argument. For
example, atan (0.4) returns 0.3805.

int abs(int x) Returns the absolute value of its integer argument. For
example, abs (4) and abs (-4) both return 4.

double fabs(double x)  Returns the absolute value of its double argument. For
example, fabs (4.5) and fabs (-4.5) both
return 4.5.

flexible enough to exercise several different options for meeting new challenges.
Many fundamental steps such as creating a variable and declaring a class are con-
sidered the basic attributes of a language that a programmer should know.

Our approach in this book will be mostly to use the nonwizard option as we
would like to concentrate on discussing the problems by writing small programs
and keeping code writing to the minimum. The wizard approach involves some
massive handling of the dialog windows and menus, which generate many files that
are not related to the applications. A discussion on wizards in Chapter 3 should pro-
vide some relationship between the two options.

Creating a New Project

We start by discussing some basic ideas in creating an application on Windows. Mi-
crosoft Visual C++.Net provides an interface called Visual Studio for developing an
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application. Besides C++, this interface is shared by other languages in the family
including Visual Basic and Visual C#. In order to develop an application using
MFC, a person must know the C++ language very well. A good knowledge of C++
is a prerequisite to developing applications on Windows. This is necessary since
MFC has classes and objects defined in a manner that can only be understood if one
knows the language well.

A C++ project can be created in many ways, depending on user requirements.
Table 1.5 lists some of the most common ways to create an application with Visual
Studio. In its simplest form, a standard C++ project that runs without the support of
any Windows functions is a console application. This option is necessary to a be-
ginner in C++ or a person who does not wish to use the Windows facilities. The
console option is available by choosing New Project, Win32 Application and by
choosing Console Application in Application Type.

A Win32 Project is an option for creating an empty application with or without
the support of MFC. This option does not provide a guide for creating an applica-
tion, as the person must know all the details. One advantage to this option is the
small amount of code required to generate an application. The option allows the ap-
plication to exist as an executable file (EXE) or as a dynamic-link library (DLL).

The MFC Application option is a guided approach for creating an application us-
ing a tool known as the wizard. With this option, the details about Windows are pre-
pared by Visual Studio through a series of menus and dialog windows in the wizard.
Therefore, the user can concentrate on writing the code for an application. The wiz-
ard does not provide the whole solution for the application as it only assists by gen-
erating the code related to the Windows management.

The Managed Extension option is a structured way of writing an application.
This new option provides an opportunity to integrate the application with .Net
frameworks such as Passport, .Net My Services, Windows XP, and Tablet PC.

Creating a Window

The easiest way to create a nonwizard application using Windows is to use
CFrameWnd as the framework. CFrameWnd is a class derived from CWnd.
CFrameWnd also has rich ancestry in other classes such as CCmdTarget, COb-
ject, and CWnd, which allows access to many functions and variables for creat-
ing applications. In a nonwizard application, a window is created by deriving the
class from CFrameWnd using the function Create () (see Table 1.6).

Table 1.5 Some of the available new project options

Item Description

Console Application Native C++ project that supports no Windows
Win32 Project Empty project with or without MFC

MEFC Application Wizard approach to creating a Windows application

Managed C++ Application Managed C++ project with or without Windows support
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Table 1.6 The function Create ()

Function Description

Create() Creates the main window for the application

The main window is created using the function Create() from the
CFrameWnd class. In its simplest form, the main window is created as follows:

Create (NULL, "My Main Window”)

Create () has several parameters but only the first two need to be stated, as
shown above. The first parameter indicates the default class used, whereas the sec-
ond is the title of the application. Leaving the other parameters as is means we agree
with the default settings of the window.

Several child windows are also created using the function Create (). A child
window is a window derived from the main window. A child window can exist in
the form of a push button, a list view window, an edit box, or a full window similar
to the main window. To create a child window, an object must be derived from its
class. For example, to create a push-button window on the main window an object
is derived from the class CButton, and applied as follows:

CButton MyPushbutton;

MyPushbutton.Create (“*My Button”,WS_CHILD | WS_VISIBLE |
BS_DEFPUSH BUTTON, CRect (30,325,250,355), this,
IDC_MYBUTTON) ;

The above statements create an object called MyPushbutton derived from the
class CButton. We will discuss the parameters inside Create () in later in the
chapters. The MyPushbutton object is a push-button window shown as a three-
dimensional rectangle in the main window. Several other types of child windows
are created and displayed in a similar manner.

A Windows application consists of a client/server process represented as objects.
The server occupies the main window using using the functions OnPaint () or
OnDraw () . These two special functions are the message handling functions that re-
spond to the event detected by WM_PAINT. The device context object for these
functions are created from the class CPaintDC. A client area is created using any
function other than OnPaint (). In this function, a device context object is created
by deriving its object from the class CC1lientDC.

1.4 WRITING THE FIRST NONWIZARD APPLICATION

In this section, we discuss a nonwizard approach for creating a simple application.
The option can be started by choosing the appropriate icons and answering a series
of questions, as follows:
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Step 1: Start Visual C++. From the menu choose File, followed by New and
Project, as shown in Figure 1.2. This step creates a new project.

Step 2: The screen, as shown in Figure 1.3, appears. Click the Win32 Project
icon, for nonwizard MFC applications. Name the filename Codel and
choose a suitable folder for storing the project. Click OK to confirm the selec-
tion.

Step 3: The dialog window in Figure 1.4 appears. Choose Application Settings
to set up the nonwizard features into the application. Choose Windows Appli-
cation and Empty Project for developing an application using the nonwizard
Windows option. Click the Finish button to complete the selection.

Step 4: The menu as shown in Figure 1.5 appears. Choose Properties to embed
the features into the application.

Step 5: The dialog window as shown in Figure 1.6 appears. Highlight Use of
MFC and choose the Use MFC in a Static Library option. This option embeds
MFC into the application to produce an EXE file.

Step 6: Highlight Source Files in the Solution Explorer and right-click. The
menu as shown in Figure 1.7 appears. Choose Add then Add New Item to in-
sert two new files into the project.

&2 Microsoft Development Environment [design] - Start Page

File | Edit W“iew Tools Window Help
[ new v ] eroject.. culishiftsn |
Open P [Z] Eie... Ctrl+
Close L4 Blank Solution, ..
Add Project 3
j Open Solution. ..
&l saveal Ctrl+5hift+3
Source Control 3
& Print... Cirl+P
Recent Eiles 3
Recent Projects »
Exit

Figure 1.2 Creating a new project.
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Figure 1.3 Win32 project option for MFC applications.
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Figure 1.4 Specifying an empty Windows application.
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£9 MFC-Intro - Microsoft Visual C++ [design] - Start Page

File Edit View m‘ Build Debug Tools Window
Add Class... |
Add Resource. .. 1
Add Mew Ttem...  Cirl+Shift+a [

Add Existing Item... Shift+Alt+A
Mew Folder
Unload Project

Get Started Add Web Reference...
What's New Set as Startllp Project 1

Online Commu Properties |1

Figure 1.5 Specifying the properties in the application.
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Figure 1.6 Specifying the static MFC library.
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Figure 1.7 Specifying the static MFC library.

Step 7: A dialog window as shown in Figure 1.8 appears. Choose Header File
and name the new file as Code1.h.

Type the following code into Code1.h:

// Codel.h
#include <afxwin.h>

class CCodel : public CFrameWnd

{
public:
CCodel () ;
~CCodel () {}
afx_msg void OnPaint () ;
DECLARE_MESSAGE_MAP () ;
Y
class CMyAppClass : public CWinApp
{
public:
virtual BOOL InitInstance() ;
Yi

Step 8: Repeat Steps 6 and 7 to add the file Code1.cpp. Insert the following
code:

// Codel.cpp
#include “Codel.h”
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Creates a C++ header file,
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Figure 1.8 Inserting a new file into the project.

CMyAppClass MyApplication;
BOOL CMyAppClass::InitInstance()

{
CCodel* pFrame = new CCodel;
m_pMainWnd = pFrame;
pFrame->ShowWindow (SW_SHOW) ;
pFrame->UpdateWindow () ;
return TRUE;

}

BEGIN_MESSAGE_MAP (CCodel, CFrameWnd)
ON_WM_PAINT ()
END_MESSAGE_MAP ()

CCodel: :CCodel ()
{
Create (NULL, "My First MFC Program”) ;
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void CCodel: :OnPaint ()

{

CPaintDC dc(this);

7/

CPen penBlue(PS_SOLID,5,RGB(0,0,255));
dc.

draw the border

SelectObject (&penBlue) ;

CRect rc;
rc=CRect (CPoint (10,30),CPoint (300,200)) ;

dc.

//
dc

dc.
dc.

dc

dc.

Rectangle(rc) ;

display the text messages

.SetBkColor (RGB(255,255,255)) ;

SetTextColor (RGB(255,0,0));
TextOut (50,80, “This is MFC”);

.SetTextColor (RGB(0,255,0)) ;

TextOut (50,115, “Enjoy the ride!”);

// white
background
// red text
// first
message

// green
text

// second
message

Step 9: Finally, compile and run to get the output as shown in Figure 1.9.

B My First MFC Program

=101

This is MFC

Figure 1.9 Output from Code1.
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1.5 DISCUSSION

The above project, codenamed Code1, illustrates the nonwizard way of creating
an application. The project is based on the files Codel.h and Codel.cpp. The
output, as shown in Figure 1.9, consists of two lines of text and a blue rectangle
displayed in a simple window. We discuss the implementation of the project be-
low.

Window Creation Process

The process of creating a window involves several steps, namely, creating the ob-
jects for accessing the relevant classes in MFC, registering the class, showing the
window, and updating. A function called afxwin.h needs to be included in the
header file as it contains the declarations and prototypes of the member functions in
the application class. The steps begin by creating an application class called
CMyAppClass, which is derived from the MFC class CWinApp. This class has a
member function called InitInstance () from the type BOOL (Boolean). This
is done in the header file Code1.h, as follows:

#include <afxwin.h>
class CMyAppClass : public CWinApp
{
public:

virtual BOOL InitInstance() ;
Y

In creating the window, the class CCodel is derived from CFrameWnd. Since
CFrameWnd is derived from Wnd, this means our window inherits all the class
members from Wnd. Once the application class has been formed, an object is de-
rived from this application class. This is done in the file Code1.cpp, as follows:

CMyAppClass MyApplication;

The object can have any name. In our case it is called MyApplication. The next
step is to write the contents of the function ITnitInstance () into Codel.cpp,
as follows:

BOOL CMyAppClass::InitInstance()
{
CCodel* pFrame = new CCodel;
m_pMainWnd = pFrame;
pFrame->ShowWindow (SW_SHOW) ;
pFrame->UpdateWindow () ;
return TRUE;
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InitInstance () is called up by a constructor from the MFC class CWinApp
for constructing the window. It begins with the construction of CCodel object:

CCodel* pFrame = new CCodel;

The above code helps in the creation of the window through Create () in the con-
structor. The next step is to attach the CCodel object to the MyApplication ob-
ject, as follows:

m_pMainWnd = pFrame;

Since m_pMainWnd is a member of CWinApp, this assignment allows the
CCodel object to be linked to MyApplication since CMyAppClass is de-
rived from CWinApp. The next step is to show the window, as follows:

pFrame->ShowWindow (SW_SHOW) ;
And, finally, the update on the window:

pFrame->UpdateWindow () ;

1.6 SUMMARY AND CONCLUSION

This chapter describes the establishment of MFC and some of its fundamental com-
ponents. The MFC library has more than 200 classes with thousands of member
functions available for developing applications. These rich resources include many
graphical user interface tools for developing applications on the desktop and Web,
in databases, and in communications.

We discussed some fundamental features of MFC for desktop applications, in-
cluding a MFC class hierarchical organization, graphics device interface (GDI), and
device context. We also discussed the steps for creating the first Windows program
using the nonwizard option. The nonwizard approach to programming is illustrated
with a simple interface for displaying some text and graphical messages. The ap-
proach does not involve massive coding or the use of too many resources. This ap-
proach will be further discussed in most applications in this book.
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CHAPTER 2

INTERFACES FOR
NUMERICAL PROBLEMS

2.1 VISUALIZING A NUMERICAL PROBLEM

Mathematics plays a pivotal role in generating the theoretical foundations for sever-
al forms of scientific and technological innovations and inventions. Ideas in the
form of analytical reasoning and formulation in mathematics contribute in solving
many problems that lead to many breakthroughs in technological innovations and
inventions. The contributions of mathematics come in many forms. First, mathe-
matics provides a set of structured steps that lead to an effective algorithm design.
The algorithm, in turn, is key to the design of the pseudocode, and, eventually, the
program code. Also, mathematics goes in line with the physical and logical proper-
ties of a given problem. In this case, mathematics equips its users with precious an-
alytical and technical skills needed for solving problems of this nature.

One problem with the integration of mathematics in society is its “unfriendly”
look. A mathematician normally has some idea of what a problem looks like and the
steps that lead to its solution. However, he or she always has the trouble in explain-
ing this idea to other people. To a layman, a solution to a problem in mathematics
may be an abstraction that is not easy to understand. The difficulty arises from the
fact that the understanding of the problem between a mathematician and a nonmath-
ematician is not at the same level. Therefore, a bridge is needed to reduce this mis-
understanding. It is also necessary to connect a problem involving mathematics
with its solution in a more acceptable manner. A proper presentation of the problem
and its solution in the form of an attractive graphical user interfaces will definitely
help in closing the gap.

The main objective of this chapter is to illustrate the idea of visualizing a given
mathematical problem, solve this problem, and visualize its solution as well. MFC
has a very comprehensive set of tools in the form of graphical user interface library
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functions for achieving this objective. This chapter describes a few topics concern-
ing the use of MFC tools in some selected mathematical problems that contribute to
the overall development of solutions to a particular problem. We select four exam-
ples having tedious development for discussion. The first is an iterative method for
finding the root of an equation that is easily implemented using the tools in MFC.
This is followed by an example in solving a system of linear equations that makes
use of dialog boxes to allow better interaction between the user and the problem.
Next is the improvement in the graphical user interface presentation of the dialog
window through the use of resource files for solving the same problem. Finally, the
last section describes a simple modular approach for solving a problem involving
matrix operations, which demonstrates an effective data-passing mechanism be-
tween functions.

The Art of Visualization

Visualization is a practical way of looking at a problem and its solution. Some use-
ful pointers for good visualization include the use of graphs, charts, diagrams, and
friendly interfaces such as menus, dialog boxes, and buttons. A good visualization
model on the computer describes the problem and its solution well. Good visualiza-
tion also makes it possible for the solution to be understood even by an end user
who is not necessarily a technical person. Several forms of visualization have been
produced depending on the nature of the problem. The most practical is the use of
the computer as today’s machines are capable of handling the required number of
calculations. A computer provides the textual and graphical means of describing a
problem and the series of steps that lead to its solution.

A typical problem may be difficult to understand at first. For example, the ther-
mal convection in the Earth’s mantel can be modeled using the finite difference
method in mathematics. A simulation model to visualize the resulting temperatures,
consisting of millions, perhaps billions, of values, can be developed and displayed
on a powerful workstation or supercomputer. Using a program on the workstation,
data for each time step is represented as a grid of pixels on the screen, with the pix-
el colors representing the temperature. These grids can then be displayed in succes-
sion to show the evolution of the model over time. In the case of a three-dimension-
al model, more advanced techniques, such as volumetric rendering, can be used to
visualize the data. Once a computer simulation or analysis has been performed, the
results must be interpreted by the researcher. Even though looking at the results in a
numerical form can provide insights, the quantity of numbers produced by some
high-performance computer simulations can make this task impractical. One alter-
native is to convert the numbers into pictures and animations, because human be-
ings are inherently far better at understanding information in these forms.

Another area requiring visualization is computational fluid dynamics (CFD)
modeling. CFD is an excellent tool for improving the design of devices in which
flow mechanics plays a crucial role in their operation. CFD can be used to recog-
nize complex flow profiles due to turbulent velocity fields, pressure changes, mass
flow rates, and high-temperature zones in and around devices that operate with flu-
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id flow. It basically does this by solving model equations of fluid flow that are often
nonlinear partial differential equations over complex geometrical shapes using nu-
merical methods. CFD is also a good research tool for developing better flow mod-
els.

The two examples discussed above are some of the numeric-intensive work re-
quiring massive calculations on the computer. Today’s computers are very fast and
are powerful enough to handle large arrays for updating and displaying high-resolu-
tion graphics. With the integration of computers as a component of multimedia and
their association with other technologies, such as telecommunications and biotech-
nology, visualization is now a common medium for describing a problem and its so-
lution.

Visualization is very much associated with simulation. A simulation is a study
performed to represent a problem and its solution in its real form. A simulation is
necessary in cases where the real problem may be too big or too risky to be handled.
A complete simulation solves the given problem according to the “simulated” para-
meters and produces some nice pointers that lead to decision making. Very often, a
simulation includes visualization, as this element leads to a good understanding of
the whole model.

Figure 2.1 shows the steps in the development of a model for solving a problem.
The development consists of seven basic steps. It starts with a comprehensive study
on the problem. The study should include its practicality, viability, and cost-effec-
tiveness. A theoretical foundation of the model is then formulated. This step involves
literature review and surveys of the existing methods, their relevance, and practical-
ity. One important step in this study is the reduction of the problem into the form of a
simulation model. If this is possible, then the rest of the steps in the figure can pro-
ceed. Otherwise, a different model needs to be developed to tackle the problem.

It is also important to visualize the problem as an immediate step before devel-
oping the simulation model. This visualization models provides a good start in the

Make a comprehensive Provide the theoretical Visualize the problem
study of the problem foundation of the problem P

¥

Perform simulations and
produce a working model

¥

Implement the model in Make a documentation of Visualize the solution
the real problem the simulation model

Figure 2.1 Model development involving visualization.
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simulation model development as all the inputs and factors that make up the prob-
lem can be formulated. The simulation model shows the working mechanism that
represents the solution to the problem. As the real problem may be too large to tack-
le, a simulation model may be sufficient to give a picture of the whole project and
show whether it is going to be cost-effective, viable, and practical to be implement-
ed.

The simulation model must also provide a means for visualizing the solution.
This is achieved by having the solution represented in the form of text and graphical
objects, charts, graphs, and tables. It is also important to include friendly graphical
user-interface objects (GUI), such as menus, dialog boxes, buttons, list view win-
dows, and several child windows for displaying the results of the simulation.

The next step is to keep a record of the work by documenting the whole process.
Documentation is necessary as a legal binding and to preserve the copyrights. Doc-
umentation also stores all the important elements carried out in the simulation mod-
el that are useful for future reference. Finally, a simulation model provides good
pointers for tackling the real problem. It is through the simulation model that many
important decisions are made.

2.2 HANDLING ARRAYS

Many problems in science and engineering involve the use of multidimensional ar-
rays. An array is a data representation in the form of rows and columns, equivalent
to a matrix in mathematics. In its simplest form, a one-dimensional array is also
called a vector. Arrays and vectors are commonly used, especially in applications
involving graphics. Arrays and vectors often involve a massive use of memory,
which may slow down the computer. Visualization of computational fluid dynam-
ics, for example, requires continuous updating of arrays and vectors. In computer
graphics animation, each step of the animation requires copying an image into the
memory, displaying it, and refreshing it. A few seconds of animation involve a
rapid succession of frames.

Consider a small image of size 100 rows by 100 columns of pixels in an image
processing problem. Each pixel holds an integer value that represents the
red—green—blue intensity of the pixel. A single array that holds this image has size
100 rows by 100 columns, a total of 10,000 elements. This large array is to be fur-
ther manipulated and involved in several steps of mathematical calculations. Opera-
tions in image processing, such as edge detection, texture segmentation, and object
recognition, require several steps of array calculations for finding the eigenvalues,
matrix inverse, matrix multiplications, and so on. In real applications, several arrays
of equivalent size are involved. Continuous calculations involving these operations
definitely take a large portion of the computer memory, which may slow down the
computer.

Some tips for getting the maximum performance in scientific computing include
effective handling of arrays, good computer memory management, maximizing the
use of local variables, and, at the same time, minimizing the use of global variables.
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In this chapter, we discuss three common examples of numerical problems. The
first problem is about finding the root of a nonlinear equation, whereas the next two
are about solving a system of linear equations. Two different models for building
the interface for the system of linear equations are discussed.

Dynamic Memory Allocation

One way of reducing the burden of the computer in tackling the memory issue is
to allocate the memory to the arrays dynamically. The default setting in the C++
language is the static method of memory allocation. In this strategy, a fixed
amount of computer memory is allocated to the array whether the array is fully
utilized or not. In the dynamic memory allocation, the computer allocates memo-
ry only on variables that are active. Dynamic memory plays an important role in
managing the computer memory, especially in cases where the arrays in the pro-
gram are large.

Dynamic memory allocation is executed in C++ using the command new. The
variable is declared as a pointer according to the type of variable used. The example
in Table 2.1 shows a comparison between the static and dynamic memory alloca-
tion methods in a one-dimensional array x [N+1], assuming that N is a constant
representing the number of rows in the array.

In the dynamic allocation method, the one-dimensional array is declared as a sin-
gle pointer. In a similar manner, a two-dimensional array is declared as a double
pointer according to its data type. For example, a two-dimensional array
a[M+1] [N+1] having M+1 rows and N+1 columns is made up of M+1 one-di-
mensional arrays, where each row has N+1 columns, as shown in Table 2.2.

The arrays in use can be destroyed once they are no longer needed. This is nec-
essary so that the memory can be returned to the computer. The one-dimensional ar-
ray in Table 2.1 is deleted using the command delete, as follows:

delete x;
For the two-dimensional array case, the same command is applied in two stages.
The deletion starts with the columns, followed by the rows, as illustrated by the ex-

ample in Table 2.2:

for (int i=0;i<=n;i++)
delete alil;

delete a;
Table 2.1 Memory allocation in a one-dimensional array
Static allocation method Dynamic allocation method
int x[N+11]; int *x;

x = new int [N+1];
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Table 2.2 Memory allocation in a two-dimensional array

Static allocation method Dynamic allocation method

int a[M+1] [N+1]; int **a;
a = new int *[M+1];
for (int i=0;i<=M;i++)
alil=new int [N+11];

As a general rule, the declaration of a global array is always made in the header file.
Normally, memory for an array is allocated dynamically in the constructor, whereas
its deletion is in the destructor.

2.3 FINDING THE ROOT OF A NONLINEAR EQUATION

Methods based on iterations are very common in many numerical problems. The it-
erative method is an important step in numerical methods as it represents a set of re-
peated steps for the convergence of the problem to its solution, provided the solution
exists. In a given problem, iterations represent an improvement and convergence to
the solution based on the fact that its solution is bounded within a specified interval
according to mathematical rules and properties. One advantage of the iterative meth-
ods is the small number of variables (hence, memory) used compared to the noniter-
ative methods. This is well observed as the variables involved in iterations need not
store their previous values after the iterations. One disadvantage of the iterative
method, on the other hand, is the rate of convergence which could be slow depending
on the problem. The rate of convergence is affected by factors such as the suitability
of the initial value, size of the increment, and the stopping criteria used.

One well-known problem that involves iterations is the problem of finding the
root of a nonlinear equation. We first define a nonlinear equation. A linear equation
is an equation with » variables that has the following form:

apotax,+...+tax,=0 2.1

where a, a,, . . ., a, are constants and x,, x,, . . ., X, are the variables. It follows
that any equation not in the form of Equation (2.1) is called a nonlinear equation.
For example, f(x) = 1 — 3x + 4x® and f(x) = 3 cos x — 2x are nonlinear equations,
whereas 2x — 3y =5 is a linear equation.

The root of an equation is the point where the continuous function f(x) crosses in
the x-axis, or f(x) = 0. Several methods have been established for solving this prob-
lem. These include the bisection method, false-point position method, Newton—
Ralphson’s method, secant method, and fixed-point iterative method.

In this section, we illustrate an iterative method using the bisection method. Fig-
ure 2.2 shows a schematic flowchart for the bisection method. The method searches
its solution from a closed interval based on the intermediate value theorem, stated
as follows:
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Figure 2.2 Schematic flowchart of the bisection method.

Intermediate Value Theorem: If a function f(x) is continuous in the interval a, <x
< b,, at least one root exists in the interval if /(a,)f(b,) < 0.

The relationship f(a,) f(by) < 0 means that if f(a,) > 0, then f(b,) < 0, which sug-
gests that the curve is above the x-axis at x = g, and below the axis at x = b,. There-
fore, somewhere along this interval this curve must cross the x-axis since the curve
is continuous. Therefore, at least one root exists in this interval. Similarly,
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f(ay) f(by) < 0 suggests that if f(a,) < 0, then f(b,) > 0, which also works the same
way. The closed interval in this case is a, < x < b,. Since the interval has been locat-
ed from this theorem, the task of finding the root is a matter of performing iterations
until convergence to its solution is achieved. Convergence to the solution is guaran-
teed if exactly one root exists in the interval.

The bisection method starts with iteration i = 0 by taking two end points a, and
b, of the interval a, = x = b, as the initial guess points, where f(a,)f(b,) < 0. Next,
we compute the middle point of these two end points, given by

a;+b;
¢G=—75 (2.2)

where i = 0. A test is performed to update the values of ;. and b,,, according to the
following rules:

Iff(a)f(c;) <0 then b =c¢; and a1 = a; (2.3)
Iff(a)f(c;))>0 then A = ¢ and by =b; (2.4)

We obtain the updated values of @, and b, according Equations (2.3) or (2.4). The
iteration is repeated with i = 1 and so on until the stopping criteria are met. Both
Equations (2.3) and (2.4) imply only one of a; and b; will have its value updated at
each iteration, whereas the value of the other variable remains unchanged.

The stopping criterion for the iterations is the error |c; — ¢, ;| < &, where ¢ is a
small number close to 0. This criterion is applied at each iteration to determine if
the iteration should be continued or stopped. If this criterion is met, then the itera-
tions stop immediately, and the final value of x;,; is then the root of f(x). Otherwise,
the iterations continue with the next value of i, applying Equations (2.2), (2.3), and
(2.4) for updating the values of g; and b,.

Code2A: Bisection Iterative Method

We illustrate the bisection method for finding the root of the function f(x) = x> — x2
— 2 using the initial values a, = 1, by =2, and |c; — ¢;_ ;| < & as the stopping criteria,
where & = 0.005. The project is named Code2A. Figure 2.3 shows the output of
Code2A with the solution obtained after eight iterations, assuming three decimal
places in all calculations.

The project Code2A consists of two main files, Code2A.cpp and Code2A.h.
The header file Code2A.h includes the data structure of this application. Only one
application class called CCode2A is used in this application. Code2A.h includes
the preprocessing declarations using #define on the maximum number of itera-
tions N, the function f(x), and the stopping value EPSILON, as follows:

#define N 10
#define f(x) (pow(x,3)-pow(x,2)-2)
#define EPSILON 0.005
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Ml Bisection method for finding the root of an equation _|EI|1|

=
4

Equation: fix)=pow(x 3)-pow(x,2)-3

i ali] b[i] =[i] f{al1]) fic[1]) ErTor
a 1.000 2.000 1.500 —2.000 -0 875

1 1.500 2.000 1.750 —-0.875 0.297 0.250
2 1.500 1.750 1. 625 -0 875 —0.350 0.125
3 1. 625 1.750 1 6838 —0. 350 —0.042 0.063
4 1. 6838 1.750 1.719 —0.04z2 0.123 o.o031
5 1. 688 1.719 1.703 —0.04z2 0.o40 0.01a
& 1. 688 1.703 1.695 —0.042 —0.002 0.o0g
7 1. 695 1.703 1. 699 -0.00z o.o149 0.o04

the solution is x=1.699 after 6 iterations

Figure 2.3 Screen snapshot of Code2A.

The arrays a[i],b[1], and c [1], which represent a,, b,, and ¢, respectively, are
declared as pointers, as listed in Table 2.3.

The variables are declared as pointers of type double. The memory for these
three variables is allocated dynamically in the constructor of Code2A.cpp, as fol-
lows:

a=new double [N+1];
b=new double [N+1];
c=new double [N+1];

The main window for displaying the output is created using Create (), which

is derived from the class CFrameWnd. Besides allocating the memory for the glob-
al arrays, the constructor CCode2A () also allocates memory for class and includes

Table 2.3 Arrays in Code2A

Variable Declaration Description
a; double *a Left point of the interval at iteration i
b; double *b Right point of the interval at iteration i

¢ double *x Middle point between a; and b,
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the initializations of the end-point values of the interval, a [0] and b[0]. The ini-
tial values of a, = 1 and b, = 2 are suitable since f(1)f(2) <0, according to the mean
value theorem. The full code for the constructor is given as follows:

CCode2A: :CCode2A ()
{
Create (NULL, “Bisection method for finding the root of an equation”) ;
a=new double [N+1];
b=new double [N+1];
c=new double [N+1];
al0]l=1; bl[0]=2;

Code?2A has only one event, namely, output in the main window. The event is
detected by WM_PAINT and handled by the function OnPaint (). In order to dis-
play text and graphics in the window, a device context object called dc is created
from the class CPaintDC as follows:

CPaintDC dc(this);

Text is displayed by linking dc with TextOut (). For displaying text, the de-
fault setting is the black Times New Roman font of size 12. A different font can be
designed by first declaring its object derived from the class CFont. This font is cre-
ated using CreatePointFont () and selected using SelectObject ().
Three different fonts, Times New Roman, Courier, and Arial, with sizes of 12, 10,
and 20, respectively, are created in this application. The general steps in creating a
font are outlined as follows:

CFont myFontObject;
myFontObject.CreatePointFont(FontSize,FontName);
dc.SelectObject (myFontObject) ;

In the above steps, myFontObject refers to the name of the CFont object.
FontName refers to the name of a font available in the CFont class, such as
Times New Roman, Courier and Arial. FontSize is the size of the required font in
pixels. The size of the font is determined by multiplying the standard unit by 10,
as each unit is represented as 10 pixels. For example, a 10-unit font has
FontSize=100.

Text can be formatted for display as a CString object according to the identi-
fiers using the function Format (). This function allows text to be formatted ac-
cording to the correct data type using several identifiers, including those listed in
Table 2.4.

An identifier can also include the width, number of decimal places and method
of alignment of the data. Table 2.5 shows some examples.

The following code displays a sample output at the Windows coordinates (300,
200), illustrating the above example:
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Table 2.4 Some identifiers in Format ()

Identifier Variable type
%c Character

%s String

%d Integer

%t Float

$1f Double

Table 2.5 Some formatting examples

Identifier Description

%5d 5 spaces of decimal and right-aligned

%-T7s 7 spaces of string and left-aligned

%5.21f 5 spaces of double with 2 decimal places and right-aligned
%-5.21f 5 spaces of double with 2 decimal places and left-aligned

CPaintDC dc(this);

int 1=582;

double x=3.04;

CString s="banana”;

s.Format (“%5d%7s%-7s%5.21f%-5.21f", i, s, s, X, X);
dc.TextOut (300,200, s) ;

The output is shown in Figure 2.4.

The solution provided by the bisection method is based on the flowchart in Fig-
ure 2.2, as follows:

for (int 1i=0;i<=N;i++)

%5d %7s %=Ts %5.21f %-5.21f

Figure 2.4 Expected output from the example.
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else
{
bli+l]l=c[i]; ali+ll=alil;
}
s.Format (“%-5d%-10.31f%-10.31£f%-10.31£f%-10.31£%-10.31£f",
i,ali]l,bl[i],c[i],f(alil),f(cli]));
dc.TextOut (50,150+15*1,s) ;
if (i>0)
{
error=fabs(c[i]-c[i-11);
s.Format (“*%-10.31f”,error) ;
dc.TextOut (490,150+15*1i,s) ;
if (error<EPSILON)
break;

The iterations start at 1=0 by setting a[0]=1 and b[0]=2. Equation (2.6) is then
applied to determined the value of c [0]. With this value, the program evaluates
f(al0]) and £ (c[0]), and their product to determine the values of a[1] and
b[1], according to the update rules in Equations (2.3) and (2.4).

The above step is repeated with i=1, which leads to the values of a[2] and
b[2]. A test is then performed to check if the error given by error=fabs
(c[1]-c[i-11) is less than the constant EPSTLON. The function fabs () is a
function declared in the C++ header file math .h which returns the absolute value
of its argument. If this test is true, then the iterations are stopped, otherwise the
process repeats with the next iteration, i=2. The steps are repeated until the stop-
ping condition error<EPSILON is reached.

Convergence is achieved after six iterations. The loop stops at 1=6 as the stop-
ping criteria has been reached. The final solution is displayed using the Arial font of
size 16, as follows:

myfont3.CreatePointFont (160, ”Arial”);

dc.SelectObject (myfont3);

dc.SetBkColor (RGB(100,100,100)) ;

dc.SetTextColor (RGB(255,255,255) ) ;

s.Format (“the solution is x=%.31f after %d iterations”,c[i],i-1);
dc.TextOut (100,300, s);

The program then closes by calling up the destructor ~CCode2B (), which de-
stroys the class and the arrays a[], b [ ], and c [ ], and returns their memory to the
computer, as follows:

CCode2A: :~CCode2A ()

{
delete a,b,c;
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2.4 SOLVING A SYSTEM OF LINEAR EQUATIONS

A system of N linear equations (SLE) is defined as a set of linear equations, given
as follows:

apxy T apx, *...tapney= b
A1 X1 T AyXy + .. agy = by

(2.5)
aniXy + [2552%) +...+ annAiy = bN
where x; are variables, and a;; and b; are constants, for i, 7 =1, 2, ..., N. In matrix
form, the above equation can be written as follows:
ag [25)) e an X1 bl
ay 2535 P [253% X b2
= (2.6)
ay; Ay ... Ay Xy by
Equation (2.6) is represented in brief form as
Ax=b 2.7)

where 4 =[a;] is a matrix of size Nx N,and b = (b, by, . . ., by)" and x = (x1, x5, . . .,
xy)T are vectors of size Nx 1.

The importance of solving the system of linear equation problem can be seen
from the fact that many applications in science and engineering are reducible to the
form of systems of linear equations before their solutions are obtained. One good
example is the heat equation given by u, = o?u,,, which is a second-order partial dif-
ferential equation with boundary conditions. In this problem, u(x, ¢) is the measure
of the heat at position x at time ¢ and « is a constant, for ¢ > ¢, and x, <x <x,,and M
is the number of intervals on the x axis. The numerical solution to this problem con-
sists of a technique called the Crank—Nicholson method. This method involves the
finite-difference formula, which implicitly reduces the boundary value problem into
a system of linear equations. The solution is then obtained by solving the system of
linear equations using a method such as the Gauss elimination method, the LU de-
composition method, or the Gauss-Seidel iterative method [1].

In this section, we discuss the Gauss elimination method, which is the most pop-
ular technique for solving the system of linear equations problem. The technique in-
volves two major steps. The first is the row operations, which reduces the original
coefficient matrix 4 into an upper triangular matrix U and the vector b into v. The
second step involves the backward substitutions of the triangular matrix to get the
solution in the form of v’. These two main steps are summarized in Figure 2.5.

Row operations in the Gauss elimination method involve consecutive reductions
of the rows into an upper triangular matrix. For a N x N system of linear equations,
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Ax=D>b
row
operations
Ux=v
backward
substitutions
x =V

Figure 2.5 Gauss elimination method.

row operations need to be performed consecutively on rows 1, 2, ..., N— 1. For
each row £, the diagonal element ay, is called the pivot element. This element must
have a nonzero value in order for the row operations to continue. If its value is zero
or very close to this value, then it is a case called “ill-conditioned” surfaces, which
indicates singularity. This problem is normally overcome through a technique of
row interchange called partial pivoting, which avoids this ill-conditioned effect.
We discuss the Gauss elimination method for solving the problem Ax = b of
Equation (2.6), where 4 = [a;;] is the coefficient matrix, X = (x;, X5, . . ., xy)” is the
unknown vector, and b = (b,, b,, . . ., by)T is the right-hand-side vector of the equa-
tions. Row operations start in ascending order from k=1 to k= N — 1 by finding the
term m = ay/ay, at each step. Operations on row k involve updating the values of the
elements a; and b, for elements at row i and column j according to the following re-
lationships:
a

j < Ay —m*a (2.8)

b; < b; — m*b, (2.9)

fork=1,2,...,N-L;i=k+1,k+2,...,N;andj=1,2,..., N. The process has
the effect of reducing matrix A4 to its corresponding upper triangular matrix U =
[u;], and vector b to its corresponding vector v = (vy, vy, . . . , vy)". Equation (2.6) is
reduced to the following form:

U Uin e Uy X1 Vi
0 u u X v
22 s 2N 2 2

- (2.10)
0 0 ... uyy Xy VN

In order for the solution to be unique, every diagonal element u; in U in the above
equation must not have a zero value. Otherwise, the solution becomes infinite or
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does not exist. In C++, the row operations in Equations (2.8) and (2.9) are written as
follows:

for (k=1;k<=N-1;k++)
for (i=k+1;i<=N;i++)

{
m=al[i] [k]/alk] [k];
for (j=1;j<=N;j++)
alil[jl=alil[j]l-m*alk][]];
bli]l=b[i]-m*b[k];
}

The next step in the Gauss elimination method is to perform backward substitu-
tions on Equation (2.10). The substitutions start by finding the value of the last ele-
ment, xy, as follows:

v
Xy= —— (2.11)
Unn

The rest of the elements are evaluated backward using the following equation:

N
= I 2.12

x=— (2.12)

fori=N-1and N-2, ..., 1. The C++ code for the backward substitutions in

Equations (2.11) and (2.12) is written as follows:

for (i=N;i>=1;i--)
{
Sum=0;
x[1]1=0;
for (j=1i;J<=N;j++)
Sum += ali]l[Jj]1*x[3];
x[1]1=(b[i]-Sum)/ali]l [i];

Code2B: Manual Approach to the SLE Problem

We discuss the development of the C++ solution using the Gauss elimination
method on a 3 x 3 system of linear equations. The project is called Code2B and
it consists of two files, Code2B.cpp and Code2B.h. The output from this pro-
ject is shown in Figure 2.6. It consists of a simple window with edit boxes in the
first three columns for matrix 4, another column of edit boxes for vector b, and
the static text boxes for the solution vector, x. Input is established when the user
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[ SLE: Gauss Elimination Method - 10l x|

|4 | |5 | |—1 | 1 | 0.344595
|3 | |-2 | |? | -1 |-|].141392
|5 | |—2 | |—3 | 3 |-u.331|131

Figure 2.6 Screen snapshot of Code2B.

clicks the mouse on any edit box (white rectangle) and enters a number. This in-
put number is read as a string, and it is converted to the array value. The output is
produced in the static boxes (gray rectangle) when a push button called Compute
is clicked.

The project involves the manual development of the graphical user interface
(GUI) facilities, such as edit boxes, static text boxes, and a push button. The ap-
proach is termed manual as all the child windows involved are created manually us-
ing their respective MFC functions. Edit boxes are the dialog boxes that take input
from the user. Static text boxes represent the output for displaying the results of the
calculations. A push button represents an event handler that responds to the event
by calling the appropriate function.

The header file Code2B.h contains the declaration of a class called CCode2B
and its objects, variables, and member functions. This class is inherited from the
MFC class, CFrameWnd, which provides the basic window for displaying the re-
sults.

Each item shown in Figure 2.6 is an object represented by a name and an id.
Table 2.8 lists the variables and objects used in the project Code2B. All the arrays
in this project are declared as pointers according to their data types to enable the
memory for them to be allocated dynamically. Input for the arrays a[i] [j] and
b[i] are represented by the CEAit objects ea[i] [Jj] and eb[i], respectively.
The output x [1] is represented by the CStatic objects sx[i]. Another object
in this application is a push button called Compute, represented by the object
bCompute, which is derived from the class CButton. It is sufficient to set the
scope of all these objects and variables as private since only one class is used in the
project.

Each object used in this application has its own control id preceded by the word
idc or IDC. We use idc_ea, idc_eb, and idc_sx to denote the variable ids
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Table 2.8 Variables and objects in Code2B

Variable/Object Type/declaration Description

alil[j] double ** RcmfsmnsayinnuﬂﬁxA

bli] double * Represents b; in vector b

x[1] double * Represents x; in vector x

eali]l[j] CEdit ** EdﬁboxﬁnthehmutavhnnmﬂxA
eb[i] CEdit * Edit box for the input b; in vector b
sx[1] CStatic * Static box for the output x; in vector x
bCompute CButton Represents the push button

idc_ea int Control id for the edit boxes in matrix A
idc_eb int Control id for the edit boxes in vector b
idc_sx int Control id for the static boxes in vector x
IDC_COMPUTE int Control id for the push button bCompute

for the objects eal[]l[], ebl], and sxI[], respectively. In comparison,
IDC_COMPUTE is a constant id for the object bCompute that is declared using
#define. Any integer value may be assigned as the control id. Normally, a value
above 300 for the control id is preferred to avoid conflicts with some reserved num-
bers in MFC.

The variables and objects in Code2B are declared in the header file Code2B.h.
Besides the variables and objects, the class CCode2B has a constructor, a destruc-
tor, and the Gauss elimination function PGauss () as its member functions.

The constructor CCode2B () allocates sufficient memory for the class to exist
in the application. The constructor also allocates memory for all the global arrays
and creates all the child windows for the application. The memory for the arrays is
allocated dynamically as follows:

b=new double [N+1];
eb=new CEdit [N+1]
x=new double [N+1];
sx=new CStatic [N+1];
a=new double *[N+1];
ea=new CEdit *[N+1];
for (int i=1;i<=N;i++)

{

7

alil=new double [N+1];
eal[i]l=new CEdit [N+17];

The main window is created in the constructor through Create () as an over-
lapped rectangle (WS_OVERLAPPEDWINDOW) with the top-left corner at coordi-
nates (0,0) and the bottom-right corner at (500,340) as follows:

Create (NULL, “SLE: Gauss Elimination Method”,
WS_OVERLAPPEDWINDOW, CRect (0,0,500,340)) ;
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Several child windows in the form of edit boxes, static boxes, and a push button,
are used in Code2B. The objects are recognized through their ids, which have their
initial values defined in the constructor as follows:

idc_ea=200; idc_eb=300; idc_sx=400;

Child windows are created by linking the objects with the function Create ().
For example, an edit box is created using the object ea[i] [J] as follows:

eal[i][j].Create(WS_CHILD | WS_VISIBLE | WS_BORDER,
CRect (CPoint (10+(i-1)*70,80+(j-1)*30),
CSize(60,25)),this,idc_ea++);

The macros WS_CHILD, WS_VISIBLE and WS_BORDER are the options in the
window that make it a child window, visible in the parent window, and are dis-
played with a border. To avoid a conflict, every child window object must have a
distinct id. Therefore, it is necessary to increment the value of the control id as
idc_ea++ in the above function to distinguish one object from another. In a simi-
lar manner, the edit box eb[1i] for the object b[1] is created as follows:

eb[i].Create (WS_CHILD | WS_VISIBLE | WS_BORDER,
CRect (CPoint (280,80+(i-1)*30),CSize(60,25)),this, idc_eb++);

A static box is created from the object sx[1], as follows:

sx[i].Create(“”,WS_CHILD | WS_VISIBLE | SS_SUNKEN | SS_CENTER,
CRect (CPoint (380,80+(i-1)*30),CSize(80,25)),this,idc_sx++);

A static box is displayed in a style slightly different from the edit box. The child
window is shown as a sunken object (SS_SUNKEN) with its contents centered
(SS_CENTER). By default, a static box is a gray rectangular box with no border.

A push button called Compute with the id IDC_COMPUTE is created from the
object bCompute, as follows:

bCompute.Create(“Compute” ,WS_CHILD | WS_VISIBLE | BS_DEFPUSH BUTTON,
CRect (CPoint (380,25),CSize(100,25)),this, IDC_COMPUTE) ;

The macro BS_DEFPUSH BUTTON in the above statement displays a simple ani-
mation showing a button being pushed when it is clicked.

The caret can be placed initially at any of the edit boxes by using the function
SetFocus (). The following code places the caret at the box ea [1] [1]:

ea[l][1].SetFocus() ;
There is only one event in Code2B, namely, the left-button click of the mouse.

The event is detected as BN_CLICKED and handled by the function OnCom-
pute (), as described in the following message map:



2.4 SOLVING A SYSTEM OF LINEAR EQUATIONS 37

BEGIN_MESSAGE_MAP (CCode2B, CFrameWnd)
ON_BN_CLICKED (IDC_COMPUTE, OnCompute)
END_MESSAGE_MAP ()

The function OnCompute () responds to the push-button event on the object
bCompute. Input from the user in the form of matrix 4 and vector b is read as the
objects ea[1] [j] and eb[1i], respectively. OnCompute () reads the input data
held by the objects ea[i] [j] and eb[1] using the MFC function GetWindow-
Text () by linking with their objects. This function reads each input datum and
stores this value as a string derived from the class CString. The string values
from the objects are then converted to their corresponding double values using
the C++ function atof (). It is necessary to convert the data to the type double
since all calculations assume the variables to have this type of data. The following
code fragments show how this is done:

CString s;
int 1i,3;
for (i=1;1i<=N;i++)
{
for (j=1;j<=N;j++)
{
eal[i]l [j] .GetWindowText (s) ;
alil[jl=atof(s);
}

eb[i] .GetWindowText (s) ;
bli]l=atof(s);

The function PGauss () is called by OnCompute () to solve the system of lin-
ear equations using the Gauss elimination method:

void CCode2B: :PGauss () // compute the SLE
{
int 1i,3.,k;
double m, Sum;
for (k=1;k<=N-1;k++) // row operations on a
for (i=k+1;1i<=N;i++)
{

m=al[i] [k]/alk][k];
for (j=1;j<=N;j++)
alil[jl=alil[j]l-m*alk][]];
blil=b[i]-m*b[k];
}

for (i=N;i>=1;i-) // backstitutions on x
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{
Sum=0;
x[11=0;
for (j=i;j<=N;j++)
Sum +=al[i] [jJ]1*x[]];
x[1]=(b[i]-Sum) /ali] [1];
}

The function produces output in the form of the arrays x[]. To display these
values on the static boxes held by the objects sx [ ], the values of x[] need to be
converted to strings. The CString object s performs the identifier formatting us-
ing the function Format (). The values of x [ ] are then displayed as strings in the
static boxes sx[] using the function SetWindowText (). The following code
fragments show how this is done:

PGauss () ;
for (i=1;i<=N;i++) // display vector x
{
s.Format (“%1f”,x[1i]);
sx[1].SetWindowText (s) ;

The last segment of the project is the destructor ~CCode2B (), which destroys
the class and all the arrays used in the program, and returns their memory to the
computer. The function is written as follows:

CCode2B: : ~CCode2B()

{
for (int i=1;i<=N;i++)
delete alil,ealil;
delete a,ea,b,x,sx;
}

Code2C: Resource File Approach for SLE

The interface shown in the last section involves the creation of objects representing
items in the main window. Each object is created manually in the header and C++
files. MFC also provides an easier way for creating the dialog interfaces using the
resource file (. rc) facilities. The facilities include a broad range of control tools
for creating child windows, such as edit boxes, static boxes, push buttons, list view
windows, combo boxes, radio buttons, menus, and images. Some of these objects
are described briefly in Table 2.7. These objects are created and displayed by click-
ing the object icon, moving the mouse to their location, and clicking at this location.
The location and size of the objects are also controlled using the mouse. Each of the
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Table 2.7 Some of the common GUI objects for creation of the resource file

Item Class Description

Edit box CEdit Dialog box normally used for data input in the form
of a string

Static box CStatic Output display in the form of a string

Push button CButton A control push-button event that triggers a command
when clicked

Radio button CButton A list of items; the user can choose only one by
clicking on the item

List view window  CListCtrl A tabular display of data showing the fields and
records in a horizontal and vertical scrollable
manner

Combo box CComboBox A list of items combined with an edit box

control items is a container in the form of a child window that plugs into or is sepa-
rated from the main window.

This section describes a method for providing a user-friendly interface for the
system of linear equations problem using the resource file facilities. The project is
called Code2C and the expected output is shown in Figure 2.7. Basically, the pro-
ject reuses the code from Code2B developed in the previous project. The differ-
ence is in the way the input is made and how the output is displayed.

In order to use the dialog resources in MFC, the class CCode2C used in this ap-
plication is inherited from an MFC class called CDialog. This base class is an

x

|

—Matrix A —Vector b
|3.:-'5 |-1.3 |—1.65 |5.2
Iz.?3 I 1,085 |-3.5 |1.}r
5.613 | 1,452 l-s.a |-3.25
Solutions: Vector x Compute
F.34120? I34.922185 10.606304
oK Cancel

Figure 2.7

Expected output in Code2C.
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MFC class for creating two types of dialog windows: modal and modeless. A modal
window does not allow the user to access to the main window unless the current di-
alog window is closed. A modeless window allows the user to switch back and forth
between the dialog window and its main window. Typical examples of modeless di-
alog windows are the Find and Replace items in the Visual Studio, where the user
can search for a word in the program, switch to the editor, and back to searching for
another word without exiting from either window.

The project Code2C is about the creation of a modal window. Besides the files
Code2C.cpp and Code2C.h, the project also includes a resource file called
Code2C.rc. This resource file builds the dialog window with id IDD_GAUSSDIA-
LOG. This dialog window also hosts CEdit, CStatic, and CButton objects for
allowing interaction using edit boxes, static boxes, and a push button, respectively. It
is obvious that the interface in this project differs from the one in the last section as the
host is a dialog window derived from the class CDialog, instead of CFrameWnd.

The file Code2C.h declares the class CCode2C as the inherited class and
CDialog as its base class. In order to use the resources, the MFC header file called
Afxdisp.h must be included. This file has the prototypes of several member functions,
variables, and objects used for creating the resources. Code2C.h also refers to the re-
sources that are declared in the file Resource.h. The resource file is created auto-
matically by Visual C++ when the resource file Code2C.rc is created. Resource.h
is a read-only file that contains things like the ids of the objects created in Code2C.rc.
Therefore, this file must be included through #include in the header file.

Since Code2C does not have a parent window, the constructor is declared in
Code2C.h as CCode2C (CWnd* pParent = NULL). The dialog window with
the id IDD_GAUSSDIALOG now represents the main window, as indicated in the
statement

enum { IDD = IDD_GAUSSDIALOG };

In Code2C.h, several global variables and objects are declared in the applica-
tion, and they are described briefly in Table 2.8.

Besides these variables and objects, Code2C.h also includes the member func-
tions DoDataExchange (), OnCompute (), and the solution file PGauss ().
Table 2.9 describes these functions.

Table 2.8 Variables/objects in Code2C.rc

Variables/Object Type Description

alil 3] double The element a;; in matrix 4

bli] double The element b, in vector b

x[1] double The element x; in vector x

sali1]([3] Cstring The object for getting the input value for a;; in the edit box
sb[i] Ccstring The object for getting the input value for b; in the edit box

sx[1] cstring The object for putting the output value for x; in the static box
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Table 2.9 The member functions in CCode2C
Function Description
CCode2C () The constructor
~CCode2C () The destructor

DoDataExchange ()

PGauss ()
OnCompute ()

Exchanges data between its pointer argument and the
CString objects in the child window

Solves the system of linear equations

Event handler that responds to the push-button event

We will now discuss the creation of Code2C.rc. Several steps are involved, in-
cluding the use of the resource editor for creating and displaying the objects in the

dialog window.

Step 1: In the workspace area, right-click Resource Files, followed by Add and
Add Files. The window shown in Figure 2.8 appears. Highlight Resource File
from the available selections and name the file Code2C.rc. Click Open to
confirm the selection. This step creates the file Code2C.rc.

Step 2: From the workspace area, right-click Resource Files and choose Open
With from the menu. Next, click Resource Editor to open the resource editor.

Add New Item - code2C

Categories: Templates:
-4 visual C4+ Iy -
C:
C++File Dynamic HTML Page

{.cpp) Discovery ... (.htm}
Static Header File  Midl File (.idl}

Discovery ... {.h)
= =

Resource File SRF File {.srf) DEF File {.def)
bl =

Creates a Win32 Resource file.

Mame: | code2C

Location: I c:\HomeAlone\WileyBook\code2CY,

Browse. .. |

Open I

Cancel | Help I

@ Solution 'code2C' (1 project)
Bl [Zd code2C
B =3 Source Files
code2C.h

: code2C.cpp
- [ Header Files
i [ Resource Files

| Task List - 0 Build Error tasks shown
1 | ||E|| Description

4] |

| output

Figure 2.8 Creating the file Code2C.rc.
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The dialog window resources appear, as shown in Figure 2.9. Double click
Dialog to create the dialog window.

Step 3: Increase the size of the dialog window by dragging its right-hand corner
boundary, as shown in Figure 2.10. The figure also shows all the available
icons for creating objects in the box on the left window. Right-click and choose
Properties to set the properties of this window. The Properties window ap-
pears on the right side, as shown in Figure 2.10. From the Properties, rename
the window to Gauss Elimination Mtd by entering this name in the Caption.
Change the id of the dialog window to IDD_GAUSSDIALOG by entering this
name in ID.

Step 4: We are now ready to use the resource editor to create and display the
visual objects. Start by moving the buttons Ok and Cancel to a new loca-
tion, as shown in Figure 2.11. Click the Button icon, then draw and name this
button Compute. Assign the id IDC_COMPUTE to this new object.

Step 5: Click the Edit Control button and draw an edit box, as shown in Figure
2.12. Assign the id IDC_A11 to this object to denote it is an input box for the
array a[1] [1]. The input in this box is recognized as a text string represent-
ed by the CString object sa[1] [1]. Repeat this step with the rest of the
elements in matrix A4 and vector b to produce the full input dialogs, as shown
in Figure 2.13.

Step 6: Create a static box by clicking the Static Text button, as shown in Figure
2.13. Set the caption to nothing, the Client Edge to true, and the id of the object
as IDC_x1. This box displays the array x[1] through the CString object

Start Paoe  code2Crc |

| code2C.re
X

e

B2 Accelerator

Bitmap Import... |
& T Cursor T

@ HTML Cancel |

Ef] Icon

Hel

B Meru Elp |

abe String Table

43 Toalbar

Version

Figure 2.9 Resources available in the resource editor.
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Figure 2.10 Dialog window with id IDD_GAUSSDIALOG.
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Figure 2.11 Creating the push button Compute.
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Figure 2.14 Labeling the group as Matrix A.

sx [1]. Continue with the other two boxes in vector x [ ] by repeating this step,
to produce an interface as shown in Figure 2.14.

Step 7: The next step is to label the objects according to their group in the di-
alog window, which is an optional step in the creation of the window. To la-
bel the first three rows and columns of the edit boxes as Matrix A, click the
Group Box icon and draw the area. Name the group by choosing Caption.
Repeat the step for the other vectors to produce an interface as shown in
Figure 2.15.

The resource file Code2C.rc is referred as a blank form by Code2C.cpp. As
mentioned earlier, the constructor creates the class CCode2C and this class is in-
herited from CDialog. Besides this, the constructor also allocates memory for the
arraysal[]l[1,b[]l,x[],sall[],sb[],and sx[], as follows:

CCode2C: :CCode2C (CWnd* pParent): CDialog(CCode2C::IDD, pParent)
{

b=new double [N+1];

sb=new CString [N+1];

x=new double [N+1];

sx=new CString [N+1];

a=new double *[N+1];

sa=new CString *[N+1];

for (int i=1;i<=N;i++)

{

alil=new double [N+1];
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Figure 2.15 The complete dialog window.

sali]l=new CString [N+1];

The parent window in this application is the modal dialog window, as shown in
Figure 2.15. This window is created in the application class CWinApp, as fol-
lows:

BOOL CMyWinApp::InitInstance ()

{
AfxEnableControlContainer () ;
Enable3dControlsStatic() ;
CCode2C dlg;
m_pMainWnd = &dlg;
int nResponse = dlg.DoModal () ;
return FALSE;

The above code fragments represent the creation of a modal window by calling up
two MFC functions, AfxEnableControlContainer () and Enable3d-
ControlsStatic (). A modal window is created through the function Do-
Modal () from the class CDialog. In creating the window, an object called d1g,
derived from CCode2C, is linked to DoModal (). The class CCode2C, in turn, is
inherited from CDialog, and this makes it possible for the dialog window to be
created in the application.
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The input for matrix 4 and vector b in the application is achieved through the

function DoDataExchange (), as follows:

void CCode2C: :DoDataExchange (CDataExchange* pDX)

{

DDX_Text (p
DDX_Text (p
DDX_Text (p
DDX_Text (p
DDX_Text (p
DDX_Text (p
DDX_Text (p
DDX_Text (p
DDX_Text (p
DDX_Text (p
DDX_Text (p
DDX_Text (p
DDX_Text (p
DDX_Text (p
DDX_Text (p

DX, IDC_All, salll[1l])
DX, IDC_Al2, sal[ll[2])
DX, IDC_Al3, sallll[31)
DX, IDC_A21, sal2][1])
DX, IDC_A22, sal2]1I[2]1);
DX, IDC_A23, sal2]1([3])
DX, IDC_A31, sal31[1])
DX, IDC_A32, sal3]1[2])
DX, IDC_A33, sal3]1[3])
DX, IDC_bl, sbl[1l]
DX, IDC_b2, sb[2]
DX, IDC_b3, sbl[3]
DX, IDC_x1, sx[1]
DX, IDC_x2, sx[2]
DX, IDC_x3, sx[3]

This function has an argument in the form of an object called pDX, derived from

the MFC class CDataExchange. This object is a pointer for reading the input
from the user at the corresponding edit box. Data from the user is read as a string by
the function DDX_Text () at the edit box identified through its id. For example,
the following statement reads the data entered at the edit box with id IDC_A23 and
assigns it to the string sa[2] [3]:

DDX_Text (pDX,

IDC_A23, sal2][31);

The push-button event at the Compute button invokes the message handler

ON_BN_CLICKED, which then calls the function OnCompute (), as follows:

void CCode2C: :0nCompute ()

{

int 1i,3;

CString s;
UpdateData
for (i=1;1

{

(TRUE) ;
<=N; 1++)

blil=atof(sb[i]);

for (

J=1;J<=N;Jj++)
alil[jl=atof(salil[j]);
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PGauss () ;
for (i=1;i<=N;i++)

sx[i].Format (“%1f”, x[i]);
UpdateData (FALSE) ;

In OnCompute (), data from the edit boxes are first read through the MFC
function UpdateData (). This function reads data from the objects in the dialog
window or writes data to these objects. This function has a Boolean argument in the
form of 1 (TRUE) or 0 (FALSE). A value of 1 means this function calls Do-
DataExchange () to get the latest data from the edit boxes entered by the user.
On the other hand, a value of 0 does not read data from the edit boxes. Instead, it
passes the latest data to these objects for display on the static boxes.

Data in the form of text strings is read from the edit boxes and converted to the
arrays a[] [] and b[] using the C++ function atof (). OnCompute () then
calls the function PGauss () to solve the linear equations and produce the results
as x [ 1. The formatted values of x[] are then converted to the strings sx[] and
displayed in the static boxes.

The program ends through the destructor ~CCode2C (), which deallocates the
memories assigned to the arrays and returns the memory to the computer. The de-
structor also destroys the class CCode2C.

2.5 SUMMARY AND CONCLUSION

We discussed three models for solving linear and nonlinear problems in this chapter.
Both linear and nonlinear equations are considered fundamental problems in numer-
ical computing. These problems exist in many applications in science and engineer-
ing. One way to get people to appreciate the importance of numerical problems is to
present the problems in a friendly and acceptable manner. This encompasses the need
for a tool that allows the visual representation of both the problem and its solution.

The first problem in this chapter is the bisection method, which is an iterative
method for finding the root of an equation. The steps may look easy but they are
very tedious to solve manually as they involve a lot of repetition. The programming
approach solves this problem by a more systematic and convenient method. A
friendly numerical interface that displays the solution visually on the computer
screen makes the problem accessible to the general audience.

Problems involving iterations are very common in real life. One such problem is
optimization. A typical solution to a problem in optimization requires finding the
minimum energy or cost function. This energy function has to be designed in such a
way that it models the problem significantly. The solution to this problem is ob-
tained through massive iterations of the energy function until convergence to the
global minimum is achieved. One potential problem in an iterative method is the
possibility of getting trapped in a local minimum. A suitable algorithm is needed to
take care of this issue. This is another challenge that implies that an iterative
method alone does not guarantee the ultimate solution.
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The other two topics discussed are the different styles for providing the inter-
faces in solving a system of linear equations. The first method involves a single
window that hosts several child windows in the form of edit boxes, static boxes, and
a push button. The second approach creates a dialog window for providing an inter-
action between the user and the program through the use of a resource file. We will
continue the discussion of a third method for the same problem through the use of a
tool called the Wizard in the next chapter.
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CODE LISTINGS

Code2A: Bisection Method

// Code2A.h

#include <afxwin.h>

#include <math.h>

#define N 10 // maximum number of iterations
#define f(x) (pow(x,3)-pow(x,2)-2)

#define EPSILON 0.005

class CCode2A : public CFrameWnd
{
private:
double *a, *b, *c;
public:
CCode2A() ;
~CCode2A() ;
afx_msg void OnPaint () ;
DECLARE_MESSAGE_MAP() ;
Y

class CMyWinApp : public CWinApp
{
public:

virtual BOOL InitInstance();
};

#include “code2A.h”
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BEGIN_MESSAGE_MAP (CCode2A, CFrameWnd)
ON_WM_PAINT ()
END_MESSAGE_MAP ()

CMyWinApp MyApplication;

BOOL CMyWinApp: :InitInstance /()

{
CCode2A* pFrame = new CCode2A;
m_pMainWnd = pFrame;
pFrame->ShowWindow (SW_SHOW) ;
pFrame->UpdateWindow () ;
return TRUE;

CCode2A: :CCode2A ()
{
Create (NULL, “Bisection method for finding the root of an equation”);
a=new double [N+1];
b=new double [N+1];
c=new double [N+1];
al[0]=1; b[0]=2;

CCode2A: : ~CCode2A ()
{
delete a,b,c;

void CCode2A: :0nPaint ()
{
CPaintDC dc(this);
CString s;
double error;

CFont myfontl,myfont2,myfont3;

myfontl.CreatePointFont (120, ”Times New Roman”) ;
dc.SelectObject (myfontl);

dc.SetTextColor (RGB(100,100,100)) ;
dc.TextOut (50,50, "Equation: f(x)=pow(x,3)-pow(x,2)-3");

myfont2.CreatePointFont (100, “Courier”);
dc.SelectObject (myfont2);
s.Format (“%-5s%-10s%-10s%-10s%-10s%-10s%-10s",
i, ralilr, b1l "eli]l”, "f(alil) ", "E(c[1])", "error"”);
dc.TextOut (50,120, s) ;

for (int i=0;1i<=N;i++)
{
clil=(alil+b[i])/2;
if (f(alil)*f(c[i])>0)
{
ali+l]l=cl[i]; bli+1l]=bI[i];
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else
{
bl[i+1l]=c[i]; ali+ll=alil;
}
s.Format (“%$-5d%-10.31£f%-10.31£f%-10.31£%-10.31£f%-10.31£f",
i,alil,blil,clil,f(alil),f(clil]));
dc.TextOut (50,150+15*1,s) ;
if (i>0)
{
error=fabs(c[i]-c[i-1]);
s.Format (“%-10.31f",error) ;
dc.TextOut (490,150+15*i,s) ;
if (error<EPSILON)
break;
}

}

myfont3.CreatePointFont (160, ”Arial”);

dc.SelectObject (myfont3);

dc.SetBkColor (RGB(100,100,100)) ;

dc.SetTextColor (RGB(255,255,255)) ;

s.Format (“the solution is x=%.31f after %d iterations”,
clil,i-1);

dc.TextOut (100,300, s) ;

Code2B: Solving a System of Linear Equations

// code2C.h

#include <afxwin.h>
#define IDC_COMPUTE 500
#define N 3

class CCode2B : public CFrameWnd

{
private:
int idc_ea, idc_eb, idc_sx;
double **a,*x, *b;
CEdit **ea, *eb;
CStatic *sx;
CButton bCompute;
public:
CCode2B() ;
~CCode2B() ;

void PGauss () ;
afx_msg void OnCompute () ;
DECLARE_MESSAGE_MAP ()

Y

class CMyWinApp : public CWinApp
{
public:
virtual BOOL InitInstance();
}i

// code2B.cpp
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#include “code2B.h”
CmyWinApp MyApplication;

BOOL CMyWinApp::InitInstance()

{
CCode2B* pFrame = new CCode2B;
m_pMainWnd = pFrame;
pFrame->ShowWindow (SW_SHOW) ;
pFrame->UpdateWindow () ;
return TRUE;

BEGIN_MESSAGE_MAP (CCode2B, CFrameWnd)
ON_BN_CLICKED (IDC_COMPUTE, OnCompute)
END_MESSAGE_MAP ()

CCode2B: :CCode2B ()
{

b=new double [N+1];
eb=new CEdit [N+1];
x=new double [N+1];
sx=new CStatic [N+1];
a=new double *[N+1];
ea=new CEdit *[N+1];
for (int i=1;i<=N;i++)
{

alil=new double [N+1];

eal[i]=new CEdit [N+11];
}
idc_ea=200; idc_eb=300; idc_sx=400;
Create (NULL, “SLE: Gauss Elimination Method”,

WS_OVERLAPPEDWINDOW, CRect (0,0,500,340)) ;
bCompute.Create (“"Compute”,WS_CHILD | WS_VISIBLE | BS_DEFPUSH BUTTON,
CRect (CPoint (380,25),CSize(100,25)),this, IDC_COMPUTE) ;

for (int i=1;i<=N;i++)
{

for (int j=1;j<=N;j++)

eal[i] [j] .Create (WS_CHILD | WS_VISIBLE | WS_BORDER,

CRect (CPoint (10+(1i-1)*70,80+(j-1)*30),
CSize(60,25)),this,idc_ea++) ;
eb[i] .Create (WS_CHILD | WS_VISIBLE | WS_BORDER,
CRect (CPoint (280, 80+ (i-1)*30),CSize(60,25)),this,idc_eb++)
sx[1i].Create(“",WS_CHILD | WS_VISIBLE | SS_SUNKEN | SS_CENTER,
CRect (CPoint (380,80+(i-1)*30),CSize(80,25)),this,idc_sx++)
}
ea[l][1l].SetFocus(); // caret starts blinking here

CCode2B: : ~CCode2B ()
{
for (int i=1;i<=N;i++)
delete ali],eali];
delete a,ea,b,x,sx;
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void CCode2B: :OnCompute ()

{
CString s;
int 1i,3;
for (i=1;i<=N;i++)
{
for (j=1;3<=N;j++)
{
eali]l[j].GetWindowText (s) ;
alil [jl=atof(s);
}
eb[i].GetWindowText (s) ;
bli]l=atof(s);
}
PGauss () ;
for (i=1;i<=N;i++) // display vector x
{
s.Format (“$1f”,x[1]);
sx[1].SetWindowText (s) ;
}
}
void CCode2B: :PGauss () // compute the SLE
{
int 1i,3.,k;

double m, Sum;

for (k=1;k<=N-1;k++) // row operations on a

for (i=k+1;i<=N;i++)
{
m=ali] [k]/alk][k];
for (j=1;3<=N;j++)
alil[jl=alil[j]l-m*alk] []];
bli]=b[i]-m*b[k];
}

for (i=N;i>=1;i-) // backward substitutions on x

Sum=0;
x[11=0;
for (Jj=1i;3j<=N;Jj++)
Sum +=alil [F]1*x[3];
x[1]1=(b[1i]-Sum) /a[i][i];

Code2C: Resource File Approach to the SLE Problem

// code2C.h

#include <afxwin.h>
#include <afxdisp.h>
#include “resource.h”
#define N 3

class CCode2C : public CDhialog
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{

protected:
double **a, *b, *x;
CString **sa, *sb, *sx;

public:
CCode2C (CWnd* pParent = NULL) ;
~CCode2C () ;
enum { IDD = IDD_GAUSSDIALOG };
virtual void DoDataExchange (CDataExchange* pDX) ;
afx_msg void OnCompute () ;
DECLARE_MESSAGE_MAP ()
void PGauss () ;

Y

class CMyWinApp : public CWinApp
{
public:
virtual BOOL InitInstance();

Y
#include “code2C.h”
CMyWinApp MyApplication;

BOOL CMyWinApp: :InitInstance ()

{
AfxEnableControlContainer () ;
Enable3dControlsStatic() ;
CCode2C dlg;
m_pMainWnd = &dlg;
int nResponse = dlg.DoModal () ;
return FALSE;

BEGIN_MESSAGE_MAP (CCode2C,CDhialog)
ON_BN_CLICKED (IDC_COMPUTE, OnCompute)
END_MESSAGE_MAP ()

CCode2C: :CCode2C (CWnd* pParent): CDialog(CCode2C::IDD, pParent)
{
b=new double [N+1];
sb=new CString [N+1];
x=new double [N+1];
sx=new CString [N+1];
a=new double *[N+1];
sa=new CString *[N+1];
for (int i=1;i<=N;i++)
{
al[il=new double [N+1];
sa[i]l=new CString [N+1];



CCode2C: : ~CCode2C ()
{
for (int 1i=1;i<=N;i++)
delete ali],salil;
delete a,sa,b,x,sb,sx;

void CCode2C: :DoDataExchange (CDataExchange* pDX)

{
CDhialog: :DoDataExchange (pDX) ;
DDX_Text (pDX, IDC_All, salll[l]1);
DDX_Text (pDX, IDC_Al2, sallll[2]);
DDX_Text (pDX, IDC_A1l3, salll[31);
DDX_Text (pDX, IDC_A21, sal2][1]);
DDX_Text (pDX, IDC_A22, sal2][2]1);
DDX_Text (pDX, IDC_A23, sal2][3]);
DDX_Text (pDX, IDC_A31l, sal3]1[11);
DDX_Text (pDX, IDC_A32, sal3]1[2]);
DDX_Text (pDX, IDC_A33, sal3]1[31);
DDX_Text (pDX, IDC_bl, sbll]);
DDX_Text (pDX, IDC_b2, sb[2]);
DDX_Text (pDX, IDC_b3, sb[31]);
DDX_Text (pDX, IDC_x1, sx[1l]);
DDX_Text (pDX, IDC_x2, sx[2]);
DDX_Text (pDX, IDC_x3, sx[3]);

void CCode2C: :OnCompute ()
{
int 1i,3;
CString s;
UpdateData (TRUE) ;
for (i=1;i<=N;i++)
{
bl[i]=atof (sb[i]);
for (j=1;3<=N;j++)
alil[j]l=atof(salil [j]);
}
PGauss () ;
for (i=1;i<=N;i++)
sx[i] .Format (“$1f”, x[i]);
UpdateData (FALSE) ;

void CCode2C: :PGauss ()
{
int 1,3.,k;
double m, Sum;

// Perform row operations
for (k=1;k<=N-1;k++)
for (i=k+1;i<=N;i++)
{
m=al[i] [k]/alk][k];

CODE LISTINGS
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for (j=1;3j<=N;j++)
alilljl=alil[j]l-m*alk][3];
bli]=b[i]-m*b[k];
}

// Perform back substitutions
for (i=N;i>=1;i-)

{
Sum=0;
x[11=0;
for (j=1i;j<=N;Jj++)
Sum +=alil [J1*x[]];
x[i]=(b[i]-Sum)/al[i]l[i];
}



CHAPTER 3

MATRIX OPERATIONS USING WIZARD

3.1 DOCUMENT/VIEW ARCHITECTURE USING WIZARD

The previous chapter discusses the non-Wizard solution to creating three Windows
applications. This approach is good as it provides a solution with very few lines of
code. However, the approach may be difficult for a beginning programmer who is
burdened with the task of understanding Windows deeply before developing an ap-
plication. It is also not easy for the programmer to produce a professional-quality
program if extensive use of Windows resources is required.

A professional-looking application requires the document/view application. The
document/view architecture is a program development approach that integrates
documents that hold the data and present this data as an output using the view facil-
ity in MFC. The approach involves the use of several classes in MFC and each one
of them has access to several functions for utilizing the Windows resources. A pro-
gram using the Windows interface can be written and developed faster using a tool
known as Wizard. With Wizard, an application can be written to produce a profes-
sional quality presentation, ready for deployment in the market. This tool is avail-
able in Visual Studio to help a programmer concentrate on the application code,
leaving the details about communication with Windows to the compiler. Wizard
helps a programmer by automatically generating the relevant code using a series of
menus, buttons, and other resources in Windows. This facility frees the programmer
from the burden of having to know the details about Windows before coding. An
analogy can be drawn here: a driver need not know the details about his car engine
in order to drive the car. The system in the car has been designed in such a way that
a driver can get used to it easily without the need to study its technical details.

Wizard does not provide everything that a programmer may expect. A program-
mer still needs to know the language, its program development, and, most important
of all, the requirements of the program with respect to Windows as the program-
ming environment. The programmer still has to learn and understand some basic
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components and the mechanism of the working of Windows. There is a steep learn-
ing curve in using Wizard as well. The programmer needs to get used to some ter-
minology and jargon used in Windows in order to understand the role of wizard.
There are also many lines of code involved, although many of them may not be rel-
evant to the application. Wizard also takes a huge amount of disk space as many
standby files are generated during the compiling and linking processes.

This chapter discusses two models involving the use of Wizard. The first is a
model of matrix arithmetic that includes the multiplication and the inverse of a ma-
trix. This model illustrates the maximum use of local variables in the form of ar-
rays, and their transfer from one function to another. The second is the rewriting of
the earlier examples of a system of linear equations in Chapter two, this time using
MFC Wizard.

3.2 MATRIX ALGEBRA

Several solutions to difficult problems in mathematics and their applications need a
substantial reduction to the form of their vectors and matrices. This reduction is of-
ten achieved through a successful implementation of several algorithms. The over-
all solution is obtained after some vigorous mathematical operations on these vec-
tors and matrices. Therefore, matrix operations are some of the core elements in
numerical computations. Mathematical operations involving matrices can be very
tedious and difficult, especially when their size is large. This complexity is shown
by the powerful computers often used in performing calculations involving large
matrices. For example, in modeling the wind flow that forms a flux in weather fore-
casting, powerful machines such as the Cray supercomputers are used. A powerful
computer alone is not sufficient to produce a fast result. More important than that is
the software part. A program needs to be written in such a way as to optimize the
use of resources, and this greatly contributes to high-performance results.

A matrix is a two-dimensional table that allows a set of data to be arranged in
rows and columns. Each element in a matrix has a row and column connection that
relates to this element. A rectangular matrix is very commonly represented as a
form of data entry as it maps physically and logically to the real problem. For ex-
ample, a matrix may collectively represent the x and y geographical coordinates of
an object. This representation allows a direct mapping from the ground location of
the object onto the mapping board, useful for purposes like tracking the path of this
object. In another example, a matrix may represent an image, with its pixels as the
elements in the matrix. The quality of the image can be improved by performing
some operations on the matrix.

In a programming language, an array is a broad term that includes matrix. An ar-
ray can be created into several dimensions for supporting several different require-
ments of a problem. An array can also be linked as a variable or object to other data
members in a class. A one-dimensional form of an array is called a vector. In fact, a
matrix is made up of columns of vectors. Besides having magnitude and length, a
vector has direction, and this feature differentiates a vector from a scalar.
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Matrix arithmetic involves all the four basic tools in algebra: addition, subtrac-
tion, multiplication, and division. Operations involving addition and subtraction are
quite trivial. Therefore, they are not discussed here as the user can easily design
these items from the idea discussed in this current application. In this section, we
discuss operations involving matrix multiplication and the problem of finding the
inverse of a matrix. We further illustrate the concepts of dynamic memory alloca-
tion discussed in Chapter 2 and data passing between functions.

We discuss a project having an expression involving matrix multiplication and
finding the inverse of a matrix using the following example:

Z=AB'4" 3.1)

In Equation (3.1), 4, B, and Z are square matrices of size N X N. In this example, we
set N = 3, but the solution is scalable upward and downward to support any other
reasonable value of N. An easy way of solving the problem in Equation (3.1) is to
break down the problem into several small components, or tokens, according to the
following sequence, then solve each component one by one:

Step 1: Let P = 4% and compute P through the multiplication P = 4 - 4.

Step 2: Let QO = B! and compute this matrix inverse.

Step 3: Let R = A and compute this matrix inverse.

Step 4: Let Y = OR and compute Y through the multiplication ¥ = O - R.
Step 5: Let Z = PY and compute Z through the multiplication Z = P - Y.

By performing the above steps one by one in their order, we obtain the final so-
lution, Z. The motivation for writing the solution according to the above steps is to
make full use of the two matrix operations, namely, multiplication and inverse. Two
functions, one each for the matrix multiplication and matrix inverse, are to be creat-
ed in the project files. These functions are called repeatedly for solving each com-
ponent in the above steps, which will then lead to the ultimate solution.

Data Passing Between Functions

One important strategy in numerical programming for achieving high performance
is to maximize the use of local variables instead of global variables. The advantage
of this strategy can be seen from the fact that local variables are easier to manage as
they are confined inside the given functions only. These functions are not used all
the time during the program runtime and, therefore, the use of local variables will
optimize the overall memory usage inside the computer. A global variable may also
cause some problems in some areas of the program. A global variable is visible
everywhere in the class and even in another class. Some slight assignment on its
value in a function may alter the value of another variable in another function.

One problem with having local variables in several functions is the way a function
can use the local variables declared in another function. The problem is solved
through a proper data-passing mechanism between functions. Data in the form of ar-
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rays can be passed from one function to another through the arguments in the two
functions. The general rule for passing the data is that when one function sends data
through an argument, the receiving function must accept this data in another argu-
ment. The two arguments must have the same data type, array dimension, and size.

Matrix Multiplication

Two matrices in the form of two-dimensional arrays are multiplied using the same
rule that governs their operation in mathematics. We discuss an example with two
matrices 4 = [a;] and B = [b,], of sizes 3 x 4 and 4 x 2, respectively. Their multipli-
cation produces matrix C = [c;] of size 3 x 2, as follows:

- by by
Ci1 Ci2 Ci1 dip dyi3 dig by, ba
C=|C1 Cxn|=]|a1 daxpn a3 dxy b b
31 32
| G311 C32 31 dzp 43z A3 b b
41 42

(3.2)
apbyy +aphsyy tasbsy tabyy apbiytapby, +asbs; taubs,
=| axbyy + apbsy +aybs; taxubsy Ay bin t+ ayby, +aybsy +axby,
| a31by + aszbyy +agsbsy +asbyy a3 by + asby; +assbyy +azby,

The solution in a compact form representing the manual calculations above is
shown, as follows:

4 4 -
Zalkbkl Zalkbkz
=1 =1

4 4
[Cij] = Zazkbkl kziazkbkz (3.3)

k=1

4 4
Za3kbk1 Za3kbk2
=1 =1 _

for rows i =1, 2, 3 and columns j = 1, 2, which further reduces to the following:

4
[C;‘j] = [Z aikbk/:| (34

=
In C++, Equation (3.4) is written simply as

for (i=1;i<=3;i++)
for (j=1;3<=2;j++)
{
cl[il[31=0;
for (k=1;k<=4;k++)
cl[i][j]1+=ali]l [k]1*b[k][]];
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Finding the Inverse of a Matrix

A matrix 4 of size N x N is said to have an inverse given by X = 4! if their product
is an identity matrix, as follows:

AX =1 3.5)

In the above equation / is an identity matrix. The rule of mathematics governs the
steps in finding the inverse of a matrix: the inverse of a square matrix exists only
if the matrix is not singular. A singular matrix is a matrix whose determinant is
Zero.

The inverse of a matrix is computed using the Gaussian elimination method,
similar to the method used in solving a system of linear equations. This is observed
by replacing the vectors x and b in Equation (2.7) with the matrices X and 7, respec-
tively. The method starts by assigning a new matrix B with the identity matrix / in
Equation (3.5) as its initial value, as follows:

AX=B (3.6)

Steps similar to Equation (2.8) in Chapter 2 are applied to reduce matrix 4 into
its upper triangular matrix form U through a series of row operations. Backward
substitutions then follow using steps similar to Equation (2.9) to generate the solu-
tion, X. These steps are shown in Figure 3.1.

For the case of 4 with size 3 x 3, the steps in Figure 3.1 are illustrated as follows:

app dpp A |l X1 X2 X3 1 0 0
AX=T|an axn ap|[xn x» x3|=]0 1 0
az;  dzpy  dzz || X311 X322 X33 0 0 1
! Row operations
[~ 1 2 2
ay dpp dps X1 X2 X3 Vii V2 Vi3
!’ !’
0 Ay dr3 Xo1 Xoo X3 |=|[Var Va2 V23
!’
0 0 ass X311 X3 X33 V3i Vi V33

| Backward substitutions

[ ’ ! ’
X1 X2 X3 Viin Vi Vi3
’ ! !’
Xo1 X2 Xo3 | =] V21 V22 V23
! ! !
| X31 X322 X33 V3 Va2 V33

We now discuss the method. Suppose 4 = [a;] is a square matrix of size N x
N and B = [b,] is an identity matrix having elements with the initial values given
by

o |1 ifi=g
Plo ifi #j
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@ operatlons
y

Backward
substitutions

X =7

Figure 3.1 Gaussian elimination method for finding the inverse of a matrix.

The ith row operations on row k are performed by first finding the value of m,
which is the ratio of the ith element in the row to its pivot element, given as fol-
lows:

m = ag/ay, (3.7)
Row operations then follow on a;; and b;; according to the following steps:

Q< az—m - ay (3.8)

by < by—m - by (3.9)

y

fork=1,2,...,N—1, followedbyi=k+1,k+2,...,N,andj=1,2,..., N.
Equations (3.7), (3.8), and (3.9) collectively reduce matrix A4 to its upper triangular
form U while B becomes V.

The second step in finding the inverse of a matrix is to apply backward substitu-
tions on the upper triangular matrix U to get the solution V"', as follows:

Xy = (3.10)

P A (3.11)

fori=N-1,N-2,...,1,andj=1,2,...,N.
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Code3A: Matrix Operations

We illustrate matrix operations involving multiplication and matrix inverse in solving
the problem Z = 4B~ 4! through a project called Code3A. The application assumes
all the matrices have size 3 x 3. The output of Code3A is shown in Figure 3.2. The
display consists of a single window showing the values of the input matrices 4 and B,
the components P, O, R, and Y, and the solution Z. The project demonstrates the use
of dynamic memory allocation and how data in the form of arrays is passed effective-
ly from one function to another. There are no global variables used in this application.

We illustrate the development of the application with the help of Wizard. MFC
Wizard consists of a guided-development approach to building an application. The
user is presented with a series of questions and must choose the options suitable for
the application. The process begins by first creating a blank application using the
document/view architecture. It then proceeds with inserting the code for the appli-
cation.

Our main function in this application is OnDraw (), which declares all the re-
quired arrays in the problem. This function gets the input data from the function
InputData () and performs matrix operations by passing the data to the func-
tions MatMultiply () and MatInverse().

Step 1: The process begins by creating a new project using Wizard for a blank

He Edit View Help

DER b 288 P

Input A Output P
3.000 5.000 7.000 -29.000 54.000 8.000
-2.000 5.000 -4.000 0.000  F.000 -38.000
-4.000 2.000 1.000 -20.000 -8.000 -35.000
Qutput Q Qutput Z
0.486 0543 0.371 1.437 1174 3.329
0.171  0.486 0.543 2076 1.699 -1.764
-0.229 -0.314 -0.057 -1.095 0.457  -0.278
Input B

5.000 -3.000 4.000
-4.000 2.000 -7.000
2.000 1.000 5.000

Output R

0.054 0.037 -0.228
0.07% 0129 -0.008
0.066 -0.108 0.104

Qutput Y

0.091 0.048 -0.077
0.082 0.010 0.013
-0.040 -0.043 0.049

Ready [ |

Figure 3.2 Output of Code3A.
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Project Types: Templates: IEM

{:l Wisual Basic Projects N " ;I
{:l Visual C# Projects a% AP
a Wisual C++ Projects :
i{T7] Setup and Deploymert Projects r_v’lEIlnaged Ii;— MFC ActiveX MFC
Web Service Control

-2 Other Projects
LEE ; g =rze
£ Visual Studio Solutions M g
FlC]|

MFC DLL MFC ISAPl  Win32 Project
BExtension DIl -

|.P|r| application that uses the Microsoft Foundation Class Library.

Mame: ICDdE 34

Location: IC:"-.Mg,-Project j Browse. .. |

Project wil be created at C:"\MyProject*Code3A.

F More | oK I Cancel | Help |

Figure 3.3 Starting menu for creating the application using Wizard.

application. The display in Figure 3.3 appears. Choose MFC Application
from the choices and name the project Code3A with the proper folder loca-
tion. Press the Ok button to continue.

Step 2: A menu with six items and several other subitems appears, as shown in
Figure 3.4. For our application, it is only necessary to choose the items Appli-
cation Type and Advanced Features as they are relevant here. Choose Appli-
cation Type. Several radio buttons appear as options with the defaults shown
for the application. Our application requires a single document only since a
single window is sufficient for displaying the output. Hence, the choice
should be Single Document. The application is also producing a single EXE
file. Therefore, choose Use MFC in a Static Library for this option.

Step 3: An interface, shown in Figure 3.5, appears. Choose Advanced Features
and deselect ActiveX controls.

Step 4: The final step in the document/view blank application is to confirm the
selection by viewing the main classes generated from the choices:
CCode3AView, CCode3AApp, CCode3ADoc, and CMainFrame. The
classes are shown in Figure 3.6. By default, all the generated classes in MFC
start with the letter C. At this stage, the application can be compiled, linked,
and run to produce a blank window that is not displaying anything.

Step 5: The files generated from the choices made in the blank application using
the Solution Explorer are shown in Figure 3.7. From the listing, each of the
generated classes produces a C++ and header files. In our application, only



MFC Application Wizard - Code3A

Application Type T
Specify DocumentView architecture support, language, and interface style options for your
application.

: Application type: Project style:
Owverview
% Single document = Windows Explorer
Application Type " Multiple documents ¥ MFC standard
Compound Document Support Lo Use of MFC:
= U= ML dislog  Use MFC in a shared DLL

Document Template Strings . et
e g " Multiple topJevel documents * Use MFC in a static library

se 5 : .
STIIEER [+ Document/Niew architecture support
User Interface Features Resource language:
English {United States) -
Advanced Features I = E —I
Generated Classes
Finish Cancel Help

Figure 3.4 Choose Application Type, and enter the choices as shown above.

Advanced Features T

Specify additional support to build into your application.

Oiverview Advanced features: Mumber of files on recent file list:
Erview

™ Context-sensitive Help IE
Application Type = Hels Formet

) HiLHE

Compound Document Support - -
v Printing and print preview

Document Template Strings [ Automation

[ ActiveX controls

[ MAPI {Messaging APT)
User Interface Features [~ windows sockets

[~ Active Accessibility

W Common Control Manifest

Database Support

Advanced Features

Finish Cancel Help

Figure 3.5 Choose Advanced Features and deselect ActiveX Control.
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MFC Application Wizard - Code3A

Generated Classes

R

Review generated dasses and specify base classes for your application.

i Generated dasses:
Owverview

| CCode3AApp

ication Type
Application Type CCode3ADoc
E _ CMainFrame
Compound Document Support
Document Template Strings Class name: . filg:
Jccade 3aview [codezavien.h
Database Support
Base dass: .cpp file:
Lize erface Features " :
[ e Ee |C'\-'|ew = |Code3.~“.'\-'|e';;.u:|:-p

Advanced Features

Generated Classes

Finish Cancel Help

Figure 3.6 Choose Generated Classes to view the main classes generated from the choices.

the view files, CCode3AView.h and CCode3AView. cpp, are relevant as
we are only concerned with displaying the output on the main window.

Step 6: The next step is to add the user member functions to the class
CCode3AvView. The functions are InputData (), MatMultiply (),
and MatInverse (), which are functions for data input, multiplication of
matrices, and finding the matrix inverse, respectively. The step begins by cre-
ating the function InputData (). Highlight CCode3AView from the class
view, then choose Project and Add Function from the menu, as shown in Fig-
ure 3.8.

Step 7: The function InputData () is declared as type double and it has
two parameters, as follows: double InputData(double **a,dou-
ble **Db). The scope of this variable is public. Figure 3.9 shows the en-
tries in the dialog window. The parameters a and b are entered using the 4dd
button one by one. Figure 3.10 shows the complete entries for this function.

Step 8: Repeat the entries for the other functions: double MatMultiply
(double **c, double **a, double **Db) and double MatIn-
verse (double **x, double **a).

Step 9: Add the following line into the file Code3AView.h to define the size of
all the matrices:

#define N 3
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@ Solution Code3& (1 project)
=-

= a Source Files
----- 3 Code3A.cpp
----- 3 stdafx.cpp
----- 3 MainFm.cpp
----- j Code3ADoc.cpp
----- j Code3AView cpp
El- 3 Header Files
----- j Code3dAh
----- j stdafh
----- j MainFm h
----- j Code3ADoch
----- j Code3AView h
----- j Resource h
El- -3 Resource Files
----- 3 CodedArc
----- j Code3Arc2
----- j Code3A manifest
----- j Code3ADocico
----- j Code3Alico
----- j Toalbar bmp
----- ReadMe bd

E

Figure 3.7 The files associated with the classes in the project.

Step 10: Write the application code into the function OnDraw () . Begin by cre-
ating the two-dimensional arrays A, B, P, Q, R, Y, and Z, and dynamically al-
locating their memory, as follows:

double **A’ **B, **PI **Q, **RI **Y, **Z;

A=new double *[N+1];
B=new double *[N+1];
P=new double *[N+1];
Q=new double *[N+1];

Fle Edt \few | Proect | Buid Debug  Tooks MWindow Help

-t - 2 || "e AddDess.. - ) Debug - o VAR T
Start Fage | Codes| M _Add Function... | | ==
Add Vanable... -
Add Resource...
=1 A i LSt = 4= Global Functions and Varables
i1 Add New tem... Ctr=Shift+4 | A1-S Macrs 2nd Constarts
5] Add Bristng hem..  Shit=Ak<A [ -4 CAboutDig
n
New Folder B¢ Code3A4pp

% CCode3ADoc
Add Web Referencs._.. ERE 4 CCode3AView
-9 CManFrame

Figure 3.8 Adding a member function to the class CCode3AView.



Add Member Function Wizard - Code3A

Welcome to the Add Member Function Wizard

This wizard adds a member function to a dass, struct, or union.

Return type: Function name:
I void j IInputData
Parameter type: Parameter name: Parameter list:

I double == j |a

Access:

I static 534 parameter| Bure .cpp file:
lecbic JE3 [ Jeode3aview.cpp _I

Comment (ff notation not required):

Finish Cancel Help

Figure 3.9 Adding a member function to the class.

Add Member Function Wizard - Code3A

Welcome to the Add Member Function Wizard

This wizard adds a member function to a dass, struct, or union.

Return type: Function name:
I vaid j IIn|:-utData
Parameter type: Parameter name: Parameter list:
[pouble = = ’double g
Add Remove |
Access: r Static r Virtual r Pure cpp file:
|pul:-|ic ;l I Fnine |-:c-de3.avie'.f\'.-:pp _I

Comment {// notation not required):

Finish Cancel Help

Figure 3.10 Complete entries for the function InputData ().
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R=new double
Y=new double
Z=new double

* % %

[N+1];
[N+1];
[N+1];

for (l:l ; i<:N,‘ i++)

{

[i]=new
[i]=new
[1]=new
[i]=new
[i]=new
[i]=new
[i]=new

N K WO " w o

double
double
double
double
double
double
double
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The next step is to get the input data as A and B from the function InputData ():

InputData (A, B);

This is followed by the code to display the A and B matrices, as follows:

pDC->TextOut (100,30, “Input A”);
pDC->TextOut (400,30, "Input B”);

for (i=1;i<=N;i++)
for (Jj=1;j<=N;j++)

{

s.Format (*%$.31f",A[1]1[3]1);

pDC->TextOut (50+ (j-1)*60,50+(i-1) *20,s) ;

s.Format (“%.31f”,B[1i]1[]j]1);

pPDC->TextOut (350+(j-1)*60,50+(1i-1)*20,s) ;

The real algebraic operations follow by passing data to the related functions and
getting back the results from these functions. This is done as follows:

MatMultiply (P,A,A);

MatInverse (Q, B)
MatInverse (R,A)

’

7

MatMultiply (Y,Q,R);
MatMultiply (Z,P,Y);

Next, we write the code for displaying the results and destroying the arrays at the

end of the function:

pDC->TextOut (50,130, "Output P”) ;
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pDC->TextOut (50,230, “"Output Q") ;
pDC->TextOut (50,330, "Output R”) ;
pDC->TextOut (50,430, "Output Y”);
pDC->TextOut (400,430, "Output z2”);
for (i=1;i<=N;i++)
for (j=1;j<=N;Jj++)
{
s.Format (“%.31f”,P[1i
pDC->TextOut (50+ (j-
s.Format (*%.31f”,Q[1i
pDC->TextOut (50+ (j-
s.Format (“%$.31f”,R[1
pDC->TextOut (50+ (j-
s.Format (*%.31f",Y[1i

7

(31):

*60, 150+ (1i-

(31);

*60,250+ (1-

(31):

(31);

1)*20,s);

1)*20,s);

1)*20,s);

1)*20,s);

pDC->TextOut (50+ (j-
s.Format (“%.31f”,z[1i
pDC->TextOut (350+ (j-

]
1)
]
1)
]
-1)*60,350+(1i-
]
1)*60,450+(1i-
1031
1)*60,450+(1i-1)*20,s);

}
(1i=1;1<=N;i++)
delete A[i],B[i],P
delete A,B,P,Q,R,Y,Z;

for

[1],Q[i],R[1],Y[1],2[1];

The complete code for the function OnDraw () is shown below with the code writ-
ten by the user in the shaded area:

void CCode3AView: :OnDraw (CDC* pDC)
{
CCode3ADoc* pDoc = GetDocument () ;

ASSERT_VALID (pDoc) ;

// TODO: add draw code for native data here
CString s;

int i,3;

double **A, **BI **P, **Q, **RI **Y, **Z;

double
double
double
double
double

*[N+1];
*[N+1];
*[N+1];
*[N+1];
*[N+1];
double *[N+1];
double *[N+1];
(1=1;i<=N;i++)

A=new
B=new
P=new
Q=new
R=new
Y=new
Z=new
for
{
A[i]=new double [N+1];
B[i]=new double [N+1];
P[i]l=new double [N+1];
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Q[i]=new double [N+1];
R[i]=new double [N+1];
Y[i]=new double [N+1];
Z[i]=new double [N+1];

}
InputData (A, B) ;
pDC->TextOut (100,30, “Input A”) ;
pDC->TextOut (400,30, "Input B”) ;
for (i=1;i<=N;i++)

for (j=1;j<=N;j++)

{
s.Format (“%.31f”,A[1][3j]);
pDC->TextOut (50+ (j-1) *60, 50+ (1-1) *20, s) ;
s.Format (“%.31f”,B[i][]]);
pDC->TextOut (350+(j-1)*60,50+(i-1)*20,s) ;
}

MatMultiply (P,A,A);
MatInverse(Q,B) ;
MatInverse (R,A) ;
MatMultiply(Y,Q,R) ;
MatMultiply (Z,P,Y) ;
pDC->TextOut (50,130, "Output P”);
pPDC->TextOut (50,230, “Output Q") ;
)
)

7

pDC->TextOut (50,330, “Output R”
pDC->TextOut (50,430, "Output Y”);
pDC->TextOut (400,430, “Output z”) ;
for (i=1;i<=N;i++)

for (j=1;j<=N;j++)

{
s.Format (“%.31f”,P[i][]]);
pDC->TextOut (50+ (j-1) *60,150+(i-1) *20,s) ;
s.Format (“%.31£f”,Q[1]1[3j]);
pDC->TextOut (50+ (j-1) *60,250+ (i-1) *20, s) ;
s.Format (“%.31f”,R[1][3j]);
pDC->TextOut (50+ (j-1) *60,350+ (i-1) *20, s) ;
s.Format (“%.31f”,Y[i][]]);
pDC->TextOut (50+ (j-1) *60,450+ (i-1) *20,s) ;
s.Format (“%.31f”,Z[i]1[3]);
pDC->TextOut (350+ (j-1) *60, 450+ (1i-1) *20,s) ;

}

for (i=1;i<=N;i++)
delete A[i],B[i],P[1],Q[4i],R[i],Y[i],Z[1];
delete A,B,P,Q,R,Y,Z;

Step 11: The next step is to write the code for the function InputData ().
This function defines the input values for the arrays a[] [] and b[]. The
values for the two arrays are defined using a simple assignment as follows:
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void CCode3AView: : InputData (double **a,double **Db)
{

alll[1]1=3; all]l([2]1=5; a[l1l]l[31=7;
al2]1[11=-2; al2]1([2]1=5; al[2][3]1=-4;
al31[11=-4; al3]1[2]1=2; al3]1[3]=1;
b[11[1]1=5; b[1]1[2]=-3; b[1]1[3]1=4;
bl2]1[1]1=-4; b[2]1[2]1=2; bl[2]1[3]1=-7;
b[31[11=2; b[31[2]=1; bI[3]1[3]=5;

Step 12: The next step is to write the code for the function MatMultiply ().
This function receives input as the arrays a [] [] and b [ ], performs the mul-
tiplication using Equation (3.3), and returns the results as the array c[][].
MatMultiply () is a client function to be called up from OnDraw ()
specifically for computing the multiplication. For example, MatMulti-
ply (P,A,A) causes matrix A[][] from OnDraw () to be passed as
alll]l andb[] in MatMultiply (). These values are executed in Mat-
Multiply () and returned as c[] [] which is received by OnDraw () as
P[] []. The code in the function MatMultiply () is written as follows:

void CCode3AView: :MatMultiply (double **c,double **a,double **Db)
{
int 1i,3,k;
for (i=1;i<=N;i++)
for (j=1;3j<=N;j++)
{
c[i] [J1=0;
for (k=1;k<=N;k++)
cl[il[J1+=ali]l [k]*b[k][]];

Step 13: Write the code for the function Mat Inverse (). This function com-
putes the inverse of a matrix. The function takes the input array as a[] []
and produces the results as x [ ] [ ], according to Equations (3.10) and (3.11).
The function is written as follows:

void CCode3AView: :MatInverse (double **x,double **a)
{

int 1i,3,k;

double Sum,m;

double **b;

b=new double *[N+1];
for (i=1;i<=N;i++)
bli]l=new double [N+1];
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for (i=1;i<=N;i++) // form an identity matrix B
for (j=1;3j<=N;j++)
{
b[i][j1=0;
if (i==3)
b[i] [j]1=1;
}

for (k=1;k<=N-1;k++) // perform row operations on A
for (i=k+1;i<=N;i++)

{
m=ali] [k]/alk]I[k];
for (j=1;3j<=N;j++)
{
alil[J]1-=m*alk][]j];
bli][J]1-=m*b[k][]j];
}
}
for (i=N;i>=1;i-) // perform backstitutions on X
for (j=1;J<=N;Jj++)
{
Sum=0;
x[1][J1=0;
for (k=1i+1;k<=N;k++)
Sum += al[i] [k]*x[k][]];
x[11[J1=(b[i]1[j]1-Sum)/ali]l [1];
}

Code3A is now complete and ready to be run to produce the desired results. It is
easy to extend the method for solving any matrix problem involving multiplication
and the inverse of a matrix from Code3A. For example, a problem such as Z =
A’B™' — B*47'B? + A?B is just a simple extension by adding a new function for
adding two matrices (which also applies to substraction). The overall solution to
this problem is obtained by breaking down the problem into several components,
then solving each component one by one by calling up its respective function, sim-
ilar to the steps shown in Code3A. The details are left to the reader as an exercise.

3.3 SYSTEM OF LINEAR EQUATIONS PROBLEM REVISITED

In Chapter 2, two interfaces were presented for creating a dialog window with re-
gard to solving the problem involving a system of linear equations. The two meth-
ods are based on the non-Wizard approach. We look at this problem again, but this
time we apply the Wizard approach with the document/view architecture. The work
continues from the matrix operations problem discussed in the last section.
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Code3B: Solving the SLE Problem Using Wizard

We extend the work in Code3A by adding an interface for solving the problem of a
system of linear equations discussed in Chapter 2. This time we apply the docu-
ment/view architecture in developing this application using Wizard. The project is
named Code3B and the expected output is shown in Figure 3.11. It consists of the
main window and a dialog window. The main window is generated from the blank
application using the same steps as in Code3A. A menu with item Our Work is added
in this application to activate the dialog window. The dialog window appears when
the user selects item Our Work and subitem Code3B from the menu. This prompts the
user to key in the input values in the edit boxes of the dialog window. Once the input
is completed, the results can be obtained by clicking the Compute push button.

The dialog window shown in Figure 3.11 is created from a new class called
CGaussD1g. For relevancy, this new class has been designed in such a way that it
retains most of the code in project Code2C. The dialog window has been assigned
the id IDD_GAUSSDLG. This window has been designed using the visual tools in
the resource file, as discussed in Code2C.

We discuss the Wizard approach in developing the application in Code3B. The
steps are more complicated here than in the previous application as the present ap-
plication involves a few additional classes and the use of several resources.

Step 1: Start the project by selecting New Project and MFC Class, just as in the
previous application. Name the project Code3B. Repeat steps 1-12 in
Code3A. This generates the main classes, as shown in Figure 3.12.

i =10l %]
File Edt W ik
Deld =R 8%
Input A Output P
3.000 5000 7.000 -29.000 54.000 B.000
2.000 5000 -4.000 0.000 7.000  -38.000
-4.000 2000 1.0 [ ——— L
T~ Makiin s ~Vectort: ~Vector 1 Selution——
B B [ [5 [osesE
Input B
= : z N
5000 -3.000 4.0 | | | 2
4000 2000 -7
B 5 5
2000 1000 5.0 | [ | B fooz62s
Campuie I (] | Cancel |
RIRIEL) RIRIEE] LIRS
Rleady T

Figure 3.11 Output from Code3B.
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MFC Application Wizand - Code3B

Generated Classes

Review generated classes and specify base dasses for your application.

o E Generated dasses:

Application Type

CCode3BDoc
E _ CMainFrame
Compound Document Support
Document Template Strings Class name: .h filg:
|ccade3gvien |code 3Bview.h
Database Support
Base class: .cpp file:
Uze erface Features - -
I T K COMNE |C'u'|ew | ICDdE3B'\-'IEW.Cpp

Generated Classes

Finish Cancel Help

Figure 3.12 Main classes generated in Code3B.

Step 2: Add a dialog window into the resource file Code3B.rc and assign to
this window the id IDD_GAUSSDLG. This is shown in Figure 3.13.

Step 3: Add the edit boxes, static boxes, and the Compute push button into the
dialog window using the same procedures as in Code2C discussed earlier.
We should be getting a nice interface as shown in Figure 3.14.

Resource View - Code3B

=% Code3B
=[] Code3Bre”

F-]2] Accelerstor

El-[2] Dialog

& IDD_ABOUTBOX
P IDD_GAUSSDLG
(23 leon
El-[Z] Menu
¢ i-By IDR_MAINFRAME
[Z2 RT_MANIFEST

#-{Z] Toolbar
H-{Z] Version

Figure 3.13 Resource View showing the new dialog window IDD_GAUSSDLG.
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— I atrim & —“ector b —Wector x Solution
ISampIe edit bo: ISampIe edit bo: ISampIe edit bo: Isample edit bo:
ISampIe edit bo: ISampIe edit bo: ISampIe edit bo: Isample edit bo:
ISampIe edit bo: ISampIe edit b ISampIe edit b Isamp|e edit b
Compute (n] 4 I Cancel |

Figure 3.14 Adding the resources into the dialog window.

Step 4: Add the new class CGaussDlg by first highlighting the class
CCode3Bview in the Class View, then choosing Project and Add Class
from the menu. The window in Figure 3.15 appears. Enter the class name as
CGaussDlg and the base class as CDialog. The dialog id IDD_GAUSS-
DLG is automatically assigned as it is the only dialog window that has been
created so far. The files GaussD1g.h and GaussD1g. cpp are also creat-
ed automatically. The project Code3B now has a list of classes and files as
shown in Figure 3.16.

Step 6: The next step is to add new items to the present menu and link these
items with the dialog window. The menu has a default id IDR_MATINFRAME.
From the Resource View choose Menu and double-click IDR_MATINFRAME
(see Figure 3.17).

Step 7: Add a new item in the menu called Our Work and a subitem called
Code3B, as shown in Figure 3.18. Right-click on the subitem Code3B and se-
lect Add Event Handler from the menu to add an event handler to Code3B.
The event handler provides a link from the subitem to the class
CCode3Bview (see Figure 3.19).

Step 8: The event-handler dialog window appears with most of its entries auto-
matically assigned, as shown in Figure 3.20. The subitem menu has the id
ID_OURWORK_CODE3B and it will call up the function OnOurwork-
Code3B () when invoked.

Step 9: An event handler is to be added to the Compute push button so that it re-
sponds to the event by calling the appropriate function. This is achieved by
opening the dialog window and right-clicking on the Compute push button, as
shown in Figure 3.21. Choose Event Handler from the menu.

Step 10: The dialog window for this event appears, as shown in Figure 3.22. The
Compute push button has been automatically assigned with the id IDC_BUT-



MFC Class Wizard - Code3B x|

Welcome to the MFC Class Wizard

This wizard adds a dass that inherits from MFC to your project. Options may change depending
on the base dlass selected.

Class name:

|CGaussDIg |I_“=

Base dass: filEs
LIZJ|.=I I |
Dialog ID: Automation:
[100_caussoLe | @ one

h file: i~ Automation
|GaussDIg.h

.cop file:
IGaussDIg.cpp

™ Active accessibility

Finish Cancel Help

Figure 3.15 Class creation dialog window.

loa Solution ‘Code3B' (1 project)
- [Z3 Code38

= a Source Files
3 CodedB.cpp

## CCode2BApp - [#] stdafe.cpp
@2 CCode3BDoc - [#] MainFrm.cpp
@12 CCode3BView - [#] Code3BDoc.cpp
@; CGaussDig E Code3BView.cpp
- CMainFrame - [#] GaussDlg.cpp
- 3 Header Files
j Code3Bh
[ stdabih
. 3 MainFrm h

- |wa] Code3BDoch
- [ Code3BView h
- |w] Resourceh
- =3 Resource Files

- [#] Code3Brc
« [wa] Code3Brc2
« 2] Code3B manifest
-+ [us] Code3BDoc.ico
1] Code3Bico
2] Toclbarbmp
. ] ReadMe bd

Figure 3.16 The classes and files in Code3B.
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Rezource View - Code3B

=-{Z3 Code3B

=27 Code3B.ro
(2] Accelerator
-2 Dialog
G- leon
B[] Menu
=R DF_MAINFRAME
G- RT_MANIFEST
[+ String Table
G- Toolbar
-2 Version

Figure 3.17 Editing the menu structure to add a resource on IDR_MAINFRAME.

TONL1. The event will get its response from the function OnBnCompute ().
The event is recognized as a button click with the message handler
BN_CLICKED and it refers to the application in the class CGaussD1g.

Step 11: All the events for the application have been added so far. We now cre-
ate the function PGauss (), which will solve the system of linear equations
problem. In the Class View, highlight the class CGaussD1g. Choose Project
and Add Function from the menu. Enter the information as shown in Figure
3.23 and click Finish to complete.

Step 12: The next few steps involve code entry into some files, which will be
performed manually. We start with the file CGaussDIg.h. Open this file and
enter the lines marked in the shaded area, as follows:

#pragma once
#define N 3

// CGaussDlg dialog

class CGaussDlg : public CDhialog

h | Gaussllocpr  Code3B.c (IDR_.INFRAME - Ileru]'| LI 4

Edit Wiew Help

Figure 3.18 Creating a new sub-item in the menu called Code3B.
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Delete

Insert New

Ingert Separator

Edt IDs

View As Popup
¥ Check Mnemonics
| Add Event Hander...
Properdies

Figure 3.19 Adding an event handler to the sub-item Code3B.

Event Handler Wizard - Code3B

Welcome to the Event Handler Wizard

This wizard adds a menu or accelerator command handler or dislog control event handler to the
dlass of your choice.

Class list:

CCode3BApp
UPDATE_CCOMMAMD _UI CaboutDlg
CMainFrame
CCode3EDoc

Function handler name:
CGaussDig

IOnOurworkCnde 3b

Add and Edit EditGode Cancel Help

Figure 3.20 Declaring an event handler for the subitem.
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M atrie A Weckor b Wectar « Solution
ISampIe edit bo: ISampIe edit bo: ISampIe edit bo: Isamp|e edit bo:
ISampIe edit bo; ISampIe edit bo; ISampIe edit bo; Isample edit bo:
ISampIe edit bo: ISampIe edit bo: ISampIe edit bo: Isamp|e edit bo:
] [ ]
[ ] Compute 0K I Cancel |
[ | Yoo
Copy
[ Paste
¥ Delete

Add Event Handler...

Insert ActiveX Cortrol...
¢ AddCass...
Add Variable...

Size to Content

T Check Mnemonics
Properties

Figure 3.21 To activate the Compute button.

DECLARE_DYNAMIC (CGaussD1lg)

public:
CGaussDlg (CWnd* pParent = NULL); // standard constructor

//

virtual ~CGaussDlg() ;

Dialog Data
enum { IDD = IDD_GAUSSDLG };

protected:

virtual void DoDataExchange (CdataExchange* pDX); // DDX/DDV support

DECLARE_MESSAGE_MAP ()

public:

afx_msg void OnBnCompute () ;
void PGauss (void) ;

double **a, *b, *x;

CString **sa, *sb, *sx;




Event Handler Wizard - Code3B

Welcome to the Event Handler Wizard

This wizard adds a menu or accelerator command handler or dialog control event handler to the
class of your choice.

Message type: Class list:
a CCode3BApp
BN_DOUBLECLICKED CAboutDlg
BN_KILLFOCUS =l |cMainFrame
CCode3BDoc
CCode3Bview

Function handler name:

JonEnCampute|

Add and Edit EditGode Cancel Help

Figure 3.22 Event handler dialog window for the Compute push button.

Add Member Function Wizard - Code3B

Welcome to the Add Member Function Wizard

Thiz wizard adds a member function to a dass, struct, or union.

Return type: Function name:
I void j IPGauss|
Parameter type: Parameter name: Parameter list:

fint =l

Access: [" static [ virtual [ Pure cpp file:
Ipublic ;I r Inline Igaussdlg.cpp _I

Comment {ff notation not required):

Finish Cancel Help

Figure 3.23 Add the function PGauss ().
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Step 13: Now open the file GaussDIg.cpp and add the lines shown in the shad-
ed area below into the constructor and the destructor of the class CGaussD1g:

CGaussDlg: :CGaussDlg (CWnd* pParent /*=NULL*/)
CDhialog (CGaussDlg: : IDD, pParent)

a=new double *[N+1];

b=new double [N+1];

x=new double [N+1];

sa=new CString *[N+1];

sb=new CString [N+1];

sx=new CString [N+1];

for (int j=1;j<=N;j++)

{
aljl=new double [N+1];
sal[jl=new CString [N+1];

}

CGaussDlg: : ~CGaussDlg ()
{
for (int j=1;j<=N;j++)
delete aljl,saljl;
delete a,sa,b,sb,x, sx;

Enter the lines of code for the function PGauss () as marked in the shaded
area:

void CGaussDlg: :PGauss ()
{

int 1i,3,k;

double m, Sum;

// Perform row operations
for (k=1;k<=N-1;k++)
for (i=k+1;1i<=N;i++)

{
m=al[i] [k]/alk] [k];
for (j=1;3<=N;j++)
alil[jl=alil[j]l-m*alk] []];
bli]=b[i]-m*b[k];
}

// Perform back substitutions
for (i=N;i>=1;i-—)
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{
Sum=0;
x[1]1=0;
for (j=i;j<=N;j++)
Sum +=al[i] [J]1*x[]];
x[1]=(b[1]-Sum) /alil[i];
}

And, finally, add the code for creating the modal window into the function
OnOurworkCode3B (). This code responds to the Compute push button
event by activating the dialog window for the application.

void CCode3Bview: :OnOurworkCode3B ()
{

CGaussDlg Dlg(this) ;

int nResponse=Dlg.DoModal () ;

The coding for the application is now complete. It can now be compiled,
linked, and run to produce the desired results.

Code3B: Discussion

The Wizard approach is a convenient way of developing an application especially
for big projects. Wizard provides a full guided approach to developing an applica-
tion and this reduces the burden of programming. Not only that, Wizard also pro-
vides ways to explore the resources available in MFC through the friendly dialog
windows and menus. A professional-looking application can be generated through
the use of the MFC Wizard, which offers a better presentation, suitable for commer-
cial marketing.

However, there is a steep learning curve in using Wizard. It may not look easy to
a beginner, who must know exactly the program flow and the steps necessary be-
fore using the facilities in Wizard. The path to the successful implementation of
Wizard may be disrupted if the steps are not implemented well.

Code3B produces an interesting interface for creating an application. The pro-
ject illustrates the use of dialog windows and menus for solving a numerical prob-
lem. We discussed a system of linear equations that is very small in size. In real
applications, a system of linear equations may be very large so that the input will
not be in the form of edit boxes. The document/view architecture provides a way
for the input to be made in the form of one or more files. The document part of
the architecture reads the input files and makes this data available for further pro-
cessing and viewing through a process known as serialization. We will not be dis-
cussing this topic in this book as our main priority is to discuss ways for solving
several numerical simulation topics using MFC. Interested readers can refer to
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several books specializing in Visual C++ such as Shepherds [3] to explore this
topic further.

3.4 SUMMARY AND CONCLUSION

Matrix algebra is one of the most important elements in scientific computing.
Basically, this topic involves the normal tools of algebra: addition, substraction, mul-
tiplication, and division. But what makes matrix algebra different from other problems
is the presence of arrays and vectors. As the size of the arrays and vectors become
large, the task of solving a problem involving matrix algebra becomes very difficult.
In this case, a computer becomes an indispensable tool for solving these problems.

A powerful computer alone is not enough to provide the solution to several diffi-
cult matrix-related problems. More important than that is the way the computer is
used to solve these problems. It is the software that provides the ultimate solution to
the problems. Good software is capable of handling matrices, managing the re-
sources in the computer, and providing a systematic way for solving the problems.

We discussed two problems in matrix algebra involving the use of Wizard in this
chapter. The first problem describes matrix operations involving the use of arrays
and data passing between the functions. We presented a linear approach in which a
given problem was broken down into tokens, then solved each one of them based on
the fundamental rules of algebra. We illustrated the data-passing mechanism be-
tween functions, which has the advantage of maximizing the use of local variables.
The use of local variables, rather than global variables, makes the program more
modular so that the role of each function can be further enhanced.

We also revisited the problem of solving a system of linear equations. Several
improvements were made to the interface presented earlier in Chapter 2 through the
use of Wizard. Wizard may look difficult to beginners, but this just involves anoth-
er learning process. Many benefits are obtained through Wizard, which makes it an
indispensable tool for a programmer.
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CODE LISTINGS

Code3AView

// Code3AView.h : interface of the CCode3AView class
//
#define N 3
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#pragma once

class CCode3AView : public CView

{

protected: // create from serialization only
CCode3Aview() ;
DECLARE_DYNCREATE (CCode3AView)

// Attributes
public:

CCode3ADoc* GetDocument () const;

// Operations
public:

// Overrides

public:

virtual void OnDraw(CDC* pDC); // overridden to draw this view
virtual BOOL PreCreateWindow (CREATESTRUCT& cs) ;
protected:

virtual BOOL OnPreparePrinting (CPrintInfo* pInfo);
virtual void OnBeginPrinting (CDC* pDC, CPrintInfo* pInfo);
virtual void OnEndPrinting (CDC* pDC, CPrintInfo* pInfo);

// Implementation
public:
virtual ~CCode3AView() ;
#ifdef _DEBUG
virtual void AssertvValid() const;
virtual void Dump (CDumpContext& dc) const;
#endif

protected:

// Generated message map functions
protected:
DECLARE_MESSAGE_MAP ()
public:
void InputData (double ** a, double ** b);
void MatMultiply (double ** c, double ** a, double ** Db);
void MatInverse (double ** x, double ** a);
}i

#ifndef _DEBUG // debug version in Code3AView.cpp
inline CCode3ADoc* CCode3AView: :GetDocument () const

{ return reinterpret_cast<CCode3ADoc*> (m_pDocument); }
#endif

// Code3AView.cpp : implementation of the CCode3AView class
//

#include “stdafx.h”
#include “Code3A.h”
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#include “Code3ADoc.h”
#include “Code3AView.h”

#ifdef _DEBUG
#define new DEBUG_NEW
#endif

// CCode3AView
IMPLEMENT DYNCREATE (CCode3AView, CView)

BEGIN_MESSAGE_MAP (CCode3AView, CView)
// Standard printing commands
ON_COMMAND (ID_FILE_PRINT, CView::0OnFilePrint)
ON_COMMAND (ID_FILE_PRINT_DIRECT, CView::0OnFilePrint)
ON_COMMAND (ID_FILE_PRINT_PREVIEW, CView::OnFilePrintPreview)
END_MESSAGE_MAP ()

// CCode3AView construction/destruction

CCode3AView: :CCode3AView ()
{

// TODO: add construction code here

CCode3AView: : ~CCode3AView ()
{
}

BOOL CCode3AView: : PreCreateWindow (CREATESTRUCT& cs)

{
// TODO: Modify the Window class or styles here by modifying
// the CREATESTRUCT cs

return CView: :PreCreateWindow (cs) ;

// CCode3AView drawing

void CCode3AView: :OnDraw (CDC* pDC)

{
CCode3ADoc* pDoc = GetDocument () ;
ASSERT_VALID (pDoc) ;

// TODO: add draw code for native data here
CString s;

int 1,3;

double **A, **B’ **P/ **Q, **R, **Yl **Z;

A=new double *[N+1];
B=new double *[N+1];
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P=new double *[N+1];

Q=new double *[N+1];

R=new double *[N+1];

Y=new double *[N+1];

Z=new double *[N+1];

for (i=1;i<=N;i++)

{
A[il=new double [N+1];
B[i]=new double [N+1];
P[il=new double [N+1];
Q[i]l=new double [N+1];
R[i]=new double [N+1];
Y[i]l=new double [N+1];
Z[il=new double [N+1];

}

InputData (A, B) ;

pDC->TextOut (50,30, "Input A”");

pDC->TextOut (50,200, “Input B”);

for (i=1;i<=N;i++)
for (j=1;j<=N;j++)

{
s.Format (“%.31f” ,A[1i][]j]);
pDC->TextOut (50+(j-1) *60,50+(i-1)*20,s);
s.Format (“%.31f”,B[1i][]j]);
pDC->TextOut (50+(j-1)*60,220+(1i-1)*20,s);
}

MatMultiply (P,A,A);
MatInverse(Q,B);
MatInverse(R,A) ;
MatMultiply (Y,Q,R);
MatMultiply (Z,P,Y);
pDC->TextOut (300,30, “Output P”);
pDC->TextOut (300,130, “Output Q") ;
pDC->TextOut (300,230, “Output R”);
pDC->TextOut (300,330, "Output Y”);
pDC->TextOut (550,130, “Output zZ”);
for (i=1;i<=N;i++)

for (j=1;3j<=N;j++)

{
s.Format (“%.31f”,P[i]1([]]);
pDC->TextOut (300+(j-1)*60,50+(i-1)*20,s) ;
s.Format (“%.31£f”,Q[i]1[j]);
pDC->TextOut (300+(j-1)*60,150+(1i-1)*20,s) ;
s.Format (“%.31f”,R[1i]1[]]);
pDC->TextOut (300+(j-1)*60,250+(1i-1)*20,s) ;
s.Format (“%.31f”,Y[i]1[]]);
pDC->TextOut (300+(j-1)*60,350+(1i-1)*20,s) ;
s.Format (“%.31f”,Zz[1i]1([]]);
pDC->TextOut (550+(j-1) *60, 150+ (1i-1) *20,s) ;
}

for (i=1;i<=N;i++)
delete A[i],BI[i],P[i],Q[i],R[1i],YI[1],2[1];
delete A,B,P,Q,R,Y,Z;
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// CCode3AView printing

BOOL CCode3AView: :OnPreparePrinting (CPrintInfo* pInfo)
{

// default preparation

return DoPreparePrinting(pInfo) ;

void CCode3AView: :0OnBeginPrinting (CDC* /*pDC*/, CPrintInfo* /*pInfo*/)
{
// TODO: add extra initialization before printing

void CCode3AView: :OnEndPrinting (CDC* /*pDC*/, CPrintInfo* /*pInfo*/)
{
// TODO: add cleanup after printing

// CCode3AView diagnostics

#ifdef _DEBUG
void CCode3AView: :AssertValid() const
{

CView: :AssertValid() ;

void CCode3AView: :Dump (CDumpContext& dc) const
{
CView: : Dump (dc) ;

CCode3ADoc* CCode3AView: :GetDocument () const // non-debug version is inline
{
ASSERT (m_pDocument->IsKindOf (RUNTIME_CLASS (CCode3ADoc))) ;
return (CCode3ADoc*)m_pDocument;
}
#endif //_DEBUG

// CCode3AView message handlers

void CCode3AView: :InputData (double ** a, double ** b)
{

al[l][1]1=3; alll[2]1=5; alll[31=7

af2]1[1]1=-2; al[2][2]=5; a[2][3]:—4;

al31[1]=-4; al3]1[2]=2; a[3][3]—
b[1][1]=5; b[1][2]=-3; b[1][3]=
b[2][1]=-4; b[2][2]=2; bl2][

[3

=2 3]:_7
b[3]1[1]1=2; b(3]1[2]=1; b[3][3]=

void CCode3AView: :MatMultiply (double ** ¢, double ** a, double ** Db)
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{
int i,3.,k;
for (i=1;i<=N;i++)
for (j=1;j<=N;j++)
{
clil[31=0;
for (k=1;k<=N;k++)
clil[jl+=alil [k1*b[k][]];
}
}

void CCode3AView: :MatInverse (double ** x, double ** a)
{
int 1i,3.,k;
double Sum,m;
double **b;

b=new double *[N+1];
for (i=1;i<=N;i++)
b[i]=new double [N+1];

for (i=1;i<=N;i++) // form an identity matrix B
for (j=1;3<=N;j++)
{
b[i][j]1=0;
if (i==3)
b{i][j]1=1;
}
for (k=1;k<=N-1;k++) // perform row operations on A
for (i=k+1;i<=N;i++)
{

m=ali] [k]/alk] [k];
for (j=1;j<=N;j++)

{
alil[jl-=m*alk][]];
blil[j1-=m*b[k][j];
}
}
for (i=N;i>=1;i-) // perform backstitutions on X
for (j=1;j<=N;j++)
{
Sum=0;
x[11[31=0;
for (k=i+1;k<=N;k++)
Sum += alil[k]*x[k][]];
x[11[31=(b[i]1[]j]1-Sum)/ali]l[i];
}
}
Code3BView

// Code3BView.h : interface of the CCode3BView class
//

#pragma once
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class CCode3BView : public CView

{

protected: // create from serialization only
CCode3BView() ;
DECLARE_DYNCREATE (CCode3BView)

// Attributes
public:

CCode3BDoc* GetDocument () const;

// Operations
public:

// Overrides

public:

virtual void OnDraw(CDC* pDC); // overridden to draw this view
virtual BOOL PreCreateWindow (CREATESTRUCT& cs) ;
protected:

virtual BOOL OnPreparePrinting (CPrintInfo* pInfo);
virtual void OnBeginPrinting (CDC* pDC, CPrintInfo* pInfo);
virtual void OnEndPrinting (CDC* pDC, CPrintInfo* pInfo);

// Implementation
public:
virtual ~CCode3BView() ;
#ifdef _DEBUG
virtual void AssertValid() const;
virtual void Dump (CDumpContext& dc) const;
#endif

protected:

// Generated message map functions
protected:

DECLARE_MESSAGE_MAP ()
public:

afx_msg void OnOurworkCode3b() ;
Y

#ifndef _DEBUG // debug version in Code3BView.cpp
inline CCode3BDoc* CCode3BView: :GetDocument () const

{ return reinterpret_cast<CCode3BDoc*> (m_pDocument); }
#endif

// Code3BView.cpp : implementation of the CCode3BView class
//

#include “stdafx.h”
#include “Code3B.h”

#include “Code3BDoc.h”
#include “Code3BView.h”
#include “GaussDlg.h”



CODE LISTINGS

#ifdef _DEBUG
#define new DEBUG_NEW
#endif

// CCode3BView
IMPLEMENT_DYNCREATE (CCode3BView, CView)

BEGIN_MESSAGE_MAP (CCode3BView, CView)
// Standard printing commands
ON_COMMAND (ID_FILE_PRINT, CView::0OnFilePrint)
ON_COMMAND (ID_FILE_PRINT_DIRECT, CView::0OnFilePrint)
ON_COMMAND (ID_FILE_PRINT_PREVIEW, CView::0OnFilePrintPreview)
ON_COMMAND (ID_OURWORK_CODE3B, OnOurworkCode3b)
END_MESSAGE_MAP ()

// CCode3BView construction/destruction

CCode3BView: : CCode3BView ()
{

// TODO: add construction code here

CCode3BView: : ~CCode3BView ()
{
}

BOOL CCode3BView: :PreCreateWindow (CREATESTRUCT& cs)

{
// TODO: Modify the Window class or styles here by modifying
// the CREATESTRUCT cs

return CView: :PreCreateWindow(cs) ;

// CCode3BView drawing

void CCode3BView: :OnDraw (CDC* pDC)

{
CCode3BDoc* pDoc = GetDocument () ;
ASSERT_VALID (pDoc) ;

// TODO: add draw code for native data here

// CCode3BView printing

BOOL CCode3BView: :OnPreparePrinting (CPrintInfo* pInfo)
{

// default preparation

return DoPreparePrinting (pInfo);
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void CCode3BView: :OnBeginPrinting (CDC* /*pDC*/, CPrintInfo* /*pInfo*/)
{

// TODO: add extra initialization before printing

void CCode3BView: :OnEndPrinting (CDC* /*pDC*/, CPrintInfo* /*pInfo*/)
{
// TODO: add cleanup after printing

// CCode3BView diagnostics

#ifdef _DEBUG
void CCode3BView: :AssertValid() const
{

CView: :Assertvalid() ;

void CCode3BView: :Dump (CDumpContext& dc) const
{
CView: : Dump (dc) ;

CCode3BDoc* CCode3BView: :GetDocument () const // non-debug version is inline
{
ASSERT (m_pDocument->IsKindOf (RUNTIME_CLASS (CCode3BDoc))) ;
return (CCode3BDoc*)m_pDocument;
}
#endif //_DEBUG

// CCode3BView message handlers

void CCode3BView: :OnOurworkCode3b ()
{

CGaussDlg Dlg(this);

int nResponse=Dlg.DoModal () ;



CHAPTER 4

DIFFERENTIAL EQUATIONS PROBLEMS

4.1 DIFFERENTIAL EQUATIONS

Differential equations describe the behavior of a system that arises from its static
and dynamic properties. For example, the flow of fluid, the dissipation of heat in an
engine, and the vibrations in a moving aircraft, are described by one or more differ-
ential equations. The differential equations that describe this behavior are au-
tonomously formulated as a mathematical model. A good mathematical model con-
sists of a complete set of equations that correctly match the given problem.

There are two approaches to solving a differential equation problem: analytical
and numerical. The analytical approach to a differential equation is based on the
fundamental properties of the equation that normally lead to accurate solutions. Nu-
merical methods complement the analytical approach by providing approximate so-
lutions that strongly contribute to their implementation on the computer. Numerical
methods are very useful, especially in cases where the analytical solutions are diffi-
cult or impossible to find.

Differential equations are classified as either ordinary differential equations
(ODE) or partial differential equations (PDE). An ordinary differential equation de-
scribes a function of a single independent variable that contains only the variable
and the ordinary derivatives of the function with respect to the variable. In compar-
ison, a partial differential equation is an equation that has two or more independent
variables and derivatives that refer to one variable in that function.

In this chapter, we explore a few problems commonly discussed in the under-
graduate syllabus, one involving ordinary differential equations and another one in-
volving partial differential equations. We solve these problems and display the so-
lutions visually using the tools available in the MFC libraries. The solutions shown
on these selected topics should provide a good foundation and understanding for the
rest of the work involving problems in differential equations.
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Copyright © 2005 John Wiley & Sons, Inc.



94 DIFFERENTIAL EQUATIONS PROBLEMS
4.2 ORDINARY DIFFERENTIAL EQUATIONS

In its general form, an ordinary differential equation of order n» with one depen-
dence x is expressed as follows:

dy d% dm™
fx,y(x),a,ﬁ,..., paT =0 4.1

In Equation (4.1), dy/dx is also written as y’, d?y/dx? as y’’, and so on. A first-order
ordinary differential equation problem has the following general form:

S, y,y)=0 (4.2)

A first-order ordinary differential equation of the form of Equation (4.2) is said to
be linear if it can be written as follows:

a(x)y" + b(x)y = c(x) (4.3)

where a(x), b(x), and c(x) are functions of x. The corresponding second-order ordi-
nary differential equation is stated as follows:

S, ,y',y")=0 (4.4)

A linear second-order differential equation has the following form:

a(x)y"" +b(x)y" + c(x)y = d(x) (4.5)

where d(x) is another function of x.

The first-order ordinary differential equation problem requires only one initial
value for its solution. Hence, the problem is called an initial value problem, stated
as follows: Given a function f(x, y) continuous and differentiable in x, < x <x, and
¥y <y < yy, the initial value problem in a first-order ordinary differential problem
consists of finding the values of y in x, < x < x, from the equation dy/dx = f(x, y)
with an initial value condition given by y(x,) = y.

An important foundation in many mathematical problems is the Taylor series,
stated as follows:

h 2 § " h" (n)
yi+lzyi+1_!yi+2—!yi +~~+Wy1‘ (4.6)

Equation (4.6) is an expansion of order n of the Taylor series with an incremental
value of 4. The Taylor series is used primarily to approximate a function into the
form of a series. Many methods for solving the first-order ordinary differential
equation problems have their root in the Taylor series. They include the Taylor se-
ries method, Euler, Heun, Runge—Kutta, and Adams—Bashforth multistep methods.
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In this section, we discuss the development of a user-friendly interface solution us-
ing the fourth-order Runge—Kutta method. The idea from this method can easily be
incorporated into solving a similar problem using the other methods.

Fourth-Order Runge-Kutta Method (RK4)

The fourth-order Runge—Kutta method is one of the most commonly used tech-
niques for solving the first-order initial value problem. The Runge—Kutta method is
derived from the Taylor series (refer to Burden and Faires [1] for details) and it has
many variations in the form of the nth-order expansion of the series.

We discuss the fourth-order Runge—Kutta method. As the order suggests, RK4 is
based on the fourth-order Taylor series expansion with the terms &, k,, k3, and
given as follows:

ke = hf (x;, v)) (4.7a)

ky = hf (x, + W2, v, + ky/2) (4.7b)
ks = B, + 112, v, + ky/2) (4.7¢)
ks = hf G, + h, v, + ky) (4.7d)

The solution is provided according to the following formula:
Vier = Vi T olky + 2k, + 25 + ky) (4.8)

RK4 is sequential in nature, where the value of k, is dependent on k,, k5 on k,, and
so on. The method is summarized in the following algorithm:

Input: f(x, y), xo, ¥o, 1, and N
Output: y, v,, ..., ¥y
Steps:
fori=1to N // i=iteration number, N=number of intervals
Compute k; = 4f(x;, yy);
Compute k, = hf (x; + h/2, y; + k,/2);
Compute ks = hf (x; + h/2, y; + ky/2);
Compute &k, = hf (x; + h, y; + k3);
Compute ;. = y; + (ki + 2ky + 2k3 + ky);
Update x;,, =x; + &;

H Example 1

We discuss one example initial value problem involving the fourth-order
Runge—Kutta method as follows:

d
Solve d_i =x?cosy+1for0<x=0.2, giveny(0)=—1 and the increment 2 = Ax=0.1
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Solution
From the given initial values, the x increment is # = Ax = 0.1, and the discrete form
of f(x, y) is f(x;, ;) = x? cos y; + 1. It follows that:

ky = hf(x;, y)) = h(x7? cos y; + 1)

ky = hf (x; + hi2, y; +ky/2) = h[(x; + h/2)? cos(y; +k,/2) + 1]
ks = hf (x; + /2, y; Hhy/2) = B[ (x; + h/2)? cos(y; +ky/2) + 1]
ks = WG+ hy v, k) = B+ h)? cos(y; +y) + 1]

Start the iteration at i = 0 and the initial values, x, = 0 and y, =—1. We get

=010+ 1)=0.1

ky = 0.1[0.05 cos(~0.95) + 1] = 0.100145

ky = 0.1[0.05 cos(~0.949927) + 1] = 0.100145

K, = 0.1[0.12 cos(~0.899855) + 1] = 0.100622

o (0.1) =y, = yo + Yk, + 2k, + 2ks + k] = —0.899799

Continue with i = 1 and the computed values, x; = 0.2 and y;, =-0.899799:

k; = 0.1[0.12 cos(—0.899799) + 1] = 0.100622

ky = 0.1[0.15% cos(—0.849489) + 1] =0.101486

k= 0.1[0.152 cos(—0.849057) + 1] =0.101487

ks = 0.1[0.2% cos(—0.798313) + 1] = 0.102792

S0.2) =y, =y, + Hky + 2k, + 2k + ky] =—-0.798240 [ |

Code4A: Small Window for Displaying Large Amounts of Data

We illustrate the fourth-order Runge—Kutta method for solving the first-order initial
value problem in the project Code4A. The numerical solution may involve many
iterations and this requires a large display area in order to view them. The display
comes in the form of a table that clearly shows all the parameters involved as well
as the results from the calculations. A user-friendly interface called the list view
window is used to display the solution in this application. A list view window is a
scrollable child window that displays data in the form of a table. A table is defined
as a set of organized data arranged in columns and rows classified according to the
fields and records of the data, respectively. A field is a set of data classified accord-
ing to its category, whereas a record is one row of a complete set of data belonging
to the item. The list view window has both the horizontal and vertical scroll buttons
to allow a large table to be displayed. A set of tables is called a database, which
forms a component of the database management system. A table provides a two-di-
mensional visualization of the whole set of data, useful for presenting data and in-
formation in applications such as in statistics, numerical analysis, business forecast-
ing, and engineering data analysis.

We discuss an example of a problem requiring a large display area. The project
Code4A consists of the solution to the problem in Example 1 using the fourth-or-
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der Runge—Kutta method. We expand the domain of the problem in this example as
follows:

d
Solve d_ic/ =x?cosy+1for 0 <x =5, given y(0) =—1 and the increment 4 = Ax = 0.1

The output of the project is shown in Figure 4.1. Data in the form of a table is
displayed in the list view window. The output from the list view window consists of
the fields 7, x;, v, ky, k», k3, and k,, displayed under the titles i, %, v, k1, k2, k3,
and k4, respectively. The number of intervals N is evaluated from the relationship
N = (xy—x0)/h =50, so this requires a display of each of the items i, x;, y,, ky, k>, ks,
and k4, fori=0, 1,2, ..., 50 in the list view window.

CodedA consists of the files Code4A.h and CodedA.cpp. We employ the
method of creating the list view window on the parent window, without the use of a
resource file. This requires the main window CCode4A to be derived from the
MEFC class CFrameWnd.

The member variables and objects in the class are declared in the header file
Code4A.h, as shown in Table 4.1. The MFC header file afxcmn.h is included in

Bl Runge-Kutta Method of Order 4 -10] x|

Solutions to the problem dy/dx=pow([x.2]cos[y]+1, ¥[0]=-1.

e ¥ | ] = = B
0 0.0 -1.000000 0,100000 0.100145 0.100145 0.,100622

1 0.1 -0.899799 0,100622 0.101486 0.101487 0.102792

2 0.2 -0.798240 0.102792 0.104580 0.104590 0.106920

3 0.3 -0.693562 0.106921 0.109825 0.109830 0.113351

4 0.4 -0.533630 0.113351 0.117503 0.117524 0.122333

5 0.5 -0.466007 0.122334 0.127805 0.127837 0.133961

3 0.6 -0.338077 0.133962 0.140707 0.140745 0.143049

7 0.7 -0.197258 0.143050 0.155823 0.155850 0.163945

g 0.8 -0.041368 0.163945 0.172190 0.172178 0.180308

9 0.9 0.130797 0.180308 0.188050 0.187979 0.194962

10 1.0 0.318687 0.194965 0.200840 0.200708 0.205042 e
11 1.1 0.519204 0.205054 0.207502 0.207408 0.207630

12 1.2 0.726238 0.207661 0.2054306 0.205564 0.200733

13 1.3 0.931362 0.200849 0.193546 0.194117 0.184426

14 1.4 1.124796 0.1534547 0.172830 0.173984 0.160452

15 1.5 1.297300 0.160642 0.145981 0.147708 0.131965

16 1.6 1444504 0.132230 0.116357 0.118513 0.102231

17 1.7 1.561931 0.102562 0.087014 0.089393 0.073937

18 1.8 1.650150 0.074316 0.060214 0.062512 0.048922

19 (L 1.711632 0.043326 0.037356 0.039602 0.023216

20 2.0 1.750208 0.028620 0.019097 0.021061 0.012182

21 2.1 1.770394 0.012561 0.005504 0.007101 0.000669

22 2.2 1.776801 0.000993 -0.003801 -0.002612 -0.0005854 =
23 23 1 TFICRT -0 NNARE9S -0 NNG495 -0 ONRTAN -0 111147

Figure 4.1 List view window interface for the Runge—Kutta method.
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Table 4.1 Variables/Objects used in Code4A

Variable/object Class/type Description

x[1i] double The variable x;

y[i] double The variable y;

h double The variable &

sx[1i] CString The string for holding the value of x;
sy[i] CString The string for holding the value of y;
sk1[i] CString The string for holding the value of &,
sk2[1i] CString The string for holding the value of &,
sk3[i] CString The string for holding the value of 43
skd[i] CString The string for holding the value of &,

Code4A.h as it has the prototypes for several variables and member functions as-
sociated with the creation of the list view window.

In the list view table, data is displayed in the form of reports as strings using ob-
jects derived from the class CString. Therefore, to display the values of the ar-
rays x[] and y [ ], the CString array objects sx[] and sy [ ], respectively, are
used. The same argument applies to the local variables k1, k2, k3, and k4, which
are represented by the strings sk1[], sk2[], sk3[], and sk4, respectively.

Table 4.2 describes the functions used in the application. Besides creating the
class CCoded4Aa, the constructor CCode4A () provides the initial values for some
variables, allocates memory for several global arrays, and creates several child win-
dows. The function is shown as follows:

CCodedA: :CCodedA ()
{
x=new double [N+1];
y=new double [N+1];
sx=new CString [N+1];
sy=new CString [N+1];
skl=new CString [N+1];
sk2=new CString [N+1];
sk3=new CString [N+1];
skd=new CString [N+1];
x[0]=0; y[0]=-1; h=0.1;
Create (NULL, “"Runge-Kutta Method of Order 47);
TableView.Create (WS_VISIBLE | WS_CHILD | WS_BORDER | LVS_REPORT
| LVS_NOSORTHEADER, CRect (30,50, 550, 400), this, IDC_TABLEVIEW) ;
CreateListColumns () ;
RK4 () ;
AddListItems () ;

In the above function, the list view window is a child window created by linking
the function Create () with the CListCtrl object TableView (see Table
4.3). The parameters LVS_REPORT and LVS_NOSORTHEADER in the function are
the optional list view control styles in the list view window. LVS_NOSORTHEAD-
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Table 4.2 Member functions in Coded4A

Function Description

CCodedA() The constructor

~CCodedA () The destructor

CreateListColumns () Creates the frame of the list view window in the form of
columns, and sets their widths, styles, and titles

RK4 () Runs the Runge—Kutta method and produces the results for
display in AddListColumns ()

AddListColumns () Adds the results from RK4 () for display according to their
classification in the columns of the list view window

OnPaint () Displays messages in the parent window

ER disables the column header buttons in the report, whereas LVS_REPORT cre-
ates the list in the report view.

The list view window has seven columns, as defined by the constant nFIELDS.
The columns in the list view window are created as a frame using the function
CreateListColumns():

void CCode4dA: :CreateListColumns ()
{
char* column[nFIELDS+1]={"“1i~","x",”y"”,"kl","k2","k3","k4d"};
int columnWidth[nFIELDS+1]1={40,40,80,80,80,80,80};
LV_COLUMN lvColumn;
lvColumn.mask = LVCF_WIDTH | LVCF_TEXT | LVCF_FMT | LVCF_SUBITEM;
lvColumn. fmt = LVCFMT_CENTER;
lvColumn.cx = 85;
for (int i=0;i<=nFIELDS;i++)
{
lvColumn.iSubItem = 0;
lvColumn.pszText = column([i];
TableView.InsertColumn (i, &lvColumn) ;
TableView.SetColumnWidth (i, columnwidth([i]) ;

This function assigns the width, style and title of each column using the MFC struc-
ture LV_COLUMN. The object 1vColumn is derived from this structure and this

Table 4.3 Some common member functions of the class CListCtrl

Member function Description

Create () Creates the list view child window and display on the main
window

InsertColumn () Inserts a new column

InsertItem() Inserts items into the list view table

SetColumnwWidth () Sets the width of the column
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provides a linkage to the members of the structure. The items in the structure are de-
scribed briefly in Table 4.4.

Runge—Kutta calculations are performed in the function RK4 (). The work is
very straightforward, involving N iterations. The results from the calculations are
converted to the string objects sx[1, sy [1,sk1[],sk2[],sk3[],and sk4d[]
using the MFC function Format ():

void CCodedA: :RK4 ()
{
int 1i;
double k1,k2,k3,k4;
for (i=0;i<=N;i++)
{
kl=h*f (x[i],y[i]);
k2=h*f (x[i]+h/2,v[i]1+k1/2);
k3=h*f (x[1i]1+h/2,v[1i]1+k2/2);
kd=h*f (x[1]+h,y[1]1+k3);
v[{i+l]l=y[i]+(k1l+2*k2+2*k3+kd) /6;
x[1+1]1=x[0]+ (double) (i+1) *h; // increment for x
// convert the values to strings
sx[1i].Format (“%.11f",x[1]);
sy[i] .Format (“%1£f”,vy[i]);
] .Format (“%1f”,kl
] .Format (“%1£f”,b k2
] .Format (“%1£f”, k3
] .Format (“%$1f”, k4

]
) ;
);
).
)

7
\

I

The function AddListItems () displays the results from the function RK4 ()
on the list view table. This is performed through the CListCtrl function
SetItemText () which adds the string objects sx[], sy[], sk1[], sk2[],
sk3[1, and sk4 [] onto their respective columns. The items are recognized as the
object 1vItem derived from the MFC structure LV_ITEM. Some members of
LV_ITEM are described briefly in Table 4.5.

Table 4.4 Members of the MFC structure LV_COLUMN

Structure member Description

mask A flag for specifying which member in the structure provides
the information

fmt A flag for the style of the text alignment

cx Default width of the columns

iSubItem Index of the item

pszText A pointer to the string for the column’s heading
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Some members of the MFC structure LV_ITEM

Structure member

Description

mask

state
stateMask
iItem
iSubItem
pszText

A flag for specifying which member in the structure provides
the information

A flag for the style of the text alignment

A flag to specify which member has the information

Index of the main item

Index of the subitem

A pointer to the item’s text

void CCode4A
{

::AddListItems ()

CString iteration;
LV_ITEM lvItem;

lvItem.mask
lvItem.state =
lvIitem.stateMask

LVIF_TEXT | LVIF_STATE;
0;

0;

for (int 1=0;1i<=N;i++)

{
lvIitem.iItem=1i;
lvItem.iSubItem = 0;
lvIitem.pszText = “”;
iteration.Format (“%d”,1i) ;
TableView.InsertItem(&lvItem) ;
TableView.SetItemText (i, 0, iteration);
TableView.SetItemText (i, 1, sxI[i]);
TableView.SetItemText (i, 2, syl[il);
TableView.SetItemText (i, 3, skl1[i]);
TableView.SetItemText (i, 4, sk2[i]);
TableView.SetItemText (i, 5, sk3[i]);
TableView.SetItemText (i, 6, sk4[i]);

}

4.3 PARTIAL DIFFERENTIAL EQUATIONS

The general form of a partial differential equation is written as follows:

ou du Pu Pu  Fu
f[x,y, U, ), —— S o ,...]—0 (4.9)
ox  dy  dx* dy° oxdy
In the above equation, du/dx is also written as u,, *u/dx? as u,,, *u/(dxdy) as u,,, and

so on. An implicit first-order partial differential equation has the following form:
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SO s e wy) = g, ) (4.10)

whereas an implicit second-order partial differential equation with parameters x, y,
and u(x, y) has the following general form:
f(xa ) u(xa y)7 Uy, uy' Uxs uyy’ uxy) = g(xv Vs u) (41 1)

A second-order partial differential equation is said to be linear if it can expressed in
the following form:

A, Yuy, + Bx, Yy, + Cx, p)u,, + D(x, yyu, + E(x, y)u, + F(x, y)u = G(x, y) (4.12)

The linear equation in Equation (4.12) can further be classified as elliptic, parabol-
ic, or hyperbolic according to the following rules:

If B> — 4 AC < 0 then the equation is an elliptic PDE
If B> — 4 AC = 0 then the equation is a parabolic PDE
If B2 — 4 AC > 0 then the equation is a hyperbolic PDE

A closed area or interval is a region bounded by one or more boundary points.
The region inside these boundaries is governed by a partial differential equation
that obeys the continuity and stability characteristics of the equation. It follows that
a PDE problem with some given boundary values is called a boundary value prob-
lem. Some common PDE problems involving boundary values a <x <b and ¢ <y <
d are listed as follows:

Laplace equation: Vu = u,, +u, =0, fora<x<bandc<y<d
Poisson equation: V2u = u,, +u,, = g(x, y), fora<x<bandc<y<d
Heat equation: u, — &?u,, =0, fora<x<band >0

Wave equation: u,, — o?u,, =0, fora<x<band t>0

Poisson Equation: Finite Difference Method

A Poisson equation is an elliptic partial differential equation given by
Vou = uy, + u, = g(x, ) (4.13)

for a < x < b and ¢ < y < d. The boundary value problem involving the Poisson
equation consists of boundary conditions, given as follows:

u(a, y) =fi(y)
u(b, y) = 12(y)
u(x, ¢) = f3(x)
u(x, d) = f3(x)
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The boundary value problem for the Poisson equation is characterized by a
closed region bounded by the left, right, top, and bottom boundaries. The solution
requires the bounded region to be discretized into several rectangular grids of equal
widths. The boundaries in this problem are x, <x <xy and y, <y <y, where N is
the number of intervals in the x-axis and M is the number of intervals in the y-axis.
It can be seen that the number of horizontal intervals / and vertical intervals k are
given by

h=Ap= T
k=Ay= J’M];[)’o

We discuss a numerical method called the finite difference method for solving a
boundary value problem involving the Poisson equation u,, + u,, = g(x, y). The
method consists of two steps, as shown in Figure 4.2. The first is the reduction of
the Poisson equation into a system of linear equations by finding the finite differ-
ence formula from the equation. The second step is to solve this system of linear
equations using a method such as Gauss elimination, which has been discussed in
Chapter. 2

The finite difference method is an approximation method based on the discrete or
finite form of the variables in an equation. For a function of one variable, the point
(x, y) is approximated as (x;, y;), where i is the finite unit in the direction of x-axis.
Similarly, a function of two variables u(x, y) has its discrete form written as g(x;, y)),
where i and j are the finite units in the direction of the x and y axes, respectively.

In approximating the solution to the Poisson equation, we start with a scheme
called the central difference rules. The one-dimensional form of the central differ-
ence rules for the function y = f(x) is given as follows:

, Vil = Vi

Vi 57 (4.142)
=2yt Y.
yi” ~ Vit h.);t Vi1 (414b)

In Equations (4.14a) and (4.14b), (x;, v;) is the current point, (x; 1, y;¢;) is its for-
ward point, and (x;_;, y, ;) is its backward point. It is assumed that the intervals in

finite difference Gauss elimination
equations method

Poisson Equation System of Linear

BVP Equations Solution

Figure 4.2 Two-step method for solving the Poisson equation boundary value problem.
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the x-axis have an equal width given by 4 = Ax, as shown in Figure 4.3. It can be
shown from the figure that x;,; =x;,+ hand x,_; =x, — h.

Equations (4.14a) and (4.14b) are the finite approximations to the first and sec-
ond derivatives of y as a function of one variable using the central difference rules.
The corresponding approximations for a function of two variables u(x, y) in two di-
mensions are given as follows:

Uir1,; — U1, ]

N Ay — (4.15a)
i, = % (4.15b)
Ul = s 2Z;j MLEE (4.15¢)
gl = L1 2:/ s (4.15d)

In Equations (4.15a) to (4.15d), u;; denotes u(x;, y,), ;11 ; 1S u(x;y;, y;) and so on.
The finite points in the equations are shown in the grids in Figure 4.4.

The finite difference method has its roots in the central difference rules. For the
Poisson equation, the finite difference model is obtained by replacing its partial de-
rivatives with Equations (4.15c¢) and (4.15d), as follows:

Usyx + uyy = g(x» y)

Uir1j— 214i,j tupg,, n Ujj1 — 2ui,j T
n? >

= g(x;, yj)

B Example 2
We discuss an example of a boundary value problem involving the Poisson function
Uy, + u,, = g(x, y). The boundary values in this problem are

u(0,y)=ysinyand u(0.8,y)=¢e”, for 0 <y <0.3
u(x, 0) =xe™ and u(x, 0.3)=1—x, for 0 <x <0.8

Figure 4.5 shows the grids in the bounded region 0 <x < 0.8 and 0 <y < 0.3, hav-
ing 2 =Ax = 0.2 and k= Ay = 0.1, respectively. The number of intervals for the

Xi-1 Xi Xit1

Figure 4.3 One-dimensional finite difference model.
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Uiy j+1 Ujjry Uit j+1
Ui Uiy
Uiy
k
h
Uiy Ujj Uiy, j1

Figure 4.4 Two-dimensional finite difference model.

grids in the x and y axes are given by N = (0.8 —0)/0.1 and M = (0.3 — 0)/0.1 = 3, re-
spectively.

An element u(x;, y;) in the grids is marked using the finite form simply as u;;. The
element u  has its home at the bottom-lefthand corner of the grids, with increasing
values in the direction of x-axis and increasing j values in the direction of the y-axis.

In Figure 4.5, the values u, ; and u,, are determined from the left boundary con-
dition u(0, y) = y sin y, whereas u, ; and u, , are determined from the right boundary
condition #(0.8, y) = ™. Similarly, we obtain the values of u, 4, u, o and u3 o from
the condition u(x, 0) = xe ™, and u, 3, u, 3 and u; 3 from u(x, 0.3) = 1 — x. For exam-
ple, the value of u, ; is evaluated as follows:

Uy o= u(x,, o) = u(0.4, 0) = 0.4e04 = 0.268

It is obvious from Figure 4.5 that there are six unknowns in the problem: u, ;,
Uy, Us 1, Uy, Uy, and uz . A system of linear equations of size 6 < 6 is needed to

| 1
1, 1=0.800 15 =0 600 125, 70 400
-------------- v=0.3
w2 U2 32
1 7=0.040 : ' : uy 0818 - 1=02
11 K21 3,1
119, 1=0.010 : g : by =0.905 ---- =01
S S EEEEE y=0
uyp=0.164 uz g=0.268 w3 =0.328
=0 x=02 x=04 x=0.6 x=0.8

Figure 4.5 Rectangular grids for the Poisson equation.
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find these unknowns. Therefore, it is important to derive the finite difference for-
mula that will generate the system of linear equations. The finite difference formula
is derived from the central difference rules for differentiation:

Uy, + 11y, = 10xy
Replacing each term in the above equation by Equations (4.16¢) and (4.16d) we get

Uir1;— 2“1‘,_/ +u Uj jr1— 2“1’,_/ Tu

i1,/ ij-1
h2 + 2 - loxiyj'
Taking the common denominator simplifies the equation to
Ry =202 + h2)uy ;+ Pug g+ Ry o + g o = 10h%kx; y;

Substituting the values of 4 and %, the equation becomes

00124, ;—2(0.001 + 0.04)u; ; +0.01u; ; ;+ 0.04u; .y +0.04u; ;| = 0.004x,y,

i-l,j 21

The final form of the finite difference equation is obtained by eliminating the deci-

mal points in the above equation and rearranging the sequence of the subscripts.

This is achieved by multiplying both sides of the above equation by 50 to produce
Su;y ;= S0u; ;+ Su

+20u; 41+ 20u; 1y = 2x,y; (4.16)

i-1,j i, j-1

Equation (4.16) is illustrated graphically as a molecule in Figure 4.6. This mole-
cule acts like a template for the grids in Figure 4.5 for producing a system of linear
equations. This step requires substituting the finite elements i and j in the unknowns
in Figure 4.5 using Equation (4.16) to produce the following system of linear equa-

tions:

20
Z/Ii!/+1
5 -50 5
Ui, Ui, Uit
20
Uij-

Figure 4.6 Molecular form of Equation (4.15).
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i= 1,] =1: 5142’1 — 50141’1 + 5140’1 + 20“1,2 + 20141,0 = 2(02)(01)
= 50uy y + Sup +20u, 5 = 2(0.2)(0.1) — 5(0.010) — 20(0.164) =-3.290

i= 2,] =1 5”3,1 — 50”2,1 + 5”1,1 + 20”2’2 + 20”2’0 = 2(0.4)(01)
Stty 1 — 50ty 1 + Stz + 20t » = 2(0.4)(0.1) — 20(0.268) = ~5.280

= 3,] =1 5”4’1 — 50143’1 + 51/{2’1 + 20”3’2 + 201/[3’0 = 2(06)(01)
Stty  — 50us, + 20us » = 2(0.6)(0.1) — 5(0.905) — 20(0.329) = ~10.985

i= 1,] =2: 5“2,2 — 50”1,2 + 5“0,2 + 20”1’3 + 20%1’1 = 2(02)(02)
200y, — 5001 » + Stty > = 2(0.2)(0.2) - 5(0.040) — 20(0.8) = ~16.12

i= 2,] =2: 51/{3’2 — 50”2’2 + 51/{12 + 20”2‘3 + 20”2,1 = 2(04)(02)
200y | + 51ty 5 — 50t + Suty , = 2(0.4)(0.2) — 20(0.600) = —11.840

i= 3,] =2: 5”4,2 - 50“3,2 + Suz’z + 20”3’3 + 20143’1 = 2(0.6)(02)
200y, + Sttr> — S0tts > = 2(0.6)(0.2) — 5(0.819) — 20(0.4) = ~11.815

The above six equations are written in the matrix form, as follows:

50 5 0 20 0 O0[u. ~3.290
5 50 5 0 20 0[] u ~5.280
0 5 50 0 0 20 || wus, | | -10985
20 0 0 50 5 0llw.]|"]| 16120 *17
0 20 0 5 50 5 || un ~11.840
0 0 20 0 5 =50 us. ~11.815

The system of linear equations in Equation (4.17) can be solved using any suitable
method such as the Gauss elimination method, LU factorization, and Gauss-Seidel it-
erative methods. We apply the Gauss elimination method to get the following results:

u(0.2,0.1) =1, ; = 0.299
u(0.4,0.1) =y, = 0.371
(0.6, 0.1) = us , = 0.441
1(0.2,0.2) =, , = 0.490
(0.4, 0.2) = u, , = 0.481
u(0.6, 0.1) = u , = 0.461 (]

Code4B: Solving the Poisson Equation

We discuss the MFC approach for providing a user-friendly interface for solving
the Poisson equation. The project is called Code4B and it consists of the files
Code4B.h and Code4B.cpp. Figure 4.7 shows the output produced by this pro-
ject from the same example discussed in the last section. It consists of edit boxes
(white rectangles), static boxes (shaded rectangles), and the push button Compute.
In Code4B, input is made by the user in the edit boxes along the boundaries,
whereas the output is produced in the static boxes when the push button Compute is
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0,3

=10l x|

Finite Difference Solution to ux][x]+uly][y]=10"x*y

1.3 2.3 3.3

4,3

H

BHBH"H

| 0.2

‘ 1,2 | 2,2 | 3,2

| 42

| 040 H 0.490092 H 0.430784 H 0.461831 H .819 |

| 0.1

‘ 1,1 | 2.1 | 3,1

| 41

| .010 H 0.299035 H 0.371980 H 0.441630 H .905 |

| 0.0

‘ 1,0 | 2.0 | 3,0

| 40

164 H 268 H 329 H

Figure 4.7 Output from Code4B.

clicked. Input in the form of edit boxes for the boundary values, instead of their
functional form, provides better interaction and flexibility to the user. Also, as the
finite difference molecule in Figure 4.6 has the shape of a star, its mapping on the
grids ignores the corners. Therefore, the corner elements of the grids, u o, 1 3, U4 3,
and u, ,, will not require input.

In Code4B.h, the only application class used is CCode4B. several global vari-
ables and objects are declared for use in this application, and they are summarized

in Table 4.6.
Table 4.6 Variables and objects in Code4B
Variable/object Type Description
ulil [J] NODE Node u,
alil[j] double Represents a;; in the matrix 4
bli] double Represents b; in the vector b
x[1i] double Represents x; in the vector x
y[i] double Represents y; in the vector y
eulil [J] CEdit Edit box for the input ,; at the boundaries
sulil (3] CStatic Static box for displaying the output u;;
bCompute CButton Push button Compute
h double Interval size of the grids in the x-axis
k double Interval size of the grids in the y-axis




4.3 PARTIAL DIFFERENTIAL EQUATIONS 109

Several constants are declared as macros in Code4B.h. These constants togeth-
er with the function g(P, Q) which represents g(x, y) = 10xy are defined using
#define, as follows:

#define M 3 // number of rows

#define N 4 // number of columns

#define R (M-1)* (N-1) // size of matrix A

#define IDC_COMPUTE 600 // control id for the push button

#define g(P,Q) ((double)l0*P*Q)

In the above declarations, M and N are the constants representing the number of
intervals in the x and y grids, respectively. There are  (M+1) (N+1) elements in
the grids. From this number, the number of unknowns is R= (M-1) (N-1), while
the rest of the elements form the boundaries whose values are given.

The element u;; in the grids is represented by the array u[11[3j 1, declared using
the structure NODE. We use a structure as the array is to be linked to two elements,
as follows:

typedef struct

{
CPoint Home; // home position of u[i][7]
double v; // value of ul[i][7F]

} NODE;

NODE **u;

In the above declaration, the element u;; is represented by u[i1 [J ], declared as a
double pointer. Its value is the linked element u[1] [j] .v and its position in the
window is represented by u[1] [j] . Home.

The functions used in this application are summarized in Table 4.7. The con-
structor CCode4B () allocates memory for the class and creates the main window.
This function also allocates memory dynamically for all the global arrays, as fol-
lows:

a=new double *[R+1];

b=new double [R+1];
x=new double [N+1];

Table 4.7 Member functions in Code4B

Function Description

CCodedB () Constructor of the class CCode4B. Creates the main window and child
windows including the edit boxes, static boxes and push button.

~CCode4B () Destructor of the class CCode4B

OnPaint () Displays the opening message and initial output on the main window

OnCompute () Reads the input, computes and displays the results on the static boxes

PGauss () Solves the generated system of linear equations
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yv=new double [M+1];

eu=new CEdit *[N+1];

su=new CStatic *[N+1];

u=new NODE *[N+1];

for (i=0;i<=R;i++)
alil=new double [R+1];

for (i=0;1<=N;i++)

{
eul[i]l=new CEdit [M+1];
sul[i]l=new CStatic [M+1];
uli]l=new NODE [M+1];

}

Several variables are also initialized in the constructor. This includes idc_eu
and idc_su, which represent the control ids for the edit boxes and static boxes, re-
spectively. Any integer value may be assigned as the control ids for their initial val-
ues.

k=0.1; h=0.2;
x[0]=0; yI[0]=0;
idc_eu=500;
idc_su=700;

The constructor also computes the values of x[] and y [] in the grid lines. The
last part of the constructor is the creation of the edit boxes, static boxes, and the
push button Compute. In creating the edit boxes, the control ids represented by the
variables 1dc_eu are incremented by one to distinguish one box from another. The
same argument applies to the static boxes. The code is written as follows:

for (3=0;j<=M;Jj++) // row
{
y[3l=y[0]1+3*k;
for (i=0;i<=N;i++) // column
{
x[1]1=x[0]+i*h;
ul[i]l[j] .Home=CPoint (50+1i*90,250-3*50) ;
if (i==0 || i==N || j==0 || j==m)
eulil [j].Create(WS_CHILD | WS_VISIBLE
| WS_BORDER | SS_CENTER,
CRect (u[i] [J] .Home,CSize(70,25)),this,idc_eu++) ;
if (3J>0 && j<M && i>0 && i<N)
sul[i] [j].Create(“”,WS_CHILD ‘ WS_VISIBLE
| WS_BORDER | SS_CENTER,
CRect(uli][j].Home,CSize(70,25)),this, idc_su++);
}
}
bCompute.Create (“Compute”,WS_CHILD | WS_VISIBLE | BS_DEFPUSH BUTTON,
CRect (CPoint (100,300),CSize(100,25)),this, IDC_COMPUTE) ;
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There are two events in this application. The first is the output in the main win-
dow, which is detected as WM_PATINT. The function OnPaint () responds to this
event by displaying the opening message and prepares the initial setup on the main
window. The initial display consists of grid lines for connecting the edit and static
boxes. These lines are drawn as follows:

for (j=0;3j<=M;j++)

{
dc.MoveTo (u[0] [j] .Home+CPoint (10,10)) ;
dc.LineTo (u[N] [j].Home+CPoint (10,10));
}
for (i1i=0;i<=N;i++)
{
dc.MoveTo (ul[i] [0] .Home+CPoint (30,10)) ;
dc.LineTo(u[i] [M] .Home+CPoint (30,10)) ;
}

The second event is a click on the push button Compute, which is detected by
BN_CLICKED. The function OnCompute () responds to this event by reading the
input boundary values, computing the finite-difference formula to reduce the
boundary value problem into a system of linear equations, calling the function
PGauss () to solve the system of linear equations, and displaying the results on
the static boxes.

The input data is read from the edit boxes using the array object eu[] [],
which is derived from the class CObject. The function GetWindowText ()
performs this task on the edit boxes along the boundary. The data is read as
strings and they are immediately converted to the array u[][] using the C++
function atof ().

for (3=0;3<=M;Jj++)
for (i=0;1i<=N;i++)
Lf (i==0 || i==N || j==0 || F==m)
{
eul[i] [j] .GetWindowText (s) ;
uli] [j].v=atof(s);

The next task in OnCompute () is to form the arrays a[] [] and b[] for the
system of linear equations Ax = b. This is achieved by substituting the given bound-
ary values into the finite difference formula of Equation (4.16). Applying this pro-
cedure to the example problem, we obtain a system of linear equations as shown in
Equation (4.17). This system of linear equations has the relationship expressed by
the following equation:
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2(h* + k%) i? 0 h? 0
i 2+ k) 2 0 hn?
0 > 2+ 1?) 0 0
h? 0 0 2(h> + k%) 2
0 h? 0 k2 2(h*+ k%)
0 0 h? 0 2

Uy hzkzg(xlayl)_hzul,O_kzuO,l

Uz hzk%g(xz,yl)g—hzuzﬁ

Uz g i2g(x3, y1) — hz“s,o - k2u4,1
| oun | T PG, yo) = HPuy 5 — K,

Uyo hzk%g(xz,yz)——h2u23

Uys hi2g(x3, y,) — h2”3,3 - kzu4,2

0
0
h 2
0
kz

2R+ 1)

(4.18)

The following code fragments assign the elements in Equation (4.18) as the array A4

= [ay]:

for (j=1;3<=R;Jj++)
for (i=1;i<=R;i++)

alil[j1=0;
for (j=1;j<=R;j++)
{
if (j<=M+2)
aljlij+1l=alj+11[jl=k*k;
if (j>=1 && j<=M)
aljl[j+M]=al[j+M] [j]1=h*h;
for (i=1;i<=R;i++)
{
if (3==1)
alil[j]1=-2* (h*h+k*k) ;
if (i==N && j==M)
alil[jl=aljl[i]1=0;
}
}

Similarly, Equation (4.18) produces the code for vector b, as follows:

w=0;
for (j=0;Jj<=M-2;j++)
for (i=0;i<=N-2;i++)
{
wW++;
blw]l=h*h*k*k*g (x[i+1],yv[j+1]);
if (3==0)
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{
blw] -= h*h*ul[i+1][0].v;
if (i==0)
blw] -= k*k*u[0][1].v;
if (i==N-2)
blw] -= k*k*u[N][1].v;
}
if (j==M-2)
{
blw] -= h*h*ul[i+1][M].v;
if (i==0)
blw] -= k*k*ul0] [M-1].v;
if (i==N-2)
blw] -= k*k*u[N] [M-1].v;
}

}

Once the values of the arrays a[] [] and b[] have been assigned, OnCom-
pute () continues its operation by calling up the function PGauss () to solve the
system of linear equations in Equation (4.18). PGauss () is basically the same
function discussed earlier in Chapters 2 and 3. There is a slight modification to the
code. The PGauss () function in the present application computes the system of
linear equations using the Gauss elimination method to produce the solution as the
matrix u[] []. The function is shown as follows:

void CCodedB: :PGauss () // compute the SLE
{

int i,3,w;

double m, Sum;

for (w=1l;w<=R-1;w++) // row operations on a
for (i=w+1l;i<=R;i++)
{

m=al[i] [w]/alw] [w];

for (j=1;j<=R;j++)
alil[jl=alil[j]l-m*alw] []];

blil=b[i]-m*b[w];

}
for (i=R;i>=1;i-) // backstitutions on x
{
Sum=0;
ul (i-1)%M+1]1[(i-1)/M+1].v=0;
for (j=i;j<=R;j++)
Sum +=ali] [F1*ul(F-1)¥M+1]1[(3-1)/M+1].v;
ul (1-1)%M+1]1[(i-1)/M+1].v=(b[i]-Sum)/a[i] [1i];
}
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The last step in the function OnCompute () is to display the results of the cal-
culations. The solution from Equation (3.18) is obtained as u; using the array
ul][]. These values are formatted as the CString objects sul] [] and dis-
played in the static boxes using the MFC function SetWindowText (), as fol-
lows:

for (j=1;3j<=M-1;j++)
for (i=1;i<=N-1;i++)
{
s.Format (“%1f”,uli] [J].Vv);
suli]l[j].SetWindowText (s) ;
}

Finally, the application on the finite difference method terminates by destroy-
ing all the arrays and the class CCode4B. This is done in the destructor, as fol-

lows:

CCodedB: : ~CCode4dB ()

{
int i;
for (i=0;i<=R;i++)
delete alil;
for (i=0;i<=N;i++)
delete euli],suli]l,ulil;
delete a,eu,su,u,b,x,v;
}

4.4 SUMMARY AND CONCLUSION

This chapter discusses the development of friendly interfaces for differential equa-
tion problems. We present two models for illustration, one for ordinary differential
equations and another for partial differential equations. The ordinary differential
problem is illustrated as an initial value problem of first order, and we solve this
problem using the fourth-order Runge—Kutta method. The partial differential equa-
tion problem is the Poisson equation, which involves a closed domain. We apply
the finite difference equation approach for solving this second problem.

We have discussed ways to present the problems and their solution visually.
The first problem requires a large area for displaying the results. A list view win-
dow with scrollable options both horizontally and vertically is a suitable interface
for this requirement. The method of presentation is very much similar to the bi-
section method for finding the root of an equation, discussed in Chapter 2. The
second problem requires a dialog window that takes input from the user, solves
the problem, and presents the solution in the same window. This is achieved in a
manner similar to the problem of solving a system of linear equations, discussed
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in Chapter 2. Edit boxes, static boxes, and a push button are the resources used in
this application.

Differential equations are indispensable for the effective modeling of real-world
problems. The numerical solution provided in the model contributes to the real im-
plementation of ideas for solving the problem. The real problem may consist of sev-
eral modules for implementation. Each module may be developed as a set of differ-
ential equations, or a system, in the model. An effective model arises from the
successful execution of each module, which may involve a tremendous amount
computational power and complexity. Therefore, some nice structured methods for
solving each problem are desirable in order for the whole system to function prop-
erly according to the plan.
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Code4A: Runge—-Kutta Method for ODE

// codedA.h

#include <afxcmn.h>

#include <math.h>

#define IDC_TABLEVIEW 300

#define nFIELDS 6

#define N 50

#define f(a,b) (pow(a,2)*cos(b)+1)

class CCoded4A : public CFrameWnd
{
protected:
double *x, *y, h;
CString *sx, *sy;
CString *skl, *sk2, *sk3, *sk4;
public:
CCodedA() ;
~CCodedA() ;
CListCtrl TableView;
void CreateListColumns (), AddListItems(), RK4();
afx_msg void OnPaint () ;
DECLARE_MESSAGE_MAP () ;
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class CMyWinApp : public CWinApp
{
public:
virtual BOOL InitInstance();
Y

// codedA: Runge-Kutta Mtd for IVP
#include “coded4A.h”

CMyWinApp MyApplication;

BOOL CMyWinApp: :InitInstance()

{
CCodedA* pFrame = new CCodedA;
m_pMainWnd = pFrame;
pFrame->ShowWindow (SW_SHOW) ;
pFrame->UpdateWindow () ;
return TRUE;

BEGIN_MESSAGE_MAP (CCoded4A, CFrameWnd)
ON_WM_PAINT ()
END_MESSAGE_MAP ()

CCodedA: :CCodedA ()
{
x=new double [N+1];
yv=new double [N+1];
sx=new CString [N+1];
sy=new CString [N+1];
skl=new CString [N+1];
sk2=new CString [N+1];
sk3=new CString [N+1];
skd=new CString [N+1];
x[0]1=0; y[0]=-1; h=0.1;
Create (NULL, “"Runge—-Kutta Method of Order 4");
TableView.Create (WS_VISIBLE | WS_CHILD | WS_BORDER | LVS_REPORT
| LVS_NOSORTHEADER, CRect (30,50, 550, 400), this, IDC_TABLEVIEW) ;
CreateListColumns () ;
RK4 () ;
AddListItems() ;

CCodedA: : ~CCodedA()

{
delete x,vy,sx,sy,skl,sk2,sk3,sk4;

void CCodedA: :0OnPaint ()
{
CPaintDC dc(this) ;
dc.TextOut (30,20,
“Solutions to the problem dy/dx=pow(x,2)cos(y)+1l, y(0)=-1.");



void CCodedA: :CreateListColumns ()

{

void

char* column[nFIELDS+1]={"“i",
int columnWidth[nFIELDS+1]={40,40,80,80,80,80,80};

LV_COLUMN 1lvCo
1lvColumn.
lvColumn. fmt =
cx =

i=0;1

1lvColumn.
for (int

{

lvColumn.iSubItem =
1lvColumn.pszText =
TableView.

lumn;
LVCFMT_CENTER;
85;
<=nFIELDS; i++)

0;

CCodedA: :AddListItems ()

CString iterat

LV_ITEM lvItem;

lvItem.mask =
lvItem.state =
lvItem.stateMa
for (int i=0;1i

{

ion;

7

LVIF_TEXT
0;

sk = 0;

<=N;i++)

lvIitem.iItem=1;

lvItem.iSubItem =
lvItem.pszText =

iteration.
TableView.
TableView.
TableView.
TableView
TableView.
TableView.
TableView.
TableView.

void CCodedA: :RK4 ()

{

int 1i;

.SetItemText

0;

wor .,
7

Format (“%d”,1i) ;

ey
x",

nkl”

column[i];
InsertColumn (i,
TableView.SetColumnWidth (i, columnwidth[i

&1lvColumn) ;

| LVIF_STATE;

InsertItem(&lvItem) ;

SetItemText (1,
SetItemText

(i

(1
SetItemText (i
SetItemText (i,
SetItemText (i
SetItemText (i

double k1,k2,k3,k4;

for (i=0;
{

1<N; i++)

=h*f(x[i],y[i]);

k3=h*f
kd=h*f (x[1

1+h,y[i]1+k3);

, sx[il);
, syl[il);
, sk1[i]);
sk2[i]);
, sk3[il);
, sk4[il);

(

k2 h*f(x[1i]+h/2,y[1]1+k1/2);
(x[11+h/2,y[i]1+k2/2);
(

yI[i+1l]=y[i]1+(k1+2*k2+2*k3+k4) /6;

x[i+1]=x[0]+ (double) (i+1) *h;

// convert the values to strings

,"k2",

iteration) ;

1)
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k3 g4y ;

// increment for x

117

mask = LVCF_WIDTH | LVCF_TEXT | LVCF_FMT | LVCF_SUBITEM;
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sx[1] .Format (“%.11f”,x[1i]);
sy[i] .Format (“%1f”,y[i]);
skl[i] .Format (“%1£f”,kl);
sk2[i] .Format (“%$1f”,k2);
sk3[i] .Format (“%1£f”,k3);
sk4[i] .Format (“%$1f”,k4);

Code4B: Poisson Equation Using the Finite Difference Method

// codedB.h

#include <afxwin.h>

#define M 3 // rows
#define N 4 // columns
#define R (M-1)* (N-1)

#define g(P,Q) ((double)l0*P*Q)
#define IDC_COMPUTE 600

class CCode4B : public CFrameWnd
{
private:
int idc_eu, idc_su;
double h,k, **a, *b, *x, *y;
CEdit **eu;
CStatic **su;
CButton bCompute;
typedef struct
{
CPoint Home;
double v;
} NODE;
NODE **u;
public:
CCodedB() ;
~CCodedB() ;
afx_msg void OnPaint () ;
afx_msg void OnCompute() ;
DECLARE_MESSAGE_MAP() ;
void PGauss () ;
}i

class CMyWinApp : public CWinApp
{
public:

virtual BOOL InitInstance();
}i

#include “code4B.h”

BOOL CMyWinApp::InitInstance()

{
CCodedB* pFrame = new CCodedB;
m_pMainWnd = pFrame;
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pFrame->ShowWindow (SW_SHOW) ;
pFrame->UpdateWindow () ;
return TRUE;

}

CMyWinApp MyApplication;

BEGIN_MESSAGE_MAP (CCodedB, CFrameWnd)
ON_WM_PAINT ()
ON_BN_CLICKED (IDC_COMPUTE, OnCompute)
END_MESSAGE_MAP ()

CCodedB: :CCode4dB()
{
int i,3;
a=new double *[R+1];
b=new double [R+1];
x=new double [N+1];
y=new double [M+1];
eu=new CEdit *[N+1];
su=new CStatic *[N+1];
u=new NODE *[N+1];
for (i=0;i<=R;i++)
al[il=new double [R+1];
for (i1i=0;i<=N;i++)
{
eul[i]l=new CEdit [M+1];
sul[i]=new CStatic [M+1];
ul[i]=new NODE [M+1];
}
Create (NULL, "PDE BVP: Poisson Equation”) ;
k=0.1; h=0.2;
x[0]=0; y[0]=0;
idc_eu=500;1idc_su=700;
for (j=0;j<=M;j++)// row
{
y[31=y[01+3*k;
for (i=0;i<=N;i++) // column
{
uli] [j] .Home=CPoint (50+1*90,250-3*50) ;
x[1]1=x[0]+i*h;
if (i==0 || i==N || 3==0 || j==M)
eu[i][]].Create (WS_CHILD| WS_VISIBLE| WS_BORDER| SS_CENTER,
CRect(u[i][j] .Home,CSize(70,25)),this,idc_eu++) ;
if (3>0 && j<M && i>0 && i<N)
sul[i][j].Create(“”,WS_CHILD|WS_VISIBLE|WS_BORDER|SS_CENTER,
CRect(u[i][j].Home,CSize(70,25)),this,idc_su++);

}
bCompute.Create (“Compute”,WS_CHILD | WS_VISIBLE | BS_DEFPUSH BUTTON,
CRect (CPoint (100,300),CSize(100,25)),this, IDC_COMPUTE) ;

CCodedB: : ~CCode4dB ()
{

int 1i;
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for (i1i=0;i<=R;i++)

delete alil;
for (i=0;i<=N;i++)

delete euli],sulil,ulil;
delete a,eu,su,u,b,x,y;

void CCodedB: :0nPaint ()

{
CPaintDC dc(this);
CString s;
int 1,3;
for (j=0;j<=M;Jj++)
{
dc.MoveTo (u[0] [J].Home+CPoint (10,10)) ;
dc.LineTo (u[N][j] .Home+CPoint (10,10));
}
for (i=0;i<=N;i++)
{
dc.MoveTo (u[i] [0] .Home+CPoint (30,10)) ;
dc.LineTo(u[i] [M] .Home+CPoint (30,10)) ;
}
for (3=0;3j<=M;j++)
for (i1=0;i<=N;i++)
{
s.Format (“%d,%d”,1,3);
dc.TextOut (u[i] [j] .Home.x+40,ul[i] [j] .Home.y-17,s);
}
dc.TextOut (80,40, "Finite Difference Solution to u[x] [x]+uly] [y]=10*x*y");
}

void CCode4dB: :OnCompute ()
{
CClientDC dc (this) ;
CString s;
int i,3,w;
for (3=0;j<=M;Jj++)
for (1=0;i<=N;i++)
if (i==0 || i==N || J==0 || j==M)
{
euli]l [Jj].GetWindowText (s) ;
uli] [Jj].v=atof(s);
}
for (3=1;3j<=R;j++)
for (i=1;i<=R;i++)
alill[31=0;
for (j=1;j<=R;j++)
{
if (J<=M+2)
aljllj+1ll=alj+1]1[31=k*k;
if (J>=1 && j<=M)
aljllj+Ml=alj+M] [J1=h*h;
for (i=1;i<=R;i++)
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{
if (j==1)
ali] [j]1=-2* (h*h+k*k) ;
if (i==N && j==M)
alilljl=aljl[i]=0;
}
}
w=0;
for (J=0;3<=M-2;j++)
{
for (i=0;i<=N-2;i++)
{
wW++;
blw]l=h*h*k*k*g (x[i+1],y[F+1]1);
if (j==
{
blw] -= h*h*u[i+1]1[0].v;
if (i==0)
blw] -= k*k*ul[0][1].v;
if (i==N-2)
bl[w] -= k*k*u[N][1l].v;
}
if (j==M-2)
{
blw] -= h*h*ul[i+1] [M].v;
if (i==0)
blw] -= k*k*u[0] [M-1].v;
if (i==N-2)
blw] -= k*k*u[N][M-1].v;
}
}
}
PGauss () ;
for (j=1;j<=M-1;7J++)
for (i=1;i<=N-1;i++)
{
s.Format (“%1£f”,uli]l[]].v);
sul[i] [J] .SetWindowText (s) ;
}
}
void CCode4dB: :PGauss () // compute the SLE
{
int i,3,w;
double m, Sum;
for (w=1l;w<=R-1;w++) // row operations on a
for (i=w+l;i<=R;i++)
{

m=ali] [w]/alw] [w];
for (j=1;j<=R;j++)
alil[jl=alil[j]l-m*alw] []];
blil=b[i]-m*b[w];
}

for (i=R;i>=1;i-) // backstitutions on x

121
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Sum=0;
ul (i-1)%M+11[(i-1)/M+1].v=0;
for (j=i;3<=R;j++)
Sum +=a[i][J1*ul(3-1)%M+1][(F-1)/M+1].v;
ul (i-1)%M+11[(i-1)/M+1].v=(b[i]l-Sum)/alil[i];



CHAPTER 5

DRAWING CURVES

5.1 WINDOWS GRAPHICS REPRESENTATION

In general, it is easier for the brain to accept graphics than a series of text-oriented
descriptions of a particular problem. This is because the graphical representation is
natural and easily accepted by the human brain. A single graphical drawing maps
directly to the human brain and is instantly recognized. A textual or numerical rep-
resentation requires one extra step prior to its recognition: its transformation to the
graphical form. This step produces an overhead that delays interpretation by the
brain. Graphics provide a good visualization that contributes to a better understand-
ing of a particular problem.

A curve is a visual representation of the relationship between two or more com-
ponents. The simplest form of a curve in two-dimensional space is a single point.
With two points, a straight line can be drawn to relate them. With three or more
points, a curve can take its shape in many forms, depending on the points. In three-
dimensional space, a plane represents a set of straight lines connecting three or
more points. With more points in this dimension, we get a set of curves that form a
surface.

This chapter discusses two projects involving the construction of several types of
curves. The first is a discussion of techniques for plotting three types of curves: a
polynomial, a polar curve, and a parametric curve. The second project is an inter-
polative method for constructing a cubic spline. This application allows the user to
create the points by simply clicking the left button of the mouse. The spline is ob-
tained by interpolating all these points. In plotting the curves, a conversion from the
mathematical Cartesian coordinates to Windows needs to be considered. This is be-
cause the Cartesian system is based on real (floating) numbers, whereas the Win-
dows system is based on integers.

Numerical Simulations and Case Studies Using Visual C++.Net by Salleh, Zomaya, Olariu, and Sanugi 123
Copyright © 2005 John Wiley & Sons, Inc.
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Windows Coordinates System

Text or graphics drawing on the personal computer consists of raster operations
based on the bitmap composition of pixels. A pixel is the smallest item that can be
displayed on the screen. Several pixels form text characters such as “a,” “g,” and
“%.” In the same way, a graphics primitive such as a line and a circle is formed by
mapping the pixels according to its shape. A pixel consists of a unit on the screen
formed from its row and column number. The size of a pixel is inversely proportion-
al to the screen resolution. A large pixel makes the resolution low, and this produces
low-quality drawings on the screen. A high screen resolution means that the size of
each pixel is very small, and this produces very sharp drawings on the screen.

On a standard 800 x 600 display, the column of the window is measured from 0 to
799 eastward, and the row numbers from 0 to 599 southward, as shown in Figure 5.1.
This mode of display produces 800 x 600 = 480,000 pixels. A better screen setup has
more pixels distributed in the same size the screen, for example, 1,280 x 800 =
1,204,000. This setup produces finer pixels and a higher-resolution graphics display.

Mathematical curves are well presented on a computer. In Windows, a curve is
obtained by activating a successive array of pixels. Each pixel represents a point
corresponding to the coordinates (x, y) in mathematics. To draw a curve, the pixels
are placed very close to each other so that they appear as a continuous curve. An-
other way of drawing a curve involves bringing the pen to the starting position, then
drawing lines successively on the points that are placed close to each other.

In drawing curves on the computer screen, two coordinate systems must be con-
sidered. The first is the Windows coordinate system, in which only integer numbers
corresponding to the column and row numbers of the pixels are supported. The sec-

pixel (i)

599

799

Figure 5.1 Windows coordinate system.
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ond is the Cartesian coordinate system, which is a standard measuring system for
all mathematical operations and applications. This coordinate system is shown in
Figure 5.2, and it supports the floating point representation of numbers. The system
has its origin at the intersection between the x and y axes, with x and y values in-
creasing northward and eastward, respectively.

In order to draw a curve on the screen, it is necessary to convert the coordinates
and their data types correctly from Windows to Cartesian, and vice versa. In gener-
al, a suitable conversion from Cartesian to Windows follows the following scheme:

Windows x value = Cartesian x value + x value of the origin (5.1a)
Windows y value = y value of the origin — Cartesian y value (5.1b)

Reversing Equations (5.1a) and (5.1b), the following equations convert the coordi-
nates of a point from Windows to Cartesian:

Cartesian x value = Windows x value — x value of the origin (5.2a)

Cartesian y value = y value of the origin — Windows y value (5.2b)

5.2 MFC FUNCTIONS FOR DISPLAYING GRAPHICS

In MFC, dozens of useful functions are available for drawing. Some primitive tools
for drawing graphical objects on the computer screen include pixels, lines, rectan-
gles, circles, and polygons. Table 5.1 lists some of the most common functions for
drawing graphics in Windows.

]

- -10

Figure 5.2 Cartesian coordinate system.
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Table 5.1 Some common MFC functions for graphics

Function Description

CPoint(pt) Defines the window coordinates of the point p¢

SetPixel(pt,color) Displays a pixel with the color color at the point pt

GetPixel(pt,color) Gets the pixel value at location pt and stores it as color

MoveTo(ptl) Moves the pen to the location prl

LineTo(pf2) Draws a line to the location pr2

CRect(a,b,c,d) Defines the rectangle bounded by the top-left coordinates
(a,b) and the bottom-right coordinates (c,d)

Rectangle(a,b,c,d) Displays a rectangle bounded by the top-left coordinates
(a,b) and the bottom-right coordinates (c,d)

Ellipse(a,b,c,d) Draws an ellipse specified by a rectangle with the top-left

coordinates (a,b) and the bottom-right coordinates (c,d).
If the rectangle is a square, then a circle is obtained
FillRect(rc,brush) Fills the rectangle rc with a color defined by the brush
brush
FillSolidRect(rc,brush) Draws the rectangle rc using the color brush

Color Schemes. A pixel represents the smallest unit on the screen that can be
displayed. A pixel has a value defined by the MFC function RGB (r, g, b), defined
as the composition of the red, green, and blue color components (see Table 5.2).

The color scheme employed in RGB(r,g,b) consists of the red, green, and blue
components. Each component r, g, and b in the function is represented by a num-
ber from 0 to 28 — 1 = 255, or 0000 0000 to 1111 1111 in binary and 00 to FF in
hexadecimal. The value of 0 in each component is the darkest and this value be-
comes lighter as the number increases monotonically.

Windows interprets the entry in RGB (7, g, b) by placing r in the rightmost bits,
followed by g in the middle, and b at the leftmost bits, as shown in Figure 5.3. This
assignment of pixel values is illustrated in the figure using an example of a pixel
with a value of RGB(174,55,171). This value can also be written as
RGB (0xAE, 0x37, 0xAB) in hexadecimal, and (10101011,00110111, 10101110)
in binary.

Table 5.3 lists some of the primary colors obtained using RGB () by combin-
ing the r, g, and b components. In this table, yellow is obtained by combining the
green and red components in the function RGB (). Similarly, cyan is produced
from the combination of green and blue, and magenta is obtained from red and
blue.

Table 5.2 Color manipulation function of a pixel

Function Description

RGB(r,g,b) The intensity of the pixel at the given location, which is composed of
the red (r), green (g), and blue (b) components.
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RGB(174,55,171) = RGB(0xAE, 0x37, 0xAB)

171 55 174
1010 1 0 1 1 001 10 1 11 101 01 1 1 0
A B 3 7 A E

(Blue) (Green) (Red)

Figure 5.3 Pixel value of RGB(174, 55, 171).

Figure 5.4 shows the relationship between the red, green, and blue color compo-
nents in the form of a hypercube. These colors are obtained by referring to a coordi-
nate system in which red and green are the planar axes, and blue is the vertical axis.
The red, green, and blue components in the hypercube form an axis system with the
colors at the corners.

Selecting an Object. A pen, brush, and other objects can be selected using the
function SelectObject (). For example, the following code selects a gray pen
by creating an object from the class CPen:

CPen penGray (PS_SOLID,1,RGB(100,100,100));
dc.SelectObject (&penGray) ;

Filling a Rectangular Area with a Color. A rectangular region is created by
first creating an object from the class CRect to define its top-left and bottom-right
coordinates. Another object, a brush, is created from the class CBrush. The rectan-
gular area is then filled with the color RGB(200,200,200) using the function
FillRect, as follows:

CRect rc=CRect (50,100,150,200);
CBrush grayBrush (RGB(200,200,200)) ;
dc.FillRect (&rc, &grayBrush) ;

Table 5.3 Some common colors in RGB ()

Function Color
RGB(255,0,0) Red
RGB(0,255,0) QGreen
RGB(0,0,255) Blue
RGB (255, 255,255) White
RGB(0,0,0) Black
RGB (255,255,0) Yellow
RGB(0,255,255) Cyan
(

RGB (255, 0,255) Magenta




128 DRAWING CURVES

Blue cyan white
A (0,255,255) (255,255,255)
blue
(0,0,255)
Green
green P
(0,255,0)
(255,255,0)
yellow
» Red
(0,0,0) (255,0,0)
black red

Figure 5.4 Hypercube showing the color combinations in the RGB system.

The same method can be used to erase an area on the screen where rc in the
above example is the desired area. To erase the whole area in the window, the rec-
tangular area in this case is the window. The area is obtained using the function
GetClientRect (). The following code shows a way to erase the whole win-
dow:

CRect rc;

CBrush BgBrush (RGB(200,200,200)) ;
GetClientRect (&rc) ;
dc.FillRect (&rc, &BgBrush) ;

Plotting a Point. The most basic way of assigning a pixel is the function Set-
Pixel(pt,color). This function assigns the point p¢ with the color color. For exam-
ple, the following code uses the device context object dc for plotting a point at the
location (50,100):

dc.SetPixel (50,100) ;

In reverse, the function GetPixel(pt,color) gets the color value of the point pf on
the screen and stores this value as color.

Drawing a Line. A line from pt1 to pt2 can be drawn by first moving the pen to
ptl using the function MoveTo(ptl) and dragging the pen to pr2 using
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LineTo(pr2). For example, the following code draws a line from (50,100) to
(120,200):

dc.MoveTo (50,100) ;
dc.LineTo(120,200) ;

Drawing an Object. An object such as a rectangle can be displayed on the win-
dow using an MFC function. For example, to draw a rectangle, an object from from
the class CRect is first created:

CRect rc=CRect (50,100,150,200);
dc.Rectangle (&rc) ;

A rectangle also defines an area where other primitive objects such as an ellipse can
be drawn. For example, the following code draws an ellipse with its top coordinates
at (50,100) and bottom-right coordinates at (120,200):

CRect rc=CRect (50,100,150,200);
dc.Ellipse(rc) ;

A circle is an ellipse in which the rectangular box has equal width and height.
Therefore, a circle can be drawn using the same function, E1lipse ().

A rectangle is selected for several purposes including drawing a box, erasing an
area by filling it with a color, and selecting this area for updating. In operations
such as changing the color of a rectangular area or erasing this area, a pen is not a
good tool to use as it does not have features like filling or flooding the designated
area. Instead, a brush object from the class CBrush offers a more practical choice.

5.3 DRAWING A CURVE

In mathematics, graphical objects include points, lines, curves, circles, and sur-
faces. Each of these objects is displayed to form the graphical visualization and il-
lustration of a given problem. In this section, we discuss a method for drawing two-
dimensional curves. In general, the rules for drawing a curve are governed by the
fundamental rules of mathematics, having characteristics such as existence, conti-
nuity, convergence, and stability. Hence, if a curve does not exist at a point or an in-
terval, then the program must identify this singularity and avoid drawing the curve
at this point or interval.

A single-variable function is expressed as y = f{x). A common function in this
category is a polynomial of degree n, which has the following general form:

f)=agtax+ax’*+... +ax" (5.3)

In the above equation, a; fori =0, 1, . .., n is a constant and » is a positive integer.
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The function y = f{x) is sometimes written in parametric form, with ¢ as its para-
meter. In this case, the equation is written as x(¢) and y(¢) to denote each variable is
a function of the parameter 7. An example of a parametric curve is x(f) = ¢ and y(¢) =
#2, which is the same as y = x2. Another common parametric curve is the polar curve
in which the parameter ¢ is the angle of inclination. One such curve is x(f) = r cos ¢

and y(¢) = r sin ¢, which represents the circle x> + 32 = r2.

Codeb5A: Mathematical Curves

In this section, we discuss some curve drawing techniques using the facilities in
MEFC. Three common types of curves are discussed: a polynomial, a polar curve,
and a parametric curve. The project is called Code5A, and it consists of two files:
Code5A.cpp and Code5A.h. Code5A has a rectangular menu in the form of
shaded boxes. An item in the menu can be viewed simply by clicking the left button
of the mouse on the respective box. Figures 5.5 shows an example of a curve gener-
ated from this application. The curve shown is a polynomial and it is obtained by
clicking the Polynomial shaded box.

The project Code5A has one application class called CCode5A. The data struc-
ture in this application is described in Code5A.h. Table 5.4 describes the variables
and objects in this data structure.

Polynomial
Creative Net

f{x] = xpx+1)[x-1]{x-3)

Figure 5.5 Output from Code5A.
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Table 5.4 Variables/objects in Code5A

Variables/object Type Description

DrawRc CRect The rectangular area for drawing the curves

TopLeft CPoint Top-left coordinates of the drawing area

BottomRight CPoint Bottom-right coordinates of the drawing area

Origin CPoint The origin of the x and y axes

Ptl,Pt2,Pt3 CPoint Home coordinates of the menu rectangles

rcl,rc2,rc3 CRect First, second, and third menu rectangles

Colorl,Color2 int Color value, given by RGB (100,100,100) and
RGB(170,170,170), respectively

MenuChoice char Character to respond to an update in the drawing area

The curve is displayed in a rectangular area bounded by the top-left and the bot-
tom-right corners, TopLeft and Bot tomRight, respectively. The drawing area is
defined by the object DrawRc. It has its Cartesian coordinates origin at Origin.
Each menu item in the application is represented by a shaded rectangle with its top-
left coordinates defined by Pt and the rectangular area by rc. For example, the item
Polynomial has Pt1 as its top-left coordinates and rc1 as its rectangular object.

Table 5.5 describes several member functions from the class declared in
Code5A.h. The event handlers are OnPaint () and OnLButtonDown (). The
curves are drawn using the functions Polynomial (), Lemniscate (), and
CreativeNet (), whereas DrawAxes () draws the x and y axes for the Carte-
sian coordinate system.

In the constructor, the global variables and objects are initialized as follows:

TopLeft=CPoint (130,20) ;
BottomRight=CPoint (550,380) ;
Origin.x=(TopLeft.x+BottomRight.x)/2;
Origin.y=(TopLeft.y+BottomRight.y)/2;
DrawRc=CRect (TopLeft.x+3, TopLeft.y+3,BottomRight.x-3,BottomRight.y-3);
ptl=CPoint (20,70) ;

rcl=CRect (ptl,ptl+CPoint (100,25)) ;
pt2=CPoint (20,120) ;

rc2=CRect (pt2,pt2+CPoint(100,25));
pt3=CPoint (20,170) ;

rc3=CRect (pt3,pt3+CPoint(100,25));
Colorl=RGB(100,100,100);
Color2=RGB(170,170,170) ;

The initial values are assigned mostly for producing the initial display in the main
window. These include the position of the rectangular menu items, the drawing
area, and the Cartesian origin for drawing the curves.

The initial display is invoked by the function OnPaint (), which responds to
the message handler WM_ PATINT. The main item in the main window is the drawing
area for the curves, marked by the CRect object DrawRc. This rectangular area
displays each of the three curves based on user’s selection. The initial display also
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Table 5.5 Member functions in Code5A

Function Description

CCodeb5A () The constructor

~CCodebA () The destructor

OnPaint () Produces the initial setup for the menus, drawing area, and an

OnLButtonDown ()

DrawAxes ()
Polynomial ()
Lemniscate ()
CreativeNet ()

update area whenever InvalidateRect ()is invoked

A response to the message handler ON_WM_LBUTTONDOWN () .
The function takes input from the left mouse click as pt and
checks if it is within one of the menu rectangles for an instant
update using InvalidateRect ()

Draw the Cartesian x and y axes, and the origin

Draw a polynomial

Draw two polar curves

Draw a parametric curve called Creative Net

includes the three menu items in the form of shaded rectangles. The code fragment
for the initial display is shown as follows:

CPaintDC dc(this);

CPen penDark (PS_SOLID,2,Color2);
dc.SelectObject (&penDbark) ;

dc.Rectangle (CRect (CPoint (TopLeft) ,CPoint (BottomRight))) ;
dc.FillSolidRect (&rcl,Colorl) ;
dc.FillSolidRect (&rc2,Colorl) ;
dc.FillSolidRect (&rc3,Colorl) ;

dc.SetTextColor (RGB(255,255,255) ) ;
dc.SetBkColor (Colorl) ;

dc.TextOut (ptl.x+10,ptl.y+5, “Polynomial”);
dc.TextOut (pt2.x+10,pt2.y+5, “Lemniscate”);
dc.TextOut (pt3.x+10,pt3.y+5, “Creative Net”);

A character variable called MenuChoice is used to store the user’s choice from
the menu. An item in the menu is selected by clicking the mouse’s left button on the
respective rectangle. The click is an event that is detected by the message handler
WM_LBUTTONDOWN. A click on one of the shaded boxes activates the function
OnLButtonDown (), which assigns one of the characters “P,” “L,” or “C” to the
variable MenuChoice. This active variable is passed to OnPaint () through the
update function InvalidateRect (). OnPaint ()responds to this function by
calling one of the functions Polynomial (), Lemniscate(), or Cre-
ativeNet (), as follows:

switch (MenuChoice)

{

case ‘P’:
Polynomial (); break;
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case ‘L’:
Lemniscate(); break;
case ‘C’:

CreativeNet (); break;

The function OnLButtonDown () responds to the event invoked through the
user’s click on one of the three rectangular menu boxes. This function has the argu-
ment pt, which returns the Windows coordinates at the point of click. It is through
the function PtInRect () that the choice from the user is determined. The code
fragment for this function is written as follows:

void CCodebA: :OnLButtonDown (UINT nFlags,CPoint pt)
{

if (rcl.PtInRect(pt))

{

MenuChoice = ‘P’;
InvalidateRect (DrawRc) ;

if (rc2.PtInRect (pt))
{
MenuChoice = ‘L’;
InvalidateRect (DrawRc) ;
}
if (rc3.PtInRect (pt))

{
MenuChoice = ‘C’;
InvalidateRect (DrawRc) ;
}
if (!rcl.PtInRect(pt) && !rc2.PtInRect (pt)
&& !'rc3.PtInRect (pt))
MenuChoice = ‘X’;

In the above event handler, InvalidateRect(rc) is a powerful function that
brings the control instantly to OnPaint () for updating a rectangular area marked
by its argument rc, which is a CRect object. Related to this function is a function
called Invalidate () that updates the whole area instead of a portion of the
main window. Both, InvalidateRect () and Invalidate () are called from
a client function, outside of OnPaint ().

The above code assigns the active variable MenuChoice with one of the char-
acters, “P,” “L,” or “C” if pt is inside one the three menu boxes marked by rc1,
rc2, and rc3, respectively. Each of these three choices calls up the function In-
validateRect (), which updates a rectangular area in the window marked by
DrawRc by transferring the control to the function OnPaint (). If pt is not in-
side any of the three boxes, MenuChoice will be assigned with the value of “X,”
which will not be doing anything.
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The character variable MenuChoi ce activates the area of the screen marked by
DrawRc. This is done through the function InvalidateRect (), which trans-
fers control to OnPaint (), bringing along the value assigned to the variable
MenuChoice. This character variable determines a curve to be displayed in the
drawing area, either a polynomial, a lemniscate, or Creative Net.

Drawing a Polynomial. A polynomial is displayed by the function Polynomi-
al () through the option MenuChoice='P". Figure 5.5 shows an output show-
ing this option. It consists of a display of the polynomial y = f{x) = x(x + 1)(x — 1)(x
—3) for -2 = x = 4. The function is written as follows:

void CCodebA: :Polynomial ()
{
CClientDC dc(this);
double X,Y;
CPoint pt;
DrawAxes () ;

// draw the curve, where X is magnified 50 times, Y 20 times
X=-2;
while (X<=4)
{

Y=X*(X+1)* (X-1) * (X-3);

pt.x=(int) (50*X) ;

pt.y=(int) (20*Y) ;

pt.x += Origin.x; pt.y=Origin.y-pt.y;

if (DrawRc.PtInRect (pt))

dc.SetPixel (pt,Colorl) ;

X += 0.001;
}
dc.SetTextColor (Colorl) ;
dc.TextOut (TopLeft.x+20,BottomRight.y-50, "f(x) = x(x+1) (x-1) (x-3)");

In the above function, pt is a CPoint object used for plotting the points in the
curve. The curve is drawn by plotting the points successively close to each other in
such a way that they appear as one continuous curve. X and Y are two local vari-
ables of type double, representing the Cartesian coordinates (x, y). They are not to
be confused with the elements x and vy (both in lower case) linked from the objects
pt. The value of X is converted to pt . x for mapping in Windows using Equation
(5.1a). Since the increment of X is too small to be viewed in the window, its value is
magnified by some large number, for example, 50, to make the pixels visible on the
screen. In the same way, the value of Y is magnified 20 times and mapped as pt .y
on the window using Equation (5.1b).

To make sure that the curve is drawn wholly inside the drawing area DrawRc
only, the following conditional test is performed:

if (DrawRc.PtInRect (pt))
dc.SetPixel (pt,Colorl);
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The Boolean function Pt InRect (pt) with the parameter pt checks for the point
of click of the CPoint object pt. If this point lies inside the rectangle DrawRc,
then it returns TRUE (1); otherwise it returns FALSE (0).

Drawing a Lemniscate. The second item in the menu is the lemniscate, which
is a curve based on polar coordinates. This curve is displayed when the rectangular
box Lemniscate is clicked, as shown in Figure 5.6.

A polar curve is a curve expressed in the form of » = f{f), where x =r cos ¢t and y
= rsin ¢. In this function, r is the length of the curve from the origin and ¢ is its an-
gle of inclination. A polar representation is a suitable way for representing a curve
instead of the normal form y = f(x) in cases where y is not a function of x in some
parts of the domain (see Figure 5.7).

The lemniscates = sin & and r cos kz, where k is a constant, are special types of
polar curves that are petal shaped. In general, the following rules apply to the shape
of this type of curve:

If k is even then r = sin k and r cos kt each have 2k petals.
If k is odd then r = sin k# and r cos kt each have k petals.

Figure 5.6 shows two polar curves, r = sin 3¢ and r = cos 8¢, for 0 = ¢t = 8. The
curve » = sin 3¢ is shown as the darker curve. The first curve is drawn on the win-

Il Mathematical Curves 1O
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rft] = sin 3t

Figure 5.6 The lemniscate output from Code5A.
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Figure 5.7 Polar representation of a point.

dow using the function rl=sin(3*t), whereas the second function is
r2=cos (8*t). The points in the first curve are mapped on the window with their
x and y values magnified 150 times to make them visible, as follows:

pt.x=(int) (150*rl*cos (t));
pt.y=(int) (150*rl*sin(t));
pt.x += Origin.x;
pt.y=Origin.y-pt.y;

The second curve is also mapped with the same magnification scale. In both cases,
the CPoint object pt is used to draw the points on the curves using the function
SetPixel (). The curves are drawn by iterating the local variable t from 0 to 8.
The full code for this function is shown below:

void CCode5A: :Lemniscate()
{
CClientDC dc (this) ;
double rl,r2,t;
CPoint pt;
DrawAxes () ;

// draw the curves where x,y are all magnified 150 times
t=0;
while (t<=8)
{
rl=sin(3*t);
pt.x=(int) (150*rl*cos(t));
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pt.y=(int) (150*rl*sin(t)) ;

pt.x += Origin.x;

pt.y=Origin.y-pt.y;

if (DrawRc.PtInRect (pt))
dc.SetPixel (pt,Colorl) ;

r2=cos (8*t) ;
pt.x=(int) (150*r2*cos(t));
pt.y=(int) (150*r2*sin(t)) ;
pt.x += Origin.Xx;
pt.y=Origin.y-pt.y;
if (DrawRc.PtInRect (pt))
dc.SetPixel (pt,Color2) ;

t += .001;

}

dc.SetTextColor (Colorl) ;

dc.TextOut (TopLeft.x+20,BottomRight.y-60,"r(t) = sin 3t”);
dc.SetTextColor (Color2) ;
dc.TextOut (TopLeft.x+20,BottomRight.y-30,"r(t) = cos 8t”);

Drawing Creative Net. The last item in the menu generates a curve called
Creative Net, which is a parametric curve with ¢ as the parameter, given as fol-
lows:

x(#) = sin 0.99¢ + 2 cos 3.01¢
y(f)=cos 1.01¢—0.1 sin 15.03¢

The curve is plotted when the function CreativeNet () is called up. Creative
Net is not a standard curve as it is produced by taking a sum of terms from some
combination of sine and cosine functions. A different shape of the curve can be ob-
tained by changing the coefficients of ¢ in the above equations.

Figure 5.8 shows Creative Net when plotted in the interval =150 = ¢ = 150. In
CreativeNet (), (x, y) values are represented as (pt.x,pt.y). The conver-
sion from the Cartesian coordinate system to Windows involves the magnification
of the x and y values by a factor 60 and 120, respectively, as follows:

x=8in(0.99*t)+2*cos (3.01*t) ;
s(1.01*t)-0.1*sin(15.03*t) ;
(int) (60*x) ;

(int) (120*y) ;

pt X=
pt.y=

We adopt a different strategy for drawing this curve. This time, the line drawing
function LineTo () is used to draw the curve. The curve is drawn by first moving
the pen to the origin using the function MoveTo (). The drawing starts by continu-
ously iterating the x and y values using the function LineTo (). As the points are
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Figure 5.8 Creative Net output from CodebA.

very close to each other on the screen, the straight lines between them appear as one
continuous curve. In this way, we obtain a smooth curve occupying the region, as
shown in Figure 5.8.

With today’s fast computers, each drawing is completed within a few microsec-
onds. To see the line-drawing action, the plot can be paused for several millisec-
onds at each iteration using the function Sleep (0). This extra statement is includ-
ed to slow down the curve drawing process. CreativeNet () is written as

follows:

void CCode5A: :CreativeNet ()
{
CClientDC dc(this);
double X,Y, t;
CPen penDark (PS_SOLID,1,Colorl);
CPoint pt;

dc.SetTextColor (Colorl) ;
dc.TextOut (TopLeft.x+200, TopLeft.y+20, “Creative Net”) ;
dc.TextOut (TopLeft.x+20, BottomRight.y-40,
"X (t)=sin(0.99*t)+2*cos (3.01*t)");
dc.TextOut (TopLeft.x+20,BottomRight.y-20,
“Y(t)=cos(1l.01l*t)-0.1*sin(15.03*t)");
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dc.SelectObject (&penDark) ;

t=-150;

X=s1in(0.99*t)+2*cos(3.01*t); Y=cos(1.01*t)-0.1*sin(15.03*t);
pt.x=(int) (60*X); pt.y=(int) (120*Y);

pt.x += Origin.x; pt.y=0Origin.y-pt.y;

dc.MoveTo (pt) ;
while (t<=150)

{
X=s5in(0.99*t)+2*cos (3.01*t) ;
Y=cos(1.01*t)-0.1*sin(15.03*t);
pt.x=(int) (60*X) ;
pt.y=(int) (120*Y) ;
pt.x += Origin.x; pt.y = Origin.y-pt.y;
if (DrawRc.PtInRect (pt))

dc.LineTo (pt.x,pt.vy);

::Sleep(0) ;
t += 0.005;

}

5.4 CUBIC SPLINE INTERPOLATION

The previous application shows several ways of plotting a curve using MFC func-
tions when the curve function is given. It is also possible to draw a curve when its
function is not given. In this case, the curve can be generated from a set of points ei-
ther through interpolation or approximation. In interpolation, the curve is drawn so
that it passes through all the given points. In approximation, the curve may pass
through some or none of the points. A relationship is derived from these terminolo-
gies: interpolation is a form of approximation in which the curve passes through all
the given points. A curve drawn through interpolation or approximation is a gener-
alization of its close relationship to the points.

Curve interpolation can be performed numerically using many classical tech-
niques such as the Lagrange, Newton, and Hermite methods, which produce poly-
nomials. In approximation, several methods based on the least-squares method are
applied. The least-squares method performs approximation by minimizing the sum
of the squares of the errors to produce low-degree polynomials. Interested readers
can refer to Burden and Faires [1] for details on these techniques.

An interesting curve that finds a lot of applications in mathematics is the spline.
A spline is a set of piecewise continuous functions obtained through the interpola-
tion of several points. A spline of degree » is defined as follows:

Sx)=a;+b(x—x;) +cx—x)+...+d(x—x) (5.4)

where a;, b;, c;, and d; are constants, for 0 < j = m — 1. This spline interpolates m +

1 points (x;, y;) for j =0, 1, ..., m and it consists of m segments, S)(x) forj =0, 1,
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., m— 1. A spline of degree two is called a quadratic spline, whereas a third de-
gree spline is a cubic spline. Figure 5.9 shows a spline formed from four points hav-
ing three segments.

The classical Lagrange and Newton methods for interpolation produce a polyno-
mial whose degree is determined by the number of interpolating points. For n
points, these methods produce a polynomial of degree n — 1. As the degree of the
polynomial in these methods is dependent on the number of interpolating points, the
higher the number of points, the greater is the degree of the polynomial. Therefore,
these methods of interpolation are not suitable for applications requiring smooth
curves, as a high-degree polynomial means there are many extremum points in the
curve.

A spline is formed independently of the number of interpolating points. It is pos-
sible to obtain a smooth curve using a low-degree polynomial even if the number of
interpolating points is large. For this reason, a spline is preferred over most other in-
terpolating techniques for producing low-degree polynomials.

A derivative of the cubic spline called B-Spline is often used to help in the de-
sign of smooth surfaces such as the bodies of ships, cars, and aircraft. In contrast to
the interpolating spline, B-spline is obtained by approximating the curve in the con-
vex hull formed from a set of points. Another form is the Bezier curve, which is
widely used for the same purposes.

In this section, we discuss a cubic spline and its interpolative technique for draw-
ing the curve. A cubic spline consists of a set of piecewise polynomials of degree
three, or n = 3, in Equation (5.4). A segment S(x) in a cubic spline is obtained by in-
terpolating three successive points. Therefore, a cubic spline can be constructed
from a minimum of three points.

In order to have a smooth curve at each connecting point, an interpolating point
must be continuous both from left and right. In addition, continuity must also be ob-
served in terms of the first and second derivatives at each interpolating point in the
curve. The full properties of a cubic spline are listed as follows:

So (x)

(X0 » o)

(X3,¥3)

(X151

S
0 (X35 ¥2)

Figure 5.9 A cubic spline formed from three segments.
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The following algorithm constructs a cubic spline for interpolating a set of points
(x,y), fori=0,1,2,...,m:

forj=0tom
leta;=y;
endfor
fori=0tom—1
let h; = x;iq —x;5
endfor
fori=1tom—1

3lajhiy —afh; + hiy) +a;1h]
compute «; = i ;

endfor
letly =1, wy=0and z, = 0;
fori=1tom—1

compute /; = 2(h; + hi_y) — hi i

h;
compute u; = 7
i

= hizi, .

l_ s

1

compute z; =

endfor

let/,=1,z,=c,=0;

forj =m—1 downto 0
compute ¢; = z; — wCjr

41— 4 hle —2¢)

compute b; =
Tk 3
Cir1 —
compute d; = L5—~
J 3,
endfor

Code5B: Constructing a Cubic Spline

The project Code5B implements the above algorithm. The interpolating points are
represented by the coordinates (X[ ],Y []). The function ComputeCSpline () in
this project reads these values and produces the cubic spline based on the above al-
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gorithm. The results are the arrays a[j1,b[Jj1,c[j],and d[J] that represent a;,
b;, c;, and d,, respectively in Equation (5.4).

We discuss a friendly interface for constructing a cubic spline in Code5B based
on the above algorithm. Figure 5.10 shows an output from this project with a cubic
spline having eight segments, with m = 8, obtained from nine interpolating points.
The program allows the user to choose the points by clicking the mouse’s left but-
ton on any point in the drawing area. The clicked points are indexed from left to
right, and their coordinates are shown on the top-right-hand side of the window. A
maximum of 10 points are allowed in this application but this number can be in-
creased or decreased by changing the macro in the header file. The cubic spline is
displayed when the user clicks the push button Plot Curve. Besides the curve, the
output also includes the coefficient values a;, b;, ¢;, and d; of the segments Sy(x) in
Equation (5.4), shown in the right half of the window.

Code5B has two files: Code5B.h and Code5B.cpp. The class used in this ap-
plication is CCode5B and it is derived from the MFC class CFrameWnd. The con-
stants used in this application are the maximum number of clicked points M and the
push-button id IDC_ PUSHBUTTON. The global objects and variables in this project
are shown in Table 5.6.

In constructing a cubic spline, we first need to find the values of a[j1,b[j1,
c[3j1,and d[J]] in Equation (5.4). These values are the coefficients values of Sy(x)
as described in Equation (5.4). The interpolating points in this problem are X[ ]
andY[3j] forj=0,1,...,m

Natural Cubic Spline Interpolation E -10lx|

Figure 5.10 Cubic spline output from Code5B.
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Table 5.6 Global objects and variables in Code5B

Variables/objects Type Description

TopLeft, BottomRight CPoint Top-left and bottom-right coordinates of the
drawing area

aljl,blil,cl3l,dl3] double The coefficients a;, b;, c;, and d; in Sy(x)

X[31,Y[3] double The interpolating points (x;, y;)

m int Number of interpolated points

Pushbutton CButton CButton object that activates
OnClickCalc ()

PushbuttonRect CRect CRect object for the push button

Colorl, Color2 int Colors for both text and graphics

Push buttonClick int The flag for checking the number of left

mouse clicks

The class CCode5B has member functions as listed in Table 5.7. It includes
three event handlers, OnPaint (), OnLButtonDown (), and OnClick-
Calc (). Another function, ComputeCSpline (), computes the spline from the
interpolated points.

The constructor CCode5B () constructs the class, creates the window, and ini-
tializes all the global variables in the application. They are shown as follows:

a=new double [M+1];

b=new double [M+1];

c=new double [M+1];

d=new double [M+1];

X=new double [M+1];

Y=new double [M+1];
TopLeft=CPoint (80,20) ;
BottomRight=CPoint (500,380) ;
Origin=CPoint ( (TopLeft.x+BottomRight.x) /2, (TopLeft.y+BottomRight.y) /2);
m=0; Push buttonClick=0;
Colorl=RGB(100,100,100);
Color2=RGB(150,150,150) ;

In the above initializations, the origin of the Cartesian coordinates is a CPoint ob-
ject called Origin. This point has the Cartesian coordinates (0,0) and Windows
coordinates as given by Equations (5.1a) and (5.1b). For displaying text and graph-
ics in the window, two gray-scale colors Colorl and Coloxr2 are used. The push-
button child window called Plot Curve is created as follows:

Push buttonRc=CRect (120,410,240,450) ;
Push button.Create(“Plot Curve”,WS_CHILD | WS_VISIBLE
| BS_DEFPUSH BUTTON, Push buttonRc, this, IDC_PUSH BUTTON) ;

The initial display event is handled by the function OnPaint (). The display in
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Table 5.7 Member functions in Code5B

Function Description

CCode5B () The constructor of the class. This function also initializes
the values of several variables.

OnPaint () Provides the initial display in response to the message
handler WM_ PAINT

OnLButtonDown () Responds to the message handler WM_LBUTTONDOWN,

which records the points clicked using the left mouse and
displays small rectangles to indicate the points
OonClickCalc () Responds to the push button and message handler
BN_CLICKED. This function reads the input from the
interpolated points, sends these
values to ComputeCSpline () for calculation, and
displays the spline.
ComputeCSpline () Computes the spline from the given interpolated points

the main window consists of a rectangular area for drawing the curve and some
messages, as follows:

void CCodebB: :0OnPaint ()
{
CPaintDC dc(this);
CPen penGray (PS_SOLID, 2,Color2);
dc.SelectObject (&penGray) ;
dc.Rectangle (CRect (CPoint (TopLeft) ,CPoint (BottomRight))) ;

// draw the axes

dc.MoveTo (Origin.x, TopLeft.y+10) ;
dc.LineTo (Origin.x,BottomRight.y-10) ;
dc.MoveTo (TopLeft.x+10,0rigin.y) ;
dc.LineTo (BottomRight.x-10,0rigin.y) ;

// plot the input values

dc.SetTextColor (Color2) ;

dc.TextOut (BottomRight .x-200, BottomRight.y+50, "Max.#Points: 10”);
dc.TextOut (BottomRight.x+40, TopLeft.y,”i") ;

dc.TextOut (BottomRight .x+80, TopLeft.y, "X[i]1");

dc.TextOut (BottomRight.x+140, TopLeft.y,”Y[i]");

The event-handling function OnLButtonDown () responds to the mouse’s left
button click inside the drawing. The drawing area, in this case, is a rectangular region
denoted by the CRect object DrawRc. Code5B allows the user to create the inter-
polating points by clicking the mouse’s left button within the drawing area. This
clicked point is read as pt and is converted to the local object Point. A conversion
to the Cartesian coordinates is then performed on this point using Equations (5.1a)
and (5.1b). The number of clicked points is represented by the variable m, and this
number is less than or equals to maximum allowed, M. At each mouse click inside
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DrawRc, the value of m increases by one to denote the current number of points. As
in the previous application, we check the validity of this point for plotting inside the
rectangle DrawRc using the function PtInRect (pt)). If rc is inside DrawRc,
then this point is immediately assigned to the Cartesian arrays X[] and Y[ ].

The function OnLButtonDown () is written as follows:

void CCodebB: :0OnLButtonDown (UINT nFlags, CPoint pt)
{

CPoint Point;

CClientDC dc(this) ;

CString s;

CRect rc=CRect (CPoint (TopLeft), CPoint (BottomRight)) ;

CPen penGray (PS_SOLID,2,Colorl);

dc.SelectObject (&penGray) ;

dc.SetTextColor (Color2) ;

if (rc.PtInRect(pt))

if (m<=M)
{

Point=pt;
X[m]=(double) (Point.x-Origin.x) /100;
Y[m]=(double) (Origin.y-Point.y) /10;
dc.Rectangle(pt.x,pt.y,pt.x+5,pt.y+5);
s.Format (“%d”,m) ;
dc.TextOut (BottomRight .x+40, TopLeft.y+25+15%*m, s) ;
s.Format (“*%.21f”,X[m]) ;
dc.TextOut (BottomRight .x+70, TopLeft.y+25+15%*m, s) ;
s.Format (“*%.21f”,Y[m]) ;
dc.TextOut (BottomRight .x+130, TopLeft.y+25+15*m, s) ;
m++;

The function OnClickCalc () responds to the click on the push button Plot
Curve. This event is detected by BN_CLICKED in the message map. OnClick-
Calc () calls up the function ComputeCSpline () to compute the interpolating
cubic spline and plots this curve on the window, as follows:

void CCodebB: :0nClickCalc ()
{
CClientDC dc(this);
CString s;
CPoint Point;
CRect DrawRc=CRect (TopLeft.x+5, TopLeft.y+5,
BottomRight.x-5,BottomRight.y-5) ;
double xC,yC;

Push buttonClick++;
if (Push buttonClick==1)
m—-;
ComputeCSpline () ; // compute the spline

dc.SetTextColor (Color2) ;
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dc.TextOut (BottomRight .x+20,BottomRight.y-120,"3") ;

dc.TextOut (BottomRight.x+60,BottomRight.y-120,"al[j1");
dc.TextOut (BottomRight .x+120,BottomRight.y-120, "b[j]");
dc.TextOut (BottomRight.x+180,BottomRight.y-120,"c[j1");
dc.TextOut (BottomRight .x+240,BottomRight.y-120,”d[j]");

// draw the curve here
dc.SetTextColor (Color2) ;
for (int j=0;j<=m-1;j++)
{
xC=X[]1;
while (xC<=X[j+11)
{
yC=al[jl+b[j1* (xC-X[]])
+c[j1*pow(xC-X[]1,2)+d[]]*pow (xC-X[]],3);
Point.x = (int) (100*xC)+Origin.x;
Point.y=0Origin.y-(int) (10*yC) ;
if (DrawRc.PtInRect (Point))
dc.SetPixel (CPoint (Point),Colorl) ;
xC += 0.001;
}
s.Format (“%d”,3);
dc.TextOut (BottomRight .x+20,BottomRight.y-100+15*7,s) ;
s.Format (“%$.21f”,aljl);
dc.TextOut (BottomRight .x+50,BottomRight.y-100+15*7,s) ;
s.Format (“%$.21f”,b[j]1);
dc.TextOut (BottomRight .x+110,BottomRight.y-100+15*7,s);
s.Format (“%$.21f”,c[j]1);
dc.TextOut (BottomRight .x+170,BottomRight.y-100+15*7,s);
s.Format (“%$.21£”,d[3j]);
dc.TextOut (BottomRight .x+230,BottomRight.y-100+15*7j,s);

In OnClickCalc (), each Cartesian point to be plotted is represented by the
coordinates (xC,yC). The values of (xC,yC) are initially obtained from
(X[31,Y[31) ateach end of the segment Si(x). These coordinates are converted
to the Windows coordinates Point .x and Point .y using Equations (5.1a) and
(5.1b), respectively. It is not necessary to use an array for Point in this case as the
coordinates are just temporary variables needed only for plotting the points on the
curve.

The last function in this application is ComputeCSpline (). This function
gets input from the interpolating points that have been converted to the Cartesian
coordinates earlier in the function OnLButtonClicked (). The function Com-
puteCSpline () produces the values of a[3j1, b[j], c[3j]1, and d[j] for
Equation (5.4) to generate the cubic spline based on the cubic spline algorithm dis-
cussed earlier. The following code fragment shows the function:

void CCodeb5B: :ComputeCSpline ()
{

double *h, *1, *mu, *z, *alpha;
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h=new double [M+1];
l=new double [M+1];
mu=new double [M+1];
z=new double [M+1];
alpha=new double [M+1];
for (int j=0;j<=m;j++)

aljl = Y[3l;
for (3=0;j<=m-1;7J++)
hij] = X[j+1] - X[3];

for (j=1;j<=m-1;3j++)
alphalj] = 3*(alj+1]1*h[j-11-al]j]
*(h[jl+h(j-11)+alj-11*h(j1)/ (h[3]1*h[3-11);

1[0]=1; mu[0]=0; z[0]=0;

for (j=1;j<=m-1;3j++)

{
1[j1=2*(h[jl+h[j-1]1)-h[j-1]1*mu[]j-11];
muljl=h[j1/1[3];
z[jl=(alphaljl-h[j-11*z[3-11)/1[31;

}

1[m]l=1; z[m]=0; c[m]=0;

for (j=m-1;3>=0;3-)

{
cljl=z[jl-mu[]jl*c[j+1];
bljl=(alj+1l]l-aljl)/h[j1-h[j1*(c[j+1]1+2*c([]]1)/3;
dljl=(c[j+1]1-c[31)/(3*h[]]);

}

delete h,1,mu, z,alpha;

5.5 SUMMARY AND CONCLUSION

Curve drawing is an important component in numerical simulation and visualiza-
tion. A curve represents the visual relationship between its parameters, which is
more acceptable to humans compared to a series of numbers. It is through a curve
that the concepts and principles underlying the given problem are better understood.

We have discussed two approaches for constructing curves in this chapter. The
first method presents the fundamental approach to drawing three types of curves,
that is, through their functions. The method involves a series of iterations on the pa-
rameters in the functions to produce a polynomial, lemniscate, and a parametric
curve called Creative Net. The second approach is about constructing a cubic
spline. This method is more challenging as the function is not given. Instead, a set
of (x, y) values is read from the user input and the curve is constructed by interpo-
lating these points. In the cubic spline approach, input comes in the form of the
mouse’s left clicks. The user places the points visually in the window by clicking
the mouse. The spline is generated when a push button in the window is clicked.
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This provides a friendly interface to the problem that benefits the user and makes
the problem easy to understand.

Curve construction finds applications in many areas of computer aided designs.
Cubic spline is a fundamental topic for constructing low-degree curves, such as B-
splines and Bezier curves. These curves have applications in the design of objects
with smooth surfaces, such as the bodies of aircraft, ships, and cars. A good under-
standing on this topic will definitely pave the way for exploring these areas further.
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CODE LISTINGS

Codeb5A: Mathematical Curves

// code5A.h
#include <afxwin.h>
#include <math.h>

class CCodebA : public CFrameWnd
{
private:
CPoint TopLeft, BottomRight, Origin;
CPoint ptl,pt2,pt3;
CRect DrawRc, rcl, rc2, rc3;
int Colorl,Color2;
char MenuChoice;
public:
CCode5A() ;
~CCode5A () {}
afx_msg void OnPaint () ;
afx_msg void OnLButtonDown (UINT nFlags,CPoint pt);
void Polynomial (),Lemniscate(),CreativeNet (), DrawAxes () ;
DECLARE_MESSAGE_MAP() ;
Y

class CMyWinApp : public CWinApp
{
public:

virtual BOOL InitInstance() ;

Y
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// codebA.cpp

#include “chap5A.h”

BOOL CMyWinApp: :InitInstance()

{
CCode5A* pFrame = new CCodebA;
m_pMainWnd = pFrame;
pFrame->ShowWindow (SW_SHOW) ;
pFrame->UpdateWindow () ;
return TRUE;

CMyWinApp MyApplication;

BEGIN_MESSAGE_MAP (CCode5A, CFrameWnd)
ON_WM_PAINT ()
ON_WM_LBUTTONDOWN ()

END_MESSAGE_MAP ()

CCode5A: : CCodebA()

{
Create (NULL, "Mathematical Curves”,

WS_OVERLAPPEDWINDOW, CRect (20,30,600,450)) ;

TopLeft=CPoint (130,20); BottomRight=CPoint (550,380);
Origin.x=(TopLeft.x+BottomRight.x)/2;
Origin.y=(TopLeft.y+BottomRight.y)/2;
DrawRc=CRect (TopLeft.x+3, TopLeft.y+3,BottomRight.x-3,BottomRight.y-3);
ptl=CPoint (20, 70) ;
rcl=CRect (ptl,ptl+CPoint (100,25)) ;
pt2=CPoint (20,120) ;
rc2=CRect (pt2,pt2+CPoint(100,25));
pt3=CPoint (20,170) ;
rc3=CRect (pt3,pt3+CPoint(100,25));
Colorl=RGB(100,100,100);
Color2=RGB(170,170,170) ;

void CCodebA: :0nPaint ()

{
CPaintDC dc (this) ;
CPen penDark (PS_SOLID,2,Color2);
dc.SelectObject (&penDark) ;
dc.Rectangle (CRect (CPoint (TopLeft) ,CPoint (BottomRight))) ;
dc.FillSolidRect (&rcl,Colorl) ;
dc.FillSolidRect (&rc2,Colorl) ;
dc.FillSolidRect (&rc3,Colorl) ;
dc.SetTextColor (RGB(255,255,255)) ;
dc.SetBkColor (Colorl) ;
dc.TextOut (ptl.x+10,ptl.y+5, “Polynomial”);
dc.TextOut (pt2.x+10,pt2.y+5, “Lemniscate”);
dc.TextOut (pt3.x+10,pt3.y+5, “Creative Net”);
switch (MenuChoice)

case ‘P’:
CCode5A: :Polynomial () ; break;
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case ‘L’:
CCodebA: :Lemniscate () ;break;
case ‘C’:

CCodebA: :CreativeNet () ;break;

}
void CCodeb5A: :OnLButtonDown (UINT nFlags,CPoint pt)
{
if (rcl.PtInRect (pt))
MenuChoice = ‘P’;
InvalidateRect (DrawRc) ;
}
if (rc2.PtInRect (pt))
{
MenuChoice = ‘L’;
InvalidateRect (DrawRc) ;
if (rc3.PtInRect(pt))
{
MenuChoice = ‘C’;
InvalidateRect (DrawRc) ;
}
if (!rcl.PtInRect (pt) && !rc2.PtInRect(pt)
&& !rc3.PtInRect (pt))
MenuChoice = ‘X’;
}

void CCodebA: :DrawAxes ()

{
CClientDC dc(this) ;
CPen penGray (PS_SOLID,2,Color2);
dc.SelectObject (&penGray) ;
dc.MoveTo (Origin.x, TopLeft.y+10) ;
dc.LineTo (Origin.x,BottomRight.y-10) ;
dc.MoveTo (TopLeft.x+10,0rigin.y) ;
dc.LineTo (BottomRight.x-10,0rigin.y) ;

void CCodebA: :Polynomial ()
{
CClientDC dc(this) ;
double X,Y;
CPoint pt;
DrawAxes () ;

// draw the curve, where X is magnified 50 times, Y 20 times

X=-2;
while (X<=4)
{

Y=X* (X+1) * (X-1) *(X-3) ;
pt.x=(int) (50*X) ;



CODE LISTINGS 151

pt.y=(int) (20*Y) ;
pt.x += Origin.x; pt.y=Origin.y-pt.y;
if (DrawRc.PtInRect (pt))
dc.SetPixel (pt,Colorl) ;
X += 0.001;
}
dc.SetTextColor (Colorl);
dc.TextOut (TopLeft.x+20,BottomRight.y-50, "f(x) = x(x+1) (x-1) (x-3)");

void CCodebA: :Lemniscate()

{
CClientDC dc(this);
double rl,r2,t;
CPoint pt;
DrawAxes () ;
// draw the curves where x,y are all magnified 150 times
t=0;
while (t<=8)
{
rl=sin(3*t);
pt.x=(int) (150*rl*cos(t)); pt.y=(int) (150*rl*sin(t));
pt.x += Origin.x; pt.y=Origin.y-pt.y;
if (DrawRc.PtInRect (pt))
dc.SetPixel (pt,Colorl) ;
r2=cos(8*t) ;
pt.x=(int) (150*r2*cos(t)); pt.y=(int) (150*r2*sin(t));
pt.x += Origin.x; pt.y=Origin.y-pt.y;
if (DrawRc.PtInRect (pt))
dc.SetPixel (pt,Color2) ;
t += .001;
}
dc.SetTextColor (Colorl) ;
dc.TextOut (TopLeft.x+20,BottomRight.y-60,"r(t) = sin 3t”);
dc.SetTextColor (Color2) ;
dc.TextOut (TopLeft.x+20,BottomRight.y-30,"r(t) = cos 8t”);
}

void CCodebA: :CreativeNet ()
{
CClientDC dc(this);
double X,Y,t;
CPen penDark (PS_SOLID,1,Colorl);
CPoint pt;

dc.SetTextColor (Colorl) ;

dc.TextOut (TopLeft.x+200, TopLeft.y+20, "Creative Net”) ;

dc.TextOut (TopLeft.x+20,BottomRight.y-40,
“X(t)=sin(0.99*t)+2*cos (3.01*t)");

dc.TextOut (TopLeft.x+20,BottomRight.y-20,
“Y(t)=cos(1.01*t)-0.1*sin(15.03*t)");
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dc.SelectObject (&penDark) ;

t=-150;

X=sin(0.99*t)+2*cos (3.01*t); Y=cos(1.01*t)-0.1*sin(15.03*t);
pt.x=(int) (60*X); pt.y=(int) (120*Y) ;

pt.x += Origin.x; pt.y=Origin.y-pt.y;

dc.MoveTo (pt) ;

while (t<=150)

{
X=sin(0.99*t)+2*cos (3.01*t) ;
Y=cos(1.01*t)-0.1*sin(15.03*t);
pt.x=(int) (60*X) ;
pt.y=(int) (120*Y) ;
pt.x += Origin.x; pt.y = Origin.y-pt.y;
if (DrawRc.PtInRect (pt))

dc.LineTo (pt.x,pt.vy);

::Sleep(0) ;
t += 0.005;

Code5B: Natural Cubic Spline

// code5B.h

#include <afxwin.h>
#include <math.h>

#define M 10

#define IDC_PUSH BUTTON 301

class CCodeb5B : public CFrameWnd
{
private:
CPoint TopLeft, BottomRight, Origin;
double *a,*b, *c, *d;
double *X,*Y;
int m, Push buttonClick;
int Colorl,Color2;
CButton Push button;
CRect Push buttonRect;
public:
CCode5B () ;
~CCode5B() ;
afx_msg void OnPaint () ;
afx_msg void OnLButtonDown (UINT nFlags, CPoint pt);
afx_msg void OnClickCalc() ;
void ComputeCSpline() ;
DECLARE_MESSAGE_MAP () ;
}i

class CMyWinApp : public CWinApp
{
public:

virtual BOOL InitInstance() ;

Y
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// Natural Cubic Spline Interpolation

#include “chap5B.h”

BOOL CMyWinApp: :InitInstance()

{
CCode5B* pFrame = new CCode5B;
m_pMainWnd = pFrame;
pFrame->ShowWindow (SW_SHOW) ;
pFrame->UpdateWindow () ;
return TRUE;

CMyWinApp MyApplication;

BEGIN_MESSAGE_MAP (CCode5B, CFrameWnd)
ON_WM_PAINT ()
ON_WM_LBUTTONDOWN ()
ON_BN_CLICKED (IDC_PUSH BUTTON, OnClickCalc)
END_MESSAGE_MAP ()

CCodeb5B: : CCodebB ()
{
a=new double [M+1];
b=new double [M+1];
c=new double [M+1];
d=new double [M+1];
X=new double [M+1];
Y=new double [M+1];
Create (NULL, "Natural Cubic Spline Interpolation”,
WS_OVERLAPPEDWINDOW, CRect (0,0,800,500)) ;
Push buttonRect=CRect (120,410,240,450) ;
Push button.Create(“Plot Curve”,WS_CHILD | WS_VISIBLE

153

| BS_DEFPUSH BUTTON, Push buttonRect,this, IDC_PUSH BUTTON) ;

TopLeft=CPoint (80,20); BottomRight=CPoint (500,380);

Origin=CPoint ( (TopLeft.x+BottomRight.x) /2, (TopLeft.y+BottomRight.y)/2);

m=0; Push buttonClick=0;

Colorl=RGB(100,100,100) ;

Color2=RGB(150,150,150) ;
}

CCode5B: : ~CCodebB ()
{

delete a,b,c,d,X,Y;
}

void CCode5B: :OnPaint ()
{
CPaintDC dc(this);
CPen penGray (PS_SOLID,2,Color2);
dc.SelectObject (&penGray) ;
dc.Rectangle (CRect (CPoint (TopLeft),CPoint (BottomRight))) ;

// draw the axes
dc.MoveTo (Origin.x, TopLeft.y+10) ;
dc.LineTo (Origin.x,BottomRight.y-10) ;
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dc.MoveTo (TopLeft.x+10,0rigin.y) ;

dc.LineTo (BottomRight.x-10,0rigin.y) ;

// plot the input values

dc.SetTextColor (Color2) ;

dc.TextOut (BottomRight.x-200, BottomRight.y+50, "Max.#Points: 10”);
dc.TextOut (BottomRight.x+40, TopLeft.y,”3");

dc.TextOut (BottomRight .x+80, TopLeft.y, "X[j1");

dc.TextOut (BottomRight .x+140, TopLeft.y,”Y[j1");

void CCodebB: :0OnLButtonDown (UINT nFlags, CPoint pt)
{

CPoint Point;

CClientDC dc(this) ;

CString s;

CRect rc=CRect (CPoint (TopLeft),CPoint (BottomRight)) ;

CPen penGray (PS_SOLID,2,Colorl);

dc.SelectObject (&penGray) ;

dc.SetTextColor (Color2) ;

if (rc.PtInRect (pt))

if (m<=M)
{

Point=pt;
X[m]=(double) (Point.x-Origin.x) /100;
Y[m]=(double) (Origin.y-Point.y) /10;
dc.Rectangle (pt.x,pt.y,pt.x+5,pt.y+5) ;
s.Format (“%d”,m) ;
dc.TextOut (BottomRight .x+40, TopLeft.y+25+15*m, s) ;
s.Format (“%.21£”,X[m]) ;
dc.TextOut (BottomRight .x+70, TopLeft.y+25+15*m, s) ;
s.Format (“%.21£”,Y[m]);
dc.TextOut (BottomRight .x+130, TopLeft.y+25+15*m, s) ;
m++;

void CCodeb5B: :0nClickCalc ()
{
CClientDC dc(this);
CString s;
CPoint Point;
CRect DrawRc=CRect (TopLeft.x+5, TopLeft.y+5,
BottomRight.x-5,BottomRight.y-5) ;
double xC,yC;

Push buttonClick++;
if (Push buttonClick==1)
m—;
ComputeCSpline () ; // computes the spline

dc.SetTextColor (Color2) ;

dc.TextOut (BottomRight.x+20, BottomRight.y-120,"3") ;
dc.TextOut (BottomRight.x+60,BottomRight.y-120,"al[j1");
dc.TextOut (BottomRight.x+120,BottomRight.y-120, "b[j]");
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dc.TextOut (BottomRight .x+180,BottomRight.y-120,”c[j]");
dc.TextOut (BottomRight .x+240, BottomRight.y-120,”d[j1");
// draw the curve here

dc.SetTextColor (Color2) ;

for (int j=0;j<=m-1;j++)

{
xC=X[31;
while (xC<=X[j+11)
{
yC=a[jl+b[j]1* (xC-X[3F])
+c[jl*pow (xC-X[]]1,2)+d[j]*pow (xC-X[3F],3);
Point.x = (int) (100*xC)+0Origin.x;
Point.y=0rigin.y-(int) (10*yC) ;
if (DrawRc.PtInRect (Point))
dc.SetPixel (CPoint (Point),Colorl) ;
xC += 0.001;
}
s.Format (“%d”,3);
dc.TextOut (BottomRight .x+20,BottomRight.y-100+15*7,s) ;
s.Format (“%.21f”,al[3j]l);
dc.TextOut (BottomRight .x+50,BottomRight.y-100+15*7,s) ;
s.Format (“%.21f”,b[j]);
dc.TextOut (BottomRight .x+110,BottomRight.y-100+15%*7,s) ;
s.Format (“%.21f",c[j]);
dc.TextOut (BottomRight .x+170,BottomRight.y-100+15*7j,s) ;
s.Format (“%$.21£f”,d[3j]);
dc.TextOut (BottomRight .x+230,BottomRight.y-100+15*7j,s);
}

void CCodebB: :ComputeCSpline ()
{
double *h, *1, *mu, *z, *alpha;
h=new double [M+1];
l=new double [M+1];
mu=new double [M+1];
z=new double [M+1];
alpha=new double [M+1];
for (int j=0;j<=m;j++)
aljl = Y[3l;
for (j=0;j<=m-1;3j++)

h{jl = X[3+1] - XI[31;
for (j=1;j<=m-1;7j++)
alphalj] = 3*(alj+1l]1*h[j-11-al]j]

*(h(jl+h[j-11)+alj-11*h(3])/(h(3]1*h[]-11);

1[0]=1; mu[0]=0; z[0]=0;

for (j=1;j<=m-1;j++)

{
1(j1=2*(h[j]l+h[j-1]1)-h[j-1]*mulj-1];
mul(jl=h{31/1(31;
z[jl=(alphal[jl-h[j-11*z[j-11)/1[31;
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1[m]=1; z[m]=0; c[m]=0;

for (j=m-1;3>=0;3j-)

{
cljl=z[jl-muljl*cl[j+1]1;
bljl=(alj+1l]l-aljl)/h[j]l-h[jl*(c[j+1]1+2*c[j])/3;

dljl=(c[i+1]1-c[31)/(3*h[]]);
}

delete h,1,mu, z,alpha;



CHAPTER 6

WORKING WITH IMAGES

6.1 HANDLING IMAGES

Images are represented in Windows as digital objects stored either in the computer
memory or as files. An image is a graphical object displayed in Windows as a
graphics device interface (GDI) object. As discussed earlier, GDI consists of func-
tions from the CDC and CGdiObject classes to manage graphics within a Win-
dows application. This graphical standard has a set of device-independent routines
that can be used to draw, print, display, and store images and other graphical objects
based on a device context. GDI objects include pens, brushes, fonts, palettes, and
bitmaps. An image may be created internally using some drawing or painting tools.
In most cases, an image is created from external sources such as scanners, digital
cameras, and downloaded files. An image can be modified, edited, or deleted using
tools provided in the device context, including pens, brushes, fonts, and color
palettes.

An image is stored and displayed in Windows using several different file for-
mats. Some of the most common formats are bitmap, JPEG, and GIF. The differ-
ence between these format lie mostly in their way of storing data and on factors like
data compression, portability, and application. A bitmap image is represented by
tiny units called pixels. This form of image is normally large in size as it is normal-
ly not compressed. JPEG and GIF file formats, on the other hand, are represented as
compressed files, or files smaller than what they actually are.

JPEG stands for Joint Photographic Experts Group and is a lossy compression
method standardized by the International Standards Organization (ISO) in 1990.
Each JPEG file is small in size as it is stored in a compressed format, which results
in some loss in quality. Size reduction is accomplished by grouping the data into
several squares and applying the discrete cosine transform method for turning these
squares into a curve. The file keeps track of changes when updates are made.
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Through this process, some not-so-critical data is lost to achieve compression. For
example, compression may degrade or distort the original colors of the image. The
JPEG standard is widely used for storing large-size images or photographs based on
24 bits of data and 16.7 million colors. The format is suitable for storing still images
with continuous tones, as in high-quality photographs and images. JPEG does not
support animation.

GIF, or Graphics Interchange Format, is suitable for images with large areas of
flat color. The format compresses an image without losing any data from the origi-
nal image. This is done through a compression method that stores important keys of
the data in a hash table. However, the format supports a palette of less than 256 col-
ors in an 8-bit format. GIF is suitable for storing icons, clip art, buttons, and images
for animation. Unlike JPEG, GIFF is quicker to load, making it suitable for moving
applications such as graphics animation.

The JPEG and GIF file formats are more open and portable as they can be read
from different computer systems, including Unix and Apple Macintosh. The bitmap
format, on the other hand, is confined to the Microsoft Windows system only. How-
ever, there are many tools available in the market to convert a bitmap into other file
formats, and vice versa.

In this chapter, we discuss some fundamental concepts in using MFC for manip-
ulating images. Two examples are presented. The first example shows how a color
image is converted into several monotone scales. The second example explores a
fundamental area of study in image processing involving the edge-detection prob-
lem.

6.2 BITMAP FILE FORMAT

A bitmap is a native file format for the Microsoft Windows environment for dis-
playing images based on a rectangular mesh of cells called pixels. To the computer,
a bitmap represents a drawing surface in the computer memory that can be manipu-
lated by the device context in the window. A bitmap is a form of raster data storage
with almost no compression. As a result, a bitmap file occupies a large storage area
in the disk, which makes it inferior to the JPEG and GIF formats in terms of the size
of data storage.

There are two types of bitmaps. The first is the device-dependent bitmap, or
DDB. A DDB does not have a color palette and, therefore, is dependent on devices
such as the screen for colors. DDBs are used mostly for transferring the information
of an image between the memory and the screen. This facility is especially useful in
applications requiring quick graphics redraws and updates, such as in graphics ani-
mation. The DDB format is seldom stored in a disk.

The second type is the device-independent bitmap, or DIB. The DIB includes a
color palette that is stored with the BMP file extension. The DIB format is more rel-
evant to Windows as it is not dependent on specific devices. A DIB file consists of
a file header, a bitmap header, a bitmap color table, and the data. Unlike a DDB, a
DIB operation usually involves storage in a disk.
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Raster Operations Involving Bit Shifting

We discuss a method for manipulating the colors of an image by transforming the
pixels of a colored image into red, green, blue, and black/white monotone scales.
The transformation is made possible through a series of operations on the pixels
called bit shifting. Bit shifting is a mathematical operation for moving some bits
from a given string to another location within the string.

In Windows, a bitmap is represented by 24 bits of data, representing a total of
16,777,126 colors. An image is formed from the rectangular composition of pixels.
Each pixel is represented by a string consisting of 24 bits of binary digits in the
MFC function RGB () . The first eight bits in the string starting from the right form
the red component. This is followed by eight bits of green in the middle, and the re-
maining bits make up blue.

Figure 6.1 shows a pixel in the shaded square having its value defined as
RGB(174,55,171), represented as a 24-bit string. The figure also shows the
corresponding values in hexadecimals: AB for 171, 37 for 55, and AE for 174.

The monotone scales for red, green, and blue are easily obtained by blanking the
other two color components, as follows:

Red RGB(r,0,0)
Green RGB(0,qg,0)
Blue RGB(0,0,Db)

A grayscale color is obtained by setting r=g=b in RGB (r, g, b). A solid black
color is obtained by setting r=g=b=0, whereas r=g=b=255 produces white.
A raster operation involving bitmaps combines one or two source pixels to pro-

174 55 171

Red Green Blue

Figure 6.1 A pixel represented as a 24-bit string.
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duce a destination pixel. Bit shifting is a form of raster operation that transforms the
original color of a given pixel to a different color. Bits in a string can be shifted
from the left or right. Left shifting is denoted as <<, whereas right shifting uses the
symbol >>. In general, right shifting causes the string to lose its value as the vacat-
ed bits on the right are filled with zeros. Left shifting, on the other hand, may result
in a gain or a loss in value for the original pixel.

Figure 6.2 (a) and (b) shows left and right shift operations on a 8-bit string.
In Figure 6.2 (a), a right shift of 3 bits causes the bits 10101 occupying the first five
places from the left to be shifted three places to the right. The new string has a bina-
ry value of 00010101, or 21 in decimal. The vacated three places from
the left in this string are all filled with zeros. On the other hand, left shifting of
3 bits as shown in Figure 6.2 (b) produces a new binary value of 01110000, or 112
in decimal. In this case, the three places from the right are all filled with zeros.

Figure 6.3 shows an example of bit shifting on a pixel that has an original value
of RGB (181, 55, 174).We call the red, green and blue components of the pix-
el simply r, g, and b, respectively. The red component of a pixel occupies the first
eight bits from the right. Therefore, a pixel can be converted into its red monotone
scale by performing right shifting on the given pixel by 16 bits. A right shift of 16
bits is performed that results in a new value given by r=RBG (174,0,0).

In a similar manner, the green component is obtained by right-shifting r by 8
bits to produce r=RBG (0, 174, 0), as shown in the figure. Finally, we obtain the
blue component of the pixel by right-shifting another 8 bits to g to get
b=RBG(0,0,174). The red, green, and blue components of the bitmap image are
displayed at the bottom of this figure.

The operation extends to finding the grayscale version of the bitmap image, rep-
resented as bw. A grayscale image consists of pixels whose red, green, and blue
components have equal values. This objective is achieved simply by adding the
three components obtained earlier from the bit operations, as follows:

bw=r+g+b
=RGB(174,0,0)+RGB(0,174,0)+RGB(0,0,174)
=RGB(174,174,174)

174 174
iii _____ 00 0O
174 >>3 =21 174 <<3 =112

Figure 6.2  (a) Right shifting. (b) Left shifting.
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RGB(181,55,174) = RGB(0xB5,0x37, 0xAE)
(Blue) (Green) (Red)
174 55 181
A D 3 7 B 5
1 01 0 1 1 10 00 1 1 0 1 11 101 10 1 01
l l l v vy
r =
RGB(181,55,174) >> 16 0 0 0 0 0 0 0 O 00 0O0O0O0OO0O 10 101 110
= RGB(174,0,0)  —— —————7— T T—T— TTT__________
vy l i
g =
RGB(174,0,0) << 8 00 00O0O0TO0°O0 10101110 000O0O0O0TUO0TO0
= RGB(0,174,0)  — — T T T T —— TT______ 0T - -
RGB(0,174,0) << 8
10 00 0 0O0O0O0TO0 000O0O0O0OTO0TO0

= RGB(0,0,174) ro1rot11

Figure 6.3 Bit shifting operations on a pixel into red, green, and blue.

Code6A: Demonstrating Bit Shifting

We discuss a way to manipulate an image by shifting the bits from the pixels of an
image. Figure 6.4 shows the output from the project Code6A, including a color im-
age (top left, shown here as a grayscale image), its extract copy (top right), and its
manipulations in the form of bit shifting (the rest). The extract copy is obtained by
copying a rectangular area from the original image as an array and pasting this array
to its location. The red monotone scale of the image is obtained by right shifting the
array by 16 bits. A similar operation involving shifting the red image to the left by 8
bits produces a green monotone image. A blue image is obtained by shifting the
green image to the left by another 8 bits. Finally, the red, green, and blue images are
then combined to produce a grayscale image.

The project CodebA consists of the files CodeBA.cpp, CodebA.h, and
Code6A.rc. The latter is a resource file that is needed in order to include a bitmap
file in the project. A resource file also includes resources such as edit boxes, static
boxes, dialog buttons, images, and list view windows. The global variables used in
the application are listed in Table 6.1. Table 6.2 lists all the member functions used
in this application.
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Il Manipulating RGB components through bit shifting O] x|

the original image extract from the original image

-' %ﬁ;,’a'x i

red scale by setting g=b=0 green scale by setting r=b=0 blue scale by setting r=g=0

; \‘

Figure 6.4 Transformation of a color image (original image, shown here as a grayscale im-
age) into red, green, blue, and gray monotone scales.

The raster operation for displaying an image involves moving the bitmaps from
the image to the memory device context currently in use. A memory device con-
text is an object created from the class CDC that holds the image before display-
ing it on the screen. In this case, a Windows device context from CPaintDC is
needed for the display. As the formats used in the memory device context and the
device context may not be the same, an object is created to make these formats
compatible with each other. Once the bitmap has been successfully loaded into the

Table 6.1 Global variables and objects in Code6A

Variable/object Type Description

fl1i1[3] int The pixel value at location (1, j) of the image, where
i is the column and j is the row

Home CPoint Home or the top-left coordinates of the original image

sImage CSize Size of the sample image

MyImage CBitmap The sample image
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Table 6.2 Functions used in Code6A

Function Description

CCode6bA () The constructor of the class

~CCodebA () The destructor of the class

OnPaint () Provides the initial display in response to the message handler

ON_WM_PAINT. The function also displays some instructions
for using the program.

OnLButtonDown ()  Responds to the message handler ON_WM_LBUTTONDOWN, which
records the points clicked using the left mouse, and displays
small rectangles to indicate the points

device context, it can be displayed at any position in the window through the de-
vice context.

Several steps are needed to accomplish this task. First, a resource file called
Code6B.rc is created to enable an object to handle the image. This is achieved by
clicking the mouse’s right button on Resource Files. A menu appears, as shown in
Figure 6.5. Choose Add and another submenu appears. Choose Add Resources from
this submenu.

The image is marked by clicking the mouse’s right button on Bitmap and as-
signed with an id inside the resource file according to the steps shown in Figure
6.6.

B @l Solution Explorer - code5B

E
@ Solution 'code5B' {1 project)
= [ codesB

E| 3 Source Files

. code5B.h

¥] codeSE.cpp

(L1 Header Files

i Add New Item... r Add »
2l Add Existing Item... Add Web Reference...
£ New Folder ¥ Cut
“#  Add Class. .. Copy.
";‘g Add Resource. .. %‘\% o
X Remowve E
! | ||E | Description
Click here to ad Rename 3
f=Y Properties 1

Figure 6.5 Creating the resource file Code6B.rc.
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@ Solution 'codeSB' (1 project)

= [Z4 codesB
- ‘23 Source Files
code5E.h
i E= codeSB.cpp
(- =3 Header Files
resource.h
= =3 Resource Files
e codeSB.rc
x|
Resource type: Mew |
@5 Accelerator -
i
E% Cursor Custam... | N
== Dialog
[&] HT™ML Cancel | -
Icon
g Menu H;Ipl
abe String Table
2 Toolbar
Version

Figure 6.6 Importing the bitmap file as IDB_BITMAP1.

Another object is My Image, which is created from the class CB1itmap to repre-
sent the image. The image is is assigned with the id IDB_BITMAP1 and loaded
into the memory using the function LoadBitmap (). This is done as follows:

CBitmap MyImage;
MyImage.LoadBitmap (IDB_BITMAP1)

The next step is to link the image with the class device context, CDC, before dis-
playing it in the main window through the function OnPaint (). The linking
process involves moving the bitmaps from the memory device context to the device
context in CPaintDC, as follows:

CPaintDC dc (this);
CDC memDC;

An object from the memory device context is created to make it compatible with the
device context dc, derived from the class CPaintDC, as shown in the following
code fragments:
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memDC .CreateCompatibleDC (&dc) ;
memDC . SelectObject (&MyImage) ;

Finally, the image is displayed on the screen using the function BitB1t () through
the device context, as follows:

dc.BitBlt (Home.x,Home.y, 400,320, &memDC, 0, 0, SRCCOPY) ;

The function BitB1t () represents a raster operation that takes eight parameters
as input, as follows:

void BilBlt(a,b,c,d,e,f,g,h);

where

a = x coordinate of the top-left position of the image
b =h coordinate of the top-left position of the image
c = width of the image

d = height of the image

e = a pointer to the dc that has the image

f = x coordinate of the top-left position of the bitmap
g =y coordinate of the top-left position of the bitmap
h = raster operation option

The h parameter above is the raster option in the mapping, as shown in Table 6.3. A
pixel can be mapped onto the screen using the fundamental logical operations in the
binary system: OR, AND, and XOR operations. Table 6.4 shows some common
MFC functions for manipulating a bitmap in the CDC class.

Bit shifting is performed in the function OnLButtonDown (), which responds
to the mouse’s left-button click. Several operations are performed to manipulate the
image. First, a smaller size of the image is copied as the array £ [1] [J] using the
function GetPixel (), where i and j are the row and column numbers, respec-
tively. This function reads the value of the pixel at the given location and returns
this value as an integer. The pixels are immediately transferred to the new locations
on the right using SetPixel (), as follows:

fli][j]l=dc.GetPixel (i+Home.x+50, j+Home.y+100) ;
dc.SetPixel (440+1i,Home.y+3j,f[1i]1[J]);

The red monotone image is obtained by shifting the values of the pixels by 16
bits to the right, as follows:

r= £[i][]j] >> 16;
dc.SetPixel (20+1,400+3,r);
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Table 6.4 Some common MFC functions for manipulating a bitmap in CDC

Function Description
LoadBitmap () Load the bitmap into the memory
StretchBlt () Copy and display a bitmap from the memory to the

window, allowing some degree of stretching and
compression of the original image

CreateCompatibleDC () Make the image compatible between the memory device
context and the Windows device context

GetPixel () Read a value from the pixel

SetPixel () Write a value on the pixel

Table 6.3 Some raster options for displaying the bitmap using BitBlt

Function Description

SRCCPY Copies the source bitmap to its destination

SRCPAINT Applies OR in combining the source and destination pixels
SRCERASE Inverts the destination bitmap and applies AND with the source pixels
SRCAND Applies AND in combining the source and destination pixels
SRCINVERT Applies XOR in combining the source and destination pixels

Shifting the red pixels to the left by eight bits produces green pixels, as follows:

g = r << 8;
dc.SetPixel (230+1i,400+73,9);

Similarly, blue pixels are obtained by shifting the green pixels to left by eight bits:

b =g << 8;
dc.SetPixel (440+1i,400+7,b);

Finally, we get the gray components by combining the red, green, and blue compo-
nents, as follows:

bw=r+g+b;

dc.SetPixel (440+i,200+7],bw) ;

6.3 EDGE-DETECTION PROBLEM

Image processing is an area of study for manipulating and modifying images. In

most cases, image processing deals with methods for improving the quality of an
image. For example, the quality of a bad image taken from a digital camera can be
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improved by reducing the noise and sharpening the edges. Image processing also
includes image modification. An image may be stretched, magnified, warped, rotat-
ed, dithered, and so on, so that it appears more appealing.

Another important application of image processing is in recognizing the objects
in an image, which may help in decision making. During the Bosnian war in the
mid-1990s, for example, photos taken from American military aircraft were ana-
lyzed to identify mass graves in certain parts of the country. A photo of a geograph-
ical area taken from an aircraft thousands of feet above the ground may not be clear
enough to identify some or all the objects in it. The quality of this image can be im-
proved by applying several techniques in image processing. The improved image
will then describe the area better, making it possible to recognize the objects in the
image.

Image processing involves techniques for image enhancement, restoration, and
smoothing by moving, copying, deleting, and modifying the contents of the pixels
in the image. Image enhancement is a technique for improving the quality of an im-
age. For example, a blurred image can be improved by sharpening the edges and re-
moving the unwanted noise in the image. Image restoration involves recovering the
missing bits and color values in an image. Smoothing is a technique for reducing
noise in an image.

Edge detection is one of the most fundamental operations in image processing.
Basically, edge detection is a technique for finding the edges of an image that sepa-
rate pixels of high intensity from low intensity or, in other words, finding the binary
form of the image. The edges of an image consist of boundary lines separating pix-
els of high intensity in the image from those of low intensity. The separation
scheme between the high- and low-intensity pixels for producing the edges is based
on a preset threshold value.

Edge detection is carried out through a linear operation called convolution, or
sometimes called filtering. Convolution involves an operator called kernel that adds
the product of the convolution coefficients to the pixel’s neighbor values. This op-
eration has the effect of filtering the image from unwanted noise, besides sharpen-
ing the edges.

A pixel f(x, y) changes its value to f'(x, y) through a convolution kernel K, as
shown in the following equation:

S xy) =[x »K (6.1)

In the above equation, K represents the method of the convolution. Equation (6.1)
represents a linear transformation from f(x, y) to f'(x, y). The new value f”(x, y) is
compared to a threshold value. The binary assignment follows from this compari-
son: if the new value is greater than the threshold, then 1 (or 0) is assigned to the
pixel. Otherwise, the pixel is assigned with 0 (or 1). By mapping all the pixels in the
image according to this rule, a binary version of the image is obtained that clearly
shows the edges in the image.

Some of the most commonly applied convolution methods for edge detection in-
clude the Roberts, Prewitt, Sobel, Canny, and Laplacian methods. In this section,
we focus our discussion on the Sobel and Laplacian methods.
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Sobel Filtering Method

The Sobel method is one the most popular digital filtering methods for detecting the
edges of an image. The method is based on a one-dimensional approximation to
gradient for smoothing. In real life, a Sobel filter is used in applications such as
medical imaging. One typical use is in counting the number of human blood cells.
In this application, an image is acquired by scanning or by inserting a tiny camera
into the body.

A Sobel filter consists of two convolution kernels for detecting the horizontal
and vertical changes in an image. The kernels make up the gradient vector S =
[S\\S,], where S, is the horizontal kernel and S|, is the vertical kernel. The horizontal
kernel S, is used for smoothing along the direction of the x-axis, and the vertical
kernel S, applies to smoothing along the y-axis.

The horizontal kernel S, is produced by applying the first derivative using the
central difference approximation rule to produce the following matrix:

1 2 1
S, = 0 0 O 6.1)
-1 2 -1

The vertical kernel is produced in the same manner, as follows:

1o -
Sy = ? 8 ’? (6.2)

The two kernels can be used to compute the magnitude of the gradient, which is
the filter value, and the direction of the edges in the image. The magnitude of the
gradient is determined as follows:

IS|=VS§Z+5S2 (6.3)

The above operation, which involves a square root, is computationally expensive. A
more practical approximation has the following form:

[SI =18 + 1S, (6.4)

The Sobel filter also gives the direction of the edges in the image as follows:

%)

f=tan! -& (6.5)

S,

Figure 6.7 shows an approximation map for a 3 X 3 neighborhood of an image. A
pixel at (7, j) with its value given by f;; is updated to f”;; using the Sobel method
based on the values of its eight neighboring pixels, as shown in the figure. The fol-
lowing equation performs this operation:
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Ji1j S St
Jirj i Jis1)
fi.l,,'.l fi,j.l fi+1,,'.1

Figure 6.7 Pixel update at (i, j).
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1
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In the above equation, # is the neighborhood size, which is 3 in this case, and S}, ; is
an element in the kernel matrix. The pixels are updated using the kernels by scan-
ning the image starting from left to right of the top row, then repeating the proce-
dure for the middle and bottom rows.

Laplacian Filtering Method

The Laplacian method is a second-order differential equation operator based on the
Laplace equation, given as follows:
’>r P

~2=0 (6.7)

VI @ T g

A numerical approximation to the above equation is obtained from the central-dif-
ference rules given by

o= Yos oy f =i i
2

2
vy h K2

(6.8)

where /& and k are constants. A simple Laplacian kernel over a 3 x 3 neighborhood
is obtained by rearranging the coefficients of Equation (6.8) and setting h = k = 1,
as follows:

0 0 0 1 0 1 0
L=|1 2 1]+10 2 0]=]1 4 1 (6.9)
0 0 0 1 0 1 0

Another form of Laplacian kernel for the 3 x 3 neighborhood is given below:

-1 -1 -1

L= —} 21% —} (6.10)



170 WORKING WITH IMAGES

Laplacian method is isotropic in the x and y directions as it is independent of these
axes. The method is also invariant to the 90 degree rotation. The Laplacian method of
edge detection is simple to implement by starting the scan from the top row in the di-
rection from left to right. A scan of the pixel at (7, j) having its initial value f;; using
L, from Equations (6.9) or (6.10) produces a new value /7, as follows:

f5= 2 D frnaonalng (6.11)
h=1 k=1

The Laplacian method has the disadvantage of being very sensitive to noise,
which affects the output. Therefore, it is seldom used on its own. Normally, the
method is used in line with a technique called Laplacian of Gaussian (LoG) which
handles noise in a more effective way.

Code6B: Detecting the Edges of an Image

We discuss a model for detecting the edges of a bitmap image using the Sobel and
Laplacian methods. The project is called Code6B and it consists of the files
Code6B.h, Code6B.cpp, and Code6B.rc. Figure 6.8 shows the output from the
project. It consists of the original black and white image displayed at the left and
three smaller images at the right. Convolutions using the Sobel and Laplacian meth-
ods are performed when the mouse’s left button is clicked. The top image on the

Figure 6.8 Output from Code6B.
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right shows the results from convolution using the Sobel method. The middle image
is produced from the Laplacian filter using Equation (6.9), and the bottom image is
produced from Equation (6.10).

The application class used in Code6B is CCode6B and it has a few global vari-
ables and objects, as listed in Table 6.5. The bitmap image is defined in the resource
file with the id IDB_BITMAPL. It is represented in the memory as the object bmp.
The image has its top-left-hand coordinates defined by the object Home and its size
declared as sTmage. The pixel value f;; at (i, j) which displays the image is repre-
sented by £[1]1[J].

Table 6.6 describes the global functions in this application, OnPaint () and
OnLButtonDown (), which respond to the events detected by WM_PAINT and
WM_LBUTTONDOWN, respectively.

The constructor in this project allocates memory for the array £ [] [] and loads
the image into the computer memory. The image is loaded as the bitmap object bmp
using the function LoadBitmap ().

The original image is displayed in the main window using the function On-
Paint (). To display the image, a memory device context called memDC is created
to hold the image and makes it compatible with the Windows device context called
dc. The image is then displayed using the function BitB1t (). The following rou-
tine shows this task:

CDC memDC;

memDC . CreateCompatibleDC (&dc) ;

memDC . SelectObject (&bmp) ;

dc.BitBlt (Home.x,Home.y, 400,300, &memDC, 0, 0, SRCCOPY) ;

The array £ [] [] is an extract copy of the original image. Its values are assigned
by reading the pixel values in the rectangular defined by sImage using the func-
tion GetPixel (). From the array, the threshold value of the edges Threshold
is computed simply by taking the mean of the pixel values, as follows:

for (int 3j=0;j<=sImage.cy;j++)
for (int 1=0;i<=sImage.cx;i++)
{
flil[j]l=dc.GetPixel (Home.x+1i+50, Home.y+j+100) ;
Threshold += (double)f[i][j]:
}
Threshold /= (double) (N*N) ;

Convolutions using the Sobel and Laplacian methods are performed in OnL-
ButtonDown (). The Sobel method updates a pixel at (7, /) by masking the pixels
horizontally and vertically. Horizontal and vertical maskings on this pixel are per-
formed using Equations (6.1) and (6.2), respectively, by referring to its six neigh-
boring pixels. Convolution is obtained by combining the two results Sx and Sy as S
using Equation (6.4). The operation is performed as follows:
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Table 6.5 Global variables and objects in Code6B

Variable/object ~ Type Description

£l1i11[3] int Array representing the pixels of the image

Threshold double Threshold value of the edges that separates pixels of high
intensity from low intensity

bmp CBitmap Object representing the image

sImage CSize Size of the image

Home CPoint Top-left coordinates of the original image in the window

Sy=f[i-1]1[J+1]-£[i+1] [J+11+2*£[1-1]1[7] // horizontal kernel

=2*E[i+11 [J1+£[1i-21[j-11-£[i+11[j-11;
Sx=-f[i-1][J+1]1-2*£[1i] [J+1]-£[i+1][J+1] // vertical kernel

+E[1-11[J-1142*£[11[J-11+£[i+1]1[3-11;
S=abs (Sy) +abs (Sx) ;

The edges of the image are drawn as white lines. An edge is formed if the convolu-
tion result S is greater than the threshold value, as follows:

if (S<=(int)Threshold)
S=RGB(0,0,0) ;
else
S=RGB (255,255, 255) ;
dc.SetPixel (440+i,Home.y-25+3,9);

The Laplacian method is applied in a similar manner. Convolution using Equa-
tion (6.9) as the kernel is implemented as follows:

L=-f[i] [J+1]1-£[1-11[J1+4*E£[1i1[J1-£[i+11[J1-£[11[3-11; // kernel 1
L=abs (L) ;
if (L<=(int)Threshold)
L=RGB(0,0,0);
else
L=RGB (255,255, 255) ;
dc.SetPixel (440+i,Home.y+5+sImage.cy+j,L);

Table 6.6 Global functions in Code6B

Function Description
OnPaint () Function for the initial display in the window
OnLButtonDown () Function that responds to the message handler

ON_WM_LBUTTONDOWN for the mouse’s left-click
event
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Another kernel, using Equation (6.10), is written as follows:

L=-f[i-1][J+11-£[11[J+1]1-£[i+1][j+1] // kernel 2
~f[i-11[J1+8*£[1i]1[3]1-£[i+1][]]
-f[i-11[3-11-£[i]1[3-1]1-£[i+1]1[]-11;

L=abs (L) ;

if (L<=(int)Threshold)

L=RGB(0,0,0);
else
L=RGB (255, 255,255) ;

dc.SetPixel (440+1i,Home.y+35+2*sImage.cy+J,L) ;

6.4 SUMMARY AND CONCLUSION

In this chapter, we discussed two small examples of using MFC involving images.
The first application involves manipulating the pixels of an image for producing
their monotone color scales. This is done through a technique called bit shifting that
alters the values of the pixels. The second application involves two elementary
methods for finding the edges of an image. The problem is called edge detection.
The two methods are the first-order Sobel filtering method and the second-order
Laplacian method.

Applications involving images are used in many areas of study, including multi-
media, image processing, signal processing, visualizations, and numerical methods.
There are many ways an image can be applied in these areas of study. For example,
the edge-detection application discussed in this chapter can easily be extended to
include things like object recognition. It is necessary to identify primitive objects
like lines and circles as they lead to recognizing characters and patterns in the im-
age. C++ with MFC will definitely be useful as a programming tool for developing
solutions to these problems.
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CODE LISTINGS

Code6A: Working with Colors

// codebA.h
#include <afxwin.h>
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#include “resource.h”
#define N 500

class CCode6bA : public CFrameWnd
{
private:
int **f;
CSize sImage;
CPoint Home;
CBitmap MyImage;
public:
CCodebA() ;
~CCodebA() ;
afx_msg void OnLButtonDown (UINT,CPoint) ;
afx_msg void OnPaint () ;
DECLARE_MESSAGE_MAP ()
Y

class CMyWinApp : public CWinApp
{
public:
BOOL InitInstance() ;
Y

// codebA.cpp: Working with colors
#include “code6A.h”

CMyWinApp MyApplication;

BOOL CMyWinApp: :InitInstance()

{
m_pMainWnd = new CCodebA() ;
m_pMainWnd->ShowWindow (m_nCmdShow) ;
m_pMainWnd->UpdateWindow () ;
return TRUE;

BEGIN_MESSAGE_MAP (CCodebA, CFrameWnd)
ON_WM_PAINT ()
ON_WM_LBUTTONDOWN ( )

END_MESSAGE_MAP ()

CCodebA: : CCodebA ()
{
f=new int *[N+1];
for (int i=0;1<=N;i++)
flil=new int [N+1];
Home=CPoint (10,30) ;
sImage=CSize(200,100) ;
Create (NULL, “Manipulating RGB components through bit shifting”,
WS_OVERLAPPEDWINDOW, CRect (0,0,700,600)) ;
MyImage.LoadBitmap (IDB_BITMAP1) ;
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CCodebA: : ~CCodebA ()

{

for (int i=0;i<=N;i++)
delete f[i];
delete f;

afx_msg void CCodebA: :0OnPaint ()

{

CPaintDC dc(this);

CDC memDC;

memDC .CreateCompatibleDC (&dc) ;

memDC . SelectObject (&MyImage) ;

dc.BitBlt (Home.x,Home.y, 400,320, &memDC, 0, 0, SRCCOPY) ;
dc.TextOut (Home.x+50,Home.y-20, “the original image”) ;
dc.TextOut (440,50, "press left button to see the rest”);

afx_msg void CCodebA: :OnLButtonDown (UINT nFlags,CPoint pt)

{

CClientDC dc(this) ;
int r,g,b,bw;
dc.TextOut (440,Home.y-20, "extract from the original image”);
dc.TextOut (440,180, "gray scale by setting r=g=b”);
dc.TextOut (20,380, "red scale by setting g=b=0");
dc.TextOut (230,380, "green scale by setting r=b=0");
dc.TextOut (440,380, "blue scale by setting r=g=0");
for (int j=0;j<=sImage.cy;j++)
for (int i=0;i<=sImage.cx;i++)
{

fli]l[j]l=dc.GetPixel (Home.x+i+50,Home.y+j+100) ;

dc.SetPixel (440+1i,Home.y+3,£[11[31);

r= f[i][j] >> 16;

dc.SetPixel (20+1,400+3,r);

g = 1r << 8;

dc.SetPixel (230+41,400+3,9);

b =g << 8;

dc.SetPixel (440+1i,400+3,Db) ;

bw=r+g+b;

dc.SetPixel (440+1,200+7,bw) ;

Code6B: Edge Detection Problem

// code6bB.h

#include <afxwin.h>
#include <math.h>
#include “resource.h”
#define N 200

class CCode6B : public CFrameWnd

{

175
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public:
CBitmap bmp;
CPoint Home;
CSize sImage;
double threshold;
int **f;
public:
CCodebB() ;
afx_msg void OnLButtonDown (UINT, CPoint);
afx_msg void OnPaint () ;
DECLARE_MESSAGE_MAP ()
Y

class CMyWinApp : public CWinApp
{
public:
BOOL InitInstance();
Y

// code6B.cpp: Edge detection of an image
#include “code6B.h”

CMyWinApp MyApplication;

BOOL CMyWinApp: :InitInstance()

{
m_pMainWnd = new CCode6B() ;
m_pMainWnd->ShowWindow (m_nCmdShow) ;
m_pMainWnd->UpdateWindow () ;
return TRUE;

BEGIN_MESSAGE_MAP (CCodeb6B, CFrameWnd)
ON_WM_LBUTTONDOWN ( )
ON_WM_PAINT ()

END_MESSAGE_MAP ()

CCodebB: : CCodebB ()
{
f=new int *[N+1];
for (int i=0;1<=N;i++)
flil=new int [N+1];
Home=CPoint (10, 50) ;
sImage=CSize (200,100);
threshold=0;
Create (NULL, "Edge detections using Sobel and Laplacian methods”,
WS_OVERLAPPEDWINDOW, CRect (0,0,700,600)) ;
bmp . LoadBitmap (IDB_BITMAPL) ;

void CCode6B: :0OnPaint ()
CPaintDC dc(this);

CDC memDC;
memDC . CreateCompatibleDC (&dc) ;



}

CODE LISTINGS

memDC . SelectObject (&bmp) ;
dc.BitBlt (Home.x,Home.y, 400,300, &memDC, 0, 0, SRCCOPY) ;
for (int j=0;j<=sImage.cy;j++)
for (int i=0;i<=sImage.cx;i++)
{
f[i][jl=dc.GetPixel (Home.x+1+50,Home.y+3j+100) ;
threshold += (double)f[i][j];
}
threshold /= (double) (N*N) ;

afx_msg void CCodebB: :0OnLButtonDown (UINT flags, CPoint pt)

{

CClientDC dc(this);
int Sy,Sx,S,L;

dc.TextOut (440,Home.y-40, "Sobel Mtd”) ;
dc.TextOut (440,Home.y-10+sImage.cy, "Laplacian 1 Mtd”);
dc.TextOut (440,Home.y+20+2*sImage.cy, "Laplacian 2 Mtd”);
for (int j=1;j<=sImage.cy-1;j++)

for (int i=1;i<=sImage.cx-1;i++)

177

{
// Sobel masking for detecting the edges
Sy=f[i-1]1[j+1]1-£[i+1]1[3+1]1+2*£[i-11[]J] // horizontal kernel
“2*f[i+11 [J1+£01-11[3-11-£[i+111[3-11;
Sx=-f[i-1][3+1]-2*f[i][j+1]-£[i+1][j+1] // vertical kernel
+f[1i-11[F-11+42*£[1]1[J-11+£[i+11[F-11;
S=abs (Sy) +abs (Sx) ;
if (S<=(int)threshold)
S=RGB(0,0,0) ;
else
S=RGB (255,255, 255) ;
dc.SetPixel (440+1,Home.y-25+3,8S);
// Laplacian masking for detecting the edges
L=-f[i][3+1]1-£f[i-1]1[3]
+4*£[11[J]1-£[i+1]1[J1-£[11(3-1); // kernel 1
L=abs (L) ;
if (L<=(int)threshold)
L=RGB(0,0,0);
else
L=RGB (255,255, 255) ;
dc.SetPixel (440+i,Home.y+5+sImage.cy+Jj,L);
L=-f[i-1]1[3+11-£[1i][F+1]-£[i+1][F+1] // kernel 2
—f[i-11[31+8*£[i][J1-£[i+1]1[]]
-f[i-11[3-11-£[4i1[3-11-£[i+11[3-11;
L=abs (L) ;
if (L<=(int)threshold)
L=RGB(0,0,0);
else
L=RGB (255, 255,255) ;
dc.SetPixel (440+1i,Home.y+35+2*sImage.cy+Jj,L) ;
}






CHAPTER 7

VISUALIZING A GRAPH

7.1 ELEMENTARY GRAPH CONCEPTS

Graph theory is a branch of mathematics that deals with the study of graphs and
their properties and applications. The importance of graph theory is reflected in the
way a given problem is reduced to the form of a graph before its solution is ob-
tained. Several applications in the real world can be expressed as graphs. For exam-
ple, a tanker transporting fuel from the source (depot) to several destinations in the
city will have to follow routes with the shortest paths in order to save cost and time.
In this case, the source and the destinations make up the nodes of the graph, where-
as their delivery routes make up a problem of finding the shortest paths in graph
theory. Some other applications of graph theory include problems of optimization
such as scheduling, placement, routing, and inventory and resource management.

A graph G consists of a set of vertices, V, and a set of edges, or links, E. The set
of vertices having N vertices is denoted as V' = {v;}, fori=1,2, ..., N. The set of
edges is symbolized by E = {e;;}, where i and j are the pair of nodes with a direct
link e;; in the graph. A link e; is said to exist between a pair of nodes (v;, v)) if the
two nodes are adjacent to each other.

Figure 7.1 shows a graph G with V' ={v;} fork=1,2,...,8 and £ = {e;} for i, j
=1,2,...,8; e; has a nonzero value if a link exists and 0 otherwise. A link in the
graph may have a value called its weight. A weight may represent the length, dura-
tion, or any other cost associated with the two adjacent nodes. A graph with all its
links having weights is called a weighted graph. Figure 7.1 shows a weighted graph
with eight nodes and 11 links. A weighted graph may represent a network of cities,
where the nodes are the cities and the links are the roads linking the cities. The
weights in the links, in this case, may represent their road distances or the time tak-
en for road travel between the cities. The weights in the edges e;; and e; may or may
not have the same values. For example, although the road distances from i to j are

Numerical Simulations and Case Studies Using Visual C++.Net by Salleh, Zomaya, Olariu, and Sanugi 179
Copyright © 2005 John Wiley & Sons, Inc.



180 VISUALIZING A GRAPH

Figure 7.1 A weighted graph with eight nodes and 11 links.

the same as from j to i, the time taken to travel may not be the same as a result of
different road and traffic conditions between them.

To understand a graph, several fundamental properties are discussed. A graph G’
in which all nodes and links are contained inside another graph G is said to be a
subgraph of that graph, denoted as G' C G. In Figure 7.1, G’, with V' = {vs, v, v5}
and E'= {es, es7}, is a subgraph of G. A graph in which any node can find a path to
any other node in the graph is called a connected graph. Otherwise, the graph is dis-
connected and, in this case, it consists of more than one component. A link in the
graph that causes the graph to be disconnected is called a bridge. In a similar man-
ner, a node is called an articulation point if its removal causes the graph to be dis-
connected. In Figure 7.1, the connected graph has one bridge, e4s, with vs as the
only articulation point.

A node that has a physical link to its neighbor is said to be adjacent to that node.
The adjacency information of all the nodes in the graph is stored as the adjacency
matrix. In this matrix, row number i corresponds to the node number, whereas the
column number j is its adjacency status relative to that node. The entry of 1 in row i
and column j indicates nodes i and j are adjacent, otherwise they are not. The adja-
cency matrix of the graph in Figure 7.1 is given as follows:

Adjacency Matrix Degree
0 1 1.0 0 0 1 0] 3
1 0 0 0 0 0 0 1 2
1 0 0 0 0 1 0 1 3
0 0 06 01 0 0 O 1
0 0 06 1 0 1 1 0 3
0 0 1 01 0 0 1 3
1 0 0 06 1 0 0 1 3
[0 1 1 0 0 1 1 0 4




7.1 ELEMENTARY GRAPH CONCEPTS 181

Related to the graph adjacency issue, the degree of a node in a graph is defined
as the number of edges that pass through the given node. The degree of a node
can also be determined from the adjacency matrix simply by counting the number
of 1’s in the node row. The degree of a graph is the maximum of the degrees of
the nodes. From Figure 7.1, v, has a degree of three since it is adjacent to v,, vs,
and v,. The graph in this figure has a degree of four as its maximum degree is de-
termined by vy.

A path in a graph is a successive series of links from a source node to its des-
tination node. The path is called a cycle if it starts at a node and ends at the same
node. A graph is said to be cyclic if it has a cycle, otherwise it is acyclic. A path
in a graph that visits all the edges in the graph exactly once is called an Eulerian
path. Related to this terminology is the Hamiltonian path, which is a path that vis-
its every node in the graph exactly once. An interesting application related to the
Eulerian path is the well-known traveling salesman problem (TSP), which may be
applied for solving several difficult combinatorial optimization problems. TSP in-
volves finding a Hamiltonian path in the graph in which the source and destina-
tion nodes are the same, and whose sum of the links is minimum.

A connected graph is said to be bipartite if the nodes can be partitioned into two
subgraphs in such a way that no two nodes in the subgraph are adjacent to each oth-
er. Figure 7.2 shows a bipartite graph (left) as the nodes can be partitioned into two
bins (right). Similarly, if the graph can be partitioned into three disjoint subgraphs,
then the graph is tripartite. In general, an m-partite graph consists of m disjoint sub-
graphs of that graph.

One useful application of the m-partite graph is in the node coloring problem.
One version of the node coloring problem can be stated as finding the least number
of colors so that no two adjacent nodes in the graph share the same color. In this
problem, it is easy to verify that an m-partite graph requires m colors to make sure
that every node in a partition has its own distinct color. Another version is the edge

V3
) 1) Vi
V4 \ 7

Vi v
3 .< % Vs
v V4 ./ \. Vg

8
VS

V7 / \ Vg

Figure 7.2 A bipartite graph.
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coloring problem, which is about finding the least number of colors in such a way
that all the edges originating from a node have distinct colors. The coloring problem
has many applications; for example, the channel assignment problem, which is
about assigning radio frequencies to mobile users in a wireless cellular telephone
network. In this problem, the frequencies assigned to the mobile users in a cell must
be well separated in order to avoid electromagnetic interference. In this case, the
frequencies are colors and the network is the graph. We will discuss this problem
further in Chapter 11.

A link that has a direction is called a directed link. The direction in an edge is
shown as an arrow, where the tail is the source node and the head is the destination
node. The directed edges between pairs of nodes in the graph show the partial order
on a sequence of job activities in the graph. In this scenario, the node at the tail of a
directed edge has a job that needs to be completed before the job at the head can
start. A graph with directed edges is called a directed graph. 1f all the edges have
weights, then the graph is called a weighted directed graph, as shown in Figure 7.3.
In this figure, e,g is a directed link from v, to vg with a weight of 4 units. This link is
not the same as eg,, which, in this case, does not exist as there is no directed link in
this path.

Some other properties of a graph are described briefly here. A graph in which all
the nodes are adjacent to each other is called a complete graph. A subgraph that is
also a complete graph is called a cligue to the graph. The maximum clique of a
graph is then a clique that has the most number of nodes in the graph. It can be
shown that the subgraph {v;, vs, v} in Figure 7.1 is the maximum clique of the
graph. Related to the maximum clique problem is the maximum independent set
problem. An independent set of a graph is a subgraph that has nonadjacent nodes
only. The maximum independent set is then an independent set that has the most

V3

Figure 7.3 A weighted directed graph.
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number of nodes in the graph. In Figure 7.1, {v,, v3, v4} and {v,, v, v3} are two in-
dependent sets of the graph, whereas the maximum independent set is given by {v,,
V3, Va4, Vs, V7}. Two graphs are said to be isomorphic if there is a direct mapping be-
tween the nodes in the two graphs in such a way that the neighbors of the nodes in
the first graph are also the corresponding neighbors of the nodes in the second
graph.

This chapter presents two models involving the creation of a graph and its appli-
cation. The first is a visualization model that allows the graph to be constructed us-
ing a mouse. The second is an application in graph theory for finding the minimum
spanning tree of a graph using Prim’s algorithm. The two models have been de-
signed in such a way that they share a common platform in the form of a user-
friendly interface for drawing the graph.

7.2 GRAPH VISUALIZATION MODEL

A visual display of a graph is very helpful in the study of its features and charac-
teristics. Several tools in MFC are available for providing an interface that allows
the user to construct a graph visually in Windows. The easiest way to do this is
with the use of a mouse. A mouse provides full navigational capability for the
window on the screen. A Windows user can easily plot a point by clicking the
mouse button. However, it is a challenge for the programmer to provide this fa-
cility for the benefit of his/her users. In Visual C++, this feature is available as the
language itself is object-oriented. In one of its powerful features, MFC supports
the creation of several events related to this requirement through the resources
available in its library. In this section, we discuss a method of drawing a graph us-
ing these resources.

Code7A: Drawing a Graph

We discuss a method for constructing a graph using a mouse. Figure 7.4 shows our
tool for drawing a graph. In the figure, a node in the graph is created as a small rec-
tangular box by clicking the left button of the mouse inside the drawing area. A link
between a pair of nodes is formed by clicking the right button on the two pairing
nodes consecutively. In addition, each time a link between two nodes is created, the
program immediately updates the adjacency matrix and the degree of the nodes in
the graph. In the adjacency matrix, an entry has a value of 1 if a link between the
pairing nodes exists, and 0 otherwise.

Our tool for visualizing a graph is Code7A. The program allows the user to
draw a graph having a maximum of N nodes, and N x N links. The macro N is set to
be 10 initially, using the #define facility. It is, therefore, easy to support a higher
number of nodes in the graph by changing this value. The program provides an easy
interface for drawing a graph. The display consists of a drawing area, some simple
instructions, and an output area that shows the adjacency matrix and the degree of
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=10/
Adjacency Matrix Degres
01010001 3
10071 0011 4
000000710 1
11000111 5
00000100 1
o001 1011 4
01110100 4
1101017 00 4

Instructions:
Left mouse to click points

Right mouse to draw a link betwesn two points

Figure 7.4 A user-friendly way of drawing a graph in Code7A.

the nodes in the graph. All the graphical objects, text, and background colors have
been set in grayscale.

The Code7A project consists of the files Code7A.h and Code7A.cpp. The
events associated with this project are the initial display, left-button click, and right-
button click of the mouse, as shown in Figure 7.5. These events are mapped as
WM_PAINT, WM_LBUTTONDOWN and WM_RBUTTONDOWN, respectively. In re-
sponse to WM_PAINT, the function OnPaint () provides the initial display of the
window, which consists of the drawing area, an instruction area, and an output area.
The function OnLButtonDown () responds to WM_LBUTTONDOWN by drawing a
node of the graph each time the left button of the mouse is clicked. Similarly, the
function OnRButtonDown () responds to WM_RBUTTONDOWN by drawing an
edge between any two nodes clicked consecutively using the mouse’s right button.

Several variables, defined inside Code7A.h, are used for setting up the initial
display on the screen. These variables are described briefly in Table 7.1.

Several variables and objects are used to represent the items in the graph. A node
v; is declared in the structure NODE and is represented as v [1i], whereas the link
between the nodes v; and v;, denoted by e, is represented by the array e [1]1 [J].
This array has a value of 1 if v; and v; are adjacent, and 0 otherwise.

The structure NODE defines all the features of a node in the graph, namely, the
node number, its position on the screen, and its representation as a rectangular box.
For example, the degree of v, is represented as v [4] . degree. The contents of the
structure are shown as follows:




typedef struct

{

CPoint Home;
CRect Box;
int degree;

} NODE;
NODE *v;
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// node coordinates in the window
// node representation as a box

// degree of the node

// declares the nodes as an array

The variables and objects in the structure NODE are briefly described in Table 7.2.
The main task of the constructor CCode7A () is to allocate memory for the
class CCode7A. It is also in the constructor that the main window is created and

OnLButtonDown( )
Draw the node

ON_WM_LBUTTONDOWN ON_WM_RBUTTONDOWN

l Project Code7A

CCode7A()
Constructor for initializing
the variables/objects

ON_WM_PAINT

OnPaint( )
Set the initial display

first click

left-button click right-button click

second click

Figure 7.5 The events in Code7A.

Table 7.1 Display setup of Code7A

OnRButtonDown( )
Mark the first node

OnRButtonDown( )
Mark the second node
and draw the edge

Variable/object Class Description

TopLeft CPoint Top-left point of the drawing area

BottomRight CPoint  Bottom-right point of the drawing area

InstText CPoint Starting text coordinates for the instructions

MatText CPoint Starting text coordinates of the adjacency matrix

TextGap int Horizontal spacing between the elements in the adjacency
matrix

FontCourier CFont Font used in the whole program

BoxSize CSize Size of the clicked point (node) in the drawing area

TextColor int Standard text color

BgColor int Standard background color
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Table 7.2 Variables in the graph

Variable/object Class Description

vi[i] The node v;

v[i] .Home CPoint v, coordinates on the main window

v[i].Box CRect v; representation as a rectangular box

v[i] .degree int Degree of v;

el[i1]([3] int The weighted link e

Ptl,Pt2 int The first and second points clicked consecutively using
the left button of the mouse for establishing a link

nv int Number of nodes in the graph

nLinks int Number of links in the graph

RButtonFlag int A flag to indicate if the right-button click on a node

rectangle is the first (1) or second node (2) in the link

several initial values of variables and objects of the entire program are set. The role
of the constructor is outlined in Figure 7.6.

In the constructor, the memory for the arrays v[] and e [] [ ], declared from the
structure NODE and the type int, respectively, are allocated as follows:

int 1i,3;

v=new NODE [N+1];

e=new int *[N+1];

for (i=0;i<=N;i++)
e[i]l=new int [N+1];

In the main window, the drawing area of the graph is bounded by the CPoint
objects, TopLeft and BottomRight, which represent the top-left and bottom-
right corners, respectively. The constructor initializes the positions of the drawing
area by assigning values to TopLeft and BottomRight, as follows:

TopLeft=CPoint (20,20); BottomRight=CPoint (450,360);

l Constructor

—— Allocate memory for the class

Create the main window

Initialize the drawing area

Initialize the text, its background color, and location

Initilize the link weights and degree of the nodes

Figure 7.6 Contents of the constructor CCode7A ().
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In addition, most of the settings for the display, for example, the location and
size of the instruction area, the background color, and the standard font for the text
messages, are also initialized in the constructor. Text messages are displayed using
the Courier font of size 7. As each standard unit in this font requires 10 pixels for
drawing, the first parameter in the function CreatePointFont () is set to 60 to
represent a font size of 7. The initial display is realized through the following code:

MatText=CPoint (500,30); InstText=CPoint(80,370);
FontCourier.CreatePointFont (60, “Courier”) ;
BgColor=RGB(240,240,240); TextGap=20; BoxSize=CSize(10,10);
TextColor=RGB(100,100,100) ;

Initializations also include the number of nodes and links in the graph, and the
flag value of the mouse’s right button, as follows:

nv=0; nLink=0; RButtonFlag=0;

It is necessary to assign the weights of the links with some remote values such as
99 to denote their initial values. The number 99 could mean the links between the
pairs of nodes have not been established yet. A number such as 9 may not serve as a
good representation as it could mean the real weight of the link. Also, as the degree
of a node depends on the number of links on that node, it is a good idea to initialize
its value to 0. These two quantities, the weight of the links and the degree of nodes,
need to be initialized as their values will be referred to in subsequent updates later
in the program. The following code fragment performs this task:

for (i=1;i<=N;i++)

{
v[i].degree=0;
for (j=1;3j<=N;j++)
el[i][j]l=el]j]1[i]1=99;
}

There are three events involved in the program, namely, the initial display
(WM_PAINT), the left mouse click (WM_LBUTTONDOWN), and the right mouse
click (WM_RBUTTONDOWN). The events are mapped as follows:

BEGIN_MESSAGE_MAP (CCode7A, CFrameWnd)
ON_WM_PAINT ()
ON_WM_LBUTTONDOWN ()
ON_WM_RBUTTONDOWN ()

END_MESSAGE_MAP ()

The initial display is set using the OnPaint () function. As mentioned earlier,
the display consists of an area for drawing the graph, an area for displaying the in-
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structions, and an output area that displays the adjacency matrix and the degree of
each node. The activities in this function are outlined in Figure 7.7.

In the function OnPaint (), the main window is first cleared using the back-
ground color, defined as BgColor, as follows:

CRect rc;

CBrush BgBrush (BgColor) ;
GetClientRect (&rc) ;
dc.FillRect (&rc, &BgBrush) ;

The above code erases the main window and fills it with the background color
BgColor. The task starts by creating a brush called BgBrush using this color. The
statement GetClientRect (&rc) reads the rectangular area of the main window
and assigns this area as the CRect object rc. It follows that the fill function
FillRect (&rc, &BgBrush) erases the area marked by rc using the BgBrush
brush.

The rest of the code in OnPaint () displays the initial settings of the main win-
dow, as follows:

CPen penDrawingBox (PS_SOLID,4,RGB(100,100,100));
dc.SelectObject (penDrawingBox) ;
dc.SelectStockObject (HOLLOW_BRUSH) ;

rc=CRect (TopLeft, BottomRight) ;

dc.Rectangle(rc) ;

dc.SelectObject (FontCourier) ;
dc.SetTextColor (TextColor); dc.SetBkColor (BgColor) ;
dc.TextOut (InstText.x, InstText.y, "Instructions:”);
dc.TextOut (InstText.x+30, InstText.y+25,

“Left mouse to click points”);
dc.TextOut (InstText.x+30, InstText.y+45,

“Right mouse to draw a link between two points”);
dc.TextOut (MatText.x,MatText.y, "Adjacency Matrix”) ;
dc.TextOut (MatText .x+TextGap*N,MatText .y, "Degree”) ;

l Initial Display (OnPaint)

Create a device context object, dc, from the CPaint class

—— Clear the screen with the background color, BgColor

Draw a rectangular box as the drawing area

Label the instruction and matrix text messages

Figure 7.7 Contents of OnPaint ().
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The second event is the left-button click of the mouse event, which creates the
nodes of the graph. Essentially, a click in the drawing area updates the graph by
adding a new node and displays the node on the screen. This increases the number
of nodes, nv, in the graph by one. The new node occupies the coordinates
v[nv] .Home on the screen. In addition, the event also updates the adjacency
graph with zero entries of the row and column of the new node. The contents of the
left-click button operation are outlined in Figure 7.8.

The left-button click is detected by WM_LBUTTONDOWN and handled by the
function OnLButtonDown (). This function prepares to draw small rectangular
boxes as the nodes of the graph. The following code prepares the initial settings of
the drawing pen and text styles in this function:

CClientDC dc(this);

CString s;

CPen penGray (PS_SOLID, 2, TextColor) ;
dc.SelectObject (penGray) ;

dc.SelectObject (FontCourier) ;

dc.SetTextColor (TextColor) ;
dc.SetBkColor (BgColor) ;

The following code in OnLButtonDown () draws the nodes in the graph:

if (CRect (TopLeft,BottomRight) .PtInRect (pt))
if (nv<=N)

{
nv++;
v[nv] .Home=pt;
v[nv] .Box=CRect (CPoint (pt),CSize (BoxSize)) ;
dc.Rectangle (v[nv] .Box) ;
s.Format (“%d” ,nv) ;
dc.TextOut (v[nv] .Home.x-10,v[nv] .Home.y-10,s) ;
for (int i=1;i<=nv;i++)
{
dc.TextOut (MatText .x+TextGap* (i-1),
MatText .y+TextGap+TextGap* (nv-1),”0") ;
dc.TextOut (MatText .x+TextGap* (nv-1),
MatText .y+TextGap+TextGap* (i-1),"”0");
s.Format (“*%d”,v[nv] .degree) ;
dc.TextOut (MatText .x+TextGap+TextGap*N,
MatText.y+TextGap+TextGap* (nv-1),s);
}
}

The function OnLButtonDown (UINT nFlags,Cpoint pt) has two ar-
guments, nFlags and pt. The first argument shows the status of the mouse, which
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l Left-Button Click

—— Number of points, nv, increases by 1

Coordinates at the clicked point assigned to v[nv].Home

—— A box to denote the node is drawn at v[nv].Home

Node number assigned and displayed

—— Adjacency matrix updated with O entries on the new row and column

Figure 7.8 Contents of OnLButtonDown ().

is not used in this application. The second argument, pt, represents the mouse’s
clicked point, which is the home position of the current node. Using this argument,
the nodes in the graph can only be displayed in the drawing area through the func-
tion Pt InRect (pt), using the following conditional test:

if (CRect (TopLeft,BottomRight) .PtInRect (pt))

A node is drawn only if the above test is TRUE. Besides drawing the node, the to-
tal number of nodes nv is increased by one following this action. The adjacency ma-
trix is also updated with the creation of a new row and column whose entries are all Os.

The third event is the right-button click of the mouse for drawing the links in the
graph. Basically, the link between any two nodes the graph is obtained by clicking
the right button of the mouse consecutively on the two nodes. Each right-button
click is detected by the message handler WM_RBUTTONDOWN, which immediately
calls the function OnRButtonDown (), as follows:

void CCode7A: :0OnRButtonDown (UINT nFlags,CPoint pt)
{

CClientDC dc(this);

CString s;

int 1i;
CPen penGray (PS_SOLID, 1, TextColor) ;
dc.SelectObject (penGray) ; dc.SetBkColor (BgColor) ;
for (i=1;i<=nv;i++)
{
if (v[i].Box.PtInRect (pt))
{
RButtonFlag++;
if (RButtonFlag==1)
Ptl=1i;
if (RButtonFlag==2)
{
Pt2=1i; e[Ptl][Pt2]=1; nLink++;
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if (RButtonFlag==2)
{
dc.MoveTo (v[Ptl] .Home); dc.LineTo(v[Pt2].Home) ;
s.Format (“%d”,e[Ptl] [Pt2]);
dc.TextOut (MatText .x+TextGap* (Ptl-1),
MatText .y+TextGap+TextGap* (Pt2-1),s) ;
dc.TextOut (MatText .x+TextGap* (Pt2-1),
MatText .y+TextGap+TextGap* (Ptl-1),s);
s.Format (“%d”,++v[Ptl] .degree) ;
dc.TextOut (MatText .x+TextGap+TextGap*N,
MatText .y+TextGap+TextGap* (Ptl-1),s);
s.Format (“%d”,++v[Pt2] .degree) ;
dc.TextOut (MatText .x+TextGap+TextGap*N,
MatText .y+TextGap+TextGap* (Pt2-1),s) ;
RButtonFlag=0;

In the function OnRButtonDown (), a flag called RButtonFlag is intro-
duced to differentiate the first and the second clicks of the mouse right button. Its
value determines the status of the link according to a simple rule, as follows:

RButtonFlag=0 denotes inactive link.
RButtonFlag=1 denotes the tail node has been selected.
RButtonFlag=2 denotes the head node has been selected.

RButtonFlag is activated only when the click point pt is inside one of the
nodes in the graph, using the following conditional test:

if (v[i].Box.PtInRect (pt))

The first right-button click on a node assigns this node as the tail of the link. This
action assigns the value RButtonFlag=1 and Pt1 as the first node. In the second
click, RBut tonFlag increases its value to 2 and assigns Pt 2 as the second node.
This action also increases the total number of links in the graph, nLinks, by one.
With this second click, the link between Pt1 (the first node) and Pt2 (the second
node) is immediately established. The adjacency graph is also updated and the val-
ue 1 is assigned to its corresponding element. Finally, the RButtonFlag value is
refreshed to 0. The whole operation is shown in Figure 7.9.

7.3 MINIMUM SPANNING TREE PROBLEM

A connected acyclic graph in which any pair of two nodes has a unique path is
called a free. A tree can also be defined as a graph in which every link is a bridge. It
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l First Right-Button Click

— RButtonFlag becomes 1

—— Pt1 assigned with the clicked node number

l Second Right-Button Click

—— RButtonFlag becomes 2

Number of links, nLinks, increases by 1
L Pt2 assigned with the clicked node number

| The link e[Pt1][Pt2] established and displayed

| Adjacency matrix updated

Degree of the node, v[nv].degree, increases by 1

—— RButtonFlag reset to 0

Figure 7.9 Contents of OnRButtonDown ().

is also easy to verify that a tree is always a bipartite graph. The end nodes of a tree
are called leaves. A tree with a degree of two is called a binary tree. A set of dis-
connected trees is called a forest. A spanning tree of a graph G is defined as a tree
subgraph of G in which all the nodes in G are included. A given graph can have
many spanning trees formed from various combinations of the graph links. In a
weighted graph, a spanning tree whose sum of the weights is minimum is called a
minimum spanning tree (MST). Figure 7.10 shows a spanning tree for the graph in
Figure 7.1.

The problem of finding the minimum spanning tree of a graph surfaces in many
applications. For example, in radio communication, broadcasting involves transmit-
ting a message from a node to all other nodes in a network. In this application, the
message is to be transmitted to the nodes using the shortest possible path in terms of
cost, such as the communication cost, time, and distance. In another application, the
network manager of a cellular telephone network applies the concept of the mini-
mum spanning tree in order to determine the shortest path for delivering a message
from the source to its destination in the network.

The problem of finding the spanning trees of a graph originates from the funda-
mental properties of a tree. It is easy to verify that a tree with » nodes has n — 1
nodes, and that it has no cycle. From these properties, the minimum spanning tree
problem reduces to the process of eliminating the edges of the graph one by one un-
til it contains no cycle. This greedy process serves as the basic framework for con-
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Figure 7.10 Minimum spanning tree of the graph in Fig. 7.1.

structing the minimum spanning tree of a graph, as demonstrated by several estab-
lished algorithms. Two of the most popular algorithms for solving the minimum
spanning tree problem are Kruskal’s and Prim’s algorithms (refer to Sedgewick [1,
2] for details). We begin our discussion with Kruskal’s algorithm.

Kruskal’s Algorithm

Kruskal’s algorithm is easy to implement as it is based on a greedy approach. The
algorithm starts with an empty subgraph called 7 of the graph G. The links of the
graph are first sorted in increasing order based on their weights from the lowest to
highest, and stored in a list called L. Iterations are performed to add the links from L
to 7 starting from the highest order (smallest weight). At each iteration, a link from
L is moved to T if the resultant subgraph does not contain a circuit; otherwise, the
move is rejected. The process is repeated until 7 forms a spanning tree of G. This
spanning tree is then the minimum spanning tree of the graph. The algorithm is
summarized as follows:

Read the information on the weighted graph G
Create an empty graph, T
Create a list L of the sorted links in increasing order
do until 7 becomes a spanning tree of G
Add the highest ordered link from L into T
if T'is a tree
Accept the move
else
Reject the move by removing the link from 7
Remove the ordered link from L

Figure 7.11 shows the implementation of the Kruskal’s algorithm in finding the
minimum spanning tree of the graph in Figure 7.1.
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Figure 7.11 Solution to the graph in Figure 7.1 using Kruskal’s algorithm.

Table 7.3 shows the steps for finding the minimum spanning tree of the graph
using Kruskal’s algorithm starting at v,. The problem requires seven steps for con-
verging to its solution using this algorithm.

Prim’s Algorithm

Prim’s algorithm is another common method for solving the minimum spanning
tree problem. The algorithm begins with an empty graph 7. The strategy in Prim’s
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Table 7.3 Solution using the Kruskal’s algorithm for the graph in Figure 7.11

Highest-ordered

Iteration link in L Cost Decision Resulting links in 7'
0
1 e 2 accept {e12}
2 erg 3 accept {e12, €73}
3 ess 3 accept {e12, €73, €56}
4 e 4 accept {€12, €78, €sg, €23}
5 €45 4 accept {€12, €75, €sg, €28, €45}
6 €3 6 accept 1€12: €73, €565 €285 €43, €13}
7 €36 7 accept €12, €78, €565 €28, €455 €13, €36}
Total cost 29

algorithm consists of building a tree in 7 one node at a time starting from any node
in the graph. From the starting node, a link with the minimum weight to its neigh-
boring node is added to 7. Next, the shortest link emanating from the two nodes be-
comes the minimum link and is added into 7. This added link must not form a cir-
cuit in 7, otherwise the move is rejected. The step repeats from the second node to
the third and, subsequently, until all the nodes have been included. Prim’s algorithm
is summarized as follows:

Read the information on the weighted graph G;
Create an empty graph, T;
Choose the first node, and add into T;
do until 7 becomes a spanning tree of G
Choose the minimum link, originating from the node;
if the new link does not have a circuit
Add the link and its new node into T;
else
Reject the move;

Figure 7.12 shows the Prim’s algorithm approach for finding the minimum span-
ning tree. The method is different from Kruskal’s algorithm as the iteration starts
from one node and continues with the rest of the iterations by forming a tree with
the node as the root of the tree.

Table 7.4 shows the steps in finding the minimum spanning tree using Prim’s al-
gorithm. Like Kruskal’s, seven steps are required in this problem.

Code7B: Visualizing the Minimum Spanning Tree

We discuss the development of a user-friendly interface for finding the minimum
spanning tree of a graph using Prim’s algorithm The visualization model is called
Code7B. This model is an ideal extension of the Code7A retaining most of the
data structure and the code in its development. Figure 7.13 shows an output pro-



196 VISUALIZING A GRAPH

m"3

Ve vy
v
vy /D 3
) 6
v m V4
5 4 8
/ 7 4

Figure 7.12 Prim’s algorithm solution.

duced from the graph in Figure 7.1. A node in the graph is created through the
left-button click of the mouse in the drawing area. A link in the graph is obtained
by clicking the mouse’s right button consecutively on two node boxes.

In this visualization model, a small dialog box appears on a link each time the
link is created. This dialog box is an edit box for the user to enter a one-digit value
that serves as the weight of the link. Once the connected graph has been established,
the minimum spanning tree is shown by pressing the Compute MST button. The
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Table 7.4 Prim’s algorithm solution to the graph in Figure 7.12

Iteration Available links Minimum link Cost Resulting links in 7'
0
1 €12, €13, €17 €12 2 e}
2 €13, €17, €23 €8 4 {e12, exs}
3 €13, €17, €37, €365 €33 €g7 3 {e12, e, €37}
4 €135 €17 €365 €835 €75 €13 6 {e12, e, €57, €13}
5 €17, €36 €383, €75, €3¢ €36 7 {e12, €33, €57, €13, €36}
6 €17, €65 €835 €75, €65 €65 3 {€12: €25, €37, €13, €36, €5}
7 €17, €36 €83, €75, €54 €54 4 {enn, e, €57, €13, €36, €55 €547
Total cost 29

spanning tree is marked as edges with bold lines in the graph and its cost is shown
below the Compute MST button.

Figure 7.14 shows the organization of the Code7B project. The project consists
oftwo files, Code7B.h and Code7B.cpp. Four events are mapped, namely, the ini-
tial display, left-button click of the mouse, right-button click of the mouse, and the
Compute MST push button. These events are mapped and detected as WM_PAINT,
WM_LBUTTONDOWN, WM_RBUTTONDOWN, and BN_CLICKED, respectively. In re-
sponse to these events are the event handling functions OnPaint (),OnLButton-
Down (), OnRButtonDown (), and OnClickCalc (), respectively. Since

Prim's Algorithm for computing the MST 7 ;Iglﬂ

Weight Hatriz

2 6 g
6 7 8
4
4 3 8
7 3 9
5 8 3
4 8 9 3

. Compute MST |

Instructions:

Left mouse to click points Cost=29
Fight mouse to draw a link between two points

Figure 7.13 Output from Code7B showing the MST (bold links).
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l Project Code7B

CCode7B()
Constructor for initializing
the variables/objects

ON_WM_PAINT

OnPaint( )
Set the initial display

ON_WM_LBUTTONDOWN ON_WM_RBUTTONDOWN .
OnLButtonDown( ) - - first chck. OnRButtonDown( )
Draw the node left-button click right-button click Mark the first node
ON_BN_CLICKED
Mcg?l'm}illgfm - second click OnRButtonDown( )
h Mark the second node
and draw the edge
OnClickCalce( )

Compute the MST

Figure 7.14 Outline of the Code7B project.

Code7B is an extension of Code7A, most of the code in these functions, with the
exception of OnClickCalc (), are reused and changes are kept to the minimum.

The data structure of the Code7B project is described in Code7B.h. The struc-
ture is basically the same as in Code7A with a few additional variables and objects
for computing the minimum spanning tree. This includes the Compute MST push
button, which is created from the MSTbut ton object derived from the CButton
class. The object has an id declared as TDC_MST in the Code7B.h file. Another vari-
ableis e[1] [j] . InputBox, which is an edit box object derived from the class
CEdit. This edit box provides a one-digit input space for the link e;; from the user.
The additional variables and objects in Code7B are described briefly in Table 7.5.

Just like in the previous project, a node in the graph is created with the left-but-
ton click of the mouse and mapped as WM_LBUTTONDOWN. In response to this
event is the function OnLButtonDown (), as outlined in Figure 7.8 (minus the ad-
jacency matrix update). The link e;; is created by clicking the right button consecu-
tively on the paired v; and v; nodes. The first right-button click activates a series of
tasks as shown in Figure 7.9 in Code7A. The second click produces some addition-
al tasks, such as the creation of an edit box on the link. The activities in the second
right-button click are outlined in Figure 7.15.

The right-button click event is represented by WM_RBUTTONDOWN which is
handled by the function OnRBut tonDown (), as follows:

void CCode7A::0nRButtonDown (UINT nFlags,CPoint pt)
{
CClientDC dc(this) ;
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CPen penGray (PS_SOLID, 1, TextColor) ;
dc.SelectObject (penGray) ;
for (i=1;i<=nv;i++)

if (v[i].Box.PtInRect (pt))

{

RButtonFlag++;

if (RButtonFlag==1)
Ptl=1i;

if (RButtonFlag==2)

{

Pt2=1i; nLink++;

dc.MoveTo (v[Ptl] .Home); dc.LineTo(v[Pt2].Home) ;

u=(v[Ptl] .Home.x+v[Pt2] .Home.x) /2;

w=(v[Ptl] .Home.y+v[Pt2] .Home.y)/2;

e[Ptl] [Pt2] .InputBox.Create (WS_CHILD | WS_VISIBLE
| WS_BORDER, CRect (CPoint(u,w),CSize(12,20)),
this, idc_WtInput++) ;

e[Ptl] [Pt2] .Flag=1;

RButtonFlag=0;

The above code represents a series of tasks that happen when the right button of
the mouse is clicked. To differentiate between the first and second clicks, a variable
called RButtonFlag is introduced. This flag describes the state of the link, as fol-

lows:

RButtonFlag=0 denotes inactive link.

RButtonFlag=1 denotes the tail node has been selected.
RButtonFlag=2 denotes the head node has been selected.

Table 7.5 Some of the objects and variables in Code7B

Variable/object

Class Description

MSTbutton
e[i][3j].InputBox

idc_WtInput
elil[j].wt
e[i][j].Flag
P[i],0QI[3]

MSTcost
MinLink

CButton Activation button for computing and displaying
the MST of the graph

CEdit The dialog box as an input for the weight of the
link, e;;

int The id of the dialogbox e[1] [J] . InputBox

int The integer value of e [1] [J] . InputBox

bool A flag to see if the link e; exists (1) or not (0)

int Beginning and ending nodes of an ordered link in
the spanning tree

int The cost of the spanning tree

int The link with the minimum weight originating

from the end nodes of T that need to be added
into the subgraph
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l Second Right-Button Click

— RButtonFlag becomes 2

Number of links, nLinks, increases by 1

| Pt2 assigned with the clicked node number

The link e[Pt1][Pt2] is established and displayed

The dialog box, e[Pt1][Pt2].InputBox, created
The link flag for the link e[Pt1][Pt2].Flag set to 1

—— RButtonFlag reset to 0

Figure 7.15 Activities activated by the second right-button click.

Initially, RButtonFlag is set to 0, which means no activity on the link draw-
ing. The first click assigns RButtonFlag to the value of 1 and its node as Pt1.
The second click assigns the value of 2 to RButtonFlag and Pt2 to the node.
The link is immediately established between Pt1 and Pt2, and displayed on the
graph. In addition, a small edit box is created on this link to allow input of its
weight from the user. This edit box is represented as the CEdit object,
e[Ptl] [Pt2] . InputBox.

To remember that this link has been established, another flag of type bool
called e[Pt1l] [Pt2] .Flag is introduced. Its value is indicated, as follows:

e[Ptl] [Pt2] .Flag=0 denotes input on the link has been made.
e[Ptl] [Pt2].Flag=1 denotes input on the link has not been made.

Whenever a link is established, e[Pt1] [Pt2] .Flag takes the value of 1
(TRUE) to indicate that an input on its weight is yet to be completed by the user.
The program checks for this flag on all links in the graph before finding the mini-
mum spanning tree.

Figure 7.16 shows the activities that take place when the Compute MST push
button is clicked. The event is detected as BN_CLICKED and it is handled by the
function OnClickCalc (). The function is written as follows:

void CCode7A::0nClickCalc ()
{
CClientDC dc(this);
CString s;
int 1,3;
dc.SelectObject (FontCourier) ;
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dc.SetTextColor (TextColor); dc.SetBkColor (BgColor) ;
dc.TextOut (MatText.x,MatText.y, "Weight Matrix”) ;
for (i=l;i<=nv;i++)

{
P[i]=
Qlil=
for (

{

}
MSTcost=0;

((i==1)21:0);
((i==1)20:1);
j=1;j<=nv; j++)

if (e[i]l[3j].Flag)

{
dc.SetTextColor (TextColor) ;
e[i]l[j].InputBox.GetWindowText (s) ;
e[i][3j].Wt=e[j]l[1i].Wt=atoi(s);
s.Format (“*%d”,el[i] [J].Wt);
dc.TextOut (MatText.x+TextGap* (i-1),
MatText .y+TextGap+TextGap* (j-1),s);
dc.TextOut (MatText .x+TextGap* (j-1),
MatText.y+TextGap+TextGap* (i-1),s) ;

}

if (e[i]l[J].wt==99)

{
dc.SetTextColor (RGB(180,180,180)) ;
s.Format (“%d”,0) ;
dc.TextOut (MatText .x+TextGap* (i-1),
MatText .y+TextGap+TextGap* (j-1),s);
dc.TextOut (MatText .x+TextGap* (j-1),
MatText .y+TextGap+TextGap* (i-1),s) ;

l Compute MST Button Click

Initialize the values of P[i] and Q][]
Get the link values from e[i][j]. Wt

—— Display the link values on the weight matrix

Set MSTcost=0

Compute MSTcost by calling Prim()

—— Display the result from MSTcost

Figure 7.16 Outline of the activities in OnClickCalc ().

201



202 VISUALIZING A GRAPH

for (i=1l;i<=nv-1;i++)
Prim() ;
dc.SetTextColor (TextColor) ;
s.Format (“*Cost=%d”,MSTcost); dc.TextOut (600,400, s) ;

In the function, the arrays P[] and Q[ ] store the two endpoints of the links in
the subgraph T. These two arrays are given some initial values to indicate their po-
sition as the tail or head of the links, which are needed for comparing the subse-
quent link values emanating from the nodes.

The minimum spanning tree cost is denoted by MSTcost, and this variable has
an initial value of 0. Prior to evaluating the minimum spanning tree, the user has to
complete the entries on the weights of the links in the graph. The program checks
for this validity through the flag e [1] [j] . Flag using the following conditional
test:

if (el[i]l[j].Flag)

The function OnClickCalc () computes the minimum spanning tree of the
graph using Prim’s algorithm. In constructing the spanning tree, OnClick-
Calc () calls up the function Prim () each time a link needs to be added into the
subgraph 7. At each call, Prim () computes and identifies the link with a mini-
mum value represented as the variable Minwt. This value is added to MSTcost at
each call of the function. MSTcost eventually becomes the total cost for the mini-
mum spanning tree after the formation of the tree is completed. The function is
written as follows:

void CCode7B: :Prim()

{
CClientDC dc(this);
CPen penMSTpath (PS_SOLID,3,RGB(100,100,100)) ;
int i,j,k,r,w,u,h;

MinWt=99;
for (i=l;i<=nv;i++)

{

if (P[11==0)
break;
for (j=1;j<=nv;j++)
if (Q[J1!=0)
for (k=1;k<=nv;k++)
if (Q[k]!=0)
for (r=1;r<=nv;r++)
if (Qlr]!=0)
for (h=1;h<=nv;h++)
if (Q[h]!=0)

if
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(e[P[111[Q[]]1].Wt<=e[P[i]][Q[k]].Wt
&& e[P[1]1]1[Q[k]].Wt<=e[P[1i]][Q[r]].Wt
&& e[P[1]]1[Qlr]] .Wt<=e[P[i]][Q[h]].Wt
&& e[P[11][Q[7]].Wt<=MinwWt)

{
MinWt=e[P[i]]1[Q[]j]].Wt;
u=i; w=j;
}
}
MSTcost += MinWt;
dc.SelectObject (penMSTpath) ;
dc.MoveTo (v[P[u]] .Home); dc.LineTo(v[Q[w]].Home) ;
for (i=1;i<=nv;i++)

if (P[i]==0)
{
Pl[i]=w; break;
}
for (i=l;i<=nv;i++)
if (Q[il==w)
{

Q[i]1=0; Dbreak;
}

7.4 SUMMARY AND CONCLUSION

This chapter describes two applications involving graph theory. The first applica-
tion is about providing a user-friendly interface for constructing a graph. The inter-
face allows the user to draw the nodes and the links of a graph by simply clicking
the mouse at any place on the window. The second application discusses the prob-
lem of finding the minimum spanning tree of a graph. We apply Prim’s algorithm to
solve the problem by extending the work from the earlier application. Both applica-
tions are user friendly and this helps in making the problems more attractive.

Both Code7A and Code7B projects can be extended to support other applica-
tions in graph theory. As mentioned earlier, Code7A provides all the fundamental
data structure and groundwork for tackling many problems in graph theory. This
project can easily be modified for solving other problems such as the maximum
clique, maximum independent set, and the vertex or edge coloring. It is also good to
produce a visualization tool for determining if a graph is bipartite or if it isomorphic
to another graph. For Code7B, a good extension is to produce a visual tool for
solving the minimum spanning tree problem using Kruskal’s algorithm. In this
case, Kruskal’s push button should be added to the visual interface on the window.
Adding Kruskal’s method will help in understanding several ways of solving the
minimum spanning tree problem.

Another challenging application of Code7B is the problem of broadcasting a
message in a network from a node. The term broadcasting means the message from
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the source node is to reach all the other nodes in the network. An interesting ap-
proach to this problem is to identify the minimum spanning tree with its root from
the source node. The minimum spanning tree guarantees the path with the shortest
route from the source node to the destination nodes, assuming no other factors such
as the network startup and transmission costs. When transmitting a message, the
main objective is to complete the job at the earliest time. In message transmission, a
node can only send one message to another node at a time. In addition, the sending
node cannot receive a message at the same time. It is also necessary for the message
to follow a path that will guarantee a safe passage. In this case, problems such as
data collision and congestion need to be avoided. The details are left for the reader
to explore.
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CODE LISTINGS

Code7A: Drawing a Graph

// Code7A.h
#include <afxwin.h>
#define N 10

class CCode7A : public CFrameWnd
{
private:
CPoint TopLeft,BottomRight;
CPoint InstText,MatText;
CFont FontCourier;
CSize BoxSize;
int nv,nLink,RButtonFlag, Ptl,Pt2;
int TextGap, TextColor,BgColor;
int **e;
typedef struct
{
CPoint Home;
CRect Box;
int degree;
} NODE;
NODE *v;
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public:
CCode7A() ;
~CCode7A() ;
void Prim() ;
afx_msg void OnPaint () ;
afx_msg void OnLButtonDown (UINT, CPoint);
afx_msg void OnRButtonDown (UINT, CPoint);
DECLARE_MESSAGE_MAP() ;
}i

class CMyWinApp : public CWinApp
{
public:

virtual BOOL InitInstance();
1

// Code7A.cpp: graph
#include “Code7A.h”

BOOL CMyWinApp::InitInstance()

{
CCode7A* pFrame = new CCode7A;
m_pMainWnd = pFrame;
pFrame->ShowWindow (SW_SHOW) ;
pFrame->UpdateWindow () ;
return TRUE;

CMyWinApp MyApplication;

BEGIN_MESSAGE_MAP (CCode7A, CFrameWnd)
ON_WM_PAINT ()
ON_WM_LBUTTONDOWN ( )
ON_WM_RBUTTONDOWN ()

END_MESSAGE_MAP ()

CCode7A: :CCodeTA()
{
int i,3;
v=new NODE [N+1];
e=new int *[N+1];
for (1=0;1i<=N;i++)
e[il=new int [N+1];
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Create (NULL, "Drawing a graph”,WS_OVERLAPPEDWINDOW,CRect (0,0,800,500));

TopLeft=CPoint (20,20); BottomRight=CPoint (450,360) ;
MatText=CPoint (500,30); InstText=CPoint(80,370);
nv=0; nLink=0; RButtonFlag=0;
for (i=1;i<=N;i++)
{

v[i] .degree=0;

for (j=1;3j<=N;j++)

e[i]l[jl=el[]J1[1i]1=99;

}

FontCourier.CreatePointFont (60, “Courier”) ;
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BgColor=RGB(240,240,240); TextGap=20; BoxSize=CSize(10,10);
TextColor=RGB(100,100,100) ;

CCode7A: : ~CCode7A()
{
for (int i=0;i<=N;i++)
delete e[i];
delete v, e;

void CCode7A: :0nPaint ()

{
CPaintDC dc (this) ;
CRect rc;
CBrush BgBrush (BgColor) ;
GetClientRect (&rc) ;
dc.FillRect (&rc, &BgBrush) ;

CPen penDrawingBox (PS_SOLID,4,RGB(100,100,100));
dc.SelectObject (penDrawingBox) ;
dc.SelectStockObject (HOLLOW_BRUSH) ;

rc=CRect (TopLeft, BottomRight) ;

dc.Rectangle(rc) ;

dc.SelectObject (FontCourier) ;
dc.SetTextColor (TextColor); dc.SetBkColor (BgColor) ;
dc.TextOut (InstText.x, InstText.y, "Instructions:”) ;
dc.TextOut (InstText.x+30, InstText.y+25,

“Left mouse to click points”);
dc.TextOut (InstText.x+30, InstText.y+45,

“Right mouse to draw a link between two points”);
dc.TextOut (MatText.x,MatText.y, “"Adjacency Matrix”) ;
dc.TextOut (MatText .x+TextGap*N,MatText .y, "Degree”) ;

void CCode7A: :0nLButtonDown (UINT nFlags,CPoint pt)
{
CClientDC dc(this) ;
CString s;
CPen penGray (PS_SOLID, 2, TextColor) ;
dc.SelectObject (penGray) ;

dc.SelectObject (FontCourier) ;
dc.SetTextColor (TextColor) ;
dc.SetBkColor (BgColor) ;
if (CRect (TopLeft,BottomRight) .PtInRect (pt))
if (nv<=N)
{
nv++;
v [nv] .Home=pt;
v[nv] .Box=CRect (CPoint (pt) ,CSize (BoxSize)) ;
dc.Rectangle (v[nv] .Box) ;



CODE LISTINGS 207

s.Format (“%d” ,nv) ;
dc.TextOut (v[nv] .Home.x-10,v[nv] .Home.y-10,s) ;
for (int i=1;i<=nv;i++)
{
dc.TextOut (MatText.x+TextGap* (i-1),
MatText.y+TextGap+TextGap* (nv-1),"0") ;
dc.TextOut (MatText .x+TextGap* (nv-1),
MatText.y+TextGap+TextGap* (i-1),”0");
s.Format (*%d”,v[nv] .degree) ;
dc.TextOut (MatText .x+TextGap+TextGap*N,
MatText .y+TextGap+TextGap* (nv-1),s);

void CCode7A: :0nRButtonDown (UINT nFlags,CPoint pt)
{

CClientDC dc(this) ;

CString s;

int 1i;
CPen penGray (PS_SOLID, 1, TextColor) ;

dc.SelectObject (penGray); dc.SetBkColor (BgColor) ;
for (i=1;i<=nv;i++)

{
if (v[i].Box.PtInRect (pt))
{
RButtonFlag++;
if (RButtonFlag==1)
Ptl=1i;
if (RButtonFlag==2)
{
Pt2=i; e[Ptl] [Pt2]=1; nLink++;
}
if (RButtonFlag==2)
{
dc.MoveTo (v[Ptl] .Home); dc.LineTo(v[Pt2].Home) ;
s.Format (“%d”,e[Ptl] [Pt2]);
dc.TextOut (MatText .x+TextGap* (Ptl-1),
MatText.y+TextGap+TextGap* (Pt2-1),s);
dc.TextOut (MatText .x+TextGap* (Pt2-1),
MatText.y+TextGap+TextGap* (Ptl-1),s);
s.Format (“%d”,++v[Ptl] .degree) ;
dc.TextOut (MatText .x+TextGap+TextGap*N,
MatText.y+TextGap+TextGap* (Ptl-1),s);
s.Format (“%d”,++v[Pt2] .degree) ;
dc.TextOut (MatText .x+TextGap+TextGap*N,
MatText .y+TextGap+TextGap* (Pt2-1),s);
RButtonFlag=0;
}
}
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Code7B: Minimum Spanning Tree

// Code7B.h
#include <afxwin.h>
#define N 10
#define IDC_MST 500

class CCode7B : public CFrameWnd
{
private:
CPoint TopLeft,BottomRight;
CPoint InstText,MatText;
CFont FontCourier;
CSize BoxSize;
CRect MSTbox;
CButton MSTbutton;

int nv,nLink,RButtonFlag, Ptl,Pt2,idc_WtInput;
int *P, *Q,MSTcost,MinWt;
int TextGap, TextColor,BgColor;
typedef struct
{
int Wt;
bool Flag;
CEdit InputBox;
} LINK;
LINK **e;
typedef struct
{
CPoint Home;
CRect Box;
} NODE;
NODE *v;
public:
CCode7B() ;
~CCode7B () ;
void Prim() ;
afx_msg void OnClickCalc() ;
afx_msg void OnPaint () ;
afx_msg void OnLButtonDown (UINT, CPoint) ;
afx_msg void OnRButtonDown (UINT, CPoint);
DECLARE_MESSAGE_MAP () ;
}i

class CMyWinApp : public CWinApp
{
public:

virtual BOOL InitInstance() ;
Y

// Code6bB.cpp: computing the minimum spanning tree
#include “Code7B.h”
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BOOL CMyWinApp: :InitInstance()

{
CCode7B* pFrame = new CCode’B;
m_pMainWnd = pFrame;
pFrame->ShowWindow (SW_SHOW) ;
pFrame->UpdateWindow () ;
return TRUE;

CMyWinApp MyApplication;

BEGIN_MESSAGE_MAP (CCode7B, CFrameWnd)
ON_WM_PAINT ()
ON_WM_ LBUTTONDOWN ()
ON_WM_RBUTTONDOWN ()
ON_BN_CLICKED (IDC_MST,OnClickCalc)
END_MESSAGE_MAP ()

CCode7B: :CCode7B ()
{
int i,3;
P=new int [N+1];
Q=new int [N+1];
v=new NODE [N+1];
e=new LINK *[N+1];
for (i1i=0;i<=N;i++)
e[il=new LINK [N+1];
Create (NULL, "Prim’s Algorithm for computing the MST”,
WS_OVERLAPPEDWINDOW, CRect (0,0,800,500)) ;
TopLeft=CPoint (20,20); BottomRight=CPoint (450,360) ;
MSTbutton.Create (“Compute MST”,WS_CHILD | WS_VISIBLE | BS_DEFPUSH BUTTON,
CRect (500,330,650,360),this, IDC_MST) ;
MatText=CPoint (500,30); InstText=CPoint (80,370);
nv=0; nLink=0; RButtonFlag=0; idc_WtInput=1001;
for (i=1;i<=N;i++)
for (j=1;j<=N;j++)
{
e[i][j].wt=e[J][1].Wt=99;
e[i]l[j].Flag=e([j][i].Flag=0;
}
FontCourier.CreatePointFont (60, “Courier”) ;
BgColor=RGB(240,240,240); TextGap=25; BoxSize=CSize(10,10);
TextColor=RGB(100,100,100) ;

CCode7B: : ~CCode7B ()
{
for (int 1=0;i<=N;i++)
delete e[i];
delete v,e,P,Q;

void CCode7B: :0nPaint ()
{
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CPaintDC dc (this) ;

CRect rc;

CBrush BgBrush (BgColor) ;
GetClientRect (&rc) ;
dc.FillRect (&rc, &BgBrush) ;

CPen penDrawingBox (PS_SOLID,4,RGB(100,100,100));
dc.SelectObject (penDrawingBox) ;
dc.SelectStockObject (HOLLOW_BRUSH) ;

rc=CRect (TopLeft,BottomRight) ;

dc.Rectangle(rc) ;

dc.SelectObject (FontCourier) ;
dc.SetTextColor (TextColor) ;
dc.SetBkColor (BgColor) ;
dc.TextOut (InstText.x, InstText.y, "Instructions:”) ;
dc.TextOut (InstText.x+30, InstText.y+25, "Left mouse to click points”);
dc.TextOut (InstText.x+30, InstText.y+45,
“Right mouse to draw a link between two points”);

void CCode7B: :0nLButtonDown (UINT nFlags,CPoint pt)
{
CClientDC dc(this) ;
CString s;
CPen penGray (PS_SOLID, 2, TextColor) ;
dc.SelectObject (penGray) ;

dc.SelectObject (FontCourier) ;
dc.SetTextColor (TextColor) ;
dc.SetBkColor (BgColor) ;
if (CRect (TopLeft,BottomRight) .PtInRect (pt))
if (nv<N)
{
nv++;
v[nv] .Home=pt;
v [nv] .Box=CRect (CPoint (pt) ,CSize(BoxSize)) ;
dc.Rectangle (v[nv] .Box) ;
s.Format (“%d”,nv) ;
dc.TextOut (v[nv] .Home.x-10,v[nv] .Home.y-10,s) ;

void CCode7B: :0nRButtonDown (UINT nFlags,CPoint pt)
{
CClientDC dc (this);

int i,u,w;
CPen penGray (PS_SOLID, 1, TextColor) ;
dc.SelectObject (penGray) ;
for (i=1;i<=nv;i++)
if (v[i].Box.PtInRect (pt))
{
RButtonFlag++;
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if (RButtonFlag==1)
Ptl=i;
if (RButtonFlag==2)
{
Pt2=1i; nLink++;
dc.MoveTo (v[Ptl] .Home); dc.LineTo(v[Pt2].Home) ;
u=(v[Ptl] .Home.x+v[Pt2] .Home.x) /2;
w=(v[Ptl] .Home.y+v[Pt2] .Home.y) /2;
e[Ptl] [Pt2].InputBox.Create (WS_CHILD \ WS_VISIBLE
| WS_BORDER, CRect (CPoint (u,w),CSize(12,20)),
this, idc_WtInput++) ;
e[Ptl] [Pt2].Flag=1;
RButtonFlag=0;

void CCode7B::0nClickCalc ()

{

CClientDC dc(this) ;
CString s;
int i,3;

dc.SelectObject (FontCourier) ;

dc.SetTextColor (TextColor); dc.SetBkColor (BgColor) ;
dc.TextOut (MatText.x,MatText.y, "Weight Matrix”) ;
for (i=1;i<=nv;i++)

{
P[i]=((1i==1)?1:0);
Q[il=((i==1)20:1);
for (j=1;j<=nv;j++)
{

if (e[il[3J].Flag)
{
dc.SetTextColor (TextColor) ;
e[i][j].InputBox.GetWindowText (s) ;
e[i]1[j].Wt=e[j][1i].Wt=atoi(s);
s.Format (“%d”,e[i][J].Wt);
dc.TextOut (MatText .x+TextGap* (i-1),
MatText .y+TextGap+TextGap* (j-1),s);
dc.TextOut (MatText .x+TextGap* (j-1),
MatText .y+TextGap+TextGap* (i-1),s);
}
if (eli][3].wt==99)
{
dc.SetTextColor (RGB(180,180,180)) ;
s.Format (*%d”,0) ;
dc.TextOut (MatText.x+TextGap* (i-1),
MatText.y+TextGap+TextGap* (j-1),s);
dc.TextOut (MatText.x+TextGap* (j-1),
MatText.y+TextGap+TextGap* (i-1),s);
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MSTcost=0;
for (i=1;i<=nv-1;i++)
Prim() ;
dc.SetTextColor (TextColor) ;
s.Format (“*Cost=%d” ,MSTcost) ;
}

void CCode7B: :Prim()
{
CClientDC dc(this) ;

dc.TextOut (600,400, s) ;

CPen penMSTpath (PS_SOLID,3,RGB(100,100,100)) ;

int i,3j,k,r,w,u,h;

MinWt=99;
for (i=1;i<=nv;i++)
{
if (P[i]==0)
break;
for (Jj=1;j<=nv;j++)
if (Q[3j1!=0)
for (k=1;k<=nv;k++)
if (Q[k]!=0)
for (r=1;r<=nv;r++)
if (Q[r]!=0)
for (h=1;h<=nv;h++)
if (Q[h]!=0)
if (e[P[1]1]11Q[7]].Wt<=e[P[i]][Q[k]].Wt
&& e[P[1]1]1[Q[k]].Wt<=e[P[1i]1][Q[r]].Wt
&& e[P[1]][Q[r]].Wt<=e[P[1i]1][Q[h]].Wt
&& e[P[1]1]1[Q[]J]].Wt<=MinWt)
{
MinWt=e[P[1i]1]1[Q[J]].Wt;
u=i; w=j;
}
}

MSTcost += MinWt;
dc.SelectObject (penMSTpath) ;
dc.MoveTo (v[P[u]] .Home) ;
for (i=1;i<=nv;i++)

dc.LineTo (v[Q[w]] .Home) ;

if (P[i]==0)
{
Pli]l=w; break;
}
for (i=1;i<=nv;i++)
if (Qlil==w)
{
Q[il=0; break;
}



CHAPTER 8

GRAPH APPLICATIONS

8.1 GRAPH-NETWORK RELATIONSHIP

An understanding of graphs contributes to the design of several types of network
models. A network consists of several elements linked physically or logically that
work cooperatively in a group as a system. A physical network has nodes and links
that are visible. For example, in a local area network, the elements are the comput-
ers whereas the links are the cables that connect the computers to each other. A log-
ical network is formed to represent a solution to a particular problem. In business, a
network model is built as a logical process arising from logistics control, production
planning, financial planning, and capacity analysis. Some examples include deter-
mining the routes for delivering parcels, assigning airline crews to aircraft, and op-
timizing the shipping sources to destinations.

A network model consists of the transformation of a problem into the form of a
network so that the relationship between the participating elements can be formulat-
ed. A network is best modeled as a graph as the latter has properties and solutions
that can be shared and applied to the former. In general, a graph G described in the
last chapter, with nodes v;, and edges e;;, is a fundamental form of a network. A
node in the graph may represent an event or element, whereas a link between a pair
of nodes is the flow path showing the relationship or precedence between the nodes.

A simple network may be represented as a small graph consisting of a few nodes
and links. A large network, like the human body, may consist of thousands, mil-
lions, or even billions of nodes and countless number of links. The network in the
human body is so large that it is necessary to break it into several smaller networks
according to their functions. The blood circulation system is a network that includes
the heart, veins, and arteries, whereas the hearing system forms another network
that includes the cochlea and ear drum. These smaller networks work cooperatively
and are interrelated to each other in order for the body to function properly.

Numerical Simulations and Case Studies Using Visual C++.Net by Salleh, Zomaya, Olariu, and Sanugi 213
Copyright © 2005 John Wiley & Sons, Inc.
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Network design is a complicated problem involving many variables, depending
on the type of application. Several issues and problems arise in the development of
a network. Fortunately, many problems in network design involve problems in
graph theory as well, such as the maximum flow, shortest path, minimum spanning
tree, maximum clique, and graph coloring. Hence, graph properties and solutions to
these problems contribute greatly to solving many problems involving the design of
networks.

In this chapter, we discuss one of the main problems in graph theory, namely, the
shortest-path problem, which has a wide application in the design of networks. One
interesting topic in our model is the Floyd—Warshall algorithm, which solves the
all-pairs shortest-path problem of a graph. We also discuss one application of the
shortest-path problem in a mesh network.

8.2 SHORTEST-PATH PROBLEM

The shortest path problem is stated as follows: Given a weighted graph, find the
minimal cost linking a pair of nodes in the graph. The cost referred to in this prob-
lem can be weights, energy, distance, time, and so on. These items are the perfor-
mance measures associated with the given problem. A path may consist of one or
more links that connect a source node and the destination node.

The main objective in the shortest-path problem is to find a path in which the
sum of the weights is minimum. The normal dynamic programming solution to the
problem consists of the natural decomposition of the problem into several stages.
Each stage in the problem has its own state in which a decision in one stage recur-
sively transforms the current state into a state in the next stage.

Two cases of the shortest-path problems are normally discussed. In the single-
pair case, the problem is confined to finding a single path connecting two nodes
only. In the all-pairs case, the problem requires finding the shortest paths between
all pairs of nodes in the graph. Figure 8.1 illustrates the second case but only two
paths are shown. The first path connects v, and vs and the path is v — v; — vs hav-
ing cost = 13. The second path connects v, and v,, having the path v, — vg — vy —
vs — v, with cost = 20.

Shortest-path problems have many applications in real life. For example, consid-
er a geographical region consisting of several cities (nodes) and a set of roads
(edges) linking these cities. A fuel supplier finds it useful to have information on
the shortest paths between the cities so that fuel deliveries to these cities can be
made in the most economical way using the shortest paths. In image segmentation,
the shortest path problem has its application in establishing a connection between
any two pixels of an image. In one typical problem, a path that crosses black pixels
in the image may result in a high cost. Therefore, the objective here is to find a path
that minimizes crossing the black pixels. This problem evolves into finding the
shortest paths between pairs of pixels in the image.

The shortest-path problem can also make significant contributions to the design
of a printed circuit board (PCB). There are two main problems in PCB design:
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Figure 8.1 Two shortest paths. Path 1: v{ — v; — vs. Path 2: v, — vy — vg — vs — vy,

placement and routing. Placement involves a systematic installation of the electron-
ic components onto the small area of the PCB. Routing involves wiring between the
electronic components. A typical routing problem in PCB design requires finding
the shortest path for connecting two or more components. The wiring is to be done
according to the shape of a planar graph, and crossings between the wires are not al-
lowed. The main objective in routing is to produce a realization that minimizes the
overall congestion in the network.

We discuss briefly two common methods for solving the shortest-path problem.
The first method is Dijkstra’s algorithm, which is suitable for finding the single-
source shortest path between a pair of nodes in a graph. The second method is the
Floyd—Warshall algorithm, which computes the all-pairs shortest-path problem.
The difference between the two methods lies in their approaches: Dijkstra’s method
involves only one pair of nodes at a time, whereas the Floyd—Warshall method con-
siders all the possible combinations of the nodes.

Dijkstra’s Algorithm

Shortest-path computation involving a single pair of nodes is commonly solved using
Dijkstra’s algorithm. This algorithm is a greedy method of solving the problem and it
functions almost similarly to Prim’s algorithm for finding the minimum spanning tree.
In finding the minimum spanning tree, Prim’s algorithm starts from one node and ex-
tends outward within the graph until all the vertices have been reached. Dijkstra’s al-
gorithm proceeds in stages in which the shortest link among several others in the graph
is included in the path at one time. The procedure repeats with the next-shortest link,
and so on, until the path from the source to its destination is completed. The algorithm
has a complexity of O(N?) where N is the number of nodes in the graph.

Dijkstra’s algorithm begins by assigning any node in the graph a permanent label
with the value of 0, and all vertices a temporary label with the value of 0. The algo-
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rithm then proceeds to select the least-cost link connecting a node with a permanent
label to a node with a temporary label. The second node’a label is then updated
from temporary to permanent, and its value is then determined by the addition of
the cost of the link with the first node’s value. The next step is to find the next least-
cost link by extending it to a node with a temporary label from either the first node
or second node. The third node’s label is next, and the distance from the first node
is determined in a similar manner. This process is repeated until the labels of all
vertices in the graph become permanent.

The Floyd-Warshall Algorithm

The Floyd—Warshall algorithm computes the all-pairs shortest-path problem with a
complexity of O(N?), where N is the number of nodes in the graph. The weight of a
link between the nodes v; and v, is denoted w;;. In order to compute the shortest path,
w;; between v; and v;, fori=1,2,...,Nandj=1, 2, ..., N, must be given. If the
link between v; and v; does not exist, then the weight is denoted by . This weight is
assigned to wj'™ as the initial minimal distance between v; and v;. The Floyd-War-
shall algorithm assumes the links in the graph to have nonnegative weights and
nonnegative cycles.

The Floyd—Warshall algorithm starts by finding all the minimal distances be-
tween the pairs of nodes without passing through any intermediate nodes. These
values are recorded in the minimal distance table. The rule is then relaxed by allow-
ing one node to be the only intermediate node, starting with v,. We define a;;, as the
shortest distance from v, to v; using only the nodes vy, vy, . . . , v, as the intermediate
nodes. With g, as the intermediate node, the minimal distance is a,;. The minimal
distances between the pairs of nodes are determined by comparing the previous val-
ues with the present ones. New updates are recorded in the minimal distance table.
This is followed by v,, v,, and so on until the last node, vy, is reached. The process
repeats with two nodes and so on, using the earlier results for comparison. At each
step, a comparison is made with the values in the table and any new minimal dis-
tance values are recorded in the table. The algorithm follows.

Input: Weight w;; between v;and v;, fori=1,2,...,Nandj=1,2,..., N.
Output: Shortest path w;™" between v; and v;.
Steps:
fori=1to N
forj=1to N
Let wiin = wy;
endfor
endfor
fori=1toN
forj=1to N
fork=1to N
if wipin # o0 or wiin # o0 or WM # oo

min min

1 in
if Wit + Wit <wi
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Letn=1;
Compute wpin = wiin + ymin;
form=1toN
Let ay,, = %;
endfor
form=1to N
if a;, # @
Compute a;,, < Qs
Setn<«—n+1;
endif
endfor
Set ay, = i;
Setn<—n+1;
form=1toN
if ay,, +
Compute a;,, < Qs
Setn<«—n+1;
endif
endfor
endif
endif
endfor
endfor
endfor

Table 8.1 describes the symbols used in the Floyd—Warshall algorithm. In this
algorithm, w;™™ is the minimal distance between v; and v;. The variable a,; repre-
sents the path for the minimal distance between v; and v;, with v, as an intermediate
node. The path between v; and v; may have no intermediate node, vy, or it may have
more than one node, depending on its distance.

Code8A: Shortest-Path Visualization

We discuss the development of a visualization model for the shortest-path problem.
The project is called Code8A, having the files Code8A.h and Code8A.cpp. The
model adopts the Floyd—Warshall algorithm for computing the shortest paths be-

Table 8.1 Symbols used in the Floyd—Warshall algorithm

Symbol Description

Wy Weight of a link between v; and v;
wymin Shortest (minimal) distance between v; and v;
o Value assigned to denote that the link between v; and v; does not exist

Qg Path for the minimal distance between v; and v;, with v, as the intermediate node
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tween all pairs of nodes in the graph. Figure 8.2 shows the output of Code8A. It
consists of a graph in the drawing area in the top half of the window, whereas the
path is shown in the text area in the bottom half. There are 20 nodes in the graph,
shown as shaded rectangles. The number of nodes is represented by the macro con-
stant N, declared from #define. A different number of nodes can be obtained by
changing this macro value.

In Figure 8.2, the nodes in the graph are distributed at the randomly determined
coordinates in the drawing area. The links between the nodes, e [1] [ ], are drawn
as thin lines. The weight e[1] [Jj] .Wt in each link is also determined randomly.
We introduce a rule called the nearest neighbor rule which assigns a link to a pair
of nodes if the distance between the two nodes is less than or equal to a threshold
value, LinkRange. In this application, LinkRange is set to 200 units. From this
simple rule, the nodes that are within the range distance of LinkRange are direct-
ly linked to each other in the graph.

The nodes in the graph appear to be well distributed with their positions deter-
mined randomly in the window. The graph is not congested as the links are drawn
only if the nodes are close to each other. The graph modeled in this example has
many applications in wireless communication networks, such as in a type called an
ad hoc network. An ad hoc network consists of battery-powered nodes where each

Floyd-Warshall's Shortest Path Algorithm =10] %]
a
Path: 1 10 8 15 2 12 17 [ 3
Weight: 4 2 7 4 3 5 2 3 Total Weights: 30

Figure 8.2 Output from Code8A showing the shortest path.
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node has both a transmitter and a receiver. The network has no basic infrastructure
such as a base station. Therefore, the nodes in the network organize themselves by
sending signals to each other within their limited transmission range.

The shortest path between a pair of nodes in the graph is obtained by clicking the
nodes consecutively using the left button of the mouse. The path is shown as a thick
line from the source node to its destination. The program also allows up to eight
shortest paths to be drawn by repeating the same rule each time. The paths are
drawn as thick lines using eight randomly determined colors, to differentiate one
from another. Each time the shortest path line is drawn, the visited nodes are also
listed in the text area. This facility provides some extension capability to the pro-
gram. For example, the reader can easily add the tracing feature in the shortest path
for detecting path collision and evaluating the cost incurred.

Code8A involves only one application class called CCode8A. The variables
and objects in the project in the class are declared in Code8A.h, and they are de-
scribed in Table 8.2. Node i, or v,, is represented by v [1i]. A node is formed from a
structure called NODE with links with its members called Home and rc. The struc-
ture NODE is declared as follows:

typedef struct

{

CPoint Home;

CRect rc;
} NODE;
NODE *v;

Table 8.2 Graph elements of Code8A
Variable/object Type Description
v[i] NODE Node v;
v[i].Home CPoint Top-left coordinates of v;
v[i].rc CRect Rectangular box representation of v;
elil [3] LINK The link e; between the nodes v; and v;
elil[j].wt int Weight of e;;
el[i][3]1.sd int Shortest (minimal) distance between v; and v;
elil[j].vialk] int kth intermediate node of the link e;;
Source int Source node of a path
Dest int Destination node of a path.
LineFlag int A flag to signal the click point is the first (1) or
second (2) node in the path

alphali] [j] [k] int The path in the Floyd—Warshall algorithm in which

v; and v; are the pairing nodes, and v is the
intermediate node

A link e;; between two nodes v; and v;is e [1] [ ]. It is declared from the struc-
ture LINK, as follows:
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typedef struct
{
int Wt,sd;
int vial[1l0];
} LINK;
LINK **e;

In the above structure, the weight of a link is Wt. A link between a pair of nodes
may or may not exist. If a link does not exist, the path between the two nodes in a
connected graph must pass through one or more intermediate nodes, denoted as
viall].

In computing the shortest path, several symbols are used, as described in Table
8.2. The shortest path between a pair of nodes is represented as sd. The source and
destination nodes in a path are represented as Source and Dest, respectively. The
path a;;, between the nodes v; and v;, with v, as the intermediate node, is denoted as
alphal[i] [j] [k]. Another variable is LineFlag which is assigned with a de-
fault value of 0. A click on a node changes this value to 1, to signal that the node is
a source in the path. A click at another node changes this value to 2, which makes
the node the destination in the path.

Several other variables involving the styles of the text and graphic display are
listed in Table 8.3. The CPoint objects TopLeft and BottomRight form the
top-left and bottom-right corners of the drawing area, respectively. The text is pre-
sented using two grayscales, Colorl and Color2, with BgColor as the stan-
dard background color. The fonts used in this application are represented by the
CFont objects, fontCourier and fontArial.

Figure 8.3 shows the organization of Code8A.cpp. There are seven member
functions in Code8A, as listed in Table 8.4. Two of these functions are event han-
dlers, namely, OnPaint () and OnLButtonDown ().

The constructor Code8A () allocates memory for the class and initializes sever-
al variables, objects, and arrays in the program. The memory for the arrays is allo-
cated dynamically, as follows:

// allocate memory
v=new NODE [N+1];
e=new LINK *[N+1];
alpha=new int **[N+1];
for (i=0;i<=N;i++)

{
e[i]l=new LINK [N+1];
alphal[i]l=new int *[N+1];
for (j=0;3J<=N;j++)
alphali]l [jl=new int [N+1];
}

Random numbers are integer numbers generated from the clock cycles in the
computer. The coordinates of the nodes are assigned with random numbers so that
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l Project code8A

CCode8A()
Constructor for initializ
the variables/objects

ing

ON_WM_PAIN

OnLButtonDown( )

first click Mark the source node

OnPaint( )

Set the initial display

ON_WM_LBUTTONDOWN

OnLButtonDown( )

S

left-button click

Mark the destination node
Compute the shortest path
Display the path

second click

Figure 8.3 Organization of Code8A.

Table 8.3 Display variables/objects in Code8A

Variable/object Class Description

TopLeft CPoint Top-left coordinates of the drawing area

BottomRight CPoint Bottom-right coordinates of the drawing area

Colorl,Color2 int Color scheme for text

BgColor int Color scheme for the background

fontCourier CFont Courier font

fontArial CFont Arial font
Table 8.4 Functions in Code8A

Function Description

CCode8A () The constructor that initializes the variables and arrays. The
function also computes the all-pairs shortest paths by calling
up the function ComputePath ()

~CCode8A() The destructor

DisplayGraph () Draws the graph randomly in the main window

ComputePath () Computes the shortest path using the Floyd—Warshall algorithm

DrawPath () Draws the shortest path between two nodes in the graph

OnPaint () Sets up the initial display and draws the graph by calling up the
function DisplayGraph ()

OnLButtonDown () Marks the source and destination nodes in the graph
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their position inside the drawing area is determined randomly. These random values
are created through the C++ function rand () after executing the following two
lines of code:

time_t seed=time (NULL) ;
srand ( (unsigned) seed) ;

The function rand () produces integer random numbers from —32,768 to 32,768.
The above code converts these numbers to positive integers only. A random number
within a given range is obtained by applying the remainder operator % to rand ().
The following examples show some of these operations:

Example Description

rand () An integer from -32,768 to 32,768.
rand () %10 An integer from 0 to 9.
l+rand() %10 An integer from 1 to 10.
(double)1l/ (1+rand()%10) A real number from 0.1 to 1.

The following routine in the constructor assigns random coordinates to the top-
left corner of the node boxes:

for (i=1;i<=N;i++)
v[i] .Home=CPoint (TopLeft.x+rand ()% (BottomRight.x-30),
TopLeft.y+rand ()% (BottomRight.y-30));

The weights in the links are also assigned random values. A random integer value
between 0 to 9 is assigned as the weight of a link if the link between two nodes has
been established. If the link is absent, then a remote number, 99, is assigned as its
weight, which represents % in the Floyd—Warshall algorithm. The following code
realizes this idea:

for (i=1;i<=N;i++)
{
el[i][1].Wt=0;
for (j=1i;j<=N;Jj++)
if (sqgrt(pow(v[i].Home.x-v[]j].Home.x,2)
+pow (v[i] .Home.y-vI[j].Home.y, 2))<=LinkRange)
e[il[j].Wt=e[j][i].Wt=1+rand()%9;
else
elil[j].wt=e[j]1[i].Wt=99;
}

In assigning the weights, we consider the nearest neighbor rule. In this rule, a link
between a pair of nodes is said to exist if their straight-line distance is less than or
equal to a threshold value, LinkRange. The straight-line distance between the
points (a,, b;) and (a,, b,) can be implemented by checking the Euclidean distance
formula, given as follows:
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Euclidean distance between (a,, b;) and (a,, b,) = V(a3 — b3)? + (a3 — b3)?

In the constructor, we assign the weights of the links as the initial shortest dis-
tances between the nodes, e[1i] [j] .sd=e[1] [Jj].Wt. The shortest distance
between v; and v; may involve one or more intermediate nodes v, computed from
alphali] [J] [k]. This is done as follows:

for (i=1;i<=N;i++)
for (3=1;3j<=N;j++)

{
e[il[j].sd=e[i][]j].Wt;
for (k=1;k<=N;k++)
alpha[i]l[j][k]=99;
}

Text is displayed using grayscale colors defined by the variables Colorl and
Color2, and a background color BgColor. Two fonts are used for displaying
text: Courier and Arial. The variables are initialized as follows:

// set fonts and colors
Colorl=RGB(100,100,100);
Color2=RGB(170,170,170) ;
BgColor=RGB (230,230,230) ;
CFont fontArial;

:ZeroMemory (&lfArial,sizeof (lfArial));
1fArial.lfHeight=60;
fontArial.CreatePointFontIndirect (&1fArial);
: :ZeroMemory (&1fCourier, sizeof (1fCourier)) ;
lfCourier.lfHeight=60;
fontCourier.CreatePointFontIndirect (&1fCourier) ;

The last task in the constructor is to compute the shortest paths between all pairs
of nodes in the graph. The all-pairs shortest-path problem requires the a priori cal-
culation of all paths simultaneously. This is necessary as the graph is static where
its shape will not change throughout the running of the program. To realize this ob-
jective, the Floyd—Warshall algorithm is implemented in a function called Com-
putePath (). This function is called up from the constructor as it has all the re-
quired input for computing the shortest path, namely, the information about the
graph. ComputeGraph () is written as follows:

void CCode8A: :ComputePath ()
{
int i,3j,k,m,n;
for (i=1;i<=N;i++)
for (Jj=1;3j<=N;j++)
for (k=1;k<=N;k++)
if (e[]][i].sda!=99 || el[ill[k].sd!=99 || el[j]l[k].sd!=99)
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if (e[j]1[i].sd+e[i][k].sd<e[j][k].sd)
{
n=1;
el[jllk].sd=el[j]l[i].sd+e[i] [k].sd;
for (m=1;m<=N;m++)
alpha(j][k] [m]=99;
for (m=1; m<=N; m++)
if (alphalj][i]([m]!=99)
alpha[j][k] [n++]=alpha[]j][i] [m];
alphalj][k] [n++]1=1;
for (m=1; m<=N; m++)
if (alphalil[k][m]!=99)
alpha[j] [k] [n++]=alphali] [k] [m];

The shortest-path value (or the minimal distance) between v; and v; is stored as the
array e[1] [Jj].sd, which alpha[i] [j] [k] shows to be the path between
these two nodes.

Two events are associated with this application. First is the initial display, which
is detected as WM_ PAINT and handled by OnPaint (). The initial display consists
of a graph that is generated randomly in a rectangular box, shown in the following
code fragments:

// clear the window
CBrush BgBrush (BgColor) ;
GetClientRect (&rc) ;
dc.FillRect (&rc, &BgBrush) ;

// set the initial display
rc=CRect (TopLeft,BottomRight) ;
dc.Rectangle (&xrc) ;
DisplayGraph () ;

OnPaint () calls up the function DisplayGraph () to display the graph in
the drawing area of the main window. DisplayGraph () displays the nodes and
labels them according to the following code fragments:

CClientDC dc (this);
CString s;
CPen penGray (PS_SOLID,1,RGB(150,150,150));

dc.SetBkMode (TRANSPARENT) ;

dc.SelectObject (&fontCourier) ;
dc.SetTextColor (RGB(255,255,255) ) ;
dc.SelectObject (penGray) ;

for (int i=1;i<=N;i++) // draw the nodes
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{
v[i] .rc=CRect (vI[i] .Home,v[i] .Home+CPoint (12,12));
dc.FillSolidRect (&v[i].rc,Colorl);
s.Format (“%d”,1i);
dc.TextOut (v[i] .Home.x+2,v[1] .Home.y+2,s) ;
}

Once the nodes have been drawn, the next step is to draw the links between the
nodes based on the nearest-neighbor rule. A link is present if the distance between
any pair of nodes is less than the threshold value, LinkRange. The following code
fragments show how this is done:

for (i=1;i<=N;i++) // draw the links
for (int j=i;j<=N;j++)
if (e[i11[3].wWt!=99)
{

dc.MoveTo (v [i] .Home) ;
dc.LineTo(v[j].Home) ;
s.Format (“%d”,e[i][j].Wt);
if (i!'=3)
dc.TextOut ((v[i] .Home.x+v[j].Home.x) /2,
(v[i] .Home.y+v[j].Home.y)/2,8);

The nodes are drawn when the user clicks the mouse’s left button in the drawing
area. This event is detected as WM_LBUTTONDOWN and handled by the function
OnLButtonDown (), as follows:

void CCode8A: :0OnLButtonDown (UINT nFlags,CPoint pt)
{
for (int i=1;i<=N;i++)
if (v[i].rc.PtInRect (pt))

{
LineFlag++;
if (LineFlag==1)
Source=i;
if (LineFlag==2)
{
Dest=1;
DisplayGraph(); DrawPath() ;
LineFlag=0;
}
}

A global variable called LineFlag plays an important role in the program as it
denotes the status of the left-button click on the nodes. Initially, LineFlag is as-
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signed with 0 to denote no activity concerning the left-button click of the mouse.
The first click on the node of the graph marks the first node (source). The subse-
quent click on the second node (destination) marks this node, and the shortest path
is immediately computed and displayed on the graph. When the first node is
clicked, LineFlag is updated to 1 to denote that the node is the source. The sec-
ond click on a node causes LineFlag to increase to 2, and this signals that the
node is the destination. The second click also calls the functions Display-
Graph () and DrawPath () to redraw the graph and draw the shortest path be-
tween the two nodes, respectively. The operation terminates by resetting the value
of LineFlagto 0.

The function DrawPath () draws the shortest path from the source node to the
destination node in the graph. The source and destination nodes are denoted as
Source and Dest, respectively, whereas the path through an intermediate node r
ise[Source] [Dest] .via[r]. The process begins by erasing the text area for
showing the shortest path, as follows:

CClientDC dc(this);

CString s;

CRect rc;

CPen penDark (PS_SOLID, 3,Colorl);

CBrush BgBrush (BgColor) ;

int k,p,gq,u,w,r;

rc=CRect (150,500,800,600) ; // erase the text area
dc.FillRect (&rc, &BgBrush) ;

dc.SetTextColor (Colorl) ;

dc.SetBkColor (BgColor) ;

In the text area, the path and its weights are shown according to their node num-
bers in the graph. The path is shown in the graph as a thick line using the MFC
functions MoveTo () and LineTo (). The construction starts at the source node
by setting e [Source] [Dest] .via[r]=Source, as follows:

p=150; g=120; // display the source
r=1; el[Source] [Dest].vialr]=Source;
dc.TextOut (p-100, 500, "Path: ") ;
dc.TextOut (p-100, 540, "Weight:") ;

s.Format (“%d”,e[Source] [Dest] .vialr]);
dc.TextOut (p, 500, s) ;

dc.SelectObject (&penDark) ;

w=Source; dc.MoveTo (v[w].Home) ;

From the source node, a path to the destination node must pass through the interme-
diate nodes or vias, e[Source] [Dest] .via[r]. This is shown in Draw-
Path (), as follows:
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for (k=1; k<=N; k++) // display the vias
{

u=alpha[Source] [Dest] [k];

if (u!=99)

{

r++; e[Source] [Dest].vialr]=u;
dc.LineTo (v [u] .Home) ;

p += 60;

s.Format (“%d”,e[Source] [Dest] .vialr]);
dc.TextOut (p, 500, s) ;

g += 60;

s.Format (“%d”,elul [w] .Wt) ;
dc.TextOut (g, 540, s) ;

w=u;

}

And, finally, the path reaches the destination node by setting e[Source]
[Dest].via[r]=Dest with its shortest path, e[Source] [Dest].sd,
shown as follows:

if (e[Dest][w].sd!=99) // display the destination
dc.LineTo (v [Dest] .Home) ;

e[Source] [Dest] .vialr]=Dest;

s.Format (“%d”, Dest) ;

p += 60; g += 60;

dc.TextOut (p, 500, s) ;

s.Format (“*%d”,e[Dest] [w] .sd) ;

dc.TextOut (g, 540, s) ;

s.Format (“Total Weights: %d”, el[Source] [Dest].sd);

dc.TextOut (g+60,540,s) ;

8.3 MESH NETWORK APPLICATION

A mesh network is a parallel computing network having processors (nodes)
arranged in a rectangular array. This topology and processor arrangement provides
several advantages for many problems that are in the shape of two-dimensional ar-
rays. The mesh network provides a platform for mapping the problems directly to
the rectangular regions, which can then be solved in parallel in the network. For ex-
ample, in image processing, an image is represented as pixels arranged in a rectan-
gle. For a sharp and colorful image, massive storage in the form of a large array is
required in its representation as bits of data. This array occupies a huge amount of
memory in the computer. An array operation in an image, such as the computation
of its eigenvalues, involves a massive calculation and updating of the arrays. These
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operations consume a lot of memory, which has the effect of slowing down the
computer. An ideal solution is to distribute the operations to the processors of a par-
allel computer network. In a mesh parallel computing network, for example, the job
is represented as one or more arrays that can be mapped directly on the processors.
In this case, the domain is decomposed into smaller modules, which helps in solv-
ing the problem concurrently. Therefore, the whole job can be completed more ef-
fectively in a cooperative manner much less time.

There are several types of mesh networks. The standard mesh network, as shown
in Figure 8.4 (left), has nodes, each having two or three links. The intermediate
node in the network has four links through its north, south, east, and west ports. The
node at the corner has two links, whereas the node at the noncorner boundary has
three links. The standard mesh network is suitable for solving a problem in which
the graph representing this problem is rectangular in shape.

A toroidal mesh network is another form of the mesh network in which all the
nodes have exactly four links each. This feature provides the symmetrical proper-
ties that improve the communication capability of the network. Figure 8.4 (right)
shows a toroidal mesh network having 16 processors, arranged in a 4 x 4 grid. A
toroidal mesh provides a better communication facility than the standard mesh with
these extra links in the boundary processors.

Computing the shortest paths between all pairs of processors is a necessity in a
mesh network to allow active data movement in the network. A path is defined as
the route from the source node to its destination node. Communication between
processors is a component of a general problem known as fask scheduling. In task
scheduling, the problem is to find a feasible schedule for mapping a set of tasks
onto a set of processors. The main objective in task scheduling is to design a sched-
ule that will minimize the overall completion time. The communication problem
between processors crops up frequently as data from one processor is needed in an-
other processor before a task in the latter can start.

In general, communication between the processors depends on factors such as
the initial rate of the source processor startup, transmission rate on the link, conges-
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Figure 8.4 Two types of square mesh networks: standard (left) and toroidal (right).
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tion rate, and the dependency graph. A dependency graph that represents a particu-
lar problem may consist of directed links that show the partial orders of the directed
graph. In a directed link, a task at the tail node must be completed before the task at
the head node can start. As communication between processors may incur some sig-
nificant delays in the execution of the tasks, finding the shortest path between them
definitely contributes to reducing the cost.

Code8B: Shortest Path on a Mesh Network

In this section, we apply the shortest-path problem discussed in the last section to
the mesh parallel computing network. The visualization model is called Code8B
and the code is strongly based on the previous Code8A. The same technique of
computing the all-pairs shortest paths using the Floyd—Warshall algorithm in
Code8A is applied to Code8B. This is necessary as Code8A applies to a general
computing network and all changes pertaining to a particular network should be
kept to the minimum in order to allow the portability of the code.

Our visualization model, Code8B, simulates the standard mesh network on a 5
x 10 topology having 50 processors, as shown in Figure 8.5. The processors are
numbered starting from the left in the top row. The figure shows three different
paths in three shades of gray. The shortest path between two nodes in the mesh net-
work is obtained and displayed by clicking the mouse’s left button on the two
nodes. The model allows up to eight different paths to be displayed on the mesh.

Shortest path in a mesh network =00

Figure 8.5 Output from Code8B using the 5 x 10 mesh network.
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These paths are shown as lines of different using the randomly generated colors.
The paths and the links in each path are also listed in the text area of the window.

The project consists of the files Code8B.h and Code8B.cpp. Most of the vari-
ables and objects in Code8A.h, as described in Table 8.1, are retained in
Code8B.h. The application class in this application is CCode8B. The additional
variables and objects are listed in Table 8.5.

A new structure called PATH is introduced to describe the paths selected by the
user. This structure has members as defined in Table 8.5. The first selected path is
labeled Path[11], the second as Path[2], and so on. Another structure is PATH-
LINK, which describes the links in each path. A link has a beginning node (b) and
ending node (e). The structure PATHLINK is nested inside PATH to enable the
members in the latter to have access to the members in the former. The two struc-
tures are declared as follows:

typedef struct

{
int b, e;

} PATHLINK;

typedef struct

{
int Distance,nPLink, st;
PATHLINK PLink[N+1];

} PATH;

Figure 8.6 shows two paths in the mesh network, Path[1] and Path[2], and
their linked members from the structures PATH and PATHLINK. Path[1] starts
from processor 15 and ends at processor 49. It can be seen from the figure that link
2 in path 1 begins at processor 25 and ends at processor 26, represented as
Path([1].Plink[2].band Path[1].Plink[2].e, respectively.

Code8B also includes some new constants, namely, Nx and Ny, which repre-
sent the number of the rows and columns of the processors in the mesh network, re-

Table 8.5 Additional variables and objects in Code8B

Variables/objects Type Description

Path[i] PATH Path i

Path[i].PLink[j] PATHLINK  The jth link in path i
Path[i].PLink[j].b int Beginning node of the jth link in the ith path
Path[i].Plink[j].e int Ending node of the jth link in the ith path
Path[i] .Distance int Total weights in path i

Path[i] .nPLink int Total number of links in path i
Path[i].st int Start time of path i

nPath int Total number of paths selected

nLink int Total number of links
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Figure 8.6 The mesh network showing the relationship between the members.

spectively. Another constant is MaxPath which is the maximum number of paths
allowed in the network. The values of the constants can be changed using the #de-
fine directive in Code8B.h. The communication model in the mesh network
modeled here is in its simplest form. Factors like the initial startup cost, the trans-
mission rate, and the physical media of the links are not considered in evaluating
the communication cost involving shortest paths.

Basically, the constructor CCode8B () has the same code as its corresponding
function in Code8A.cpp. However, there are some minor changes involving the
allocation of memory for the arrays in the structures, as follows:

// allocate memory
v=new NODE [N+1];
e=new LINK *[N+1];
alpha=new int **[N+1];
Path=new PATH [N+1];
for (i=0;i<=N;i++)

{
e[i]=new LINK [N+1];
alphal[il=new int *[N+1];
for (j=0;J<=N;Jj++)
alphali]l [j]l=new int [N+1];
}

In a standard mesh network, the links between the processors are established ac-
cording to the rectangular requirement of the network. Each intermediate processor
has four links in its north, south, east, and west ports. Each processor at the corners
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has two links only, whereas each intermediate boundary processor has three links.
The following routine assigns the links according to these requirements:

time_t seed=time (NULL) ; srand ( (unsigned) seed) ;
nLink=0; nPath=0; LineFlag=0;
for (i=1;i<=N;i++)
{
el[i] [1].Wt=99;
for (Jj=1i;j<=N;j++)
{
elil[]j].wt=e[J1[i].Wt=99;
if (((j-i==1&&Jj-1!=Nx-1) || (j-1==Nx&&j-1!=Nx* (Ny-1)))
&& ! (j-i==1 && i%Nx==0) )
{
e[i1][3j].Wt=e[3j][i].Wt=1+rand()%9;
nLink++;

The drawing area consists of an area defined by the CRect object DrawArea.
Similarly, the object TextArea is derived from the same class and it defines the
text area in the window. The processors in the network are arranged in a rectangular
array with their home coordinates defined in the constructor, as follows:

DrawArea=CRect (10,20,900,350) ;
k=0;
for (j=1;J<=Ny;j++)

for (i=1;i<=Nx;i++)

{
k++;
v[k] .Home.x=40+DrawArea.left+80* (i-1) ;
v[k] .Home.y=40+DrawArea.top+60* (j-1) ;
}

Random numbers from 0 to 9 are used as the weights of the links in the network. A
similar approach to Code8A using the function rand () is applied to determine
these weights.

The main window displays the mesh network using the function OnPaint ().
The following routine in the function OnPaint () draws the links and labels their
weights:

for (i=1;i<=N;i++)
for (j=1i;j<=N;j++)
if (e[il[J].wt!=99)
{
dc.MoveTo (v[i] .Home) ;
dc.LineTo(v[j] .Home) ;
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s.Format (“*%d”,e[i][]j].Wt);
dc.TextOut (5+(v[i] .Home.x+v[j] .Home.x) /2, (
v[i] .Home.y+v[j].Home.y)/2,s);
}

The processors are drawn as yellow rectangles, as follows:

dc.SetTextColor (RGB(0,0,0));
for (i=1;i<=N;i++)

{
v[i].rc=CRect(v[i] .Home.x-10,v[i] .Home.y-10,
v[i] .Home.x+10,v[i] .Home.y+10) ;
dc.FillSolidRect (&v[i] .rc,RGB(250,250,0));
s.Format (“%d”,1);
dc.TextOut (v[i] .Home.x-8,v[1i] .Home.y-8,8);
}

The function DrawPath () draws the selected path on the graph and displays
the node numbers in the text area. This function is called up by the function OnL-
ButtonDown () when the flag value LineFlag=2 is reached. DrawPath ()
gets the results of the all-pairs shortest paths from the function ComputePath ().

A path from the source to its destination is determined from the last value re-
turned in alpha [Source] [Dest] [k]. Each path consists of one or more links,
represented as PLink[r]. The source and destination nodes are rewritten as
Path[nPath] .PLink([r].b and Path[nPath].PLink[r] .e, respective-
ly. The intermediate nodes in the path are determined from PLink [r] in this ar-
ray. The links in each path are determined using the following routine:

int r=Path[nPath].st=1;
Path[nPath] .PLink[r] .b=Source;
for (k=1; k<=N; k++)
{
u=alpha[Source] [Dest] [k];
if (u!=99)
{
Path[nPath] .PLink[r] .e=Path[nPath] .PLink[r+1] .b=u;
r++;
}
}
Path[nPath] .nPLink=r;
Path[nPath] .PLink[r] .e=Dest;

Each path is drawn on the graph using a different color. The color for a path is
generated randomly using the MFC function rand () by setting the red, blue, and
green components of the function RGB (). The same color is used to display the
node number of the path in the text area. The following code in DrawPath () im-
plements this idea:
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time_t seed=time (NULL) ;

srand ( (unsigned) seed) ;
PathColor=RGB(rand () %256, rand() %256, rand () %256) ;
dc.SelectObject (&fontTimes) ;

dc.SetTextColor (RGB(200,200,200)) ;

dc . SetBkMode (TRANSPARENT) ;

s.Format (“*%d” ,nPath) ;

dc.TextOut (20+TextArea.left,20+TextArea.top+15*nPath, s);
CPen PathPen (PS_SOLID, 3,PathColor) ;

dc.SelectObject (&PathPen) ;

The highlight of Code8B is to display the shortest path of the selected pair of
nodes in the graph. This is done as follows:

u=Path[nPath] .PLink[1] .b;
dc.MoveTo (v[u] .Home) ;
dc.SetTextColor (PathColor) ;
for (r=1;r<=Path[nPath] .nPLink;r++)
{
w=Path[nPath] .PLink[r] .e;
dc.LineTo (v[w] .Home) ;
s.Format (“*%d”, Path[nPath] .PLink[r] .b);
dc.TextOut (50+TextArea.left+TextGap* (r-1+Path[nPath] .st-1),
20+TextArea.top+15*nPath, s) ;
}
s.Format (“*%d”, Path[nPath] .PLink[r-1].e);
dc.TextOut (50+TextArea.left+TextGap* (r-1+Path[nPath].st-1),
20+TextArea.top+15*nPath, s) ;
s.Format (“*%d”, Path[nPath] .Distance) ;
dc.TextOut (TextArea.right-100, 20+TextArea.top+15*nPath, s) ;

8.4 SUMMARY AND CONCLUSION

In this chapter, two models involving the applications of graph theory were dis-
cussed. The first model describes the shortest-path problem. We continue the work
from the previous chapter on the friendly graph interface by adding the shortest-
path problem. We apply the Floyd—Warshall algorithm for finding the all-pairs
shortest paths in the graph. The shortest path is computed and displayed in the win-
dow by simply clicking any two nodes of the graph. The second model continues
the work of the first by applying it to a mesh network. Here, each node is a proces-
sor, and the Floyd—Warshall algorithm helps in computing the communication cost
for transferring data from one processor to another.

The models developed in this chapter can further be extended to several other
network applications. The project Code8A provides the basic framework for any
graph-related applications. As mentioned earlier, one good application is in the de-
sign of ad hoc wireless networks. In this application, the nodes need to organize
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themselves to form a network without help from external sources. Therefore, it is
necessary to supply many other attributes to the nodes. A node in the network
should have information about its neighbors such as its connectivity to its immedi-
ate neighbors and its message transmission history. To achieve these abilities, a
node must have its own table in the form a simple database about its neighbors. This
information requires an upgrade of its structure, NODE, to include other information
as well. Also, the way a message flows using the shortest path in Code8A will def-
initely contribute to the design of a routing protocol in an ad hoc network.

Code8B also contributes to the design of the routing strategy for a mesh net-
work. The project is a fundamental work on communication but it has a great poten-
tial for the development of an efficient communication model on this network. An
extension to the work includes designing a protocol to allow effective communica-
tion between the processors by taking into consideration a number of factors and
constraints affecting the network’s performance. These include the initial setup
cost, the transmission rate, the contention rate, and the physical structure of the net-
work.
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CODE LISTINGS

Code8A: Shortest Path in a Graph

#include <afxwin.h>
#include <math.h>
#define N 20

#define LinkRange 200

class CCode8A : public CFrameWnd
{
private:
int Source,Dest;
int Colorl,Color2,BgColor;
int ***alpha,LineFlag;
typedef struct
{

int Wt,sd;
int via[10];
} LINK;
LINK **e;

typedef struct
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CPoint Home;
CRect rc;
} NODE;
NODE *v;
CPoint TopLeft,BottomRight;
CFont fontArial, fontCourier;
LOGFONT lfCourier,lfArial;
public:
CCode8A() ;
~CCode8A() ;
void DisplayGraph() ;
void ComputePath() ;
void DrawPath() ;
afx_msg void OnPaint () ;
afx_msg void OnLButtonDown (UINT, CPoint);
DECLARE_MESSAGE_MAP ()
}i

class CMyWinApp : public CWinApp
{
public:
virtual BOOL InitInstance();
Y

#include “code8A.h”
CMyWinApp MyApplication;

BOOL CMyWinApp: :InitInstance ()

{
CCode8A* pFrame = new CCode8A;
m_pMainWnd = pFrame;
pFrame->ShowWindow (SW_SHOW) ;
pFrame->UpdateWindow () ;
return TRUE;

BEGIN_MESSAGE_MAP (CCode8A, CFrameWnd)
ON_WM_PAINT ()
ON_WM_LBUTTONDOWN ()
END_MESSAGE_MAP ()

CCode8A: :CCode8A()
{
int i,3,k;
Create (NULL, “Floyd-Warshall’s Shortest Path Algorithm”,
WS_OVERLAPPEDWINDOW, CRect (0,0,800,600)) ;

// allocate memory
v=new NODE [N+1];
e=new LINK *[N+1];
alpha=new int **[N+1];
for (i=0;i<=N;i++)
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e[i]l=new LINK [N+1];
alpha[il=new int *[N+1];
for (j=0;j<=N;j++)

alphal[i] [j]l=new int [N+1];

// initialize variables

LineFlag=0;
TopLeft=CPoint (20,20); BottomRight=CPoint (700,450) ;
time_t seed=time (NULL); srand((unsigned)seed) ;

for (i=1;i<=N;i++)

v[i] .Home=CPoint (TopLeft.x+rand ()% (BottomRight.x-30),

TopLeft.y+rand ()% (BottomRight.y-30));

for (i=1;i<=N;i++)
{

e[i][1].Wt=0;

for (j=i;j<=N;Jj++)

if (sgrt(pow(v[i].Home.x-v[j].Home.x,2)

+pow (v[i] .Home.y-v[]j] .Home.y, 2) )<=LinkRange)

el[i][j].wWt=e[Jj]l[i].Wt=1l+rand()%9;
else
e[i][j].wt=e[Jj][i].Wt=99;
}
for (i=1;i<=N;i++)
for (j=1;3<=N;j++)
{
e[il[j].sd=eli] [j].Wt;
for (k=1;k<=N;k++)
alpha[i] [j][k]1=99;

// set fonts and colors
Colorl=RGB(100,100,100);
Color2=RGB(170,170,170) ;
BgColor=RGB(230,230,230) ;

CFont fontArial;

::ZeroMemory (&1fArial,sizeof (1fArial));
1fArial.lfHeight=60;
fontArial.CreatePointFontIndirect (&1fArial);
: :ZeroMemory (&1fCourier, sizeof (1fCourier)) ;
1fCourier.lfHeight=60;
fontCourier.CreatePointFontIndirect (&1fCourier) ;

// compute the shortest paths
ComputePath () ;

CCode8A::~CCode8A() // destroy the arrays

int i,3;
for (i=0;i<=N;i++)
{
e[i]l=new LINK [N+1];

237
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for (j=0;3<=N;j++)
delete alphalil[j];
delete e[i],alphalil;
}
delete v,e,alpha;

void CCode8A: :0OnPaint ()
{
CPaintDC dc(this) ;
CString s;
CRect rc;

// clear the window
CBrush BgBrush (BgColor) ;
GetClientRect (&rc) ;
dc.FillRect (&rc, &BgBrush) ;

// set the initial display
rc=CRect (TopLeft, BottomRight) ;
dc.Rectangle (&rc) ;
DisplayGraph() ;

void CCode8A::DisplayGraph ()
{
CClientDC dc(this);
CString s;
CPen penGray (PS_SOLID,1,RGB(150,150,150));

dc.SetBkMode (TRANSPARENT) ;
dc.SelectObject (&fontCourier) ;
dc.SetTextColor (RGB(255,255,255)) ;
dc.SelectObject (penGray) ;
for (int i=1;i<=N;i++) // draw the nodes
{
v[i].rc=CRect(v[i] .Home,v[i].Home+CPoint (12,12));
dc.FillSolidRect (&v[i] .rc,Colorl) ;
s.Format (“*%d”,1);
dc.TextOut (v[i] .Home.x+2,v[1i] .Home.y+2,8) ;

}
dc.SetTextColor (Color2) ;
for (i=1;i<=N;i++) // draw the links

for (int j=i;j<=N;j++)

if (elil[j].wt!=99)

{
dc.MoveTo (v[i] .Home) ;
dc.LineTo(v[j] .Home) ;
s.Format (“%d”,e[i][J].Wt);
if (i!=3)

dc.TextOut ((v[i] .Home.x+v[j] .Home.x) /2,
(v[i] .Home.y+v[j] .Home.y)/2,s);
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void CCode8A: :ComputePath ()
{
int i,3j,k,m,n;
for (i=1;i<=N;i++)
for (j=1;j<=N;j++)
for (k=1;k<=N;k++)
if (e[j1[i].sd!=99 || e[i][k].sd!=99 || el[j]l[k].sd!=99)
if (el[j][i].sd+e[i][k].sd<el[]][k].sd)
{

n=1;

e[jl[k].sd=e[j][i].sd+e[i][k].sd;

for (m=1;m<=N;m++)
alpha(j] [k] [m]=99;

for (m=1; m<=N; m++)
if (alphalj][i][m]!=99)

alphalj] [k] [n++]=alpha[j][i] [m];

alpha(j] [k] [n++]=1i;

for (m=1; m<=N; m++)
if (alphali][k][m]!=99)

alpha(j] [k] [n++]=alphali] [k] [m];

void CCode8A: :DrawPath ()
{
CClientDC dc(this) ;
CString s;
CRect rc;
CPen penDark (PS_SOLID, 3,Colorl);
CBrush BgBrush (BgColor) ;
int k,p,q,u,w,r;

rc=CRect (150,500,800, 600) ; // erase the text area
dc.FillRect (&rc, &BgBrush) ;

dc.SetTextColor (Colorl) ;

dc.SetBkColor (BgColor) ;

p=150; g=120; // display the source

r=1; e[Source] [Dest].vial[r]=Source;

dc.TextOut (p-100,500, “Path:") ;
dc.TextOut (p-100, 540, "Weight:”) ;

s.Format (“%$d”,e[Source] [Dest] .vialr]) ;

dc.TextOut (p, 500, s) ;

dc.SelectObject (&penDark) ;
w=Source; dc.MoveTo (v[w].Home) ;

for (k=1; k<=N; k++) // display the vias
{

u=alpha[Source] [Dest] [k];

if (u!=99)

{

r++; e[Source] [Dest].vialr]l=u;
dc.LineTo(v[u] .Home) ;

p += 60;

s.Format (*%d”,e[Source] [Dest] .vialr]);
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dc.TextOut (p, 500, s) ;

g += 60;

s.Format (“%d”,e[u] [w] .Wt) ;
dc.TextOut (g, 540, s) ;

w=u;

}

if (e[Dest] [w].sd!=99) // display the destination
dc.LineTo (v [Dest] .Home) ;

e[Source] [Dest] .vial[r]=Dest;

s.Format (“%d”,Dest) ;

p += 60; g += 60;

dc.TextOut (p, 500, s) ;

s.Format (“%d”,e[Dest] [w] .sd) ;

dc.TextOut (g, 540, s) ;

s.Format (“Total Weights: %d”,e[Source] [Dest].sd);

dc.TextOut (g+60, 540, s) ;

void CCode8A: :0OnLButtonDown (UINT nFlags,CPoint pt)
{
for (int i=1;i<=N;i++)
if (vI[i].rc.PtInRect(pt))
{

LineFlag++;
if (LineFlag==1)
Source=i;
if (LineFlag==2)
{
Dest=1i;
DisplayGraph(); DrawPath() ;
LineFlag=0;

Code8B: Shortest Paths in a Mesh Network

// code8B.h

#include <afxwin.h>
#include <math.h>
#define Nx 10

#define Ny 5

#define N Nx*Ny
#define LinkRange 200
#define MaxPath 8

class CCode8B : public CFrameWnd
{
private:
int Source,Dest;
int nPath,nLink, TextGap;
int ***alpha,LineFlag;



}i

class CMyWinApp

{

typedef struct
{

CPoint Home;

CRect rc;
} NODE;
NODE *v;
typedef struct
{

int Wt,sd;
} LINK;
LINK **e;
typedef struct
{

int b,e;
} PATHLINK;
typedef struct
{

int Distance,nPLink, st;
PATHLINK PLink[N+1];

} PATH;
PATH *Path;
CPoint TextHome;

CRect DrawArea, TextArea;
CFont fontCourier, fontTimes;
LOGFONT 1lfCourier,lfTimes;
public:

CCode8B() ;
~CCode8B() ;

void ComputePath () ,DrawPath() ;

afx_msg void OnPaint () ;

afx_msg void OnLButtonDown (UINT,
DECLARE_MESSAGE_]

public:
virtual BOOL InitInstance() ;

}i

// code8B.cpp:

#include “code8B.h”

MAP ()

public CWinApp

CMyWinApp MyApplication;

BOOL CMyWinApp: :InitInstance()

{

CCode8B* pFrame =

new CCode8B;

m_pMainWnd = pFrame;
pFrame->ShowWindow (SW_SHOW) ;
pFrame->UpdateWindow () ;

return TRUE;

CPoint) ;

Shortest path in a mesh network

CODE LISTINGS
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BEGIN_MESSAGE_MAP (CCode8B, CFrameWnd)
ON_WM_PAINT ()
ON_WM_LBUTTONDOWN ( )
END_MESSAGE_MAP ()

CCode8B: : CCode8B ()
{
int i,3.,k;
Create (NULL, “Shortest path in a mesh network”,
WS_OVERLAPPEDWINDOW, CRect (0,0,920,600)) ;

// allocate memory

v=new NODE [N+1];

e=new LINK *[N+1];

alpha=new int **[N+1];

Path=new PATH [N+1];

for (i1=0;i<=N;i++)

{
e[i]=new LINK [N+1];
alpha[il=new int *[N+1];
for (j=0;j<=N;j++)

alphal[i]l [j]l=new int [N+1];

// initialize variables
time_t seed=time (NULL) ;
srand ( (unsigned) seed) ;
nLink=0; nPath=0; LineFlag=0;
for (i=1;i<=N;i++)
{
e[1][1i].Wt=99;
for (j=i;j<=N;j++)
{
el[il[j].wt=e[j]1[1i].Wt=99;
if (((j-i==1 && j-i!=Nx-1) || (j-i==Nx && j-i!=Nx*(Ny-1)))
&& ! (j-i==1 && 1i%Nx==0) )

e[il[j].wWt=e[j][i].Wt=1+rand()%9;
nLink++;

}
for (i=1;i<=N;i++)
for (j=1;3<=N;j++)
{
e[i][j].sd=e[i][7F].Wt;
for (k=1;k<=N;k++)
alphalil[j]1[k]=99;

// set fonts, colors, text and drawing area
TextGap=50; TextHome=CPoint (70,520);
DrawArea=CRect (10,20,900,350) ;
TextArea=CRect (10,360,900,560) ;
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k=0;
for (j=1;j<=Ny;j++)
for (i=1;i<=Nx;i++)

{
k++;
v[k] .Home.x=40+DrawArea.left+80* (1i-1) ;
v[k] .Home.y=40+DrawArea.top+60* (j-1) ;
}

ZeroMemory (&1 fCourier, sizeof (1fCourier)) ;
1fCourier.lfHeight=60;
fontCourier.CreatePointFontIndirect (&1lfCourier) ;
ZeroMemory (&1fTimes, sizeof (1fTimes)) ;
1fTimes.l1fHeight=90;
fontTimes.CreatePointFontIndirect (&1fTimes) ;

// compute the shortest paths
ComputePath () ;

CCode8B: : ~CCode8B ()

{

for (int i=0;i<=N;i++)
{
for (int j=0;j<=N;j++)
delete alphalill[j];
delete e[i],alphalil;
}
delete v,e,alpha, Path;

void CCode8B: :0nPaint ()

{

CPaintDC dc(this) ;

int 1i,3,k;

CString s;

CPen LinePen (PS_SOLID,1,RGB(150,150,150));

CPen TextBoxPen (PS_SOLID,2,RGB(0,50,255));

CBrush BgBrush(RGB(0,0,0));

CRect rc=CRect (DrawArea.left,DrawArea.top,
TextArea.right, TextArea.bottom) ;

dc.FillRect (&rc, &BgBrush) ;

rc=CRect (TextArea.left+10, TextArea.top+10,
TextArea.right-10, TextArea.bottom-10) ;

dc.SelectObject (TextBoxPen) ;

dc.MoveTo (TextArea.left+10, TextArea.top+10) ;

dc.LineTo (TextArea.right-20, TextArea.top+10) ;

dc.LineTo (TextArea.right-20, TextArea.bottom-20) ;

dc.LineTo (TextArea.left+10, TextArea.bottom-20) ;

dc.LineTo (TextArea.left+10, TextArea.top+10) ;

dc.SelectObject (LinePen); dc.SelectObject (&fontTimes) ;
dc.SetBkMode (TRANSPARENT) ; dc.SetTextColor (RGB(0,0,255));
for (i=1;i<=N;i++)

for (J=1;J<=N;Jj++)
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if (e[i1[J].wWt!=99)
{
dc.MoveTo (v[i] .Home); dc.LineTo(v[j].Home) ;
s.Format (“%d”,e[i][J].Wt);
dc.TextOut (5+(v[i] .Home.x+v[j] .Home.x) /2, (
v[i].Home.y+v[j].Home.y)/2,s8);
}
dc.SetTextColor (RGB(0,0,0)) ;
for (i=1;i<=N;i++)

{
v[i].rc=CRect(v[i] .Home.x-10,v[i] .Home.y-10,
v([i] .Home.x+10,v[i] .Home.y+10) ;
dc.FillSolidRect (&v[i].rc,RGB(250,250,0));
s.Format (“%d”,1i) ;
dc.TextOut (v[i] .Home.x-8,v[i] .Home.y-8,s8) ;
}

dc.SelectObject (&fontTimes) ;
dc.SetTextColor (RGB(200,200,200)) ;
dc.SetBkMode (TRANSPARENT) ;
dc.TextOut (20+TextArea.left, TextArea.top+20, “Path”) ;
for (k=1;k<=15;k++)
{
s.Format (“%d”, k) ;
dc.TextOut (50+TextArea.left+TextGap* (k-1),20+TextArea.top, s) ;

void CCode8B: :0nLButtonDown (UINT nFlags,CPoint pt)
{
int 1i;
if (nPath<=MaxPath-1)
for (i=1;i<=N;i++)
if (v[i].rc.PtInRect(pt))
{
LineFlag++;
if (LineFlag==1)
Source=i;
if (LineFlag==2)
{
Dest=1;
LineFlag=0;
if (e[Source] [Dest].sd!=99)

{
nPath++;
Path[nPath] .Distance=e[Source] [Dest] .sd;
DrawPath () ;

}

void CCode8B: :ComputePath ()
{

int i,j,k,m,n;
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for (i=1;i<=N;i++)
for (j=1;j<=N;j++)
for (k=1;k<=N;k++)
if (el[j1[i].sd!=99 || el[il[k].sd!=99 || el[j]l[k].sd!=99)
if (e[j1[i].sd+e[i][k].sd<e[j][k].sd)

n=1;
e[jl[k].sd=e[j][i].sd+e[i] [k].sd;
for (m=1;m<=N;m++)
alpha(j] (k] [m]=99;
for (m=1; m<=N; m++)
if (alphalj][i]([m]!=99)
alpha(j] [k] [n++]=alphal[j][i] [m];
alphalj][k] [n++]1=1;
for (m=1; m<=N; m++)
if (alphali][k][m]!=99)
alphalj][k] [n++]=alphal[i] [k] [m];

void CCode8B: :DrawPath ()
{
CClientDC dc(this) ;
CString s;

int u,w,k,PathColor;

int r=Path[nPath].st=1;
Path[nPath] .PLink[r] .b=Source;
for (k=1; k<=N; k++)

{
u=alpha[Source] [Dest] [k];
if (u!=99)
{

Path[nPath] .PLink[r] .e=Path[nPath] .PLink[r+1] .b=u;
r++;

}
Path[nPath] .nPLink=r;
Path[nPath] .PLink[r] .e=Dest;

time_t seed=time (NULL); srand((unsigned)seed) ;
PathColor=RGB (rand () %256, rand () %256, rand()%256) ;
dc.SelectObject (&fontTimes) ;

dc.SetTextColor (RGB(200,200,200)) ;

dc.SetBkMode (TRANSPARENT) ;

s.Format (“%d”,nPath) ;

dc.TextOut (20+TextArea.left,20+TextArea.top+15*nPath, s) ;
CPen PathPen (PS_SOLID, 3,PathColor) ;
dc.SelectObject (&PathPen) ;

u=Path[nPath] .PLink[1] .b;

dc.MoveTo (v[u] .Home) ;

dc.SetTextColor (PathColor) ;

for (r=1;r<=Path[nPath].nPLink;r++)

{



246 GRAPH APPLICATIONS

w=Path[nPath] .PLink[r].e;
dc.LineTo (v [w] .Home) ;
s.Format (“*%d”, Path[nPath] .PLink[r] .Db);
dc.TextOut (50+TextArea.left+TextGap* (r-1+Path[nPath].st-1),
20+TextArea.top+15*nPath, s) ;
}
s.Format (“*%d”, Path[nPath] .PLink[r-1].e);
dc.TextOut (50+TextArea.left+TextGap* (r-1+Path[nPath] .st-1),
20+TextArea.top+15*nPath, s) ;
s.Format (“%d”, Path[nPath] .Distance) ;
dc.TextOut (TextArea.right-100,20+TextArea.top+15*nPath, s) ;



CHAPTER 9

MULTIPROCESSOR SCHEDULING
PROBLEM

9.1 PARALLEL COMPUTING SYSTEMS

Most computers at home and in the office today are single-processor computers, or
sequential computers, that are fast enough to do most jobs. A sequential computer
has only one processor and enough random access memory capacity for fulfilling
all the requirements at home and in a small office. However, for a number-crunch-
ing type of job such as in high-level graphics and numerical applications, a sequen-
tial computer may not be able to perform these operations at the desired speed. For
one thing, the computer is slow when it comes to handling operations involving
floating point numbers, large arrays, and repeating loops. These operations require
a computer with a fast central processing unit (CPU) and large random access mem-
ory (RAM) to process and store the arrays with high-precision accuracy.

It is generally known that it would take something like one year for one person
to build a house alone. However, if the job is shared among four people the length
of time for completing the house will definitely be reduced, perhaps only two
months. One good solution for tackling the speed issue in numerically intensive
applications is to use several processors in parallel and distributed computer sys-
tems. A parallel and distributed computing system has more than one CPU and
large random access memory, making it suitable for applications in number-
crunching operations.

A parallel computer system is a computer that has more than one processing ele-
ment (PE) enclosed within its system. A processing element has both a central pro-
cessing unit and some limited local memory (LM). A processing element is com-
monly referred as a processor, and they mean the same thing here. Several
processors may be connected in a network to share a large global memory within a
system, as illustrated in Figure 9.1. This shared memory network model has the ad-
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PE, PE, PE, PE,

network

LM = local memory

global (shared) memory

Figure 9.1 A shared-memory parallel computer network.

vantage of providing fast memory transfer between the processors, as the memory
is centralized in one location only.

Another model is the distributed memory computer system, as shown in Figure
9.2. In this system, each processing unit has its own memory. Data can be trans-
ferred from one PE to another through its message-passing mechanism, by moving
it from a memory unit in the first PE to the memory unit of another PE. Communi-
cation in this case is slower but the system has the advantage of having processors
with a greater autonomy in their operations.

A distributed computer system is a network of autonomous computers covering a
substantial working area, such as a university campus. Each computer in this sys-
tem is capable of processing its own jobs independently of other processors in the
network. The computers in the network share a parallel computing environment
such as the parallel virtual machine (PVM) and message-passing interface (MPI),
which provides facilities for collaborative processing of jobs. PVM provides a co-
herent and portable parallel computing environment across several heterogeneous
computers for message passing and processing. The system was developed by Oak
Ridge National Laboratory, USA, in early 1990s. MPI is another system developed
by more than 175 individuals from 40 organizations in the USA in the early 1990s
with the purpose of providing an efficient and portable computing platform for
message passing.

network

Figure 9.2 A distributed memory computer network.
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9.2 TASK SCHEDULING PROBLEM

Task scheduling is a combinatorial optimization problem that has many applica-
tions in the design of feasible schedules for a parallel computer system. A good task
scheduler utilizes the full capability of the computer system to produce maximum
results in the form of fast execution of programs and efficient handling of jobs.
Among other things, task scheduling contributes to compiler design, operating sys-
tem management, development of drivers, and file management. The areas of appli-
cations involving task scheduling have also expanded over the years to include sev-
eral new forms of distributed computing environments involving mobile and grid
computing.

Task scheduling is basically a software issue. The problem is important in a par-
allel and distributed computer system as it contributes to the overall performance
index of the system. It is important for the system to explore its full capability by
using its available resources for achieving its maximum performance. There is no
point in having very sophisticated hardware in the form of a parallel machine if the
software that controls its operation does not explore its full capability.

The task scheduling problem is described as follows: Given a set of tasks from a
program and a set of processors in a parallel computing system, how can these
tasks be mapped to the processors in such a way that the whole operation will com-
plete at the earliest time possible?

A task v; is defined as a module or a unit of job in a computer program consisting
of as few as one line and as many as a few hundred lines of code. The complete set of
tasks having relationships between them in the form of directed edges is called a task
graph. Figure 9.3 shows a task graph in which the tasks are represented as nodes in
white boxes and the directed links between the nodes denote the relationships be-
tween them. A directed edge between two tasks in a task graph shows the partial or-

Figure 9.3 Task graph having seven nodes and eight directed links.
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der relationships between them. A partial order between two tasks is said to exist if a
task depends on its predecessor task(s) for some shared data or information. In Figure
9.3, the partial order v5 < v; of the task graph is shown as a directed edge between the
two nodes. This partial order shows a precedence relationship in which v; is the pre-
decessor of vs. The relationship implies that vs will not be able to start executing un-
less v; has been completed. A task may have more than one predecessor task, as in the
case of v, and v, in the figure. In this case, the two tasks will have to wait for the com-
pletion of all their predecessor tasks before they can start executing.

Task scheduling involves the mapping of a set of tasks from a task graph to the
processors with the main objective of minimizing the overall completion time. Fig-
ure 9.4 shows a task graph having seven tasks and its mapping onto a set of four
processors to produce a scheduling output in the form of Gantt charts. The main ob-
jective in task scheduling is to produce an optimum schedule with minimum overall
completion time. This minimum completion time is also called the schedule length

TASK GRAPH

PROCESSING ELEMENTS

| shared memory

OUTPUT in GANTT CHARTS

5 @]

s ][]

Figure 9.4 Task graph and its mapping on a parallel computer system.
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or the makespan of the task graph. Another common objective is to distribute the
tasks evenly among the processors; this is called load balancing. This objective is
necessary to make sure that all the processors are fully utilized, and to avoid the
case of uneven job distribution, which causes some processors to be too busy while
some others are idle.

It is also an objective in task scheduling to minimize the laxity rate in the proces-
sors. A laxity in a processor is defined as the lax time between the completion of a
task and the start of another task in the processor. A high laxity rate reflects ineffi-
ciency in the scheduling system of the network, and this is intolerable as the run-
ning time for the system is expensive.

For a real-time system, it is important for a schedule to be designed so as to meet
the deadline of executions. A soft deadline in the schedule indicates that compliance
to it is not very critical to the overall functioning of the system. The system may
still function if there is some delay in the deadline although this may cause some
discomfort or inconvenience. In a system with a hard deadline, compliance to the
deadline is very critical to system survival. The system may lose some critical data
or even crash if the deadline is not met. For example, an aircraft due to land at an
airport has a schedule with a tolerable soft deadline and intolerable hard deadline.
The aircraft has prepared itself to land before the soft deadline time of ¢, but due to
some unforeseen circumstances at the airport, it is unable to do so. It can tolerate
this delay by circling the airport a few times while waiting for clearance for landing.
The ultimate deadline, or hard deadline, for landing is then set at #,. A failure to
land on or before #, will result in a disaster as the aircraft may run out of fuel. In re-
ality, this problem has happened before; a South American aircraft crashed near an
airport in New York, causing many deaths.

An optimum schedule in the mapping of tasks to processors helps to produce a
healthy computing system in which the capability of the resources in the system is
fully explored. Some established methods for achieving this goal include methods
based on list scheduling, clustering, mathematical programming, queueing theory,
graph theoretic, and enumerated search. There are also approaches using the latest
tools in neural networks, simulated annealing, genetic algorithms, and other evolu-
tionary algorithms.

There are two types of task scheduling. In static scheduling, all the information
about the tasks is known a priori, that is, before they are scheduled. The information
includes the length of the task, its precedence relationship with other tasks, and the
related communication costs. Very often, the task graph is known prior to schedul-
ing, and this provides enough time to decide on the mapping. Static task scheduling
is often associated with offline scheduling in which its implementation is not criti-
cal and can be delayed.

On the other hand, if the state of the tasks is only known on the fly, that is, as the
execution is in progress, then this is a case of dynamic scheduling. Dynamic sched-
uling is more difficult to apply as it involves some extra overhead in determining
the state of the arriving tasks and the processors at every time slot prior to schedul-
ing the tasks. It is not always possible to get an optimum result in the form of mini-
mum schedule length for this reason. Therefore, the main objective in dynamic



252 MULTIPROCESSOR SCHEDULING PROBLEM

scheduling is not the minimum schedule length. Instead, the more important objec-
tive is to produce a feasible schedule that meets the deadline of execution.

Dynamic scheduling is often caused by the nondeterminism factor on the states
of the tasks and the PEs prior to their execution. Nondeterminism in a program orig-
inates from factors such as uncertainties in the number of cycles (such as loops), the
and/or branches, and the variable task and arc sizes. The scheduler has very little a
priori knowledge about these task characteristics and the system state estimation is
obtained on the fly as the execution is in progress. This is an important step before a
decision is made on how the tasks are to be distributed. Dynamic scheduling is of-
ten associated with real-time scheduling, which involves periodic tasks and tasks
with critical deadlines.

Task Scheduling Concepts

There are several rules to follow in scheduling tasks in a multiprocessor system.
The general rule to follow is, only one task can be accommodated by a processor in
a single time slot. This means a processor can do only one thing at a time, and no
multitasking capability on a single processor is assumed. Other rules related to task
precedence are:

1. In a partial order v; < v,, the earliest time v; can start executing is at the com-
pletion time of v;. If v; is scheduled in the same processor as v;, then the com-
pletion time of v; is the starting time of v;, provided the time slot is available.

2. Otherwise, if v; is scheduled in a different processor, then the communication
cost between them must be added.

3. If more than one predecessor exists, then the earliest time the task can start is
the maximum of the sum of the execution time of the predecessor tasks and
their communication costs. This is known as the synchronization process per-
formed on the processors to make sure that the precedence rules on the tasks
are not broken.

4. If a time slot is occupied, then the scheduled task on this slot will have to wait
until the currently executing task completes its execution.

The task scheduling problem is illustrated in Figure 9.5. The figure shows four
tasks—uv,, vy, v3, and v,—marked as clear boxes. Two processors are used in the sim-
ulation. Each task has the length written under its box. The task’s precedence rela-
tionship with other tasks is shown as directed edges, together with the associated cost
at each edge. The tasks can be scheduled in many ways, using several existing meth-
ods. One solution is to place v;, v5, and v, into PE,, and v, into PE,, in the schedule.
The task v, has a length of 4 units to complete its execution at =4 in PE,. As v, has
v; as its predecessor, the former has to wait for the latter to complete its execution be-
fore it can start. Since v, is mapped on a different PE from v, there is a communica-
tion cost to add and this causes some delay in its start time for execution.

The example in Figure 9.5 produces a schedule length of 18 units, as shown by
the Gantt charts in the figure. v; becomes the first task to be executed while the last



9.2 TASK SCHEDULING PROBLEM 253

2
1
> 7
/ 3
5 3 5
2

1

[) [=]

Figure 9.5 Scheduling of four tasks on two processors.

one is v4. The schedule may not be optimum, depending on the method used. A dif-
ferent schedule with a higher or lower schedule length results when a different map-
ping method is applied. Therefore, the combination here is an important factor in
determining the optimum solution and that is what a good scheduler tries to
achieve.

Path Maximum Magnitude Scheduling Model

We propose a scheduling model called the path maximum magnitude (PMM), in
which the priorities of the tasks in the task graph for mapping are based on their
path maximum magnitude (pmm) in the task graph. A task can have several paths
leading to the root of its graph. A rooted path of a task is defined as a path from the
task to the root of the graph. The magnitude of a rooted path is the sum of the length
of all the tasks and the communication costs in this path, excluding the task’s
length. The path maximum magnitude of a task, denoted by v/™", is then the maxi-
mum of the magnitude of these paths.

To illustrate the above terminologies, we refer to the task graph in Figure 9.3. In
this graph, v, has two rooted paths: v; — v, — v, and v; — v — v,. The path mag-
nitude as follows:

Path v; — v, — v,: path magnitude=4+3+3+2=12
Path v; — v; — v,: path magnitude=4+5+3+2=14

This gives the path maximum magnitude v4”", as follows:

v = Path maximum magnitude of v, = max(12, 14) = 14
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The priority list for scheduling the tasks onto the processors is based on their
path maximum magnitude. Tasks are sorted according to their pmm value, in as-
cending order from lowest to highest. In the priority list, the assignment of tasks to
the processors is made starting with the highest-ranking tasks.

Table 9.1 shows the output from PMM in a network of four processors. The
tasks are first sorted into their priority list according to their pmm values. From
the list, the tasks are mapped to the available processors according to their sorted
order: vy, v3, V5, Vs, V4, Vs, and v5. This way of mapping produces a schedule that
has a completion time at # = 18. The Gantt charts in this example are shown in
Figure 9.4.

9.3 TASK SCHEDULING VISUALIZATION MODEL

The model PMM for scheduling the tasks is illustrated visually in the project
Code9. Figure 9.6 shows the output from its simulation of a task graph with 18
nodes on a four-processor system. The display consists of a drawing area in the up-
per half of the window and an output area in the lower half. The drawing area pro-
vides input from the user for drawing the task graph. A node in the task graph is
drawn by clicking the left button of the mouse in this area. The click also assigns a
random value as the length of the node. This random value is generated from the
clock cycle facility inside the computer. A directed edge is obtained by clicking a
pair of nodes consecutively. With the clicks, the first clicked node becomes the pre-
decessor task of the second node.

A random value is also assigned to the edge to represent the communication cost
from the first node to the second. The program also provides the Task Scheduler
push-button window. A click on this push button activates the task scheduler to pro-
duce the scheduling results in the form of Gantt charts. In addition, a list view scroll
window is shown in the drawing area for displaying the information about the tasks
created by the user. This information is produced and displayed in the list view win-
dow when the push button Task Scheduler is clicked.

The project Code9 consists of the files Code9.h and Code9.cpp. The header
file Code9.h defines the constants as listed in Table 9.2.

Table 9.1 Scheduling results for the task graph in Figure 9.3

Task Length pmm priority PE ast act pre
2 2 0 1 1 0 2 0
Vv, 3 5 3 3 5 8 1
V3 5 5 2 2 5 10 1
V4 1 14 5 2 11 12 2
Vs 5 11 4 4 11 16 1
Ve 5 16 6 2 12 17 1
\Z: 4 20 7 4 16 20 2
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Figure 9.6 Output from Code9.

The two main players in this application are the task, v;, and its mapping on the
processing element, PE,. They are referred as the ith task in the graph or v[i], and
the kth processing element or PE [k ], respectively, in the project. The information
about v; is represented by the structure NODE, whereas PE, is represented by PROC.
Both structures are defined in Code9.h.

The structure NODE in Code9.h, as shown in Table 9.3, describes the links be-
tween a task, v;, and its elements. The length (size) of v, denoted by v[i] . len, is
defined as the elapsed time for the execution of the task sequentially on a processor.
This length is also referred to as the task execution time or the task worst-case com-
putation time. The partial order v; <v; creates a precedence relationship between the
two tasks. The variable v[i] .pre[0] has been reserved to denote the number of

Table 9.2 Constants in Code9

Constants Description

N Maximum number of tasks allowed in the graph
nPE Number of processors

IDC_SCHEDULE Id for the push button Task Scheduler
IDC_TASKINFO 1d for the list view window

nFIELDS Number of fields in the list view table
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Table 9.3 Task information in Code9

Element Description

v[i] Task i, or v;

v[i].len Length of v;

v[i].aPE The assigned PE of v;

vI[i] .pmm Path maximum magnitude of v;, or v/

v([i].prel[0] Number of predecessor tasks of v;

v([i].prelj] Jjth predecessor task of v;, forj = 1

v[i].preCom[j] Communication cost between v; and its jth predecessor task

v[i].ast Actual start time of v;

v[i].act Actual completion time of v,

v[i].lrt Low ready time of v;

v[i].hrt High ready time of v;

v[i].sort Sorted v; according to its pmm values in order from lowest
to highest

v[i] .Home Coordinates of v; in the drawing area

v[i].GHome Coordinates of v; in the Gantt charts

v[i].Box Box representing v; in the drawing area

v[i].GBox Box representing v; in the Gantt charts

predecessor tasks of v,. The subsequent index jin v[i] .pre[j] denotes the jth
predecessor of v;. For example, in Figure 9.3, v[4] .pre[0]=2,v[4] .pre[1]
=2 (which is v,), and v[4] .pre [2]1=3 (or v;). The communication costs as a re-
sult of these precedence relationships are given by v[4] .preCom[1]=4 and
v[i] .preCom[2]=4, respectively.

Our strategy for scheduling the tasks is to give higher priorities to the tasks
with low path maximum magnitude values. The path maximum magnitude of a
task is defined as the maximum of the sum of all the lengths of its predecessor
tasks and the communication costs in the path from the task to its root. Therefore,
all the tasks in the graph are sorted according to their pmm values before they are
mapped onto the processors. The sorted tasks in the list are represented as
v[i].sort.

The attributes of a processing element, PE,, are described in Table 9.4. Each pro-
cessing element has a list of the successfully assigned tasks, denoted as
PE[k].aTS[1i]. It can be easily verified from Figure 9.4 that PE[4] .aTS[1]
=5 and PE[4] .aTS[2]=7. At each stage during the execution, a processor has
an indicator to determine its ready time for accepting a new task assignment. This
ready time, denoted by PE [k] . prt, depends very much on the rules for task as-
signments discussed earlier, and it is necessary in order to maintain a proper syn-
chronization in the system.

The last attribute of a processing element is the processor execution length,
PE[k] .pel, measured as the total length from the start of the first task in the
processor to the end of the last task. This variable can effectively be determined at
the last stage of the execution, in the case of static scheduling. For the dynamic
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Table 9.4 Information about a processing element

Element Description

PE [k] Processing element £, or PE,
PE[k].aTS[1i] ith assigned task in PE;

PE[k] .prt Processor ready time, or the earliest time PE, is ready to accept a
new task assignment
PE[k] .pel Processor execution length, which is the length measured from the

starting time of the first task to the completion time of the last
task in PE,

PE[k] .Home Coordinates of PE, in the Gantt charts area

case, PE [k] .pel can be determined as the execution is progressing to give an up-
dated value at every time slot.

The main function of the constructor CCode9 () is to allocate memory for the
class CCode9. The initial setup consists of the main window and two child win-
dows, which are created and displayed in the constructor. The main window con-
sists of the drawing area in the upper half and the Gantt charts area in the lower half.
The push button Task Scheduler and the list view facilities for displaying informa-
tion about the tasks are provided as child windows. The following code fragments
create the three windows:

Create (NULL, "Multiprocessor Task Scheduling”,
WS_OVERLAPPEDWINDOW, CRect (0,0,920,630)) ;
TSbutton.Create(“Task Scheduler”,WS_CHILD | WS_VISIBLE
| BS_DEFPUSH BUTTON, CRect(30,325,250,355),this, IDC_SCHEDULE) ;
TaskInfoView.Create (WS_VISIBLE | WS_CHILD | WS_BORDER | LVS_REPORT
| LVS_NOSORTHEADER, CRect (BottomRight.x-200,TopLeft.y+10,
BottomRight.x-10,BottomRight.y-10), this, IDC_TASKINFO) ;

Table 9.5 Functions in Code9

Function Description

CCode9 () The constructor

~CCode9 () The destructor

OnPaint () Provides the intial display on the main window
OnLButtonDown () Draws the nodes of the graph and labels them
OnRButtonDown () Draws the links between nodes in the graph
OnClickCalc () Activates the push button Task Scheduler
PreScheduler () Prepares the tasks for the initial assignments

Scheduler ()

TaskInfo ()
PMM ()

Computes the high ready time and low ready time, and assigns
the task to the processor

Displays the task information in the list view window

Computes the path maximum magnitude of the tasks in the
task graph
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The list view window is used to display the information about all the tasks creat-
ed by the user. The window displays the information about the assigned tasks in the
graph, namely, their task number, assigned PE (aPE), length (1en), actual start
time (ast), completion time (act), the number of predecessor tasks (pre), the
path maximum magnitude (pmm), and the sorted priority list (sort). The columns
and their titles are created in the constructor as follows:

char* column[nFIELDS+1]
={“Task”, "PE”, "Len”, "AST", "CT”, "Pre”, "pmm” , "Order” } ;
int columnWidth[nFIELDS+1]={40,40,40,40,40,40,40,40};
LV_COLUMN lvColumn;
lvColumn.mask = LVCF_WIDTH | LVCF_TEXT | LVCF_FMT | LVCF_SUBITEM;
lvColumn. fmt = LVCFMT_CENTER;
lvColumn.cx = 85;
for (int 1=0;i<=nFIELDS;i++)
{
lvColumn.iSubItem = 0;
lvColumn.pszText = column[i];
TaskInfoView.InsertColumn (i, &lvColumn) ;
TaskInfoView.SetColumnwWidth (i, columnWidth([i]) ;

The memory for the arrays v[] and PE[] are allocated dynamically using the
function new. The two arrays are linked to the structures NODE and PROC, respec-
tively:

v=new NODE [N+1];
PE=new PROC [nPE+1];

The last part of the constructor is concerned with initializing the global vari-
ables. These variables include the number of input nodes (nv), the right-button flag
(RButtonFlag), the information about the processors, and the information for
displaying text. The following code performs these operations:

nv=0; RButtonFlag=0;
FontCourier.CreatePointFont (60, "Courier”) ;
BgColor=RGB (240,240,240) ;
TextGap=25; BoxSize=CSize(10,10);
TextColor=RGB(100,100,100) ;
for (int k=1;k<=nPE;k++)
{

[k].aTsS[0]1=0;

[k] .prt=0;
PE[k] .pel=0;

[k] .Home=CPoint (20,360+ (k-1)*30) ;
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Figure 9.7 summarizes all the operations in Code9. The project is associated
with four events in simulating the task scheduling problem. The first is the initial
display, detected by the macro WM_PAINT and handled by the function On-
Paint (). The next two are the left-button and right-button clicks of the mouse.
The left-button click is detected by WM_LBUTTONDOWN and handled by the func-
tion OnLButtonDown (). The right-button click is detected by WM_RBUTTON-
DOWN and handled by OnRButtonDown (). The other event is the push-button
click on the Task Scheduler button. The event is detected by BN_CLICKED and
handled by the function OnClickCalc ().

The function OnPaint () provides the initial display of the output. The func-
tion starts by erasing the screen and divides the window into two areas: the drawing
area (input) and the Gantt charts area (output). The function is written as follows:

void CCode9: :0OnPaint ()

{
CPaintDC dc(this) ;
CRect rc;
CString s;
CPen penBlue (PS_SOLID,5,RGB(0,0,255));
CBrush BgBrush (BgColor) ;
GetClientRect (&rc) ;
dc.FillRect (&rc, &BgBrush) ;

CPen penDrawingBox (PS_SOLID,4,RGB(100,100,100)) ;

dc.SelectObject (penDrawingBox) ;

dc.SelectStockObject (HOLLOW_BRUSH) ;

rc=CRect (TopLeft, BottomRight) ;

dc.Rectangle(rc) ;

dc.SelectObject (&penBlue) ;

dc.SetTextColor (RGB(255,255,255)) ;

for (int k=1;k<=nPE;k++)

{
rc=CRect (PE[k] .Home, CSize(25,25));
dc.FillSolidRect (&rc,RGB(100,100,100)) ;
s.Format (“%d”,k); dc.TextOut (PE[k].Home.x+8,PE[k].Home.y+5,s);

The mouse’s left-button click is an event handled by the function OnLBut-
tonClick (). The operations performed following this event are summarized in
Figure 9.8. Basically, the event is handled almost in the same manner as the ones in
Chapters 6 and 7, and the same code from those chapters is used here. A click in the
drawing area produces a small box that represents a node in the task graph. The
click also causes the number of nodes nv to increase its value by one and assigns
the home coordinates of the node at the point on the screen where the node is
clicked (pt).

The function OnLButtonDown () also assigns some initial values to the newly
created node, such as the number of predecessor tasks (pre[0]), actual starting
time for execution (ast), its completion time (act), and the execution status
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OnLButtonDown( )
Draw the node

MULTIPROCESSOR SCHEDULING PROBLEM

CCode9( )

Constructor for initializing

the variables/objects

ON_WM_PAINT

OnPaint( )
Set the initial display

ON_WM_LBUTTONDOWN

ON_WM_RBUTTONDOWN

first click
left-button click right-button click
Task ON_BN_CLICKED
Scheduler o second click
push button
OnClickCalc( )

Compute and generate
the schedule

Figure 9.7 Summary of the operations in Code9.

OnRButtonDown( )
Mark the first node

OnRButtonDown( )
Mark the second node,
create the precedence
and assign its length

(sta). A small random number is generated and assigned as the length (1en) of
this node. The following code in OnLBut tonDown ( ) performs these operations:

void CCode9: :0nLButtonDown (UINT nFlags,CPoint pt)

{

CClientDC dc(this);

CString s;

CPen penGray (PS_SOLID, 2, TextColor) ;
dc.SelectObject (penGray) ;

dc.SelectObject (FontCourier) ;

dc.SetTextColor (TextColor) ;

if (CRect (TopLeft,BottomRight) .PtInRect (pt))
(nv<=N)

if

Left-Button Click

Figure 9.8 Summary of operations from the left-button click event.

Number of points, nv, increases by 1

Coordinates at the clicked point assigned to v[nv].Home

—— A box to denote the node is drawn at v[nv].Home

dc.SetBkColor (BgColor) ;

Node number and its length assigned randomly, and displayed
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nv++;

v [nv] .Home=pt;

vnv].pre[0]=0;

v[nv].ast=0;

vinv].act=0;

v[nv].sta=0;// set Node status to inactive
v[nv] .Box=CRect (CPoint (pt),CSize (BoxSize)) ;
dc.Rectangle (v[nv] .Box) ;

s.Format (“%d”,nv) ;

dc.TextOut (v[nv] .Home.x,v[nv] .Home.y-15,s) ;
vinv].len=l+rand()%5;

s.Format (“%d”,v[nv].len);

dc.TextOut (v[nv] .Home.x,v[nv] .Home.y+10, s) ;

The mouse’s right-button click is an event detected by WM_RBUTTONDOWN. The
event updates the task graph through the function OnRBut tonDown () . Figure 9.9
summarizes the operations performed in this function. The main operation here is to
create the links between the nodes in the graph to represent the precedence relation-
ship of the tasks. The edge is created and displayed on the graph by consecutively
clicking any two nodes. In this case, the first node is assigned as the variable Pt1

l First Right-Button Click

— RButtonFlag becomes 1

—— Pt1 assigned with the clicked node number

l Second Right-Button Click

— RButtonFlag becomes 2

Number of links, nLink, increases by 1

| Pt2 assigned with the clicked node number
| The precedence Pt2<Ptl is established and its link is displayed

The communication cost between Ptl and Pt2 assigned randomly

——— RButtonFlag reset to 0

Figure 9.9 Summary of operations in the right-button click event.
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and the second node is Pt 2. The precedence relationship is Pt1 is the predecessor
of Pt2. The function also assigns a random integer number as the communication
cost for this precedence relationship.

The function OnRButtonDown () is written as follows:

void CCode9: :0nRButtonDown (UINT nFlags,CPoint pt)
{

CClientDC dc(this);

CString s;

int i,u,w,r;
CPen penGray (PS_SOLID, 1, TextColor) ;
dc.SelectObject (penGray) ;
time_t seed=time (NULL) ;
srand ( (unsigned) seed) ;
dc.SelectObject (FontCourier) ;
dc.SetTextColor (TextColor) ;
dc.SetBkColor (BgColor) ;
for (i=1;i<=nv;i++)
if (v[i] .Box.PtInRect (pt))
{
RButtonFlag++;
if (RButtonFlag==1)
Ptl=i;
if (RButtonFlag==2)
{
Pt2=1;
RButtonFlag=0;
r=++v[Pt2] .pre[0];
v[Pt2] .prel[r]=Ptl;
v[Pt2] .preCom[r]=1+rand() %5;
dc.MoveTo (v[Ptl] .Home) ;
dc.LineTo (v [Pt2] .Home) ;
u=(v[Ptl] .Home.x+v[Pt2] .Home.x) /2;
w=(v[Ptl] .Home.y+v[Pt2] .Home.vy) /2;
s.Format (“%d”,v[Pt2] .preCom|[r]) ;
dc.TextOut (u,w, s) ;

In the function OnRBut tonDown (), the first click on a node increases the val-
ue of the flag RButtonFlag by 1. This assigns the clicked node number to the
variable Pt 1. The second click increases the flag value to 2 and assigns the node
number to the variable Pt2. A precedence relationship is now established, with
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l Task Scheduler Push Button

Sort the tasks according to their pmm values

Prepare the PEs for the initial assignment of tasks

Assign the tasks to the PEs and display the Gantt charts

Create and display the task information list view window

Figure 9.10 Summary of operations from the push button Task Scheduler event.

Ptl becoming the predecessor task of Pt2. The number of predecessor tasks
v[Pt2] .pre[0] increases its value by one where v[Pt2] .pre[r] stores the
node number, Pt1. Here, =v [Pt2] .pre[0] is a temporary variable that repre-
sents the number of precedence tasks for Pt2.

A random number between 1 and 5 is then generated and assigned to
v[Pt2] .preCom[r]. This number represents the communication cost from
v[Ptl] tov[Pt2], as aresult of their precedence relationship. Once the relation-
ship has been established, a line is drawn from v [Pt1] to v [Pt2], with the com-
munication cost shown on the link. Finally, the flag RButtonFlag is refreshed to
0 for the next pair of nodes.

Once the graph has been formed, it is ready for mapping onto the processors.
This is achieved by clicking the mouse’s left button on the push button Task Sched-
uler. The event is detected as BN_CLICKED, which activates the function
OnClickCalc (). Figure 9.10 summarizes the operations in OnClickCalc (),
which represent the push button Task Scheduler event.

The push-button event is divided into four main operations, represented by the
client functions PMM (), PreScheduler (), Scheduler (), and TaskInfo ().
These functions compute the pmm values of the tasks and the processor high and
ready times, and assign the tasks to the processors according to the PMM model.

The function PMM () reads the information about the tasks and computes their
pmm values. The pmm values are stored in the priority list as the variable
v[i] .sort, and these values are used to determine the order in which the tasks
are mapped. The following routine performs this idea:

void CCode9::PMM() // Sort the tasks according to levels
{
int i,3j,k,r,tmp;
for (i=1;i<=nv;i++)
{
v[i].sort=1;
if (v[i].pre[0]==0)
v[i] .pmm=0;
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else
{
r=v[i].prel[l];
tmp=v[r].len+v[i] .preCom[1l]+v[r].pmm;
for (j=1;j<=vI[i].prel[0];j++)
{
r=v[i].preljl;
tmp= (tmp<v[r].len+v[i] .preCom[j]+v[r].pmm) ?
vir].len+v[i] .preCom[jl+vI[r].pmm:tmp;
}
v[i] .pmm=tmp;
}
for (k=1;k<=i-1;k++)
{
r=v[k].sort;
if (v[i] .pmm<v[r] .pmm)
{
for (j=i;j>=k+1;3j-)
v[j]l.sort=v[j-1].sort;
v[k].sort=1i;
break;

Once the priority list has been determined, the next step is to warm up the
processors by assigning each one of them with a task, each using the function
PreScheduler (). This function assigns the processor using a temporary local
variable called AsPE. This is necessary to make sure all the processors in the net-
work are utilized by assigning them with at least one initial task.

The step begins by assigning the highest priority task in the list to PE;, the sec-
ond highest to PE,, and so on until all the processors have one task each. The sorted
tasks are represented as u=v [1] . sort. For the start, the highest priority tasks are
the tasks with pmm value equal 0, or the tasks that have no predecessors
(v[i] .pre[0]1=0). The program checks for these tasks and they are immediately
assigned to the processors if their number is less than or equal to the number of
processors. If the number of tasks with no predecessors is higher than the number of
available processors, then a selection is made whereby the priorities are given to
those with higher lengths. All tasks that have been assigned are removed from the
sorted list by setting their status flag to v[i] . sta=1. The rest of the unscheduled
tasks are put in the waiting list to be mapped in the function Scheduler (). The
following code shows this process:

for (i=l;i<=nv;i++)
{

u=v[i].sort;
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if (v[i].pre[0]==0)
{
if (i<=nPE)
{
AsPE=1i;
v[u] .aPE=AsPE;
v[u] .ast=0;
v[ul] .act=v[u] .ast+v[u].len;
v([u] .sta=1;
PE[AsSPE] .aTS[0]++;
PE[AsPE] .aTS[1l]=u;
PE[AsSPE] .prt=v([u] .act;
PE[ASPE] .pel += v[ul].len;
}
else
{
tmp=PE[1] .prt;
AsPE=1;
for (k=1;k<=nPE;k++)
if (tmp>PE[k] .prt)
{
tmp=PE[Kk] .prt;
AsPE=k;
}
v[u] .aPE=AsPE;
v[u] .ast=tmp;
v[ul] .act=v[u] .ast+v[u].len;
v[ul].sta=1;
r=++PE[AsSPE] .aTS[0];
PE[AsPE] .aTS[r]=u;
PE[AsSPE] .prt=v([u] .act;
PE[ASPE] .pel += v[ul].len;

This is followed by updating their mapping information, including the actual
start time for execution (ast) and its completion time (act). The processor also
updates its information by evaluating its execution length (pel) and the assigned
task information. Prior to assigning a task, the scheduler checks the ready time
(prt) of the processors to make sure that none of them will receive more than one
task. The following routine in PreScheduler () performs these operations:

v[u] .aPE=AsSPE;
v ul] .ast=tmp;
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v[ul] .act=v[u] .ast+v[u].len;
v[u].sta=1;

r=++PE[ASPE] .aTS[0];
PE[ASPE] .aTS[r]=u;

PE[ASPE] .prt=v[u] .act;
PE[ASPE] .pel += v([u].len;

If the number of tasks having precedence is higher than the number of proces-
sors, then a different strategy is adopted. All the tasks with no predecessors are as-
signed first and the remaining places are allocated to the tasks with the highest pri-
orities. The same step as above is then performed on the assigned tasks and their
corresponding PEs, for updates on their current state. The following routine in
PreScheduler () performs these operations:

for (j=1;j<=nv;j++)

{

if (i<=nPE)

{
AsSPE=1i;
v[u] .aPE=ASPE;
r=v[u] .prell];
tmp=v[r].act+v[u] .preCom[1l];
for (j=1;j<=v[u].prel0];j++)
{

r=v([u] .preljl;
if (tmp<v([r].act+v[u] .preCom[j])
tmp=v([r].act+v[u] .preCom[Jj];

}
v[ul] .ast=tmp;
v[ul] .act=v[u] .ast+v[u].len;
v[u] .sta=1;
PE[AsSPE] .aTS[0]++;
PE[AsPE] .aTS[1]=u;
PE[ASPE] .prt=v[u] .act;
PE[ASPE] .pel += v[ul].len;

}

}

Next is the function Scheduler (), which is the actual scheduler in this appli-
cation. This function continues the work started by PreScheduler () by looking
at the list of sorted tasks. Tasks that have been assigned in PreScheduler () are
removed from the list, and this is achieved by setting their status flag to
v[i].sta=1. Therefore, the remaining tasks in the priority list are recognized
through the flag value v[1] .sta=0.

A task v; is said to be ready to be assigned to a processor if it has received all the
required data from the predecessor tasks. The ready time for v; is defined as the ear-
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liest time that v; can be assigned to any available processor. We further define the
ready time for v; as either high ready time or low ready time. High ready time,
v[i] .hrt, of a ready task v; is the highest value of the sum of the predecessor
task and its communication to v;. The low ready time, v[1i] . 1rt, is the next high-
est value. The processor with v[1] . hrt may skip some or all of the communica-
tion cost from its latest predecessor to the incoming task to enable it to start execut-
ing the incoming task at the time /=v [i] .1lrt. For other processors, the earliest
time they can execute the task v;isat /=v[i] .hrt.

A task highest in the priority list for assignment to a processor is called a candi-
date. The candidate is to be mapped based on some kind of competition between the
processors. The strategy here is to choose a processor that has the required readi-
ness status, and one that will contribute in making the schedule length as short as
possible. To achieve this goal, the candidate’s high ready time and low ready time
are computed to determine the dominance of the candidate’s predecessor tasks.

Figure 9.11 illustrates an instance of time showing the status of four processors,
each having a task. The tasks have been sorted according to their pmm values. They
are named vy, v4, vg, and vy, with their mapping schedule marked as clear rectangles,
as shown in the figure. In this example, the candidate is v;,, which is not shown in
the figure as it is not assigned yet. It is also assumed that v, v;, and v, are the pre-
decessor tasks of the candidate, with their communication costs shown as shaded
rectangles.

It can be seen from the figure that high ready time (hrt) occurs at r = 25 in v,
and the next highest, or the low ready time (1rt), at # = 23 in v,. Therefore, PE,,
where v, has been assigned, becomes the top choice for assigning the candidate v,
The temporary variable HiDom is assigned as the processor number for this assign-

vg.ast Vg vg.act
PE, \
low ready time
vg.ast Vg Vg.act
PE, \
Ve.ast Ve Vg-act
PE, \ . .
high ready time
vz.ast vy vgact
PE, \
—f % % % %
10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27

Figure 9.11 High and low ready time for choosing a processor as the candidate.
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ment, while another temporary variable LoDom is assigned to PE, for having the
low ready time task. Finally, the scheduler checks for the availability of HiDom,
and it becomes the assigned PE if it is available. The following routine implements
this idea:

for (j=1;j<=nv;Jj++)
{
u=v[j].sort;
if (!v[u].sta)
{
// calculate hrt
HiDomIndex=1;
HiDom=v[u] .pre[HiDomIndex] ;
v[u] .hrt=v[HiDom] .act+v[u] .preCom[HiDomIndex] ;
for (i=1;i<=v[u].prel[0];i++)
{
r=v[u] .prel[i];
if (v[u] .hrt<v[r].act+v[u] .preCom[i])
{
v[u] .hrt=v[r].act+v[u] .preCom[i];
HiDom=r;HiDomIndex=1;

}
// calculate 1rt
if (v[u].pre[0]==1)
viul .lrt=v[u] .hrt;
else
{
LoDomIndex=( (HiDomIndex==1)?2:1) ;
LoDom=v [u] .pre[LoDomIndex] ;
v[u].lrt=v[LoDom] .act+v[u] .preCom|[LoDomIndex] ;
for (i=1;i<=v[u].pre[0];i++)
if (i!=HiDomIndex)
{
r=v[u] .prel[i];
if (v[ul].lrt<v[r].act+v[u] .preCom[i])
v[ul] .lrt=v([r].act+v[u] .preCom[i];
}
}
HiDomPE=v [HiDom] .aPE;
if (PE[HiDomPE] .prt<=v[u].hrt)
{
AsPE=HiDomPE;
v[u] .aPE=ASPE;
if (v[u] .prel[0]==1)
v[u] .ast=PE[HiDomPE] .prt;
else
v[u] .ast=( (PE[HiDomPE] .prt>=v[u] .1lrt)?
PE[HiDomPE] .prt:v([u].lrt);
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v u] .act=v([u] .ast+v[u].len;
v[u].sta=1;

PE[ASPE] .prt=v[u] .act;
r=++PE[ASPE] .aTS[0];
PE[AsSPE] .aTS[r]=u;

PE[AsSPE] .pel+=v[u].len;

ASPE=( (HiDomPE==1)7?2:1) ;
tmp=PE[ASPE] .pel;
for (k=1;k<=nPE;k++)
if (k!=HiDomPE)
if (tmp>PE[k].pel)
{
AsPE=k;
tmp=PE[k] .pel;
}
v[u] .aPE=ASPE;
v[u] .ast=((PE[ASPE] .prt>=v[u] .hrt)?
PE[ASPE] .prt:v[u] .hrt) ;
v[u] .act=v([u] .ast+v[u] .len;
v([u] .sta=1;
PE[ASPE] .prt=v[u] .act;
r=++PE[AsSPE] .aTS[0];
PE[AsSPE] .aTS[r]=u;
PE[ASPE] .pel += v[u].len;
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The last function called up by Scheduler () is TaskInfo (). This function
displays all the necessary information about the assigned tasks in the list view win-
dow, as follows:

void CCode9:: Ta

{

CString s;

skInfo()

TaskInfoView.DeleteAllItems () ;

LV_ITEM 1lvIt
lvItem.mask
lvItem.state

em;
= LVIF_TEXT | LVIF_STATE;
= 0;

lvIitem.stateMask = 0;

for (int i=
{
lvItem
lvItem
lvItem
TaskIn

0;i<=nv;i++)

.iItem=1i;

.iSubItem=0;

.pszText="";
foview.InsertItem(&lvItem) ;
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if (i+l<=nv && i+1<=N)

{

s.Format (“*%d”,1+1); TaskInfoView.SetItemText(i,0,s);
s.Format (“%d”,v[i+1].aPE); TaskInfoView.SetItemText(i,1,s);
s.Format (“%d”,v[i+1].len); TaskInfoView.SetItemText(i,2,s);
s.Format (“%d”,v[i+1l].ast); TaskInfoView.SetItemText(i,3,s);
s.Format (“%d”,v[i+1l].act); TaskInfoView.SetItemText(i,4,s);
s.Format (“%d”,v[i+1] .pre[0]); TaskInfoView.SetItemText(i,5,s);
s.Format (“%d”,v[i+1] .pmm); TaskInfoView.SetItemText(i,6,s);
s.Format (“%d”,v[i+1l].sort); TaskInfoView.SetItemText(i,7,s);

9.4 SUMMARY AND CONCLUSION

Task scheduling is a big issue in a parallel and distributed computing system. The
simulation and visualization model presented here only covers some basic elements
of the problem. Among other things, this chapter presents the development of a
simulation model for scheduling tasks in a dependency graph using a model called
the path maximum magnitude (PMM). The simulation model provides a visual in-
terface for drawing a dependency graph, with the magnitude of the tasks and the
links determined randomly by the computer. The scheduling method using PMM
produces results in the form of Gantt charts, which clearly show the start and com-
pletion time of each task in its assigned processor. The scheduling technique in-
cludes the precedence relationship between the tasks and their communication costs
in the mapping.

The PMM method can easily be used as a prototype model for other scheduling
methods. The model can be extended to include other parameters in task schedul-
ing, such as factors affecting machine performance. These include the initial startup
cost, the transmission rate, the contention rate, and the cabling mechanism. In a real
parallel and distributed system, these parameters severely affect the communication
cost of transferring information from one point in the network to another. Due to
different requirements, some applications may not agree with the PMM method dis-
cussed here. In this case, other scheduling techniques may be used instead of PMM.

Other than parallel and distributed systems, the techniques discussed here can
also be applied to problems involving machine scheduling, transportation, mobile
computing, and grid computing. Our simulation model can be applied to cases in
which there are similarities in the way the tasks are mapped in these problems.
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CODE LISTINGS

Code9: Task Scheduling Using Four Processors

// Code9.h

#include <afxwin.h>

#include <afxcmn.h>

#define N 20
#define nPE 4

#define IDC_SCHEDULE 500
#define IDC_TASKINFO 501
#define nFIELDS 7

class CCode9 : public CFrameWnd

{

private:

CPoint TopLeft,BottomRight;
CFont FontCourier;
CSize BoxSize;

CButton TSbutton;

CListCtrl

TaskInfoView;

int nv,RButtonFlag, Ptl,Pt2;
int TextGap, TextColor,BgColor;
typedef struct

{
int
int
int
int
int
int
int
int

len;

aPE;

pmm;
pre[5];
preCom[5];
ast,act;
hrt,1lrt;
sort;

bool sta;
CPoint Home, GHome;
CRect Box, GBox;

} NODE;
NODE *v;

typedef struct

7/
7/
/7
7/
/7
7/
/7
7/
//
7/
//

// Max #nodes
// #PE

length

assigned Processor

path max. magnitude

pred task, pre[0]=#pred tasks

comm cost of pred tasks

ast=actual start time, act=completion time
high ready time, low ready time
sorted nodes according to colevels
status

node coordinates in text & graphic areas
node representation as a box
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int aTS[N+1];
int prt,pel;
CPoint Home;

} PROC;

PROC *PE;

public:

CCode9 () ;

~CCode9 () {}

void PreScheduler (), Scheduler () ;

void TaskInfo(),PMM() ;

afx_msg void OnClickCalc() ;
afx_msg void OnPaint () ;

afx_msg void OnLButtonDown (UINT,
afx_msg void OnRButtonDown (UINT,

DECLARE_MESSAGE_MAP() ;
Y

class CMyWinApp
{
public:

virtual BOOL InitInstance();
}i

public CWinApp

// Code9.cpp: task scheduling
#include “Code9.h”

BOOL CMyWinApp: :InitInstance()

{
CCode9* pFrame = new CCode9;
m_pMainWnd = pFrame;
pFrame->ShowWindow (SW_SHOW) ;
pFrame->UpdateWindow () ;
return TRUE;

CMyWinApp MyApplication;

BEGIN_MESSAGE_MAP (CCode9, CFrameWnd)
ON_WM_PAINT ()
ON_WM_LBUTTONDOWN ( )
ON_WM_RBUTTONDOWN ( )

// task# (aTs[0]=#tasks in Pr)
// proc ready time,

execution length

CPoint) ;
CPoint) ;

ON_BN_CLICKED (IDC_SCHEDULE, OnClickCalc)

END_MESSAGE_MAP ()

CCode9: :CCoded ()

{
TopLeft=CPoint (20, 10) ;

BottomRight=CPoint (900,320) ;

Create (NULL, "Multiprocessor Task Scheduling”,
WS_OVERLAPPEDWINDOW, CRect (0,0,920,630)) ;
TSbutton.Create (“Task Scheduler”,WS_CHILD | WS_VISIBLE
| BS_DEFPUSH BUTTON, CRect (30,325,250,355),this, IDC_SCHEDULE) ;
TaskInfoView.Create (WS_VISIBLE | WS_CHILD | WS_BORDER | LVS_REPORT
| LVS_NOSORTHEADER, CRect (BottomRight .x-200, TopLeft.y+10,



CODE LISTINGS 273

BottomRight.x-10,BottomRight.y-10), this, IDC_TASKINFO) ;
char* column[nFIELDS+1]
={“Task”,"PE”, "Len”, "AST"”,"CT”, "Pre”, "pmm”, "Order”};
int columnWidth[nFIELDS+1]={40,40,40,40,40,40,40,40};
LV_COLUMN 1lvColumn;
lvColumn.mask = LVCF_WIDTH | LVCF_TEXT | LVCF_FMT | LVCF_SUBITEM;
1lvColumn. fmt = LVCFMT_CENTER;
lvColumn.cx = 85;
for (int i=0;i<=nFIELDS;i++)
{
lvColumn.iSubItem = 0;
lvColumn.pszText = column[i];
TaskInfoView. InsertColumn (i, &lvColumn) ;
TaskInfoView.SetColumnWidth (i, columnWidth[i]) ;
}
v=new NODE [N+1];
PE=new PROC [nPE+1];

nv=0; RButtonFlag=0;

FontCourier.CreatePointFont (60, “Courier”) ;

BgColor=RGB(240,240,240) ;

TextGap=25; BoxSize=CSize(10,10);

TextColor=RGB(100,100,100) ;

for (int k=1;k<=nPE;k++)

{
PE[k].aTS[0]=0;
PE[k] .prt=0;
PE[k] .pel=0;
PE[k] .Home=CPoint (20,360+ (k-1) *30) ;

void CCode9::0nPaint ()

{
CPaintDC dc(this) ;
CRect rc;
CString s;
CPen penBlue (PS_SOLID,5,RGB(0,0,255));
CBrush BgBrush (BgColor) ;
GetClientRect (&rc) ;
dc.FillRect (&rc, &BgBrush) ;

CPen penDrawingBox (PS_SOLID,4,RGB(100,100,100)) ;
dc.SelectObject (penDrawingBox) ;
dc.SelectStockObject (HOLLOW_BRUSH) ;

rc=CRect (TopLeft, BottomRight) ;

dc.Rectangle(rc) ;

dc.SelectObject (&penBlue) ;

dc.SetTextColor (RGB(255,255,255)) ;

for (int k=1;k<=nPE;k++)

{
rc=CRect (PE[k] .Home,CSize (25,25)) ;
dc.FillSolidRect (&rc,RGB(100,100,100)) ;
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s.Format (“%d”,k); dc.TextOut (PE[k].Home.x+8,PE[k].Home.y+5,s);

void CCode9::0nLButtonDown (UINT nFlags,CPoint pt)
{
CClientDC dc(this);
CString s;
CPen penGray (PS_SOLID, 2, TextColor) ;
dc.SelectObject (penGray) ;

dc.SelectObject (FontCourier) ;
dc.SetTextColor (TextColor); dc.SetBkColor (BgColor) ;
if (CRect (TopLeft,BottomRight) .PtInRect (pt))

if (nv<=N)

{
nv++;
v [nv] .Home=pt;
vInv].pre[0]=0;
v[nv].ast=0;
v[nv].act=0;
v[nv].sta=0; // set Node status to inactive
v[nv] .Box=CRect (CPoint (pt) ,CSize (BoxSize)) ;
dc.Rectangle (v[nv] .Box) ;
s.Format (“%d”,nv) ;
dc.TextOut (v[nv] .Home.x,v[nv] .Home.y-15,s) ;
vInv].len=1l+rand() %5;
s.Format (*%d”,v([nv].len);
dc.TextOut (v[nv] .Home.x,v[nv] .Home.y+10,s) ;
}

void CCode9: :0nRButtonDown (UINT nFlags,CPoint pt)
{

CClientDC dc(this) ;

CString s;

int i,u,w,r;
CPen penGray (PS_SOLID, 1, TextColor) ;
dc.SelectObject (penGray) ;
time_t seed=time (NULL) ;
srand ( (unsigned) seed) ;
dc.SelectObject (FontCourier) ;
dc.SetTextColor (TextColor) ;
dc.SetBkColor (BgColor) ;
for (i=1;i<=nv;i++)

if (v[i].Box.PtInRect (pt))

{
RButtonFlag++;
if (RButtonFlag==1)
Ptl=i;
if (RButtonFlag==2)
{

Pt2=1i;
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RButtonFlag=0;

r=++v[Pt2] .pre[0];
v[Pt2].prel[r]=Ptl;

v[Pt2] .preCom[r]=1+rand()%5;
dc.MoveTo (v[Ptl] .Home) ;
dc.LineTo (v [Pt2] .Home) ;

u=(v[Ptl] .Home.x+v[Pt2] .Home.x) /2;
w=(v[Ptl].Home.y+v[Pt2] .Home.y)/2;
s.Format (“%d”,v[Pt2] .preCom[r]) ;
dc.TextOut (u,w, s) ;

void CCode9::0nClickCalc ()

{
PMM () ; // sort the nodes according to their colevel values
PreScheduler(); // initialize each PE with lst Node
Scheduler () ; // the scheduler
TaskInfol(); // display task information
}
void CCode9:: TaskInfo()
{
CString s;
TaskInfoView.DeleteAllItems () ;
LV_ITEM lvItem;
lvIitem.mask = LVIF_TEXT | LVIF_STATE;
lvItem.state = 0;
lvItem.stateMask = 0;
for (int i=0;i<=nv;i++)
{
lvIitem.iItem=1;
lvItem.iSubItem=0;
lvItem.pszText="";
TaskInfoView.InsertItem(&lvItem) ;
if (i+l<=nv && i+1<=N)
{
s.Format (“*%d”,i+1); TaskInfoView.SetItemText(i,0,s);
s.Format (“%d”,v[i+1l] .aPE); TaskInfoView.SetItemText(i,1,s);
s.Format (“%d”,v[i+1l].len); TaskInfoView.SetItemText(i,2,s);
s.Format (“%d”,v[i+1l].ast); TaskInfoView.SetItemText(i,3,s);
s.Format (“%d”,v[i+1l].act); TaskInfoView.SetItemText(i,4,s);
s.Format (“%d”,v[i+1] .pre[0]); TaskInfoView.SetItemText(i,5,s);
s.Format (“%d”,v[i+1] .pmm); TaskInfoView.SetItemText(i,6,s);
s.Format (“*%d”,v[i+1].sort); TaskInfoView.SetItemText(i,7,s);
}
}
}
void CCode9::PMM() // Sort the tasks according to levels
{

int i,j,k,r, tmp;
for (i=1;i<=nv;i++)



276 MULTIPROCESSOR SCHEDULING PROBLEM

v[i].sort=i;
if (v[i].pre[0]==0)
v[i].pmm=0;
else
{
r=v[i].prell];
tmp=v[r].len+v[i].preCom[l]+v[r] .pmm;
for (j=1;j<=v[il].prel[0];j++)
{
r=v[i].prelj];
tmp= (tmp<v[r].len+v[i] .preCom[j]l+v[r] .pmm) ?
v[r].len+v[i].preCom[j]+v[r].pmm:tmp;

}
v[i].pmm=tmp;
}
for (k=1;k<=i-1;k++)
{
r=v[k].sort;
if (v[i].pmm<v[r] .pmm)
{
for (j=i;j>=k+1;3j-)
v[jl.sort=v[j-1].sort;
v[k].sort=i;
break;
}
}

void CCode9::PreScheduler ()
{
int j,i,u,k,AsPE,r, tmp;
for (i=1;i<=nv;i++)

{
u=v[i].sort;
if (v[u] .prel[0]==0)
{
if (i<=nPE)
{
AsPE=1i;
v([u] .aPE=ASPE;
v[ul] .ast=0;
v[u] .act=v[u] .ast+v[u].len;
v[ul] .sta=1;
PE[ASPE] .aTS[0]++;
PE[AsPE] .aTS[1l]=u;
PE[AsSPE] .prt=v[u] .act;
PE[ASPE] .pel += v[ul.len;
}
else

tmp=PE[1l] .prt;
AsPE=1;
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for (k=1;k<=nPE;k++)
if (tmp>PE[k].prt)
{
tmp=PE[k] .prt;
AsPE=k;
}
v[u] .aPE=AsPE;
v[u] .ast=tmp;
v[u] .act=v[u].ast+v[u].len;
v([u].sta=1;
r=++PE[AsSPE] .aTS[0];
PE[ASPE] .aTS[r]l=u;
PE[ASPE] .prt=v[u] .act;
PE[ASPE] .pel += v[u].len;

}
else
if (i<=nPE)
{

ASPE=1i;
v([u] .aPE=AsPE;
r=v([u] .prell];
tmp=v[r].act+v[u] .preCom[1l];
for (j=1;j<=v[u].prel[0];j++)
{

r=v[u].preljl;

if (tmp<v[r].act+v[u] .preCom[]j])

tmp=v[r].act+v[u] .preCom[j];

}
v[ul] .ast=tmp;
v[ul] .act=v[u].ast+v[u].len;
v[u] .sta=1;
PE[ASPE] .aTS[0]++;
PE[ASPE] .aTS[1l]=u;
PE[ASPE] .prt=v([u] .act;
PE[ASPE] .pel += v([u].len;

CCode9: : Scheduler ()

CClientDC dc(this);

CString s;

int u,i,Jj,k,r,m,AsPE;

int HiDom, HiDomIndex, HiDomPE, LoDom, LoDomIndex, tmp;
CPen penGray (PS_SOLID, 1, TextColor) ;

dc.SelectObject (penGray) ;

for (j=1;j<=nv;j++)

{

u=v[j].sort;
if (!v[u].sta)

{

277
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// calculate hrt
HiDomIndex=1;
HiDom=v [u] .pre[HiDomIndex] ;
v[ul .hrt=v[HiDom] .act+v[u] .preCom[HiDomIndex] ;
for (i=1;i<=v[u].pre[0];i++)
{
r=v([u] .preli];
if (v[u].hrt<v([r].act+v[u] .preCom[i])
{
v[ul] .hrt=v[r].act+v[u] .preCom[i];
HiDom=r;HiDomIndex=1i;

}
// calculate Ilrt
if (v[u].prel[0]==1)
v[ul].lrt=v[u] .hrt;
else
{
LoDomIndex=( (HiDomIndex==1)?2:1) ;
LoDom=v [u] .pre[LoDomIndex] ;
v[ul].lrt=v[LoDom] .act+v[u] .preCom[LoDomIndex] ;
for (i=1;i<=v[u].prel[0];i++)
if (i!=HiDomIndex)
{
r=v[u] .preli];
if (v[u].lrt<v([r].act+v[u].preCom[i])
v[ul].lrt=v[r].act+v[u] .preCom[i];

}
HiDomPE=v [HiDom] .aPE;
if (PE[HiDomPE] .prt<=v[u].hrt)
{
AsPE=HiDomPE;
v[u] .aPE=ASPE;
if (v[u] .prel[0]==1)
v[u] .ast=PE[HiDomPE] .prt;
else
v[u] .ast=((PE[HiDomPE] .prt>=v[u] .1lrt)?
PE[HiDomPE] .prt:v[u].lrt);
v[u] .act=v[u] .ast+v[u].len;
v[ul] .sta=1;
PE[AsSPE] .prt=v[u] .act;
r=++PE[ASPE] .aTS[0];
PE[AsPE] .aTS[r]=u;
PE[ASPE] .pel+=v([u].len;

else

AsPE=( (HiDomPE==1)7?2:1) ;
tmp=PE[ASPE] .pel;
for (k=1;k<=nPE;k++)
if (k!=HiDomPE)
if (tmp>PE[k].pel)
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AsPE=k;
tmp=PE[k] .pel;
}
v([u] .aPE=AsPE;
v[u].ast=((PE[ASPE].prt>=v[u].hrt) ?PE[ASPE] .prt:v[u].hrt);
v[u] .act=v[u] .ast+v[u].len;
v([ul] .sta=1;
PE[ASPE] .prt=v([u] .act;
r=++PE[AsPE] .aTS[0];
PE[ASPE] .aTS[r]=u;
PE[ASPE] .pel += v[u].len;

}
dc.SelectObject (FontCourier) ;
dc.SetTextColor (TextColor) ;
for (i=1;i<=nv;i++)
{
m=v[i].aPE;

v[i] .GHome=CPoint (30+PE[m] .Home.x+20*v[1i] .ast,PE[m] .Home.y) ;
v([i] .GBox=CRect(v[i] .GHome.x,v[i].GHome.Yy,

v[i].GHome.x+20*v[i].len,v[i] .GHome.y+25) ;
dc.Rectangle (&v[i] .GBox) ;

s.Format (*%d”,1i); dc.TextOut (2+v[i].GHome.x,5+v[1i].GHome.y,s);






CHAPTER 10

DISCRETE-EVENT SIMULATION

10.1 CONCEPTS OF SIMULATION

Many real-life events are difficult to implement directly due to their high initial
startup costs or because they are too risky or too dangerous in terms of safety. A
thorough study has to be performed well ahead of its scheduled implementation. In
many cases, the study includes the development of a simulation model that will give
a correct indication of the success or failure of the project. Simulation is defined as
a small-scale imitation of a real-life event over a measuring quantity such as time.
This small-scale imitation represents the event by having the controlling parameters
or variables that scale upward linearly or nonlinearly. In order to achieve this up-
ward scalability objective, a simulation model is carefully developed for producing
the correct parameters for this representation. The parameters must be able to with-
stand the upward scalability requirements of the problems associated with this
transformation. A simulation model is said to be successful in its implementation if
this important factor is tackled correctly.

Simulation models are produced to give an understanding and the correct picture
of a real-life event. The simulation approach of analyzing a model is opposed to the
analytical approach, in which the method of analyzing the system is purely theoret-
ical. One main objective of simulation is to produce an optimum model that meets
all the requirements of the real-life problem. The real-life problem may be bugged
by uncertainties and a string of constraints that may pose a big overhead in its im-
plementation. Hence, understanding the system goes all the way to optimizing the
system performance, verifying its correctness, and testing its reliability over several
sets of different data. For example, a proposal for a new engine in a car involves a
comprehensive study of the performance of the engine and factors such as the pro-
duction costs, comparative performances of the engine against other models in the
market, reliability against technical glitches, and the market demand. On the techni-
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cal side, the engine performance is simulated in the laboratory for things like fuel
consumption, durability, maintenance issues, and effectiveness. Several parameters
and variables in the design are supplied to the simulation model to see changes in
the engine performance, and the best model produced leads to a decision as to
whether the model is accepted or rejected.

Simulations also represent the virtual picture of a real-life situation. For exam-
ple, in the Universal Studio’s “Back to the Future” virtual ride, the audience can
feel the virtual environment of riding in a futuristic car. The computer has been suc-
cessful in creating special effects combining audio, visual, and mechanical re-
sources in the studio to allow interaction between the user and the environment.
Such simulations are used extensively today to train military personnel for battle-
field situations, at a fraction of the cost of running field exercises involving real
tanks, aircrafts, and other expensive equipment.

A simulation may be done manually or using a computer. A manual simulation
involves some tedious steps that could take months to complete. In many cases, a
manual simulation is necessary and cannot be replaced by a computer in cases in
which its parameters are manually controlled. For example, a plane crash may have
been caused by some mechanical failures in the aircraft engine during a flight. To
study the cause of these failures, all the debris found at the site of the crash are col-
lected and assembled to build a model of the original aircraft. The assembled model
is checked vigorously for some possible faults in the wiring or failures of certain
parts of the engine. The results from this simulated study contribute toward tracing
the faults and failures that caused the accident.

A more effective simulation model is based on the computer. A computer-simu-
lated model always performs faster and provides a more convenient approach by al-
lowing a higher degree of flexibility of the model. A computer simulation is the ex-
ecution of a model, represented by a computer program that gives information
about the system being investigated. Simulations through a computer can be done
using several software packages as simple as Microsoft Excel and a more specific
tool such as Arena. There are also some general simulation packages such as Sim-
script and GPSS which provide a process-based approach to writing a simulation
program. With this approach, the components of the program consist of entities,
which combine several related events into one process. A more flexible and chal-
lenging approach is to use a general-purpose programming language such as C++ or
Java. Programming languages provide greater flexibility in the development of a
simulation at the expense of a longer and more difficult learning curve.

10.2 SIMULATION MODEL DEVELOPMENT

A simulation model is necessary as the first step toward implementing an idea that
has been found to be too large and costly to model without simulation. A good
simulation model will eventually lead to good decision making about whether to
continue or abandon the project. The analysis of the results of the simulation of-
ten gives the correct number and magnitude of the parameters or variables associ-
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ated with the proposed project. It is at this point that a decision is made on the im-
plementation of the project. For example, a city plans to embark on a light transit
system based on the rail network linking various points in the city, in order to
overcome traffic congestion. This is a big project that will cost billions of dollars
of the taxpayers’ money. One main question that becomes the responsibility of the
city planners is, will the huge investment really solve the traffic congestion prob-
lem? This is a difficult question to answer as reducing traffic congestion is an ob-
jective that can be successful or end in failure. One way to predict the success or
failure of this project is to perform a comprehensive simulation study. It is
through this simulation that a decision can be made on whether to embark on the
project or not.

The development of a simulation model takes several steps. The first is the clear
formulation of the problem and its objectives. It is also necessary to break down the
main problem into several smaller ones if the scope is too big. In this case, it may be
necessary to state the long-term objectives as well as the short-term or immediate
objectives. With the problem and its objectives well laid out, a feasibility study fol-
lows to determine whether the problem can be solved with the given timeframe and
within the available resources. It is here that simulation is performed, using several
variables and parameters of the “what-if” scenario. In most cases, a computer is of-
ten involved to perform the simulation. Some reliable data are fed into the simula-
tion model for testing and validation. The results are then analyzed for correctness
using some statistical and numerical tools. A good simulation often ends with a
steady-state model with the desired output. The final step in the simulation involves
testing and validating the model for upward scalability and robustness using several
different data sets.

A simulation model can be developed as a static or dynamic model. In a static
model, sometimes called a Monte Carlo simulation, a system is represented in such
a way that the state of the system over time is known beforehand. In many cases, a
static simulation model is suitable for developing or improving an existing model
based on the available data. A dynamic simulation, on the other hand, represents a
system whose state changes over time. In this case, the variables or parameters are
only known on-the-fly or as the execution is in progress. This simulation model is
often associated with the real-time systems, such as in telephone circuit switching
networks.

10.3 DISCRETE-EVENT SYSTEM SIMULATIONS

A discrete event is an event that occurs at an instance of time. For example, pushing
a stopwatch for the start of a sprint event and pushing the button of an elevator are
discrete events because there is an instant of time at which each occurs. Activities
such as moving a crane from one place to another are not discrete events because
they have time duration. However, the event becomes discrete if time is recorded at
the start of the activity and continues by monitoring the crane movement at some
time marks.
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A simulation that is based on a number of finite events over time is called a dis-
crete-event simulation. In this case, the events are variables that change according
to fixed or irregular time slots. In a similar manner, events that change continuously
over time can be modeled as continuous-event simulation models. A good example
of a continuous-event simulation model is the modeling of gas emissions in a facto-
ry. In this example, gas emission is read as a quantity that changes continuously ac-
cording to the activities inside the factory.

Discrete-event simulation is an analytical technique directed toward understand-
ing the behavior of a system or process. Some common applications include model-
ing of manufacturing processes, transportation systems, and human service sys-
tems. One main objective of discrete-event simulation is to provide a working
model of the real event. The model should be able to display information on re-
source utilization, efficiency, and cost. It is also necessary to optimize the proce-
dures and resource allocation by analyzing the relationship between the compo-
nents in the system. This, in turn, contributes to producing the best model for
implementation based on several “what-if” analyses.

Discrete-event simulations using computers have several advantages. First, sim-
ulations provide a visualization picture of both the problem and its solution, at a
fraction of the cost of an actual model. Visualization makes the problem and its so-
lution easier to understand, especially to people with nontechnical and management
backgrounds. It is through this understanding that these people can respond posi-
tively to the project before a decision can be made. Another advantage lies in the
fact that computer simulations provide some flexibility, making it easy to perform
changes, and a series of “what-if” scenarios by modifying the parameters or vari-
ables in the system. By changing the values of the variables, for example, the cost
of the whole operation is recalculated to produce a possible working model.

One of the most exciting applications of discrete-event simulation is the process
of assigning counters to customers whose arrival is random over an interval of time.
This problem is known as scheduling. A scheduler is a program that maps the cus-
tomers to the counters. A customer here refers to anything that needs to be serviced
at a counter. From the last chapter, a task in a task graph is a customer, whereas the
processor is the counter. Another example is customers who arrive at a bank wait-
ing for their turn to be served at a counter. One other example is the telephone calls
(customers) that arrive at a public switched telephone network (PSTN) exchange
waiting to be assigned with a channel (counter). In these three examples, the num-
ber of counters is limited and they may not be able to cater to all the needs of the ar-
riving customers simultaneously. Hence, only a handful of the customers will be as-
signed to the counters immediately upon arrival. The rest either have to wait or are
blocked from being served, depending on the type of system implemented. If the
system allows waiting, then a queue is formed in which the unsuccessful customers
still have the chance to be served. Otherwise, in a system that doesn’t allow waiting,
the customers are simply turned away or blocked.

One of the most important objectives of simulation is the development of a
scheduling system for a dynamic system. A dynamic system is often associated
with time, and this parameter plays a critical role as a measure of performance in
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the simulation. The main objective in scheduling is to obtain an optimum comple-
tion time, which is the earliest time for the completion of the whole project. An op-
timum schedule has many advantages. The most obvious is the savings to the host
organization in terms of time, cost, labor, and other resources.

However, in any dynamic system an optimum schedule is not easy to obtain.
Many unpredictable factors affect the performance of a dynamic system, which
may cause some delay to its execution. In this case, a feasible schedule is good
enough for most systems. A feasible schedule is one in which the completion time
may not be optimum but it does not cause any discomfort to the system. In this case,
a slight delay in its completion is still tolerable and the system may function nor-
mally.

A dynamic system may have a deadline in its implementation. A well-planned
scheduling system needs to be designed so that all jobs or modules in the project
will be completed before or on the deadline. The deadline is said to be a soft dead-
line if a slight delay in its completion will not cause any harmful effect to the sys-
tem. A soft deadline is tolerable to the system, although it may cause some discom-
fort. On the other hand, if a slight delay causes a disastrous effect to the system,
such as a collapse or a breakdown, then this deadline is called a hard deadline. The
period between the soft deadline and hard deadline is considered critical to the sys-
tem, and the scheduler must respond quickly to rectify the problem in order to avoid
the disaster.

Figure 10.1 illustrates scheduling with deadlines. A job starts at the earliest pos-
sible time at time ¢ = ¢,. With this starting time, the job may be completed optimal at
t,,. An earlier completion time than #,, may result in a premature ending, which is
not good for the system as the job may have not been executed properly. Some
slight delay in the starting time may force the job to complete at a later time. Com-

m

= =

system

premature S

completion failure

t'p optimum soft hard
start time 1me . deadline deadline
completion
time | | |
feasible critical

Figure 10.1 Scheduling with hard and soft deadlines.
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pletion before the soft deadline #, indicates a feasible schedule, which is tolerable to
the system. A hard deadline is indicated by #,. Completion between ¢, and ¢, is con-
sidered critical to the system, although the system may still function normally if that
doesn’t happen. A completion time above ¢, is not tolerable as it may have a disas-
trous effect on the system.

In this chapter, we present two models of dynamic scheduling for two different
types of simulation. The first is a simulation of a multicounter system with no wait-
ing. This system does not allow waiting, and an arriving customer who fails to find
a counter will be blocked and dropped from the system. The second is the simula-
tion of a multicounter system that allows waiting. In this system, an arriving cus-
tomer who cannot find a counter is given the chance to wait in a single queue. The
customer will wait for his turn for assignment to a counter according to the first-
come-first-served principle until it becomes available. This second system guaran-
tees each customer service at the counter, although some of them will have to wait
for quite some time. The second example is more realistic in real life than the first.
It is a practice for organizations not to turn away their customers as part of their
quality of service commitment. Our strategy in designing the two schedulers is to
start with the first model and try to maintain the same code for the second. This im-
plies that most of the code in the first model can be reused in the second in order to
show its relevance and usefulness.

10.4 MULTICOUNTER SYSTEM WITH BLOCKING

In this section, we discuss a simple system with blocking. In this system, customers
arrive at random at time # to make up a discrete event and they are assigned to a lim-
ited pool of counters on a first-come-first-serve basis. We assume a system with no
waiting in which a customer who fails to find a counter at time 7 will be blocked.
Therefore, this simple system has no queue. There is no tolerance in the time slot,
and an arriving customer who fails to find a counter is immediately blocked. An ex-
ample of this type of system is the process of loading boxes of perishable fruits into
a number of trucks for shipment. Since the fruits cannot wait for the next few trucks
to arrive, they are immediately discarded if the waiting trucks do not provide
enough space for them for shipment.

Our Scheduling Model

The objective in this application is to design a dynamic scheduler for mapping the
randomly arrived customers to the counters. A scheduler is a component of the sys-
tem that maps the customers to the available counters. In doing this, the scheduler
first checks the state of each counter and determines whether it is busy or available.
A customer is assigned to a counter if the counter is available. Otherwise, the cus-
tomer is blocked as no waiting is allowed. The progress of the services at the
counter is shown in the form of Gantt charts that clearly show the start and ending
time of execution for each customer.
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We refer to Figure 10.2 to illustrate our scheduling model. The figure shows an in-
stance of time at # = £; at which five customers arrive for mapping on 10 counters. The
two main players in this model are the customers and the counters. Customer i is re-
ferred to as v; and counter k as ¢;. At ¢ = ¢, a total of niv = 5 customers arrive, denot-
ed as v;, Vi1, Visa, Virs, and v;4. The scheduler checks the state of the counters to de-
termine whether they are available or busy. A bar in the figure represents a customer
being serviced at the counter. A busy counter is indicated as having a bar crossing the
time mark . From the figure, counters 1, 3, 6, and 9 are available and they are im-
mediately assigned with v;, v;,, v;1,, and v;3, respectively. Counters 2, 4, 5,7, 8, and
10 are busy servicing customers from the previous arrivals. The last customer, v; 4, is
not lucky as all the counters are now occupied. Therefore, v;,4 is blocked.

The scheduler in this model is a C++ program that manages the assignment of
customers to the counters according to the requirements of the system. The sched-
uler responds to the arrival of several customers generated randomly at time ¢. The
full duties and responsibilities of the scheduler at each timeslot are outlined as fol-
lows:

state of ¢ at f;

4’“ ] i available
—Ha @ — busy
4’“ - available
— busy
e > [ S—— busy
4’“ :IVI+2 available
4’" . busy
4’“ S S Vs busy

4’“ [ available
4>m busy

————————» v, is blocked

Scheduler ‘

f

niv=>5
customers arrive

Figure 10.2  Five arrivals with four assigned and one blocked at time #,.
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Determine the state of the counters

Map the arriving customers to the counters.
Block the customers who fail to get counters
Produce Gantt charts for the assigned customers

M S

Record and display the blocked customers

Code10A: Simulating Multicounter Systems

Our scheduling model is called project Code10A. Figure 10.3 shows a sample run
from this project. The project simulates the assignment of 100 customers on a host
of 10 counters. In the figure, the counters at which the customers are mapped are
represented as shaded rectangles. The incoming customers are assumed to arrive in
random numbers at the time slots, starting at # = 0. The output consists of Gantt
charts representing the start and completion time of the customers in clear rectan-
gles. The display also includes a list of blocked customers shown in the Blocked
Customers area. In this application, the macros C and N represent the total number
of customers (100) and counters (10), respectively.

The scheduler is the heart of the whole operation involving the mapping of the
customers to the counters. The scheduler performs the discrete simulation by itera-
tively producing customers at discrete time . This is done when the user presses the

- |1 tze |u |5E ) | |E." |TE 92 ‘
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n B i [ [e [e Jeo] e |

o R N CON GC [ = |
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B T ERG | E |
n B | [= [2 [e= [ E |

B [12 | [« [+ | [e2 [ [s7 |
n [12 | [+ [e] [2 B E |

#wCounters: 10 Max.#Customers: 100+
Last Customer Number: 95

=32 #Assigned Customens=32 of § 9525 9T T8

Bloded Customers:  21,0.31
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29 0 1 a2 33 42

51 82 988 95
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75 83 g4 85 87

Figure 10.3 Output from Code10A.
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space bar key. The initial time slot is set as = 0. A press on the space bar causes ¢ to
increase by one, which means the next time slot. At each time slot, a randomly de-
termined number of incoming customers, represented by the variable niv, arrive.
The arriving customers are indexed beginning with number 1, denoted by the vari-
able nv, in increasing order according to their time of arrival. At each arrival of cus-
tomers, the scheduler checks for the available counters. Customers are assigned ac-
cording to the availability of the counters. The scheduler maintains the progress of
all customers by displaying all the successfully mapped customers as Gantt charts,
whereas those that are blocked are listed in the Blocked Customers area.

Figure 10.4 shows the flowchart of our model for simulating the multicounter
discrete-event assignments. In this model, an event is represented by the arrival of
customers at the given timeslot 7. The discrete events are controlled by time slots
beginning at # = 0, which are activated by pressing the space bar key. We assume
that a randomly generated number of customers arrive at each timeslot. In this mod-
el, the random number is represented as niv, and is assumed to have values from 0
to 4, where 0 means no customer arrival is recorded at the time slot. The arriving
customers are indexed from # = 0, and their current number is represented by nv.

For each arriving customer v,,,, the scheduler checks for the state of the counters,
looking for the first counter that is available for assignment. Here, the state of each
counter can be either available (0) or busy (1). In this case, the scheduler checks for
a counter whose state is 0, starting from the first counter. A counter found to have
this value is immediately assigned with v,,. The state of the counter is updated to 1.
If none of the counters are available, then v,,, is blocked. A counter that has com-
pleted servicing a customer has its state updated to 0.

The same practice is applied to the next customer in the time slot until all the ar-
riving customers in the timeslot have either been assigned or blocked. Another
press on the space bar key produces another set of arriving customers, and the same
procedure is repeated until the total number of customers reaches N.

Code10A consists of the files Code10A.h and Code10A.cpp. Table 10.1 lists
the constants and global variables used in the application.

The information about the customers is stored as the structure CUSTOMER, as
listed in Table 10.2. The information includes the length or magnitude (1en) of the
customer, actual start time (ast) of servicing at the counter and its completion time
(act), the assigned counter number (aC), and the home screen coordinates (Home)
of the bar in the Gantt charts.

A counter has attributes represented in the structure as COUNTER. Table 10.3
summarizes the list of elements of this structure. Each counter has elements includ-
ing its state at time ¢ (sta), the number of assigned customers (av [0]), the ith as-
signed customer (av [1]), the last customer number (1v) and its home coordinates
(Home).

The constructor CCodel10A () in Code10A allocates memory for the class and
the structures, initializes several variables and objects, and sets the text font dis-
playing text. The initializations include the starting time, #; customer number, nv;
and the number of blocked customers, nbv. Also, each counter c[k], for
k=1,2,...,C, has no customers initially, therefore, c[k].av[0]=0. Each
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( start )

lett=0,nv=0

niv customers arrive,
update nv += niv,
let i=1

next call, i++

next tim

eslot,  ++

No

No

check the state
of the counters

a counter is
available?

v,, blocked, nbv++

v,, assigned

update the state
of the counter

Yes

analysis of event and
database update

Figure 10.4 The scheduler Code10A for the multicounter system with no waiting.
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Table 10.1 Constants and global variables in Code10A
Constants/variables Description
C The number of counters
N The total number of customers
t Current time slot
mLen Maximum length (magnitude) of a customer
mniv Maximum number of incoming customers
nv Current customer number at time ¢
nbv Total number of blocked customers at time ¢

wBar, hBar
TopLeft, BottomRight

fontTimes, 1lfTimes

Width and height of the Gantt charts bar

Top left and bottom-right coordinates of the Gantt charts
area

Font object for text and its attribute

Table 10.2 Information about a customer in the structure CUSTOMER

Element Description

vi[il Customer i, or v;

v[i]l.len Length of v,.

v[i].ast Actual start time of v;.

v[i].act Actual completion time of v;.
v[i].aC The counter to which v; is assigned
v[i] .Home Home coordinates of v; on the screen

Table 10.3 Information about a counter in the structure COUNTER

Element Description

clk] Counter £, or ¢;,

c[k].sta Status of ¢, at time ¢

c[k].av([0] Number of assigned customers in ¢,
clk]l.av[i] ith assigned customer in ¢;, where i # 0
clk].1lv Last customer in ¢;,

c[k] .Home Home coordinates of ¢, on the screen

counter is initially idle and is ready to accept new customers. Therefore, its initial
state c [k] . sta is set to 0. The following code fragment performs the operation:

CCodel0A: :CCodelOA()
{
v=new CUSTOMER [N+1];
c=new COUNTER [C+1];
TopLeft=CPoint (0,0); BottomRight=CPoint (900,620);
Create (NULL, "Multi-counter system simulation with blocking”,
WS_OVERLAPPEDWINDOW, CRect (TopLeft, BottomRight)) ;
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t=0; nbv=0; nv=0;
for (int k=1;k<=C;k++)
{
cl[k].sta=0;
clk].av[0]=0;
}
wBar=20; hBar=20;
ZeroMemory (&1fTimes,sizeof (1fTimes)) ;
1fTimes.1lfHeight=80;
fontTimes.CreatePointFontIndirect (&1fTimes) ;

Project Code10A has two events, namely, the initial display and the spacebar
key press, as shown in Figure 10.5. The two events are detected by WM_PAINT and
WM_KEYDOWN, and handled by OnPaint () and OnKeyDown (), respectively.

The function OnPaint () divides the window into two regions: the Gantt
charts area in the upper half and the Blocked Customers area in the lower half. In
the Gantt charts area, the counters are drawn as shaded rectangles. As described be-
fore, the number of counters is represented by C and this number can be changed by
putting a new value in its #define statement.

The space bar key-press event is handled by the function OnKeyDown () . This
function activates the scheduler whose operations are outlined in the flowchart in
Figure 10.4. The function OnKeyDown () responds to the spacebar key press only,
as indicated by the conditional statement:

if (nChar==VK_SPACE && nv<=N)

l Project code10A

CCodel0A()
Constructor for initializing
the variables/objects

ON WM PAINT

OnPaint( )
Set the initial display

ON_WM_KEYDOWN space bar OnKeyDown( )
=@p—> Move to the next
keyboard press time slot, update event

Figure 10.5 Events in Project Code10A.



10.4 MULTICOUNTER SYSTEM WITH BLOCKING 293

Table 10.4 Some macros for the keyboard

Macro Representation
VK_SPACE Space bar key
VK_RETURN Enter key
VK_F1 F1 key
VK_PGDN Page down key
VK_PGUP Page up key
MVK_ESC Escape key

In the above statement, nChar is a local variable representing the key pressed by
the user. The macro VK_SPACE represents the space bar key. Some commonly
used macros are listed in Table 10.4.

The second condition imposed is nv<=N which makes sure that the number of
arriving customers does not exceed the maximum number, defined to be 100 in this
application. It is important to include this statement as a value nv>N will cause an
overflow in the array v [nv].

A press on the space bar key causes the time ¢ to increase by one. At every
time slot, the number of available customers, nav, is initialized to 0 and a random
value is assigned to the number of arriving customers, niv. Immediately after
that, the program checks for the available counters and mark them with status 0.
Initially, all the counters are idle. At a later time, the counters need to undergo a
test to determine if they are busy or not. The following code fragment implements
this idea:

nav=0;

niv=rand () %mniv;

for (int k=1;k<=C;k++)
if (clk]l.av[0]>=1)

{
int r=clk].1lv;
if (v[r].act<=t)
clk].sta=0;
}

In the above code, the expression if (c[k].av[0]>=1) declares a counter
that has more than one assigned customer to be idle if the completion time of
its last customer is lower than the current time, ¢. This is a way of telling if
the counter is busy or not at the current processing time. An idle counter
is marked by c[k].sta=0 (FALSE) and a busy one with c[k].sta=1
(TRUE).

The next step is to assign the successful customers to the idle counters and block
the unsuccessful ones. The following routine in OnKeyDown () implements this
idea:



294 DISCRETE-EVENT SIMULATION

for (int i=l;i<=niv;i++)
{
nv++;
if (nv>N)
return;
for (int k=1;k<=C;k++)
{
v[nv] .aC=0;
if (!c[k].sta)
{
aC=k; nav++;
v[nv] .aC=aC;
v[nv].len=1l+rand () %$mLen;
[nv] .ast=t;
[nv] .act=t+v[nv].len;
[aC] .sta=1;
claC].lv=nv;
int r=++claC]l.av[0];
claC].av[r]=nv;
s.Format (“%d, $d,%d” ,nv,v[nv].len,v[nv].aC);
dc.TextOut (240+65*1,390,s) ;
v[nv] .Home=CPoint (55+t*wBar, 5+30*aC) ;
rc=CRect (v[nv] .Home,CSize (wBar*v[nv].len,hBar));
dc.Rectangle(rc) ;
s.Format (“%d”,nv) ;
dc.TextOut (55+t*wBar+4,5+30*aC+2, s) ;
break;

v
v
C

if (v[nv].aC==0)
{
nbv++;
int v=nbv/14, w=nbv%1l4;
s.Format (“*%d”,nv); dc.TextOut (40+30*w,440+v*20,s);
}
dc.SetBkColor (RGB (255, 255,255)) ;

Once the states of the counters are known, the next step is to assign the arriving
customers to the idle counters. A customer is initially assigned the value of 0 to in-
dicate it is still looking for a counter, through v[nv] .aC=0. A test is then per-
formed on each counter. The first found idle is immediately assigned with a cus-
tomer. This is followed by the assignments of the starting time of service, which is
the current time, length, and completion time. The length of service is again deter-
mined by a random number.

An update is also performed on the state of the counter. The host counter has its
status changed to busy, through c[aC] .sta=1. The number of customers in the
assigned counter is increased by one with the newly assigned customer marked as
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its lastest customer. Finally, a bar showing the starting time, completion time, and
length of the latest customer is displayed in the charts.

An unsuccessful customer is detected if its assignment value doesn’t change,
that is, v [nv] . aC=0. In this case, the customer is declared as a failure and is im-
mediately blocked. Every blocked customer is listed in the Blocked Customers area.

10.5 QUEUEING SYSTEMS

A discrete-event simulation model often involves a queueing system. A queueing
system is a stochastic event that relates a customer from the time a queue is formed
to its service completion. In our discussion, the word system used here includes
both the queue and service. A queue is formed when customers arrive and waiting
to be served through one or more counters. Just like in the previous application, the
term “customers” here refers generally to items like people waiting to be served in a
bank, packets of data for transmission in a network and customers waiting for as-
signment to their counters. Counters, in this context, refer to the service providers
such as bank cashiers, bank teller machines, and airport immigration counters.

A queueing model is a dynamic system consisting of three main components,
namely, the arrivals, service, and their queueing discipline. In the model, the states
of the counters, queues, and customers depend very much on the past states. Since
the arrivals and service are random processes, they are normally Markovian
processes. Customers may arrive at the queue either singly or in bulk. The first case
is typified by a queue at the bank teller machine, where a customer’s arrival is inde-
pendent of the arrivals before and after him. In the second case, a bulk arrival in-
volves a group of customers that arrive in a queue, such as a group of people arriv-
ing at a restaurant waiting to be served.

The queue discipline is the way customers form the queue in the system. Most
common is the first-come-first-served (FCFS) discipline wherein customers who ar-
rive first have higher priority for being served. Another way is the first-come-last-
served (FCLS) discipline wherein customers who arrive early will be given lower
priority. FCLS discipline applies in a restaurant where a stack of trays are arranged
in a vertical column.

Queueing systems are normally modeled as Markovian processes written in brief
form as a/b/C. In this notation, a indicates the arrival pattern that forms the queue, b
is the service distribution, and C is the number of counters. For example, in the
M/ G/1 system, customer arrivals form a Poisson process in which M means memo-
ryless, with a general (G) holding time and using one counter.

M/M/1 Queueing System

A common form of queueing system is the M/M/1 model having only one counter
to serve customers. Let N(¢) be the number of customers and p,(¢) be the probability
of having n customers in the system at time 7. For a steady-state system, the expect-
ed number of customers in the system is given as
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E[N(1)] =Zonpn<t) (10.1)

where P, = P[L(t) = n] = P,(¢) is the steady-state probability of the system. In this
system, customers arrive at random and their interarrival times are assumed to form
a probability distribution function. The time taken by a customer is assumed to be
independent of other customers in the system. The arrival rate of the customers is
defined as follows:

total number of customers
time duration

Arrival rate, A = (10.2)

The customer arrivals can be modeled according to some established functions,
such as the Poisson and Bernoulli distribution functions. The customers are ser-
viced at the counter with mean denoted by w. The counter utilization rate, some-
times called the offered load p, is given by

_A (10.3)
= :
and relates the arrivals to service at the counter. For example, in the telephone ex-
change application, the intensity of calls that arrive at a trunk can be measured
through the counter-utilization rate. In this case, p may indicate the traffic intensity
at the trunk. A counter is said to be stable if A < w or p < 1. The mean number of
customers in the system is given by

Ny=—"7=—— (10.4)

A useful equation called Little’s equation provides a very fundamental relation-
ship between the arrival rate of customers A, the mean number of customers in the
system N, and the mean sojourn time of customers 7 (or the mean holding time of
customers). The equation is given as follows:

N,= AT, (10.5)
Little’s equation is applied in determining, for example, the offered load of calls
that arrive at a telephone exchange. In this case, the offered load at a trunk (or
counter) is given simply as a = AT.

The mean sojourn time of the customers, or the average holding time of a cus-
tomer in the system, is obtained from Equations (10.4) and (10.5):

T,===—+ (10.6)
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In addition, the mean waiting time of the customers in the queue is given by
w,=T,——=—+ (10.7)
and the mean number of customers in the queue is given by

N,=Aw i

== 1 (10.8)

M/M/C Queueing System

A single queue system with ¢ counters is modeled as the M/M/C system. In this sys-
tem, the arrivals are assumed to be a Poisson distribution function with mean A.
Each counter has an independent and identical exponential service—time distribu-
tion with mean given by u = 1/A. Figure 10.6 shows a typical M/M/C queueing sys-
tem having C counters. The first parameter is the arrival process, which is Markov-
ian, and the second is the service process, which is also Markovian. The third
parameter is the number of counters. In this illustration, an arriving customer in the
queue is assigned to the first available counter.

In order for the M/M/C system to have a statistical equilibrium, the offered load
must satisfy A/u < C. The counter-utilization rate, or the traffic load p, is then ob-
tained as follows:

A
=— 10.9
P=T m ( )
service rate
1 ————
Queue
2
arrival rate, /
opNelolo] ]
Customers scheduler .

Counters

Figure 10.6 The Markovian M/M/C queueing system having ¢ counters.
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If A = Cp, then the queue is growing faster than what the counters can offer and
this creates instability in the system. The system is said to have no statistical equi-
librium as the arrival rate is greater than or equal to the maximum service rate of
the system. The counter-utilization rate gives a good indication of the traffic pat-
tern at the counters. At steady state, the probability of having no customers is giv-
en by

Py = + (10.10)
< Z Tk T -p)

© C (Cp) Co¥ |-
po=1-3 p,= (Cp) Cp~ |1

The arriving customers are assigned straight to the counters if their number is
less than the number of counters, or 1 = n = C. The probability of having n cus-
tomers in the system at time ¢ in this case is given by

A (Cp)"
Pu= G Pt = T Do (10.11)

Otherwise, if n > C, the probability is given by

_ A n—-C _ CCpn 12
P\ ) P~ g Po (10.12)

The probability that an arriving customer finds all the counters busy (so that, he or
she has to queue) is given as follows:

S (Cp)" 1o
= =— 10.13

Pq nz:‘,c Dn Cl 1-p ( )
Equation (10.13) is also known as the Erlang-C formula, which indicates that there
is a waiting time in the queue before the arriving customer is assigned to a counter.
The expected number of customers waiting in the queue is given by

o ColC
qunz_c(nopn:po(é)!) (1 fp)z :pq(llzp) (10.14)

The mean waiting time in the queue for a customer is

NP
Wq—T—pqm (10.15)
and the mean time a customer spends in the system is given by
1 1
T.=w p (10.16)

+—=p, ~——— + —
T w T PeAdTp)
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From Little’s law in Equation (10.5), the mean number of customers in the system is

o Cp)y'py  p
Ny=AT,=Cp+ C(CH(1 = p)? =Py 1-p +Cp (10.17)

The Markovian M/M/C system has many applications in real life. Some of these
examples include the arrival of customers waiting to be served by a host of counters
in a bank, jobs waiting in a queue to be printed in a local area network, and tele-
phone calls waiting to be assigned to channels in a wireless cellular network. In this
section, we discuss the design of the M/M/C system that allows an infinite time for
waiting. Unlike the previous model, this model does not block or turn away any
customer. Each customer is given the chance to be served at a counter, no matter
how long he or she is queueing in the system.

Code10B: Simulating the M/M/C System

The M/M/C system with no blocking means it allows the arriving customers an infi-
nite time for waiting in the queue. This is illustrated in the project Code10B. The
project is an extension of the earlier project Code10A and most of the basic code is
retained. Figure 10.7 shows the output of Code10B. It consists of the Gantt charts
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Figure 10.7 Output from Code10B.
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area, the customer information in the form of a list view table, and the output analy-
sis area. The list view table is a child window that displays the detailed information
about the customers in the system. This facility is useful for viewing and validating
the results from the program.

The discrete time simulation in Code10B is controlled by pressing the space bar
key. At each press, the time slot ¢ increases by one unit. A random number of cus-
tomers arrive and they form a queue on a first-come-first-served basis, in which
customers who arrive early will stand in front of the queue. It is assumed that the ar-
riving customers are independent of each other, with the arrivals based on the Pois-
son distribution with rate A. There are C counters for serving a total of N customers
in the system. The service rate is assumed to have a probability distribution function
given by the exponential function with mean u = 1/A.

We discuss the design of the scheduler for the M/M/C queueing system in
Code10B. Figure 10.8 shows the flowchart of the scheduler. Initially, the time ¢
and the number of customers in the system nv are set to 0. The discrete event begins
when the space bar key is pressed. The key press marks the arrival of a random
number of customers, represented by the variable niv. The scheduler assigns the
customers with the number nv and place them in the central queue Q. The scheduler
then checks the state of each counter. The first C customers in front of Q are as-
signed to the counters, whereas the rest are pushed C places forward in Q. When a
customer v; is assigned to counter ¢, it is removed from Q, its state is updated and
the counter is marked as “busy.” Once the service at the counter is completed, the
counter changes its state to “available.” The customer information is updated and it
is now no longer in the system.

The process continues with another space bar key press, which moves the
process to the next time slot. Another batch of customers arrive and they are placed
behind the previous customers, who are still in Q. The same scheduling procedure
is applied when the assigned customers are removed from Q and unsuccessful ones
are pushed forward in the queue. The process terminates when all the customers
have been assigned and complete their service at the counters.

Code10B has two files: Code10B.h and Code10B.cpp. Table 10.5 lists all
the macros (constants) used throughout the program that are defined using #de-
fine. The constants, especially mniv and mLen are the stabilizing factors for the
system, as they determine whether the system will have a statistical equilibrium or
not, according to Equation (10.9). A low value of mniv (for example, mniv=4) is
favorable for achieving a short queue, and this contributes to better stability. A high
value, on the other hand, means a high rate of customer arrivals. This results in a
long queue, which implies more counters are needed to service the incoming cus-
tomers.

There are two structures used in the program, namely, CUSTOMER and
COUNTER. No changes are made in COUNTER. The structure CUSTOMER stores all
the information about the customers in the system, as shown in Table 10.6. Most of
the elements of CUSTOMER are the same as in the previous model. New elements
for a customer in this model are the arrival time (art) and the waiting time in the
queue (wait).
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Figure 10.8 Flowchart of the scheduler in Code10B.
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Table 10.5 Constants in Code10B

Macro name Description

C Number of counters, set as 10 in this model

N Maximum number of customers, set as 60 in this model

mniv Maximum number of incoming customers, set as 10 in this model
mLen Maximum length of a customer, set as 8 in this model

Table 10.6 Elements of the structure CUSTOMER in Code10B

Element Description

vi[i] Customer i, or v;

v[i] .Home Home (top left) coordinates of v, in the Gantt charts
v[i].len Length of v;

v[i].art The arrival time of v;

v[i].ast Actual start time of v;

v[i].act Actual completion time of v,

v([i].aC The counter that v; is assigned to

v[i].sta Current status of v;

v[i] .wait Waiting time of v; in the queue before it is assigned to a counter

The functions in Code10B are listed in Table 10.7. The functions OnPaint ()
and OnKeyDown () are the methods that respond to the initial display and key-
stroke events, respectively. The functions CustomerInfo (), Analysis(),
and Factorial () are new functions for displaying the customer information, an-
alyzing the results, and computing the factorial of a number, respectively.

The constructor Code10B() allocates memory for the class and the arrays, be-
sides initializing several global variables in the application. The time mark ¢ is ini-
tially set to —1. This value will increase by one at each space bar keystroke. There-
fore, with the first space bar key press ¢ becomes 0, and this signals the start of the
simulation. In addition, the constructor initializes the state of the counters to 0 to in-
dicate they are all idle and ready to accept the assignments. The number of assigned

Table 10.7 Functions in Code10B

Function Description

CCodel0B() The constructor

~CCodelOB() The destructor

OnPaint () Initial display in the main window

OnKeyDown () Method to respond to the key-press event
CustomerInfo () Customer information tabulated as a list view window
Analysis () Statistical analysis of the scheduling results

Factorial () Computes the factorial of a number
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customers in each counter is also initialized to 0. The code fragment for these activ-
ities is given as follows:

t=-1; nv=0; tnav=0;
for (int k=1;k<=C;k++)
{
cl[k].sta=0;
clk]l.av[0]1=0;

The state of each customer v; at time ¢ is a flag indicated by v[i] .sta. The
state may change with one of the values listed in Table 10.8. Initially, the flag is set
to 0, which means the customer does not exist yet, as follows:

for (int i=1;i<=N;i++)
v[i].sta=0;

Once a customer arrives at time ¢, its state changes to 1, which means it is waiting in
the central queue for assignment. The state changes to 2 once it is assigned and ser-
viced at a counter. The state again changes to 3 when the service at the counter is
completed. This flag value means the customer is no longer in the system and is ter-
minated.

Information about the customers are displayed as a table using the list view win-
dow. The window is created from the the CListCtr1l object called vInfoview,
and it consists of seven fields. The following code segment creates the table with
the field titles that describe the customers:

vInfoView.Create (WS_VISIBLE | WS_CHILD | WS_BORDER | LVS_REPORT
| LVS_NOSORTHEADER, CRect (30,410,400,580), this, IDC_vINFO) ;
char* column[nFIELDS+1]=
(“C'LlSt" ,"ce”, 7len” ,"arr”,"ast”,”act”,”"sta” } H
int columnWidth[nFIELDS+1]1={50,50,50,50,50,50,50};
LV_COLUMN 1lvColumn;
lvColumn.mask = LVCF_WIDTH | LVCF_TEXT | LVCF_FMT | LVCF_SUBITEM;
1lvColumn. fmt = LVCFMT_CENTER;
lvColumn.cx = 85;
for (i=0;i<=nFIELDS;i++)
{
lvColumn.iSubItem = 0;
lvColumn.pszText = column([i];
vInfoview.InsertColumn (i, &lvColumn) ;
vInfovView.SetColumnWidth (i, columnWidth[i]) ;

The function OnKeyDown () responds to the key press that simulates the dis-
crete event. At time ¢, the scheduler checks the state of each counter, c [k] . sta, to
determine whether it is busy or available. One way to tell this is to check the last
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Table 10.8 Status of a customer, v[i] . sta, at time ¢

v[i].sta Description

0 v; does not exist yet

1 v; has arrived and is waiting in the queue for assignment (the customer is
in Q)

2 v; has arrived and been assigned to a counter but has not completed its
execution at the counter yet

3 v; has arrived, been assigned, and terminated

customer assigned to the counter, v[1] . 1v. If the completion time of the last cus-
tomer in the counter is less than ¢ then the counter is idle, and its status is set to 0.
Otherwise, the status is 1 to show that it is busy. The following code fragment per-
forms these tasks:

for (k=1;k<=C;k++)
if (cl[k]l.av[0]>=1)

{
int r=cl[k].1lv;
if (v[r].act<=t)
clk].sta=0;
}

At each timeslot ¢, the number of assigned customers nav in the timeslot is ini-
tially set to 0. The total number of customers nv is updated to include the new ar-
rival of customers. Initially, the state of a customer, v [nv] . sta, is set to 0 in the
constructor, which means it does not exist yet. At time #, a random number of niv
customers arrive and they are placed in the central queue. The number is generated
using the C++ function rand (), and its value ranges from 0 to the maximum num-
ber allowed, mniv (a macro defined in the header file). The state of each of these
customers changes to 1. The current time # is marked and this value is immediately
assigned as the arrival time, v[nv] .art, of the customers. The following code
fragment shows this process:

niv=rand()%mniv; nav=0;
for (i=1l;i<=niv;i++)
{
nv++;
if (nv<=N)
{
v[nv].art=t;
v[nv].sta=1;
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Once the initializations have been performed at time 7, the next step is to assign
the customers to the available counters. The scheduler obtains the queueing list Q to
check the current state of all the customers. A customer is in Q if its flag status is 1,
and this is a prerequisite before it can be considered for assignment. This strategy
eliminates others that have been assigned before. Customers who arrive early are
placed in front of the queue for a higher priority of assignment.

Initially, each customer in Q is assigned to counter 0 to denote it is not
assigned to any counter yet, or v[1].aC=0. The scheduler’s next task is to find
an idle counter for the assignment. This is achieved by checking the Boolean
value of each counter, c[k].sta. A FALSE (0) value means the counter is
idle, whereas TRUE (1) means it is idle. The assignments start with the cus-
tomer standing in front of Q being assigned to the first available counter, followed
by the next-highest customer in Q, and so on until all the counters are occu-
pied.

With each assignment, other information about the customer is updated. This
includes the customer’s length (1en) which is randomly determined, the starting
time (ast) of service and its completion time (act), and the waiting time in
the queue (wait). With this assignment, the customer is removed from the queue
by setting the flag v[i].sta=2. The following code fragment performs these
tasks:

aC=k; nav++; tnav++;
v[i].aC=aC;
v[i].len=1+rand () %mLen;

[i] .ast=t;

[i] .act=t+v[i].len;

[1i] .sta=2;

[1] .wait=v[i] .ast-v[1].art;

The customer assignment is shown as a bar in the Gantt charts as follows:

v[i] .Home=CPoint (55+t*wBar, 5+30*acC) ;
rc=CRect (v[i] .Home,CSize (wBar*v[i].len,hBar)) ;
dc.Rectangle(rc) ;

Each assignment also requires some update to the state of the counter. This in-
cludes setting the counter status to “busy,” adding the assigned customer as the lat-
est customer in the counter, and increasing the number of assigned customers in the
counter by one, as follows:

cl[aC] .sta=1;
claC].lv=1i;
r=++cl[aC].av[0];
claC].av[r]l=i;
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The scheduler also checks the state of the customer undergoing service at the
counter. If the customer has completed its service at the counter, its state changes to
“terminated,” as follows:

if (t>=v[i].act && vI[i].sta==2)
v[i].sta=3;

The event at time completes with an update to the customer information table in
the list view window. This is performed in the function CustomerInfo (), as
follows:

void CCodelOB:: CustomerInfo()
{
CString s;
vInfoView.DeleteAllItems () ;
LV_ITEM lvItem;
lvIitem.mask = LVIF_TEXT | LVIF_STATE;
lvItem.state = 0;
lvItem.stateMask = 0;
for (int i=0;i<=tnav;i++)

{

lvIitem.iItem=1;

lvItem.iSubItem=0;

lvIitem.pszText="";

vInfoView.InsertItem(&lvItem) ;

if (i+l<=tnav && i+1<=N)

{
s.Format (“%d”,i+1) ;
vInfoView.SetItemText (i, 0,s) ;
s.Format (“%d”,v[i+1].aC);
vInfoView.SetItemText (i,1,s);
s.Format (“%d”,vI[i+1].len);
vInfoView.SetItemText (i, 2,s);
s.Format (“%d”,v[i+1l] .art);
vInfoView.SetItemText (i, 3,s);
s.Format (“%d”,v[i+1l] .ast);
vInfoView.SetItemText (i,4,s);
s.Format (“%d”,v[i+1l].act);
vInfoView.SetItemText (i, 5, s) ;
s.Format (“*%d”,v[i+1l] .sta);
vInfoView.SetItemText (i,6,s);

}

}
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The last customer in the system is v [N]. Once this customer has been assigned
to a counter, an analysis is performed on the data gathered from the discrete events.
The function Analysis () performs this task. The following items are included in
the analysis:

The arrival rate of customers (using Equation 10.2), lambda

The mean service time of the customers, mu

The counter utilization rate (Equation 10.9), rho

The probability of having no customers in the system (Equation 10.10), p0
The mean sojourn time (Equation 10.16), Ts

The mean number of customers in the system (Equation 10.17), Ns

The probability of queueing (Erlang’s C-formula, Equation 10.13), pg
The expected number of customers in the queue (Equation 10.14), Ng

AR e B AN o e

The mean waiting time in the queue (Equation 10.15), wg
In computing the probability of having no customers in the system, using Equa-
tion (10.10), a recursive function for computing the factorial of a number is re-

quired and presented as follows:

double CCodelOB::factorial (double k)

{
if (k==0)
return 1;
return k*factorial (k-1);
}

Data analysis is performed wholly inside the function Analysis (). All the
variables are declared locally inside the function. The function is written as fol-
lows:

void CCodelOB: :Analysis()
{
CClientDC dc(this);

CString s;

int k;

double lambda, mu, rho, temp, tC;

double p0; // prob. of having no customers

double pqg,Nqg,wq, Ts,Ns;
tC=(double)C;
lambda= (double)N/t;
mu=1/lambda;
rho=lambda/ (tC*mu) ;
temp= (pow (tC*rho,C) )/ (factorial (tC)* (1-rho));
for (k=1;k<=C;k++)
temp += pow(tC*rho,k)/factorial (k) ;
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p0=1/temp;

pg=pow (tC*rho,C) *p0/ (factorial (tC) * (1-rho)) ;
Ng=pg*rho/ (1-rho) ;

wqg=Ng/lambda;

Ts=wg+1/mu;

Ns=lambda*Ts;

dc.SelectObject (fontTimes) ;

dc.SetBkColor (RGB(255,255,255)) ;
dc.SetTextColor (RGB(100,100,100)) ;

s.Format (“Arrival Rate, lambda: %1f”,lambda) ;
dc.TextOut (450,360, s) ;

s.Format (*Mean service time, mu: %1f”,mu);
dc.TextOut (450,385, s) ;

s.Format (“Counter utilization rate, rho: %1f”,rho);
dc.TextOut (450,410,s);

s.Format (*Prob. of having no customers, pO: %$1f”,p0);
dc.TextOut (450,435, s) ;

s.Format (“*Mean sojourn time, Ts: %$1f”,Ts);

dc.TextOut (450,460, s) ;

s.Format (“*“Mean number of customers in the system, Ns: %1f”,Ns);
dc.TextOut (450,485, s) ;

s.Format (*Prob. of queueing (Erlang-C), pdg: %$1f”,pq);
dc.TextOut (450,510, s) ;

s.Format (“Expected number of customers in queue, Ng: %$1f”,Nq);
dc.TextOut (450,535, s);

s.Format (“Mean waiting time in queue, wqg: $1£f”,wq) ;
dc.TextOut (450,560, s) ;

10.6 SUMMARY AND CONCLUSION

Computer simulation is an important step in evaluating the performance of a dis-
crete event. Two models of simulations are discussed in this chapter. We model a
discrete event based on time ticks—at every instance of time, a number of cus-
tomers arrive. In the first model, customers are not allowed to wait in the queue. An
arriving customer at time ¢ is either assigned to a counter immediately or blocked,
depending on whether a counter is available or not. There is no buffering in this sys-
tem as no waiting is allowed. As a result, this model produces stable results in a sys-
tem with many counters and low arrival rate.

Due to its high dependence on the number of counters, the first model is not very
useful for implementation in real life. However, its mechanism contributes to the
design of a more practical system involving waiting in a queue. The second model
presented in this chapter makes use of the idea of the first system by retaining most
of the code and adding new ones for supporting a queue. The second model is the
M/M/C queueing system that allows infinite waiting and no blocking. In this sys-
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tem, no customer is turned away as he will be staying in the central queue until a
counter becomes available. This provides some buffering in the form of a queue
that tends to stabilize the system. An arriving customer at time ¢ is either assigned
directly to a counter (if the counter is available), or placed in a central queue. The
assignment of customers in this system is based on the first-come-first-served prior-
ity list. The performance of this system is measured using some statistical tools,
such as the mean waiting time in the queue, mean sojourn time, mean number of
customers in the system, and the counter utilization rate.

A queueing system itself has many forms. The simulation models presented here
can be extended to include several other applications in real life. Most relevant to
the second model, for example, is the M/M/C system that allows finite waiting time.
In this system, a customer is allowed to wait in a queue up to a preset time period. If
a counter is still not available, then the customer is blocked and terminated from the
system. One such application is the telephone calls that arrive at a local switching
center, whereby each call has a waiting time limit. The blocking probability in this
case is measured using the Erlang’s B-formula. A lot of ideas from the second mod-
el can easily be extended to develop this system.
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CODE LISTINGS

Code10A: Discrete-Event Simulation with Blocking

// codelOA.h
#include <afxwin.h>

#define C 10 // number of counters
#define N 100 // total number of customers
#define mLen 8 // max length of a customer
#define mniv 7 // max #incoming customers

class CCodelOA : public CFrameWnd
{
private:
LOGFONT l1lfTimes; CFont fontTimes;
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CPoint TopLeft, BottomRight;

int wBar, hBar, t; // width, height, time

int nv, nbv; // customer number, #blocked customers
typedef struct

{

CPoint Home;

bool sta; // status

int av[N+1]1,1lv; // ith customer, last customer
} COUNTER;
COUNTER *c;

typedef struct
{

CPoint Home; // coordinates of customer
int len; // length
int ast,act; // actual start,completion time
int acC; // assigned counter no.

} CUSTOMER;

CUSTOMER *v;

public:
CCodelOA() ;
~CCodelOA() ;

afx_msg void OnPaint () ;
afx_msg void OnKeyDown (UINT nChar, UINT nRep, UINT nFlags);
DECLARE_MESSAGE_MAP () ;

Y

class CMyWinApp : public CWinApp
{
public:

virtual BOOL InitInstance() ;
Y

// codelOA.cpp
#include “codelOA.h”

CMyWinApp MyApplication;

BOOL CMyWinApp: :InitInstance()

{
CCodel0A* pFrame = new CCodelOA;
m_pMainWnd = pFrame;
pFrame->ShowWindow (SW_SHOW) ;
pFrame->UpdateWindow () ;
return TRUE;

}

BEGIN_MESSAGE_MAP (CCodel0OA, CFrameWnd)
ON_WM_PAINT ()
ON_WM_KEYDOWN ()

END_MESSAGE_MAP ()

CCodelOA: :CCodel0A()

{
v=new CUSTOMER [N+1];
c=new COUNTER ([C+1];
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TopLeft=CPoint (0,0); BottomRight=CPoint (900,620);
Create (NULL, "Multiserver system simulation with blocking”,
WS_OVERLAPPEDWINDOW, CRect (TopLeft, BottomRight)) ;
t=0; nbv=0; nv=0;
for (int k=1;k<=C;k++)
{
clk].sta=0;
clk].av[0]=0;
}
wBar=20; hBar=20;
ZeroMemory (&1fTimes,sizeof (1fTimes));
1fTimes.lfHeight=80;
fontTimes.CreatePointFontIndirect (&1£fTimes) ;

CCodelOA: : ~CCodelOA()

{

delete c,v;

void CCodelOA: :OnPaint ()

{

CPaintDC dc(this);
CString s;
CRect rc;

dc.SelectObject (fontTimes) ;

dc.SetTextColor (RGB(255,255,255)) ;

for (int k=1;k<=C;k++)

{
c[k] .Home.x=25; c[k].Home.y=35+(k-1)*30;
rc= CRect (c[k].Home,CSize (wBar+5,hBar)) ;
dc.FillSolidRect (&rc,RGB(150,150,150)) ;
s.Format (“%d”, k) ;
dc.TextOut (c[k] .Home.x+7,7+30*k, s) ;

}

dc.SetBkColor (RGB(255,255,255)) ;

dc.SetTextColor (RGB(100,100,100)) ;

s.Format (“#Counters: %d Max. #Customers: %d++”,C,N);

dc.TextOut (30,350, s) ;

rc=CRect (30,410,500,560) ;

dc.Rectangle(rc) ;

s.Format (“Blocked Customers:”) ;

dc.TextOut (40,420,s);

void CCodelOA: :0OnKeyDown (UINT nChar, UINT nRep, UINT nFlags)

{

CClientDC dc(this);

CString s;

CRect rc;

CBrush* pWhite=new CBrush(RGB(255,255,255));

311

int aC,niv,nav; // assigned,no.of incoming,no.of available customers
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dc.SelectObject (fontTimes) ;
dc.SetTextColor (RGB(0,0,0)) ;

time_t seed=time (NULL) ;
srand ( (unsigned) seed) ;

if

{

(nChar==VK_SPACE && nv<=N)

dc.FillRect (CRect (30,390,750,410) ,pWhite) ;
s.Format (“t=%d”, t++) ;
dc.TextOut (30,390, s) ;

nav=0;

niv=rand () %$mniv;
for (int k=1;k<=C;k++)

if (c[k].av[0]>=1)

{
int r=c(k].1lv;
if (v[r].act<=t)
c[k].sta=0;
}

dc.SetTextColor (RGB(150,150,150)) ;

for

{

(int i=1;i<=niv;i++)

nv++;
if (nv>N)

return;
for (int k=1;k<=C;k++)
{

vInv].aC=0;

if (!c[k].sta)

{

aC=k; nav++;
v[nv].aC=acC;

nv] .len=1+rand () $mLen;
nv] .ast=t;
nv] .act=t+v[nv].len;
aC] .sta=1;
claC].lv=nv;
int r=++claC].av[0];
claC].av([r]=nv;
s.Format (“%d, $d, %$d” ,nv,

v[nv].len,v[nv].aC);
dc.TextOut (240+65*1,390,s) ;
v[nv] .Home=CPoint (55+t*wBar, 5+30*aC) ;
rc=CRect (v[nv] .Home,

CSize (wBar*v[nv].len,hBar)) ;
dc.Rectangle(rc) ;
s.Format (“*%d”,nv) ;
dc.TextOut (55+t*wBar+4,5+30%aC+2, s) ;
break;

}
if (v[nv].aC==0)
{



}

}
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nbv++;

int v=nbv/14, w=nbv%14;
s.Format (“%d” ,nv) ;

dc.TextOut (40+30*w, 440+v*20,s) ;

dc.SetBkColor (RGB(255,255,255)) ;

s.Format (“#Assigned Customers=%d of %d”,nav,niv);
dc.TextOut (95,390, s) ;

s.Format (“Last Customer Number: %d”,nv) ;
dc.TextOut (30,370, s) ;

s.Format (“%d, %.21f”,nbv, (double)nbv/nv) ;
dc.TextOut (140,420,s) ;

Code10B: M/M/C Queueing without Blocking

// codelOB.h
#include <afxwin.h>
#include <afxcmn.h>
#include <math.h>
IDC_vINFO 501

#define
#define
#define
#define
#define
#define

nFIELDS 6
Cc 10

N 60
mniv 5
mLen 8

class CCodelOB

{

private:

LOGFONT lfTimes;
CPoint TopLeft,

CListCtrl vInfoView;
int wBar,

// number of counters

// total number of customers

// max. #incoming customers per slot
// max. length of customer

public CFrameWnd

hBar, t;

int nv, tnav;
typedef struct

{

}

CPoi
bool

nt Home;
sta;

CFont fontTimes;
BottomRight;

// width, height, time
// customer number, tot #assigned customers

// status

int av[N+50],1v; // ith, last customer

COUNTER;

COUNTER *c;
typedef struct

{

CPoi
int
int
int
int
int

int

nt Home;
len;
art;
ast,act;
acC;
sta;

wait;

// coordinates of customer
// length
// arrival time
// actual start,completion time
// assigned counter no.
// status, O=not arr., l=arr.assg.,
2=arr.not assg., 99=dead
// waliting time in the gueue
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} CUSTOMER;
CUSTOMER *v;
public:
CCodelOB() ;
~CCodelOB() ;
afx_msg void OnPaint () ;
afx_msg void OnKeyDown (UINT nChar, UINT nRep, UINT nFlags);
DECLARE_MESSAGE_MAP() ;
void CustomerInfo(),Analysis();
double factorial (double) ;
Y

class CMyWinApp : public CWinApp
{
public:

virtual BOOL InitInstance();
Y

// codelOB.cpp: M/M/C queueing simulation with no blocking
#include “codelOB.h”

CMyWinApp MyApplication;

BOOL CMyWinApp::InitInstance ()

{
CCodel0B* pFrame = new CCodelOB;
m_pMainWnd = pFrame;
pFrame->ShowWindow (SW_SHOW) ;
pFrame->UpdateWindow () ;
return TRUE;

BEGIN_MESSAGE_MAP (CCodel0B, CFrameWnd)
ON_WM_PAINT ()
ON_WM_KEYDOWN ()

END_MESSAGE_MAP ()

CCodelOB: :CCodel0B()
{
v=new CUSTOMER [N+1];
c=new COUNTER [C+1];
TopLeft=CPoint (0,0) ;
BottomRight=CPoint (900, 620) ;
t=-1; nv=0; tnav=0;
for (int k=1;k<=C;k++)
{
clk].sta=0;
clk].av([0]=0;
}
for (int i=1;i<=N;i++)
v[i].sta=0;
wBar=20; hBar=20;
ZeroMemory (&1fTimes,sizeof (1lfTimes));
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1fTimes.1lfHeight=80;
fontTimes.CreatePointFontIndirect (&1fTimes) ;

Create (NULL, “m/m/c queueing system simulation”,
WS_OVERLAPPEDWINDOW, CRect (TopLeft, BottomRight)) ;

vInfoView.Create (WS_VISIBLE | WS_CHILD | WS_BORDER | LVS_REPORT
| LVS_NOSORTHEADER, CRect (30,410,400,580), this, IDC_VINFO) ;

char* column[nFIELDS+1]
={“Cust”,”Ct”,”len”,”arr”,”ast”,”act”,”sta”};

int columnWidth[nFIELDS+1]={50,50,50,50,50,50,50};

LV_COLUMN 1lvColumn;

lvColumn.mask = LVCF_WIDTH | LVCF_TEXT | LVCF_FMT | LVCF_SUBITEM;

1lvColumn. fmt = LVCFMT_CENTER;

lvColumn.cx = 85;

for (i=0;i<=nFIELDS;i++)

{
1lvColumn.iSubItem = 0;
lvColumn.pszText = column([i];
vInfoview.InsertColumn (i, &1lvColumn) ;
vInfoView.SetColumnWidth (i, columnwidth([i]) ;
}
}
CCodel0B: :~CCodelOB ()
{
delete c¢,v;
}
void CCodelOB: :OnPaint ()
{
CPaintDC dc(this);
CString s;
CRect rc;
dc.SelectObject (fontTimes) ;
dc.SetTextColor (RGB(255,255,255)) ;
for (int 1=1;i<=C;i++)
{
c[i] .Home.x=25; c[i].Home.y=35+(i-1)*30;
rc= CRect(c[i] .Home,CSize (wBar+5,hBar)) ;
dc.FillSolidRect (&rc,RGB(150,150,150)) ;
s.Format (“%d”,1);
dc.TextOut (c[i] .Home.x+7,7+30*1,s8) ;
}
dc.SetBkColor (RGB(255,255,255)) ;
dc.SetTextColor (RGB(100,100,100)) ;
s.Format (“#Counters: %d Max.#Customers: %d”,C,N);
dc.TextOut (30,350, s) ;
}

void CCodelOB: :0OnKeyDown (UINT nChar,UINT nRep, UINT nFlags)
{

CClientDC dc(this);

CString s;
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CRect rc;

CBrush* pWhite=new CBrush (RGB(255,255,255)) ;

int aC, niv, nav; // assigned, #incoming customers, #available customers
int i,k,r;

time_t seed=time (NULL) ;

srand ( (unsigned) seed) ;

if (nChar==VK_SPACE && vI[N].sta!=3)

{
dc.FillRect (CRect (30,390,750,410),pWhite) ;
dc.SelectObject (fontTimes) ;
dc.SetBkColor (RGB(255,255,255)) ;
dc.SetTextColor (RGB(0,0,0));
s.Format (“t=%d”,++t); dc.TextOut(30,390,s);
for (k=1;k<=C;k++)

if (cl[k].av[0]>=1)

{
int r=cl[k].1lv;
if (v[r].act<=t)
c[k].sta=0;
}

niv=rand () $mniv; nav=0;
dc.SetTextColor (RGB(150,150,150)) ;

for (i=1;i<=niv;i++)

{

nv++;
if (nv<=N)
{
vInv].art=t;
v[nv].sta=1;
}

for (i=1;i<=nv;i++)
{
if (v[i].sta==1)
{
v[i].aC=0;
for (k=1;k<=C;k++)
if (!c[k].sta)
{
aC=k; nav++; tnav++;
v[i].aC=aC;
v[i].len=1l+rand () %mLen;
v[i].ast=t;
v[i].act=t+v[i].len;
v[i].sta=2;
v[i].wait=v[i].ast-v[1i].art;
v[i].Home
=CPoint (55+t*wBar, 5+30*aC) ;
cl[aC].sta=1;
claC].lv=1i;
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r=++cl[aC].av[0];

claC].av[r]l=i;

rc=CRect (v[i] .Home,
CSize(wBar*v[i].len, hBar));

dc.Rectangle(rc) ;

s.Format (“%d”,1i) ;

dc.TextOut (55+t*wBar+4,
5+30*aC+2,s) ;

break;

}
if (t>=v[i].act && v[i].sta==2)
v[i].sta=3;
}
dc.SetTextColor (RGB(0,0,0)) ;
s.Format (“#Assigned Customers=%d of %d”,nav,niv);
dc.TextOut (95,390, s) ;
s.Format (“Last Customer Number: %d”, tnav);
dc.TextOut (30,370, s) ;
CustomerInfo () ;

if (v[N].sta==2)

{
VvI[N].sta=3;
Analysis();
return;

void CCodelOB:: CustomerInfo ()
{
CString s;
vInfoView.DeleteAllItems () ;
LV_ITEM lvItem;
lvIitem.mask = LVIF_TEXT | LVIF_STATE;
lvIitem.state = 0;
lvItem.stateMask = 0;
for (int 1=0;i<=tnav;i++)
{
lvIitem.iItem=1i;
lvItem.iSubItem=0;
lvItem.pszText="";
vInfoView.InsertItem(&lvItem) ;
if (i+l<=tnav && 1+1<=N)
{
s.Format (“%d”,1i+1) ;
vInfoView.SetItemText (1,0,s);
s.Format (“*%d”,v[i+1l].aC) ;
vInfoView.SetItemText (i,1,s);
s.Format (“%d”,v([i+1l].len) ;
vInfoView.SetItemText (1,2,s);
s.Format (“%d”,v([i+1l] .art);
vInfoView.SetItemText (1,3,s);
s.Format (“%d”,v[i+1l] .ast);
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vInfoview.SetItemText (i,4,s);
s.Format (“%d”,v[i+1l].act);
vInfoview.SetItemText (1,5,s);
s.Format (“%d”,v[i+1l].sta);
vInfoview.SetItemText (1,6,s);

void CCodelOB: :Analysis()
{
CClientDC dc(this) ;

CString s;

int k;

double lambda, mu, rho, temp, tC;

double p0; // prob. of having no customers

double pg,Ng,wq,Ts,Ns;
tC=(double)C;
lambda= (double)N/t;
mu=1/lambda;
rho=lambda/ (tC*mu) ;
temp= (pow (tC*rho,C) )/ (factorial (tC) * (1-rho)) ;
for (k=1;k<=C;k++)

temp += pow(tC*rho, k) /factorial (k) ;
p0=1/temp;
pa=pow (tC*rho, C) *p0/ (factorial (tC) * (1-rho)) ;
Ng=pg*rho/ (1-rho) ;
wg=Nqg/lambda;
Ts=wg+1/mu;
Ns=lambda*Ts;
dc.SelectObject (fontTimes) ;
dc.SetBkColor (RGB(255,255,255)) ;
dc.SetTextColor (RGB(100,100,100)) ;
s.Format (“Arrival Rate, lambda: %$1f”,lambda) ;
dc.TextOut (450,360, s) ;
s.Format (“Mean service time, mu: %$1f”,mu);
dc.TextOut (450,385, s) ;
s.Format (“Counter utilization rate, rho: %1f”,rho);
dc.TextOut (450,410, s) ;

s.Format (“Prob. of having no customers, pO: %1f”,p0);
dc.TextOut (450,435, s) ;

s.Format (“Mean sojourn time, Ts: %$1f”,Ts);

dc.TextOut (450,460, s) ;

s.Format (“Mean number of customers in the system, Ns: %1f”,Ns);
dc.TextOut (450,485, s) ;

s.Format (“Prob. of queueing (Erlang-C), pqg: %1f”,pq);
dc.TextOut (450,510, s) ;

s.Format (“Expected number of customers in queue, Ng: %1£f”,Nq);
dc.TextOut (450,535, s) ;

s.Format (“Mean waiting time in queue, wg: %1f”,wq);

dc.TextOut (450,560, s) ;
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double CCodelOB::factorial (double k)
{
if (k==0)
return 1;
return k*factorial (k-1);






CHAPTER 11

MODELING WIRELESS NETWORKS

11.1 WIRELESS CELLULAR NETWORKS

Communication using radio waves was invented by an Italian physicist, Guglielmo
Marconi, in 1895. Since then, rapid changes in the electronics industry have seen
tremendous improvement in the way people communicate. The standard form of
telephone communication is still the wired PSTN (public-switched telephone net-
work). With the integration of the telecommunications industry with computers,
several new forms of communications involving wired and wireless media have
evolved. An emerging standard is the wireless digital cellular telephone network,
which is a component of the personal communications services (PCS) system. PCS
is a digital system that uses the 1900 MHz radio frequency spectrum band.

To help understand wireless cellular network communication, a few basic termi-
nologies are discussed. Wireless communication is made possible through the trans-
mission of energy waves in the form of electromagnetic radiation in the air, referred
to as the electromagnetic spectrum. The length between the peaks of an energy
wave is called its wavelength. The number of cycles per second of the energy wave
is called its frequency. Frequency is measured in hertz (Hz), which refers to the
number of cycles per second of the oscillating wave. Frequency is inversely propor-
tional to wavelength—a high wavelength means low frequency, and vice versa. A
wave with low frequency may have a value as big as 10> Hz, whereas a high-fre-
quency wave can be as short as 10? Hz.

Electromagnetic spectrum is a broad term for energy waves including visible
light, radio frequencies, microwave, infrared, ultraviolet, X-rays and gamma rays.
The frequency of visible light is around 10'> Hz, whereas the gamma ray has the
highest frequency at around 10%! Hz. From this classification, radio frequency (RF)
occupies the lowest class and it is often used to transmit all kinds of data including
voice, digital data, and television signals. RF has the longest wavelengths and the
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lowest frequencies, ranging from 102 Hz to 10'°, and is, therefore, suitable for wire-
less communication. Cellular networks uses RF to transmit and receive data in all
their operations. For transmitting data, the information is piggybacked to the air in
the form of waves using a device called a modulator. When the data reaches its des-
tination, the waves are converted back to their original form using a device called a
demodulator.

A cellular telephone network consists of several hexagonal areas called cells.
Figure 11.1 shows two cellular networks, denoted by H, and H,, with the cells num-
bered starting at 1. The subscript # in the symbol H,, is the radius of the network, or
the layer of cells covering the network center at cell 1. It can be seen from the figure
that A, is made up of seven cells, whereas H, has 19 cells. Each cell has a base sta-
tion, a tall tower that has antennas, amplifiers, transmitters, and receivers for serv-
ing the mobile users in the cell. The facilities at the base stations also include the
modulator and demodulator, which convert data streams into RF and vice versa. A
base station has the capability to transmit and receive several groups of data at any
instance of time using several different nonconflicting frequencies. Each stream of
data occupies a channel or allocated frequency. The relationship is explained as fol-
lows: channel k has a frequency given as f;. Therefore, a base station transmits and
receives data using its allocated resources in the form of channels. The number of
channels allocated to a base station varies from one cell to another, depending on
the strength of its antenna. Normally, stronger antennae are installed on base sta-
tions in areas where the demand is high, like in a city.

The base stations in the cells are connected by high-speed cables to the mobile
switching center (MSC), which serves as the headquarters for several cells in the
network. The MSC is responsible for managing the calls in their respective cells by
identifying the callers/receivers, allocating bandwidths, and recording these events
in its database. To achieve these objectives, the mobile switching centers are linked
to the central office for access and share infrastructures such as satellites, PSTN, the
Internet, and other facilities.

N
.

Figure 11.1 H, (left) and H, (right) cellular networks, both with their centers at cell 1.
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In allocating channels to the cells, one important feature must be considered.
The allocated frequencies must be separated so that they don’t interfere with one
another. Frequencies, such as 90.5MHz and 90.6MHz, that are too close to each
other will definitely not be suitable for allocation in the same cell as they may
cause severe interference. The two frequencies may still be used by placing them
in two different cells separated some distance away. The way frequencies are al-
located to the cells makes up the frequency assignment problem, or channel as-
signment problem.

Calls in a cellular network are assigned in a circuit-switching manner. Circuit-
switching is a routing technique involving a pair of users, the caller and his receiver.
In circuit-switching, the paths or channels assigned to the caller and his receiver are
reserved wholly for them throughout the duration of the call. In comparison, pack-
et-switching is another routing technique that allows data to be distributed into sev-
eral packets over several different links in the network.

We discuss two models of channel assignments in this chapter. The first model
involves the assignment of fixed channels allocated to the cells in a network to mo-
bile users roaming in the network. The second is the problem of allocating the min-
imum number of channels to the cells in the network in such a way as to avoid the
interference that arises from three types of electromagnetic constraints.

11.2 CHANNEL-ASSIGNMENT PROBLEM

The channel-assignment problem has its prototype in the graph-coloring problem,
and is stated as follows: Given a graph G(V, E) with the set of vertices V and a set
of edges E, the objective is to find the minimum number of colors required for the
vertices in such a way that no two adjacent nodes share the same color.

In another form called the edge-coloring problem, the problem can be stated as
finding the minimum number of colors for the edges in such a way that no two
edges belonging to the same vertex have the same color. Graph coloring is one of
the most researched graph theory problems. The high interest in this problem is due
to the fact that many applications use the graph-coloring problem as their prototype.
One common application of the graph-coloring problem is in coloring countries in a
map with different colors so that no two neighboring countries share the same color.
Having neighbors with different colors is a form of constraint that makes the prob-
lem difficult to solve. The problem is further complicated by adding the neighbor-
hood constraint. In this constraint, any two vertices in a graph can share the same
color if they are separated by at least one node. The channel-assignment problem
has this type of constraint.

The channel-assignment problem is a constrained-optimization problem. Basi-
cally, the problem can be viewed as a type of graph-coloring problem that finds its
solution by applying an effective graph-coloring algorithm. The number of colors in
this problem refers to the number of frequencies for assignment. Therefore, the
main objective of the channel-assignment problem is to produce an assignment that
minimizes the span of the frequencies, or the use of bandwidth. This is an important
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objective in channel assignment as bandwidth is a very scarce, expensive, and valu-
able resource.

In assigning the channels, the electromagnetic interference that arises from cer-
tain constraints is to be avoided and kept to a minimum. Three common constraints
are to be considered, namely, the cochannel, adjacent channel, and cosite con-
straints. In the cochannel constraint, equal frequencies may be assigned only to an-
tennas that are separated by some minimum distance from each other, normally giv-
en as three hexagons away. This implies that two cells a and » must be separated by
a minimum distance of 7 in order to avoid interference when both of them are using
the same channel & simultaneously. This can be stated as follows:

|d(a, b, k)| = i (11.1)

In the above equation, d(a, b, k) represents the separation distance between cells a
and b in order to share the same channel k. Referring to the H, network in Figure
11.1, if the separation distance is three hexagons, then cells 6 and 10 can share the
same channel k at the same time, as they are three hexagons apart. Cells 6 and 2
cannot share the same channel as their separation is less than three hexagons.

In the adjacent-channel constraint, the frequencies f, and f, assigned to the chan-
nels in the adjacent cells @ and b, respectively, must differ by at least j units, given
as follows:

[fa=Jol =7 (11.2)

From Figure 11.1, the frequencies f; and f; allocated to cells 6 and 7, respectively,
must differ by at least j units as the cells are adjacent to each other. This constraint
does not apply if the two cells are not neighbors.

In the cosite constraint, the frequencies f; and £, of any two channels in a cell
must be separated by a minimum distance of &, given as follows:

lfi-fl=k (11.3)

This constraint is almost similar to the adjacent-channel constraint except that it ap-
plies to the same cell. If the frequencies are labeled in order from lowest to highest
asfi,f» - .-, fn and k=3, then a practical allocation of frequencies to cell 6 is f;, fo,
f1», and so on.

Channel assignments can be viewed as the problem of finding the right permuta-
tion of the available resources in order to keep the bandwidth to a minimum. This
objective requires an effective allocation scheme that encourages channel reuse.
The simultaneous use of the same channel in several cells in a nonconflicting man-
ner will definitely minimize the utilization of resources in the network. Among the
models proposed for solving the channel-assignment problem include graph theory
and heuristical methods that consider one or all the constraints. Newer approaches
include intelligent methods such as neural networks, simulated annealing, and ge-
netic algorithms.



11.3 CHANNEL ASSIGNMENTS: DISCRETE MODEL 325

The theoretical foundation of the channel assignment problem was developed
under the assumption that channel assignment is a mapping problem involving
matching the prey (cell) to its predator (channel). The channels may be allocated to
the cells in the network in a decentralized or centralized manner according to the
schemes used. In the decentralized scheme, the channels are divided and allocated
to the cells permanently. This type of assignment is called the static allocation
scheme. Each cell is allocated with a fixed number of nonconflicting channels for
servicing the mobile users in the cell. If all the allocated channels are used, then the
cell makes a request to borrow a channel from one of its neighbors if the need aris-
es. In the same manner, the cell can also lend its channels to its neighbors if at least
one of its channels is available.

In the centralized scheme, all the channels are controlled directly by MSC. These
channels are allocated to the cells based on the dynamic allocation scheme, accord-
ing to demand from the mobile users in the cells. Therefore, the channels are allo-
cated on a temporary basis and they are immediately removed from the cells upon
the completion of the calls so they can be reused by other cells.

11.3 CHANNEL ASSIGNMENTS: DISCRETE MODEL

In this section, we discuss a discrete-event model involving the static allocation
scheme in which a fixed number of channels are allocated to the cells. A model,
shown in Figure 11.2, is used as an example to illustrate the scheme. The figure
shows the H, network with seven cells, labeled from 1 to 7. To the right of the
figure is the adjacency matrix of the cells in the network. The cells may not be
equal in size, depending on the geographical location and demand. For example,
in a densely populated suburban area of a city, the hexagon may be small in size
as the base station in the cell needs to serve a large number of customers. We il-
lustrate the discrete model by allocating four channels to each cell in the H, net-
work. The channel number in each cell is shown below the cell number, as shown
in the figure.
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Figure 11.2 H, network model (left) and its adjacency matrix (right).
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Code11A: Channels for Mobile Users

Our simulation model is called Code11A. The project consists of the files
Code11A.h and Code11A.cpp, plus an input file called Code11A.in. In our
model, each cell in the network is allocated with four nonconflicting channels,
shown as numbers below the cell number in each cell in Figure 11.2. In the figure,
each cell in the network is allocated with four cells. The channels allocated to each
cell are called the primary channels of the cell. There are 28 channels in total, and
they are numbered from 1 to 28 according to the order from the lowest to highest
frequencies. Furthermore, the model assumes that only one MSC controls the whole
network and that it is geographically located within the network. This MSC is re-
sponsible for assigning the channels for all calls originating from the network. It is
also assumed that, for a call, both the caller and the receiver are located internally
within the network. Therefore, the model does not support calls from external
sources or destinations.

In this model, the cochannel constraint as expressed by Equation (11.1) is not ap-
plicable as the model does not support the simultaneous deployment of the same
channel in two or more cells. However, the adjacent-channel constraint is observed
by setting j = 1 in Equation (11.2). Therefore, putting channels 6 and 7 in cells 6
and 7, respectively, will not cause any electromagnetic interference according to
this assumption. The cosite constraint is also observed by setting k£ = 1 in Equation
(11.3). This assumption provides flexibility, allowing a cell to borrow any channel
belonging to its neighbor without causing any conflict.

A similarity with the graph-coloring problem is observed by noting that a cell in
the network cannot have two successively numbered channels in its cell. Each chan-
nel in a cell must be separated by at least one frequency in order to avoid conflict
with another channel. The arrangement of channels in Figure 11.2 only satisfies the
minimum requirement for avoiding conflicts. In reality, several other constraints
need to be observed in order to create a practical and interference-free cellular net-
work.

Each cell in the network is allowed to borrow one or more channels from its
neighboring cells to service the mobile users in its cell, provided they are available
at that instance of time. Only neighboring cells can share channels in this case. At
the time of borrowing, the program refers to the adjacency matrix of the network to
determine if the borrowing cell and the host cell are adjacent to each other. The bor-
rowed channels are called the secondary channels. In the same manner, each cell
also must be kind enough to lend its unused channels to other cells whenever a re-
quest is received. One requirement that must be satisfied before the secondary chan-
nels can be applied to the mobile users in the host cell is that they must not interfere
with the electromagnetic spectrum of the primary channels in the cell. To avoid this
kind of problem, the channels in the network are normally assigned in such a way to
satisfy the electromagnetic constraints not only in their cells but also in their neigh-
boring cells. This is one strategy to allow the borrowing of channels between the
neighboring cells in the network. Cell borrowing is an important feature of a cellu-
lar network as it makes it possible for the network to service mobile users in a dy-
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namic manner. This is important as the network does not know the exact number of
calls in each cell at any instance of time.

Table 11.1 summarizes the main characters in the model. The discrete events at
time ¢ are characterized by the random arrival of calls at several cells in the net-
work. Cell m in the network is represented by cell,,. Calls are numbered in increas-
ing order according to their arrival time. Call 7 is denoted by v;. We refer to channel
k as f;.

The attributes of a call are summarized in Table 11.2. A call v; is created at its ar-
rival time (art), starts its execution (ast) at the assigned channel, completes its
execution (act), and is terminated. To facilitate the assignment of calls, the sched-
uler monitors the state (sta) of the call at every time slot # where several flag val-
ues are assigned. The duration or length of the call (1en) is the difference between
the starting time (ast) and its completion time (act). The time that a call spends
in the queue is its waiting time (awt), determined by the difference between the ar-
rival time (art) and the starting time (ast). A call is originated from the source
cell (SCell) with the assigned channel (Sf), whereas its receiver is assigned with
another channel (Df) in the destination cell (DCel1l).

A cell in the network is a geographical region in which the mobile users are lo-
cated. A mobile user has an id that correctly identifies his or her identification in or-
der to get access to the network. To determine its presence, the cellular phone be-
longing to the mobile user transmits a beacon periodically and this message is
picked up by the base station in the host cell. The beacon is passed to MSC, which
updates the user location in its database. Through regular beacon transmission, the
network knows the location of the mobile user at any given time, and this informa-
tion helps in speedy circuit-switching connection of a call.

Table 11.3 lists the attributes of a cell. In this simple model, there are four allo-
cated channels in every cell. In reality, there could be 1000 channels or more per
cell. This high number of channels reflects the high demand for channels, especial-
ly in densely populated areas, like in a city. The model can easily be modified to
test for some higher values by changing the macro R in the program. A cell is also
characterized by its adjacency or separation (sep) status with other cells in the net-
work, where a value of 1 means the two cells are adjacent and 0 otherwise. This val-
ue is referred to every time a cell makes a request to borrow a channel from its
neighbor. Our model assumes that a cell may borrow a channel if both the host cell
and the cell in which a channel is requested are neighbors.

Table 11.1 Main symbols and variables

Items Symbol C++ Variable
time t t

Call i V; vi[i]
Channel & fr flk]

Cell m cell,, Cell[m]
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Table 11.2 Features of a call

Element Description

vi[i] Call i, or v;

v[i].sta State of v; where 0 = call created, 1 = call assigned, 2 = call arrived,
and 3 = call terminated

v[i].art Actual arrival time of v;

v[i].ast Actual start time for execution of v;

v[i].act Actual completion time of v;

v[i].len Length of v;

v[i].awt Actual waiting time of v; in the queue

v[i].sf Source channel of

v[i].Df Destination channel of v;

v[i].SCell Source cell of v;

v[i].DCell Destination cell of v;

The attributes of a channel are listed in Table 11.4. Channel £ is represented as
f where the symbol f'has been selected as it can also be interpreted as frequency.
The state of the channel (sta) is checked at every time slot ¢ to determine whether
the channel is available (0) or busy (1). Since the model is based on the static allo-
cation scheme, each allocated channel serves as a primary channel in its host cell
(hCell). However, this channel can be borrowed by the host cell neighbor as a
secondary channel to the neighboring cell if the request for borrowing is granted.
Each channel also records the calls assigned to it (av).

We model the arrival of calls and their assignments to the channels as discrete
events. Also, the assignment of calls to the channels is a scheduling problem in
which the scheduler in this case is the program, or the flowchart in the figure. The
process of assignments is best described through Gantt charts, as the charts show
the detailed information about the starting time, completion time, length of the
calls, and the channels involved.

All the operations of the model are summarized in the flowchart in Figure 11.3.
An event at time ¢ is characterized by the arrival of calls. At each time slot, calls
arrive at random and they are numbered in increasing order. When a call is made,
the base station in the host cell detects the message and identifies the caller id,
its location, and the call destination. The base station transmits the information
to MSC and makes a request for a channel. Upon receiving this information, MSC

Table 11.3 Features of a cell

Element Description

Cell[m] Cell m, or cell,

Cell[m].£f[k] mth channel allocated to cell,

Cell[m].sep[w] Adjacency status between cells m and w, where 1 = adjacent and

0 = not adjacent
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Table 11.4 Attributes of a channel

Element Description

flk] Channel £, or f;

flk].sta State of f; where 0 = channel is available, 1 = channel is busy
f[k].hCell Host cell of f;

flkl.av[i] ith call assigned to f;. However, £ [k] .av[0] represents the number

v

of calls assigned to f;
Last call assigned to f;

checks for the status of both the call source and its destination and the state of the
channels in its database. The receiver’s location and id are immediately deter-
mined from the database. Once the location is known, MSC checks for the avail-
able channels allocated to the two base stations. A channel each is required for the
caller and its receiver, and the two channels must be assigned simultaneously to
the call. In each cell, if a primary channel is available, then it is immediately as-

next tim

next call, i++

eslot, 1 ++

Yes

Figure 11.3 The flowchart for the channel-assignment application.
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signed. Otherwise, the cell makes a request for a secondary channel from its
neighbors, one by one, until the channel is found. This channel is then assigned to

the user.

For a call to be established, a channel each must be allocated to both the caller
and his receiver. If one or both channels are unavailable then the call is placed in the
central queue waiting for the next time slot, and so on, until a pair of channels is
found. A channel is available if the previous caller has completed his call before or
at the current time . The availability of the channels is indicated through a Boolean
flag called sta, or state, where the value of 0 means available and 1 is busy. All
channels start with the initial state of 0 at time # = 0. When a channel is assigned to
a call, its flag immediately changed to 1. Once the call is completed, the flag is re-
turned to 0 to indicate it is available for reuse. This flag is regularly checked and up-
dated by the scheduler at every time slot.

Figure 11.4 shows the output of a sample run of the project Code11A. The calls
are marked by shaded and unshaded rectangles in the left-hand part of the figure. A
shaded rectangle represents the caller, whereas an unshaded one represents the re-

012345678910 1112 13 14 1516 17 18

[ 1 N

[17]21 131

[50]55] 57

(2 K 18

(32

J55]58

B2 [21

KL

[52

57

B | [23

145 |51

& (6170

[30__[39

56

| 6 I3 22

[39

[59

| 7 JE 26

33 [45

[50] 56

| 8 I 7121

[ 40

I58

Lol [79 12728

[ 46

M 7112 124

[46

(14

134

[a7

(12 JE) 28

147

13 I [26

[33 ]

[48] 51

B 27129

141

[60

& (6170

[30 [40

[59

16 NI KPS |

[34

[&s[52

[65

[ B_113 23

[35[37

53

(64

[i5

[35] [41

J[60

[ 19 I [29

42

[49

[61]63

[I1[13 J28

38

| [54

[63

o~y o — |

13

10
16
12

wwmoawn=]E
el B T XY =

10

20
21

24

=

23

P Eh 6D N e ] @ ] = e O G e e ] 0 ) (R
A L0 LN Y LN LD N R ] O ] 6D O ] ] e 0 — |
5]
=

[EE

[36 [42

] [54

[70

# Channels 28

t=18

Last assigned call: 68
Total arrivals: 90

# Arrivals at time slot: 4
# Assigned at time slot: 3

Max # Calls 90

[5

[36 43

53

[66

(20725

[43

[65

16

] [87

[i6

38

[49

[62

[EE

] [44

[62

9]

32

[67]

[20]25

44

[67

[70

# Calls in Q: 22

Figure 11.4 Sample run of 90 calls and their random assignments on 28 channels in H,.



11.3 CHANNEL ASSIGNMENTS: DISCRETE MODEL 331

ceiver of the call. There are 28 channels distributed evenly on the seven cells and
these are shown at the far left of the left-hand part of the figure as small shaded rec-
tangles. The output displays the information of all the 90 generated calls tabulated
in the list view scrollable window at the right.

The initial setup consists of the declarations and initial values for several macros
and variables. The constants are declared in Code11A.h, shown in Table 11.4.

At time ¢, the total number of calls in the system and the total number of assigned
calls are denoted by the variables nv and tnav, respectively. In the constructor,
their values are set to 0 initially at # = 0. Other variables initialized are the state of
the each channel and the number of assigned calls in each channel. This is followed
by the state of each call. The following code fragments in the constructor perform
the initializations:

nv=0; tnav=0;
for (k=1;k<=M;k++)
{
f[k].sta=0;
flk]l.av[0]=0;
}
for (i=1;1i<=N;i++)
v[i].sta=0;

The constructor also reads the information about the connectivity of the cells in
the network. The connectivity is determined through the adjacency matrix as dis-
played in Figure 11.2. The values are read from an input file called Code11A.in.
The next step in the constructor is to allocate four primary channels each to the cells
according to channel numbers shown in Figure 11.2. The numbers are allocated us-
ing a simple formula given by:

Cell[i].flr]=i+7*(xr-1)
The above formula gives the rth channel in Cell [1]. For example, the first and

second channels of Cel1[5] are given by 5 and 12 from this formula. Once the
channels have been allocated to the cells, an update on the channel host cell is also

Table 11.4 Macros for the initial setup

Macro Value Description

R 4 Number of channels per cell

L 7 Total number of cells

M 28 Total number of channels

N 90 Total number of calls

mniv 10 Maximum number of calls per time slot

mLen 7 Maximum length of a call
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necessary and is accomplished by letting £ [w] .hCell=1i, where w is the allocat-
ed channel number. The following routine performs all these steps:

for (i=1;i<=L;i++)
{
for (j=1;j<=1;j++)
{
fscanf (InFile, "%d”,&Cell[i] .sep[]j]); // read cell adjacency info
Cell[j].sepl[il=Cell[i].sepl]j];

for (r=1;r<=R;r++)

w=Cell[i].f[r]=i+7*(r-1); // allocate channels to cells
f[w].hCell=1i; // update channel information

The constructor also creates the list view window for displaying the information
on the arriving calls. The window is conveniently located on the right side of the
main window. A list view window is necessary as it provides all the detailed infor-
mation about the calls. The following routine creates the list view window:

vInfoView.Create (WS_VISIBLE | WS_CHILD | WS_BORDER | LVS_REPORT
| LVS_NOSORTHEADER, CRect (BottomRight.x-250, TopLeft.y+10,

BottomRight .x-20, TopLeft.y+350), this, IDC_vINFO) ;

char* column [nFIELDS+1]=
{“~Ccall”,”g”,”st”,”D"”,"DE", "arr”, "ast”, "act”,"sta”"};

int columnWidth[nFIELDS+1]1={40,40,40,40,40,40,40,40,40};

LV_COLUMN lvColumn;

lvColumn.mask = LVCF_WIDTH | LVCF_TEXT | LVCF_FMT | LVCF_SUBITEM;

1lvColumn. fmt = LVCFMT_CENTER;

lvColumn.cx = 85;

for (1=0;1<=nFIELDS;i++)

{
lvColumn.iSubItem = 0;
lvColumn.pszText = column[i];
vInfoView.InsertColumn (i, &lvColumn) ;
vInfoview.SetColumnWidth (i, columnwidth[il]) ;

The discrete event is simulated at time ¢ by a press on the space bar key. The
event is detected by WM_KEYDOWN in the message map and handled by the function
OnKeyDown (). At ¢ = 0, all channels are available for assignment. A randomly
determined number of calls arrive, denoted by the variable niv. The number of in-
coming calls per time slot ranges from 0 to the maximum value set by mniv, which
is a constant defined as a macro in Code11A.h. In this application, mniv is set to
11.

The total number of calls nv now becomes its old value added to niv. The
scheduler then checks the state of the channels. The channels whose last assigned
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calls complete before the current time are marked as available, using the following
routine:

for (k=1;k<=M;k++)
if (f[k].av[0]>=1)

{
r=f[k].1lv;
if (v[r].act<=t)
f[k].sta=0;
}

For each incoming call, the scheduler records its arrival time and assigns its as-
signment state to 2, to denote that it has not been assigned yet. The origin of the call
and its destination is also detected. In our model, both the source and destination
cells are determined randomly from the seven cells in the network. The following
routine performs these tasks:

for (i=1;i<=niv;i++)

{
nv++;
if (nv<=N)
{
vnv].art=t;
v[nv].sta=2;
v[nv].SCell=1+rand () %L;
v[nv].DCell=1+rand () %L;
}
}

A call between a caller and receiver can only be connected if a channel each is
found for both of them. The scheduler performs a check on the available channels in
the source cell first. A primary channel in the cell is available if its current state is 0,
that is, ! £ [k] .sta, where k is the channel number. If this channel is not avail-
able, then the scheduler looks for a channel in the neighboring cell. To do this, the
scheduler refers to a separation cell between the source cell and its neighbor. A
channel from a neighbor is available through the conditional expression,
1f[k].sta && Cell[p].seplz].Once achannel is obtained, it is reserved
for the caller by setting the temporary variable u to the channel number. The state
of the channel is set to busy (1) to prevent the channel from being used by another
call. If a channel is not obtained despite the attempt to borrow from its neighbors,
the variable u is set to 0 and the call is put in the queue. The following routine per-
forms channel assignment on the caller:

z=f[k] .hCell;
if (!'f[k].sta && Cell[p].seplz])



334 MODELING WIRELESS NETWORKS

{
u=k;
v[i].Sf=u;
flu].sta=1;
break;

}

if (k==M && !'f[M].sta)
u=0;

The search for a channel for the receiver follows only if a channel for the caller is
obtained. This is determined if the value of u is not 0. A similar procedure is per-
formed to search for a channel in the destination cell. If a primary channel is available,
it is immediately assigned, otherwise a request for borrowing is made on its neighbors.
The first available channel found is assigned to the receiver by setting the temporary
variable w equal to the channel number. With the assignment of a channel to the re-
ceiver in the destination cell, the call is removed from the queue and confirmed with
the assigned channels. The state of the call is set to 1 to denote it has been assigned
with the two required channels. The call starts at the current time and the length of the
call is determined by a random number. The flags at the assigned channels are set to 1
to indicate they are now busy. Some update is made by adding the call to the list of
calls assigned to both channels. The following code fragment shows this update:

r=f[k].hCell;
if (!f[k].sta && Celllqg]l.seplrl])
{
w=k; nav++; tnav++;
vI[i] .Df=w;
v[i].len=1l+rand () %mLen;
[i] .ast=t;
[i] .act=t+v[i].len;
[1i] .sta=1;
[i] .awt=v[i].ast-vI[i].art;
[w] .sta=1;
[w].1lv=f[u].lv=i;
z=++f[w].av[0]; flw].av([z]l=1;

Once the states of the call and their assigned channels have been updated, the
next step is to display the assigned call as Gantt charts in the window. The display
consists of blue and red rectangles which indicate the call as the source and destina-
tion, respectively. The following routine performs the assignments of the calls and
their display as Gantt charts:

r=f[k] .hCell;
if (!'f[k].sta && Cell[qg].seplrl])
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v[i] .Home=CPoint (f[w] .Home.x+30+
t*wBar, f [w] .Home.y) ;
rc=CRect (v[i] .Home,
CSize(wBar*v([i].len, hBar)) ;
dc.SelectObject (&DPen); dc.Rectangle(rc) ;
s.Format (“%d”,1i);

dc.TextOut (2+v[i] .Home.x,1l+v[i] .Home.y, s) ;

z=++f[u].av[0]; flu].avizl=1i;
v[i] .Home=CPoint (f[u] .Home.x+30+
t*wBar, f[u] .Home.vy) ;

rc=CRect (v[i] .Home,CSize (wBar*v[i].len,hBar)) ;
dc.SelectObject (&SPen); dc.Rectangle(rc) ;
s.Format (“%d”,1i) ;

dc.TextOut (2+v[i] .Home.x,1l+v[1i] .Home.vy,s) ;
break;
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The last step in each time slot is to display the information about all the informa-
tion about the assigned calls in the list view table. This step requires calling the
function CallInfo (), given as follows:

void CCodellA:: CallInfo()

{

CString s;
vInfoView.DeleteAllItems () ;

LV_ITEM lvItem;

lvIitem.mask = LVIF_TEXT ‘ LVIF_STATE;
lvitem.state = 0;

lvItem.stateMask = 0;

for (int i=0;i<=tnav;i++)

{

lvitem.iItem=1i;
lvItem.iSubItem=0;
lvIitem.pszText="";
vInfoView.InsertItem(&lvItem) ;
if (i+l<=tnav && i+1<=N)

{

.Format (“%d”,i+1); vInfovView.SetItemText (i,0,s);

n n n n nn

.Format (“%d”,v[i+1].SCell); vInfoView.SetItemText(i,1,s)
.Format (“%d”,v[i+1].Sf); vInfoView.SetItemText (i,2,s);
.Format (“%d”,v[i+1].DCell); vInfoView.SetItemText (i,3,s);
.Format (“%d”,v[i+1].Df); vInfoView.SetItemText (i, 4,s)
.Format (“%d”,v[i+l].art); vInfoView.SetItemText(i,5,s)

7

7

7

7
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s.Format (“%d”,v[i+1l] .ast); vInfoView.SetItemText (i,6,s);
s.Format (“%d”,v[i+1l].act); vInfoView.SetItemText (i,7,s):;
s.Format (“%d”,v[i+1l].awt); vInfoView.SetItemText (i,8,s);

The same procedure is repeated in the next time slot #. The scheduler performs
the same strategy for assigning channels to the arriving calls. If a pair channels are
available, they are immediately assigned to the call, otherwise the call is placed in
the central queue. At each time slot, the information about the assigned call is dis-
played in the list view window. The simulation is terminated when the last call is
completed, by changing its state to 3.

11.4 SOLVING THE CHANNEL-ASSIGNMENT PROBLEM

Channel assignment in a cellular network is a constrained graph-coloring problem.
As discussed in Section 11.2, three constraints need to be overcome in order to allo-
cate radio channels to the cells in a wireless cellular network: the adjacent channel,
cochannel, and cosite constraints. A violation of any of these constraints will cause
electromagnetic interference on calls originating from or destined to the respective
cells. We discuss this problem and develop its solution based on a greedy allocation
method.

In this section, a simulation model using 19 cells on the A, network has been de-
veloped for allocating one channel per cell by taking into consideration the adjacent
channel and the cochannel constraints. The cosite constraint does not apply in this
model as it can make an impact only if two or more channels need to be allocated.
Some assumptions are made in the simulation model to realize the idea of channel as-
signments. This includes limiting the channel separation for the adjacency cell con-
straint in Equation (11.2) to two channels, orj = 2. Another assumption is limiting the
cell separation for the cochannel constraint in Equation (11.1) to three cells, ori = 3.

Code11B: Solving the Channel-Assignment Problem

The model is developed under the project Code11B, and it includes the files
Code11B.h, Code11B.cpp, and Codel11B.rc. Figure 11.5 shows the output
from this project. It consists of a diagram showing the H, network on the left, and
the adjacent channel and cochannel matrices on the right. The number at the center
of each cell is the cell number, whereas the one below it is the output in the form of
the channel assigned to this cell. Both the adjacency and cochannel matrices have
been created based on the H, network diagram. Due to their nature and properties,
both matrices are assumed to be symmetric, so that a constraint from cells 7 to j is
the same as from cells j to .

The cell-adjacency matrix is symmetric and has entries of either 0 or 1. An entry
of 1 means the cells represented by its row and column numbers are adjacent, where-
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Figure 11.5 Output from Code11B.

as 0 indicates they are not. The cell-adjacency constraint applies to the cells that are
adjacent by assuming a channel separation distance of 2 in Equation (11.2), orj = 2.
For example, cell number 2 is adjacent to cells 1, 3, 7, 8, 9, and 11. Therefore, row
number 2 has entries of 1’s with columns 1, 3, 7, 8, 9, and 10, and 0’s with the rest.

The cochannel constraint applies on every pair of cells using Equation (11.1) by
assuming a separation distance of 3, that is, i = 3. Similarly, in the cochannel ma-
trix, an entry of 1 means the two cells are affected by the cochannel constraint and 0
means they are not. For example, referring to the network diagram, cell number 2
has the cochannel limitation with all cells in the network except with cells 13, 14,
15, 16, and 17. Therefore, row 2 of the matrix has 0’s on columns 13, 14, 15, 16,
and 17, and 1’s on the rest.

The global variables, objects, and functions in the project are declared in
Code11B.h. The application class in this project is Code11B and it consists of
several member variables and functions. The number of cells in the H, network is
19, and this number is represented by the macro L. The class also includes the struc-
ture CELL, whose elements are summarized in Table 11.5.
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Table 11.5 Elements of the structure CELL

Element Description

Cell[i].f£ Channel assigned to cell i

Cell[i] .home Home coordinates of cell i
Cell[il.adj[]j] Adjacency status between cells i and j
Cell[i].coc[]] Cochannel status between cells s i and j

The cell-adjacency constraint between the cells i and j is checked through
Cell[i].adj[j]. This variable has a Boolean value where TRUE (1) indi-
cates the cells i and j are adjacent, and FALSE (0) means they are not. This vari-
able gets its values defined by reading the input data from the file Code11BAd;.in.

The cochannel constraint between the cells i and j is represented by the variable
Cell[i].coc[Jj], which obtains its values from the diagram by reading the in-
put data from the file Code11BCoc.in. The variable type is declared as Boolean,
where a value of 1 means the cells i and j are affected by the cochannel constraint,
and 0 means they are not.

Each cell in the network has home coordinates located at its center in the net-
work diagram. This location is represented by the element home, which is declared
as a CPoint object. The home coordinates of these cells are read from the file
Code11BHome.in. Below the cell number of each cell is the channel number as-
signed to the cell. This number is the ultimate output produced from the assignment
policy used in the model in such a way that the assigned channel abides by the adja-
cent-channel and cochannel constraints.

Another variable declared in the class is the CBitmap object h2. This variable
represents the bitmap image h2 . bmp, which is the cellular network diagram dis-
played in the window. In order to display this image, the resource file Code11B.rc
is included in the project that has this bitmap file attached as a resource item. The
image file h2 . bmp has its id assigned as IDB_BITMAPLI in the resource file. It is
loaded into the memory from the constructor as follows:

h2.LoadBitmap (IDB_BITMAPL) ;

The input files Code11BAd].in, Code11BCoc.in, and Code11BHome.in are
referred to in the constructor as the pointers InFilel, InFile2, and InFile3,
respectively. The files are opened and read from the constructor using the C file in-
put operations, as follows:

FILE *InFilel,*InFile2, *InFile3;
InFilel=fopen(“CodellBAdj.in”, "r");
InFile2=fopen (“CodellBCoc.in”, "xr") ;
InFile3=fopen (“*CodellBHome.in”,"r") ;
for (i=1;i<=L;i++)

{
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for (j=1;j<=i;3++)

{
fscanf (InFilel, "%d”,&Cell[i].adj[]j]); // read cell adjacency info
Cell[jl.adjlil=Cell[il]l.adjl[Jl;

for (j=1;j<=i;j++)

fscanf (InFile2, "%d”,&Cell[i] .coc[j]); // read cell co-chan info
Cell[j].coc[i]=Cell[i].coc[]];

}

fscanf (InFile3, "%d %d”,
&Cell[i] .home.x, &Cell[i] .home.y) ; // read cell home coordinates

The input files refer to Code11BAdj.in, Code11BCoc.in, and Code11BHome.
in, which represent the adjacency matrix, the cochannel matrix, and the home coor-
dinates of the cells, respectively. Each of the adjacency and cochannel matrices is
symmetric. Therefore, the statements:

Cell[j].adj[il=Cell[i].adj[jl;
Cell[j].coc[i]=Cell[i].coc[]];

are added as input statements for completing the entries in the arrays.
To facilitate the channel-assignment operations, each cell in the network is ini-
tially assigned with channel 0, as follows:

for (i=1;i<=L;i++)
Cell[i].£f=0; // initialize all the cells with channel 0

These initial values are necessary as the assignment policy is based on an iterative
process in which the current value refers to some previous values. An initial value
of 0 means no channel has been assigned, and this value can act as a reminder so
that the real channel will be assigned to the cell.

The output display on the window using WM_ PAINT is the only event in this ap-
plication. The event gets its response from the function OnPaint (). The output
begins by displaying the image file h2 . bmp. In order to display this image, a de-
vice context object called memDC is created from the MFC class CDC. This object is
made compatible with the Windows device context object dc using the function
CreateCompatibleDC (). Once the compatibility has been established, the im-
age is displayed using the function BitB1lt (). The image output routine is de-
scribed as follows:

CDC memDC;

memDC . CreateCompatibleDC (&dc) ;

memDC . SelectObject (&h2) ;

dc.BitB1lt (0,50,400,320, &memDC, 0, 0, SRCCOPY) ;
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Figure 11.6 shows the channel-assignment policy for cell i in the network. A
scheduler is first established for the job of assigning the channels to the cells in the
network. The scheduler is based on a channel-assignment policy that considers the
adjacent channel and cochannel constraints. The assignment policy in the scheduler
is a greedy method that assigns channels by giving priority to the lowest number, in
ascending order. The concept used here is very simple: a cell checks for channels
starting from the lowest, and compares them to other cells in the network for the ad-
jacent-channel and cochannel compliance. The first available channel that complies
to these two constraints is immediately assigned to the cell.

In assigning the channel, a temporary variable k is used as the channel number.
A temporary array called w [k] is a flag in which 0 denotes that channel k complies
with the constraint and 1 is a violation. Initially, w[k] is 0 and this value changes
to 1 if a constraint is violated. The variable k starts from 1, and increases its value
whenever any of the adjacency or cochannel constraints are violated.

The assignment starts by assigning cell 1 with channel 1, or Cel1[1].£f=1, as
the initial value. The next cell, or cell 2, then checks the channel in the cell before
this, or cell 1. This channel is used to compare with the generated channels, k,
starting with k=1. The generated channel k is checked for compliance to
the adjacent-channel constraint using the following test:

if (Cell[i]l.adjl[j] && abs(k-Cell[j].f)<2)
{
Cell[i].f=k+1;

wlk]=1;

!

check the adjacency
matrix

Violates the
adjacency
constraint?

check the co-channel
matrix

Increase the channel

number

Violates the Assign the cell with the

adjacency
constraint?

channel number

Figure 11.6 Channel-assignment policy for cell 7 in the network.
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The cochannel constraint is checked using the following code fragments:

if (Cell[i].coc[3j] && Cell[i].f==Cell[j].%)
{

Cell[i].f=k+1;

r++;

The scheduling policy used in this model produces an optimum result in which
only 11 channels are required. The following routine shows the scheduling poli-
cy that successfully assigns the channels to the cells according to this priority pol-

icy:

Cell[l].£f=1;
for (i=2;i<=L;i++)
{
k=1;
while (k<=L)
{
wlk]=0;
for (Jj=1;j<=i-1;3j++)
if (Celllil.adjIlj] && abs(k-Cell[j]l.£f)<2)
{
Cell[i].f=k+1;
wlik]l=1;
}
if (!wlk])
{
r=0;
for (j=1;j<=1i-1;j++)
{
Cell[i].f=k;
i]

if (Cell[i].coc[j] && Cell[i].f==Cell[j].f)
{
Cell[i].f=k+1;
r++;
}
}
if (r==0)
break;

k++;

Once the channels have been assigned, the next step is to display the assigned
number in the cells. At the same time, the adjacency and cochannel matrices are
also displayed in order to see their relevance to the network diagram. This is done
as follows:
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dc.SelectObject (fontTimes) ;
for (i=1;i<=L;i++)

{
dc.TextOut (380,5, "Adjacency matrix”) ;
dc.TextOut (380,315, “Co-Channel matrix”) ;
for (Jj=1;3<=L;j++)
{
s.Format (“%d”,Cell[i].adj[3J]);
dc.TextOut (380+(i-1)*20,20+(j-1)*15,s);
s.Format (“%d”,Cell[i].coc[]]);
dc.TextOut (380+(i-1)*20,330+(j-1)*15,s);
}
s.Format (“%d”,Cell[i].f);
dc.TextOut (Cell[i] .home.x,Cell[i] .home.y,s);
}

11.5 SUMMARY AND CONCLUSION

Channel assignments have been illustrated by two models in this chapter. We tackle
two problems here, one dealing with the assignment of channels to mobile users and
the other with the optimization problem of minimizing channels subject to two
common electromagnetic constraints. The first simulation model presented here is
about a discrete-event simulation model for managing the requirements of mobile
users, which makes use of the Markovian queueing system. The discrete-event
model has been well illustrated by making the assumption that the arriving cus-
tomers and their call duration are randomly determined. The model makes use of an
unlimited buffer facility in the queue to avoid blocking. Therefore, the waiting time
is infinite and every call involving a caller and a receiver will be entertained.

The second model is the channel-assignment problem, which considers the adja-
cent channel and cochannel constraints. The problem has its root in the well-known
graph-coloring problem. We developed a priority-scheduling policy that assigns the
first lowest available channels that comply with the two constraints to the cells.
This simple assignment method is a greedy method that produces optimum results
in the form of the minimum number of channels in the H, network model.

The two models presented here can easily be expanded to include other major
factors for achieving interference-free environments in cellular networks. In real
life, many other factors affect the quality of service provided by a network. One ob-
vious factor seen in the two models is the cosite constraint, which evolves from the
assignment of multiple channels in a given cell. Any two channels used in a cell
must have some separation distance in order to avoid electromagnetic interference.
In a real application, a cell may be allocated with hundreds or thousands of channels
to serve the mobile users in its area.

At an instance of time, a cell may find that its allocated channels will not be
enough to meet the demand. In this case, the cell needs to borrow some channels



CODE LISTINGS 343

from its neighbors. Channel borrowing optimizes the channels in the network as it
prevents some channels from being idle. Therefore, channel borrowing and reuse
are two important components in the system that allow the network to respond to
the requirements quickly. However, channel borrowing needs to be handled care-
fully as it may cause a violation of one of the constraints. A simulation model can
be developed to test this problem by extending the work presented in this chapter.
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CODE LISTINGS

Code11A: Channel Assignments to Mobile Users

// CodellA.h
#include <afxwin.h>
#include <afxcmn.h>
#define IDC_vINFO 501
#define nFIELDS 8

#define R 4 // #channels per cell
#define L 7 // #cells

#define C R*L // #channels
#define N 90 // total #calls

#define mniv 10 // max. #incoming calls/slot
#define mLen 7 // max. length of call

class CCodellA : public CFrameWnd
{
private:
LOGFONT 1fTimes; CFont fontTimes;
CPoint TopLeft, TextArea;
CListCtrl vInfovView;
int wBar, hBar, t; // width, height, time
int nv, tnav; // call#, total #assg calls
typedef struct
{
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CPoint Home;

int hCell; // host cell

bool sta; // status

int av[N+50]1,1v; // ith, last call
} CHANNEL;

CHANNEL *f;
typedef struct
{

CPoint Home; // coordinates of call

int art; // arrival time

int len; // length

int ast,act; // actual start,completion time
int Sf,Df; // assigned channel no.

int sta; // state of call,

// O=doesn’t exist yet, l=in queue,
// 2=assigned, 3=terminated

int awt; // actual waiting time in the queue
int SCell,DCell; // host cell: S=source,D=dest

} CALL;

CALL *v;

typedef struct
{
int £[R+1]; // allocated channels
bool sep[L+1]; // adjacency: 0=no, l=yes
} CELL;
CELL *Cell;
public:
CCodellA() ;
~CCodellA() ;
afx_msg void OnPaint () ;
afx_msg void OnKeyDown (UINT nChar, UINT nRep, UINT nFlags);
DECLARE_MESSAGE_MAP() ;
void CallInfo();
Y

class CMyWinApp : public CWinApp
{
public:

virtual BOOL InitInstance() ;

Y

// CodellA.cpp
#include “CodellA.h”

CMyWinApp MyApplication;

BOOL CMyWinApp: :InitInstance()

{
CCodellA* pFrame = new CCodellA;
m_pMainWnd = pFrame;
pFrame->ShowWindow (SW_SHOW) ;
pFrame->UpdateWindow () ;
return TRUE;
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BEGIN_MESSAGE_MAP (CCodellA, CFrameWnd)

ON_WM_PAINT ()
ON_WM_KEYDOWN ()

END_MESSAGE_MAP ()

CCodellA: :CCodellA()

{

int i,j,k,r,w;

TopLeft=CPoint (0,0) ;

TextArea=CPoint (750,10) ;

f=new CHANNEL [C+1];

v=new CALL [N+1];

Cell=new CELL [L+1];

Create (NULL, “Cellular telephone system simulation”,
WS_OVERLAPPEDWINDOW, CRect (0,0,1000,660)) ;

// channel and call initialization
t=-1; nv=0; tnav=0;
for (k=1;k<=C;k++)
{
f[k].sta=0;
f[k].av[0]=0;
}
for (i=1;i<=N;i++)
v[i].sta=0;

// call assignment table

345

vInfoView.Create (WS_VISIBLE | WS_CHILD | WS_BORDER | LVS_REPORT

\ LVS_NOSORTHEADER, CRect (TextArea.x, TextArea.y,

TextArea.x+230, TextArea.y+330),this, IDC_vINFO) ;
char* column[nFIELDS+1]=

{+Ccall~”,”s”,”St”,”D”,"DEf","arr”,”ast”,"act”,”sta”};
int columnWidth [nFIELDS+11={40,40,40,40,40,40,40,40,40};
LV_COLUMN lvColumn;

lvColumn.mask = LVCF_WIDTH | LVCF_TEXT | LVCF_FMT | LVCF_SUBITEM;

lvColumn. fmt = LVCFMT_CENTER;

lvColumn.cx = 85;

for (i1i=0;i<=nFIELDS;i++)

{
lvColumn.iSubItem = 0;
lvColumn.pszText = column([i];
vInfoView.InsertColumn (i, &lvColumn) ;
vInfoView.SetColumnWidth (i, columnWidth[i]) ;

}

FILE *InFile;

InFile=fopen (“CodellA.in”,"r");

for (i=1;i<=L;i++)

{
for (j=1;j<=i;j++)

{

fscanf (InFile, "%d",&Cell (1] .sep[]]); // read cell adjacency info

Cell[j].seplil=Cell[i].sepl]j];
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for (r=1;r<=R;r++)

{
w=Cell[i].f[r]=1i+7*(x-1); // allocate channels to cells
f[w].hCell=1i;

}

fclose(InFile);

wBar=18; hBar=15;

ZeroMemory (&1fTimes, sizeof (1fTimes) ) ;
1fTimes.lfHeight=80;
fontTimes.CreatePointFontIndirect (&1fTimes) ;

CCodellA: :~CCodellA()

{
delete f,v,Cell;

void CCodellA: :OnPaint ()
{
CPaintDC dc(this) ;
CString s;
CRect rc;

dc.SelectObject (fontTimes) ;

dc.SetTextColor (RGB(255,255,255)) ;

for (int i=1;1i<=C;i++)

{
f[i] .Home.x=15; f[i].Home.y=35+(i-1)* (hBar+6);
rc=CRect (f[i] .Home,CSize (wBar+5,hBar)) ;
dc.FillSolidRect (&rc,RGB(150,150,150)) ;
s.Format (“%d”,1i) ;
dc.TextOut (f[i] .Home.x+7,f[i] .Home.y+2,s) ;

}

dc.SetBkColor (RGB(255,255,255)) ;

dc.SetTextColor (RGB(100,100,100)) ;

s.Format (“#Channels: %d Max.#Calls: %d”,C,N);

dc.TextOut (TextArea.x, TextArea.y+330,s);

rc=CRect (TextArea.x, TextArea.y+480, TextArea.x+230, TextArea.y+600) ;
dc.Rectangle (&rc) ;

void CCodellA: :0OnKeyDown (UINT nChar,UINT nRep,UINT nFlags)
{
CClientDC dc(this);
CString s;
CRect rc;
CBrush* pWhite=new CBrush(RGB(255,255,255));
CPen SPen (PS_SOLID,1,RGB(0,0,200));
CPen DPen (PS_SOLID,1,RGB(200,0,0));
int niv, nav; // #inc calls, #avail calls
int i,3j,k,p,q,r,u,w,z;
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j=0; // initialize #calls in Q
time_t seed=time (NULL) ; srand ( (unsigned) seed) ;
if (nChar==VK_SPACE && V[N].sta!=3)

{

dc.SelectObject (fontTimes) ;
dc.SetBkColor (RGB(255,255,255)) ;
dc.SetTextColor (RGB(0,0,0)) ;
s.Format (“t=%d”, ++t) ;
dc.TextOut (TextArea.x, TextArea.y+350,s);
s.Format (“%d”,t) ;
dc.TextOut (25+f[1] .Home.x+t*wBar, f[1] .Home.y-20,s) ;
rc=CRect (TextArea.x+5, TextArea.y+490,
TextArea.x+225, TextArea.y+590) ;
dc.FillRect (&rc,pWhite) ;
for (k=1;k<=C;k++)
if (f£[k].av[0]>=1)
{
r=f[k].1lv;
if (v[r].act<=t)
f[k].sta=0;

niv=rand () $mniv; nav=0;
dc.SetTextColor (RGB(150,150,150)) ;

for (i=1;i<=niv;i++)

{
nv++;
if (nv>N)

nv=N;

v[nv].art=t;
v[nv].sta=1;
v[nv].SCell=1+rand()
v[nv].DCell=1+rand()

$L;
$L;
}
for (i=1;i<=nv;i++)
{
u=0; w=0;
if (vI[i].sta==1)
{
v[i].Sf=0; p=v([i].SCell;
for (k=1;k<=C;k++)
{
z=f[k].hCell;

if (!'f[k].sta && Celll[pl.seplz])

{
u=k;
v[i].Sf=u;
flu] .sta=1;
break;

}

if (k==C && !f[C].sta)
u=0;

347
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}
if

v[i] .Df=0; g=v[i].DCell;

if (f[u].sta && u>0)

for (k=1;k<=C;k++)

r=f[k] .hCell;

(1f[k].sta && Cell[q].seplr])

w=K; nav++; tnav++;
v[i].Df=w;
v[i].len=1l+rand()%mLen;
v[i].ast=t;
v[i].act=t+v[i].len;
v[i].sta=2;
v[i].awt=v[i].ast-v[i].art;
flw].sta=1;
flw].lv=£f[u].lv=1;

z=++f[w].av[0]; flw].av[z]=1;
v[1i].Home=CPoint (f [w] .Home.x+30
+t*wBar, f[w] .Home.y) ;
rc=CRect (v[i] .Home,
CSize(wBar*v[i].len, hBar));
dc.SelectObject (&DPen) ;
dc.Rectangle (rc) ;
s.Format (“%d”,1i) ;
dc.TextOut (2+v[i] .Home.x,
1+v([i] .Home.y,s);

z=++f[u].av[0]; flu].av([z]=1;
v[i].Home=CPoint (f[u] .Home.x

+30+t*wBar, f [u] .Home.y) ;
rc=CRect (v[i] .Home,

CSize(wBar*v[i].len, hBar))
dc.SelectObject (&SPen) ;
dc.Rectangle(rc) ;
s.Format (“%d”,1);
dc.TextOut (2+v[i] .Home.x,

1+v[i] .Home.y,s);
break;

(k==C && !f[C].sta)

w=0;

dc.TextOut (TextArea.x+20+((j-1)/8)*30,
TextArea.y+510+((j-1)%8)*10,s);

{
if
{
}
if
}
if (u==0 || w==0)
{
J++;
v([i].sf=v[i].Df=0;
v[i].sta=1;
s.Format (“%d”,1i);
}

(v[i].sta==2 && t>=v[i].act)

v[i].sta=3;
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}

dc.SetTextColor (RGB(0,0,0)) ;

s.Format (“Last Assigned Call: %d4d”, tnav) ;
dc.TextOut (TextArea.x, TextArea.y+370,s) ;
s.Format (“Total Arrivals: %d4d”,nv);
dc.TextOut (TextArea.x, TextArea.y+390, s) ;
s.Format (“#Arrivals at timeslot: %d”,niv);
dc.TextOut (TextArea.x, TextArea.y+410,s) ;
s.Format (“#Assigned at timeslot: %d”,nav);
dc.TextOut (TextArea.x, TextArea.y+430,s);
s.Format (“#Calls in Q: %d4”,3j);

dc.TextOut (TextArea.x+10, TextArea.y+490,s) ;
CallInfo();

if (vI[N].sta==2)

{

v[N].sta=3;
return;

void CCodellA:: CallInfo()

{
CString s;
vInfovView.DeleteAllItems () ;
LV_ITEM lvItem;
lvIitem.mask = LVIF_TEXT | LVIF_STATE;
lvItem.state = 0;
lvIitem.stateMask = 0;
for (int i=0;i<=tnav;i++)
{
lvitem.iItem=1i;
lvItem.iSubItem=0;
lvItem.pszText="";
vInfoView.InsertItem(&lvItem) ;
if (i+l<=tnav && i+1<=N)
{
s.Format (“%d”,i+1); vInfoView.SetItemText(i,0,s);
s.Format (“%d”,v[i+1].SCell); vInfoView.SetItemText(i,1,s);
s.Format (“%d”,v[i+1].Sf); vInfoView.SetItemText(i,2,s);
s.Format (“%d”,v[i+1].DCell); vInfoView.SetItemText(i,3,s);
s.Format (“%d”,v[i+1].Df); vInfoView.SetItemText(i,4,s);
s.Format (“%d”,v[i+1].art); vInfoView.SetItemText(i,5,s);
s.Format (“%d”,v[i+1].ast); vInfoView.SetItemText(i,6,s);
s.Format (“%d”,v[i+1].act); vInfoView.SetItemText(i,7,s);
s.Format (“%d”,v[i+1].sta); vInfoView.SetItemText(i,8,s);
}
}
}

Code11B: Channel-Assignment Problem

// CodellB.h

#include <afxwin.h>
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#include <math.h>
#include “resource.h”
#define L 19 // #cells

class CCodellB : public CFrameWnd
{
private:
LOGFONT 1fTimes; CFont fontTimes;
CPoint TopLeft, TextArea;
CBitmap h2;
typedef struct
{
int £; // allocated channels
bool adj[L+11; // adjacency: 0=no, l=yes
bool coc[L+1]; // co-channel: 0O=no, l=yes
CPoint home;
} CELL;
CELL *Cell;
public:
CCodellB() ;
~CCodellB() ;
afx_msg void OnPaint () ;
DECLARE_MESSAGE_MAP() ;
Y

class CMyWinApp : public CWinApp
{
public:

virtual BOOL InitInstance() ;

Y

// CodellB.cpp: Channel Assignment Problem
#include “CodellB.h”

CMyWinApp MyApplication;

BOOL CMyWinApp: :InitInstance()

{
CCodellB* pFrame = new CCodellB;
m_pMainWnd = pFrame;
pFrame->ShowWindow (SW_SHOW) ;
pFrame->UpdateWindow () ;
return TRUE;

BEGIN_MESSAGE_MAP (CCodellB, CFrameWnd)
ON_WM_PAINT ()
END_MESSAGE_MAP ()

CCodellB: :CCodellB()
{
int i,3;
ZeroMemory (&1fTimes, sizeof (1fTimes) ) ;

1fTimes.lfHeight=80; fontTimes.CreatePointFontIndirect (&1lfTimes) ;

Cell=new CELL [L+1];
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Create (NULL, “Channel Assignment Problem: One channel per cell”,
WS_OVERLAPPEDWINDOW, CRect (0,0,800,660)) ;
h2.LoadBitmap (IDB_BITMAPL) ;

for (i=1;i<=L;i++)
Cell[i].£f=0; // initialize the cells with channel 0

// call assignment tables
FILE *InFilel,*InFile2,*InFile3;
InFilel=fopen (“CodellBAdj.in"”, "xr") ;
InFile2=fopen (“CodellBCoc.in”, "r") ;
InFile3=fopen (“CodellBHome.in”, "r") ;
for (i=1;i<=L;i++)
{
for (j=1;j<=1;j++) // read cell adjacency info
{
fscanf (InFilel, "%d”,&Cell[i].adj[]j]);
Cell[jl.adjl[il=Cell[i]l.adj[]j];
}
for (j=1;j<=1;j++) // read cell co-chan info
{
fscanf (InFile2, ”%d”,&Cell[i].coc[J]);
Cell[j].coc[i]l=Cell[i].coc[]j];
}
// read cell home
fscanf (InFile3, ”%d %d”,&Cell[i] .home.x,&Cell[i] .home.y) ;

}
fclose(InFilel) ;
fclose(InFile2);
fclose(InFile3);
}

CCodellB: :~CCodellB()
{
delete Cell;

afx_msg void CCodellB: :0OnPaint ()
{
CPaintDC dc (this);
CString s;
int i,3j,k,r;
bool w[L+1];

// Draw the h2 hexagon

CDC memDC;

memDC .CreateCompatibleDC (&dc) ;

memDC . SelectObject (&h2) ;
dc.BitB1lt(0,50,400,320, &memDC, 0, 0, SRCCOPY) ;

// assign the channels
Cell[1l].£f=1;
for (i=2;i<=L;i++)
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{
k=1;
while (k<=L)
{
wl[k]=0;
for (j=1;j<=i-1;3j++)
if (Cell[i].adj[j] && abs(k-Cell[j].f)<2)
{
Cell[i].f=k+1;
wlk]l=1;
}
if (!'wlk])
{
r=0;
for (j=1;j<=i-1;7j++)
{
Cell[i].f=k;
if (Cell[i].coc[]]
&& Cell[i].f==Cell[j].£f)
{
Cell[i].f=k+1;
r++;
}
}
if (r==0)
break;
}
k++;
}

// display the output
dc.SelectObject (fontTimes) ;
for (i=1;i<=L;i++)

{
dc.TextOut (380,5, "Adjacency matrix”) ;
dc.TextOut (380,315, “Co-Channel matrix”) ;
for (j=1;j<=L;J++)
{
s.Format (*%d”,Cell[i].adj[]j]);
dc.TextOut (380+(1-1)*20,20+(j-1)*15,s);
s.Format (*%d”,Cell[i].coc[]]);
dc.TextOut (380+(1i-1)*20,330+(j-1)*15,s);
}
s.Format (“%d”,Cell[i].f);
dc.TextOut (Cell[i] .home.x,Cell[i] .home.y,s);
}

CodellBAdj.in
1
11
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1
1011
10011

100011

1100011

010000171

010000011

0110000011

0010000O0O0O1T1

001100000011

00010000O0OO0OO0T1TT1

00011000000011

00001000O0OO0OO0OO0O0TITIZ

000011000000O0CO0OT1I1

000001000OO0OO0OO0OO0O0CO0T1I1

000001100000O0COO0OT1I1

00000011 0O0O0OO0OO0OO0OO0COO0OT1I1

CodellBCoc.in

— -
—

1111

11111

111111

1111111

11110111

111000111

1111001111

11110000111

111110000111

1011100000111

10111100000111

1001110000001 11

1001111000000111

10001110000000111

110011110000000111

1100011110000000111

CodellBHome.in

200 220
145 190

200 160
255 190

255 250

200 275
145 250

85 220
85 160
145 135

200 110
255 135
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310
310
310
255
200
145
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160
220
275
300
325
300

85 275
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Ad hoc network, 218

Application classes:
CCodel, 10-17
CCode2Aa, 26-30,49-51
CCode2B, 51-53,33-38,
CCode2C, 38-48,53-56
CCode3A, 63-73,84-89
CCode3B, 74-83,89-92
CCode4a, 96-101,115-118
CCodedB, 107-114,118-122
CCode5Aa, 130-139, 148-152
CCode5B, 141-147,152-156
CCode6bA, 161-166
CCode6bB, 170-173,175-177
CCode7a, 183-191,204-212
CCode7B, 195-203,208-212
CCode8a, 217-227,235-240
CCode8B, 229-234,240-246
CCode9, 254-270,271-279
CCodel0n, 288-295,309-313
CCodel0B, 299-308,313-319
CCodelln, 326-336,343-349
CCodellB, 336-342,349-353
CGaussDlg, 74-76, 82-83

Application functions:
AddListItems (), 98-101
Analysis (), 302,307
CreateListItems (), 98-99
CreativeNet () .132,137, 138-139
ComputeCSpline (), 144,146

ComputePath (), 221,223-224
CustomerInfo(), 302,306,335
DrawAxes (), 132

DrawPath (), 221,226-227,233-234
DisplayGraph(), 221,224
DoDataExchange (), 41,47
DoModal (), 46

factorial (), 302,307
InitInstance(), 16
InputData(), 66,69, 72

Lemniscate (), 132,136-137
MatInverse (), 66,69, 72
MatMultiply(), 66,69, 72

OnPaint (), 9,109,131, 133, 144, 163,
171-172, 188, 221, 224, 232, 257, 259,
302, 339

OnDraw (), 9,67

OnClickCalc (), 144-145,200-201,
257

OnCompute (), 41,47,109,111

OnKeyDown (), 293-294,302, 332

OnLButtonDown (), 131-133,
144-145, 163, 171-172, 184, 189-190,
221, 225,257, 259-260

OnRButtonDown (), 184, 190-192,
257,262

PGauss (), 41,78,81-83,109,113

PMM (), 257,263

Polynomial (), 132,134

PreScheduler (), 257,265-266
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356 INDEX

Application functions (continued)
Scheduler (), 257,264
RK4 (), 98,100
TaskInfo (), 257,269

Array, 22

Bisection method, 24-26
Bitmap, 157-158, 338

Bit shifting, 59-166

BMP, bitmap image, see Bitmap

Cartesian coordinates, 23, 125, 134
Cellular network, 21
base station, 22
cell, 22, 327
MSC, mobile switching center, 22
PCS, personal communications services,
321
RF, radio frequency, 21
wavelength, 21
Central difference rules, 103—-104, 169
Channel assignment problem, 323, 325-343
adjacent channel constraint, 324, 336—
340
cell borrowing, 326
channel, 322
cochannel constraint, 324, 336-341
cochannel matrix, 336
cosite constraint, 324
dynamic allocation scheme, 325
electromagnetic spectrum, 321
frequency, 321
primary channels, 326, 331
secondary channels, 326
static allocation scheme, 325
Child windows, 9, 36, 98, 257
Circuit-switching, 323
Creating a new project, 10
Computational fluid dynamics, 20
Console application, 8
Control windows, 34
combo box, 39
edit boxes, 34-35, 39, 108
list view window, 39, 96-100, 258, 332
push button, 34, 36, 39, 76, 80, 108, 111,
142
radio button, 39
static boxes, 34-35, 39, 108
Container, 39
C++ files:
math.h, 6,30
C++ functions:
arc(), 5
asin(), 7

acos(), 7

atan(), 7
atof (), 37,111
abs(), 7
cos(), 7
cosh(), 7
exp(), 7
fabs (), 7,30
log(), 7
rand (), 222,232,304
sin(), 7
sinh(), 7
tan(), 7
tanh(), 7
time (), 222
Curves, 124

approximation, 139
B-spline, 140
cubic spline, 139-141
drawing a, 141-147
Creative Net, drawing a, 137-139
interpolation, 139
lemniscate, drawing a, 135-137
parametric, 130
polar curve, 135
polynomial, 129
drawing a, 134-135
quadratic spline, 140
spline, 139

Data passing between functions, 59-60, 63
Database, 96

field, 96

record, 96

table, 96
DDB, Device-Dependent Bitmap, 157-158
Deadline of a schedule, 251, 285

hard deadline, 251, 285

soft deadline, 251, 285
Device context, 4-6, 28, 162

display context, 4

information context, 4

memory context, 4, 162

printer context, 4
DIB, device-independent bitmap, 158
Differential equations, 93

boundary value problem, 102, 104

elliptic PDE, 102

heat equation, 102

hyperbolic PDE, 102

initial value problem, 94

Laplace equation, 102

parabolic PDE, 102

Poisson equation, 102—-107



PDE, partial differential equations, 93,
101-107
ODE, ordinary differential equations,
93-96
Runge-Kutta method, fourth-order, 95-96
wave equation, 102
Discrete-event, 283
discrete-event simulation, 281, 283
Distributed computer system, 248
MPI, message-passing interface, 248
PVM, parallel virtual machine, 248
Document/view architecture, 57
Dynamic memory allocation, 23-24, 35, 63, 67,
109, 220, 231, 258
new, 23,27,35,67,109-110, 143, 220,
231,258
delete, 23,35,38,70,114

Edge detection, 166-167
convolution, 167
filter, 167-170
Laplacian filtering method, 169-170,
170-173
Sobel filtering method, 168-169, 170-173
Event handler, 34, 76, 79, 81
BN_CLICKED, 47,111, 145,200,259
WM_KEYDOWN, 292,332
WM_LBUTTONDOWN, 132,163,171, 184,
187, 189, 225, 259
WM_RBUTTONDOWN, 184, 187, 190, 259,
261
WM_PAINT, 28,111,131, 163,187,224,
259, 339

Frequency assignment problem, see Channel
assignment problem
Finite difference method, 20, 31, 102-104
molecular form, 106

Gantt charts, 250, 288, 305, 328, 334
Gauss elimination method, see System of linear
equations
Graph, 179
adjacency matrix, 180, 325, 336
articulation point, 180
binary tree, 192
bipartite, 181
bridge, 180
channel assignment problem, 182
clique, 182
complete, 182
connected, 180
degree, 181, 184
directed, 182

INDEX 357

Eulerian path, 181
Forest, 192
Hamiltonian path, 181
independent set, 182
isomorphic, 183
maximum clique problem, 182
maximum independent set problem, 182
node coloring problem, 181
path, 181
minimum spanning tree, see Spanning tree
shortest path, see Shortest path problem
subgraph, 180
tree, 191
tripartite, 181
traveling salesman problem, 181
weighted, 179-180

Graph coloring problem, 323, 336

drawing a, 183-191

Graph theory, 179

GDI, Graphical Device Interface, 3—6, 157
functions, 5-6

GIF, Graphics Interchange Format, 158

GUI, graphical user-interface, 22

Handling arrays, 22-23

Images, 157

Image processing, 166—167
Intermediate value theorem, 24-25
Integrated-development environment, 2

JPEG, Joint Photographics Experts Group, 157
Laplace equation, 169

Matrix algebra, 58
matrix, 58
matrix multiplication, 59-60
matrix inverse, 59, 61-62
Managed C++ application, 8
Message handler, see Event handler
Mesh network, 227
square, 228
toroidal, 228
MEFC application, 8
MEC files:
afxcmn.h, 97
afxwin.h, 16
MEC functions:
AfxEnableControlContainer (),
46
BitBlt (), S5,165,171,339
Create(), 9,27,35,98-99, 110, 143,
257,332
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MEC functions (continued)

CreateCompatibleDC (), 165-166,

171, 339
CreatePointFont (), 187
CPen(), 5
CPoint (), 111,126,131
CRect (), 126
DDX_Text (), 47
EnableControlStatic, 46
Ellipse(), 5,126,129
FillRect (), 5,126-128, 188
FillSolidRect (), 5,126,132
Format (), 28,38,100, 114
GetPixel (), 5,126,128, 165-166
GetWindowText (), 37,111
GetClientRect (), 128,188
InsertColumn(), 99
InsertItem(), 99
Invalidate(), 133
InvalidateRect (), 132-133
LineTo (), 5,111,125,129,226
LoadBitmap (), 164,166,171
MoveTo (), 5,111,125,129, 226
Polyline(), 5
PtInRect (), 133-134, 145,190
Rectangle (), 5,126,129, 132
RGB(), 5,126,159-161, 173,223
SelectObject (), 5,28,127,132,
165,171
SetBkColor (), 5-6,132
SetColumnwidth (), 99
SetFocus (), 36
SetPixel (), 5,126,128, 134-136,
165-166, 173
SetTextColor (), 5-6,132
SetWindowText (), 38,114
Sleep(), 138
StretchBlt (), 166
TextOut (), 5-6,28,132
UpdateData (), 47-48
MEFC structures:
LV_COLUMN, 100,258,332
LV_ITEM, 101
LVS_NOSORTHEADER, 98
LVS_REPORT, 98
Microsoft Foundation Classes, 3
CBitmap, 5,162,164, 172,338
CBrush, 5-6,127-128
CButton, 9,34-35,108, 199
CClientDC, 4,9,134
CCmdTarget, 8
ChataExchange, 47
Chialog, 39
coc, 4,157,162,164, 171,339

CEdit, 34-35,108, 199
CFrameWnd, 8-9,27,34,97,142
CFont, 5,28, 185,220,223
CGdiObject, 157
CListCtrl, 98,100,303
CMetaFileDC, 4
CObject, 3,8,111
CPaintDC, 4,28, 132,162, 164
CPalette, 5
CPen, 5,127,132
CPoint, 131,134,162, 172, 185-186,
219-220
CRect, 127-129, 131,219,232
Csize, 162,172,185
CStatic, 35,108
CString, 28,37-38,98,114
CWinApp, 16,46
CWindowDC, 4
CwWnd, 8
Modal window, 40
Modeless window, 40
Modem, modulator-demodulator, 322
Multicounter system, 286
with blocking, 286-290
without blocking, See Queueing system

Nearest neighbor rule, 218, 222
Network, 213

Nonlinear equation, 24
Nonwizard, 9-10

Numerical functions, 6-7

Object-oriented programming, 1
object, 1

Packet-switching, 323
Parallel computer system, 247
distributed memory, 248
shared-memory, 248
Pixel, 124, 159-161, 167
PCB, printed circuit board, 214-215
PSTN, public switched telephone network,
321-322

Queueing system, 295
arrival rate, 296
counter utilization rate, 295, 297
Erlang-C formula, 298
FCFS, first-come-first-served, 295
Little’s equation, 296, 299
Markovian processes, 295, 297
mean number of customers, 296-299
mean sojourn time, 296298
mean waiting time, 297-298



M/M/1 system, 295-297
M/M/C system, 297-299
steady-state probability, 296, 298

Random numbers, 222, 232
Raster operations, 159, 162
Resource file, 3842
Resource id:
IDD_GAUSSDLG, 75

Scheduling, 284
dynamic scheduler, 286
feasible schedule, 285
optimum completion time, 285
scheduler, 284, 287, 290, 301, 333
Sequential computer, 247
Shortest path problem, 214
Djikstra’s algorithm, 215-216
Floyd-Warshall algorithm, 216-217
on the mesh network, 230-234
Simulation, 21-22, 281-282
dynamic, 283
Monte Carlo, static, 283
Solution Explorer, 64
Spanning tree, 191
minimum spanning tree problem, 192
Kruskal’s algorithm, 193-194
Prim’s algorithm, 194-197, 202-203
System of linear equations, 31-33, 73-74, 106,
111
Gauss elimination method, 31, 37, 61-62,
103, 107
Gauss-Seidel iterative method, 31
linear equation, 24
LU decomposition method, 31
row operations, 32-33, 37, 62
backward substitutions, 33, 37, 62

INDEX 359

pivot element, 32
partial pivoting, 32
upper triangular matrix, 32, 62

Task scheduling, 228, 249-254
communication cost, 252, 256
dynamic scheduling, 251
execution time, 255-256
laxity, 251
load balancing, 251
nondeterminism, 252
optimum schedule, 251-252
partial order, 250, 252, 255
PMM, path maximum schedule, 253
precedence relationship, 252, 256
ready time of processor, 256-257, 266

low ready time, 267
high ready time, 267
schedule length, 250
static scheduling, 251
task, 249
task graph, 249
Taylor series, 94-95

Vector, 22
Visual C++.Net, 2
Active X Data Objects (ADO), 2
managed extension, 2, 8
Visual Studio, 2, 8
XML, 2
SOAP, 2
Visualization, 20-22

Wireless cellular network, see Cellular network
Wizard, 8, 73

Windows coordinates, 123125, 134

Win32 project, 8





