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   Preface   

 We are now standing at the cusp of systems-based understanding of the processes 
that underlie, drive, and control the acute infl ammatory response. Based on decades 
of painstaking progress, mostly driven by the reductionist methods that have served 
science well for hundreds of years, this new systems approach is poised to redefi ne 
how we approach diagnosis and therapy for sepsis/infection, trauma, and wound 
healing. The development of systems and computational biology over the past 
decade has brought a new understanding, new methods, and new terminology to the 
forefront of the biomedical enterprise. 

 These new tools and new understanding have begun to yield insights into basic 
biological mechanisms. What has lagged has been a clear understanding of how sys-
tems and computational biology could be applied systematically to change clinical 
practice. Indeed, we have not yet fully leveraged the power of computational and 
systems biology. There is currently no fully rational, computationally driven, pipe-
line for drug discovery, clinical trials, “smart” diagnostics, and patient-specifi c ther-
apy driven by computational modeling (i.e., Translational Systems Biology). 
However, we are at, or near, an infl ection point in this transition from reductionism 
to systems approaches applied clinically. Translational Systems Biology as a concept 
was formulated in an attempt to give initial defi nitions and directions to the biomedi-
cal community. A decade of Translational Systems Biology has resulted in increas-
ingly realistic computational models that can recapitulate infl ammation at the cellular, 
small animal, large animal, and human levels. As such, Translational Systems 
Biology is at an infl ection point between early studies subjected to intense scrutiny 
and, to a degree, resistance from the research community vs. widespread adoption. 

 This book presents a snapshot of this infl ection point.  

    Pittsburgh ,  PA ,  USA       Yoram     Vodovotz      
   Chicago ,  IL ,  USA          Gary     An   
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           Introduction 

 The greatest challenge for the biomedical research community is the effective 
translation of basic mechanistic knowledge into clinically effective therapeutics, 
most apparent in attempts to understand and modulate “systems” processes/disor-
ders such as sepsis, cancer, and wound healing. The United States Food and Drug 
Administration report: “Innovation or Stagnation: Challenge and Opportunity on 
the Critical Path to New Medical Products” (  http://www.fda.gov/oc/initiatives/criti-
calpath/whitepaper.html    ), clearly demonstrates the steadily increasing expenditure 
on Research and Development concurrent with a progressive decrease in delivery of 
medical products to market. This is the  Translational Dilemma  that faces biomedical 
research, and the current situation calls for a reassessment of the scientifi c process 
as an initial step towards identifying where and how the process can be augmented 
by technology [ 1 ]. 

 This book is focused on systems approaches to the infl ammatory response. It is now 
beyond doubt that infl ammation, with its manifold manifestations at the molecular, 
cellular, tissue, organ, and whole-organism levels, drives outcomes following injury 
and infection and can lead to diverse manifestations of chronic diseases such as 
rheumatoid arthritis, neurodegenerative diseases, the metabolic syndrome, and cancer. 
Though properly regulated infl ammation allows for timely recognition and effective 
reaction to injury or infection, acute infl ammatory derangements such as those that 
accompany trauma/hemorrhage, sepsis, the wound healing response, and key aspects 

    Chapter 1   
 An Overview of the Translational Dilemma 
and the Need for Translational Systems 
Biology of Infl ammation 
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of host–pathogen interactions are manifestations of insuffi cient and/or disordered 
infl ammation that in turn impairs physiological functions. It is critical to note that 
infl ammation is not in and of itself detrimental. Well-regulated, self- resolving infl am-
mation is necessary for the appropriate communication and resolution of infection 
and trauma and for maintenance of proper physiology and homeostasis. This paradox 
of a robust, evolutionarily conserved network of infl ammation whose very structure 
may lead to disease [ 2 – 4 ], has resulted in its near ubiquitous involvement in those 
diseases that most dramatically manifest the Translational Dilemma. Indeed, most 
evidence suggests that either insuffi cient [ 5 ] or self-sustaining [ 6 ] infl ammation 
drives the pathobiology of trauma/hemorrhage, sepsis, inadequate or exaggerated 
wound healing, and a breakdown of appropriate host–pathogen responses. Over a 
decade ago, there was recognition of the need complex interplay between infl ammation 
and physiology in critical illness and of the need to apply complex systems approaches 
such as computational modeling to unravel this complexity [ 7 ,  8 ]. The advent of 
“omics” methodologies, with the theoretical capability of interrogating the com-
plete responses of cells and tissues, spurred the application of these methodologies 
to critical illness following injury or infection [ 9 – 16 ], wound healing [ 17 ,  18 ], and 
host–pathogen interactions [ 19 – 21 ]. 

 It is now increasingly recognized that merely suppressing infl ammation is an 
ineffective therapeutic strategy for most diseases, and that controlling and reprogram-
ming infl ammation in order to reap the benefi ts of this evolutionarily conserved 
process is the future therapeutic paradigm. However, there is currently no rational, 
reductionism- based approach by which to accomplish this goal. In addition to the 
multiscale complexity inherent in its organizational structure, infl ammation mani-
fests very differently based on personalized factors. These factors include individual 
features of the initial infl ammatory perturbation, the individual’s demographic and 
disease histories (including genetic predispositions and setpoints/thresholds for 
infl ammatory processes), and the impact of environment and clinical care. We assert 
that mathematical modeling and computational biology can help decipher this mul-
tidimensional puzzle, and that, when geared towards practical applications, these 
methods hold the potential to transform the entire process of healthcare delivery 
from preclinical studies, through clinical trial design and implementation, to per-
sonalized diagnosis and therapy, and ultimately to long-term care.  

    Progress in Translational Systems Biology of Infl ammation 

 We and others have suggested a rational, systems engineering-oriented, computa-
tionally based framework, Translational Systems Biology, for integrating data 
derived from basic biology experiments as well as preclinical studies and clinical 
studies, and ultimately leading to rational infl ammation reprogramming [ 22 – 25 ]. 
Translational Systems Biology involves using dynamic mathematical modeling 
based on mechanistic information generated in early-stage and preclinical research 
to simulate higher level behaviors at the organ and organism level, thus facilitating 

Y. Vodovotz and G. An
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the translation of experimental data to the level of clinically relevant phenomena. 
This book introduces and demonstrates the Translational Systems Biology approach. 

 This book brings together leaders from the interdisciplinary fi eld of infl amma-
tion modeling as well as thought leaders in the fi elds of trauma/hemorrhage, sepsis, 
wound healing, and host–pathogen responses. This book is divided into fi ve 
sections, covering recent progress in Translational Systems Biology as applied to 
disease states involving acute infl ammation. In Part I ( Complex Systems Methods 
and Applications ), the relevant methods for computational modeling of infl amma-
tory diseases are discussed. In Part II ( Translational Modeling of Sepsis and 
Trauma ), the relevant clinical and experimental features and challenges of systemic 
infl ammation in trauma/hemorrhage and sepsis are detailed, along with recent prog-
ress in computational modeling of these diseases. Similarly, in Part III ( Translational 
Modeling of Wound Healing ), the relevant clinical and experimental features and 
challenges of wound healing are discussed, along with computational modeling 
studies in this fi eld. Part IV ( Translational Modeling of Host–Pathogen Interactions ) 
discusses challenges and systems/computational biology approaches to host–patho-
gen interactions and systemic disease, including examples from gut-derived sepsis, 
necrotizing enterocolitis, and malaria. Finally, in Part V ( Future Perspectives: 
Translation to Implementation ), we discuss the challenges that remain in order to 
fully implement the vision of Translational Systems Biology of Infl ammation. 

 Indeed, as summarized in this book, in silico modeling has yielded both basic 
insights and translational applications in critical illness [ 2 ,  3 ,  23 ,  25 – 30 ]. Indeed, 
key translational applications, such as in silico clinical trials, were pioneered in the 
arena of critical illness [ 31 ,  32 ]. Recent studies show the potential to predict the 
individual infl ammatory and pathophysiologic outcomes of human subjects [ 33 ] 
and large, outbred animals [ 34 ] subjected to acute infl ammatory stress. Such studies 
highlight the maturity of computational modeling in the clinical arena and suggest 
the possibility of predicting the outcomes of—and possibly tailoring therapy for—
individual critically ill patients [ 25 ,  26 ,  35 ]. 

 Early studies utilizing complex systems approaches in critical illness suggested 
the concept of “coupled oscillators” that become uncoupled as infl ammation becomes 
dysregulated and organ dysfunction progresses [ 7 ], which has led to the explosion 
of studies on the use of physiological waveforms (e.g., those derived from heart 
rate or breathing pattern) to diagnose outcomes in sepsis and trauma/hemorrhage. 
More recent in silico modeling work has posed specifi c hypotheses with regard to 
the mechanisms by which infl ammation is coupled nonlinearly to physiological 
(dys)function at multiple scales [ 2 ,  23 ,  27 – 32 ,  34 ,  36 – 46 ].  

    Challenges and Future Perspectives 

 As we detail in the fi nal section of this book, many challenges remain for the 
fi eld of Translational Systems Biology. As useful as mechanistic computational 
modeling has been in integrating known interactions gleaned from the literature, 
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this approach is inherently biased, given the tremendous volume of information that 
could, in theory, be incorporated into models and that is deemed irrelevant or unnec-
essary for the degree of abstraction chosen by the modeler. In recent years, there has 
been an attempt to couple the less-biased data-driven approach with mechanistic 
mathematical modeling of the acute infl ammatory response [ 3 ,  24 ,  25 ,  27 – 30 ,  47 ]. 
In these studies, mechanistic computational simulations were created based on 
biology abstracted from “omics” data [ 45 ,  46 ,  48 – 51 ] or inferred from data-driven 
analysis of principal drivers [ 34 ]. This type of combined data-driven and mechanis-
tic modeling refl ects the maturity of computational modeling in acute illness and is 
likely to be the area of study with most growth in coming years due to the inherent 
appeal of unifying—and gaining testable mechanistic insights from—the growing 
repository of “omics” data. 

 At the most practical level, in silico modelers must also prove the translational 
benefi t of this technology through prospective clinical studies and ultimately 
through the development of computationally based diagnostics or therapeutics for 
critical illness. The central challenge in this fi eld is to integrate the multiscale, mul-
tisystem nature of acute infl ammation. Translational Systems Biology must there-
fore rise to the challenge of integrating infl ammatory, neuroendocrine, and 
physiologic processes in order to unravel the multidimensional, multicompartment, 
and highly dynamic landscape of trauma/hemorrhage, sepsis, wound healing, and 
host–pathogen interactions.     
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Biological systems are complex and evolving. Because of the intense network of 
interaction present, intuition often fails to predict the system-level impact of altering 
one of a few components of this system. At a preclinical level, gene knock-out mice 
often result in phenotypes that are more complex than a mouse with the inability to 
express a given gene. Rather, knock outs are more typically highly adapted survi-
vors of this gene deletion, where other mechanisms have compensated for what is 
otherwise an important biological function. Yet, biological knowledge of isolated 
mechanisms, such as ligand–receptor dynamics, transcription-factor binding, 
second- messenger cascades, and myriad other cell, tissue, and organ-level interac-
tions, has expanded immensely in the last few decades. Basic knowledge of causal 
links has improved, but tools to interpret and predict the integrated effect of the 
combined dynamics are limited in number.

A pragmatic approach, therefore, is to create a simplified representation of the 
system, a model, and to define rules that describe the presence, nature, and intensity 
of interactions present between components of this model. We focus on the use of 
differential equations as the mathematical implementation of this set of rules and 
describe the time evolution of the components included in the model. At a given 
point in time, the state of the system is described by the actual values of all compo-
nents included in the model, a vector of real numbers. Solving the equations yields 
a description of the time evolution of the system. In other words, the solution of this 
system of equation describes the trajectory of the system as its state evolves in time. 
Once a computational model has been developed, it will be used to generate predictions 
and evaluate the potential effect of perturbing the system.

Chapter 2
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 Equation-Based Models of Biological Systems

 Historical Perspective

Equation models of biological systems have been used for several decades, initially 
applied in ecology, infectious disease, and organ physiology. More recently, consid-
erable efforts have been devoted to computational models of the immune response. 
Yet, the discipline of computational systems biology and the extensive use of mod-
els as a discovery tool in modern biology is less than two decades old [1]. Although 
computational models have been used for several decades in pharmacokinetics, 
their use as tools to enhance drug discovery and clinical trial simulation is less 
than a decade old [2, 3]. Therefore, computational models is just emerging as a 
potential tool in translational science [4–6], and in particular in personalizing 
treatments [7, 8]. The vast majority of these models have been implemented using 
differential equations as mathematical formalism, partly for historical and familiar-
ity reasons, and also because methods to enhance the scalability and computational 
efficiency of alternative modeling methods are still very much in the process of 
being developed.

 Types of Equation-Based Models

The simplest mathematical expression of is in the form of a difference equa-
tion X t f X t( ) ( ( ))+ =1 , where X t x t x t x tn( ) { ( ), ( ), , ( )}+ = + + … +1 1 1 11 2  and 
X t x t x t x tn( ) { ( ), ( ), , ( )}= …1 2  are vectors representing the state of the system, that is 
counts of each of n components { , , , }x x xn1 2 …  at consecutive times t and t + 1, and 
the function f embodies the underlying biology of interactions dictating the evolu-
tion of the system. Such models describe the evolution of the system in discrete time 
steps and are common in mathematical biology and chemical reactions. For exam-
ple, in such systems, the state of the system is simply a series of numbers represent-
ing the number of individuals of different species in an ecosystem, or the number 
of molecules of each single chemical species in a network of chemical reactions. 
An important ecological problem involves modeling the population size of a given 
species, for example dividing cells or bacteria. The change in population size during 
the interval between these times is given by the following growth equation, also 
known as the logistic map x t rx t x t( ) ( )( ( ))+ = −1 1 , where x(0) represents the initial 
population at time 0, r is a positive number corresponding to an overall growth rate, 
and the last negative term represents increased competition as the population grows. 
Similar models have been used to describe the dynamics of an epidemic, where, for 
a standard Susceptible-Infected-Recovered (SIR) model, the system state is the 
number of individuals in the susceptible, infected, and recovered pools at a given 
point in time. All large-scale simulation of epidemic disease are sophisticated 
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implementations of this construct [9], with geospatial information and constraints 
also included in more realistic, large-scale models. Discrete models are typically 
computationally intensive to simulate, but they have a clear advantage in the limit 
of small numbers, when spatial information is so detailed that alternative forms of 
spatial models, such as partial differential equations, are impractical.

Ordinary differential equations (ODE), the most popular mathematical imple-
mentation of biological models, express the rate of change of each component of a 
model d dX t f X t t/ ( ( ), , )= ∆  as a function of other components in the model, a 
vector of parameter ∆  and time t. Also, implicit in this formulation is that the state 
of the system at time t is typically dependent on the initial state of the model 
X t( )= 0 . So, the simplified mathematical representation of the biological system 
includes the components of the model one chooses to include, their initial values 
of each component, and the form and strength of the interaction one chooses to 
represent.

Yet, if the system evolves for a long enough time, it may evolve toward a basin 
of attraction, which may be a single state (fixed point), an orbit of states (limit cycle 
or limit tori), a set of states within a defined region of state space with no particular 
structure (strange attractor), a feature of chaotic systems. A feature of ODE is that 
the evolution of states is deterministic. In other words, for given initial conditions, 
the trajectory will always be the same. Although this feature can be perceived as a 
weakness of this formalism and inconsistent with real-life behavior of biological 
systems where randomness and uncertainty often plays a key role in the dynamics, 
techniques have been developed which incorporate elements of randomness in the 
formalism of ODEs. Therefore, ODEs are currently the main platform used by most 
for modeling the acute inflammatory response in a variety of contexts, cellular 
networks, and models linking inflammation to macroscopic observables such as 
blood pressure or heart rate variability [10–14].

Equation-based models can also describe processes where physical compart-
ments or the spatial characteristics of the biological system are important. Examples 
of such system include wound progression and healing [15], propagation of infec-
tion, inflammation, or gas exchange [16]. Generally however, biological processes 
are compartment specific, and communication between compartments is often 
limited and regulated. Preserving compartmentalization is often, but not always, 
required for a reasonable computational simulation of the underlying biology. 
ODEs are particularly well suited to compartmental modeling, while partial dif-
ferential equations, which explicitly include continuous spatial evolution, are more 
appropriate for certain processes such as wound healing, tumor growth, and other 
systems where there is not a clear concept of compartment. More recently, alterna-
tive modeling formulations, such as rule-based or agent-based simulations, have 
grown in popularity and are more appropriate for the simulation of systems where 
it cannot be assumed that individuals of a species (e.g., molecules of a chemical 
species, people, etc.) are distributed homogeneously within a compartment, and 
where there is a sufficient number of individuals to express interactions as reaction 
rates [17].

2 Translational Equation-Based Modeling
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 Advantages of Equation-Based Models

Differential equations, as a modeling approach, have enormous appeal. They (1) 
provide an intuitive implementation of causal mechanisms into a mathematical 
framework, (2) can be analyzed using a large body of existing techniques, (3) can be 
numerically simulated easily and inexpensively on a variety of computing platforms 
including portable devices, (4) provide both qualitative and quantitative predictions, 
and (5) allow for the systematic incorporation of higher levels of complexity and 
uncertainty. Furthermore, this modeling framework integrates existing knowledge 
embodied within the structure of the model, yet admits the flexibility of being data 
driven and stochastic. Therefore, knowledge gaps are readily identified, unlike alter-
native modeling approaches. Further, the speed of existing numerical solvers for 
differential equation-based models allows for massive experimentation with param-
eters that may not be determined experimentally, leading to the development of 
hypotheses on the roles of individual parameters, reflecting the presence and rela-
tive importance of biological processes or interactions.

 Disadvantages of Equation-Based Models

An equation-based representation of a moderately complex biological system 
usually depends on a large number of parameters that quantify biological interac-
tions, and identifying these parameters can be a challenging and often impossible 
task. Although some of these parameters might have been determined experimentally 
a priori, this is rarely the case and several parameters are therefore poorly understood 
and constrained. Methods of inferring parameters must integrate the fact that limited 
data will be reflected in limited knowledge of model parameters. This is however a 
general issue with models, irrespective of their mathematical implementation.

As mentioned above, equation-based representations violate basic assumptions 
of their underlying mathematical theory when the number of instances of model 
components is small, of when components cannot be assumed to be well mixed 
within explicitly modeled compartments [18]. For partial differential equations, this 
must also hold approximately true within the limits of the spatial resolution of the 
model because of numerical solving schemes, and boundary effects and phenomena 
must be considered with care. When these assumptions are significantly violated, 
alternative modeling frameworks should be used.

 Models Big and Small

Small models are highly simplified representations of a system and are comprised 
of a very limited number of components [19, 20]. These components will typically 
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not represent measurable biological entities but rather lumped biological actions or 
principles. Several small models of the inflammatory response aggregate a complex 
network of cytokines and immune active cells under the general categories of 
proinflammatory and anti-inflammatory mediators (e.g., [20, 21]). Because the 
mathematical theory of differential equations is mature, small models allow formal 
mathematical analysis and the derivation of broad conclusions such as long-term 
stability and exhaustive enumeration of all possible types of evolution of such  models. 
Empirical evidence will often restrict this range of possible behaviors, which in turn 
may limit the range of possible interaction between components (model parameter 
values), or impose restrictions on how interactions are coupled. Small models are 
not meant to be calibrated to experimental data, but to ensure that, from the outset, 
the proposed model structure is biologically supported.

If more insight is sought into biological details and in particular, if experimental 
data is explicitly available, then a larger model must be synthesized such that spe-
cific quantitatively verifiable predictions are formulated. The larger model must 
preserve empirically observed or plausible time evolutions. It is generally useful to 
initially construct the simplest model representation of a system such that expected 
behavior is indeed possible in this simplified representation. Models, much like 
pieces of a puzzle, are enhanced by the inclusions of modules that offer a more 
biologically realistic description of aspects of the biological system the modeler 
wishes to focus on. A cellular pathway for which empirical data are available or 
which is the potential target of a drug intervention would constitute a good candi-
date for more detailed representation. As general rule, a model should be as detailed 
as the data it wishes to describe or explain, but no more. Simple models can provide 
insight as to broad therapeutic strategies such as structured interruption of antiretrovi-
ral therapy in HIV patients [22]. Yet, it is imperative that realistic models are used to 
offer quantitative predictions which can be validated experimentally, or offer specific 
insight on potential therapeutic targets, or on specific timing and dosage of a potential 
therapeutic agent.

 Validating Equation-Based Models

When applied to statistical models, the concept of model validation is intuitive and 
well characterized: are the predictions of a statistical model developed from experi-
mental data verified in a different set of observations gathered when the experiment is 
repeated? For example, the experiment could be an observational cohort of patients 
exposed to a disease or treatment. The model provides predictions on to a cohort of 
patients different from the cohort used to develop the model. A valid model will yield 
predictions within statistical error of observed predictions. The validity of the prediction 
is typically judged on the entire cohort, on not on any single individual.

On the other hand, validation of a dynamical system is uncharted territory. 
The burden of proof is unclear, since the claims as to what computational models 
are attempting to accomplish are admittedly more extensive than for statistical 
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models [23]. However, a roadmap could be constructed and applied to equation 
based, and other simulation platforms for complex systems (Fig. 2.1). A first set of 
criteria could be constructed as follows. First, because computational models are 
knowledge rich and meant to relate components of a system causally, it should 
include biologically verified or plausible interactions. Second, simulation of the 
computational model should result in biologically plausible behaviors under a wide 
range of initial conditions and perturbations representing realistic experiments. 
Third, when a model generates time courses for experimentally accessible data, 
deviations between model predictions and observed data should be statistically 
insignificant. And fourth, parameter ranges should fall within biologically verified 
or plausible values. A second set of criteria which are more directly related to model 
predictive ability and external validity are then considered. First, given limited data 
(e.g., the first few hours), can the model offer accurate predict the future evolution 
of the system, at least within a biologically or clinically relevant time horizon. 
A similar criterion exists for statistically based longitudinal models and is key to 
validating weather forecasting models [24]. Second, and a unique expectation from 
mechanistic models, is the ability of the models to predict the results of an experi-
ment not used for estimating parameters. For example, what is the expected impact 
of exposing the system to a drug at a specific concentration and time duration on 
model components or ultimate behavior of the system? Will drug X decrease mor-
tality? Such predictions are not easily formulated with standard statistical models 
and represent a unique challenge to mechanistic models. At the very least, attempts 
at validation should include an effort at externally validating the model in a differ-
ent experimental system. It is apparent that model validation may be an iterative 
exercise, where failure of external validation leads to a reformulation of the basic 
mechanisms included in the model, while preserving desirable behavior and predic-
tions. Further expansion of this roadmap would be a useful addition to the current 
modeling literature.

Fig. 2.1 Roadmap for the validation of equation-based models of biological systems
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 Using Equation-Based Models as a Prediction Tool

 Parameter Estimation and the Inverse Problem

In its simplest expression, the inverse problem consists of reconstructing model 
parameters given observed data. In statistical linear regression model, there is only 
one optimal solution to the inverse problem, which is the set of parameters minimiz-
ing the sum of square residuals. In such situations, the inverse problem is said to be 
well posed. Equations-based models, especially larger, more complex models 
include a number of parameters, which are poorly known. Formal identifiability 
analysis will confirm that many such models are not structurally identifiable [25]. 
In other words, even if provided with perfect and infinitely rich data, not all param-
eters of the models can be identified. It behooves the modeler to develop a priori 
sound models where such issues are minimized. A second obstacle lies in the sparsity 
of data available to estimate model parameters and in the experimental uncertainty 
associated with experimental measurements. This type of problem contributes to the 
practical identifiability of the model. A third obstacle is that nonlinear systems may 
admit a large number of good solutions, and thus potentially a large number of 
parametrizations are compatible with observed data. The lack of a unique solution 
to the inverse problem is referred to as ill-posedness [26]. Therefore, in complex 
models, it is rarely realistic to identify a set of parameters that describes a system 
uniquely, while preserving the ability of such a parametrized model to offer robust 
predictions. Indeed, although this single parameter set may create a good fit to the 
data at hand (e.g., maximum likelihood in the immediate vicinity of this parameter 
set) or display all the require biological behaviors, it will in all likelihood not hold 
to extended validation (see above).

 Approaches to Solving the Ill-Posed Inverse Problem

In an equation-based framework, a satisfactory solution to an ill-posed inverse problem 
is tantamount to identify a set of model structures (the equations themselves), and 
for each structure, as set of parameters and initial conditions that will provide a 
good enough explanation of the data available on the biological system being 
studied. In the simpler case when only one model structure is under consideration, 
that is, the set of mechanisms represented by the equations is believed to be well 
understood, solving the inverse problem is limited to the identification of parame-
ters and initial conditions that will produce a good solution, while maintaining bio-
logical fidelity of simulations under a variety of input to the model, as described 
above in the discussion on model validation. A good solution can be defined using 
a variety of metrics, or cost functions, expressing how close predicted trajectories 
are from observed data. A simple cost function would be, for example, the sum of 
squared residuals.

2 Translational Equation-Based Modeling
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Ideally, all system variables are observed at a level of time granularity sufficient 
to provide a good description of the longitudinal dynamics, up to restoration of 
homeostasis or stabilization to a different state. In the absence of fine-grained data 
obtained over a wide range of experimental conditions, the next step is to comple-
ment the dataset with a set of heuristic rules that will define a priori the plausible 
ranges of observations and limiting behavior. Heuristic rules are based on prior 
knowledge and expert opinion of system behavior. These rules are of particular 
importance to system variables for which data are sparse or missing. For example, 
there almost always exists literature or other empirical evidence where some vari-
ables of the system were measured under a different set of circumstances, or in a 
somewhat different biological system (e.g., endotoxemia in human vs. sepsis in 
humans). Yet, data from human endotoxemia may still be of use in a computational 
model of human sepsis in constraining the potential range of unmeasured variables 
in this model. More generally, such data can be used “qualitatively” to create rules 
that restrict the range of plausible behaviors of these variables. These rules are used 
in the calibration of computational models as (1) models and parameter combina-
tions for which the system violating a rule are excluded a priori or (2) a number 
expressing the severity of the deviation from a rule is added to the cost function (the 
function that quantifies numerically the difference between experimental data/heu-
ristics and predicted behavior), decreasing the likelihood of this model which is 
minimized by the optimization process.

In the discussion that follows, we use the notion of a generalized parameter p  
vector of a model as encompassing both standard parameters ∆  and initial condi-
tions X( )0 , p = { , ( )}∆ X 0 . It is apparent from the discussion above that standard 
algorithms searching for local minima are not well suited for addressing ill-posed 
inverse problems. The ill-posedness may open the possibility to a large, possibly 
infinite, number of local minima. A practical approach is to initiate the calibration 
process from a large number of initial points in parameter space, selected in such a 
way as to offer reasonable coverage of parameter space such as through Latin hyper-
square sampling. This approach is referred to as multistart optimization and yields 
a set of local minima, many of which may fit data relatively well and display suitable 
heuristic behaviors [27]. Yet, many regions of the cost function landscape may be 
very flat and consequently such algorithms may not converge to realistic solutions. 
This is fact to be the case for larger models when data constrains the plausible 
parameter distributions to a submanifold of lower dimension than the number of 
parameters including the model, demonstrating the practical nonidentifiability of 
the model. It does not necessarily follow that such models are useless and they may 
in fact offer good, albeit probabilistic, predictions if one considers the entire set of 
parameters. Indeed, each parameter set leads to a deterministic prediction, but the 
ensemble of parameter vectors produces a variety of plausible predictions. Although 
some problems, such as the tertiary structure of a macromolecule, plausibly admit a 
single global minimum of the cost function, which in this case is the conformational 
energy for a given local microenvironment, there is neither assurance nor intuition 
that this is generally true of out of equilibrium complex dynamical systems con-
stantly adapting to changing environments and under varying energetic constraints. 
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It would seem unwise therefore to think of calibration of a complex model as the 
identification of an optimal parameter set, but rather of an ensemble of parameters.

There is a growing tendency to conduct stochastic searches of parameter space as 
a solution to ill-posed problems [28–30], typically following a Bayesian estimation 
procedure. In such a scheme, the calibration process also involves the construction 
of an ensemble E( )p  of a large number of good solutions, each characterized by a 
generalized parameter vectors p = { , ( )}∆ X 0  as described above. For a given data-
set Y y ti j= { ( )}  or i variables collected at j time points and model d dX t X t/ ( , , )= f p , 
the distribution r( )p  will be computed using w P x tij i j

ij

( ) ( ( ; ))p p= ∏ , where it is 

understood that w w Y( ) ( | )p p≡ . If prior knowledge on parameters P( )p  is avail-
able, a Bayesian scheme is adopted where the posterior distribution 

w

P x t P

P Y

ij i j
ij( )

( ( ; )) ( )

( )
p

p p

=
∏

 is known within a normalization fraction, P Y( ) . Yet, 

this normalization factor is generally not required for practical computations 
as one is typically interested in ratios of probabilities in the process of selecting 
suitable parameter sets. The probability functions Pij  are determined by the data 
accuracy. If the data point y ti j( )  has Gaussian uncertainty σij , then 
P x t Q x t y tij i j i j i j ij( ( ; )) exp( ( ( ; ) ( )) / )p p= − − 2 22σ . By normalizing the weight func-
tion, we obtain a probability density r( ) ( ) / ( )p p p p= ∫w w d  over the space of 
parameters. Efficient sampling of parameter space, although alleviated by dimen-
sional reduction methods, remains computationally challenging and will be 
approached using stochastic sampling methods such as parallel tempering [30, 31]. 
A posteriori analysis of the distribution is conducted to determine the width of the 
distribution, modality (number of local maxima), separation of local maxima, 
approximate dimension, etc. Simulation of the ensemble model produces not only a 
single trajectory but also an ensemble of trajectories parameterized by p  with weights 
proportional to r( )p . These trajectories will provide probabilistic prediction of the 
outcome of the model as a time-dependent distribution of values of system variables 
f d r( , ) ( ( ; )) ( )x x x p p pt t= −∫ d . This distribution can be used to compute the average 
trajectory x x x x( ) ( , )t t= ∫ f d , the time-dependent variance of average trajectory 
s f2 2( ) ( ( )) ( , )t t t= −∫ x x x xd , the probability P x t xj j( ( ) )< 0  that a value of a given 
variable drops below a prescribed threshold at time t, and various other quantities 
of interest.

 Hybrid Models

A growing number of computational models simulate phenomena observed at 
different scales, for example, intracellular pathways and cellular phenotypes, intra-
host models of viral infection and population epidemic models. Scales are typically 
physical and be best approaches using different simulation platforms. Hybrid mod-
els consist of computational models comprising two or more simulation platforms. 
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Such models may be of particular interest in translational applications, where the 
largest scale of the simulation is at the individual or population levels, and the 
lowest scale determined by the type on perturbation we wish to impose on the system. 
It could be, for example, an antiviral medication with a pharmacodynamics profile 
dependent on the age or preimmune status on an individual. Simulations using coarse 
distributional assumptions “average” behavior of individuals may lead to result very 
significantly different from more-detailed simulations of drug action within an indi-
vidual. Hybrid models raise considerable computational challenges. Expanding on 
the example above, representing each individual in a population using an equation-
based model of intrahost infection (e.g., [32]) is not feasible within the framework of 
a large population scale agent-based simulation. Creative solutions exists however to 
mitigate the additional computational cost associated by multiscale hybrid simula-
tions [33]. Use can be made of large differences in temporal dynamics that exist at 
different scales of the simulation. A method our group has implemented in the con-
text of epidemic simulation is to create, from intrahost models of Influenza A infec-
tion, algebraic response surfaces using preexisting simulations of the equation-based 
model to generate an algebraic input–output map [34]. Consequently, given a 
patient’s age, preexisting immune status and initial viral load, a daily profile of infec-
tivity and symptomaticity is generated by applying a regression equation rather than 
embedded simulation of an equation-based model. The incremental computational 
cost was negligible and such an approach is imminently scalable.

A class of applications of particular interest in inflammatory diseases relate 
organ function to specific anatomic intricacies as the playground for molecular or 
cellular inflammatory effectors [16, 35–38]. Such models may not be explicitly 
hybrid in nature but typically present very similar challenges in that efficient com-
putation require creative solution to bridging anatomical scales.

 Translational Applications

 The Interdisciplinary Perspective

Computational models are practical instantiations of the state of current knowledge 
and a representation tool for competing hypothesis of processes driving biological 
systems and therefore constitute a framework for hypothesis generation and effi-
cient experimental design for testing these [1, 7, 39]. The truly impactful concept is 
that this approach allows a model-centered discussion between clinicians, biolo-
gists, and modelers [7]. Hypotheses and thought experiments can be pushed compu-
tationally to their logical outcome as well as regions that may offer unexpected 
clinical benefit. This is extremely difficult to achieve from discussions only, without 
an existing quantitative model of disease. We believe that computational models 
will become a powerful and standard tool that promotes effective interdisciplinary 
research and scientific epistemology.
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 Enhancing Current Trial Design

The ultimate purpose of basic mechanistic research is to improve human health. 
The mantra of pharmacological intervention remains that the right drug at the right 
dose must be administered to the right patient at the right time. In addition to basic 
lack of efficacy of biologics tried for sepsis, several have raised the issue that the 
design of clinical trials itself was to blame [40], namely that patients were enrolled 
too late given the biological rationale of the intervention, that phenotype-based 
enrolment may not be ideal, or that dosing might have been inappropriate. For 
example, patients presenting with community-acquired sepsis already have elevated 
circulatory biomarker levels upon enrolment [41, 42]. These circulatory biomarkers 
generally peak between 3 and 36 h postadmission and diminish over the subsequent 
72 h [41]. The vast majority of immunomodulatory trials have enrolled patients well 
after key biomarkers have peaked [43].

The US food and Drug administration has published a report on the use of adaptive 
clinical trial design to maximize information extracted for clinical trials and mini-
mize sample size required to detect real treatment benefit [44]. Recent methodologi-
cal developments in adaptive clinical trials design, such as sample size reestimation 
as proposed in the recent failed confirmatory trial of drotrecogin alfa [45], are for 
the most part only tangentially applicable to sepsis trials [44, 46–49]. However, 
computational models of human sepsis could contribute to an adaptive design in two 
distinct ways. Every large trial has prespecified interim analyses. If at this point in 
trial execution, a computational model calibrated from data accrued up to the interim 
analysis was more sensitive than standard data analysis to identify treatment effect 
as we suspect if would be, of lack of a difference in biological activity as suggested 
by extensive overlap in extensive overlap of model ensembles, one could envision 
(1) consolidating trial arms that show no difference in biological activity and thus 
improve power to detect differences between residual arms of the trial or (2) declare 
futility with greater confidence. A second potential application of computational 
models to augment adaptive design resides in their ability to identify cohorts of 
patients with a better probability to respond to the proposed intervention. Adaptive 
patient enrichment design allows the modification of enrolment criteria as the 
enrolment accrues as it becomes clear that some types of patients clearly do not ben-
efit from the intervention [50]. Both types of contribution are potentially promising 
for future trials of immunomodulatory intervention in acute and chronic inflamma-
tory diseases.

 In Silico Clinical Trials

Clinical trials of immunomodulation in acute inflammatory disorders have a generally 
dismal track record. This is particularly true for sepsis, a clinical syndrome arising 
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from the systemic host response to infection with clinical manifestations that span a 
broad set of inflammation-related signs and symptoms [51]. Although the host’s 
response to sepsis strives to contain infection and promote repair, the intensity of the 
inflammatory response often leads to compromised tissue function, uncontrolled 
inflammation and/or profound immune suppression, organ failure, and death [52, 53]. 
Severe sepsis accounts for between 2 and 11 % of all admissions to hospitals or 
ICUs, approximately 750,000 cases a year, with an associated mortality of 35 %, 
most often from progressive organ failure in an ICU [54]. An intense effort by the 
critical care community to raise sepsis awareness and provide evidence-based rec-
ommendations is ongoing. The Surviving Sepsis Campaign (http://www.surviving-
sepsis.org) published guidelines in 2004, 2008, and 2013 [55–57]. These recent 
guidelines support the implementation of “care bundles,” sets of care decisions that 
constitute generally accepted competent critical care, but all recommendations 
regarding immunomodulation have been withdrawn. Care environments, which have 
implemented sepsis bundles, have seen a modest improvement in outcome parallel-
ing that of general ICU care [54, 58–62]; yet, recent spectacular failures of confirma-
tory trials of immunosuppressive agents [63, 64] have further contributed to the 
profound consternation, skepticism, and soul searching permeating the critical care 
community regarding breakthrough treatments for sepsis [65, 66]. Presumably, 
major reasons for this dismal record are the failure to integrate the complexity of 
sepsis pathophysiology towards mechanistically sound therapeutic rationales and the 
failure to translate knowledge acquired from in vitro and preclinical experiments to 
clinically and genetically diverse human beings [67]. Computational simulations of 
immunomodulatory agents in sepsis will hopefully contribute to bridge the gap 
between a reasonably well-known pathophysiology, generally favorable preclinical 
data, and clinical trial results. In addition, such simulation may contribute to proper 
patient selection, dosage selection, and duration of intervention. A computational 
simulation of an acute inflammatory disease, such as sepsis, would provide recom-
mendations on the basis of point-of-care measurements of biomarkers, a platform 
which is currently not commercially available, presumably because there is currently 
no market for such methods.

There have been few prior attempts at computational simulations of clinical 
trials [2, 68, 69]. A simulation of an anti-TNF intervention pointed out such of the 
potential advantages underlines above. A potential for harm was identified in 
patients who were predominantly immunosuppressed at the time of initiation of 
therapy, in patients offered high doses for longer than 48 h, and in those with par-
ticularly aggressive bacterial infection [2]. These predictions are teleologically 
plausible, and the computational model identified, early in the course of treat-
ment, responders from nonresponders with high probability. Although such con-
clusions are speculative until verified in the clinic, animal data supported many of 
the predictions of this computational model [70]. Opportunities for computational 
models to gain legitimacy in the clinical realm are ongoing, extend well beyond 
acute inflammatory disease to cancer and cardiovascular interventions, and are 
encouraged by registration entities such as the Food and Drug Administration in 
the USA [44].
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 Parameter Ensembles vs. Data: Different Worldviews

One typically expresses differences in terms of statistically significant levels of bio-
markers, incidence of organ failure, or mortality. The computational model-based 
alternative is to express differences in terms of differences in the distributions of 
model parameters that characterize important phenotypes such as survival or death. 
For example, in a recent publication, statistical tools were compared the parameter 
ensembles of a computational models fit to animals that survived a septic challenge 
to the distribution obtained from a model fit to data of animals that died [31]. 
Analyzing parameter distributions rather than data provides insight on mechanisms 
explaining the difference in outcome, not merely a description of what is different. 
Although both the “data world” and the “parameter world” can be used to produce 
predictive models, only a parameter-based description can offer insight on mecha-
nistically motivated therapeutic strategies that may alter outcome.

 Novel Approaches to Personalized Therapies  
for the Critically Ill

Personalized, or precision medicine is often confused with genomic medicine and 
an inference is often made that gene-level understanding of biological processes is 
sine qua non to the development of personalized therapies [7]. Standard approaches 
have had some, yet limited success in linking gene expression profiles to local and 
circulatory protein levels, to clinical disease severity and outcome [70–72]. Care 
givers, and acute care physicians have been offering effective, individually titrated 
care to their patients based on a different, yet complementary premise of recogniz-
ing patterns of organ function and injury, framed in a conceptual framework of 
mechanistic pathophysiology, and establishing individualized therapeutic targets 
to mitigate these mechanisms. Computational approaches offer the possibility of 
reconciling these concepts of translating differences in data, which does not easily 
lead to hypothesis generation, into differences in mechanisms, which typically 
have a more direct interpretation and may suggest individualized, time-dependent, 
therapeutic approaches.

Two features of equation-based computational models may contribute to the 
development of personalized approaches to treatment. Computational models, and 
equation-based models in particular, map data to mechanism and thus offer a way to 
identify mechanistically based phenotypes. As more data becomes available and 
model parameters reestimated, mechanistically based phenotype becomes better 
defined. Interventions in acute care, pharmacologic or physical organ support, inter-
act directly with mechanisms. Indeed, practitioners constantly select therapies 
based on perceived mechanisms. Therefore, a mechanistically based decision sup-
port system suggesting which mechanisms are particularly important in a given 
individual at a given time might enhance data interpretation, diagnostic ability, and 
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treatment selection [26]. The recent rise of control-based approaches in cancer phar-
macotherapy of glucose control in type I diabetes offers a second application for 
equation-based models applied to personalized care. The underlying concept is that, 
if a biological process is well modeled computationally, then using tools of control 
engineering facilitates achieving a preset therapeutic objective, such as a specific 
drug concentration, or glucose zone target much as an artificial endocrine pancreas 
would achieve [73, 74]. Such approaches have already been ushered in clinical 
practice.

 Conclusions

Equation-based models of translational relevance are recent. Their acceptance as 
useful knowledge discovery and decision support tools, although unquestioned in 
the basic sciences, has met with considerable criticisms in the translational arena. 
The immediate task of modelers and clinicians alike is to build and disseminate 
success stories. There are more likely to emerge from cancer research, diabetes, or 
immunomodulation of chronic or acute inflammatory disorders.
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           The Translational Dilemma and the Need for Dynamic 
Knowledge Representation 

 As noted elsewhere in this book, the Translational Dilemma, the inability to translate 
the successes at obtaining basic mechanistic knowledge about biological processes 
into clinically effective therapeutics, is the greatest challenge facing the biomedical 
community [ 1 ]. The Translational Dilemma consists of two primary barriers that 
need to be breeched (1) the need to accelerate the scope of hypothesis testing neces-
sary to deal with the multiplicity of possible explanations of high- resolution data 
(the experimental throughput problem) and (2) the ability to adequately evaluate the 
consequences of highly complex, multicomponent, multihierarchical integrative 
hypotheses (the multiscale problem). Both of these issues are directly related to this 
requirement: biomedical researchers must greatly increase their ability to evaluate 
the  plausibility  of mechanistic hypotheses and their manifestation at the systemic 
level. Meeting this requirement will almost certainly involve harnessing the power 
of advanced computational modeling and computer hardware for the dynamic 
knowledge representation of biological systems in such a way that hypotheses can 
be instantiated and evaluated in silico. The ability to execute in silico experiments 
offers potentially the only viable path to substantially accelerate and enhance the 
Scientifi c Cycle by providing a plausibility fi lter for putative hypotheses. This will 
substantially reduce the set of possible mechanistic explanations for a particular 
observation and will help direct and focus the design of traditional laboratory exper-
iments to further refi ne the set of possible hypotheses. This chapter discusses the 
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use of agent-based modeling (also known as individual-based modeling) for 
dynamic knowledge representation with an explicit translational goal in the area of 
acute infl ammation.  

    Dynamic Knowledge Representation 
with Agent-Based Modeling 

 Agent-based modeling is an object-oriented, discrete-event, rule-based computa-
tional modeling method [ 2 – 6 ]. Agent-based models (ABMs) consist of virtual environ-
ments populated with objects (agents) that execute behaviors based on programmed 
rules that govern their interactions with the local environment and other agents. An 
ABM represents a system as populations of components (“agents”) where the simu-
lation agent level of the ABM corresponds to the primary component level of the 
system being studied; for instance, a cell-level ABM uses agents that primarily rep-
resent biological cells. An ABM  agent class  is defi ned by a specifi cation of the 
properties, characteristics, and rules of an agent type that govern its identity and 
behavior. As an ABM is executed, it creates a population of individual computa-
tional instances (an agent) of each agent class, where each individual agent pos-
sesses the behavioral rule sets and defi ned properties of its agent class but once 
created can have diverging behavioral trajectories based on the different inputs it 
receives within a heterogeneous simulation environment. ABM rules are often 
expressed as conditional statements (“if-then” statements), making ABMs suited to 
expressing the hypotheses that are generated from basic science research, though it 
should be noted that the general conditional nature of simulation agent rules does 
not preclude the encapsulation of other types of mathematical or computational 
models (i.e., differential equation, stochastic, or network) as rule systems [ 7 – 9 ]. 
A standard conditional agent rule for a cell agent interacting with its environment 
might have the following format:

    if Compound A (in the environment) is present, then bind to and activate  Cell- Surface 
Receptor B (in the cell-agent)   

   if Cell-Surface Receptor B is activated, then increase Signal Transduction Enzyme 
C (in the cell-agent) by x   

   if Signal Transduction Enzyme C is increased beyond threshold y, then activate 
Transcription Factor D   

   if Transcription Factor D is activated, then express Gene E   
   and so on…     

 As noted above, the rule sets for agents can be of any formal type, such as a series 
of logical statements or a differential equation. Regardless of the specifi c ABM 
rules, ABMs allow a close mapping between the natural language expression of 
hypotheses present in publications (the current means by which this knowledge is 
communicated within the community) and the rule structure of ABM [ 10 ,  11 ]. As 
results can    be readily used for dynamic knowledge representation, particularly for 
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researchers not expressly trained in either computational or mathematical modeling 
by allowing them to more easily translate their biological knowledge into a compu-
tational form. 

 ABMs also intrinsically cross multiple scales of biological organization by nec-
essarily involving at least three levels of system organization. Scale #1 is the lowest 
level of system process represented, and this is accomplished by the agent’s behav-
ioral rules. Scale #2 is the “middle” level corresponding to the primary component 
level chosen, and processes at this level are represented by the behavior of an indi-
vidual agent. Scale #3 is the “system” level consisting of the global phenotype 
under investigation and is generated by the aggregate behavior of populations of 
agents. To use an example of a cell-as-agent ABM, Scale #1 then represents molec-
ular events associated with signaling and protein synthesis, Scale #2 represents the 
behavior of an individual cell as it changes state, secretes something or moves, and 
Scale #3 represents tissue behavior arising from the interactions between popula-
tions of cellular agents. Furthermore, these levels can theoretically be nested, to 
provide a comprehensive depiction of a multiscale biological system (see Fig.  3.1 ), 
making ABMs well suited for creating modular models [ 6 ,  7 ,  12 – 14 ].

  Fig. 3.1    The mapping between scales of biological organization, research community structure, 
and agent-based models. This diagram maps the similar structure of organizational scales present 
in biological systems, the research communities studying them, and the architecture of an ABM. 
Note that scales of organization are nested in the biological system and the ABM, refl ecting the 
trans-scale coupling seen in both systems. Alternatively, the research community structure is dis-
parate and compartmentalized, arising from both social and pragmatic logistical factors. Reprinted 
with permission from [ 11 ]       
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      Related Modeling Methods 

 Given the description above, it is clear that agent-based modeling is actually a very 
general means of system representation and as such is viewed as quite similar to 
many other modeling methods. In fact, many of these types of modeling methods 
can be considered as subtypes of ABMs, leading to a great deal of variability in the 
use of the term “ABM.” As such, it is useful to clarify the distinctions between cer-
tain other commonly used modeling methods and agent-based modeling as the term 
is used in Translational Systems Biology. One of the most closely related modeling 
methods is cellular automata (CA), particularly two-dimensional CAs. Cellular 
automata involve a discretely divided space into a series of “cells,” such that the 
state of each particular cell is defi ned by a set of rules dependent upon the states of 
some defi ned neighborhood of cells. Classical examples of two-dimensional CAs 
are Conway’s Game of Life [ 15 ] and Kaufman’s N-K System [ 16 ]. These systems 
can be seen as ABMs where there is a single agent class (the basic unit “cell”), 
which does not move, and a set of agent rules that govern an agent’s state transi-
tions. Another closely related modeling method is the Cellular Potts Model (CPM), 
developed by Glazier and Graner, where the states of points on a lattice are deter-
mined using probabilistic rules, and membership in a particular group of points is 
used to defi ne superstructures representing cells or aspects of tissue [ 17 ]. Each of 
these methods has its own benefi ts and uses, most often governed by a combination 
of the resulting model’s use and the data available to construct the model. For 
instance, while “movement” can be simulated using a CA, it is often less intuitive 
for a biologist to think of a cell’s movement as a progression of cellular variables 
across a grid as opposed to a specifi c computational object that changes its position. 
As another example, while a CPM can allow cells to change their size and shape 
(where a “cell” is defi ned by a group of lattice points), the means by which a lattice 
point’s membership in a particular cell, often expressed as a Hamiltonian represent-
ing an effective energy function, does not readily map to a biologist’s knowledge set 
(as evidenced by the relative incomprehensibility of the prior terms!). At one level 
(i.e., in terms of the actual execution of the binary code), the distinction between 
these methods and agent-based modeling may be a distinction without a difference; 
however, in terms of facilitating knowledge representation, the component-centric 
emphasis of agent-based modeling is more consistent with how most biological 
systems are conceptualized (i.e., “things doing things”).  

    Agent-Based Models Versus Multiagent Systems 

 In addition to closely related modeling methods, there is also ambiguity in the use 
of the term “agent.” The distinction between an “agent-based model” and a “multia-
gent system” is just such a situation. Both terms are widely used in the computer 
science and the modeling and simulation community and are often used to mean the 
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same thing: a computer program that utilizes multiple computational agents. 
However, in terms of the types of systems they usually describe these two methods 
actually represent very different types of computational tools. Therefore, for pur-
poses of comparison, we defi ne a distinct difference between these two entities (not-
ing that the following distinction is not intended to be a defi nitive description of the 
distinction but rather is intended to clarify the differential usage of the term “agent” 
in the context of Translational Systems Biology). 

 We consider “agent-based modeling” as a simulation method, where the model 
constructed is intended to mimic or represent some other reference system, which is 
the subject of investigation. The computational agents making up the ABM are 
intended to represent specifi c types of components in the real world where selected 
characteristics of the real-world object are refl ected in the nature of the rules incor-
porated into the simulation agent. Since a main benefi t of agent-based modeling is 
the ability to represent populations of real-world objects at the individual level with 
simulation agents, in many circumstances ABMs consist of a large number of indi-
vidual instances of simulation agents derived from a single agent class. 

 Alternatively, an “agent-directed” or “multiagent system” is generally used to 
describe a computer system design solution, where computational agents perform 
tasks related to the implementation of a particular computing goal. These computa-
tional agents generally have some decision-making capacity, which may be aug-
mented using artifi cial intelligence approaches, that allows them to manage the 
information fl ow within a particular software implementation. In multiagent com-
puter systems, the computational agents generally do not have a specifi c real-world 
reference object for a computational agent, rather there is a set of recognized tasks 
in information fl ow management that can be expressed as a set of algorithms and 
packaged for execution by a computational agent.  

    Properties of Agent-Based Models 

 As noted above, ABMs are related to other spatially discrete modeling methods, 
most notably cellular automata, though the mobile capability ABM agents and abil-
ity to represent a wider range of model topologies could lead to consideration of 
cellular automata as a special type of ABM. However, in practice, many ABMs have 
several characteristics of agent-based modeling that set it apart from other object- 
oriented, rule-based modeling systems (such as Petri nets, Boolean, or Bayesian 
Networks), even though at its purest defi nition, they could all be potentially viewed 
as ABMs. 

    Representation of Spatial Relationships 

 Agent-based models (ABMs) readily incorporate  spatial relationships , be they man-
ifest in an actual spatial topology or a topological interaction neighborhood linking 
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individual agents. In an ABM agent, behavior is driven by interactions determined 
by agent neighborhoods defi ning the communication and interaction network for 
each agent. An agent neighborhood can be represented as a two- dimensional square 
grid (very common), a three-dimensional cubic space [ 7 ,  12 ], two- or three-dimen-
sional hexagonical space [ 18 ,  19 ] or as a network topology, as a neighborhood does 
not necessarily mean physical proximity but rather the confi guration of some set of 
other agents with whom an agent can interact. This defi nition of an agent neighbor-
hood is consistent with the bounded nature of the sense-and- respond and message 
passing capabilities of biological objects. This may also be used to represent physi-
cal interactions and forces between agents that affect their subsequent behavior.  

    Representation of Parallelism and Concurrency 

 ABMs simulate  parallelism . In general, each ABM agent class has multiple compu-
tational instantiations that form a population of agents, each capable of having dif-
ferent behavioral trajectories. These heterogeneous behaviors produce population 
dynamics that are the observable, system-level output of the ABM. A classic exam-
ple of this phenomenon is the behavior of fl ocks of birds, in which simulations uti-
lizing relatively simple interaction rules among birds can lead to sophisticated 
fl ocking patterns without an overall controller [ 20 ]. This property is well suited to 
the tendency in biology towards classifi cation: the grouping of similar biological 
entities that share some set of properties and behaviors. Biological systems are then 
readily characterized as being composed of some types and numbers of these enti-
ties. This type of conceptual representation exactly suits the architecture of an ABM.  

    Incorporation of Stochasticity and Randomness 

 ABMs readily incorporate  stochasticity . Many biological systems have behaviors 
that appear to be random [ 21 ,  22 ]. Whether these behaviors are truly random, or just 
merely appear to be due to a lack of fi ner grained knowledge is, from an operational 
standpoint, often irrelevant as long as the probabilities of a particular behavior can be 
determined for the population as a whole experimentally. These probabilities are then 
used to generate a probability function for the behavior of a single agent that is then 
incorporated into the agent’s rules. As a population of agents executes their rules dur-
ing the course of a simulation, each agent follows a particular behavioral trajectory 
as its behavior rules’ probabilities are resolved as the simulation progresses. A set of 
behavioral outputs is thusly generated from a single ABM, producing system behav-
ioral state spaces representing the set of population-level biological observations.  

    Modular Architecture 

 ABMs are  modular . Agents represent a distinct and circumscribed modular level 
into which new information can be added either through the introduction of new 
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agent types or by the modifi cation of existing agent rules without having to reengi-
neer the entire simulation. Agent classes representing generic cell types can be sub-
divided and expanded to include a fi ner degree of detail with respect to subcategories 
of cells while the remainder of the ABM remains essentially intact. New mediators 
can be similarly added by creating new cellular state or environmental variables and 
rules. Multiple ABMs can be aggregated, providing that their points of contact and 
interaction are consistent across the incorporated ABMs [ 12 ,  19 ].  

    Generation of Non-Intuitive System-Level Phenomenon 

 A central hallmark of ABM is that they generate system-level behaviors that could 
not have been reasonably inferred from, and often may be counter-intuitive to, 
examination of the rules of the agents alone. This is our defi nition of  emergent  
behavior. ABMs are able to generate this type of behavior due to the locally con-
strained and stochastic nature of agent rules, and the population effects of their 
aggregated interactions. For example, in the bird fl ock, an initial observation would 
suggest an overall leader, thereby requiring a means of determining rules for fl ock- 
wide command and control communication. This, however, is not the actual case; 
birds function on a series of locally constrained, neighborhood-defi ned interaction 
rules, and the fl ocking behavior emerges from the aggregate of these interactions 
[ 20 ]. The capacity to generate nonintuitive behavior is a vital advantage of using 
ABM for conceptual model verifi cation, as often the translation of generative mech-
anisms to system-level behavior produces paradoxical and unanticipated results that 
break a conceptual model.  

    Facilitation of Useful and Detailed Abstraction 

 ABMs provide for high-fi delity component abstraction of system structure. ABMs 
can be readily constructed using incomplete and abstracted knowledge, yet produce 
surprisingly highly “realistic” system level behavior. Because of this property it is 
advantageous in the initial steps of developing an ABM to keep the rules as simple 
and verifi able as possible, even at the expense of some detail. As such, meta- analyses 
of existing basic research often guide the development of an ABM [ 23 ]. ABMs 
constructed with admittedly incomplete and uncertain mechanisms representing 
statements of hypotheses can provide qualitative verifi cation of those hypotheses 
[ 24 ]. As with all computational models, the greater fi delity of mapping between the 
ABM and its biological counterparts enhances the correlation between simulation 
results and the real-world behaviors. An iterative process of refi nement of an ABM 
will lead to increased detail, possibly a stronger correlation to real-world data and a 
greater confi dence in the ability of the ABM to describe observable phenomena. 

 Agent-based modeling is an integrative modeling framework that can readily 
be used for communicable dynamic knowledge representation [ 10 – 12 ,  25 ] (see 
Fig.  3.1 ). Agent-based modeling, because of its emphasis on “things doing things,” 
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is generally more intuitive for nonmathematicians/computer scientists than more 
formal mathematical modeling methods such as ordinary differential equations, 
partial differential equations, and their stochastic variants. Agent-based modeling 
presents a lower threshold barrier for researchers to “bring to life” their concep-
tual models and integrate in silico methods with traditional in vitro and in vivo 
experiments [ 2 ]. 

 Since ABMs are knowledge-based models, constructed by instantiating bottom-
 up mechanisms (as opposed to inductive models, where mechanisms are inferred 
with the goal of explaining data), agent-based modeling addresses different model-
ing questions than equation-based inductive models. For instance, ABMs are not 
readily developed directly from a mass of raw data; they require that the modeler 
have a mechanistic hypothesis that, when instantiated in an ABM, can be used to 
generate simulated data, which can then be compared to the real-world data set. One 
can envision an iterative process by which inductive models are applied to large data 
sets, wet lab experiments are carried out to investigate the mechanisms inferred 
from the inductive model, and the experimentally confi rmed mechanisms are used 
as a basis of an ABM, which would close the discovery loop by recapitulating the 
original data set. 

 Agent-based modeling was pioneered in the areas of ecology, social science, and 
economics, but since 2000 they have increasingly been used to in the biomedical 
arena to study sepsis [ 11 ,  12 ,  26 ,  27 ], cancer [ 7 ,  18 ,  28 – 30 ], cellular traffi cking 
[ 31 – 35 ], wound healing [ 36 – 38 ], and intracellular processes and signaling [ 8 ,  25 , 
 39 – 44 ]. The majority of biomedical ABMs utilize cells as the primary simulation 
agent level, though there are several exceptions of modeling intracellular processes 
from [ 8 ,  25 ,  39 – 44 ], and we consider the use of agent-based modeling in epidemiol-
ogy, with its extremely rich background [ 45 ], as a separate discipline. From the 
standpoint of addressing the Translational Dilemma, cells form a ready level of 
“encapsulated complexity” that is both highly studied as a unit (i.e., cellular biol-
ogy) and can be addressed with relatively straightforward input–output rules [ 6 ]. As 
noted above, while ABM agent rules are often logical or algebraic statements, rules 
can be a mathematical model in itself. There are multiple examples of embedding 
complex mathematical models within a cell-level ABM agent [ 6 – 9 ,  14 ,  38 ,  46 ]. 
These examples emphasize the potential unifying role of agent-based modeling as a 
means of “wrapping” different simulation methodologies. This suggests that the 
metastructure of an ABM can be used as a template into which structured biomedi-
cal knowledge can be integrated to facilitate the instantiation of multiple mechanis-
tic hypotheses [ 47 ].   

    Tools for Agent-Based Modeling 

 Agent-based modeling environments require addressing certain software issues 
beyond the basic capabilities of more traditional object-oriented programming 
tools. These issues include emulating parallel processing to represent the actions of 
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multiple agents within populations, dealing with associated execution concurrency 
issues within those populations, establishing means of defi ning model topology 
(i.e., agent interaction neighborhood), and the development of task schedulers to 
account for the multiple iterations that constitute an ABM run. As a result of these 
issues, along with the case that many researchers who utilize ABMs are not trained 
computer scientists or programmers, many biomedical ABMs are created using 
existing ABM development software packages. These agent-based modeling envi-
ronments attempt to strike a balance between representational capacity, computa-
tional effi ciency, and user-friendliness. A noncomprehensive list of such ABM 
toolkits can be seen in Table  3.1 . All these platforms represent some trade-off 
among the triad of goals mentioned above. For an excellent review and comparison 
of many of these agent-based modeling toolkits, see [ 48 ].

       Agent-Based Modeling of Infl ammation 

 The diffi culty in engineering safe and effective therapeutic agents directed at infl am-
mation is a primary example of the Translational Dilemma in biomedical research. 
Because of these characteristics infl ammation represents perhaps the ideal target for 
systems biology and computational modeling with agent-based modeling. The use 
of agent-based modeling has dramatically increased since the year 2000 and is now 
a generally accepted means of performing computational biology. As is the case 
when discussing any specifi c modeling method, it should be reemphasized that 
agent-based modeling is only one of an array of methods that can be used to repre-
sent and investigate biological systems (such as those covered in other chapters in 
this book). Each of these modeling techniques has its strengths and weaknesses, and 

   Table 3.1    Freeware agent-based modeling toolkits   

 Toolkit 
name 

 Language/
Platform 

 Degree of 
programming 
expertise? 

 Degree of 
fl exibility?  Website 

 Swarm  Objective C, 
Java 

 High  High    http://www.swarm.org     

 Netlogo  Windows, 
Macintosh, 
Linux 

 Low  Low    http://www.ccl.northwestern.edu/
netlogo/     

 Starlogo  Windows, 
Macintosh, 
Linux 

 Low  Low    http://education.mit.edu/starlogo/     

 Repast  Java  Moderate/high  Moderate    http://repast.sourceforge.net/     
 MASON  Java  Moderate/high  High    http://cs.gmu.edu/~eclab/projects/

mason/     
 SPARK  Java  Moderate/high  Moderate/

high 
   http://www.pitt.edu/~cirm/spark/     
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potential modelers need to recognize that the modeling method chosen should be 
tailored to the question(s) being asked of the model [ 49 ]. One of the most effective 
ways of communicating the capabilities (and limitations) of a particular modeling 
method is through the use of examples. Since the rest of this book includes detailed 
descriptions of several ABMs involved in Translational Systems Biology, this chap-
ter presents a few examples of types of ABMs not explicitly covered elsewhere in 
this book. 

   ABMs of Infl ammation-Related Intracellular Processes 

 The characterization of intracellular pathways is the traditional focus of systems 
biology, with a long history of work and achievement in the development of math-
ematical models of cellular signaling and metabolic control. These models are gen-
erally biochemical kinetic models, utilizing deterministic and stochastic differential 
equations. However, the use of discrete-event, particle-based modeling, exempli-
fi ed by agent-based modeling, has certain applications in this arena. With increas-
ing awareness of the infl uence of the complex, compartmentalized environment of 
the intracellular milieu on intracellular dynamics, there is a need to account for 
issues of molecular crowding and spatial heterogeneity of the reaction milieu and 
how they affect enzymatic reactions within the intracellular environment. 
Additionally, the presence of subcellular structures, cytoskeletal elements, organ-
elles, and compartments call for the increasing incorporation of spatial properties 
and detail. Ridgway et al. [ 42 ] used an ABM of intracellular signaling to demon-
strate that the biochemical reaction kinetics in the prokaryotic cytoplasm was 
reduced from three dimensions to nearly two dimensions, with signifi cant conse-
quences for the dynamic modeling of control loops in which subtle changes in 
feedback determine the direction of a molecular switch. Pogson et al. [ 41 ] devel-
oped an ABM of control pathways affecting the transcription factor Nuclear Factor 
kappa B (NF-kB). These studies demonstrating the importance of the spatial distri-
bution in terms of nuclear translocation of the constitutive inhibitor of NF-kB, 
I-kappa-B (IkB), and the binding of IkB to actin, a cytoskeletal protein, a mecha-
nism subsequently identifi ed in their laboratory [ 40 ]. We developed an agent-based 
architecture called Spatially Confi gured Stochastic Reaction Chambers to demon-
strate that even an abstract representation of enzyme kinetics could, if suffi cient 
pathway component detail was included, reproduce canonical behavior at the cel-
lular level, as in the effect of preconditioning on the behavior of the Toll-like 
Receptor 4 (TLR-4) signaling pathway [ 25 ]. A screenshot of the SCSRC for TLR-4 
can be seen in Fig.  3.2 . Similarly, an ABM of NF-kB response to endotoxin uti-
lized molecular level agents nested within “mega-agents” representing different 
infl ammatory cell types to reproduce recognizable dynamics of endotoxin response, 
including priming and tolerance at both the transcription factor and cellular activa-
tion level [ 44 ].
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      Cell-Level ABMs of Systemic Infl ammation and Simulated Clinical Trials 
for Sepsis 

 The cell-as-agent level of component representation provides perhaps the most intui-
tive link between the laboratory-derived basic mechanistic knowledge and the struc-
ture of an ABM. Some of the earliest examples of biomedical ABMs were focused 
at this level leading to the realization that even abstract agent rules could produce 
very recognizable dynamics that could provide deep insights into the essential char-
acterization of a disease process [ 26 ,  29 ]. For example, an early ABM of systemic 
infl ammation and sepsis viewed the infl ammatory process as being governed by 
interactions at the endothelial blood interface [ 26 ]. This ABM generated four clus-
ters of distinct trajectories of model-system behavior purely by altering the degree of 
initial perturbation, trajectories that matched the four primary clinical scenarios 

  Fig. 3.2    Screenshot of spatially confi gured stochastic reaction chamber (SCSRC) model of TLR-4 
signaling. This fi gure demonstrates the underlying architecture of the SCSRC as well as the signal 
trajectory of a single LPS signal agent. Reaction chambers are oriented vertically, and TLR-4 
signaling propagates from the “top” of the model (representing extracellular space) towards the 
“bottom” (DNAs). The various signal transduction proteins are represented as  horizontal bars  
across the model. The trajectory of a single LPS signaling agent as it passed through the various 
layers of signaling. Note the irregular path of the agent, refl ecting the random movement rules that 
refl ect the stochasticity in molecular dynamics. Letter “A” denotes the initial extracellular space 
where the LPS agent is introduced. Letter “B” denotes the fi rst intracellular reaction space imme-
diately under the TLR-4 border. Letter “C” demonstrates the signal amplifi cation at the NF-κB 
activation site, as the single signal agent results in multiple NF-κB agents. Letter “D” denotes the 
DNA reaction space, as additional amplifi cation can be seen in simulated transcription. Letter “E” 
labels synthesized TNF molecules in the process of transport to the extracellular space, seen as the 
straight trajectories. This fi gure is reprinted with permission from [ 25 ]       
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associated with systemic infl ammatory response. This ABM also demonstrated that 
the mechanistic basis of infl ammation was the same whether the initiating insult was 
infectious, as in classical sepsis, or tissue damage, as in severe trauma. 

 The endothelial-surface systemic infl ammation ABM was further extended to 
perform in silico clinical trials based on published and hypothetical infl ammatory-
mediator- based interventions [ 27 ]. Published pharmacologic properties of a series 
of mediator-targeting compounds were inputted into the ABM simulating a sepsis 
population. The effi cacies of the interventions were then evaluated against a simu-
lated control population. None of the mediator-directed interventions led to a statis-
tically signifi cant improvement in simulated patient outcome, including a set of 
immune augmenting interventions (e.g., addition of Granulocyte Colony Stimulating 
Factor) and combination anticytokine therapy (intended to overcome possible path-
way redundancy). While these results were not totally unexpected, the exercise 
demonstrated that the ABM could be used as a means of assessing the veracity of 
the proposed intervention, i.e., what are the global consequences of intervening in a 
particular pathway, and is it actually a good idea to intervene at this point? The 
confi rmation that what appeared to be intuitively plausible points of mechanistic 
intervention did  not  in fact behave as expected when placed in a systemic context 
demonstrated the potential usefulness of agent-based modeling and dynamic knowl-
edge representation for hypothesis verifi cation. We suggest that one of the primary 
roles of dynamic knowledge representation is exactly this type of hypothesis evalu-
ation and verifi cation, intended to reduce the set of plausible hypotheses and thereby 
help direct future investigation by eliminating therapeutic dead-ends.  

   ABMs of Multiorgan Infl ammation and Failure 

 The structural/anatomic approach to multiscale modeling can be taken one step fur-
ther by using the modular property of agent-based modeling to link individual organ 
ABMs in a multiscale architecture. The approach was introduced in an ABM of the 
gut–lung axis of systemic acute infl ammation and multiple organ failure [ 12 ]. This 
ABM incorporates multiple structural and anatomic spaces, e.g., endothelial and 
epithelial surfaces as aggregated by cell-type into organ-specifi c tissues and fi nally 
to organ-to-organ interconnections and crosstalk (see Fig.  3.3 ). This architecture 
also  translates  knowledge across domain specialties (molecular biology to clinical 
critical care), representing molecular and cellular mechanisms and behaviors 
derived from in vitro studies, extrapolated to ex vivo tissue experiments and obser-
vations, leading to patterns of organ-specifi c physiology, and fi nally simulating 
clinically relevant, interconnected, multiorgan physiology including the response to 
ventilator support of acute respiratory failure. This ABM also posited certain char-
acteristics of the gut-derived proinfl ammatory compound that is circulated in the 
mesenteric lymph and induces pulmonary infl ammation. Examining the time course 
of pulmonary infl ammation and comparing that to generated factors following 
intestinal ischemia suggested that the mesenteric lymph infl ammatory compound 
was neither an initial infl ammatory cytokine nor a translocating luminal compound 
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manifesting decreased intestinal permeability, but rather a substance refl ecting 
 cellular damage of gut tissue with properties consistent with damage-associated 
molecular patterns (DAMPs). This last hypotheses remains to be completely con-
fi rmed by the sepsis research community, but at this time appears to be consistent 
with ongoing research in this area [ 50 ].

        Moving Forward: Scaling Dynamic Knowledge Representation, 
the Agent-Based Modeling Format 

 As noted in the Introduction, the Translational Dilemma arises not only diffi culties 
in multiscale representation and instantiation but is also a throughput problem. 
While computational modeling (including agent-based modeling) can potentially 
address the former, generating these models, even with a relatively intuitive method 
as agent-based modeling, is currently a highly specialized, laborious, and 

  Fig. 3.3    Screenshot of multibilayer gut–lung ABM of systemic infl ammation. The multiple 
bilayer topology of the gut–lung ABM is seen with the upper bilayer (letter A) representing the 
pulmonary bilayer, with  aqua cubes  representing pulmonary epithelial cell agents,  red cubes  rep-
resenting pulmonary endothelial cell agents, and below are spherical infl ammatory cell agents. The 
lower bilayer (letter B) represents the gut bilayer, with a similar confi guration, the only difference 
being that gut epithelial cell agents are  pink . Circulating infl ammatory cell agents move between 
these two bilayers on a time schedule calibrated to the rate of systemic circulation and gut lymph 
fl ow. This ABM represents an aggregate of several submodels including endothelial-based infl am-
mation and epithelial tight-junction protein metabolism. This ABM was able to reproduce the 
effects of gut ischemia in propagating the development of acute respiratory failure, the salvaging 
effects of mechanical ventilation, and posited the nature of the gut ischemic product driving respi-
ratory failure as being tied to endothelial cell/tissue damage. Figure reproduced with permission 
from [ 12 ] under the creative commons license       
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time- consuming task. Therefore, developing a scalable global strategy to overcome 
the Translational Dilemma will require substantially lowering the threshold for the 
general researcher to engage in computational modeling. We suggest that the pro-
cess of constructing dynamic computational models can be augmented by leverag-
ing ongoing work in bioinformatics and knowledge representation, primarily related 
to ontologies [ 10 ,  47 ,  51 ]. 

 Ontologies are knowledge classifi cation systems that provide a structured vocab-
ulary and taxonomy for a particular scientifi c domain [ 52 ]. Ontologies utilize taxo-
nomic class structures, their properties, and the relationships between the constitutive 
concepts to organize information within the domain. The use of ontologies is well 
established in bioinformatics, and many bio-ontologies are currently found in an 
online repository called BioPortal [ 53 ], which is managed by the National Center 
for Biomedical Ontologies (NCBO) [ 54 ]. 

 However, despite their usefulness, ontologies/bio-ontologies remain primarily 
classifi cation systems that defi ne identity relationships between concepts but have 
diffi culty expressing dynamic and functional relationships than can be used to rep-
resent mechanistic rules; this gap is the transition from a descriptive model to a 
simulation. There has been work converting ontology-based knowledge representa-
tions into dynamic mathematical models of molecular signaling pathways [ 36 ,  55 –
 59 ]. However, while useful for representing the behavior of specifi c pathways, these 
approaches focus on working within a single ontology (namely the Gene Ontology) 
and do not deal with the multiscale aspects of biology, i.e., the transition of mole-
cules to cells to tissues to the whole organism. Alternatively, ABMs are well suited 
to be an integrating modeling paradigm since they capture the multiscale organiza-
tion of biological systems (see Fig.  3.1 ). We suggest that an ABM-based framework 
can be used to integrate the knowledge from multiple ontologies describing differ-
ent aspects of a biological system (components, functions, space, etc.) in order to 
construct a dynamic multiscale, translational model. 

 We propose the agent-based modeling format (ABMF) as a framework that 
leverages and integrates ontological descriptions of biology to facilitate the con-
struction of dynamic, executable knowledge representations with multiscale repre-
sentational capacity [ 47 ]. The ABMF integrates terms and metadata from BioPortal 
ontologies into three-level modules formatted around the information and data 
needed to construct an ABM. These levels are centered on the level of the simula-
tion agent in a “middle-out” confi guration [ 6 ]. A schematic of an ABMF module 
can be seen in Fig.  3.4  and is organized in a series of orthogonal descriptive class 
structures that can be populated with terms extracted from BioPortal ontologies. 
The modular structure of the ABMF allows for nesting of modules and a recursive 
description of biological systems; this multiscale organizational recursion has been 
noted as a property of biological systems [ 60 ].

   We emphasize that the ABMF is  not  “the” format for an executable ontology 
layer; we hope that there will be development of similar types of tools, using 
 different modeling paradigms. However, we believe that an agent-based modeling 
paradigm demonstrates a robust, evolvable approach that can be spur future 
development. 
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 We further note that the ABMF is not a modeling platform, but rather a 
 metastructure that helps collect and organize the components needed to construct an 
ABM from a biological hypothesis. There is still a signifi cant gulf between the 
formatting of a biological hypothesis and the ability to construct a computer simula-
tion of that hypothesis. The ABMF provides a pathway towards automation by 
leveraging the structured vocabulary and inference capabilities of ontologies. 
Additional text analysis and information extraction technologies can be integrated 
with an ABMF constructor and provide a semiautomated way to collect potential 
parameter values with which to populate a simulation program. 

 The expression of a conceptual biological model in the ABMF places that bio-
logical model into computable form, perhaps facilitating conversion into an execut-
able simulation through the use of a semi-intelligent computational agent. There has 
been recognition of the importance of ontologies in the development of intelligent 
system-aided model and simulation generation, with several proposed schema for 
the development and use of ontology-driven processes [ 61 – 63 ]. The repetitive 
nature of certain steps of model construction suggests that these steps in the creation 
and programming of a simulation model can be expressed as task-based algorithms 

  Fig. 3.4    A schematic description of an agent-based modeling format (ABMF) module. The 
ABMF module incorporates three levels of system representation centered on the simulation agent 
level, which corresponds to the classical agent level in an ABM. The system level corresponds to 
agent population behavior (including so-called emergent phenomenon), and the lowest level of 
organization, generative mechanisms, corresponds to agent rules. Inputted generative mechanisms 
can be in the form of any formal model system including another ABM. This gives the ABMF a 
recursive structure that allows nesting of ABMF modules and makes it a potential pathway to 
hybrid computational models that concurrently employ multiple modeling and simulation meth-
ods. Reprinted with permission from [ 47 ]       
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embedded into an intelligent computational agent, which then treats simulation 
 construction as a planning task using formal logical inference. Computational agents 
have been used in this fashion in bioinformatics for data integration and information 
fl ow management [ 64 – 68 ]. We have proposed that the task of converting biological 
conceptual models into executable simulations, including those associated with the 
population of the ABMF and subsequent conversion into ABMs, could be carried 
out by an intelligent computational agent, which we term a “computational model-
ing assistant (CMA)” [ 51 ]. We envision that this type of agent-directed process can 
semiautomate the specifi cation-mapping work of model construction through the 
use of ontology-based/traditional predicate logic inference structures to generate 
simulation code. This will move towards achieving the translational research goal of 
high-throughput instantiation of conceptual models. Treating the steps of the com-
position process as a planning task can improve the modularity, robustness, and 
scalability of knowledge integration by creating a “middle-ware” discipline, i.e., 
 modeling , and thereby focusing future development on the algorithmic expression 
of the mapping rules used in model development that form the CMA’s inference 
instruction set. This allows expansion of the CMA’s capabilities and expressiveness 
while maintaining interoperability with established but ongoing development in the 
areas of formal semantics/knowledge representation and modeling and simulation 
methods. We believe that this type process automation advances offered by the 
CMA will lead towards the development of cyberenvironments providing scalable 
high-throughput hypothesis instantiation and evaluation.   

    Challenges to the Use of Agent-Based Modeling 

 As with all modeling methods, agent-based modeling is not without its limitations. 
One common issue shared with all computational and mathematical modeling 
methods is that the quality and reliability of the models are directly related to the 
reliability of the underlying assumptions of the model and the quality of their imple-
mentation during construction of the model. This issue can be addressed by empha-
sizing transparency of both underlying assumptions and implementation details 
with respect to the construction of an ABM. The ODD protocol, while not devel-
oped specifi cally with biomedical ABMs in mind, provides a useful reference point 
with respect to documenting the structure and goals associated with an agent-based 
modeling project [ 69 ]. 

 One shortcoming of agent-based modeling is the diffi culty in applying formal 
analysis to the relationship between the agent rules and the behavior of the system. 
Due to the combined stochastic behavior of agents and the diffi culty in assigning 
scalar metrics to account for the spatial aspects of an ABM’s output, it can be very 
challenging to evaluate the effect of parameter values and model structure on an 
ABM’s behavior. Alternatively, equation-based models have well-established pro-
cedures for analytical tasks such as parameter sensitivity analysis, bifurcation anal-
ysis, and behavior-state-space determination. Work on developing mathematical 
descriptions of ABMs offer the prospect that formal analysis may be available in the 
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future [ 70 ]. In the meantime, ABM researchers use a variety of strategies, such as 
heuristics [ 5 ,  27 ], literature-based constraints [ 31 ,  34 ] and Latin Hypercubes [ 9 ,  71 ], 
for parameter estimation and sensitivity analysis. 

 Some of the apprehension associated with the analysis of ABMs can be addressed 
by viewing ABMs as objects more akin to wet lab experimental platforms rather 
than more traditional, equation-based mathematical models. Pattern-oriented analy-
sis, in which corresponding patterns of dynamic behavior are used to relate the 
computational ABM to its real-world referent, allows ABMs to be evaluated much 
in the same way as wet lab systems or model organisms [ 24 ]. From this regard, the 
stochastic and emergent properties of ABMs reinforce their ability to capture the 
robustness of dynamic behavior seen in complex systems, thereby allowing more 
insight into their core organizational structure. 

 ABMs are, in general, more computationally intensive than equation-based mod-
els. The increased computational requirements place constraints on both the size of 
ABMs in terms of number of agents as well as the complexity of their internal rule 
systems. The natural solution to this bottleneck is to implement very large-scale 
ABMs on current high performance computing platforms. However, there are 
intrinsic properties of ABMs, primarily related to the high degree of dynamics in the 
agent-to-agent interaction and communication network that challenge the ability to 
implement ABM on highly distributed memory systems. Certain types of model 
architectures, mostly incorporating limited or relatively static interaction neighbor-
hoods with a high ratio of intra-agent computation (i.e., very complex mathematical 
rules) to interagent communication, are more suited to implementation on these 
massively parallel computer architectures. These types of models are also suited to 
implementation using Graphical Processing Units (GPUs), which offers the possi-
bility of “supercomputer on a desk” computational power for selected types of 
ABMs [ 72 – 74 ]. It should be noted that there are also nontrivial modeling issues 
associated with parallel implementation of ABMs, aside from the computer science 
challenges just noted above. The selection of the scale of process to be distributed 
across multiple processors may have consequences with respect to concurrency and 
event scheduling and to the mapping of the simulation behavior back to the biologi-
cal referent, for instance, attempting to distribute a single agent’s rules over a series 
of processors. Thus, far parallel ABM implementations have not explored the distri-
bution of a single agent’s execution across multiple processors and have opted for a 
more organizationally defi ned distribution strategy that expands the overall size of 
the ABM (i.e., more agents) and keeps the implementation of agent-scale behavior 
at the processor and subprocessor level.  

    Conclusions 

 The Translational Dilemma is the greatest challenge facing the biomedical research 
community today. Future operational procedures for biomedical science should 
involve technological augmentation of all the steps of the scientifi c cycle and allow 
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the knowledge generated from such research to manifest in multiple areas. These 
include the development of highly predictive, personalized simulations to stream-
line the development and design of therapies, simulating the clinical application of 
these therapies in population studies (in silico clinical trials) and predicting the 
effects of drugs on individuals. We suggest that the agent-based paradigm, incorpo-
rating knowledge encapsulation, modularity, and parallelism can play an important 
role in the development of this metaengineering process. Agent-based modeling can 
provide an integrative architecture for the computational representation of biologi-
cal systems. Expanding the tools for AI-augmentation of computational dynamic 
knowledge representation (such as the ABMF and the CMA) can signifi cantly 
reduce the threshold for the general researcher to utilize computational modeling 
and allow investigators to “see” the consequences of a particular hypothesis struc-
ture/conceptual model, such that the mechanistic consequences of each component 
of the hypothesis can be probed and evaluated. Dynamic knowledge representation 
enables the instantiation of “thought experiments”: the exploration of possible alter-
native solutions and identifying those that are plausible, i.e., consistent with the 
observed data. These models can aid in the scientifi c process by providing a trans-
parent framework for this type of speculation, which can then be used as jumping 
off points for the planning and design of further laboratory experiments and mea-
surements. It is hoped that the increasing use of this type of knowledge representa-
tion and communication will foster the further development of “virtual laboratories” 
and in silico investigations.     
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When Einthoven published the first electrocardiogram (EKG) recordings in 1902, he 
would not have imagined the range of EKG applications being explored by clini-
cians, scientists, and engineers more than a century later. Certainly, Einthoven and 
his contemporaries appreciated EKG morphology—the shape of the waveform itself 
including presence or absence of particular features and relationship of these features 
to one another. Alterations in these shapes can be linked directly to various cardiac 
disorders, and the biology and physics behind most of these phenomena are straight-
forward. They would nonetheless marvel at the widespread application of the EKG 
enabled by technical advancements; since the days of Einthoven’s 600- pound galva-
nometer, improvements have enabled high-fidelity EKG recordings to be obtained 
inexpensively in a variety of settings, by medical professionals and laypersons alike. 
For example, automated external defibrillators rely on the EKG to appropriately 
deliver electrical shocks to defibrillate a patient, possibly at the hands of someone 
with no formal training. The cardiac electrophysiologists of the early 1900s appreci-
ated the anatomy, physiology, and physics behind the EKG but could not have pre-
dicted its widespread application in the twenty-first century fostered by technology.

Even more surprising to early cardiac electrophysiologists is the newfound 
potential of the signal to reflect whole-organism response to acute illness, systemic 
inflammation, and other pathophysiology of noncardiac origin. While an elevated 
heart rate has long been recognized as a sign of infection (and heart rate changes 
with numerous other physiological states such as exercise and sleep), heart rate also 
varies in a more subtle way, with each individual beat. These “beat-to-beat” differ-
ences are detectable only via precise measurements of the cardiac cycle such as the 
distance between R-wave peaks (Fig. 4.1) or other sentinel points on the EKG. The 
magnitude and pattern of these subtle variations, and their relationship to various 
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states of health and disease, comprise modern heart rate variability (HRV) analysis. 
HRV has been studied since the 1960s, especially with respect to fetal monitoring 
and cardiac applications [1], but only recently have these techniques been applied to 
inform clinical decision making in acute illness and inflammation. For example, 
changes in HRV have been correlated with development of sepsis in neonates; a 
large randomized trial recently showed significant reduction in mortality attributed 
to a novel sepsis monitoring system based on HRV [2].

Many techniques used to measure and understand HRV draw from the fields of 
complex systems and chaos theory. These disciplines began to emerge at the same 
time as early formal analyses of HRV began [3] and provide appealing conceptual 
frameworks in the view of the body as a complex system, or a collection thereof. 
A host of analytic tools, with origins in applying chaos theory to other domains such 
as weather forecasting and information transmission, are directly applicable to ana-
lyzing series of cardiac interbeat intervals. Entire books have been dedicated to 
tools, methods, and applications in the broad field of HRV analysis [4, 5]. This 
chapter provides a short introduction to the rationale, methods, and applications of 
HRV analysis for those interested in applying such techniques to the study of acute 
inflammation and critical illness. It reviews selected methods of studying HRV, their 
application to acute illness and inflammation, and concludes with future directions 
for this exciting field. Throughout, the term “HRV” will be used to reference any 
analysis of cardiac interbeat intervals including complexity measurements, not 
being restricted to spectral or other analyses from which “HRV” historically derives. 
The following section briefly describes the biological basis of human HRV and 
complexity, prior to detailing selected HRV methods and applications.

 The Biological Basis of Heart Rate Variability

Multiple regulatory mechanisms have evolved to ensure adequate blood pressure via 
changes in heart rate and contractility. While a complete description of these 
 mechanisms is beyond the scope of this chapter, a brief discussion of cardiac regula-
tion will underscore several important concepts in the application of HRV to acute 
inflammation or other domains: First, the regulatory mechanisms relevant at time 
scales of interest in acute inflammation or critical illness can generally be understood  

Fig. 4.1 Beat-to-beat heart 
rate variability. HRV 
typically refers to the subtle 
variation in duration of 
subsequent cardiac cycles 
measured between R-wave 
peaks or other fiducial points
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as feedback control systems with associated inherent variability; second, the heart 
itself contains sufficient regulatory control to be able to serve the body well (albeit 
imperfectly) absent any external input; and third, complexity in cardiac beat-to- beat 
intervals likely arises out of interplay between relatively uncomplicated but nonlin-
ear regulatory mechanisms both internal to the heart itself, as well as involving the 
central nervous system and other exogenous control pathways.

Negative feedback control, i.e., the magnitude of the control signal being attenu-
ated as the output approaches a desired setpoint, is the hallmark of both excitatory 
and inhibitory cardiac regulation. Several excellent primers to heart rate regulation 
can be found online (e.g., [6]), and the reader unfamiliar with these mechanisms is 
urged to review a more complete and pictorial source to augment this brief descrip-
tion. Essentially, heart rate is directly mediated by sympathetic and parasympathetic 
(vagal) inputs: increased parasympathetic input tends to decrease heart rate via inhi-
bition of pacemaker cells, and increased sympathetic input tends to increase heart rate 
via pacemaker cell stimulation. Changes in heart rate due to parasympathetic versus 
sympathetic inputs typically occur at different time scales, reflecting the evolution of 
the sympathetic nervous system to mediate “fight or flight” responses to external 
stimuli and the parasympathetic to mediate internal processes, when external threats 
or other stimuli are absent. Note that while parasympathetic processes are typically 
thought of as being slower due to their visceral nature, organs including the heart 
often respond more rapidly, and/or at higher regular frequencies, to these inputs. 
Thus, the time course of parasympathetic-mediated changes in heart rate—decreases 
in heart rate with increased parasympathetic activity, or vice- versa—is typically more 
rapid than changes mediated by sympathetic activity. This becomes important when 
interpreting spectral analysis: signal processing methods that can discern the various 
contribution of changes at different time scales to the overall signal. In the case of 
interbeat intervals, parasympathetic activity has been attributed to variation in heart 
rate that occurs more quickly, while both parasympathetic and sympathetic inputs 
drive changes that occur more slowly, at lower frequencies (see Methods below). The 
sympathetic and parasympathetic branches of the autonomic nervous system provide 
most, but not all, of the inputs to heart rate control (others include thermoregulatory 
and endocrine mechanisms [7]), and operate as feedback control systems to control 
rate in response to external stimuli and changes in blood pressure.

Indirect regulation of heart rate becomes considerably more complicated but can 
still be understood in terms of individual, albeit overlapping, feedback mechanisms. 
Because blood pressure is central to cardiovascular regulation, nearly any factor 
which alters blood pressure can impact heart rate via feedback from baroreceptors 
(pressure sensors located in the carotid sinus) to central nervous system centers that 
generate excitatory and inhibitory inputs to heart rate via sympathetic and parasym-
pathetic nerves, respectively. Further complicating the milieu are stretch receptors 
within the myocardium that relay input to the central nervous system about how 
much the heart is filling with each cardiac cycle, which in turn stimulates sympa-
thetic activity to increase rate and contractility. Finally, diverse biochemical phe-
nomena and intrinsic mechanisms also can affect heart rate. Fundamentally, heart 
rate is dependent upon cyclic ion flux across pacemaker cell membranes, and 
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alterations to either these passive channels or active ion pumps can alter heart rate, 
or change the responsiveness of pacemaker cells to external excitatory or inhibitory 
input. Properties of the myocardium itself can modulate heart rate, including the 
fact that increased stretch tends to increase contractile force (i.e., Frank–Starling 
mechanism) which in turn is coupled with heart rate (i.e., the Bowditch effect).

This intrinsic regulation allows the heart to function well even in the absence of 
external neural inputs. Since Beck and colleagues’ early case studies of heart rate in 
transplant patients [8], many have investigated the remarkable ability of the heart to 
sufficiently maintain blood pressure without connection to the autonomic nervous 
system. In the months and years following transplant, both sympathetic and para-
sympathetic fibers gradually reinnervate the heart [9–11], providing an excellent 
opportunity to characterize regulatory mechanisms such as the effect of sympathetic 
reinnervation, which seems to occur prior to or is more robust than parasympathetic 
regrowth [12]. While feedback loops regulating heart rate can be isolated and stud-
ied in nontransplant patients using medications to block various pathways and/or 
artificial stimuli such as baroreflex pressure cuffs or tilt tables, studying transplant 
patients and the gradual return of individual central regulatory mechanisms has 
been key to understanding heart rate control. At particular points in the neural 
regrowth in some patients, heart rate responses can be observed which represent a 
simple (i.e., first order) feedback system [12].

Variability is inherent to such feedback control systems, even when the system 
being controlled is in a constant or restful state. Consider for example a simple 
thermostat, designed to trigger a heater to maintain a constant room temperature 
during winter. The outside temperature is constant, and there are no other sources of 
heating or cooling. The room temperature over time might vary as shown in Fig. 4.2. 
When the thermostat is first set, the heater is turned on and room temperature 
increases. As the room reaches the thermostat setpoint the heater is turned off, tem-
perature overshoots, then falls. When the temperature drops below setpoint the 

Fig. 4.2 Feedback control 
gives rise to variability. In 
this example, temperature 
varies in a room controlled by 
a thermostat, illustrating the 
inherent variability arising 
from feedback control. Inset: 
Simple feedback control 
system diagram. The output 
of the system at any time is a 
function F of previous output 
and initial conditions
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heater is again activated (thermostats often implement hysteresis—essentially 
delays and/or slightly different temperatures for turning the heater on and off as 
shown by the dotted lines—to prevent rapid cycling). Similarly, healthy cardiac 
regulatory mechanisms result in a heart rate that varies around a given set point, 
even when a subject is resting quietly. The facts that heart rate is influenced by mul-
tiple inputs simultaneously, and that feedback signals are continuous versus simple 
“on–off” signals, makes the pattern of oscillation much less predictable than the 
temperature in a thermostat-controlled room. Despite being difficult to predict, 
heart rate varies subtly around a setpoint, or multiple setpoints simultaneously, and 
mathematical models have predicted these complex patterns arising from multiple 
negative feedback processes [13, 14].

It is both the concurrent action of multiple individual feedback control systems, 
as well as nonlinear behavior of these individual pathways, that give rise to com-
plexity in the heart rate signal. Continuing the above example, the heater simply 
being turned on or off is not particularly representative of physiologic control path-
ways, as they typically exhibit more continuous behavior (e.g., heart rate is signaled 
not to simply go fast or slow, but to change in proportion to the degree of need 
perceived by the body). A straightforward feedback system exhibiting such behav-
ior has been described by Gleik [3] and others and is an excellent example of how 
complexity arises from such systems. The output (e.g., temperature or heart rate) 
changes in proportion to the output at some prior time, adjusted by the difference 
between that prior output and some value, times a constant (gain term). In other 
words, the temperature “x” at any given time “t” depends on what temperature the 
room was before (time “t − 1”) and the output of the heater since that time, where the 
output of the heater is proportional to the deviation of the temperature from a refer-
ence point. This can be described mathematically as:

 x ax xt t t= -- -1 11( )  

Note that the interval to the prior point in time (“t − 1”) is arbitrary and is simply 
the duration over which the heater output will not change while the system is sam-
pling and processing the next value. The next value is easily calculated from the 
previous one. From this straightforward system, surprisingly complex patterns of 
outputs can be obtained depending on the value of a (Fig. 4.3). When a is below 
about 2.9, the system converges to a constant value, sometimes after a brief oscilla-
tion depending on the initial value of x (Fig. 4.3a). As a increases, interesting pat-
terns emerge in the output: first, it converges on two discrete values (Fig. 4.3b), then 
four (Fig. 4.3c), then eight, until many different values emerge (Fig. 4.3d). While 
the signal might at first appear random, upon closer observation similar (but not 
identical) repeating patterns can be seen. Modifying the value of a will produce a 
signal of increasing complexity. It is not random, yet without knowledge of the 
underlying equation and precise value of the output at any given time point, the 
signal is very difficult to predict. The degree of complexity in a signal can be 
described as extent to which it is unpredictable, but not necessarily random, and 
various analytic methods can quantify this “nonrandom unpredictability.”

The following section details selected methods of assessing HRV (including 
complex variability) that arise naturally from cardiovascular feedback control 
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systems. Again, the individual control pathways are generally straightforward and 
well understood but can give rise to surprising patterns of heart rate changes, just as 
the relatively simple feedback control equation above generates complex patterns 
that seem to belie the simplicity of the underlying computation. HRV analyses can 
detect changes in theses control mechanisms, or in the ability of the heart to respond 
to their signals, providing new opportunities to understand human response to acute 
inflammation or other sequelae of critical illness or injury. In clinical applications, 
the challenge is to detect changes in the complex output of a system and relate them 
to faults in particular feedback loops to inform medical decision making in mean-
ingful, cost-effective ways. Prior to exploring these applications below in 
“Applications of Heart Rate Variability in Critical Illness and Acute Inflammation,” 
selected methods to characterize HRV by measuring subtle changes in cardiac inter-
beat intervals are described below.

 Introduction to Techniques for Measuring Heart Rate 
Variability

Various techniques have been devised to measure HRV, and lack of standardization 
combined with the research community’s healthy desire to innovate has resulted in 
an extensive array of HRV analyses. Many HRV measurements overlap in the 

Fig. 4.3 A straightforward 
feedback control system 
produces complex output.  
As a increases output 
becomes increasingly 
unpredictable. With a = 2.8 
the output converges to a 
constant value (a). The output 
converges to two oscillating 
values when a = 3.3 as  
shown in (b), and four  
values when a = 3.5 (c). 
Finally, when a = 3.9 output  
is unpredictable, but  
not random (d)
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information they provide and/or the types of algorithms used. Furthermore, choice 
of a particular method is often determined not only by the particular phenomena or 
application of interest but also by available expertise, technology, and personal pref-
erence. Given the wide array of choices and a selection process that can seem some-
what arbitrary when reviewing published reports, choosing a particular technique 
can be daunting. This section outlines steps common to all HRV measurement 
methods and presents examples of selected techniques to highlight some general 
issues in choosing and applying particular methods. Rather than attempt to list and 
describe the many possible algorithms for HRV analysis (notable summaries of 
HRV methods, guidelines, and interpretive caveats can be found in the literature 
[15–19] and online [20]), several techniques are presented in detail and in order of 
increasing technical expertise needed to understand and apply them successfully. 
Finally, software tools for capturing and preprocessing EKG signals and computing 
various HRV measurements are briefly reviewed.

Regardless of the particular HRV measurement under consideration, analysis 
consists of the following general steps:

 1. Data acquisition: The EKG must be digitally sampled and stored along with 
associated information about the subject and conditions during the recording. 
Signal metadata—information about the collection method itself, such as sam-
pling frequency, signalduration, and precision—may also be stored.

 2. Signal preparation: Most methods require some degree of filtering, feature detec-
tion, or data transformation prior to processing. This step may include peak 
detection, noise rejection, removal of ectopic beats, and so on.

 3. Processing: The HRV algorithm(s) are applied to the prepared signals, yielding 
HRV measurements. Results can be expressed numerically, but graphs are 
increasingly commonplace to describe HRV as a function of scale, frequency, or 
duration.

 4. Interpretation: Results are evaluated for technical, mechanistic, or clinical 
implications.

The first step, acquiring the EKG signal, is usually accomplished by interfacing 
to a commercial medical EKG monitor. These devices have become increasingly 
reliable, inexpensive, and straightforward to interface and can serve all but only a 
few special-purpose HRV analyses or applications. Signals should be captured via a 
digital interface to the monitor; it is usually more difficult and expensive to ade-
quately sample analog outputs. Commercial software exists for interfacing to com-
mon monitors (e.g., solutions from Capsule Technologie or Excel Medical) and 
vendors increasingly provide documentation, sample software, or even built-in data 
export functionality via USB hardware or network connections. Various academic 
efforts [21–24] have described systems designed to capture, store, and/or manage 
EKG signals from inpatient medical monitoring systems; while such efforts may be 
technically beyond the scope of most HRV research, they can inform data capture 
and storage decisions or provide samples of EKG data for those unable to collect 
their own signals. Regardless of the data capture method used, it is often useful to 
document—and sometimes control—the conditions under which the EKG record-
ings are made. Generally speaking, short-term recordings should be made when the 
subject is in a quiet, relaxed state, undisturbed by sudden movement, abrupt changes 
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in noise or lighting, or other stimuli. Signals should be of sufficient length to allow 
for trimming artifacts that may occur when recordings are started or stopped or to 
allow for a sufficient baseline period. Finally, in lieu of recording EKG samples, 
investigators without capability of acquiring their own data can take advantage of an 
ever-increasing number of publicly available EKG signal libraries such as those 
available via the Physionet project [25, 26] and MIMIC II database [24].

Once signals are captured, most HRV methods require some degree of prepro-
cessing prior to applying algorithms that will compute variability metrics. For 
nearly all HRV analyses, an R–R tachogram is generated: a series of interbeat inter-
vals between successive peaks detected in the EKG (Fig. 4.1). The R-wave peak or 
other fiduciary point in the cardiac cycle can be used. Some HRV methods utilize 
integer heart rate data exported by most modern medical monitors along with the 
EKG waveform; while less accurate and precise then interbeat intervals extracted 
from high-fidelity waveform recordings, integer heart rate is considerably easier to 
capture, store, and process automatically, thus may be useful for preliminary analy-
ses or when extremely large datasets must be analyzed. Rarely, the EKG waveform 
is analyzed directly with little or no preprocessing.

Regardless of the type of heart rate signal used, a crucial step during preprocess-
ing is for the investigator to understand the impact of various types of noise or other 
artifacts on the HRV technique being used, and possibly take corrective steps. For 
example, algorithms vary greatly in their sensitivity to ectopic or missed beats, 
which may result from actual abnormalities in the subject’s heart rhythm or arise 
from technical issues in beat detection and artifact rejection. Some of the more 
straightforward methods that make use of standard deviation or pattern matching 
algorithms are relatively insensitive to a small proportion of missing/extra beats, 
while spectral analyses can be significantly affected and thus require careful work 
in preprocessing to remove ectopic beats and interpolate missing ones. Detrending 
is often performed, and more complex underlying patterns (such as respiratory sinus 
arrhythmia, the natural phenomena of heart rate increasing slightly during inspira-
tion) might intentionally be removed, or possibly enhanced. Ideally, trained person-
nel manually review the original EKG signal, R–R tachogram, and filter output to 
ensure data quality prior to applying HRV algorithms.

The remainder of this section describes three types of methods for assessing 
HRV, with illustrative examples, in order of the expertise needed to easily implement 
the techniques and successfully interpret results. The first techniques are straightfor-
ward time-domain methods that can be implemented using built-in functions of most 
common spreadsheet applications. Next, simpler nonlinear methods are described, 
which require some degree of programming but could nonetheless be implemented 
using commonly available functions in a spreadsheet application. Finally, frequency-
domain analyses are covered, which typically require more involved programming 
and interpretation. Advantages and pitfalls of each methodology are presented, as 
are other considerations in selecting a particular analytic method such as signal 
length, sampling frequency, and other recording conditions. Finally, software tools 
for performing these and other types of HRV analyses are reviewed.
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Some of the most straightforward measurements of HRV are based on standard 
deviation. As with many time-domain methods, the standard deviation of all R–R 
intervals, or SDNN, reflects overall variability irrespective of frequency (i.e., slow 
vs. more rapid changes in heart rate) and can be calculated simply by using built-in 
spreadsheet functions such as STDEV in Microsoft Excel®. It is important to note 
that standard deviation is influenced by signal length, especially when underlying 
trends are present as shown in Fig. 4.4. Thus, choice of recording duration, and 
whether or not to detrend the data, are important when using HRV methods based on 
standard deviation. Another essential aspect of choosing recording duration, regard-
less of analytic method, is the fact that the EKG should be recorded long enough to 
adequately capture the time course of variation of interest. Furthermore, recordings 
should be taken at times that minimize bias or noise in the signal. Practically, the 
example of diurnal variation highlights these points: recordings for such purposes 
should be at least 24 h long (ideally, exactly 24 h long), and if they cannot be recorded 
for 24 h at least the start/stop times should be similar in all subjects. For shorter 
signals, recordings should be obtained when the subject is in a relatively quiescent 
state (unless of course the effects of particular stimuli on HRV are the subject of the 
investigation). In the case of methods that rely on standard deviation, the shortest 
recording duration typically used is 5 min, with some methods (e.g., SDANN) divid-
ing longer signals up into 5-min segments in order to analyze relatively short-term 
contributions to HRV. Some of the largest studies in HRV in clinical populations 
thus far have utilized standard deviation in integer heart rate over 5-min intervals, the 
distribution of which during the first hours of intensive care unit (ICU) stay can pre-
dict trauma patient mortality [27, 28]. Numerous other methods have been described 
that compute relatively simple statistics of R–R intervals, such as pNN50, the pro-
portion of intervals that differ by more than 50 ms from each other [29].

Advantages of these straightforward time-domain methods like SDNN, SDANN, 
or pNN50 include the fact that they are simple to compute using everyday software 
and are relatively insensitive to noise unless very short signals are considered or 
large outliers or underlying trends are not filtered. Any noise present is likely to 
increase reported variability metrics; the investigator should be aware of effects of 

Fig. 4.4 Importance of 
detrending in HRV analyses. 
R–R intervals plotted over 
time showing a significant 
underlying trend (black line), 
and the same data after 
detrending (gray line). The 
standard deviation, SDNN, of 
the data prior to detrending is 
0.089 s, compared to 0.030 s 
in the detrended sample
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noise or other phenomena such as baseline shifts on these or any analyses, especially 
if EKG recordings were obtained in clinical versus controlled laboratory settings. 
The main disadvantage of these methods is that results inherently represent all vari-
ability in aggregate, regardless of underlying time course or frequency. As such, it is 
difficult to postulate about contributions to or causes of variability. Also, these meth-
ods cannot distinguish between complex and noncomplex variability, since the 
ordering of the R–R intervals is relatively unimportant in computing the standard 
deviation or other similar analyses. As the following paragraphs will describe, other 
methods can identify both underlying time course and complexity of HRV.

The complex, nonlinear variation of cardiac interbeat intervals has been well 
described [30–33], and several now-popular methods for characterizing this vari-
ability were developed by Goldberger, Peng, Costa, and colleagues at the Rey 
Institute for Nonlinear Dynamics in Medicine. Analytic methods include detrended 
fluctuation analysis [34] and multiscale entropy (MSE) [35], which complement a 
number of other tools developed elsewhere including fractal dimension [36], 
approximate entropy [37, 38], Lyapunov exponents [39, 40], and many others. This 
section highlights MSE, as it has been applied in several clinical domains [41–47] 
and illustrates two important concepts in HRV analysis: signal complexity and scale.

Signal complexity can be thought of as the degree of unpredictable variation, and 
measurements like entropy have been developed to reflect complexity in a time 
series based on Shannon’s seminal work in communication theory [48]. Variations 
on the calculation of entropy have been proposed; the idea of sample entropy [49, 
50] is straightforward to describe and comprises the entropy measurement used in 
MSE. Essentially, given a signal like the one depicted in Fig. 4.5, sample entropy is 

Fig. 4.5 Calculating sample entropy. First, data points are assigned based on ranges of values 
defined by the variance of the data series. This example shows the first three data points being 
assigned to ranges A, B, and C, and corresponding subsequent points are identified by circles, 
triangles, and squares, respectively. The number of A, B sequences is counted (arrows) and 
divided by the number of times the sequence A, B, C occurs (filled arrows), essentially measuring 
how predictable a third point in a sequence is based on the first two. These counts are aggregated 
over all possible sequences in the series and the natural logarithm is taken of the ratio to compute 
sample entropy
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computed for each sequence of N points by first counting the number of the first 
N − 1 points that exhibit a similar pattern, and then the number of times that the last 
(Nth point) matches that first pattern. The figure illustrates the straightforward case 
of three points, where there are X matching sequences of two points (values alpha 
and beta), and Y matching sequences of three points (values alpha, beta, and 
gamma). The predictability of this and subsequent sequences in the signal can be 
described in terms as the ratio of the number of times it was possible for the sequence 
A, B, and C to occur over the number of times it actually was observed. In other 
words, how well does the sequence A followed by B predict C? Aggregating analy-
sis over all possible sequences of a given length and taking the natural log of this 
ratio yields the sample entropy. There are several methods of entropy calculation, 
but the fundamental concept of assessing predictability remains the same.

Furthermore, the technique of MSE performs such measurements over multiple 
scales, providing an assessment of signal complexity over various time courses. 
MSE is simply the sample entropy computed on signals obtained following succes-
sive averaging of adjacent points. The sample entropy at scale 2 is obtained by first 
averaging each point with its neighbor to produce a signal with half the number of 
samples as the original, then applying the same sample entropy algorithm. This 
process is repeated as many times as desired, usually limited by the number of 
points available in the original signal, as the number of available points decreases 
by 50 % with each successive increase in scale. MSE will yield a graph of sample 
entropy values over different scales as shown in Fig. 4.6. Sometimes, values over 
multiple scales are summed to provide a single metric for comparative purposes.

Fig. 4.6 Multiscale entropy in trauma ICU patients. When neighboring points are successively 
averaged and sample entropy computed as in Fig. 4.5 after each such averaging, a value of entropy 
for each such averaging (scale) is produced. The graph shows MSE for trauma ICU patients strati-
fied by in-hospital mortality, using the first 24 h of heart rate data from the ICU stay. From [47], 
used with permission
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Pattern-matching methods of computing HRV, such as MSE, are appealing from 
several perspectives. First, while they cannot be immediately implemented using a 
single built-in function of readily available spreadsheet programs, entropy algo-
rithms are not overly complicated as illustrated by the above example. The compu-
tation can indeed be implemented by successive application of built-in spreadsheet 
functions on a series of R–R intervals. (Ideally, for more than a few signals a more 
automated approach would be used as provided by some of the tools mentioned 
below.) Furthermore, entropy differentiates between predictable and unpredictable 
variability and as such reflects complexity of the signal shown to be important in 
HRV analysis. Finally, MSE enables assessment of variability at multiple scales, 
which may provide insight into the time course of underlying regulatory processes 
of interest.

The main disadvantage of MSE and similar pattern-matching methods (at mul-
tiple or single scales) is that output is sensitive to choice of similarity criterion; 
successive points in a series do not have to match a pattern exactly but can vary 
within a range as illustrated by the dotted lines in Fig. 4.5. However, this similarity 
criterion is typically chosen by the investigator and computed as a function of the 
overall variance of the signal. Thus, signals containing significant nonlinear trends 
or baseline shifts can have different similarity ranges applied by the same algorithm, 
and thus different entropy, even if the signals are otherwise quite similar. As with 
any method of computing HRV, careful review of underlying data and a thorough 
understanding of the algorithm and impact of noise or particular signal characteris-
tics on results are crucial to successful application and valid interpretation.

The final type of HRV analysis covered in this section assesses how well the 
signal matches a predefined template, or series of templates (as opposed to match-
ing existing arbitrary patterns within the signal itself). The classic example, 
described in more detail below, is frequency-domain or spectral analysis using the 
Fourier transform. Some of the earliest frequency analyses of HRV were performed 
in the late 1960s on patients with heart disease patients [51], with modern spectral 
analysis beginning in the 1970s [52]. These techniques are still widely used and are 
now much easier to implement as a result of automated software, some of which is 
freely available and listed at the end of this section. While a number of different 
methods have been proposed for identifying and applying template functions to the 
signal (e.g., wavelets [53–55], which may better reflect instantaneous changes in 
HRV), the basic Fourier transform decomposes the heart rate signal into a series of 
overlapping sine and cosine waves of different frequencies. At any particular fre-
quency, the constituent periodic function has an amplitude and phase that best fits 
the original signal. In theory, this allows underlying periodic processes that generate 
a signal to be isolated and characterized based on the frequencies at which they 
operate. In the case of heart rate, the fact that heart rate responds on different time 
scales to sympathetic, parasympathetic, and other inputs means that these individual 
regulatory processes can be identified and studied using spectral analysis. The result 
of these techniques is typically a power spectral density function as shown in 
Fig. 4.7, which plots the relative energy (contribution) of underlying constituent 
frequencies of the heart rate signal.
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In practice, however, application and interpretation of spectral HRV methods are 
nontrivial [16, 19]. Technically speaking, algorithms are complicated and require 
either use of third-party tools (which tend to distance the investigator from a thor-
ough understanding of methods and effects of artifact or noise) or significant pro-
gramming skills to implement. Additionally, spectral measurements can vary more 
than tenfold simply as a result of artifacts or outliers [56], or due to attempts to cor-
rect such imperfections [57], so high-quality signal capture and preprocessing is 
crucial. Results can also be impacted by other aspects of the analysis including use 
of zero padding and windowing, techniques to help overcome limitations of the dis-
crete Fourier transform. In terms of sampling, the duration of recording and sam-
pling rate inherently will determine the range of frequencies that can be studied; 
longer duration recordings are important for investigating lower-frequency compo-
nents, and higher sampling rates are needed for exploring higher-frequency phenom-
ena. Interpretation of results in terms of underlying regulatory mechanisms is still 
debated, despite well-established cutpoints to measure of power at various frequency 
ranges in the heart rate PSD (see Fig. 4.7 legend) [16]. Generally speaking, power in 
the LF band is attributed to both sympathetic and parasympathetic modulation of 
heart rate, while the HF band is restricted to parasympathetic modulation. The ratio 
of power at low and high frequency bands (LF/HF) is usually accepted to reflect rela-
tive contribution of sympathetic and parasympathetic regulation. However, compar-
ing these measurements between subjects, or even within the same subject, is not 
straightforward, in part because individuals may differ in optimal frequency cut-
points. Other factors can also confound spectral analyses, including the requirement 
that the underlying processes responsible for heart rate variation are stationary dur-
ing the recording interval. While the technical definition of stationarity is somewhat 
involved, essentially this requirement means that the fundamental regulatory mecha-
nisms of heart rate must remain consistent during the recording, and the R–R 

Fig. 4.7 Power spectral density function. The output of classic frequency-domain HRV analysis, 
the graph shows signal energy as a function of frequency. In other words, it depicts how much 
variation in the signal is due to rapid versus slower oscillations. Heart rate variation is typically 
computed as the energy (area under the curve) in several frequency bands, for example very low 
frequency (VLF, 0.003–0.04 Hz), low frequency (LF, 0.04–0.15 Hz), and high frequency (HF, 
0.15–0.40 Hz). These can be different regulatory mechanisms and combinations thereof, although 
caution is needed in interpretation
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tachogram is free of baseline shifts, acyclic trends, and other such changes. For 
example, sudden exercise, an intravenous fluid bolus, or administration of a beta-
blocking agent to mask sympathetic regulation would all likely introduce significant 
nonstationarity into the heart rate signal. Short-term EKG recordings captured under 
controlled resting conditions can usually be assumed to be stationary; longer-term 
recordings or those collected in uncontrolled environments need to be carefully eval-
uated and perhaps analyzed piecewise around known perturbations.

Despite these difficulties, spectral analysis remains commonly used for HRV 
assessment and can discern different relative contributions of regulatory mecha-
nisms (e.g., sympathetic versus parasympathetic) to heart rate variation in a given 
recording. However, newcomers would be well served to also consider other, sim-
pler methods of HRV analysis that may be less vulnerable to noise or misinterpreta-
tion, and to proceed carefully in use of available tools that automate spectral analysis 
(or other HRV metrics). A few commonly available resources and software tools are 
listed in the following paragraph, which can simplify preprocessing and analytic 
steps of various HRV methods including those described above.

Prior to downloading software or even collecting EKG recordings, newcomers to 
HRV analyses would be well served to consult more-detailed review articles and 
reference sources for additional guidance on choosing and applying method(s), 
some of which are cited herein. Once a particular method or methods are selected, 
investigators can select from a number of readily available software tools and should 
also weigh the costs and benefits of developing processing algorithms themselves. 
The first step in using any software tool (whether written by the investigator or 
obtained from a third party) is to validate use of the software by processing an exist-
ing dataset with known HRV characteristics and verifying output. The Physionet 
project [26] contains a wealth of data, software, and guidance for HRV analysis and 
should be a first and frequent destination for anyone pursuing HRV analyses. It 
contains not only freely downloadable datasets, open-source tools, and reference 
materials but also news on related research activities. However, many of the tools 
available from the Physionet site require a modicum of technical expertise to com-
pile or run on common PC platforms. Numerous other toolkits, both open source 
and proprietary, are available, some of which provide “point-and-click” ease of 
installation and EKG processing. For example, the Kubios HRV software package 
[58, 59] based on MATLAB® (but not requiring MATLAB to run) can be down-
loaded, installed, and running in just a few minutes by someone with no software 
engineering skills. Kardia [60] is a similar tool, also written using MATLAB, and 
many other HRV tools or function libraries have been written for this popular plat-
form (e.g., Ecglab [61], POLYAN [62]). At least one package is available for the 
popular R statistical package, RHRV [63]. Finally, commercial offerings are emerg-
ing such as CIMVA [64], a package targeted for use in clinical applications to ana-
lyze variability from multiple organ systems including HRV.

The proliferation of online HRV software, datasets, and technical guidance has 
significantly lowered technical barriers to HRV research. Investigators studying 
acute inflammation and other pathophysiologic processes can easily augment their 
research projects with HRV analyses, especially if EKG capture is part of existing 
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experimental protocols. The HRV techniques highlighted in this brief introduction 
are representative starting points for further study; regardless of method, the most 
important factor to success is the investigator’s understanding of how the particular 
analytic technique produces a measurement that reflects underlying phenomena of 
interest. Knowledge of how the measurement is affected by noise, atypical signals 
(especially signals that were not examined or considered by original developers), 
and how comparisons within or between subjects may be biased by technical or 
experimental factors, is likewise crucial for many studies. Ultimately, continued 
research and successful application of HRV may provide clinicians with powerful 
new tools to monitor patients and inform therapeutic decision making. The follow-
ing section highlights selected efforts toward this objective, focusing on the domain 
of acute inflammation and related areas of critical illness.

 Applications of Heart Rate Variability in Critical Illness  
and Acute Inflammation

Practically, the goal of applying HRV to care of patients suffering from acute inflam-
mation or other critical illness is to be able to efficiently inform meaningful health-
care decisions. In other words, the effort to implement the novel HRV measurements, 
including research and development work, device technology, regulatory approval, 
provider education, maintenance, and other costs, must be outweighed by the value 
of improved medical decision making attributed to HRV. While this goal remains 
largely unrealized today, a number of efforts promise to ultimately bring HRV to the 
clinical bedside, perhaps in concert with other novel patient monitoring or clinical 
processes. After briefly discussing the rationale for HRV’s potential utility, this sec-
tion describes recent work to explore and develop such applications in inflammation 
and three overlapping clinical domains where inflammation may play a major role: 
infection, trauma, and organ failure.

The basis for HRV’s utility in these and other areas is the autonomic nervous sys-
tem’s role in mediating processes crucial to response and recovery from physiologic 
insult. As described above in “The Biological Basis of Heart Rate Variability,” 
HRV can reflect both parasympathetic and sympathetic regulation, among other 
things. Thus, changes in autonomic activity might be detectable as alterations in 
HRV. Assuming such changes exist and are indeed measurable with sufficient sensi-
tivity and specificity in the heart rate signal, the body’s autonomic response to insult 
could be measured, thus allowing clinicians to characterize the potential impact on an 
individual case-by-case basis. Patients who exhibit a relatively large response to a 
small insult might be managed differently, as might patients who exhibit a relatively 
small autonomic response to a large pathophysiologic event. Furthermore, the first 
clues to impending patient deterioration might be provided by changes in sympa-
thetic or parasympathetic activity. HRV provides a noninvasive way to potentially 
identify significant changes in autonomic function, using a commonplace signal 
which is routinely and inexpensively captured in most clinical settings.
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HRV measurements, some of which were covered above in “Introduction to 
Techniques for Measuring Heart Rate Variability,” have been studied in humans and 
animal models since the late 1960s. Early human studies were performed in heart 
transplant and myocardial infarct patients, which remain active areas of research 
today [65, 66]. These efforts were focused on characterizing cardiac abnormalities 
and raise an important point: changes in HRV may not be due to systemic regulatory 
processes, but due to changes in the ability of the heart itself to appropriately 
respond to neural and other inputs. Thus, cardiac abnormalities can certainly con-
found applications of HRV focused on characterizing systemic processes. 
Fortunately, in many patient populations such abnormalities are uncommon and 
usually detected early in the course of care, if not already known from the patient’s 
medical history. Despite the potentially confounding impact of cardiac abnormali-
ties and other factors, diverse efforts have successfully illustrated the potential of 
HRV to provide relevant information in a number of pathophysiologic states.

The inflammatory response, for example, is now known to be tied to autonomic 
nervous system activity. Animal studies, in which vagal nerve activity is artificially 
stimulated [67–69] and/or interrupted [70], have clearly defined this correlation. 
One underlying mechanism, the cholinergic anti-inflammatory pathway and corre-
sponding afferent inflammatory signals, in which parasympathetic activity inhibits 
cytokine release and resulting inflammation has been well established through 
decades of work by Tracey and colleagues, and other groups [67, 70–74]. Clinically, 
isolating effects of acute inflammation on HRV in humans is challenging as the 
inflammatory response is usually accompanied by varying uncontrolled stimuli in 
patient populations (e.g., trauma, infection, or organ failure). However, use of an 
endotoxin challenge in both humans [75–80] and animal models [81, 82] to induce 
(or stimulate) an inflammatory response clearly demonstrates reduced HRV as part 
of this response. Additionally, study of individuals suddenly exposed to changes in 
pollution levels [83, 84], other environmental particulates [85], or vaccine [86] con-
firm effects on HRV in a variety of inflammatory responses. Finally, changes in 
HRV have been correlated with a number of inflammatory markers such as 
C-reactive protein, elevated leukocyte counts, and cytokines in various populations 
[87–96]. The above examples highlight an impressive body of evidence supporting 
the use of HRV to monitor ongoing response to inflammation. Potentially, another 
exciting future application would be to use HRV to monitor effects of direct vagal 
stimulation to appropriately modulate inflammatory response. However, prior to 
widespread clinical application, the efficient and meaningful use of HRV for these 
purposes must be established. Possibly, the cholinergic anti-inflammatory pathway 
and inflammatory reflex are responsible for the relationships between HRV and 
outcomes seen in clinical populations, described in more detail below.

One of the earliest clinical applications of HRV to critical care was the study of 
traumatic brain injury (TBI) by Lowenshon in 1977 [97]. In more than three decades 
since then, reduced HRV measured in the ICU has been associated with poor out-
comes in larger TBI adult [98–100], and pediatric [101] inpatient populations, and 
similar associations have been noted when HRV is measured from TBI patients in 
the emergency room [102, 103]. In populations of patients with diverse critical 
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injuries, HRV measurements early [41] and throughout the ICU stay [104] or during 
prehospital air medical transport [105, 106] are associated with patient mortality, 
and these relationships are relatively unaffected by degree of injury or mechanism 
[44]. Figure 4.8 shows how the difference in average HRV potentiates over the first 
day of ICU stay in a large population of trauma patients. However, the reader is 
cautioned that HRV of individual patients typically varies substantially, and in this 
population there is significant overlap in HRV measurements from survivors and 
nonsurvivors. Work at the US Army Institute of Surgical Research has characterized 
HRV in trauma patients during prehospital transport, animal models of injury [107–
109], and in a human hemorrhagic shock model where lower body negative pressure 
is induced [110, 111]. Many of the HRV references from the Army Institute include 
comprehensive analyses incorporating a wide variety of HRV techniques, and thus 
may be of particular interest to the newcomer looking to compare methods. While 
inflammatory mechanisms are certainly relevant in severe injury, especially closed 
head injury, it is likely that other regulatory processes are at least partially respon-
sible for the observed effects on HRV. For example, baroreflex activity and other 
circulatory regulatory mechanisms incorporate sympathetic or parasympathetic 
feedback. In the case of severe brain injury, autonomic tone may be compromised 
due to central defects, or patients may have spinal or other injury that severs the 
vagus or other neural pathways. These phenomena are particularly relevant to the 
study of inflammation using HRV in trauma patients, especially TBI patients [112], 
as successful clinical application for inflammation monitoring may need to account 
for confounding effects of injury.

Fig. 4.8 HRV in the first 24 h of trauma ICU care by outcome. Specific ranges of the distribution 
shown in Fig. 4.8 most predictive of mortality were used to define a critically low range for stan-
dard deviation of integer heart rate. The percent time each patient spent in this low range, from 0.3 
to 0.6 beats per minute, was measured each hour then averaged over all patients and plotted by 
hospital mortality. Patients who ultimately did not survive show increasing proportion of heart rate 
variability in this critically low range in the first day of their ICU stay. From [27], used with 
permission
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Changes in HRV related to inflammatory processes may be more easily observed 
in patients who have not suffered physical trauma, or whose autonomic activity has 
begun to normalize following injury or acute illness. In these cases, unexpected 
changes in HRV might be more attributable to inflammatory processes associated 
with infection [113] or organ failure [114]. Changes in HRV can predict septic 
shock and in-hospital mortality in emergency department patients with sepsis [115, 
116] and has shown promise to predict sepsis and outcomes of sepsis in several 
other adult patient populations [92, 117, 118]. Similarly, HRV has been shown to 
change with organ failure [119, 120] and is predictive of outcomes in these popula-
tions. For example, Fig. 4.9 shows differences in integer HRV among trauma 
patients with and without adrenal insufficiency. The key differences in these distri-
butions are similar to those differences observed early in the trauma ICU stay 
between survivors and patients who ultimately die (e.g., Fig. 4.10). While these and 
many other efforts have illustrated that changes in HRV may reflect various infec-
tious and/or inflammatory processes in patient populations, the clinical value of 
such measurements remains largely unproven, with a notable recent exception in 
neonatal monitoring. Beginning nearly two decades ago, Moorman and colleagues 
at the University of Virginia began measuring HRV in neonatal ICU patients [121]. 
Recently, they published results from the first randomized multicenter trial to define 
the value of HRV in predicting neonatal sepsis, in which use of HRV monitoring 
technology resulted in one life saved for each 22 patients monitored [2]. The history 
of this effort, from initial observations to development of technology and methods, 
to rigorous clinical trials and commercialization [49, 122–124], illustrates the chal-
lenges of establishing efficient and meaningful measurements of HRV. More impor-
tantly, they show how these obstacles to applying HRV at the clinical bedside can be 
successfully overcome.

Diverse efforts, only a handful of which are mentioned here, have and will con-
tinue to define HRV’s utility in diagnosing and treating acute inflammation and 
related pathophysiology. The studies mentioned above, and the vast majority of 
work in applied HRV, clearly show that decreased HRV is associated with infection, 
poor outcomes, and/or pathophysiologic response. However, it is worth noting that 

Fig. 4.9 HRV in trauma ICU 
patients with adrenal 
insufficiency. Patients with 
adrenal insufficiency exhibit 
lower HRV (measured using 
methods similar to Figs. 4.8 
and 4.10). From [120], used 
with permission
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some evidence exists to the contrary [125] or suggests that HRV undergoes transient 
increases and/or decreases prior to a longer-term response. For example, data from 
animal models suggest that HRV may increase initially for a short time following a 
sudden infectious insult [126]. Potentially, early, rapid modulation in the cholinergic 
anti-inflammatory axis in response to a large bacteria inoculation explains this effect. 
It underscores the fact that decreased HRV may not always be the earliest sign of 
poor prognosis; in certain situations, an increase in HRV could signal early response 
to severe insult. Thus, standardizing the time at which HRV measurements are made 
relative to particular phenomena of interest is crucial. Ideally, a consistent reference 
point can be selected across the study population, and HRV measurements made 
continuously before and after that point to characterize the entire time course of any 
HRV response, whether increased or decreased, transient or long term. Ultimately, 
as technology and methods continue to improve, HRV will become easier to con-
tinuously measure, interpret, and apply to a wide variety of clinical and research 
problems. The challenge will be to prove the value of these new applications, amidst 
an ever-growing milieu of data and other innovations that promise to hasten our 
understanding of acute inflammation and related clinical pathophysiology.

 Conclusions

As noted above, evidence is growing for HRV’s utility in acute inflammation and 
other areas of critical illness. A wealth of methods and tools have been developed to 
measure HRV, many of which are now easy to apply without extensive technical 
knowledge. However, much work remains to determine if findings can be substan-
tially validated and incorporated into clinical practice. With the possible exception of 
neonatal ICU physicians, today’s critical care practitioners use HRV no more regu-
larly in bedside decision making than those who marveled at the early EKG tracings 

Fig. 4.10 Distribution of a 
simple HRV metric in trauma 
ICU patients. The standard 
deviation of integer heart rate 
was measured in 5-min 
intervals (HRSD5), during the 
first 24 h of trauma ICU care. 
Each bar represents a one-tenth 
range of HRSD5, e.g., 0.3–0.4 
beats per minute. Shading 
represents statistical signifi-
cance of a logistic regression 
model using the percent time 
within that range as the only 
input variable and hospital 
mortality as the outcome. From 
[27], used with permission
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from Einthoven’s galvanometer. Nonetheless, the role of autonomic regulatory 
mechanisms and associated opportunities for diagnosing and even treating patho-
physiology of acute illness are increasingly apparent. In clinical practice (e.g., the 
use of beta-blockade in head injury patients [127]) and research (e.g., cholinergic 
anti-inflammatory axis mentioned above), the monitoring and modulation of auto-
nomic activity has clear implications for patient care aside from the ability of HRV 
to predict clinical outcomes or monitor autonomic activity. The difficult next step is 
to reliably associate changes in HRV with specific—and potentially treatable—
derangement of various regulatory mechanisms in real time, at the clinical bedside.

Taking the crucial step of translating HRV research findings into practice will 
require new approaches and continued collaboration among and between scientists, 
clinicians, and engineers. Key challenges include understanding and accounting for 
confounding effects of healthcare processes; potentially, mechanical ventilation 
[128–130], medication [102, 131, 132], nursing procedures [133], and a host of 
other factors affect HRV. Furthermore, individual patients may exhibit different 
HRV characteristics due to genetic differences [134, 135] or other phenotypic varia-
tion. Traditional reductionist strategies are unlikely to efficiently address these and 
other issues, not only due to the complicated array of possible confounders and their 
interactions (i.e., the curse of dimensionality) but also because of the complexity 
inherent in the underlying systems. A more fruitful approach for unraveling such 
systems may be to identify particular classes of output that define underlying states 
of the system. Returning to the example of Fig. 4.3, rather than focusing on indi-
vidual values of the output per se, it may be more informative to understand of the 
effects of changing the multiplier a on the patterns of output observed. 
Physiologically, the notion of discrete states [136], and transitions [137] through 
these states, is a hallmark of conceptual models proposed over the years that apply 
complex systems approaches to understanding inflammation and other pathophysi-
ology of acute illness [138–140].

Can HRV identify these states in a meaningful way? For the first time, large 
multiscale models are being developed that represent complex physiological vari-
ability in clinically important domains like inflammation [141, 142]. It is clear that 
HRV will play a role as these models move from concept to application, especially 
considering HRV’s ability to provide rapid, noninvasive, assessment of autonomic 
function in some scenarios. However, the information reflected in HRV—central 
autonomic regulation, neural transmission of these signals, and cardiac rate 
response—is almost certainly insufficient to define all states of interest. Thus, 
HRV’s utility to understand and potentially treat pathophysiology will be maxi-
mized when used in concert with other measurements [143] and efficient models 
that use these data to define states, and in turn to map these states and their transi-
tions to clinically meaningful decisions. Increasingly, efforts to measure and apply 
HRV will occur in conjunction with nascent work to produce clinically relevant 
models reflecting the complexity inherent in most biological processes. In doing so, 
scientists, clinicians, and engineers may together strike a new, more efficient path 
from measurements to models to meaningful clinical decisions, broadening our 
understanding of acute inflammation and other pathophysiology of critical illness.

P.R. Norris



71

References

 1. Billman GE (2011) Heart rate variability – a historical perspective. Front Physiol 2:86
 2. Moorman JR, Carlo WA, Kattwinkel J, Schelonka RL, Porcelli PJ, Navarrete CT et al (2011) 

Mortality reduction by heart rate characteristic monitoring in very low birth weight neonates: 
a randomized trial. J Pediatr 159(6):900–906

 3. Gleik J (1988) Chaos: making a new science. Penguin, New York
 4. Kamath M, Watanabe M, Upton A (eds) (2012) Heart rate variability (HRV) signal analysis: 

clinical applications. CRC, Boca Raton, FL
 5. Malik M, Camm AJ (eds) (1995) Heart rate variability. Wiley-Blackwell, Hoboken, NJ
 6. Bruner S. Physiology models. http://www.physiologymodels.info/. Accessed 10 Oct 2012
 7. Stauss HM (2003) Heart rate variability. Am J Physiol Regul Integr Comp Physiol 

285(5):R927–R931
 8. Beck W, Barnard CN, Schrire V (1969) Heart rate after cardiac transplantation. Circulation 

40(4):437–445
 9. Bengel FM, Ueberfuhr P, Karja J, Schreiber K, Nekolla SG, Reichart B et al (2004) 

Sympathetic reinnervation, exercise performance and effects of beta-adrenergic blockade in 
cardiac transplant recipients. Eur Heart J 25(19):1726–1733

 10. Murphy DA, Thompson GW, Ardell JL, McCraty R, Stevenson RS, Sangalang VE et al 
(2000) The heart reinnervates after transplantation. Ann Thorac Surg 69(6):1769–1781

 11. Uberfuhr P, Frey AW, Reichart B (2000) Vagal reinnervation in the long term after orthotopic 
heart transplantation. J Heart Lung Transplant 19(10):946–950

 12. Toledo E, Pinhas I, Aravot D, Almog Y, Akselrod S (2002) Functional restitution of cardiac 
control in heart transplant patients. Am J Physiol Regul Integr Comp Physiol 282(3): 
R900–R908

 13. Hoyer D, Frank B, Gotze C, Stein PK, Zebrowski JJ, Baranowski R et al (2007) Interactions 
between short-term and long-term cardiovascular control mechanisms. Chaos 17(1):015110

 14. Kotani K, Struzik ZR, Takamasu K, Stanley HE, Yamamoto Y (2005) Model for complex 
heart rate dynamics in health and diseases. Phys Rev E Stat Nonlin Soft Matter Phys 72(4 Pt 
1):041904

 15. Berntson GG, Bigger JT Jr, Eckberg DL, Grossman P, Kaufmann PG, Malik M et al (1997) 
Heart rate variability: origins, methods, and interpretive caveats. Psychophysiology 34(6): 
623–648

 16. (1996) Heart rate variability: standards of measurement, physiological interpretation and 
clinical use. Task Force of the European Society of Cardiology and the North American 
Society of Pacing and Electrophysiology. Circulation 93(5):1043–1065

 17. Sandercock GR, Bromley PD, Brodie DA (2005) The reliability of short-term measurements 
of heart rate variability. Int J Cardiol 103(3):238–247

 18. Kleiger RE, Stein PK, Bigger JT Jr (2005) Heart rate variability: measurement and clinical 
utility. Ann Noninvasive Electrocardiol 10(1):88–101

 19. Parati G, Mancia G, Di RM, Castiglioni P (2006) Point: cardiovascular variability is/is not an 
index of autonomic control of circulation. J Appl Physiol 101(2):676–678

 20. Jokinen V. Longitudinal changes and prognostic significance of cardiovascular autonomic 
regulation assessed by heart rate variability and analysis of non-linear heart rate dynamics. 
http://herkules.oulu.fi/isbn9514272005/html/index.html. Accessed 14 Oct 2012

 21. Goldstein B, McNames J, McDonald BA, Ellenby M, Lai S, Sun Z et al (2003) Physiologic 
data acquisition system and database for the study of disease dynamics in the intensive care 
unit. Crit Care Med 31(2):433–441

 22. Korhonen I, Ojaniemi J, Nieminen K, van Gils M, Heikela A, Kari A (1997) Building the 
IMPROVE Data Library. IEEE Eng Med Biol Mag 16(6):25–32

 23. Norris PR, Riordan WP Jr, Dawant BM, Kleymeer CJ, Jenkins JM, Williams AE et al (2010) 
SIMON: a decade of physiological data research and development in trauma intensive care. 
J Healthc Eng 1(3):315–335

4 Analysis of Heart Rate Variability

http://www.physiologymodels.info/
http://herkules.oulu.fi/isbn9514272005/html/index.html


72

 24. Saeed M, Villarroel M, Reisner AT, Clifford G, Lehman LW, Moody G et al (2011) 
Multiparameter intelligent monitoring in intensive care II (MIMIC-II): a public-access inten-
sive care unit database. Crit Care Med 39(5):952–960

 25. Goldberger AL, Amaral LAN, Glass L, Hausdorff JM, Ivanov PC, Mark RG et al (2000) 
PhysioBank, PhysioToolkit, and PhysioNet: components of a new research resource for com-
plex physiologic signals. Circulation 101(23):e215–e220

 26. Moody GB, Mark RG, Goldberger AL (2001) PhysioNet: a Web-based resource for the study 
of physiologic signals. IEEE Eng Med Biol Mag 20(3):70–75

 27. Norris PR, Morris JA Jr, Ozdas A, Grogan EL, Williams AE (2005) Heart rate variability 
predicts trauma patient outcome as early as 12 h: implications for military and civilian triage. 
J Surg Res 129(1):122–128

 28. Grogan EL, Morris JA Jr, Norris PR, France DJ, Ozdas A, Stiles RA et al (2004) Reduced 
heart rate volatility: an early predictor of death in trauma patients. Ann Surg 240(3): 
547–554

 29. Bigger JT Jr, Kleiger RE, Fleiss JL, Rolnitzky LM, Steinman RC, Miller JP (1988) 
Components of heart rate variability measured during healing of acute myocardial infarction. 
Am J Cardiol 61(4):208–215

 30. Perkiomaki JS, Makikallio TH, Huikuri HV (2005) Fractal and complexity measures of heart 
rate variability. Clin Exp Hypertens 27(2–3):149–158

 31. Peng CK, Havlin S, Hausdorff JM, Mietus JE, Stanley HE, Goldberger AL (1995) Fractal 
mechanisms and heart rate dynamics. Long-range correlations and their breakdown with dis-
ease. J Electrocardiol 28(Suppl):59–65

 32. Goldberger AL (1997) Fractal variability versus pathologic periodicity: complexity loss and 
stereotypy in disease. Perspect Biol Med 40(4):543–561

 33. Huikuri HV, Perkiomaki JS, Maestri R, Pinna GD (2009) Clinical impact of evaluation of 
cardiovascular control by novel methods of heart rate dynamics. Philos Transact A Math 
Phys Eng Sci 367(1892):1223–1238

 34. Peng CK, Havlin S, Stanley HE, Goldberger AL (1995) Quantification of scaling exponents 
and crossover phenomena in nonstationary heartbeat time series. Chaos 5(1):82–87

 35. Costa M, Goldberger AL, Peng CK (2005) Multiscale entropy analysis of biological signals. 
Phys Rev E Stat Nonlin Soft Matter Phys 71(2 Pt 1):021906

 36. Yeragani VK, Srinivasan K, Vempati S, Pohl R, Balon R (1993) Fractal dimension of heart rate 
time series: an effective measure of autonomic function. J Appl Physiol 75(6):2429–2438

 37. Pincus SM, Gladstone IM, Ehrenkranz RA (1991) A regularity statistic for medical data 
analysis. J Clin Monit 7(4):335–345

 38. Pincus SM (1991) Approximate entropy as a measure of system complexity. Proc Natl Acad 
Sci USA 88(6):2297–2301

 39. Ganz RE, Weibels G, Stacker KH, Faustmann PM, Zimmermann CW (1993) The Lyapunov 
exponent of heart rate dynamics as a sensitive marker of central autonomic organization: an 
exemplary study of early multiple sclerosis. Int J Neurosci 71(1–4):29–36

 40. Casaleggio A, Cerutti S, Signorini MG (1997) Study of the Lyapunov exponents in heart rate 
variability signals. Methods Inf Med 36(4–5):274–277

 41. Norris PR, Anderson SM, Jenkins JM, Williams AE, Morris JA Jr (2008) Heart rate multi-
scale entropy at three hours predicts hospital mortality in 3,154 trauma patients. Shock 
30(1):17–22

 42. Trunkvalterova Z, Javorka M, Tonhajzerova I, Javorkova J, Lazarova Z, Javorka K et al 
(2008) Reduced short-term complexity of heart rate and blood pressure dynamics in patients 
with diabetes mellitus type 1: multiscale entropy analysis. Physiol Meas 29(7):817–828

 43. Ahmad S, Ramsay T, Huebsch L, Flanagan S, McDiarmid S, Batkin I et al (2009) Continuous 
multi-parameter heart rate variability analysis heralds onset of sepsis in adults. PLoS One 
4(8):e6642

 44. Riordan WP Jr, Norris PR, Jenkins JM, Morris JA Jr (2009) Early loss of heart rate complex-
ity predicts mortality regardless of mechanism, anatomic location, or severity of injury in 
2178 trauma patients. J Surg Res 156(2):283–289

P.R. Norris



73

 45. Papaioannou VE, Chouvarda I, Maglaveras N, Dragoumanis C, Pneumatikos I (2011) 
Changes of heart and respiratory rate dynamics during weaning from mechanical ventilation: 
a study of physiologic complexity in surgical critically ill patients. J Crit Care 26(3): 
262–272

 46. Ho YL, Lin C, Lin YH, Lo MT (2011) The prognostic value of non-linear analysis of heart 
rate variability in patients with congestive heart failure – a pilot study of multiscale entropy. 
PLoS One 6(4):e18699

 47. Norris PR, Stein PK, Morris JA Jr (2008) Reduced heart rate multiscale entropy predicts 
death in critical illness: a study of physiologic complexity in 285 trauma patients. J Crit Care 
23(3):399–405

 48. Shannon CE (1948) A mathematical theory of communication. Bell Syst Tech J 27(3): 
379–423

 49. Lake DE, Richman JS, Griffin MP, Moorman JR (2002) Sample entropy analysis of neonatal 
heart rate variability. Am J Physiol Regul Integr Comp Physiol 283(3):R789–R797

 50. Richman JS, Moorman JR (2000) Physiological time-series analysis using approximate 
entropy and sample entropy. Am J Physiol Heart Circ Physiol 278(6):H2039–H2049

 51. Reynolds EW Jr, Muller BF, Anderson GJ, Muller BT (1967) High-frequency components in 
the electrocardiogram. A comparative study of normals and patients with myocardial disease. 
Circulation 35(1):195–206

 52. Akselrod S, Gordon D, Ubel FA, Shannon DC, Berger AC, Cohen RJ (1981) Power spectrum 
analysis of heart rate fluctuation: a quantitative probe of beat-to-beat cardiovascular control. 
Science 213(4504):220–222

 53. Peters CH, Vullings R, Rooijakkers MJ, Bergmans JW, Oei SG, Wijn PF (2011) A continuous 
wavelet transform-based method for time-frequency analysis of artefact-corrected heart rate 
variability data. Physiol Meas 32(10):1517–1527

 54. Belova NY, Mihaylov SV, Piryova BG (2007) Wavelet transform: a better approach for the 
evaluation of instantaneous changes in heart rate variability. Auton Neurosci 
131(1–2):107–122

 55. Crowe JA, Gibson NM, Woolfson MS, Somekh MG (1992) Wavelet transform as a potential 
tool for ECG analysis and compression. J Biomed Eng 14(3):268–272

 56. Mietus JE and Goldberger AL. Heart rate variability analysis with the HRV toolkit. http://
physionet.org/tutorials/hrv-toolkit/. Accessed 12 Oct 2012

 57. Clifford GD, Tarassenko L (2005) Quantifying errors in spectral estimates of HRV due to 
beat replacement and resampling. IEEE Trans Biomed Eng 52(4):630–638

 58. KUBIOS-HRV. http://kubios.uku.fi/. Accessed 10 Oct 2012
 59. Niskanen JP, Tarvainen MP, Ranta-Aho PO, Karjalainen PA (2004) Software for advanced 

HRV analysis. Comput Methods Programs Biomed 76(1):73–81
 60. Perakakis P, Joffily M, Taylor M, Guerra P, Vila J (2010) KARDIA: a Matlab software for the 

analysis of cardiac interbeat intervals. Comput Methods Programs Biomed 98(1):83–89
 61. de Carvalho JLA, da Rocha AF, de Oliveira Nascimento FA, Neto JS, Junqueira LF Jr (2002) 

Development of a Matlab software for analysis of heart rate variability. In: Proceedings of the 
6th IEEE International conference on signal processing, vol 2, pp 1488–1491

 62. Maestri R, Pinna GD (1998) POLYAN: a computer program for polyparametric analysis of 
cardio-respiratory variability signals. Comput Methods Programs Biomed 56(1):37–48

 63. Lado M, Mendez A, Olivieri D, Rodriguez-Linares L, Vila X. R-Package RHRV: Heart rate 
variability analysis of ECG data. http://cran.r-project.org/web/packages/RHRV/. Accessed 
20 Oct 2012

 64. Seely AJ, Green GC, Bravi A (2011) Continuous multiorgan variability monitoring in criti-
cally ill patients – complexity science at the bedside. Conf Proc IEEE Eng Med Biol Soc 
2011:5503–5506

 65. Ghuran A, Reid F, La Rovere MT, Schmidt G, Bigger JT Jr, Camm AJ et al (2002) Heart rate 
turbulence-based predictors of fatal and nonfatal cardiac arrest (The Autonomic Tone and 
Reflexes After Myocardial Infarction substudy). Am J Cardiol 89(2):184–190

4 Analysis of Heart Rate Variability

http://physionet.org/tutorials/hrv-toolkit/
http://physionet.org/tutorials/hrv-toolkit/
http://kubios.uku.fi/
http://cran.r-project.org/web/packages/RHRV/


74

 66. Huikuri HV, Stein PK (2012) Clinical application of heart rate variability after acute myocar-
dial infarction. Front Physiol 3:41

 67. Borovikova LV, Ivanova S, Zhang M, Yang H, Botchkina GI, Watkins LR et al (2000) Vagus 
nerve stimulation attenuates the systemic inflammatory response to endotoxin. Nature 
405(6785):458–462

 68. Huang J, Wang Y, Jiang D, Zhou J, Huang X (2010) The sympathetic-vagal balance against 
endotoxemia. J Neural Transm 117(6):729–735

 69. Zhang Y, Popovic ZB, Bibevski S, Fakhry I, Sica DA, Van Wagoner DR et al (2009) Chronic 
vagus nerve stimulation improves autonomic control and attenuates systemic inflammation and 
heart failure progression in a canine high-rate pacing model. Circ Heart Fail 2(6):692–699

 70. Hoeger S, Bergstraesser C, Selhorst J, Fontana J, Birck R, Waldherr R et al (2010) Modulation 
of brain dead induced inflammation by vagus nerve stimulation. Am J Transplant 10(3): 
477–489

 71. Tracey KJ (2002) The inflammatory reflex. Nature 420(6917):853–859
 72. Olofsson PS, Rosas-Ballina M, Levine YA, Tracey KJ (2012) Rethinking inflammation: neu-

ral circuits in the regulation of immunity. Immunol Rev 248(1):188–204
 73. Huston JM, Tracey KJ (2011) The pulse of inflammation: heart rate variability, the choliner-

gic anti-inflammatory pathway and implications for therapy. J Intern Med 269(1):45–53
 74. Pavlov VA, Ochani M, Gallowitsch-Puerta M, Ochani K, Huston JM, Czura CJ et al (2006) 

Central muscarinic cholinergic regulation of the systemic inflammatory response during 
endotoxemia. Proc Natl Acad Sci USA 103(13):5219–5223

 75. Kox M, Pompe JC, van der Hoeven JG, Hoedemaekers CW, Pickkers P (2011) Influence of 
different breathing patterns on heart rate variability indices and reproducibility during experi-
mental endotoxaemia in human subjects. Clin Sci (Lond) 121(5):215–222

 76. Kox M, Ramakers BP, Pompe JC, van der Hoeven JG, Hoedemaekers CW, Pickkers P (2011) 
Interplay between the acute inflammatory response and heart rate variability in healthy 
human volunteers. Shock 36(2):115–120

 77. Lehrer P, Karavidas MK, Lu SE, Coyle SM, Oikawa LO, Macor M et al (2010) Voluntarily 
produced increases in heart rate variability modulate autonomic effects of endotoxin induced 
systemic inflammation: an exploratory study. Appl Psychophysiol Biofeedback 35(4):303–315

 78. Marsland AL, Gianaros PJ, Prather AA, Jennings JR, Neumann SA, Manuck SB (2007) 
Stimulated production of proinflammatory cytokines covaries inversely with heart rate vari-
ability. Psychosom Med 69(8):709–716

 79. Rassias AJ, Holzberger PT, Givan AL, Fahrner SL, Yeager MP (2005) Decreased physiologic 
variability as a generalized response to human endotoxemia. Crit Care Med 33(3):512–519

 80. Rassias AJ, Guyre PM, Yeager MP (2011) Hydrocortisone at stress-associated concentrations 
helps maintain human heart rate variability during subsequent endotoxin challenge. J Crit 
Care 26(6):636.e1–636.e5

 81. Fairchild KD, Saucerman JJ, Raynor LL, Sivak JA, Xiao Y, Lake DE et al (2009) Endotoxin 
depresses heart rate variability in mice: cytokine and steroid effects. Am J Physiol Regul 
Integr Comp Physiol 297(4):R1019–R1027

 82. Gholami M, Mazaheri P, Mohamadi A, Dehpour T, Safari F, Hajizadeh S et al (2012) 
Endotoxemia is associated with partial uncoupling of cardiac pacemaker from cholinergic 
neural control in rats. Shock 37(2):219–227

 83. Huang W, Zhu T, Pan X, Hu M, Lu SE, Lin Y et al (2012) Air pollution and autonomic and 
vascular dysfunction in patients with cardiovascular disease: interactions of systemic inflam-
mation, overweight, and gender. Am J Epidemiol 176(2):117–126

 84. Luttmann-Gibson H, Suh HH, Coull BA, Dockery DW, Sarnat SE, Schwartz J et al (2010) 
Systemic inflammation, heart rate variability and air pollution in a cohort of senior adults. 
Occup Environ Med 67(9):625–630

 85. Fang SC, Cavallari JM, Eisen EA, Chen JC, Mittleman MA, Christiani DC (2009) Vascular 
function, inflammation, and variations in cardiac autonomic responses to particulate matter 
among welders. Am J Epidemiol 169(7):848–856

P.R. Norris



75

 86. Lanza GA, Barone L, Scalone G, Pitocco D, Sgueglia GA, Mollo R et al (2011) Inflammation- 
related effects of adjuvant influenza A vaccination on platelet activation and cardiac auto-
nomic function. J Intern Med 269(1):118–125

 87. Hamaad A, Sosin M, Blann AD, Patel J, Lip GY, MacFadyen RJ (2005) Markers of inflam-
mation in acute coronary syndromes: association with increased heart rate and reductions in 
heart rate variability. Clin Cardiol 28(12):570–576

 88. Kon H, Nagano M, Tanaka F, Satoh K, Segawa T, Nakamura M (2006) Association of 
decreased variation of R-R interval and elevated serum C-reactive protein level in a general 
population in Japan. Int Heart J 47(6):867–876

 89. Frasure-Smith N, Lesperance F, Irwin MR, Talajic M, Pollock BG (2009) The relationships 
among heart rate variability, inflammatory markers and depression in coronary heart disease 
patients. Brain Behav Immun 23(8):1140–1147

 90. Haarala A, Kahonen M, Eklund C, Jylhava J, Koskinen T, Taittonen L et al (2011) Heart rate 
variability is independently associated with C-reactive protein but not with Serum amyloid A. 
The Cardiovascular Risk in Young Finns Study. Eur J Clin Invest 41(9):951–957

 91. Lampert R, Bremner JD, Su S, Miller A, Lee F, Cheema F et al (2008) Decreased heart rate 
variability is associated with higher levels of inflammation in middle-aged men. Am Heart J 
156(4):759 e1–759 e7

 92. Papaioannou VE, Dragoumanis C, Theodorou V, Gargaretas C, Pneumatikos I (2009) 
Relation of heart rate variability to serum levels of C-reactive protein, interleukin 6, and 10 
in patients with sepsis and septic shock. J Crit Care 24(4):625–627

 93. Singh P, Hawkley LC, McDade TW, Cacioppo JT, Masi CM (2009) Autonomic tone and 
C-reactive protein: a prospective population-based study. Clin Auton Res 19(6):367–374

 94. Sloan RP, McCreath H, Tracey KJ, Sidney S, Liu K, Seeman T (2007) RR interval variability 
is inversely related to inflammatory markers: the CARDIA study. Mol Med 13(3–4): 
178–184

 95. Thayer JF, Fischer JE (2009) Heart rate variability, overnight urinary norepinephrine and 
C-reactive protein: evidence for the cholinergic anti-inflammatory pathway in healthy human 
adults. J Intern Med 265(4):439–447

 96. von Känel R, Carney RM, Zhao S, Whooley MA (2011) Heart rate variability and biomarkers 
of systemic inflammation in patients with stable coronary heart disease: findings from the 
Heart and Soul Study. Clin Res Cardiol 100(3):241–247

 97. Lowensohn RI, Weiss M, Hon EH (1977) Heart-rate variability in brain-damaged adults. 
Lancet 1(8012):626–628

 98. Winchell RJ, Hoyt DB (1997) Analysis of heart-rate variability: a noninvasive predictor of 
death and poor outcome in patients with severe head injury. J Trauma 43(6):927–933

 99. Riordan WP Jr, Cotton BA, Norris PR, Waitman LR, Jenkins JM, Morris JA Jr (2007) Beta- 
blocker exposure in patients with severe traumatic brain injury (TBI) and cardiac uncoupling. 
J Trauma 63(3):503–510

 100. Baguley IJ, Heriseanu RE, Felmingham KL, Cameron ID (2006) Dysautonomia and heart 
rate variability following severe traumatic brain injury. Brain Inj 20(4):437–444

 101. Goldstein B, Kempski MH, DeKing D, Cox C, DeLong DJ, Kelly MM et al (1996) Autonomic 
control of heart rate after brain injury in children. Crit Care Med 24(2):234–240

 102. Proctor KG, Atapattu SA, Duncan RC (2007) Heart rate variability index in trauma patients. 
J Trauma 63(1):33–43

 103. Fathizadeh P, Shoemaker WC, Wo CC, Colombo J (2004) Autonomic activity in trauma 
patients based on variability of heart rate and respiratory rate. Crit Care Med 32(6): 
1300–1305

 104. Norris PR, Ozdas A, Cao H, Williams AE, Harrell FE, Jenkins JM et al (2006) Cardiac 
uncoupling and heart rate variability stratify ICU patients by mortality: a study of 2088 
trauma patients. Ann Surg 243(6):804–812

 105. Cooke WH, Salinas J, Convertino VA, Ludwig DA, Hinds D, Duke JH et al (2006) Heart rate 
variability and its association with mortality in prehospital trauma patients. J Trauma 60(2): 
363–370

4 Analysis of Heart Rate Variability



76

 106. Batchinsky AI, Cancio LC, Salinas J, Kuusela T, Cooke WH, Wang JJ et al (2007) Prehospital 
loss of R-to-R interval complexity is associated with mortality in trauma patients. J Trauma 
63(3):512–518

 107. Batchinsky AI, Skinner JE, Necsoiu C, Jordan BS, Weiss D, Cancio LC (2010) New measures 
of heart-rate complexity: effect of chest trauma and hemorrhage. J Trauma 68(5):1178–1185

 108. Batchinsky AI, Cooke WH, Kuusela TA, Jordan BS, Wang JJ, Cancio LC (2007) Sympathetic 
nerve activity and heart rate variability during severe hemorrhagic shock in sheep. Auton 
Neurosci 136(1–2):43–51

 109. Batchinsky AI, Cooke WH, Kuusela T, Cancio LC (2007) Loss of complexity characterizes 
the heart rate response to experimental hemorrhagic shock in swine. Crit Care Med 35(2): 
519–525

 110. Hinojosa-Laborde C, Rickards CA, Ryan KL, Convertino VA (2011) Heart rate variability 
during simulated hemorrhage with lower body negative pressure in high and low tolerant 
subjects. Front Physiol 2:85

 111. Rickards CA, Ryan KL, Convertino VA (2010) Characterization of common measures of 
heart period variability in healthy human subjects: implications for patient monitoring. J Clin 
Monit Comput 24(1):61–70

 112. Kox M, Vrouwenvelder MQ, Pompe JC, van der Hoeven JG, Pickkers P, Hoedemaekers CW 
(2012) The effects of brain injury on heart rate variability and the innate immune response in 
critically ill patients. J Neurotrauma 29(5):747–755

 113. Ahmad S, Tejuja A, Newman KD, Zarychanski R, Seely AJ (2009) Clinical review: a review 
and analysis of heart rate variability and the diagnosis and prognosis of infection. Crit Care 
13(6):232

 114. Werdan K, Schmidt H, Ebelt H, Zorn-Pauly K, Koidl B, Hoke RS et al (2009) Impaired regu-
lation of cardiac function in sepsis, SIRS, and MODS. Can J Physiol Pharmacol 87(4): 
266–274

 115. Chen WL, Kuo CD (2007) Characteristics of heart rate variability can predict impending 
septic shock in emergency department patients with sepsis. Acad Emerg Med 14(5): 
392–397

 116. Chen WL, Chen JH, Huang CC, Kuo CD, Huang CI, Lee LS (2008) Heart rate variability 
measures as predictors of in-hospital mortality in ED patients with sepsis. Am J Emerg Med 
26(4):395–401

 117. Bravi A, Green G, Longtin A, Seely AJ (2012) Monitoring and identification of sepsis devel-
opment through a composite measure of heart rate variability. PLoS One 7(9):e45666

 118. Korach M, Sharshar T, Jarrin I, Fouillot JP, Raphael JC, Gajdos P et al (2001) Cardiac vari-
ability in critically ill adults: influence of sepsis. Crit Care Med 29(7):1380–1385

 119. Papaioannou VE, Maglaveras N, Houvarda I, Antoniadou E, Vretzakis G (2006) Investigation 
of altered heart rate variability, nonlinear properties of heart rate signals, and organ dysfunc-
tion longitudinally over time in intensive care unit patients. J Crit Care 21(1):95–103

 120. Morris JA Jr, Norris PR, Waitman LR, Ozdas A, Guillamondegui OD, Jenkins JM (2007) 
Adrenal insufficiency, heart rate variability, and complex biologic systems: a study of 1,871 
critically ill trauma patients. J Am Coll Surg 204(5):885–892

 121. Griffin MP, Scollan DF, Moorman JR (1994) The dynamic range of neonatal heart rate vari-
ability. J Cardiovasc Electrophysiol 5(2):112–124

 122. Griffin MP, Lake DE, O’Shea TM, Moorman JR (2007) Heart rate characteristics and clinical 
signs in neonatal sepsis. Pediatr Res 61(2):222–227

 123. Moorman JR, Lake DE, Griffin MP (2006) Heart rate characteristics monitoring for neonatal 
sepsis. IEEE Trans Biomed Eng 53(1):126–132

 124. Cao H, Lake DE, Griffin MP, Moorman JR (2004) Increased nonstationarity of neonatal heart 
rate before the clinical diagnosis of sepsis. Ann Biomed Eng 32(2):233–244

 125. Stein PK, Domitrovich PP, Hui N, Rautaharju P, Gottdiener J (2005) Sometimes higher heart 
rate variability is not better heart rate variability: results of graphical and nonlinear analyses. 
J Cardiovasc Electrophysiol 16(9):954–959

P.R. Norris



77

 126. Fairchild KD, Srinivasan V, Moorman JR, Gaykema RP, Goehler LE (2011) Pathogen- 
induced heart rate changes associated with cholinergic nervous system activation. Am J 
Physiol Regul Integr Comp Physiol 300(2):R330–R339

 127. Tran TY, Dunne IE, German JW (2008) Beta blockers exposure and traumatic brain injury: a 
literature review. Neurosurg Focus 25(4):E8

 128. Van de Louw A, Medigue C, Papelier Y, Cottin F (2010) Positive end-expiratory pressure 
may alter breathing cardiovascular variability and baroreflex gain in mechanically ventilated 
patients. Respir Res 11:38

 129. Borghi-Silva A, Reis MS, Mendes RG, Pantoni CB, Simoes RP, Martins LE et al (2008) 
Noninvasive ventilation acutely modifies heart rate variability in chronic obstructive pulmo-
nary disease patients. Respir Med 102(8):1117–1123

 130. Pantoni CB, Di TL, Mendes RG, Catai AM, Luzzi S, Amaral NO et al (2011) Effects of dif-
ferent levels of positive airway pressure on breathing pattern and heart rate variability after 
coronary artery bypass grafting surgery. Braz J Med Biol Res 44(1):38–45

 131. Ng J, Sundaram S, Kadish AH, Goldberger JJ (2009) Autonomic effects on the spectral 
analysis of heart rate variability after exercise. Am J Physiol Heart Circ Physiol 297(4): 
H1421–H1428

 132. Tarvainen MP, Georgiadis S, Laitio T, Lipponen JA, Karjalainen PA, Kaskinoro K et al (2012) 
Heart rate variability dynamics during low-dose propofol and dexmedetomidine anesthesia. 
Ann Biomed Eng 40(8):1802–1813

 133. Bourgault AM, Brown CA, Hains SM, Parlow JL (2006) Effects of endotracheal tube suc-
tioning on arterial oxygen tension and heart rate variability. Biol Res Nurs 7(4):268–278

 134. Newton-Cheh C, Guo CY, Wang TJ, O’donnell CJ, Levy D, Larson MG (2007) Genome- 
wide association study of electrocardiographic and heart rate variability traits: the Framingham 
Heart Study. BMC Med Genet 8(Suppl 1):S7

 135. Norris PR, Canter JA, Jenkins JM, Moore JH, Williams AE, Morris JA Jr (2009) Personalized 
medicine: genetic variation and loss of physiologic complexity are associated with mortality 
in 644 trauma patients. Ann Surg 250(4):524–530

 136. Bidargaddi N, Sarela A, Korhonen I (2008) Physiological state characterization by clustering 
heart rate, heart rate variability and movement activity information. Conf Proc IEEE Eng 
Med Biol Soc 2008:1749–1752

 137. Kiyono K, Struzik ZR, Aoyagi N, Togo F, Yamamoto Y (2005) Phase transition in a healthy 
human heart rate. Phys Rev Lett 95(5):058101

 138. Godin PJ, Buchman TG (1996) Uncoupling of biological oscillators: a complementary 
hypothesis concerning the pathogenesis of multiple organ dysfunction syndrome. Crit Care 
Med 24(7):1107–1116

 139. Buchman TG (2004) Nonlinear dynamics, complex systems, and the pathobiology of critical 
illness. Curr Opin Crit Care 10(5):378–382

 140. Seely AJ, Christou NV (2000) Multiple organ dysfunction syndrome: exploring the paradigm 
of complex nonlinear systems. Crit Care Med 28(7):2193–2200

 141. Dick TE, Molkov YI, Nieman G, Hsieh YH, Jacono FJ, Doyle J et al (2012) Linking inflam-
mation, cardiorespiratory variability, and neural control in acute inflammation via computa-
tional modeling. Front Physiol 3:222

 142. An G, Nieman G, Vodovotz Y (2012) Toward computational identification of multiscale “tip-
ping points” in acute inflammation and multiple organ failure. Ann Biomed Eng 40(11): 
2414–2424

 143. Xiao X, Mullen TJ, Mukkamala R (2005) System identification: a multi-signal approach for 
probing neural cardiovascular regulation. Physiol Meas 26(3):R41–R71

4 Analysis of Heart Rate Variability



79Y. Vodovotz and G. An (eds.), Complex Systems and Computational Biology  
Approaches to Acute Inflammation, DOI 10.1007/978-1-4614-8008-2_5,
© Springer Science+Business Media New York 2013

 Introduction

“Variability is the law of life …” was written by William Osler in 1903 [1]. This was 
written 5 years before William Gosset introduced the t-test to determine signifi-
cance in the differences between two sample means. The recognition of variability 
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as a fundamental property of biologic systems was stated by Osler in the context of 
“individualized” medicine but has progressively led to the development and utiliza-
tion of tools to measure variability and to improve—not only beer—but also health. 
Chapter 4 introduced the concepts of physiologic (especially heart rate) variability. 
In this chapter, we examine the tools that we recently developed to assess variability 
and quantify ventilatory pattern variability (VPV).

Heart rate variability (HRV) was the first characterized physiologic system in 
which variability could be considered as “a law of life.” Hon and Lee (1963) associ-
ated decreased HRV with increased mortality in fetuses [2, 3]. But even here, ventila-
tion and respiration could be considered. In identified at risk infants, the heart rate 
was steady without a respiratory sinus arrhythmia (RSA). This has been verified in 
frequency analyses examining the frequency component of heart rate using the power 
spectral density (PSD) of heart rate. Decreased HRV and absence of RSA is apparent 
as the loss of the high-frequency (HF) component in the PSD. Thus, decreased HRV 
and HF component of PSD depends on the magnitude of respiratory modulation of 
vagal nerve activity [4–12]. But, does VPV influence cardiorespiratory coupling? On 
the other hand, does VPV like HRV reflect changes in neural control of the cardiore-
spiratory system? These questions determined our interest in quantifying VPV.

 Clinical Relevance for Quantifying Ventilatory Pattern 
Variability

Ventilatory pattern variability changes with aging and health status [13–18]. In their 
classic studies, Tobin and coworkers distinguished variability in patterning from 
“normal” ranges ventilation in noting changes in the coefficient of variation were 
present even when mean values of frequency and tidal volume were different from 
normal [16, 17]. These initial studies have been replicated and developed by Tobin 
and others in the field. Variability in ventilation decreases in restrictive lung disease 
and is associated with dyspnea [19, 20]. In contrast, increases in respiratory pattern 
variability have been observed in patients with obstructive lung disease [20–22]. In 
an example study, ventilation in humans was measured using inductance plethys-
mography and the variability in breath-to-breath tidal volume (VT) was calculated. 
Using the coefficient of variation (CV) of male subjects (n = 26) without pulmonary 
disease as a reference [CV = (standard deviation/mean) × 100] for VT was 26 ± 7.5 % 
(mean ± SD); they reported that the CV was less in patients with restrictive lung 
disease (CV = 17.5 ± 4.6 % in old pulmonary tuberculosis and 18.9 ± 9.3 % in pneu-
monitis; n = 17); and greater in patients with obstructive lung disease 
(CV = 43.2 ± 13.0 % in pulmonary emphysema with hypercapnia, 33.0 ± 7.5 % in 
normocapnia and 35.8 ± 9.4 % in asthmatic attack; n = 29) [20]. Differences in CV 
between patients and subjects without lung disease were significant; showing 
decreased versus increased VPV in patients with restrictive versus obstructive lung 
disease. Thus, variability changes in the respiratory pattern, whether an increase or 
a decrease, reflect the development of disease.
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Changes in the variability of ventilation are also indicative of disease processes 
even when the lungs are not the primary site of pathology. Classic examples involv-
ing the controller and sensors are Cheynes–Stokes [23–26] and Biot’s breathing 
[27–31] as well as sleep-disordered breathing [32–36]. These ventilatory patterns 
result from changes in the gain of sensory input from the effect of state of con-
sciousness on the central pattern generator. Cheynes–Stokes respiration is a waxing 
and waning of ventilation and the pattern can be replicated by increasing circulation 
time and increasing the gain of the chemosensory inputs [23–26]. Types of anxiety 
disorders have been associated with disordered breathing marked by increases in 
variability [37–39]. Finally, recent emphasis on genetic diseases, like Rett’s, and 
Prader–Willi syndromes have increased awareness of ventilatory variability in char-
acterizing the deficits in these diseases [40–52]. Recently, we, as part of a larger 
consortium have hypothesized that VPV could complement HRV as a biomarker in 
septic and acutely ill patients [53, 54].

 Recording the Ventilatory Pattern

Quantifying variability, particularly distinguishing stochastic from nonlinear deter-
ministic sources variability, is a developing field. First, the advent of powerful per-
sonal computers with enhanced multicore processors and increased random-access 
memory address space, providing the capability to handle long strings of data have 
proven critical in this development. Second, the ventilatory pattern lends itself to this 
analysis with limitations and opportunities that are distinct from the frequency anal-
ysis of HRV. The primary limitation is that the respiratory rhythm is about 4–5 times 
slower than heart rate so an adequate stable sequential data set can be difficult to 
record. The electrocardiogram is the electrocardiogram, a consistent signal or event 
independent of electrode placement. However, the ventilatory pattern can be recorded 
many different ways and the method of recording ventilation can influence the pat-
tern. Further, the analysis depends on the signal characteristics. Common methods 
for recording ventilatory patterns measure (1) airflow, which is more accurate if the 
airway is intubated or covered with a tight face mask than using the less invasive 
method of a nasal thermistor or a newly developed noninvasive photoplethysmogram 
[55], (2) chest wall/abdominal circumference, using inductance band plethysmogra-
phy [56], (3) ambient pressure increases in a closed chamber that result from the 
heating of tidal volume from room to body temperature using whole- animal, flow-
through plethysmography (a common research tool for small animals but typically 
not for humans), and (4) neuromuscular signals, phrenic electroneurogram, (ENG) 
or diaphragmatic electromyogram (EMG) represent a “fictive” ventilation or respira-
tory motor pattern. In the in situ brainstem-spinal cord preparation (a common 
research model to study the neural control of respiration), these primarily inspiratory 
signals have a long silent during expiration which would bias the analysis. In this 
model, activity from the vagus nerve can be analyzed because it has activity 
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throughout the cycle because it is a compound motor nerve, which innervates both 
laryngeal abductors and adductors. The laryngeal abductors are active during inspi-
ration; the adductors, during early expiration. Given this, we present our approach as 
it was applied first to an “integrated” (full-wave rectified and smoothed using a 100-
ms sliding window) diaphragmatic EMG signal and then to ventilatory waveform as 
recorded from the whole-animal, flow-through plethysmographic chamber.

 Analytic Approach

Variability is a rhythmic signal and has both stochastic and deterministic sources 
[57]. While these components of variability can neither be measured directly nor 
completely separated, we have developed an approach based upon comparing the 
original data set to surrogate data sets that abolishes the non-linear but retains (auto-
correlation) serial dependency between points. In this way, we can attempt to distin-
guish linear stochastic from nonlinear deterministic sources of variability. Thus, 
through a consistent and disciplined approach incorporating multiple methods and 
suitable surrogate data analysis, a comprehensive understanding of signal variabil-
ity and its relationship to health and disease can be achieved.

Our overall goal is to understand how different components of biological vari-
ability interact during health and disease using a balanced application of computa-
tional methods while recognizing the strengths, assumptions, and limitations of 
each approach. For example, reliance on a single technique may lead to overinter-
pretation [58], whereas a comprehensive view enables the formation of mechanistic 
hypotheses that evaluate the sources of variability more fully. To help formalize this 
process, we define a set of conceptual properties, each describing an aspect of vari-
ability (Fig. 5.1). Our ability to characterize these properties of biologic variability 
depends on the development of analytical tools that are used to assess these proper-
ties (Fig. 5.1). Rather than use a single approach, we apply multiple complementary 
tools to a data set to assess VPV.

Distribution properties addresses the question “Is the dispersion of point within 
the data set independent of temporal relationships?” Thus, signal variability is 
assumed to be stochastic and common measurements such as mean, standard devia-
tion, and coefficient of variation (variance-based measurements) are used to charac-
terize statistical properties of the distribution. This approach is traditional and has 
evolved over the past 100 years.

Linear properties asks the question “Are the temporal and frequency relationships 
defined by a linear-affine model of the form y = ax + b?” Measurement tools include 
autocorrelation, single- and multiorder histograms, Poincaré plots (circle- return 
maps), and power spectral density.

The Poincaré plot is commonly used to display dynamic oscillator behavior. 
In the Poincaré plot, a characteristic in the current cycle (n) is plotted against that 
characteristic in the next (n + 1), or previous (n − 1), or any constant (n + x) cycle. 
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Thus, it reveals recurrence, self-similarity, or periodicity over time and provides 
both qualitative and quantitative information about the data set [59].

Nonlinear properties (Fig. 5.1, highlighted in yellow) describe deterministic tem-
poral relationships; for example, repeating patterns in the data. We have worked to 
develop tools that distinguish nonlinear properties. The approach is to generate sur-
rogate data sets that retain the linear autocorrelation properties of the original data 
set. In other words, a boot-strapping method using the same amplitude distribution 
of the original data set in combination with the iterated amplitude adjusted Fourier 
transform (iAAFT) that progressively narrows the discrepancy in the autocorrela-
tion function. Thus, the surrogate data sets account for the linear autocorrelation 
properties of the variability in the original data set. Then, to identify nonlinear 
determinants of respiratory pattern variability using mutual information (MI) and 
sample entropy (SampEn), we compare results for the original to surrogate data 
sets. We expect a low amount of nonlinear variability with neighboring data points, 
where τ = 1. In our analysis, τ is the time delay, a multiple of the sampling interval 
and, thus, depends on the sampling frequency. To compare across time, respiratory 
rates, and animals, we normalized the difference in SampEn by dividing this value 

Fig. 5.1 Properties of biologic variability and analytic tools that assess these properties. 
Distribution properties: the dispersion of the data set independent of temporal relationships 
between data points. The variability in the signal is assumed to be stochastic and uses common 
measurements such as mean, standard deviation, and coefficient of variation as well as Shannon 
Entropy. Linear properties: temporal and frequency relationships that are linear. Measurement 
tools include autocorrelation, single- and multiorder histograms, Poincaré plots (circle-return 
maps), and power spectral density. Nonlinear Properties (highlighted in yellow): deterministic tem-
poral relationships; for example, repeating patterns in the data. Poincaré analysis provides insight 
into temporal pattern variability. Distinguishing nonlinear properties depends on generating sur-
rogate data set that accounts for the linear properties of the original data set. This boot-strapping 
method compares the original to surrogate data for mutual information and sample entropy. 
Attractor properties: reconstruction of the attractor (if one exists) and characterizes invariant mea-
sures such as correlation dimension and Lyapunov exponents. Prediction properties: characteriza-
tion of the amount of information contained in the measurements and time series using information 
theory. Adapted from [57]
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by the number of τ in which the difference is significant. We refer to this value as 
the nonlinear complexity index (NLCI).

We have also developed a tool to examine temporal pattern variability (TPV) in 
Poincaré plots. Previously, analytical tools required a scatter plot that formed a sin-
gle cluster of points, did not account for overlapping points, and measured simply 
the length of the major (parallel to the line of identity) minor (perpendicular to the 
line of identity) axes of a hypothetical ellipse. Our analytical approach accounts for 
multiple overlaying points, allows multiple cluster analysis, and provides insight 
into nonlinear properties. TPV is calculated point by point, capturing time-depen-
dent information in a sequence of values. Time- delayed TPV (TPVTD) measures 
the similarity of an interval to a successor, where average TPV (TPVA) measures 
the similarity of an average of multiple intervals to a successor average [59].

Attractor properties (Fig. 5.1, gray to indicate that these analyses will not be pre-
sented thoroughly in this chapter): reconstruction of the attractor (if one exists) and 
characterization of invariant measures such as correlation dimension and Lyapunov 
exponents. We and others have used the correlation dimension, which is an index of 
pattern variability that quantifies the degrees of freedom required to capture the 
dynamics of the system on an attractor [60]. Although we have used correlation 
dimension as a complementary analysis to verify an increase in deterministic vari-
ability measured by SampEn in the fictive ventilatory pattern after vagotomy [6], we 
have not used it extensively for VPV.

Prediction properties characterize the amount of information contained in the 
measurements and time series using information theory. As stated under Nonlinear 
Properties, we have applied MI and SampEn in the context of distinguishing nonlin-
ear properties by comparing original data to surrogate data sets. It is worth noting, 
that in our analyses, the absolute values for these measures have been shown to have 
meaning.

 Mutual Information

Mutual information (MI) quantifies the statistical dependence in a time series (see 
Fig. 5.2). In Fig. 5.2a, we graphically explore MI and illustrate how knowing coor-
dinate x(t) (presented as yellow dot) reduces the amount of uncertainty associated 
with a time-shifted coordinate x(t + t) (Fig. 5.2a). In our application, τ is equal to a 
number of samples from x(t) and since the waveform is sampled at a constant rate, 
τ is related to time and to a portion of the average cycle length. We present three 
representative time intervals τ = 1, the next point, which is highly linearly correlated 
to x(t) or the reference point (Fig. 5.2b1), τ = 20 or the first minimum (Fig. 5.2b1), 
and τ = 30 or the first regional maximum before the cycle length (Fig. 5.2b1).

MI is distinct from the autocorrelation function in that MI quantifies statistical 
dependence and not simply autocorrelation. Hence, both linear (e.g., autocorrela-
tion) and nonlinear correlations contribute to MI, which could also be defined as the 
similarity between points as a function of the time interval or τ between them.
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Fig. 5.2 Determination of mutual information (MI) across multiple time delays (τ). (a1 and 2) 
Representative tracings of original data of “integrated” diaphragmatic electromyogram (DiaEMG) 
from a spontaneously breathing rat. For MI, a time-delayed series is constructed from the original 
data set by first (a1) determining the value of a point at time t + τ and then (a2) shifting this time 
series to the left by τ points and aligning the points at time τ. This is done for all τ from 1 to 1-cycle 
length; in this example, τ is equal to one-third of the cycle length, when MI is at its first local mini-
mum. (b1–3) Return maps from the original and time-delayed data sets at three representative τ’s 
are: (b1) τ = 1, (b2) τ = 20, (b3) τ = 30 or approximately ½-cycle length. (c1–3) To compute MI, 
return maps are divided into bins to generate a two-dimensional probability histogram. Individual 
probability distribution functions are generated by summing each column or row for the original 
or time-delayed time series, respectively. Thus, a single measurement of MI summarizes the histo-
gram. (d) The computation is repeated for all τ from neighboring points (5 ms, 200 Hz) to those 
separated by 1-cycle length. Adapted from [6]
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As we published in our adaptation of MI [6], its equation is:
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where P[x(t), x(t + t)] is the joint probability of x(t) and x(t + t) (in Fig. 5.2c, the joint 
probability distribution function is plotted color coded, on a logarithmic scale) and 
P[x(t)] and P[x(t + t)] are the marginal probabilities of x(t) and x(t + t) for the original 
or time-shifted time series, respectively. We begin the computation by constructing 
a return map (Fig. 5.2b) from the original and time-shifted time series. Then, we 
plot the joint probability distribution function by dividing the graph into bins and 
determining the frequency of points in a given bin (Fig. 5.2b). We use a constant 
number of bins (40 bins) and scale bin size by the variance of the data set. The indi-
vidual probability distributions are determined by summing each column or row of 
the joint probability distribution for x(t) or x(t + t) time series, respectively. Individual 
probability distributions of the original and time-shifted, time-series data sets are 
the same. We use the MI equation to generate graphs for MIs for τ equal to 1 (neigh-
boring points) to 1 cycle length.

 Sample Entropy

Sample entropy (SampEn) is a measure of a pattern’s predictability and provides an 
index of reproducibility within a signal (see Fig. 5.3) [61–63]. Specifically in time- 
series data, the “order” of the points or samples matters and can become predictable in 
rhythmic oscillations. This deterministic quality in the data waveform is not captured 
by mean and variance so repeated patterns in the data have to be identified using tech-
niques designed to capture them. SampEn is a technique used to quantify the amount 
of regularity or “self-similarity” in time-series data. We apply SampEn to measure the 
repeatability of a 3-point template in the respiratory pattern, the simplest; but a tem-
plate consists of “m” points plus one more point that has to “match” the pattern’s cri-
teria. In this approach, we construct the template 2-point base (each separated by a 
time interval, τ) (Fig. 5.3a, m = 2, and are represented by red and green squares sepa-
rated by a τ = 10. See the black-outlined rectangle located at the start of the time 
series). Then, this and subsequent possible template matches are identified based on 
these first two points (Fig. 5.3a, red and green points). A pair of points is considered a 
potential template match if its member points are within a tolerance “r” of the corre-
sponding point in the original template. Next, an additional point (Fig. 5.3a, black 
square within the black-outlined rectangle) completes the 3-point template. Then the 
set of potential matches is searched with this extended template of m + 1 points 
(Fig. 5.3a, each series of a red, green and black point). This searching algorithm is 
repeated for all possible starting points to compute the total number of m-point “poten-
tial template matches” (Fig. 5.3a, red and green boxes) and (m + 1)-point matches 
(Fig. 5.3a, green boxes). Thus, SampEn is computed as a ratio of the number of tem-
plate-matches to the number of potential template- matches, excluding self-matches.
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Again, we published our adaptation of SampEn [6], its equation is:

 

SampEn( , , ) ln
( ) ( , )

( ) ( , )

m r
N m A r

N m B r

i
m

i

N m

i
m

i

N
t

t

t
= −

−

−

−

=

−

−

=

∑1

1

1

1

−−

∑



















m

 

where Am(r, τ) is the probability that (m + 1)-point sequences match, Bm(r, τ) is the 
probability that (m)-point sequences match, N is the number of points in the epoch, 
m defines the template length, r is the tolerance (defined as a fraction of the standard 
deviation of the amplitude envelope), and τ is the time interval (time delay) between 

Fig. 5.3 Determination of sample entropy (SampEn) across multiple time delays (τ). (a) 
Superimposed on a representative tracing of DiaEMG is a template of m points (each separated by t) 
(red and green squares within the black box; m = 2 and τ = 10). Then, the time series is searched to 
identify possible template matches (each series of red and green points). A pair of points was con-
sidered a template match if its member points were within 20 % of the standard deviation of all 
points in the epoch relative to the corresponding point in the original template (r = 0.2 XSD). If the 
point is outside of this tolerance, then it is excluded as a possible match (dashed box). Next, the 
template of m points is extended to include an additional point (black square within the black box). 
Then, the time series is searched again for matches of this extended template of m + 1 points (each 
series of red, green, and black points). This searching algorithm is repeated for all possible starting 
points to compute the total number of m-point matches and (m + 1)-point matches. Informally, 
SampEn is a permutation of the ratio of the number of matches for the (m + 1)-point templates 
(green boxes) to the number of matches for the m-point templates (red and green boxes). This 
process excludes self-matches (the black box is not scored as a match). (b) We repeat the computa-
tion for all τ from neighboring points (5 ms due to a 200 Hz sampling frequency) to those separated 
by one cycle length. Adapted from [6]
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points in a template. Note that SampEn is expressed as a negative of the natural log 
of the fraction of matches divided by the total number of possible matches. Thus, a 
higher SampEn indicates a shift in this ratio either a fewer number of (m + 1)-point 
template matches or a greater number of m-point template matches (i.e., a lower 
SampEn indicates greater regularity in the temporal patterns of the time series, and 
as such, more predictability and less complexity).

 Surrogate Data Sets

MI and SampEn measure both linear and nonlinear properties of time-series data 
sets. This complicates data interpretation and obfuscates results for comparative 
analysis of time series that exhibit short- or long-range correlations. This partially 
depends on the rate of decay in the autocorrelation function. For signals with a 
slowly decaying autocorrelation function, linear properties of the signal contribute 
to the predictability in the signal.

To distinguish between linear and nonlinear sources of variability using these 
techniques, we compare the values of MI or SampEn of the original data set with 
those of surrogate data sets [6]. The surrogate data sets are designed to preserve the 
amplitude distribution and autocorrelation functions and to eliminate nonlinear cor-
relations of the original data set [64, 65]. The amplitude distribution of the original 
data set is easily preserved in the surrogate data set because we use all the points of 
the original data set. To preserve the autocorrelation function, we apply the iterated 
amplitude adjusted Fourier transform (iAAFT) method [6, 66] and accept only 
those surrogate data sets that have autocorrelation functions that are consistent with 
the autocorrelation function of the original data set (Fig. 5.4c). For testing statistical 
significance, we create 19 surrogate data sets and test for differences in the statistics 
(mean and standard deviation) of the MI and SampEn of the original data and the 
surrogate data sets (Fig. 5.4). We have displayed a representative waveform pattern 
of the surrogate data sets below that of the original data (compare Fig. 5.4a, b).

 Application of Our Approach

To demonstrate the applicability of our approach to the ventilatory pattern, we did 
what every individual interested in the neural control of respiration would do: we 
analyzed the respiratory pattern before and after vagotomy. We combined the vagot-
omy with bilaterally blocking synaptic currents mediated by the NMDA receptors 
in the dorsolateral pons, which has been referred to as “the internal vagus” [67]. We 
hypothesized that vagotomy diminishes nonlinear ventilatory pattern variability and 
these changes can be identified by our analytical approach [6].

A representative figure (Fig. 5.4) of our results details the different steps that we 
perform in the analysis of ventilatory pattern data, which in this example is the recti-
fied and integrated recording of diaphragmatic EMG (Fig. 5.4a, original data are 
shown in black tracings). The next step is the formation of surrogate data sets (n = 19, 
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Fig. 5.4 Representative examples from a single rat of the effects of bilateral vagotomy followed by 
bilateral MK-801 injections in the KFn on nonlinear dependence and complexity of the respiratory 
patterns. The traces are: (a) òDiaEMG, (b) surrogate data, (c) autocorrelation function, (d) mutual 
information and (e) sample entropy. (a) Representative trace of the recorded integrated diaphrag-
matic activity representing the ventilatory patterns at baseline (left panel) and after vagotomy and 
bilateral injections MK-801 in the KFn (right panel, see [6] for injection sites). Respiratory fre-
quency decreases and inspiratory burst amplitude increases after the intervention. (b) Representative 
traces of surrogate time series (red traces) generated from the original data set in (a). The surrogate 
data sets preserve the general character of the original time series including the periodicity and 
amplitude distribution. (c) Autocorrelation functions of the original (black) and the surrogated (red) 
data sets. The autocorrelation function overlaps (note between green arrows) indicating that iAAFT 
surrogate data sets maintained the linear correlation of the original time series. (d) Mutual informa-
tion (MI) for the original (black) and surrogate (red) data sets. At baseline (left traces), the difference 
between MI curves suggests the presence of significant nonlinear dependence at many time delays 
across the respiratory period. After vagotomy and subsequent MK-801 injections (right traces), 
nonlinear dependence decreases as  evidenced by a smaller difference between traces (highlighted in 
yellow). (e) Sample entropy (SampEn) between original and surrogate data sets. The differences 
between the original and surrogate data complement those of MI. The difference in SampEn between 
original and surrogate data sets (in yellow highlighted area) is significant at baseline (left traces) and 
not significant after vagotomy and MK-801 injections (right traces). Adapted from [6]
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a tracing from one (Fig. 5.4b, surrogate data are shown in red tracings). In particular, 
the autocorrelation functions for the original and surrogate data sets are nearly 
equivalent (Fig. 5.4c between green arrows). We interpret these equivalent autocor-
relation functions as indicating that the linear (autocorrelation) properties of the 
original data set are maintained in the surrogate data sets. On the other hand, MI 
shows a clear difference between the original and surrogate data sets (Fig. 5.4d). The 
probability of knowing the value of a second point based on the value of the refer-
ence point diminishes drastically after destroying the nonlinear deterministic prop-
erties in the original data set (Fig. 5.4d, yellow highlight). To present a single value 
for the nonlinear contribution to MI, we calculate the difference between the curves 
at each τ between 17.5 and 82.5 % of cycle length and divide by the sum by the 
number of τ between 17.5 and 82.5 % of cycle length (Fig. 5.4d, yellow highlight). 
We analyze SampEn as MI (Fig. 5.4e, yellow highlight). Of course, the SampEn 
increases with the elimination of the nonlinear deterministic properties in the sur-
rogate data sets. Finally, we normalize SampEn in the same manner as that for MI.

In the manuscript [6], we refer to the normalized MI value as the nonlinear detec-
tion index (NLDI) and to the normalized SampEn as the nonlinear complexity index 
(NLCI). For the group of rats (n = 11) studied, NLDI and NLCI decreased signifi-
cantly to a similar value (by approximately 30 % of baseline) after vagotomy or 
bilateral microinjections of MK-801 in the dl pons or after both interventions 
together and was independent of which intervention was performed first [6]. Thus, 
these complementary analyses agreed in their results and revealed the importance of 
the integration of sensory input into the pattern generator in determining VPV. In 
particular, the balance between pontine and peripheral inputs to the respiratory 
rhythm generator determines VPV.

Our team’s first application of the approach [68] was to a clinically relevant ani-
mal model and occurred actually before we had refined the formation of surrogate 
data sets (In Fig. 1 of [68], the examples of surrogate data sets show considerable 
variation from the original data. Subsequent to this study, we restricted the toler-
ance for deviation from the autocorrelation function in the iAAFT (see Fig. 5.4) 
Nevertheless in this manuscript [68], we were able to show that ventilation pattern 
variability became more deterministic following stroke in mice. In these studies, 
ventilatory pattern was measured using whole-body flow-through plethysmography 
and compared between two groups of mice (male, A/J, Jackson Laboratory, Bar 
Harbor, ME): one group received a middle cerebral artery occlusion (stroke model 
n = 7); the other had a sham procedure (n = 7). The data were analyzed using tradi-
tional approaches [mean ± SD and coefficient of variation were computed for respi-
ratory frequency, tidal volume (VT) and minute ventilation (VE)] and using our 
approach for nonlinear measures of (mutual information, sample entropy and a non-
linear complexity index) comparing original to surrogate data sets. Even though 
both approaches showed changes in the variability of the breathing pattern, the 
breathing pattern 24 h after the mice had received a stroke had more deterministic 
variability than those that only had the sham procedure. Using the traditional mea-
sures, the mice that received the stroke breathed slower and with greater variability 
than they did prior to the occlusion and compared to the sham [68]. In particular, the 
autocorrelation function was lower and CV was higher for VT and for VE. Despite 
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this increase in the variability in the signal, mutual information and the nonlinear 
complexity index were higher in the ventilatory pattern following stroke. These 
data indicate that nonlinear deterministic sources contributed to the increased vari-
ability following stroke that this increase in variability was not simply stochastic.

Furthermore, these data indicate that VPV in conditions like stroke following 
cerebral infarction increased variability but with increased deterministic character-
istics. These sources may be mediated by reflexes—as noted in Cheynes–Stokes 
breathing, which has increased variability due to increased gain of chemoreceptors. 
This and the prolonged feedback are ideal sources for mediating changes in the 
nonlinear components of variability.

Cheynes–Stokes breathing pattern is a rhythmic waxing and waning ventilatory 
pattern. Previously, this pattern was evaluated by a “ventilation oscillation strength 
index” [69, 70]. This index is the ratio of the difference in the maximum and mini-
mum minute ventilation to the sum of these measures for a ventilatory cycle length. 
Two limitations of this index are: it assumes there is a pattern and it is not a statisti-
cal measure of probability. With regard to the pattern, the index assumes a waxing 
and waning pattern, but the index makes no distinction as to whether the maximum 
wanes to a minimum or if the maximum neighbors the minimum. The index is not 
a statistical measure. If a pattern exists, the index measures neither the consistency 
nor strength of the pattern. In contrast, our approach could be adapted to reflect a 
pattern developing over multiple breaths and pathophysiologic states.

 Variability Versus Stability

Variability is an aspect of stability but changes in variability do not necessarily indicate 
a change in stability. Stability of a limit-cycle oscillator is defined by its ability to return 
to its limit-cycle pattern after a perturbation. If the oscillator is stable, the “relaxation 
time” is the time required for the oscillator to return to its “attractor” and is an approxi-
mate measure of its degree of stability. Measure of a variable oscillation like the venti-
latory pattern requires pseudorandom perturbations [71–73]. Given this distinction, the 
ease of measuring variability makes it not only tractable but also a plausible biomarker. 
The issue is in the case of established illness would tracking VPV provide insight into 
the effectiveness of therapeutic approaches and weaning strategies.

 Other Methodologies

A technique referred to as noise titration was designed to test for the presence of 
nonlinear deterministic dynamics within a noisy time-series data and was initially 
applied to the respiratory signal [74]. Briefly, the technique tested for the presence 
of nonlinear dynamics by comparing the fit of the time series to a linear versus a 
nonlinear Volterra series model. An Akaike cost function was used to determine 
whether the fit was better for the nonlinear model. If so, then Gaussian noise with 
increasing standard deviation was titrated into the time series until the nonlinear 
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model was no longer better than the linear model. The value of the standard devia-
tion of the noise at this point divided by the standard deviation of the signal multi-
plied by 100 was defined to be the noise limit of the data, which has been correlated 
with the degree of chaos [74].

This technique has been applied to human respiratory patterns to identify chaotic 
dynamics in the pattern [75, 76]. While controversial this group defines chaotic-like 
complexity as long-term unpredictability modulated by low-dimensional nonlinear 
deterministic process [77]. Noise titration indicated a chaotic dimension to ventila-
tory flow in normal humans during tidal breathing [76]. Further, the technique was 
able to identify that hypercapnia affected chaos, which was reflected in decreased 
VPV [75]. In a creative application of noise titration, the technique was used to 
identify changes in the complexity of respiratory pattern as a tadpole matured into a 
frog [77]. In their study, linear models fit the respiratory pattern of tadpoles but 
postmetamorphosis, frogs displayed complexity in their patterns [77]. The authors 
interpreted these data to indicate that the respiratory pattern generator accounts for 
ventilatory chaos-like complexity [77].

Consistent with tadpole study, the noise titration technique was used to analyze the 
ventilatory flow during assist-controlled ventilation and patient-initiated, inspiratory- 
pressure support ventilation [78]. Even though assist-controlled ventilation can be 
initiated by spontaneous respiratory motor activity, this became suppressed in two-
thirds of the subjects. So, their ventilatory flow was determined by the ventilator. This 
pattern was regular, with stochastic variability and lacked complex nonlinear dynamic 
patterns of variability. In contrast, ventilatory flow was chaotic during pressure sup-
port in 95 % of the subjects with spontaneous activity (both before spontaneous activ-
ity became suppressed and with persistent spontaneous activity). Clearly, the complex 
dynamics associated with breathing has a neural rather than mechanical origin. The 
neural origin would be both the respiratory pattern generator and sensory afferents 
including vagal PSR feedback. Our data support that nonlinear dynamics within the 
CPG arise from the interactions of the peripheral inputs feeding into the network.

A basic point of the review is that entropy measures provide more insight into 
properties of variability than traditional variance-based measures (like standard 
deviation or coefficient of variation); entropy measures provide quantification of 
network complexity and signal predictability, thus providing a sensitive, comple-
mentary measure when applied in conjunction with traditional signal analysis meth-
ods. Here, we compare the Irregularity Score [79, 80], a measure of the 
breath-to-breath variability to Shannon entropy of the intervals that is used to quan-
tify the predictability of interval length (Fig. 5.5). We compared intervals of hypo-
glossal (XII) nerve discharge in the in vitro rodent “bursting” slice preparation at 
different levels of extracellular potassium concentration ([K+]o).

The in vitro rodent medullary slice preparation (Fig. 5.5a) contains the preBötz-
inger complex (PBC) and premotoneurons, these are necessary and sufficient neural 
elements for the generation of spontaneous rhythmic activity. This preparation also 
contains hypoglossal (XII) motoneurons, which permits the recording of rhythmic 
output from XII nerve rootlets and allows direct access to brainstem neurons and 
their milieu. Changes in [K+]o alter ionic equilibrium potential and reproducibly 
changes the excitability of cells embedded within the neural network.
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Shannon Entropy of the intervals had a peak at 5 mM [K+]o (Fig. 5.5b); and the 
irregularity score, a nadir at 9 (7 was not statistically different from 9) mM [K+]o 
(Fig. 5.5c). These measures are not negatively correlated because they measure com-
plementary properties of the time series. The irregularity score captures breath-to-
breath variability serial dependency similar to Poincaré plots, whereas Shannon 
entropy captures the statistical properties of the distribution of interburst intervals. 
A constant interburst interval would have minimal, whereas a uniform distribution 
has maximal Shannon entropy. By comparing entropy measures to other currently 
used analyses (i.e., coefficient of variation, power spectral density, and irregularity 
score), we showed that entropy provides information about signal complexity that is 
not evident using standard methods. Analysis methods and tools may quantify differ-
ent aspects of the same signal. To interpret a biological signal, we recommend apply-
ing a variety of different algorithms that encompass as many features of the 
signal—nonlinear and linear—as accurately as possible.

Fig. 5.5 Comparison of interval analyses. (a) Medullary rhythmic slice containing PreBötzinger 
Complex (pBC). Other labeled components of the rhythmic slice are: nucleus Tractus Solitarius 
(nTS), nucleus Ambiguus (nA), and hypoglossal motor nucleus (XII). The cells in the pBC are 
intrinsically rhythmic, they receive inhibitory input from the nTS (dashed arrow) and project to 
XII (dashed arrow). The lower panel shows spontaneous rhythmic bursting hypoglossal electro-
neurogram (XII-ENG). (b) Shannon Entropy was calculated on the interburst interval (IBI), the 
interval of quiescence between bursts of XII-ENG. The pattern with the greatest Shannon Entropy, 
i.e. the IBI with the greatest predictability occurred when the bath contained 5 mM extracellular 
potassium concentration ([K+]o). (c) Irregularity score was calculated on the cycle duration (inter-
burst interval and a burst). In contrast, to Shannon Entropy, the intervals with the least breath-to-
breath variability in cycle duration occurred at 7 and 9 [K+]o (Wilson, unpublished data). Asterisks  
denote a significant difference to the other values. In C the irregularity scores for 7&9 are not 
significantly different but are significantly different than the others
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 Limitations

We advocate that multiple analytical approaches should be applied to data sets to 
complement each other. These techniques have limitations. Mostly, the complexity 
of colored or non-Gaussian noise can create ambiguities in interpretation. Freitas and 
coworkers reported that noise titration fails to distinguish nonchaotic signals from 
low-dimensional deterministic chaos, especially in the context of colored noise [81].

Indeed even with our surrogate data sets, we cannot distinguish stochastic non- 
Gaussian or deterministic nonlinear variability. In our case, we examined the correla-
tion integrals for both original and the surrogate data sets. Correlation integrals 
showed convergence for the original but not surrogate time series confirming the exis-
tence of nonlinear deterministic structure in the original but not surrogate data sets [6].

 Variability as Biomarker and Our Current Application

In our Introduction, we argue for VPV having potential clinical relevance. An 
underlying issue in accepting and appreciating heart rate and ventilatory pattern 
variabilities as biomarkers is the poor understanding of what determines pattern 
variability in the neural control mechanisms and of how these change from health to 
disease. For instance, we know that the high-frequency component of the power 
spectral density of heart rate is related to respiration and to the prevalent respiratory 
modulation of autonomic innervation of the heart. But we neither know how VPV 
influences HRV nor how these systems become uncoupled during these diseases.

The expectation is that now we have an analytical approach that can provide 
consistent and interpretable results in measures of VPV. We, especially Frank 
Jacono and Yee-Hsee Hsieh, have been addressing how and why the VPV changes 
in human and animal models of lung injury and sepsis. Recently, we published an 
association between the expression of proinflammatory cytokines in the lung and 
brainstem and dramatic increases in deterministic properties in VPV [82]. We iden-
tified changes in both linear and nonlinear components of VPV, but these occurred 
over a different time course after acute lung injury [intratracheal instillation of 3 U 
of bleomycin (or saline) in adult male rats (n = 12)]. The breathing pattern, for 
instance respiratory cycle duration (Ttot), changed, Ttot decreased, at 24 h. 
Surprisingly, this change in the breathing pattern was not accompanied by changes 
in the linear component but rather the nonlinear component of VPV. For instance, 
CV of Ttot and even the autocorrelation coefficient of the pattern at one cycle 
length did not change significantly until 48 h after acute lung injury, whereas the 
NLCI had increased significantly already at 24 h and remained increased at 48 h 
[82]. In this initial study, bronchoalveolar lung fluid (BALF), lungs, serum, and 
brain tissue were harvested only at the 48 h time point. At this time point, the proin-
flammatory cytokines IL-1β and TNFα were increased in the BALF and the homog-
enate of pulmonary tissue but not the serum. We stained the brainstem for these 
cytokines and noted increased IL-1β expression in the area postrema and nuclei of 
the solitary tracts, where pulmonary primary afferent terminate [82] (Fig. 5.6).
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Fig. 5.6 (a and b) Representative examples of Sample Entropy measurements from single rats (a, 
sham; and b, acutely lung injured). (c and d) Group data of the autocorrelation coefficient (r, c) and 
nonlinear complexity index (NLCI, d). (e and f) Histological data showing the nucleus solitary tract 
(nTS) in a sham (e) and lung-injured rat (f). (a and b) Nonlinear variability of the ventilatory pattern 
as measured by SampEn before (1) and after (2) intratracheal installation of saline (sham, a) or 3 U 
of Bleomycin (lung injured, b). (a1 and 2) In the sham rat, SampEn of the original and surrogate 
data sets overlap both before and 48 h after intratracheal instillation of saline. (b1 and 2) In the lung-
injured rat, the baseline SampEn is similar to that of the saline-treated rat at baseline, but SampEn 
separates between the original and surrogate data sets 48 h after induction of lung injury. These data 
indicate an increased contribution of nonlinear and/or non-Gaussian sources of variability. (c) 
Linear determinants of VPV, as indicated by the r, did not change in significantly until 48 h after 
lung injury when it decreased. (d) In contrast to the linear determinants, nonlinear determinants of 
VPV, as indicated by NLCI, increased at 24 h when the breathing pattern changed in the lung-
injured rats. (e and f) Brainstem tissue was sectioned coronally and sequential sections were stained 
immunohistochemically with or without the primary antibody for IL-1β (Abcam) or with NeuN 
conjugated to FITC to identify neuronal nuclei (Millipore) or in the lung-injured rat, IL-1β was 
colocalized with neurons in the nTS as identified by fluorescent staining. Adapted from [82]
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Conclusions

While many have reported changes in VPV with respiratory disease [19, 20, 76, 
83–91], we are focused on the consistent measurement of VPV, on dissociation of 
linear and nonlinear sources of variability, on distinguishing deterministic from sto-
chastic sources of VPV, and on the mechanisms that determine VPV. We propose 
that changes in VPV depend not only on vagal sensory afferents but also on altered 
brainstem mechanisms, specifically neuroimmune interactions regulating 
neurotransmission.
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           Introduction 

 The infl ammatory response is the host’s response to a perceived threat in the form 
of an invading pathogen or tissue damage [ 1 ] and is defi ned as upregulation of 
infl ammatory cytokines and chemokines, leukocyte adhesion molecules, and infi l-
tration of neutrophils and other immune cells into tissues [ 2 ]. This response involves 
multiple factors that detect the stress response, and many cell types to create the 
physiologic reaction to stress (Table  6.1 ). Homeostasis of the infl ammatory response 
must be closely regulated. Without the infl ammatory response, the host would suc-
cumb to the threat, while excessive responses will cause cell and tissue damage, 
and death. Trauma and sepsis are distinct entities with some overlapping features. 
In trauma, the inciting event is tissue damage often associated with local or systemic 
hypoperfusion. Sepsis, which often complicates trauma, is initiated by an infectious 
agent. Both trauma and sepsis induce systemic changes most often manifested by 
interrelated immune and physiologic changes. Many of the overlapping features are 
likely due to the involvement of immune-sensing mechanisms both trauma and 
sepsis have in common.

   When the infl ammatory response becomes severe and generalized, the patho-
logic sequelae are manifested in a condition called the systemic infl ammatory 
response syndrome (SIRS). SIRS is diagnosed when the patient presents with two 
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or more of the following criteria: temperature > 38 °C or <36 °C, heart rate > 90 beats 
per minute (BPM), respiratory rate > 20 breaths per minute or PaCO 2  < 32 mm Hg, 
or white blood count (WBC) > 12,000 or <4,000 mm −3  or >10 % bandemia. Sepsis 
is defi ned as the SIRS response to a septic focus [ 3 ]. 

 Trauma and severe sepsis are associated with a high rate of immune irregularities. 
Patients can succumb early after the onset of trauma or sepsis due to a cytokine 
storm characterized by a hyperinfl ammatory state, which can lead to early multior-
gan failure (MOF). The appearance of early MOF correlates with the development 
of nosocomial infection and prolonged ICU stays. Recent human data examining the 
phenotype of circulating leukocytes in severely injured blunt trauma patients indi-
cates that both the upregulation of innate immune pathways and suppression of 
adaptive immune pathways occur simultaneously. These responses are exaggerated 
and sustained in patients that go on to develop infectious complications [ 4 ]. 

 Billions of dollars have been invested to create therapies for severe sepsis and 
injury. Despite some early promise, there has been only disappointment. This is 
most likely due to the failure to completely understand the mechanisms involved 
in the host response to injury and severe infection. Systems biology holds great 
promise as an approach to develop an integrated and predictive model of the human 
immuno-infl ammatory response.  

    Sensing Mechanisms 

 Evidence continues to mount that the host is programmed to initiate infl ammatory 
and cell stress-signaling pathways in response to threats to tissue homeostasis 
through highly specifi c sensing mechanisms. These threats are often in the form of 
invading microorganisms, tissue damage or reduced oxygen and nutrient delivery. 
Many of the sensing mechanism have been identifi ed and some are listed in Table  6.1 . 

    Table 6.1    Host injury infl ammatory response   

 Sensors  Cells  Effectors  Consequences 

 PRR—DAMP, PAMP 
 Heat shock proteins 
 Hypoxia sensors 
 Mitochondria 
 ROS/RNS targets 

 Neutrophils 
 Macrophages 
 Lymphocytes 
 Dendritic cells 
 NK/NKT 
 Mast cells 
 Epithelial cells 
 Platelets 

 Neuroendocrine 
mediators 

 Cytokines/chemokines 
 Complement 
 Coagulation cascade 
 ROS/RNS 

 Benefi cial 
 1. Adaptive cell stress 

responses 
 2. Initiate tissue repair 
 3. Immune defenses 
 Detrimental 
 1. Immune dysfunction 
 2. End-organ damage 
 3. Impaired repair processes 

  Participants in the systemic infl ammatory response divided into sensors of the noxious stimuli, the 
cells involved, the systemic mediators of the infl ammatory response and the consequences of such 
response 
  PRR  pattern recognition receptor,  DAMP  danger-associated molecular pattern,  PAMP  pathogen- 
associated molecular pattern,  ROS  reactive oxygen species,  RNS  reactive nitrogen species  
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    Infections 

 In order for the human immune system to respond to infectious agents rapidly, the 
system recognizes a subset of molecular motifs that are uniquely expressed by 
microorganisms but are not expressed by host cells. These molecules are known as 
pathogen-associated molecular patterns, or PAMPs. PAMPs are recognized by pat-
tern recognition receptors (PRRs), which include several families of receptors that 
are expressed on both immune and nonimmune cell types. The toll-like receptors are 
prototypic PAMP sensors and the microbial molecular motifs recognized by many of 
the 13 TLRs have been identifi ed. Examples of PAMPs that initiate signaling through 
TLRs are listed in Table  6.2 . TLR signaling involves a number of adapter molecules. 
Notable among these are the downstream adapters TIR-domain containing adaptor-
inducing interferon-β (TRIF) and myeloid differentiation primary response gene 88 
(MyD88). These adapters link TLRs to downstream signaling pathways including 
NF-κB, MAP kinases, and IRF3. The LPS receptor complex, comprised of TLR4 
and MD2, is unique among TLRs in that it can signal through both TRIF and MyD88. 
TLR signaling regulates a range of cellular responses including cytokine/chemokine 
production to cell stress responses such as autophagy [ 5 ].

       Tissue Damage 

 Not long after the identifi cation of the role of PRR in the recognition in PAMPs, it 
became apparent that many of the PRRs were involved not only in the detection of 

    Table 6.2    Toll-like receptors and their respective stimulants   

 Toll-like receptor  Exogenous molecule  Endogenous molecule 

 TLR-1  Triacyl lipoproteins 
 TLR-2  Lipoproteins 

 Peptidoglycan 
 Lipoteichoic acid 

 HSP-60, 70 
 HMGB-1 

 TLR-3  Double-stranded RNA  mRNA 
 TLR-4  Lipopolysaccharide 

 Fusin protein 
 Envelope protein 

 HSP-22, 60, 70 
 HMGB1 
 Surfactant protein A 

 TLR-5  Flagellin 
 TLR-6  Lipoteichoic acid 

 DNA zymosan 
 TLR-7  Single-stranded RNA 
 TLR-8  Single-stranded RNA 
 TLR-9  Unmethylated CpG-containing DNA  DNA–HMGB1 complexes 

  Examples of microbial factors and endogenous moieties that are both recognized by pattern 
 recognition receptors 
  HSP  heat shock protein,  HMGB1  high mobility group box 1,  DNA  deoxyribonucleic acid  
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microbes but also the sensing of tissue damage [ 6 ,  7 ]. In the setting of tissue damage 
or even cell stress, PRR recognize molecules of host origin referred to as damage- 
associated molecular pattern molecules, or DAMPs. These are molecules within 
cells or tissue matrix that are normally not available to PRR. However, in the setting 
of tissue damage or stress, DAMPs are released in quantities adequate to trigger 
signaling through PRR. Examples of DAMPs that trigger signaling through TLRs 
are shown in Table  6.2 . It is notable that the concentrations of DAMPs required to 
trigger signaling through TLRs are often at least an order of magnitude higher than 
that seen for PAMPs. This suggests that the threshold for the detection of microbes 
by PRR is much lower than the detection of tissue damage and perhaps correlates 
with the magnitude of the threat to the host. However, it seems reasonable to con-
clude that a common set of receptors are used to detect both infection and tissue 
damage and that this feature could account for the similarities in the infl ammatory 
response induced by these two very different threats to the host.  

    Hypoxia/Ischemia 

 Hypoxic and ischemic conditions also represent a major threat to the host by leading 
to cellular dysfunction and injury. Whether local or systemic, sustained reductions 
in perfusion or oxygen delivery lead to the activation of infl ammatory and cell stress 
signaling. Therefore, it is not surprising that several oxygen sensing mechanisms 
are linked to infl ammation. 

 Oxygen tension is detected by oxygen sensors within the cells, which hydroxyl-
ate proline residues on the hypoxia-inducible transcription factor (HIF) [ 8 ]. This 
hydroxylation creates a binding site for the von Hippel–Lindau gene product, which 
leads to the proteasomal degradation of the α subunit [ 8 ]. Hypoxia inducible fac-
tor-1 (HIF-1) is one of the main mediators of homeostasis in the hypoxic environ-
ment [ 9 ]. HIF-1 plays a key role in the infl ammatory response including the 
metabolism, migration, inducible nitric oxide synthase (iNOS) expression, and 
 antimicrobial activity of polymorphonuclear neutrophils (PMN) and macrophages 
[ 8 – 10 ]. The expression and release of infl ammatory protein-1B by macrophages, 
which protects PMNs from apoptosis and thereby extending their lifetime, is 
through HIF- dependent NF-KB activation [ 8 ,  10 ]. Increased HIF-1α production in 
T cells induces a Th1 to Th2 phenotype shift. 

 The mitochondrion acts as a sensor during episodes of ischemia and reperfusion 
with resultant production of reactive oxygen species. Under normal circumstances 
of respiration, mitochondria leak a small quantity of reactive oxygen species (ROS) 
along the electron transport chain in the form of superoxide radicals ( O2

•−

  ). Most of 
these reactive oxygen species are reduced by superoxide dismutase to hydrogen 
peroxide and further reduced by peroxidase and glutathione. Ischemia leads to alter-
ations to the mitochondrial electron transport chain and electron leak causing 
increased superoxide radical formation [ 11 ]. Under prolonged ischemic episodes, 
the capacity of the cell to reduce the superoxide becomes overwhelmed, resulting in 
oxidative stress. Under these states, ROS activate NF-κB and activator protein 1. 
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NF-κB regulates infl ammatory factors such as inducible nitric oxide synthase 
(iNOS) and cyclooxygenase II [ 12 ]. Activator protein 1 and NF-κB are essential for 
induction of many infl ammatory cytokines including tumor necrosis factor-α (TNF-
α), interleukin-1β (IL-1β), IL-2, IL-6, IL-8, macrophage chemoattractant protein 
(MCP- 1), interferon-β, granulocyte-macrophage colony stimulating factor 
(GM-CSF), regulated on activation normal T cell expressed and secreted (RANTES), 
and E-selectin [ 1 ,  12 ].   

    Cellular Factors of the Infl ammatory Response 

 The infl ammatory response to an acute threat involves a response coordinated by 
cells. The roles of immune cells in driving the initial infl ammatory response are well 
recognized. Less appreciated are the roles of nonimmune cells, which can partici-
pate in the response not only by responding to signals from the immune cells but 
also by responding through the same range of sensing mechanism expressed within 
immune cells. Here, we briefl y consider the dominant known roles of specifi c cell 
populations in the early infl ammatory response. 

 Tissue macrophages are among the fi rst cells to send signals in response to infection 
or injury. These signals include chemokines and cytokines that begin to integrate an 
infl ux of cells into the threatened tissue. Monocytes enter the tissues and differentiate 
into macrophages by the cytokine milieu. These cells play a dual role in the immune 
response by phagocytizing pathogens and destroy them through oxygen-dependent 
and oxygen-independent mechanisms, then presenting antigens to T cells, promoting 
cell-mediated immunity [ 13 ]. These cells secrete proinfl ammatory cytokines to 
delay neutrophil apoptosis and further enhance the infl ammatory response. 

 After stimulation, a massive PMN infi ltration occurs within 4–6 h, followed by 
monocytes in 24 h and lymphocytes in 48 h [ 14 ]. Neutrophils clear the infection by 
phagocytosis and intracellular killing mechanisms involving reactive oxygen spe-
cies and the release of proteases, elastase, cathepsins, and matrix metallopeptidase-9 
[ 13 ]. They also secrete cytokines to further attract and activate the immune response, 
including TNF-α, IP-10, macrophage infl ammatory peptide-1α (MIP-1α), IL-12, 
IL-8, B-lymphocyte stimulator (BLyS), and vascular endothelial growth factor 
(VEGF) [ 15 ]. PMN also release DNA nets to snare bacteria in response to TLR4 
activation    [ 16 ,  17 ]. They have a short half-life of 8–12 h unless extended by IL-8 
and TNF-α, bacterial components, and complement [ 13 ]. 

 In part of the infl ammatory response to trauma, the spleen becomes infi ltrated 
with CD11c + /Gr-1 +  myeloid cells that are known to suppress T-cell function, 
Myeloid-derived suppressor cells (MDSCs). These cells express the enzyme argi-
nase, which converts arginine to ornithine and urea. In trauma, these cells localize 
with T cells in the germinal centers of the white pulp in the spleen where they sup-
press T-cell function. The expressed arginase activity depletes the local environment 
of available arginine, which is required for the T-cell receptor ζ-chain [ 18 ]. T-cell 
proliferative dysfunction ensues and can be reversed by arginine supplementation or 
inhibition of arginase activity. 
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 Lymphocytes can be divided into T cells and B cells. T cells infi ltrate the infl am-
matory site and secrete cytokines that increase neutrophil infi ltration (GM-CSF and 
IL-3), the macrophage and neutrophil response to pathogens (TNF-α and GM-CSF), 
and delay neutrophil apoptosis (GM-CSF) [ 19 ]. Subsets of T cells, regulatory T 
cells (Tregs), have been implicated in the suppression of T-cell response to antigen 
and immunosuppression. B cells were once thought to have the sole function of 
producing antibody, but more recent evidence demonstrates that B cells play an 
active role in modulating the immune response. Regulatory B cells (Breg) are a 
subset of B cells that produce interleukin-10 (IL-10) and induce an anti- infl ammatory 
immune response [ 20 ]. 

 Severe injury and sepsis leads to a suppressed T-cell response. Multiple mecha-
nisms regulate this immune suppression, including certain cytokines and regulatory 
T cells (Tregs). The topic of regulatory T cells is too extensive to be completely 
covered in this chapter. These cells play a role in the infl ammatory response and 
immune modulation after injury and sepsis. Tregs suppress CD 4+  T-cell prolifera-
tion and activation after trauma and sepsis and mitigate LPS and PGN-induced 
TNF-α, IL-1β, and IL-6 production [ 21 ,  22 ]. Tregs inhibit T-cell proliferation by 
cell contact- mediated pathways [ 23 ]. Tregs produce high levels of the immunosup-
pressive cytokine IL-10 after injury [ 23 ]. Tregs are upregulated in sepsis and sup-
press CD 4+  T-cell proliferation; however, Treg depletion did not lead to a survival 
advantage in CLP-induced sepsis [ 22 ]. 

 Natural killer cells are bone marrow-derived lymphocytes that attack cells 
through apoptosis-inducing mechanisms. Unlike T and B cells, they do not express 
clonally specifi c antigen receptors, but rather detect self-antigens on MHC I mole-
cules [ 24 ]. They are producers of chemokines and proinfl ammatory cytokines TNF- 
alpha, TNF-beta, and IFN-gamma [ 25 ]. They are activated by the proinfl ammatory 
cytokines IL-12, type-1 interferons (IFN-alpha and IFN-beta), through toll like 
receptors, and through direct contact with dendritic cells [ 25 ]. NK cells, through 
IFN-gamma production, promote Th1 polarization of CD 4+  T cells and activate den-
dritic cells through IFN-gamma, TNF-alpha production, and cell–cell contact [ 26 ]. 
In addition to intensifying the infl ammatory immune response, NK cells can also 
dampen the response through depletion of immature myeloid dendritic cells and 
activated T cells [ 26 ]. 

 Natural killer T (NKT) cells are thymus-derived T cells that contain the T-cell 
receptor, but are dissimilar from their CD 4+  and CD 8+  T cells because they detect 
antigens expressed on CD1d and contain markers for natural killer cells [ 27 ,  28 ]. 
NKT cells can be divided into subsets by the expression of IL-18R or ST2L that can 
direct an immune response toward a Th1 or Th2 response by secretion of the cyto-
kines IFN-gamma or IL-4 and IL-5, respectively [ 29 ]. These cells have been impli-
cated in the T-cell-mediated immune suppression after burn injury by high 
production of IL-4 and lower MHC-II and costimulatory CD40 expression [ 30 ,  31 ]. 
Reversing the inhibitory role of NKT cells has been demonstrated by blocking the 
CD1d signaling [ 30 – 32 ]. 

 Dendritic cells (DC) play an important role in bridging the innate and cell- 
mediated immune response. These cells phagocytize antigen, migrate to secondary 
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lymphoid organs, differentiate into a mature phenotype, and activate naïve T cells 
[ 13 ]. DCs have much higher capability to present antigen to T cells than macro-
phages. These cells can be divided into plasmacytoid DCs and myeloid DCs. 
Plasmacytoid DCs resemble plasma B cells and are involved in autoimmunity and 
are the major subset of DCs responsible for IFN-α response to infection. Myeloid 
DCs play a major role in IL-12 production to stimulate macrophages and natural 
killer cells and induction of the Th1 response [ 13 ]. Sepsis induces an acute expan-
sion of splenic follicular DC, with an interval decrease through caspase-3-mediated 
apoptosis [ 33 ,  34 ]. Sepsis also induces an acute decrease in interdigitating DCs 
through caspase-3-mediated apoptosis [ 33 ]. The immature rather than the mature 
DC population are the targets for apoptotic death [ 35 ]. The depletion of DC popula-
tions seen in sepsis is also witnessed in trauma/hemorrhage [ 36 ]. Dysfunction, as 
indicated by suppressed antigen presentation, is seen in both sepsis and trauma [ 33 , 
 36 ]. Trauma and hemorrhagic shock suppress DC response to LPS with downregu-
lated MAPK activation and suppress LPS-induced proinfl ammatory TNF-α and IL-6 
cytokine production, which is likely due to diminished TLR-4 expression [ 36 ,  37 ]. 
However, there was no change in DC anti-infl ammatory IL-10 production [ 37 ]. 

 Often underappreciated is the role of nonimmune cells in the host response to 
acute infection or injury. Take, for example, the fact that most PRR are widely 
expressed in nonimmune cell types [ 38 – 41 ]. The roles of PRR on parenchymal cells 
are an underexplored area of infl ammation biology. Evidence that PRR on nonim-
mune cells is important in the setting of acute injury and infection comes from stud-
ies using chimeric mice. In fact, the majority of the studies using chimeric mice 
defi cient in TLR4 signaling in either the bone marrow or non-bone marrow derived 
cells shows that TLR4 on non-bone marrow derived cells plays an important role in 
the acute pathobiology of infection [ 42 ,  43 ], ischemic injury [ 44 – 46 ], tissue trauma 
[ 47 ], and hemorrhagic shock [ 47 ]. We have shown that redox stress and hypoxia 
can lead to a TLR4 dependent release of HMGB1 from hepatocytes [ 48 ] raising the 
possibility TLRs may serve as a sensor of redox stress. 

 Of the nonimmune cells that participate directly in the infl ammatory response, 
endothelial cells are probably the best characterized. In acute infl ammation, the 
endothelial cells induce leakage of plasma and leukocytes and increase local blood 
fl ow. These features of endothelial cells make up the signs of  tumor ,  rubor , and 
 calor  associated with infl ammation. In response to activation of PRR, endothelial 
cells upregulate leukocyte adhesion molecules that direct the accumulation of leu-
kocytes into the tissues [ 41 ,  49 ]. Endothelial cells can produce infl ammatory media-
tors and activate the coagulation cascade through the upregulation of tissue factor 
through interactions with monocytes [ 50 ]. 

 TNF-alpha and IL-1 are strong activators of the endothelial cells. These induce 
Cox2 for prostaglandin synthesis for edema, and chemokines such as IL-8 and 
E-selectin, ICAM-1, VCAM-1 for leukocyte attraction adhesion, and integration into 
the underlying tissues [ 51 ,  52 ]. Endothelial cell injury from infl ammation is a conse-
quence of both the infl ux of the leukocytes and the toxic effects of their secretory 
granules, as well as the cytokine production from these cells [ 51 ,  53 ]. Interferon- 
gamma in combination with TNF-alpha and IL-1 activates endothelial cell death [ 51 ].  
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    Effectors of the Infl ammatory Response 

 Effectors of the infl ammatory response can be broadly classifi ed as pathways acti-
vated and mediators produced in response to the sensing mechanisms. The effectors 
carry out the steps intended to remove the threat and reestablish tissue homeostasis. 
These induce capillary permeability, fever, tissue injury, and immune cellular 
responses that are responsible for the phenotype of the infl ammatory response. The 
coagulation and complement cascades, cytokine and chemokines, and neuroendo-
crine responses are all effectors of the infl ammatory response. 

    ROS and RNS 

 Reactive oxygen species are not only rapidly produced as part of the sensing mecha-
nisms that initiate the infl ammatory response but can also be viewed as effectors 
when produced in a sustained manor. As previously mentioned, ROS are formed 
from mitochondrial stress activate the infl ammatory response through NF-κB and 
activator protein 1. Reactive oxygen species are also actively produced and released 
by immune cells during respiratory burst. In this process, from nicotinic adenine 
dinucleotide phosphate (NADPH) oxidase produces superoxide [ 2 ]. This can be 
further reduced by superoxide dismutase to hydrogen peroxide, which myeloper-
oxidase converts to hypochlorous acid. The major sources of these reactive species 
through this mechanism are from phagocytic cells, such as macrophages and PMNs 
with the purpose to eradicate infectious agents, but the nonspecifi c release of reac-
tive oxygen species also results in tissue injury. 

 Reactive nitrogen species (RNS) become an effector when nitric oxide (NO) is 
produced by the high output inducible NO synthase (iNOS). iNOS is not expressed 
in resting cells but can be upregulated by cytokines and hypoxia in many cell types 
[ 2 ,  54 ]. Once expressed, iNOS produces NO in a sustained manor and the NO pro-
duced can have cell signaling functions to protect cells through promoting perfusion 
or inhibiting apoptosis or induce cell toxicity through nitrosative or oxidative stress. 
When produced in proximity to superoxide, NO can lead to the formation of per-
oxynitrite, a potent oxidant [ 55 ]. We have shown that iNOS contributes to infl am-
mation, organ injury, and immune dysfunction following hemorrhagic shock and 
trauma [ 56 ,  57 ].  

    Coagulation Cascade 

 The most extensively studied component of the coagulation cascade in the setting of 
sepsis is protein C. Activated protein C (drotrecogin-alfa activated, Xigris) has anti- 
infl ammatory, as well as antithrombotic and profi brinolytic properties. Drotrecogin- 
alfa was initially considered the boon for treating excessive proinfl ammatory 
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response, but in time was found not to improve survival. This pharmacologic agent 
was developed from the long-known relationship between the coagulation and the 
infl ammatory response in that infl ammation activates coagulation and correspond-
ingly, coagulation modulates infl ammation. 

 Sepsis impairs anticoagulation by TNF-α downregulation of thrombomodu-
lin, which then reduces protein C activation by thrombin–thrombomodulin 
complex [ 58 ]. 

 TNF-α and IL-1 reduce the endothelial cell expression of thrombomodulin [ 58 ]. 
TNF-α not only reduces thrombomodulin transcription and translation, but also 
with the aid of neutrophils induces endothelial cell release of thrombomodulin [ 58 , 
 59 ]. TNF-α and IL-1, along with IL-6 also have procoagulant properties [ 60 ,  61 ]. 
IL-6 infusion in human subjects increases both plasma thrombin–antithrombin III 
complexes and thrombin activation fragment F1 + 2, with no change in fi brinolysis 
[ 60 ]. Recombinant TNF-α and IL-1 promote procoagulant activity in vascular 
endothelium analyzed through a plasma recalcifi cation clotting assay [ 61 ]. This 
cytokine activity on the vascular endothelium may be benefi cial in hemostasis in 
hemorrhage and may be associated with disseminated intravascular coagulation in 
the setting of sepsis. 

 Tissue factor affects levels of IL-6, and IL-8 either directly or through thrombin 
[ 62 ]. Thrombin induces E-selectin in endothelial cells, as well as monocyte che-
moattractant protein-1 (MCP-1), TNF-α, IL-1, and IL-6, IL-8 in both fi broblasts and 
endothelial cells and enhances leukocyte migration [ 62 ]. It induces monocyte pro-
duction of IL-6 and IL-8. Fibrinogen is an acute phase reactant, upregulated in times 
of stress, injury, infection, or other infl ammation [ 62 ]. Fibrinogen split products, 
such as D-dimer, are used in clinical practice as indicators for infl ammation and 
coagulation activity. Degradation products from fi brin formation act as chemoat-
tractants for leukocytes [ 62 ]. Fibrin binds to the CD11b/CD18 integrin receptor on 
leukocytes, the CD11c/CD18 integrin on dendritic cells, leukocytes, and some B 
cells [ 62 ], and the α IIb β 3  integrin, which activates mast cells.  

    Neuroendocrine 

 The major components of the stress response to injury include the corticotropin-
releasing hormone (CRH) and locus ceruleus-norepinephrine systems. In response 
to injury, CRH release through the hippocampus and norepinephrine release through 
the hypothalamic–pituitary–adrenal axis cause increased cardiac output with ele-
vated blood glucose, heart rate and blood pressure, respiratory rate, and leukocyto-
sis. α-Adrenergic stimulation via the sympathetic response leads to NF-κB pathway 
activation and subsequent production of IL-6, TNF-α, IL-1β, and TGF-β1 produc-
tion [ 63 ]. IL-1β enhances hypothalamic activity and the level of corticotropin 
releasing hormone (CRF release), increases sympathetic activity and splenic nor-
epinephrine release, while some studies demonstrate confl icting results with dimin-
ished splenic sympathetic activity [ 64 ]. 
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 The catecholamine surge during hemorrhagic shock and resuscitation stimulates 
the release of the infl ammatory modulator, HMGB1, which induces bone marrow 
neutrophil mobilization through IL-17 and IL-23 induction [ 65 ]. The addition of 
beta-blockade can alleviate the bone marrow mobilization and HMGB1 release, as 
well as hematopoietic cell growth suppression after hemorrhagic shock [ 65 ,  66 ]. 
Beta receptors are also expressed on B and CD 4+  T cells. Of the T cells, naïve and 
Th1 T cells express of beta-adrenergic receptors [ 64 ]. Although early studies have 
demonstrated that beta-adrenergic stimulation of T cells promotes proliferation, 
later investigations have demonstrated a suppressed T-cell proliferation [ 64 ]. There 
has been similar controversy in the T-cell cytokine production through beta- 
adrenergic receptor stimulation [ 64 ]. B-cell proliferation in response to bate- 
adrenergic stimulation also varies depending on the costimulating agent [ 64 ]. 

 There is antagonism between catecholamines and infl ammatory modulators. For 
example, nitric oxide, the product of iNOS, which is upregulated in sepsis and trauma, 
causes vasodilation, while catecholamines cause vasoconstriction. Using hepatocyte 
culture, catecholamines have demonstrated an antagonistic effect on the production 
of nitric oxide by hepatocytes by both alpha 2  and beta 1 -mediated pathways [ 67 ]. 
These inhibitory effects are greater with epinephrine than with norepinephrine and 
through beta 1  more than alpha 2 -mediated mechanisms [ 67 ]. The mechanism of this 
inhibitory role is uncertain, though thought to be posttranslational. 

 The cholinergic neuroendocrine response is a vagal-mediated anti-infl ammatory 
pathway of the immune response that suppresses the release of TNF-α, IL-1β, IL-6, 
and IL-18 [ 68 ,  69 ]. This anti-infl ammatory response is initiated through central mus-
carinic acetylcholinergic receptors, transmitted through the vagus to the periphery, 
where it promotes its anti-infl ammatory effects through nicotinic acetylcholinergic 
receptors on immune cells [ 68 ,  70 ]. This peripheral nicotinic-cholinergic response 
has been used for the treatment of chronic infl ammatory conditions such as ulcer-
ative colitis [ 71 ,  72 ]. In vivo models have further analyzed the cholinergic anti- 
infl ammatory pathway in sepsis. Anticholinesterase administration once at the time 
of cecal ligation and puncture (CLP) reduced the serum IL-6, IL-10, TNF-α levels, 
though did not infl uence survival [ 73 ]. Survival benefi t was demonstrated in other 
studies when either anticholinesterase or choline itself was administered 2–3 times 
daily after CLP [ 69 ,  74 ]. This indicates that the initial anticholinergic effect is benefi -
cial at reducing the cytokine storm, while prolonged anticholinergic treatment is 
necessary to produce a survival benefi t.  

    Cytokines and Chemokines 

 Cytokines are hormones that mediate the infl ammatory response through a cell–cell 
communication and often with overlapping functions. Following injury, cytokines 
are produced in response to pattern recognition receptor activation to DAMPs or 
PAMPs leading to a vigorous infl ammatory cytokine response with major contributions 
from IL-1, IL-2, IL-4, IL-6, IL-8, IL-18, and TNF-α [ 75 ] (Table  6.3 ). Chemokines 
are a subclass of cytokines that induce chemotaxis in nearby responsive cells. 
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Macrophage infl ammatory protein-1 alpha (MIP-1α) mediates both the acute and 
chronic infl ammatory response by recruiting infl ammatory cells and stimulating the 
production of TNF-α, IL-1, and IL-6 by peritoneal macrophages [ 75 ]. Other chemo-
kines involved in the infl ammatory response include monocyte chemoattractant pro-
tein (MCP-1), MIP-1β, regulated on activation normal T cell expressed and secreted 
(RANTES), monokine induced by gamma interferon (MIG), and IL-8.

       Complement 

 The complement cascade is a defense mechanism activated by antigen–antibody 
complexes (classical pathway) or microbial surface (alternative pathway) that has 
primary antimicrobial properties in creating the membrane attack complex (MAC) 
to lyse invading pathogens and assist in phagocytosis by opsonizing bacteria. The 
complement system also augments the infl ammatory response. Cleavage products 
of these enzymes in this cascade, C3a and C5a, increase capillary permeability and 
are powerful neutrophil chemoattractants. The classical and alternative complement 

   Table 6.3    Infl ammatory cytokine and chemokine functions   

 Cytokine  Function 

 TNF-α  Induces fever. Stimulates NK cells and macrophages/monocytes. Induces synthesis 
of NO, products of selectins, cell survival, apoptosis, cytokine secretion, PAI, 
ICAM, thromboxane A2, prostaglandin E2. Delays neutrophil apoptosis 

 IL-1  Induces fever. Stimulates T cells and macrophages. Induces PMN release from 
bone marrow. Increases adhesion molecules. Stimulates MCP-1 and MIP-1 α 
and IL-6 production 

 IL-2  Proliferation and differentiation of T cells into effector T cells, and survival of 
antigen-specifi c CD 4+  and CD 8+  T cells promoting memory T cells 

 IL-4  Stimulates B-cell and T-cell proliferation. Promotes B-cell differentiation into 
plasma cells and class switching to IgE. Decreases Th1 cells and the produc-
tion of IFN-γ and IL-12 

 IL-6  Induces fever. Regulates growth and differentiation of T and B cells. Increases 
antibody production by B cells. Inhibits apoptosis of PMNs and mediates 
hepatic acute phase response 

 IL-12  Induces T-cell differentiation to Th1. Activates NK cells 
 IL-18  Promotes natural killer (NK) cells and T cells to release IFN-γ. Promotes 

cell- mediated immunity and inhibits IL-4-dependent IgE production 

 Chemokine  Function 

 IL-8  Induces neutrophil and granulocyte chemotaxis and phagocytosis. Delays 
neutrophil apoptosis 

 MIP-1α  Activate PMNs. Stimulates IL-1, IL-6, and TNF-α production 
 MCP-1  Promotes monocytes, T cells, and dendritic cells to the site of infl ammation 

  Examples of cytokines of the infl ammatory response to trauma and sepsis and their functions 
  PAI  platelet activator inhibitor,  PMN  polymorphonuclear neutrophils,  MIP-1α  macrophage infl am-
matory protein,  MCP  monocyte chemotactic protein  
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pathways are both activated after trauma and implemented in the infl ammatory 
pathway [ 76 – 78 ]. Macrophages are a major source of complement activation 
through factor B synthesis in response to LPS and DNA [ 79 ,  80 ]. After activation 
through injury or infection, there is a nonspecifi c amplifi cation of the cascade 
through a positive feedback loop, thus mounting a rapid infl ammatory and immune 
response. When complement activation becomes excessive, it can lead to organ 
injury [ 3 ,  76 – 78 ]. We have shown that compliment activation is a driver of the early 
infl ammatory response and organ injury in a mouse model of hemorrhagic shock 
and trauma [ 81 ].   

    Consequences of the Infl ammatory Response 

 In the setting of acute infection or tissue injury, the adaptive roles of the early 
infl ammatory response will remove the infectious threat, initiate repair processes, 
and reestablish tissue homeostasis. In trauma, the activation of innate immune path-
ways probably also occurs to remove microorganisms that invade when barriers are 
disrupted. There is clearly a threshold at which these processes designed to be adap-
tive and improve survival become maladaptive and can contribute to adverse out-
comes. These adverse outcomes are seen as excessive and sustained infl ammation 
leading to end organ dysfunction and immune dysfunction rendering the patient 
more susceptible to nosocomial infections. The end effect is a prolonged ICU stay, 
more days on the ventilator, and increased likelihood of death.  

    Derangements of Systemic Infl ammation 

 Pioneers in the fi eld of immune dysfunction after sepsis and trauma initially pro-
posed a biphasic immune response [ 82 ]. This work was largely based on animal 
studies, which revealed an early proinfl ammatory response or SIRS followed by a 
delayed and sustained immune dysfunction. Recent results from a large multi- 
institutional observational study in trauma patients have refi ned the paradigm for 
the immune response in patients suffering from severe blunt trauma [ 4 ] (Fig.  6.1 ).

   In gene array analysis or peripheral blood leukocytes of 167 severe blunt trauma 
patients, severe injury is shown to induce a “Genomic storm” involving 80 % of the 
leukocyte transcriptome within the fi rst 4–12 h, which remains altered for days to 
weeks [ 4 ]. The genes that had the greatest increase in expression after trauma 
involved the innate immunity and the infl ammatory response, including integrin 
signaling, leukocyte extravasation, Fcγ receptor-mediated phagocytosis, IL-10 sig-
naling, TLR signaling, Ephrin signaling, IL-6 signaling, TREM1 signaling, actin 
cytoskeleton signaling, and B-cell receptor signaling [ 4 ]. Those with the greatest 
decrease in expression involved T-cell activation and antigen presentation [ 4 ]. On 
gene analysis comparing uncomplicated to complicated course after trauma, upreg-
ulated pathways associated with complicated recovery include IL-10, IL-6, and p38 
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MAPK signaling [ 4 ]. Antigen presentation and T-cell proliferation and apoptosis, 
T-cell receptor signaling, and NK cell function were the most downregulated path-
ways associated with complicated recovery [ 4 ]. The difference in gene expression 
between uncomplicated and complicated recovery was the magnitude of the early 
response and the time required for gene expression to return to baseline levels [ 4 ]. 
There were no genes that are exclusively expressed or suppressed in complicated vs. 
uncomplicated recovery [ 4 ]. The adaptive immune response alterations occur simul-
taneous with the acute proinfl ammatory response to injury. 

    Excessive Infl ammation from Severe Injury 

 Factors that drive the excessive and sustained immune responses after injury are 
only partially understood. These include magnitude of insult, gender, age, and some 
gene polymorphisms [ 4 ,  83 – 86 ].  

    Immunosuppression 

 The delayed response to severe trauma is characterized by suppression of both the 
cell-mediated and adaptive immune responses. This suppression of the adaptive 
immune response has been associated with regulator T cells, myeloid-derived sup-
pressor cells, and apoptosis. Suppression of both the cell-mediated and adaptive 
immune responses has been associated with the conversion of the cytokine milieu 
from a Th1 to a Th2 response. The conversion of a proinfl ammatory to an anti- 
infl ammatory response is thought to be benefi cial to limit the injury induced by the 
proinfl ammatory response, though a prolonged anti-infl ammatory response seen 
with severe injury leads to increased susceptibility to infection.  

  Fig. 6.1    Infl ammatory 
response after trauma. 
Coexisting proinfl ammatory 
and anti-infl ammatory 
responses are rapidly 
upregulated in circulating 
leukocytes after injury. Major 
injury induces a more 
pronounced response. 
Adapted from Xiao W et al 
(2011) A genetic storm in 
critically injured humans. 
J Exp Med 208:2581–2590       
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    Apoptosis 

 Apoptosis has been implicated as a cause for depleted lymphocyte response after 
trauma and sepsis. The degree of T-cell apoptosis directly correlates with the degree 
of sepsis and occurs by both mitochondrial-mediated and receptor-mediated mecha-
nisms in human populations [ 87 ]. The T cells most susceptible to apoptosis include 
the effector memory helper T cells, while the central memory helper T cells remain 
relatively spared [ 88 ]. Blocking mitochondrial-mediated T-cell apoptosis is by 
overexpressing Bcl-2 in transgenic mice improved survival in sepsis [ 89 ].  

    Th1 to Th2 Conversion 

 Helper T cells activate and direct the immune response through cell-mediated and 
cytokine-directed mechanisms. The two major pathways have been described as a 
Th1 and Th2 responses. Th1 responses are proinfl ammatory and promote the cel-
lular immune response, including macrophages, neutrophils, and CD 8+  T cells. IL-2, 
IL-12, and IFN-γ mediate this response. Th2 responses promote antibody-mediated 
immunity and are mediated by IL-4 and IL-10. Th2 responses are generally consid-
ered anti-infl ammatory due to the inhibitory effect of IL-10 on proinfl ammatory 
cytokines such as IL-2 and IFN-γ. Injury and sepsis causes an alteration in T-cell 
function from a proinfl ammatory Th1 to an anti-infl ammatory Th2 response [ 90 ]. It 
has been speculated that the function of the Th2 response is to compensate for and 
neutralize the proinfl ammatory-induced tissue injury. When produced in excess, as 
seen in severe injury, the Th2 response can counteract the Th1 response, making the 
host susceptible to infection.  

    Immune Response with Age 

 Advanced age is well known to be an increased risk factor for mortality and multi-
organ failure after trauma and sepsis [ 91 – 96 ]. The exact etiology for this has yet to 
be elucidated but is thought to be due to altered or excessive immune and infl amma-
tory response to these stresses in the aged. The effect of age on infl ammation is 
characterized by a complicated expression of derangements in cytokine production 
and response, cellular number and activity, and tissue response. 

 Elderly individuals have a baseline hyperinfl ammatory state with increased 
C-reactive protein and cytokine levels of TNF-α, IL-6, and soluble TNF receptor. 
Elderly also have elevated baseline neutrophil counts [ 97 ]. Monocytes in elderly are 
in a preactivated state, which release a larger initial amount of cytokines, though 
there is no difference in the peak cytokine production compared to younger indi-
viduals [ 97 ]. When healthy elderly and young human subjects were given IV endo-
toxin, the elderly subjects demonstrated a larger initial TNF-α, soluble TNF receptor, 
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and C-reactive protein response than the younger subjects [ 98 ]. Elderly subjects 
also had a more rapid decrease in monocyte populations and slower resolution of 
monocyte number and fever after endotoxin exposure [ 98 ]. The delayed recovery of 
leukocytes after infection may make elderly more prone to leukopenia during severe 
protracted infections. Despite the elevated cytokine level and response to injury, 
neutrophils appear to be less responsive in the aged. The proliferative response to 
G-CSF and the ability of GM-CSF to delay apoptosis in neutrophils are blunted in 
the elderly [ 99 ,  100 ]. The etiology for this diminished response is unknown but 
could be related to the immune system’s tolerance to infl ammatory signals from 
continual immersion in the infl ammatory environment of ageing. 

 The combination of atrophy of the thymus with age, which limits the production 
of new T cells, in addition to replicative senescence due to telomere shortening in 
the memory T cells causes a decreased pool of T cells that are less capable to 
respond newly and previously encountered pathogens [ 19 ,  101 ]. Elderly have 
decreased proinfl ammatory IFN-γ and increased anti-infl ammatory IL-4 and IL-10 
production by T cells suggesting a natural tendency to an immunosuppressive Th2 
response compared to young counterparts [ 102 ,  103 ].   

    Treatment Considerations 

 The clinical course of sepsis and trauma differs between individuals. This suggests 
variable activation of infl ammatory mediators or different expression in protective 
mechanisms lead to poorer outcomes. As both excessive proinfl ammatory and anti- 
infl ammatory processes are maladaptive, modulating either or both processes are 
viable options for treating the derangements in the infl ammatory response. An inte-
grated and predictive model of the immune response using systems biology should 
be the focus therapeutic approaches, but at this time, such a model has yet to be 
developed. This could be the underlying reason why attempts to reel-in the derange-
ments in the immuno–infl ammatory response have been unsuccessful. There are 
two straightforward strategies to attempt to “normalize” the magnitude of the host 
immune response. These include suppression of the initial hyperinfl ammatory 
response or the reversal the delayed immunosuppressive state. 

    Mitigating the Hyperinfl ammatory Response 

 It is reasonable to hypothesize that suppressing certain key infl ammatory pathways 
early in the host response to injury could have a benefi cial effect on both the proin-
fl ammatory and counterinfl ammatory responses. Complete inhibition, however, 
may not be desirable since this could result in a loss of the adaptive aspects of a 
specifi c mediator or pathway. It is hoped that systems biology analysis will lead to 
the identifi cation of high value targets for selective therapies. Below are two exam-
ples of potential targets. 
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 Nitric oxide, NO, is produced in the setting of infl ammation by the high output 
iNOS by numerous cell types [ 104 ]. Nonselective inhibition of iNOS has caused 
increased injury to liver, while selective inhibition of iNOS has been shown to 
reduce injury to liver and lung following trauma/hemorrhage and ischemic injuries 
[ 2 ,  104 ,  105 ]. The damage associated with nonselective inhibition is thought to be 
due to inhibition of eNOS, which is organ protective. By selectively inhibiting 
iNOS, while preserving eNOS, the deleterious infl ammatory effects can be sup-
pressed, while maintaining the cytoprotective effects of eNOS.  N -[3-(aminomethyl) 
benzyl]acetamidine (1,400 W) is a selective iNOS inhibitor that when administered 
prior to trauma/hemorrhage, attenuates the hepatic damage, and reduces infl amma-
tory markers of liver tissue myeloperoxidase activity and normalizes the levels of 
TNF-α and IL-6 after trauma and hemorrhagic shock in Sprague-Dewey rats [ 105 ]. 
iNOS inhibition also decreases the HIF-1α expression, which plays an important 
role in the infl ammatory response to hypoxic stressors [ 105 ]. 

 Blocking the actions of proinfl ammatory cytokines or chemokines in the early 
infl ammatory state after trauma and sepsis is another therapeutic approach. One 
such cytokine studied in animal models is IL-6. Anti-IL-6 administration prior to 
burn injury improved survival and reduced translocation of gut bacteria acutely after 
injury [ 106 ]. Anti-IL-6 has also been shown to improve delayed type hypersensitiv-
ity and splenocyte proliferation after burn injury [ 107 ].  

    Reverse Immunosuppression 

 Sepsis and severe trauma are associated with a reduction of T-cell Th1 phenotype. 
One method to reverse this immunosuppression would be to replace Th1 cytokines. 
IL-12 is a cytokine produced by macrophages and dendritic cells that induces a Th1 
phenotype. Administration of IL12 in a murine model of CLP after burn injury 
resulted in improved survival [ 108 ]. IL-12 supplementation enhanced IFN-γ pro-
duction and decreased IL-4 production. IFN-γ supplementation after burn injury 
also improved survival after subsequent peritoneal sepsis by CLP, though less effec-
tive than IL-12 supplementation [ 108 ]. The excessive toxicity of IL-12 therapy in 
clinical oncologic trials has limited its clinical usefulness [ 109 ]. 

 Another method to reverse the immunosuppression would be to inhibit the Th2 
response after trauma or infection. IL-4 and IL-10 are known Th2 cytokines, pro-
moting anergy and inhibiting the cell-mediated response. Treatment with anti-IL-10 
antibody restores the Th1 cytokine response by T cells to antigen stimulation after 
burn injury [ 90 ]. Though this may have important role in immunomodulation after 
trauma and sepsis, IL-10 has been shown to have a dichotomous role in survival 
after infection. IL-10 is critical to survival of mice in models of endotoxemia and 
peritonitis while it impairs bacterial clearance and survival in murine  Klebsiella  
pneumonia and chronic  Klebsiella  peritonitis models [ 110 – 113 ]. Thus, the dual 
activities of IL-10 may limit its usefulness as a therapeutic target. Whereas it has a 
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proinfl ammatory role early, its prolonged expression after the initial injury renders 
patients more susceptible to infection. For example, delayed inhibition of IL-10 in 
a two-hit model of CLP and pseudomonas pneumonia has shown to benefi t survival 
and bacterial clearance [ 114 ]. 

 One theory to explain immunosuppression following sepsis is the apoptotic loss 
of immune mediators. IL-7 is an antiapoptotic cytokine that is currently being stud-
ied in multinational clinical trials for HIV, cancer, and hepatitis C and has demon-
strated to induce a greater than twofold increase in CD4 and CD8 T lymphocytes in 
human subjects. In a murine model of peritoneal sepsis, recombinant human IL-7 
improved survival, blocked apoptosis of CD 4+  and CD 8+  T cells, restored IFN-γ 
production, and improved immune cell recruitment to the site of infection [ 115 ]. 
IL-7 also improved the innate cellular response by increasing the expression of 
leukocyte adhesion molecules LFA-1 and VLA-4 to improve leukocyte infi ltration 
to the infection site [ 115 ]. In vivo, IL-7 is able to restore the loss of delayed type 
hypersensitivity to recall antigen during sepsis [ 115 ]. Other mechanisms to prevent 
the apoptotic loss of helper T cells include inhibiting proapoptotic factors, such as 
Bid and Bim, increasing antiapoptotic factor expression such as Bcl-2, and caspase 
inhibitors. The use of caspase inhibition by  N -benzyloxycarbonyl-Val-Ala-Asp( O - 
methyl ) fl uoromethyl ketone (z-VAD) has been shown to prevent T-cell apoptosis 
and improve survival in septic mice [ 116 ].   

    Conclusions 

 The infl ammatory response to sepsis and trauma is a highly integrated and multifac-
eted interaction of sensors, cells, and effector responses. As an adaptive response, it 
is designed to promote tissue repair and immune defenses to impending pathogens 
during times of stress. The infl ammatory response is also self-limiting due to the 
anti-infl ammatory component of the response. Individuals who succumb to proin-
fl ammatory events such as major trauma and sepsis have a prolonged anti- 
infl ammatory response that leaves them susceptible to nosocomial infections. It was 
once thought that the anti-infl ammatory response follows the initial proinfl amma-
tory response to infection or trauma, but recent evidence points out that the anti- 
infl ammatory response is initiated at the time of the proinfl ammatory response in 
injured humans. Under circumstances of severe sepsis and trauma, either the proin-
fl ammatory or the anti-infl ammatory response may become excessive and pro-
longed leading to multiorgan failure, immune dysfunction, and further infectious 
complications. Decades of clinical and experimental research have enhanced our 
understanding of the host response. However, the overwhelming complexity of the 
immune response is the most important barrier to progress toward effective thera-
pies. By taking a systems approach, it is hoped that future targets can be identifi ed 
to modify the immune–infl ammatory response to suppress the deleterious effects 
while maintaining its benefi ts.     
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 Introduction

Inflammation is a critical component of the stress response. In response to stressors 
such as injury and infection, inflammation activates the initial physiological 
responses aimed at returning to homeostasis. The failure to restore homeostasis 
subsequent to an inflammatory response can be caused by either an insufficient 
response that is not strong enough to address the root cause of stress or an over-
whelming inflammatory response that leads to further damage in addition to the 
original stressor. Dysregulation of the inflammatory response is a component of 
many pathological conditions such as sepsis. Although the incidence of sepsis is 
increasing, leading to approximately 215,000 deaths per year and healthcare expen-
ditures of $17 billion in the USA alone [1], the only drug approved specifically to 
treat severe sepsis (activated protein C) was recently withdrawn from the market 
after failing to show improved outcome in a clinical trial [2]. There is clearly a need 
for more effective clinical tools for the management of inflammatory dysregulation, 
and novel approaches may be required to achieve this goal [3].

The pervasiveness of nonlinearity, redundancy, and pleiotropy in components of 
the inflammatory response leads to challenges in reductionist approaches and moti-
vates systems-level approaches towards understanding inflammation [4]. Mathematical 
modeling is a promising technique because it allows for studying the dynamics of 
multiple interacting components of a complex system while integrating research from 
disparate disciplines with the ultimate goal of gaining insight into disease progression 
and therapeutic interventions [5, 6]. Thus, the potential exists for significant 
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translational innovations based on models of inflammation in optimizing patient care, 
designing clinical trials, and rationalizing drug development [7–10]. In all of these 
areas, issues related to physiological variability are important to consider.

Many components involved in the inflammatory response, such as cytokines, 
hormones, and autonomic signaling, contain homeostatic rhythmic variability at a 
wide range of time scales. The disruption of physiological rhythms is often associ-
ated with disease, such as changes in patterns of heartbeats preceding the onset of 
sepsis [11, 12] and alterations in circadian variations in plasma cortisol, which are 
associated with depression [13], obesity [14], psychological stress [15], and cancer 
[16, 17]. Through studying the origins of these rhythmic signals in homeostasis and 
their disruption in inflammation, we can work towards understanding their underly-
ing mechanisms and the potential diagnostic utility embedded in physiologic vari-
ability. Therefore, when investigating translational applications of systems biology 
of inflammation, physiological variability represents an important factor influenc-
ing the state of the host. For instance, given the circadian time structure underlying 
many of the physiological responses dysregulated in sepsis, novel therapies should 
be tested with circadian rhythms in mind because the same treatment given at dif-
ferent times of day could have very different results [18, 19].

In the following sections, we discuss mechanisms through which biological rhythms 
can exert physiological regulatory effects; relationships between physiological vari-
ability and inflammation; and our work on systems-level mathematical modeling of 
human endotoxemia, as a surrogate model for systemic inflammation, with a particular 
focus on accounting for the effects of physiological variability in endotoxemia.

 Multiscale Modeling of Human Endotoxemia

The human endotoxemia model is an experimental model that can be applied to 
evaluate issues related to physiological variability in inflammation. Human endo-
toxemia consists of injection of endotoxin (lipopolysaccharide, LPS) to healthy 
human volunteers, allowing for the study of systemic inflammation in vivo in 
humans [20]. LPS is a component of the outer membrane of Gram-negative bacteria 
that is recognized by the innate immune system and instigates an inflammatory 
response. The response to LPS initiates from LPS binding to Toll-like receptor 4 
(TLR4), leading to the activation of the innate immune system through the tran-
scription of inflammatory mediators, eventually propagating to the systemic level to 
induce a wide range of physiological changes characteristic of systemic inflamma-
tion such as the release of immunomodulatory hormones, the activation of the auto-
nomic nervous system, and increased body temperature [21]. Human endotoxemia 
reproduces many of the inflammation-linked physiological changes that occur in 
critical illness such as sepsis [20, 22], acute respiratory distress syndrome (ARDS) 
[23], and trauma [24]. Additionally, endotoxemia alters biological rhythms at mul-
tiple time scales, ranging from circadian rhythms [25] and short-term HRV [26–34], 
allowing for investigation into the relationship between systemic inflammation and 
biological rhythms. HRV is driven largely by rhythmic patterns in the variability of 
heartbeats [35], and diminished HRV is correlated with disease severity in sepsis 
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[36–41]. In addition to serving as a useful biomarker (see Chaps. 4 and 5), the loss 
of HRV may give insight into disease mechanisms. This reduction in HRV may be 
driven by a loss of interorgan coupling and communication [21, 27, 42, 43].

Here, we describe the iterative development of multiscale models of human endo-
toxemia, starting with the binding of LPS to its receptor on immune cells and growing 
to encompass hormonal responses and changes in heartbeat patterns. These three com-
partments are depicted in the network diagram in Fig. 7.1. Additionally, we identify 
and discuss areas where physiological variability may play an important role in either 
governing the response to endotoxemia or giving insight into the state of the system.

Fig 7.1 Network diagram of the components of a multiscale model of human endotoxemia at three 
levels. At the cellular level (blue), LPS binds to its receptor TLR4 (R) forming the activated com-
plex LPSR. LPSR stimulates NF-kB activity (IKK, NfKBn, and IkBa), which modulates the tran-
scriptional response to inflammation, consisting of proinflammatory (P), anti-inflammatory, and 
energetic (E) components. At the central level (red), hormonal output both responds to and modu-
lates the progression of the inflammatory response to LPS through both cortisol (F) and epinephrine 
(EPI) signaling. Furthermore, circadian rhythms in the immunomodulatory hormones cortisol and 
melatonin (M) impose circadian patterns on many components of the inflammatory response. 
Finally, at the autonomic level (green), changes in sympathetic (Tsym) and parasympathetic (Tpar) 
signaling are reflected in modulated patterns of heart rate (HR) and heart rate variability (HRV)
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 Immune Cells

While there are many levels to consider in a model of human endotoxemia, a critical 
aspect is modeling the initial recognition of LPS and the production of signals that 
lead to a systemic response. In general, pathogen-associated molecular patterns 
(PAMPs) bind to Toll-like receptors (TLRs) expressed by cells of the innate immune 
system, leading to transcriptional responses including the production of proinflam-
matory cytokines; LPS, in particular, activates the TLR4 signaling pathway leading 
to broad transcriptional changes driven by inflammation-related transcription fac-
tors such as NF-κB [44]. The initial transcriptional response to human endotoxemia 
has been studied experimentally through high-throughput DNA microarrays, which 
simultaneously quantify the state of thousands of gene transcripts in blood leuko-
cytes [45]. This wealth of experimental data allowed for data-driven modeling of the 
transcriptional responses to LPS without the a priori postulation of which genes are 
most important in endotoxemia. From this, a dynamical model was constructed to 
represent transcriptional changes in leukocytes during human endotoxemia [8, 9].

 Identification of Key Transcriptional Responses

In order to discover the critical transcriptional motifs in high-dimensional time- 
course microarray data, a systematic computational framework was recently pro-
posed that decomposes the data into elementary set of clusters representing key 
temporal responses [46]. Given the availability of such high-dimensional data in 
human endotoxemia experiments [45], we applied this computational approach 
based on the hypothesis that a specific underlying network structure gives rise to the 
dynamics of the inflammatory response. Therefore, we sought to identify a set of 
core transcriptional responses to endotoxemia representative of the dynamic evolu-
tion of the host response to LPS under the assumption that related genes responsive 
to endotoxin undergo concerted changes in their expression profiles.

The clustering algorithm is based on a symbolic discretization of time-series 
data, which labels similar temporal expression profiles with the same symbolic 
motif [47]. Having assigned each gene to a motif, the next task is to select motifs 
that are so highly populated that the temporal patterns of the genes in that motif are 
very unlikely to arise by chance. In other words, the goal is to identify highly non-
random patterns in gene expression profiles putatively caused by a coherent tran-
scriptional regulatory mechanism, thus generating a subset of transcriptional motifs, 
which characterize the host response to LPS. The next step is to reduce this rela-
tively large subset of transcriptional motifs into a smaller elementary set that best 
characterizes the deviation from homeostasis in human endotoxemia. The global 
nature of gene microarray data generally results in a roughly log normal distribution 
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of gene expression values [48]. Consistent deviations from this distribution generally 
result in a motif that is highly enriched relative to baseline. Based on this concept, 
the transcriptional state of the system is defined as the distribution of expression 
values at a time point; by comparing the transcriptional state of the system as a 
whole with the distribution of expression values in a subset of motifs, the motifs that 
lead to a maximal deviation can be identified. This was done by applying the 
Kolmogorov–Smirnov test at each time point for subsets of highly populated (as 
defined above) motifs and searching through the potential combinations of motifs to 
identify the minimum number of motifs that maximally deviate from the overall 
transcriptional state distribution. This defines a combinatorial optimization problem 
that was solved through a stochastic simulated annealing optimization algorithm.

Applying the algorithm described above to human endotoxemia, data revealed 
three critical expression motifs, all enriched in genes participating in physiologi-
cally relevant pathways (1) an early upregulated proinflammatory response contain-
ing genes related to TLR signaling and members of the NF-κB/RelA family; (2) a 
late upregulated anti-inflammatory response including components of the JAK- 
STAT and IL-10 signaling cascades; and (3) a downregulated energetic response 
comprised largely of genes involved in cellular bioenergetic processes. All of these 
expression patterns return to baseline within 24 h.

This approach for identifying the key transcriptional signals in human endotox-
emia through high-dimensional data analysis is appealing for several reasons. First, 
it provides in vivo data from a relatively accessible source (blood samples). Thus, 
the gene expression data reflects complex regulatory properties of the human inflam-
matory response, such as hormonal and autonomic responses, which cannot be reca-
pitulated through analysis of human cell lines; some of these interactions will be 
described in later sections of this chapter. Additionally, the ability to gather this type 
of experimental data in humans rather than in animals means that the results are 
likely closer to human clinical data, although of course animal studies would allow 
for a wider range of experimental perturbations and analysis techniques.

 Indirect Response Modeling

Having identified the critical components of the transcriptional response to endo-
toxemia, the next step was to account for these transcriptional patterns in a dynami-
cal model. This is a challenging problem because the precise signal transduction 
steps leading to the activation of specific genes are not always known, and even if 
they were, the parameters governing that signal transduction pathway are generally 
not known. In pharmacokinetic/pharmacodynamic modeling, this problem is often 
approached through indirect response modeling to quantify indirect relationships 
between model components [49]. In general, if a compound is modeled by a 0th 
order production term and a 1st order degradation term, such as x in Eq. (7.1a), then 
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indirect effects on these productions and degradation terms can be modeled as in 
Eq. (7.1b), where f(y) is function (typically sigmoidal) of y representing y’s indirect 
stimulation on the production rate of x.
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Depending on the sign and placement of this indirect modulation term, it can 
represent either stimulation or inhibition of either the production or degradation rate 
of x. Furthermore, it allows for several factors on production or degradation to be 
combined multiplicatively. Through indirect response modeling combined with a 
simple model of LPS recognition, we developed an eight equation model of the 
transcriptional responses to endotoxemia. Equation (7.2a) shows the three core tran-
scriptional responses described above, the proinflammatory, anti-inflammatory, and 
energetic responses, respectively [8, 9].
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This results in a model which has the ability to produce dose-dependent responses 
to LPS as shown in Fig. 7.2. In response to a low dose of LPS, as is given in human 
endotoxemia experiments, the transcriptional responses are activated acutely and 
return to baseline within 24 h. Yet, in response to a higher dose of LPS, the anti- 
inflammatory controls are overwhelmed by self-stimulatory proinflammatory sig-
naling, leading to a persistent inflammatory state.

Equation (7.2a) represents the core transcriptional responses of the innate 
immune system to human endotoxemia, and indirect response modeling allows for 
the extension of this core to interact with other systems as described in subsequent 
sections.

 Central Control of Immunomodulatory Hormones

In systemic inflammation and in endotoxemia, inflammatory mediators produced by 
immune cells in response to LPS recognition are secreted into systemic circulation 
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and recognized by the central nervous system, which responds with the release of 
immunomodulatory hormones such as cortisol (an endogenous glucocorticoid in 
humans) and epinephrine. Both of these hormones normally undergo circadian 
rhythms. Glucocorticoids are also commonly used anti-inflammatory drugs. 
Therefore, there is value in an integrated model relating the pharmacodynamics of 
glucocorticoids and other hormones with the progression of the human endotox-
emia response [8, 9, 50]. Glucocorticoids exert their immunomodulatory effects 
through binding to the glucocorticoid receptor in the cytosol, translocating to the 
nucleus, and then acting as a transcription factor for a wide range of glucocorticoid- 
responsive genes. This glucocorticoid signal transduction pathway has been studied 
from the perspective of pharmacodynamics, resulting in well-established mathe-
matical models such as the model by Ramakrishnan et al. shown in Eq. (7.3a) [51].
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Fig. 7.2 The cellular-level model described more completely in Foteinou et al. [9] predicts two 
classes of responses to acute endotoxemia. In response to relatively low doses (blue lines), a resolv-
ing response is generated where all components return to baseline within 24 h. Yet, in response to 
larger doses of LPS (red lines), the self-stimulatory nature of the proinflammatory response domi-
nates and leads to a persistent inflammatory state. P proinflammatory transcriptional response, 
A anti-inflammatory transcriptional response, E energetic transcriptional response

7 Multiscale Equation-Based Models…



132

The variables in Eq. (7.3a) represent glucocorticoid receptor mRNA (Rm), free 
cytosolic receptor (R), cytosolic glucocorticoid-receptor bound complex (FR), and 
nuclear glucocorticoid-receptor complex [FR(N)], driven by a glucocorticoid con-
centration F. FR(N) is then the component that acts as a transcription factor, which 
we can account for in our core transcriptional response equations by altering  
Eq. (7.2b) to account for the effect of glucocorticoids on anti-inflammatory gene 
transcription as shown in Eq. (7.4).
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Through this integrated model, upstream changes in glucocorticoid levels (either 
endogenously produced in response to inflammation or exogenously given) propa-
gate through the model and modulate transcriptional processes in immune cells. 
This allowed us to evaluate the relationship between endotoxemia and cortisol treat-
ment, given either before or after LPS [8, 9, 50]. For example, Fig. 7.3 shows how 
cortisol infusion prior to LPS can have a protective effect, allowing for a resolving 
response to a large dose of endotoxemia that otherwise would perturb the system to 
the persistent inflammatory steady state. It also allowed for the evaluation of the 
effects of circadian rhythms on human endotoxemia [52].

 Circadian Rhythms

Circadian rhythms are present in many components of the inflammatory response 
[53] including plasma cytokine [54–58] and cortisol concentrations. Melatonin, 
another hormone with both circadian and immunomodulatory properties, may play 
a key role in mediating communication between peripheral components of the 
immune system and the central circadian clock in the suprachiasmatic nucleus [53]. 
Furthermore, given that melatonin levels peak in the night, roughly at the same time 
as cytokines, and melatonin stimulates the production of cytokines [59–61], 

Fig. 7.3 After incorporating the effects of immunomodulatory hormones on the inflammatory 
response [8], the response to cortisol treatment was evaluated. The two lines show responses to 
identical doses of LPS at 6 h, but the blue lines represent a system that has been infused with cor-
tisol for 6 h prior to LPS, while the red lines represent a simulation of the response to only LPS. 
This produces divergent outcomes to the same dose of LPS, with cortisol pretreatment exerting a 
protective effect leading to a self-limited response rather than a persistent inflammatory state
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melatonin signaling serves as a plausible mechanism for synchronization between 
central and peripheral circadian clocks in the immune system, and indirect response 
modeling can be applied to represent this relationship as described above. Circadian 
hormone production is then imposed by varying the production rates of cortisol and 
melatonin throughout the day [62]. In total, this produces circadian rhythms that 
propagate throughout the model, in line with homeostatic experimental data [52]. In 
response to endotoxemia initiated at different times throughout the circadian cycle, 
this model predicts that responsiveness of the innate immune system to LPS has a 
circadian dependence as shown in Fig. 7.4, for instance decreasing when the anti- 
inflammatory hormone cortisol is at high levels in the morning.

 Ultradian Rhythms

The circadian pattern in cortisol secretion is driven by patterns in rhythmic cortisol 
secretion at a faster time scale, known as ultradian rhythms. This refers to the pulses 
of cortisol released roughly hourly, whose magnitude imposes a circadian rhythm. 
We recently studied a combined model of the hypothalamic–pituitary–adrenal 
(HPA) axis and glucocorticoid pharmacodynamics [62]. This work revealed differ-
ences in mean levels of homeostatic gene expression in response to constant or 
oscillatory hormone levels as well as a correlation between homeostatic ultradian 
rhythm amplitude and peak responsiveness to stress. Similar computational results 
were identified by Rankin et al. [63]. The importance of glucocorticoid ultradian 
rhythms is further supported by experimental studies showing differences in expres-
sion of glucocorticoid responsive genes when exposed to oscillatory or constant 
patterns of glucocorticoid concentration [64, 65] as well as more general relation-
ships linking effective physiological function with rhythmic variability in HPA axis 
output [66].

Fig. 7.4 The magnitude of 
the inflammatory response to 
LPS has a circadian 
dependence as illustrated here 
by the maximal response of 
proinflammatory signaling to 
identical LPS doses given at 
different times throughout the 
day [52]
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 Heart Rate and Heart Rate Variability

It has long been recognized that critically ill patients, such as those with sepsis, 
tend to exhibit diminished physiological variability as quantified by HRV [36–41] 
(see also Chaps. 4 and 5). Despite this, there is a lack of mechanistic understanding 
as to why the phenomenon of decrease HRV in disease exists, which limits the 
translational applications of HRV metrics to observation-based prognostic and 
diagnostic analysis rather than the development of novel therapies. Given the simi-
larities in physiological changes occurring in endotoxemia and sepsis [20, 22], 
including the loss of HRV in endotoxemia [26–34, 67], human endotoxemia repre-
sents an excellent platform for studying the mechanistic origins and implications of 
inflammation-driven diminished HRV by applying both experimental and compu-
tational techniques.

Modeling changes in HRV driven by inflammation necessitates a multiscale 
approach. HRV can be quantified by a diverse array of metrics operating on discrete 
data, a series of heartbeat intervals. However, this discrete signal is modulated by 
continuous variables such as concentrations of inflammatory mediators. Thus, a 
significant challenge in mechanistic modeling of HRV in endotoxemia is reconcil-
ing continuous inputs (such as hormone and cytokine concentrations) with discrete, 
noisy output (the beating of the heart). We approached this problem through a con-
tinuous model of autonomic influences on the heart combined with a discrete model 
to output a series of heartbeats, which were then postprocessed to assess HR and 
HRV [68].

 Autonomic Origins of Heart Rate Variability

Cyclic contractions of the heart initiate at the sinoatrial (SA) node, also known as 
the pacemaker of the heart. The sympathetic and parasympathetic branches of the 
autonomic nervous system converge at the SA node, allowing for appropriate regu-
lation of heart rate. The SA node is also exposed to oscillations in the output of the 
autonomic nervous system, which typically occur in characteristic frequency ranges. 
High frequency (HF) rhythms in the frequency range of 0.15–0.4 Hz [69] are largely 
the manifestation of the breathing pattern and are transduced to the heart by the 
vagus nerve [70]. Low frequency (LF) rhythms in the frequency range of 0.04–
0.15 Hz [69]. LF oscillations are generally interpreted as reflecting fluctuations in 
both sympathetic and parasympathetic activities [70]. At a much longer time scale, 
circadian rhythms in autonomic activity are also apparent in HRV [71].

These periodic signals modulate the firing pattern of the SA node, leading to 
rhythmic components in HRV. Thus, to mechanistically link inflammation with 
changes in heartbeat patterns, a model of the autonomic modulation of the heart is 
required. Based on prior work considering the effects of endotoxemia on the auto-
nomic nervous system [72], we constructed a continuous algebraic equation 
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representing effective autonomic modulation of the SA node in homeostasis and in 
endotoxemia [68] as shown in Eq. (7.5).
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Equation (7.5) accounts for a baseline activity level modulated by the three 
rhythms discussed above: HF, LF, and circadian rhythms. The effective modulations 
imposed by each of these components are driven by levels of sympathetic (Tsym) 
and parasympathetic (Tpar) activity, which respond to the levels of inflammatory 
mediators [72].

However, to assess HRV, a series of discrete heartbeats is required. Therefore, the 
continuous Eq. (7.5) must be discretized to output distinct heartbeats whose period 
is modulated by this effective autonomic activity.

 Discrete-Continuous Modeling

Cells at the SA node respond to the autonomic nervous system by recognizing the 
concentrations of autonomic neurotransmitters, leading to altered firing rates. In the 
absence of autonomic modulation, the heart still beats, just with a regular pattern 
unperturbed by autonomic rhythms. This type of system can be represented with an 
integrate-and-fire model, where fluctuations in the propensity for the SA node initi-
ating a contraction depend on the effective autonomic modulation [68, 73, 74]. This 
is done by repeatedly integrating under the curve defined in Eq. (7.5) and recording 
the time of a heartbeat occurring whenever a constant threshold is reached. The 
translation from continuous input signals to a discrete output system is a fundamen-
tal aspect of mechanistic modeling of HRV, as physiologically a similar discretiza-
tion process is occurring. Homeostatic circadian output of this model is shown in 
Fig. 7.5, illustrating how oscillatory autonomic input produces patterns in both HR 
and HRV. Based on mechanistic modeling, the resulting discrete list of heartbeats 
can then be analyzed with the same algorithms that are used for real data. HRV is 
quantified by time domain, frequency domain, and nonlinear metrics, all aimed at 
either gaining some specific physiological information from the heartbeat data or 
optimizing the correlation of the HRV metric with some relevant clinical outcome. 
Different HRV metrics thus have different information content and have different 
practical applications. Based on the discrete output of our model, we were similarly 
able to apply diverse HRV metrics, revealing discrepancies in responsiveness of dif-
ferent HRV metrics to endotoxemia.
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 Challenges in Translational Modeling of Heart Rate 
Variability in Endotoxemia

Although it is difficult to precisely identify how changes in HRV relate to changes 
in underlying physiology [75], there are already practical clinical applications of 
HRV analysis. Even going beyond purely phenomenological approaches, our grow-
ing mechanistic understanding of the origins of HRV and the dysregulation of phys-
iological rhythms is leading to further insights. For instance, the baroreflex negative 
feedback loop maintains homeostatic blood pressure while also producing oscilla-
tions in blood pressure that are reflected in HRV. In sepsis, the baroreceptor function 
is altered, producing changes in autonomic output that can be assessed through 
HRV [38]. Thus, some of the decrease in HRV in sepsis may result from dysregu-
lated baroreflex activity. Studying the mechanisms driving rhythmic patterns in 
HRV will eventually allow for the maximization of information retrieval from the 
heartbeat signal, which is particularly of interest when considering changes occur-
ring in the stress response. However, several challenges remain in more broadly 
developing and leveraging mechanistic model-based approaches in the context of 
inflammation-linked diseases.

While endotoxemia experiments have explored changes in HRV in response to 
LPS [26–34, 67], even in this controlled environment a broad understanding of the 
mechanisms is lacking. Given the importance of sympathetic and parasympathetic 
oscillations in driving HRV, changes in autonomic activity in endotoxemia likely 
play a role in the altered HRV patterns that have been seen experimentally. It is often 
assumed that sympathetic activity increases in endotoxemia, based on the 

Fig. 7.5 Multiscale rhythmic effects on the heart are depicted here. At the top, m(t) represents the 
effective autonomic modulation of the heart, which contains circadian (24 h), HF (0.15–0.4 Hz), 
and LF (0.04–0.15 Hz) components. These combined rhythmic effects produce variability in the 
discretized beating of the heart as illustrated by circadian patterns in both heart rate (HR) and heart 
rate variability (HRV) as quantified by sample entropy (SampEn). These rhythmic components of 
the output of the heart are altered in response to endotoxemia [68]
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characteristic physiological changes observed such as increased HR. It is also 
known that the parasympathetic nervous system plays a role in endotoxemia via the 
cholinergic anti-inflammatory pathway [76]. However, experimental data on HRV 
changes in endotoxemia shows decreases in both HF and LF rhythms, which is 
indicative of a decrease in autonomic modulation of the heart [77]. Further investi-
gation into this apparent paradox sheds light on our lack of understanding of auto-
nomic function in endotoxemia and thus also in systemic inflammation in general. 
Mounting experimental evidence suggests that an answer to this paradox may lie in 
the sensitivity of the heart to autonomic activity during inflammation, because if the 
responsiveness of the heart to autonomic signaling is diminished, then HRV will 
generally decrease. Fairchild et al. showed that pathogen-mediated effects on car-
diac function desensitize the heart’s response to vagal signaling in mice [77]. In 
human endotoxemia, Sayk et al. found decreased sympathetic activity measured 
through microneurography at the peroneal nerve [30]. While peroneal nerve activity 
may not precisely reflect sympathetic activity at the heart [32], Sayk et al. also 
found that sensitivity of the heart to drug-induced sympathetic modulation is dimin-
ished in endotoxemia [30]. In vitro experiments show that, independent of the auto-
nomic nervous system, interactions between inflammation and cardiac tissue can 
produce altered beating patterns and also play a role in altering the sensitivity of the 
heart to autonomic activity [34, 78, 79]. These results suggest that the changes in 
HR and HRV in endotoxemia may be driven not by changes in autonomic output, 
but by nonautonomic interactions between inflammation and the heart and decou-
pling between the heart and the autonomic nervous system.

Godin and Buchman hypothesized reduced physiological variability, such as 
reduced HRV, is representative of diminished interorgan communication [26, 27]. 
Given the experimental evidence discussed above, this hypothesis is as relevant as 
ever. Even in a well-studied and controlled environment like human endotoxemia, 
the existence of biological rhythms with multiple sources and regulators makes it 
challenging to determine what precisely a change in HRV means. However, this 
complexity also means that there is potentially a wealth of information from a wide 
range of sources embedded in the HRV signal, representing an opportunity to apply 
computational techniques to reveal as much as possible of the physiologically 
importance of HRV. Through representing the mechanistic background of HRV in a 
mathematical model, we can evaluate hypotheses concerning the origins of HRV in 
homeostasis and the loss of HRV in the stress response by evaluating the relation-
ship between endotoxemia and HRV.

 Conclusions

While the lack of mechanistic understanding of the relationship between HRV and 
endotoxemia has not fully impeded the clinical application of HRV analysis in 
inflammation-linked disorders such as spesis [12], increased mechanistic knowl-
edge, backed both by systems-level experimentation and mechanistic multiscale 
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models, will likely lead to improvements in diagnostic and prognostic applications 
of HRV as well as potentially novel therapeutic strategies. Just as the realization that 
the vagus nerve modulates inflammation [80] resulted in the conception of novel 
therapies based on vagus nerve stimulation [81], greater understanding as to why 
HRV correlates with disease state may reveal other pathways for therapeutic 
intervention.

HRV is a particularly appealing metric of physiologic variability due to the ease 
of noninvasive measurement and well-established correlations with disease state. 
However, biological rhythms at other time scales are also of importance. For exam-
ple, LPS given at different times of day both suppresses and synchronizes circadian 
clock gene expression in peripheral blood leukocytes [25], representing another 
scale at which the decoupling between oscillators may play a role in inflammation, 
given the observed relationship between disease and circadian rhythms [82]. 
Rhythmic oscillations in NF-κB activation [83] and ultradian rhythms in regulate 
the inflammatory response.

The relationships between physiological variability, interorgan communication, 
and disease suggest that monitoring variability may reveal disease state; thus, 
decreases in variability would correspond with disease progression and increases in 
variability (towards homeostasis) would correspond with recovery. However, the 
specific molecular mechanisms driving the loss of variability may be disease spe-
cific, paralleling how the presence of variability itself may exert physiological 
effects through several different mechanisms. Increasingly detailed mechanistic 
modeling will be required to understand the underlying molecular processes driving 
the loss of variability, and studying these processes in endotoxemia represents a 
good first step towards this goal. If these lower level processes can be linked to read-
ily available observables such as HRV, then this will lead to advances in transla-
tional medicine.
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           Introduction 

 Infl ammation is an essential process in maintaining health and responding to 
 disease. Acute infl ammation is driven largely by the innate immune system, which 
not only serves as the fi rst line of defense against invading pathogens but also func-
tions to resolve tissue damage and restore homeostasis upon a variety of infl amma-
tory conditions including sepsis, trauma, wound healing, and many more. However, 
when infl ammation is either insuffi cient to address the original disruption of homeo-
stasis, or becomes dysregulated and systemic, it can contribute substantially to mor-
bidity and mortality in these conditions. Dysregulated systemic infl ammation also 
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plays a signifi cant role in the pathophysiology of diseases that are not primarily 
attributed to innate immunity such as cancer and diabetes. Although the list of dis-
eases is broad and the processes important to each setting may differ in certain 
respects, the core architecture of the infl ammatory response to biological stress is 
highly conserved [ 1 ]. 

 The systemic infl ammatory response syndrome (SIRS) is a major driver of mor-
bidity and mortality in the settings of sepsis and trauma/hemorrhagic shock. Sepsis 
is one of the leading causes of death in the USA and is responsible for nearly $17 
billion in health care costs annually [ 2 ]. Trauma/hemorrhage is the most common 
cause of death for young people in the USA, costing over $400 billion every year 
[ 3 ]. In both sepsis and trauma, the acute infl ammatory response is concomitant with 
physiologic manifestations including changes in heart rate and body temperature, 
responses that act in a concerted fashion in order to help optimize host defense 
while minimizing tissue damage. Indeed, although a well-regulated infl ammatory 
response is crucial for effective healing and host defense, an excessively vigorous 
response can become self-perpetuating and lead to organ dysfunction and death [ 4 , 
 5 ]. Both sepsis and trauma patients are particularly susceptible to multiple organ 
dysfunction syndrome (MODS), a poorly understood syndrome that may be partly 
attributed to excessive and dysregulated infl ammation [ 5 ]. These vastly different 
outcomes can be explained by the overall framework of the immune response, 
which includes a positive feedback loop from infl ammation → damage/dysfunction 
→ infl ammation that can drive pathophysiology in infl ammatory diseases [ 6 – 8 ]. 

 The adverse effects of self-sustaining infl ammation are likely responsible for the 
general perception of infl ammation as an intrinsically harmful process [ 9 ,  10 ]. 
However, in addition to the aforementioned benefi cial roles of infl ammation in the 
resolution of tissue injury, recent studies suggest that morbidity and mortality are 
worse in animals with low levels of early proinfl ammatory signals [ 11 ]. The emerg-
ing view of infl ammation is indeed more nuanced, casting infl ammation as a highly 
coordinated communication network that allows the body to sense and respond to 
challenges and subsequently restore homeostasis [ 6 ,  12 ]. One may consider the 
complexity resulting from this coordination to be an indicator of a well regulated and 
properly orchestrated response, and consequently a less complex response would be 
indicative of a pathological dys- or mis-connectivity of the network. Guided by 
insights from studies on the dysregulated physiology characteristic of sepsis and 
trauma/hemorrhage, which have reported that a decrease in variability/complexity of 
heart rate can presage increased morbidity and mortality, we have suggested that 
well-organized dynamic networks of mediators are crucial to an appropriate infl am-
matory response [ 2 ,  13 ]. Indeed, such networks are induced early in the response to 
experimental surgical trauma in mice, and these networks become disorganized and 
less complex with the addition of hemorrhagic shock to this minor trauma [ 13 ]. 

 The current paradigm for acute infl ammation, based in large part on studies in 
response to trauma, hemorrhage, or infection, involves a dynamic cascade of cellu-
lar and molecular events. Innate immune cells, such as mast cells, neutrophils, and 
macrophages, are activated directly by bacterial endotoxin or indirectly by various 
stimuli elicited systemically upon trauma and hemorrhage [ 14 – 17 ], including the 
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release of damage-associated molecular pattern molecules (DAMPs) [ 7 ,  18 ,  19 ]. 
Both DAMPs and proinfl ammatory cytokines—primary among them tumor necro-
sis factor-α (TNF-α) [ 20 – 26 ]—further activate both parenchymal and immune/
infl ammatory cells and can affect tissue/organ physiology adversely. These stressed 
tissues/organs feed back positively to promote further production of infl ammatory 
mediators. We have hypothesized that this behavior could lead to multicompartment 
and multiscale infl ammatory “tipping points” [ 27 – 29 ].  

    A Systems Approach to Infl ammation 

 The complexity and nonlinearity of the acute infl ammatory response as described 
above has largely stymied the development of novel therapies for trauma/hemor-
rhage and sepsis. Systems biology is an emerging paradigm for tackling complex 
biological systems in a holistic fashion [ 30 ]. Approaches in systems biology span a 
broad range of techniques and can be categorized roughly into correlative or caus-
ative methods, with focus on either learning basic principles of system organization 
and function [ 31 – 33 ] or building predictive computational models [ 31 ,  34 ]. 
Although there is overlap between these areas, most efforts at elucidating biological 
mechanisms from high-dimensional data have traditionally focused on particular 
points along this spectrum of computational approaches. We suggest that gleaning 
translationally relevant insights into the infl ammatory response and its intercon-
nected (patho)physiology will require integration of methods from across this spec-
trum [ 13 – 17 ,  35 – 38 ], in order to progress from data to models to actionable 
knowledge and prediction (ideally in an in vivo or clinical context) [ 18 ,  27 ]. 

    Data-Driven (Correlative) Approaches to Dynamic 
Infl ammation Data 

 Statistically based approaches, with which most biologists and clinicians are gener-
ally familiar, include regression techniques that build models predictive within the 
conditions of the data on which the models were trained [ 39 ]. Although these meth-
ods cannot provide detailed mechanistic insights, they can be used to understand 
abstract features of the response such as the presence of nonlinearities or the identi-
fi cation of factor interactions that affect the response. The main drawback of this 
class of models is the fact that they often are devoid of mechanistic insight, and their 
linearity in the parameters can overfi t to the data on which they were trained. 
Associative methods, such as hierarchical clustering, may be used to highlight the 
natural variability, as well as any overlap, across experimental or clinical condi-
tions. Hierarchical clustering is a simple and unbiased clustering method, which 
aims to build a hierarchy of clusters. The limitation is the cluster must be built pair-
wise; since it is purely based on the similarity between the data, the cluster may lack 
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biological relevance [ 20 ]. Hierarchical clustering is used extensively in the genom-
ics fi eld and was used to discern patterns and coregulated clusters of gene expres-
sion associated with sepsis and trauma/hemorrhage in both animals [ 40 – 43 ] and 
humans [ 44 – 48 ]. 

 A less-utilized data-driven method is principal component analysis (PCA), 
which reduces a high-dimensional dataset into a few principal components that 
account for much of the observed variance in the data. When applied to time-series 
data, PCA may identify the subsets of the variables under study (genes/proteins/
etc.) that are most strongly representative of the response. Thus, these principal 
components may be interpreted as the principal drivers of the observed response 
and can give some mechanistic insights into the underlying process [ 13 ,  49 ]. In the 
setting of infl ammation, correlative approaches, such as PCA, could facilitate the 
development of therapeutics by yielding insights into the mechanisms by which 
these therapeutic modalities may function [ 50 ]. Similarly, PCA may aid the devel-
opment of diagnostics by analyzing the cytokine milieu in the blood resulting from 
infl ammatory spillover in order to identify the health state of individuals and pos-
sibly inform patient-specifi c interventions [ 51 ]. 

 Nonetheless, principal components, being linear combinations of the original 
mediator variables, often do not lend themselves to clear biological interpretations 
[ 32 ]. Principal components do, however, greatly ease dimensionality issues and pro-
vide a compact and effi cient explanation of the data in terms of meaningful groups of 
mediator variables. Successful implementation of PCA within this context requires 
some adjustments. Mediators are measured on widely different scales which need to 
be appropriately adjusted for meaningful comparisons. This may be done in several 
ways, taking into account known biological effects. Two mediators may show sig-
nifi cant variation within their possibly very different ranges, in which case we can 
rescale them appropriately. However, this should not be done, for example, if one of 
the two hypothetical mediators has small variation simply because it is an inert fac-
tor. Rescaling inert factors would simply amplify the error in the data. Once this 
rescaling issue is settled, a PCA can be carried out. In our own studies, we aug-
mented such analysis in two additional ways. We reevaluated the importance of a 
specifi c mediator as follows: deem  k  principal components as being signifi cant (by 
explaining, as usual, a certain fraction of the total variance). Next, assess the impor-
tance of each mediator in view of these  k  principal components, by adding the abso-
lute values of the weights associated to that mediator within the  k  principal 
components. The higher the sum, the more relevant the mediator. This allows us to 
rank the relative importance of the mediators. A word of caution: a mediator that is 
naturally very noisy may be ranked as important by the PCA method, but it need not 
necessarily be highly relevant to the phenomenon under study. The last point we 
make is that it is often more convenient to work with only biologically intuitive linear 
combinations of mediators rather than principal components. Such intuitive linear 
combinations are usually suggested by the principal components themselves from 
which we may delete certain mediators that appear nonintuitive. This still reduces the 
dimension, offers good biological interpretation, but the analysis that results is more 
complicated, since these linear combinations become correlated [ 18 ,  32 ]. 
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 One clinically important area in which we have carried out data-driven modeling 
is traumatic brain injury (TBI). Infl ammation induced by TBI can lead to both mor-
bidity and mortality [ 3 ,  52 ]. We obtained both clinical data and data on the dynamic 
changes in multiple infl ammatory mediators in the cerebrospinal fl uid of TBI 
patients. The clinical data on each patient consisted of one-dimensional variables 
such as age, gender, presence of infection, bleeding, decompression, presence of 
subarachnoid hemorrhage, and Glasgow Coma Scale (GCS), which quantifi es the 
nature of the initial brain injury on a numerical scale. The Glasgow Outcome Score 
(GOS) is the outcome variable; we view it as the response variable to study and 
predict as a function of the other input variables. The GOS quantifi es the state of 
health of the subject when hospital treatment ceases. Our initial approach involved 
extracting orthogonal polynomial trends from each cytokine’s time series, up to a 
specifi c degree  d . The degree  d  was constant across both cytokines and subjects. 
The trends, by merely encapsulating linear, quadratic or cubic growth, have the 
distinct advantage of not being dependent on the actual length of the time series 
(which generally have widely different lengths). We then used these polynomial 
trends, quantifi ed as one-dimensional variables, as predictors for the GOS and 
explored multinomial logistic as well as probit models. The models emerged upon 
fi tting to data, and subsequent selection of the statistically signifi cant clinical pre-
dictors as well as the orthogonal polynomial time trends of cytokines. Upon extract-
ing polynomial trends, we carried out a study of the residuals. The model was 
obtained by using 80 % of the available data and was tested on the remaining 20 %. 
Ultimately, a logistic model was found as an optimal predictive tool (unpublished 
observations). 

 We next hypothesized that changes in the probability of survival vs. nonsurvival 
are related to the dynamics of the infl ammatory response, the factors intrinsic to the 
patient (i.e., key demographic indicators) as well as to metrics related to the injury 
itself. To test this hypothesis, we developed a method which we call “Dynamic 
Profi ling,” as a means of assessing the dynamic course of a TBI patient within the 
hospital environment (Fig.  8.1 ). In the TBI application of Dynamic Profi ling, a clus-
ter is a subset of TBI patients that share similar characteristics. The set of clusters, 
recalculated after each set of cytokine readings, forms a partition of the TBI patients. 
To a given cluster, we associate three statistics based on the GOS score: the number 
of GOS scores equal to 1 in the cluster (this is the number of patients that died, to 
which we refer as “red fl ags”), the average GOS score of the subjects in the cluster, 
and the standard deviation of the GOS scores in that cluster. The vector of these 
three statistics is called the “weight” of the cluster. A cluster has a favorable weight 
if it has a small number of deaths, a high GOS average and a low GOS standard 
deviation. A useful statistic for the cluster is the probability of death of a patient 
belonging to that cluster (a “red fl ag”); it is derived as the ratio of “red fl ags” to the 
total number of subjects in the cluster. During the hospital stay, the aim is to diag-
nose, and ideally, reduce the probability of death (as we pass from stage  i  clusters to 
stage  i  + 1). The data on which clustering is based consists of vectors in Euclidean 
space, with the most natural metric to use being the usual Euclidean distance. 
Hartigan’s  k -means routine is particularly well suited to clustering such 
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high- dimensional Euclidean data. We used the following variables to obtain the 
clusters: GCS, the subset of statistically signifi cant demographic and clinical vari-
ables, the statistically signifi cant polynomial trends in the time series of infl amma-
tory mediator readings up to stage  i  − 1 clustering (inclusive), and the infl ammatory 
mediator readings during the current time interval. We note that the number of vari-
ables used to cluster on does not increase as we move to higher stage clustering. 
Indeed, we only use polynomial trends of degree at most  d , irrespective of the length 
of the time series, or, equivalently, irrespective of the stage of clustering. This yields 
robustness to the clustering process while simultaneously bounding the dimension 
in which clustering takes place. The clusters’ weights offer the opportunity of iden-
tifying patterns in the infl ammatory mediators that yield favorable GOS scores. At 
each clustering stage, the fraction of “red fl ags” (deaths) in the cluster, in which the 
new patient falls, estimates the probability of death of the patient. The procedure 
lends itself easily to a Bayesian approach by placing a prior distribution (of proba-
bility of death) on existing clusters based on known medical expertise not pertaining 
to the data at hand. This is then updated by the observed data through the Dynamic 
Profi ling method described above. The resulting posterior distribution encapsulates 
both the medical expertise as well as the observed probabilities of death within the 
data. Using this method, we were achieved a 72 % success rate in prediction of out-
come post-TBI, a rate considerably higher than that of 50 % obtained by  assigning 
the outcome to Low or High randomly (unpublished observations).

   Like most biological processes, infl ammation proceeds as a series of interacting 
cascades of signaling events that are often refl ected in the production and secretion of 

  Fig. 8.1    Patient data is used 
to generate clusters. The 
initial cluster is based solely 
on the GS initial injury. 
A cluster adding in 
demographic data follows. 
Upon the reading of cytokine 
data, successive clusters are 
produced. The stage  K  cluster 
yields the probability of 
survival at that stage of the 
hospital stay       
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infl ammatory mediators that likely form well-coordinated networks [ 13 ,  47 ,  53 – 59 ]. 
In order to better discern organizational aspects of interacting networks of infl amma-
tory mediators, such as coregulation or autoinduction, a variety of methods have been 
developed. Hierarchical clustering and Bayesian methods use high- throughput 
genomic or proteomic data of several time points and/or conditions to correlate gene 
expression patterns with function and infer regulatory networks of correlated genes 
[ 60 ,  61 ]. Several developments in these methods over the last 15 years have yielded 
more informative networks that can be more easily translated into mechanistic mod-
els [ 62 ,  63 ]. A key point is that any network analysis method must refl ect, and yield 
insights into, the dynamics of a given infl ammatory response. For example, we have 
utilized a relatively simple network analysis method employed over discrete intervals 
of data to analyze the commonality and differences between experimental surgical 
cannulation trauma + hemorrhage in mice vs. the sham procedure (surgical cannula-
tion only). This analysis suggested that the circulating mediators produced in 
response to the sham procedure were characterized by a high degree of interconnec-
tion/complexity at all time points, while the response to trauma/hemorrhage con-
sisted of different central nodes, and exhibited zero network density over the fi rst 2 h 
with lesser connectivity vs. sham at all time points [ 13 ]. 

 Among network methods, dynamic Bayesian networks (DBNs) are particularly 
suited for inferring directed (causative) networks of interactions based on the proba-
bilistic measure of how well the network can explain observed data. DBNs provide 
a good platform for incorporating biological knowledge alongside data in order to 
increase our knowledge of connectivity in biological processes and may be supple-
mented by additional experimental evidence and expert knowledge to hypothesize 
mechanistic models. As an example of the application of this methodology to the 
acute infl ammatory disease, we have begun to examine the systemic infl ammatory 
responses of pediatric acute liver failure (PALF) patients (unpublished observa-
tions). PALF is a complex, catastrophic, rapidly evolving clinical syndrome. The 
clinical trajectory of PALF is dynamic and the precise onset of disease rarely identi-
fi ed, with an exception being acute ingestions (e.g., mushrooms and acetamino-
phen). Patient outcome is refl ected, in part, by the interaction among etiology, 
disease severity, supportive management, and treatment. Yet, outcomes vary among 
children with seemingly similar etiology, disease severity, and treatment; thus, addi-
tional factors are likely involved to explain these variations. Such factors likely 
include a complex interaction among the infl ammatory milieu, end-organ damage, 
immune activation, potential for liver regeneration, and interventions [ 64 ,  65 ]. We 
hypothesized that dynamic networks of immune/infl ammatory dysregulation drive 
outcomes in PALF, and that DBN analysis would shed insights into the structures of 
these networks. We assayed 26 infl ammatory mediators on stored serum samples 
obtained from 49 children in the PALF study group (PALFSG;   http://www.ccm.pitt.
edu/research/projects/multi-center-group-study-acute-liver-failure-children    ) collected 
over 7 days after enrollment. Data were subjected to DBN analysis to suggest how 
infl ammatory mediators are connected over time in spontaneous survivors, nonsur-
vivors, and PALF patients who received liver transplants (outcomes were assessed 
within 21 days of enrollment). Whereas raw infl ammatory mediator levels assessed 
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over time did not distinguish among PALF outcomes, DBN analysis revealed 
 distinct chemokine-related networks that distinguished spontaneous survivors from 
those who died. The DBN pattern identifi ed in patients who underwent liver trans-
plantation was more like that seen in spontaneous survivors than in those who died. 
Thus, we suggest that DBN may have general utility in other complex diseases with 
an infl ammatory etiology.  

    Dynamic, Mechanistic Modeling of Infl ammation 

 Mechanistic computational models are derived from more-detailed biological and 
physical descriptions of a system and have a rich set of tools for both analysis and 
simulation. These models, based on causative interactions, can be constructed as 
ordinary differential equations (ODEs), rules-based models (RBMs), and agent- 
based models (ABMs) among other methods (including hybrid methods) and have 
the advantage of potentially being predictive outside the range of conditions/time- 
points on which they were calibrated. Although it is often diffi cult to parameterize 
such models, they can unveil emergent phenomena not immediately obvious from 
the interactions that are encoded in the model. There are several analytic tools, for 
ODE models especially, that have been developed and used to decipher the organi-
zational principles of networks (or subnetworks), the properties that explain the 
dynamics and robustness/sensitivity of a given complex system, and, perhaps most 
importantly, the critical points of control in the system [ 33 ]. These tools are particu-
larly important in order to help defi ne the complex interplay between the infl amma-
tory mediators in the blood and other compartments both within the host (organs/
tissue) and without (e.g., in the case of interactions with blood-feeding vectors). 
Tools from dynamical systems theory allow identifi cation of the possible steady 
state(s) of a system as well as the dynamics of the system’s time evolution. These 
tools have been used extensively to explain (or predict, depending on the context) 
diverse behaviors such as bistability, hysteresis, and oscillations in a variety of bio-
logical systems [ 66 ]. Bifurcation diagrams, in particular, can be used to map out the 
effects of a particular parameter on the possible steady-state behaviors of a system 
and to indicate the transition from a healthy steady state to a pathological one [ 16 , 
 35 ,  67 ,  68 ]. The relative importance of parameters can also be quantifi ed by calculat-
ing the change in the model output in response to changes in the parameter values 
using sensitivity analysis [ 33 ,  69 ]. These methods work in a complementary fashion 
to identify the key points that can be modulated to change the behavior of a system. 

 The analysis of ODE models of biological systems can be approached from a 
control theory perspective as well. Achieving robustness and effi ciency are core 
principles of both evolution as well as engineering. Indeed, feedback, a pervasive 
biological phenomenon, is also a fundamental component of control strategies [ 70 ]. 
An ODE model is the equivalent of a state space representation of a control system. 
Thus, it is possible to decompose the biological system into a control structure and 
analyze the role of each component using control theoretic tools that characterize 
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their robustness and identify the key mediators that modulate the performance of 
such a control system [ 71 ]. These analyses are especially relevant given that the 
“tipping point” phenomenon in the infl ammatory response is likely the result of a 
failure of the body’s control structure to handle stress. 

 While we wish to navigate through the process of data → data-driven model → 
mechanistic model → prediction and understanding of the innate immune response, 
we seek to put it in the perspective of translational applications with a focus on 
clinical and preclinical settings. Much of the work in systems biology has under-
standably been in simpler, well-studied model organisms, but even among studies 
focused on preclinical science, there has been an overall lack of translation to the 
clinical arena.  Translational Systems Biology  is a framework with a focus on trans-
lational insights for novel diagnostic or therapeutic purposes and predictive mathe-
matical models that inform in silico clinical trials [ 6 ,  72 ,  73 ]. Initially formulated to 
deal with the clinical challenge of integrating acute infl ammation and organ dys-
function in critical illness, this work expanded to include healing of acute and 
chronic wounds and infections in various diseases, and rational dynamic modula-
tion of infl ammation. 

 We and others have created mechanistic computational models of acute infl am-
mation in sepsis [ 16 ,  37 ,  74 – 76 ], endotoxemia [ 14 ,  35 ,  36 ,  77 – 88 ], and trauma/
hemorrhage [ 14 ,  15 ,  17 ,  36 ]. In large part, these models (both ODE and ABM) are 
based on the typical progression of the infl ammatory pathway described in the pre-
ceding section. Some of these models are purely theoretical (e.g., [ 16 ,  35 ,  37 ,  74 –
 76 ]), while others are based on data either at the protein [ 14 ,  15 ,  17 ,  36 ] or mRNA 
[ 78 ,  79 ,  84 – 86 ] level. Similar mechanistic models have focused on related diseases 
such as necrotizing enterocolitis [ 89 ,  90 ]. 

 Infl ammation is an inherently multiscale process that manifests at the molecular, 
cellular, tissue/organ, whole organism, and population levels [ 28 ]. Early models of 
acute infl ammation at the cellular level highlighted the nonlinear responses to mul-
tiple exposures to the same stimulus (Gram-negative bacterial lipopolysaccharide) 
[ 78 ,  80 – 82 ,  84 ,  88 ]. Some of these computational studies based on in vitro data 
suggested molecular control mechanisms that lead to the phenomena of nonlinear 
responses to repeated infl ammatory stimulation at the cellular level [ 80 – 82 ,  84 ,  88 ]. 
One recent in vitro study involved mouse macrophages treated with extracellular 
β-nicotinamide adenine dinucleotide (NAD + ), a ubiquitous intracellular molecule 
that is anti-infl ammatory when given extracellularly [ 91 ]. In that study, we hypoth-
esized that extracellular NAD +  would modulate the anti-infl ammatory cytokine 
transforming growth factor (TGF)-β1. Indeed, NAD +  led to increases in both active 
and latent cell-associated TGF-β1 in mouse macrophages. The time and dose effects 
of NAD +  on TGF-β1 were complex and biphasic. A statistical model suggested that 
the effects of NAD +  on TGF-β1 were nonlinear and this model was capable of pre-
dicting not only the levels of active and latent TGF-β1 but also the biphasic dose 
effect of NAD + . Based on these data-driven modeling studies, we inferred that the 
effects of NAD +  on TGF-β1 are nonlinear. Accordingly, we created a nonlinear 
ODE model of interactions we considered the most parsimonious and yet still capa-
ble of recapitulating the complex biological phenomena observed experimentally. 
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Model- predicted levels of TGF-β1 protein and mRNA were not only largely con-
fi rmed experimentally but also suggested the presence of other mechanisms of regu-
lation of TGF-β1 by NAD +  [ 92 ]. These studies highlight the utility of traditional 
biochemical/pharmacological studies coupled with computational modeling in 
defi ning novel biological mechanisms.  

    Combining Data-Driven and Mechanistic Modeling 
of Infl ammation 

 We have utilized dynamic data, data-driven modeling, and dynamic mechanistic 
modeling in diverse contexts. We also utilized both correlative (transcriptomic anal-
ysis, PCA, and regression) and causative (ODE) models in our in vivo studies on the 
role of trauma in the murine response trauma/hemorrhagic shock. Initial studies 
using a literature-based, in vivo-calibrated mechanistic ODE model suggested that 
the underlying trauma is central in driving the infl ammatory response to combined 
trauma/hemorrhage, both systemically and in the liver [ 15 ]. Transcriptomic data 
supported these model predictions as indicated by a large overlap between the genes 
and pathways induced in trauma alone vs. those induced in the setting of experimen-
tal trauma/hemorrhage [ 15 ]. This ODE model was extended to include details of 
experimental trauma/hemorrhage in mice (e.g., bleeding rate and target blood pres-
sure) and further validated using a unique, computerized platform for automated 
hemorrhage that was constructed specifi cally to test the behavior of this mathemati-
cal model [ 17 ]. Later, multivariate regression, hierarchical clustering analysis, PCA, 
and dynamic network analysis all suggested that despite a large overlap at the level 
of unprocessed infl ammatory mediator data (as shown by inconclusive hierarchical 
clustering of these data), there were major mechanistic differences between surgical 
trauma alone vs. trauma/hemorrhage [ 13 ]. 

 In addition to the data-driven modeling work on TBI described above, we also 
carried out combined data-driven and mechanistic modeling in TBI using the same 
data on TBI patients described above (unpublished observations). Initially, we car-
ried out PCA, which suggested that primary drivers of infl ammation in this TBI 
cohort. Based on this analysis, we created patient-specifi c, mechanistic ODE mod-
els that were fi t to each patient’s data. These modeling-based studies raise the pos-
sibility of personalized modeling for TBI patients during their hospital stay. 

 In a similar fashion, we created a two-compartment mathematical model of por-
cine endotoxemia [ 83 ], based on an existing mathematical model of mouse endotox-
emia [ 14 ,  15 ,  17 ,  36 ], in order to further test the hypothesis that a conserved 
infl ammation framework could have radically individual manifestations. PCA of 
circulating infl ammatory mediators suggested a central role for the cytokine IL-1β in 
this infl ammatory response. Based on this analysis, we constructed a two- 
compartment ODE mathematical model that encompasses infl ammation, lung 
(patho) physiology, and a damage variable that recapitulates the health of the animal 
[ 83 ]. This mathematical model could be fi t to both infl ammatory and physiologic 
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data in the individual swine, whose outcomes ranged from a self-resolving infl am-
matory response with fairly normal lung histopathology and function through vari-
ous degrees of dysregulated infl ammation and lung damage to death accompanied 
by severe lung injury [ 83 ]. More recently, we augmented this pig-specifi c two- 
compartment ODE model to include a third “tissue” compartment. This three- 
compartment mechanistic model was initially calibrated with data from individual 
surviving trauma patients, data that were used to produce 10,000 in silico patients 
subjected to virtual trauma/hemorrhage. This study raises the possibility of individu-
alized outcome prediction for trauma patients as well as showing the potential for in 
silico clinical trials based on a small, but representative, cohort of actual patients.   

    Conclusions 

 We have increased our understanding of the infl ammatory response beyond descrip-
tion of its symptoms and unveiled an ever-increasing complexity underlying this 
evolutionarily conserved internal communication mechanism [ 2 ,  7 ] that manifests 
at multiple biological scales [ 27 ,  28 ]. Clinically, translational systems approaches to 
infl ammation have the potential for the identifi cation of novel, rationally designed 
therapies and diagnostics—as well as for gaining new basic mechanistic insights—
via combined data-driven and mechanistic modeling.     
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          Infl ammatory Diseases: A Pox on All Our Houses 

 We are currently faced with a barrage of complex diseases that often coexist in the 
same patient [ 1 ]. In the developing world, the modern disease landscape is a con-
stellation of acute and chronic infections, traumatic injuries, and nonhealing 
wounds; diseases that are made even more complex due to the impact of malnutri-
tion, war, and displacement [ 2 ,  3 ]. In the industrialized world, we face some of the 
same challenges with regard to infections, trauma, and wounds, but these diseases 
are complicated by lifestyles of excess and the attendant metabolic irregularities 
(diabetes and obesity). In addition, the generally longer life spans now being expe-
rienced around the world have paradoxically resulted in the rise of aging-related 
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diseases such as cancer and various neurodegenerative diseases [ 4 ]. Given the 
degree and extent of medical care in the fi rst world, it is virtually guaranteed that a 
common pathway for patients with this range of diseases is to spend at least some 
time in an intensive care unit (ICU) with critical illness manifesting with multicom-
partment pathophysiological derangements and organ failure. Critical illness can 
result directly from trauma, hemorrhagic shock, and bacterial infection (sepsis). On 
its own, trauma/hemorrhage is a leading cause of death worldwide, often leading to 
infl ammation-related late complications that include sepsis and multiple organ 
dysfunction syndrome (MODS) [ 5 – 7 ]. Sepsis alone is responsible for more than 
215,000 deaths in the USA per year and an annual healthcare cost of over $16 
billion [ 8 ], while trauma/hemorrhage is the most common cause of death for young 
people in the USA, costing over $400 billion annually [ 9 – 11 ].  There is currently 
not a single approved pharmacological therapy for critical illness . 

 It is now clear that the acute infl ammatory response, with its manifold manifesta-
tions at the molecular, cellular, tissue, organ, and whole-organism levels, drives 
outcomes in all the aforementioned diseases, and is central to the pathophysiology 
of critical illness. Properly regulated infl ammation allows for timely recognition 
and effective reaction to threats to an individual, be it tissue damage resulting from 
injury or infection from pathogenic microbes. However, when the insult is too great, 
or repetitive in nature (as seen in chronic infl ammatory and autoimmune diseases), 
we have suggested that infl ammation can become disordered and result in ongoing 
tissue damage and organ dysfunction. We assert that critical illness is the most dra-
matic manifestation of disordered, dysregulated, and miscompartmentalized infl am-
mation [ 12 – 14 ]. Thus, the presence of a robust, evolutionarily conserved network of 
infl ammation [ 15 – 17 ], able to respond to heterogeneous insults and tuned for effec-
tive containment yet paradoxically capable of driving and propagating host tissue 
damage, results in disease states that are fundamentally resistant to reductionist 
characterization. This property of critical illness is the basis for the lack of effective 
mechanism-based pharmacologic therapies and accounts for the fact that even life- 
saving/perpetuating measures, such as mechanical ventilation or hemodialysis, may 
have detrimental effects through the induction of additional infl ammation [ 18 – 20 ].  

    Insuffi ciencies in the Current Process of Drug/Device Design 
and Executing Clinical Trials 

 In order for a therapeutic drug or device to reach its ultimate end-user—the patient—
a multistep process must be carried out, culminating in approval by regulatory agen-
cies. This process generally consists of years/decades of basic research to identify 
candidate therapeutic targets, followed by sequential studies to demonstrate safety 
and some acceptable degree of effi cacy (e.g., dosage or timing that results in great-
est therapeutic benefi t with least harm) in both experimental animals and humans. 
This process typically concludes with a pivotal (Phase III) clinical trial, which is 
randomized (i.e., subjects that meet predecided inclusion and exclusion criteria are 
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recruited into either a placebo or treatment arm in a random fashion) and double 
blinded (i.e., neither the clinician nor the patient knows a priori the study arm in 
which the patient is enrolled) [ 16 ,  21 – 24 ]. The enrollment into this Phase III trial is 
usually not individualized in any fashion beyond the set inclusion and exclusion 
criteria (and, of course, the withdrawal of a patient from the study if certain prede-
cided adverse events occur). This process is considered the sine qua non of the sci-
entifi c method, and it has indeed resulted in numerous drugs and devices available 
to physicians to treat diseases. 

 However, there are many problems with this approach. To begin with, the disease 
being targeted is usually thought of in a reductionist, static way as a series of dis-
crete “stages” or “syndromes” rather than as a dynamic, stochastic progression of 
biological events driven by initial conditions and genetically determined parameters 
that, upon reaching certain multidimensional thresholds, leads to multiple out-
comes. This discrepancy leads to the design of drugs that are targeted to ostensibly 
diagnostic symptoms rather than to underlying causes of the disease as a whole. 
Next, a highly linear (cause–effect) view of the biological pathways is presumed to 
underlie the various discrete symptoms, leading to the generation of drugs absent 
any consideration (at this initial stage of drug development) of impact on other 
pathways, cells, tissues, and organs. Finally, the statistical approaches commonly 
used to structure and analyze clinical trials typically make a number of questionable 
assumptions, e.g., that variables are normally distributed, that a marker of patient 
state is equivalent to a mechanistic driver of that state, and that such a marker of 
patient state will be altered in a statistically signifi cant fashion as a function of 
therapeutic effi cacy. Below, we discuss how these general features of the healthcare 
delivery process manifest in therapies for acute infl ammatory diseases, with a focus 
on critical illness.  

    Infl ammation in Critical Illness: Rational Systems Approaches 
for a Complex Therapeutic Target 

 The fl aws in—and the fragmented nature of—the current healthcare delivery para-
digm have led to the recognition of the need to address complex interplay between 
infl ammation and physiology in critical illness, manifesting in divergent group out-
comes and heterogeneous individual trajectories [ 12 ,  25 ,  26 ]. Initially, there was 
hope for some improvement in this situation through the adoption of “omics” meth-
odologies, with their theoretical capability of interrogating the complete responses of 
cells and tissues in individuals (and thereby both improving the mechanistic under-
standing of critical illness in general and enhancing diagnostic and treatment capaci-
ties in individuals) [ 27 – 34 ]. While this approach has resulted in key contributions to 
the understanding of molecular pathways induced by injury and infection in humans 
[ 35 ,  36 ], as these techniques have become more commonplace there has been a grow-
ing recognition that more data does not necessarily lead to better—or any—explana-
tions for the phenomena from which those data are derived. Thus, these “omics” 
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methods have not proven to be the panacea for the design of drugs, clinical trials, and 
diagnostics that they were projected to become. In addition, from a practical stand-
point, there are multiple challenges to implementation of these purely data-driven, 
descriptive approaches in the healthcare delivery chain [ 7 ,  13 ,  14 ]. 

 In contrast to data-driven, descriptive modeling, mechanistic computational simu-
lations depict the behavior of biological interactions (e.g., among cells, their prod-
ucts, and the outcomes that result under a given set of conditions) dynamically. Such 
dynamic computational models and simulations may be used as “knowledge stores” 
that may be queried as to the emergent behavior of the sum total of known or hypoth-
esized reductionist biological interactions [ 37 – 41 ], to suggest novel interactions not 
yet described by experimental data [ 42 ], and to address controversies based on diverse 
experimental/clinical conditions or other experimental differences among groups 
studying any given complex biological system [ 43 ]. Unlike data- oriented, descriptive 
models, dynamic mechanistic models offer the possibility of prediction outside of 
and beyond the data on which they were developed [ 7 ,  13 ,  14 ,  44 ]. We have extended 
the classical systems biology approach to that of Translational Systems Biology as 
systems and computational biology methods have matured and begun to take on 
 characteristics, features, and operating principles of engineering [ 24 ,  44 – 46 ]. 

 Indeed, the computational modeling toolset now available for integration into the 
healthcare delivery pipeline is rich and suited to diverse tasks. Translational dynamic 
mechanistic modeling used to date in acute infl ammation and other phenomena 
related to critical illness can be divided into two general types: continuous methods, 
generally employing differential equations (either ordinary or partial) and particu-
larly useful in settings involving data that refl ect the mean fi eld approximations of 
behavior of a biological system, e.g., the concentrations of molecules in a biofl uid 
[ 47 – 55 ]; and discrete methods, most notably agent-based modeling for settings in 
which spatial pattern/image data are involved or for prototyping initial computa-
tional models of a complex system [ 42 ,  56 – 59 ]. These various method have their 
respective strengths and weaknesses [ 24 ,  45 ,  60 ,  61 ] and have all been used in the 
setting of critical illness [ 15 ,  16 ,  44 ,  45 ,  60 ,  62 ,  63 ]. 

 Dynamic computational modeling has improved our knowledge of the basic 
biology of infl ammation, and, directly or indirectly led to translational applications 
in critical illness [ 7 ,  12 – 16 ,  24 ,  44 ,  63 ]. One key translational application, namely 
the in silico clinical trial, was pioneered in the arena of critical illness [ 48 ,  58 ]. The 
potential use of mechanistic computational modeling in the diagnostic arena is evi-
denced by studies showing the potential to predict the individual infl ammatory and 
pathophysiologic outcomes of human subjects [ 64 ] and large, outbred animals [ 65 ]. 
Thus, it may be possible, in the not-too-distant future, to predict and impact the 
outcomes of individual critically ill patients [ 44 ,  63 ]. 

 Given the multiscale complexity of the disease processes, we suggest that it is 
imperative to not only merely identify candidate molecules but also determine if the 
higher-order, system-level consequences of attempting to intervene in a particular 
pathway will lead to an ultimately benefi cial or detrimental outcome. We have 
pointed out the need for a computational means of  dynamic knowledge representa-
tion  as a means of hypothesis instantiation and testing [ 41 ,  66 ]. In the context of 
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translating molecular-level mechanistic hypotheses up through the various steps of 
the healthcare delivery continuum, this process is envisioned as allowing one to 
determine if the assumptions regarding manipulating a given biological interaction at 
a given scale of organization (typically the molecular/cellular scale) is likely to 
behave as expected at another, typically higher scale (e.g., tissue, organ, or the entire 
organism). In this way, one may identify effects that would otherwise be considered 
“unanticipated.” Dynamic knowledge representation may be augmented with insights 
derived from high-throughput/high-content data [ 41 ], along with appropriate data 
analysis and data-driven modeling [ 17 ,  44 ,  46 ] in order to generate and parameterize 
mechanistic computational models of disease, patient [ 44 ], or population [ 16 ,  24 ].  

    Dynamic Knowledge Representation in the Context 
of In Silico Clinical Trials 

 A key example of the in silico clinical trial as a form of dynamic knowledge repre-
sentation can be seen in the simulated clinical trials of existing and hypothetical 
antimediator interventions for sepsis [ 48 ,  58 ]. Importantly, these simulated trials 
were based on the knowledge available at the time the actual clinical trials were 
performed. In one case, a simulation of neutralizing antibodies to proinfl ammatory 
cytokines was implemented in an agent-based model (ABM) [ 57 ,  58 ]. This dynamic 
computational model reproduced the general disease dynamics of sepsis and mul-
tiple organ failure and was used to generate a simulated population corresponding 
to the control group in a sepsis clinical trial. Highlighting the power of computa-
tional modeling as a high-throughput test bed for novel therapies, early in silico 
clinical trials simulated a series of existing [ 48 ,  58 ] and hypothetical [ 58 ] therapies 
targeting infl ammatory mediator-based therapies. Importantly, these clinical trials 
were simulated in such a way that assumed that the proposed interventions behaved 
mechanistically exactly as had been hypothesized. Therefore, these in silico trials in 
the paper are a form of verifi cation of the underlying hypotheses—either explicit or 
implicit—that formed the basis for such trials. The way in which these computa-
tional simulations were structured avoided the need to invoke factors such as hetero-
geneity of adjunctive therapy, different pharmacodynamics/kinetics, faulty 
randomization or other potentially confounding practical issues commonly used to 
explain negative outcomes of clinical trials. In line with actual outcomes, and not 
surprisingly for those studies that were purely hypothetical, none of the simulated 
interventions demonstrated a benefi cial effect [ 48 ,  58 ]. The conclusion drawn from 
these fi ndings is that, most likely, the underlying conceptual models that informed 
the development of these therapeutic strategies targeted at blocking individual 
mediators were fl awed, precisely because the hypotheses underlying their selection 
as therapeutic modalities were fl awed. That is not to say that—despite this fl aw of 
universal therapeutic effi cacy—these mediator-directed therapies would fail. 
Indeed, one of the studies, an in silico trial of anti-TNF-α therapy using an equation-
based model of systemic infl ammation, suggested that this type of therapy would 
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work on defi ned subsets of sepsis patients [ 48 ]. Thus, we suggest that fl aws in 
the original hypotheses and assumptions underlying these failed clinical trials 
would have been exposed through the use of computational dynamic knowledge 
representation been available and used early and throughout the process of drug 
development. 

 As touched upon above, in silico clinical trials offer an unprecedented possibility 
to transcend the long list of practical limitations—including: relatively small cohort 
sizes, limited availability of measurements, fi nite study durations, and the presence 
of confounding factors—that affect real-world clinical trials. However, the interdis-
ciplinary team of clinicians, biologists, and computational modelers who carry out 
these in silico clinical trials must assure that the base models and implementation of 
simulated populations represent both the biology and clinical setting. 

 In addition to providing a check of the plausibility of the underlying scientifi c 
basis of a proposed intervention, in silico trials can augment the current process of 
performing clinical trials in three signifi cant ways:

    1.     Enhancement of study group substratifi cation : Clermont et al. [ 48 ] demon-
strate the use of an in silico trial to enhance subgroup stratifi cation and candidate 
patient identifi cation. The fi ner grained representation of each simulated patient, 
in terms of cytokine response trajectories, and how they respond to and without 
a proposed intervention allows the identifi cation of potential biomarker-defi ned 
inclusion criteria for a clinical trial. In essence, this allows each simulated patient 
to act as his own control with respect to the proposed intervention. This type of 
analysis is functionally impossible to obtain in clinical trial cohorts that refl ect 
the range of response that would arise in the general population. Furthermore, 
social or ethical factors that may limit the possible representation of specifi c 
groups (such as African-Americans, known to be generally underrepresented in 
many clinical trials, or women of child-bearing age, excluded for potential tera-
togenic risk). As a result, trials are very likely to miss important (positive or 
negative) effects in subgroups that are sampled inadequately. This missampling 
can lead to later discovery of adverse events following a promising clinical trial, 
or in the failure of truly useful treatments in clinical trials that were not properly 
targeted to the patients who would most benefi t from them. By simulating mas-
sive virtual cohorts sampled from the space of potential patients, in silico clinical 
trials can achieve much more thorough sampling of possible patients. The acqui-
sition and analysis of this simulation-generated data can in turn reveal clinical 
patient subgroups who merit particular attention and lead to better informed 
patient selection criteria and more effective clinical trials.   

   2.     Augmentation and optimization of protocol design : Protocols for modern 
interventions depend on multiple complex and often interacting parameters (e.g., 
dosage levels, timing and frequency of administration, etc.). Attempting to deter-
mine these parameters experimentally over a wide range of individuals is func-
tionally impossible, and therefore the optimal intervention strategy for an 
individual patient cannot pragmatically be determined. The inability to antici-
pate and account for this degree of interindividual heterogeneity will doom a 
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clinical trial to failure at the outset. In silico trials allow a more rigorous compu-
tational optimization of these parameters, both on massive populations and for 
individual patients and will increase the precision with which protocols can be 
designed, and therapeutic endpoints defi ned.   

   3.     Enhanced characterization of the control group : Clinical trials rely on control 
groups against which the effect of a proposed intervention is compared. However, 
given the vagaries of clinical practice, many control groups may actually com-
pare poorly to the intervention group. Interindividual variability in both underly-
ing biology and clinical practice leads to a situation where the defi nition of 
“similarity” between control and intervention patients is often quite crude and 
imprecise. This situation confounds the ability to actually defi ne the effect of the 
proposed intervention. In silico trials, however, offer the ideal control group: 
each simulated patient can be simulated with and without the intervention. 
Comparison of results against these “perfect” controls thus removes a source of 
uncertainty that is unavoidable in real trials.     

 An example of the potential insights obtained from carrying out in silico trials 
can be seen in a very early in silico trial based on an anti-TNF-α therapy [ 48 ]. These 
simulations recapitulated the general lack of effi cacy of the intervention; however, 
the researchers used the power of computational modeling to evaluate what would 
have happened in the absence of intervention or in the setting of different doses of 
the drug. In essence, the placebo group was “cloned” into multiple treatment arms 
or the placebo arm. Consequently, this in silico analysis suggested specifi c charac-
teristics of the simulated patients who had been helped by the intervention, had been 
harmed by the intervention, or had not been affected by the drug, thereby suggesting 
the possibility of using this in silico approach for deciding on inclusion and exclu-
sion criteria for eventual clinical trials. Thus, the key take-home lesson of this study 
was that a failed randomized, placebo-controlled clinical trial could possibly have 
been successful through the use of in silico modeling.  

    Dynamic Knowledge Representation at the Individual Level: 
Optimization of Diagnosis and Therapy 

 It may be argued that the ultimate test of dynamic knowledge representation is that 
of characterizing the drivers of dynamic patient state to a degree suffi cient to iden-
tify and treat the individual patient [ 12 ,  44 ]. To do so, a robust, mechanistic compu-
tational model (presumably the same one used for in silico clinical trial) must be 
adapted to refl ect the temporal dynamics of infl ammation and organ  damage/dys-
function in the individual patient. From a practical standpoint, model parameters 
that alter the patient’s dynamics (e.g., comorbidities, prior health history, relevant 
genetic traits, etc.) are modifi ed over known or presumed ranges in accordance with 
known biology [ 44 ]. The applications of this approach are myriad. Of most direct 
connection to the in silico clinical trial, individual-specifi c models could be used to 
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generate much larger cohorts of virtual patients, which in turn could be used to 
make in silico clinical trials more realistic. 

 As an example of this approach, we constructed a multicompartment, equation- 
based model, consisting of the “tissue” (in which physical injury could take place), 
the “lungs” (which can experience dysfunction) and the “blood” (as a surrogate for 
the rest of the body). This model was initially calibrated with data on approximately 
30 individual trauma patients, all survivors of moderate blunt trauma. Based on 
these individual trajectories of both infl ammatory and physiological variables, nor-
mal and uniform distributions were created. These distributions were sampled 
repeatedly to create a population of 10,000 virtual trauma patients, where each 
patient is defi ned by his/her parameter values in the mathematical model. Each 
patient was then subjected to simulated low, moderate, and severe trauma. These 
virtual populations of trauma patients exhibited realistic and partially overlapping 
distributions of “damage” recovery times (which we equated with intensive care 
unit [ICU] lengths of stay) and total “damage” (which we equate with degree of 
multiple organ dysfunction). These virtual patients were queried as to the parame-
ters driving the above distributions and found that for patients with a low Injury 
Severity Score (ISS), parameters related to IL-1β were the predominant drivers, 
while IL-6 was the main driver of outcome in patients with moderate or severe ISS. 
Principal Component Analysis of the circulating infl ammatory mediators from the 
original trauma patients suggested that IL-1β was the principal driver of infl amma-
tion in these patients, in line with the results of the analysis of the equation-based 
virtual trauma patients. These results suggest the possibility of determining novel 
basic mechanisms in trauma, of individualized outcome prediction for trauma 
patients, and of virtual clinical trials based on a small number of actual patients. 

 These studies highlight some of the particular advantages that mechanistic mod-
els afford: virtual cohorts can be generated of any required size, and each individual 
patient’s disease state can be tracked at an extremely high level of resolution (lim-
ited only by the resolution of the model) for as long as required. When information 
is available about the approximate distribution of these characteristics in real popu-
lations, this information can be used in the generation of a virtual patient population 
to ensure that the composition of simulated cohorts mirrors reality. 

 Another application of this approach involves in silico “testing” of multiple ther-
apeutic modalities on individuals. As an example of this application of dynamic 
mechanistic modeling, an ABM of vocal fold infl ammation and healing was cali-
brated to the early levels of infl ammatory mediators present in the laryngeal secre-
tions of individual humans subjected to experimental phonotrauma and could 
predict the later levels of these mediators in an individual-specifi c fashion [ 64 ]. 
Importantly, these individualized ABMs were utilized to predict the likely effi cacy 
of a “rehabilitative” treatment, namely resonant voice exercises, both in patients 
who had in fact received this treatment and in patients who did not [ 64 ]. A similar 
process could be employed to evaluate the specifi c effi cacy of a drug modulating an 
aspect of infl ammation or healing, thereby forming the basis of a much more realis-
tic in silico clinical trial.  
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    Conclusions 

 What is clear now is that the biocomplexity of pathophysiological processes under-
lying the systems-level diseases that represent the greatest health risk today, such as 
cancer, diabetes, atherosclerosis, Alzheimer’s, sepsis and wound healing, confounds 
the use of traditional experimental methods. These reductionist experiments and 
data-oriented descriptive methods are unable to evaluate and test multiscale causal-
ity, an essential and critical step in the design and development of therapeutic inter-
ventions for systems-level diseases. The complexity and dimensionality (in terms of 
multiple factors and variables) of these biomedical issues, particularly in terms of 
translating mechanisms across scales of organization, essentially precludes this 
approach. Reliance on only these traditional methods can produce, at best, “one- 
off” products based on fortuitous discovery but does not provide a robust and sus-
tainable strategy. The Scientifi c Method mandates that it is the ability to evaluate 
mechanisms and causality suffi ciently in a multidimensional, high-throughput 
world—as is potentially possible with dynamic computational modeling and the 
application of principles from Translational Systems Biology—that forms the crux 
of the translational dilemma. The use of dynamic computational modeling can pro-
vide a framework that allows the introduction of “theories” into biomedicine, to 
facilitate the translation of robust conceptual structures and architectures across 
experimental platforms as well as into the differences among individual patients 
[ 67 ]. Specifi cally, we assert that the computational approaches described in this 
chapter, with an explicit goal of addressing the challenges of implementing the last 
stage of getting a therapy to the bedside, represents a necessary step in the future of 
obtaining and implementing effective therapeutics for the complex diseases that 
challenge us today and in the future.     
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        Chronic wounds represent a signifi cant burden to patients, healthcare professionals, 
and the US healthcare system, affecting 5.7 million patients and costing an esti-
mated 20 billion dollars annually [ 1 ]. Wound healing is a well-synchronized repara-
tive process composed of a large number of concerted biological events harmonized 
in a sequential manner [ 2 – 4 ]. In order for perfect healing to occur, it is important to 
appreciate the underlying mechanisms that come together to orchestrate such har-
mony. Dysregulation of just one of the components can result in malfunctioning of 
the entire system. One such example is diabetic wound healing where dysfunction 
in the infl ammatory response results in the chronicity of these wounds. The current 
review focuses on factors that regulate wound infl ammation response and the dys-
function of these responses in diabetic wound healing. 

    Physiological Phases of Wound Healing 

 Wounds can be classifi ed into two categories depending on the time of closure: an 
acute wound (which follows the healing process in a stepwise manner and thereby 
closes within days) and chronic wounds (which are disrupted from the normal phys-
iological healing cascade and remains open for over 4 weeks). The process of 
wound healing is functionally divided into four sequential phases, viz. hemostasis, 
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infl ammation, proliferation, and remodeling, all of which occur in an overlapping 
series of events. Following an injury the process of hemostasis sets in, the main 
function of which is to put an end to blood loss and initiate the formation of fi brin 
plug, which also facilitates consequent infl ammation and healing processes [ 5 ]. 
Initiation of an acute phase infl ammatory response prepares the wound site for sub-
sequent closure. The infl ammatory phase is characterized by the four cardinal signs 
namely rubor (redness), tumor (swelling), calor (heat), and dolor (pain). The prolif-
erative/remodeling phase takes place in conjunction with the infl ammatory phase 
during which new blood vessels are formed and fi broblasts arrive and lay down the 
extracellular matrix. Remodeling represents the fi nal phase of wound healing and is 
well synchronized by the balance between formation and degradation of the extra-
cellular matrix components and the wound acquires tensile strength. This stage 
often continues even after months of wound closure and infl uences on the scar out-
comes of the healed wound.  

    Diabetic Wound Healing: Infl ammatory Response 

 Infl ammation is a protective response of the body to infection or injury designed for 
removal of the causative agent and restoration of tissue structure and function [ 6 ]. 
Infl ammation normally resolves following the reinstatement of normal tissue 
homeostasis. Prolonged infl ammation can lead to damage and loss of function of 
tissues [ 6 ]. Wound infl ammation is driven by a variety of mediators that are spatially 
as well as temporally tightly controlled [ 4 ,  7 ]. A dysfunctional immunological sys-
tem results in the failure to switch from infl ammation to resolution phase leading 
into chronic infl ammatory non-healing wounds [ 8 ]. 

 Over 23 million people or 7.8 % of the US population suffer from diabetes. It is 
estimated that up to 25 % of all diabetics will develop a diabetic foot ulcer. Sixty- 
seven percent of all lower extremity amputation patients have diabetes [ 9 ,  10 ]. 
Dysregulated infl ammatory phase is a major factor that contributes to the impair-
ment of diabetic wound healing [ 11 ,  12 ]. Using an excisional wound healing model 
in diabetic (db/db) mice, persistent (day 13 postwounding) expression of the infl am-
matory cytokines Interleukin-1β (IL-1β) and Tumor Necrosis Factor-α (TNF-α)  
was detected, indicative of a sustained infl ammatory phase [ 11 ]. 

    Recruitment and Chemotaxis of Infl ammatory Cells 

 A small proportion of leukocytes reside in resting tissues under normal conditions, 
which increases multifold following an injury. This increase in the number of cells 
is due to the recruitment from the circulation following the infl ammatory response 
at the site of injury [ 13 ]. The fi rst to appear at the site of injury from the injured 
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vessels are  platelets , which initiate the coagulation process. Platelets accumulate 
near the damaged blood vessels and through the coagulation cascade convert fi brin-
ogen to fi brin thereby preventing further blood loss [ 4 ]. Though the platelets per-
form the crucial job of limiting the blood loss through clot formation, platelet 
activity is increased in patients with diabetes mellitus leading to intensifi ed adhe-
sion, activation, and aggregation, which results in high risk of atherosclerosis in 
these patients [ 14 ]. 

  Neutrophils  start arriving at the site within minutes of injury. The principal role of 
these cells is to clear microbes invading the open wound by generating copious 
amounts of reactive oxygen species (ROS) via respiratory burst. The excess of gen-
erated ROS has been suggested to be deleterious for the regenerating host tissue, 
especially in chronic wounds [ 15 ]. Because neutrophils arrive early at the wound 
site as compared to macrophages, it was hypothesized that neutrophils help in the 
recruitment of macrophages [ 16 ]. However, a study by Dovi et al. in 2003 reported 
that depletion of neutrophils during wound healing had no effect on number of mac-
rophages recruited at the wound site [ 15 ]. Depletion of neutrophils improved the 
rate of reepithelialization thereby suggesting that neutrophils may impede wound 
healing [ 15 ]. Wound neutrophils might mediate innate immune responses through 
modulation of macrophage phenotype [ 17 ]. Neutrophils are also known to activate 
local fi broblasts and keratinocytes by releasing proinfl ammatory cytokines. 
Incidentally, neutrophils of diabetic patients produce increased levels of proinfl am-
matory cytokines, such as Interleukin-8 (IL-8), IL-1β, TNF-α, and Interleukin-1 
receptor antagonist (IL-1ra), compared to healthy individuals [ 18 ]. This excessive 
production of cytokines may lead to inappropriate activation of infl ammation and 
tissue injury and may even increase susceptibility to invasive microorganisms [ 18 ]. 
Diabetic patients are at increased risk of infections of diabetic foot ulcerations 
(DFU) [ 19 ]. Diabetic mice subjected to Staphylococcal infection exhibited 
decreased neutrophil apoptosis resulting in extended TNF-α production and 
impaired neutrophil clearance by macrophages [ 20 ]. Impaired chemotactic, phago-
cytic, and microbicidal functions of the neutrophils under diabetic conditions were 
improved by insulin treatment [ 21 ]. 

  Wound macrophages  appear at the site of injury after neutrophils. These cells 
function as voracious phagocytes clearing the wound of all matrix and cell debris, 
which includes fi brin and apoptotic neutrophils. Apart from their scavenging activ-
ity, macrophages also secrete a wide array of cytokines, growth and angiogenic 
factors that has a major role in the regulation of fi broblast proliferation and angio-
genesis [ 16 ,  22 ,  23 ]. Antimacrophage serum combined with hydrocortisone was 
found to reduce the accumulation of macrophages in healing skin wounds of adult 
guinea pigs, which eventually resulted in dysregulated disposal of damaged tissue 
and provisional matrix, decreased fi broblast count and impaired healing [ 24 ]. 
Several studies using macrophage-specifi c gene knock-out animal models have also 
provided critical information about the role of wound macrophages in the incorpo-
ration of infl ammation and cellular movements at the site of injury to facilitate effi -
cient skin repair in healing and infl ammation [ 25 ,  26 ].  
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    Wound Macrophage Dysfunction 

 Diabetes is known to impair macrophage function [ 27 ]. Immune function was found 
to be dysregulated in alloxan-induced diabetic mice [ 28 ], while type 1 diabetic 
patients were reported to have impaired monocyte “lectin-like” receptor activity 
[ 29 ]. The scavenging activity of macrophages is also altered negatively in a diabetic 
condition, which is evident from a study where the apoptotic cell clearance of beta 
cells is found to be impaired in neonatal autoimmune diabetes-prone rats [ 30 ]. We 
provided fi rst evidence that macrophages from diabetic wounds suffer from impair-
ment in dead cell clearance activity (efferocytosis) as one of the key factors result-
ing in increased apoptotic cell burden at the wound site (Fig.  10.1 ). This burden, in 
turn, prolongs the infl ammatory phase and complicates the healing process and 
compromises resolution of infl ammation (Fig.  10.2 ). Correction of impaired effero-
cytosis in diabetic wounds and strategies to intercept the adverse effects of impaired 
efferocytosis emerge as novel targets for the management of chronic infl ammation 
commonly noted in diabetic wounds [ 27 ].

  Fig. 10.1    Dead cell clearance is impaired in wound macrophages harvested from diabetic mice. 
PVA sponges were implanted subcutaneously on the back of mice. Wound macrophages were 
harvested and dead cell clearance activity assay was performed by coculturing macrophages with 
apoptotic or nonapoptotic cells. ( a ) obese (db/db, type II) and their matched control lean nondia-
betic (heterozygotes db/+) mice. ( b ) Type I nonobese diabetes (NOD/LtJ) mice and matched con-
trol nondiabetic (NOR/LtJ) mice. ( c ) Akita (Japan SLC, Inc) and matched control (C57BL/6) 
mice.  Left , representative images showing wound macrophage (phase contrast image) cocultured 
with apoptotic cells ( red ) in Akita versus BL6 mice  Right , % phagocytosis. Data are mean ± SD 
( n  = 3) * p  < 0.05 compared to nondiabetic [ 27 ]       
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        Macrophage Phenotypes 

 Macrophages are dynamic and heterogeneous cells. Since the introduction of the 
concept of alternative activation of macrophages in 1992 [ 31 ], these cells have been 
broadly assigned to two broad groups (1) classically activated or type I macro-
phages (M1), which are proinfl ammatory effectors and (2) alternatively activated or 
type II macrophages (M2) that possess anti-infl ammatory properties [ 32 ]. Recently, 
characterization of distinct circulating monocyte populations that migrate into 
wounds was performed. Intriguingly, the phenotype of macrophages isolated from 
murine wounds partially refl ected those of their precursor monocytes, changed with 
time and did not conform to current macrophage classifi cations, i.e., M1 or M2 [ 33 ]. 
Macrophage differentiation of peripheral blood mononuclear cells was found to be 
impaired in obese subjects and the monocytes of these subjects were found to have 
decreased susceptibility for differentiation towards the reparative phenotype thus 
retarding wound healing [ 34 ].   

    Chemical and Other Mediators of Infl ammation 

    Cytokines and Chemokines 

 Cytokines represent the universal category of messenger molecules, while chemo-
kines are cytokines specialized in directing and regulating the migration of white 
blood cells to infected or damaged tissues [ 35 ]. Proinfl ammatory cytokines, like 
Interleukin-1α (IL-1α), IL-1β, Interleukin-6 (IL-6) and TNF-α, are signifi cantly 

  Fig. 10.2    Wound fl uid from diabetic mice contain lower levels of anti-infl ammatory cytokine 
IL-10 and higher level of proinfl ammatory cytokine TNF-α. Wire-mesh cylinders were implanted 
on the back of diabetic (db/db, type II) or control (db/+, nondiabetic) mice. Wound fl uid was col-
lected on day 5 after implantation to determine IL-10 and TNF-α levels using ELISA. Data are 
mean ± SD ( n  = 4) * p  > 0.05, compared to control animals [ 27 ]       
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upregulated during the infl ammatory phase [ 35 ]. Wound healing in IL-6 KO ani-
mals is three times longer than those of wild-type controls [ 36 ].  TNF-α  is a potent 
proinfl ammatory cytokine produced by activated macrophages known to drive the 
infl ammatory response to wounding. Depending on the concentration, length of 
exposure, and presence of other cytokines, the effect of TNF-α can be benefi cial or 
deleterious. TNF-α is involved in tissue remodeling, mounting and sustenance of 
infl ammation, cachexia, shock, and cell death [ 37 ]. Collagen deposition and wound 
disruption strength (WDS) are increased in adriamycin-treated animals subcutane-
ously injected with TNF-α [ 38 ]. Anti-TNF-α therapy to decrease the level of 
TNF-α secreted by activated macrophages restored the normal physiological heal-
ing in obese (ob/ob) mice [ 39 ]. On the other hand, mice lacking TNF-α strength-
ened Sma and Mad related proteins (SMAD) mediated fi brogenic reaction in the 
healing dermis, resulting in fi brosis and organ dysfunction [ 40 ].  IL - 10  is recog-
nized as one of the key anti-infl ammatory cytokines, which help resolve the wound 
infl ammatory response [ 41 ]. It does so by downregulating the expression of proin-
fl ammatory genes such as TNF-α [ 41 ]. Diabetic macrophages secrete elevated lev-
els of proinfl ammatory cytokines [ 39 ,  42 ]. Current evidence show that insuffi ciency 
of Interleukin-10 (!L-10) is a key factor underlying the exaggerated and sustained 
infl ammatory response commonly noted in diabetic wounds [ 27 ]. Increased levels 
of the proinfl ammatory cytokines TNF-α and IL-6 and a decreased level of IL-10, 
an anti- infl ammatory cytokine, were reported in excisional wound healing model 
in diabetic (db/db) mice tissue compared to nondiabetic healing wound tissue [ 11 , 
 27 ] (Fig.  10.2 ). Finally, in diabetic wounds, prolonged neutrophils and macrophage 
infi ltration leads to sustained expression of MIP-1 and MCP-1 [ 11 ].  

    Lipid Mediators 

 Stress, injury, or infl ammatory stimuli results in the rapid release of arachidonic 
acid from membranes [ 43 ]. The released arachidonic acid undergoes metabolism by 
the cyclooxygenase (COX) pathway, involving COX-1 and COX-2, along with ter-
minal synthases, to generate prostaglandins (PG), prostacyclin (PC), thromboxanes 
(TX), or by the lipoxygenase pathway to produce several classes of leukotrienes and 
lipoxins [ 44 ]. Eicosanoids thus generated act via G-protein-coupled receptors to 
initiate, amplify, and bring about infl ammation in both acute as well as chronic 
wounds [ 45 ]. Similar to arachidonic acid the ω-3 PUFAs eicosapentaenoic (EPA; 
i.e., ω-3, C20:5) and docosahexaenoic acid (DHA; i.e., ω-3, C22:6) are metabolized 
by COX-2 and LOX enzymes producing a novel classes of endogenous anti- 
infl ammatory lipid autacoids [ 43 ]. Important among them are  lipoxins , which are 
generated through transcellular biosynthesis and hinder PMN chemotaxis [ 46 ]. 
They are also responsible for attracting monocytes thereby stimulating monocyte 
adherence to vascular endothelium [ 47 ] without releasing ROS [ 48 ].  Cyclopentenone 

S. Roy et al.



179

prostaglandins  are formed by the dehydration of PGD2, reduces TNF-α-induced 
expression of vascular cell adhesion molecule 1 (VCAM1) and intercellular adhe-
sion molecule 1 (ICAM1) in human endothelial cells.  Resolvins and protectins  are 
a novel class of anti-infl ammatory lipid mediators that have been implicated in reso-
lution of infl ammation [ 48 ,  49 ]. Resolvin E1 obstructed human neutrophil transen-
dothelial migration thereby minimizing infl ammation in vivo [ 49 ].  Maresins  exhibit 
potent anti-infl ammatory and proresolving activity [ 50 ]. The pathways that produce 
these lipid mediators are found to play regulatory roles in obesity-induced diabetes. 
In experimental obesity, the leukotriene pathway was found to regulate the develop-
ment of adipose tissue infl ammation [ 51 ]. Current evidences indicate that dietary 
intake of omega-3-PUFAs inhibits the formation of omega-6-PUFA-derived eico-
sanoids, while triggering the formation of omega-3-PUFA-derived resolvins and 
protectins. These pro-resolution lipid mediators, namely resolvin E1 and protectin 
D1, may mimic the insulin-sensitizing effects to a similar extent that of rosigli-
tazone, a member of the thiazolidinedione family of antidiabetic drugs [ 52 ]. 
Furthermore, these pro-resolution lipid mediators improved metabolic parameters 
in diabetes including blunted systemic infl ammation, restored defective macro-
phage phagocytosis, and accelerated wound healing in animal models of obesity 
and diabetes [ 53 ].   

    MicroRNAs 

 Wound healing is highly dependent on injury-inducible protein-coding genes, which 
act as modulators of an intrinsic tissue repair program in order to restore structural 
and functional integrity of the injured tissue [ 54 ]. Work carried out during the recent 
years suggest that both transcription and translation are subject to regulation by 
microRNAs (miRNAs; 19–22-nucleotide long) that are noncoding RNAs found in 
all eukaryotic cells. miRNAs carry out posttranscriptional gene silencing (PTGS) 
through mRNA stabilization as well as translational repression. These miRNAs 
may control more than a third of all protein-coding genes and virtually all biological 
processes and wound healing is no exception. miRNAs are emerging as a key regu-
latory of the overall wound healing process [ 55 – 58 ]. Disruption of miRNA biogen-
esis has a profound impact on the overall immune system. Emerging studies indicate 
that miRNAs, especially miR-21, miR-146a/b, and miR-155, play an important role 
in regulating several phases that orchestrate the infl ammatory process [ 59 ]. Specifi c 
miRNAs were shown to be regulated by lipid mediator miRNA–NF-κB axis was 
suggested as a key component in the RvD1-GPCR downstream signaling pathways 
[ 60 ]. miR-146a was found to be downregulated in diabetic mice wounds, which 
eventually increased gene expression of its proinfl ammatory target genes [ 61 ]. miR- 
21 expression in diabetic mice was increased in the skin but decreased during dia-
betic wound healing [ 62 ].  
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    Conclusions 

 Reductionism, as a guiding principle, is of great value where a quick and effective 
solution is required for an isolated problem. Reductionism is less helpful for com-
plex systems such as the process of wound healing where interactions between com-
ponents dominate the components themselves in shaping the outcome and behavior 
of the system. A holistic or systems approach is essential to understand dynamics 
and interactions of various components with each other to dictate the fate of the 
outcome towards a healing or a chronic wound. This chapter highlights the multidi-
mensional nature of the deregulation of diabetic wound infl ammation, making it 
essential to understand the problems from systems perspective and not in a reduc-
tionist approach.     
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 Introduction

Wound healing is a physiological process of repair of a tissue that has been structur-
ally damaged. The most common wounds disrupt one of the epithelial tissues that 
protect the internal and external surfaces of the body and act as barriers against inva-
sion by microorganisms. Such tissues include skin, corneal tissue, and the epithelial 
lining of the digestive tract (including the mouth and esophagus), respiratory tract 
(including the alveoli), urinary tract, and reproductive organs. Any disruption of 
these tissues can lead to serious health conditions or developmental abnormalities; 
for example, a wound in the gut epithelium can lead to necrotizing enterocolitis, 
which is the leading cause of death from gastrointestinal disease in preterm infants. 
Internal wounds may also arise due to physical overexertion or blunt force trauma. 
The biology of wound healing is reviewed in Chapter 10.

The ability to heal wounds is closely related to the regenerative ability of the 
organism to restore the function of many organs. Wound healing generally proceeds 
in four stages, although these stages differ in details depending on the location of 
the wound [1–4]. The first stage is hemostasis, characterized by the leakage of 
fluids out of broken blood and lymphatic vessels and the delivery of inflammatory 
cells and platelets to the wound. The platelets trigger vasoconstriction to reduce 
blood loss and form a blood clot to fill the wound. The clot contains fibrin molecules 
that provide an extracellular matrix (ECM) for the migration of leukocytes and 
fibroblasts, which are cells responsible for eliminating pathogens and repairing the 
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tissue, respectively. The second stage (2–3 days for skin wounds) is an inflamma-
tory reaction marked by neutrophil recruitment followed by macrophage infiltra-
tion. Neutrophils phagocytose necrotic tissue, kill bacteria that enter the wound, and 
produce chemoattractants to recruit macrophages. Macrophages secrete pro- and 
anti-inflammatory cytokines that regulate inflammation and trigger the phagocyto-
sis of pathogens and cell debris. Macrophages also secrete growth factors necessary 
for the third stage of wound healing. The degree of inflammation that ensues is 
directly related to scar formation [5]; for instance, the lack of inflammation in 
embryos leads to scarless wound healing. The third stage of the process (3–10 days 
for skin wounds) is the recovery of the tissue via cell migration and proliferation. 
The wound is also infiltrated by fibroblasts, which initiate the formation of the col-
lagen matrix to provide mechanical strength for the disrupted tissue and keratino-
cytes to regulate the reepithelialization process. In addition, new capillaries are 
grown by extension and sprouting in a process called angiogenesis, and the develop-
ment of acute granulation tissue is initiated. This transitional granulation tissue 
replaces the provisional wound matrix and is characterized by a high density of 
fibroblasts, granulocytes, and macrophages. The fourth stage of the wound healing 
process is tissue remodeling, which can take anywhere from 21 days to 1 year for 
skin wounds. During this process, the formation of granulation tissue ceases, and 
collagen III, which forms a basket weave-like structure in the ECM, is replaced by 
collagen I, which is stronger and oriented in parallel bundles. Furthermore, the 
wound contracts and decreases the surface of the developing scar.

These four stages have been observed, measured, and assessed in a wide range of 
experimental and clinical scenarios. In some cases, shallow wounds are studied 
using in vitro experiments known as scratch-wound assays (depicted in Fig. 11.1), 
which are designed to track the migration and proliferation of a monolayer of cells. 
In a scratch-wound assay, cells are cultured (typically on a glass coverslip), grown 
to confluence, and then scraped with the tip of a pipette to create a gap that repre-
sents a wound in the tissue layer. Medium is continuously perfused across the cells, 
and the motion and deformation of cells in the layer is analyzed. Other in vitro 
assays include three-dimensional organ explant cultures or three-dimensional 
sprouting invasion assays from mesenchymal cells overlaid onto a three- dimensional 
ECM or implanted as a multicellular spheroid [6]. Using such assays, numerous 
studies have evaluated how extracellular stimuli, geometric anisotropy of substrates, 
or intracellular processes activate cell migration and trigger cell proliferation [7–
11]. Measurements of the physical forces driving cell migration indicate that trac-
tion forces arise many cell rows behind the leading wound edge and extend across 
large distances [9]. Trepat et al. [9] demonstrated that individual cells at both the 
leading wound edge and inside the sheet engage in a “tug-of-war” that integrates 
local force generation into a global state of tensile stress. Mechanical forces exerted 
by epithelial cells were measured by du Roure et al. [11] using a technique that 
combines microfabrication of flexible substrates and multiple-particle tracking 
microscopy. Because each micropillar deflection is independent of its neighbors, the 
measured traction forces under the cells are uniquely determined.
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In clinical settings, the progression of wounds, such as skin wounds or diabetic 
foot ulcers, are quantified according to measures such as the absolute wound area 
remaining, percentage of initial wound area remaining, wound volume remaining, or 
wound perimeter remaining. Some of these measurements can be difficult to obtain 
given the location of the wound or type of data needed, and, as a result, currently 
there is no universally accepted measure of wound healing [12]. In addition, although 
wound area is an obvious measure of wound closure, predicting healing time based 
on the percent of wound area healed tends to bias small wounds, and predicting heal-
ing time based on the absolute wound area healed tends to bias large wounds [13]. 
A reliable measure of wound healing time is of particular interest to both physicians 
and patients in order to determine effective treatment methods for various wounds.

Ultimately, a wound is considered healed once tissue functionality has been fully 
restored via the migration of cells into the wounded region and the proliferation of 
new cells to restore the original density of the tissue. Observations from multiple 
wound scenarios have shown that cell migration and proliferation as well as the over-
all healing time for a wound are affected by factors such as wound geometry, tissue 
type, cell–cell interactions, and the stage of the healing process (epithelialization, 
contraction, or proliferation). Combining these observations with mathematical 
modeling techniques may help to unravel the key aspects governing wound healing.

Fig. 11.1 Scratch-wound assay of intestinal epithelial cells. Large space void of cells denotes 
wound; surrounding region is the epithelial layer, which remains connected during closure. Panels 
a–d show the progression of wound closure after 0, 125, 250, and 500 min, respectively
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 Modeling

As in the setting of sepsis, trauma, and other acute inflammatory conditions (see 
Chapter 2), mathematical modeling of wound healing is used to aid in the under-
standing of the complex processes involved in wound healing by providing a plat-
form for testing various hypotheses regarding the interaction of wound healing 
components. Equation-based models describe biological processes by formulating 
interactions of individual biological components using a system of differential 
equations for variables that measure the concentrations of cells and chemicals in 
time and space. The equations are constructed using knowledge deduced from 
experiments and are calibrated using experimental data (for example, data could be 
used that describes the dependency of cell migration speed on the concentration of 
a chemoattractant). The equations are solved using a variety of analytical and 
numerical techniques and are used to predict the dynamics of cell populations 
within a wound. There are two classes of equation-based models in common prac-
tice—models based on ordinary differential equations (ODEs) and models based on 
partial differential equations (PDEs). The main difference is that ODEs can describe 
the time dependence of the wound healing process but not its spatial variability, 
while PDEs can describe both. In addition, there are also stochastic models that can 
include fluctuations in chemical concentrations and other random effects [14, 15]. 
A summary of these different types of models, many of which are described in more 
detail in this chapter, is provided in Table 11.1.

Equation-based models are beneficial in situations in which it is reasonable to 
assume that the components of the system are either of the same kind and respond 
identically to stimuli or are of different types, but their response depends only on the 
number of components at a given spatial location at a given time. For example, 
when fibroblasts are rebuilding the collagen matrix, the speed of rebuilding depends 
on how many fibroblasts are present, but not on where precisely each fibroblast is 
and how it moves about. In such a case, one may invoke the continuum hypothesis 
and assume that there is a density function f(x, t) that depends on space and time, 
which describes the mass (or molar) density of the cellular component (cell or a 
chemical). The density can be understood in a statistical or probabilistic sense. In 
the first case, the quantity f is equal to the average number of components per unit 
volume centered at position x and measured at time t for a series of identical experi-
ments; in the second case, f represents the probability of finding a component in that 
volume at time t. The use of the continuum hypothesis implies that we can only 
predict the behavior (motion and state changes) of population averaged properties, 
not of individual molecules or cells. In contrast to ODE models, models satisfying 
the continuum hypothesis preserve the possibility of properties varying in space.

By choosing a continuum formulation, we substantially reduce the amount of 
information needed to specify the state of the system. Imagine a 1-cm wound with 
108 fibroblasts. In order to specify the fibroblasts’ positions in 3-space, we would 
need 3 × 108 numbers. However, to define their spatial distribution, it may suffice to 
use a grid of spacing 100 × 100 × 100 nodes (10 nodes per mm), which results in 106 
values for the density and a 300-fold reduction in the amount of data needed to 
characterize the system. A coarser grid would result in even higher simplification 
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and speedup in computation of the dynamical behavior of the system. Even more 
important is that we need not be concerned with the details of motion of individual 
cells; instead, the motion can be described in one of several standard ways  (diffusion, 
chemotaxis, or convection) that we describe below.

Table 11.1 Summary of equation-based and agent-based wound healing models

Model Type Examples Phenomenon modeled Tissue type

ODE Cukjati et al. [20] Wound area healing Endothelium, etc.
Johnson [17] Wound area healing Arteries, veins
Bardsley et al. [5] Wound area healing General
Baker et al. [18] Wound area healing Diabetic ulcers
Jercinovic et al. [19] Wound area healing Pressure ulcers
Menke et al. [21] Fibroblasts; oxygenation Dermis

PDE Reaction– 
diffusion

Maini et al. [24, 25] Migration; proliferation Peritoneal
Sherratt et al. [26, 27] Migration; proliferation Epidermis
Sheardown et al. [29] Migration; proliferation Cornea
Dale et al. [30] Migration; proliferation Cornea
Tremel et al. [31] Migration; proliferation Fibroblast cells
Gaffney et al. [33] Migration; proliferation Cornea
Chen et al. [34] Migration analysis Tumor
Dale et al. [36] Migration analysis Scar tissue
Wearing et al. [37] Migration; proliferation Dermis
Javierre et al. [4] Migration; proliferation General

Continuum 
mechanical

Vitorino et al. [51] Migration; proliferation Endothelium
Lee et al. [56] Migration Kidney cells
Xue et al. [57] Migration, oxygenation Cutaneous
Qi et al. [58] Migration Epithelium
Arciero et al. [59] Migration Epithelium

Cell signaling Posta et al. [62] MAPK activity Epithelium
Dale et al. [63, 64] Fibroblasts; collagen Scar tissue
Murray et al. [66] Wound contraction General
Palecek et al. [54] Cytoskeleton-integrin General
Gaffney et al. [32] Diffusion Cornea
Tranquillo et al. [67] Migration; proliferation Fibroblasts, ECM
Olsen et al. [68] Fibroblasts; proliferation Scar tissue
Sherratt et al. [69] Wound contraction Epithelium
Murray et al. [70] Morphogenesis ECM

Angiogenesis Chaplain et al. [71] New capillary formation Tumor
Anderson et al. [72] New capillary formation Cornea tumor
Pettet et al. [75] New capillary formation Soft tissue

Chemotaxis Hillen et al. [77] Chemical migration General
Schugart et al. [78] Fibroblasts; oxygenation Cutaneous

ABM Dallon et al. [65] Collagen deposition Dermis
DiMilla et al. [79] Receptor-ligand binding General
Walker et al. [80, 81] Migration; proliferation Epithelium
Bindschadler et al. [83] Migration; proliferation Scratch wound
Ouaknin et al. [84] Migration; chemotaxis General
Fozard et al. [86] Collective cell migration Epithelium
Byrne et al. [87] Cell expansion General
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The time rate of change of the density variable is expressed using an equation 
that involves partial derivatives of f with respect to the independent variables x and 
t. The most basic partial differential equation one can construct is the law of conser-
vation of the number of cellular components in a given volume:

 

∂
∂

= −∇ +
f

t
·J s

 

Here J = ( , , )Jx y zJ J  is a vector-valued variable that represents the flux of the 
component (migration or transport of the component away from the position x),  
s  represents the local source or decay of the component, and 
∇· / / /J = ∂ ∂ + ∂ ∂ + ∂ ∂J x J y J zx y z  is the divergence of J.

By using different relations between J and f, one can account for different types 
of transport such as (1) the convection of cells or molecules in the direction of 
velocity v, defined by J v= f , and (2) the diffusion of cells or molecules, resulting 
from random motion of cells or molecules in all directions and defined by J = ∇f .  
A special case of convection is the chemotaxis of cells in which the direction of 
motion is defined by a gradient of a chemoattractant molecule with concentration c, 
i.e., J = ∇f c. The source s  is a function of f (expressing self-regulation of the com-
ponent) and possibly other components (expressing the influence of components on 
each other). For example, in models describing the mechanics of a tissue, the vari-
ables are the mass density of the tissue, ρ, and the momentum of the tissue, ρv; the 
flux of the momentum is the stress tensor T.

The system of PDEs formulated from known properties and interactions of cel-
lular components forms the core of a PDE model. The remaining parts of the model 
are the definitions of the domain in which the equations are valid, the initial values 
of all variables across the domain, and the boundary conditions imposed at the 
boundary of the domain. The boundary conditions are typically defined as one of 
two types (1) Dirichlet conditions, representing a constant source or sink of the 
quantity and prescribed as a fixed value of the quantity at the boundary and (2) 
Neumann conditions, representing the flux of a quantity across the boundary and 
prescribed as the derivative of the quantity along the normal to the boundary.

The analysis of a PDE model starts with an examination of the existence and 
uniqueness of solutions. Contrary to strong results in the theory of ODEs, there are 
no generic results apart from the Cauchy–Kowalevski theorem guaranteeing local 
existence of a solution for a Cauchy problem. Global existence can be proved for a 
diffusion equation and systems of diffusion equations with the same diffusion con-
stant. But in general, every system must be analyzed individually using techniques 
such as maximum principle, weak solutions, variational formulation, etc. (see, e.g., 
[16]). The next step in the analysis may be to search for special solutions that enable 
one to reduce the dimension of the equation. Such special solutions can be (1) a 
steady state solution in which f is independent of t, (2) a self-similar solution, which 
is invariant under a rescaling of the spatial and time variables, or (3) a traveling 
wave solution, which represents solutions invariant under the transformation 
x x v→ −( )t . These special solutions are then analyzed for stability, i.e., invariance 
under a small perturbation. Stable solutions are of particular interest to various 
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applications since they describe the observed behavior of the system. If solutions do 
not converge to steady state solutions or traveling waves, they may approach singu-
larities or blowups.

Once all information is extracted using analytical tools, numerical solutions of 
the system can be obtained. Numerical solutions of ODEs can be found using stan-
dard integration packages such as CVODE (available in C or FORTRAN) or 
MATLAB suite of integrators. A convenient free standalone program that allows the 
user to explore solutions of ODE systems is XPP. Numerical solutions of PDEs are 
obtained by converting the PDE system into a system of algebraic  equations by trans-
forming the derivatives into finite differences (finite difference methods) or by 
transforming the equations into a variational form formulated as integrals over 
appropriate test functions with simplicial support (finite element methods). User- 
friendly software packages have been developed that enable researchers with little 
knowledge of numerical mathematics to solve various types of PDE problems—see, 
e.g., the FEMLAB or Matlab Partial Differential Equation Toolbox.

 ODE Models

The simplest ODE models of wound healing are phenomenological: they try to 
capture the time-dependent closure of the wound by formulating an equation for the 
wound area or circumference as a function of time and fitting the constants in the 
equation to observed data [5]. The majority of such models is based on linear or 
exponential functions that involve two parameters [17–19]. However, these are not 
sufficient to describe the initial delay of the healing process that is noticed in wound 
healing experiments. Cukjati et al. [20] formulated several ODE models by consid-
ering two, three, and four parameter functions of chronic wound healing and 
assessed their goodness of fit to 226 chronic wounds. They used a set of five criteria 
to qualitatively and quantitatively assess the model (statistical analysis of goodness 
of fit) and concluded that a delayed exponential model with three parameters is the 
most adequate for representing the healing process.

Mechanistic ODE models are based on formulation of equations describing the 
concentration of various components of the wound healing process. An example is 
the model of Menke et al. [21] which focuses on the second stage of the process 
(inflammation) by using an extension of an ODE model of inflammation [22, 23] to 
include tissue damage, pathogen level, inflammation, fibroblast concentration, and 
tissue oxygenation. The model is used to simulate impaired wound healing in 
hypoxic skin wounds with varied levels of contamination. Pathogen growth is 
assumed to depend on tissue oxygenation levels. The skin is assumed to have a 
baseline level of circulating fibroblasts, which increases in response to tissue dam-
age and inflammation. The authors classify wounds as healed, nonhealing, or 
chronic and find parameter ranges for each type of outcome. Impaired wound heal-
ing is simulated in hypoxic wounds with varying levels of contamination, and the 
model is used to suggest possible components to target in therapies such as the 
fibroblast death rate and the rate of fibroblast recruitment.
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 PDE Models

PDE models of wound healing describe the spatial dependence of various compo-
nents involved in the healing process and can predict the shape of the wound. Most 
existing PDE models focus on the third and fourth stages of wound healing process, 
i.e., on the repair of the epithelial layer and the remodeling of the scar tissue.

Reaction–Diffusion Models Repair of the epithelial layer is a combination of two 
processes migration of epithelial cells into the wound and cell proliferation. The 
simplest PDE model of wound closure that can be constructed is one that consists 
of a single equation for cell concentration with wound closure interpreted as a 
traveling wave of cell concentration. The equation commonly used in that 
interpretation is the Fisher–Kolmogorov equation, which is a reaction–diffusion 
equation with proliferation given by a logistic term. Maini et al. [24, 25] verified the 
validity of using the Fisher–Kolmogorov equation in a medical context by using a 
scratch-wound assay (for an example of a scratch-wound assay, see Fig. 11.1) and 
comparing model predictions with multiple experiments.

Both the migration and the proliferation of epithelial cells are regulated by 
growth factors. The first model to account for such chemical control was developed 
by Sherratt and Murray [26]. The model consists of two nonlinear reaction–diffusion 
equations that track epithelial cell density and a chemical regulating mitosis [the 
epidermal growth factor (EGF)] in the context of epidermal wound healing. The 
epidermis is assumed sufficiently thin and thus the tissue is modeled as two dimen-
sional. The mitosis chemical is modeled as both an activator and inhibitor, and the 
effect of these two chemical behaviors on cell migration is investigated. The model 
was further analyzed in [27] by providing details for traveling wave solutions for 
cell density and chemical concentration. The results for wound radius as a function 
of time were shown to be consistent with experimental measurements. Clinical 
implications of the model were studied in [28], in particular the dependence of heal-
ing time on wound shape (e.g., cusped, ovate, and rectangular) and the dependence 
of predicted wound contours on the character of the growth factor.

The Sherratt–Murray model was extended to corneal epithelial wounds by 
Sheardown and Cheng [29] and by Dale et al. [30] who used the model to study the 
impact of increased mitotic and migratory activity due to an EGF. They also pre-
dicted the wound healing rate if the growth factor was applied only topically to the 
wound and found that the factors affecting migration include cell migration, cell-to- 
substrate adhesion, and cell mitosis. They noted that the model predicted a lag time 
immediately after wounding.

Tremel et al. [31] modified the Fisher–Kolmogorov equation to include the 
effects of cell density-dependent diffusion on wound healing. They assumed that 
diffusivity decreases with increasing cell density in order to capture contact- 
inhibited movement between cells so that cells slow, stop, or change direction when 
they encounter another cell in their path. In their study, cell tracking was performed 
on groups of cells in a wound healing experiment; in the images, it was observed 
that the cells initially located close to the wavefront traveled significantly greater 
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distances than cells starting farther behind the wavefront. Also, while the overall 
cell movement was directed, a significant amount of random motion was observed.

Several studies have modeled the influence of physiological electric fields on 
wound closure. In those studies, the PDE problem was formulated with a free 
boundary, i.e., a boundary whose position is changing in time. This change of posi-
tion is governed by an additional equation. For example, Gaffney et al. [32] described 
the evolution of the free boundary problem for a system of two reaction–diffusion 
equations for cell density and chemical stimulus in the context of corneal wound 
healing. The formulation predicts a linear relation between the wound healing speed 
and the physiological electric field strengths over a physiologically large range of 
electric field strength. Spatial and temporal data on mitotic rates measured during 
corneal epithelial wound healing in a rat was studied by Gaffney et al. [33] who 
argued that earlier models were not adequate for the study of cell kinetics. Chen and 
Friedman [34] analyzed the Gaffney model [32] and applied a similar approach to 
predicting tumor growth [35].

In a subsequent paper, Dale et al. [36] presented a complex model for scar tissue 
formation in deep wounds and focused on the role of key chemicals in determining 
the quality of healing. The authors described wound healing as a traveling wave and 
investigated the factors controlling the speed of the wave. A more complex model 
accounting for the effect of the keratinocyte growth factor (KGF) was proposed by 
Wearing and Sherratt [37] who found that high KGF levels decreased the speed of 
healing but increased the cell division rate at a greater distance away from the 
wound edge. A comprehensive review of wound healing models of Sherratt and col-
laborators is given in [38] and [39].

Javierre et al. [4] also modeled the reepithelialization of the basal membrane of 
the epidermis by cell mitosis and migration in the presence of a generic EGF. The 
diffusion, depletion, and production of the concentration of the growth factor in the 
model are determined by a reaction–diffusion equation. The model assumes that 
cells become motile if the accumulated growth factor concentration exceeds a 
threshold value. A sigmoid function is used to relate cell mitosis and the growth 
factor concentration. Since cell migration is interrupted when the growth factor con-
centration drops below a threshold, cell motility is dose dependent in this model. 
Moreover, the wound closure rate is assumed proportional to the local curvature of 
the wound edge. Javierre et al. [4] analyzed the roles of diffusion, closure rate, and 
wound geometry on healing kinetics and concluded that healing is always initiated 
at regions with high curvatures, and that the evolution of the wound is sensitive to 
multiple physiological model parameters.

Continuum-Mechanical Models For the success of wound closure during the third 
stage of wound healing it is essential that the epithelial cells migrate collectively, in 
synchrony, so that the coverage of the wound is continuous without the formation of 
any holes in the remaining sheet. Cell migration at the single-cell level has been 
studied extensively over many decades [40–44]. In brief, each cell moves by a cyclic 
mechanism that proceeds through stages involving the formation of a lamellipodium, 
translocation of the nucleus in the direction of motion, and detachment of the 

11 Equation-Based Models of Wound Healing and Collective Cell Migration



194

trailing edge [42, 45]. This mechanism is regulated by a complex signaling and 
regulatory network responsible for the underlying processes of actin polymerization 
and depolymerization, motor protein activation, and integrin formation and release.

Although the study of individual cell migration has been pursued vigorously, 
there is less understanding of the interactions that drive and synchronize collective 
cell migration in wound closure. Several mechanisms of closure have been pro-
posed (1) a leader cell mechanism, (2) cooperative traction force mechanism, (3) 
steered migration mechanism, (4) differential adhesion hypothesis, and (5) differen-
tial interface tension hypothesis. In the leader cell mechanism [6], the cells at the 
edge of the wound are believed to change their phenotype and direct the migration 
of other cells towards the wound. In the cooperative traction force mechanism, cells 
near the edge of the layer exert coordinated forces that result in a cumulative stress 
within the layer and motion of cells towards the wound [9]. In the steered migration 
mechanism, the direction of autonomously migrating cells is changed in a gradual 
fashion by forces exerted on them by neighboring cells [46]. The differential adhe-
sion [47] and differential interface tension [48] hypotheses stipulate that the cell 
layer evolves to minimize either the adhesion energy or surface tension of the con-
stituent cells, which leads to the eventual wound closure.

As described earlier in this chapter, a typical experimental method used to study 
collective cell migration is the scratch-wound assay (Fig. 11.1). Farooqui and 
Fenteany [49] studied wound closure in Madin–Darby canine kidney (MDCK) epi-
thelial cell layers and established that submarginal cells exhibit protrusive and 
migratory behavior similar to that of marginal cells. They found that the general 
direction of the coordinated cell movement was toward the center of the wound and 
the cell velocity within a sheet was found to be inversely proportional to the distance 
from the wound edge. Wound closure was shown to occur even if the motility of 
edge cells was inhibited, but it occurred at a slower rate [50]. Coordinated cell 
movement toward the center of a scratch-wound assay is depicted in Fig. 11.2. 
In the left panel, the starting positions of all cells of the scratch assay are denoted by 

Fig. 11.2 Left panel: initial position of all cells in scratch-wound assay is indicated by blue dots. 
Right panel: cell trajectories of every initial cell position over the course of several hours
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blue dots. In the right panel, colored lines define the trajectories of all the cells, with 
the blue dots indicating the starting point of the cell as in the left panel. The trajec-
tories indicate the tendency of the cells to migrate towards the center of the wound.

Vitorino and Meyer [51] studied growth factor-induced migration of endothelial 
cell monolayers and proposed that the fibroblast growth factor (FGF) led to directed 
migration of leader cells but did not control cell migration and coordination of the 
follower cells. Mechanically robust and dynamic coupling of cells to one another 
and to the substrate is accomplished via adherens junction proteins, desmosomal 
proteins, and integrins [6, 52]. The cells in the interior are connected to the cells at 
the boundary by tight junctions, which prevent separation of the cells in the layer 
[53]. The level of adhesion between the cell and the substrate, moderated by integ-
rins, was found to control the speed of wound closure [54]. The effects of substrate 
stiffness on cell traction forces were quantified for epithelial cells and fibroblasts, 
and it was shown that cell movement could be modulated by changing the stiffness 
of the substrate [8]. Trepat et al. [9] found that traction forces, applied by moving 
MDCK cells on the substrate, were smallest in the center of a cell colony and largest 
at the edge of the colony of cells moving radially outward. They estimated that ten-
sion in the cell layer increased with distance from the edge of the cell colony and 
argued that accumulated traction stresses were balanced by the forces within the cell 
sheet; the interplay of these two stresses was described using a tug-of-war model. In 
several studies, a release of tension was observed within the cell layer once a wound 
was induced [7, 55]. Block et al. [55] compared cell-sheet migration in wounds 
induced by different methods and hypothesized that the release of spatial constraints 
initiates a healing response. However, this hypothesis is difficult to verify experi-
mentally since it is hard to eliminate all possible methods (such as biochemical 
communication) that may contribute to collective cell migration.

All the models described so far represented migrating cells using reaction–diffu-
sion equations for cell density. Such equations are based on the diffusion mecha-
nism for cell migration, which provides no guarantee of continuity of the cell layer. 
The process of collective cell migration is complex and requires fundamentally dif-
ferent, mechanics-based models. Lee and Wogelmuth [56] developed a model in 
which an MDCK cell layer was represented as a viscous liquid with orientation, 
similar to a liquid crystal; the layer orientation was equated with the direction in 
which the cell exerts a crawling force. They formulated equations of balance of 
forces on the cells and, using numerical solutions, were able to reproduce not only 
wound closure dynamics but also the irregular, undulating, progression of the edge 
of the layer typical for scratch-wound assays, without the need to specify leader 
cells. Xue et al. [57] developed a continuum model of ischemic dermal wounds with 
the wound boundary represented as a free boundary that moves with the velocity of 
the ECM at the wound edge. The model was used to predict how ischemic condi-
tions may impair wound closure.

Mi et al. [58] recently developed a one-dimensional continuum mechanical 
model of a migrating IEC-6 enterocyte cell sheet to study the influence of lipopoly-
saccharide (a protein found in the coat of Gram-negative bacteria) and integrin 
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concentration on wound closure during experimental necrotizing enterocolitis. The 
model predicts low migration speed at high and low integrin concentrations and 
high velocity at medium concentrations, in agreement with experimental observa-
tions [54]. It also predicts that the edge velocity decreases with time, in accord with 
our experimental observations but contrary to the behavior of reaction–diffusion 
models. However, the model is only appropriate in situations in which the wound 
has a simple geometry with two long parallel wound edges. In a follow-up study, 
Arciero et al. [59] designed a two-dimensional model of cell layer migration that 
captures the same primary interactions driving the motion of the cell sheet, namely, 
the elastic coupling between cells in the layer, the adhesion of cells to the substrate, 
the force generated by lamellipodia both in the interior and at the wound edge, and 
the proliferation of cells within the layer, but has the additional benefit of being 
applicable to an arbitrary wound geometry. Figure 11.3 shows a model schematic of 
a wounded region and the model predicted contours for the closure of an  experimental 
scratch wound at 30-min intervals until the wound is completely closed.

In Arciero et al. [59], the cell sheet is represented as a compressible inviscid 
fluid, and therefore individual cells are not distinguishable. The leader and follower 
cells are accounted for in an average manner by including a focused traction force 
applied by the lamellipodia at the edge of the sheet. The two-dimensional character 
of the problem requires the use of Eulerian-independent variables. The physical 
laws governing the mechanics of the layer then yield a partial differential equation 
problem with moving boundary that is known as the Stefan problem in other con-
texts [60, 61]. The problem is solved numerically using a level set method, and the 
basic properties of solutions are analyzed. The model is calibrated for two scenar-
ios: the closure of a wound and the expansion of a cell colony. Parameter values in 
the model are fit to data from a scratch-wound assay as well as to data from a cell 

Fig. 11.3 Left: schematic of a circular wound surrounded by tissue. The force of the lamellipodia 
at the edge of the wound is denoted by F. Right: model-calculated contours of wound edge (initial 
position is outermost contour) every 30 min until wound closure
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colony expanding radially outward [9]. Cell proliferation is neglected in wound 
closure simulations but is included in colony expansion simulations. The model 
successfully reproduces cell density and edge migration velocity data from both 
types of experiments.

Cell Signaling Models Models that are developed to understand both the mechanical 
and biochemical aspects of cell migration can help to determine which phenomena 
are primarily responsible for initiating cell motility following an injury and what 
factors regulate the speed and direction of cell migration. In general, the regulation 
of wound healing by biochemical signals and feedback pathways remains poorly 
understood. Posta and Chou [62] developed a mathematical representation of 
ligand-mediated intercellular signaling mechanisms related to the cell migration of 
epithelial monolayers. Experiments have indicated the need for mitogen-activated 
protein kinase (MAPK) activation for coordinated cell movement following an 
injury. The model reproduces two waves of MAPK activity that have been observed 
experimentally and that may depend on reactive oxygen species (ROS) and 
competition between a ligand (such as a growth factor) and ROS for the activation 
of the epithelial growth factor (EGF) receptor. The resulting traveling wave solutions 
of the model are consistent with MAPK patterns observed experimentally.

Models of the fourth stage of wound healing, i.e., the remodeling of the scar tis-
sue, are primarily concerned with the factors that determine the final size of the scar. 
Two key features of the scar tissue attract attention: details of collagen composition 
(relative proportion of type I and type III collagen) and orientation of the fibers. The 
balance between the two types is regulated by different isoforms of transforming 
growth factor (TGF)-β protein and was studied by Dale et al. [63] who developed a 
reaction–diffusion model. The model predicted that different ratios for fetus and 
adult tissues depend on the secretion of the different isoforms of TGF-β. In a fol-
low- up paper [64], Dale et al. used the model to determine whether fibroblast cells 
enter the wound area from the surrounding unwounded dermis or from the underly-
ing subcutaneous tissue and gave reasons favoring the latter. The orientation of 
fibers in the wound tissue was analyzed in a series of papers by Dallon et al. [65] 
who employ agent-based, as opposed to equation-based, models. In particular, 
fibroblasts were modeled as discrete entities and the ECM was assumed to be a 
continuous entity composed of collagen and a fibrin-based blood clot. The follow-
ing interactions were captured by the model: fibroblasts orient the collagen matrix, 
fibroblasts produce and degrade collagen, and fibrin and the matrix direct the fibro-
blasts and determine the speed of the cells. The model was used to predict how 
multiple cellular phenomena play a role in collagen alignment during wound repair.

Wound contraction is also an important component of wound closure, especially 
in animals. Contraction is primarily caused by myofibroblasts that exert traction 
forces on their environment. Experimentally this process has been studied on colla-
gen gels. Contraction was first studied mathematically by Murray et al. [66] who 
adapted a general model of tissue biomechanics to a wound healing situation. 
Subsequently, Tranquillo and Murray [67] investigated the interplay between cellu-
lar, biochemical, and biomechanical phenomena, which result in wound contraction. 
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They modeled fibroblast migration and proliferation as well as the deformation of 
the ECM and formulated an extended model that accounts for the influence of an 
inflammation-derived mediator on traction, growth, and chemotactic properties of 
fibroblasts in order to predict the qualitative features of a contracting wound. A simi-
lar model was also used by Olsen et al. [68] to study failures in wound closure due 
to fibroproliferative disorders such as keloid and hypertrophic scars. All of these 
models describe tissue as a linear viscoelastic material. For embryonic epidermal 
wound healing, Sherratt [69] developed a model involving actin filament network 
formation and wound contraction, based on a mechanochemical model for the defor-
mation of epithelial sheets proposed by Murray and Oster [70].

Angiogenesis Models Angiogenesis in a growing tissue has been studied in the 
context of wound healing or tumor growth. The process of capillary ingrowth is 
essential to healing since it helps to maintain high levels of metabolic activity by 
increasing blood supply. The biology of angiogenesis has been studied mostly in the 
context of cancer growth, but the biology applies equally well to wound healing. 
Tumor angiogenesis has been modeled by Chaplain and Sleeman [71] and continued 
by Anderson and Chaplain [72]. Chaplain and Byrne [73] reviewed the similarities 
of wound healing and tumor growth and Olsen et al. [74] studied the interactions 
between endothelial cells and soluble regulators (such as growth factors), as well as 
the insoluble ECM substrate, which consists primarily of collagen. Pettet et al. [75] 
developed a model of angiogenesis during wound healing that includes contributions 
of capillary tips, capillary sprouts, fibroblasts, macrophage-derived chemical 
attractants, oxygen, and ECM. The model reflects the dependence of macrophage 
activity on local oxygen concentration, which is the major difference between the 
process in wounds and tumors, and is able to reproduce the failure of wounds to heal 
when the proliferation rate of endothelial cells is too low. A new version of the 
model was compared with experimental data by Byrne et al. [76].

Chemotaxis Models The directed movement of cells and organisms in response to 
chemical gradients, known as chemotaxis, plays an important role in several aspects 
of physiology, including embryonic development, inflammatory cell migration, 
wound healing, new vessel formation, and tumor growth. The deterministic Keller–
Segel continuum model is a well-established method for representing chemotactic 
behavior of cell populations since it is able to capture key phenomena that are often 
lost on discrete or single-cell level models. Hillen et al. [77] analyze ten models that 
are variations of the Keller–Segel model in order to determine which model 
components relate most directly to biological observations of chemotaxis. Their 
analyses include the determination of the existence of model solutions and the 
identification of long-time behavior of solutions and the form of steady state patterns.

As an example of a chemotaxis model in the context of wound healing, Schugart 
et al. [78] presented a PDE model of wound healing that focuses on the release of 
angiogenic growth factors (e.g., VEGF) by inflammatory cells. In particular, the 
growth factors are assumed to interact with fibroblasts to produce collagen and 
other components of the ECM, which in turn facilitates the migration of cells into 
the wound. A circular wound is considered in this theoretical study, and thus the 
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model is solved over a radial cross section of the wound. Model results suggest that 
a hypoxic wound environment cannot sustain vascular growth, that hyperoxia pro-
motes wound angiogenesis and healing, and that there is an optimal level of hyper-
oxia beyond which the beneficial effects of oxygen may be reversed.

 Agent-Based Models of Cell Migration

Various types of agent-based models (ABM) have been used to test wound healing 
hypotheses and to isolate factors that may direct cell sheet migration. Since a 
detailed description of wound healing ABM is presented in a different chapter of 
this book, here we focus on ABMs of collective cell migration, as such models are 
often used as a basis for the development of equation-based models of wound 
healing.

A detailed model of the dependence of cell speed on adhesion-receptor/ligand 
binding was proposed by DiMilla et al. [79]. Walker et al. [80, 81] used an agent- 
based model to simulate the wounded epithelial cell monolayers and suggested that 
simple rules are sufficient to qualitatively predict the calcium-dependent pattern of 
wound closure observed in vitro. Khain et al. [82] built upon the work in [80, 81] 
and considered a simple discrete model, which focused on the effects of three key 
processes, cell–cell adhesion, diffusion, and proliferation, on wound healing in the 
context of a scratch-wound assay. Different cell behavior was predicted by the 
model depending on the adhesion strength and the proliferation rate. In general, the 
model is defined by a list of rules that dictate the conditions under which cells can 
proliferate or migrate, depending on the number of nearest neighbors to the cell.

Bindschadler and McGrath [83] used an ABM to simulate cell migration in which 
cells responded to crowded conditions by decreasing their cell division rates and 
moving to less crowded areas. The model predictions were consistent with experi-
mental rates of closure. Ouaknin and Bar-Yoseph [84] used the Glazier–Graner–
Hogeweg (GGH) model to simulate the collective movement of cells, taking into 
account adhesion energy, deformation energy, and stochastic behavior of the system. 
The model results were similar to experimental behavior obtained by Poujade et al. 
[85], in which leader cells progressed faster than the rest of the cell layer and a fin-
gering morphology emerged. Fozard et al. [86] developed an ABM for epithelial 
monolayers and used it to derive an equation-based continuum model in the limit of 
a large number of cells. Relating agent-based and continuum models may help to 
estimate model parameters and justify model assumptions. Fozard et al. [86] 
assumed that the energy dissipation of individual cells was due to the drag between 
the cell and substrate, as well as due to the internal viscosity of the cells (which was 
not accounted for in the model presented here). Active cell migration and cell divi-
sion were not included in their model, and a more complex formulation of cell–cell 
and cell–substrate adhesion could provide additional mechanical insight. The con-
tinuum model yielded results consistent with the ABM for even a moderate number 
of cells. Byrne and Drasdo [87] also derived a continuum model from their ABM for 
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the growth of cell aggregates on compact monolayers. Growth was assumed to be 
governed by contact inhibition, and cells were assumed to proliferate. The contin-
uum model agreed with the ABM in the prediction of initial and asymptotic growth 
regimes for the radius of the colony and the cell population size. A detailed descrip-
tion of agent-based models of wound healing is provided in the next chapter.

 Applications of Wound Healing Models

Both equation-based and agent-based theoretical models of wound healing have 
important applications that extend beyond the context of wound healing. The mech-
anisms and techniques used to describe migration and proliferation of a cell layer 
can be used to predict wound closure time as well as to describe the mechanical 
processes governing morphogenesis, tumor growth, and colony expansion.

Predicting Wound Healing Time Three commonly used methods for estimating 
wound closure time in clinical practice are the Absolute Area Reduction method, 
Percent Area Reduction method, and Linear Parameter method [13]. The Absolute 
Area Reduction method estimates the time rate of change in wound area as the ratio 
of the difference between the current wound area and original wound area to the 
total change in time. The Percent Area Reduction method estimates the rate of 
change in wound area as the difference in wound areas between two consecutive 
time points. The Linear Parameter method assumes that the average velocity of the 
wound edge over the wound contour is constant in time and uses the value of a 
linear healing parameter, which is defined as the ratio of the difference in wound 
areas to the average perimeter for two consecutive time points, to predict overall 
closure time for wounds. Recently, Arciero et al. [92] introduced two additional 
methods for calculating healing time, in which the time rate of change of wound 
area is not constant but is proportional to the square root (Square Root Method) or 
the first power (Proportional Area Method) of area. These methods were shown to 
provide better estimates of closure time than the three previously established 
methods since they both converge to the correct closure time as more data is 
available and they provide relatively accurate predictions at early stages of the 
closure process. While these two methods were shown to be useful for predicting a 
range of wound healing times for superficial epithelial wounds, other clinical 
aspects may be required to obtain accurate closure time predictions for wounds of 
various types and sizes. A comparison of the predicted healing times of these five 
methods is provided in Fig. 11.4.

Morphogenesis Cell and tissue mechanics are important components dictating 
embryonic development and organ shape within a body. In particular, at the tissue 
level, force production and viscoelastic material properties of tissues determine the 
direction and speed of tissue movements as structures are sculpted. Integrating 
intracellular force generation with the local micromechanical environment directs 
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molecular–mechanical processes and cell differentiation [88]. Significant advances 
have been made in morphogenesis experiments, and the use of mechanical and 
theoretical analyses in this field is beginning to gain momentum. The combination 
of these experimental and theoretical techniques may help to answer three important 
questions in the field of morphogenesis outlined by Davidson et al. [89]: (1) are 
mechanical properties of the embryo important to morphogenesis? (2) at what scale 
are mechanical properties shaped? and (3) can the processes that generate force be 
separated from the processes that make tissues stiff?

Tracheal branching morphogenesis and mammary gland development are two 
examples in which morphogenesis of branched tubular organs or terminal end buds 
can be studied. Tracheogenesis occurs without mitosis, and thus collective cell 
migration can be studied in this context without interference from cell proliferation. 
It has been concluded that the pattern of tracheal branching emerges from the inter-
play between an extracellular chemoattractant and collective decision making that 
uses a negative-feedback loop to restrict the number of cells that respond to this 
chemoattractant [6]. Mammary gland development occurs via the branching mor-
phogenesis of terminal end buds; this branching is unique from most other systems 
due to the absence of leader cells at the tip of the bud. Instead, the cells at the bud tip 
for a blunt-shaped multilayered bulb with cells continually exchanging positions [6].

Cancer Several models originally developed for wound healing have been employed 
to simulate expansive growth and cell migration of tumors [73, 87, 90]. Both discrete 
and continuous approaches have been used that consider the effects of mitotic 
inhibitors, nutrient depletion, cell cycle, and new capillary formation on tumor 
growth [90]. For example, Tracqui [90] developed models that relate cell motility 
and traction forces and that are used to simulate the transition from a homogeneous 
distribution of cells on a tumor surface to a nonhomogeneous density pattern that 
may correspond to a preinvasive stage of the tumor.

Fig. 11.4 Comparison of 
predicted healing times for a 
scratch-wound assay using 
five different methods: 
Absolute area reduction 
method (green), percent area 
reduction (red), linear 
parameter method (blue), 
square root method (black), 
and proportional area method 
(magenta). The predicted 
healing time is shown as a 
function of time
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Colony Expansion Models for wound healing can be also transformed to simulate 
the process of cell colony expansion [59]. Trepat et al. [9] recorded the cell density 
of a canine kidney cell population as a function of distance from the leading edge of 
the cell layer at 24-h time intervals. Growth of the layer plays a prominent role in 
the context of colony expansion, and Poujade et al. [85] observed that cell 
proliferation by a colony of cells occurred almost exclusively within the band where 
cells were originally seeded, potentially due to the longer presence of cells in the 
originally seeded region or modifications made by cells to the underlying substrate. 
When applied to a cell colony scenario, the model in [59] predicts an increase in cell 
density when approaching the center of the cell colony. The results also suggest that 
in the experiments of Trepat et al. [9], as in those of Poujade et al. [85], the cells 
proliferate only in the region originally seeded by the cells.

 Conclusions

A multitude of mathematical models of wound healing have been developed in the 
attempt to understand the qualitative and quantitative aspects of the process. 
Although many of the models differ substantially in scope, the mechanical and 
mathematical principles underlying all of the models are related and can be applied 
to multiple biological systems. The choice of model type depends on the informa-
tion desired. Certain models are appropriate at a cellular level (e.g., to simulate 
individual cell motion), while other models are more beneficial on a tissue level 
(e.g., to represent collective migration).

The study by Stolarska et al. [91] provides a perfect example of differentiating 
among model types while also highlighting model similarities. In the study, three 
different cell and tissue mechanics models are presented: a continuous model of an 
arbitrarily deformable single cell, a discrete model of the onset of tumor growth, and 
a hybrid continuum–discrete model of later stages of tumor growth. Three essential 
processes involved with cell migration are captured in the single cell model: the 
controlled spatiotemporal remodeling of the actin network, the generation of traction 
forces to move the cell body, and the construction and destruction of focal complexes 
or focal adhesions. Cell-level details are incorporated into their tissue-level model, 
including how an individual cell reacts to forces on it, how cells interact mechani-
cally with their surroundings, how growth and division are described, and how stress 
affects growth. And thus, predictions obtained across multiple levels of mathemati-
cal modeling can be used to gain insight into wound healing processes.

Byrne and Drasdo [87] compare the benefits of using a biophysical agent-based 
or a continuum mechanical model to track the expansion and migration of cells in a 
dense monolayer. Single-cell-based models permit a higher degree of spatial resolu-
tion than models composed of locally averaged quantities; however, large cell popu-
lation sizes are not amenable to investigation using agent-based models. Ultimately, 
conditions under which spatiotemporal behavior of the different models agreed 
were identified in order to determine how to relate the parameters in the different 
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models. The same growth pattern for dense and sparse cell aggregates was obtained 
using both models.

Khain et al. [82] commented that most theoretical models of wound healing 
employ reaction–diffusion equations for the cell density and a growth factor. 
However, in their study, they demonstrated that simple discrete models can be 
applied to wound healing and yield the results obtained from reaction–diffusion 
equations when proliferation is small. Since biologically reasonable rates of perfu-
sion are small compared to rates of diffusion, both continuum and discrete models 
provide good predictions of the velocity of a wound edge.

Whether an ODE, PDE, or ABM wound healing model is used to describe the 
migration of cells in response to an injury, all three model types aim to accomplish 
three main objectives: to track the cell response and position following the induction 
of a wound, to understand the role of tissue growth factors in the healing process, 
and to predict the time required for a wound to heal. As described in this chapter, the 
particular choice of theoretical wound healing model dictates the specific phenom-
ena or elements that are most likely to be understood and uncovered.
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           Introduction 

 Wounds, whether developed in hospital or present on admission, pose a great threat 
to a patient’s health. Wounds provide an opportunity for pathogens to invade and 
also divert resources that the body could be using to restore health elsewhere. 
Furthermore, the infl ammatory response incited as a consequence of tissue trauma 
can lead to extreme complications, especially when this infl ammatory response 
becomes dysregulated. 

 Breakdown of the wound healing process at any level, leading to both acute and 
chronic failure of healing, is of interest across medical specialties. In patients with 
signifi cant comorbid conditions including diabetes, obesity, or steroid use, these 
problems are compounded. Not only do wound healing problems cause morbidity 
to the individual patient but there is also a signifi cant cost to the healthcare system 
as a whole [ 1 ]. Accordingly, there has been signifi cant interest and research effort 
directed at understanding how wounds heal, with the goal of improved strategies 
and resources for prevention and treatment of wound-related complications. 
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 However, the overwhelming complexity of the molecular and cellular healing 
machinery defi es study using traditional experimental methods. Much information 
has been elucidated regarding the roles of various individual components, but these 
components are generally studied using in vitro systems that are only abstractions 
of their actual biological reference systems. Adding to the diffi culty in obtaining a 
systems-level view of the healing process is the disparate and often ambiguous 
information present in the literature. Moreover, while wound healing is well studied 
in animal systems [ 2 ,  3 ], only recently have experimental methodologies emerged 
that may allow for the study of the time courses of wound healing in humans [ 3 ]. 
Even in these settings, it is diffi cult to collect time courses of primary samples from 
humans suffering from chronic wound healing diseases without possibly disturbing 
the very process being measured. Perhaps more importantly from a translational 
standpoint, it is essentially impossible to modulate all possible mechanisms of 
infl ammation and wound healing in an attempt to fi nd novel therapies.  

    Wound Healing and Infl ammation 

 Wound healing involves multiple cell types, intertwined signaling pathways, and 
numerous control and regulatory mechanisms [ 4 ,  5 ]. In general, the process can be 
divided into three phases: infl ammatory, proliferative, and remodeling. The infl amma-
tory phase of wound healing begins immediately after injury and primarily involves 
release of mediators to invoke both hemostatic and infl ammatory responses [ 4 ]. The 
clotting cascade is initiated fi rst, and the hemostatic plug is assembled on exposed 
collagen within the wound [ 4 ]. In addition to their role in controlling hemorrhage, 
platelets within the plug release mediators such as platelet-derived growth factor, 
which set the infl ammatory cascade in motion. These factors act as chemotactic agents 
to recruit infl ammatory cells, primarily neutrophils, as well as local vasodilators to 
allow passage of the cells into the damaged tissue [ 6 ]. The presence of infectious 
agents such as bacteria prolongs and exacerbates the infl ammatory response, which 
prevents progression to the proliferative phase and can lead to nonhealing. The infl am-
matory phase of wound healing will be described in more detail below. 

 The proliferative phase consists of several key steps to form a temporary yet 
durable wound closure, which can later be remodeled into the fi nal scar. One of the 
earliest steps is reepithelialization, which occurs via several mechanisms. 
Reestablishment of the epithelium restores its immunologic and barrier function, 
which is critical to the overall healing process by preventing further infection and 
propagation of the infl ammatory response [ 7 ]. Thereafter, angiogenesis occurs and 
allows for suffi cient nutrient delivery to enable deposition of granulation tissue into 
the wound bed [ 4 ]. 

 Remodeling begins once primary wound closure has been achieved and is a much 
more prolonged process. Collagen is deposited into organized networks by fi bro-
blasts, and the wound is gradually contracted by the action of myofi broblasts to form 
the mature wound. Abnormalities of remodeling lead to chronic wound problems 
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such as keloid and hypertrophic scar formation. Although clearly clinically important, 
this phase of wound healing will be underemphasized in this chapter, as the focus is 
more on understanding and modulating the acute wound healing environment. 

 As the initial phase of wound healing, infl ammation is critical to successful 
wound healing. However, infl ammation can also cause chronic tissue injury via a 
positive-feedback loop incited by incidental cell damage [ 4 ,  5 ,  8 ], and in extreme 
cases can even lead to distal organ dysfunction and death [ 9 ]. As a well-coordinated 
communication network, infl ammation allows organisms to deal with a rapidly 
changing and often hostile environment. The mechanisms that have evolved to carry 
out these complex tasks are redundant, robust, and highly context dependent [ 10 ]; 
for example, the same cytokine may have opposite effects depending on other fac-
tors present in its local environment. Infl ammatory mediators such as interleukin 
(IL)-6 [ 11 ], IL-10 [ 12 ], transforming growth factor-β1 (TGF-β1) [ 13 ], and nitric 
oxide [ 14 ,  15 ] all modulate the wound healing response in a highly context- 
dependent manner. Conversely, while the functions may remain constant, biological 
redundancy allows for variation in the players that pass individual messages that 
comprise those macrofunctions. For example, not only does the proinfl ammatory 
response consist of complex signaling involving many mediators, but any given 
mediator participating in that chain may also change from organism to organism or 
situation to situation. 

 These intracellular signaling networks and their products, including diffusible 
molecular mediators, are in essence the carriers of information in the network of 
infl ammatory communication, and, therefore, possible targets for intervention. The 
problem, as mentioned above, is that any given pathway or mediator may exert 
either benefi cial or detrimental effects in a dynamically varying fashion based on the 
nature of the wound and the particular aspects of the individual patient. Selecting 
likely therapeutic targets for wound healing—in a rational fashion that takes into 
consideration this complex system as a whole—is thus a tremendously diffi cult task.  

    Agent-Based Computational Modeling 

 Computational techniques are useful for amalgamating data and generating hypoth-
eses in the study of complex biological phenomena. A mechanistic computational 
model based on literature knowledge could be validated experimentally or clinically 
and in turn may have applications in diagnosing/predicting the wound healing tra-
jectories of individuals or possibly in the design of novel therapeutic modalities for 
wound healing. Differential equations are the classical method for modeling bio-
logical processes and have been used since the late 1980s to explore all phases of 
wound healing from infl ammation [ 16 ,  17 ] to wound closure [ 18 ,  19 ] to tissue 
remodeling [ 20 ], incorporating terms for mechanical stress, population dynamics, 
and biochemical signaling [ 21 ]. This compendium of equation-based models has 
resulted in important insights into the wound healing response and has advanced our 
understanding of wound healing as it is supposed to work as well as suggesting 
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underlying pathological mechanisms and testing therapies in silico [ 17 ,  20 ]. 
However, while extremely useful, these continuum models cannot be readily used 
to create tissue-realistic simulations that involve stochastic biological effects, a 
capability of growing importance given the increased availability of spatial, nonin-
vasive data (such as clinical photographs and real-time dynamic microscopy) along 
with physicomechanical information. We suggest that this need can be met, in a 
complementary fashion, through the use of agent-based modeling (ABM). 

 ABM is an object-oriented, rule-based, discrete event computational modeling 
technique that is well suited for integrating and synthesizing such data, thereby 
providing a useful, translational tool for examining the greater wound healing pic-
ture. In an ABM, agents representing cellular or molecular components of a system 
populate a “virtual world,” in which their simulated behaviors are governed by rules 
extrapolated from known knowledge regarding their biological behaviors. This is 
called dynamic knowledge representation and can be used for integrating such dis-
parate and scattered information, bridging gaps in the current knowledge base, and 
generating and instantiating novel hypotheses [ 22 – 24 ]. A signifi cant amount of 
component-level mechanistic detail can be included in a set of agent rules, and 
qualitative overall system behaviors examined using a visual interface. 

 Because the rules in an ABM defi ne local, concurrent interactions and are fre-
quently probabilistic, simulation experiments with an ABM can often lead to non-
intuitive and paradoxical behaviors. Such simulated outcomes mirror the 
translational gulf between basic science and clinical therapeutics [ 25 ]. However, as 
opposed to the seemingly insurmountable translational hurdle facing the traditional 
biomedical community, the ability of ABMs to cross this translation divide provides 
an opportunity for researchers to augment their ability to evaluate (and potentially 
discard) hypotheses that do not pass at least an initial “eye test” in terms of the gen-
erated system level output. 

 ABMs offer another advantage in this role of dynamic knowledge representation 
intended to increase the effi ciency of integrative and translational research. Compared 
to more traditional mathematical models, ABMs can be more intuitive to nonmath-
ematicians and therefore be more accessible to the general community of biomedical 
researchers. This makes ABM a particularly attractive tool to the biologist or clini-
cian for dynamically representing their hypotheses and allowing them to carry out 
“thought experiments” [ 26 ]. This process can lead to the generation of novel, clini-
cally relevant hypotheses that can then be examined in an iterative investigatory loop. 

 Further reducing the threshold for adoption of ABM is the fact that the develop-
ment of a biomedical ABM very often involves the use of an existing software tool-
kit/development environment. This allows biologists to focus on the implementation 
of their biological concepts as opposed to the detailed issues related to software 
design. ABM toolkits that have been used by biomedical researchers include 
NetLogo [ 27 ], Repast [ 28 ], and Multiagent Simulation of Networks (MASON) [ 29 ]. 
More recently, the ABM software Simple Platform for Agent-based Representation 
of Knowledge (SPARK) [ 30 ,  31 ] was developed to facilitate tissue- realistic model-
ing in biological contexts. This type of software may be particularly useful as the 
goal of ABM expands beyond dynamic knowledge representation to augment basic 
research to more translational applications. 
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    Agent-Based Modeling of Wound Healing 

 The ability of ABMs to represent spatial relationships and tissue patterning effects 
makes this class of models an appealing approach for modeling the biology of 
wound healing. As with other applications of biomedical agent-based modeling, 
simulations generated by an ABM concerning wound formation and evolution are 
marked by global, system-level morphological outputs, i.e., spatial patterns with 
identifi able temporal trajectories. Tracking these morphological features—along 
with numerical data concerning both the temporal trajectories of individual compo-
nents (mediators and cell populations) and “experimental/epidemiologic” output 
derived from performing a series of simulation runs—provide a rich space of output 
features to which hypotheses can be examined, evaluated, and falsifi ed. 

 In general, ABMs are developed by following a consistent series of steps. This 
process typically involves the initial integration of various sources of knowledge, 
guided by the expertise and intuition of the researcher into a putative hypothesis 
structure that is then instantiated into the ABM. The ABM must then be calibrated 
and validated, a process in which the spectrum of behaviors of the ABM is evalu-
ated following iterative manipulation of its parameters (calibration). A separate step 
(validation) involves determining if the ABM behaves plausibly when compared 
against data not used in its construction. Finally, simulation experiments must be 
carried out in order to see if the ABM exhibits properties not previously described 
in the reference system. This process involves the generating perturbations (the 
addition of external factors or simulations of knockouts/knockdowns) to the model. 

 There are several examples of this multistep process in the context of ABMs of 
wound healing. In general, these ABMs can be divided into (1) those intended to 
provide greater insight into how the system works (as an adjunct to translating and 
integrating knowledge in a basic science setting), mostly involving the examination 
of intracellular signaling and gene regulation [ 32 – 35 ] and (2) those focused on char-
acterizing the global system level properties arising from generative mechanisms 
and what might be done to potentially control them (as an adjunct to translational 
science and the rational development of clinical therapeutics) [ 23 ,  25 ,  36 – 41 ]. In the 
sections below, we highlight examples of both use cases.  

    Agent-Based Modeling for Basic Science Knowledge 
Integration: An ABM of Epithelial Restitution 

 A wound damages the epithelial tissue layer and exposes underlying tissues to 
potentially detrimental factors in the external environment [ 42 ]. Restitution (reap-
position of opposing sides of the damaged epithelium) is the initial phase in the 
reestablishment of the epithelial barrier and occurs quickly and independently of 
cell proliferation [ 7 ]. Understanding the dynamics of this complex process requires 
integrating the disparate knowledge present concerning these pathways. Specifi cally, 
a substantial amount of study of epithelial restitution and healing has focused on 
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two pathways: Transforming growth factor-β1 (TGF-β1) and epidermal growth 
 factor receptor (EGFR). However, despite extensive experimental work on both of 
these signaling pathways, there is a startling paucity of work concerning the inter-
section and integration of these two canonical systems. In order to integrate these 
two areas of study by identifying putative points of cross talk, as well as investigat-
ing the consequent dynamics of epithelial wound healing arising from this synthe-
sis, Stern et al. [ 33 ] developed an ABM in NetLogo [ 27 ] that is an in silico analog 
of an in vitro scratch assay. A scratch assay involves scratching a confl uent epithe-
lial monolayer with a pipette tip or other instrument to create a reproducible linear 
defect and evaluating the subsequent healing dynamics time-lapse microscopy with 
or without fl uorescent staining [ 43 ]. This ABM was termed the in vitro scratch 
agent-based model (IVSABM) and consisted of agents representing individual epi-
thelial cells (IECs) existing within a simulated extracellular matrix (SECM) to gen-
erate an in silico analog of an in vitro cell culture. Such in vitro systems are a 
mainstay of basic science research, but to date most computational/mathematical 
models developed on the information generated from these cell culture systems are 
not able to capture the spatial patterning present, thereby losing a rich source of vital 
information contained in cell culture experiments. Since ABM is particularly well 
suited to reproduce exactly this type of output, the visual output of the IVSABM 
constituted a major advantage in its use as a means of integrating basic science- 
derived mechanistic knowledge (see screenshots below). Rules governing IEC agent 
and SECM behaviors were extracted from information present in the literature, and 
based on this information putative points of cross talk were hypothesized and 
instantiated in the IVSABM. This would allow the IVSABM’s overall system 
dynamics to be examined against data from traditional experiments and allow the 
falsifi cation of nonplausible hypothesis structures.  

    Model Construction and Overall Architecture 

 The population of IEC agents represents a single confl uent epithelial cell layer, with 
each agent occupying a distinct space (patch) on the grid. Intracellular proteins and 
cell surface receptors were assigned as agent state variables, and diffusible factors, 
such as secreted mediators, were assigned as patch variables. IECs interact with 
their environment via surface receptors and secrete factors that then become patch 
variables in the SECM. For an overview schematic of the components and interac-
tions in the IVSABM see Fig.  12.1 . At baseline all IECs have intact tight junctions 
with all of their immediate neighboring cells. When a “scratch” is introduced, this 
results in a linear defect of cells and matrix across the center of the grid. IECs at the 
wound edge were considered to be “damaged” and able to elaborate damage sig-
nals, reactive oxygen species (ROS), damage associated molecular pattern proteins 
(DAMPs), and extracellular adenosine triphosphate (ATP), into the media as stimu-
latory variables for IECs. During each simulation run, IECs signal through their 
surface receptors in response to values of available stimulatory ligand on the patch 
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they occupy. Bound receptors are no longer available to interact with additional 
ligands, but after signal transduction to intracellular components they are reconsti-
tuted to allow reactivation of the pathway if further ligand is available. Binding of a 
ligand to a receptor also removes the ligand from the patch it is on. Intracellular 
signaling cascades were modeled without signal amplifi cation as 1:1 interactions, in 
which downstream molecules are assigned a value equal to their corresponding 
upstream molecule with each iteration of the simulation. Levels of intracellular 
molecules decremented at a set rate in order to simulate the actions of phosphatases 
and other degradative pathways. “Migrating” IECs move onto adjacent open patches 
in a semirandom manner, which leads to repopulation of the damaged area of the 
grid. As IECs move away from their neighboring IECs tight junctions are broken; 
these tight junctions are reformed when migrating IECs come back in contact with 
other IECs. Migration pauses when migrating IECs reach a distance of greater than 
1 patch from any neighbor and resumes once the trailing cells have closed the gap. 
This mimics the “sheet-like” movement behavior of cell monolayers undergoing 
restitution as observed in vitro. The IVSABM is considered to be “healed” when 
IECs from one side of the scratched monolayer become apposed with cells from the 
opposite side and the stimuli for signaling mechanisms cease.

   As noted above, epithelial reapposition has largely been studied, as have most 
biological processes, on an individual, pathway-by-pathway basis, with particular 
attention paid to signaling from TGF-β and activation of EGFR. These two canoni-
cal pathways are each recognized as critical and necessary components of epithelial 
cell restitution; however, cross-pathway interactions between the two have been 
poorly characterized. Following a review of the literature, both of these pathways 

  Fig. 12.1    State diagram for IEC agent in the IVSABM. This schematic depicts the inputs, outputs, 
and actions of an IEC agent. Reprinted with permission from [ 33 ]       
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were instantiated in the IVSABM (see Fig.  12.2  for a depiction of the components 
of the TGF-β1 and EGFR pathways included in the IVSABM). Based on this 
knowledge, three hypothetical mechanisms for interaction and control between the 
two pathways were proposed at the level of integrin–EGFR cross-phosphorylation 
and activation (see Fig.  12.3  for a depiction of these potential mechanisms):

      1.     Mechanism 1 : Laminin-332 (LM-332), an extracellular matrix molecule secreted 
at the wound edge by IECs, binding to integrin α3β1 leading to intracellular 
 signaling through Src.   

   2.     Mechanism 2 : Direct signaling from LM-332 binding to an as-yet unidentifi ed 
receptor to Ras-related C3 botulinum toxin substrate (Rac1) independent of 
EGFR activity.   

   3.     Mechanism 3 : Extracellular binding of an EGF-like domain of LM-332 directly 
to EGFR.    

  These mechanisms were instantiated into the IVSABM code to examine their 
respective plausibility (see section “Simulation Experiments” below). Rac1, a small 
GTPase known to be an end-effector of epithelial migration and restitution [ 44 ], 
was used as a quantitative marker for healing capacity among IEC agents.  

  Fig. 12.2    EGFR and TGF-β pathways instantiated in the IVSABM. A depiction of the pathway 
components and interactions incorporated into the IVSABM. Reprinted with permission from [ 33 ]       
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    Model Calibration: System-Level Dynamics 

 Baseline wound healing was examined in a series of calibration/validation simula-
tions. IECs interacted with the extracellular environment and produced effector 
molecules leading to a migratory phenotype. DAMPs, ROS, and ATP produced by 
the initial scratch injury initiated stimulation of IECs, leading to an initial surge of 
EGFR signaling. Subsequently, EGFR activity was maintained at a relatively con-
stant level by a signaling loop from laminin–integrin interactions. IECs from oppos-
ing edges of the monolayer migrate in a sheet-like pattern inwards through the 
described intracellular, cell–cell and cell–matrix interactions. When the IECs reat-
tain “confl uence,” migration ceases the wound is considered healed. The quantita-
tive time scale of the IVSABM is such that one iteration of the simulation corresponds 
to approximately 1 min. The IVSABM was successfully calibrated such that the 
condition using serum-based media, which takes approximately 24 h (1,440 min) to 

  Fig. 12.3    Proposed mechanisms of cross talk between EGFR and TGF-β pathways.  Mechanism 
1 : Laminin-332 (LM-332), an extracellular matrix molecule secreted at the wound edge by IECs, 
binding to integrin α3β1 leading to intracellular signaling through Src.  Mechanism 2 : Direct sig-
naling from LM-332 binding to an as-yet unidentifi ed receptor to Rac1 independent of EGFR 
activity.  Mechanism 3 : Extracellular binding of an EGF-like domain of LM-332 directly to EGFR. 
Reprinted with permission from [ 33 ]       
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heal [ 45 ], heals in approximately 1,300–1,400 ticks. Figure  12.4  demonstrate 
 successive screenshots of successfully healing simulations.

   Additionally, since EGFR activation is absolutely required for epithelial healing 
in vitro [ 46 ], a simulated knockout of EGFR in the IVSABM should similarly lead 
to a lack of restitution. When a functional EGFR knockout IVSABM was studied, 
the healing capacity was indeed completely abolished. In the computational code, 
signals must go through EGFR in order to reach the effector molecules for migra-
tion (Rac1) and spreading mammalian target of rapamycin (mTOR). This must in 
fact be the case in vitro as well; otherwise, there would be some minimal level of 
healing seen through pathways, which circumvent EGFR. As such, the ABM repre-
sents at least a minimally suffi cient overall mechanism for wound healing, and a 
plausible integrative construction of the major signaling pathways involved.  

    Simulation Experiments 

 As noted above, a primary benefi t of computational dynamic knowledge representa-
tion is the ability to falsify clearly implausible or incorrect hypotheses; doing so auto-
matically increases the effi ciency of the experimental workfl ow by directing resources 
to more fruitful investigations. Therefore, the simulation experiments with the 
IVSABM involved introducing perturbations known to generate a particular biologi-
cal outcome and then evaluating the model’s consequent behavior to see if it matched 
what is observed in the real world. Toward this end, simulation experiments were 
designed to determine if simulated knockouts could meet the necessary/suffi cient 
criteria for EGFR and TGF-β1 in terms of overall system behavior and healing for 
each of the three putative points of cross talk between TGF-β1 and EGFR:  Mechanism 
1 : LM-332 binding to integrin α3β1 leading to intracellular signaling through Src; 
 Mechanism 2 : Direct signaling from LM-332 binding to an as- yet unidentifi ed recep-
tor to Rac1 independent of EGFR activity; and  Mechanism 3 : Extracellular binding 
of an EGF-like domain of LM-332 directly to EGFR. As noted above, simulated 

  Fig. 12.4    Screenshots of IVSABM demonstrating successful healing of the scratch wound. The 
intact simulated monolayer prior to induction of the scratch wound is represented in panel  a . Panel 
 b  depicts the scratch wound as a linear defect across the center of the IEC monolayer. During the 
course of the simulation run IECs migrate inwards to close the wound space until the two sides are 
reapproximated ( c – e ), resulting in a healed monolayer. Reprinted with permission from [ 33 ]       
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EGFR knockouts did not heal, therefore simulation experiments were performed 
with simulated TGF-β1 knockouts, looking at wound closure rates as well as levels 
of Rac1. The advantages of an ABM’s ability to produce a visual/spatial output are 
immediately evident upon examining the visual output of the IVSABM at the end of 
the simulation runs. Figure  12.5  demonstrates IVSABM screenshots of simulations 
run with Mechanism 1, Mechanism 1 + 2, Mechanism 2, and Mechanism 3. Of these, 
the failure of Mechanism 3 to heal is readily apparent, and therefore that hypothesis 
can be discarded. More information about the outcomes seen in these simulations can 
be obtained by plotting the tabular data generated by the IVSABM, specifi cally levels 
of Rac1. In these simulations, Mechanism 1 produces accurate wound healing 
dynamics, suggesting that produced levels of Rac1 are suffi cient for healing. 
Furthermore, this satisfi es the condition that EGFR must be absolutely necessary 
since there is no way for these cells to signal directly from integrins to Rac1. 
Mechanism 2, where integrin signals lead directly to Rac1, also produces plausible 
healing dynamics, but occurring with substantially higher levels of Rac1. However, 
Mechanism 2 does not satisfy the necessity of EGFR, which suggests that while inte-
grin signaling leads to promotility effectors, there must be an intermediate step 

  Fig. 12.5    Screenshots of IVSABM simulation experiments evaluating different hypothesized 
mechanisms for cross talk between EGFR and TGF-β pathways. Due to insuffi cient healing of the 
monolayer Mechanism 3 can be rendered implausible and therefore discarded       
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involving EGFR. Therefore Mechanism 2 is deemed implausible by not fi tting with 
known observations and can be discarded. Mechanism 3, where a fragment of 
LM-332 binds directly to EGFR, does not lead to complete wound healing in the 
ABM as is seen in Fig.  12.5 . Analysis of the visual output in conjunction with the 
generated Rac1 levels provides more information about why Mechanism 3 fails: this 
mechanism satisfi es the EGFR requirement, but at levels of LM-332 that are nor-
mally suffi cient for healing there is insuffi cient activation of EGFR downstream path-
ways. Given these fi ndings, Mechanism 1 seems to be the most consistent with 
current knowledge and can therefore serve as a guide for additional experimentation 
to further refi ne mechanistic knowledge of restitution and suggest potential failure 
points associated with disease phenotypes.

      Agent-Based Modeling as a Clinical-Translational Aid: 
An ABM of Pressure Ulcer Formation in Spinal Cord Injury Patients 

 Pressure ulcers are a common complication of hospitalization and are especially 
common in spinal cord injury (SCI) patients [ 47 ]. In acute care in the USA, pressure 
ulcers affect 2.5 million patients per year, costing up to $1.5 billion. 60,000 of these 
patients die each year from complications due to pressure ulcers. There are several 
accepted theories about how ulcers form, but the current standard of care is labor 
intensive and patients still develop ulcers daily. Serial, noninvasive wound imaging 
combined with ABMs could, in theory, allow for the investigation of both space- 
and time-dependent dynamics via visually realistic, mechanistic simulations. 

 Accordingly, an ABM was created in which pressure ulcer formation was simu-
lated as arising from alternating pressure, as a patient might experience when being 
turned into and out of a position where pressure over a bony prominence reduced 
local perfusion. In the model, repeated cycles of ischemia followed by reperfusion 
cause tissue damage, inducing infl ammation, which leads to additional damage 
caused by proinfl ammatory positive-feedback mechanisms in a cyclical fashion 
(unpublished observations). The ABM was calibrated against serial images of post-
SCI pressure ulcers obtained from patients following Institutional Review Board 
approval and informed consent. Cell-level behaviors encoded in the ABM led to 
tissue-level phenotypes described in the literature [ 48 ,  49 ]. The model also recapitu-
lated visual patterns of ulcer formation in SCI patients, while it was only calibrated 
on mechanistic, not visual data.   

    Model Architecture 

 This ABM was built using knowledge from the literature as an extension of an exist-
ing ABM of pressure ulcer formation [ 50 ]. The agents that comprise this model are 
cells and tissues (neutrophils, macrophages, epithelial cells, and blood vessels), with 
each cell type represented by its own class of agent. Data layers are employed to 
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simulate diffusible cytokines, free radicals, oxygen, oxidase enzymes, and sometimes 
drugs. The model architecture consists of a layer of tissue cells, fed by blood vessels 
throughout the tissue, carrying oxygen and infl ammatory cells to the fi eld. The basic 
model depicts a tissue region composed initially of healthy cells. In the absence of 
perturbation, the tissue remains intact for a reasonably long time (decays on a times-
cale much slower than the processes we are simulating). Pressure is simulated by a 
constriction of the blood vessels, decreasing the amount of material that can fl ow 
through them. Without oxygen, tissue cells are compromised and their health begins 
to decline. This stress leads them to release diffusible “danger signals” [damage-
associated molecular patterns (DAMPs)], mediators that stimulate the infl ammatory 
response [ 51 ].  

    I/R Mechanism: Implementation and Validation 

 In addition to ischemic injury (lack of oxygen reduces the health of epithelial cells), 
the model incorporates an additional method of tissue injury on pressure release: 
reperfusion injury. Ischemic cells build up the capacity to produce damaging free 
radicals upon reintroduction of oxygen. This is modeled by the accumulation of 
oxidase enzymes inside ischemic cells. When pressure is released and oxygen again 
perfuses these cells, oxygen free radicals will be formed in proportion with the con-
centration of oxidase present in that cell. Free radicals cause damage to the immedi-
ate cell and those they encounter via diffusion, and they do so in a stepwise manner: 
epithelial cells show no sign of damage from radicals until they have accumulated a 
certain threshold of insults. At that time, their health is drastically reduced. Varying 
the length of pressure cycles (turning rate) and measuring total tissue damage after 
a fi xed period of ischemia revealed that all else being equal, a period of ischemia 
will cause less tissue damage than the same period of ischemia followed by a reper-
fusion event. These results agree with in vivo studies carried out in rats, wherein 
ischemia reperfusion was simulated using a compression via a magnet and a steel 
plate surgically implanted under the epidermis [ 48 ].  

    Infl ammation Mechanism: Implementation and Validation 

 Three diffusible mediators represent the canonical early proinfl ammatory response, 
the canonical slower proinfl ammatory response, and the canonical anti- infl ammatory 
response, each of which is secreted by activated neutrophils or macrophages (type I 
or II). This version of the model contains both neutrophils and macrophages, which 
are initially in a resting state. They are activated by local concentrations of media-
tors in a threshold-dependent manner. DAMPs, another data layer, above a certain 
local concentration will activate nearby neutrophils to produce early proinfl amma-
tory mediators (called TNF-α hereafter). At a certain threshold of local TNF-α 
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concentration, resting macrophages will be activated to a type I phenotype and 
begin secreting longer-acting proinfl ammatory mediators (called IL-1β hereafter). 
TNF-α also causes damage to nearby epithelial cells, thus restimulating the proin-
fl ammatory response. Local concentration of IL-1β above a threshold activates 
macrophages to type I (proinfl ammatory) phenotype and above a higher threshold, 
IL-1β induces macrophages to adopt a type II (anti-infl ammatory) phenotype. 
Active type II macrophages produce anti-infl ammatory mediators (called TGF-β1), 
which above a threshold cause further activation of type II macrophages. 

 The rules governing the infl ammatory mechanisms in the model are based on 
dynamics of acute infl ammation, so these dynamics were tested in a simulated acute 
wound, without repeated pressure cycles. In a successful incorporation of these 
mechanisms, tracking activation of neutrophils and macrophages would reveal cel-
lular dynamics similar to those found in settings of acute infl ammation. Since the 
mediators in the simulation represent amalgams of several mediators, it makes more 
sense to validate dynamics at the cellular level. An initial injury was created in the 
center of the tissue, pressure removed, and the dynamics of infl ammatory cells were 
tracked in the fi eld. Because the model is calibrated to real clock time, these results 
are directly comparable to measurements from published sources, and qualitative 
agreement was suffi cient. The relative timing of peaks of cell populations was as 
expected. Interestingly, a single set of initial conditions and parameter values was 
able to give rise to two distinct outcomes. In all simulations, the initial injury was 
suffi cient to incite the infl ammatory response. In approximately 70 % of cases, this 
infl ammatory response became self-sustaining and led to an ulcer. In the remaining 
30 % of simulations, however, the infl ammatory response resolved early enough that 
the tissue suffered minimal damage beyond the initial injury. This variation mimics 
variation in a population of patients who may present with the same intensity of dis-
ease receive the same treatment but experience very different disease progressions.  

    Sensitivity Analysis and In Silico Trials 

 Sensitivity analysis was used to explore the range of behaviors possible from the 
model. This group of methods gives the modeler a measure of which parameters 
account for the greatest amount of the variance in the model’s output. For this 
model, parameters were partitioned according to which mechanistic cause of dam-
age they could be attributed (ischemia/reperfusion (I/R) injury or proinfl ammatory 
ancillary damage). These experiments revealed that either increasing oxygen avail-
ability or the rate at which pressure is applied and released (simulating a patient 
being turned) led to predictions of improved outcomes, but that changing infl amma-
tory parameters only led to modest improvement (unpublished observations). 

 The ABM was then used as a platform to investigate potential treatments in 
silico. To examine the effects of suppressing acute infl ammation in manner more 
severe than tweaking parameters, a trial of corticosteroid application was simulated 
in silico. While this might be a controversial treatment plan in the clinic because 
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corticosteroids are broadly considered to put one at risk for chronic, nonhealing 
wounds [ 52 ], simulating this treatment strategy virtually allowed us to assess poten-
tial benefi ts without any negative consequences. In this in silico clinical trial of 
steroid treatment, steroids applied at early enough time points and at a high enough 
dose were effective in stemming the local infl ammatory response, leading to predic-
tions of improved outcomes in the early stages of pressure ulcer formation and 
progression. However, as suggested by the sensitivity analysis mentioned above, 
suppressing infl ammatory damage was not suffi cient to prevent an ulcer from form-
ing. The I/R injury was eventually enough to cause an ulcer in the tissue. 

 In this ABM, DAMP molecules were key signals that led to infl ammation fol-
lowing tissue injury. The DAMP high-mobility group protein-B1 (HMGB1) has 
emerged as a therapeutic target for infl ammatory diseases [ 53 – 55 ]. Accordingly, an 
in silico trial of a putative, neutralizing anti-HMGB1 antibody therapy was imple-
mented. In these simulations, this strategy was not successful in stemming the 
infl ammatory response, whether incited by repeated ischemia/reperfusion injury or 
an initial acute tissue injury. Mechanisms encoded in the ABM allow activation of 
the infl ammatory response via cell damage, without an explicit diffusible signal 
(Ziraldo et al. submitted), which we hypothesize may account for the apparent non-
effect of the anti-HMGB1 antibody treatment. Together, these in silico trials and 
sensitivity analyses led to the conclusion that while infl ammation is defi nitely an 
aggravating factor in pressure ulcer formation, ischemia is the most prominent 
cause of tissue injury.   

    Conclusions 

 In silico mechanistic models provide unique opportunities to study infl ammation 
and wound healing dynamics, which is of obvious clinical importance. Recent 
ABMs have allowed not only mechanistic insight but also provide an inexpensive 
and accessible platform for hypothesis testing, simulating clinical trials, designing 
patient-specifi c therapies, and developing diagnostic tools. By providing a means of 
synthesizing disparate aspects of biomedical knowledge, mechanistic computa-
tional modeling provides a plethora of opportunities to continue exploring, make 
new insights, and ultimately help patients [ 5 ,  23 ,  33 ,  41 ,  56 – 59 ]. 

 These systems have been extensively studied and are indeed well characterized, 
but in proceeding beyond the understanding of simple mechanistic detail to exami-
nation of whole system dynamics, computational models appear to have a useful 
role. The models presented here represent different levels of resolution of knowl-
edge: molecular detail leading to cellular level dynamics in the epithelial restitution 
model, and cellular detail leading to tissue level dynamics in the pressure ulcer 
model. Furthermore, the models represented an even wider range of resolution of 
outputs. The decision of what resolution to model each system is determined by the 
available literature and how it relates to the modeling goals of the individual mod-
eler. For example, epithelial restitution has primarily been studied in the context of 
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the relative importance and contributions of various signaling pathways to epithelial 
behavior. Hence, the goal of this model was to integrate known data at this level of 
resolution and provide information regarding amalgamated cellular behavior—
exactly what the primary literature has been unable to achieve via traditional stud-
ies. Similarly, with regard to the pressure ulcer model, the impact of the early 
infl ammatory response on ulcer progression was the goal of the modeler and this 
was achieved by integrating cellular and tissue-level detail. Both of these represent 
signifi cantly important contributions, in that they fi t into “knowledge gaps” in their 
respective knowledge bases. 

 Incorporating physically and physiologically relevant information into ABMs, 
such as blood fl ow in tissues and forces between cells, allowed for new mechanistic 
predictions. In the case of the former, a simple approximation of tissue blood fl ow 
differences between noninjured subjects and SCI patients, when juxtaposed on a 
stochastic model of infl ammation and tissue injury, led to the prediction of higher 
propensity to ulcerate in SCI patients vs. controls. Even visual information can be 
deceiving, as illustrated by agent-based simulations of restenosis. Static cross sec-
tions of arterial restenosis suggested that neointima entered through a break in the 
external elastic lamina of a coronary artery, and therefore the degree of hyperplasia 
was thought to be proportional to the size of the rupture [ 60 ,  61 ]. However, time 
courses yielded by dynamic simulations revealed an alternative possibility. 
Infi ltrating cells appeared to be actually pushing on the edges of the ruptured exter-
nal elastic lamina, forcing it wider. This insight might impact the analysis of histo-
logical samples of balloon-injured arteries and may also affect the design of novel 
therapies aimed at mitigating these physical forces. 

 Incorporating tissue realism into ABMs of pressure ulcer formation has raised 
the possibility of noninvasive diagnostics and possibly therapy based on serial mac-
roscopic images of nonhealing wounds. Due to the individualized and context- 
dependent nature of the infl ammatory response, a tool that could help clinicians 
decide the best course of treatment based only on visual information could be revo-
lutionary. Such an in silico diagnostic could improve patient care. This model has 
also been used to simulate a variety of treatment strategies, paving the way for fast, 
inexpensive early stage trials of newly designed treatments. 

 There are, of course, limitations to this approach. Simulations of biological pro-
cesses are necessarily approximations. In order to balance computational cost with 
a model’s utility, models must be parsimonious, including the smallest number of 
elements that will still yield a model that is useful for gaining mechanistic insights, 
clinical applications, or both. Often, modeling choices can be driven by the avail-
ability of data rather than which elements might be most critical to or informative of 
a process. These choices are subjective, and one can always fi nd a justifi cation to 
include additional elements in a given model, as long as those elements increase the 
validity or utility of the model. An implication of this simplifi ed version of reality is 
that a model can only be useful to a certain level of resolution. It is important to keep 
in mind the scope a model can reach when probing it for insights. 

 Each of the models here represents a framework upon which further work can 
be added. The modular nature of ABMs allows more detail to be added as 
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more information is gathered—for example, when a new pathway is elucidated and 
published in the scientifi c literature this can be easily incorporated into an estab-
lished model. If the model has been well validated, then changes seen in the model 
output with new information blocks can be enlightening with regard to both the 
plausibility of the new discoveries as well as the accuracy of the model itself. In 
fact, model outputs that are incongruent with expectations are often the most useful, 
as they provide the equivalent of scientifi c falsifi cation and allow more accurate 
model calibration going forward. 

 The next frontier for tissue-realistic mechanistic computational modeling is 
really to form bridges between visual simulation outputs and clinical images. Image 
analysis methods could allow comparisons of simulations of pressure ulcers to pho-
tos of patients’ wounds, extracting pertinent details that cause some simulations/
subjects to resolve their wounds, while others progress to deranged infl ammation 
and inappropriate healing. At the molecular level, models that can use concentra-
tions of mediators as inputs to or outputs from equation-based models will have an 
advantage. Eventually, the goal is to link together local dynamics with the larger 
context of a patient’s body and thus truly allow for rational, patient-specifi c diagno-
sis and therapy.     
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 Introduction

Necrotizing enterocolitis (NEC) is a severe disease of the gastrointestinal (GI) tract 
that is characterized by increased permeability of the intestine and necrosis of the 
bowel wall. Although 5–25% of the cases seen occur in full-term term infants [1], 
the majority of NEC cases occur in very low birth weight (<1,500 g) premature 
infants; in fact, NEC affects up to 10% of low birth weight infants and is the leading 
cause of morbidity and mortality in the neonatal intensive care unit [2]. The onset of 
NEC is unpredictable but typically occurs within 7–14 days of birth [3]. NEC is 
categorized into three stages based on severity, and the symptoms of NEC include 
gastrointestinal dysfunction, abdominal distension, feeding intolerance, and cardio-
vascular compromise.

Pathogenesis Although its pathophysiology is not entirely understood, NEC is 
thought to be related to the interaction of a number of complex factors, including the 
physiological immaturity of the GI tract, abnormal bacterial colonization of the gut, 
and disordered inflammatory signaling. A mature intestine utilizes many defense 
mechanisms, including intestinal mucus, gastric acid, peristalsis, cell surface 
glycoconjugates, intestinal macrophages, and antimicrobial peptides, to prevent 
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the translocation of bacteria across the intestinal barrier [2–6]. In preterm infants, 
the immaturity of these mechanisms (e.g., immaturity of GI motility, digestive 
ability, barrier function, immune defense, and circulatory regulation) can lead to 
increased bacterial translocation across the intestinal barrier. As a result, bacteria 
that are normally confined to the intestinal lumen are able to reach systemic organs 
and tissues, possibly leading to bacterial sepsis.

An abnormal pattern of bacterial colonization in preterm infants may also con-
tribute to the pathogenesis of NEC. NEC does not occur in utero when the gut is 
sterile, implying that bacteria are involved in its pathogenesis [2]. Immediately fol-
lowing birth, the intestinal lumen is colonized with a diverse population of both 
harmful and helpful bacteria. Commensal bacteria (or normal flora) are helpful bac-
terial species, such as Lactobacillus or Bifidobacterium, that play a very beneficial 
role in the host by maturing the GI tract [7], enhancing digestion efficiency, decreas-
ing the permeability of the intestinal wall [8, 9], and limiting pathogenic bacterial 
colonization by competing with pathogenic bacteria for binding sites and nutrients. 
Since preterm infants are susceptible to an abnormal composition of gut microflora, 
they do not experience as many of the benefits conferred by commensal bacteria and 
often lack the necessary mechanisms to prevent uncontrolled inflammatory 
responses or to respond appropriately to normal bacterial colonization [2].

Disordered inflammatory signaling is another factor thought to contribute to 
NEC and is often associated with disordered Toll-like receptor 4 (TLR4), Toll-like 
receptor 9 (TLR9), platelet activating factor (PAF), or nitric oxide (NO) signaling. 
Activation of TLR4 by lipopolysaccharide (LPS) can result in a widespread proin-
flammatory response [10]. The signaling cascade that follows TLR4 activation trig-
gers the secretion of antimicrobial factors and IgAs [11, 12] as well as the production 
and release of various proinflammatory cytokines [13]. Sustained TLR4 activation 
leading to sustained inflammation can cause increased damage and bacterial trans-
location, contributing to the severity of NEC. TLR4 activation also causes increased 
apoptosis of intestinal epithelial cells and reduced intestinal healing.

It is important to note that all infants express TLR4 but most do not develop 
NEC. Thus, the means by which TLR4 responsiveness is maintained at an appropri-
ate level to maintain homeostasis and protect the host is an important topic for 
investigation. TLR9 is a Toll-like receptor that recognizes DNA sequences that con-
tain several CpG motifs, which are sequences that are characteristic of the bacterial 
genome [14]. Although TLR9 is known to be proinflammatory in many contexts, 
studies have shown that TLR9 activation with CpG DNA can limit TLR4 signaling 
in enterocytes and reduce intestinal inflammation in NEC [15, 16].

PAF is a potent phospholipid mediator that is secreted by multiple cell types. 
PAF release is triggered by several stimuli including hypoxia, infection, or local 
injury. PAF is hypothesized to contribute to the development of NEC since it has 
been shown to upregulate TLR4 on the intestinal epithelium [17], which in turn aug-
ments intestinal inflammation. PAF concentrations have been observed to be signifi-
cantly higher in NEC patients, likely due to increased PAF production once LPS is 
introduced into the system and/or suppressed PAF catabolism [18].
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Nitric oxide (NO) is a free radical that reacts with multiple substances, resulting 
in local and systemic effects that alter tissue inflammation. One of the most relevant 
reactions of NO is with superoxide to produce peroxynitrite [19]. Peroxynitrite is 
generated at inflammatory sites and is responsible for mediating tissue injury. 
Several studies have confirmed that NO causes epithelial injury by enhancing 
enterocyte apoptosis and disrupting the ability of the epithelial tissue to repair itself 
by inhibiting enterocyte migration [19]. In addition, NO has been shown to destroy 
tight junction proteins between enterocytes, thereby allowing bacteria to more read-
ily penetrate the epithelial layer [20, 21].

In addition to the effects of TLR4, TLR9, PAF, and NO, Nanthakumar et al. [22] 
provided evidence that the excessive inflammatory response of the immature intes-
tine may be due to inappropriate expression of innate immune response genes in 
immature tissue. For example, the study identifies developmental changes that coor-
dinate the downregulation of TLR4 expression and their signaling molecules and 
upregulation of negative regulators that are likely important in establishing postna-
tal intestinal colonization [22]. It is therefore hypothesized that if an infant is born 
before those developmental changes have taken place, they may respond inappro-
priately to bacterial colonization by triggering excessive inflammation.

Together, immaturity of the GI tract, abnormal intestinal bacterial colonization, 
and altered inflammatory signaling at least partly account for the increased risk for 
preterm babies to develop NEC. Inflammation is an essential process that ideally 
results in complete healing and reconstruction of the injured tissue; however, inflam-
mation can also cause substantial damage to surrounding tissue [23]. Under normal 
circumstances, the amount of damage caused to surrounding tissue during the 
inflammatory process is moderate and poses minimal threat to the individual. A 
problem arises, however, if the inflammation becomes excessive or persistent, as in 
NEC. The immune system is then faced with a complex challenge of responding 
sufficiently to the imposed threat without producing too much collateral damage 
[24]. We hypothesize that an imbalance in inflammation and immune mechanisms 
may occur in individuals with immature immune systems and may contribute to the 
progression of diseases such as NEC.

Intervention The American Academy of Pediatrics has acknowledged the benefits 
of human milk for all infants and particularly those born prematurely [25]. Beneficial 
effects of breast milk include improved host immune defenses, digestion, nutrient 
absorption, gastrointestinal function, and neurodevelopment [26]. These effects 
likely result from the combination of beneficial substances found in breast milk 
including anti- inflammatory cytokines that help suppress overactive immune 
responses, disease- specific antibodies, certain probiotic or beneficial bacteria, 
antimicrobial peptides, and immune cells from the mother. Heat shock protein 70 
(Hsp 70), which has been shown to protect the intestinal epithelium in adults, was 
found in mother’s milk [27]. Hsp 70 helps to maintain the intestinal barrier function 
by stabilizing the tight junctions between epithelial cells. It is not too surprising 
from this evidence, then, that NEC was 20 times more common in infants fed 
formula than in those whose diet included breast milk [28].
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Currently, the majority of infants that present symptoms of NEC are managed 
with fluid resuscitation, total parenteral nutrition, bowel rest, and intravenous anti-
biotics [29]. There is some debate if the use of antibiotics is beneficial or harmful in 
the case of NEC. Some studies have related treatment with antibiotics with an 
increased incidence of NEC since antibiotics result in decreased diversity of intesti-
nal flora and a predominance of less desirable bacteria [30].

Severe cases of NEC result in surgical intervention, which is often a challenging 
and insufficient option due to the fragility of the patients and rapid progression of 
the disease. Mortality from NEC is nearly 30–50% for infants with surgical inter-
vention [31]. Moreover, infants who recover from such surgeries may experience 
complications and other disorders later in life, including short bowel syndrome, 
intestinal strictures, and neurodevelopmental delays due to poor nutritional status 
[2, 4, 29, 32–35].

Although significant experimental and clinical progress has been made to under-
stand and identify factors that contribute to NEC [15, 19, 36–41], there is still a 
great unmet need to develop effective and noninvasive treatment strategies that can 
bolster the integrity of the epithelial wall, prevent excessive inflammation, and limit 
the colonization of pathogenic bacteria in the intestinal lumen. Probiotics, which are 
nonpathogenic bacteria species that are beneficial to the host, have been proposed as 
a possible treatment for NEC [41, 42]. The species of probiotics that are typically 
used are Bifidobacterium [43] and Lactobacillus [44], since these are the species of 
bacteria that constitute the normal flora of term infants and that occur naturally in 
breast milk. In theory, the administered probiotic bacteria will compete with the 
pathogenic bacteria while also stimulating host defense mechanisms and enhancing 
intestinal maturation [8, 9, 45, 46]. Recent findings suggest that the protective 
effects of probiotics are in part due to their ability to activate TLR9, which is known 
to inhibit TLR4 [16, 47].

Contradictory results have been obtained in studies implementing probiotic 
treatment for NEC. In many cases, neonates treated with probiotics have shown a 
reduced incidence and severity of NEC [1, 38, 40, 42, 48–50]. Hoyos et al. [49] 
noted an almost threefold reduction in the incidence of NEC after the administration 
of probiotics Lactobacillus acidophilus and Bifidobacterium infantis. However, 
other studies have shown sepsis resulting in infants that were treated with probiotics 
[39, 51]. Understanding when the administration of probiotics can be expected to 
produce positive outcomes is important if probiotics are to be used consistently as 
an effective treatment. After this is understood, the optimal treatment strategy, in 
terms of timing and dosing, can be determined.

A Systems Biology Approach The dynamics of NEC cross multiple scales from 
gene expression and inflammatory signaling cascades to organ failure. In addition, 
numerous factors have been implicated in the pathogenesis of NEC. The complexity 
of NEC coupled with its severity and lack of effective therapy has motivated the use 
of systems biology approaches, such as computational modeling, to gain fuller 
insight into the important mechanisms that affect NEC dynamics and possible 
effective therapies for the disease.
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Mathematical modeling, an important tool for systems biologists, can be used to 
isolate the effects of particular mechanisms and treatments by including or exclud-
ing certain terms from model equations. In this way, nuances may be uncovered 
from theoretical studies that may not otherwise be observed or predicted using 
experimental or clinical studies. A symbiotic relationship between mathematical 
models and experiments should exist in which experiments help to inspire, refine, 
and correct mathematical models while insight gained from mathematical models 
helps to create, design, and direct experiments. Such a relationship maximizes prog-
ress towards the goal of effectively treating diseases.

For NEC, mathematical models have included both equation-based and agent- 
based models [52–56]. They have been used to understand the elements that con-
tribute to NEC and to predict the effects of probiotics, TLR4, TLR9, NO, and breast 
milk on the development or progression of the disease. Since the association 
between the inflammatory response and NEC is strong, many of these models are 
rooted in models previously developed to study aspects of the inflammatory response 
[57–60] and adapted accordingly for the mechanisms of NEC and the structure of 
the intestine.

 Computational Modeling Approaches

Three types of models have been used to investigate the dynamics that take place 
during NEC. The simplest approach uses a system of ordinary differential equations 
(ODEs) to simulate bacteria and immune system interactions in the intestine in the 
context of NEC. Partial differential equation (PDE) and agent-based models 
(ABMs) are two complex modeling approaches that have also been used to study 
NEC. ODE models are particularly useful for obtaining basic insight into NEC 
dynamics since the simulations are relatively straightforward and numerically inex-
pensive. PDE and agent-based models are used to answer many questions that can-
not be addressed by ODE models such as the effects of spatial variability and 
dynamics. In this section, the approaches of each model are discussed and the 
strengths and shortcomings of each type of model are compared. Often a combina-
tion of the three approaches is most beneficial for obtaining the optimal amount of 
insight into NEC.

 Ordinary Differential Equation Modeling

ODEs are used to study changes in quantities that depend on one variable [61]. In 
order to develop a mathematical model of biological phenomena, the important fac-
tors involved in the process must be identified as well as the ways in which these 
factors can be increased or decreased. Then, ODEs for each factor can be defined 
and the system of ODEs can be solved in order to predict the behavior of the system. 
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ODE models typically describe the time dependence of a particular phenomenon 
but not the spatial variability. Thus, the ODE modeling approach is appropriate 
when it is reasonable to assume that information about a system does not vary 
widely at different points in space. In that case, the domain is assumed to be well 
mixed, and the solutions describe the change in the average value of the variable in 
the region with respect to time. A spatial element can be included in an ODE model 
by using a compartmental ODE modeling approach in which the average values of 
the variables are tracked in multiple regions or compartments.

ODE Models of NEC ODE models that analyze some of the key governing 
mechanisms of NEC have been developed previously [52, 55]. Experimental and 
clinical evidence form the basis for these models, and the overall goals of the studies 
are to determine the protective potential of probiotics in infants with NEC and to 
identify the impact of TLR4 signaling on intestinal health. In both models, the 
intestinal system is divided into three compartments: the intestinal lumen (or mucus 
layer), the epithelial lining of the intestine, and the combined intestinal tissue and 
blood supply. In Fig. 13.1, the compartments are depicted as well as the main 
players or variables that are tracked in each compartment: bacteria, epithelial 
permeability, cytokines, and Toll- like receptors.

Bacteria The intestine is colonized immediately after birth by multiple bacteria 
types, including both pathogenic and commensal bacteria. The total bacteria 
population in the intestinal lumen can be grouped as a single population, or the 
bacteria can be divided into beneficial (commensal or probiotic) and harmful 
(pathogenic) bacteria, depending on the overall goal of the model. In most cases, 
bacteria are assumed to grow logistically, which indicates there is a maximum 
carrying capacity within the intestinal lumen. Competition between bacterial species 
for space and nutrient should be modeled explicitly if multiple bacterial species are 
tracked in the lumen.

Fig. 13.1 Schematic of compartments of the small intestine that are used for the ODE models of 
NEC (not to scale). The compartments are divided into the lumen or mucus layer (blue), epithelial 
cell lining (green), and intestinal tissue with blood supply (purple). Bacteria (gray ovals), entero-
cyte receptors (TLR4 and TLR9), the rate of bacterial translocation across the epithelial barrier (ε), 
and immune system components (plusses denoting proinflammatory cytokines) are depicted 
within the various compartments
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The details of bacterial transport in and out of the lumen depend on the ability of 
bacteria to breach the barrier and the number of agents released into the lumen to 
eliminate foreign bacteria. In [55], a mucus layer compartment is included to model 
the layer of mucus that lines the apical side of the epithelium and that prevents 
direct contact of luminal components with the epithelial lining [62]. The mucus 
layer serves as one of the first barriers that bacteria encounter when trying to reach 
and enter the intestinal tissue. The composition of the mucus inhibits effective or 
rapid movement of bacteria [63], and multiple antimicrobial proteins are released 
into the mucus layer to target and eliminate bacteria [64, 65]. Bacteria thus exit the 
lumen and enter the mucus layer where they may remain, be eliminated by antimi-
crobial proteins, or breach the epithelial barrier and enter the intestinal tissue. It is 
not until the bacteria enter the tissue compartment that they invoke a significant 
immune response. Although a mucus layer was not specifically included in [52], 
similar growth dynamics and exit dynamics (via translocation across the epithe-
lium) were assumed for bacteria in the lumen compartment.

Epithelial Permeability The intestine is lined with a single layer of epithelial cells 
that serve as a barrier between the outside world (lumen) and the intestinal tissue. 
A primary function of this epithelial layer is to regulate the passage of materials 
across this barrier, allowing for absorption of necessary materials while preventing 
the incorporation of harmful materials such as pathogenic bacteria.

Since preterm infants with NEC tend to have an injured epithelial cell lining due 
to immaturity or exaggerated inflammation that damages the epithelium, tracking 
the rate of translocation across this barrier is an important element in quantifying 
NEC. If the epithelium is not intact, bacteria are able to breach the barrier more eas-
ily [66], which can trigger an inflammatory response that can cause additional injury 
to the barrier. An increased rate of bacterial translocation is thus thought to contrib-
ute to the development of NEC.

It is important to note that since a large number of commensal bacteria are neces-
sary for the maintenance of homeostasis, the host can identify and allow commensal 
bacteria to remain in the intestinal lumen or mucus layer [67]. A significantly differ-
ent number or type of luminal bacteria from normal indicates the presence of a threat 
to the system, often resulting in bacterial translocation across the epithelial barrier 
into the intestinal tissue and bloodstream [68]. To interpret this phenomenon math-
ematically, Arciero et al. [52] introduced a threshold value, T, which corresponds to 
the resistance provided by the intestinal epithelium to bacterial translocation. If the 
product of bacteria and the rate of translocation is greater than the intestinal wall 
threshold, then bacteria are assumed to cross the barrier; otherwise, no bacteria are 
able to pass through the barrier. The following function is used to capture this idea: 
[ ( ) ] max ( ) ,, ,e eB kB T B kB TL PB L L PB L+ − = + −{ }+ 0 . In this function, ε is the rate 
of bacterial translocation, BL denotes pathogenic bacteria in the lumen, and BPB,L 
denotes the probiotic bacteria in the lumen. In models that distinguish between 
pathogenic and probiotic bacteria, as in [52], it is reasonable to hypothesize that 
probiotic bacteria are not as effective at breaching the barrier as pathogenic bacteria. 
To incorporate this hypothesis, a parameter k that varies between 0 and 1 is used to 
scale the contribution of probiotic bacteria to exceeding the threshold.
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Probiotic bacteria have also been shown to enhance the viability of the intestinal 
barrier [3, 8, 9, 69]. Thus, beneficial effects of probiotics in NEC can be included in 
the model as a term that reduces the rate of bacterial translocation.

Immune System Components If the mucus layer is not successful at preventing 
bacterial penetration of the epithelium [70], bacteria may enter epithelial cells or 
pass through the gaps between them. In many cases, intestinal macrophages, which 
are immune cells that phagocytose and kill microorganisms but do not release 
proinflammatory cytokines like macrophages in other tissues [71–73], eliminate the 
bacterial invaders before the bacteria are able to invoke an overly robust inflammatory 
response.

However, if the mucus layer, intestinal macrophages, and dendritic cells (another 
type of immune cell that extends protrusions into the mucus layer to sample for 
bacteria and release antimicrobial proteins to eliminate the bacteria [74]) are all 
unable to prevent bacteria from entering the blood and tissue, an inflammatory 
response ensues, which includes the activation of blood macrophages and the sys-
temic secretion of proinflammatory cytokines. Cytokines generate inflammation to 
defeat the invaders. Although the inflammatory response is necessary to destroy 
harmful bacteria, it also causes injury to the intestinal barrier and inhibits epithelial 
cell proliferation and migration, thereby propagating the epithelial injury to a large 
extent. As expected, blood cytokine levels are elevated in infants suffering from 
NEC since bacteria are able to breach the epithelial barrier and evoke an over-
whelming inflammatory response. Studying the pattern of cytokine expression may 
yield important insights into the pathophysiology of NEC [21, 28].

The models in [52, 55] do not include explicit terms for the anti-inflammatory 
response. Instead, the idea of negative feedback in those models is captured via 
parameter values and inhibitory Toll-like receptor signaling. Nevertheless, the 
immune system also produces anti-inflammatory cytokines, which work to down-
regulate the initial proinflammatory response, and the contributions of this phenom-
enon should be included in subsequent studies of NEC.

Toll-Like Receptors The activation of TLR4 on enterocytes facilitates bacterial 
translocation across the intestinal barrier [75] and triggers a robust inflammatory 
response. TLR4 activation also increases the adhesion of enterocytes to the underlying 
matrix, which in turn restricts normal cell migration and prevents the efficient 
migration of epithelial cells into damaged regions of the epithelium. It has been 
observed that TLR4 expression is significantly elevated in experimentally induced 
NEC relative to control conditions [15]. When TLR4 is blocked, bacterial translocation 
is reduced significantly [36]. These observations provide evidence that TLR4 may be 
a key player in the disease and that its promotion of inflammation and inhibition of 
cell migration should be included in a theoretical model of NEC. Methods that limit 
TLR4 activation may have important application in the treatment of NEC.

Studies have shown that TLR9 activation can limit TLR4 signaling in entero-
cytes and reduce intestinal inflammation in NEC [15, 16], unlike the role of TLR9 
activation in other contexts. This suggests that promoting TLR9 activation may be 
a strategy for treating infants suffering from NEC. It is hypothesized that probiotics 
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are a successful treatment for NEC because probiotic DNA can activate TLR9 
which in turn inhibits the activation of TLR4 [76]. The dynamics of TLR4 and 
TLR9 can be predicted by the model by including the mechanisms of interaction 
between bacteria, the immune response, and these receptors.

Main Findings: The Role of Probiotics The model in [52] provides a preliminary 
tool for exploring the effects of probiotic treatment in NEC. The action of probiotics 
is represented by three key components in the model: competition with pathogenic 
bacteria in the lumen, maturation and restoration of the epithelial lining (i.e., 
reduction of the rate of bacterial translocation), and inhibition of the inflammatory 
response. The model is used to assess the impact of each of these factors by 
predicting the overall behavior of the system as the relative strengths of these three 
mechanisms are varied. To simulate infections of variable severity, the initial amount 
of pathogenic bacteria in the lumen or the growth rate of the pathogenic bacteria in 
the lumen is increased. A healthy outcome is predicted if bacteria are absent from 
the blood and the rate of bacterial translocation across the epithelium is at a baseline 
(normal) value. Aseptic death is predicted when the rate of translocation is elevated 
even though no bacteria enters the blood, indicative of a highly inflamed system. In 
septic death, both the translocation rate of the epithelium is elevated and bacteria are 
present in the blood/tissue compartment.

Bistability is predicted to occur between health and septic death states over a 
range of pathogenic growth rates wherein bacteria can reach one of two steady 
states depending on the initial number of bacteria in the system. This possibility for 
bistability results from the threshold that governs passage across the epithelial bar-
rier. The barrier prevents activation of the inflammatory response when the number 
of luminal bacteria is below a threshold [21]; a transient increase in the number of 
pathogenic bacteria in the lumen, however, can lead to bacterial translocation and 
increased inflammation, resulting in a disease state. Interestingly, since the presence 
of probiotics in the lumen contributes to the total amount of bacteria in the lumen, 
probiotics may contribute to these transient elevations in the total luminal amount of 
bacteria and thereby have a paradoxically negative impact by lowering the level of 
pathogenic bacteria needed to induce disease.

Clinical studies have shown contradictory results when probiotics were admin-
istered to preterm babies [38–40, 49, 51, 77, 78] as treatment for NEC. In a meta- 
analysis of 20 randomized, controlled trials, preterm infants treated with a 
probiotic supplement had a significantly decreased risk of NEC and death [78]. 
Yet, in other cases, there was no reduction in the risk of NEC with probiotic treat-
ment [77]. The model predictions also show contradictory results. For example, in 
most instances, the model predicts that the introduction of probiotics improves 
health (i.e., the inclusion of probiotics increases the regions in parameter space 
where health outcomes are predicted); however, there exist some cases in which 
health would have been predicted in the absence of probiotics, but disease is pre-
dicted in the presence of probiotics. An example of such a case is highlighted in 
Fig. 13.2. The figure depicts health and disease predictions in the presence or 
absence of probiotics as the pathogen growth rate and initial level of pathogen in 
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the lumen is varied. In the parameter region, points (corresponding to a pair of 
parameter values) located below or to the left of the solid lines yield predicted 
healthy states, and points located above or to the right of the solid lines yield dis-
ease (septic death) states. The point labeled “A” in the figure gives an example of 
a case that is healthy without probiotics (i.e., to the left of the black curve) but is 
predicted to result in septic death following probiotic treatment (i.e., to the right 
of the red curve). Additional work is needed to determine how these model predic-
tions correspond with the clinical observations.

Since the effectiveness of probiotic treatment on the incidence and severity of 
NEC may also depend on other factors [79], including feeding type [80], delivery 
type [73], or other existing health disorders of the infant, certain model parameters 
should be adjusted to test the impact of these factors in future studies. Moreover, it 
has been suggested that some of the positive clinical results associated with NEC be 
reconfirmed in order to verify that the original results were not affected by inade-
quate sample size, lack of adequate quality control of the products, differences in 
outcomes with different probiotic strains and lack of uniformity, questionable bio-
statistical methodology, or the potential for adverse events [81].

Main Findings: The Role of TLR4 and TLR9 The model in [55] extends the probiotic 
model developed in [52] to study the effects of enterocyte TLR4 and TLR9 in NEC. 
The effects of TLRs are investigated by performing simulations where no TLRs are 
active and comparing those results to simulations in which only TLR4 is active and 
in which both TLR4 and TLR9 are active. Performing these three sets of simulations 
allowed the contributions of each receptor to be isolated. The model predicts a 

Fig. 13.2 Effect of the initial number of pathogenic bacteria on predictions of health and disease 
is shown as the pathogen growth rate is varied. Black curve: separates regions of health and disease 
in the absence of probiotics. Red curve: separates regions of health and disease in the presence of 
probiotics. Point A highlights a combination of parameters for which health is predicted without 
probiotics, but disease is predicted when probiotics are included

J. Arciero et al.



241

sensitive interplay among mucus layer dynamics, the severity of infection, and the 
degree of TLR4 activation. Most model results indicated relative promotion of 
health and disease that were expected from the combined TLR effects. However, the 
model also uncovered parameter regimes exhibiting unexpected outcomes, such as 
the direct promotion of health by TLR4 alone in some circumstances.

Including TLR9 often not only promoted health in place of disease but also con-
verted healthy states to disease states, depending on the balance of other system 
effects. For example, there are parameter values that define the strength of TLR4 
activation for which the presence of TLR4 alone can expand the health region and 
the inclusion of TLR9 further expands the predicted region of health. However, for 
other values of these parameters, the inclusion of TLR9 changes otherwise healthy 
outcomes with TLR4 alone into outcomes involving aseptic death despite the inhib-
itory effects of TLR9 on TLR4. Figure 13.3 provides an example of this unexpected 
situation of TLR9 causing harm in the system. The rate of bacterial translocation 
(panel a) is at baseline and the product of the translocation rate and bacteria in the 
mucus layer (panel b) is below threshold for TLR4 alone, corresponding to a health 
state prediction (red curves). Yet, when TLR9 is included, the translocation rate is 
elevated above baseline and the threshold value is exceeded, corresponding to a 
prediction of septic death (black curves). Arciero et al. [55] hypothesized that this 
sensitivity to parameter values is evidence that final maturation in the womb likely 
brings out a balance of parameters that yields a healthy outcome and that preterm 
babies may be unhealthy if this balance of parameters has not been established.

Fig. 13.3 (a) Comparison of the time dynamics for the rate of bacterial translocation (ε) for the 
model case with TLR4 only (red) and the model case with both TLR4 and TLR9 present (black). 
ε = 0.1 corresponds to the baseline (normal) rate of translocation. In the absence of TLR9, ε is at the 
baseline level. In the presence of TLR9, ε is elevated, corresponding to an inflamed state. (b) 
Comparison of the time dynamics for the product of the rate of bacterial translocation and bacteria 
in the mucus layer (BM) for the two model cases described in (a). The dotted line corresponds to the 
threshold value of the intestinal wall. If the product εBM is greater than the threshold, bacteria enter 
the tissue. If the product is less than threshold, no bacteria enter the tissue. In the case depicted here, 
bacteria enter the tissue in the presence of TLR9 but do not cross the barrier in the absence of TLR9
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 Partial Differential Equation Modeling

The previous ODE model included, to some extent, the effects of the spatial struc-
ture of the intestine by utilizing separate compartments for different regions of the 
intestine. While such compartmentalization could be further refined to better model 
the effects of spatial structure of the intestine using ODEs, another approach is to 
transition from ODE models to PDE models. While the computational time for PDE 
model simulations is longer than for ODE model simulations, PDE models allow 
more complete tracking of spatial dynamics than compartmental ODE models. In 
addition, theory and methods for the numerical and analytical solutions of PDE 
models are more developed than for ABM models (see section “Agent-Based 
Modeling”). Nonetheless, PDE models inherently assume that model players can be 
modeled by differentiable functions, an assumption not shared by ABM models and 
an assumption that can break down at smaller length scales.

PDE Model of NEC Barber et al. [56] presented the first PDE model of NEC. This 
model expands on the four variable ODE model of Reynolds et al. [57] by adding 
variables specific to NEC and including the spatial structure specific to the intestine. 
These additions introduce complexity into the system, and thus a few approximations 
and simplifications were made. In particular, the spatial structure of the intestine and 
the corresponding domain on which the PDEs were solved (Fig. 13.4) were simplified 

Fig. 13.4 (a) General intestinal structure with regions represented in the PDE model labeled. 
From inside to outside there is the lumen, the usual home of the bacteria (blue), the villous region 
lined with epithelial cells (epithelium) that prevents bacteria from leaving the lumen (epithelial 
region in the model, orange), the muscle and tissue that help with intestinal function and structure 
(tissue region in the model, yellow), and the incoming blood vessels (blood region in the model, 
red). (b) To arrive at the corresponding computational model, a short section of the intestine is 
sliced longitudinally and laid out flat as seen in (c). (c) The corresponding computational domain 
with, from top to bottom, a lumen, epithelial, tissue, and blood region. The computational domain 
is shown to scale with unit being in centimeters
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and multiple key players in the immune response were lumped into single variables. 
For example, the multiple proteins identified as proinflammatory cytokines were 
lumped into one variable, cp (proinflammatory cytokines). It is important to note 
that, because of these simplifications, the model has inherent limitations in terms of 
its accuracy, predictive capabilities, and scope of applicability.

Intestinal Physiology A depiction of the intestine and the corresponding 
computational model is provided in Fig. 13.4. This PDE model extends the three-
compartment ODE models in [52, 55] to include intestinal dynamics in four regions. 
Bacteria are located in the intestinal lumen (blue) and are considered the primary 
source of external pathogens. The epithelial cell region (orange) regulates the 
translocation of pathogenic bacteria from the lumen into the intestinal tissue. The 
tissue region (yellow) consists of intestinal cells that can be damaged and destroyed 
by both bacteria and an excessive inflammatory response. The blood region (red) 
reflects the blood supply to the intestine and acts as a source of neutrophils. As the 
figure suggests, the regions have been converted into rectilinear regions and 
homogenized so that spatial structures, such as the undulating villi and blood 
vessels, do not explicitly appear in the model. Absorption of nutrients in the epithelial 
region and clotting of blood near damaged vessels are not included in this version 
of the model. Throughout the rest of the chapter, the phrase “vertical direction” will 
correspond to the z-direction in Fig. 13.4c and is the primary direction of bacterial 
movement from the lumen into the tissue.

Model Variables The model includes 11 key players in the intestinal inflammatory 
process:

•	 b: bacteria, which are pathogens that trigger the immune response
•	 m, ma: resting and activated macrophages, which are immune cells that initiate 

the immune response once they are activated by a pathogen
•	 n, na: resting and activated neutrophils, which are immune cells that are recruited/

activated by macrophages and assist in the immune response
•	 cp, ca: pro- and anti-inflammatory cytokines, which are proteins that enhance 

(pro-inflammatory) or inhibit (anti-inflammatory) the immune response
•	 d: Damage associated molecular pattern molecules (DAMPs), which are mole-

cules that track tissue damage and upregulate the immune response
•	 ec: epithelial cell integrity, which is a measure of health of the epithelial layer
•	 ZO1: zonula occludens-1, which are tight gap junction proteins connecting epi-

thelial cells that help to limit bacterial translocation into intestinal tissue
•	 NO: nitric oxide, which is a molecule that destroys ZO1, thereby promoting 

bacterial translocation

The last three players, while not unique to the intestine, are particularly impor-
tant in NEC because of the importance of the epithelial barrier in containing the 
large number of bacteria in the intestine. The model simulates the dynamics of all 
variables in all four regions except ec and ZO1, which only need to be tracked in the 
epithelial region.
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Units All units except bacterial units (106 bacteria/cm3) are nonspecific units of the 
form x-units/cm3 (e.g., cp-units/cm3). While using specific units allows model results 
to be readily compared with experimental data, it is reasonable to use nonspecific 
units when the goals of the model are qualitative in nature or if there is not sufficient 
experimental data available. The choice of nonspecific units is also appropriate 
when several model players have been lumped into one variable. For example, in the 
NEC PDE model, multiple types of proinflammatory cytokines have been lumped 
into one variable, cp. It would be difficult to assign specific units to the variable 
since different types of proinflammatory cytokines have varying molecular weights 
and degrees of effectiveness. Instead, nonspecific units of cp-units/cm3 are used and 
are best interpreted as corresponding to the average proinflammatory cytokine 
effectiveness per cm3.

Model Equations There are ten PDEs and one constraint (the number of resting 
neutrophils is approximately constant) that govern the dynamics of the 11 key 
players in the model. Four of the ten PDEs are described here. Details of the  
other six PDEs are similar and given in [56]. The values of all parameters are  
also given in [56].

The PDE governing bacteria is:
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The terms on the right hand side correspond, in order, to diffusion (i.e., random 
wandering of bacteria through space), logistic growth of bacteria, bacteria being 
killed by activated macrophages and neutrophils, and bacteria being killed by 
immune response players other than macrophages and neutrophils (e.g., antibod-
ies). R(ca) is a special “retardation factor” given by
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This term represents the inhibitory effect of the anti-inflammatory cytokines on 
the immune response. In Eq. (13.1), R(ca) reduces the rate at which activated 
macrophages and neutrophils kill bacteria in the presence of high levels of anti- 
inflammatory cytokines.

The PDE governing macrophages is:
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The first term on the right hand side contains three parts: the diffusion of macro-
phages, taxis of macrophages towards regions of higher proinflammatory cytokine 
concentrations (i.e., macrophages move to areas of trouble), and taxis of macrophages 
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towards regions of higher bacterial concentrations. Reasonable reviews of chemo-
taxis and PDE models used to represent chemotaxis can be found in [82–84]. The 
second term of Eq. (13.3) corresponds to eventual natural death of activated mac-
rophages. The third term corresponds to recruitment of activated macrophages 
from the available pool of resting macrophages by bacteria, proinflammatory cyto-
kines, and DAMPs. The rate at which activated macrophages are recruited is 
reduced in the presence of high levels of anti-inflammatory cytokines. Activated 
neutrophils are governed by a similar PDE except that they are not activated directly 
by bacteria. Resting macrophages are also defined by a similar PDE except they do 
not diffuse or undergo taxis.

The PDE governing proinflammatory cytokines is:
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The terms on the right hand side include the diffusion of proinflammatory cyto-
kines, the natural decay or degradation of proinflammatory cytokines, the produc-
tion of proinflammatory cytokines by activated immune cells, and the uptake of 
proinflammatory cytokines by resting immune cells. The equations for anti- 
inflammatory cytokines, damage, and nitric oxide take on similar forms.

All model PDEs are reaction–diffusion equations that include typical terms for 
interaction, recruitment, production, and decay. While most terms are straightfor-
ward, some of  the more complex terms have been included in order to model rele-
vant  mechanisms for the biological system (e.g., taxis and retardation factor) to 
obtain physiologically realistic steady-state behavior. For instance, the fourth term in  
Eq. (13.1) was chosen so that the model can yield both a stable unhealthy and a stable 
healthy steady state, which corresponds physiologically to the fact that some patients 
die while others successfully recover.

While the other equations employ linear diffusion operators, the following PDE 
for epithelial integrity (ec) includes nonlinear diffusion to incorporate the complex 
barrier function of the epithelial layer:
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The first nonlinear diffusion term corresponds to changes in epithelial integrity 
resulting from the migration of healthy epithelial cells from regions of high epithe-
lial integrity to low epithelial integrity. The second logistic growth term corresponds 
to increases in epithelial integrity resulting from the innate ability of epithelial cells 
in the epithelial layer to recover when in normal surroundings (i.e., adequate nutri-
tion and no intruders). The third term corresponds to decreases in epithelial integrity 
due to death or injury of epithelial cells caused by activated neutrophils, proinflam-
matory cytokines, and bacteria. The destruction rate of epithelial cell integrity is 
given by ka(na,cp,b), which is an increasing function of activated neutrophils, proin-
flammatory cytokines, and bacteria.
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The two functions appearing in the nonlinear diffusion term are given by:
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The product of these two functions corresponds to the effective diffusion rate of 
epithelial cell integrity or, alternatively, the migration rate of epithelial cells from 
regions of low epithelial cell integrity to high epithelial cell integrity. The choice for 
β(ec) employs the assumption that epithelial cells in regions of low epithelial cell 
integrity remain in their current location, while epithelial cells in regions of high 
epithelial cell integrity will readily migrate to assist in restoring epithelial cell integ-
rity in other regions. The function for α(b) is chosen so that migration is inhibited in 
the presence of bacteria [85].

Epithelial Barrier The epithelial layer limits translocation of bacteria from the 
lumen into the surrounding tissue, corresponding to zero permeability of the 
epithelial region to bacteria. When the epithelial layer loses integrity, however, 
bacteria can more freely translocate. This alters the diffusion into and out of the 
epithelial region and is modeled by redefining the vertical diffusion coefficient for 
the variables as follows:
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Equation (13.7) is adopted so that ZO1, the concentration of tight junction protein 
in the epithelial region, determines the effective vertical diffusion rate in the epithe-
lial region. When the tight junction protein concentration is at its maximal amount, 
the baseline diffusion rate is used in the model. For bacteria and the immune cells, 
the baseline diffusion rate is zero. For variables corresponding to smaller sized 
objects (cytokines and nitric oxide), the baseline diffusion rate is one-tenth of 
the maximal diffusion rate. When the tight junction protein concentration is zero, 
the maximal diffusion rate is used. In this way, ZO1 also serves as a measure of the 
epithelial layer permeability (see [56]).

Numerics The PDEs are solved using standard centered finite differences with the 
exceptions of the taxis and nonlinear diffusion of ec, which use upwinding. Different 
diffusion constants are used in each region to more closely model reality, and thus 
the linear diffusion rates are discontinuous functions in the vertical direction. 
Harmonic averaging of the vertical diffusion constants at the boundaries between 
the regions has been performed in order to more appropriately and accurately treat 
these discontinuities (see [86]).

Model Initial Conditions and Scenarios The model considers NEC dynamics after 
an initial injury has formed. This corresponds to an initial condition for the PDE in 
which the epithelial integrity is less than 1 or 100% within the epithelial layer. For 
simplicity, it is assumed that at the start of a given simulation the system is 
completely healthy with the exception of lowered epithelial integrity and ZO1 
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values inside an injured area within the epithelial region. Typically, unless otherwise 
stated, we use a circular cylindrical injured area so that

 
e x y z t e e H x y rc c c( , , , ) ( ) ( ), ,= = + − + >0 10 0

2 2
0  

(13.8)

where ec,0 is the initial epithelial integrity in the injured area, r0 is the initial radius 
of the injured area, and H is the Heaviside function. ZO1 is similarly initialized:

 ZO ZO ZO1 0 1 1 10 0
2 2

0( , , , ) ( ) ( )x y z t H x y r= = + − + >  (13.9)

where ZO10 is always chosen to be equal to ec,0.
To test the effects of breastfeeding in NEC, the model was adjusted so that the vari-

able ca corresponds to only exogenously derived anti-inflammatory cytokines, in par-
ticular, anti-inflammatory cytokines coming from the mother’s breast milk [87, 88]. In 
addition, breast milk contains antimicrobial peptides that are capable of killing mul-
tiple pathogenic organisms and modulating the immune system [87, 88]. To include 
these antimicrobial effects, an additional death term of the form −kampb is included in 
the PDE for bacteria [Eq. (13.1)]. Individuals not fed by breast milk (henceforth 
called “formula fed” individuals) are assumed to have no additional antimicrobial 
peptides or corresponding additional bacterial death term and no exogenously derived 
anti-inflammatory cytokines (i.e., ca = 0 and has no corresponding PDE).

Results The model is first used to depict a typical scenario for formula-fed infants. 
It is then used to investigate the effects of breast feeding and the severity and extent 
of the epithelial injury. Finally, the model is used to consider how the shape of an 
injured region may affect the outcome of a patient.

Formula-Fed Simulation Figure 13.5 shows typical temporal dynamics for the 
model by plotting the average values of the variables in each region for a given 
formula-fed simulation with an initial epithelial integrity of 0 in a circular injured 
area that occupies 20% of the epithelial region (see Fig. 13.6). The absence of 
epithelial integrity and gap junction proteins in this area allows bacteria to invade the 
epithelial and tissue regions. The invasion, however, is relatively short lived as the 
immune response quickly responds and kills off most bacteria. Unfortunately, in this 
simulation, the immune response is overactive and causes damage or DAMPS to 
form in the tissue, which further activates the immune response resulting in a positive 
feedback loop that ends with an elevated damaging immune response in both regions.

While the PDE model yields a lot of spatial information, the information pre-
sented here is limited to the dynamics of the epithelial integrity, since epithelial 
integrity is a good indicator of the general health of the infected intestinal region. 
The epithelial integrity at the z-value halfway through the epithelial region is plotted 
as a surface in Fig. 13.6. The figure shows the initial condition for epithelial integ-
rity at t = 0 h as well as the spatial dynamics of epithelial integrity as time pro-
gresses. The plot shows epithelial integrity diffusing into the injured area, which 
corresponds to healthy epithelial cells migrating into the injured area. As such, the 
epithelial integrity inside the initial injured area improves with time. As epithelial 
cells move into that region, however, they also move away from the initially unin-
jured area. This causes the epithelial integrity outside the initial injured area to 
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decrease as time progresses. The end result can be seen at the last time where epi-
thelial cell integrity is approximately 80%. While the original injured area is health-
ier than when it was initially, it still has not fully recovered. In addition, the area 
around it has fallen from 100% epithelial integrity to 80% epithelial integrity. The 
reason for this failure in recovery despite lower bacterial levels (see Fig. 13.5) is 
because the overactive immune response is generating damage at a rate that does 
not allow the epithelial integrity to fully recover.

Fig. 13.5 Temporal dynamics of the system as measured by the average values of the variables in 
each layer. The plots show an initial bacterial invasion that is easily eliminated by an immune 
response that continues to grow well after the bacteria are gone because of the collateral damage 
being produced by too many activated immune cells
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Effects of Breastfeeding Figure 13.7 shows a simulation corresponding to a breast-
fed individual where exogenously derived anti-inflammatory cytokines and 
antimicrobial peptides have been included. The same injured area size (20%) and 
initial epithelial integrity (0%) have been used in this simulation. In contrast to the 
previous simulation, the injured area recovers quickly to 100% epithelial integrity. 
Thus, the model confirms the benefits of breast milk and suggests its importance in 
cases of overactive immune responses, as in NEC.

Effect of Injury Size and Severity The PDE model was used to explore circular 
injured areas for all possible values of epithelial integrity levels (0–100%) and all 
possible values of initial injury sizes (0–78.5%; note that 78.5% corresponds to the 
largest circular injury that will fit within the computational domain). For each pair 
of initial epithelial integrity and initial injury sizes, the final average epithelial 
integrity level after 600 h was plotted in Fig. 13.8. Values closer to 0 or 0% 
correspond to failed recoveries, while values closer to 1 or 100% correspond to 
successful recoveries. The majority of the cases correspond to successful recoveries 
near 1, while a small minority of the cases correspond to failed recoveries. This is 
consistent with what is seen clinically where a majority of neonatal intestinal 
injuries resolve themselves.

Effect of the Shape of the Injured Area One interesting question that can be asked 
of a PDE model that cannot be easily ascertained from an ODE model is: What are 
the effects of the general shape of an injured area on the ability for the system to 

Fig. 13.6 Spatiotemporal dynamics of the system as measured by the epithelial cell integrity 
midway through (with respect to the z-direction) the epithelial region. The plots show the initial 
injured area is improved while the area outside the initial injured area is reduced from its initial 
100% integrity. The end result is suboptimal with an intestinal region whose epithelial integrity 
lies below 100% at approximately 80%. This corresponds to an unhealthy outcome

Fig. 13.7 Spatiotemporal dynamics of the system when exogenous anti-inflammatory cytokines 
and antimicrobial peptides are introduced. The initial injured area steadily increases back to 100% 
epithelial integrity, while the areas outside of the initial injured area stay at 100% epithelial integ-
rity corresponding to a healthy outcome
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recover? To investigate this question, three different initial shapes were considered: 
a circular shape (Fig. 13.9a), an irregular shape (Fig. 13.9b), and four small circular 
shapes (Fig. 13.9c). All initial shapes occupied 20% of the epithelial region. When 
using 0% initial epithelial integrity, all shapes gave unhealthy results with 
quantitative results differing minimally between the simulations. This motivated an 
investigation of whether or not there were certain initial epithelial integrity levels 
for which the shapes gave different results. For an initial epithelial integrity level of 

Fig. 13.8 Dependence of 
injury resolution outcome as 
measured by the final average 
epithelial integrity in the 
epithelial region on the initial 
severity (initial epithelial 
integrity in the injured area) 
and initial fractional size of 
the injured area. The model 
predicts most injuries 
naturally resolve themselves. 
It also suggests a strong 
dependence on the injury 
severity and a weak 
dependence on the injury size

Fig. 13.9 Spatiotemporal dynamics of the system for three different initial shapes of the injured 
area. For the circular shape in (a), the wound does not resolve itself as too much damage accumu-
lates in the tissue (see text). For the shapes in (b) and (c), however, the injuries do resolve them-
selves. This shows the outcome of a given simulation can depend on the shape of an injured area
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12.7%, the circular shape did not fully heal while the other two shapes did fully heal 
(see Fig. 13.9). While there are other initial epithelial integrity levels for which 
shapes can cause qualitative differences in the eventual outcome of a simulation, 
those cases are relatively few (<1% of all epithelial integrity levels).

One important note is that in Fig. 13.9a, the injured area seems to heal and then 
become reinjured. This occurs because damage (in the form of DAMPs) is slowly 
increasing in the epithelial region due to an overactive immune system. In the 
model, if damage remains below a certain critical level, the system is able to recover 
without the immune response becoming overactive. This is the case for the simula-
tions corresponding to Fig. 13.9b, c. If, however, DAMPs go above that critical 
level, as it does in Fig. 13.9a, then the high levels of DAMPs activate immune cells 
fast enough so that the rising numbers of immune cells produce DAMPs at a faster 
rate than they can decay. DAMPs often accumulate slowly in the tissue, however. 
This is the case in Fig. 13.9a. Before DAMPs have accumulated to excessive levels, 
the injured area has time to resolve itself. After that point, however, the DAMPs in 
the tissue finally accumulate to excessive levels and cause injury. To make sure 
this did not happen in Fig. 13.9b, c, the simulations were run until t = 2,400 h with 
all variables, including damage/DAMPs, returning to their healthy levels in all 
intestinal regions.

Summary of Findings The PDE model is able to produce physiologically realistic 
results that are consistent with the general effects of breast milk and the observation 
that most neonatal intestinal injuries resolve themselves. In addition, the model is 
able to show that spatial details (e.g., injured area shape) can alter the outcome of an 
injury resolution and that a PDE modeling approach can be used to investigate the 
effects of those spatial details.

Limitations and Extensions While the model has been developed with NEC 
specifically in mind, the model is still somewhat limited in its scope. It assumes the 
existence of an initial injured area when the simulation begins and does not consider 
how that initial injured area may have originally developed. In addition, the 
simulations can only be considered to be physiologically accurate for a limited 
amount of time since the model does not include effects of later stages of NEC such 
as the effects of microvessel breakage, blood clotting, and necrotic tissue. Adding in 
some of these effects to the PDE model would help extend the scope of the model.

The model has not yet been ideally calibrated as it is still only in its initial stages. 
Calibration includes finding not only one optimal set of parameters but also finding a 
distribution of parameters that can produce the range of physiological behaviors seen 
in patients. In fact, there are certain sets of parameters for which simulations can 
evolve into patterned or chaotic movement [89]. Structured parameter estimation 
techniques such as Markov chain Monte Carlo and Kalman filtering methods can be 
used to help quickly and thoroughly explore the parameter space for this model, 
which has over 50 parameters, many of which do not have well- determined values. 
In addition, those parameter estimation techniques can also be used to explore the 
possible physiologically realistic behaviors that the model can produce.
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Other aspects of breast milk besides anti-inflammatory cytokines and antimicro-
bial peptides can be included in this model. Also, the simplified geometry of the 
model can be replaced with a more accurate geometry including the shape of the 
villi in the intestine as well as the microvasculature. Only ten variables have been 
used. Likely candidates for variables that can be added to the model in order to 
improve results include TLR4 and probiotics (see the previous section) as well as 
other immune response members like dendritic cells. It is important to mention that 
while all of these suggestions would help to improve the model, some will help 
more than others and it is important to choose adjustments wisely if one is to avoid 
producing a needlessly complicated model whose results are difficult to interpret. 
Nonetheless, by carefully calibrating and developing this model, the model can 
eventually be used to make useful predictions and treatment suggestions.

 Agent-Based Modeling

Agent-based modeling is an object-oriented, rule-based, discrete-event computa-
tional modeling technique that employs a modular, scalable architecture to simulate 
biological systems [90–92]. Agent-based models (ABMs) are composed of virtual 
environments populated with objects (agents) that execute behaviors based on pro-
grammed rules that govern interactions with the local environment and other agents. 
Agent-based modeling has been used to dynamically represent complex biological 
processes such as inflammation [93–99], cancer [100–103], infectious diseases 
[104–108], and wound healing [109, 110].

In many biomedical applications of agent-based modeling, agents are used to 
represent individual cells within a system, with multiple classes of agents (cell 
types) sharing rules extrapolated from mechanistic knowledge obtained from in 
vitro experiments. The cell-as-agent is an intuitive level of resolution for biomedical 
agent-based modeling, since much basic research describes mechanistic processes 
that define cellular behavior such as signal transduction, gene regulation, protein 
synthesis, and compound secretion. ABM provides a useful platform for modeling 
the various cellular agents and molecular pathways involved in NEC and to view 
these complex interactions in real time to aid in hypothesis generation and 
evaluation.

ABM of NEC An et al. presented the first ABM of NEC in 2011 [54] using Netlogo, 
an agent- based modeling platform based on Java. The ABM was created to evaluate 
a minimally sufficient unifying hypothesis incorporating the following observations 
noted in the majority of cases of NEC:

 – NEC occurs predominantly in premature infants
 – Enteral feeding precedes the development of NEC in nearly all cases
 – Microbes (bacterial or viral) are associated with NEC

The ABM incorporated the following cell types of the premature gut: neonatal 
gut epithelial cells (NGECs), goblet cells (GCs), submucosal cells (SCs), 
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differentiating NGECs (DECs), and bacteria (Fig. 13.10), each with different 
molecular pathways modeling cell metabolism, inflammation, tight junction forma-
tion, and cell death by apoptosis or necrosis. The ABM was created to test the 
hypothesis that prematurity impairs the NGEC’s ability to manage its redox state, 
resulting in inflammation with the initiation of enteral feeding. Adding virulent bac-
teria further enhances this propensity towards inflammation, resulting in a cascad-
ing system failure that causes widespread necrosis of the entire NGEC population.

The agent rules representing molecular processes, such as receptor activation, 
signal transduction, metabolism, and transcription factor effects, were expressed 
using a detailed, qualitative approach [111, 112]. This approach consists of rela-
tively detailed component representation (i.e., enzymes, molecular species, and 
genes) with qualitative representation of biochemical kinetics using a logic-based, 
algebraic rule construction. As a result, molecular interaction rules are expressed as 
conditional statements of the form:

if Ligand A is present, then bind to and activate Receptor B
if Receptor B is activated, then increase Signal Transduction Enzyme C by 1
And so on…

Fig. 13.10 Schematic of ABM depicting cellular agents and molecular pathways incorporated into 
model. Modeled neonatal gut epithelial cell (NGEC) pathways include cellular metabolism (yellow), 
ROS generation (red) and clearance (green), apoptosis (orange), inflammation (blue), necrosis 
(black), and tight junction metabolism (gray). Differentiating NGECs eventually become fully func-
tional epithelial cells, and submucosal cells represent additional bowel wall layers. Oxygen is 
secreted and diffused by arteries for use by all agents in cell metabolism. Bacterial agents are able to 
interact with NGECs by direct contact (LPS to TLR-4) or induce cell death by a cytotoxic exotoxin
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The exception to this type of rule construction in the NEC ABM is the use of Hill 
Functions to represent feedback control loops for metabolic stress homeostasis.

Modeling Oxidative Stress Management For each NGEC, a series of Hill equations 
were used to model the relationships between nutrients, cellular consumption, 
reactive oxygen species (ROS) generation, and ROS clearance (Fig. 13.11). Hill 
equations are often used to mathematically model the dose–response relationship 
between a receptor and ligand, producing a sigmoid or “S-shaped” curve. Hill 
equations were used in the NGECs to [1] approximate the kinetics of the cell’s 
graduated generation of ROS secondary to metabolism and [2] represent the 
response of the cell’s intrinsic oxidative stress-clearance machinery to clear the 
produced ROS. Each NGEC was randomly assigned a stress-clearance- capability 
(SCC) value prior to the start of each experiment based on a normal distribution, 
which represents its enzymatic capability to clear all forms of oxidative stress.

Consequences of Excess ROS Decreased ability of an NGEC to clear the ROS 
resulted in excess ROS, which would ultimately lead to several different inflammatory 
states:

 1. Low stress, where metabolism and consumption are governed by the baseline 
Hill equations, and in this state the NGEC levels of p53 will decrease over time.

 2. Mid-range stress, where p53 is produced and, as it rises, shifts the metabolism- 
governing Hill function to reduce consumption (i.e., produce senescence). This 
allows metabolism-derived oxygen species to decrease until the stress level 
drops into the Low Stress range, at which point p53 will then decrease.

 3. High stress reached when levels of p53 continue to be produced until they cross 
a set threshold and will lead to the generation of variables for cytochrome-c and 
caspase proteins that subsequently activate apoptotic mechanisms. This level of 
stress also activates inflammatory pathways.
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Fig. 13.11 Flow diagram (left) depicting a series of Hill equations (right) that model nutrient 
metabolism and ROS generation and clearance. Hill equations were chosen to demonstrate a grad-
uated molecular response (depicted by elliptical curve in bottom right). Reprinted with permission 
from Mary-Anne Liebert, Inc. [54]
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High levels of stress trigger the production of NF-kB, which leads to the secre-
tion of tumor necrosis factor alpha (TNF-α) [113] and nitric oxide (NO) [114, 115]. 
Secreted TNF-α activates production of NF-kB by other NGECs, in addition to 
directly activating the RIP-kinase pathway, which ultimately leads to necrotic cell 
death [116]. Secreted NO disrupts tight junction formation [20, 21], which NGECs 
use to block interactions with bacterial agents and is also a source of exogenous 
ROS that affects the total stress level of an NGEC.

Other Gut Cells Other cell types were incorporated in the neonatal gut model 
(summarized in Table 13.1). Blood vessels were modeled to secrete a variable for 
oxygen, which all cellular agents utilized to perform aerobic or anaerobic metabolism. 
Goblet cells incorporate the same molecular pathways as NGECs, with the added 
ability to secrete a variable for mucus [117, 118]. The presence of mucus on the 
surface of NGEC prevents their interaction with bacterial agents. Differentiating 
epithelial cells (DECs) are created once an NGEC has undergone apoptosis. The DEC 
has limited metabolic activity until it becomes an NGEC after a set period of time 
[119]. Submucosal cells (SCs) represent additional cell layers beyond the NGEC. 
They undergo necrosis based upon ischemia, which propagates via microvascular 
 thrombosis of blood vessels originating from the NGEC cell layer [120].

Table 13.1 Table depicting agent types and functions

Agent Description Functions

NGECs Able to perform basic 
metabolic functions,  
secrete inflammatory 
mediators, and regulate  
cell death pathways

Cellular respiration: nutrient consumption, 
which leads to generation of ROS (via 
aerobic or anaerobic metabolism depending 
on oxygen content)

ROS clearance: process to decrease total ROS 
within each agent

Tight junction formation: prevents interaction of 
bacteria with NGECs

Apoptosis: programmed cell death, with no 
spillover of cell contents

Inflammation: activation leads to production of 
mediators (TNF-α and NO)

Necrosis: cell death by excessive inflammatory 
signaling (via TNF-α or DAMPs) or reduced 
oxygen content

Goblet cell Agents with ability to  
create protective mucus 
barrier for NGECs

Same cellular and metabolic processes as NGECs
Secretion of mucus, which prevents interaction 

between NGECs and bacteria
Bacteria Agents with ability to  

activate NGEC  
inflammatory pathways

Generation of PAMPs, which cause activation of 
NF-kB in NGECs via TLR-4

Interaction with NGECs inhibited by tight 
junctions and mucus

Differentiating 
epithelial cells

Precursor agents  
to NGECs

Differentiates into NGEC after set period of time
Undergo necrosis with reduced oxygen content

Submucosal 
epithelial cells

Agents representing  
additional gut layers

Undergo necrosis with reduced oxygen content

Blood vessels Agents that secrete oxygen Provides oxygen to other agents
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Bacterial Agents Bacterial agents were modeled with several different functions to 
interact with NGECs. In the absence of tight junctions and low levels of mucus, 
bacterial agents are able to attach and secrete a variable for LPS, which activates the 
inflammatory signaling of NGECs through TLR4 [15, 47, 121]. Bacteria retained 
this interaction at baseline and were given additional “virulent” characteristics such 
as the ability to secrete a mucinase or cytotoxic exotoxin that is able to induce 
necrotic cell death.

Experimental Method In an ABM, each agent function is defined in a particular 
section of the model code. One complete iteration of the ABM’s code is defined as 
a “run,” and an experiment is performed by repeating each “run” in succession until 
the experimental time frame or a particular outcome is reached. The outcomes 
measured in the NEC ABM were “necrosis” or “survival” depending on the 
percentage of NGEC undergoing necrosis.

Minimum and maximum SCC (SCCmin and SCCmax, respectively) values were 
defined for the entire population of NGECs at the beginning of each experiment. 
SCCmin and SCCmax values were altered for each experiment. Populations “suscep-
tible” to necrosis were identified at lower SCCmax values, while “surviving” popula-
tions (that is, resistant to necrosis) were identified at higher SCCmax values. 
Parameter sweeps of the SCCmax were performed by increasing its value in small 
increments to determine the point at which a population became significantly sus-
ceptible to necrosis. Bacterial agents were then added with varying degrees of viru-
lence factors to determine their effect upon susceptibility of the NGEC population 
to necrosis.

Results The addition of “control” bacteria, which were only able to interact with 
NGECs through secretion of LPS (but no other virulence factors), demonstrated an 
increase in necrosis outcomes, but a similar SCCmax threshold at which the necrosis 
outcome disappears (Fig. 13.12). The addition of bacterial agents with virulence 
factors significantly increased the rate of necrosis, particularly with bacterial agents 
that were able to secrete a cytotoxic exotoxin. NGEC populations with higher 
SCCmax values (hence better ROS management) steadily became resistant to 
necrosis, with the outcome disappearing outright at a threshold SCCmax value 
(Fig. 13.13).

The dynamic relationship between stress clearance and bacterial virulence dem-
onstrates the complex interplay between host susceptibility and environmental fac-
tors that can influence the pathogenesis of NEC. Although evidence does not 
currently exist to suggest that impaired stress clearance is the most proximal event 
in the pathogenesis of NEC, the ABM demonstrates its plausibility as an initiating 
factor in NEC. In addition, the ABM further explores the idea of a NEC “disease 
space” in which the actual clinical phenotype of necrosis lies within some actual 
range of host susceptibility (i.e., degree of stress clearance impairment) and micro-
bial virulence. The degree of host susceptibility secondary to prematurity likely 
exists on a spectrum as demonstrated by the SCCmax and it is important to note that 
the goal of this ABM is not to prove the hypothesis that impairment in stress- 
clearance is the proximal event in NEC, but that it is plausible. In reality, there are a 
number of other systems in the epithelial cell (which were also modeled in the 
ABM), which could be explored as potential causative factors in NEC.

J. Arciero et al.



257

For instance, data from the model suggests that bacterial virulence may play a 
significant role in causing NEC. As no single species of bacteria has been impli-
cated in the pathogenesis of NEC [122], this suggests that the context-dependent 
activation of bacterial virulence factors may be more important to identify rather 
than isolating a single type of pathogen.

Fig. 13.12 Comparing rates of necrosis in NGEC populations (per 50 experimental runs and 
10-day experimental time). Rates of necrosis are similar but increased in the group with control 
bacteria. It is important to note that the necrosis outcome disappears if the SCCmax of the popula-
tion is adequate enough to clear the stress that is generated by cellular consumption and the pres-
ence of bacterial agents. Such a population that is completely resistant to necrosis represents a 
healthy, mature NGEC population akin to a fully mature infant

Fig. 13.13 Bacteria with virulence factors significantly increased the rates of necrosis across all 
SCCmax values, with eventual disappearance of the necrosis outcome at higher SCCmax values (not 
depicted). “Virulent” bacteria were able to secrete both mucinase and cytotoxin. The presence of 
necrosis at higher values of SCCmax, which previously did not demonstrate necrosis with control 
bacteria suggests that bacterial virulence plays an important role in precipitating necrosis. This 
suggests that more virulent strains of bacteria may be able to affect disease in premature infants 
that otherwise would have not underwent NEC
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 Conclusions

The multifactorial nature of NEC and the questions that still remain regarding its 
pathogenesis provide an excellent opportunity to supplement traditional basic sci-
ence with modeling approaches. Part of the difficulty in understanding the patho-
genesis of NEC is due to its broad clinical presentation, ranging from “NEC scares” 
that are managed conservatively to complete bowel necrosis, which requires sur-
gery. Animal models have been useful in studying NEC, albeit with extreme physi-
ologic and environmental manipulation that are not necessarily present in the 
clinical disease [37].

Mathematical and computational modeling allow for a higher degree of temporal 
and spatial resolution, particularly to aid in understanding the proximal events that 
lead to the generation of NEC. ODE models have been developed to analyze the 
impact of probiotic administration and the interplay of TLR4 and TLR9 in NEC 
[52, 55]. A PDE model [56] was used to consider the possible effects of the size and 
shape of the epithelial layer injury in the process of healing in NEC. ABMs [54] 
have been used to investigate the complex interplay between host susceptibility and 
bacteria virulence in the pathogenesis of NEC. Through continued development and 
rigorous verification, these models can ultimately be used as effective tools to 
understand this complex disease, predict disease outcomes, and design successful 
therapies for clinical application.
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        Introduction 

 Half of the global population is at risk for malaria, which results in nearly one 
 million deaths annually, 86 % of which are in children [ 1 ].  Plasmodium falciparum , 
the most important human malaria parasite, is transmitted by female  Anopheles  
mosquitoes. Parasite development in the mosquito begins with the ingestion of 

    Chapter 14   
 Modeling Host–Vector–Pathogen 
Immuno- infl ammatory Interactions 
in Malaria 

                           Yoram     Vodovotz,             Nabil     Azhar,           Natasa     Miskov-Zivanov,          Marius     Buliga,      
    Ruben     Zamora,          Bard     Ermentrout,          Gregory     M.     Constantine,          
James     R.     Faeder,          Nazzy     Pakpour, and          Shirley     Luckhart    

        Y.   Vodovotz,   Ph.D.   
  Department of Surgery,   University of Pittsburgh,    W944 Starzl Biomedical Science Tower, 
200 Lothrop St,   Pittsburgh,   PA   15213,   USA    

    N.   Azhar,   B.S. (*) •         N.   Miskov-Zivanov,   Ph.D. •       J.  R.   Faeder,   Ph.D.   
  Department of Computational and Systems Biology,   University of Pittsburgh, 
  3088 BST 3, 3501 Fifth Ave ,  Pittsburgh,   PA   15260,   USA   
 e-mail: nabilazhar@gmail.com   

    M.   Buliga,   Ph.D.   
  University of Pittsburgh at Bradford,    300 Campus Drive, 103 D Fisher Hall, 
 Bradford,   PA   16701,   USA    

    R.   Zamora,   Ph.D.   
  Department of Surgery,   University of Pittsburgh,    W943 Biomedical Science Tower,
200 Lothrop St.,   Pittsburgh,   PA   15213,   USA    

    B.   Ermentrout,   Ph.D. •       G.  M.   Constantine,   Ph.D.    
  Department of Mathematics,   University of Pittsburgh,    301 Thackeray Hall, 
 Pittsburgh,   PA   15260,   USA    

    N.   Pakpour ,  Ph.D.   
  Department of Medical Microbiology and Immunology ,  University of California Davis, 
  3442 Tupper Hall, One Shields Ave.,   Davis,   CA   95616,   USA    

    S.   Luckhart,   M.D.   
  Department of Medical Microbiology and Immunology,   School of Medicine,
University of California Davis,    3437 Tupper Hall, One Shields Avenue ,  Davis,   CA   95616,   USA    



266

blood containing sexual-stage gametocytes. Mobile ookinetes penetrate the midgut 
epithelium 24–36 h later and transform into midgut-bound oocysts within the open 
circulatory system of the mosquito. Oocysts grow and develop for 10–12 days and 
then release thousands of sporozoites, which invade the salivary glands and are 
released during later blood feeding by the mosquito. 

 Infectious organisms, in general, have evolved alongside the host immune sys-
tem and developed strategies for evasion and modulation of immunity in the host [ 2 , 
 3 ]. In the case of diseases such malaria, the addition of an invertebrate vector host 
introduces a further layer of complexity in the disease process. In the setting of these 
infections, the blood compartment serves both as the site of immune system coordi-
nation within the host and as an interface for communication and interaction between 
the parasite, vector, and host [ 3 ,  4 ]   . This complex ecology is being reassessed in 
light of the modern view of the vector as an organism that mounts an immune/
infl ammatory response in an attempt to control parasite growth, rather than as a will-
ing partner in parasite transmission [ 3 ,  4 ]. Moreover, multiple studies have sug-
gested that parasite killing capacity comes at a fi tness cost to the mosquito, typically 
observed as reduced lifespan [ 5 – 7 ]. 

 In malaria, multiple agents transit from the vector to the host and from the host 
to the vector. Blood feeding thus juxtaposes the mammalian and mosquito immune 
systems proximally at the midgut epithelium and distally due to the passage of some 
factors into the mosquito body. Many of the host-derived factors that are transferred 
to the mosquito are in fact immune/infl ammatory mediators that are both retained 
selectively and drive signaling and biological effects in the mosquito (reviewed in 
[ 3 ,  4 ]). We initially established that the ingested mammalian cytokine transforming 
growth factor-β1 (TGF-β1) and the hormone insulin can function as signals to the 
midgut epithelium and can affect malaria parasite development in  Anopheles ste-
phensi , a major mosquito vector of malaria in India and parts of Asia [ 3 ,  8 – 13 ]. Our 
recent data suggest that multiple other mammalian blood-derived ligands may be 
selectively retained in the mosquito midgut (see below). 

 Based on these studies, we have hypothesized that this information transfer 
allows the mosquito vector to sample the immune/infl ammatory state of the verte-
brate host and thereby provide an early warning to the infection status of that host 
[ 14 ]. We have sought to use computational modeling and analysis in order to gain 
insights into how such information transfer affects the mosquito, the parasite, and 
the mammalian host, with the ultimate goal of developing new therapeutic strategies 
for malaria. We have suggested a systematic approach, starting with data-driven 
modeling and correlative studies that inform mechanistic models and analyses of 
the infl ammatory response [ 15 ,  16 ], in order to generate a comprehensive under-
standing of the molecular and cellular mechanisms underlying the interspecies 
immune control of malaria parasites [ 17 ]. This approach is essential for identifying 
“master regulators” in the mosquito vector that could act as therapeutic targets for 
disease control via genetic modifi cation [ 18 – 20 ]. 

 Computational modeling has been utilized extensively in the past to help clarify 
various aspects of malaria transmission and immunobiology. However, most model-
ing work in malaria has been focused mainly on epidemiological aspects of the 
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disease or very coarse-grained mechanistic modeling of host–pathogen interactions 
[ 21 ], rather than models on the intra- and intercellular scale that involve the mosquito 
vector and that build directly from the genomic studies or other quantitative experi-
mental data. In the decade since the publication of the genomes of the malaria 
parasite(s) and of  Anopheles gambiae , the major African mosquito vector of malaria, 
there have been several functional and comparative genomic analyses that have 
helped uncover regulatory networks through correlative studies [ 22 – 27 ]. Some of 
these studies have focused on the interface between vector and parasite, identifying 
gene clusters/networks responsible for the mosquito’s control of parasite growth [ 28 ]. 

 Recent studies from our group have focused on identifying, at the genomic level, 
signal transduction pathways in  A. gambiae  [ 29 ] to complete analogous studies in 
 A. stephensi , supported by a 2012 genome release (  http://www.vectorbase.org/
Anopheles_stephensi/Info/Index    ) and to integrate these data into computational 
models. As detailed below, we have identifi ed multiple host blood-derived factors, 
including—in addition to TGF-β1 and insulin—insulin-like growth factor-1, 
insulin- like peptides (ILPs), and cytokines such as interleukin (IL)-10 [ 3 ] that can 
induce signaling in the mosquito midgut epithelium and modulate protein expres-
sion and activity to regulate the growth of  Plasmodium  parasites [ 30 ,  31 ].  

    Multiple Ligands and Signals Affecting  Anopheles  
Mosquitoes: Integration via Computational Modeling 

 Our earliest work focused on immune cross talk driven by the ingestion of mamma-
lian TGF-β1 by  Anopheles  mosquitoes during blood feeding. TGF-β1 has been iden-
tifi ed as a central player in the immune response to parasite infection within the 
mammalian host [ 32 ]. However, much less is known about the converse, namely the 
possible role of TGF-β1 in mosquito immunity and physiology. In mosquitoes, 
ingested latent human TGF-β1 is rapidly activated in the midgut by factors commonly 
released during blood digestion such as NO and heme [ 9 ]. The latent form of TGF-β1 
is detected in the circulation of healthy adults at concentrations as high as 5 ng/ml and 
is, therefore, ingested at levels that can be biologically active for arthropod cells and 
tissues [ 33 ]. Human TGF-β1 ingested by  A .  stephensi  via a blood meal was shown to 
induce expression of the  A .  stephensi  ortholog of inducible nitric oxide synthase, 
AsNOS [ 11 ]. Inducible NOS has been associated with human host responses to 
malaria [ 34 – 36 ], and our studies have shown that the mosquito also regulates parasite 
development through complex, multiphasic expression of AsNOS [ 37 ] with concom-
itant infl ammatory synthesis of NO and reactive nitrogen species [ 38 ]. 

 The regulation of the TGF-β1-AsNOS response in  A .  stephensi  is complex. In 
particular, we found that TGF-β1 induces mosquito mitogen-activated protein 
kinase (MAPK) signaling [ 30 ]. There is evidence of specifi c feedback regulation 
of the actions of TGF-β1 in  Anopheles  by the extracellular signal-regulated 
kinase (ERK) and the upstream activating kinase MEK [ 30 ]. These pathways are 
networked extensively with canonical Smad-dependent signaling in mammalian 
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cells [ 39 ] and we suspect that the same is true in mosquito cells. Finally, there are 
dichotomous, dose- dependent effects of mammalian TGF-β1 on AsNOS induction 
and parasite growth [ 11 ]. 

 Taken together, these studies suggested that computational modeling could facil-
itate identifi cation of the mechanisms underlying these diverse interactions. 
Accordingly, various mechanistic computational models were created to examine 
both qualitative and quantitative features of this biological system [ 40 ]. An ordinary 
differential equation (ODE) model of the mosquito response predicted oscillations 
in AsNOS as well as MEK/ERK-dependent signaling, providing one possible 
mechanistic model that was consistent with experimental data. In addition, this 
model yielded qualitative predictions supported by experimental data, albeit with 
apparent phase shifting in the multiphasic behavior of  AsNOS  in different mosquito 
cohorts treated with several doses of TGF-β1 [ 40 ]. This model also suggested a 
need for the persistent presence of a TGF-β1-like signal to drive the multiphasic 
expression of AsNOS. However, experimental data had previously suggested a 
short half-life for TGF-β1 that would be insuffi cient to support the observed multi-
phasic time course of AsNOS. This discrepancy was reconciled by a model- 
generated hypothesis for an endogenous mosquito ortholog of TGF-β that could be 
induced by exogenous mammalian TGF-β1 to drive the long- term AsNOS response. 
Indeed, the mosquito TGF-β ortholog As60A [ 41 ] was shown to exhibit the dynam-
ics that the model predicted for the hypothesized TGF-β1- like molecule in order to 
maintain the observed AsNOS response [ 40 ]. We note that ODE models are the 
classical mathematical modeling framework, and this methodology is discussed 
extensively elsewhere in this book. 

 β-Nicotinamide adenine dinucleotide (NAD + ) is a ubiquitous cellular constituent 
that is used by cells as an electron acceptor (or, in its reduced form, NADH, as an 
electron donor) in a wide variety of enzyme-catalyzed redox reactions. In addition, 
NAD +  is now known to exert extracellular effects in multiple cell types secondary to 
the formation of cyclic adenosine dinucleotide ribose (cADPR) from NAD + , with 
subsequent release of Ca 2+  [ 42 ]. In  A .  stephensi , NAD +  could be released as a con-
sequence of tissue microtrauma and hemorrhage [ 43 ] during the act of blood feed-
ing, and thereafter be sensed by  A .  stephensi . An evolving literature [ 42 – 57 ] 
suggests that NAD +  can exert extracellular effects on various cell types. Although 
elevated NAD +  levels have not been reported in malaria, perhaps due to the short 
half-life NAD + , we suspect that infl ammation associated with this infection could be 
modulated by NAD +  synthesis. In most models, NAD +  is converted to cyclic ADP 
ribose (cADPR) and nicotinamide by CD38/157 extracellular ADP-ribosyl cyclases 
[ 42 ,  43 ,  52 ]. cADPR then enters cells through either CD38-dependent [ 49 ] or -inde-
pendent [ 50 ] mechanism(s), and subsequently binds to ryanodine-sensitive calcium 
channels to induce cellular calcium fl uxes [ 52 ,  58 ]. Alternatively, NAD +  can be 
converted to cADPR by intramolecular ADP ribosylation catalyzed by ADP- 
ribosyltransferases (ARTs [ 53 ,  54 ]). While orthologs of CD38/157 do not appear to 
be encoded in the existing insect genomes, the  A .  gambiae  and  A .  stephensi  genomes 
encode ART orthologs that could support NAD + /cADPR physiology. 

 The effects of NAD + /cADPR are wide ranging, including activation of 
latent TGF-β1 in mouse macrophages [ 59 ]. In particular, we showed that NAD +  
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stimulation increased both active and latent cell-associated TGF-β1 in RAW 264.7 
mouse macrophages as well as in primary peritoneal macrophages isolated from 
both C3H/HeJ (TLR4-mutant) and C3H/HeOuJ (wild-type controls for C3H/HeJ) 
mice [ 59 ]. The time and dose effects of NAD +  on TGF-β1 were complex and bipha-
sic. A statistical model suggested that the effects of NAD +  on TGF-β1 were nonlin-
ear and this model could predict not only the levels of active and latent TGF-β1 but 
also the biphasic dose effect of NAD +  [ 59 ]. Based on these data-driven modeling 
studies, we inferred that the effects of NAD +  on TGF-β1 were nonlinear. Accordingly, 
we created a nonlinear ODE model of interactions we considered the most parsimo-
nious and yet still capable of recapitulating the complex biological phenomena 
observed experimentally. Model-predicted levels of TGF-β1 protein and mRNA 
were not only largely confi rmed experimentally but also suggested the presence of 
other mechanisms of regulation of TGF-β1 by NAD +  [ 59 ]. Given the analogous 
biology in  A .  stephensi , we hypothesize that mosquito cells can respond to NAD +  in 
contexts that are may be relevant to  P .  falciparum  infection. 

 Based on our understanding of the blood meal interface and the extreme conserva-
tion of responsive signaling pathways in the mosquito host, we hypothesized that 
 A .  stephensi  could ingest and be stimulated by other host-derived infl ammatory 
mediators. To test this hypothesis,  A .  stephensi  were blood fed to repletion on normal 
mice. At multiple times postfeeding, blood-fi lled midguts were assayed for 20 mouse 
cytokines and chemokines using Luminex™. According to our data, a variety of 
mouse cytokines and chemokines were apparently selectively retained in the mos-
quito midgut. We hypothesized that this possible selective retention might establish 
a dynamic signaling network in the mosquito midgut. Accordingly, we carried out 
Dynamic Bayesian Network (DBN) inference, using modifi cations of previously 
published methods [ 60 ]. Briefl y, the algorithm uses an inhomogeneous dynamic 
change-point Bayesian metric of Gaussian networks having score equivalence (BGe) 
model that allows the reconstruction of time-varying DBNs. In our studies, we chose 
to focus on a static network that describes the entire time course. For each node, a 
new set of parent nodes was sampled directly from the posterior distribution and the 
local scores computed using the BGe model. Each node was subject to a fan-in 
restriction of three parent nodes. The Gibbs sampling procedure was run for 100 
steps to yield a fi nal network structure. Individual networks were then averaged to 
obtain a consensus network for each condition according to the following rule: if a 
particular edge was present in more than 50 % of the individual networks in a par-
ticular condition, it was included in the consensus network, otherwise it was excluded. 

 This analysis suggested that the formation of a mediator network in the  A .  ste-
phensi  midgut was initiated by IL-1α and propagated by IL-10 and associated with 
the production of the chemokines monokine inducible by gamma-interferon (MIG/
CXCL9) and gamma-interferon inducible protein of 10 kDa (IP-10/CXCL10). 
Interleukin-1α is a key proinfl ammatory cytokine that was reported to rise in paral-
lel with malaria severity in humans [ 61 ], and certain single-nucleotide polymor-
phisms in the IL-1α gene have been associated with increased susceptibility to 
malaria [ 62 ]. Interleukin-10 has been established as a key anti-infl ammatory cyto-
kine associated with poor outcomes in malaria [ 63 ,  64 ]. Both MIG/CXCL-9 and 
IP-10/CXCL-10 are induced in the brains of mice undergoing cerebral malaria 
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induced by infection with  P .  berghei  [ 65 ]. Interestingly, Dunachie et al. showed that 
the production of MIG/CXCL-9, IL-10, and TGF-β1 all correlated with the immu-
nogenicity and effi cacy of malaria vaccine, as assessed at the mRNA level in periph-
eral blood mononuclear cells from healthy volunteers given an experimental malaria 
vaccine [ 66 ]. Taken together with our prior work, these fi ndings suggest that TGF-
β1 and IL-10, cytokines associated with the outcome of many parasitic diseases 
along with malaria, along with key proinfl ammatory cytokines and chemokines, 
may be selectively retained by  A .  stephensi  to mediate novel biology in the inverte-
brate host, with possible effects on the mammalian host as well. 

 Multiple additional ligands affect the biology of  Anopheles  mosquitoes and, con-
sequently, also result in differential uptake or killing of  Plasmodium  parasites. Like 
TGF-β1, human insulin is ingested by  Anopheles  mosquitoes during blood feeding. 
Circulating insulin in the blood of healthy humans vary widely [ 67 ], and infection 
with malaria can induce a rise in blood insulin above normal levels [ 67 ,  68 ]. 
Ingested, intact insulin persists in the  A .  stephensi  midgut for up to 24 h and in the 
hemolymph of the head and thorax for up to 18 h postblood feeding [ 69 ]. Importantly, 
the mosquito midgut is exquisitely responsive to ingested insulin [ 12 ,  31 ,  70 ]. 
Human insulin can activate both the phosphatidylinositol-3K (PI3K)/Akt and 
MAPK branches of the insulin/insulin-like growth factor signaling pathway in  A . 
 stephensi  [ 7 ,  10 ,  12 ,  31 ] and thereby affect  P .  falciparum  infection in the mosquito 
[ 7 ,  30 ]. Furthermore, we have shown that  A .  stephensi  ILPs change in response to 
ingested human insulin and to  P .  falciparum  infection, suggesting that endogenous 
ILP expression is affected by activation of insulin/insulin-like growth factor signal-
ing. Thus, mosquito ILPs might amplify the response to ingested insulin [ 10 ,  71 ]. 
This effect might be amplifi ed further by the ingestion of insulin-like growth fac-
tor-1 (IGF-1), which is highly similar in structure, utilizes the same receptors, and 
activates many of the same signaling pathways as insulin [ 72 ]. During malaria 
infection, serum levels of IGF-1 fall dramatically, correlating with increased para-
sitemia reviewed in [ 69 ]. Both insulin and IGF-1 can activate the PI3K/Akt branch 
of the mosquito IIS pathway [ 69 ], but ingested human IGF-1, in contrast to insulin, 
extends lifespan and enhances resistance of  A .  stephensi  to  P .  falciparum  [ 69 ]. 

 These data indicate that TGF-β1, insulin, IGF-1, IL-10, MIG/CXCL-9, IP-10/
CXCL-10, and IL-1α all may persist for suffi cient time to stimulate multiple inter-
acting signaling pathways in the mosquito midgut and, after crossing the midgut 
epithelium, likely in other body tissues as well. These pathways include the NF-κB 
pathway and the three MAPK pathways (JNK, ERK, and p38). Control of cross 
talk among the MAPK pathways has been attributed to MAPKKs [ 73 ,  74 ] as well 
as downstream DUSPs [ 75 ,  76 ]. In addition to intracascade cross talk, the MAPKs 
are integral components of a variety of other signaling cascades including those 
with relevance to the immunobiology of  A .  stephensi . Specifi cally, several kinases 
of the MAPK cascades are involved in the activation of NF-κB in mammalian 
cells (reviewed in [ 77 ]). Further, the MAPKKK TAK1 regulates NF-κB in 
 D .  melanogaster  cells (reviewed in [ 78 ]). In addition to NF-κB activation, the 
 canonical TGF-β/Smad signaling pathway is strongly integrated with the 
MAPK cascades [ 79 ]. Indeed, all three MAPKs can facilitate activation of 
the cytoplasmic Smads [ 79 ]. 
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 To begin to defi ne the connections among cytokines, chemokines, growth  factors, 
and signaling pathways, we have created multiple computational models that cap-
ture the signaling network at some level of abstraction and include the ultimate 
effect on parasites in the mosquito midgut. In the fi rst model, the presence of para-
sites within a mosquito was modeled as a geometric distribution in which the prob-
ability of failure represents the chance that the mosquito will host a parasite. This 
probability was itself viewed as a function of the internal mechanisms of the mos-
quito, including the signaling pathways triggered, and the presence of certain key 
mediators relevant to the sustainability or destruction of the parasite. We simulated 
the modulation of TGF-β1, MAPKs, and ROS and conclude that inhibitors of the 
p38 MAPK were likely to have a signifi cant impact on reduction of parasite burden 
in the mosquito. An initial, simplifi ed formulation of the mosquito signaling 
 pathways was modeled as a Markov chain process (Fig.  14.1 ). Transition probabili-
ties, leading ultimately to the probability of the mosquito killing a parasite, were 

  Fig. 14.1    A Markov chain network model of signaling in the mosquito midgut. A coarse-grained 
network model of TGF-β1- and insulin-induced signaling in the  Anopheles  midgut, incorporating 
hypothetical feedback loops that account for the activity of MAPK enzymes on AsNOS and, ulti-
mately, malaria parasites. Each vertex (e.g., p38) of the network should be viewed as a pair of 
points, one representing the suppressed state and the other the active state of that vertex. An edge 
between two points carries a corresponding transition probability. A suppressed edge indicates that 
the overwhelming probability ends in the suppressed state of the target vertex through that edge; 
with complete analogy for inductive edges. Assignment of probabilities is then made by simulating 
to obtain network output that matches the observed data under various experimental conditions       
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 estimated through Monte-Carlo simulations calibrated to best fi t the observed data 
under various experimental conditions. For a fi xed Markov chain network, the 
 simulations show how transition probabilities change as a function of the initial 
inputs.

   The most complex model includes several layers, starting with receptor signaling 
on the surface of the cell, through signal propagation and intertwined feedback 
loops inside the cell, to gene transcription and secretion of several proteins outside 
of the cell, and ultimately to effects on the  Plasmodium  parasite. At the receptor 
layer, our model incorporates the activation of the insulin receptor, Toll and related 
receptors, the TGF-β receptor, as well as signals for which receptors are not yet well 
characterized. The signal from the insulin receptor is propagated through PI3K- and 
MAPK-dependent pathways, which activate JNK1/2, ERK, and p38 MAPK and are 
regulated by feedback loops involving DUSP/MAPK-dependent phosphatase 
(DUSP/MKP) regulation. Toll signaling regulates JNK1/2, p38 MAPK, and ERK, 
while TGF-β receptor activation results in MEK/ERK- as well as Smad-dependent 
signaling. In the nuclear layer, we model regulation of genes encoding As60A and 
AsNOS as well as a variety of other antiparasite effectors, which ultimately affect 
the number of parasites in the mosquito midgut. 

 The described signaling network is implemented as a discrete logical network, 
which is a generalization of the Boolean modeling approach that has become 
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  Fig. 14.2    Boolean network model of signaling in the mosquito midgut. Solids lines ending with 
triangular arrowheads indicate activating infl uences between elements, whereas lines ending with 
fl at arrowheads (e.g., FOXO to Rel1/Rel2) indicate inhibitory infl uences. Shaded elements in the 
nuclear layer - AsILPs, AsNOS, and As60A - represent mRNA forms.  Dotted lines represent 
expression and secretion of the corresponding protein product       
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popular in recent years [ 80 ,  81 ]. Nodes in the regulatory graph (Fig.  14.2 ) are 
 modeled as discrete variables, meaning that they take on a fi nite set of values, usu-
ally two or three. Boolean models are those in which all variables are restricted to 
two values. Directed edges between nodes represent regulatory relationships, which 
are implemented formally as rules. These rules are used to update values of vari-
ables from current-state value to next-state value. Logical operators such as “AND,” 
“OR,” and “NOT” are combined with the regulatory variables to form logical 
expressions, which may become complex in the case of nodes that have multiple 
regulators such as AsNOS. In our model, most variables have three possible 
 values—(0,1,2)— representing inactivity, low activity, and high activity, respec-
tively. Several elements also have one additional level, which represents regulation 
by permanent inactivation by overoxidation (as would occur in settings where the 
production of reactive oxygen and nitrogen species is elevated).

   The computational methodology that allows for effi cient design of discrete mod-
els [ 82 ] includes several steps. The fi rst step consists of collecting knowledge about 
the system, and defi ning elements of the network and their interactions (activation 
or inhibition). Next, the interaction network is combined with existing experimental 
results to design infl uence tables for network elements. Each element has one such 
table associated with it, which defi nes values of the element resulting from combi-
nation of values of its regulators. Finally, logic update rules for each element can be 
derived from infl uence tables in an automated fashion using existing techniques 
from electronic design automation [ 82 ]. This approach allows for developing rules 
that implement multiple discrete variable values and complex logic functions that 
are otherwise diffi cult to derive manually. 

 Simulation is performed starting from some initial set of variable values and 
then sequentially updating the system for a specifi ed number of update rounds or 
until a steady state is reached. There are two different update procedures, synchro-
nous and asynchronous. The synchronous procedure is deterministic, since in each 
round of updates all elements are updated synchronously using previous element 
values, and thus each network state has only one possible next state. The asynchro-
nous procedure on the other hand updates one element at a time in a random order 
within a round, therefore often leading to multiple possible next states. Typically, 
the initial state in the simulation represents the resting state of a cell before stimulus 
is introduced. There are two basic forms of steady states—point attractors and 
cyclic attractors. If the system reaches one specifi c state and does not leave that 
state unless there is an external stimulus, it is said that the system is in a point 
attractor. If the system cycles through a set of states and cannot leave the cycle 
without an external stimulus, then the system is said to have reached a cyclic attrac-
tor. Both kinds of behavior may be observed in our mosquito system response 
model. We primarily use asynchronous updates to perform simulations of our 
model because we are interested in determining the range of behaviors that can 
occur. Furthermore, there is signifi cant heterogeneity in this system from the num-
ber and virulence of the incoming parasites to the complexity and networked behav-
ior of components of the host immune response. In addition to software simulation 
of logical models described above, and commonly used in the past [ 80 ], one can 
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emulate models in hardware to obtain orders of magnitude speedup in simulating 
models and collecting results [ 83 ,  84 ]. 

 The logical modeling approach allows for qualitative analysis of the system, 
which arises from the system topology and logical interactions, as well as to some 
extent, quantitative characterization enabled by multiple levels of activity of indi-
vidual elements and by modeling relative timing of different pathways [ 82 ]. Since 
the order of element updates is asynchronous and random, multiple simulations of 
the model for the same initial conditions must be analyzed to effectively sample the 
range of behaviors that can occur and to generate accurate statistics on their fre-
quency. The random order of updates most often affects the timing of events, lead-
ing to the transient behavior of elements being shifted across different trajectories. 
In addition to this time shift in transients, larger differences between trajectories can 
also occur, such as reaching different steady states, which represent different cell 
fates. An alternative approach to analyzing the dynamics that is based on static 
analysis is model checking [ 85 ], which determines possible outcomes given a speci-
fi ed topology [ 82 ,  86 ]. Model checking allows the modeler to fi nd out if a given 
model structure is or is not capable of a particular behavior. These behaviors are 
specifi ed using temporal logic [ 85 ]. 

 In our discrete, logical model, we implement a coarse-grained version of several 
MAPK cascades along with cross talk between them. We defi ne variables for a large 
number of elements including multiple signaling mediators within the MAPK path-
way. Modeling multiple levels of activity of these signaling mediators allows the 
model to account for different strengths of interaction among model elements. This 
approach also facilitates modeling of memory (that is, taking into account previous 
element values when computing new values), which is essential for modeling sys-
tems with multiple possible outcomes (cell fates). Preliminary simulation results 
show that the complexity of the network and its intertwined feedback loops give rise 
to oscillations in a number of model variables [ 82 ]. These oscillations eventually 
settle to a fi xed value, but the duration of the transient behavior varies depending on 
the stimulation and the initial state of the system. Previous work by Prince et al. 
[ 40 ], who modeled the potential effects of negative feedback between ERK and 
NOS—a subset of the current model—has shown that such oscillations may be part 
of an immune strategy that attempts to balance between effective parasite killing 
and minimizing host damage.  

    Conclusions 

 The studies presented here begin to provide insight into some of the conserved, 
cross-species mechanisms of immune modulation that exist between the mamma-
lian host and mosquito vector. Our studies show that cytokines, chemokines, and 
growth factors can be retained in the mosquito midgut and function as important 
signals for the regulation of malaria parasite development and transmission. Notably, 
these studies highlight a new role for the host blood as a medium for the interface 
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and biological communication between species, with particular implications for 
vector-borne diseases. 

 Ultimately, we seek to modulate the interspecies immune response to infection 
via the use of transgenic mosquitoes, ideally at the blood feeding interface. 
Genetically modifi ed mosquito (GMM) vectors have become an attractive option 
for disease control in the past decade as efforts to eradicate mosquitoes or modulate 
human immunity to malaria infection have been met with reduced effi cacy and 
other challenges [ 18 – 20 ]. Key to the success of a strategy involving GMMs is ensur-
ing that the modifi cation remains dominant and spreads throughout the population 
while maintaining the fi tness of the mosquito. Recent studies, including our own, 
have generated mosquitoes with increased and even complete parasite killing but 
with detrimental effects on fi tness [ 7 ,  87 ,  88 ]. These studies are more descriptive of 
the phenotype than the underlying mechanism driving it and much remains to be 
learned about the pathways driving the observed responses. Thus, a systems level 
understanding of the blood factor-modulated immune response of the mosquito is 
needed to account for the tradeoffs between parasite killing and mosquito metabo-
lism and fi tness. In this chapter, we have discussed our initial computational model-
ing studies aimed at gaining insight into the complex, cross-species biology that 
takes place when host factors are transferred to the  Anopheles  mosquito during 
blood feeding. Though much additional work remains, these initial strides will 
hopefully drive both novel insights and translational applications.     
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        This book has been both a compendium and a snapshot of a particularly critical and 
diffi cult period in basic and applied research. Just as we have described “tipping 
points” in terms of the biology of infl ammation, so  too can this concept be applied 
to the socioeconomic dynamics of biomedical research. While the actual amount 
invested in funding biomedical research is very high, as we have noted throughout 
this book the successful translation of that research into clinical therapeutics is not 
keeping up with these expenditures. Furthermore, despite the increased aggregate 
amount allocated to biomedical research, for the individual researcher the likeli-
hood of actually obtaining funding is near an all-time low [ 1 ]. 

 The question in many minds (especially those of taxpayers and legislators faced 
with fi scal shortages) is: what are we getting for the money invested in research? 
This question is especially pertinent given that many recent breakthroughs have 
been met fi rst with tremendous excitement and optimism, often presented in hyper-
bolic terms, only to have the reality of the translational dilemma result in the equiva-
lent of a market crash in terms of reproducibility and applicability. Is it any surprise 
then that the current funders of biomedical research are increasingly challenged to 
choose what to fund and what to not? Adding to the forward feedback loop of uncer-
tainty is the need (perceived and real) of researchers to “sell” their hypotheses with 
increasing vigor. This has led to the paradoxical situation in which investigators 
now must become  advocates  for their hypotheses in order to obtain the means to 
be able to carry out an investigatory process that is, fundamentally in terms of the 
philosophy of Science, predicated upon critically applied skepticism. 
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 We assert that the solution to this dilemma is to focus on  process  (which is, after 
all, what Science is) in such a way that allows us to be aware of the impermanence 
and fl uidity of “facts.” This requires returning the fundamentals of the Scientifi c 
Process, of the need to close the iterative loop between correlation and mechanistic 
causality, with the expressed goal of being able to exercise the skeptical underpin-
nings of Science and pursue hypothesis falsifi cation. 

 We and others have suggested that mechanistic computational modeling is just 
this type of process, that modeling provides a means for researchers to express puta-
tive mechanistic hypotheses more formally and completely, and be able to set these 
mechanisms in action in order to evaluate whether these hypotheses produce plau-
sible and clinically realistic behavior [ 2 ]. Used as an exploratory process, integrating 
researcher intuition and expertise with the increasingly broad data sets generated 
through new technologies, mechanistic computational modeling may be used to sug-
gest fruitful biological pathways that may be targets for drug development; this is not 
just the identifi cation of drug candidates, but whether the presumed basis for target-
ing a particular pathway is even a good idea given the know multiple interactions and 
feedbacks infl uencing overall system behavior [ 3 ]. Dynamic computational model-
ing may also augment the search for diagnostic biomarkers by providing the all-
important temporal dimension into the characterization of disease/health states 
[ 4 – 7 ]. Critically, the dynamic component of mechanistic computational modeling 
may facilitate the identifi cation of paths from health to disease, and (hopefully) back; 
not just in terms of a series of disconnected data snapshots, but rather in a process in 
which data snapshots are tied to each other by an actualized biological mechanism. 
Finally, dynamic computational modeling may serve as a “binding knowledge struc-
ture,” to identify and represent what it is at a mechanistic and functional level, that 
ties populations of individuals together [ 8 ]. This is true not only for the ability to 
facilitate the translation of preclinical to clinical situations (i.e., what aspects of 
mammalian biology can we reliably trust to be similar enough to compare between 
and translate across species and experimental models) but also to drive personalized 
medicine, allowing the ability to generate the different characteristics of individuals 
within a cohort and between cohorts. We suggest that this approach is the only way 
to achieve the “ N  = 1” nature of personalized medicine, where specifi c therapies and 
interventions are tailored to individual patient properties and disease dynamics [ 9 ]. 

 This book is focused on the acute infl ammatory response and its manifestations 
in sepsis, trauma, and wound healing. The contributors to this book have given their 
perspectives on systems approaches to these disease states and have shown specifi c 
examples of the translational utility of mechanistic computational modeling. 
Though this book covers over a decade of progress, these are still early days in this 
fi eld. The central challenge remains integrating the multiscale, multisystem nature 
of acute infl ammation into computational models that drive actionable outcomes. 
Translational Systems Biology must rise to the challenge of integrating infl amma-
tory, neuroendocrine, and physiologic processes in order to unravel the multidimen-
sional, multicompartment, and highly dynamic disease landscape. 

 How can these goals be met, especially in the broader context of a biomedical 
research enterprise that—despite calls for increased use of systems and computa-
tional biology—is still overwhelmingly focused on reductionist research focused 
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on single molecules, along with a clinical regulatory infrastructure that—despite 
similar call for the incorporation of computational modeling—is still focused on 
single therapeutic targets? We discuss how to implement Translational Systems 
Biology in the context of the work presented in this book. 

 An early entry point for Translational Systems Biology was the  in silico  clinical 
trial (see Chap.   9    ). This methodology, in some form or another, is beginning to 
inform the design of actual clinical trials by the pharmaceutical industry. However, 
the drugs being tested  in silico  continue to be developed by some variant or another 
of a painstaking, slow, and expensive process that has not, at the very least, facili-
tated the concept of “fail early, fail often, and fail cheaply” that underlies successful 
drug development [ 10 ]. In this context, the value of  in silico  clinical trials may well 
rise dramatically if mechanistic computational modeling could be employed at 
the earliest stages of drug development, ideally being part of the initial process of 
weeding out the large number of potentially druggable compounds obtained via 
high- throughput screens. Moreover, this approach—especially incorporating quasi-
mechanistic data-driven modeling—has the potential to suggest disease biomarkers 
simultaneously with drug targets. For example (see Chap.   8    ), statistical analyses, 
hierarchical and  k -means clustering, Principal Component Analysis, and Dynamic 
Network Analysis suggested the chemokine MCP-1/CCL2 and IL-1α as central 
coordinators of hypoxia-induced infl ammation in mouse hepatocytes based on a 
screen of nearly 20 infl ammatory mediators assessed over multiple time points. This 
fi nding led to the hypothesis the MCP-1 was a central coordinator of hepatic infl am-
mation. In support of this hypothesis, hepatocytes from MCP-1-null mice had 
altered dynamic infl ammatory networks. Importantly, circulating MCP-1 levels seg-
regated blunt trauma survivors from nonsurvivors. Furthermore, patients with ele-
vated early levels of MCP-1 postinjury had longer total lengths of stay, longer 
intensive care unit lengths of stay, and prolonged requirement for mechanical venti-
lation. This study identifi es MCP-1 as a main driver of the response of hepatocytes 
in vitro and as a biomarker for organ damage in a clinical setting and suggests an 
experimental and computational framework for discovery of novel clinical bio-
markers in infl ammatory diseases (unpublished observations). We speculate that 
MCP-1 may serve as a therapeutic target in addition to being a potential diagnostic 
biomarker. In support of this hypothesis, MCP-1-null mice had lower levels of cir-
culating damage markers following experimental trauma/hemorrhage (unpublished 
observations). Future mechanistic, equation- based computational models (see 
Chaps.   1    ,   8    , and   11    ) that incorporate dynamic infl ammation networks driven by 
MCP-1 may thus serve as a basis for  in silico  clinical trials of existing and novel 
compounds targeting MCP-1. 

  In silico  trials and drug development may also be implemented using agent- 
based models (Chaps.   3     and   12    ). As in keeping with the progression of the use of 
modeling and simulation in other fi elds, there are successive tiers of validation tar-
gets, ranging from face validity and determination of plausibility to near- engineering 
grade simulations that can be used to augment individual trials. However, the con-
cept of an  in silico  trial need not wait for such high-resolution modeling; as alluded 
to above the pervasive issue associated with planning control is whether, at a system 
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level, is a particular pathway even a good idea? As such, the use of agent-based 
modeling is particularly well suited for dynamic knowledge representation, deter-
mination of the suffi ciency of existing knowledge structures, and to allow research-
ers to identify “holes” in their knowledge that can be fi lled with new experiments 
and new classes of therapies. The intuitive nature of agent-based modeling makes 
the use of dynamic computational modeling a bit more accessible to the average 
biomedical researcher and facilitates the ability of those researchers to visualize and 
manipulate these “instantiated thought experiments” on their way to greater transla-
tional effi ciency [ 11 ]. 

 Systems-level insights derived from the study of acute infl ammation in sepsis 
and trauma (Chap.   6    ) are also likely to guide translational advances in settings such 
as wound healing (Chap.   10    ) as well as elucidating key host–pathogen interactions 
in various other diseases [e.g., necrotizing enterocolitis (Chap.   13    ) and malaria 
(Chap.   14    )]. Ultimately, these developments will likely impact the study of chronic 
infl ammatory diseases, settings in which the crucial dynamics of the disease pro-
cesses are even more pronounced and manifest as altered dynamic equilibrium 
states that are even more complicated to reset and control [ 6 ,  7 ]. 

 In conclusion, and as noted above, we believe that the state of biomedical research 
sits at a crucial tipping point where the continued credibility of scientifi c claims is at 
stake, driven by the manifest desires of an increasingly wishful public but in a form 
that may, at times, lead to disappointment [ 12 ]. We suggest that a future path predi-
cated upon returning to scientifi c fundamentals, with an emphasis on inherently 
dynamic processes, is a means of backing away from the credibility cliff and onto 
the ground of rationally grounded expectations and clinically relevant progress.    
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