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Preface

This collection of review articles is devoted to the modeling of ecological,

epidemiological and evolutionary systems. Theoretical mathematical mod-

els are perhaps one of the most powerful approaches available for increasing

our understanding of the complex population dynamics in these natural sys-

tems. Exciting new techniques are currently being developed to meet this

challenge, such as generalized or structural modeling (Chapter 2), adaptive

dynamics (Chapter 4) or multiplicative processes (Chapter 6). Many stem

from the field of nonlinear dynamics and chaos theory, where even the sim-

plest mathematical rules can generate a rich variety of dynamical behaviors

that bear a strong analogy to biological populations (eg., Chapters 1, 2, 3,

4, 7).

One of the most interesting “cutting-edge” research areas today con-

cerns the role of spatial structure in organizing biological systems. For ex-

ample, in ecological models, spatial organization through aggregation and

diffusion of individuals intimately controls the ultimate spread or extinction

of an introduced invader. One of the goals of this book is to review how

these basic processes give rise to the formation of beautiful spatial patterns

(Chapters 2, 3) or the emergence of power laws (Chapter 5), that are fre-

quently encountered in real and model systems. Furthermore, the effect of

spatial scale may be decisive in resolving such questions as to which strain

of a virus dominates in an evolutionary arms-race, whether or not plants

can synchronize their reproduction (Chapter 4), and why unusual vegeta-

tion patterns arise in water limited desert systems (Chapter 5). Hence a

key focus of interest in this collection centers on the dynamics of spatially

structured interacting populations and communities.

Mathematical models also help to further our understanding of complex

synchronization. The spontaneous onset of synchronization is one of the

most remarkable phenomena found in biological systems and relies on the

coordination and interaction among many scattered organisms.1 Synchro-

v
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nization is a basic and efficient process which has the potential to shape the

spatio-temporal dynamics of networks and extended systems. Synchroniza-

tion arises in a large class of systems of various origins, ranging from physics

and chemistry to biology and social sciences. In ecology, fluctuations of pop-

ulation numbers, such as the classical 10-year Canadian hare-lynx cycle, are

known to synchronize to a collective rhythm that manifests over millions

of square kilometers.2 In the present collection, these issues are reviewed

with a special emphasis on population dynamics, where synchrony depends

on dispersal of individuals (Chapter 4, 5) and genetic oscillations (Chapter

9).

Another theme running through the chapters of this book concerns the

ubiquitous appearance of power-law distributions that have been unexpect-

edly observed in numerous biological contexts. For example, in plant ecol-

ogy, seed dispersal is characterized by power law distribution, with the great

majority of seeds dispersing a short range, while some nevertheless manage

to disperse surprisingly long distances. The distribution has a “long-tail”

that differs greatly from the Gaussian expectation. Several chapters (5, 6)

explain why power-law distributions are fundamental in many biological

contexts. Levy flights in which movement or jumps occur across differ-

ent spatial scales is one method for understanding power law distributions

(Chapter 5). In Chapter 6, Zanette and Manrubia show how these dis-

tributions arise in the sizes of populations in satellite and core cities, the

length of words in different languages (Zipf’s Law), through to the musical

compositions of Bach. In Chapter 7 the power law distributions associated

with critical transitions in self-organized systems are shown to give insights

into the oscillations and the control of persistent infectious diseases.

Finally, the book incorporates some of the very exciting developments

surrounding the application of network theory for studying complex biolog-

ical systems. The manner in which a population of individuals or agents are

connected to each other may be summarised in the form of their particular

network structure. The structure gives a great deal of information about

the connectivity of the population and the way members are involved in

interacting directly or indirectly with one another. Recently much interest

has been devoted to the study of networks with complex topology includ-

ing ecological food-webs (Chapter 1, 2), social networks for the spreading

of information (Chapter 5) and diseases (Chapter 8), neural networks, the

World-Wide-Web, or metabolic and genetic networks (Chapter 9). Inspired

by empirical findings, there has been an attempt to classify networks into

common generic types. Completely random networks sit at one side of the
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spectrum while regular lattices sit at the other end. In between these two

extremes there are classes of networks which are hybrids having so-called

small world properties (Chapter 8). Biologists often study other formations

such as growing networks whose internal connectivities are extremely het-

erogeneous and exhibit so-called scale-free behaviour, characterized by a

power-law in their degree distribution (Chapter 9). The dynamics of pop-

ulations as they interact in different types of networks is a subject area

currently receiving considerable interest and pervades many areas of the

nonlinear sciences. It is therefore considered an important focus in this

collection of research articles.

The editors are much indebted to the editor of the World Scientific

Lecture Notes in Complex Systems series, Alexander S. Mikhailov, and to

Senior Editor Lakshmi Narayan (Ms) for their help and congenial processing

of the edition.

Oldenburg, Potsdam and Tel Aviv, March 3, 2007.

B. Blasius, J. Kurths and L. Stone
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Chapter 1

Chaotic dynamics in food web systems

Gregor F. Fussmann

Department of Biology, McGill University
1205, ave. Dr. Penfield, Montreal, QC, H3A 1B1, Canada

gregor.fussmann@mcgill.ca

It is a long-standing debate among ecologists whether chaotic dynamics
are likely to occur in food web systems. Simple mathematical models
predict frequent chaotic dynamics for food webs of relatively low com-
plexity suggesting that the long-term dynamics of natural populations
could be essentially unpredictable. This result is at odds with observa-
tions from the field where chaos appears to be rare. In this contribution
I review the evidence for chaotic dynamics from mathematical food web
models of varying complexity. I argue that mathematical models which
allow for the specific structural properties of natural food webs are more
likely to predict realistic patterns of chaos and stability in field and ex-
perimental food webs.

1.1. Introduction

Food webs are networks that reflect the feeding relationships among ecolog-

ical populations. Food webs are a biological reality because many popula-

tions of species coexist as a community in a confined space - the ecosystem -

and predator-prey relationships are an important type of interaction among

them. Trophic (= feeding) interactions in food webs directly determine the

populations’ vital rates, i.e. their growth rates (when they consume prey)

and their mortality (when they are being consumed). “Food web” is also

an expression for a type of conceptual model that ecologists use to de-

scribe real food webs, usually in the form of topological graphs in which

the nodes represent the populations and the edges the feeding relationships.

Such food webs are always simplifying, incomplete representations of the

real world because (1) it is virtually impossible to determine all the feeding

relationships in a complex ecological network and because (2) they disre-

1
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gard non-trophic properties of populations and non-trophic interactions1

that exist among populations. Such properties and interactions include an-

imal behavior, plant dispersal,2 direct competition, and chemical or social

interactions. Nonetheless, food web models serve an important purpose in

ecology in that they are a structured attempt to analyze the topological

and dynamical properties of ecological communities and can, in principle,

be extended to account for non-trophic properties.

Topological food web models have been traditionally used to predict pat-

terns of species abundance, biomass distribution and energy flow in real

food webs. Indeed, some ecological key concepts are direct logical deriva-

tions from conceptual food chain models (food chains are special food webs

in which predators cannot have more than one prey). One example is the

response to enrichment across a food chain that consists of multiple trophic

levels. The prediction here is that, as biomass production increases at the

basal trophic level (enhanced primary productivity in ecological terms), this

biomass will eventually end up at the top trophic level and every second

level down.3,4 This follows intuitively from the fact that the top level is

not controlled by predation but controls the next level down. This effect

percolates down the food chain as a “trophic cascade”, decreasing even-

numbered levels down from the top but benefiting odd-ones. This view of

the “enrichment response” continues to be a popular concept in ecology

although no convincing examples from the field exist.5 The two major rea-

sons for this lack of evidence are probably: (1) Real food webs encompass

several trophic levels but hardly ever exist as true chains. In more complex

networks, however, prediction of the biomass distribution is non-trivial be-

cause it involves balancing direct and indirect effects across trophic levels

and different branches of the food web. (2) Dynamical versions of food

chain models show that the described patterns of biomass distribution can

only be expected for food chain communities that coexist at stable equilib-

ria (Fig. 1.1), an assumption that can hardly be upheld, as I will show in

this chapter.

Fig. 1.1 also demonstrates that the community dynamics in food webs

can be highly nonlinear and that an analysis which is restricted to equi-

librium states necessarily delivers an incomplete picture of the dynamical

patterns in multi-species assemblages. Therefore, ecological modelers are

challenged to expand the dynamical analysis of coupled populations be-

yond the classical two-species analyses of Lotka and Volterra6 and their

refinements in the 1960s (notably by Rosenzweig and MacArthur7) and, at

the same time, to allow for the full range of dynamical behavior present
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Fig. 1.1. Bifurcation diagram of a tri-trophic food chain with enrichment (increasing
car r yi ng capaci ty K ). Pl otted ar e the m i ni m a and m axi m a of com puter s i mul ated ti m e
series in the interval [750, 1000] of the top-predator (T ) and consumer (C) populations,
respectively. For 0.5 ≤ K ≤ 0.7 the model predicts equilibrium dynamics and T increases
linearly with K while C remains unchanged, as predicted by classical food chain theory.
With enrichment beyond K ≈ 0.7 the model predicts complex (limit cycle and chaotic)
dynamics and no monotonous relationships exist between the population extrema or
averages (not shown) and the value of enrichment. The inset shows the topological graph
of a tri-trophic chain. Parameterization of ODE system Eqs. (1.1 and 1.2): r = 2.5;
aC = 7.5; bC = 5.0; aP = 1.0; bP = 2.0; eC = eP = 1; mC = 1.0; mP = 0.1.

in these more extensive models. Most of these analyses need to be per-

formed in the form of computer simulations since general three- or higher

dimensional systems of differential equations defy graphical or analytical

methods. Not surprisingly, two three-species structures were historically

the first model food networks for which theoretical ecologists undertook

such a dynamical analysis: a predator population coupled to two differ-

ent prey populations8,9 and the tri-trophic food chain which couples two

predator-prey systems vertically10,11 (Fig. 1.1).

Both of these trophic structures display a rich inventory of dynamical

behavior: equilibria and stable limit cycle oscillations (which occur also

in lower-dimensional system) but also quasi-periodicity and deterministic

chaos (see Fig. 1.1, K ≥ 1.3). Chaotic oscillatory dynamics, characterized
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by sensitivity to initial conditions, are a constant source of concern to the

ecologist whose aim it is to understand and predict the change of species

abundances over time. Ever since Robert May demonstrated the possibil-

ity of chaos in a single-population discrete-time model system12 ecologists

must accept that the long-term forecast of population densities may be, in

principle, an unachievable task.

Whether chaotic dynamics are detrimental to the long-term persistence

of ecological communities is an unresolved problem. It would seem that

the unpredictable population fluctuations that go along with chaotic dy-

namics should be maladaptive because they make populations more likely

to become extinct.13 However, in spatially extended model communities,

coupled through dispersal, chaotic dynamics have been shown to promote

global persistence of the system by desynchronizing the dynamics among

local communities.14,15 Thus, ecological scenarios are conceivable under

which evolution would favor chaotic food webs.

With chaos also occurring in the simplest continuous-time models

(the Poincaré-Bendixson theorem forbids its occurrence below dimension

three16) we now need to study how prevalent chaotic dynamics are in food

webs and whether their frequency is related to any properties of the whole

food web or its components. This chapter attempts to give an overview

over recent developments and results in the analysis of chaos in dynamic

food web models and finishes with a brief excursion into laboratory studies

that use real organisms to explore nonlinear population dynamics.

1.2. Food web model formulation

The first step in the analysis of food web models is to find a mathemati-

cal formulation that adequately represents nodes and edges of the food web

graph and is, at the same time, a realistic description of the interaction that

occurs between predator and prey populations. Second, parameter values

used in such a model should be realistic when compared to those of natural

communities. Third, the predictions of the model should be, in general,

interpretable as time-series produced by living organisms. For instance,

excessively rapid population increases of non-microbial organisms or recov-

ery from infinitesimally small population sizes are biologically questionable

results. Finally, if the modeler attempts to simulate a concrete example of

natural community dynamics, the fit of the observed to the simulated data

is an obvious criterion for the quality of the model.17–19

Systems of coupled ordinary differential equations (ODEs) with one
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state variable per population appear to be the most popular choice for

food web models although coupled difference equations have been used to

describe the dynamics resulting from the interaction among the different

stages of an insect population.20,21 ODEs are probably preferable in food

webs because, in general, it will be impossible to define a discrete time step

that is common to all populations in the network. One should, however,

keep in mind that the assumption of continuous and immediate consump-

tion, reproduction and interaction implicit in these models is an idealization

hardly ever met by real food webs (some plankton communities in lakes and

oceans are the closest equivalents).

The bottom level of the food web usually consists of one or several re-

source populations, i.e. primary producers that require no food populations

in order to grow. Because the lowest level in the food web lacks control

through food availability, population regulation is achieved by assuming

density-dependent logistic growth. (An alternative is to explicitly model

limitation by a mineral resource, as it happens in some ecosystem models22

or simulations of real laboratory microbial systems23,24).

Populations at the next trophic level up (herbivores) consume popula-

tions at the bottom level and reproduce according to a linear function of

food uptake. It is also customary to assume density-independent mortality

(which, for the bottom level, is already incorporated in the logistic growth

term). Higher trophic levels are modeled in analogy to the herbivore level.

For the tri-trophic food chain we formulate:

dR

dt
= rR

(

1 − R

K

)

− CF (R)

dC

dt
= eCCF (R) − PF (C) −mCC (1.1)

dP

dt
= ePPF (C) −mPP,

where R, C, P are the abundance or biomass of the resource, primary con-

sumer, and secondary consumer populations; r is the intrinsic growth rate

and K the carrying capacity of the resource; eC and eP are the conversion

efficiencies across trophic levels; mC and mP are the density-independent

mortalities. F (R) and F (C) are the functional responses of the consumers

that describe the uptake of prey by the predator as a function of prey

density. More recent analyses use a “Holling type-2” functional response25

which increases monotonously but saturates with increasing prey density:

F (R) =
aRR

1 + bRR
; F (C) =

aCC

1 + bCC
. (1.2)
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Here, a and b are parameters that are specific for each predator-prey

system and determine the saturation level and the steepness of the response.

Alternative mathematical formulations exist for type-2 responses and in

some studies type-2 responses are replaced by type-1 (piecewise linear)

or type-3 (sigmoid) responses. Theoretical ecologists are only beginning

to understand how some of these different functional responses affect the

dynamics of simple26 and complex27 food web architectures.

By using the introduced building block method food chain ODE sys-

tems of any length can be constructed. For the formulation of food webs,

however, we need to specify how the nonlinear (type-2 or type-3) response

is to be distributed if one predator feeds on more than one prey popula-

tion. Simply summing up the functional response terms is not a solution

because this leads to inconsistent equations when the prey populations are

assumed identical.28 The following n-species functional response is most

widely used because it retains the concept of satiating predator uptake and

collapses to the one-prey equation for the two cases R1 = R2 = · · · = Rn

and R1 > 0 ∧R2 = R3 = · · · = Rn = 0:

F (R1, . . . , Rn) =

∑n
i=1 aRi

Ri

1 +
∑n

i=1 bRi
Ri
. (1.3)

Parameters are defined as above. Fig. 1.2 shows the multi-species func-

tional response for the case n = 2.

This modeling framework enables us to formulate, simulate and ana-

lyze food web models of any desired degree of complexity. The framework

can also easily be extended to accommodate additional properties of nat-

ural food webs. The most important extension is probably the introduc-

tion of omnivory, the capability of a predator to feed on more than one

trophic level. This is simply accomplished by allowing the prey species Ri

in Eq. (1.3) to belong to any trophic level (and even to be the predator

species itself, in the case of cannibalism). Model realizations of the fol-

lowing specific food web properties can be found by consulting the cited

references: omnivory,29–32 type-3 functional responses,27 allochtonous in-

put of biomass,33 nutrient recycling,22,34 density-dependence of not just

the primary producer level,35 inducible defensive structures in the prey,36

mixotrophy37 (the same species may be an autotrophic primary producer

or a heterotrophic predator), availability of alternative prey,17 prey prefer-

ence38,39 and adaptive foraging of the predator.40



July 12, 2007 10:40 World Scientific Review Volume - 9in x 6in main

Chaotic dynamics in food web systems 7

Fig. 1.2. Multi-species Holling type-2 functional response for two prey species R1 and
R2 . F (R1, R2) denotes the uptake of prey by a predator feeding simultaneously on both
prey populations. Note that for R1 = 0 and for R2 = 0, respectively, the single-species
Holling type-2 response emerges, while the function interpolates elsewhere. aR1 = 7.5;
bR1 = 5.0; aR2 = 5.0; bR2 = 2.5.

1.3. Detecting and quantifying chaotic dynamics in model

food webs

Mathematical ecologists interested in assessing the degree to which complex

food web topologies are chaotic face two particular challenges. First, they

need to find a representative sample of parameter combinations for the

numerical analysis and, second, an efficient method is required for assessing

whether any given parameter combination leads to chaotic dynamics.

With increasing complexity food web models are subject to an infla-

tionary increase of parameters since the number of possible links increases

with the square of the number of species (= state variables). It is usually

impossible to perform a simultaneous numerical analysis for more than a

few parameters whose values vary over wide ranges; all other parameters

need to assume fixed values. Another problem encountered is the enormous

separation of timescales that exists among the demographic parameters of

species found in natural food webs, which can lead to stiff systems of dif-

ferential equations. This being said, in the majority of studies only one

parameter value is continuously changed and the dynamics are represented
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graphically in the form of a bifurcation diagram (e.g. Fig. 1.1). This method

allows rapid analysis of a target parameter but there is normally no a priori

assumption that no other parameters can be subject to change at the same

time, which would have unknown consequences for the dynamical patterns

driven by the target parameter. There is no satisfying solution to this

problem (unless a complete analysis can be performed) but, interestingly,

Rinaldi et al.41 found qualitatively very similar bifurcation patterns for six

population parameters which they analyzed separately in a predator-prey

model with seasonal perturbation. If there is no particular parameter of

interest it is advisable to concentrate on parameters with finite ranges set

by the model assumptions. Fussmann & Heber,30 for instance, restricted

their food web analysis to the mortalities mi. All mi are non-negative by

definition and any mi exceeding the maximum growth rate of species i (as

defined by the functional response) will necessarily lead to the extinction

of this species. Thus the range to be analyzed for non-trivial dynamical

behavior is confined between these boundaries.

Computation of the dominant Lyapunov exponent16,19 is the safest

method to decide whether time series generated through numerical simula-

tion are chaotic or not. A positive Lyapunov exponent indicates exponential

divergence of nearby trajectories and thus directly quantifies sensitivity to

initial conditions, the hallmark of chaotic dynamics. Advanced methods are

available for the computation of Lyapunov exponents from time series,42–44

as generated by numerical simulation, laboratory experimentation, or field

data collection (see Becks et al.45 for an applied example). Chaotic dy-

namics can also be inferred from bifurcation diagrams (Fig. 1) or Poincaré

maps.10 Although these methods have been widely used for the analysis

of ecological model systems they can only serve as diagnostic tools for the

detection of chaotic dynamics (chaotic and quasi-periodic dynamics, for in-

stance, are not readily distinguished by these methods). Since these are

graphical methods they also do not lend themselves to the quantification,

comparison, and statistical analysis of large numbers of different food web

model parameterizations.

Numerical computation of the Lyapunov exponents from time series can

be time-consuming, especially because frequently thousands of parameter

combinations need to be evaluated to obtain a highly resolved represen-

tation of the dynamical domains present in a particular food web model.

In order to determine the relative frequency of the four general types of

dynamics in food webs (trivial equilibrium with one or more populations

equal to zero; stable equilibrium of all populations coexisting; stable limit
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Fig. 1.3. Decision tree for classifying time series generated by numerical simulations of
dynamic food web models with i species xi. The axis indicates the flow of time dur-
ing the numerical integration and decisions are made at pre-determined time intervals
defined by the number of integration steps (t1, .., t3). The time interval [t0, t1] should
be sufficiently long to allow for transient dynamics to subside (typically several thou-
sand time steps). The computation routine will automatically identify the dynamical
categories “extinction”, “equilibrium”, “stable limit cycle”, and “chaos”. Because of
numerical fluctuations it is advisable to use in practice a decision criterion less stringent
than “> 0”, e.g. “> 10−4”. Extinction can also occur “non-deterministically” through
extreme oscillations that lead to unrealistically low abundances; the computation routine
can be adjusted to score oscillations below a defined threshold as “extinction”.

oscillations; chaotic oscillations) it is, however, not necessary to compute

the Lyapunov exponent for each parameterization. It is preferable to follow

a computation routine that restricts the computation of Lyapunov expo-

nents to the non-extinct and non-equilibrium cases, as outlined in Fig. 1.3.

Although this method has been effectively used to determine the dynamical

state of an extended set of food web models,30 some cautionary remarks are

necessary. In high-dimensional models, the dynamical state may not just
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depend on the parameter values but also on the initial values chosen for the

state variables (sensitivity to initial conditions). Fussmann and Heber30

checked several sets of initial conditions for the tri-trophic chain and a

highly connected food web consisting of five species but found only little

variability for the relative frequency of chaotic and other dynamics. How-

ever, food webs that include competitive dynamics for limiting resources

have been shown to be extremely sensitive to initial conditions.46 An ex-

haustive numerical food web analysis may be impossible in such food webs

because the number of food web realizations to be screened is magnified

by a nearly limitless set of initial conditions. It must also be noted that

the algorithm presented in Fig. 1.3 is designed to detect “truly” chaotic

dynamics but does not distinguish between periodic limit cycle and quasi-

periodic dynamics. Finally, on a positive note, the dynamical evaluation

of multiple food web structures and parameterizations lends itself to paral-

lel computation, which will considerably increase the number of parameter

combinations that can be evaluated during a given time interval.

Numerical simulation is a method that probes the dynamical behavior

predicted by food web models. As such, results derived from this method

never reach the status of generality although they may approach it when a

sufficiently large number of cases are analyzed. For simple systems of dif-

ferential equations, which describe trophic structures, analytical stability

analyses can be performed47 but it is impossible to determine analytically

the nature of the unstable dynamics (regular vs. chaotic oscillations). Re-

cently, Gross et al.48 proposed a novel method to analytically prove the

potential for chaotic dynamics in generic food chain models of variable

length. It would be exciting if this approach, based on bifurcations of

higher codimension as indicators of chaos, could be extended to food web

architectures.49

1.4. Dynamical patterns in food webs

The relationship between structural properties of food webs and their sta-

bility is an old problem in ecology.50 Traditionally, ecologists believed that

large and reticulate food webs should be dynamically more stable than

small webs and food chains (i.e they tend to display equilibrium dynamics

rather than community oscillations).51,52 This view had been challenged by

May53 who derived a negative relationship between complexity and dynam-

ical stability for randomly constructed, simple food web models. However,

similar community models, based on non-random, more realistic food web
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Fig. 1.4. Chaotic dynamics in three different three-species food webs. Left: time series;
right: chaotic attractors in three dimensions. Black line: prey, prey, prey1; red line:
consumer, predator1, prey2; green line: predator, predator2, predator (in tritrophic
chain, 2-predator-1-prey, and 1-predator-2-prey webs, respectively). Parameterization:
Tritrophic - K = 1.5, otherwise as in Fig. 1.1; 2-Predator-1-Prey - r = K = 1.0,
aR1 = 5.0, bR1 = 10.0, aR2 = 4.0, bR2 = 2.0, mC1 = 0.327273, mC2 = 0.78 (this
parameterization follows closely Abrams et al.,57 except that both consumers have a
Holling type-2 functional response here); 1-Predator-2-Prey - r1 = r2 = K1 = K2 = 1.0,
aR1 = 15.0, bR1 = 0.0, aR2 = 1.0, bR2 = 0.0, mC = 1.0, eC = 0.5; this food web requires
direct competition between the two prey species (here competition factors are α = 1.0
and β = 2.5); see Takeuchi and Adachi58 for details of the model.

structures, have repeatedly been shown to generate more stable dynamics

with increasing structural complexity.54–56 Here, I review the relationship

between food web structure and stability with regard to chaotic dynamics,

a special type of unstable dynamics.

Chaotic dynamics are impossible in a two-species predator-prey sys-

tem, where stable limit cycles are the most complex dynamics. But chaos

has been shown to occur in all three possible three-species combinations

(Fig. 1.4): the three-species food chain,10,11 the two-prey one-predator sys-

tem,9,58 and the one-prey two-predator system57 (for which coexistence

of all three species is only possible if the dynamics are oscillatory59 un-

time
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less specific life history differences exist among the competitors60). This

is not to say that chaos is the prevalent dynamical type in these systems,

or that the chaotic dynamics are persistent and biologically feasible. The

tri-trophic food chain is probably the dynamically best investigated three-

species structure. McCann and Yodzis11 have shown that chaotic dynamics

in this food chain can occur at biologically plausible parameterizations and

that the oscillations are frequently well bounded away from extremely low

population abundances (and therefore likely to be persistent). It appears

that chaos occurs less frequently in the other two food webs30 and Takeuchi

and Adachi58 noted that, in the two-prey one-predator system, stable co-

existence on a chaotic attractor “is nonsense from the biological point of

view since the population densities of three species become nearly equal to

zero in the evolution of the system.”

The results from two- and three-species “webs” suggest that an increase

in structural complexity is accompanied by increased dynamical complexity

if one is ready to accept that chaotic dynamics are more complex than

stable limit cycles. The question is whether this trend holds for larger food

webs, supporting the negative relationship between food web complexity

and dynamical stability that May53 proposed.

There appears to be good evidence that food chains (not webs) become

increasingly chaotic with increasing trophic length. Fussmann and Heber30

analyzed a set of 28 structurally different model food webs and quantified

the frequency of chaotic dynamics in them (using the procedures outlined

in sections 1.2 and 1.3). In these food chains, chaotic dynamics became

steadily more likely with an increasing number of trophic levels (Fig. 1.5).

These results are corroborated by a recent theoretical study by Gross et

al.48 who found analytically that long food chains are “in general chaotic”.

The trend toward more chaotic dynamics with increasing number of

trophic levels is much less pronounced in reticulate food web structures

(Fig. 1.5, 1.6). McCann et al.29,61 were the first to observe this effect in

food web models allowing for chaotic dynamics and to propose a mechanism

for how complexity may lead to stabilization. In the tri-trophic food chain

chaotic dynamics result from the coupling of two consumer-resource mod-

ules (the prey-consumer and the consumer-predator pairs) that oscillate

at incommensurate frequencies. Adding alternative, weak trophic path-

ways (i.e. alternative prey) has a dampening effect on the dynamic be-

havior of the food web because the rigid coupling of oscillatory subsystems

is destroyed. The probability of observing equilibria or stable limit cycle

dynamics increases with the number of alternative, potentially stabilizing
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Fig. 1.5. Frequency of chaotic dynamics in mathematical models of food chains vs.
reticulate food webs. 12 parameterizations of 4 different chains and 45 parameteriza-
tion of 23 structurally different webs were evaluated. Percentages are averages of all
chain/web structures with a given maximum number of trophic levels; error bars denote
±1 standard error (only shown if larger than symbol). Note that no food webs with
more than four trophic levels were analyzed. Data from Fussmann and Heber.30

trophic links. In line with this theory, long food chains are more likely to be

chaotic because they contain multiple subsystems that potentially oscillate

at incommensurate frequencies. The same trend occurs in food webs, which

destabilize with increasing number of trophic levels, but reticulateness of

the webs may invert this trend and lead to re-stabilization in complex model

structures (Fig. 1.5, 1.6).30

Several variations exist on the theme of the stabilizing effect of alter-

native pathways in food webs. First, adding potentially stabilizing interac-

tions to a trophic structure does not necessarily imply adding new species.

New interactions may also arise by establishing feeding relationships among

existing species that had previously not been connected. Ecologists speak

of “omnivory” when a single species feeds on multiple trophic levels. Om-

nivory is very common in natural food webs62 and omnivorous feeding rela-

tionships have been shown to stabilize model food chains and webs by elim-
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inating chaotic dynamics.29–31,38 The existence of multiple trophic links fa-

cilitates the dampening of oscillations at incommensurate frequencies which

leads to stabilization. Fussmann and Heber30 found that reticulateness and

omnivory act additively to stabilize food web models although the effect of

omnivory tended to be not quite as strong. Two recent studies32,63 suggest

that omnivory may be either stabilizing or destabilizing in food webs, de-

pending on structural properties of the food web32 or the relative strengths

of the omnivorous links.63

As dynamic food web model studies have accumulated over the last

decade, ecologists and modelers can observe a consistent trend: the more

natural attributes food web models contain, the less likely they are to dis-

play chaotic dynamics. Reticulateness and omnivory are such realistic al-

terations, and the spatial organization of food webs is another example. In

ecosystems, multiple food webs are often linked with one another; in lakes,

for instance, food webs based on benthic (lake bottom) and on planktonic

(open water) production are connected by predatory fish with the ability to

feed on both subsystems. Modeling studies have shown that such adaptive

foraging by a consumer has a stabilizing effect in food webs in general.40,64

More specifically, linking two tritrophic food chains39 or spatially extended

food webs38 by a common consumer may eliminate chaotic dynamics from

model systems (however, whether coupling is stabilizing or destabilizing

depends, in the latter case, on the expanse of the coupled webs38). The

mechanism that stabilizes these systems is the same that effects the stabi-

lization of the tri-trophic food chain, with the difference that not a single

alternative prey but a whole alternative sub-web is added to the system.38,65

In essence, preferential consumption by a predator effectively transforms

the multi-species Holling type-2 response into individual Holling type-3 re-

sponses25 (characterized by a decrease in prey uptake at low prey densi-

ties) because the predator preferentially feeds on the most abundant prey

species.50,65 The stabilizing effect of type-3 responses on chaotic dynamics

has also been demonstrated in food web models using this type of functional

response explicitly.27 It is surprising, however, that even the slightest devi-

ation from a true Holling type-2 response may stabilize chaotic dynamics.

In conclusion, model food webs of any complexity are able to generate

the full range of dynamical behavior: equilibria, stable limit cycles, chaotic

oscillations. There is a clear trend, however, that chaotic dynamics become

less frequent in favor of more stable dynamics when food webs contain an

increasing number of characteristics found in natural ecological communi-

ties.
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Fig. 1.6. Different frequencies of occurrence of stable and unstable dynamics in two food
webs. a) Tritrophic food chain (parameterization: K = 1.0, otherwise as in Fig. 1.1). b)
Tritrophic food web with three basal species (parameterization: K1 = K2 = K3 = 1.0,
r1 = r2 = r3 = 2.5, aR1 = 7.5, aR2 = 5.0, aR3 = 2.5, bR1 = bR2 = bR3 = 5.0,
aC = 1.0, bC = 2.0). Results of numerical simulations on a 200×200 lattice in the plane
unfolded by consumer and top-predator mortalities mC and mP . Colors indicate the
dynamics for each parameter combination. Dark blue: deterministic extinction; middle
blue: extinction through extreme oscillations with values < 10−4; light blue: equilibrium;
turquoise: stable limit oscillations; yellow to red: chaotic oscillations with increasing
positive Lyapunov exponents. Chaos is more frequent in a) (16.3% of all persisting
parameter combinations) than in b) (7.2%). Data after Fussmann and Heber.30

1.5. Chaos in real food webs and conclusion

A full review of the evidence for and against chaotic dynamics in natu-

ral food web systems is beyond the scope of this article. The prevailing

opinion is that the vast majority of ecological communities persist at non-

chaotic dynamics although some examples of chaotic dynamics have been

reported.42,66,67 These findings are in agreement with the evidence gath-

ered from food web models that incorporate increasing levels of real-world

features such as omnivory, spatial structure, and variability of feeding re-

lationships. It is possible, then, that chaotic dynamics are only common in

long food chains, idealized structures that hardly exist in the wild.

To test this hypothesis a live model system is required that displays

chaotic dynamics and can be adequately described by a mathematical
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model. This system could then be manipulated in a controlled fashion

so that ecologists could test whether the stabilization of chaotic dynam-

ics occurs when the model predicts it. One potential laboratory system is

the Tribolium (flour beetle) system, for which chaotic dynamics have been

demonstrated.68,69 However, this system consists only of a single species

and complex dynamics arise through the interaction of different life history

stages (larvae, pupae, adults). With respect to food web theory a recently

proposed microbial laboratory system seems more promising. Becks et al.45

showed that their one-predator-two-prey food web could persist at equilib-

rium, stable limit cycle, or chaotic dynamics. The dynamical state de-

pended on a single parameter, the flow-rate of culturing medium through

the chemostat (the experimental vessel that contains the microbial food

web). If this food web could be parameterized for a mathematical model

that predicts its behavior correctly ecologists would possess a magnificent

system to test dynamical food web theory, including questions related to

the occurrence and prevalence of chaotic dynamics.
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Ecological systems are commonly studied either by explicit conventional
models or by abstract random matrix models. Here we review and ex-
tend the method of generalized structural kinetic modeling, that offers
an intermediate approach between these extremes. Generalized models
describe the dynamic capabilities of a system with a given structure, but
do not restrict the processes in the model to specific functional forms.
The approach is based on the direct construction of the Jacobian in ev-
ery point of parameter space in such a way that each term appearing in
the Jacobian is directly accessible to measurement and has a well defined
ecological interpretation. We show that generalized models can be used
to study the local asymptotic stability of steady states and reveal certain
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features of the global dynamics. Among other examples we illustrate the
method on a spatial predator-prey system and a complex food web.

2.1. Introduction

Ecological communities generally constitute complex dynamical systems.

They can give rise to a wide variety of dynamical phenomena, including

temporal and spatial oscillations of population densities, multi-stability

and complex dynamics. The understanding, and eventually prediction, of

the dynamics of ecological communities is one of the major challenges of

theoretical ecology. For this purpose mathematical models have been stud-

ied for a long time. At present mathematical models serve as a basis for

the investigation of questions of major ecological importance, such as the

chance of global species extinction, probabilities of invasion and coexistence

of species, response of ecosystems to eutrophication, etc.

While numerical simulations are often used to study large realistic mod-

els, the dynamics of conceptual models can be examined more elegantly by

applying the powerful mathematical tools of dynamical systems theory. An

important object on which many of these tools focus is the system’s Jaco-

bian matrix. For instance, in a system of ordinary differential equations,

a steady state is stable if all eigenvalues of the corresponding Jacobian

have negative real parts.1 Local bifurcation points, at which the stabil-

ity properties of the steady state change, can be computed directly from

the Jacobian. The system’s bifurcations–the corresponding changes in the

topology of the phase portrait–reveal many insights in the local and global

dynamical properties (s. below).

At present two different approaches to the construction of the Jacobian

are commonly used.2 One the one hand the Jacobian can be computed from

a conventional model , which describes the dynamics of the system with ex-

plicit functions, such as differential equations or discrete time maps. A

major disadvantage of such conventional mathematical modeling is that

necessarily many (often implicit) assumptions enter in the construction of

the model. This is because in order to formulate the model the relevant

processes have to be described in terms of explicit mathematical functions.

For most biological processes, however, the exact analytical form is not

known. Since data on functional forms is generally hard to obtain, the

functions that are used in practice are often based on microscopic, ‘atom-

istic’ reasoning. However, in contrast to physics or chemistry, the processes

that determine the dynamics on the microscopic level in ecology are less
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clear. A good example is Holling’s disk equation3 which is frequently used

to describe predator-prey interactions. While this function incorporates

the fundamental mechanisms (e.g. predator saturation), it cannot possibly

capture the full complexity of the interaction between predator and prey.

By using this equation in a given model one is implicitly assuming that

the model outcome does not depend critically on the choice of the specific

functional form. Unfortunately this assumption, that structurally differ-

ent analytic forms may be used interchangeably, turns out to be wrong: It

has been recently shown that minor corrections in the functional form of

the predator-prey interaction can have a strong impact on the long-term

dynamics of the system.4–6 Without further evidence it is therefore of-

ten questionable if the dynamics observed in a conventional model actually

corresponds to the dynamics of the real world system or whether they are

artifacts introduced by the specific choice of the functions in the model.

Such uncertainties are avoided in the more abstract setting of random

matrix models ,2 in which the Jacobian of a system is directly modeled

by random matrices drawn from a suitable distribution. Apart from the

underlying assumption that the system is of such complexity that the Jaco-

bian can be considered to be quasi-random, there is little need for further

assumptions. Moreover, random matrix models have the additional advan-

tage of enhanced computational speed, since the set-up of a random matrix

is in general much faster than the computation of the Jacobian of a conven-

tional model, which as a prerequisite involves the computation of steady

states. It is therefore feasible, by considering a large ensemble of random

matrices, to effectively sample the full range of possible dynamical behav-

iors of a given class of systems and obtain generic, unbiased results. But,

real world ecological systems do not always behave in a generic or unbiased

way. Physical, chemical and biological constraints can favor certain struc-

tures in the system, such as specific closure terms, scaling laws, variability

in link strength and so on. In order to yield credible results these factors

should ideally be reflected in the class of matrices from which the random

sample is drawn. However, the same abstractness that lends random ma-

trix models their power, is gained at the cost of interpretability, so that

many properties that appear in real world systems are very difficult to be

reflected faithfully in random matrices.

In this chapter we review the approach of generalized modeling–an inter-

mediate modeling strategy, which combines the advantages of both conven-

tional and random matrix models. Generalized models are more abstract

than conventional models, but retain more interpretability than random
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matrix models. As in conventional models, generalized model allow to re-

flect specific features of real world systems in a straightforward way and

at the same time they rival the generality and efficiency of random matrix

models.

We start in Sec. 2.2 by presenting the main underlying idea of gen-

eralized models. The approach is illustrated at the example of a simple

predator-prey system in Sec. 2.3. Thereafter, in Sec. 2.4, we discuss the

treatment of two additional difficulties that typically arise in the construc-

tion of more complex models, whereas in Sec. 2.5 we show how the method

can be extended to the modeling of spatially extended systems. While

these first sections illustrate the main techniques for the formulation of a

generalized model, the following sections are devoted to the analysis and

investigation of such models. We start in Sec. 2.6 with a local stability

analysis and the computation of bifurcations in small and intermediate

systems. In Sec. 2.7 we show, how certain insights into global dynamical

properties can be gained. Finally, in Sec. 2.8 we move on to larger systems

and present an investigation of a complex food web. We conclude the chap-

ter in Sec. 2.9 with a discussion of generalized modeling in relation to other

modeling approaches.

2.2. The basic idea of generalized models

The construction of a mathematical model typically encompasses a number

of profound difficulties and in a certain sense can be considered as a two-step

process. The first step involves the identification of the state variables of the

system and the relevant processes which act on these variables. Together

these define the structure of the model. Only in a second step, specific

functional forms are assigned to the individual processes.

While the formulation of a conventional model always involves these

two modeling steps, both are avoided in random matrix models. Now,

note that the second step requires much more information than the first.

While we generally have a pretty good idea who interacts with whom in

an ecological system, the exact functional dependence of the interactions

is much harder to quantify. Therefore, the uncertainties of conventional

models (criticized above) mainly enter in the second modeling step. On the

other hand, the low interpretability of random matrix models arises mainly

from the lack of knowledge about the structure of the system correspond-

ing to a given random matrix–it is therefore connected to the omission of

the first of the two modeling steps. We can say, that making the first step
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(defining the structure of the system under consideration) gives us a high

gain in interpretability, while requiring only basic information. The sec-

ond step (restricting the model to specific functional forms) improves the

interpretability further, but at a much higher cost in required information.

Generalized models involve the first of the two modeling steps, but

avoid the second one. We thus end up with models which have a well

defined structure, but in which the processes are not restricted to specific

functional forms. For this reason generalized models have also been de-

noted as structural kinetic models.7 As will be shown in the following from

generalized models Jacobian matrices can be constructed, which allow to

investigate the stability and bifurcations of the system under investigation

along the same lines that are usually applied in the analysis of conventional

and random matrix models. All uncertainties which are encountered in the

construction of the Jacobian can be captured by a few parameters, which

in general have an intuitive interpretation and can, at least in principle, be

observed and measured in nature.

2.3. Example: A general predator-prey system

Let us start by considering a general simple predator-prey system. We

assume that the state of the system is determined by two state variables:

the prey density X and the predator density Y . The time evolution of the

system can be described by equations of the form

Ẋ = S(X) −G(X,Y ),

Ẏ = ηG(X,Y ) −M(Y ),
(2.1)

where S(X) is the production rate of the prey, G(X,Y ) is the predation rate

and M(Y ) is the mortality rate of the predator. The conversion efficiency

of prey biomass into predator biomass is denoted by the constant factor

η. In the following, we do not restrict the functions S, G and M to any

specific analytical form. In this sense the Eq. (2.1) describes a specific

model structure but not a specific model.

In order to compute the corresponding Jacobian matrix we apply a

normalization procedure that has first been proposed in Ref. 8. A recent,

more detailed discussion of the procedure is found in Ref. 9. As the only

mathematical assumption about the system, we require the existence of at

least one feasible (but, not necessarily stable) steady state (X∗, Y ∗). This

enables us to define the normalized variables

x :=
X

X∗
, y :=

Y

Y ∗
. (2.2)
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and the normalized functions

s(x) :=
S(X)

S∗
, g(x, y) :=

G(X,Y )

G∗
, m(y) :=

M(Y )

M∗
, (2.3)

where asterisks indicate the steady state values. In terms of the normalized

variables and functions the system can be written as

ẋ = αx(s(x) − g(x, y))

ẏ = αy(g(x, y) −m(y)),
(2.4)

where we have introduced the constant factors

αx :=
S∗

X∗
=
G∗

X∗
αy :=

ηG∗

Y ∗
=
M∗

Y ∗
. (2.5)

The fact that the equals signs on the right hand side of these definitions

hold, can be checked by considering Eq. (2.1) in the steady state.

In the normalized system the steady state under consideration is lo-

cated at (x∗, y∗) = (1, 1). Moreover, the processes in the model have been

normalized in such a way that s(1) = 1, g(1, 1) = 1 and m(1) = 1. If

the population densities and the rates of the processes in the steady state

are known from observation, then this normalization can be carried out

explicitly. Such data is often available since the steady state quantities are

often directly accessible to measurement.7 However, the true power of the

normalization procedure is revealed if information about the steady state is

not available–for instance because a whole class of similar systems is con-

sidered which differ in the location of their respective steady states. In this

case the normalization procedure can be used to map the unknown steady

state (X∗, Y ∗) to the known location (x∗, y∗) = (1, 1). The price we have

to pay for this, is the introduction of the unknown constant factors αx and

αy. Such factors that arise in the normalization of a generalized model are

called scale parameters9 and, in general, represent scales (in the broadest

sense) of the system.

From the way in which the factors αx and αy appear in Eq. (2.4) it

can be guessed that they denote inverse time scales. This can be confirmed

by considering Eq. (2.5): The scale parameter αx denotes the per-capita

growth and mortality rate of the prey, while αy denotes the per-capita

growth and mortality rates of the predator. We can therefore say that αx

and αy are respectively the inverse of the life expectancies of predator and

prey individuals in the steady state under consideration.

We can now compute the Jacobian in the normalized system. This
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yields

J =

(
αx(sx − gx) −αxgy

αygx αy(gy −my)

)

, (2.6)

where we have used roman indices to indicate partial derivatives in the

steady state, for instance

gx :=
∂

∂x
g(x, y)

∣
∣
∣
∣
x=y=1

. (2.7)

These derivatives are called exponent parameters.9 Like the scale param-

eters the exponent parameters have clear ecological interpretations and in

general describe the degree of nonlinearity or saturation of the correspond-

ing function at the steady state. In order to illustrate these, it is useful to

consider the effect of the normalization on some specific functions. Take

for instance the parameter sx = ∂
∂xs(x)|x=1, which describes the saturation

of the prey productivity at equilibrium. If the production rate was a linear

function S(X) = AX (with arbitrary A > 0) then the normalized function

would be s(x) = x and the exponent parameter would be sx = 1. We can

expect that such a linear dependence appears only in systems in which the

production is not limited by factors other than the number of producers.

By contrast, if there is, say, a strong nutrient limitation the production rate

could be independent of the density of producers. In this case the corre-

sponding parameter would be sx = 0. More generally, a relationship of the

form AXα corresponds to the exponent parameter sx = α, hence the name.

In a generalized model we do not restrict S(X) to any specific functional

form. Even for functions that are not simple mononomials, the value of

sx is usually in the range between 0 and 1 and indicates the availability of

limiting resources. Larger values (sx > 1) can appear if the reproduction

rises faster than linearly with the population density, for instance because of

cooperative effects. Negative values are only possible if loss terms, such as

outflow from a chemostat are included in S(X) or the production decreases

with increasing producer density.

The other exponent parameters can be interpreted in a similar way. In

order to gain some intuition here we discuss these parameters briefly (a

much more detailed description is given in Ref. 10). The parameter gx in-

dicates the predator’s sensitivity to prey density, which is an indicator of

predation pressure. If prey is scarce the predation rate is in many systems

known to increase almost linearly with the prey density and gx ≈ 1. How-

ever if prey is abundant, predator saturation sets in and gx approaches 0
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as the predation rate becomes almost independent of the prey density. In a

similar way the parameter gy indicates the cooperation between predators.

In most models the predation rate is assumed to increase linearly with the

predator density, which corresponds to gy = 1. By contrast gy ≈ 0 indi-

cates a very strong interference between predators, while gy = 2 indicates

a strong cooperation. Finally the parameter my describes the nonlinearity

of the mortality rate. This parameter equals one if the mortality is density

independent, but can be higher (in general up to 2) for density dependent

closure.

Let us recapitulate what has been achieved. By means of the above nor-

malization procedure we have been able to arrive at a parametric represen-

tation of the Jacobian matrix of the general predator-prey system Eq. (2.1)

without any restrictions on the analytic functional forms of the model. Each

element of the Jacobian is fully specified in terms of six well-defined param-

eters, two scale parameters αx, αy and four exponent parameters sx, gy,

gy, my, all of which have a clear ecological interpretation and are amenable

to direct observation or measurement. In the following, these parameters

are treated as free parameters, defining the ecologically admissible “pa-

rameter space” of the predator-prey system. Once this representation of

the Jacobian is obtained, it allows to give a detailed statistical account of

the dynamical capabilities of the system, including the stability of steady

states, the possibility of sustained oscillations, as well as the existence of

quasiperiodic or chaotic regimes. We want to stress that in this approach

there is no approximation involved. This means that the reconstructed Ja-

cobian represents the exact Jacobian of the general system for every feasible

steady state and at each possible point in parameter space.

The applicability of this procedure is not limited to the simple example

considered here. In general, essentially the same normalization procedure

can be applied to a wide variety of models. In the past the procedure

has been successfully applied to food chains,5,8,10,11 food webs,9,10 coupled

lasers,9 metabolic networks7 and a model of dynastic cycles in Chinese

history.9

2.4. Additional difficulties in complex models

For the purpose of illustration, in the previous section a very simple example

of a generalized model was discussed. Although our analysis did not rely

heavily on this simplicity, there are two additional difficulties that can arise

if more complex models are studied. The first of which is related to the
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increased number of terms in the equations, while the second arises if the

terms themselves become more complex.

In Eq. (2.5) we have used the fact that the right hand side of both

equations contained only two terms. Because of this the constant factor

that appeared in the normalization of a single line (e.g. αx) had to be

identical. In more complicated models there are generally more than two

terms on the right hand side of the equations of motion. For instance, one

can imagine that the time evolution of a population density Y is described

by general equations of the form

Ẏ = Gy(X,Y ) −Gz(Y, Z) −M(Y ), (2.8)

where Gy denotes the predation by population Y on a population X , while

Gz describes the predation of a third population Z on Y . In the notation

introduced above the normalization of this equation yields

ẏ =
Gy

∗

Y ∗
gy(x, y) −

Gz
∗

Y ∗
gz(y, z) −

M∗

Y ∗
m(y). (2.9)

Independently of the number of terms in the equation, the sum of all loss

terms has to equal the sum of all gain terms in the steady state. By

considering Eq. (2.9) in the steady state one can therefore confirm

G∗
y

Y ∗
=
G∗

z

Y ∗
+
M∗

Y ∗
=: αy. (2.10)

As in the previous example the parameter αy denotes the inverse of the

life expectancy of individuals of population Y . In order to substitute all

constant factors in the normalized equation, an additional scale parameter

has to be defined. Since we already know that the loss terms have to add

up to αy, we can define the additional parameter in such a way that it

denotes the relative contribution of one of the loss terms to this sum. For

instance the parameter

βy =
1

αy

G∗
z

Y ∗
(2.11)

denotes the fraction of the population Y that will (in the steady state)

eventually be consumed by the predator Z. The complementary parameter

β̃y = 1 − βy =
1

αy

M∗

Y ∗
(2.12)

denotes the fraction of the population that will eventually die because of

natural mortality. In terms of these scale parameters Eq. (2.9) can be

written as

ẏ = αy[gy(x, y) − βygz(y, z) − β̃ym(y)]. (2.13)
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In this example we have managed to find interpretable scale parameters

by introducing one parameter that denotes the scale of the total turnover,

αy, and subsequently measuring the relative contributions to this turnover.

Even in much more complicated models this procedure generally succeeds

to reveal easily interpretable scale parameters.9 In some cases it can be

useful to introduce multiple levels of grouping. Suppose for instance that

the equation of motion contained multiple loss terms that arise from the

predation by different predators. In this case we could use one scale pa-

rameter αy to denote the total turnover, then another scale parameter βy

to denote the relative contribution of the sum of all predation terms to

the total turnover and finally a third parameter γy,i to denote the relative

contribution of the predation by a certain predator i to βy.

The second difficulty, that can arise in the construction of a generalized

model, is that the individual terms in the model can be conceptually more

complicated. Let us illustrate this situation by the well studied example of

predation on multiple prey populations.12 In comparison to a single prey

population, this situation is for two reasons more complicated. First, we

know that some relations between the losses of the prey and the gain of

the predator exist. While these relations should be reflected in the model,

the losses of either prey are no longer directly proportional to the total

gain of the predator. Second, some derivatives can arise which do not have

a direct intuitive interpretation. For example it is not always intuitively

clear how the loss rate of one prey population responds to a variation in the

population density of the other. Both of these problems can be solved by

including some additional mechanistic reasoning, which enters the model

in the form of auxiliary variables and equations.

Let us denote the two prey populations by X and Y and the predator

population by Z. We use the function G(X,Y, Z) to describe the gain of

the predator by predation and the functions Lx(X,Y, Z) and Ly(X,Y, Z)

to describe the predative losses of the prey populations. In addition we

introduce the auxiliary variable P which denotes the total amount of prey

that is perceived by the predator Z. Let us assume that P can be written

as a sum

P (X,Y ) = Cx(X) + Cy(Y ), (2.14)

where Cx and Cy are general positive functions that describe the contribu-

tion of the populations X and Y depending on the respective population

sizes. While it is in many cases reasonable to assume that these functions

are linear, they can be nonlinear if, for instance, the predators can improve
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the success rate of attacks with practice.12 We can normalize auxiliary

equations, like Eq. (2.14), by applying the same normalization procedure

that we have used for the differential equations. In the notation introduced

above the normalized auxiliary equation reads as

p(x, y) =
C∗

x

P ∗
cx(x) +

C∗
y

P ∗
cy(y), (2.15)

We identify the constant factor ρ = Cx
∗/P ∗ as a scale parameter which

denotes the relative contribution of population X to the total amount of

available prey, while the complementary variable ρ̃ = 1−ρ = C∗
y/P

∗ denotes

the fraction contributed by population Y . This allows us to write the

normalized amount of available prey as

p(x, y) = ρcx(x) + ρ̃cy(y). (2.16)

Let us now investigate how the losses of population X relate to the

gain of Z (the losses of Y are completely analogous and hence will not be

treated separately). Since population X contributes a fraction Cx/P to the

available amount of prey, it can be assumed that it contributes the same

fraction to the captured amount of prey. From this we deduce the form of

the corresponding loss rate as

Lx(X,Y, Z) =
Cx(X)

P (X,Y )
G(P,Z). (2.17)

The normalization of this equation yields

lx(x, y, z) =
C∗

x cx(x)

P ∗ p(x, y)

G∗ g(p, z)

L∗
x

=
c(x)

p(x, y)
g(p, z). (2.18)

Thus, by introducing the auxiliary variable P we have managed to de-

termine the relation between the predative losses of the prey populations

and the gain of the predator. However, the main advantage lies in the fact

that the derivatives of the auxiliary variables with respect to the normalized

state variables have a much more direct interpretations. In the Jacobian

all terms relating to predation can be expressed as exponent parameters by

the following derivatives

∂

∂p
g(p, z)

∣
∣
∣
∣
∗

=: gp
∂

∂z
g(p, z)

∣
∣
∣
∣
∗

=: gz

∂

∂x
cx(x)

∣
∣
∣
∣
∗

=: cx,x
∂

∂y
cy(y)

∣
∣
∣
∣
∗

=: cy,y.

(2.19)

Here, the exponent parameter gp describes the nonlinearity of the pre-

dation rate with respect to prey density, while gz describes its dependence
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on the predator density. These two parameters are completely analogous to

the parameters gx and gy that have been introduced in the previous section

to describe the predator-prey system with a single prey population. The

ability to describe structurally different systems with directly comparable

parameters is one of the advantages of generalized modeling. The two new

parameters cx and cy describe the nonlinearity of the contributions of the

two prey populations to the total amount of prey. For example the case

of passive prey switching corresponds to cx,x = cy,y = 1 while active prey

switching can lead to larger values.

This example of predation on multiple prey populations illustrates that

additional constraints can be taken into account in generalized models by

including auxiliary equations. The introduction of such auxiliary equations

is often useful since it makes room for additional theoretical reasoning,

which can greatly enhance the interpretability of a given model without

introducing too many new assumptions.

2.5. A generalized spatial model

The investigation of generalized models proposed here is not limited to mod-

els that are formulated in the language of ordinary differential equations,

but can be extended for example also to systems of partial differential equa-

tions (PDEs). In ecology PDEs are frequently used to describe ecological

populations in physical space. The underlying assumption in these models

is that, at a certain scale, the evolution of population densities is captured

by a diffusion equation. It is well known that in reaction-diffusion systems

instabilities with respect to spatially inhomogeneous perturbations with a

certain wavenumber k can exist.13 The corresponding qualitative transi-

tion in the phase portrait of the system is known as Turing bifurcation

and wave instabilities. Beyond a Turing bifurcation spatially inhomo-

geneous patterns form spontaneously from an initially homogenous state.

This transition has been extensively studied in conventional models.14–18

More recently it has been discovered as the driving force of pattern forma-

tion in certain ecological systems.19–21

To illustrate these ideas, we consider a system of partial differential

equations (PDEs) that was recently studied in Ref. 22, in which the simple

predator-prey system Eq. (2.1) is extended to a spatial system. Thus we
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describe the dynamics in one point of physical space by the equations

Ẋ = S(X) −G(X,Y ) +Dx∆X,

Ẏ = ηG(X,Y ) −M(Y ) +Dy∆Y,
(2.20)

where ∆ denotes the Laplace operator, and Dx and Dy are diffusion, or

dispersal , constants.

At first glance it seems that our analysis of the generalized model is

complicated by diffusion. The diffusion term is neither a pure gain nor a

pure loss term, but a mix of both. In particular, in a homogenous equilib-

rium it vanishes. This means that the normalization procedure described

above cannot be applied to the diffusion term. However, recall that the

main purpose of the normalization was to map unknown rates of the pro-

cesses in the steady state to a known position. Since we know that the

diffusion term vanishes in a homogeneous state, we can consider this case

without normalizing the diffusion term. Moreover, the vanishing diffusion

term does not interfere with the normalization of the other states in the

model. We therefore obtain the normalized equations

ẋ = αx(s(x) − g(x, y)) +Dx∆x

ẏ = αy(g(x, y) −m(y)) +Dy∆y,
(2.21)

where Dx and Dy now act as scale parameters describing the diffusion.22 In

order to investigate the stability of this system one considers the Jacobian

with respect to perturbations with a wavenumber k which is given by22

J =

(
αx(sx − gx) −Dxk

2 −αxgy
αygx αy(gy −my) −Dyk

2

)

. (2.22)

Note, that for homogenous perturbations (k = 0) this Jacobian is identical

to the one of the well-mixed system given in Eq. (2.6).

2.6. Local stability in small and intermediate models

In the previous sections the formulation and normalization of generalized

models has been discussed. In the following we will be concerned with some

ways in which information can be extracted from the resulting models. The

Jacobian matrices computed from generalized models are in general simple

in the sense that they do not contain complicated terms that usually arise

in conventional models from the computation of steady states. In systems

of small (dimension N ≤ 4) or intermediate (N ≤ 10) size, it is therefore

often possible to compute the local bifurcations analytically.
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In systems of ODEs local bifurcations of steady states occur if the vari-

ation of a parameter causes the real part of one or more eigenvalues of

the Jacobian to change sign.1 Eigenvalues generally either cross the imag-

inary axis as a pair of two complex conjugate eigenvalues, or pass through

the origin of the complex plane as a single real eigenvalue. The first case

corresponds to a Hopf bifurcation which, at least transiently, gives rise

to oscillations as the stability of the steady state is lost. The latter case

corresponds to bifurcations of saddle-node type (e.g. fold, transcritical or

pitchfork bifurcations) in which the number and/or stability of steady states

changes. It is interesting to note that the direct computation of both of

these types of bifurcations is in general less difficult than the computation

of the eigenvalues themselves or the computation of steady states in a con-

ventional model. The computation of eigenvalues involves the factorization

of a polynomial of degree N which analytically is in general only possible

for N ≤ 4. By contrast, a test function that describes the local bifurca-

tion points can always be constructed. The determinant of the Jacobian

is a convenient test function that vanishes in (and in general only in) bi-

furcation points of saddle-node type. By applying slightly more involved

techniques analogous test functions for the computation of Hopf bifurca-

tions can be constructed.8,23,24 While these techniques can in principle be

applied in systems of any size, the resulting expressions become too long to

handle analytically in large systems (N > 10).

In small and intermediate systems the analytical computation of local

bifurcations of steady states is a very efficient tool for the investigation of

generalized models. For instance in the predator-prey model proposed in

Sec. 2.3 we find bifurcation points of saddle-node type at

gx =
sx(my − gy)

my
(2.23)

and Hopf bifurcation points at

gx = sx −
αy(my − gy)

αx
for gx >

sx(my − gy)

my
. (2.24)

In order to find the Turing bifurcation points one formulates a condition for

the existence of a positive eigenvalue and then considers the wavenumber

for which this condition is first satisfied. This calculation is shown in detail

in Ref. 22. As a result we find that the Turing bifurcation points are located
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Fig. 2.1. Three-parameter bifurcation diagrams of generalized predator-prey systems.
Left: the ODE model from Eq. (2.1), right: the spatial PDE model from Eq. (2.20). The
bifurcation surfaces are shown in dependence on the prey sensitivity gx, the timescale
separation r = αy/αx and the exponent of closure my. In both diagrams the steady
state under consideration is stable in the top-most volume of parameter space. If gx is
decreased destabilization occurs in a Hopf bifurcation (red surface) or in a bifurcation of
saddle-node type (blue surface) or–in the spatial model–in a Turing bifurcation (green
surface). On the lines, on which two surfaces meet, codimension-2 bifurcation points are
located. Other parameters: sx = 0.5, gy = 1 and d = 30.

at

gx =
r

d

(

√
gy −

√

my +
d

r
sx

)2

for sx + r(gy −my) ≤ gx ≤ r

d
(gy −my),

(2.25)

where d = Dy/Dx and r = αy/αx.

These results are visualized in a three-parameter bifurcation diagram

shown in Fig. 2.1, where we have assumed intermediate nutrient availability

sx = 0.5 and the absence of intraspecific competition between predators

gy = 1. In the three dimensional parameter space the bifurcation points of

Hopf and saddle-node type form surfaces, which divide the parameter space

into regions of qualitatively different long-term dynamics. The normalized

steady state is stable in the topmost volume of the parameter space. As

the prey sensitivity is lowered the steady state loses its stability as a Hopf

bifurcation point (red surface), a bifurcation point of saddle-node type (blue

surface) or the Turing bifurcation (green surface) is encountered.

In small and intermediate systems one can obtain a good impression

of the full local bifurcation structure of the system by considering several

of such three-parameter bifurcation diagrams with different axes. If an-

alytical expressions for the bifurcation surfaces are available, then these
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diagrams can be generated without much effort. By visual inspection of

the bifurcation diagrams one can usually tell the way in which the individ-

ual parameters effect the dynamics of the system. Once such an intuition

is gained it can be verified mathematically. For instance, in the case of

our general predator-prey system the sensitivity of the predator gx has a

strong stabilizing effect. By increasing the value of gx one can always sta-

bilize, but never destabilize a steady state. Furthermore, since my > gy in

almost all systems, Eq. (2.24) shows that the critical value of gx at which

the Hopf bifurcation occurs decreases as r = αy/αx is increased. This re-

sult is counter-intuitive since it implies that oscillations are less likely if the

timescale separation indextimescale!separation between predator and prey

is small.

In Ref. 22 a similar way of reasoning was used to identify the conditions

under which the spontaneous formation of spatial and spatio-temporal pat-

terns in predator-prey systems is likely. In particular it was shown that high

nutrient supply, low competition for nutrients among prey, high abundance

of prey and predators, strong intraspecific competition in the predator pop-

ulation and density dependent predator mortality promote the spontaneous

pattern formation. Since all of these are typically found in enriched sys-

tems, these results indicate that anthropogenic eutrophication could lead

to the formation of spatial or spatio-temporal patterns in natural predator-

prey systems. A similar conclusion was reached in Ref. 25 based on the

investigation of a conventional model.

Another interesting effect connected to eutrophication is the so-called

paradox of enrichment. This paradox revolves around the observation that

many ecological systems can be destabilized by increasing the supply of nu-

trients or prey.26,27 While this was initially felt to be counter-intuitive, the

effect is now well understood. From a modern perspective the true para-

dox lies in the fact that many ecological systems observed in experiments

are stabilized by an increase of nutrients or prey while almost all models

predict a destabilization.28–30 In the past several solutions to this paradox

have been pointed out,30–33 among them is the formation of spatio-temporal

patterns mentioned above.25

Our work on generalized models suggests a different solution: The

purely destabilizing effect of enrichment that is observed in many mod-

els may be an artifact, that is produced because of the specific functional

forms that are usually employed in modeling.5 Let us focus on the func-

tional response G(X,Y ) and the corresponding parameter gx. We have

already discovered that high values of gx have a stabilizing effect on the
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Fig. 2.2. Comparison of two specific functional forms of predator-prey interaction. Left:
the predation rate G as a function of the prey density X for a Holling type-II functional
response (Eq. 2.26, dashed line) and an adaptive functional response (Eq. 2.29, solid
line). Right: the corresponding stability of the predator-prey system, measured in terms
of the prey sensitivity gx. The small differences in the functional form have a large
impact on the stability.

system. We can now go back and ask how gx changes with prey density

depending on the specific functional form that is used for G(X,Y ).

In conventional models the question, how the choice of one specific func-

tional form affects the stability of the system is difficult to study. Any vari-

ation of a function will in general cause a variation of the steady state and

will therefore affect all other processes in the model as well. Hence, one can

not distinguish whether an observed change in stability was caused by the

variation of the functional form or by the resulting shift of the steady state

under consideration. By contrast, in generalized models the stabilizing or

destabilizing effect is captured by a single parameter. Computing this pa-

rameter for a specific functional form used in conventional models provides

us with a way to measure the impact of the choice of a specific function on

the system’s stability.

In many conventional models the predation rate is described by the

Holling type-II functional response

G(X,Y ) =
AXY

X +K
, (2.26)

where A and K are constant parameters of the specific model, which denote

the maximum predation rate and the prey density at the half saturation

point, respectively. By explicit application of the normalization procedure

described above, we find that the relative saturation is given by the corre-
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sponding exponent parameter

gx =
1

1 + χ
, (2.27)

where χ = X∗/K. As we increase the steady state density of prey, the prey

sensitivity gx decreases. Therefore an increase of prey density has always a

destabilizing effect on the predator-prey interaction, if the Holling type-II

functional response is used to describe this interaction. This statement is

precisely the formulation of the paradox of enrichment in the generalized

framework.

We now ask if there is a realistic function G(X,Y ) for which an increase

in the prey density can promote stability. In other words, we ask which

biological details of the predator-prey interaction have to be taken into

account in order to derive a function G(X,Y ) for which the corresponding

prey sensitivity satisfies

∂

∂X∗
gx(X

∗) > 0. (2.28)

As shown in Ref. 5, one solution is given by adaptive changes in the pre-

dation strategy. The adaptive switching between a Holling type-II and a

Holling type-III strategy can be described by the function

G(X,Y ) =

G2(X)
G3(X)G2(X) + G3(X)

G2(X)G3(X)

G2(X)
G3(X) + G3(X)

G2(X)

Y (2.29)

where G2(X) = AX/(X+K) is a type-II functional response and G3(X) =

AX2/(K2 +X2) is a type-III functional response.3,10 In Fig. 2.2 this func-

tion is compared to the standard type-II functional response. Because of the

similar shape, and given the error by which by the predation rate of real or-

ganism is measured, the two functional responses would be very difficult to

distinguish in experiments. Nevertheless, the corresponding predator sen-

sitivities gx exhibit strong qualitative differences. In contrast to the type-II

response the adaptive functional response has a large parameter range in

which gx (and therefore also the stability) increases with increasing prey

density.

While the example of the adaptive response function offers a solution to

the paradox of enrichment it is also a cause of concern. In the example two

functional response curves, that were indistinguishable for all practical pur-

poses, gave rise to qualitatively and quantitatively different results. This

shows that small biological details that may be difficult to spot in obser-

vational data can have a profound impact on the dynamics of the system.
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Models in which these details are neglected may therefore fail to predict the

dynamics of the system correctly. This concern was also recently expressed

in Ref. 6, based on the investigation of conventional models. Generalized

models offer a solution to this problem. As we have shown for the previous

example, generalized models can be used to assess the impact of certain

biological details on the stability. They can therefore identify classes of

effects that can potentially have a strong impact on stability and should be

taken into account in conventional models.

2.7. Some results on global dynamics

A central limitation of generalized models is that we cannot consider global

dynamics explicitly. Since our conclusions are based on the Jacobian in

the steady state they necessarily arise from a local analysis. However, this

local analysis sometimes can reveal insights in certain global dynamical

properties of the system.

In order to extract global information from a local analysis we focus

on the bifurcations of higher codimension. A detailed discussion of these

bifurcations is presented in Refs. 1,34. In the previous sections we have

studied bifurcations of Hopf and saddle-node type, which are of codimension

one. As we have already seen, the corresponding bifurcation points form

hypersurfaces in the parameter space. Bifurcation points of codimension

two appear on hyperlines in which dynamical properties of the codimension-

1 bifurcations change. This is for instance the case in the points where two

codimension-1 bifurcation surfaces coincide.

One example of a codimension-2 bifurcation can be seen in the bifur-

cation diagram of the predator-prey system shown in Fig. 2.1. In this

system there is a line in which the Hopf bifurcation surface ends as it

meets the bifurcation surface of saddle-node type. This line is formed by

codimension-2 Takens-Bogdanov bifurcation points. A detailed mathe-

matical investigation of Takens-Bogdanov bifurcation points34 shows that

this bifurcation gives also rise to a global homoclinic bifurcation. Close

to this bifurcation systems often show excitable behavior. For ecological

applications that means that small perturbations can result in large pop-

ulation outbreaks or crashes. As another example, in the spatial (PDE)

version of the predator-prey system, the Turing bifurcation surface ends in

a Turing-Hopf bifurcation line, as it reaches the Hopf bifurcation surface.

The presence of a Turing-Hopf bifurcation in general indicates the presence

of spatio-temporal patterns close to the bifurcation point.
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Fig. 2.3. Bifurcation diagram of a five-trophic food chain. The timescale separation
between each predator-prey pair is assumed to be r. Likewise we assume that the prey
sensitivity of all predators is gx. The parameter sx denotes the nutrient availability for
the primary producer. The system is stable in the topmost volume of the parameter
space. The stability is lost by crossing either of two Hopf bifurcations (red, green). The
blue surface corresponds to bifurcation points of saddle-node type. At the intersection
line of the two Hopf bifurcation surfaces, a double Hopf bifurcation line is formed, which
indicates the presence of complex dynamics.

An interesting codimesion-2 bifurcation is the double Hopf bifurcation

in which two Hopf bifurcation surfaces intersect. An example of this bifur-

cation is presented in the three-parameter bifurcation diagram of the five-

trophic food chain in Fig. 2.3. Although several forms of this bifurcation

exist, we can say that double Hopf bifurcations give rise to quasiperiodic

motion on tori, which generically decay to form strange invariant sets.34

Therefore the presence of a double Hopf bifurcation indicates that chaotic

dynamics do generically exist in some parameter space close to the bifur-

cation.

Note, that the computation of higher codimension bifurcations in gen-

eralized models does not only show that certain types of global dynamics

generically exist in a large class of systems, but also provides a starting

point for the search for this type of dynamics in conventional models. The

question whether complex dynamics are possible is of interest in many sys-

tems. In ecology there was a long debate whether ecological systems can be

chaotic. Although ecological models were among the first examples of de-

terministic chaos,35 it was often argued that chaos should disappear when
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more ecological details are taken into account.36,37 By application of gen-

eralized models it has been shown that double Hopf bifurcations generally

exist in food chains with more than three trophic levels.11 Therefore,

long food chains generically contain chaotic parameter regions. In a later

work this result was extended to large classes of food webs.10 Again, let us

emphasize that these results hold regardless of the specific biological details

that are taken into account.

In principle even more information could be extracted from the compu-

tation of local bifurcations if the corresponding normal form parameters

were computed along with the bifurcation points.1,34 For instance the com-

putation of normal form parameters would allow us to distinguish between

the supercritical Hopf bifurcation, from which a stable limit cycle emerges

and the subcritical Hopf bifurcation in which an unstable limit cycle van-

ishes. In contrast to the Jacobian, which is essentially a linearization of the

processes in the steady state, the normal form parameters contain some in-

formation about higher derivatives. In principle these derivatives could be

computed from the normalized equations in the same way as the Jacobian.

However, this would lead to the introduction of a new type of exponent

parameters, which contains multiple derivatives. Whether an intuitive in-

terpretation for this new type of parameters can be found remains to be

seen.

2.8. Numerical investigation of complex networks

In the previous sections we have analyzed generalized models with the same

tools that are usually applied to conventional models. In the following we

will use our generalized models in the spirit of random matrix models, which

is a convenient approach to investigate larger models and complex food-

webs. In other chapters of this book the importance of complex networks

in nature is pointed out. Complex networks appear in food webs, genetic

and metabolic networks, metapopulations, contact graphs, and many other

forms. In order to formulate a generalized model of a complex network we

exploit the fact that the nodes in a given network are generally similar. For

example a general food web was studied in Ref. 9. In this food web every

node is a population. Although the nodes are of course different–some are

producers while others are consumers, some are specialists while others are

generalists–the dynamics of every population density Xn can be described
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by an equation of the type

Ẋn = Sn(Xn) + ηnGn(X1, . . . , XN ) −Mn(Xn) −
N∑

m=1

Lm,n(X1, . . . , XN ),

(2.30)

where the function Sn describes the production of biomass by population n

and Gn describes predation of population n on others. The constant factor

ηn denotes again the efficiency of biomass conversion . Losses occur because

of natural mortality Mn and because of predation by others Lm,n. Some of

these functions can vanish for certain populations, e.g., for consumers the

production term vanishes.

The normalization of Eq. (2.30) is shown in detail in Ref. 9. It follows

exactly the same procedure that we have applied to normalize the simple

models considered above. In the course of the normalization we identify the

scale parameters: αn which denotes the characteristic timescale of popula-

tion n, ρn which describes which fraction of the total grows of n is gained

by predation, e.g., 1 for consumers and 0 for producers, σn which denotes

the fraction of the losses that occurs because of predation by others, χm,n

which denotes the contribution of population n to the total amount of prey

available to species m, and βm,n which denotes the fraction of predative

losses of population n, that is caused by population m, as well as the com-

plementary parameters ρ̃n, σ̃n.

We find that the non-diagonal elements of the Jacobian can be written

as

Jn,i = αn(ρnχn,igx,nci,n − σn(βi,ngy,,i +

N∑

m=1

βm,nci,m(gx,m − 1)χm,i))

(2.31)

and the diagonal elements as

Ji,i = αi(ρ̃isx,i + ρi(χi,igx,ici,i + gy,i)

−σ̃imy,i − σi(βi,igy,i +
∑N

m=1 βm,ici,m((gx,m − 1)χm,i + 1)))
(2.32)

where gx,n, gy,n, sx,n and my,n denote the prey sensitivity, the intraspecific

cooperation, the nutrient availability and the mortality exponent for species

n in complete analogy to the exponent parameters defined in Sec. 2.3. The

exponent parameter ci,n denotes the switching behavior of population n

with respect to the prey population i. This parameter is analogous to the

parameters cx,x and cy,y defined in Sec. 2.4.

The Eqs. (2.31) and (2.32) allow us to generate the Jacobian for an
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Fig. 2.4. Fraction of stable systems in a sample of 106 four-trophic sixteen-species food
webs (s. text) depending on the average prey sensitivity gx in the webs. The fraction of
stable food webs increases with increasing prey sensitivity. This shows that high prey
sensitivity has a stabilizing effect on complex food webs.

arbitrary generalized food web model from a set of scale and exponent pa-

rameters. In contrast, to the small and intermediate systems, that we have

considered so far, most realistic networks often contain hundreds or thou-

sands of variables. Therefore, the analytical computation of bifurcations

that we have employed until now is clearly not feasible in most realistic

networks. Moreover, even a large number of three-parameter bifurcation

diagrams with different axes, would probably fail to convey an intuitive

picture of the huge parameter space of a complex network. Therefore the

focus of our analysis has to shift from the analytical computation of bifur-

cations towards the numerical computation of eigenvalues. In other words

we study the generalized models in the same ways one would usually em-

ploy to study a random matrix model. However, in contrast to real random

matrix models we have the ability to fix certain aspects of the structure

under consideration.

In the previous sections we have started the analysis of generalized

models by noting that high prey sensitivity gx has a stabilizing effect on

predator-prey systems. Let us now investigate whether this insight also

holds in complex food webs. For this purpose we consider a four-trophic

sixteen species food web, with four species on every trophic level. All species

on level 1 are primary producers while all other species are predators (ρi = 0

for i = 1 . . . 4 and ρi = 1 for i = 5 . . . 16). In order to account for the allo-

metric scaling of the characteristic timescales we set αi = 0.3Lvl(i)−1, where
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Lvl denotes the trophic level of species i. For every species there is a 50%

chance that the species feeds on a given species on a lower trophic level.

Only those food webs are taken into account in which the predators feed at

least on one species. We assume that all prey species of a given predator

contribute equal amounts to the total prey accessible to the predator. Like-

wise we assume that all species that prey upon a given species cause equal

losses. Non-predative mortality terms are ignored for all species except top

predators (σi = 0 for i = 1 . . . 12 and σi = 1 for i = 13 . . . 16). We focus on

the case of passive switching (ci,i = 1), intermediate nutrient availability

(si,i = 0.5) and linear top predator mortality (mi,i = 1).

Using the settings described above, we have created a sample of 106

food webs with random topology and random prey sensitivities gx,i ∈ (0, 1)

for all predators. For each food web the eigenvalues of the Jacobian and the

average prey sensitivity gx =
∑16

i=5 gx,i/12 was computed. Fig. 2.4 shows

the fraction of stable food webs (identified by the existence of a negative

largest eigenvalue) that were obtained in this way, depending on gx. As

revealed in Fig. 2.4 the chance of randomly generating a stable food web

increases almost linearly with gx. This confirms our notion that high prey

sensitivity has a stabilizing effect on food webs.

While this result on the prey sensitivity is hardly surprising, it shows

that generalized models can be used to investigate the effect of certain food

web properties on the stability. In a similar way one can investigate other

network characteristics, such as the effect of weak links, heterotrophy or

prey switching, to name some examples. These investigations are currently

in progress.

2.9. Discussion

In this chapter we have reviewed and extended the approach of general-

ized structural kinetic modeling. While generalized modeling is in many

ways similar to conventional and random matrix approaches, it should be

considered as an independent intermediate method.

Compared to either conventional or random matrix models generalized

models have certain drawbacks. In comparison to conventional models,

probably the most severe limitation of generalized models is that they can-

not be studied by explicit simulation. Therefore, there is no way to compute

the number or location of steady states based on a generalized model alone.

Moreover, there is presently no way to directly investigate non-stationary

dynamics in a generalized model. However, these drawbacks are compen-
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sated by the advantages that generalized models have to offer. By focusing

on a general steady state we obtain bifurcation diagrams that describe ev-

ery feasible steady state. The inability to study complex dynamics directly,

is in part compensated by the information on global dynamics that can be

drawn from certain bifurcations of higher codimension. It is true that more

insights can be gained from the extensive study of a conventional model.

However, the (admittedly limited) insights on global dynamics that can be

extracted from a generalized model, at once apply to a large class of sys-

tems. Moreover, let us emphasize that these insights can often be gained in

minutes, while the numerical techniques that are commonly applied in con-

ventional models (say, the computation of Lyapunov exponents) are often

much more time consuming.

In comparison to random matrix models, generalized models are

(slightly) less efficient, since they generally describe the system with more

parameters. However, by introducing these extra parameters generalized

models can capture the structure of the system. In doing so, they provide

us with an intuitive interpretation and thus enables us to make more use of

the information that is available. For instance we can directly and straight-

forwardly incorporate information, such as mass conservation,7 location of

steady states,7 explicitly known functions for some processes,9 specific net-

work topology10 or allometric scaling relations (s. Sec. 2.8). Taking this

information into account fixes many parameters and thus reduces the num-

ber of free parameters, while at the same time increasing the credibility of

the model.

One other remarkable characteristics of generalized models is the role

that is played by the parameters of the model. Note, that in contrast to

both conventional and random matrix models the parameters in general-

ized models are not introduced arbitrarily by the modeler but actually are

identified in the modeling process by following certain guidelines. These

guidelines in general ensure that the models depend on bona fide param-

eters that have clear interpretations. They can (and should) therefore be

treated like parameters that are used in a conventional model.

It is tempting to argue that the parameters in generalized models de-

scribe the system with an intermediate degree of abstractness, located be-

tween the often very concrete parameters used in conventional models and

the often necessarily abstract parameters of random matrix models. While

this is certainly correct, we claim that, in a certain sense, the parameters

used in generalized models are even more concrete than the parameters in

conventional models. Note, that all parameters of the generalized model
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are defined in the steady state under consideration. They can therefore be

observed directly in a system studied in nature. By contrast, the param-

eters that are used in conventional models are often defined in unnatural

states. Consider for instance the maximum predation rate that appears as

a parameter in the Holling type-II functional response. This parameter can

generally not be measured in a natural ecosystem, but requires laboratory

experiments in which the organism is exposed to unnaturally high prey

densities. Data from such experiments is only meaningful if the underlying

implicit assumption–the specific functional form of the response–is true.

This assumption is often questionable since additional effects, e.g., confu-

sion of the predator, can arise. If such effects exist the parameter may in

a given system be fundamentally inaccessible to direct measurement. For

this reason the specific parameters of conventional models can in effect be

less well defined than the parameters of generalized models, which are in

principle always accessible to measurement.

In summary, we have presented the method of generalized modeling,

which provides a powerful technique for the analysis of ecological and gen-

eral dynamical systems. Generalized models do not aim to replace conven-

tional modeling approaches, but should be seen as an additional tool that

can augment and facilitate present modeling efforts.
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A mathematical model for the dynamics of plant communities in dry-
lands is described and studied using concepts and tools of pattern for-
mation theory. The model bears on a variety of topics of current interest
in ecology, including vegetation patchiness in arid and semiarid regions,
catastrophic shifts, negative vs. positive plant interactions, niche theory
and species richness. More specifically, the model (i) reproduces field
observations of various vegetation patterns, such as spots, stripes and
gaps, (ii) reproduces observed changes from plant competition to facili-
tation as aridity stresses increase, (iii) sheds light on desertification phe-
nomena as catastrophic shifts involving transitions between coexisting
stable states, (iv) motivates a new classification of aridity based on the
inherent stable states of the system, (v) provides a means for calculating
niche maps that relate micro-habitats in physical space to hyper-volumes
(fundamental niches) in niche space, (vi) demonstrates the importance
of collective modes in plant community dynamics. The article concludes
with a discussion of the limited scope of the model, possible extensions
thereof, and prospects for further developments of niche theory.

3.1. Introduction

Plants, as primary producers, constitute the fundamental components of

most ecosystems. Significant questions related to ecosystem function and

stability are therefore addressed at the level of plants communities. Aspects

of high current interest include self-organization of plant communities in

arid and semiarid regions to form vegetation patterns,1 sudden responses of

vegetation to environmental changes,30 changes in plant interactions along

49
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gradients of environmental stresses,4–6 maintenance of species diversity7,8

and the impacts of diversity changes on ecosystem function and stability.9,10

Vegetation patterns, such as bands on hill slopes,2,3 have been observed

in many arid and semiarid regions worldwide. The characteristic length

scales associated with these patterns suggest the existence of intrinsic pat-

tern formation mechanisms,11 independent of the heterogeneity of the phys-

ical environment. According to this approach vegetation patterns follow

from spatial instabilities that reflect intraspecific plant competitions over

the scarce water resource. The mechanisms responsible for these instabili-

ties most often involve positive feedbacks12 between vegetation biomass and

water; the larger the biomass the more water available to the vegetation

and the faster the vegetation grows. The increased water availability with

biomass can be attributed to reduced evaporation by shading, increased

infiltration rates of surface water at vegetation patches, and water uptake

by root systems that extend in size as the plants grow. Mathematical mod-

els that include biomass-water feedback effects have reproduced many of

the observed patterns.13–24,26–28 These models also predict how vegetation

patterns should change along rainfall gradients.1,19,26

Another phenomenon that has attracted considerable interest recently

is the possible occurrence of sudden vegetation responses to small gradual

environmental changes.1,30,31 Sudden responses, or “catastrophic shifts”,

have been interpreted as transitions between two contrasting stable states

taking place at the verge of a coexistence range of the two states.29 Exam-

ples of catastrophic shifts include sudden loss of transparency and vegeta-

tion in shallow lakes subjected to human-induced eutrophication,32,33 and

regeneration of woodlands as a result of low herbivore activity due to epi-

demic and hunting.34,35 Desertification in drylands36 may also be viewed

as a catastrophic shift involving a sudden transition from a patchy peren-

nial vegetation state to a state of bare soil, possibly with ephemeral plants,

induced by climatic events or overgrazing.30 This view has recently been

supported by mathematical models that demonstrated coexistence ranges

of stable uniform vegetation with stable bare soil,37 and of patchy vegeta-

tion and bare soil.19

The dynamics and spatial structures of plant communities strongly de-

pend on interspecific plant interactions. These interactions can be nega-

tive, implying competition, or positive, implying facilitation. Recent stud-

ies have identified changes from negative to positive interactions as abiotic

stresses or consumer pressures increase.4,5,38,39,48 In water limited systems

such changes have been observed with shrubs under conditions of increasing
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aridity. Facilitation in this case is manifested by the appearance of annuals

under the shrub canopies and has been attributed to the amelioration of

micro-environmental conditions (reduced evaporation, nutrient accruement,

etc.) by the shrub.6,47

Other studies addressing similar phenomena emphasized the importance

of abiotic landscape modulations and resource redistributions by plant

species. Shrubs modify the landscape by forming patches of biomass with

soil mounds and litter underneath. The soil mounds and the litter increase

the water infiltration rate and form patches rich with soil-water and or-

ganic nutrients.41 Contributing to this process are biological crusts42,43

(e.g. cyanobacteria crusts), that cover the bare soil, reduce the water in-

filtration rate and increase the runoff that is trapped at the soil mounds.

The overall effect is the creation of favorable conditions for the growth of

other species, such as annuals, under shrub canopies. Species facilitating

the growth of other species by modulating the landscape and concentrating

resources have been termed “ecosystem engineers”.44–46

The impacts of facilitation or ecosystem engineering on plant communi-

ties and species diversity have largely been ignored in ecological theories.4,48

The “realized niche” concept in niche theory49 is a good example; it has

traditionally been conceived as a subset of the niche occupied by an isolated

species (the “fundamental niche”), because of competitive interactions and

exclusion by other species. As emphasized recently48 the realized niche of

a given species can increase in the presence of other species due to positive

interactions, and as a result species diversity can increase as well.50,51

In this chapter we describe a mathematical model for vegetation in dry-

lands25,54 that allows studying many of the aspects discussed above. It is

the first model of its kind to capture all three positive feedbacks between

biomass and water; reduced evaporation by shading, increased infiltration

at vegetation patches, and water uptake by augmenting root systems. The

shading and infiltration feedbacks contribute to positive plant interactions,

or facilitation, by increasing the water resource, whereas the uptake feed-

back contributes to negative plant interactions, or competition, by reducing

the soil water available to other plant species. The model expectedly repro-

duces the vegetation patterns and state coexistence ranges found in studies

of earlier models. However, in capturing the uptake feedback the model

also becomes a powerful tool for studying changes in plant interactions,

niche dynamics and various aspects of species diversity.
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3.2. Model for dryland water-vegetation systems

A few mathematical models have been introduced to describe vegetation

pattern formation in water limited systems. The models range from a

single dynamical variable representing vegetation biomass, to two variables

representing biomass and soil water, to three variables where a distinction

between soil water and surface water is made. The three-variable models are

the most appropriate for studying water-vegetation interactions. Of these

models only the most recent one by Gilad et al.25,54 takes into account

all three feedbacks between biomass and water (including water uptake by

plants roots). In the following we focus on this model which we simply refer

to as the “model”.

The three dynamical variables of the model are: (a) the biomass density,

B(R, T ), representing the plant’s biomass above ground level in units of

[kg/m2], (b) the soil-water density, W (R, T ), describing the amount of soil

water available to the plants per unit area of ground surface in units of

[kg/m2], and (c) the surface water variable, H(R, T ), describing the height

of a thin water layer above ground level in units of [mm]. The model

equations are:

BT = GBB (1 − B/K)−MB +DB∇2B

WT = IH −N (1 −RB/K)W −GWW +DW∇2W

HT = P − IH +DH∇2
(
H2
)

+ 2DH∇H · ∇Z + 2DHH∇2Z , (3.1)

where the subscript T denotes partial time derivative, R = (X,Y ) and

∇2 = ∂2
X + ∂2

Y . The quantity GB [yr−1] represents biomass growth rate,

while K [kg/m2] is the maximum standing biomass. The quantity GW

[yr−1] represents the soil water consumption rate, the quantity I [yr−1]

represents the infiltration rate of surface water into the soil and the param-

eter P [mm/yr] stands for the precipitation rate. The parameter N [yr−1]

represents soil water evaporation rate, while R describes the reduction in

soil-water evaporation rate due to shading. The parameter M [yr−1] de-

scribes the rate of biomass loss due to mortality and different kinds of

continuous disturbances (e.g. grazing). The term DB∇2B represents seed

dispersal while the term DW∇2W describes soil water transport in non-

saturated soil.52 Finally, the non-flat ground surface height is described by

the topography function Z(R) while the parameter DH [m2/yr (kg/m2)−1]

represents the phenomenological bottom friction coefficient between the

surface water and the ground surface.

While the equations for B and W are purely phenomenological (result-
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ing from modeling processes at the single patch scale), the equation for H

was motivated by shallow water theory. The shallow water approximation is

based on the assumptions of a thin layer of water where pressure variations

are very small and the motion becomes almost two-dimensional.53

The shading positive feedback is modelled by the parameter R which

measures the reduction in evaporation rate due to the presence of biomass.

The other two positive feedbacks are modelled through the explicit forms of

the infiltration rate term I and the growth rate term GB . The infiltration

feedback is modelled by assuming a monotonously increasing dependence of

I on biomass; the bigger the biomass the higher the infiltration rate and the

more soil-water available to the plants. The roots feedback is modelled by

assuming a monotonously increasing dependence of roots length on biomass;

the bigger the biomass the longer the roots and the bigger amount of soil-

water the roots take up.

The explicit dependence of the infiltration rate of surface water into the

soil on the biomass density is chosen as:20,24,55

I = A
B(R, T ) +Qf

B(R, T ) +Q
, (3.2)

where A [yr−1], Q [kg/m2] and f are constant parameters. Two distinct

limits of this term are noteworthy. When B → 0, this term represents

the infiltration rate in bare soil, I = Af . When B ≫ Q it represents

infiltration rate in fully vegetated soil, I = A. The parameter Q represents

a reference biomass beyond which the plant approaches its full capacity to

increase the infiltration rate. It is a plant property reflecting for example

litter formation. The difference between the infiltration rates in bare and

vegetated soil is quantified by the parameter f , defined to span the range

0 < f < 1. When f ≪ 1 the infiltration rate in bare soil is much smaller

than the rate in vegetated soil. Such values can model bare soils covered

by biological crusts.42,43 As f gets closer to 1, the infiltration rate becomes

independent of the biomass density B, representing non-crusted soil where

the infiltration is high everywhere. The parameter f measures the strength

of the positive feedback due to increased infiltration at vegetation patches.

The smaller f the stronger the feedback effect.

The growth rate GB has the form:

GB(R, T ) = Λ

∫

Ω

G(R,R′, T )W (R′, T )dR′ , (3.3)

G(R,R′, T ) =
1

2πS2
0

exp

[

− |R − R
′|2

2[S0(1 + EB(R, T ))]2

]

,
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where the integration is over the entire domain Ω and the kernel

G
(
R,R′, T

)
is normalized such that for B = 0 the integration over the

entire domain equals unity. According to this form the biomass growth

rate depends not only on the amount of soil water at the plant location,

but also on the amount of soil water in the neighborhood which the plant’s

roots extend to. The roots length [m] is given by S0(1 +EB(R, T )), where

E [(kg/m2)−1] is the roots’ extension per unit biomass, beyond some min-

imal roots length S0. The parameter Λ has units of [(kg/m2)−1 yr−1] and

represents the plant’s growth rate per unit amount of soil water. The pa-

rameter E measures the strength of the positive feedback due to water

uptake by the roots. The bigger E the stronger the feedback effect.

The soil water consumption rate at a point R is similarly given by

GW (R, T ) = Γ

∫

Ω

G(R′,R, T )B(R′, T )dR′ . (3.4)

Note that G(R′,R, T ) 6= G(R,R′, T ). The soil water consumption rate

at a given point is due to all plants whose roots extend to this point.

The parameter Γ has units [(kg/m2)−1yr−1] and stands for the soil water

consumption rate per unit biomass.

Table 3.1. List of dimensional parameters, their
numerical values/ranges and their units.

Parameter Value/Range Units

K 1 kg/m2

Q 0.05 kg/m2

M 1.2 yr−1

A 40 yr−1

N 4 yr−1

E 3.5 (kg/m2)−1

Λ 0.032 (kg/m2)−1yr−1

Γ 20 (kg/m2)−1yr−1

DB 6.25 × 10−4 m2/yr
DW 6.25 × 10−2 m2/yr
DH 0.05 m2/yr (kg/m2)−1

S0 0.125 m
Z mm
P [0, 1000] kg/m2 yr−1

R [0, 1] -
f [0, 1] -

The parameters values used in this paper are summarized in Table 3.1.

They were chosen to describe shrub species and were taken or deduced from

Refs. 24,52,56. The model solutions described here are robust and do not
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depend on delicate tuning of any particular parameter. The precipitation

parameter represents mean annual rainfall in this paper and assumes con-

stant values. This approximation is justified for species, such as shrubs,

whose growth time scales are much larger than the typical rainfall time

scale.

It is convenient to study the model equations using non-dimensional

variables and parameters defined as follows: b = B/K, w = ΛW/N , h =

ΛH/N , q = Q/K, ν = N/M , α = A/M , ρ = R, η = EK, γ = ΓK/M ,

p = ΛP/MN , δb = DB/MS2
0 , δw = DW /MS2

0 , δh = DHN/MΛS2
0 , ζ =

ΛZ/N , t = MT , x = X/S0. The model equations can now be written in

the following non-dimensional form:

bt = Gbb(1 − b) − b + δb∇2b

wt = Ih− ν(1 − ρb)w −Gww + δw∇2w

ht = p− Ih+ δh∇2(h2) + 2δh∇h · ∇ζ + 2δhh∇2ζ . (3.5)

The infiltration rate has the non-dimensional form:

I = α
b(r, t) + qf

b(r, t) + q
. (3.6)

The growth rate term Gb is written as:

Gb(r, t) = ν

∫

Ω

g(r, r′, t)w(r′, t)dr′ , (3.7)

g(r, r′, t) =
1

2π
exp

[

− |r − r′|2
2(1 + ηb(r, t))2

]

,

and the soil water consumption rate can be similarly written as:

Gw(r, t) = γ

∫

Ω

g(r′, r, t)b(r′, t)dr′ , (3.8)

where r = (x, y) and r′ = (x′, y′).

The non-dimensional precipitation parameter p can be used to define

an aridity parameter, a, as

a = p−1 =
MN

ΛP
. (3.9)

This parameter captures the effects of four factors on aridity: precipitation,

evaporation, mortality or grazing, and biomass growth rate per unit amount

of soil water. It extends an earlier definition15 in including the two pluvial

parameters, precipitation rate and evaporation rate.
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3.3. Landscape states

The landscape of a dryland ecosystem is a patchwork of biomass and re-

sources. This patchwork changes with rainfall conditions, grazing stress,

soil properties, ground topography, plant species traits, etc. The effects of

these factors on the system’s landscape can be studied by solving the model

equations for various parameter values. In this section we (a) map the basic

landscape states that appear along aridity gradients, (b) study coexistence

ranges of stable states and state transitions (catastrophic shifts), and (c)

use the mapping of the basic landscape states and their coexistence ranges

to suggest a new classification of aridity.

3.3.1. Mapping the landscape states along aridity gradients

The model has two homogeneous stationary solutions representing bare soil

and uniform coverage of the soil by vegetation. Their existence and linear

stability ranges for plane topography are shown in the bifurcation diagram

displayed in Fig. 3.1. The bifurcation parameter is p, the dimensionless form

of the precipitation parameter, P . The linear stability analysis leading to

this diagram is described elsewhere.54

The bare soil solution, denoted in Fig. 3.1 by B, is given by b = 0, w =

p/ν and h = p/αf . It is linearly stable for p < pc = 1 and loses stability

at p = 1 to uniform perturbations ∗. The uniform vegetation solution,

denoted by E , exists for p > 1 in the case of a supercritical bifurcation

and for p > p1 (where p1 < 1) in the case of a subcritical bifurcation. It

is stable, however, only beyond another threshold, p = p2 > p1. As p is

decreased below p2 the uniform vegetation solution loses stability to non-

uniform perturbations in a finite wavenumber (Turing like) instability.11

These perturbations grow to form large amplitude patterns. The following

sequence of basic patterns has been found at decreasing values of p for plane

topography (see frames C,B and A in Fig. 3.1): gaps, stripes and spots.

The basic landscape states persist on slopes with two major differences:

stripes, which form labyrinthine patterns on a plane, reorient perpendicular

to the slope direction to form parallel bands, and the patterns migrate uphill

(typical speeds for the parameters used in this paper are of the order of

centimeters per year). Fig. 3.2 shows the development of bands migrating

uphill from an unstable uniform vegetation state. Migrating bands on a

∗The bifurcation is subcritical (supercritical) depending whether the expression
2ην/[ν(1 − ρ) + γ] is greater (lower) than unity.
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Fig. 3.1. Vegetation states along a precipitation gradient. Frame D shows a bifurcation
diagram of uniform states based on a linear stability analysis of the model equations (3.5).
The bare soil state (B) is stable (solid line) at low precipitation and becomes unstable
to uniform perturbations beyond pc (dashed line). The uniform vegetation state (E) is
stable at high precipitation and becomes unstable to non-uniform perturbations below p2

(dotted line). Frames A,B, and C show typical patterns at increasing precipitation values
in the range where uniform states are unstable: spots, stripes, and gaps (dark shades of

gray represent high biomass). The patterns were obtained by numerical integration of the
model equations (3.5). The parameters used (see Table 3.1) describe woody vegetation.
Reprinted with permission from Ref. 54.

slope have been found in earlier models as well.13–16,19,22,24,25

The bifurcation diagram displayed in Fig. 3.1 can be expressed in terms

of the aridity parameter a = p−1, rather than p. The resulting diagram is

shown in Fig. 3.3. It shows how the landscape states change by increasing

the grazing stress, M , or the evaporation rate, N , as a is proportional to

M and N .

The sequence of basic landscape states (uniform vegetation, gaps, stripes

or bands, spots and bare soil) as the system’s aridity is increased has been

found in earlier vegetation models18,19,22,24,26 and are consistent with field

observations.1,2,26 Fig. 3.4 shows an example of perennial grass patterns

observed in the northern Negev. The present model, however, contains

information on the water resource as well. Two landscape states that appear
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Fig. 3.2. Snap shots of model solutions describing the development of vegetation bands
migrating uphill. The bands develop from an unstable uniform vegetation state (frame
A) and align perpendicular to the slope direction while migrating uphill at a speed of a
few centimeters per year. Parameter values used are given in Table 3.1 with P = 600
mm/yr and a slope angle of 15o. The domain size is 5 × 5 m2. Time is dimensionless
(divide by 4 for time in years). Reprinted with permission from Ref. 54.
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Fig. 3.3. Bifurcation diagram of uniform states similar to that shown in frame D of
Fig. 3.1 except that the bifurcation parameter is the mortality (or grazing) rate M .
Parameter values used are given in Table 3.1 with P = 1230 mm/yr. Reprinted with
permission from Ref. 54.

to have the same spatial vegetation pattern, e.g. spots, may differ in their

soil water distributions due to different relative strengths of the infiltration

and the uptake feedbacks. We will discuss this difference in Section 3.4 in

the context of plant competition and facilitation.
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Fig. 3.4. Patterns of Paspalum vaginatum observed in the Northern Negev (200 mm
mean annual rainfall): a labyrinth-like pattern (a) and closeups showing spots (b),
stripes (c) and gaps (d). The typical distance between spots and stripes is about 0.1 m.
Reprinted with permission from Ref. 19.

3.3.2. Coexistence of landscape states and state transitions

Any pair of consecutive landscape states along the rainfall or aridity gradi-

ent has a range of bistability (coexistence of two stable states): bistability

of bare soil with spots, spots with stripes, stripes with gaps, and gaps with

uniform vegetation (see Fig. 3.5). On a slope, tristability of bare soil, spots

and bands has been found.28 In addition, multiple band solutions with

different wavenumbers coexist in wide precipitation ranges.28

Bistability of different landscape states implies vulnerability to environ-

mental stresses. A climatic fluctuation, such as drought, that drives the

system beyond the bistability range can result in an irreversible transition

to a less biologically productive state, a phenomenon known as “desertifi-

cation”.36 Fig. 3.5 illustrates such a scenario. The initial state corresponds

to stable spots (the N branch) that coexists, in the range p0 < p < pc,

with bare soil (the B branch). A precipitation downshift below p0 results

in a transition (catastrophic shift) to the bare soil state (downward ar-

row). When the drought is over and the original precipitation resumes the
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Fig. 3.5. Bifurcation diagram similar to that shown in frame D of Fig. 3.1 except that
in addition to the uniform states, B and E, it displays a solution branch N representing
the amplitude of a stable spot pattern. Note the wide coexistence range, p

0
< p < pc,

of stable bare soil and stable spots. Parameter values are given in Table 3.1. With these
parameters p0 corresponds to 50 mm/yr and pc to 150 mm/yr).

vegetation does not recover because of the stability of the bare soil state.

A particularly rainy period with annual precipitation rates exceeding pc

is needed for the vegetation to recover. This type of process is known in

other contexts (e.g. magnetism) as hysteresis. Hysteresis phenomena are

widespread in nature and exist even in the art of Escher.57

State transitions can also be induced by temporal disturbances such as

clear cutting, crust removal or fires. Of particular interest are circumstances

where local disturbances induce global transitions. Banded patterns on

slopes provide nice examples for global transitions. Fig. 3.6 shows model

simulations of a transition from a stable band pattern to a stable spot

pattern induced by a local biomass removal (through initial conditions for

the biomass variable) that mimics the effect of clear-cutting. The initial

cut of the uppermost band allows for more runoff to accumulate at the

band section just below it (frame A). As a result this section grows faster,

draws more water from its surrounding and induces vegetation decay at

the nearby band sections. The whole process continues repeatedly until the

whole pattern transforms into a spot pattern.

On a plane topography similar local disturbances have no global effects

as Fig. 3.7 demonstrates. Shown in this figure is a stable stripe pattern

which coexists with a stable spot pattern. The impact of a local clear cut

in the initial stripe pattern remains local.
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Fig. 3.6. Local disturbance leading to global state transition. A local clear-cut along
the uppermost band of a linearly stable band pattern on a slope (left frame) induces a
chain process that culminates in a stable spot pattern (right frame). The driving forces
of the process are runoff flow and intraspecific competition as explained in the text.
Parameters are as in Table 3.1 with P = 225 mm/yr. The domain size is 5×5 m2. Time
is dimensionless (divide by 4 for time in years).

Fig. 3.7. A local clear-cut, similar to that shown in Fig. 3.6, but in plane topography,
has no global effect, as the initial and asymptotic states shown in frames A and B
respectively, indicate. Parameters are as in Table 3.1 with P = 750 mm/yr. The domain
size is 7.5 × 7.5 m2.

3.3.3. Landscape states and aridity classes

The term aridity refers to a permanent pluviometric deficit whose strength

bears on the degree of vegetation the system can support. Aridity classes

are introduced to reflect different landscape states at different pluviometric

conditions, defined by the annual rainfall or by an aridity index (such as the

ratio of the annual rainfall to evapotranspiration rate).58 The difficulty with

this approach lies in the choice of the threshold values of the aridity index
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that distinguish between different classes. These thresholds ignore non-

pluvial parameters that affect the landscape states of the system. A change

in topography (i.e. in slopes), for example, is tantamount to a change in

water availability, and thus affects the vegetation state, but topography is

not taken into account in the traditional classification of aridity.

To circumvent this difficulty we propose to use the inherent landscape

states of the system as a basis for classifying drylands. A possible classifi-

cation is as follows:19

Hyper-arid : A region characterized by a single stable state, the

bare soil state (p < p0 in Fig. 3.5).

Arid : A region characterized by coexistence of stable bare soil and

a pattern state (p0 < p < pc).

Semiarid region: A region where the only stable states are vegeta-

tion patterns (pc < p < p2).

Dry sub-humid : A region where vegetation patterns stably coexist

with uniform vegetation (p > p2).

Another advantage of the proposed classification is that it contains in-

formation about coexistence of stable states. Coexistence of states implies

vulnerability to desertification as well as potential for rehabilitation of de-

sertified regions. Thus, a region with patches of vegetation which is clas-

sified as arid, is vulnerable to desertification, and a bare-soil region, also

classified as arid, is recoverable. A bare-soil region classified as hyper-arid

is not recoverable and attempts to recover vegetation will fail.

3.4. Plants as ecosystem engineers

The two positive feedbacks, increased infiltration at vegetation patches and

water uptake by roots, both act to deplete soil water from the patch sur-

rounding and induce interspecific competition over the water resource. As

a consequence both feedbacks, independently of one another, can induce

instabilities that lead to spatial patterns. While the two feedbacks give

rise to similar biomass patterns they differ in the resource distributions

they induce, a difference which reflects on the function of plants as ecosys-

tem engineers. We discuss this difference in two contexts: (a) facilitation

vs. resilience to disturbances, (b) facilitation vs. competition along aridity

gradients.
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Fig. 3.8. Spatial profiles of the variables b, w and h for three different species (different
values for η) in two distinct levels of crust coverage. The profiles are cross sections
of two dimensional simulations of the model equations (3.5) at P = 75 mm/yr. The
presence (absence) of crust is modelled by f = 0.1 (f = 0.9). A) η = 12,f = 0.1;
B) η = 3.5,f = 0.1; C) η = 2,f = 0.1; D) η = 12,f = 0.9; E) η = 3.5,f = 0.9; F)
η = 2,f = 0.9. The soil water level for bare soil solution is marked in all frames by a
horizontal dotted line. All other parameters are given in Table 3.1. Frames A) and D)
span a horizontal range of 14 m while all other frames span 3.5 m. See text for more
details. Reprinted with permission from Ref. 25.

3.4.1. Facilitation vs. resilience

The infiltration feedback concentrates soil-water under vegetation patches

of the ecosystem engineer and can lead to facilitation (or “engineering”) by

creating favorable conditions for the growth of other species. The uptake

feedback, on the other hand, leads to resilience as it increases the water

uptake capability of the ecosystem engineer.

The strengths of the infiltration and uptake feedbacks are controlled by

the parameters f and η, respectively. Fig. 3.8 shows spatial profiles of b, w

and h for a single vegetation patch at decreasing values of η, representing

species with different root extension properties, and for two extreme values

of f . The value f = 0.1 models high infiltration rates under engineer’s

patches and low infiltration rates in bare soil, which may result from a

biological crust covering the bare soil. The value f = 0.9 models high

infiltration rates everywhere. This case may describe, for example, active

sand dunes.

Relatively small values of f and η, as in panel C, pertain to strong in-
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filtration feedback and weak uptake feedback. Under these conditions pro-

nounced soil-water concentration under the vegetation patch is achieved as

the vegetation patch drains surface water from its surrounding and con-

sumes only a small part of the water that infiltrated under the patch. Rel-

atively large values of these parameters, as in panel D, pertain to weak

infiltration feedback and strong uptake feedback. This case results in a

significant soil-water deficit under the vegetation patch for surface water

infiltrate at high rates everywhere and most of the water that do infiltrate

under the patch are consumed by the vegetation.

Strong infiltration feedback and week uptake feedback (panel C in

Fig. 3.8) give rise to high facilitation or engineering, as the soil water den-

sity under the patch exceeds by far the soil-water density level of a bare

soil (shown by the dotted lines), thus creating opportunities for species that

require this extra amount of soil water to colonize the water-enriched patch.

These feedback conditions, however, make the system vulnerable to crust

disturbances as panel F demonstrates; upon increasing f the patch disap-

pears altogether, leaving small chances for recovery once the crust builds

up again (f decreases). Moderately strengthening the uptake feedback, on

the other hand, makes the system resilient to crust disturbances while re-

taining the engineering capacity, as panels B and E demonstrate. Upon

increasing f the engineering is damaged (no soil-water concentration) but

the vegetation patch survives and once the crust builds up the engineering

capacity is resumed.

3.4.2. Facilitation vs. competition

For a given plant ecosystem engineer (fixed η) and water infiltration rate

(fixed f) facilitation effects can develop as the environment becomes more

arid. Figure 3.9 shows biomass distributions at decreasing precipitation

rates (frames A,B,C) and the corresponding soil-water distributions (frames

D,E,F). At the high precipitation edge the soil-water density under the en-

gineer’s patch is lower than the density at bare soil, implying competitive

relations with other plants species (“negative engineering”). At the low pre-

cipitation edge the soil-water density under the engineer’s patch is higher

than the density at bare soil, implying facilitation. This prediction of the

model is consistent with field observations.4,5,38,39,48 The model offers the

following explanation. As the systems becomes more arid the patch area

becomes smaller and the water consumption decreases significantly. The in-

filtration rate, on the other hand, does not change much since the biomass
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Fig. 3.9. Competition changes to facilitation as aridity increases. Plant-biomass distri-
butions (frames A,B,C) and the corresponding soil-water distributions (frames D,E,F)
along a precipitation gradient. At the high precipitation edge (frames A,D) the soil-
water density under the plant patch is lower than in the surrounding bare soil, implying
competitive interactions with other plant species. At the low precipitation edge the soil-
water density under the plant patch is higher than in the surrounding bare soil, implying
facilitation. Parameters are as in Table 3.1. The domain size is 5 × 5 m2.

density remains high. As a result a unit patch area in the more arid envi-

ronment traps nearly the same amount of surface water, but a significantly

smaller amount of soil-water is consumed due to fewer plant individuals in

the surrounding region.

3.5. Species richness: Pattern formation aspects

Species richness in drylands is expected to be strongly affected by the pres-

ence of plant ecosystem engineers because of the facilitation effects of the

latter and the vegetation patterns they form. A useful concept in relat-

ing species richness to the spatial patterns of ecosystem engineers is the

“niche”. We first consider this concept in the context of the model and

then use the model to study (a) conditions that give rise to high species

richness, and (b) effects of environmental changes on species richness.
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3.5.1. The niche concept and the niche map

A niche of a given species can be defined as the ranges of environmen-

tal variables within which that species survives and reproduces49,59–61†.

Following Hutchinson49 we can consider a niche as a hyper-volume in a

multi-dimensional “niche space” spanned by the relevant environmental

variables. The latter form the “niche axes” and can represent resources,

such as soil-water, and consumer pressures, such as grazing stress.

Given a physical environment, one may conceive a niche map, that as-

sociates an area element in physical space with a volume element in niche

space.49 This is a many-one map in general as many different physical do-

mains can lead to the same niche. The physical domains which are mapped

into the niche of a given species are defined here as the micro-habitats of

that species. Competitions with other species may reduce the micro-habitat

of a given species‡. The niche map may not be easily measurable in the

field but can be calculated using mathematical models. In the present con-

text, niche maps are simply solutions of the model equations (1). Solutions

W = W (X,Y, T ) of these equations define niche maps from the physical

2-dimensional plane (X,Y ) ∈ R
2 to a 1-dimensional niche space spanned

by the soil-water resource W ∈ R
+. The niche space can be extended

to two dimensions by including a second niche axis representing grazing

and specifying a map M = M(X,Y ). The other component of the map,

W = W (X,Y, T ), will then be obtained by solving (1) with the specified

form M = M(X,Y ).

Note that niche maps obtained as solutions of the model equations take

into account the impacts of ecosystem engineers, which by concentrating the

soil-water resource increase the micro-habitats or realized niches of other

species.48

3.5.2. Landscape diversity

Mechanisms for stable coexistence of plant species based on the niche

concept contain several ingredients including:7,61–64 (a) differentiation of

species in niche space (different species occupy different volumes), (b) land-

scape diversity giving rise to spatial heterogeneity, and (c) tradeoffs in

†If the species has no competitors or enemies the niche is often called the “fundamental
niche”.
‡The micro-habitats in the physical space are sometimes referred to as the “realized
niches”48 although originally the realized niche has been defined as a volume in niche
space that takes into account species competition effects.49
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species traits (none of the species is a superior competitor with respect to

all niche axes). With these ingredients different species may stably coexist

in different physical locations. Moreover, a strong positive correlation is

expected between landscape diversity and species richness.

In the context of the model landscape diversity is determined by the

diversity of pattern solutions which dictate the instantaneous spatial distri-

butions of the ecosystem engineer’s biomass and of the soil-water resource.

A high diversity of pattern solutions can be realized in parameter regimes

giving rise to irregular solutions. One possible mechanism leading to ir-

regular solutions is spatial chaos. So far, however, we have not identified

chaotic solutions and therefore we will not address here this possibility.

Irregular patterns can also result from coexistence of stable states (e.g.

bistability), where spatial mixtures of the coexisting states form station-

ary or long lived patterns. We demonstrate two aspects of these patterns;

the first pertains to the dominant roles arbitrary initial conditions have

in shaping the asymptotic patterns, and the second to the irregular soil-

water distributions that can result from these patterns. Fig. 3.10 shows

the time evolution of two identical initial conditions (leftmost frames), one

in a parameter range where spots are the only stable state (upper frames)

and the other in a coexistence range of spots and bare soil (lower frames).

In the former case the system evolves towards a spot pattern and the ini-

tial pattern has little effect. In the latter case the initial pattern has a

strong imprint on the asymptotic pattern; the system becomes sensible to

random factors and the asymptotic patterns will generally show high land-

scape diversity. Fig. 3.11A,B show biomass and soil-water distributions in

a coexistence range of stripes and gaps. As the one-dimensional cut in

Fig. 3.11C shows the soil-water distribution is pretty irregular, creating a

diversity of micro-habitats as compared with uniform or regular periodic

patterns.

3.5.3. Environmental changes

Climatic or human induced environmental changes, such as alternation in

rainfall regime or biomass harvesting, may affect the patterns formed by

the ecosystem engineer and consequently the micro-habitats they create for

other organisms. The most significant pattern changes are those involving

transitions between different biomass pattern states (catastrophic shifts).

We illustrate this mechanism of micro-habitat change as a result of an

environmental change with a transition from a banded ecosystem engineer
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Fig. 3.10. Bistability as a mechanism for pattern diversity. Snapshots of the time
evolution of the same initial state (leftmost frames) when spotted patterns are the only
stable state (upper frames, P = 300 mm/yr), and when spotted patterns stably coexist
with bare soil (lower frames, P = 75 mm/yr). In the former case the asymptotic state
is independent of the initial state; any initial state will converge to a spotted pattern
as this is the only stable state of the system. In the latter case the asymptotic state is
highly sensitive to the initial one; although the spot size changes the pattern remains
invariant. The domain size is 7.5 × 7.5 m2, and the parameters are as Table 1. Time is
dimensionless (divide by factor of 4 to obtain time in units of years).

.

pattern to a spotted pattern on a uniform slope as precipitation decreases.

Snapshots of the pattern transition and the associated soil-water distri-

butions are shown in Fig. 3.12. Surprisingly, the transition involves the

appearance of spot patches with higher soil-water densities, despite the

lower precipitation value. This counter-intuitive result can be explained as

follows. The spot pattern self-organizes to form an hexagonal pattern. As

a result each spot “experiences” a bare area uphill which is twice as large as

the bare area between successive bands, and therefore absorbs more runoff.

A transition from bands to spots involving soil-water gain can also be

induced by a local disturbance (e.g. clear-cutting) at a given precipitation

value corresponding to a coexistence range of stable bands and stable spots,

as shown in Fig. 3.6.

We have already discussed, in the context of a single patch, the ability
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Fig. 3.11. Biomass (A) and soil-water distributions (B,C) of an asymptotic pattern in
a coexistence range of stripes and gaps. Frame C shows the soil-water profile along the
transect denoted by the dashed line in B. The soil-water distribution is pretty irregular
as is evident by the variable grey shades in frame B and by the profile in frame C. Such
irregular distributions create a diversity of micro-habitats as compared with uniform or
regular periodic patterns. The domain size is 7.5 × 7.5 m2 and the parameters are as
Table 1 with P = 950 mm/yr.

of ecosystem engineers to create micro-habitats richer in soil water as the

system becomes more arid (see Section 4.1). Here we see the same trend

but at the landscape or many patches level. The soil-water gain in this

case is an emergent property resulting from collective dynamics of species

individuals which respond to environmental changes by self-organizing into

different landscape patterns.

3.6. Conclusion

The model reviewed here (Eqs. (3.1)) takes into account the major feed-

backs between vegetation and water but leaves out a few other feedbacks.

The atmosphere affects vegetation through the precipitation and evapora-

tion rate parameters, but the vegetation is assumed to have no feedback on

the atmosphere. Organic nutrients effects are parameterized by the biomass

growth rate, but litter decomposition40 that feedbacks on nutrient concen-

trations is not considered. Lastly, ground topography, parameterized by the

ζ function, affects runoff and water concentration, but topography changes

due to soil erosion by water flow are neglected. In drylands, where the

vegetation is sparse and the limiting resource is water, the vegetation feed-

backs on the atmosphere and on organic nutrients are often of secondary

importance. Soil erosion processes, however, can play important roles, e.g.

in desertification, and restrict the circumstances the model applies to.
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Fig. 3.12. A transition from bands to spots (time proceeds from left to right) in response
to a precipitation downshift, leading to enriched soil-water patches. The upper frames
show the response of a banded pattern on a slope to a precipitation downshift from
P = 225 mm/yr to P = 200 mm/yr. The lower frames show soil water profiles along
the transects indicated by the dashed lines in the corresponding upper frames. The
initial pattern (frame A) loses stability and gives place to a stable spot pattern (frame
D). The transition is accompanied by increased soil-water densities under vegetation
patches despite the drier conditions. Domain size is 5 × 5 m2, slope angle is 15o and all
other parameters are given in Table 3.1.

.

Despite its limited validity, the model has proved successful in repro-

ducing several observations and in illuminating mechanisms of ecosystem

processes. The model reproduces various vegetation patterns that have

been observed in arid and semiarid regions, including specific characteris-

tics of banded vegetation on hill slopes2 such as migration uphill and the

dependence of inter-band to band ratios on rainfall.28 It also reproduces

a robust trend, observed in several studies,4–6,39 of negative plant interac-

tions changing to positive interactions as environmental stresses increase.

Recent observations indicate that plant interactions can change back to

negative at very high stress levels.65 We believe this observation can also

be reproduced by the model very close to the catastrophic shift to bare

soil. A model study in this direction is underway. Another challenge for

the model is the observation, on a temporal scale, of a reverse trend where

the effect of shrubs on annual plants shifted from either negative to neutral

or from neutral to positive with increasing annual rainfall.66

The coexistence of different stable vegetation states, predicted by the

model and by earlier models, implies vulnerability to desertification. Deser-
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tification may be induced either by varying environmental conditions that

drive the system over the edge of a state coexistence range, or by distur-

bances that induce transitions between the coexisting states. In the former

context the model explains the irreversible character of desertification by

relating it to hysteresis. In the latter context the model highlights the dra-

matic roles regional topography may play. Local disturbances, such as clear

cutting, remain local on a plane, but can induce global state transitions on

a slope.

Extensions of the model to include soil erosion and the impacts of veg-

etation on the atmosphere and on nutrient concentrations require consid-

erable modifications of the model. There are, however, simpler extensions

which are not less significant. One extension, already underway, is the

consideration of a multi-species system by including additional biomass

variables satisfying equations similar to the B equation in (3.1). A trivial

further extension is the introduction of environmental heterogeneities and

temporal fluctuations by means of space and time dependent model param-

eters. This extension is significant in studying tradeoffs between species and

species richness.

Extended models as described above may provide powerful tools for

testing the niche concept and developing a niche theory based on a pat-

tern formation approach. A few elements of this theory can already be

delineated: (i) Model solutions provide the maps that associate hyper-

volumes in niche space (the fundamental niches) with domains in physical

space (the micro-habitats) and determine where in physical space a given

species can exist. (ii) These maps include the effects of species interactions

and therefore eliminate the need to define “realized niches”49,59–61 in niche

space. The micro-habitats are already “realized” in the sense that their

sizes include the effects of competition or facilitation. (iii) Landscape di-

versity is not merely a result of heterogeneous environmental factors but can

also follow from spatial instabilities leading to symmetry breaking patterns

(e.g. vegetation patterns). (iv) Species diversity responses to environmen-

tal changes may be driven by collective species dynamics, e.g. transitions

between ecosystem-engineer patterns that involve micro-habitat creation or

destruction.
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Metapopulation dynamics and the evolution of dispersal
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A metapopulation consists of local populations living in habitat patches.
In this chapter metapopulation dynamics and the evolution of dispersal
is studied in two metapopulation models defined in discrete time. In the
first model there are finitely many patches, and in the other one there are
infinitely many patches, which allows to incorporate catastrophes into
the model. In the first model, cyclic local population dynamics can be
either synchronized or not, and increasing dispersal both synchronizes
and stabilizes metapopulation dynamics. On the other hand, the type
of dynamics has a strong effect on the evolution of dispersal. In case
of non-synchronized metapopulation dynamics, dispersal is much more
beneficial than in the case of synchronized metapopulation dynamics.
Local dynamics has a substantial effect also on the possibility of evolu-
tionary branching in both models. Furthermore, with an Allee effect in
the local dynamics of the second model, even evolutionary suicide can
occur. It is an evolutionary process in which a viable population adapts
in such a way that it can no longer persist.

4.1. Introduction

4.1.1. What is a metapopulation?

The concept of a metapopulation was introduced by Richard Levins.1,2

In general, a metapopulation is a population of local populations living in

habitat patches.3,4 Different people, however, have different opinions about

the definition of a metapopulation (Figure 4.1).

Since 1991, interest in metapopulations has grown rapidly. This can be

seen in the amount of published scientific articles containing the keyword

77

“metapopulation” in the Science Citation Index of the ISI Web of Knowl-

edge, as illustrated in Figure 4.2. Next, the Levins metapopulation model
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Fig. 4.1. Studying metapopulation theory. Source:.5 Artist: Mathijs Doets.

1 1 1 2 3 4

30 32
41

72 73

112 109

135

166

218

242
227

293
278

304

0

50

100

150

200

250

300

350

1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005

will be presented and its properties discussed.

4.1.2. Levins metapopulation model

In Levins metapopulation the landscape consists of infinitely many habi-

tat patches. Some of the patches are uninhabitable, and that fraction is

denoted by k. Not all habitable patches are necessarily occupied. The

metapopulation state is the fraction of occupied patches P . Colonization

of empty patches from occupied patches occurs at rate β. Occupied patches

become empty with a rate µ. The following differential equation describes

the situation:

dP

dt
= βP (1 − k − P ) − µP = βP (E − P ) − µP, (4.1)

Fig. 4.2. Number of publications containing the keyword “metapopulation” in the

Science Citation Index of the ISI Web of Knowledge.
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Fig. 4.3. Fraction of a) empty habitable patches E − P ∗ and b) occupied patches P ∗

with respect to the fraction of habitable patches E in Levins metapopulation.

where E = 1 − k is the fraction of habitable patches. At equilibria the

equality dP
dt = 0 holds. The extinction state P = 0 is always an equilib-

rium of the differential equation (4.1). If E > µ/β, then the equilibrium

P = 0 is unstable, and the system (4.1) has a stable nontrivial equilibrium

P ∗ = E − µ/β (See Figure 4.3). If P ∗ 6= 0, the solution of the differential

equation (4.1) with the initial condition P (0) = P0 is

P (t) =
P ∗P0

(P ∗ − P0)e−βP∗t + P0
. (4.2)

Although the Levins metapopulation gives much insight into the be-

havior of populations in heterogenous landscapes, it is based on several

simplifying assumptions, as pointed out by Refs. 6 and 7:

(1) All patches are identical.

(2) All local populations are identical, and especially, local population sizes

are not specified.

(3) Local dynamics is ignored.

(4) Spatial arrangement of the patches is ignored.

(5) The model is deterministic and assumes an infinite number of patches.

In section 4.2 metapopulation ecology is studied in models, where some

of the simplifying assumptions of the the Levins metapopulation are re-

laxed. That section will begin with studying local population dynamics

(section 4.2.1), and is then continued with studying metapopulation dy-

namics in models with finitely many patches (section 4.2.2). In such a

model, local population extinctions due to catastrophes will, however, cause

metapopulation extinction. The whole metapopulation can remain viable,
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if it consists of infinitely many local populations. Such a model is studied

in section 4.2.3.

The other part of this chapter is about the evolution of dispersal. For

this purpose, a mathematical framework for modeling the dynamics of long-

term phenotypic evolution, called adaptive dynamics,8–12 is used. The basic

theory of this framework is presented in section 4.3. Evolution of dispersal

is studied in section 4.4.

4.2. Metapopulation ecology in different models

4.2.1. Local dynamics

There are many different ways to model local population dynamics. A real

local population living in a habitat patch consists of a finite number of indi-

viduals. There are some studies about metapopulation models, where such

demographic stochasticity is incorporated.13 It is, however, often practical

to assume that local populations are large. In such a case let xi denote the

population density in patch i. Population growth in patches can therefore

be described either by a differential equation in continuous time, or by a

difference equation in discrete time. This chapter concentrates on models

defined in discrete time.

It is assumed that reproduction occurs locally in habitat patches. Each

individual in patch i will get on the average fi(xi) offspring, and thus the

population density in patch i in the next generation will be fi(xi)xi before

migration. After reproduction, an individual in a patch migrates (disperses)

with probability m. Dispersers, which are exposed to a risk of mortality,

choose the patch into which they immigrate at random, independently of

patch quality and local population size.

There are many standard type models among which one can choose

the reproduction functions f . The choice f(x) = re−kx corresponds to

the Ricker14 model. The dynamical properties of the Ricker model are

relatively well known. Let us assume that no migration occurs. In such a

situation the local population size in the next time-step will be

xt+1 = f(xt)xt = rxte
−kxt . (4.3)

For 0 < r < 1 the local population size will approach zero, and the pop-

ulation is not viable. For 1 < r < e2 ≈ 7.389 there exists a stable posi-

tive equilibrium (fixed point) x∗ = ln(r)/k. At an equilibrium xt+1 = xt

and thus f(x∗)x∗ = x∗. At r = e2 a period-doubling bifurcation occurs

and a two-periodic orbit (x1, x2) appears. This means that f(x1)x1 = x2,
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Fig. 4.4. Attractors in the Ricker model with k = 1 for different values of the parameter
r.

f(x2)x2 = x1 and x1 6= x2. This two-periodic orbit is stable for e2 < r < r2,

where r2 ≈ 12.509. At r2 another period-doubling bifurcation occurs, and

a four-periodic orbit appears. When the parameter r is increased further, a

period-doubling route to chaos is observed (See Figure 4.4). The parameter

k does not affect dynamics qualitatively, and is thus only a scaling factor.

4.2.2. Finite number of patches with the Ricker model

Let us next study a metapopulation model with n patches, and with local

dynamics as described above. This model has been extensively studied by

Ref. 15. Concerning migration, it is assumed that a migrating individual

survives migration with probability F and immigrates immediately into a

patch. The population density in patch i in the next time step will thus be

xi,t+1 = (1 −m)fi(xi,t)xi,t +
F

n

n∑

j=1

mfj(xj,t)xj,t. (4.4)

Such a metapopulation does not necessarily have only one feasible at-

tractor. Take as an example a situation, where the parameters ri are chosen

such that in an isolated patch there would be a two-cyclic orbit. At least

for small values of the migration parameter m, the metapopulation can be

either in an in-phase (Figure 4.5a) or an out-of-phase (Figure 4.5b) cycle.

If local population sizes are large in one time step and small in the next
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Fig. 4.5. Competing attractors in the discrete-time metapopulation model (4.4). (a) In-
phase and (b) out-of-phase cycles. (c) The initial states from which the metapopulation
ends up in the in-phase cycle are plotted in grey. Parameters: Ricker growth fi(xi) =
rie

−kixi with r1 = 10, r2 = 9, k1 = 1, k2 = 1.1, F = 0.9, m = 0.04.

time step, then the attractor is an in-phase cycle. An alternative is an

out-of-phase cycle, where some local populations are large and others are

small, and in the next time step roles are reversed. In such a situation, it

depends on the initial conditions whether local population sizes will become

synchronized or not (Figure 4.5c).

Let us next illustrate the different types of attractors in a metapop-

ulation with two patches for different values of m. We study the total

population x1,t + x2,t. In an in-phase cycle this quantity is large every

second time-step, and small otherwise. In an out-of-phase cycle, the total

population size does not change that much. This can be seen in Figure 4.6a.

For small values of the migration parameter m, both types of cycles exist.

For m = 0 the total population size changes between 1.93 and 6.67 in the

in-phase cycle (thin curve). In an out-of-phase cycle the corresponding val-

ues are 3.93 and 4.67 (thick curve). Study next the difference x1,t − x2,t.

This quantity does not change much in an in-phase cycle, but changes a lot

in an out-of-phase cycle (Figure 4.6b). Figure 4.6c shows the actual values

of x1,t and x2,t. The points corresponding to out-of-phase cycles lie on the

lower right and upper left parts of the diagram (thick curve). The thin

curve near the diagonal corresponds to in-phase cycles, and the connecting

small curve in the center corresponds to fixed points. Note that it cannot

be seen from figure 4.6c for which values of the migration parameter m

various types of attractors exist; Figures 4.6a and b are needed for this
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Fig. 4.6. Illustration of attractors of the metapopulation model with 2 patches. Param-
eters: r1 = 10, r2 = 9, k1 = 1, k2 = 1.1, and F = 0.7. For small values of the migration
parameter m there exist both an in-phase cycle (thin lines) and an out-of-phase cycle
(thick lines). At m ≈ 0.094 the out-of-phase cycle disappears, and the in-phase cycle
becomes the only stable attractor. At m ≈ 0.75 the in-phase cycle becomes a fixed point.

purpose.

From Figures 4.6a and b it is observed that both in-phase and out-of-

phase cycles exist for small values of the migration parameter m. When

the migration parameter m is increased, the out-of-phase cycle disappears,

and the in-phase cycle is the only stable attractor. When the migration pa-

rameter m is increased further, the in-phase cycle collides with an unstable

equilibrium. For larger values of the migration parameter m the only stable

attractor is an equilibrium. It can be concluded that increasing dispersal

both synchronizes and stabilizes metapopulation dynamics.

In order to further explore the effect of the migration parameter m to-

gether with the dispersal survival probability F , the parameter areas, where

the three cases mentioned above occur, are plotted in Figure 4.7. Figure 4.7

supports the observation that increasing dispersal both synchronizes and

stabilizes metapopulation dynamics.

4.2.3. Infinite number of patches

One important feature of the Levins metapopulation model is that local

populations frequently go extinct, but the whole metapopulation can re-
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main viable because of colonization from occupied patches. It is problem-

atic to incorporate such random extinctions into a model with finitely many

patches, such as the one described above. Namely, the whole metapopula-

tion will become extinct in finite time with probability one. For this reason,

the corresponding metapopulation model with infinitely many patches16

will be studied next.

4.2.3.1. Model presentation

Instead of assuming that there are M patches, it is assumed that there

are M different types of patches. Let pi denote the fraction of patch type

i. Naturally
∑M

i=1 pi = 1. In each season, first reproduction happens.

Similarly as before, in a patch of type i with a local population of size

x, the expected number of offspring produced by each individual is fi(x).

After that, a fraction m of the offspring disperses and enters the disperser

pool. Without immigration, the population size in this patch would be

(1 −m)xfi(x).

The newly emigrated offspring are not yet able to immigrate into the

patches. They will survive to the next season in the disperser pool with

probability F , otherwise they die. All other dispersers in the disperser

pool will immigrate into a habitat patch. Immigrants choose their patch

at random, independently of the patch type and local population size. Al-

ternatively, it could be assumed that dispersers could stay in the dispersal
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pool for longer time. However, it has been demonstrated16 that metapop-

ulation dynamical equilibria and invasion fitness depend on the events in

the dispersal pool only through the probability to survive dispersal, which

in this case is equal to F .

Catastrophes occur randomly. The probability µ that a catastrophe

occurs is independent of the patch type and the local population size. A

catastrophe will kill all individuals in the patch, thus setting the local pop-

ulation size to zero. This patch remains habitable, and can be re-colonized

by dispersers from the disperser pool. If a catastrophe has not happened,

the local population size of a patch with population size x and habitat type

i in the next season is

xt+1 = (1 −m)fi(xt)xt + It, (4.5)

where It is the amount of immigrants each patch will receive.

The disperser pool D consists of emigrants from all patches. In order

to count for all emigrated individuals, it is necessary to know the state

of the metapopulation at time t, which is the collection of population size

distributions ni,t, where i = 1, . . . ,M . As ni are probability distributions,

the quantity
∫

[x1,x2]
ni,t(dx) is the probability that the local population

size in a patch of type i is between x1 and x2 at time t. Furthermore,
∫

[0,∞)
ni,t(dx) = 1 for all i = 1, . . . ,M . The disperser pool size in the next

season will therefore be

Dt+1 = F
M∑

i=1

pi

∫

mfi(x)xni,t(dx) = It+1, (4.6)

and is equal to the amount of immigrants It+1 each patch will receive at

time t+ 1.

4.2.3.2. Resident equilibrium

In a population-dynamical equilibrium, the amount of immigrants I and the

population size distributions ni,t(x) are constant. Let τ denote the patch

age, which is the time since the last catastrophe happened there. Analo-

gously to the continuous-time case,17 one can observe that in an equilib-

rium, all patches of type i and age τ have the same population size x(i, τ, I).

Therefore one can calculate the population size distributions relatively eas-

ily by studying patch age distributions.

Let v(τ) denote the probability, that a randomly chosen patch has age

τ . In an equilibrium the following equation holds v(τ + 1) = (1 − µ)v(τ).
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Therefore the equilibrium patch age distribution is

v(τ) = µ(1 − µ)τ , τ = 0, . . . ,∞. (4.7)

Those patches, where a catastrophe has just happened, are empty and have

age zero. If the amount of immigrants I is known, the local population sizes

x(i, τ, I) in patches of age τ and type i can be calculated recursively from
{
x(i, 0, I) = 0

x(i, τ + 1, I) = (1 −m)fi(x(i, τ, I))x(i, τ, I) + I.
(4.8)

Note that x(i, τ, I) measures the local population size in the beginning of

a season. In order to find the actual equilibrium value of the amount of

immigrants, it is necessary to solve I from the equation It+1 = It, which

can be written as

I = F

M∑

i=1

pi

∞∑

τ=0

mfi(x(i, τ, I))x(i, τ, I)v(τ). (4.9)

As x(i, τ, 0) = 0 for all i and τ , the value I = 0 satisfies equation (4.9).

This value corresponds to an extinct metapopulation. As both sides of the

equation (4.9) depend on I, it is not in general possible to find a posi-

tive solution of equation (4.9) explicitly. It is possible to find a numerical

solution.

The metapopulation dynamical equilibria in the case of one patch type

with local population growth according to the Ricker14 model f(xt) =

re−xt/10 are illustrated in figure 4.8. Panel (a) shows the amount of im-

migrants I at a metapopulation dynamical equilibrium as a function of

the emigration probability m. It is not surprising to observe that it is an

increasing function of the emigration probability m. However, the aver-

age local population size does not show such a monotonic trend in panel

(b). When the emigration probability is low, it takes a long time to colo-

nize a patch which has become empty because of catastrophes. Increasing

the emigration probability will make colonization faster, and thus it in-

creases the average local population size. When the emigration probability

is increased further, individuals spend less time for reproduction, which

decreases the average local population size. In panel (c) the variance of the

local population sizes is plotted as a function of the emigration probability

m. As mentioned above, increasing emigration probability will make the

colonization process faster. Therefore, an increasing proportion of the local

populations will be close to the local carrying capacity, and variance will

decrease. Again, increasing dispersal stabilizes metapopulation dynamics.
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Fig. 4.8. Illustration of the equilibria of the metapopulation model with infinitely many
patches. The four panels show (a) immigration I and (b) average population size (c)
variance of the local population sizes (d) correlation of the local population sizes at
equilibrium with respect to the migration parameter m for different values of the dispersal
survival probability F . Parameters F = 0.8, 0.85, 0.9, 0.95, and 1, µ = 0.05, r = 7.5.

In panel (d) the autocorrelation of the local population sizes between

two consecutive time steps (from an individual point of view) is illustrated.

More precisely, let xτ denote the local population size of patches with age

τ . A newborn individual in such a patch can experience three different local

population sizes in the next time step. In case this individual emigrates, the

local population size of the patch where this individual arrives is indepen-

dent of the local population size of the patch where it left from. Therefore

this case does not contribute to the autocorrelation. In case a catastrophe

happens, the local population size in the next time step will be zero. This

case has a negative contribution to autocorrelation. In case the individual

does not emigrate, and a catastrophe does not happen, the local population

size in the next time step will be xτ+1. Depending on local dynamics, this

can be either a positive or negative contribution to autocorrelation.

The autocorrelation illustrated in panel (d) shows a non-monotonic

trend with respect to the emigration probability m. A part of it can be

explained in the following way: Because the case of emigration does not
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contribute to autocorrelation, it approaches zero as the emigration proba-

bility tends to 1.

4.3. Adaptive dynamics

Different players of games such as chess or poker use different strategies.

A good strategy helps the player to win the game. Also individuals in the

metapopulation can behave differently, and thus use different strategies.

What is then a good strategy? Those individuals who perform better than

others in the present environment get more offspring. In the long run,

the fraction of such individuals is expected to increase. However, such

a change in the behavior of individuals in the (meta)population has an

effect on the environment. In this new environment, again other strategies

may be beneficial. Strategies will thus evolve because of natural selection.

Eventually it may happen, that all individuals use an optimal strategy in

the sense that nobody can perform better with another strategy. Such an

optimal strategy is called an evolutionarily stable strategy (ESS;18,19).

After the introduction of the original concept of an evolutionarily sta-

ble strategy, ESS-theory has been applied to a wide variety of models,

and has resulted in various concepts and techniques of modern ESS-theory

(e.g.20–24). Such concepts and techniques have been integrated and ex-

tended into a single mathematical framework for modeling the dynamics of

long-term phenotypic evolution, called adaptive dynamics .8–12

4.3.1. Invasion fitness

Adaptive dynamics gives an appropriate general framework to analyze the

evolutionary phenotype dynamics of a population or a metapopulation. It

is assumed that a resident population has reached its population dynamical

attractor. Then an initially rare mutant with a slightly different strategy

appears. If the invasion fitness r(smut, Eres) of a rare mutant smut in an en-

vironment Eres set by the resident is positive, the mutant is able to grow in

population size. Therefore, the mutant can invade and possibly replace the

old resident and become the new resident itself. These mutation-invasion

events result in the change of the strategy of the individuals constituting

the population.

If no mutant can invade the resident, then the strategy sres of the

resident is unbeatable, and it is called an evolutionarily stable strategy

(ESS;18). When a resident population has reached an evolutionarily stable
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strategy, the fitness of mutants in the environment set by such a resident

may be considered. As no mutant can invade, all mutants necessarily have

lower fitness than the resident, i.e., r(smut, E(sres)) < 0 for all smut 6= sres.

Therefore, the resident strategy is a (local) fitness maximum and the se-

lection gradient, i.e., the derivative of invasion fitness with respect to the

strategy of the mutant, vanishes at such points,

∂

∂smut
r(smut, Eres)

∣
∣
∣
∣
smut=sres

= 0 (4.10)

More generally, strategies for which the selection gradient is zero, are called

evolutionarily singular strategies.12

A (singular) strategy s∗ is convergence stable or an evolutionary at-

tractor if the repeated invasion of nearby mutant strategies into resident

strategies will lead to the convergence of resident strategies towards s∗.24

This happens if, for a resident sres and a mutant smut that are both close

to s∗, the conditions r(smut, E(sres)) > 0 for sres < smut < s∗ and for

sres > smut > s∗ hold.

If an evolutionary attractor is also evolutionarily stable, it is called a

continuously stable strategy (CSS;20) and it is a feasible final outcome of

an evolutionary process. In case a monomorphically attracting strategy is

not unbeatable, evolution will not stop there, but evolutionary branching

occurs because of disruptive selection. The monomorphic population will

then divide into two groups, and the strategies of these groups will evolve

further away from each other. An evolutionary branching point is thus

an evolutionarily singular strategy that is monomorphically attracting and

dimorphically repelling.

4.3.2. Pairwise Invasibility Plots (PIP)

A useful graphical tool in the analysis of the evolutionary dynamics is a

pairwise invasibility plot .22 In these plots, the sign of the invasion fitness

r(smut, E(sres)) is displayed as a function of its dependence on resident and

mutant strategies. As the resident population is on an attractor, necessarily

the equality r(sres, E(sres)) = 0 holds. Therefore, the diagonal smut = sres
is a zero-isocline of the invasion fitness. Singular strategies lie at those

points, where other zero-isoclines cross the diagonal.

In the pairwise invasibility plots in this chapter, dark gray regions cor-

respond to combinations of resident and mutant dispersal strategies, sres
and smut, that allow for mutant invasion. For these combinations, the in-
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Fig. 4.9. Pairwise invasibility plots corresponding to a) evolutionarily and convergence
stable strategy, b) convergence stable, but not evolutionarily stable strategy (branching
point), c) evolutionarily stable but not convergence stable strategy, d) not evolutionarily
stable, not convergence stable strategy.

vasion fitness r(smut, E(sres)) is positive. In contrast, light gray regions

correspond to negative signs and therefore to deleterious mutants.

4.4. Evolution of dispersal

The second part of this chapter focuses on the evolution of dispersal in the

two metapopulation models analysed in section 4.2.

There are many ecological mechanisms which make dispersal advan-

tageous. In a small local population, most individuals are related and

therefore compete for resources among their own kin. By dispersing, an

individual can avoid kin competition. Dispersal can also be seen as risk

spreading. In case random catastrophes occur in the local populations, a

non-dispersing species will eventually go extinct. A dispersing species can,

however, be saved from such random extinction. Also if the local environ-

ment that individuals experience fluctuates in time, individuals may escape

bad seasons by dispersing. Dispersal can thus be beneficial, if a dispersing

individual has a chance of arriving into a better patch than the one it left

from. There are also mechanisms making dispersal less advantageous. Dis-

persal often requires extra energy, which cannot be used for reproduction.

Dispersal can also increase mortality risks. Also for an individual, which

has specialized to the local environment, dispersing to a different environ-

ment is probably not beneficial, because by dispersing the individual may

very well end up in a patch type to which it is not adapted. For a general-

ist individual, who performs reasonably well in all local environments, the

benefit of dispersing is quite different.

Of the various mechanisms selecting for and against dispersal men-
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tioned, catastrophes are present in the model with infinitely many patches.

Fluctuating environments and direct cost of dispersal are present in both

models. The local population sizes are assumed to be large in both models,

and therefore kin competition does not play a role here. Local adaptation

is not studied either.

4.4.1. Finite number of patches

This section begins with studying the evolution of dispersal in the metapop-

ulation model with finitely many patches. Concerning the mechanisms

making dispersal advantageous mentioned above, local environments fluc-

tuate in time if the resident’s attractor is not a fixed point. The type of the

resident’s attractor has therefore a big effect on the outcome of evolution.

As dispersers die during dispersal with probability 1 − F , there is a direct

cost of dispersal which makes dispersal less beneficial.

4.4.1.1. Fitness

Assume that the resident population is in an equilibrium (x∗1, x
∗
2, . . . , x

∗
n)

and the size of the mutant population is very small. As the mutant popula-

tion size is initially small, it will (initially) grow according to Xt+1 = MXt,

where Xt = (x1,t, x2,t, . . . , xn,t)
T , and the matrix M is

M =















(1 −mmut)a1

+mmut
F
n a1

mmut
F
n a2 · · · mmut

F
n an

mmut
F
n a1

(1 −mmut)a2

+mmut
F
n a2

· · · mmut
F
n an

...
. . .

mmut
F
n a1 mmut

F
n a2 · · · (1 −mmut)an

+mmut
F
n an















,

where ai = fi(x
∗
i ).

The mutant population will grow, if the dominant eigenvalue λ of the

matrix M is greater than 1, and decrease if it is smaller than 1. The

dominant eigenvalue of the matrix M can thus be used as the invasion

fitness of a mutant in an environment set by the resident, r(smut, Eres) =

lnλ(M(smut, Eres)). If the resident population is on a two-cyclic orbit, the

matrix M is defined as M = M1M2, where Mi is calculated in each part of

the cycle of the resident.15
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Fig. 4.10. Dispersal evolution under equilibrium dynamics: (a) Pairwise invasibility
plot and (b) evolutionary dynamics with currently resident dispersal strategies shown as
points. For any resident strategy, a mutant strategy with a lower dispersal strategy can
invade; this results in dispersal strategies converging to zero. Source: Parvinen (1999)
with permission from Elsevier.

4.4.1.2. Fixed-point attractor

In the case of a fixed-point attractor, dispersal is not beneficial. It has been

shown15 that the fitness gradient is negative in such a situation. A similar

proof concerning the model with infinitely many patches in the case of no

catastrophes has been presented:16

∂

∂smut
r(smut, Eres)

∣
∣
∣
∣
smut=sres

< 0. (4.11)

Therefore, a mutant with a slightly smaller dispersal strategy than that of

the resident has positive fitness, and can invade. A corresponding pairwise

invasibility plot is illustrated in Figure 4.10a. If the resident attractor is

a fixed point for all m, evolution will result in no dispersal at all, as in

an evolutionary simulation illustrated in Figure 4.10b. Selection for no

dispersal has actually been observed before in several models.15,16,25–28

Why is low migration better in the situation described here? Because

the local population sizes xi in each patch are constant, also fecundity,

the average number of offspring fi(xi), remains constant. The greater the

number fi(xi) is, the better are the living conditions in that patch. In a

fixed-point situation better patches in living conditions have also greater

population sizes than the poorer patches in living conditions. In such a

situation there are more individuals moving from good patches to poor

patches than vice versa. The possibility of death during migration increases

this phenomenon.
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4.4.1.3. Cyclic orbits

In case the resident attractor is a two-cyclic orbit, evolutionary pressures

on the dispersal behavior is quite different from that of the fixed-point case.

Now the environment individuals experience in patches fluctuate (determin-

istically) in time. Therefore, a dispersing individual may end up in a better

patch than the one it left from. This chance is very different in in-phase

and out-of-phase cycles:

Consider an individual, which has just experienced a good season. If

this individual remains in this patch, it will certainly experience next a

bad season. If the resident attractor is an in-phase cycle, dispersing does

not help much, because the next season will be bad in all patches. Small

variability in the seasons may, however, make dispersal beneficial, if the

dispersal risk is not too large. If the resident attractor is an out-of-phase

cycle, it is possible that a dispersing individual will only experience good

seasons. For this reason, dispersal is much more beneficial on an out-of-

phase cycle than on an in-phase cycle.

For small values of the dispersal strategy m, both an in-phase and an

out-of-phase cycle exist. Therefore, if a resident in an in-phase cycle is

invaded by a mutant, this mutant could in principle end up in an out-of-

phase cycle. Such a phenomenon is called attractor switching. However,

under quite general conditions, including the assumption of small mutations

(mmut ≈ mres), it has been shown29 that the mutant will remain in the same

attractor family (attractor inheritance). Attractor switching is possible

only if the resident strategy is close to a bifurcation point. The two attractor

types can thus mostly be dealt with separately.

In figure 4.11 the direction of evolution for (a) in-phase and (b) out-of-

phase cycles is illustrated. In the case of an in-phase cycle, there is selection

for low dispersal for almost all values of the survival probability F . Only

when 0.9967 < m 6 1 there exist a positive evolutionarily singular strategy

m∗. This strategy is convergence stable but not evolutionarily stable, and it

is thus a branching point. As the in-phase attractor exists for all dispersal

strategies m, the metapopulation will remain in an in-phase attractor.

The selection pressures on an out-of-phase cycle are quite different from

those on the in-phase cycle. For small values of the survival probability

F there is again selection for low dispersal. However, already at F ≈ 0.7

there appears a positive singular strategy, which is convergence stable. At

F ≈ 0.8 this singular strategy collides with the boundary of existence of

the out-of-phase cycle. For F > 0.8 if the metapopulation is initially on
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Fig. 4.12. Dispersal evolution when the resident is initially on the two-cyclic out-of-
phase attractor. Selection for high dispersal is observed until the out-of-phase cycle
disappears (t ≈ 120). Then the metapopulation changes to the in-phase cycle, for which
selection for low dispersal is observed. Source: Parvinen (1999) with permission from
Elsevier.

an out-of-phase cycle, there is selection for higher dispersal. The dispersal

strategy m increases until the out-of-phase cycle disappears and attractor

switching occurs. After that there is selection for lower dispersal, unless F

is almost equal to 1. Such a scenario is illustrated in Figure 4.12. Dispersal

evolution is thus likely to synchronize metapopulation dynamics.

4.4.2. Infinite number of patches

The model with infinitely many patches described in section 4.2.3 con-

tains one more mechanism making dispersal advantageous compared to the

model with finitely many patches. Random catastrophes result in empty

or thinly populated patches, which make dispersal beneficial, because the
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local environment in an empty patch is usually better than the one in a

crowded patch.

4.4.2.1. Invasion fitness for the mutant

Assume, that the metapopulation is at a population-dynamical equilibrium

with one or several strategies present, and that the total local population

size in patches of type i and age τ is xres(i, τ). Then study what is expected

to happen to a mutant individual with strategy smut in the environment

set by these residents.

Consider a small immigrating mutant population of size x0 which arrives

in a patch of type i. The probability that this patch has age τ is v(τ).

Because catastrophes happen after immigration, this mutant population is

present in that patch in the beginning of the next season with probability

1−µ. At that time, this patch has age τ+1, and therefore the local resident

population size xres(i, τ + 1), with probability (1 − µ)v(τ) = v(τ + 1). At

that time the mutant population size is x0, and the quantity xmut(i, τ+1, t)

denotes the mutant population size t time steps later. Because the mutant

population is rare, no new mutant immigrants are expected to arrive in

the patch. If no catastrophes will happen, the local mutant population will

thus grow according to







xmut (i, τ + 1, 0) = x0

xmut (i, τ + 1, t+ 1)

= xmut(i, τ + 1, t)(1 − d(smut))f(smut, i, (xres(τ + 1 + t)).

(4.12)

The per capita number of emigrants that this newly founded mutant colony

is expected to produce during its entire lifetime is equal to

E(i, τ + 1, xres(i))

=
1

x0

∞∑

t=0

d(smut)f(smut, i, (xres(i, τ + 1 + t))xmut(i, τ + 1, t)(1 − µ)t,

(4.13)

where (1 − µ)t is the probability that a catastrophe has not happened in t

time steps.

Now the distribution of different patches where a mutant immigrant can

arrive must be taken into account. Since patches have the age distribution

v(t), the expected number of mutant emigrants produced by a mutant who
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arrives in a patch of type i is
∞∑

τ=0

v(τ + 1)E(i, τ + 1, xres(i)). (4.14)

In order to become an immigrant, an emigrant has to survive dispersal.

This happens with probability F > 0. Therefore the expected number of

mutant immigrants produced by a mutant immigrating into a patch of type

i is

R(i, smut, xres) = F
∞∑

τ=0

v(τ + 1)E(i, τ + 1, xres(i)). (4.15)

Since there areM patch types with proportions pi, fitness is obtained as the

expected number of mutant immigrants produced by a mutant immigrant17

R(smut, xres) =

M∑

i=1

piR(i, smut, xres). (4.16)

A mutant can invade if R(smut, xres) > 1. The calculation of this quantity

directly is quite time-consuming. An efficient algorithm for the calculation

is available.16

4.4.2.2. Results

The evolution of dispersal in the model with infinitely many patches has

been studied.16 An example was given with only one patch type, and the

local population growth was assumed to happen according to the Ricker14

model

f(xt) = re−xt/10. (4.17)

It was noticed earlier in the model with finitely many patches, that the type

of the resident attractor plays a major role in the evolution of dispersal.

Therefore, the effect of r and catastrophe probability µ on the evolution of

dispersal is studied next.

In Figure 4.13a it can be seen that in the case of no catastrophes, evolu-

tion is expected to cause dispersal to decrease until no dispersal occurs, and

the strategy not to disperse is evolutionarily stable (See also Figure 4.14a).

For small catastrophe probabilities, evolutionarily singular dispersal strate-

gies increase with higher catastrophe probabilities. For large catastrophe

probabilities evolutionarily singular dispersal strategies start to decrease

again. In other words, evolutionarily singular dispersal strategies are maxi-

mal for intermediate catastrophe probabilities.16 For too large catastrophe
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Fig. 4.13. Evolutionarily singular dispersal strategies with respect to catastrophe prob-
ability µ for different values of fecundity r (a) vice versa (b). Evolutionarily stable
strategies are plotted with a thin curve, branching points with a thick curve. Parame-
ters (a) r = 2, 4, 6 and 8, (b) µ = 0.1, 0.3 and 0.5. Other parameters: F = 0.82, a = 0.
Source:16 with permission from Springer.

probabilities the metapopulation is not viable. Such a maximum for in-

termediate catastrophe rates (in continuous time models) has been found

before,28,30 and even more complicated patterns may arise.13

To observe selection for no dispersal when there are no catastrophes

is not surprising, because of the absence of mechanisms making dispersal

profitable. In addition to catastrophes, avoiding kin competition in small

local populations, or temporally fluctuating population sizes are such mech-

anisms. In this model, local population sizes are at fixed points, because

the parameter values r are chosen small enough.

An analytical proof that there is selection for no dispersal in such a

situation has been presented concerning the model with infinitely many

patches16 (studied in this section) and the model with finitely many

patches15 (Section 4.4.1.2). Selection for no dispersal has been observed

before in several models.15,16,25–28

In Figure 4.13 it was observed that evolutionarily singular strategies,

which are monomorphically evolutionarily attracting, are not always evolu-

tionarily stable. Instead, they can be evolutionary branching points (shown

as thick curves). A corresponding pairwise invasibility plot is illustrated

in Figure 4.14c. Evolutionary branching of dispersal strategies has been

found before.15,17,26,27,31–33 In most cases, temporal variability and cyclic

orbits, instead of fixed point attractors, play an essential role. The model

with infinitely many patches provides a new mechanism16 for evolution-

ary branching: Even though local population sizes approach fixed points,

catastrophes can cause enough temporal variability, so that evolutionary

branching becomes possible.
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Fig. 4.14. Pairwise invasibility plots for different catastrophe probabilities µ. Parame-
ters: F = 0.85, and r = 6.

4.4.3. Local growth with an Allee effect can result in evolu-

tionary suicide

So far in our evolutionary analysis, the species in question will either end

up with an evolutionarily stable strategy, or evolutionary branching occurs

resulting in a polymorphic population. Under some circumstances it could

happen that the species in question could persist with its current strategy,

but natural selection forces the species to change its strategy resulting in

extinction. This phenomenon is called evolutionary suicide ,34 but it is

also called Darwinian extinction,35 and evolution to extinction.36 A review

article on the subject has appeared recently.37

Evolutionary suicide is often coupled with an Allee effect in the popu-

lation dynamics, i.e., increasing per capita growth at low densities.38 This

effect is absent in the results discussed above with local population growth

according to the Ricker14 model (Figure 4.15a)

fi(xt) = rie
−kixt . (4.18)

The next question examined is whether there are any qualitative changes

in the results, if the local population growth model exhibits an Allee effect.

It is easy to produce functions with that property, but it is more desirable

to obtain a model from mechanisms on the individual level, thus to use

mechanistic modeling. So, how can this be done?

4.4.3.1. Local population growth with an Allee effect

Mechanistic underpinnings of various discrete-time population models, in-

cluding the Ricker14 model, have been presented recently.39 Their work
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Fig. 4.15. The local population size at time t + 1 as a function of the local population
size at time t in the absence of dispersal for (a) the Ricker model with r = 4 (b) the model
in equation (4.19) with r = 4. In case (a) the extinction equilibrium is unstable, and
there exists a stable fixed point at x ≈ 13.8629. In case (b) the extinction equilibrium is
stable, and there exist two positive fixed points, an unstable one at x ≈ 0.357403 and a
stable one at x ≈ 2.15329.

was based on a continuous-time resource-consumer model for the dynam-

ics within a year, from which they derived a discrete-time model for the

between-year dynamics. However, their underpinning does not give models

with an Allee effect. They assumed that the population size affects the re-

production rate of each individual only through the availability of resources.

However, if two individuals are required for reproduction, individuals have

problems in mate finding when the population size is low. Using this mech-

anistic underpinning, several discrete-time population models with an Allee

effect have been presented.40 In this section, one of those models will be

used, namely the function

fi(xt) = rixte
−kixt . (4.19)

This function is illustrated in Figure 4.15b.

4.4.3.2. Allee effect in the metapopulation model

Consider now local population dynamics with emigration and immigration,

when the fecundity function shows an Allee effect, as in equation (4.19).

After a catastrophe has happened, the local population size in this patch is

zero. If there is too little immigration, the local population size cannot grow

beyond the local threshold. This happens for example if the metapopulation

state is near the extinction equilibrium, which is thus stable. Furthermore,

in Figure 4.16 it can be seen that the metapopulation is not viable for

too small dispersal strategies. Also, if the dispersal risk is high (F = 0.5
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a) Ricker b) Allee
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Fig. 4.16. Average local population size in a metapopulation equilibrium with respect
to the dispersal strategy s. Stable equilibria are plotted with a continuous curve, un-
stable with a dotted curve. Local growth occurs according to (a) Ricker model (b)
equation (4.19) with r = 5. Other parameters: µ = 0.05.41

in Figure 4.16), the metapopulation is not viable for too large dispersal

strategies either.

4.4.3.3. Bifurcation to evolutionary suicide

In Figure 4.17 there are pairwise invasibility plots for different values of the

dispersal survival probability F . In Figure 4.17c there exists one singular

strategy which is convergence stable and evolutionarily stable. When the

dispersal survival probability is decreased, there appears another singular

strategy, which is not convergence stable (Figure 4.17b). When the disper-

sal survival probability is decreased further, these two singular strategies

collide and disappear (Figure 4.17a). In such a situation, the fitness gradi-

ent is negative for all resident strategies. Therefore, no matter what is the

strategy of the resident, a mutant with slightly smaller dispersal strategy

has positive fitness and can invade. However, the metapopulation is not

viable for too small dispersal strategies. Therefore the dispersal strategy

of the population is eventually expected to reach a boundary of viabil-

ity. In such a situation, a mutant with even smaller strategy can again

invade. This mutant will, however, take the whole metapopulation to ex-

tinction, and evolutionary suicide has happened. A similar bifurcation in

a metapopulation model defined in continuous time has been found28 (See

their Figure 5).
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Fig. 4.17. Pairwise invasibility plots illustrating the bifurcation from an evolutionary
attractor (convergence stable ESS) to evolutionary suicide when the local growth occurs
according to equation (4.19) with r = 5. Other parameters: µ = 0.05.41
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Fig. 4.18. Evolutionary simulation resulting in evolutionary suicide when the local
growth occurs according to equation (4.19) with r = 5. Other parameters: µ = 0.05,
F = 0.7.41

4.4.3.4. Theory of evolutionary suicide

In the basic framework of adaptive dynamics it is assumed that the resi-

dent population has a unique attractor. However, if evolutionary suicide is

observed, there are necessarily at least two attractors for a resident popula-

tion, one positive attractor and the extinction equilibrium. At first sight it

seems that the case with multiple attractors is too hard to analyze using the

invasion fitness function only. However, under rather general conditions, it

has been shown [29, Tube Theorem] that if smut ≈ sres, the mutant will

remain in the same attractor family (see definition 3.2 of Ref. 29 for a pre-

cise definition), and thus attractor inheritance occurs. Other events, such

as attractor switching, are possible only if the resident strategy is close to



July 12, 2007 10:40 World Scientific Review Volume - 9in x 6in main

102 K. Parvinen

a) Supercritical bifurcation b) Subcritical bifurcation
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Fig. 4.19. a) Continuous and b) discontinuous transition to extinction. Stable equilibria
lie on the thick curve, unstable ones on the thin curve. In both cases the extinction
boundary is at sext = 1.5.

a bifurcation point.

The change of the population dynamical attractor from viability to ex-

tinction can happen through several different types of bifurcations. If the

attractor goes continuously to zero, this is called a continuous transition to

extinction. A typical example is the situation in which the solution corre-

sponding to population extinction loses its stability through a supercritical

bifurcation (see Figure 4.19a).

Assume now that there transition to extinction is continuous. For this

reason, when the strategy s approaches sext, the population size of the res-

ident goes continuously to zero. In well constructed models, the effect of

the resident population on the environment also goes then to zero. For this

reason, if the resident is at the extinction boundary, the mutant population

will grow as if it were in a virgin environment. Therefore the mutant’s

fitness is the same as fitness in the virgin environment. That means that

exactly those mutants that are viable in the absence of the resident can

invade. Mutants that are not viable cannot invade. Evolutionary suicide is

therefore not possible. As a corollary, a discontinuous transition to extinc-

tion (catastrophic bifurcation) is a necessary (but not sufficient) condition

for evolutionary suicide.28

In case of the Ricker growth model, the metapopulation is either viable

for all dispersal strategies 0 6 s 6 1, or there exists an upper boundary of

viability, where the transition to extinction is continuous. (See also theorem

2 of Ref. 16). This is illustrated in Figure 4.16a, where the upper boundary

of viability appears for small probability to survive dispersal (F = 0.1).

Because no discontinuous transition to extinction appears, evolutionary
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suicide cannot happen.

In case of local growth with an Allee effect, the extinction equilibrium

is always stable. If the probability to survive dispersal is large enough,

there exist a stable and an unstable equilibrium for all dispersal strategies

larger than sext, and the transition to extinction at sext is discontinuous.

If the probability to survive dispersal is too small, there exists also an

upper boundary of viability. This is illustrated in Figure 4.16b. Note that

according to Figure 4.17, evolutionary suicide does not happen for F > 0.75,

although there is a discontinuous transition to extinction (Figure 4.16b).

As noted before, a discontinuous transition to extinction is not a sufficient

condition to evolutionary suicide.

4.5. Summary

This chapter started with a short introduction to metapopulation models,

including the definition and some basic properties of the Levins1,2 metapop-

ulation. It is rather simplistic, and can be extended in many different ways.

From the point of view of this chapter, the essential weaknesses are that

local population sizes are not specified, and therefore, local dynamics is

ignored as well, and finally, colonization of empty patches is not defined

on the individual level. The main agenda of this chapter was to study

metapopulation dynamics and the evolution of dispersal in two models,

where these simplifying assumptions are relaxed. As synchronization is a

main theme of this book, both of the models studied in this chapter are

defined in discrete time.

The first model studied in this chapter consists of n patches with lo-

cal population dynamics defined on the individual level, including uniform

dispersal connecting these patches. It is a generalization of a two-patch

metapopulation model.42 Most of the results presented here are from the

article Ref. 15. Cyclic local population dynamics can be either synchronized

or not. More precisely, in the two-cyclic case, if local population sizes are

large in one time step and small in the next time step, then the attractor

is an in-phase cycle. An alternative is an out-of-phase cycle, where some

local populations are large and others are small, and in the next time step

roles are reversed. It was observed in section 4.2.2, that increasing dispersal

both synchronizes and stabilizes metapopulation dynamics. In a model with

finitely many patches, local population extinctions due to catastrophes will

cause metapopulation extinction. Therefore, the second model studied in

this chapter consists of infinitely many local populations.16 It was observed
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in section 4.2.3, that increasing dispersal again stabilizes metapopulation

dynamics.

Before entering the second theme of this chapter, evolution of dispersal,

it was necessary to present some basic theory of adaptive dynamics8–12 in

section 4.3. It is a mathematical framework for modeling the dynamics of

long-term phenotypic evolution. The evolution of dispersal in the model

with n patches was studied in section 4.4.1. In case of a fixed-point attrac-

tor, it was observed that there is selection for no dispersal. Because the

local population sizes in each patch are constant, also fecundity remains

constant. In a fixed-point situation better patches in fecundity have also

greater population sizes than the poorer patches in fecundity. In such a sit-

uation in migration there are more individuals moving from good patches

to poor patches than vice versa. The possibility of death during migration

increases this phenomenon. A similar phenomenon occurs in the model

with infinitely many patches, when catastrophes are absent.

It was observed, that the type of dynamics has a strong effect on the evo-

lution of dispersal. In case of non-synchronized metapopulation dynamics,

dispersal is much more beneficial than in case of synchronized metapopula-

tion dynamics. Figure 4.12 illustrated a scenario, where the metapopulation

is initially on an out-of-phase cycle, and there is selection for higher dis-

persal. However, the out-of-phase cycle does not exist for large values of

the dispersal probability. Therefore, the dispersal strategy increases until

the out-of-phase cycle disappears and the metapopulation switches to the

in-phase attractor. After that there is selection for lower dispersal. Finally,

when the patches become isolated, it may be that a random disturbance

sets the population sizes to an out-of-phase attractor, which will cause the

cycle to repeat again.

In the model with infinitely many patches, catastrophes result in thinly

populated patches, which makes dispersal profitable even when each local

population size approaches a fixed point. The effect of catastrophes and

the type of the attractor was studied in section 4.4.2. It was observed

that evolutionarily singular dispersal strategies are maximal for interme-

diate catastrophe probabilities.16 For too large catastrophe probabilities

the metapopulation is not viable. Such a maximum for intermediate catas-

trophe rates (in continuous time models) has been found before,28,30 and

even more complicated patterns may arise.13 Also, evolutionary branching

is possible. This phenomenon occurs when a monomorphically attracting

singular strategy is not unbeatable. The monomorphic population will first

approach the singular strategy, and then divide into two groups, and the
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strategies of these groups will evolve further away from each other.

So far in the analysis, local growth was assumed to happen according to

the Ricker14 model. In section 4.4.3 we examined whether any qualitative

changes results if the local population model exhibits an Allee effect, i.e.,

increasing per capita growth at low densities.38 It was observed that with

some parameter values the species in question could persist with its current

strategy, but natural selection forces the species to change its strategy re-

sulting in extinction.41 This phenomenon is called evolutionary suicide,34

but it is also called Darwinian extinction,35 and evolution to extinction.36

A review article on the subject has appeared recently.37 Some theory of

evolutionary suicide was presented in the end of section 4.4.3.
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The dispersal of individuals of a species is the key driving force of var-
ious spatiotemporal phenomena which occur on geographical scales. It
can synchronize populations of interacting species, stabilize them, and
diversify gene pools.1–3 The geographic spread of human infectious dis-
eases such as influenza, measles and the recent severe acute respiratory
syndrome (SARS) is essentially promoted by human travel which occurs
on many length scales and is sustained by a variety of means of trans-
portation4–8. In the light of increasing international trade, intensified
human traffic, and an imminent influenza A pandemic the knowledge
of dynamical and statistical properties of human dispersal is of funda-
mental importance and acute.7,9,10 A quantitative statistical theory for
human travel and concomitant reliable forecasts would substantially im-
prove and extend existing prevention strategies. Despite its crucial role,
a quantitative assessment of human dispersal remains elusive and the
opinion that humans disperse diffusively still prevails in many models.11

In this chapter we will report on a recently developed technique which
permits a solid and quantitative assessment of human dispersal on ge-
ographical scales.12 The key idea is to infer the statistical properties
of human travel by analysing the geographic circulation of individual
bank notes for which comprehensive datasets are collected at online bill-
tracking websites. The analysis shows that the distribution of traveling
distances decays as a power law, indicating that the movement of bank
notes is reminiscent of superdiffusive, scale free random walks known as
Lévy flights.13 Secondly, the probability of remaining in a small, spa-
tially confined region for a time T is dominated by heavy tails which
attenuate superdiffusive dispersal. We will show that the dispersal of
bank notes can be described on many spatiotemporal scales by a two
parameter continuous time random walk (CTRW) model to a surprising

109
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accuracy. We will provide a brief introduction to continuous time ran-
dom walk theory14 and will show that human dispersal is an ambivalent,
effectively superdiffusive process.

The notion of dispersal in ecology usually refers to the movement of

individuals of a species in their natural environment.1,3 The statistical

properties of dispersal can be quantified by the dispersal curve p∆t(∆x).

The dispersal curve reflects the relative frequency of geographic displace-

ments ∆x which are traversed within a given period of time ∆t.∗ A large

class of dispersal curves (for example, exponential, gaussian, stretched ex-

ponential) exhibit a characteristic length scale.15 That is, when interpreted

as the probability of finding a displacement of length ∆x, a length scale can

be defined by the square root of second moment, i.e. σ =
√

〈∆x2〉. The

existence of a typical length scale often justifies the description of dispersal

in terms of diffusion equations on spatiotemporal scales larger than ∆t

and σ.16 Because, if single displacements are sufficiently uncorrelated the

probability density W (x, t) of having traversed a total displacement x after

time t is a Gaussian which obeys Fick’s second law:

∂tW = D∂2
xW, (5.1)

where D = σ2/∆t is the diffusion coefficient. This result is a consequence

of the central limit theorem17 and does not depend on the precise form of

the short time dispersal curve as long as the variance
〈
∆x2

〉
is finite.

In population dynamical systems this type of diffusive dispersal is quite

frequently combined with a reaction kinetic scheme which accounts for

local interactions between various types of reacting agents, for example

various species in predator-prey systems. Sometimes groups of individuals

of a single species which interact are classified according to some criterion.

For instance in the context of epidemiology a population is often classified

according to their infective status.

In an approximation which neglects the intrinsic fluctuations of the

underlying reaction kinetics one obtains for these systems reaction-diffusion

equations, the most prominent example of which is the Fisher equation†,18

∗In ecological literature, the term “dispersal” is commonly used in the context of the
spatial displacement of individuals of a species between their geographical origin of birth
and the location of their first breeding place, a process which occurs on time scales of
the lifespan of the individuals. Here we use the term dispersal to refer to geographical
displacements that occur on much shorter timescales of the order of days.
†also referred to as the Fisher-Kolmogorov-Petrovsky-Piscounov equation.
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∂t u = λu(1 − u) +D∂2
xu, (5.2)

for the concentration u(x, t) of a certain class of individuals, a species etc.

A paradigmatic system which naturally yields a description in terms of

Eq. (5.2) and which has been used to describe to geographic spread of

infectious diseases is the SIS-model in which a local population of N in-

dividuals segregates into the two classes of susceptible S who may catch a

disease and infected I who transmit it. Transmission is quantified by the

rate α and recovery by the rate β.11 The reaction scheme could not be

simpler:

S + I
α−→ 2I I

β−→ S . (5.3)

In the limit of large population size N the dynamics can be approxi-

mated by the set of differential equations

∂t S = −αIS/N, ∂t I = αIS/N − βI. (5.4)

Assuming that the number of individuals is conserved (i.e. I(t)+S(t) = N)

and that disease transmission is more frequent than recovery (α > β) one

obtains for the rescaled relative number of infected u(t) = αI(t)/N(α− β)

a single ordinary differential equation (ODE) describing logistic growth:

∂t u = λu(1 − u), (5.5)

where λ = α− β. If, additionally reactants are free to move diffusively one

obtains Eq. (5.2) for the dynamics of the relative number of infected u(x, t)

as a function of position and time.

The popularity and success of the Fisher-equation and similar equations

in the field of theoretical biology can be ascribed to some extent to the

fact that they possess propagating front solutions and that qualitatively

similar patterns were observed in historic pandemics. The most prominent

example is the bubonic plague pandemic of the 14th century which crossed

the European continent as a wave within three years at an approximate

speed of a few kilometers per day. Aside from factors which are known to

play a role, such as social contact networks, age structure, inhomogeneities

in local populations and inhomogeneities in the geographic distribution of

the population, there is something fundamentally wrong with the diffusion

assumption on which this class of equations is based upon. Humans (with

the exception maybe of nomads) do not and never did diffuse on timescales

of their lifespan. A simple argument can be given why this cannot be so.
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Fig. 5.1. Human travel and the dispersal of pathogens. The gray areas depict home
ranges of individuals. By virtue of overlapping home ranges and inter-homerange travel
an infectious disease spreads in space. Although humans travel back and forth between
home ranges, pathogens spread continuously in space.

For a diffusion process the expected time for returning to the point of

origin is infinite19 (despite the fact that in spatial dimensions d ≤ 2 the

probability of returning is unity). It would not make much sense to have a

home if the expected time to return to it is infinite. However, in the context

of the geographic spread of infectious diseases it does at times make sense

to employ reaction-diffusion equations. That is because the position of

what is passed from human to human, i.e. the pathogens, is what matters

and not the position of single host individuals. Unlike humans, pathogens

are passed from human to human and opposed to humans pathogens have

no inclination of returning. They disperse diffusively and a description in

terms of reaction-diffusion dynamics is justified, see Fig. (5.1).

Recently the notion of long distance dispersal (LDD) has been estab-

lished in dispersal ecology,20 taking into account the observations that a

number of dispersal curves exhibit long, algebraic tails which forbid the

identification of a typical scale and thus a description of dispersal phenom-

ena based on diffusion equations. If, for instance, the probability density

of traversing a distance r in a given period of time ∆t decreases according

to

p∆t(r) ∼
1

r1+β
(5.6)

with a tail exponent β < 2, the variance of the displacement magnitude is

infinite and consequently no typical length scale can be identified. Power-

law distributions of this type are abundant in nature. Meteorite sizes,

city sizes, income and the number of species per genus follow power-law

distributions.21

In physics, random walk processes with a power-law single-step distri-
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bution are known as Lévy flights.14,22–24 Due to the lack of scale in the

single steps, Lévy flights are qualitatively different from ordinary random

walks. Unlike ordinary random walks the position XN =
∑N

n ∆xn after N

steps ∆xn scales with the number of steps according to

XN ∼ N1/β (5.7)

with β < 2. Thus, Lévy flights disperse “faster” than the ordinary N1/2

behavior exhibited by ordinary random walks; Lévy flights are superdiffu-

sive. Furthermore, the probability density for the position p(x, N) for Lévy

flights behaves asymptotically as

p(x, N) ∼ N−D/βLβ

(

x/N1/β
)

(5.8)

where D is the spatial dimension and the function Lβ is known as the sym-

metric Lévy-stable law of index β. This limiting function is a generalization

of the ordinary Gaussian and can be expressed by its Fourier-transform

Lβ(z) =
1

(2π)D/2

∫

dk e−iz·k−|k|β . (5.9)

The limiting value β = 2 corresponds to the Gaussian, the limiting

function for ordinary random walks. The lack of scale in a Lévy flight, its

superdiffusive nature and the geometrical difference between Lévy flights

and ordinary random walks are illustrated in figure 5.2. Lévy flights, and

superdiffusive random motion were observed in a variety of physical and

biological systems, ranging from transport in chaotic systems25 and tur-

bulent flows,26 to foraging patterns of wandering albatrosses27 and spider

monkeys.28

Nowadays, humans travel on many spatial scales, ranging from a few to

thousands of kilometres over short periods of time. The direct quantitative

assessment of human movements, however, is difficult, and a statistically

reliable estimate of human dispersal comprising all spatial scales does not

exist. Contemporary models for the spread of infectious diseases across

large geographical regions have to make assumptions on human travel. The

notion that humans travel short distances more frequently than long ones

is typically taken into account. Yet, the precise ratio of the frequency

of short trips and the frequency of long trips is not known and must be

assumed. Furthermore, it is generally agreed upon that human travel,

being a complex phenomenon, adheres to complex mathematical rules with

a lot of detail.
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Fig. 5.2. Ordinary random walks and Lévy flights. Left: The trajectory of an ordinary
random walk in two dimensions, equivalent to Brownian motion on large spatiotemporal
scales. Middle: Unlike Brownian motion, the trajectory of the two-dimensional Cauchy-
process, i.e. a Lévy flight with Lévy exponent β = 1 exhibits local clustering interspersed
with long distance jumps. Right: The distance |XN | from the starting point X0 = 0 of
an ordinary random walk (lower trajectory) and a Lévy flight (β = 1, upper trajectory)
as a function of step number N . The dashed lines indicate the scaling N1/2 and N1/β

respectively. Clearly, the Lévy flight is superdiffusive.

Recently, it was shown that the global spread of SARS in 2003 can

be reproduced by a model which takes into account nearly the entire civil

aviation network.7,10 Despite the high degree of complexity of aviation

traffic, the strong heterogeneity of the network yields an unexpectedly nar-

row range of fluctuations, supporting the idea that reliable forecasts of the

geographic spread of disease is possible. Although the model successfully

accounts for the geographic spread on global scales, it cannot account for

the spread on small and intermediate spatial scales. To this end a com-

prehensive knowledge of human travel on scales ranging from a few to a

few thousand kilometers is necessary. However, collecting comprehensive

traffic data for all means of human transportation involved is difficult of

not impossible.

In a recent study,12,29 we circumvent the technical difficulty of mea-

suring human travel directly by using the dispersal of bank notes in the

United States. The key idea of the project is to use bank note dispersal as

a proxy for human travel. We collected data from the online bill-tracking

website www.wheresgeorge.com. The idea of this internet game, which

was initiated in 1998 by Hank Eskin, is simple. Individual bank notes

are marked by registered users and brought into circulation. When people

come into possession of such marked bank notes, they can register at the

website and report their current location and return the bank note into

circulation. Thus, registered users can monitor the geographical dispersal

of their money. Meanwhile, over 80 millions dollar bills have been regis-
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tered and over 3 million users participate in the game. As bank notes are

primarily transported by traveling humans, we were able to infer the sta-

tistical properties of human travel from the dispersal of bank notes with

high spatio-temporal precision.

Our analysis of human movement is based on the trajectories of a subset

of 464,670 dollar bills obtained from the website. We analyzed the dispersal

of bank notes in the United States, excluding Alaska and Hawaii. The core

data consists of 1,033,095 reports to the website. From these reports we

calculated the geographical displacements r = |x2−x1| between a first (x1)

and secondary (x2) report location of a bank note and the elapsed time T

between successive reports. The pairs of datapoints {ri, Ti} represent our

core dataset, from which the probability density function (pdf) W (r, t) of

having traveled a distance r after a time t can be estimated.

In order to illustrate qualitative features of bank note trajectories,

Fig. 5.3 depicts short time trajectories (T < 14 days) originating from

three major cities (Seattle, WA, New York, NY, Jacksonville, FL). Suc-

ceeding their initial entry, the majority of bank notes are reported next in

the vicinity of the initial entry location, i.e. r < 10 km (Seattle: 52.7%,

New York: 57.7% Jacksonville: 71.4%). However, a small yet considerable

fraction is reported beyond a distance of 800 km (Seattle: 7.8%, New York:

7.4%, Jacksonville: 2.9%).

From a total of N = 20, 540 short time displacements we measured the

probability density p(r) of traversing a distance r in a time interval δT

between one and four days. The result is depicted in Fig. 5.4. A total of

14, 730 (i.e. a fraction Q = 0.71) secondary reports occur outside a short

range radius Lmin = 10 km. Between Lmin and the approximate average

east-west extention of the United States Lmax ≈ 3, 200 km p(r) exhibits

power law behavior p(r) ∼ r−(1+β) with an exponent β = 0.59 ± 0.02. For

r < Lmin, p(r) increases linearly with r which implies that displacements

are distributed uniformly inside the disk |x2 − x1| < Lmin.

One might speculate whether the observed lack of scale in p(r) is not a

dynamic property of dispersal but rather imposed by the substantial spatial

inhomogeneity of the United states. For instance, the probability of travel-

ing a distance r might depend strongly on static properties such as the local

population density. In order to test this hypothesis, we have measured p(r)

for three classes of initial entry locations: highly populated metropolitan

areas (191 locations, local population Nloc > 120, 000), cities of intermedi-

ate size (1, 544 locations, local population 120, 000 > Nloc > 22, 000), and

small towns (23, 640 locations, local population Nloc < 22, 000) comprising
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Fig. 5.3. Dispersal of bank notes on geographical scales. a: Relative logarithmic densi-
ties of population (cP = log10 ρP/ 〈ρP〉), reports (cR = log10 ρR/ 〈ρR〉) and initial entry
(cIE = log10 ρIE/ 〈ρIE〉) as functions of geographical coordinates. The shades of gray en-
code the densities relative to the nation-wide averages (3,109 counties) of 〈ρP〉 = 95.15,
〈ρR〉 = 0.34 and 〈ρIE〉 = 0.15 individuals, reports and initial entries per km2, respec-
tively. b: Short time trajectories of bank notes originating from three different places.
Tags indicate initial, symbols secondary report locations. Lines represent short time tra-
jectories with traveling time T < 14 days. The inset depicts a close-up of the New York
area. Pie charts indicate the relative number of secondary reports coarsely sorted by
distance. The fractions of secondary reports that occurred at the initial entry location
(dark), at short (0 < r < 50 km), intermediate (50 < r < 800 km) and long (r > 800
km) distances are ordered by increasing brightness. The total number of initial entries
are N = 524 (Seattle), N = 231 (New York), N = 381 (Jacksonville).

35.7 %, 29.1 % and 25.2 % of the entire population of the United States,

respectively. Fig. 5.4 also depicts p(r) for these classes. Despite systematic

deviations for short distances, all distributions exhibit an algebraic tail with

the same exponent β ≈ 0.6. This confirms that the observed power-law is
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Fig. 5.4. Quantitative analysis of bank note dispersal. Left: The short time dispersal
kernel. The measured probability density function p(r) of traversing a distance r in less
than T = 4days is depicted by squares. It is computed from an ensemble of 20, 540 short
time displacements. The dashed black line indicates a power law p(r) ∼ r−(1+β) with
an exponent of β = 0.59. Right: p(r) for three classes of initial entry locations (black
triangles for metropolitan areas, diamonds for cities of intermediate size, and circles for
small towns).

an intrinsic and universal property of dispersal, the first experimental evi-

dence that bank note trajectories are reminiscent of Lévy flights and that

dispersal is superdiffusive.

However, the situation is more complex. If we assume that the dispersal

of bank notes can be described by a Lévy flight with a short time probability

distribution p(r) as depicted in Fig. 5.4, we can estimate the time Teq

for an initially localized ensemble of bank notes to reach the stationary

distribution (maps in Fig. 5.3). We assume that the Lévy flight evolves in

a two-dimensional region of linear extent L. Furthermore we assume that

the single step distribution for a vectorial displacement x of the random

walk can be approximated by

p∆t(x) = (1 −Q)δ(x) +QfδL(x). (5.10)

Here ∆t denotes the typical time between single steps, Q the fraction of

walkers which jump a distance d > δL and (1 − Q) the fraction which

remains in a disk defined by |x| ≤ δL. The function fδL(x) comprises the

power-law in the single steps, characteristic for Lévy flights:

fδL(x) = C δLβ|x|−(2+β) |x| ≥ δL. (5.11)

Inserting this into Eq. (5.10) one obtains that fδL(x) is normalized to unity
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Fig. 5.5. Long time dispersal of bank notes with an initial entry in Omaha, NE. Points
denote the location of the second report. Each bill travelled for a time greater than 100
days, with an average of 289 days. The dashed circle indicates the distance of 800 km
from Omaha.

and that the normalization constant C is independent of the microscopic

length δL. The Fourier-transform of p(x) is given by p̃(k) = (1 − Q) +

Qf̃δL(k).The Fourier-transform of the probability density function WN (x)

of the walker being located at a position x after N steps can be computed

in terms of p̃(k) according to

W̃N (k) = p̃(k)N ≈
(
1 −QδLβ|k|β

)N ≈ e−QN |δL k|β . (5.12)

The relaxation time in a confined region is provided by the lowest mode

kmin = L/2π. Inserted into (5.12) with N = t/∆t one obtains

Teq ≈ δT/Q (L/2πδL)
β

= 68 days. (5.13)

Thus, after 2 − 3 months bank notes should have reached the equilibrium

distribution. Surprisingly, the long time dispersal data does not reflect a

relaxation within this time.

Fig. 5.5 shows secondary reports of bank notes with initial entry at

Omaha, NE which have dispersed for times T > 100 days (with an average

time 〈T 〉 = 289 days). Only 23.6% of the bank notes traveled farther than

800 km, the majority of 57.3% travelled an intermediate distance 50 < r <
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Fig. 5.6. The relative proportion P0(t) of secondary reports within a short radius (r0 =
20 km) of the initial entry location as a function of time. Squares depict P0(t) averaged
over 25,375 initial entry locations. Triangles, diamonds, and circles show P0(t) for the
same classes as in Fig 5.4. All curves decrease asymptotically as t−ξ with an exponent
ξ = 0.6± 0.03 indicated by the solid line. Ordinary diffusion in two dimensions predicts
an exponent ξ = 1 (black dashed line). Lévy flight dispersal with an exponent β = 0.6 as
suggested by the short time dispersal kernel (Fig. 5.4) predicts an even steeper decrease,
ξ = 3.33 (dot-dashed line).

800 km and a relatively large fraction of 19.1% remained within a radius

of 50 km even after an average time of nearly one year. From Eq. 5.13 a

much higher fraction of bills is expected to reach the metropolitan areas of

the West Coast and the New England states after this time. This indicates

that the simple Lévy flight picture for dispersal is incomplete. What causes

this attenuation of the dispersal?

A possible explanations of this effect is a strong impact of the spatial

inhomogeneity of the system. For instance, the typical time of rest in a

geographical region might depend on local properties such as the population

density. People might be less likely to leave large cities than e.g. suburban

areas.

In order to address this issue we investigated the relative proportion

P i
0(t) of bank notes which are reported again in a small (20 km) radius of
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the initial entry location i as a function of time (Fig. 5.6). The quantity

P i
0(t) estimates the probability for a bank note of being reported at the ini-

tial location at time t a second time. In order to obtain reliable estimates

we averaged this quantity over the above classes of initial entry locations

(e.g. metropolitan areas, cities of intermediate size and small towns): For

all classes we found the asymptotic behavior P0(t) ∼ At−η with an expo-

nent η ≈ 0.60± 0.03 and a coefficient A. The observed difference in values

of the coefficient A reflects the impact of the inhomogeneity of the system,

i.e. bank notes are more likely to remain in highly populated areas. The

exponent η, however, is approximately the same for all classes which indi-

cates that waiting time and dispersal characteristics are universal and do

not depend significantly on external factors such as the population density.

Notice that for a pure two dimensional Lévy flight with index β the function

P0(t) scales as t−η with η = 2/β. For β ≈ 0.6 (as put forth by Fig. 5.4)

this implies η ≈ 3.33,19 i.e. a five fold steeper decrease than observed,

which clearly shows that dispersal cannot be described by a pure Lévy

flight model. The measured decay is even slower than the decay exhibited

by ordinary two-dimensional diffusion (η = 119). This is very puzzling.

What could be the reason behind the attenuation of dispersal? One

way of slowing down dispersal are long periods of rest. In as much as an

algebraic tail in the spatial displacements yields superdiffusive behavior, a

tail in the probability density ψ(∆t) for times ∆t between successive spa-

tial displacements of an ordinary random walk can lead to subdiffusion.

For instance, if ψ(∆t) ∼ ∆t−(1+α) with α < 1, the position of an ordinary

random walker scales according to X(t) ∼ t2/α.14 In combination with a

power-law in the spatial displacements this ambivalence yields a compe-

tition between long jumps and long rests and can be responsible for the

attenuation of dispersal.30

We test this idea of an antagonistic interplay between scale free dis-

placements and waiting times within the framework of the continuous time

random walk (CTRW) introduced by Montroll and Weiss.31 A CTRW con-

sists of a succession of random displacements ∆xn and random waiting

times ∆tn each of which is drawn from a corresponding probability density

function p(∆x) and ψ(∆t). Spatial and temporal increments are assumed

to be statistically independent. Furthermore, we assume that the spatial

distribution is symmetric, i.e. p(∆x) = p(|∆x|), and since the temporal

increments are all positive ψ(∆t) is single sided. After N iterations the

position of the walker and the elapsed time is given by XN =
∑

n ∆xn and

TN =
∑

n ∆tn. The quantity of interest is the position X(t) after time
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t. The probability density W (x, t) for this process can be computed in a

straightforward fashion14 and can be expressed in terms of the spatial dis-

tribution p(∆x) and the temporal distribution ψ(∆t). The Fourier-Laplace

transform of W (x, t) is given by

W̃ (k, u) =
1 − ψ̃(u)

u
(

1 − ψ̃(u) p̃(k))
) , (5.14)

where ψ̃(u) and p̃(k) denote the Laplace- and Fourier transform of φ(∆t)

and p(∆x), respectively. The probability density W (x, t) is then obtained

by inverse Laplace-Fourier transform

W (x, t) =
1

(2π)3i

∫ c+i∞

c−i∞

du

∫

dk eut−ikxW̃ (k, u). (5.15)

When both, the variance of the spatial steps
〈
(∆x)2

〉
= σ2 and the

expectation value 〈∆t〉 = τ of the temporal increments exist the Fourier-

and Laplace transform of p(∆x) and ψ(∆t) are given by

p̃(k) = 1 − σ2k2 + O(k4) (5.16)

ψ̃(u) = 1 − τu+ O(u2), (5.17)

for small arguments, which yield the asymptotics of the process. Inserted

into Eq. (5.14) and employing inversion (5.15) one obtains W (x, t) =

(2πDt)−1e−x
2/2Dt in this limit with D = σ2/τ . Thus, whenever

〈
(∆x)2

〉

and 〈∆t〉 are finite a CTRW is asymptotically equivalent to ordinary Brow-

nian motion.

The situation is drastically different, when both, p(∆x) and ψ(∆t) ex-

hibit algebraic tails of the form

p(∆x) ∼ 1

|∆x|2+β
, 0 < β < 2 and φ(∆t) ∼ 1

∆t1+α
, 0 < α < 1.

(5.18)

In this case one obtains for the asymptotic of p̃(k) and ψ̃(u):

p̃(k) = 1 −Dβ |k|β + O(k2) (5.19)

ψ̃(u) = 1 −Dαu
α + O(u). (5.20)

Inserted into (5.14) yields the solution for the process in Fourier-Laplace

space:

W̃α,β(k, u) =
u−1

1 +Dα,β|k|β/uα
, (5.21)
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where the constant Dα,β = Dβ/Dα is a generalized diffusion coefficient.

After inverse Laplace transform the solution in (x, t) coordinates reads:

W (x, t) =
1

2π

∫

dk e−ikxEα(−Dα,β|k|βtα). (5.22)

Here, Eα is the Mittag-Leffler function defined by

Eα(z) =

∞∑

n=0

zn

Γ(1 + αn)
(5.23)

which is a generalization of the exponential function to which it is identical

for α = 1. The integrand Eα(−Dα,β|k|βtα) is the characteristic function

of the process. As it is a function of ktα/β , the probability density W (x, t)

can be expressed as

W (x, t) = t−2α/βLα,β

(

x/tα/β
)

(5.24)

in which the function Lα,β(z) = (2π)−1
∫

dkEα(−|k|β − ikz) is a universal

scaling function which is characteristic for the process and depends on the

two exponents α and β only. Most importantly, one can extract the spatio-

temporal scaling of the ambivalent process from (5.22):

X(t) ∼ tα/β . (5.25)

The ratio of the exponents α/β resembles the interplay between sub- and

superdiffusion. For β < 2α the ambivalent CTRW is effectively superdiffu-

sive, for β > 2α effectively subdiffusive. For β = 2α the process exhibits

the same scaling as ordinary Brownian motion, despite the crucial difference

of infinite moments and a non-Gaussian shape of the probability density

W (x, t). The function W (x, t) is a probability density for the vectorial dis-

placements x. From Eqs. (5.22) and (5.24) we can compute the probability

density Wr(r, t) for having traveled the scalar distance r = |x| by integra-

tion over all angles:

Wr(r, t) = t−α/βL̃α,β

(

r/tα/β
)

, (5.26)

with a universal scaling function L̃α,β which can be expressed in terms of

Lα,β.

The validity of our model can be tested by estimating the empirical

Wr(r, t) from the entire dataset of a little over half a million displacements

and elapse times and compare it to Eq. (5.26). The results of this analysis
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Fig. 5.7. The empirical radial probability density function Wr(r, t) and theoretical scal-
ing function L̃α,β . In order to extract scaling the function W (r, t) is shown for various
but fixed values of time t between 10 and 365 days as a function of r/t1/µ. For µ ≈ 1.0
the measured (circles) curves collapse on a single curve and the process exhibits uni-
versal scaling. The scaling curve represents the empirical limiting density F of the
process. The asymptotic behavior for small (dotted line) and large (dashed line) ar-
guments y = r/t1/µ is given by y−(1−ξ1) and y−(1+ξ2), respectively, with estimated
exponents ξ1 = 0.63 ± 0.04 and ξ2 = 0.62 ± 0.02. According to the our model these
exponents must fullfill ξ1 = ξ2 = β where β is the exponent of the asymptotic short
time dispersal kernel (Fig. 5.4), i.e. β ≈ 0.6. The superimposed solid line represents the
scaling function predicted by our theory with spatial and temporal exponents β = 0.6
and α = 0.6.

are compiled in Fig. 4.5. We can first address the question whether spatio-

temporal scaling, i.e.

r(t) ∼ t1/µ (5.27)

is observed in the data with an empirically determined exponent µ. If this

is so, then for the right choice of µ the quantity t1/µWr(r, t) depends only

on the argument r/t1/µ, that is

t1/µWr(r, t) = F
(

r/t1/µ
)

, (5.28)
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with an empirical scaling function F . We found that for an exponent µ ≈ 1

and times between one week and one year, the relation (5.28) is indeed

fullfilled and thus the dispersal of dollar bills exhibits scaling in this time

window. Because the exponent µ < 2, dispersal of bank notes is superdiffu-

sive. Yet, µ is significantly larger than the tail exponent β = 0.6 of the short

time dispersal kernel (Fig. 5.4), consistent with the idea that the process is

slowed down by long periods of rest. Comparing with the spatio-temporal

scaling promoted by the CTRW model r(t) ∼ tα/β a value of µ = 1 would

imply that temporal and spatial exponents are the same

α = β. (5.29)

Combined with the results obtained from the short time analysis yields

α = β = 0.6. (5.30)

A final test of the CTRW model is the comparison of the empirically

observed scaling function F with the predicted scaling function L̃α,β for the

values of the exponents in Eq. (5.30). As depicted in Fig. 4.5 the asymptotic

of the empirical curve is given by y−(1−ξ1) and y−(1+ξ2) for small and large

arguments y = r/t1/µ, respectively. Both exponents fulfill ξ1 ≈ ξ2 ≈ 0.6.

By series expansions one can compute the asymptotic of the CTRW scaling

function L̃α,β(y) which gives y−(1−β) and y−(1+β) for small and large argu-

ments, respectively. Consequently, as β ≈ 0.6 the theory agrees well with

the observed exponents. For the entire range of y we computed Lα,β(y)

by numeric integration for β = α = 0.6 and superimposed the theoretical

curve on the empirical one. The agreement is very good and strongly sup-

ports the CTRW model. In summary, our analysis gives solid evidence that

the dispersal of bank notes can be accounted for by a simple random walk

process with scale free jumps and scale free waiting times.

The question remains how the dispersal characteristics of bank notes

carries over to the dispersal of humans and more importantly to the spread

of human transmitted diseases. In this context one can safely assume that

the power law with exponent β = 0.6 of the short time dispersal kernel

for bank notes reflects the human dispersal kernel as only short times are

considered. However, as opposed to bank notes humans tend to return

from distant places they travelled to. This however, has no impact on the

dispersal of pathogens which, much like bank notes, are passed from person

to person and have no tendency to return. The issue of long waiting times

is more subtle. One might speculate that the observed algebraic tail in

waiting times of bank notes is a property of bank note dispersal alone.
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Long waiting times may be caused by bank notes which exit the money

tracking system for a long time, for instance in banks. However, if this were

the case the inter-report time statistics would exhibit a fat tail. Analysing

the inter-report time distribution we found an exponential decay which

suggests that bank notes are passed from person to person at a constant

rate. Furthermore, if we assume that humans exit small areas at a constant

rate which is equivalent to exponentially distributed waiting times and that

bank notes pass from person to person at a constant rate, the distribution

of bank note waiting times would also be exponential in contrast to the

observed power law. This reasoning permits no other conclusion than a

lack of scale in human waiting time statistics.

Based on our analysis we conclude that the dispersal of bank notes and

human transmitted diseases can be accounted for by a continuous time ran-

dom walk process incorporating scale free jumps as well as long waiting time

in between displacements. To our knowledge this is the first empirical evi-

dence for such an ambivalent process in nature. Furthermore, the analysis

permits a reliable estimate of the spatial and temporal exponents involved,

i.e. β ≈ α ≈ 0.6. We hope that our results will serve future models for the

spread of human infectious disease as the key ingredient of dispersal, which

can now be accounted for in a realistic way. We believe that these features,

when combined with nonlinear epidemiological reaction kinetics, will lead

to the emergence of novel types of spatiotemporal patterns.
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Many quantitative properties of social systems display frequency distri-
butions with long power-law tails. This ubiquitous feature, known as
Zipf’s law, can be understood as a consequence of the stochastic mul-
tiplicative mechanisms that underlie the evolution of those systems. In
this contribution, several instances of Zipf’s law in social processes are
discussed. We review a class of models which have been put forward to
explain the occurrence of power-law distributions in a wide variety of
systems, ranging from word usage in languages to surname frequencies
in human populations.

6.1. Introduction

Biological populations, including those formed by human beings, are collec-

tively subject to a multitude of actions that shape their evolution and de-

termine their fate within the ecosystem to which they belong. These actions

may be of very disparate origins, but always involve a complex interplay

between factors endogenous to the population, and external mechanisms,

related to the interaction with other populations and with physical envi-

ronmental factors. The fluctuating nature of such actions, as well as the

diversity of their origin, call for a description based on stochastic processes.

129
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Within this kind of formulation, it is explicitly assumed that the param-

eters that govern the evolution of the population can change with time in

irregular ways. For instance, the change in the number n(t) of individuals

within the population during a certain time interval ∆t can be modelled

by means of the discrete stochastic equation

n(t+ ∆t) − n(t) = a(t)n(t) + f(t) (6.1)

where a(t) and f(t) are random variables with suitably chosen distribu-

tions. The equation may be solved for a specific realization of these ran-

dom variables but, usually, one is rather interested at finding the statistical

properties of n(t) –for example, the expectation value of n at a time t in the

future– as a function of the statistical properties of a(t) and f(t). Equa-

tions of the type of (6.1) have been studied in detail by several authors in

various contexts, as recently reviewed by Sornette.1,2

The two terms in the right-hand side of Eq. (6.1) have well-differentiated

interpretations. The first term, a(t)n, represents the contributions to the

evolution of n which are proportional to the population itself. Due to this

proportionality, such contributions are called multiplicative. In a closed

population, multiplicative processes are restricted to birth and death, and

a(t) stands for the difference between the birth and death rates per individ-

ual in the interval ∆t. In open populations, the number of individuals is also

affected by migration processes. In general, the contribution of emigration

is multiplicative-like, because each individual has a certain probability of

leaving the population per time unit. On the other hand, immigration has

both multiplicative and additive effects. Immigration flows can, in fact, be

favoured by a large preexisting population –as in big cities– but a portion

of arrivals may also occur as a consequence of individual decisions that do

not take into account how large the population is. Such additive contribu-

tion is accounted for by the second term in Eq. (6.1). This term can also

stand for negative effects on the population growth, such as catastrophic

events where a substantial part of the population dies irrespectively of the

value of n.3 More generally, the additive term f(t) describes “reinjection”

events, which insure that n remains finite even when multiplicative pro-

cesses by themselves may imply unbounded growth or eventual extinction

of the population.1

It can be readily shown that in the absence of reinjection, f(t) ≡ 0, and

under very general conditions on the statistical properties of the random

variable a(t), Eq. (6.1) implies that the probability distribution P (n, t) for

the population n at time t is a log-normal function. If, on the other hand,
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f(t) 6= 0, the distribution can have a complicated analytical form. It is

nevertheless known that, for large n and long times, P (n, t) depends on the

population as

P (n, t) ∼ n−1−γ . (6.2)

The exponent γ is determined by the equation 〈(a + 1)γ〉 = 1, where 〈·〉
indicates average over the distribution of the random variable a.1

Detecting the power-law distribution of Eq. (6.2) in real systems would

require to have access to many realizations of the evolution of the same pop-

ulation –which, in practice, is rarely possible– or, alternatively, to follow the

parallel evolution of several populations of the same type. In this second

case, it would be necessary that all the populations under study are subject

to similar conditions, ensuring that the parameters that govern the evolu-

tion are uniform over the ensemble. These requirements are often met in

populations formed by human beings. Due to social, historical, geograph-

ical, cultural, and/or economic reasons, human populations happen to be

divided into groups of different types. Within each group, all individuals

share a distinctive trait, and the “affiliation rules” are such that children

belong to the same group as their parents. The creation of new groups is

usually rare, and migration between groups is relatively limited.

Consider, for instance, the case of surnames. In the overwhelming ma-

jority of cases, they are transmitted unchanged from the father to his chil-

dren. Surname mutation is infrequent, as it is mostly associated with mi-

gration to culturally distant populations. The voluntary change of an indi-

vidual’s surname is even rarer. As a result, human populations are divided

into groups where all individuals bear the same surname, and the popula-

tion in each group evolves almost autonomously. According to the above

discussion, it is expected that the distribution of the number of individuals

in such groups –given, for instance, by the probability of finding a surname

borne by n individuals– displays a power-law tail. In fact, it does, and the

same is true in groups such as the speakers of different languages, or the

inhabitants of different cities.

Over the past century, the occurrence of power laws in the population

distribution of human groups of various kinds has been reported by several

authors, notably, by the philologist G. K. Zipf.4 As a matter of fact, the

power-law dependence of the frequency of groups as a function of their

population came to be known as Zipf’s law. Remarkably, however, the only

case discussed in detail by Zipf does not involve the evolution of human

populations, but the apparently unrelated question of word usage in written
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and spoken language.5 With the illustration of statistical data obtained by

himself and others, Zipf pointed out that, in a text, the number P (n) of

words that are used exactly n times decreases with n as

P (n) ∼ n−ζ. (6.3)

Equivalently, the probability of finding a word with exactly n appearances

follows Eq. (6.2), with γ = ζ − 1. Zipf discovered that, for many texts in

different languages, one has ζ ≈ 2. In an alternative formulation –which

became famous as Zipf’s rank analysis– all the different words in a text

are ranked according to their number of appearances, with rank r = 1 for

the most frequent word, r = 2 for the second most frequent, and so on. It

can be shown that Eq. (6.3) implies, for the number of appearances n as a

function of the rank r, a power-law dependence

n(r) ∼ r−z , (6.4)

where z = (ζ − 1)−1 ≈ 1 is usually known as the Zipf exponent. The

same type of power-law dependence between frequency and rank is found

in surnames ranked by the number of individuals who bear them, languages

by the number of speakers, and cities by their population.

The aim of this contribution is to review a class of models that predict

the occurrence of Zipf’s law in human groups of various kinds. All of them

are extensions of Simon’s model,6 which is in turn based on a multiplica-

tive mechanism for the population growth. In the next section, we present

Simon’s model in the frame where it was originally introduced –word fre-

quency in language. The role of multiplicative mechanisms in language is

clarified, in connection with the process of context creation. We discuss

some refinements of the model, as well as its application to musical lan-

guage. Next, we describe how Simon’s model applies to the distribution of

city sizes and of speakers of different languages, pointing out some open

problems. Section 6.4 is the core of the contribution, and presents an exten-

sion of the model including mortality. This extension makes it possible to

give a detailed quantitative explanation of the distribution of surnames ob-

served in present-day populations, which may also apply to the distribution

of certain genetic traits. Finally, we give a concluding summary.

6.2. Models for Zipf’s law in language

A thorough formulation of a model for Zipf’s law was provided in the 1950s

by H. A. Simon,6 elaborating on an idea previously advanced by Willis and
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Fig. 6.1. Zipf’s rank plots for Virgil’s Aeneid, Don Quijote, by Miguel de Cervantes
Saavedra, and David Copperfield, by Charles Dickens. For clarity, the plots have been
mutually shifted in the vertical direction, so that the units for the number of occurrences
are arbitrary. Straight lines have the slope of least square fits in the zone where the
power-law decay is well defined; labels indicate the slope value.

Yule.7 Simon presented his model by referring to the case of language,

which Zipf himself had discussed in detail in one of his books.5 Some

specific features for Zipf’s law for language are the following. First, while

the exponent z of the power-law decay of the number of occurrences as

a function of the rank r, Eq. (6.4), is generally close to unity, systematic

deviations are observed for texts in languages such as Latin and Russian, for

which z can be considerably smaller than one. Those languages share the

property of being highly inflected, due to the strong variation of both nouns

in declensions and verbs in conjugations. For other languages, in contrast,

z is larger than one. Second, at high ranks, the number of occurrences as

a function of r abandons its power-law dependence, and displays a faster

decay. These features are illustrated in Fig. 6.1.

Simon’s model mimics the generation of a text as a stochastic process.

At each step, a word is added to the text, according to the following rules.

(i) With probability α, a new word –not yet present in the text– is added.

(ii) With the complementary probability 1 − α, an already used word is

added. In this case, the word to be added is chosen with a probability

proportional to its previous occurrences. Rule (i) implies that the lexicon

grows, on the average, at a constant rate as the text progresses. Rule (ii)

introduces a multiplicative mechanism that favours the occurrence of those
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words which are already frequently used in the text. In this formulation,

the only parameter of Simon’s model is α, the probability of appearance of

a new word.

The two rules defining Simon’s model can be translated into mathemat-

ical terms, in the form of an evolution equation for P (n, s), the number of

words that have occurred exactly n times up to step s. For n = 1, we have

P (1, s+ 1) = P (1, s) + α− 1 − α

N(s)
P (1, s), (6.5)

while, for n > 1,

P (n, s+ 1) = P (n, s) +
1 − α

N(s)
[(n− 1)P (n− 1, s) − nP (n, s)]. (6.6)

Here, N(s) is the total text length at step s. If the text generation is

assumed to have begun with one word at s = 0, we have N(s) = s+1. The

above deterministic equations govern the mean evolution of P (n, s). Their

solution must be understood as the mean number of words with exactly n

occurrences, averaged over many realizations of the stochastic rules (i) and

(ii).

Simon himself proved that Eqs. (6.6) and (6.5) admit a solution which

decays with n as6

P (n, s) ∼ N(s)n−1−1/(1−α). (6.7)

In the rank plot, this implies a power-law decay with exponent z = 1 − α.

He showed moreover that this special solution describes the asymptotic

distribution P (n) for any initial condition. Thus, a sufficiently long text

generated following the rules of Simon’s model verifies Zipf’s law with the

above exponent. Note that the exponent tends to the typical value z = 1

for a vanishingly small probability of appearance of new words. For finite

α, we have z < 1.

Simon’s model can be interpreted as an attempt to represent the cre-

ation of context as a text is generated. Context is the global property

of a structured message that sustains its coherence or, in other words, its

intelligibility.8 A long chain of words, even if they constitute a grammati-

cally correct text, would result incomprehensible if it does not succeed at

defining a contextual framework. It is in this framework, created by the

message itself, that its perceptual elements become integrated into a mean-

ingful coherent structure. As words are successively added to the text, a

context is created which favours the later appearance of certain words –in
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particular, those that have already appeared– and inhibits the use of oth-

ers. The model aims at capturing the essentials of the mechanism which,

by repeated use of certain words, is at work in the construction of a struc-

tured, comprehensible text. The repetition of perceptual elements is one

of the basic ingredients in the conception of intelligible structures and in

the ensuing cognitive response to their reception, including the creation

and retrieval of memories.9 This notion lies at the basis of the cognitive

processes associated with written and spoken communication.

Thus, Simon’s model interprets Zipf’s law as a statistical property of

word usage during the creation of context, as a text is progressively gener-

ated. Context emerges from the mutually interacting meanings of words,

and represents a collective expression of the semantic contents of the mes-

sage, arising from the multiple structured relations between language el-

ements. Semantics is in fact essential to the function of language as a

communication system.

Incidentally, let us mention that B. B. Mandelbrot pointed out a dif-

ferent –and, in a sense, simpler– mechanism able to give rise to a Zipf-like

law for written texts.10 He proposed to generate a “text” as an array of

characters chosen at random from a given alphabet, where the blank space

has also a certain fixed probability. “Words” are defined as the sub-arrays

between any two consecutive blank spaces. For sufficiently long “texts” of

this type, rank plots constructed by counting the number of occurrences of

each “word” show a power-law decay with an exponent close to z = 1, as

in real texts. If Mandelbrot’s explanation were right, Zipf’s law would lack

any linguistic significance. At the level of rank statistics, in fact, a text

would not be distinguishable from a random array of characters. Zipf’s law

should be thought of as a trivial manifestation of this “quasi-randomness”

of real texts. This observation gave origin to a lively discussion between

Mandelbrot and Simon themselves.11,12

Though, sometimes, Mandelbrot’s model is still invoked as an explana-

tion for Zipf’s law in language, a few important drawbacks strongly suggest

that such explanation is not correct. First, the exponent z predicted by

Mandelbrot’s model depends on the length of the involved alphabet.13 This

dependence of z on the alphabet length is not observed in real texts. Sec-

ond, Mandelbrot’s model implies a specific prediction for the distribution of

word lengths. If p0 is the probability of having a blank space, the probabil-

ity distribution for the word length l is the exponential p(l) = p0(1−p0)
l−1.

This result, however, bears no relation to real word-length distributions. In

the first place, they usually show a maximum at small lengths. In the case
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of English, mainly due to the high frequency of the words THE and AND,

this maximum occurs at l = 3. Moreover, real distributions do not de-

cay exponentially. Language usage heavily penalizes very long words –in

English, beyond about l = 12. Consequently, the decay of word-length

distributions is usually faster than exponential. Finally, we mention that if

Mandelbrot’s model were correct, the number of different words of a given

length l should grow exponentially with l, which is also in disagreement

with data from real languages.

As discussed above, Simon’s model is able to explain Zipf’s exponents

lower than one, z < 1. However, rank plots for certain languages (such as

English and Spanish; see Fig. 6.1) typically exhibit exponents above unity.

To explain this discrepancy, Simon’s model can be refined on the basis of

linguistically sensible assumptions.14,15 In fact, probably the most unreal-

istic hypothesis in the model is the fact that the probability of appearance

of new words, α, does not vary as the text progresses. In real texts, this

is manifestly false. While during the first stages of the process new words

are frequently needed to settle the context, in later stages the lexicon be-

comes better established and, consequently, its growth rate is lower. A

phenomenological representation of this feature consists in assuming that

the probability of appearance of new words decays as α(s) = α0s
ν−1, with

0 < ν < 1, as the text is generated. This form for α(s) implies that the

lexicon size, i.e. the number of different words, increases as V (s) ∼ sν ,

while the text length grows as T (s) ∼ s.

While, in general, it is not possible to solve Eqs. (6.5) and (6.6) for

s-dependent α, an approximate solution can be found, following the same

argument as Simon, if α(s) = α0s
ν−1 ≪ 1. Certainly, this inequality holds

at least when the initial stages in the text generation have elapsed. Under

these conditions, it has been shown that the number of words with exactly

n appearances decreases with n as P (n) ∼ n−1−ν . This implies

z =
1

ν
(6.8)

for the power-law exponent in the Zipf’s rank plot. Thus, within this exten-

sion of Simon’s model, exponents larger than one can also be reproduced.

Moreover, the result is in agreement with the empirical observation that

highly inflected languages (such as Latin) have Zipf exponents smaller than

those of less inflected languages (such as English). In fact, as for the number

of different words, poorly inflected languages have a more limited lexicon.

The vocabulary of texts written in such languages is therefore expected to
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increase slowly as the text progresses, which corresponds to relatively small

values of ν and, accordingly, large z.

A further extension of Simon’s model makes it possible to explain the

faster decay of the number of occurrences for high ranks. This extension is

also based on linguistic considerations regarding the creation of context as

a text is generated. It can be argued that a single appearance of a given

word is not enough to establish its role in defining the context. Rather,

there should be a threshold in the number of occurrences of a word, before

it enters the regime where the multiplicative process of Simon’s rule (ii)

acts. This effect can be implemented by modifying the probability that

a newly introduced word is used again. Namely, the probability that a

word with n previous occurrences appears at the current step is taken to

be proportional to max{n, η}, where η is the threshold. In this way, a given

word has to appear η times before the multiplicative process begins to act.

Until then, the probability of occurrence is constant. The threshold η may

be different for each word. Numerical simulations of the extended Simon’s

model with an exponential distribution for the value of η assigned to each

word are able to satisfactorily reproduce the observed decay for high ranks.

Within this extension, the fast-decaying tail of Zipf’s plot is interpreted as

containing those words whose number of occurrences has remained below

the corresponding threshold.

In view of the interpretation of Simon’s model as capturing the essen-

tial mechanisms of the creation of linguistic context, it is natural to pose

the question whether the same model can be applied to other communica-

tion systems with a meaningful notion of context. An appealing candidate

is music, which –supposedly– shares with language at least some neural

mechanisms related to acquisition and perception processes.16 The crucial

difference in nature between the information conveyed by music and lan-

guage, however, makes it difficult to extend linguistic concepts to the realm

of musical expression. Often, such extension remained at a metaphorical

level though, recently, scientifically sound definitions for musical syntax,

grammar, and semantics have been put forward. On the other hand, the

notion of context admits a straightforward extension to music. Musical

context is determined by a hierarchy of intermingled patterns occurring at

different time scales. The tonal and rhythmic structure of melody motifs

constitutes the most evident contribution to musical context. The repeti-

tions, variations, and transpositions of those motifs shape the thematic base

of a composition. At larger scales, the recurrence of long sections and cer-

tain standard harmonic progressions determine the musical form. Crossed
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Fig. 6.2. Zipf’s rank plots for the Prelude N. 6 in d from the second book of Das
Wohltemperierte Klavier, by J. S. Bach, and the second movement, Menuet, from the
Suite Bergamasque by C. Debussy. Curves correspond to least-square fits with Eq. (6.9).
The resulting exponent is ν = 0.28 for Bach and ν = 0.48 for Debussy.

references between different movements or numbers of a given work estab-

lish patterns over even longer times. Meanwhile, at the opposite end of

time scales, the duration and pitch relation of a few notes are enough to

determine tempo, rhythmic background, and tonality.

Applying Zipf’s analysis to music requires first to solve the task of giving

a convincing definition to the musical equivalent of “word.” The multiplic-

ity of levels at which musical context can be defined suggests several possible

identifications for “words” in music, ranging from single notes to rhythmic

patterns, to melodic phrases. Many of them have in fact been used to

construct Zipf’s rank plots for musical compositions. Unfortunately, such

studies did not go beyond a phenomenological description, and established

no connection with possible models for Zipf’s law.17,18

More recently, however, the significance of Simon’s model in music has

been assessed on the basis of Zipf’s analysis for a set of classical composi-

tions.19 Due to operational convenience, “words” were identified with single

notes, defined by their individual pitch and duration. The contribution of

notes to the creation of musical context, determining tonality and rhythm

through their relative pitches and lengths, is particularly transparent. Fig-

ure 6.2 shows Zipf’s plots for two compositions for keyboard: the Prelude

N. 6 in d from the second book of Das Wohltemperierte Klavier, by J. S.

Bach, and the second movement, Menuet, from the Suite Bergamasque by

C. Debussy. Note that these plots lack the power-law high-rank regime of

Zipf’s plots for language (Fig. 6.1). This feature, which can be ascribed
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to the relative small “lexicon” size (number of different notes) and “text”

length (total number of notes) of musical compositions as compared with

language corpora, does not preclude, however, the application of Simon’s

model. In fact, imposing to Simon’s model the additional condition that

any given “word” can appear at most a predefined number of times, the

functional form of the number of occurrences n in terms of the rank r is

n(r) = (a+ br)−1/ν . (6.9)

Here, a and b are constants, and ν is the exponent that defined the “lexicon”

growth, V ∼ sν , as discussed above. Least-square fittings of Zipf’s plots

with Eq. (6.9) are in excellent agreement with empirical data, supporting

the applicability of Simon’s model, as a representation of context creation,

to musical compositions. The difference in the values of the exponent ν for

Bach (ν = 0.28) and Debussy (ν = 0.48) is not unexpected. The exponent

becomes even larger for atonal compositions, where the use of elements

that determine the tonality context is avoided on purpose. As discussed

in the case of language, small exponents correspond to a compact lexicon,

determining a rather robust, stable context. Large exponents, on the other

hand, determine an abundant lexicon, related to a ductile, more tenuously

defined context. The merest comparison of the above compositions clearly

reveals this difference to the listener.

6.3. City sizes and the distribution of languages

Before moving to the core of this contribution, we briefly review in this sec-

tion two instances of occurrence of Zipf’s law in direct relation to human

populations. As discussed in the introduction, the nature of the reproduc-

tion mechanism of living organisms implies that the overall evolution of any

biological population is inherently driven by stochastic multiplicative pro-

cesses. In the two instances considered here, these processes are reflected

in the size distribution of human groups, as their population grows.

Our first instance regards the distribution of city sizes. It is an evident

fact that the geographical, political, and socioeconomic factors that deter-

mine the sizes of cities, as measured by their populations, are broadly het-

erogeneous. Accordingly, changes in city populations are quite disparate,

even for closely related cities. Think of the fate of a few Western urban

settlements during the last five hundred to one thousand years. Venice, for

instance, which in the Middle Ages was one of the largest cities in Europe,

bears now some 60, 000 inhabitants –approximately, half of its population
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Fig. 6.3. Zipf’s rank plots for the population of the largest cities in India (2001), Ar-
gentina (2001), and France (2004). Some 200 cities are considered in each case. Data
for France have been multiplied by 0.1, for clarity in the display. Straight lines stand for
least square fittings. The corresponding Zipf’s exponents are shown as labels. Source:
www.citypopulation.de.

three centuries ago. In the same period, Rome multiplied its population by

a factor of 100, reaching its present few millions. By the beginning of the

thirteenth century, Paris and Florence had approximately equal sizes; now,

the former is some 20 times bigger than the latter. As for the cities of the

New World, initially modest and precarious settlements such as México, São

Paulo, Buenos Aires, and New York have become, in five hundred years,

some of the largest metropolitan areas in the globe.

Yet, a rank plot of populations for all the cities in the world shows a

well-defined power-law regime over several orders of magnitude, revealing

an unexpected regularity in the result of the very non-uniform process of

urban growth. And, perhaps more surprisingly, Zipf’s law occurs also when

the sample is limited to the cities of a given country or region. This is one

of the best known occurrences of Zipf’s law; it was already quoted by Zipf

and Simon themselves. Figure 6.3 displays rank plots for the largest urban

settlements in India, Argentina and France, including some 200 cities each.

Data have been obtained from www.citypopulation.de, and correspond to

2001 for India and Argentina, and to 2004 for France.

Such ubiquitous regularity calls for an explanation based on universal

mechanisms and, of course, it is natural to think of the multiplicative pro-

cesses that govern the evolution of populations. Larger cities grow faster,

first, due to the reproduction of its inhabitants. But also the effect of immi-
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gration, which cannot be neglected in the change of city sizes, is expected

to be multiplicative in nature. The accumulation of wealth and resources in

a given city should be proportional to its size, at least within geopolitically

uniform regions. Consequently, its appeal to immigration should increase

as its population grows. The basic mechanism of rule (ii) in Simon’s model

is thus at work. Each time a new inhabitant is added to the system, his or

her destination city is chosen with a probability proportional to its current

population. Rule (i) requires, in addition, to have a finite probability of

foundation of a new city when the new inhabitant appears. In practice,

such probability must be extremely small.

For city sizes, the variation of the Zipf exponent z between countries

is more restricted than in the case of word frequencies between different

languages. In the former case, Zipf exponents are rarely below 0.9 or above

1.1. A regularity has however been reported in the variation of z: the Zipf

exponent is systematically smaller for old countries (as, for instance, in Eu-

rope and Asia) than for young countries (as in the Americas). Figure 6.3

illustrates this fact. Exponents larger than one –such as that of Argentina,

z = 1.06– can be readily explained using the extension of Simon’s model

discussed in the previous section, which admits that the probability of cre-

ation of new cities decreases as time elapses. On the other hand, while the

original form of Simon’s model could explain an exponent lower than one

–such as that of India, z = 0.91– it would require a very large value of the

probability α. In the case of India, we would have α = 1− z = 0.09, which

would imply that, roughly, a new city is created for every ten new inhabi-

tants in the country! Clearly, another mechanism is needed to explain such

small exponents as that of India. Geographers suggest that an important

ingredient may be given by the fact that the growth rate of an existing city

is not necessarily proportional to its current size, as assumed in rule (ii) of

Simon’s model. In particular, a dependence on the size that penalizes large

populations would produce an overall flattening of the rank plot, with the

ensuing decrease of z. To our knowledge, the extension of Simon’s model

with size-dependent growth rates has not been studied yet.

The application of Zipf’s analysis and Simon’s model to urban settle-

ments implicitly assumes that individual cities are well-defined entities. In

fact, urbanists may not agree on this point. The modern city is such a com-

plex of intermingled systems that it defies a definition in terms of traditional

classification schemes, and requires a wider concept of class.20 Figure 6.4

illustrates the fact that, while urban settlements can be distinctly identi-

fied in some regions, in other places the situation is much less clear cut.
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Fig. 6.4. Two satellite images of the Earth by night. Left: Central Ukraine. Right:
North-western Germany. Each image covers an area of, roughly, 500× 500 km2. Source:
visibleearth.nasa.gov.

Currently, it is accepted that –at the level of big cities– the entities to be

considered in Zipf’s analysis are the clusters resulting from the growth and

aggregation of initially separated settlements. Administrative divisions,

usually inherited from those initial conditions, do not play a substantial

role in defining such metropolitan areas. Figure 6.3 was drawn taking this

criterion into account. This discussion raises the question on the origin of

Zipf’s law for urban agglomerations. It would be interesting to consider an

extension of Simon’s model incorporating the formation of aggregates, and

determine which features in the aggregation mechanism ensure that Zipf’s

law holds for the resulting system of cities and urban clusters.

The second instance of Zipf’s law considered in this section regards the

number of speakers of different human languages. At the present day, some

5, 000 to 6, 000 different languages are spoken all over the world. Their

distribution and diversity, which have been determined by both historical

and geographical factors, are extremely heterogeneous. For instance, about

1, 000 different languages –all of them belonging to the Indo-Pacific family–

are spoken in New Guinea and neighboring islands while, in turn, practi-

cally all the American countries to the south of the United States (Brazil

being the most noticeable exception) have Spanish as their main mother

language. The number of Native American languages, on the other hand,

had certainly reached several hundreds before the European invasion in the

sixteenth century.21 In correspondence with this heterogeneity, the number

of speakers per language varies between several hundred millions for Chi-

nese and some languages of the Indo-European family, to a mere handful

of speakers for those hundreds of languages that are presently on the edge

of extinction.
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Fig. 6.5. Zipf’s rank plot for the number of speakers per language, for languages with
more than ∼ 105 speakers. Source: www.ethnologue.org.

Notice that the same warning put forward above on the entity of cities

applies to languages. Usually, a language is accompanied by a host of re-

gional variations, dialects, and jargons, that make it difficult to give a neat

definition of geographical boundaries and historical domains. Nevertheless,

linguists seem to have reached a reasonably general agreement on the entity

of a large number of languages, and the size of the respective populations

has been determined. Figure 6.5 shows a rank plot of the first 1, 000 lan-

guages ordered according to the corresponding number of speakers. The

plot begins with a zone where the Zipf exponent is close to unity. Soon,

however, the exponent changes to a much higher value, z ≈ 1.8. This is,

in fact, the highest Zipf exponent among the several instances discussed in

this chapter.

The occurrence of Zipf’s law for the number of speakers per language

can be readily understood in terms of the multiplicative mechanisms that

underly the growth of the respective populations. In this process, it is

essential that –in the overwhelming majority of cases– an individual inherits

the language of his or her parents, so that they belong to the same speaker

population. The situation is similar to that of family names, that we discuss

in detail in the next section. The probability of creation of new languages

should be very small. In the frame of Simon’s model, a Zipf’s exponent

z ≈ 1.8 can be explained by means of the extension discussed in the previous

section, with a decreasing frequency of language creation. According to Eq.

(6.8), the corresponding exponent would be ν ≈ 0.56.

The presence of a power-law regime with a different Zipf exponent for
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the languages with the largest numbers of speakers –some 20 languages spo-

ken by, roughly, more than 50, 000, 000 people– is intriguing.22 However,

the populations associated with most of these languages have evolved in

the last few centuries through mechanisms that may not be well described

by the local multiplicative processes of Simon’s model and its variations.23

The relatively rapid expansion of these languages over vast geographical

domains, through invasion –peaceful or violent–, conquest, and massive

migration, may imply that the spatial variable cannot be ignored in a de-

scription of their evolution. The already mentioned case of Spanish is a

clear example: some 90 % of the present-day Spanish speaking population

was not born in Spain, and much of it is ethnically non-European. A case

not related to classical colonialism is that of Turkish: it is spoken by more

than 60 million people, one third of them outside Turkey. The quanti-

tative modeling of the distribution of these geographically very extended

languages is an open problem.

6.4. Family names

It belongs to common experience that the ancestry of an individual can be

traced back for many generations, often following the line that links fathers

to sons. The frequency of surnames is one of the clearest cases of multi-

plicative growth of a cultural feature, and has been studied using different

approximations for at least one century. The similarity of this problem with

some questions put forward in the field of population genetics has favored

that, nowadays, we enjoy a deep understanding of the main mechanisms at

play. In this section, we briefly review the historical development of prob-

lems related to surname inheritance and the models proposed to explain its

dynamics, and analyze the sociological and historical context of a number

of present-day populations.

The end of the nineteenth century witnessed the first attempt to formu-

late and solve a sociological problem mathematically. The problem arose

when it was noted that certain families “of men of genius” tended to perish,

as the disappearance of certain surnames seemed to indicate. The problem

was qualitatively addressed by Sir Francis Galton, who at the time gave an

explanation based on his belief that a rise in intellectual capacity somehow

implied a diminution in fertility. A contrasting point of view was that of

Alphonse de Candolle, who pointed out that the unavoidable fate of a sur-

name is to disappear simply due to the stochastic nature of the inheritance

process. The mathematical formulation of the problem, and a first solution,
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came from the study of Rev. H. W. Watson, who correctly concluded that

any surname is bound to disappear in constant or shrinking populations,

without the need to invoke differential fertility of the individuals.24

It took several decades to relate the problem of family name inheritance

to the genealogy of non-recombining alleles (or of genetic heterogeneity) in

a population.25 Some parts of the human genome, among them the Y chro-

mosome and the mitochondrial DNA, are inherited from one of the parents

only, and do not experience recombination in the process. Hence, they are

transferred unaltered, except for rare mutations, from generation to gener-

ation. The dynamics of this process correspond to a monoparental way of

transmission affected by population fluctuations, and is completely analo-

gous to surname inheritance. The correlation between the two processes is

strong enough that, occasionally, the surname of certain patrilineal families

clearly correlates with the inherited characteristics of the Y chromosome.26

Regarding the disappearance of surnames, the interest was initially di-

rected to estimate the probability that a surname perished as a result of the

randomness inherent to the transmission process. To solve that problem, a

formulation fully analogous to the fixation of a mutant allele in a population

was proposed.27 The first statistical approaches to the description of sur-

name abundance28 came much later, and took advantage of neutral models

initially devised to quantify the number of different alleles that could be

maintained in a population.29

In the framework of those stochastic models, the trait under consider-

ation evolves neutrally, that is, it does not confer any selective advantage

to the individual carrying it. While this statement is difficult to prove in a

genetic context, it is much more easily verified in the case of family names.

This approach yields a number of exact results, including the probability

for a trait to survive at any time in the future and the average number of

different traits that can stably coexist in a large population. In particular,

for a population to be heterogeneous with respect to a certain trait, a suf-

ficiently high rate of appearance of new variants is required.30 Consider a

population of constant size evolving by non-overlapping generations, and

initially homogeneous with respect to a certain character. Suppose that a

mutant appears. Neutral theory states that the typical number of gener-

ations g for the mutant to be fixed under the action of random drift is of

the order of the size N of the population, g ∼ N . If the rate of appearance

of mutants is r per generation, then rgN mutants appear in g generations.

Hence, only when r ≪ N−2 is the population homogeneous with respect to

that character. For larger values of the mutation rate a number of different
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haplotypes (or of different surnames) coexist at the statistically stationary

state. In the case of exponentially growing populations, the composition

of the population crosses over from homogeneity to heterogeneity when the

number of individuals becomes large enough, and if growth continues the

number of coexisting variants keeps increasing. In the case that will be

tackled in this section –the abundance of families of a certain size– the

mutation rate is high enough that all the societies studied maintain high

degrees of heterogeneity.

The inheritance of surnames or of non-recombining alleles is character-

ized by three main mechanisms involved in the transmission process from

one of the parents to the offspring: (i) the probability that a newborn inher-

its a certain surname or gene is proportional to the number of individuals

in the population bearing it; (ii) the surname (or form of the gene) remains

unchanged in most cases, though with a small probability α the surname

changes or the gene mutates, and a different group, initially constituted by

a single individual, appears; (iii) individuals carrying that surname (or al-

lele) can die at any time with a given probability. Associating an evolution

step with the appearance of a newborn in the population, rules (i) and (ii)

correspond, respectively, to rules (ii) and (i) in the formulation of Simon’s

model for Zipf’s law in language, as presented in Sect. 6.2. In addition to

mutations, rule (ii) also takes into account migration of individuals to the

population. The third rule introduces a new mechanism –mortality– essen-

tial to the problem that we are now dealing with: surnames or alleles can

disappear whenever they are carried by a single individual, if that individual

dies. We call µ the probability that a single individual dies per evolution

step. The model described by rules (i), (ii), and (iii) corresponds to an

exponentially growing population for any µ < 1. In that scenario, it can

be shown that, similarly to the asymptotic behavior described by Simon’s

model, the system eventually attains a statistically stationary state where

the distribution of family sizes reaches a fixed profile. This distribution will

be broad whenever α is large enough.

The analysis of real data for family abundance in different societies

reveals remarkable quantitative differences. For example, there are broadly

different degrees of heterogeneity regarding surname distribution. The data

shown in Fig. 6.6 imply that there are about 50 different surnames in the

USA for each surname in China. Though the transmission process is the

same in both cases, each of them should be described by very different

values of the relevant parameters. Indeed, actual values of α depend on the

accuracy of transmission of surnames and on immigration flows. Changes
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of country, of writing system, spelling errors and, in some cases, voluntary

changes, together with the appearance of new surnames due to the arrival of

foreign families, might translate into very different values for α in different

societies. The parameter µ determines the growth rate of the population,

and can be highly variable in time. Finally, the distance to the asymptotic

form of the distribution depends on the initial condition (number and size

of the founding families), and on the genealogical depth of a population,

that is, on the time since surnames started to be systematically used as

cultural and sociological markers. Thus, real data indicate that countries

with different surname distributions differ at least in one of the following

conditions: either their values for the parameter α or for the growth rate µ

are different, or they are still at the transient phase and have not reached

stationarity. This notwithstanding, the deep relationship between non-

recombining alleles and surname inheritance has made the investigation of

surname distributions a powerful tool to quantify the genetic heterogeneity

of a population, the amount of inbreeding, and the historical degree of

mixing in some human communities.31

In China, the tradition of using surnames dates back at least to about

2200 B.C. Nowadays, the Chinese society has little diversity regarding sur-

names, partly due to its genealogical depth, which spans 160 to 200 gen-

erations.32 However, there is probably a second reason explaining why

almost 90% of Chinese people share only 100 different surnames: the writ-

ing system. Most surnames in China correspond to a well-defined concept,

which is represented using a symbol common to most languages and di-

alects spoken in the country. Mutation thus becomes extremely rare, and

the value of α is consequently low, favouring in this way the fixation of a

given surname in a large fraction of the population. For example, the sur-

name “King” or “Royal” (often transcribed as Huang), which ranks fifth

in abundance, is pronounced Wang2 ∗ in Mandarin, Heng in Teochew, and

Wong in Cantonese. When people of Chinese origin bearing that surname

move to countries using phonetic writing systems, many different transcrip-

tions might arise, such that at present surnames as Huang, Henk, Hank,

Wenk or Wank also exist in the USA, though they probably stem from a

single original ideogram. Interestingly, the study of large isonymous groups

in China33 demonstrated that the Y chromosome displays multiple haplo-

types within that population. This was interpreted as polyphyletism in the

surname, meaning that the population under study originated from differ-

∗The number refers to the tonal form of the word.
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ent unrelated founders bearing the same surname. However, an alternative

explanation could be that the mutation rate of the Y chromosome is larger

than that of surnames, such that changes in the two markers are different

enough and the correlation between them decays with time.

Surnames in Europe began to be used in the Middle Ages, meaning

that this society has a genealogical depth of 20 to 30 generations. Tak-

ing into account the writing system, the values of α are predictably much

higher than in the Chinese case. Indeed, there are many surnames that

differ just in one or two characters (changes in one letter, including inser-

tions and deletions), and some of them constitute closely related groups.

For example, the surnames Kemmingway and Hemaway can be “linked”

through a chain of surnames, all of them in use nowadays, that differ in

just one character: Hemmingway, Hemingway, Heminway, Hemenway, and

Hemanway.34 While some centuries ago the European population experi-

enced a fast growth (implying a low value of µ), at present it has reached

a close-to-stationary value, such that µ ≃ 1. Changes in growth rates, and

in particular the limit case µ = 1, can cause qualitative changes in the ex-

pected distribution of surname abundance, as shown below. An interesting

case in Europe is that of Sweden. Prior to 1862 it was not permitted that

common people retained family names, such that the surname changed at

each generation, and the old family name disappeared.35 Moreover, the

way of construction of most surnames added the suffix “son” (“daughter”)

to the given name of a boy’s (girl’s) father (mother). Due to this procedure,

Swedish surnames are highly polyphyletic. Hence, the use of family names

as genetic markers is those populations is not feasible.

Japan has a genealogical depth comparable to that of Sweden, since

surnames have been systematically used only during the last 120 years.36

Though the mutation rate in the Japanese system is probably quantita-

tively similar to the Chinese case –at least as far as the writing system is

concerned– its youth still maintains a relatively high diversity at present.

Another interesting case is that of American countries which grew fast in

population and whose founders were a mixture of European immigrants.

Such is the case of Argentina37 and the USA, where the actual distribution

of surnames had as initial condition a relatively large population with high

heterogeneity and a few individuals per surname.

Figure 6.6 shows rank plots for surname abundance in two of the cases

discussed. The influence of the genealogical depth, and the low value of α

in the Chinese case are particularly visible. Summarizing, we can conclude

that different historical contexts, the time at which surnames appeared,
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Fig. 6.6. Zipf’s rank plots for surname abundance in some representative societies.
Data are from http://technology.chtsai.org/namefreq/ (China), http://www.census.gov/

(USA). While the three most common Chinese surnames (Li, Wang, and Zhang) are
borne by almost 10% of the population each, the most common surname in the USA
(Smith) is borne by only 1% of the population.

and the accuracy to which they are transmitted from generation to gen-

eration are three factors reflected on the shape of the surname abundance

distribution at present.

6.4.1. The effects of mortality

The introduction of the parameter µ in Simon’s model is necessary in or-

der to consider the death of individuals in the population, which is the only

mechanism leading to the eventual disappearance of surnames. In addition,

mortality has immediate consequences in other quantities describing popu-

lation dynamics. First, the average growth of the population is exponential

in time for µ < 1,

N(t) = N0 exp[ν(1 − µ)t], (6.10)

with ν standing for the birth rate per individual and unit time, and the

product µν yielding the corresponding death rate.† The quantity N0 is

the size of the initial population. In principle, the N0 initial individuals

†The relation between the step variable s, which gives the total number of individuals
added to the population, and the real time t comes from noticing that the birth frequency
is proportional to the total population, such that the elementary increment in time δt is
inversely proportional to N(t), δt(s) = (νN(s))−1. The frequency ν fixes time units.
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can be distributed among a number of families of different sizes. The ini-

tial condition becomes fully specified once the number of surnames initially

borne by exactly n individuals, P (n, 0), is known. Polyphyletism corre-

sponds to a situation where P (n, 0) ≥ 1 for at least one value of n > 1.

The opposite case, where P (n, 0) = 0 for all n > 1, is to be associated with

monophyletism. Note that N0 =
∑

n nP (n, 0).

The second consequence of mortality is that individuals have a life ex-

pectancy 1/νµ. During their lifetime, the probability to have m children

who inherit their parent’s surname turns out to be an exponential distri-

bution of the form

p(m) = (1 − α)µ[1 + (1 − α)µ]−m−1. (6.11)

Recall that α is the probability that a new individual introduces a new

surname. Though it is usually assumed that the distribution of offspring is

Poisson-like, data collected over short periods of time yield distribution of

offspring close to exponential,38 thus supporting the use of this model at

least in appropriate social contexts.

The third consequence of mortality is that the total number of different

surnames in a population might decrease. This situation holds, for instance,

when the diversity is high and µ changes from small values to values close

to one. This represents a situation where the exponential growth stops

and the size of a population keeps approximately constant. This is fre-

quent in developed societies, as in Europe nowadays, where the fast growth

experienced in the last two centuries has come to a halt.

For µ = 0 the dynamical equations describing the process are (6.5) and

(6.6), which are completed with an initial condition specifying in this case

number and size of the founding families. When mortality is turned on, the

update of the population has to be modified in order to include death events.

To this end, it is useful to split the dynamics into two sub-steps, as follows.

Equations (6.5) and (6.6) are used to yield intermediate values P ′(1, s+ 1)

and P ′(n, s+1), and the total population becomes N ′(s+1) = N(s)+1 at

the first sub-step. The effect of mortality can be accounted for immediately

after growth and mutation are applied, such that the final value for the total

population once the update is completed reads

N(s+ 1) = N ′(s+ 1) − w(s), (6.12)

with w(s) representing a stochastic dichotomic process that takes the value

1 with probability µ and 0 with probability 1 − µ. The corresponding
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evolution equation for the abundance of families of size n is

P (n, s+ 1) = P ′(n, s+ 1) (6.13)

+

[
w(s)

N ′(s+ 1)

]

[(n+ 1)P ′(n+ 1, s+ 1) − nP ′(n, s+ 1)] ,

where the bar indicates average over different realizations of the stochastic

process. This dynamical equation cannot be solved exactly, though some

reasonable assumptions make it possible to obtain approximate solutions.

Assuming that the solution varies slowly with n and s, a continuous ap-

proximation becomes feasible, where the family size n and the step index s

are replaced by continuous variables y and z, respectively.37

A relevant problem when analyzing real data for surname abundance

is the typical time required to develop the asymptotic form of the solution

in a reasonable range of family sizes, and starting with arbitrary initial

conditions.39 Considering that the use of surnames is relatively recent in

history, it is important to estimate whether present day societies would be

close enough to the asymptotic regime, and thus whether the model can

be applied to real situations. A quantitative answer to this question can

be obtained by solving the model for surname dynamics using a first-order

expansion in the continuous variables y and z. In this approximation, the

solution consists of two parts. For y < yD(z),

P (y, z) = α
N0 + (1 − µ)z

1 − α− µ
y−ζ (6.14)

with

ζ = 1 +
1 − µ

1 − α− µ
. (6.15)

For y > yD(z),

P (y, z) = y−1
D P (y/yD(z), 0). (6.16)

The family size yD(z) that separates the two parts of the solution grows as

time elapses,

yD(z) =

(

1 +
1 − µ

N0
z

)1/(ζ−1)

, (6.17)

and is directly related to the genealogical depth of the population. As a

function of real time, yD(t) = exp[ν(1 − α − µ)t]. This means that the

transient time t0 needed to observe the asymptotic regime (dominated by

a power-law with exponent ζ) in the family size distribution is logarithmic
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in the family size, t0 ∝ ln y0. This explains why many real distributions

of surname abundance are well described by the asymptotic solution in a

broad range of values, even if the genealogical depth of most systems seems

relatively small.

A more accurate solution to the problem with mortality is obtained by

using a second-order expansion of Eq. (6.13). It reads

P (y, z) =
αN(z)

1 − α− µ

(

2
1 − α− µ

1 − α+ µ

)ζ−1

y−1U

(

ζ − 1, 0, 2
1 − α− µ

1 − α+ µ
y

)

,

(6.18)

where U(a, b, x) is the logarithmic Kummer’s function.40 For large family

sizes, y → ∞, this solution again predicts a power-law behavior of the

form n(y, z) ∝ y−ζ. The exponent ζ, defined in Eq. (6.15), presents two

relevant limits. First, for µ = 0 the known solution for Simon’s model,

Eq. (6.7), is recovered. Second, the limit α→ 0 always converges to ζ = 2,

irrespectively of the value of µ. For small family sizes, Eq. (6.18) yields a

probability lower than in the case µ = 0. This downward bending of the

distribution of surname abundance at small sizes is in agreement with field

data. Figure 6.7 represents several sets of data and the corresponding fits

obtained from Eq. (6.18).

A similar continuous approximation to calculate frequency distributions

in processes with birth, death, and mutation, yields a solution for this

problem equivalent to Eq. (6.18).41 When that solution was used to fit the

distribution of surnames in several European countries and in the USA,

a good agreement between data and theoretical prediction was obtained.

This reinforces the idea that the genealogical depth of those relatively young

systems suffices to be close enough to the asymptotic, power-law regime.

The case µ = 1 deserves some separate comments, since in this limit

the qualitative properties of the system change. This situation corresponds

to populations that are stationary in size N(s) = N0, where the number of

births equals the number of deaths. This model was used in the context of

genetic inheritance to study the probability of fixation of alleles:42 Moran’s

model is analogous to Simon’s model in populations of constant size. Even-

tually, the diversity supported by a population of constant size will reach

a constant value, though the transient until this regime sets in depends, as

it does for µ < 1, on the initial condition. Further, it turns out that, for

constant populations, the functional form of the surname abundance dis-

tribution changes with the actual values of the parameters: the solution to

the dynamical equations depends on how the product αN0 compares with
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Fig. 6.7. Frequency of appearance of families with a given size. Data for Argentina
correspond to almost 350,000 surnames in the whole 1996 Argentinian telephone book;
for Berlin, 6400 surnames beginning by A in the 1996 telephone book have been used;
data for Japan are adapted from Miyazima et al. (2000).

unity. If mutation is frequent enough such that αN0 > 1, the asymptotic

distribution of family sizes is exponential,

P (n) ≃ αN0

n
(1 − α)n−1 for αN0 > 1, (6.19)

and the stationary number S of different surnames is

S ≃ αN0

1 − α
| lnα|. (6.20)

If, on the other hand, mutation is rare enough to yield αN0 < 1, the

distribution behaves as a power-law,

P (n) ≃ n−1 for αN0 < 1. (6.21)

In those cases where mutation is rare enough, in the limit α → 0, the

population becomes homogeneous (there is a single family, S = 1) and the

distribution consists of a single peak at n = N0.

This could in principle be the fate of conservative societies where in-

heritance is very accurate and the appearance of new surnames is strongly
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suppressed. However, the limit situation where surname diversity disap-

pears lacks any cultural meaning, since the value that an individual assigns

to his family name progressively fades out as the society becomes more

homogeneous.

6.4.2. The distribution of given names

A person’s full name identifies the individual and is frequently carried with

pride. The low variability of surnames in certain societies can be balanced

by a higher diversity in given names, such that the number of full names in

use is large enough to be rarely repeated within a population. We conclude

this section with a brief review of the distribution of given names.

One of the consequences of the very low surname diversity in the Chi-

nese society may be that the family name is no longer a strong sign of

individuality, but of a very large community of individuals among which

close contacts do not always exist. This is probably one of the reasons that

Chinese given names are extremely diverse and often complex in meaning:

they add singularity to the individual and help distinguishing him within a

large population isonymous with respect to the surname. The distribution

of given names in different cultures seems to bear an inverse relationship

with the distribution of family names. With the evidence at hand, one

could argue that the full name arises from a compromise between “being

different” and “belonging to a community.”

Figure 6.8 represents Zipf’s rank plots for given names abundance in

China and USA. Those data correspond exactly to the same samples rep-

resented in Fig. 6.6, there ranked by surname abundance. In these two

representative cases, it is interesting to note that the combinatorial vari-

ability of full names, defined as the product between the number of different

surnames and the number of different given names, return similar quanti-

ties. In China, the number of surnames in use is of order 102, while the

amount of different given names rises to 105; in the USA, 103 different sur-

names can combine with 104 different given names. Hence, in both societies

the number of different full names is of order 107.

In societies where many common surnames occur, and where given

names are also subject to tradition –such that their variability is lower

than, for instance, in the Chinese case– it seems that other cultural mech-

anisms might act in order to increase the singularity of the full name for

each individual. Such mechanisms could be the use of middle names, or

the inclusion of the mother’s surname after the father’s one, as is done in
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Fig. 6.8. Zipf’s rank plots for given name abundance in two societies. Data are from
http://technology.chtsai.org/namefreq/ (China) and http://www.census.gov/ (USA).
Compare these distributions with those of surnames in the same populations (Fig. 6.6).
Most common given names in USA (Mary and James rank 1, Patricia and John rank
2 for females and males, respectively) are carried by 2-3% of the population. In China,
the most common given name is only shared by three people out of a thousand.

Spain and several Latin American countries.

Finally, let us remark on the qualitative similarity between the distri-

butions shown in Fig. 6.8 and those corresponding to surname abundance.

Although the dynamics followed by the abundance in time of a given name

does not precisely conform to the inheritance model followed by surnames,

the distribution has characteristics that point to a broader applicability of

multiplicative models in sociology. We believe that the main mechanisms

shaping the distribution of given names might follow dynamics closely re-

lated to those of fashion, which, in a broad sense, underlies many of our

daily habits and preferences.

6.5. Conclusion

The dynamics of several of the cultural features discussed in this review are

clearly dominated by a hereditary component. Languages and surnames

are mostly passed unchanged from one generation to the next, such that

their transmission is in the vertical direction. This fully justifies the use of

stochastic multiplicative models to analyze their statistical properties. It

could be argued that other systems, as cities, are not so clearly described by

a multiplicative model, though it is reasonable to assume that city growth
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is dominated by reproduction of its inhabitants and the arrival of new

individuals, this last process having a strong multiplicative component as

well. The situation is less clear for the last example –the distribution of

given names– though it has been suggested that random copying between

individuals might be the mechanism behind the observed distribution.43

Indeed, cultural features are often determined by the sociological pres-

sure exerted by groups of akin. The hobbies, religious beliefs, TV programs

watched, or books read by an individual, are not independent of the major-

ity preferences within his or her social group. It is arguable that, the larger

the group sharing a given characteristic, the higher the probability that a

new individual acquires that characteristic. This dynamics is intrinsically

multiplicative, and though the form of transmission of the considered fea-

ture is horizontal in this framework –thus not inherited from one generation

to the next– it suggests that coarse-grained multiplicative models where the

relevant variable is the size of groups might be of general application in so-

ciological problems. This calls for extensions of the models discussed in this

contribution, for instance by adding horizontal flows between groups pro-

portional to their sizes, superimposed to pure vertical transmission. Other

modifications might include size-dependent growth rates, for instance in

the form of higher-order terms in the dynamical equations. The splitting

of very large groups or the merging of small ones, as often observed in real

societies, would be worth considering as well.

The quantitative analysis of cultural evolution through phylogenetic

methods is an increasingly used approach in the sociological community.

Vertical transmission of cultural characters, including in particular lan-

guages, seems to be a much stronger determinant in shaping the evolution

and distribution of cultural groups than horizontal transmission. Nonethe-

less, this is a changing paradigm since, until the second half of the twentieth

century, blending processes were considered as the main mechanism control-

ling cultural history.44 If inheritance in its broader sense (that is, growth

proportional to the group size) is indeed the dominant form of transmis-

sion of cultural traits, then models similar to Simon’s offer a promising way

of explaining the statistical abundance and evolution of a large number of

cultural features.
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For a long time criticality has been considered in epidemiological mod-
els. We review the body of theory developed over the last twenty five
years for the simplest models. It is at first glance difficult to imagine
that an epidemiological system operates at a very fine tuned critical
state as opposed to any other parameter region. However, the advent of
self-organized criticality has given hints in how to interpret large fluc-
tuations observed in many natural systems including epidemiological
systems. We show some scenarios where criticality has been observed
(e.g., measles under vaccination) and where evolution towards a critical
state can explain fluctuations (e.g., meningococcal disease.)

7.1. Introduction

The simplest classical models in epidemiology describe the transition of

susceptible hosts, S, to infected hosts, I, with a pathogen and the subse-

quent transition either to become a susceptible host again or recover from

the infection to a permanently immune host R. In the first case we speak

about an SIS-model, in the second about an SIR-model.1 Often further

transitions are described, e.g. from a non-permanent recovered back to a

159
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susceptible host (sometimes called SIRS-model to distinguish from the SIR

without exit from R), or when including an exposed class (E), describing

an already infected but not yet infective host, and transitions into and out

of E (SEIR-model). The SEIR-model has been studied extensively to de-

scribe measles epidemics before the introduction of vaccination.2–6 Also the

consideration of a non-constant population size leads to additional transi-

tions for birth into the susceptible class, and death from every class. We

will initially consider the simplest models SIS and SIR, since they already

show rich dynamic behavior, which is only marginally altered by most of

the above described extensions.

The founding papers on criticality in simple epidemiological models are

written by Grassberger and de la Torre7 in 1979 for a simplified SIS-model,

a time discrete stochastic automaton in 1 dimension, and by Grassberger8

in 1983 on the SIR-model, again a time discrete stochastic automaton, this

time in 2 dimensions. Some historic remarks on the context in which the

articles appear might be in place here. Criticality in statistical physics of

equilibrium thermodynamic systems has been studied for a long time,9 how-

ever, the theoretical understanding of scaling and universality of exponents

appearing in the power laws of many quantities near and at criticality only

came with the application of renormalization theory originated in quan-

tum field theory. Rapidly, applications to time dependent quantities of the

equilibrium systems appeared, as well as applications to other phenomena,

for example autocatalytic processes. Grassberger and de la Torre looked at

such an autocatalytic process, the so-called Schlögel’s first model, with the

aim of comparing the critical behavior with results from a field theory for

Reggeon particles. The model they looked at in detail is also that of an SIS

epidemic, and they explicitly make the connection to epidemiology, as well

as pointing out the analogy to simple birth-death processes. The univer-

sality class is called Directed Percolation (DP). Quickly after Grassberger

investigated the general epidemic process, a version of the SIR system, and

found that it belongs to the universality class of bond percolation, now

also called Dynamic Percolation (DyP) to emphasize the dynamical aspect

of the underlying processes. The fascination among physicists about these

two quite general universality classes is ongoing.

Criticality occurs at the boundary between two regions in which the

dynamics behavior of a system differs qualitatively. Only the finding of

self-organized criticality10,11 (SOC) could explain why fingerprints of crit-

icality often appear in nature without fine tuning of a parameter. The

parameter leading to criticality becomes a dynamic variable, for example
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the slope of a sandpile, and evolves until the system becomes critical, in the

sandpile paradigm the avalanches show a wide distribution of sizes having

the shape of a power law.12 An essential ingredient to a self-organized

critical system, like a sand pile, is the slow excitation of the system, the

toppling of sand onto the pile, which increases tension in the sandpile,

until one more excitation causes a small, medium sized or eventually catas-

trophic event. Long after the physicists fascination for the topic there are

the first attempts to investigate data showing criticality in epidemiology.

Island host populations subject to rare events of importation of disease13

results in a scenario which is reminiscent to forest fires, which in turn show

self-organized criticality.12 For a detailed analysis see Rhodes, Jensen, An-

derson.14

An even simpler scenario of a critical state and the consequent appear-

ance of huge fluctuations could be the following: a system parameter which

shows at some value a critical transition could be externally slowly chang-

ing, hence driving the system into and through the critical region. Such a

scenario is exactly happening in a near-completely vaccinated population,

hence the system is subcritical, but vaccination for some reason decreases

slowly, eventually reaching and passing the so-called vaccination threshold,

below which huge epidemics can appear in the now less vaccinated popu-

lation. This scenario is actually present in measles in the UK where the

population has been vaccinated well since the end of the nineteen sixties.

But because of unfounded fears that the vaccines have side effects the vacci-

nation level has decreased in recent years, such that the system approaches

the vaccination threshold.15 The distribution of outbreaks following an

imported first case, the so-called index case, shows an approach to a power

law behavior during the last years, whereas before during the well vacci-

nated phase it was far away from such power law behavior. See Jansen,

Stollenwerk.16

Another scenario in epidemiology is that of accidental pathogens. Child-

hood diseases which are highly contagious but also show symptoms quickly

after infection have been the epidemiological examples where modeling has

been most fruitful. The infection results in disease cases, I, which are also

the infectious hosts. As opposed to such paradigmatic childhood diseases

some pathogens result mostly in asymptomatic infection and only rarely

cause disease. Most known micro-organisms live in their hosts as a com-

mensal, and do not cause any harm. An interesting case is the meningococ-

cus (Neisseria meningitidis) causing meningitis and septicaemia, which is

carried by large fraction of the human population, but rarely causes disease.
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However, if it causes disease, the consequences for the host are dramatic,

and if not treated can lead to the death of the host within a few days after

infection. This is not in the interest of the bacteria, since the killing of

the host reduces transmission. The pathogenicity is an accident for the

bacterium causing it.

A stochastic model with competing strains17,19 shows that strains which

do not cause disease dominate the infection in the host population, while

highly pathogenic strains die out quickly. However, a nearly harmless strain

causing disease rarely will persist for a long time in the population alongside

the completely harmless strain, showing critical fluctuations in the limit of

vanishing pathogenicity.17 Considering a model with a large variety of

pathogenicities, resulting from mutations in strains trying to escape the

host’s immune system, shows that the system evolves to a state where

only these nearly harmless pathogens remain in the system for long times

to cause disease cases in significant numbers.18 Hence, the system evolves

towards critical behavior. The case study of meningitis where the difference

between harmless infection and disease is large is a very good system to

study the effects of accidental pathogens.20 It is to be expected that the

mechanism is much wider spread but then more difficult even to analyse

with real world data. The critical fluctuations on their own make the

example of meningitis difficult to analyse.

7.2. Simple epidemic models showing criticality

As the simplest epidemic model with interesting behavior we present the

SIS epidemic. In this model the susceptible hosts become infected when

meeting already infected with rate β, and recover with rate α back into the

susceptible class.

7.2.1. The SIS epidemic

The SIS epidemic characterized by the reaction scheme

S + I
β−→ I + I

I
α−→ S
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is a stochastic process with non-linear transition rates in the master equa-

tion

d

dt
p(I, t) =

β

N
(I − 1)(N − (I − 1))p(I − 1, t) + α(I + 1)p(I + 1, t)

−
(
β

N
I(N − I) + αI

)

p(I, t) . (7.1)

Since we assume constant population size N , we have S = N − I. For

the dynamics of the mean value 〈I〉 :=
∑N

I=0 Ip(I) we obtain by inserting

the master equation Eq. (7.1)

d

dt
〈I〉 = (β − α)〈I〉 − β

N
〈I2〉 (7.2)

where now the second moment 〈I2〉 :=
∑N

I=1 I
2 · p(I, t) enters the right

hand side of the equation. So we do not obtain a closed system for the

mean 〈I〉. However, as will be described in more detail in the following

sections, an approximation, called mean field approximation, can help to

close the system. Here it consists of

〈I2〉 ≈ 〈I〉2 (7.3)

meaning that the variance is neglected, var := 〈I2〉 − 〈I〉2 ≈ 0. So now we

obtain a closed ordinary differential equation (ODE)

d

dt
〈I〉 =

β

N
〈I〉(N − 〈I〉) − α〈I〉 . (7.4)

Considering the density x := 〈I〉/N instead of the absolute numbers 〈I〉 we

find the simple quadratic ODE

dx

dt
= βx(1 − x) − αx . (7.5)

In this form it will appear again later as a result in Section 7.2.3.

7.2.2. Solution of the SIS system shows criticality

Now we examine Eq. (7.5) and its solution more closely, particularly its

dependence on the parameter values and initial conditions. The stationary

point x∗ ist given by the condition that the rate of change becomes zero

0 = βx∗(1 − x∗) − αx∗ (7.6)

obtaining for the quadratic form in general two stationary states

x∗1 = 0 , x∗2 = 1 − α

β
. (7.7)
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The time solution of the ODE Eq. (7.5) can be obtained by separation of

variables and integration which gives as result

x(t) =

(

1 − α
β

)

(
1 − e−(β−α)t

)
+ 1

x0

(

1 − α
β

)

e−(β−α)t
(7.8)

with initial condition x0 at starting time t0 = 0. The stable fixed points x∗

(given by x∗1 if β < α and x∗2 if β > α) are approached exponentially fast

in time

x(t) − x∗ ∼ e−|β−α|t. (7.9)

However, for β → α we have a problem with the time solution. First,

we see that for β → α the second stationary point falls together with the

first

x∗2 = 1 − α

β
→ x∗2 = 0 = x∗1 (7.10)

and for β smaller than α it would become negative. A stability analysis

reveals that at β = α the two solutions change stability. Below the threshold

x∗1 is stable, above it x∗2 becomes stable. In that sense the point β = αmarks

a critical point, or β takes the critical value βc, where in this model βc = α.

(This will not be true any more in spatial models, where βc is in general

larger than α.) Also for β → α = βc, the critical value of β, the time

solution shows remarkable behavior

x(t) =

(

1 − α
β

)

1 − e−(β−α)t
→ 0

0
(7.11)

which we can however analyse in this model directly by solving the ODE

at the critical point β = βc, obtaining the ODE at criticality

dx

dt
= βx(1 − x) − αx = αx(1 − x) − αx = −αx2 (7.12)

Now this ODE dx/dt = −αx2 can be solved directly and gives the following

result

x(t) =
1

1
x0

+ α · t
(7.13)

∼ t−1

which has a power law behavior in its time dependence, as opposed to the

exponential behavior in other parameter regions. The exponent −1 will
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turn out to be a mean field critical exponent of a whole class of stochas-

tic systems, the directed percolation universality class. Such power law

behavior is a general sign of systems at and around critical states.

7.2.3. The spatial SIS epidemic

Also the spatial version of the SIS system has been investigated extensively.

A site i can either have an infected individual Ii := 1 or be a susceptible

Si := 1, hence Ii = 0 (in general Si := 1 − Ii). The transition rate cor-

responding to a change in the state of site i from Ii to 1 − Ii is given by

w1−Ii,Ii
.

The master equation for the spatial SIS-system for N lattice points

describes the change in the probability p(I1, ..., IN , t) that the system is in

state (I1, ..., IN ) at time t:

d

dt
p(I1, ..., IN , t) =

N∑

i=1

wIi,1−Ii
p(I1, ..., 1 − Ii, ..., IN , t)

(7.14)

−
N∑

i=1

w1−Ii,Ii
p(I1, ..., Ii, ..., IN , t)

for Ii ∈ {0, 1} and transition rate

wIi,1−Ii
= b





N∑

j=1

JijIj



 · Ii + a · (1 − Ii) , (7.15)

and

w1−Ii,Ii
= b





N∑

j=1

JijIj



 · (1 − Ii) + a · Ii , (7.16)

with b infection rate and a recovery rate. Here J = (Jij) is the adjacency

matrix containing 0 for no connection and 1 for a connection between sites

i and j. Hence Jij = Jji ∈ {0, 1} for i 6= j and Jii = 0. So a state is now

defined by I1, ..., IN , and the probability of each state has to be considered

to describe the spatial system accurately.

The way the model is formulated allows an economic calculation, but

the formulation may at first site seem somewhat cryptic. Looking at one

site i, the transition rate b gives the probability per time to get infected by

a neighboring site j. The number of infected sites being neighbors to site i
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a) b)

Fig. 7.1. One dimensional SIS epidemic with N = 100 individuals. Parameters: b = 1
fixed, and a varied, a) a = 0.3, low death rate gives a high incidence, b) a = 0.62. Space
goes horizontally, time from top to bottom.

is given by
∑N

j=1 JijIj , so that the force of infection to site i is given by b ·
(
∑N

j=1 JijIj

)

. For a site to become infected it needs to be susceptible first.

Hence, the transition rate w1,0 = b ·
(
∑N

j=1 JijIj

)

describes the transition

into the infected state. Once infected, the site can lose the infection through

recovery, hence w0,1 = a describes the transition away from the infected

state. We can, likewise, formulate the transition rates as leading to and

from the susceptible state (w0,1 and w1,0, respectively). This formulation

follows the master equation approach for a spatial system as for example

used by Glauber21 for a spin system.

We first show some simulations of the spatial birth and death process

in Fig 7.1. For low death rates or high birth rates we see that the system

approaches the stationary state quickly and then shows noisy fluctuations

around that state.

However, for an increasing recovery rate (or, respectively, a decreasing

infection rate), the stationary state is lower, but also is approached more

slowly. Especially, for a low stationary state we observe huge fluctuations

around that stationary state, also with much longer autocorrelation, (Fig.

7.2). For even higher recovery rates, we observe a further increase in fluc-

tuations with longer autocorrelation, eventually leading to the extinction

of the process. For very high recovery rates (or respectively low infection

rates), the process tends to die out quickly, after some initial fluctuations.

We now want to describe the stochastic system by easily accessible

global quantities, such as the dynamics of the total number of infected,
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Fig. 7.2. One dimensional SIS epidemic with N = 100 individuals. Parameters: b = 1
fixed, and a varied, a) a = 0.3, low death rate gives a high incidence, b) a = 0.4, c)
a = 0.5, d) a = 0.6. High death rate gives not only smaller mean incidence, but also
larger variance.

or the number of clusters of certain shapes.

7.2.4. Dynamics for the spatial mean

Since the dynamics of the total number of infected depends on the number

of neighboring pairs due to the non-linearity in the transition rates, e.g.

w1−Ii,Ii
∼ Ii · Ij , we need to examine clusters of sites. The methods we

use here are in analogy with the methods used for the non-spatial master

equations.

We consider statistics for the number of clusters with certain shapes,

starting with the number of single sites that are infected. For the to-

tal number of infected sites we have [I] :=
∑N

i=1 Ii and respectively

[S] :=
∑N

i=1 (1 − Ii). For pairs we have [II] :=
∑N

i=1

∑N
j=1 Jij Ii · Ij

and triples [III] :=
∑N

i=1

∑N
j=1

∑N
k=1 JijJjk · IiIjIk or triangles [∆] :=

∑N
i=1

∑N
j=1

∑N
k=1 JijJjkJki · IiIjIk and so on. These spatial averages, e.g

[I] :=
∑N

i=1 Ii, depend on the ensemble (I1, ..., IN ) which changes with
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time. Hence we define the ensemble average, e.g.

〈I〉(t) :=

1∑

I1=0

...

1∑

IN=0

[I] p(I1, ..., IN , t)

or more generally for any function f = f(I1, ..., IN ) of the state variables

we define the ensemble average as

〈f〉(t) :=

1∑

I1=0

...

1∑

IN =0

f(I1, ..., IN ) p(I1, ..., IN , t) . (7.17)

The ensemble average 〈f〉(t) describes the expected value of f(t) over re-

peated realizations of the stochastic process. Then the time evolution of

the ensemble average is determined by

d

dt
〈f〉(t) :=

1∑

I1=0

...

1∑

IN =0

f(I1, ..., IN )
d

dt
p(I1, ..., IN , t) (7.18)

where the master equation is to be inserted again giving terms of the form

〈f〉 and other expressions 〈g(I1, ..., IN )〉. Hence, for the total number of

pairs we have

〈II〉(t) =

N∑

i=1

N∑

j=1

Jij〈IiIj〉 (7.19)

and with 〈SiIj〉 = 〈(1 − Ii)Ij〉

〈SI〉(t) =

N∑

i=1

N∑

j=1

Jij〈SiIj〉 =

N∑

i=1

〈Ii〉





N∑

j=1

Jij



−
N∑

i=1

N∑

j=1

Jij〈IiIj〉

(7.20)

with

N∑

i=1

〈Ii〉





N∑

j=1

Jij



 = Q ·
N∑

i=1

〈Ii〉 = Q · 〈I〉 (7.21)

for Qi :=
∑N

j=1 Jij the number of neighbors to site i or degree. Here

we assume the Qi to be constant Qi = Q for all lattice sites i, since we

are mainly interested in regular lattices (and have to assume even periodic

boundary conditions). For irregular or random lattices the index i has to be

kept for Qi, which introduces a considerable amount of hidden complexity

in the analysis. Generally, terms of the form

〈II〉ν :=

N∑

i=1

N∑

j=1

Jν
ij · IiIj (7.22)



July 12, 2007 10:40 World Scientific Review Volume - 9in x 6in main

Criticality in epidemiology 169

will appear with any νth power of the adjacency matrix, e.g. J2
ij =

∑N
k=1 JikJkj , and respectively

〈III〉µ,ν :=

N∑

i=1

N∑

j=1

N∑

k=1

Jµ
ijJ

ν
jk · IiIjIk (7.23)

and so on.

7.2.5. Moment equations

For the ensemble mean total number of infected sites 〈I〉 :=
∑N

i=1 〈Ii〉 we

obtain the dynamics

d

dt
〈I〉 =

N∑

i=1

d

dt
〈Ii〉 (7.24)

=

N∑

i=1



−a〈Ii〉 + b

N∑

j=1

Jij(〈Ij〉 − 〈IiIj〉)





as a result of straightforward but tedious calculations have entered up to

here.24 Then in detail

d

dt
〈I〉 = −a

N∑

i=1

〈Ii〉
︸ ︷︷ ︸

=〈I〉

+b

N∑

j=1

〈Ij〉
N∑

i=1

Jij

︸ ︷︷ ︸

=Qj=Q
︸ ︷︷ ︸

=Q〈I〉

−b
N∑

i=1

N∑

j=1

Jij〈IiIj〉
︸ ︷︷ ︸

=〈II〉1

= −a〈I〉 + bQ〈I〉 − b〈II〉1

such that

d

dt
〈I〉 = b

(

Q〈I〉 − 〈II〉1
)

− a〈I〉
= b〈SI〉1 − a〈I〉 (7.25)

with 〈SI〉1 :=
∑N

i=1

∑N
j=1 Jij〈SiIj〉 = Q〈I〉−〈II〉1. To obtain the dynam-

ics for the total number of pairs

d

dt
〈II〉1 =

N∑

i=1

N∑

j=1

Jij
d

dt
〈IiIj〉 (7.26)
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we first have to calculate d
dt〈IiIj〉 from the rules given above and substitute

the master equation. A detailed calculation yields

d

dt
〈II〉1 = 2b

(

〈II〉2 − 〈III〉1,1

)

− 2a〈II〉1
= 2b〈ISI〉1,1 − 2a〈II〉1 (7.27)

with 〈ISI〉1,1 :=
∑N

i=1

∑N
j=1

∑N
k=1 JijJjk〈Ii(1 − Ij)Ik〉. Again the ODE

for the nearest neighbors pair 〈II〉1 involves higher moment terms like 〈II〉2
and 〈III〉1,1.

We now try to approximate the higher moments in terms of lower ones

in order to close the ODE system. The quality of the approximation will

depend on the actual parameters of the birth-death process, i.e. a and b. We

investigate the mean field approximation, expressing 〈II〉1 in terms of 〈I〉.
Other schemes to approximate higher moments, like the pair approximation

can be found in the literature.22,23

7.2.6. Mean field behavior

In mean field approximation, the interaction term which gives the exact

number of inhabited neighbors is replaced by the average number of in-

fected individuals in the full system, acting like a mean field on the actually

considered site. Hence we set

N∑

j=1

JkjIj ≈
N∑

j=1

Jkj
〈I〉
N

=
Q

N
· 〈I〉 (7.28)

where the last line of Eq. (7.28) only holds again for regular lattices. We

get for 〈II〉1 in Eq. (7.24)

〈II〉1 = 〈
N∑

i=1

N∑

j=1

JijIiIj〉 = 〈
N∑

i=1

Ii

N∑

j=1

JijIj〉

≈ 〈
N∑

i=1

Ii
Q

N
· 〈I〉〉 =

Q

N
· 〈I〉 · 〈

N∑

i=1

Ii 〉 (7.29)

=
Q

N
· 〈I〉2 .
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Hence, we obtain the dynamics for the total mean of individuals in the

mean field approximation:

d

dt
〈I〉 = b

(

Q〈I〉 − Q

N
〈I〉2

)

− a〈I〉

= b
Q

N
(N − 〈I〉)〈I〉 − a〈I〉 . (7.30)

For homogeneous mixing, i.e. the number of neighbors equals roughly the

total population size Q ≈ N , we obtain the logistic equation for the total

number of infected sites

d

dt
〈I〉 = b 〈I〉(N − 〈I〉) − a〈I〉 (7.31)

or for the proportion 〈I〉
N =: x ∈ [0, 1]

d

dt

〈I〉
N

= Nb
〈I〉
N

(

1 − 〈I〉
N

)

− a
〈I〉
N

(7.32)

hence

dx

dt
= Nb x · (1 − x) − a · x . (7.33)

This is the logistic equation (see section 7.2) with a = α and Nb = β. See

Fig. 7.3 for the time solution for 〈I〉 for a population size of N = 100 on

a double logarithmic plot. In this plot the straight line is clearly visible

for the critical value βc, indicating the power law with exponent −1. The

spatial system has been investigated in respect to criticality by Grassberger

and de la Torre.7

We have seen criticality in a simple epidemic model where a parame-

ter has to be adjusted to or near to its critical value. In applications we

have such a situation for example when the epidemic system crosses slowly

through the critical region, as in the example of measles under vaccina-

tion.15,16 However, in self-organized criticality (SOC) the system evolves

on its own to a critical state showing power law behavior. As a paradig-

matic system for SOC in epidemiology, in the next section we will describe

a theory of accidental pathogens and applied it to meningococcal disease.

7.3. Accidental pathogens: the meningococcus

7.3.1. Accidental pathogens

A classical example of different scientific disciplines working together fruit-

fully from the beginning of 20th century is the explanation of chemical
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Fig. 7.3. a) Starting with I(t0) = 80 infected individuals, we plot 31 trajectories varying
β between β = 0 and β = 2.5 of the SIS epidemic ODE up to tmax = 10. The parameter
α is fixed to α := 1. b) We now change tmax up to tmax = 500 and plot I(t) for various
parameter values β on a double-logarithmic scale. For small β-values the solutions I(t)
decrease exponentially fast. For large β-values the solutions converge quickly onto the
final stationary value, observed as constant here. Only for β = α the curve becomes a
straight line in the double-logarithmic plot, indicating the power law at criticality.

reactions by physical atomic models. More recently, evolutionary biology

and epidemiology, accompanied by statistical physics of critical phenomena,

present a new picture to explain unpredicted outbreaks of a severe disease

as we will show in a case study on meningococcal infection. This case study

will also provide a new mechanism to understand the epidemiology of this

particular example, meningococcal disease. It will also serve as a test bed

for general principles discussed in evolutionary biology, namely that minor

effects at the individual level can cause more harm at population level than

a major individual effect which is subject to strong negative selection.

Meningococcal disease is caused by the bacterium Neisseria meningitidis

(also known as the meningococcus.) The epidemiology of the disease in the

developed world is characterized by outbreaks of variable size and duration.

The occurrence of these outbreaks has long puzzled epidemiologists. The

meningococcus differs from most other pathogens in that transmits almost

exclusively through hosts which carry the bacterium, but do not show any

symptoms and do not fall ill. Transmission is mainly through close social

contact (e.g sharing accommodation). Disease caused by the bacterium

is a rare occurrence, however, if it happens the resulting septicaemia, or

meningitis meningitis can be life threatening. Because illness is very severe,

ill people rarely transmit the bacterium, and causing disease harms not only

the human host, but also the bacterium. Therefore causing disease can be

seen as accidental for the pathogen.

The epidemiology of accidental pathogens is difficult to study: for nor-
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mal diseases it suffices to keep track of the number of individuals that fall

ill, to monitor the size of the pathogen population. Carriers of accidental

pathogens, such as the meningococcus, are asymptomatic and therefore not

easy to identify. This does not the pathogen population is not present: it

has been estimated that 5-10% of the human population normally carries

the meningococcus, and that in same age classes in certain environments

(e.g adolescents such as army recruits or students who often share accom-

modation) this can go up to 40%. The number of cases of meningococcal

disease, in contrast, is small, in the order of 1-10 per 100,000 per year; the

pathogenicity of the meningococcus is actually very small.26

The small pathogenicity can cause huge critical fluctuations at the pop-

ulation level, a mechanism most clearly visible in meningococcal disease,

but possibly underlying many other epidemiological systems, not only of

bacterial infections but also viral infections. Whereas bacteria have their

own metabolism and are able to reproduce with little effect on their host,

viruses have to hijack host cells in order to do so. For example in polio

infection most of the time the viruses live in the host’s gut undetected and

only when entering nerve cells they cause severe disease. As epidemiology is

one of the best data sources of biological interactions, especially notifiable

diseases, and micro-organisms in a hostile environment like the pathogen-

host interaction are the fastest mutating biological systems, this is the ideal

set-up for evolutionary biology to be tested quantitatively.

On the technical side, the critical fluctuations that are so crucial in un-

derstanding major epidemic outbreaks were originally investigated in phys-

ical systems much larger than the human population. Though finger prints

of a critical state can be obtained near criticality, it becomes increasingly

difficult to investigate critical quantities the closer to criticality the system

is. So we can only hope to find these finger prints, but not really attempt to

measure accurately for example critical exponents. It has to be mentioned

that we are in a so-called non-equilibrium critical system, a birth-death pro-

cess effectively, whereas the most powerful characterization of criticality is

obtained in equilibrium systems, like the famous Ising model for magnetic

phase transitions. However, as the system under investigation evolves on its

own towards a critical state, we can expect that the system is most of the

time reasonably close to criticality in order to detect the large fluctuations

reliably in empirical data.
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7.3.2. Modeling infection with accidental pathogens

Classically, epidemics are modelled dividing the host population into sus-

ceptible S, infected I and sometimes recovered R, where the infected are

asymptomatic.

Meningoccocci mostly live as commensals in the nasopharynx of the

hosts as an unnoticed, completely harmless infection. We will denote the

harmlessly infected hosts by I. Rarely, meningococci cross the nasal wall

into the blood stream and cause septicaemia or meningitis. In the model ill

hosts are labeled X and ill hosts are removed from normal social interac-

tion such hosts do not transmit. The resulting SIRX-model would allow a

transition from harmlessly infected to diseased hosts with a small rate ε. It

is only the number of diseased cases X which is recorded in empirical data

of meningococcal disease. We will investigate the quantitative outcome of

this SIRX-model with respect to the statistics of the disease cases, X , be-

low, but can already say here that the Poisson process-like behavior of the

SIRX-model does not account for the basic epidemiological findings that

meningococcal disease often appears in clusters with pronounced phases of

silence between outbreaks.

Only when we include another finding of the biology of the meningo-

coccus in the modeling of its epidemiology can such clustered outbreaks be

obtained. Namely, it is necessary to take into account that the bacteria

are are highly mutating easily mutate and evade the hosts’ immune sys-

tem during harmless carriage.27 The different mutants of the bacterium

have different likelihoods accidentally harming their host by causing severe

disease. Hence in the simplest modeling set-up where we found clustered

outbreaks17 we distinguished between harmless infection never causing dis-

ease, the I class, and potentially harmful infection with a different mutant

strain of the bacteria, the Y class, from which with a small rate ε, the

pathogenicity, disease cases X are created. For pathogenicity close to its

critical value of zero we found huge fluctuations, to be expected from the

theory of critical phenomena in physics of condensed matter9,28 and in

biology of critical birth and death processes7,8 (for a general audience in-

troduction see Warden29). These fluctuations are giving rise to clustered

outbreaks in disease cases X in our SIRYX-model.17

7.3.3. The meningococcal disease model: SIRYX

We include demographic stochasticity in the description of the epidemic.

As such, for the basic SIRYX-model we consider the dynamics of the proba-
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bility p(S, I,R, Y,X, t) of the system to have S susceptible, I asymptomat-

ically infected with harmless strain, R recovered, Y asymptomatically in-

fected with potentially harmful strain and X with symptomatic infected,

all at time t, which is governed by a master equation30,31 (see also in a re-

cent application to a plant epidemic model32,33). For state vectors n, here

for the SIRYX-model n = (S, I,R, Y,X), the master equation reads

dp(n)

dt
=
∑

ñ6=n

wn,ñ p(ñ) −
∑

ñ6=n

wñ,n p(n) (7.34)

a more complicated master equation than used for the SIS-system in Eq.

(7.1). For the SIRYX-system the transition probabilities wñ,n are then

given (omitting unchanged indices in ñ, with respect to n) by

w(R−1,S+1),(R,S) = α · R , R
α−→ S

w(S−1,I+1),(S,I) = (β − µ) · I
N S , S + I

β−µ−→ I + I

w(S−1,Y +1),(S,Y ) = µ · I
N S ,

µ−→ Y + I

w(I−1,R+1),(I,R) = γ · I , I
γ−→ R

w(S−1,Y +1),(S,Y ) = (β − ν − ε) · Y
N S , S + Y

β−ν−ε−→ Y + Y

w(S−1,I+1),(S,I) = ν · Y
N S ,

ν−→ I + Y

w(S−1,X+1),(S,X) = ε · Y
N S ,

ε−→ X + Y

w(Y −1,R+1),(Y,R) = γ · Y , Y
γ−→ R

w(X−1,S+1),(X,S) = ϕ ·X , X
ϕ−→ S

(7.35)

along with the respective reaction schemes. From wñ,n the rates wn,ñ follow

immediately. This defines the master equation for the full SIRYX-system.

For the accidental pathogen specific system, the following considerations

are needed: In order to describe the behavior of pathogenic strains added

to the basic SIR-system we include a new class Y of individuals infected

with a potentially pathogenic strain. We will assume that such strains arise

by e.g. point mutations or recombination through a mutation process with

a rate µ in the scheme S + I
µ−→ Y + I. For symmetry we also allow the

mutants to back-mutate with rate ν, hence S + Y
ν−→ I + Y .

The major point here in introducing the mutant is that the mutant

has the same basic epidemiological parameters α, β and γ as the original

strain and only differs in its additional transition to pathogenicity with

rate ε. These mutants cause disease with rate ε, which will turn out to be

small later on, hence the reaction scheme is S + Y
ε−→ X + Y . This sends

susceptible hosts into an X class, which contains all hosts who develop

disease. These are the cases which are detectable as opposed to hosts in
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classes Y and I that are asymptomatic carriers who cannot be detected

easily. The mutation transition S + I
µ−→ Y + I fixes the master equation

transition rate w(S−1,I,R,Y +1,X),(S,I,R,Y,X) = µ · (I/N) · S. In order to

denote the total contact rate with the parameter β, we keep the balancing

relation

w(S−1,I+1,R,Y,X),(S,I,R,Y,X)+w(S−1,I,R,Y +1,X),(S,I,R,Y,X) = β · I
N

·S (7.36)

and obtain for the ordinary infection of normal carriage the transition rate

w(S−1,I+1,R,Y,X),(S,I,R,Y,X) = (β − µ) · (I/N) · S. The total rate of trans-

mission for a susceptible host through either normal carriage I or mutant

carriage Y , by β obeys the balancing equation

∑

m̃ 6=m

w(S−1,m̃),(S,m) = β
I + Y

N
· S (7.37)

for m = (I, R, Y,X). With the above mentioned transitions this fixes the

master equation rate w(S−1,I,R,Y +1,X),(S,I,R,Y,X) = (β − ν − ε) · (Y/N) · S.

The system shows qualitatively the behavior demonstrated in Fig. 7.4 with

the stochastic simulations performed with the Gillespie algorithm.34–36

7.3.4. Divergent fluctuations for vanishing pathogenicity:

power law

For pathogenicity ε larger than the mutation rate µ a potentially harmful

lineage normally does not attain high densities compared to the total pop-

ulation size. Therefore, we can consider the full system as being composed

of a dominating SIR-system which is not really affected by the rare Y and

X cases, calling it the SIR-heat bath, and our system of interest, namely

the Y cases and their resulting pathogenic cases X , is considered to live

in the SIR-heat bath. The SIR-heat bath is independent of X and Y and

controls the number of susceptible individuals available for infection, S.

Taking into account Eq. (7.38) for the stationary values of the SIR-

system

S∗ = N
γ

β
, I∗ = N

(

1 − γ

β

)(
α

α+ γ

)

, R∗ = N − S∗ − I∗ (7.38)

we obtain for the transition rates (compare Eq. (7.35)) of the remaining
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Fig. 7.4. For the SIRYX-model we show simulations of 10 runs for two different values
of pathogenicity ε. In a) and c) ε is ten times smaller than in b) and d). The cumulative
number of diseased cases X is shown in a) and b). Paradoxically, the cumulative number
of diseased cases does not also decrease by a factor of ten, but fluctuates more wildly,
sometimes leading to even higher numbers of diseased. The paradox is explained by
inspecting the numbers of hosts carrying the potentially harmful bacteria (Y (t)) in c)
and d) where it can be seen that the number of carriers differs by a factor ten, due to
their smaller disadvantage compared to harmless carriage.

YX-system

w(S∗,Y +1),(S∗,Y ) = µ · S∗

N I∗ =: c

w(S∗,Y +1),(S∗,Y ) = (β − ν − ε) · S∗

N Y =: b · Y
w(S∗,X+1),(S∗,X) = ε · S∗

N Y =: g · Y
w(Y −1,R∗),(Y,R∗) = γ · Y =: a · Y
w(X−1,S∗),(X,S∗) = ϕ ·X .

(7.39)

All terms not involving Y or X vanish from the master equation, since

the gain and loss terms cancel each other out for such transitions. If we

neglect the recovery of the disease cases to susceptibility, as is reasonable

for meningitis, hence ϕ = 0, we are only left with Y -dependent transition

rates.
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In a simplified model, where the SIR-subsystem is assumed to be sta-

tionary (due to its fast dynamics), we can show analytically the divergence

of the variance and a power law behavior for the size of the epidemics

p(X) as soon as the pathogenicity approaches zero. Hence the counter-

intuitively large number of disease cases in some realizations of the process

can be understood as large scale fluctuations in a critical system with order

parameter ε towards zero.

The master equation for YX in stationary SIR results in a birth-death

process

d

dt
p(Y,X, t) = (b · (Y − 1) + c) p(Y − 1, X, t) (7.40)

+a · (Y + 1) p(Y + 1, X, t) + g · Y p(Y,X − 1, t)

−(bY + aY + gY + c) p(Y,X, t) .

For the size distribution of the epidemic we obtain power law behavior

pε(X) := lim
t→∞

p(Y = 0, X, t) ∼ X− 3

2 . (7.41)

for ε → 0 and large X (see Stollenwerk, Jansen17). The exponent −3/2

is the mean field critical exponent of the branching process.12,37,38 The

result Eq. (7.41) was obtained by approximations to a solution with the

hypergeometric function

pε(X) =
√
ε · 2−(X+1)

√
β

· 2F1

(
3 −X

2
,
2 −X

2
; 2; 1 − ε

β

)

. (7.42)

Such behavior near criticality is also observed in the full SIRYX-system

in simulations where the pathogenicity ε is small, i.e. in the range of the

mutation rate µ. In spatial versions of this model it is expected that the

critical exponents are those of directed percolation (private communication,

H.K. Jansen, Düsseldorf, see also Janssen39). Further information can be

found in Guinea, Stollenwerk, Jansen40 and in Stollenwerk, Jansen.24

7.3.5. Evolution towards criticality

The epidemiological system with accidental pathogens is driven by evolu-

tion towards the critical threshold of small pathogenicity and, hence, to

large critical fluctuations.18 The mechanism is simply the disadvantage

of the more harmful strains against their less harmful opponents as they

remove their hosts from the system, preventing them from spreading the re-

spective harmful mutants further. Only strains with a small pathogenicity

can survive for a possible very long long period of time. So one arrives at the
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Fig. 7.5. Yearly cases of menigoccocal disease for Norway, notification data, as obtained
from the web page of the World Health Organization (WHO), http://www.who.int/emc,
document WHO/EMC/BAC/98.3. Decade long outbreaks are visible.

seemingly paradoxical situation that, by reducing the pathogenicity by a

factor of ten, one can actually often observe higher numbers of disease cases

X (see Fig. 7.4, a)). The paradox is resolved by inspecting the number

of mutant infected hosts, Y , which increases by reducing the pathogenicity

(see Fig. 7.4, b). This qualitative explanation of why the mildly harmful

mutants are dominating the epidemiology of accidental pathogens has been

proved quantitatively in Stollenwerk, Jansen.18

7.4. Empiric data show fast epidemic response and long last-

ing fluctuations

A first inspection of empirical data on outbreak patterns of meningococcal

disease is puzzling. On the one hand, in long time series for a country like

Norway one observes decade long outbreaks (see Fig. 7.5), suggesting that

basic epidemiological parameters like inverse infection and recovery rate are

of the order of several months to one year.

On the other hand, in weekly data from England and Wales a strong

seasonal pattern in meningococcal disease notifications is clearly visible,

with in addition very strong outbreaks around Christmas and the change

of year (see Fig. 7.6). A similar pattern is visible for the 9 regions in which

England and Wales are divided. A strong seasonality is present, some-

times accompanied by high Christmas peaks, the regions being of similar
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Fig. 7.6. England and Wales weekly data of notified cases of meningococcal disease. A
strong seasonality is visible. Time is given in weeks, starting at 1st of January, 1995.

population size as Norway, around 5 million inhabitants.

Assuming a seasonal forcing of the contact rate, possibly based on sea-

sonality in climate, in the underlying population this leaves only a time

scale of quick adjustment of the infection process for parameters like in-

verse infection and recovery rate etc. in the range of a few weeks. On top

of that, the Christmas peak, a strong increase of cases in the 52nd week

of the calendar year and higher incidents rates also in the two following

weeks, the first and second week in January, even suggests a shorter time

scale of days to a few weeks.

A possible explanation for the one hand fast response of the epidemic

system to seasonality and on the other hand decade long outbreaks could

simply be different strains acting on different time scales, and in differ-

ent countries. Microbiological studies revealed a diversity of lineages to be

present, some of which could cause disease.27,41 On the basis of these data

we cannot rule out this explanation but, surprisingly, a very simple model,

such as the SIRYX-model described above, can capture both the quick re-

sponse to seasonal forcing. Due to its closeness to a critical threshold can

this model can produce huge long term fluctuations on the time scale of

decades when compared to the given time scale of a year given by season-

ality. On the contrary, the simpler SIRX-model, being forced seasonally,

only can give rise to fluctuations predicted by a Poisson process, with a

variance in the range of the mean, but not showing the much larger and

time-correlated critical fluctuations of the SIRYX-model.
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Fig. 7.7. Comparison between a) data from England and Wales and simulations with
b) the SIRX-model and c) the SIRYX-model. In a) the weighted mean over 9 regions
of England and Wales is shown for the 7 years of weekly data. b) shows a simulation
of the simple SIRX, parameters adjusted to qualitatively match the data in a), for a
comparable amount of time. c) shows a simulation of the multi-mutant SIRYX-model,
taking the same basic parameters of the SIRX-model and further adjustments of the
additional parameters into account to match the data. Population size is N = 5 million,
roughly the size of a typical region in England and Wales. Both models resemble the data
farely well in its seasonality and noise level, not attempting to also model the Christmas
peak. Little difference is visible between the models.

Interestingly, whereas any distinction between the SIRX and the

SIRYX-model would be very difficult on the basis of the short term weekly

data from England and Wales, the distinction is quite easy for long term

simulations exploiting the critical fluctuations.

7.4.1. Modeling fast epidemic response finds long lasting

fluctuations

To model the seasonal data from England and Wales, we first observe data

from the 9 regions, in which England and Wales is divided. By taking

the mean, weighted with the total number of cases in each region over the

observation period, we can reduce the effect of the pronounced Christmas

peak, which we will not further consider.

In a second step we adjust the parameters of the simple SIRX-model,

respectively the multi-mutant SIRYX-model, to the seasonality and the
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noise level of the weighted mean data set. Starting from the stationary

state solution for the SIRYX-model with constant time independent contact

rate we obtained good visual agreement between model and data using a

parameter set with fixed ratio of susceptible, infected and recovered. This

fixes the ratio of the basic epidemic parameters α, β and γ of the SIR-

subsystem and fixes the mutation rate µ and the pathogenicity ε to roughly

obtain the noise level of the observed data. Finally, we fixed the absolute

value of γ to the time scale given by the data’s seasonality, especially the

slight shift, i.e. fast response, to seasonal forcing in the contact rate. This

left us with an upper limit of inverse recovery γ−1 = 4 weeks, giving a

minimum of disease cases X about 7 weeks after midsummer, as observed

in the data. Uncertainty about the value of the contact rate could change

this picture in the range of plus or minus two weeks, but would not result

in a response in the range of months or years, needed to smooth out the

seasonality.

The SIRX-model uses the same basic epidemic parameters α, β and

γ as the SIRYX-model. No mutation rate is needed here, since we only

have one strain of pathogens in this model, and an adjusted pathogenicity

accounts for the lack of mutants Y in this model. As shown in Fig. 7.7

there are hardly any differences visible between the SIRX-model and the

SIRYX-model on this time scale, both describing the mean regional data

in England and Wales quite well in terms of seasonality and noise level.

We have to look at a different time scale in order to see any profound dif-

ference between the SIRX and the SIRYX model. Therefore, we performed

a comparative study, binning the number of disease cases not into weeks

but years (keeping the weekly time scale to compare the longer time dura-

tion of the simulations) and increasing the simulated time to roughly 1200

weeks (corresponding to 23 years), three times longer than the previous

simulations and the empirical data.

The result is shown in Fig. 7.8. In a) the SIRX-model for a population

size of 5 million people shows some fluctuations from year to year, whereas

the SIRYX-model in b) for the same system size sometimes shows much

larger variability, but sometimes not. For example between week 400 and

800 it would be quite difficult to distinguish the two realizations shown here.

For ten times larger population size, corresponding to the size of England

and Wales, the differences between SIRX-model in c) and SIRYX-model in

d) is even less pronounced over the entire simulation time. So again any

testing between the models would face severe difficulties, the more since our

data sets from England and Wales are much shorter than the simulation
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Fig. 7.8. Simulation of weekly cases, now binned into years for a) the SIRX-model and
b) the SIRYX-model, for population size 5 million, c) and d) simulations of the above
mentioned models now for population size 50 million. See text for further description.

times used here for the models. Hence only longer term data could help in

this situation.

On the other hand, this set of simulations gives us a crucial hint from the

theory of critical phenomena how to proceed further in our analysis in so

far as comparing the Fig. 7.8 b) and d), the close to critical SIRYX-model

shows some time-autocorrelation in its fluctuations which also increases in

length with system size. This is predicted by the theory of critical phenom-

ena.9,28 Namely, at criticality the autocorrelation time diverges and close

to criticality the autocorrelation time increases as a power law. Renormal-

ization theory should guarantee that pictures of the system look similar

when changing system size and running time accordingly. This is the so

called scaling of system size and time.

Under the circumstances of Fig. 7.8 again a rigorous test would be

difficult, since in short time series some autocorrelation in realizations of

completely uncorrelated fluctuations often ocurs. For example in the sim-

ulation of the SIRX-system in Fig. 7.8 a) one easily finds three subsequent

years showing decreasing numbers of diseased cases. The situation is sim-

ilar in Fig. 7.8 c). However, the autocorrelation functions for the data of

Fig. 7.8 point into the same direction. Hence, we performed even longer

time simulations, expecting more pronounced fluctuations as time passes.



July 12, 2007 10:40 World Scientific Review Volume - 9in x 6in main

184 N. Stollenwerk and V.A.A. Jansen

a)

0

50

100

150

200

250

0 500 1000 1500 2000 2500 3000 3500 4000 4500

X
(t

)

t

   

b)

0

50

100

150

200

250

0 500 1000 1500 2000 2500 3000 3500 4000 4500

X
(t

)

t

   

Fig. 7.9. Smaller population size N = 1 000 000, 4× longer time series than in Fig 7.8.

Nearly Poissonian variance over mean ratio is observed for SIRX in a), it is 0.95. On the
contrary for SIRYX in b) it is 16.72.

Since such simulations are time consuming for large system sizes already

at short time simulations we perform longer simulations with just 1 million

population size.

The results for four times longer simulations as in the previous Fig. 7.8

are shown in Fig. 7.9, comparing the SIRX-model in a) and the SIRYX-

model in b). Though again for short periods, as between week 1500 and

2000, there would be little difference between the models, the overall picture

is distinguishing very well between the models. Whereas the SIRX-model

in a) just shows minor fluctuations over the whole period of simulation,

comparable essentially to a Poisson process, the SIRYX-model in b) shows

large fluctuations and very surprisingly a huge epidemic between weeks

3000 and 3500 lasting around 12 years. This purely stochastic event could

in real life easily be mistaken for an exogenously forced event, or a drastic

change in parameters, which it is obviously not here.

This pattern is confirmed by data from other countries. Data from the

USA show on the one hand some some seasonality (Fig. 7.10 a), monthly

data for 6 years), which is not as clear as the British weekly data but still

well visible, and on the other hand huge decade long fluctuations correlated

over many years (Fig. 7.10 b), yearly data for 36 years), again not that

pronounced as in the Norwegian data, but still clearly observable.

We have concentrated here on modeling the fast dynamics of meningo-

coccal disease data with strong seasonality, as visible in highly time re-

solved data from England and Wales. In addition, long term fluctuations

were found as seen in the Norwegian long term data, without putting any

new information into our model. In the case of data from the USA both

aspects are much weaker, hence not an ideal starting point for the analysis

performed above, but still visible to a level that looks promising for future
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Fig. 7.10. a) Monthly data from the USA, 1996 to 2001, shows signs of seasonality. b)

Yearly data from the USA, 1966 to 2001 have mean µ = 2519.7 and standard deviation

σ = 581.9, hence the variance over mean ratio is σ2

µ
= 134.4, indicating strong deviations

from the Poissonian behavior.

analysis along the first inspections shown here.

Eventually, fine tuning of single parameters might be possible along

the lines of earlier parameter estimation techniques with master equation

simulations.32,33 To achieve this, the simulation time of the models has

to be decreased significantly by approximations along the lines sketched in

Stollenwerk, Jansen,17 namely approximating the SIR-part of the system

deterministically.

Our results suggest that decade long fluctuations in incidence are not in-

duced by the seasonality in the contact rate, but the closeness to criticality.

We checked this by simulations without seasonality, keeping the parame-

ters otherwise as before, and still found huge decade long fluctuations in

disease level. We think this has wide implications for public health: critical

fluctuations as observed here can lead to long outbreaks of disease without

any causal change in external factors. Instead they are due to stochastic

fluctuations in hardly detectable levels of asymptomatically carried bacteria

which only rarely cause disease.

Acknowledgments

We thank Walter Nadler, Peter Grassberger, Friedhelm Drepper (Jülich)
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Model) on a Lattice: Monte Carlo Calculations of Critical Behaviour. An-
nals of Physics 122, 373–396, (1979).

8. Grassberger, P. On the critical behavior of the general epidemic process and
dynamical percolation. Mathematical Biosciences 63, 157–172, (1983).

9. Stanley, H.E. An Introduction to Phase Transitions and Critical Phenomena
(Oxford University Press, Oxford, 1971).

10. Bak, P., Tang, C., & Wiesenfeld, K. Self-Organized Criticality: An expla-
nation of 1/f Noise. Phys. Rev. Lett. 59, 381–384, (1987).

11. Bak, P., Tang, C., & Wiesenfeld, K. Self-organized criticality. Phys. Rev. A

38, 364–374, (1988).
12. Jensen, H.J. Self-organized criticality, emergent complex behaviour in phys-

ical and biological systems (Cambridge University Press, Cambridge, 1998).
13. Rhodes, C.J., & Anderson, R.M. Power laws governing epidemics in isolated

populations. Nature 381, 600–602, (1996).
14. Rhodes, C.J., Jensen, H.J., & Anderson, R.M. On the critical behaviour of

simple epidemics. Proc. R. Soc. London B 264, 1639–1646, (1997).
15. Jansen, V.A.A., Stollenwerk, N., Jensen, H.J., Ramsay, M.E., Edmunds,

W.J., & Rhodes, C.J. Measles outbreaks in a population with declining
vaccine uptake, Science 301, 804, (2003).

16. Jansen, V.A.A., & Stollenwerk, N. Modelling measles outbreaks, in Branch-
ing Processes: Variation, Growth, and Extinction of Populations, eds. P.
Haccou, P. Jagers & V. Vatutin, (Cambridge University Press, Cambridge),
236–249, (2005).

17. Stollenwerk, N., & Jansen, V.A.A. Meningitis, pathogenicity near critical-
ity: the epidemiology of meningococcal disease as a model for accidental
pathogens. Journal of Theoretical Biology 222, 347–359, (2003).

18. Stollenwerk, N., & Jansen, V.A.A. Evolution towards criticality in an epi-
demiological model for meningococcal disease. Physics Letters A 317, 87–96,
(2003).

19. Stollenwerk, N., Maiden, M.C.J., & Jansen, V.A.A. Diversity in pathogenic-



July 12, 2007 10:40 World Scientific Review Volume - 9in x 6in main

Criticality in epidemiology 187

ity can cause outbreaks of menigococcal disease, Proc. Natl. Acad. Sci. USA
101, 10229–10234, (2004).

20. Stollenwerk, N. Self-organized criticality in human epidemiology, in Model-
ing Cooperative Behavior in the Social Sciences, eds. P.L. Garrido, J. Marro
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In this chapter we shall discuss the development and use of network
models in epidemiology. While network models have long been discussed
in the theoretical epidemiology literature, they have recently received a
large amount of attention amongst the statistical physics community.
This has been fueled by the desire to better understand the structure
of social and large-scale technological networks, and the increases in
computational power that have made the simulation of reasonably-sized
network models a feasible proposition. A main aim of this review is to
bridge the epidemiologic and statistical physics approaches to network
models for infectious diseases, highlighting the important contributions
made by both research communities.

8.1. Introduction

Mathematical modeling has provided many significant insights concerning

the epidemiology of infectious diseases. The most notable of these include

threshold conditions (involving the so-called ‘basic reproductive number’)

that describe when invasion and persistence of an infection is possible.1–3

The development of much of this theory has revolved around the use

of extremely simple models, such as deterministic compartmental models.

Typically, the population of interest is subdivided into a small number

of compartments based on infection status (e.g. susceptible, infectious or

189
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recovered) and the flows between these compartments are described by a

low dimensional set of ordinary differential equations. The derivation of

these equations typically involves a number of simplifying assumptions, an

important example of which is that the population is well-mixed, which will

be discussed in detail below.

The simplicity of these models facilitates the use of analytic techniques

to gain general understanding, but at the cost of oversimplifying the biol-

ogy of real-world disease processes. The weaknesses of simple models have

long been clear, particularly when model behavior has been compared to

epidemiologic data, and this has lead to the development of increasingly

complex models that attempt to account for more details of the under-

lying biology.1 Much of this complexity can be incorporated within the

population-level framework provided by compartmental models.

Individual-level models offer a fundamentally different way of describing

biological populations. In this approach, every individual in the population

is accounted for as a separate entity. The complexity of such models makes

analysis difficult, and numerical simulation computationally intensive. Fur-

thermore, these models must include some description of the interactions

between the individuals that make up the population. Unless a large num-

ber of simplifying assumptions are made, specifying these interactions is a

major task whenever there are more than a handful of individuals to be

considered.

Network models (also known as graph models) provide a natural way

of describing a population and its interactions. Nodes (vertices) of the

graph represent individuals and edges (links) depict interactions between

individuals that could potentially lead to transmission of infection. It is

interesting to note that similar network representations can be used in a

number of contexts, such as transportation networks, communication net-

works (including the internet and World Wide Web) and social networks

(including friendship, movie actor and scientific collaboration networks).4–6

In this chapter we shall discuss the development and use of network

models in epidemiology. While network models have long been discussed

in the theoretical epidemiology literature, they have recently received a

large amount of attention amongst the statistical physics community. This

has been fueled by the desire to better understand the structure of social

and large-scale technological networks, and the increases in computational

power that have made the simulation of reasonably-sized network models

a feasible proposition. A main aim of this review is to bridge the epidemi-
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ologic and statistical physics approaches to network models for infectious

diseases, highlighting the important contributions made by both research

communities.

This chapter is organized as follows. We shall first discuss some of

the epidemiologic settings in which network models are employed. Our at-

tention will then turn to ways in which networks are described, including

measures that attempt to capture important properties of graphs. An im-

portant part of this discussion will include the feasibility of employing such

methods to describe real-world networks, particularly when only incomplete

information is available. We shall then describe some classes of networks

that have received particular attention. Finally, we discuss the impact of

network structure on the spread of infection and some of the ways in which

control measures must account for this structure.

8.2. Network model settings

8.2.1. Network models as a research tool

Since many epidemiologic systems can be most naturally described in terms

of individual-level events and processes, network models have proved to be a

valuable research tool to explore the relationship between individual-based

and population-level models.

The formulation of population-level models typically involves making a

large number of simplifying assumptions. Perhaps the most important of

these is the mass-action assumption, in which the rate at which new infec-

tions occur is taken to be proportional both to the number of susceptible

individuals and to the number of infective individuals .1–3 This assumption

has its roots in the theory of chemical kinetics, in which it is used to de-

scribe reaction kinetics in ‘well-mixed’ settings such as a vigorously stirred

vessel.

Few epidemiologic settings could be described as being well-mixed: in-

teractions within a population typically have some structure, for instance

reflecting the social and spatial structure of a community. As examples,

workplaces, schools and family homes provide settings in which particular

groups of individuals spend considerable time in relatively close contact.

Such settings are important sites for the transmission of many infections: a

given individual is much more likely to acquire infection from such sources

than from a person randomly chosen from the population at large. Fur-

ther heterogeneities in transmission arise because individuals differ in other
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ways, such as their susceptibility to infection, their level of infectiousness

once they become infected, and the number of people with whom they

interact.

Network models have long been used to investigate the impact of spatial

structure on the transmission of infection. Particular attention has been

paid to the degree to which localized transmission of infection tends to slow

the spread of an infection in a population.7 This is in marked contrast with

the mass-action setting, in which the presence of infection is immediately

felt by every individual in the population, which can allow for rapid spread

of infection.

8.2.2. Epidemiologic settings

The epidemiologic settings in which network descriptions have the longest

history of use involve sexually transmitted infections (STIs), such as gonor-

rhea or the human immunodeficiency virus (HIV).8–14 Here there are nat-

ural, well-defined, network structures (sexual partnership networks) which

have long been exploited by public health bodies in their attempts to track

and control outbreaks of STIs. Network models have more recently been

employed to describe the spread of a wider range of infections such as

measles, SARS or foot and mouth disease (FMD).15–18 Increased interest

in bioterrorism has also spurred much research, with the spread of smallpox

coming under particular scrutiny.19,20

The network structure appropriate for a given setting not only depends

on the structure of the population, but on the infection itself. Within

the same population, the network would be quite different for infections

spread by sexual contact or by more casual contact. Even in the latter

case, considerable differences would arise between infections that require

prolonged close contact in order for transmission to occur and ones for

which a brief encounter would be sufficient.

The contrast between networks describing sexual partnerships and more

general social contact networks is particularly pronounced. It is instructive

to look at some of these differences as they highlight many important as-

pects of network structure. The number of sexual partnerships is dwarfed

by the number of social contacts in a population. An STI has far fewer

chances to spread than an infection such as the common cold. Further-

more, since most individuals are monogamous (i.e. have only one sexual

partner over a given time period), a large part of a sexual network con-

sists of isolated pairs of individuals. Sexual networks often exhibit a high
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variance in the number of partners that different individuals have over a

given time period.1,21,22 Most individuals have just one partner, while a

few individuals (such as sex workers) have a large number of partners.

In many cases, epidemiologic networks can be described by undirected

graphs. Although transmission of infection is a directional event (from

an infectious individual to a susceptible), the probability of transmission

along an edge would often be the same if the placement of the two in-

dividuals (susceptible and infective) were reversed. Sexual transmission

networks provide an example where this might not be the case, since the

male to female transmission probability can differ from the female to male

probability. In this setting a directional network may be more appropriate,

with two directed edges between the partners having unequal transmission

probabilities.23

Transmission networks are dynamic structures: individuals’ groups of

contacts change over time. This is perhaps most pronounced in the case

of sexual partnership networks. Partnership dynamics (the break up of ex-

isting partnerships and the formation of new partnerships) plays a major

role in the spread of infection through the large part of the network that

consists of isolated pairs.8,9,14 Considering a monogamous pair of individ-

uals, infection can be readily transmitted between an infected individual

and their susceptible partner, but further transmissions can only occur if

the pair breaks up and the individuals find new susceptible partners.

The changing pattern of social contacts can have a major impact on

transmission in more general settings. The classic example is provided by

childhood infections, such as measles.24 Schools are important sites for the

transmission of such infections: the congregation of children leads to much

higher transmission rates during school terms than vacations. (This sea-

sonal variation in transmission leads to large seasonal variations in disease

incidence: the resulting multi-annual oscillations have been widely studied

in the literature.)

The importance of the dynamic aspect of network structure depends

on the timescale over which disease dynamics are of interest. For rapidly

spreading infections, it is often assumed that a static network description

will suffice. This leads to a considerable simplification, for both numerical

simulation and mathematical analysis of transmission. As a consequence,

much of the recent work has focused on static network settings.
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8.2.3. Epidemiologic questions

A large number of epidemiologically important questions can be addressed

using modeling approaches. For a newly introduced infection, one may ask

whether an epidemic can occur (i.e. whether the infection can invade the

population), the timescale on which the ensuing outbreak will occur and

the impact of the epidemic on the population (as measured, for instance,

by the fraction of the population that will become infected). Questions of

endemicity and persistence of infection (whether there will just be a single

outbreak, or whether the infection will be maintained within the population

in the long-term) are also of interest.

An important observation is that it is often much easier to model newly

introduced infections because the initial state of the system is simpler:

the population is entirely susceptible. In general, though, one needs to

have some idea of the susceptibility of the population. This question has

been of particular interest in the context of smallpox: many people have

been previously vaccinated against the disease and so the impact of any

reintroduction of the infection would depend on the degree to which those

individuals remain immune.19 There are epidemiologic techniques, such as

seroprevalence surveys, that can be used to assess the susceptibility of a

given community to a given infection.

From a public health viewpoint, the main questions to be addressed by

modelers concern the impact of control measures: whether it is possible to

prevent disease invasion, to eradicate an existing infection or the degree to

which the spread of an infection can be slowed or contained. In a network

setting, the key issue is understanding how the structure of the network

affects transmission of the infection and whether network structure can be

exploited to aid control measures targeted at the infection.

8.3. Describing networks: network metrics

8.3.1. Motivation

A variety of network metrics are employed to describe the structure of a

network. These have their origins in the mathematical theory of graphs,

although some have been developed within the context of quite specific

applications, such as social network theory or the exploration of large-scale

technological networks. Many of these metrics describe properties that have

a direct impact on transmission dynamics: we shall return to this point in

a later section.
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From a modeler’s standpoint, such metrics can be used to ensure that

their model network captures the required properties of the real-world net-

work of interest. It is usually straightforward to calculate these metrics if

the complete structure of the network is known. Unfortunately, this situa-

tion is rare in epidemiologic settings. Instead, the values must be estimated

based on some sample of the network.

It is relatively straightforward to obtain information about the individ-

uals that make up a population, either from census data or by sampling

individuals. Standard statistical sampling theory can be deployed in the

latter case. From a network viewpoint, however, knowledge about the com-

position of the population tells us little or nothing about the structure of

the network: information about the edges of the network— describing how

individuals are connected—is crucial. Thus, many network metrics require

a sample of the edges of the network. Methodologies for sampling edges of

networks are comparatively poorly developed, although the increasing use

of network approaches is stimulating research in this area.10,11,13,25

Our discussion of network metrics will include mention of what type

of information is required in order to calculate or estimate their values.

In some cases, sufficient information can be gained from just the sampled

individuals. In other cases, we need to know not only about the individuals

in the sample, but also about their neighbors. (In a practical setting,

collection of this data clearly involves considerable extra work.) We refer to

both of these types of metrics as being local measures as they only require

local information about the network. In sharp contrast, global measures

require knowledge of either all or a major part of a network. Estimation of

their values may be problematic in many settings.

It should also be pointed out that many (but not all) of the follow-

ing metrics were developed in the context of static unweighted networks.

Some of the notions carry over to more general situations. A simple way

of achieving this in a dynamic network setting is to consider the edges to

represent connections that existed at some point during a given time pe-

riod. Many of the social networks that are commonly discussed (the actor

network or scientific collaboration network) describe such ‘time integrated’

networks.23

8.3.2. Metrics

A network is connected if it is possible to travel between any pair of

individuals by moving along edges of the network. An epidemiologic inter-
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pretation of connectedness is that a single individual can transmit infection

to any other individual in the population, typically via a number of in-

termediates. Clearly, connectedness can only be determined from global

knowledge of the network. (Notice that the entire structure of the network

need not be known in order to ascertain connectedness: this property can be

demonstrated by finding any set of edges—a spanning set—that connects

all individuals. It is much easier to show that a network is not connected:

this can be achieved by finding an isolated set of individuals.)

The degree or connectivity of a node, often written as k, is equal

to the number of neighbors that an individual has on the graph (that is,

the number of people to whom our individual is directly connected). Since

different individuals may have different numbers of neighbors, we talk about

the degree distribution, often written as P (k) or pk, of the network.

From this distribution, the average degree, written as k̄ or 〈k〉, can be

calculated as Σkpk. The variance of the degree distribution is given by

σ2 = Σ(k−k̄)2pk. This variance equals zero if every individual has the same

number of neighbors, in which case we say the network is homogeneous.

Otherwise, the network is said to be heterogeneous. All of these quantities

are local measures: they can be calculated once we know the connectivities

of a number of individuals.

Several metrics attempt to describe the ‘size’ of the network. The dis-

tance between two nodes is the length of the shortest path that connects

them. The diameter of a graph is the largest of these values when all pairs

of nodes are examined. The average path length can be calculated and

provides some idea of the typical number of steps between individuals on

the network.4 Clearly, one needs to have global knowledge of the network

in order to calculate these quantities.

Connections between individuals are often described in terms of the mix-

ing pattern of the network.26–28 Mixing is usually described with respect to

one or more relevant attributes (such as spatial location or an individual’s

age) and can be summarized by the mixing matrix. If the values that can

be taken by the attribute(s) are labeled by the subscript i, then the entries

of the mixing matrix, pi j , depict the probabilities that a given contact of

an individual of type i is with an individual of type j. In order to describe

mixing patterns, the relevant attributes of both an individual and those to

whom they are connected must be known.

Assortative mixing describes situations in which individuals are more

likely to interact with other individuals who are similar to themselves in

some respect.27,28 Disassortative mixing describes the opposite situa-
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tion, in which individuals tend to interact with dissimilar individuals. Pro-

portionate mixing (also known as random mixing) occurs when interac-

tions have no particular preference.

Mixing patterns have commonly been described in terms of the connec-

tivities of individuals (Fig. 8.1). In this setting, assortative mixing means

that highly connected individuals tend to interact with other highly con-

nected individuals and that poorly connected individuals tend to interact

with other poorly connected individuals. The opposite holds for disassor-

tative mixing.

In order to define proportionate mixing, we imagine the process of con-

structing a network with a given connectivity distribution pk. An individual

of connectivity k will make k connections in the network. Listing all the

connections to be made gives us a set, C, which we call the “connection

pool”. Since each edge of the network involves a connection between two

individuals, the set C has twice as many elements as there are edges in

the network. If there are N individuals in the population, then the Npk

individuals of type k contribute kNpk connections to C. Consequently, we

have that C has ΣkNpk elements.

Proportionate mixing assumes that connections are made at random

from the connection pool. Consequently, the fraction of connections that

are made to individuals of type k′ is given by k′Npk′/ΣjNpj, regardless

of the connectivity of the first individual. Notice that connections are not

made at random from the population of individuals (which has connectivity

distribution pk), but rather from the connection pool (which has distribu-

tion kpk/Σjpj).

An interesting consequence of proportionate mixing is that the average

connectivity of the neighbors of individuals exceeds the average connectivity

of individuals in the population. The former quantity can be shown to

equal 〈k〉 + Var(k)/〈k〉, which is clearly greater than 〈k〉 if the network is

heterogeneous29 (see Fig. 8.1).

Connectivity-based mixing patterns have commonly been used within

the STI setting. Here, connectivity equates to the number of sexual partners

(or, more likely, to the total number of partners over some period of time).

Assortative mixing means that highly sexually active individuals tend to

pair up with other highly active individuals and that individuals with few

partners tend to be involved with similarly poorly connected individuals.

Another important property of networks is the degree to which they ex-

hibit local clustering, also known as cliquishness, mutuality or tran-

sitivity.4,24,29 One measure of clustering examines pairs of connected in-
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Fig. 8.1. Networks exhibiting (a) proportionate, (b) assortative and (c) disassortative
mixing patterns. In each case, the network consists of ten individuals, six of whom have
two neighbors and four of whom have three neighbors. In each of the three cases, the av-
erage connectivity of individuals is 2.4. The connection pool, C, contains 6×2+4×3 = 24
elements, half of which arise from individuals of connectivity two and half of which arise
from individuals of connectivity three. In the proportionate mixing case, therefore, half
of the contacts of individuals of type two are with individuals of type two and half of their
contacts are with type three individuals. The same is true for the contacts of individu-
als of type three. In the assortative network, greater fractions of connections are with
individuals of their own type: the example network illustrates the extreme case where
all contacts are amongst individuals of the same type, sometimes known as restricted
mixing. In the disassortative network, more contacts are with individuals of the other
type. The numbers next to the nodes depict the average connectivity of the neighbors
of the particular node. Averaging these numbers illustrates the ‘your friends have more
friends than you do’ phenomenon: the average connectivities of neighbors of individuals

are given by (a) 2.5, (b) 2.4 and (c) 2.566... . The number in the proportionate mixing
case is as predicted by the mean/variance formula discussed in the text, the number is
lower in the assortative case and higher in the disassortative case.
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dividuals and considers how many of their neighbors are common to both

of them. The existence of common neighbors leads to the appearance of

triangles in the graph (i.e. paths from A to B to C and back to A, where A,

B and C are vertices). This notion of clustering is captured by the quantity

φ, defined to equal the fraction of all triples on the graph (i.e. paths A to

B to C) that form triangles.4,24,29 Notice that this definition of clustering

only looks at triples on the graph: more generally, we could ask if neighbors

of connected pairs are “close” in a broader sense (e.g. whether they have

distance less than or equal to some number m). A situation that would

give rise to a locally clustered graph is one in which there is a strong pref-

erence for interactions to be spatially localized. We remark that clustering

is a clearly a local property, although, in order to calculate φ, one needs

to sample individuals, and ask about their neighbors and their neighbors’

neighbors.

Betweenness and centrality attempt to quantify the importance of

different individuals in terms of the population-level properties of the net-

work.13,30 More precisely, they provide information about the numbers of

paths between pairs of nodes that pass through a given node. Clearly, these

properties are global properties of the network.

Betweenness (also called betweenness centrality by some authors) mea-

sures the fraction of shortest paths in a connected component that contain

the node of interest. Let b(j, k) represent all of the shortest paths between

nodes j and k, and bi(j, k) represent the number of those paths that pass

through node i. The betweenness of node i is then given by summing the

fractions gi(j, k) = bi(j, k)/b(j, k) over all pairs of nodes in the network.13,30

Another measure of centrality, information centrality, is similar to

betweenness but investigates all paths between nodes that include some

other node, not just the shortest paths. The various paths are weighted

according to the inverse of their lengths, thus assigning greater importance

to the shorter paths which are likely to be more significant in the spread of

infection.13

Although consideration of static networks has dominated the literature

to this point, several settings demand the use of dynamic networks. Most

notably, sexual partnership networks change as partnerships are formed and

break up. They have another notable property in that most individuals tend

to be monogamous, so a large fraction of the partnership network consists

of isolated nodes (singletons) who are not involved in a partnership and

isolated connected pairs of nodes. Any further connections between nodes

involve individuals who are involved in several simultaneous partnerships.
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Various measures attempt to capture this concurrency of partnerships.8

8.3.3. Canonical network types

Given the extreme flexibility of the network approach it is often convenient

to focus attention on a small set of canonical network models (Fig. 8.2).

These are typically chosen on grounds of mathematical convenience (certain

types of networks may lend themselves to the use of analytic techniques) or

because they capture some particular important aspect of a more general

class of networks.

The Erdös-Renyi random graph31 is perhaps the best studied canonical

network. Pairs of nodes in an N node network are independently connected

at random, with per-pair connection probability p. This leads to a bino-

mially distributed connectivity distribution, with mean (N − 1)p. If N is

sufficiently large, this distribution can be well approximated by a Poisson

distribution with mean Np. This connectivity distribution is fairly closely

centered about its mean: most individuals have a similar number of neigh-

bors.

The connectedness of the graph depends on the value of Np: if this

quantity is small then the graph consists of a large number of disconnected

components, but when Np is large most sites are found to form a connected

component of the graph. This component is known as the ‘giant component’

of the graph. A celebrated theorem31 makes this statement more precise,

stating that (for large N) the random graph has a (single) giant component

if and only if Φ = Np is greater than one. This component then contains a

proportion z of the population, where z is the greatest root of the equation

z = 1 − exp(−Φz). (8.1)

The random nature of connections means that such graphs have little

local structure, so exhibit low levels of clustering.4 On the other hand, path

lengths in random networks are relatively short. No individual is especially

important in terms of the global structure of the network: since there are

no preferred individuals, measures of betweenness and centrality tend to be

low.

In marked contrast, connections in lattice models tend to be highly lo-

calized. Individuals are assumed to be situated on a regular lattice and

are only connected to some local neighborhood. As an example, the lat-

tice might be a rectangular lattice with individuals connected to their four

nearest neighbors (up, down, left and right: the von Neumann neighbor-
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hood) or their eight nearest neighbors (up, down, left, right and diagonally:

the Moore neighborhood). In order to avoid having to give special treat-

ment to sites on the edges of the lattice, periodic boundaries conditions are

sometimes imposed.

All individuals on a regular lattice (ignoring potential edge effects) have

the same number of neighbors. Path lengths in lattices tend to be relatively

long: one typically has to pass through a large number of intermediates in

order to travel between any pair of nodes. In a one dimensional lattice,

path lengths scale linearly with the network size N . Since connections are

localized, lattices exhibit high values of the clustering coefficient.4 As in

the case of random graphs, there are no preferred nodes in the network so

betweenness and centrality are low.

These first two canonical network types dominated the literature until

Watts and Strogatz introduced “small world” networks in a paper4 that has

played a major role in stimulating interest in network modeling. Starting

from a lattice model, a small world network can be generated by rewiring

existing edges within the network. Each edge is examined in turn and is

rewired with probability ψ: if it is to be rewired, then one of its ends is left

in place and the other is reconnected to a randomly chosen node. (In an

alternative formulation, connections are added between randomly chosen

pairs of nodes with some probability.32) This leads to a network that is,

in some sense, intermediate between the regular lattice and the random

graph. If ψ equals zero, we have a regular lattice and if ψ equals one (all

edges are rewired) then we have a random graph. When 0 < ψ << 1, the

majority of the connections are local in nature but there are a small number

of long-range connections.

The surprising result of Watts and Strogatz is that it only takes a rela-

tively small number of these long-range links to give the small world network

many of the properties of the random graph. In particular, path lengths

in the network rapidly decrease as ψ increases. In the small world regime,

the network exhibits short path lengths (like the random graph) while still

being highly locally clustered (like the lattice).4

The connectivity distribution of the small world network remains fairly

tightly centered around its mean. This is in marked contrast to the final

canonical network type that we shall consider, the scale free network. Stud-

ies of real-world technological networks (and indeed social and epidemiolog-

ical networks) highlighted that many exhibit high levels of heterogeneity in

their connectivity distribution. Barabási and Albert33 proposed a mecha-

nism by which such networks could arise: network growth with preferential
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attachment of edges. Starting with some initial number of nodes, addi-

tional nodes are added one by one. At each step, the new node makes m

connections to existing nodes in the network. These connections are made

at random, but the probability that the connection is made to a given ex-

isting node is taken to be proportional to the connectivity of that node.

Thus new edges are more likely to be made to nodes that are already well

connected and so “the rich get richer”.

This process leads to a highly heterogeneous connectivity distribution:

most individuals have few connections while a small number of individuals

have a large number of connections. For the Barabási and Albert scale

free network, the connectivity distribution can be shown to follow a power

law, with pk ∼ k−3. An important observation is that this distribution has

infinite variance.

The highly heterogeneous nature of scale-free networks echoes an obser-

vation that has often been made by epidemiologists and sociologists in the

sexual partnership setting: most individuals have few sexual partners, while

a small number of individuals have a large number of partners.1 It has been

claimed that scale-free networks provide a good model for sexual partner-

ship networks21, although not all authors agree with this viewpoint.22

Many other recipes for generating networks of various types have been

described in the literature that has followed the work of Watts and Stro-

gatz and Barabási and Albert. For instance scale free networks whose

distributions have exponents other than minus three and ones that exhibit

clustering have been produced.34,35 For clarity, in what follows we shall

reserve the term “scale free network” to mean the original Barabási and

Albert formulation.

8.4. Epidemics on networks

8.4.1. Epidemic processes

In order to simulate an epidemic on a network structure, we first need

to describe the natural history of the infection. The simplest descriptions

are in the spirit of the compartmental models discussed at the start of

this chapter. Individuals are assumed to be susceptible (S), infectious (I)

or recovered (R). The SIR process assumes that susceptible individuals

become infectious immediately upon infection, recover after some time, at

which they acquire permanent immunity. The SIRS process assumes that

immunity is not life-long, and so individuals return to the susceptible class
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A
B

a ) b )

c ) d )

Fig. 8.2. Canonical network types: (a) random graph, (b) regular lattice, (c) small
world network, (d) scale free network. For the small world network, notice how the
addition of a single long-range link between nodes A and B of the lattice leads to the
distance between the top left and bottom right nodes shrinking from six to two. Notice
the heterogeneity of the scale free network: most nodes have two or three neighbors,
while the most highly connected node has ten neighbors.

after some time. The SIS process assumes that individuals return to the

susceptible class immediately upon recovery: this corresponds to the SIRS

model with a vanishingly short duration of immunity.

As an example, the following set of equations— the SIR model—is com-

monly used to describe the spread of a non-fatal infection in a well-mixed
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homogeneous closed population with no demography1–3

dS

dt
= −βcSI

N
(8.2)

dI

dt
= βc

SI

N
− γI (8.3)

dR

dt
= γI. (8.4)

Here, the quantities S, I andR denote the numbers of susceptible, infectious

and recovered individuals. The total population size, N , is constant. Births

and deaths are assumed to be unimportant in this form of the model: such

an assumption is appropriate if the timescale on which the epidemic plays

out is short compared to the demographic timescale.

In the well-mixed setting, the transmission process is described by the

the mass-action term, βcSI/N . Here, the parameter c depicts the rate at

which any single individual makes contacts and the parameter β is the prob-

ability that infection would be transmitted during any one such contact.

The simplest description of recovery assumes that infectious individuals re-

cover at a constant rate, γ. We remark that this description of recovery

implies that the duration of infectiousness is exponentially distributed with

average 1/γ. (This distribution is somewhat unrealistic biologically.)

The corresponding network model can be formulated in an analogous

way. The simplest description of infection assumes that there is a constant

rate (i.e. probability per unit time) at which an infective can infect a

given susceptible with whom they interact, and that this rate is identical

for each edge in the network. Writing this rate as β, and noting that the

interpretation of this parameter is slightly different in the network setting,

the probability of transmission along a given edge over a short period of

time, dt, is equal to β dt. Taking the recovery rate to be constant, as above,

implies that an infectious individual has probability γ dt of recovering over

the time interval of length dt.

More general descriptions of infection and recovery are possible, such as

allowing for a delay—known as the exposed period—between acquisition of

infection and the start of infectiousness, or the inclusion of non-exponential

distributions of infectiousness.

If the system is to be studied over a long time period, it may be necessary

to include some description of the demographics (births and deaths) of the

population. Deaths can be simulated by removing nodes from the network,

births by adding nodes to the network.
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8.4.2. Basic behavior of epidemic systems

The rate at which new infections arise in the population (the incidence

of infection) depends both on the number of infectious individuals (the

prevalence of infection) and on the number of susceptibles. In most cases

there is a threshold phenomenon related to the introduction of infection: an

epidemic can only take off if the agent is sufficiently infectious that the rate

at which new infections appear is greater than the rate at which infected

individuals recover.

This threshold can be described by the basic reproductive number (R0)

of the system, which gives the average number of secondary infections that

a single infective gives rise to in an otherwise entirely susceptible population

over the course of their infectious period.

It is straightforward to derive expressions forR0 in non-network settings.

For instance, consider the early stages of an epidemic in the well-mixed

SIR model described above. During this time, almost everyone will be

susceptible (S ≈ N), so the rate at which new infections occur is βcI.

Each infective is giving rise to new infections at rate βc. Since infection

lasts for an average of 1/γ time units, the average number of secondary

infections is

R0 =
βc

γ
. (8.5)

8.4.2.1. Dynamics in the longer term

An important difference between the SIR and SIS (or SIRS) model is

that the susceptible population is not replenished. In the SIR model,

the progress of the epidemic continually reduces the susceptible popula-

tion. Eventually, this depletion reduces the rate at which new infections

can arise: SIR epidemics are self-limited and the infection eventually goes

extinct.

This self-limitation typically occurs as the number of susceptibles passes

below some threshold value: consequently, some fraction of the population

will typically escape infection. In such settings, the severity of the epidemic

is measured by the so-called size of the epidemic: the fraction (or number)

of individuals who ever experience infection over the entire course of the

outbreak.

In the SIS and SIRS settings, replenishment of the susceptible popu-

lation means that it is possible for the infection to become permanently

established in the population. In the simplest settings, the typical outcome
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is that the system approaches an equilibrium—the endemic equilibrium—

at which there is a positive prevalence of infection. Endemic infections are

possible in the SIR framework if demography is accounted for, since births

provide another means by which the susceptible pool can be replenished.

8.5. The impact of network structure on epidemic dynamics

Calculation of R0 is more involved in the network setting and typically

requires simplifying assumptions to be made. As an example, the pres-

ence of loops in the network is usually ignored. This enables analysis to

be undertaken, albeit at the cost of neglecting some aspects of network

structure—such as cliques— that may impact upon the spread of infection.

For a static network, each individual has a fixed set of contacts and so an

important quantity36,37 is the probability of transmission from an infective

node to a susceptible node along a given edge over the entire duration of

their infection. Newman calls this the “transmissibility” of infection23 and

represents its value by T . In the infection setting described earlier, in which

infection is transmitted at rate β along a given edge and the duration of

infectiousness is exponentially distributed with mean 1/γ, it is easy to show

that T = β/(β + γ).

For a homogeneous network, in which every individual has k neighbors,

the basic reproductive number equals

R0 = T (k − 1) . (8.6)

Notice that the average number of secondary infections is proportional to

the average number of neighbors minus one.36 The minus one accounts

for the fact that every infectious individual, except for the initial infective,

must have acquired infection from one of their neighbors.

8.5.1. Impact of heterogeneity

Heterogeneous networks must be treated with some care. In the case of

proportionate (random) mixing, it is possible to show2,23 that the basic

reproductive number is given by the following formula

R0 = T

(

〈k〉 − 1 +
Var(k)

〈k〉

)

. (8.7)

This expression contains an extra term, involving the variance of the con-

nectivity distribution, that leads to the value of R0 being inflated in het-
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erogeneous settings. This result was not unexpected, since similar “mean

and variance” formulae for R0 had earlier appeared in a wide number of

epidemiological settings.1,2 The attentive reader will notice the similarity

between this result and the formula for the average connectivity of individ-

uals’ neighbors under proportionate mixing.

It should be noted that the value of R0 no longer simply reflects the

arithmetic mean of the numbers of secondary infections: in heterogeneous

settings, one must adopt a more appropriate notion of the word “average”

in the verbal definition of the basic reproductive number.

The appearance of the variance in formula (8.7) has a surprising impact

on the spread of infection in scale free networks .38,39 The basic reproduc-

tive number is infinite whenever the transmissibility is non-zero: infection

can spread on a scale free network whenever there is some possibility of

transmission. This result reflects the infinite variance of the connectivity

distribution of the scale free network. It should be noted that this result

only applies in the limit as the number of nodes becomes infinite: for a

finite network, the variance will be large but can only be finite. Any real

world scale free network can only have a finite number of nodes and so

there would be an epidemic threshold, albeit for a much smaller transmis-

sibility than would be the case in the corresponding homogeneous network

(by which we mean a network with the same value of 〈k〉).
The impact of heterogeneity has long been recognized in the setting of

sexually transmitted infections. Epidemiologists had realized that certain

sections of the community, for instance highly sexually active individuals

such as sex workers, were at much greater risk of infection than the gen-

eral population. Such “core groups” are responsible for a large fraction of

the cases and transmission events.1,40 The prevalence of infection is high

within the core group, but low in the general population. In many cases

the infection could not spread or persist without the core group: the het-

erogeneity in the population leads to the basic reproductive number being

greater than one. This effect is often given as an explanation of why many

infections are able persist at low levels in a population.

Heterogeneity in proportionate mixing settings, therefore, promotes the

spread of infection compared to the corresponding homogeneous setting.

Comparing two settings with the same value of R0, heterogeneity leads

to less severe outbreaks or lower prevalences of infection at endemic equi-

librium, because infection tends to be concentrated amongst the highly

connected individuals.
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8.5.2. Impact of other network properties

Local spatial structure and cliques slow the spread of infection. If the typi-

cal path length in the network is long then the infection must typically pass

through many intermediates in order to cross the population. The presence

of cliques results in many wasted transmission possibilities:24 many fewer

secondary infections will result if two infective individuals share a number

of neighbors compared to the situation if they had no shared neighbors.

Regular lattices exhibit both long path lengths and high degrees of clus-

tering and so lead to a slow spread of infection. The spread is, however,

rapidly increased with the addition of the small number of long-range con-

nections of the small world network. As the fraction of long-range links is

increased, the speed of spread approaches that of the random graph, for

which cliques are rare and path lengths are short.

Detailed exploration of such effects is far from straightforward, since

they involve features of the network that are typically ignored in order to

allow the use of analytic approaches. Much insight, however, has been pro-

vided by the use of approximate methods, such as the pair approximation

approach.7,12,14,24,41 In the well-mixed model (Eqs. 8.2-8.4), one only needs

to know the numbers of susceptible, infectious and recovered individuals in

order to describe transmission. In the network setting, transmission proba-

bilities can be written in terms of the configuration of pairs of individuals:

it is not enough to know how many S and I there are, one also needs to

know how many susceptibles are connected to those infectives. The pair

approach involves constructing differential equations that depict how the

numbers of the different types of pairs (such as S-I pairs) change over time.

The difficulty with this approach is that the equations for pairs involve the

numbers of triples. Typically, an approximation—a pair approximation—is

employed to relate the numbers of triples to the numbers of pairs, leading

to a closed set of equations.

Using the pair approximation approach, Keeling considered the impact

of cliques in terms of the quantity φ, as defined earlier. Cliquishness was

shown to reduce the value of the basic reproductive number and the severity

of epidemics, with the largest impact occurring when individuals had only

a small number of neighbors.7

We remark that the impact of the core group effect discussed above can

be modulated by the mixing pattern of the population. If mixing is assor-

tative, then individuals within the core group will preferentially interact

with each other, potentially giving rise to a cliquish network. With propor-
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tionate or disassortative mixing, there will be fewer interactions within the

core group and lower degrees of cliquishness. An interesting observation is

that the inclusion of clique structure within scale-free networks can lead to

the reappearance of threshold behavior.35

In the case of a sexual partnership network, concurrency plays a ma-

jor role in the speed of spread. If all individuals were monogamous, then

an infective individual could only infect a single other individual over the

course of their partnership. Further transmissions could only occur with

the break up of that partnership and the formation of new partnerships.

Thus the spread is slowed by the time taken to break and form partner-

ships. Partnership concurrency enables the infection to spread from pair

to pair without having to wait in this way. That concurrency can aid the

spread of infection has been confirmed using both numerical8,9 and pair

approximation approaches.12,14

8.6. Control of infection

Many measures can be deployed in an attempt to control the spread of in-

fection, such as isolation, quarantine and drug treatments. In this section,

we shall focus on the use of vaccination. We may consider the effect of a

perfect vaccine as preventing vaccinated nodes from acquiring and trans-

mitting infection, essentially removing them from the network. In reality,

vaccines are not perfect: not everyone gains protection against the infection,

and the protection gained may only be partial.

For well-mixed models of the form (8.2-8.4), there is a critical vaccina-

tion fraction, pc, given by

pc = 1 − 1/R0 (8.8)

such that vaccination of this fraction (or greater) of the population will

guarantee eradication of the infection if it already exists, or prevent the

infection from causing an outbreak in a naive population. This result makes

the intuitive point that it is more difficult to eradicate a highly infectious

disease than a less infectious one.

Given its impact upon the spread of infection, it is hardly surprising that

network structure can have a major impact upon control of infection. Con-

siderable attention has been directed towards the effects of heterogeneity.

Anderson and May showed that uniform vaccination, in which individuals

are vaccinated without regard to the heterogeneity, is always less effective

than targeted vaccination and that the optimal vaccination strategy in-
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volves vaccinating those at highest risk.1 In the case of sexually transmitted

infections, this means that control measures should be directed towards the

core group rather than the general population. This makes sense, particu-

larly if the core group is responsible for the maintenance of the infection,

and forms the basis of many public health policies.

Anderson and May’s results were recently rediscovered in the context of

vaccination of scale-free networks.42 It was found that uniform vaccination

was a completely ineffective approach since a randomly chosen individual in

a scale-free network is likely to have a small number of neighbors. Removal

of such individuals does little to affect the structure of the network. In

contrast, removal of highly connected individuals, by targeting vaccinations,

has a major impact and quickly leads to a situation in which the infection

cannot spread.

One issue with targeted vaccination is that it requires the identification

of individuals that are highly connected (or have some other high risk fac-

tor). This requires more effort than a simple uniform vaccination strategy.

One intriguing approach43 makes use of the fact, discussed above, that in

most instances, randomly chosen neighbors of individuals have a higher con-

nectivity than do randomly chosen individuals. A control strategy based on

vaccinating randomly chosen neighbors of randomly chosen individuals can

be shown to be more effective than uniform vaccination.43 Of course, the

potential benefit of this approach should be weighed up against the added

complexity of its implementation.

Control measures can utilize local spatial structure, particularly during

the early stages of an epidemic. If transmission is mainly local in nature,

effort can be concentrated in and around any foci of infection.16,17,20 As

an example, ring vaccination targets the area surrounding a geographically

localized outbreak, much in the same way as fire-fighters might use fire

breaks to contain a forest fire. Such approaches formed the cornerstone

of control efforts during the 2001 outbreak of foot and mouth disease in

the British livestock population.16,17 Local control strategies become more

difficult to employ as the infection becomes more widely disseminated in a

given region.

The small world effect has a major impact on the use of local control

strategies unless one can guarantee that long-range transmission events

cannot occur. This was possible in the foot and mouth case as one of

the earliest reactions of the UK authorities was to impose a ban on the

movement of animals between farms. In a human setting, long-range travel

such as transcontinental and intercontinental flights have reduced the entire
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planet to a small world, and so reliance on local control measures would

appear to be unwise unless accompanied by stringent controls on travel.

8.7. Discussion

The highly detailed nature of network models is a double-edged sword:

while they are more likely to provide a realistic framework within which the

spread of infection can be studied, their complexity makes analysis difficult

and very detailed population data is required in order to generate realistic

networks. The deployment of network models in practical settings has been

limited by this severe data requirement. Many of the instances in which

network approaches have been successfully employed involve populations

whose movements can be closely tracked (such as the livestock in the UK

FMD outbreak).

Important work remains to be done to ascertain what data is needed

in order to sufficiently characterize a network for epidemiologic modeling.

As discussed above, many network properties can be deduced from knowl-

edge of a sample of individuals, or from a sample of individuals and their

contacts, while other properties are more global in nature. Even if local

data is sufficient, much work remains to be done to determine the most

appropriate sampling schemes and the sample sizes required for accurate

characterization of networks.

Although network approaches have long been employed by epidemio-

logical modelers, it is only with the recent increases in computing power

that their simulation has become feasible for all but the most modest sizes

of networks. Input from statistical physicists, particularly with their study

of large-scale technological networks, has caused a resurgence of interest in

network approaches and led to many advances in our understanding. De-

spite this, much work remains to be done to turn theoretical studies into a

practical tool that can routinely be employed by epidemiologists.
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Thanks to an increasing availability of data on cell components and
progress in computers and computer science, a long awaited paradigm
shift is running in biology from reductionism to holistic approaches. One
of the consequences is the huge development of network-related repre-
sentations of cell activity and an increasing involvement of researchers
from computer science, physics and mathematics in their analysis. But
what are the promises of these approaches for the biologist? What is
the available biological data sustaining them and is it sufficient? After a
presentation of the interaction network view of the cell, we shall focus on
studies on gene network structure and dynamics. Then we shall discuss
the difficulties of these approaches and their theoretical and practical
usefulness for the biologist.

9.1. Introduction

The last decade witnessed a strong development and an institutional recog-

nition of a long time marginal approach of research in Life Science now

known as System Biology.30,35 This domain, also called Integrative Biol-

ogy or Holistic Biology, aims at the understanding of biological structures

and behaviors on a larger scale than the range of individual molecules and

interactions of classical molecular biology. Different from the mainstream

reductionist approach pursued during the last 50 years, System Biology de-
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velops a constructivist approach of molecular cell biology in line with the

ideas on synergetics and complexity that emerged in the 70s’ and 80s’. Its

fundamental goal is to understand how the observed physiological proper-

ties of the living cell arise from the combined, integrated, activity of the

elementary components.

Systems-level approaches in biology have a long history,34,51,63 but un-

til recently limited available data and painstaking experimental resources

limited their range of application. The advent during the last decade of

high-throughput technologies in molecular biology drastically changed this

situation. Whole genomes are now deciphered, proteins increasingly char-

acterized as well as the interactions between them and genes. The quantity

of data produced each day gives the impression that constructivist systemic

approaches are now possible in biology thus opening the way to new sub-

jects unreachable before and to significant advances in biomedical research.

For instance, the integration of numerous and diverse facts in the field of

scientific analysis is expected to help understanding multifactorial diseases

that depend on combinations of several causes and/or environmental con-

ditions impossible to grasp in isolation.29 As genetic and molecular data

becomes increasingly available, the grand challenge will be to assemble all

the pieces into a working model of a living, responding, reproducing cell; a

model that gives a reliable account of how the physiological properties of a

cell derive from its underlying molecular machinery.

One of the principal characteristics in the recent Systems Biology liter-

ature is the spread of the interaction network paradigm. Molecular biolo-

gists have been widely successful in identifying the molecular components

of the chains of chemical reactions and regulatory systems within living

cells. These components have traditionally been painstakingly pieced to-

gether into schematic “wiring” diagrams that represent a synthesis of the

knowledge of the studied system. Biochemistry, for instance, commonly

represents on large charts the set of all the biochemical metabolic reactions

known in cells (the Boehringer poster20 being a popular example). This

procedure is now extended and systematized by Systems Biology for the

representation of information stored in genomic databases. Compared to

the generic Boehringer chart, it is now possible for example to generate

graphs that are specifically tuned to the metabolism of given organisms

of interest.66 Some of the key questions in genomics ask which genes are

expressed in given cells at certain times and conditions. How does gene ex-

pression differ from cell to cell in multicellular organisms? Which proteins

are affected when one gene is mutated or silenced? By displaying chains of
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dependencies, macro-molecular interaction networks are expected to play a

major role in answering such questions. This picture is complemented by

the generalization of genome scale surveys of gene activity with techniques

such as DNA microarrays53 that simultaneously measure the expression

levels of all the genes of an organism. Although subject to numerous ex-

perimental artifacts, this can be interpreted as the measurement of a state

“vector” of the genetic activity that is occurring on the gene interaction.

Figure 9.1 illustrates how gene interaction networks and biological sampling

are expected to interact and contribute to elucidate biological functions.

From a theoretical standpoint, the questions on the behavior of macro-

molecular network dynamics and the required methodology of investigation

do not fundamentally differ from other fields of applications of dynamic

systems such as population genetics, ecological and trophic networks.33

The goal is basically to build dynamic models reproducing the temporal

evolution of proteins or other bio-molecules, and to analyze the dynamic

regimes and sensitivity against parameter changes. Even in the case of

biochemical networks these questions are not new, and have already been

addressed, for example, in theoretical studies of enzyme kinetics,24,44 or in

models of biological pattern formation.

Different kinds of investigations are possible on the networks deduced

from genomic data depending on the scale considered. First we present

some studies centered on the network structure – the topology – that aim to

discover fundamental principles in the organization of groups of interacting

genes. We shall then briefly review the principal modeling approaches of

genetic networks. The type of modeling to be used depends on the biological

question and the knowledge available. These approaches have opened the

way to several theoretical attempts to rationalize the link between structure

and dynamics of the networks. We finally conclude by discussing some of

the difficulties of modeling systemic approaches to produce results useful

for biologists.

9.2. The concept of biological network

The representation on a single sketch of all the components of a system,

genes, molecules and their interactions is an abstraction found extremely

useful by biologists in order to summarize in a single view the relationships

between physical and/or molecular components of cells which operate all

together to carry out given biological processes. Biochemical networks are

not hardwired as in fluid transport circuits (venous system, leaf venation)
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Fig. 9.1. Example from biological sampling to simulation. Messenger RNAs are ex-
tracted from normal or tumor cells. The ratio of their concentrations is measured on a
DNA microarray. The mRNA transcribed from the “REG” or “CDK” genes are more
abundant in the tumor cells than in normal cells, switching on the corresponding spots
(black spot). The opposite holds true for the “APO” gene, giving a spot in a different
color. The other spots are unaffected, indicating that the concentrations are similar
in both samples for the corresponding gene. These partial results are compatible with
the idea that “REGulator” encodes a protein that activates the expression of the “Cell
Division Kinase” gene and inhibits that of the “APOptosis” gene. With the help of
interaction database, literature surveys and automated inference algorithms49 a portion
of the genetic network can be deduced, whereby REG’ and REG” encode intermediate
(arrow: activation, bar: inhibition). In this network, activation of REG by agents stimu-
lating mitosis yields an hyperactivation of CDK, directly and via REG”. This activation
results into cell division and tumor proliferation (center bottom). In the absence of a
mitogenic agent, division and apoptosis remain balanced and the cell survives without
dividing (right top). This equilibrium can be studied according to different kinetics co-
efficients for each interaction through simulation of a mathematical model constructed
to describe the dynamics of the gene expression sustained by the network. The sim-
ulation may predict in which direction the network will re-equilibrate when conditions
change (for instance, drugs intake). In this simple example, it can easily be seen that
REG” inactivation disfavors division and lifts apoptosis inhibition (right bottom). The
prediction is that the tumor cell will thus be killed by this drug. Example adapted with
authorization from.38

or technological networks such as electronic circuits. Genomics networks

are artificial constructions representing some knowledge of system compo-

nents and their putative interactions. These networks are only effective

representations that are supposed to contain the essential properties and

logic of the real biological regulatory process in an organism. As an abstrac-
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Fig. 9.2. Molecular spaces of macro-molecular networks. The genome is made by the
set of the whole DNA sequence and data on the genes. The set of transcribed mRNA

and transcription factors constitutes the transcriptome. The Proteome collects data on
proteins and their interactions and the metabolome focuses on an organism specific set
of metabolic reactions. The different molecular realms overlap and are inter-regulated.

tion they form ideal working objects for the theoretical analysis. The study

of interaction interactive networks is in fact currently the main method of

investigation in Systems Biology, to the point one may well consider this

field as the molecular biology at the network level.

Three types of networks are generally considered that correspond to dif-

ferent molecular spaces. Metabolic networks represent metabolites and the

chemical reactions they undergo due to enzymes, a domain which is often

called the metabolome. Protein networks collect the interactions among

proteins, in particular protein complex formation and dissociation and pro-

teins altering each other, one speaks of the proteome. Gene networks (or

genetic regulatory networks), where a gene is linked to another when the

protein product of the first, dubbed transcription factor, regulates the ac-
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tivity of the second are in a broad sense the field of the genome (figure 9.2).

Several articles and databases have been respectively published and built

with this view in mind, for gene networks,26 protein networks31,52,62 and

metabolic networks.36,66

These different networks are very much interwoven since genes affect

other genes by way of proteins that may well be activated by metabolic

reactions. Despite the interconnections between the different levels, the

distinction of several molecular spaces is a very common view that finds its

origin in the different experimental and analytical tools required for experi-

menting with each type of molecule. Furthermore it has been quite common

to organize research in a layered manner within these different levels, as

homogeneous systems with the same kind of elements and interactions are

expected to be more tractable. A last reason of this arbitrary segregation

is that these molecular spaces are not equally accessible to experimenta-

tion. Genetic networks are in the limelight of most current experimental

and theoretical efforts in System Biology since molecular biology provides

very efficient tools to operate and perform measurements at their level.

Despite much development, proteome and metabolome are to this day still

less accessible to high throughput experimentation.

In the following discussion we will essentially focus on the genetic net-

work regulating gene transcription and protein expression. This is the type

of bio-molecular interaction network that, at this time, is experimentally

the most accessible through biomolecular technologies. The work flow of

Systems Biology proceeds first by the reconstruction of a network, which

is the identification of its components and interactions from genomics raw

data. Once obtained, this picture of functional relationships between bi-

ological components can itself be considered an object of biology and its

topology become the subject of investigations for underlying biological prin-

ciples. Network structures must finally be complemented with dynamical

models in order to gain an understanding of the system’s behavior under

physiological or pathological conditions (see figure 9.1).

9.3. Structural properties of networks

Theoretical studies of network topology characterize the way the connec-

tions between all the nodes are organized. In the line of graph theory,

tools and observable quantities have been defined to establish similarities,

find characteristic patterns, and derive quantitative structure/activity re-

lationships. When applied to biological networks, topological analyses are
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expected to help deduce the function of a network component (here a gene

or a protein) from the location of this component in the network.9

The actual interest in macro-molecular networks is in fact strongly re-

lated to the currently very active field of complex networks (for an extensive

review see Newman47). Following graph theory several statistical descrip-

tors of the topology have been applied to a variety of natural and artificial

large scale networks such as the Internet, the World-Wide-Web, electric

power distribution networks, ecological and sociological networks, showing

very different properties from the standard Erdös-Renyi random network

model.16

These networks are denoted as small-world, sharing the property that

two arbitrary nodes in the network are typically close to each other; e.g.,

their distance expressed in the number of successive links connecting the two

nodes, increases only logarithmically with the network size and not linearly

as in a random graph. Another topological descriptor is the distribution of

the number of nodes’ out- and in- going links, which is Gaussian in a random

network. Large communication and social networks on the other hand

display power law distributions expressing scale invariance reminiscent of

physics critical phenomena.

The topology of the macro-molecular networks have been subject to sev-

eral studies, suggesting a small-world topology of the protein-protein inter-

action networks12 and metabolic networks,64 and the scale free connectivity

distributions of the gene networks26 (for outgoing links), protein-protein

interaction32 and metabolic1 networks. However it must be kept in mind

that general topological descriptors are easily prone to biases and errors.

Indeed, recent re-investigations call into question the scale-free property of

protein networks50 or the small-world property of metabolic networks,3 so

that conclusions on biological network topologies are delicate and still an

open question.

At the present stage these topological characteristics essentially indi-

cate hypotheses on the global organization of the biomolecular regulation

systems. Scale-free topology seems to have a clear meaning in this context,

as it has been associated with robustness of the network behavior to ran-

dom damages.2 These will essentially affect weakly connected nodes and

hence preserve the global network topology. As a drawback, the network

is highly vulnerable to directed attacks on the most connected nodes. The

same vulnerability was shown for protein networks: proteins with a higher

connection degree tend to be lethal when experimentally deleted or inacti-

vated.32 On another hand, the meaning of the small-world property is less
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straightforward, although short-paths between biochemical reactions can

be interpreted as a requirement for rapid response and adaptation of the

cells to global environmental changes .

Complex networks are also characterized by their clustering coefficient

that expresses the degree of mutually interconnected nodes’ triads. Ge-

netic26 and protein-protein and metabolic networks exhibit high clustering.

This very relevant feature is for the moment one of the principal justifica-

tion of the fundamental hypothesis on macro-molecular networks to pos-

sess a modular organization.28,35 According to this view the networks are

organized as the assembly of almost autonomous well defined functional

sub-systems. As argued by Hartwell et al. in a prospective impact arti-

cle in Nature,28 these components form functional modules that implement

specific tasks such as signal transmission and amplification, noise filtering,

timing of events, choice of response, that contribute in combinations to high

level cellular processes. This idea is strongly inspired by analogies with en-

gineering where modules are common, such as subroutines in software and

replaceable parts in machines. Modular descriptions of macro-molecular

networks are shaping current thinking in System Biology as it helps to

simplify the complexity of the whole system by breaking it up into concep-

tually tractable pieces. However, it must be kept in mind that it is rather

difficult to define the notion of a module objectively since clearly separated

sub-networks in a cell do not exist.40

9.4. Modeling gene regulatory dynamics

The approach of networks in the previous section was only static, dealing

with the topology of the molecular interactions in the cells. We are con-

cerned now with the dynamics of the network. This means constructing

models for gene expression activity describing how the molecular entities

involved in the networks act together during time evolution. These are

a mathematical representation of our knowledge of the way in which the

various molecular entities of cell regulation interact. We shall focus here

on models of genetic network dynamics aimed at predicting the successive

activations of connected genes. It is the custom for such studies to re-

strict modeling on pure transcriptional regulation and to do quite crude

assumptions on the dependence of transcription initiation of the transcrip-

tion factors. Essentially depending on the type of modeling chosen (see

later), transcription initiation is generally either assumed to be dependent

on a simple linear combination of transcription factor concentrations, or
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a Boolean function on the presence or absence of the transcription factor.

Detailed models based on thermodynamics exist to describe the binding of

transcription factor on DNA promoter sequences,7 but these are generally

not considered in models of network dynamics except to fix some parameter

values.

The construction of a model depends not only on the characteristics

of the studied system but also on the type of experimental data available

and the type of questions one wants to approach. It is very difficult to

proceed without numerous, sometimes arbitrary, hypotheses on the reaction

equations and parameter values.

9.4.1. Dynamical models of gene networks

A variety of mathematical modeling approaches have been proposed to

conceptualize and represent the way the molecular entities interact and

contribute to the network dynamic behavior. Most of the time the starting

point of modeling a regulatory network consists of implicitly thinking of

the system as a succession of chemical reactions where the reactants are

the interacting biological objects, and the products represent the result of

the process. These are in fact pseudo-chemical reactions since complex

events such as the synthesis of a mRNA molecule following the initiation

of transcription is typically represented as a single step. Such a description

can be more or less detailed depending on how accurately one describes

each biological phenomenon. For instance, the simple regulation of a gene

regulated by two transcription factors, TF1 and TF2, can be described by

the following pseudo-reactions where RNAP is the RNA polymerase, DNA

stands for the gene promoter and Rib for the Ribosome, the dot symbol “·”
between two molecules denotes their bounded complex:

TF1 +DNA↔ TF1 ·DNA, TF2 +DNA↔ TF2 ·DNA
TF1 + TF2 ·DNA↔ TF1 · TF2 ·DNA,

TF2 + TF1 ·DNA↔ TF1 · TF2 ·DNA,

TF1 · TF2 ·DNA+RNAP ↔ TF1 · TF2 ·DNA ·RNAP ,

TF1 · TF2 ·DNA ·RNAP → RNAm (∗),
RNAm+Rib↔ RNAm ·Rib, RNAm ·Rib→ Protein+Rib

More or less complex levels of detail can be included in this description

simply by adding supplementary reactions. For instance, instead of a single

reaction (*) for transcription, one can include reactions accounting for the

formation of the open complex, abortive transcription, progress of RNA

polymerase along the gene sequence etc. . . .
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While such reactions are not always explicitly written, they implicitly

underly all the formalized models. Differences between the various dynami-

cal modeling approaches are essentially in the way the chemical-reaction like

description is treated mathematically. We shall not list all these treatments

here, as several excellent reviews have been published elsewhere8,10,15,61 and

in particular54 for an extensive more mathematically oriented discussion.

Computational approaches of gene networks dynamics is now a quite active

field and most approaches are related to the principal following types:

Chemical Master equation: stochastic. Growing experimental evi-

dence such as observations of gene expression fluctuations in populations of

identical cells13 confirm the occurrence of stochastic fluctuations in gene ex-

pression. Regulatory processes involve indeed small amounts of molecules,

typically one promoter and a few copy numbers of transcription factor pro-

teins, and are therefore prone to fluctuations. The master equation formal-

ism provides a natural way to describe stochastic chemical reactions, but

except in the simplest cases analytical solutions are very difficult to ob-

tain. The Gillespie23 algorithm, and later variants, provides an exact way

to solve the master equation by Monte Carlo simulations. The precision of

the method requires, however, the knowledge of a large number of kinetic

parameters (all the reaction and reverse reaction rates) and also a very high

computational power, so that in practice its applicability is limited.

Differential Equations: deterministic, stochastic, ordinary, time-

delayed. Despite the problem of low molecular abundances, it is quite

customary to assume the classical limit of chemical kinetics and describe

the regulatory reactions with mass balance differential equations. The rate

equations are then generally taken as nonlinear sigmoid functions that ex-

press the gene activity as the fractional saturation of its promoter according

to the transcription factor concentration in a similar way as the classical

Michaelis-Menten equation of enzymes activity. Inclusion of a noise term to

account for fluctuations of concentrations and stochasticity is also possible

as an approximation of the rigorous Monte Carlo approach. The differ-

ential equations framework makes possible efficient numerical simulations

and the use of the classical toolbox of dynamical systems to characterize

the dynamics. There is still no precise methodology for the most effective

way to write the models. In particular, theoretical works differ on including

or not an explicit delay to account for the finite time required for the gene

transcription and mRNA translation.
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Boolean and generalized logical models. Boolean logic is the sim-

plest paradigm for gene activation and has been much used in particular

in the precursor work of S. Kauffman.34 Such models, where the state of

each gene is characterized as either ON or OFF and a Boolean function

implements the transition rule, have been very much used for theoretical

conceptualization and investigations of the dynamics of large sets of genes.

This idealization does not describe real genetic networks that involve a vari-

ety of levels of activation and different updating times. Generalized logical

models introduced by R. Thomas58 have more than two values, and updat-

ing between states occurs asynchronously for different genes. This method

is a discrete logical description of the regulatory system that is rigorously

associated with a standard description in terms of differential equations, so

that attractors logically identified in this way correspond exactly to those

of the continuous formalism.55,59 Its effectiveness in predicting steady gene

expression patterns has been proven in several regulatory systems, such as

the description of the development pattern of gene expression of the model

plant Arabidopsis thaliana.57

9.4.2. Well-stirred and spatial models

Most models of gene regulation dynamics see the different molecular pro-

cesses as biochemical reactions in an idealized homogeneous reaction vessel

which is consistent with the previously discussed chemical kinetics approx-

imation. However, the cell is not a well mixed reactor. It has a highly so-

phisticated and compartmentalized organization in which transport, local-

ization and channeling exist and have established functional consequences.

Spatio-temporal dynamics of genetic networks cannot be neglected without

well founded justification for each particular case studied.

There are situations where spatial localization is clearly required. This

is obviously the case for multicellular models of pattern formation and of

morphogenesis where one is interested in the response of the regulatory net-

work of each individual cell to gradients of protein concentrations across the

tissues and cellular signaling. Finer analyses of “intra-”cellular regulation

might also require one to distinguish between different cellular compart-

ments, such as the nucleus and cytoplasm, and to take into account the

diffusion and transport of regulatory proteins and of metabolites from one

compartment to another. These processes are however still not well char-

acterized experimentally, and the influence of the intracellular organization

on the cell dynamics is an open topic.
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9.5. Structure and dynamics

Once the structure of a genetic network is known and models of genetic reg-

ulation available, research can focus on understanding the system behavior

and address questions such as: how is a network wired in order to adapt

to changes such as in nutrients or temperature? How does the cell filter

noise and make correct choices, such as to divide or to commit apoptosis?

How are cellular rhythms such as cell cycle or circadian rhythms generated?

What in the system structure makes it resistant to perturbations from the

environment and damage such as DNA damage?

The behaviors of the regulatory networks are characterized by their

attractors in the multidimensional state space of molecular concentrations.

The usual tools of bifurcation analysis can then help determine transitions

and types of behavior according to the parameter values. The classical types

of dynamical systems asymptotic behaviors are found in these networks:

single steady states, multistationarity, oscillations, with a notable exception

of chaos that has still not been observed in this context.

9.5.1. Feedback circuits

Embedded or not into network modules, feedback circuits play a central role

in genetic network dynamics. As mathematically analyzed in particular by

Ren Thomas and co-workers,59 feedback circuits shape regulation in such

a way that a positive circuit is a necessary condition for multistationarity,

while a negative circuit is a necessary condition for homeostasis or stable

periodicity. Furthermore, Thomas showed that a complex network can al-

ways be decomposed into individual circuits that keep their individuality

and whose behavior can be characterized distinctly, no matter how much

they may be connected to other circuits within the network. Only their

functionality, whether and how each circuit operates, depends on the inter-

actions with the other elements in the network. Analysis in terms of circuits

is helpful for a qualitative intuition of the behavior of network elements.

9.5.2. Multistability

Multistability, also denoted multistationarity in the context of genetic net-

works, is the property of systems which can display two or more distinct

steady states under identical conditions. For a long time a number of au-

thors have suggested that different cell types, or physiological states of a

given cell, might be assimilated to different cell types corresponding to dif-



July 12, 2007 10:40 World Scientific Review Volume - 9in x 6in main

Genetic networks 227

ferent combinations of gene expression states, attractors of the network dy-

namics (see Thomas60 for a historical discussion). This hypothesis pertain-

ing to genetic networks is similar to the assumption concerning memorized

patterns in a neuronal network which motivated during the 70s’ and 80s’

theoretical investigations on the attractors of random Boolean networks.

In the context of genetic networks, S. Kauffman obtained in particular a

reasonable estimation of the number of cell types in a living organism as a

function of the number of genes.34

Several studies now document more precisely the role of gene network

multistability for cell-fate determination in cellular differentiation. For ex-

ample, the 15 gene network responsible for the floral organ formation in Ara-

bidopsis thaliana has been explored with Thomas’ logical framework17,42

showing how each primordial floral cell type can be associated with a

steady state pattern of the network dynamics. In the same spirit, other

recent works explained the determination of segment-polarity in Drosophila

melanogaster (see Thieffry56 for a comparative analysis of the applied mod-

eling approaches).

Besides differentiation, the concept of multistability helps understand-

ing the fate of singular cells. Epigenetic differences are those which can

be transmitted from cell to cell generation in the absence of any genetic

difference. Several aspects of epigenesis can be understood in terms of

dynamical systems and gene network attractors (other aspects involve non

genetic modifications of DNA in particular by methylation). A revealing ex-

ample reminded recently by R. Thomas60 is an early experiment by Novick

and Wiener:48 the genes involved in the utilization of lactose in E. coli are

lastingly on or lastingly off (for more than 150 cell generations) depending

on whether or not the culture has been initially exposed or not to a high

extra cellular concentration of a given “inducer” small molecule. The two

cell cultures, genetically identical and cultivated in identical conditions,

display lastingly one of two deeply different phenotypes, each generation

keeping the memory of an historical brief event. This behavior provides

new clues for understanding some bacterial infections, as recently suggested

by a hypothesis on the production of mucus by the pathogen Pseudomonas

aeruginosa responsible for cystic fibrosis. Mucoidy, which is currently at-

tributed to genetic mutations only, could be explained by the attractors

of the involved gene network, the pathogenic mucoidy corresponding to a

steady state of the dynamics alternative to the non-mucoid state.27
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9.5.3. Homeostasis and oscillations

Negative loops are intimately related to homeostasis and oscillatory be-

havior, either transient during the evolution to the stable state, or steady

oscillations. Homeostasis is the property of open systems, and in partic-

ular of living organisms, to maintain a stable condition, for instance the

regulation of the body temperature, blood pressure or hormone concen-

tration. Negative feedback by means of internal adjustments that oppose

the incoming environmental signals actively maintain the steady state. In

genetic networks homeostasis ensures the constant abundance of protein

concentrations robust to fluctuations.

Cellular biochemical oscillations are long known in numerous contexts

such as oscillations in peroxidase-catalyzed reactions,11 glycolytic oscilla-

tions in yeast, release of cyclic AMP in Dictyostelium amoebae,46 oscilla-

tions in intracellular Ca2+ concentration, as discussed extensively by Gold-

beter.25 These are all chains of metabolic chemical reactions. Oscillations

involving genetic regulations have been characterized more recently. In

particular, experimental advances during the last decade detail how circa-

dian oscillations, the most apparent biological rhythm, originate from the

negative feedback exercised by proteins on the expression of their genes.

Recently, data from cultured mammalian cell lines revealed oscillatory be-

havior of three genetic networks involving the transcription factors Hes1,

p53 and NF-κB.43 In each case, transient stimulation of the cells initiates

oscillatory gene expression with a period of 2-3 hours. Genetic oscillations

are however still difficult to observe since measurements are generally per-

formed on large numbers of cells, mixing individual gene expression curves

unless the cells are synchronized. New perspectives are opened by recent

studies on engineered cells with synthetic gene networks.

9.5.4. Engineering networks

In the line of the modular paradigm of gene network organization a new

field of research has emerged in the last five years under the name of “Syn-

thetic Biology” aiming at constructing artificial regulatory modules in cells.

Standard molecular biology cloning and recombinant DNA techniques are

applied in order to incorporate in bacterial cells sets of exogenous inter-

acting genes that form in vivo engineered genetic circuits with predefined

functions.

Synthetic genetic circuits provide relatively well controlled test beds in

which functions of design principles can be isolated and functions char-
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acterized in detail. Several bacterial strains have been obtained that ex-

hibit programmed behavior: oscillators,4,14,19 toggle switches,22 and auto-

regulatory homeostatic systems.6 The implemented modules are not direct

derivatives of natural circuits but were constructed with a theoretical model

in mind to accomplish a given functionality and with biological insight in

order to use components (inserted genes, plasmids) that try to avoid in-

terference with the metabolism of the engineered cell. These explorations

essentially confirmed the operating principles and theoretical approaches

of isolated genetic regulators and opened the way to new biotechnologi-

cal perspectives with the de novo creation of bio-engineered systems with

sophisticated functionality. Libraries of synthetic modules are already be-

ing compiled to facilitate new constructions suitable to different conditions

and environments.65 First steps towards implementation of cell-cell com-

munication have also been achieved exploiting genes from natural quorum

sensing, the ability of a microorganism to perceive and respond to microbial

population.65,67

Considering the importance of cell synchronization, an exciting suc-

cessive step would be to combine this cellular interaction with cell oscil-

lations.41 The synthetic oscillator implemented by Elowitz –termed the

“Repressilator”–14 showed individual cells to oscillate differently, exhibit-

ing cell-cell variation in period length, as well as variations within sin-

gle cells between successive periods. Garcia-Ojalvo et al.21 showed theo-

retically that coupling these oscillators with quorum sensing enables self-

synchronization of the cells. Individual oscillation fluctuations would thus

be reduced and the population would behave as a collective oscillator. Al-

though different genetic circuit designs of communicating oscillating cells

have been proposed,37,41 collective synchronization of engineered cells has

to our knowledge not yet been obtained. However, a first step towards

engineered spatio-temporal cell behaviors has been achieved recently in

populations with two kinds of engineered cells5 that differentiate forming

ring-like patterns.

Synthetic biology is a rapidly progressing field contributing in an inno-

vative fashion to better understanding the natural regulatory processes and

opening the way to futuristic biotechnological applications. As with proto-

typing and simulation in mechanical and electronics engineering, theoretical

modeling and dynamical analysis are essential procedures in the develop-

ment of programmed cells. This new field of biological/biotechnological

research will include mathematical approaches in an unprecedented way in

Life Science.



July 12, 2007 10:40 World Scientific Review Volume - 9in x 6in main

230 S. Bottani and A. Mazurie

9.6. Discussion

The availability of large scale genomic data is a major motivation for the de-

velopment of theoretical approaches. However, theoretical studies are still

hindered by both experimental and modeling limitations. Despite the grow-

ing call for modeling and theory in Systemic Biology, the impact of these

approaches in the practice of Life Science research is still embryonic. Mod-

eling of genetic network dynamics is in an intermediary situation between

the need for new top-down approaches taking advantage of high-throughput

technologies and the bottom-up integration of detailed molecular biology

knowledge.

9.6.1. Availability of data

Data on genetic networks are of very different quality; detailed knowledge

from single gene workbench experiments are found side by side with high-

throughput generic data at the genome scale. Databases on gene sequences

and regulatory motifs, transcription factors, protein-protein interactions,

metabolisms are growing in a seemingly exponential way and set the frame-

work for large scale network representation of their data content. In the

perspective of models of gene expression dynamics the abundance of data

from high throughput biology has indeed until now not always been useful

or sufficient for modeling due to the type, quality and biases in the available

data.

For instance, several biases may affect the interpretation of biochem-

ical networks depending on the kind of information included in the data

models. Databases use precise data models for the stored information. In

particular, current data models and their graphical network representation

do not report precisely on spatio-temporal features. However, localization

and retention of molecules in cellular sub-components are well character-

ized phenomena for many processes in the cell including regulatory ones.

Such features are in the best case only considered in detailed small-scale

models. Networks drawn from large scale data sets appear rather as a sum

of nodes and edges, in perpetual interaction, and may completely fail to

capture critical regulatory processes.40 Theoretical investigations based on

such a static view of biological networks are very likely to be misleading.

One of the main difficulties shared by gene expression models is the dif-

ficulty to quantify molecular concentrations and kinetics parameters such

as equilibrium constants or binding and unbinding rates. Modern high-
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throughput techniques are not very helpful for providing values to reaction

rates required for calculations of the dynamics. Measurement of the details

of any pathway is still a difficult and labor-intensive biochemical and genetic

job. Not surprisingly, most quantitative modeling and simulation studies

have been restricted to regulatory networks of small size and modest com-

plexity that have been well characterized with detailed experiments, such

as the lysis-lysogeny decision circuit in the phage lambda, one of the most

classic systems of molecular biology. Even in this case, it is not possible

to know the values of all the kinetic parameters in models. Values must

be hypothesized from similar parameters in other better characterized sys-

tems or adjusted with parameter fitting methods in order to reproduce the

observed behavior. As a further step, the generalization of large scale gene

and protein expression measurements with techniques such as DNA mi-

croarrays, two dimensional electrophoresis and mass spectrometry in the

recent years actually motivated this intense computer science research49 on

automated learning methods for reconstructing the subjacent interactions

networks directly from observations of their components’ activities.

Further advances in the understanding of genetic regulation can be ex-

pected from other recent technological progress that allow gene expression

measurements in single cells and give access to the variability of gene ex-

pression dynamics. High-throughput and traditional gene expression ex-

periments are generally performed on biological samples containing a very

large number of cells that smooth out cell to cell variability. However, vari-

ability can be large between cells, and due to absence of synchronization

the gene expression dynamics of a single cell can be qualitatively different

from the mean behavior observed for a whole population.39

9.6.2. Need of integration

The “cybernetic” view of cell regulation predominant among modelers up to

now has easily assimilated cells to computers or electronic devices amenable

to Boolean logic or approximations of it. Most modeling approaches of cell

regulation have been based on the idea that cellular control is mainly lo-

calized at the transcriptional level where discrete regulatory events seemed

natural. However, it is more and more clear that this view is oversimplified

and all levels of molecular processing and transport from the DNA to the

active functional protein are subject to regulatory mechanisms. Prior to

transcription different processes modulate the accessibility of genes to the

transcriptional machinery, either by chemical modifications on the chromo-
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some or by sequestration of regulatory proteins in cellular compartments

(e.g. cytoplasm). After transcription, regulation involves maturation and

splicing of the primary mRNA transcript before translation. Translation

is regulated by a large variety of processes playing on the availability of

required co-factors, amino-acids, transfer tRNA, whose concentrations are

under control of third-party genes and proteins. Before being active pro-

teins are also subject to alterations in order to obtain their active form

or to mark them for accelerated degradation: cut from peptidases, addi-

tion of chemical groups (phosphorylation, glycation...). Control of these

alterations through the corresponding enzymes is what ultimately regu-

lates the protein’s activity and half-life. Finally, let us mention that with

great surprise, new regulatory mechanisms have been discovered less than

ten years ago18 involving either double-stranded RNA sequences that si-

lence genes by tagging their RNAm for degradation in the process called

“RNA interference”, or very short single stranded RNA molecules, dubbed

“micro”RNA’s, that oppose the translation of target RNAm.45 These dis-

coveries show more and more how regulation of biological functions results

from a multitude of different molecular mechanisms acting all together and

how it cannot be restricted to a network in a given molecular space.40 To

the modelers this means dealing with greater biological complexity and

increased difficulty to estimate the correct amount of detail needed.

In biology, theoretical approaches and experimentation have rarely

worked together. If knowledge is expected from integrated theories, a

stronger connection between modelers and experimental biologists will be

required. In particular experiments should be designed with the construc-

tion of models in mind. For example, dedicated experiments focusing on

time-course microarrays might be preferred rather than sample a number

of single measurements in different conditions in order to apply parameter

fitting and network inference algorithms. On the other hand theoreticians

should avoid too much abstraction and communicate with experimental

biologists in order to interpret data correctly and avoid unfounded specula-

tions. The absence of a theoretical framework and of a rigorous language in

biology is a source of errors and misinterpretations for the non-specialists

of each studied system. Available data is often confused due to the intrinsic

difficulties of biology itself. Theory cannot avoid in-depth biological insight

to evaluate the new wealth of information and contribute with mathemati-

cal models that have an output pertaining to reality and that are effectively

interesting to biologists.
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