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integrates advances in hydrologic science and innovative remote sensing
technologies. Raising the visibility of interdisciplinary research on water
resources, it offers a suite of tools and platforms for investigating spatially
and temporally continuous hydrological variables and processes.

This full-color book examines components in the hydrologic cycle with a
range of space and time scales. Organized into five parts, it explores
hydrologic remote sensing at the local, urban, watershed, and regional
scales, as well as the continental and global scales. Contributors address
questions such as

• What are the local, watershed, and regional differences in soil moisture
and evapotranspiration when using different measurement methods and
models?

• How can we fit the scenarios of global warming potential and the remote
sensing products of snow water equivalent into hydrologic modeling to
address the changing flood and drought conditions in a watershed?

• How can we fuse the images collected by different satellites to improve
the accuracy of predictions at the global scale?

Tackling these and many other topics, the book presents new techniques
and methods for spaceborne, airborne, and ground-based measurements
and mathematical modeling. It also discusses remote sensing image
processing tools and features a wealth of real-world applications and case
studies.

This book is a useful reference for students, professionals, scientists, and
policy makers involved in the study of global change, hydrologic science,
meteorology, climatology, biology, ecology, and the agricultural and forest
sciences. It shows how hydrologic remote sensing technologies can be
used more effectively to explore global change impacts and improve the
design of hydrologic observatories.

Environmental Engineering

MULTISCALE HYDROLOGIC
REMOTE SENSING
Perspectives and Applications

K13588

6000 Broken Sound Parkway, NW
Suite 300, Boca Raton, FL 33487
711 Third Avenue
New York, NY 10017
2 Park Square, Milton Park
Abingdon, Oxon OX14 4RN, UK

an informa business

Chang
Hong

M
ULTISCALE HYDROLOGIC

REM
OTE SENSING

MULTISCALE
HYDROLOGIC
REMOTE SENSING
Perspectives and Applications

Edited by

Ni-Bin Chang  •  Yang Hong

Perspectives and Applications

K13588_cover.fhmx 1/20/12 1:02 PM Page 1 

Multiscale Hydrologic Remote Sensing: Perspectives and Applications
integrates advances in hydrologic science and innovative remote sensing
technologies. Raising the visibility of interdisciplinary research on water
resources, it offers a suite of tools and platforms for investigating spatially
and temporally continuous hydrological variables and processes.

This full-color book examines components in the hydrologic cycle with a
range of space and time scales. Organized into five parts, it explores
hydrologic remote sensing at the local, urban, watershed, and regional
scales, as well as the continental and global scales. Contributors address
questions such as

• What are the local, watershed, and regional differences in soil moisture
and evapotranspiration when using different measurement methods and
models?

• How can we fit the scenarios of global warming potential and the remote
sensing products of snow water equivalent into hydrologic modeling to
address the changing flood and drought conditions in a watershed?

• How can we fuse the images collected by different satellites to improve
the accuracy of predictions at the global scale?

Tackling these and many other topics, the book presents new techniques
and methods for spaceborne, airborne, and ground-based measurements
and mathematical modeling. It also discusses remote sensing image
processing tools and features a wealth of real-world applications and case
studies.

This book is a useful reference for students, professionals, scientists, and
policy makers involved in the study of global change, hydrologic science,
meteorology, climatology, biology, ecology, and the agricultural and forest
sciences. It shows how hydrologic remote sensing technologies can be
used more effectively to explore global change impacts and improve the
design of hydrologic observatories.

Environmental Engineering

MULTISCALE HYDROLOGIC
REMOTE SENSING
Perspectives and Applications

K13588

6000 Broken Sound Parkway, NW
Suite 300, Boca Raton, FL 33487
711 Third Avenue
New York, NY 10017
2 Park Square, Milton Park
Abingdon, Oxon OX14 4RN, UK

an informa business

Chang
Hong

M
ULTISCALE HYDROLOGIC

REM
OTE SENSING

MULTISCALE
HYDROLOGIC
REMOTE SENSING
Perspectives and Applications

Edited by

Ni-Bin Chang  •  Yang Hong

Perspectives and Applications



MULTISCALE
HYDROLOGIC
REMOTE SENSING
Perspectives and Applications





CRC Press is an imprint of the
Taylor & Francis Group, an informa business

Boca Raton   London   New York

MULTISCALE
HYDROLOGIC
REMOTE SENSING
Perspectives and Applications

Edited by

Ni-Bin Chang
Yang Hong



MATLAB® is a trademark of The MathWorks, Inc. and is used with permission. The MathWorks does not 
warrant the accuracy of the text or exercises in this book. This book’s use or discussion of MATLAB® soft-
ware or related products does not constitute endorsement or sponsorship by The MathWorks of a particular 
pedagogical approach or particular use of the MATLAB® software.

CRC Press
Taylor & Francis Group
6000 Broken Sound Parkway NW, Suite 300
Boca Raton, FL 33487-2742

© 2012 by Taylor & Francis Group, LLC
CRC Press is an imprint of Taylor & Francis Group, an Informa business

No claim to original U.S. Government works
Version Date: 20120112

International Standard Book Number-13: 978-1-4398-7763-0 (eBook - PDF)

This book contains information obtained from authentic and highly regarded sources. Reasonable efforts 
have been made to publish reliable data and information, but the author and publisher cannot assume 
responsibility for the validity of all materials or the consequences of their use. The authors and publishers 
have attempted to trace the copyright holders of all material reproduced in this publication and apologize to 
copyright holders if permission to publish in this form has not been obtained. If any copyright material has 
not been acknowledged please write and let us know so we may rectify in any future reprint.

Except as permitted under U.S. Copyright Law, no part of this book may be reprinted, reproduced, transmit-
ted, or utilized in any form by any electronic, mechanical, or other means, now known or hereafter invented, 
including photocopying, microfilming, and recording, or in any information storage or retrieval system, 
without written permission from the publishers.

For permission to photocopy or use material electronically from this work, please access www.copyright.
com (http://www.copyright.com/) or contact the Copyright Clearance Center, Inc. (CCC), 222 Rosewood 
Drive, Danvers, MA 01923, 978-750-8400. CCC is a not-for-profit organization that provides licenses and 
registration for a variety of users. For organizations that have been granted a photocopy license by the CCC, 
a separate system of payment has been arranged.

Trademark Notice: Product or corporate names may be trademarks or registered trademarks, and are used 
only for identification and explanation without intent to infringe.

Visit the Taylor & Francis Web site at
http://www.taylorandfrancis.com

and the CRC Press Web site at
http://www.crcpress.com



v

Contents
Preface ......................................................................................................................ix
About the Editors ......................................................................................................xi
Contributors ........................................................................................................... xiii

Chapter 1 Toward Multiscale Hydrologic Remote Sensing for Creating 
Integrated Hydrologic Observatories ...................................................1

Ni-Bin Chang and Yang Hong

Part I Local-Scale Hydrological remote Sensing

Chapter 2 Advanced Ground-Penetrating Radar for Soil Moisture Retrieval ......9

Julien Minet, Khan Zaib Jadoon, François Jonard, 
Mohammad Reza Mahmoudzadeh, Phuong Anh Tran, 
and Sébastien Lambot

Chapter 3 Storm Impact on the Coastal Geomorphology and Current Field 
by Wave Field Image Sequences ........................................................ 33

Stylianos Flampouris, Joerg Seemann, Christian Senet, and 
Friedwart Ziemer

Chapter 4 Comparative Analysis of Surface Energy Balance Models for 
Actual Evapotranspiration Estimation through Remotely Sensed 
Images ................................................................................................65

Carmelo Cammalleri, Giuseppe Ciraolo, Antonino Maltese, 
and Mario Minacapilli

Chapter 5 Thermal Radiation and Energy Closure Assessment in 
Evapotranspiration Estimation for Remote Sensing Validation  ........87

John H. Prueger, Joe Alfieri, William Kustas, Lawrence Hipps, 
Christopher Neale, Steven R. Evett, Jerry Hatfield, 
Lynn G. McKee, and Jose L. Chavez



vi Contents

Part II  Urban-Scale Hydrological remote 
Sensing

Chapter 6 Spatiotemporal Interactions among Soil Moisture, Vegetation 
Cover, and Evapotranspiration in the Tampa Bay Urban Region, 
Florida .............................................................................................. 113

Ni-Bin Chang and Zhemin Xuan

Chapter 7 Developing a Composite Indicator with Landsat Thematic 
Mapper/Enhanced Thematic Mapper Plus Images for Drought 
Assessment in a Coastal Urban Region  ........................................... 139

Zhiqiang Gao, Wei Gao, and Ni-Bin Chang

Part III  Watershed-Scale Hydrological 
remote Sensing

Chapter 8 Modeling Stream Flow Changes with the Aid of Multisourced 
Remote Sensing Data in a Poorly Gauged Watershed ..................... 169

Zhandong Sun, Christian Opp, Thomas Hennig, and Ni-Bin Chang

Chapter 9 MODIS-Based Snow Cover Products, Validation, and 
Hydrologic Applications  .................................................................. 185

Juraj Parajka and Günter Blöschl

Chapter 10 Modeling Snowmelt Runoff under Climate Change Scenarios 
Using MODIS-Based Snow Cover Products .................................... 213

Russell J. Qualls and Ayodeji Arogundade

Chapter 11 Multispectral Satellite Data for Flood Monitoring and 
Inundation Mapping ......................................................................... 251

Sadiq Ibrahim Khan, Yang Hong, and Jiahu Wang



viiContents

Part IV  regional-Scale Hydrological remote 
Sensing

Chapter 12 Precipitation Estimate Using NEXRAD Ground-Based Radar 
Images: Validation, Calibration, and Spatial Analysis .................... 271

Xuesong Zhang

Chapter 13 Radar Polarimetry for Rain Estimation ...........................................303

Qing Cao and Guifu Zhang

Chapter 14 Airborne Water Vapor Differential Absorption Lidar ..................... 335

Xin Wang, Hans-Joachim Eichler, and Adalbert Ding

Part V  Continental- and Global-Scale 
Hydrological remote Sensing

Chapter 15 Global Precipitation Estimation and Applications ........................... 371

Yang Hong, Sheng Chen, Xianwu Xue, and Gina Hodges

Chapter 16 Instantaneous Precipitation and Latent Heating Estimation 
over Land from Combined Spaceborne Radar and Microwave 
Radiometer Observations ................................................................. 387

Mircea Grecu, William S. Olson, and Chung-Lin Shie

Chapter 17 Global Soil Moisture Estimation Using Microwave Remote 
Sensing ............................................................................................. 399

Yang Hong, Sadiq Ibrahim Khan, Chun Liu, and Yu Zhang

Chapter 18 Microwave Vegetation Indices from Satellite Passive Microwave 
Sensors for Mapping Global Vegetation Cover ................................ 411

Jiancheng Shi and Thomas J. Jackson



viii Contents

Chapter 19 Remote Sensing and Modeling of Global Evapotranspiration ......... 443

Qiaozhen Mu, Maosheng Zhao, and Steven W. Running

Chapter 20 Validation of Gravity Recovery and Climate Experiment Data 
for Assessment of Terrestrial Water Storage Variations .................. 481

Pat J.-F. Yeh, Qiuhong Tang, and Hyungjun Kim

Chapter 21 Remote Sensing of Soil and Vegetation Moisture from Space for 
Monitoring Drought and Forest Fire Events ....................................507

Lingli Wang, John J. Qu, and Xianjun Hao



ix

Preface
Water connects physical, geochemical, and ecological processes with varying scales. 
During the last few decades, the scientific community has realized that obtaining a 
better understanding of two major complex issues across different scales in hydro-
logic cycle demands more research efforts. They include (1) how climate change 
impact could interrupt the hydrologic cycle and endanger the structure, function, and 
services provided by aquatic ecosystem; and (2) how hydrologic observatories may 
be adequately configured to overcome barriers when collecting necessary feedbacks 
within the constrained hydrologic systems with respect to multiple scales. The need 
to collect those positive or negative feedbacks thus actuates more actions to enhance 
fundamental understanding of the complex interactions within and among natural and 
human systems. With this movement, concerns about the availability and quality of 
water to sustain life and to fuel economies motivate deepened research in hydrologic 
remote sensing that can accommodate an all-inclusive capability of sensing, moni-
toring, modeling, and decision making to mitigate the natural and human-induced 
stresses on the environment. This leads to the rapid development of integrated hydro-
logic observatories with synergistic functionality that may be brought in to fit various 
purposes of water-related scientific studies across space and time scales.

Hence, this book addresses work that has been conducted throughout the world 
over the past decade, such as

 1. What are the local, watershed, and regional differences in soil moisture and 
evapotranspiration when using different measurement methods and models 
at different scales?

 2. What are the potential impacts of coastal bathymetry associated with geo-
morphology, and how do these current and wave fields affect coastal areas?

 3. How can the effects of land surface temperature, vegetation cover, evapotrans-
piration, and precipitation be collectively integrated to conduct ecohydrologic 
and drought assessment at urban regions with the aid of ground-based, air-
borne, and spaceborne remote sensing images?

 4. How can the scenarios of global warming potential and the remote sensing 
products of snow water equivalent be fitted into the hydrologic modeling to 
address the changing flood and drought conditions in a watershed?

 5. How can the images collected by different satellites be fused, synthesized, 
and integrated to promote the overall accuracy of predictions of hydrologic 
components in the hydrologic cycle at the global scale?

 6. How well may the GRACE satellite exhibit with regard to showing an all-
inclusive viewpoint to reveal the changes of total water storage in the hydro-
logic cycle?

 7. With global evapotranspiration, soil moisture, and precipitation all avail-
able at the global scale, can GRACE outputs be smoothly translated into the 
corresponding hydrologic components coherently?
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 8. How can the extent and function of relevant satellite remote sensing images 
be incorporated and concatenated as an integral part of drought and forest 
fire monitoring systems?

On this foundation, many new techniques and methods developed for spaceborne, 
airborne, and ground-based measurements, mathematical modeling, and remote 
sensing image processing tools have been collectively presented across five distinc-
tive topical areas in this book. The book will be a useful source of reference for 
undergraduate and graduate students and working professionals who are involved in 
the study of global change, hydrologic science, meteorology, climatology, biology, 
ecology, and agricultural and forest sciences. It will also be beneficial to scientists in 
related research fields, as well as professors, policy makers, and the general public.

As the editor of this book, I wish to express my great appreciation for the contri-
butions of many individuals who helped write, coedit, proofread, and review these 
book chapters. I am indebted to the 64 authors and coauthors within the scientific 
community who have shared their expertise and contributed much time and effort in 
the preparation of the book chapters. I also wish to give credit to the numerous fund-
ing agencies promoting the scientific research in hydrologic remote sensing, leading 
to the generation of invaluable findings presented in this book. I acknowledge the 
management and editorial assistance of Irma Shagla and Kari Budyk. The special 
efforts of many individuals including Dr. Hong Yang (coeditor), Dr. Chung-Lin Shie, 
Dr. Pat J.-F. Yeh, and Huei-Wen Liu are appreciated.

Dr. Ni-Bin Chang
Director, Stormwater Management Academy

University of Central Florida
Orlando, Florida

MATLAB® is a registered trademark of The MathWorks, Inc. For product informa-
tion, please contact:

The MathWorks, Inc.
3 Apple Hill Drive
Natick, MA 01760-2098 USA
Tel: 508 647 7000
Fax: 508-647-7001
E-mail: info@mathworks.com
Web: www.mathworks.com
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1 Toward Multiscale 
Hydrologic Remote 
Sensing for Creating 
Integrated Hydrologic 
Observatories

Ni-Bin Chang and Yang Hong

1.1  INTRODUCTION

The global water cycle is driven by a multiplicity of complex processes and inter-
actions between and within the Earth’s atmosphere, lands, oceans, and biological 
systems over a wide range of space and time scales. Horizontally, the water cycle 
ranges from hill slopes and headwater streams, through river basins and regional 
aquifers, to the whole continent and the globe. Timewise, it involves the dynamic 
temporal variation of processes and responses ranging from minutes to hourly, daily, 
seasonal, and interannual swings of water fluxes and storages, to rare and episodic 
events. As the time and space scales change, new levels of complexity and inter-
actions are introduced, and such multiscale nonlinearity can hardly be explained by 
simply upscaling or downscaling the data. Historically, hydrologic science has long 
relied on a spectrum of observations from the laboratory as well as field plots to 
test various hydrologic theories. Traditional responses to hydrologic variability focus 
on the statistical analysis of the regional hydrologic cycle with stationary assump-
tions. Many factors conspire against traditional hydrologic processes across space 
and time scales due to rapidly declining water resources and the nonstationarity of 
climate variations. Over the last two decades, our society has experienced global 
climate change, economic development and globalization, increased frequency of 
natural hazards, rapid urbanization, and population growth along with migration 
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activities. Water science is becoming increasingly recognized as an important ele-
ment of global environmental research.

Hydrologists often find themselves in a need to understanding the anthropo-
genic controls that influence hydrologic processes across heterogeneous landscapes. 
Within this context, how water exchanges between and within the Earth system’s 
components over a wide range of space and time scales has received wide attention 
(Krajewski et al. 2004). Consequently, when tackling those complexities, existing 
water management systems face a reduced solution space of feasible options that 
are constrained by competing and conflicting stakeholders’ interests. These inter-
ests include, but are not limited to, irrigation demand, drinking water production, 
recreation, flood control, disaster management, nonrenewable energy demand via 
hydropower production, and environmental flow requirements in terrestrial fresh-
water systems. Such a reduced solution space further increases societal vulnerability 
as global changes continue to progress.

Hydrologic sciences have been making a concerted effort to raise the visibility 
of interdisciplinary water resources research under global climate change impacts 
(Intergovernmental Panel on Climate Change 2010). Great efforts have been directed 
to extend the range and scale of observations by employing new sensor and net-
working technologies to estimate hydrologic surrogates for multiscale processes. 
This can help improve our understanding of model predictions. Over the last few 
decades, satellite remote sensing, unmatched by surface-based systems, has become 
an invaluable tool for providing estimates of spatially and temporally continuous 
hydrologic variables and processes for an emerging global hydrology era. To address 
such impacts, research areas of interest may focus on using remote sensing tech-
nologies to observe hydrologic and environmental responses to changing climate 
and land use patterns at different scales. This requires linking hydrologic theo-
ries and field observations to monitor the flux of water, heat, sediment, and solutes 
through varying pathways across scales. The need to develop more comprehensive 
and predictive capabilities now requires intercomparing observations across in situ 
field sites and remote sensing platforms, as well as cohesively integrating multiscale 
hydrologic observations to regional and global extent (Consortium of Universities for 
the Advancement of Hydrologic Science, Inc. 2011). Such an integrated hydrologic 
observatory that merges surface-based, airborne, and spaceborne data with predic-
tive capability indicates promise to revolutionize the study of global water dynam-
ics. This may especially be true if remote sensing technologies are deployed in a 
coordinated manner and the synergistic data are further assimilated into appropriate 
predictive models.

1.2  CURRENT CHALLENGES

Under the assumption of stationary water resource systems, the challenges of hy -
drologic predictability have been historically categorized as (1) model structure, 
(2) input data including initial and boundary values, and (3) parameter optimi-
zation problems. Kumar (2011) discussed two additional types of challenges 
that arose from changing hydrologic systems. These obstacles were the changes 
in spatial complexity driven by evolving connectivity patterns and cross-scale 
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interactions in time and space. These latter challenges are critical elements in the 
context of human- and climate-driven changes in the water cycle, as the emerg-
ing hydrologic structural changes induced new connectivity, and cross-scale 
inter action patterns have no historical precedence. In addition, optimizing the 
synergistic effects of sensors and sensor networks in order to provide decision 
makers and stakeholders with timely decision support tools is deemed as a criti-
cal challenge (National Center for Atmospheric Research 2002; National Science 
Foundation 2003; Chang et al. 2009, 2010, 2012). With the recent development of 
the sensors and sensor networks, however, accessing the large amount of dynamic 
sensor observations for specific times and locations has also become a challeng-
ing task (Chen et al. 2007).

In order to advance the science of hydrologic prediction under environmental 
and human-induced changes, it is essential that an integrated as well as quantitative 
method of remote sensing at the system science level is applied for investigating the 
dynamics of coupled natural systems and the built environment. Recent advances in 
hydrologic remote sensing with the aid of various data assimilation, machine learn-
ing, data mining, and image processing techniques have provided us with a reliable 
means to explore the changing hydrologic variations via a temporally and spatially 
sensitive approach. With this foundation, designing an effective hydrologic observa-
tory to facilitate essential research and education by developing new knowledge of 
hydrologic processes becomes possible.

These hydrologic observatories can tell us about what is happening in the unique 
water cycle, and the hydrologic observations oftentimes concentrate on investigating 
the dynamics between systems (such as feedback mechanisms or couplings) of water, 
how scale affects processes and our understanding of them, and the implications 
for prediction (Pacific Northwest Hydrologic Observatory 2011). To achieve these 
goals, relevant sensor platforms are used to collect a wealth of data sets that are more 
spatially and temporally comprehensive. With these different types of sensors and 
sensor networks, the relationships among the components of the hydrologic cycle at 
different scales may be linked with each other in concert with various earth systems 
models. It is even possible that these data sets may be stored in a data center for end 
users providing data and sensor planning service (Chen et al. 2007). With abundant 
data collected from these mission-oriented hydrologic observatories, the identifica-
tion of potential information via several machine learning and image processing 
techniques may be applied to potentially retrieve useful information and discover 
knowledge (Zilioli and Brivio 1997; Volpe et al. 2007; Chang et al. 2009, 2010, 
2012).

1.3  FEATURED AREAS

All of the endeavors mentioned above can be geared toward achieving a suite of 
multi scale hydrologic remote sensing tasks for advancing the hydrologic science. The 
spectrum of our book’s chapters includes all components in the hydrologic cycle with 
a range of space and time scales. They include, but are not limited to, precipitation, 
soil moisture, evapotranspiration (ET), water vapor embedded in the cloud, terres-
trial water storage, river discharge, snow pack, and improved monitoring of glaciers 
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and ice sheets. The interactions between water and energy fluxes will be emphasized 
in the context of ET and precipitation. Due to limitations of space, within this book, 
the main focus of the current research in the context of multiscale hydrologic remote 
sensing may be classified into five topical areas as follows:

 1. Topical area I: local-scale hydrologic remote sensing. The interactions 
among surface ET, overland flow, infiltration, groundwater, and coastal 
storm surge may be monitored by several instruments and sensors collec-
tively or independently. They include ground penetration radar, local sen-
sors, and sensor networks for assessing storm impact on the bathymetry 
based on radar image sequences and remote sensing satellite images for 
ET estimation and validation. These local-scale hydrologic remote sensing 
practices will be emphasized in the first part of this book. A few applica-
tions and case studies from Chapters 2 to 5 may further demonstrate a con-
temporary coverage of these issues in association with both terrestrial and 
coastal environments.

 2. Topical area II: urban-scale hydrologic remote sensing. At the urban scale, 
spatiotemporal interactions among soil moisture, vegetation cover, and ET 
due to urbanization effects in association with increasing impervious areas 
and altered hydrologic cycle may be of interest to explore. This effort may 
lead to the derivation of a composite drought indicator. These advances are 
specifically addressed in Part III of this book. A few applications and case 
studies from Chapters 6 and 7 may demonstrate a contemporary coverage 
of these issues.

 3. Topical area III: watershed-scale hydrologic remote sensing. At the water-
shed scale, snowmelt, runoff, and inundation associated with the complex-
ity of land management policies are highly interrelated with each other. 
Watershed modeling in combination with these hydrologic measurements is 
described to entail how remote sensing products can be validated and inte-
grated with modeling processes in Part III of this book. A few applications 
and case studies from Chapters 8 to 11 may demonstrate a contemporary 
coverage of these issues.

 4. Topical area IV: regional-scale hydrologic remote sensing. From local 
to urban, to watershed, and to regional scales, the rainfall and hurricane 
im  pacts come to pose a number of water problems. Ground-based radar 
stations may offer intensive information about the intensity and spatial vari-
ability of rainfall region-wide. Monitoring rainfall with ground-based radar 
stations may be greatly improved by using integrative hardware, sensors, 
algorithms, and models. The spaceborne water vapor differential absorp-
tion lidar may precisely capture the dynamic changes of hurricane and 
storm impacts. From combined spaceborne radars and microwave radiom-
eters, the nature of precipitation can be further illuminated. These advances 
are specifically addressed in Part IV of this book. A few applications and 
case studies from Chapters 12 to 15 may demonstrate a contemporary cov-
erage of these issues.
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 5. Topical area V: continental- and global-scale hydrologic remote sens-
ing. Expanding upon the predictive capabilities, hydrologic models require 
comparing observations across field sites. Sometimes such work requires 
scaling observations to regional and global extent. Global soil moisture, 
ET, precipitation, terrestrial water storage, vegetation cover, and drought 
conditions are systematically discussed in Part IV. A few applications and 
case studies from Chapters 16 to 21 with sound description of current state-
of-the-art platforms applied for contemporary research may demonstrate a 
contemporary coverage of these issues.
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Soil Moisture Retrieval
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2.1  INTRODUCTION

Soil moisture plays an important role in many environmental, agricultural, hydro-
logic, and climatic processes. In hydrology, soil moisture governs the partitioning 
of rainfall into runoff and infiltration, and neglecting its variability largely impacts 
on the prediction of solute leaching, erosion, runoff, and evaporation. In agriculture 
and irrigation applications, soil moisture is a crucial factor controlling plant growth 
and germination, particularly when saline stress is encountered. Knowing spatio-
temporal distribution of soil moisture and soil water storage capacity is therefore an 
important asset for the optimization of irrigation under a variable environment. Soil 
moisture also exerts a strong control on soil biogeochemistry, especially with respect 
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to the cycling of nitrogen and carbon from soil to the hydrosphere, biosphere, and 
atmosphere. In climatology and meteorology, the importance of the soil moisture in 
the water balance and land surface energy budget has been widely acknowledged, 
as it controls the evaporation and the sensible heat fluxes between soil and atmo-
sphere. In digital soil mapping applications, transitory soil moisture measurements 
at the field scale may actually provide information about (nearly) time-invariant soil 
attributes as soil hydraulic properties, which are dependent on soil structure and 
texture. Facing environmental contamination and increasing scarcity of resources, 
knowing the spatial variability of soil properties at the field scale at a high resolution 
is considerably appealing for designing new agricultural practices, in the framework 
of precision agriculture.

As it is exposed to continuously changing atmospheric forcing, soil moisture is 
highly variable in space and time. Determining its temporal and spatial variability 
is therefore essential for many scientific issues and applications from the field to the 
global scale. In that respect, a large number of soil moisture sensing techniques were 
used and developed in the last 50 years (Robinson et al. 2008a,b; Vereecken et al. 
2008). The only direct soil moisture measurement method is the gravimetric method, 
which consists of weighing a soil sample before and after oven-drying it at 105°C. 
In the field of hydrogeophysics, numerous indirect methods for soil moisture sensing 
exist and rely on the measurement of a physical variable that is a surrogate for soil 
moisture. Most of these methods are based on the measurement of the soil response 
when it is exposed to electric current or electromagnetic field, depending on the soil 
electromagnetic properties. Two main categories of soil moisture measurement tech-
niques are often distinguished: contact-based (or invasive) and contact-free methods 
(Vereecken et al. 2008). The contact-based methods require direct contact with the 
soil medium and include time-domain reflectometry (TDR) methods (Topp et al. 
1980; Robinson et al. 2003), capacitance sensors (e.g., Bogena et al. 2007), electri-
cal resistivity tomography (e.g., Michot et al. 2003), neutron probes (e.g., Hupet and 
Vanclooster 2002), heat pulse sensors (Campbell et al. 1991), and fiber optic sensors 
(e.g., Garrido et al. 1999). Recently, wireless sensor networks using clusters of inva-
sive sensors have been deployed, offering the potentiality of measuring soil moisture 
over a large extent with high temporal resolution (Bogena et al. 2010).

Among the contact-free methods, we may distinguish between spaceborne or 
airborne remote sensing and proximal (or ground-based) sensing methods. There 
has been a huge development in recent years in remote sensing instruments and 
platforms for soil moisture. Methods of remote sensing of soil moisture include pas-
sive (radiometer) and active (scatterometer and synthetic aperture radar) microwave 
methods that operate at various spatial and temporal resolutions (Wigneron et al. 
2003; Wagner et al. 2007). However, remote sensing methods still suffer from sev-
eral limitations. Measurement capabilities are limited over dense vegetation cover 
and by the scattering effect of surface soil roughness (Verhoest et al. 2008; Jonard 
et al. in press) because of the relatively high frequencies at which these sensors usu-
ally operate. An important drawback is the shallow penetration depth of the remote 
sensing instruments (1–5 cm), whereas a deeper characterization of soil moisture is 
desirable in many applications (Capehart and Carlson 1997; Vereecken et al. 2008). 
Finally, the large-support scale of remote sensing techniques hides the within-pixel 
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soil moisture variability, which is generally resulting in a poor agreement with small-
support scale calibrating measurements (e.g., Ceballos et al. 2005). The difference in 
support scales between large-scale remote sensing methods and small-scale invasive 
sensors may indeed reach several orders of magnitude, therefore making these two 
methods hardly comparable.

Proximal soil moisture sensing methods that are groundbased but noninvasive 
may bridge the scale gap that remains in soil moisture sensing techniques, making 
possible the characterization of soil moisture at an intermediate scale between remote 
sensing and invasive sensors. Proximal soil moisture sensing includes ground pen-
etrating radar (GPR), electromagnetic induction sensors (e.g., Martinez et al. 2010), 
and ground-based radiometers (e.g., Jonard et al. 2011). Among these options, the 
GPR method for the determination of soil moisture was the most used and applied.

2.2   SOIL MOISTURE SENSING BY GROUND-
PENETRATING RADAR

GPR is based on the propagation of a radar electromagnetic wave (typically in the 
range of 10–2000 MHz) into the ground. Wave propagation is governed by soil elec-
tromagnetic properties, that is, the dielectric permittivity ε, the electrical conductiv-
ity σ, and the magnetic permeability μ. For nonmagnetic soils as prevalent in the 
environment, μ is equal to the free-space magnetic permeability μ0 and does not 
impact on the electromagnetic wave propagation. As the dielectric permittivity of 
water (εw ≈ 80) is much larger than the one of the soil particles (εs ≈ 5) and air (εa = 
1), GPR wave propagation velocity in the soil is principally determined by its water 
content. GPR can image the soil with a high spatial resolution and up to a depth of 
several meters, depending on the frequency range of the electromagnetic waves. A 
review about recent development of GPR can be found in the work of Slob et al. 
(2010). In the areas of vadose zone hydrology and water resources management, 
GPR has been used to identify soil stratigraphy (Davis and Annan 1989; Grandjean 
et al. 2006), to locate water tables (Doolittle et al. 2006), to trace wetting front move-
ment (Saintenoy et al. 2008), to identify soil hydraulic parameters (Binley et al. 
2002; Cassiani and Binley 2005; Kowalsky et al. 2005; Jadoon et al. 2008; Lambot 
et al. 2009), to assess soil salinity (al Hagrey and Müller 2000), and to monitor con-
taminants (Cassidy 2007).

For soil moisture sensing, an excellent review of GPR applications was given by 
Huisman et al. (2003), where several methodologies of soil moisture determination 
using GPR wave propagation velocity or surface reflection were distinguished:

 1. Determination of the wave propagation time to a known reflecting interface 
using a single-offset surface GPR (Grote et al. 2003; Lunt et al. 2005; van 
Overmeeren et al. 1997; Weiler et al. 1998)

 2. Detection of the velocity-dependent reflecting hyperbola of a buried object 
using a single-offset surface GPR along a transect (Windsor et al. 2005)

 3. Determination of the wave propagation velocity using multioffset sur-
face GPR measurements above a reflecting layer (i.e., common midpoint 
method, Jacob and Hermance 2004)
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 4. Determination of the surface ground-wave velocity using multioffset and 
single-offset surface GPR (Huisman et al. 2002; Galagedara et al. 2003, 
2005a,b; Grote et al. 2003, 2010)

 5. Determination of the two-dimensional (2-D) spatial distribution of water 
by transmission tomography using borehole GPR (Binley et al. 2001; 
Alumbaugh et al. 2002; Looms et al. 2008)

 6. Determination of the surface reflection coefficient using off-ground, air-
launched GPR (Chanzy et al. 1996; Serbin and Or 2003, 2005)

Although these techniques are well established, they still suffer from major limi-
tations originating from the strongly simplifying assumptions on which they rely 
with respect to electromagnetic wave propagation phenomena. As a result, a bias 
is introduced in the estimates due to the adequacy of a limited GPR model, and 
moreover, only a part of the information contained in the radar data is used, gener-
ally the propagation time. In addition, these techniques are not appropriate in a real-
time mapping context, as usually, several cumbersome measurements are needed at 
a given location. According to Huisman et al. (2003), the main limitation of GPR 
methods may be the use of uncertain petrophysical relationships relating soil dielec-
tric permittivity, which is directly retrieved from the GPR data, to soil moisture.

Recently, some authors have proposed innovative soil moisture retrieval tech-
niques using the same GPR sensors. In that respect, Benedetto (2010) used a 
Rayleigh scattering-based method for directly determining the soil moisture, with-
out the need of calibrating the GPR system or the petrophysical relationship. Oden 
et al. (2008) determined soil surface electromagnetic properties from early-time 
GPR wavelet analysis. Lastly, van der Kruk (2006) and van der Kruk et al. (2007) 
developed an inversion method of dispersed waveforms trapped in a surface wave-
guide (i.e., when the soil is layered by freezing, thawing, or a wetting front) for 
retrieving its dielectric permittivity and thickness. Inversion of GPR data coupled 
with an accurate electromagnetic model for wave propagation in GPR systems, 
including GPR antenna modeling, may therefore increase the retrieval capabilities 
from GPR data.

2.3  FULL-WAVEFORM INVERSION OF GPR DATA

A full-waveform electromagnetic model for the particular case of zero-offset, off-
ground GPR was developed by Lambot et al. (2004a), where a single GPR antenna 
plays simultaneously the role of an emitter an and a receiver and is situated at some 
distance above the soil. The model includes propagation effects within the antenna 
and antenna–soil interactions, while this is usually not accounted for using com-
mon  GPR methods, and an exact solution of three-dimensional (3-D) Maxwell’s 
equations for wave propagation in multilayered media is considered, instead of the 
commonly used one-dimensional approach. Ultrawideband frequency-dependent 
GPR waveforms propagated to the soil are generated using a vector network ana-
lyzer (VNA). The main advantage of the VNA technology over traditional GPR sys-
tems is that the measured quantities constitute international standards and are well 
defined physically with proper calibration of the system. Soil electrical properties 
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are retrieved using an inversion of the filtered GPR waveform. Phase and ampli-
tude information of the large-frequency-bandwidth GPR signal is inherently used for 
model inversion, thereby maximizing information retrieval from the available radar 
data, both in terms of quantity and quality. The technique was validated in a series 
of hydrogeophysical applications (Lambot et al. 2004a,b, 2006, 2008, 2009; Jadoon 
et al. 2008, 2010; Minet et al. 2010, 2011; Jonard et al. 2011).

2.3.1  Modeling of the gPR SySteM

The GPR signal to be modeled consists of the frequency-dependent complex ratio 
S11(ω) between the returned signal and the emitted signal, with ω being the angu-
lar frequency. It relies on the linearity of Maxwell’s equations and assumes that 
the spatial distribution of the backscattered electromagnetic field measured by the 
antenna does not depend on the subsurface, that is, only the amplitude and phase 
change. This is expected to be a valid assumption if the antenna is not too close to the 
ground, given that the soil can be described by a planar layered medium. The model 
consists of a linear system composed of elementary model components in series and 
parallel, all characterized by their own frequency response function accounting for 
specific electromagnetic phenomena. The resulting transfer function relating S11(ω) 
measured by the VNA to the frequency response Gxx

↑ ( )ω  of the multilayered medium 
is expressed in the frequency domain by
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where b(ω) and a(ω) are, respectively, the received and emitted signals at the VNA 
reference calibration plane; Hi(ω), H(ω), and Hf (ω) are, respectively, the complex 
return loss, transmitting–receiving, and feedback loss transfer functions of the 
antenna; and Gxx

↑ ( )ω  is the transfer function of the air–subsurface system modeled 
as a multilayered medium (referred to as Green’s function below). Owing to inherent 
variations in the impedance between the antenna feed point, antenna aperture, and 
air, multiple wave reflections occur within the antenna. Under the assumption above, 
these reflections can be accounted for exactly using the antenna transfer functions, 
which thereby play the role of frequency-dependent, global reflection, and transmis-
sion coefficients. In that way, the proposed model inherently takes into account the 
multiple wave reflections occurring between the antenna and the soil. The antenna 
transfer functions are determined in the laboratory using measurements in known 
medium and antenna configuration. These antenna transfer functions inherently 
account for the frequency-dependent phase center (Jadoon et al. 2011). Using these 
antenna transfer functions, the measured Green’s function Gxx

↑ ( )ω  that depends 
solely on the medium can be derived from the raw measured data S11(ω) using
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The solution of Maxwell’s equations for electromagnetic waves propagating in 
multilayered media is well known. Following the approach of Lambot et al. (2004a), 
the analytic expression for the zero-offset Green’s function in the spectral domain 
(2-D spatial Fourier domain) is found to be
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where the subscript n equals 1 and denotes the first interface and first layer (in prac-
tice, the air layer); Rn

TM
 and Rn

TE are, respectively, the transverse magnetic (TM) and 
transverse electric (TE) global reflection coefficients (Slob and Fokkema 2002) 
accounting for all reflections and multiples from surface and subsurface interfaces; 

Γn is the vertical wave number defined as Γn n nk= +ρ ξ η2 ; kρ is a spectral-domain 

transform parameter; ξn = jωμn; ηn = σn + jωεn; and j = −1.
The transformation of Equation 2.3 from the spectral domain to the spatial 

domain is carried out by employing the 2-D Fourier inverse transformation:
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which reduces to a single integral in view of the invariance of the electromagnetic 
properties along the x- and y-coordinates. We developed a specific procedure to 
properly evaluate that singular integral using an optimal integration path (Lambot 
et al. 2007). In addition to avoiding the singularities (branch points and poles), the 
path allows for minimizing the oscillations of the complex exponential part of the 
integrand, which makes the integration faster.

2.3.2  inveRSion of gPR data

Inversion of Green’s function is formulated by the complex least squares problem as 
follows:
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where Gxx
*↑ ↑= Gxx ( )ω  and G bxx

↑ ↑= Gxx ( , )ω  are vectors containing, respectively, the 
observed and simulated radar measurements, from which major antenna effects 
have been filtered using Equation 2.1; C is the error covariance matrix; and b is 
the parameter vector containing the soil electromagnetic parameters, which are the 
soil relative dielectric permittivity ε and electrical conductivity, and layer thick-
nesses to be estimated. As function ϕ(b) has usually complex topography, we use the 
global multilevel coordinate search algorithm (Huyer and Neumaier 1999) combined 
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sequentially with the classical Nelder–Mead simplex algorithm (Lagarias et al. 1998) 
for minimizing the function.

2.3.3  PetRoPhySical RelationShiPS

A petrophysical relationship is necessary for translating the optimized dielectric 
permittivity ε from GPR data inversion into volumetric soil moisture θ. Reviews 
of ε– θ relationships can be found in the works of Huisman et al. (2003), Robinson 
et al. (2003), Ponizovsky et al. (1999), Fernandez-Galvez (2008), and Steelman and 
Endres (2011). Generally, petrophysical relationships are developed by two main 
approaches. The first approach is empiric and uses measurements of dielectric per-
mittivity for a variety of soil types at different water contents to construct the regres-
sive polynomial formulas relating the water content to the dielectric permittivity. 
The most frequently used empirical formula is the relationship suggested by Topp 
et al. (1980):

 θ ε ε ε= − × + × − × + ×− − − −5 3 10 2 92 10 5 5 10 4 3 102 2 4 2 6 3. . . . .  (2.6)

This equation has been widely applied to predict soil moisture from TDR and GPR 
measurements, and its validity was established in many studies (Drungil et al. 1989; 
Hallikainen et al. 1985; Roth et al. 1992). However, its applicability appeared to be 
poor for organic, clayey, and fine-textured soils (Dirksen and Dasberg 1993; Todoroff 
and Langellier 1998; Ponizovsky et al. 1999).

The second approach is more theoretical and derives the water content from 
dielectric mixing models of soil. According to this approach, soil is a complex mix-
ture of air, water, and soil particles. The permittivity of soil, therefore, is predicted 
from the permittivity of each component weighted by their volume fraction. A gen-
eral formulation of a commonly adopted dielectric mixing model is the power law 
model:
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in which ϕ is the soil porosity; εa, εw, and εs are the permittivities of air, water, and 
soil particles, respectively; and α is the empirical power coefficient of the equation, 
which holds for the spatial structure of soil mixture and its orientation with respect to 
the electromagnetic field. Different power coefficients were proposed based on cali-
bration with empirical data. Birchak et al. (1974) used the coefficient of 0.5, which 
is widely known as the complex refractive index model (CRIM). CRIM was also 
confirmed by Shutko and Reutov (1982), Roth et al. (1990), and Gorriti (2004) as the 
most suitable power law model. By contrast, Dobson et al. (1985) found that α = 0.65 
enabled describing the complex permittivity at the frequency range from 1.4 to 18 
GHz for different soil types. Compared to empirical formulas, this approach takes 
into account the composition of soil materials, and thus, it is expected to better pre-
dict the water content. However, in order to estimate the water content, the approach 
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requires prior knowledge of the porosity of the soil material and permittivities of the 
individual constituents.

2.4  VALIDATION AND APPLICATIONS

The developed GPR method was widely validated in laboratory experiments in dif-
ferent soil configurations, including two-layered soil structure (Lambot et al. 2004a), 
shallow soil layering (Lambot et al. 2006; Minet et al. 2010), continuously vary-
ing soil moisture profile (Lambot et al. 2004b), and the presence of high electrical 
conductivity (Lambot et al. 2006). Herein, validation and applications of the GPR 
method for soil moisture sensing and mapping in field conditions are presented.

2.4.1  MaPPing of Soil MoiStuRe in agRicultuRal fieldS

An important asset of using off-ground GPR in proximal soil sensing applications 
is that no contact with soil is required, thereby allowing for fast acquisition without 
“stop-and-go” of the acquisition platform. For field acquisition, the GPR system 
was mounted on an all-terrain vehicle (ATV) with an accurate Global Positioning 
System  (GPS). Figure 2.1 presents the ATV holding the GPR system, which is 
composed of the VNA and an ultrawideband horn antenna (frequency range of 
200–2000 MHz), the GPS, and a PC integrating the measurements. Using this 
mobile platform, GPR measurements can be acquired at a high resolution (~1 m) 
over a large extent (several hectares) within a limited time frame (>1000 measured 
points/h). GPR inversion allows for retrieving soil dielectric permittivity values 
that were translated in soil moisture using Equation 2.6 and then interpolated. Soil 

FIGURE 2.1  ATV holding the GPR, the GPS, and a PC. The GPR horn antenna is situated 
at the back of the ATV at around 1 m above the soil surface.
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moisture is measured within an antenna footprint of about 1 m2 and with a penetra-
tion depth of about 10 cm.

Using the GPR mounted on the ATV, we acquired 3572 GPR point measure-
ments in a 5.5-ha agricultural field in Cruchten, Luxembourg, on 13 March 2009. 
The soil was bare with little vegetation and limited surface roughness, as neither 
tillage nor other field work was performed for 5 months. Soil moisture was retrieved 
by an inversion (see Equation 2.5) of the filtered GPR data, with soil modeled as a 
homogeneous medium. In order to validate the soil moisture estimates, soil samples 
for gravimetric measurements were taken in 31 regularly spaced locations across 
the field. Figure 2.2 presents the surface soil moisture map from the interpolation of 
point measurements using ordinary kriging.

The soil moisture pattern appeared to be mainly explained by soil texture, as the 
driest areas in the northwest of the field were characterized by a larger sand fraction 
that may increase the soil hydraulic conductivity and gave rise to a faster drying in 
the surface. As the field was rather flat, no water redistribution seemed to occur, and 
the soil moisture pattern was not determined by topography. Figure 2.3 shows the 
comparison between interpolated GPR-derived dielectric permittivity and soil mois-
ture measurements using gravimetric measurements. A Topp’s-like petrophysical 
relationship (Equation 2.5) was fitted over the data. There was a very good agree-
ment between these two variables, with a root mean square error (RMSE) of 0.023 
m3/m3. The residual discrepancies were mainly attributed to the different support 
scales of the two soil moisture measurement techniques with respect to the small-
scale spatial variability of soil moisture and to the different penetration depths.

In that respect, in another field experiment using the same GPR system, Jadoon et 
al. (2010) performed several GPR and TDR measurements along a transect, with five 
TDR measurements within each GPR footprint. Figure 2.4 presents the comparison 
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FIGURE  2.2  Soil moisture map from interpolated GPR soil moisture measurement in 
Cruchten, Luxembourg, 13 March 2009. Soil moisture values from gravimetric measure-
ments are displayed on the map with the same color range.
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between GPR and TDR estimates along the transect. A general decrease in soil 
moisture along the transect can be observed with both methods. While an RMSE 
between TDR and GPR estimates of only 0.025 m3/m3 was found, a soil moisture 
variability of 0.02–0.07 m3/m3 was measured by TDR within GPR footprints. Soil 
moisture measured by the GPR is therefore the integration of the small-scale soil 
moisture variability within the footprint.

In another field experiment, the repeatability of the GPR method for soil moisture 
sensing was evaluated by performing three repetitions of GPR measurements in a 
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FIGURE  2.3  Comparison between interpolated GPR-derived dielectric permittivity and 
ground-truth soil moisture measurements for the field campaign in Cruchten.
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2.5-ha field within 3 h. The repeatability error was equal to 0.017 m3/m3 and was 
mainly attributed to the interpolation uncertainties, as GPR measurements were not 
taken exactly at the same locations between the repetitions. The GPR method for soil 
moisture sensing appeared highly precise and reproducible owing to the accurate 
modeling of the GPR system and the high-quality information that is recorded by 
VNA over a large frequency bandwidth.

2.4.2  coMPaRiSon with the diRect gRound-wave Method

The off-ground GPR method was compared with the commonly used ground-wave 
method using on-ground GPR (e.g., Galagedara et al. 2003) for soil moisture sens-
ing in field conditions. In a bistatic GPR system (i.e., composed of transmitting and 
receiving antennas), the GPR ground wave is the signal traveling directly from a 
transmitting to a receiving antenna through the upper centimeters of the soil, and 
it is the only wave of which the propagation distance can be known a priori. GPR 
ground wave can thus be used for determining soil moisture without knowledge of 
soil depth or in the absence of any method that clearly reflects soil interface. Ground 
waves can be identified from single trace analysis (STA) acquisitions, where the 
transmitting and receiving antennas are separated by a fixed antenna separation 
(single-offset GPR). Compared to multioffset GPR methods, the STA approach is 
more appropriate for mapping large areas owing to its practicability (Lehmann and 
Green 1999).

A 5-ha field near Bastendorf, Luxembourg, was surveyed using the two GPR 
methods in September 2010, a few hours after a precipitation event. A pulse radar 
combined with a pair of 400-MHz bow-tie antennas was used for ground-wave 
acquisition. The dielectric permittivity was derived from the ground-wave veloc-
ity using the STA approach. For the off-ground GPR, the dielectric permittivity 
was retrieved using inversion of the radar data in the time domain, focusing on the 
surface reflection. Dielectric permittivities were then translated in volumetric soil 
moisture using  Topp’s relationship (Equation 2.5). Volumetric soil moisture was 
independently measured by soil core sampling at 27 locations across the field. Figure 
2.5 compares the soil moisture maps derived from the off-ground GPR inversion 
and ground-wave on-ground GPR method. There was an overall good agreement in 
the average soil moisture between the two techniques, but particular soil moisture 
patterns appeared different. These discrepancies could be due to the different pen-
etration depths of the two GPR methods. In that respect, the off-ground GPR may 
sense the first 5 cm, whereas the ground-wave technique may reflect soil moisture 
from larger depths (up to 20 cm). The larger spatial variability of the soil moisture, 
which is observed with the off-ground GPR, could be related to its shallow depth of 
characterization, as the shallow soil layer is more influenced by varying atmospheric 
conditions than the deeper layer. The high soil moisture values that are sensed at 
the east of the field by the off-ground method may also originate from the shallower 
characterization of the off-ground GPR, as the survey was following a precipitation 
event. The soil sampling locations and corresponding volumetric soil moisture val-
ues are depicted with circles on the maps.
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2.4.3  coMPaRiSon with gRound-BaSed RadioMetRy

Ground-based sensors are particularly necessary for improving and validating large-
scale remote sensing data products. Passive microwave sensors were mainly devel-
oped for spaceborne remote sensing of soil moisture, but ground-based radiometers 
were also applied at the field scale. In that respect, we compared the off-ground 
GPR system with an L-band radiometer to map surface soil moisture at the field 
scale  (Jonard et al. 2011). The experiment was conducted on a bare agricultural 
field at the Selhausen test site of the Forschungszentrum Jülich GmbH (Germany) 
on July 14, 2009. GPR and L-band radiometer data were collected on a 72 × 16 m2 
experimental plot consisting of eight transects with 18 measurement points each. In 
addition, TDR measurements were performed within the footprints of the GPR and 
the radiometer as ground-truth information. The off-ground GPR and the L-band 
radiometer JÜLBARA were mounted on the back of a truck (Figure 2.6). The Dicke-
type radiometer JÜLBARA was equipped with a dual-mode conical horn antenna 
(aperture diameter = 68 cm, length = 61 cm). The radiometer antenna aperture was 
situated about 2 m above the soil surface and directed with an observation angle of 
53° relative to the vertical direction. The GPR antenna aperture was about 1.2 m 
above the ground with normal incidence. The brightness temperature (TB) measured 
with the radiometer was used to derive the soil surface dielectric permittivity. TB 

was measured at horizontal and vertical polarizations in the frequency range of 
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FIGURE 2.5  Comparison between the off-ground GPR full-waveform inversion (a) and the 
on-ground GPR STA approach (b) for soil moisture mapping at the field scale.
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1.400–1.427 GHz. For GPR, the dielectric permittivity was retrieved using inversion 
of the radar data in the time domain, focusing on the surface reflection.

The estimated surface soil moisture from GPR, radiometer (considering the 
average between the horizontal and vertical polarizations), and TDR measurements 
are displayed in Figure 2.7. Although the overall soil moisture patterns were reason-
ably well reproduced by the three techniques, significant differences in the absolute 

FIGURE 2.6  GPR and L-band radiometer mounted on a truck to measure surface soil rela-
tive dielectric permittivity. (Adapted from Jonard, F. et al., IEEE Transactions on Geosciences 
and Remote Sensing, 49(8), 2863–2875, 2011.)
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moisture values were observed. These discrepancies can be attributed to different 
sensing depths and footprint areas and different sensitivities to soil surface rough-
ness. For GPR, the effect of roughness was excluded by operating at low frequen-
cies (0.2–0.8 GHz) that were not sensitive to the field surface roughness according 
to Rayleigh’s criterion. The RMSE between volumetric soil moisture measured by 
GPR and TDR was 0.038 m3/m3. For the radiometer, the RMSE decreased from 
0.062 m3/m3 (horizontal polarization) and 0.054 m3/m3 (vertical polarization) to 
0.020 m3/m3 (both polarizations) after accounting for roughness using an empirical 
model that required calibration with reference TDR measurements (see Jonard et al. 
2011 for details). Relatively accurate soil moisture retrievals were possible with the 
off-ground GPR and L-band radiometer, although accounting for surface rough-
ness was essential for the L-band radiometer. Future improvements may focus on 
the potential radiometer and GPR synergies for improving soil moisture estimates, 
to be applied, for instance, in the upcoming NASA’s Soil Moisture Active Passive 
mission.

2.4.4  Soil MoiStuRe PRofile chaRacteRization

For most hydrologic and agricultural applications, it is more relevant to character-
ize the root-zone soil moisture (0–30 cm) rather than shallow surface soil moisture 
(0–10 cm; Vereecken et al. 2008). In addition, decoupling of surface and subsurface 
soil moisture may occur under various specific conditions such as the case when 
considering a wet soil subject to fast evaporation or the propagation of a wetting front 
in a dry soil, especially in coarse materials (Capehart and Carlson 1997). In that 
respect, the relatively low frequency of the GPR allows a larger penetration depth 
than remote sensing instruments. Moreover, owing to the large frequency bandwidth 
of the ultrawideband GPR system that we used, information over different depths can 
be retrieved from the GPR data.

GPR data inversion accounting for two-layered and continuously varying soil 
moisture profile was thus performed with GPR field data acquired over a layered 
soil in an agricultural field in Walhain, Belgium (Minet et al. 2011) using the same 
off-ground GPR approach as presented above. Following dry conditions, the shal-
low  surface soil was crusted and drier than the subsurface soil. Figure 2.8 pre-
sents the two-layered and profile model inversion soil moisture maps. Surface and 
subsurface soil moisture maps from two-layered and profile inversions showed, in 
general, a coherent soil moisture profile with respect to terrain observations, that is, 
soil moisture increases with depth. The subsurface (or second layer) soil moisture 
was characterized by a lower spatial coherence, with a larger nugget effect, denot-
ing that retrieved values may be more uncertain than the surface (or first layer) soil 
moisture, as outlined by numerical experiments (not shown). The first-layer thick-
nesses retrieved in the two-layered model inversions were in good agreement with 
the depths of inflexion points of soil moisture profiles in the profile model inversions 
and were on average, about 4 cm. Except for some particular difference, the surface 
soil moisture retrieved by the two-layered or profile model inversions appeared very 
similar, whereas the subsurface (or second layer) soil moisture differed between the 
two model inversions. When assuming a homogeneous soil medium, the retrieved 
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soil moisture was, in general, in the intermediate range between surface and sub-
surface soil moisture (not shown). The agreement between the different model 
inversions indicated the well posedness of the GPR inversion for determining multi-
layered soil properties.

2.4.5  tiMe-laPSe gPR MonitoRing

In field conditions, Jadoon et al. (2010) performed repeated GPR measurements for 
20 days with a time step of 15 min in order to monitor the dynamics of the near-
surface soil moisture content. The off-ground GPR antenna was installed 1 m above 
the ground, and the surface of the soil was exposed to natural processes, that is, pre-
cipitation and evaporation. The permittivity of the soil was estimated by GPR data 
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inversion in the time domain, focusing on the surface reflection. Topp’s relationship 
(Topp et al. 1980; Equation 2.5) was used to infer soil moisture from inversely esti-
mated permittivity. At the same field site, Topp’s relationship was known to provide 
good results (Weihermüller et al. 2007), with an RMSE of 0.021 m3/m3 between the 
volumetric soil sample and TDR estimates.

Figure 2.9a shows the hourly observation of precipitation and potential evapora-
tion. Three major precipitation events occurred during the time-lapse GPR measure-
ments. Figure 2.9b shows the GPR data in the time domain. The effect of precipitation 
events can be visually observed in the radar data, as they resulted in strong reflec-
tions from the soil surface. The permittivity of the soil increased with moisture, and 
the radar signal shows high amplitude of reflection from the soil surface during the 
time of precipitation.
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FIGURE  2.9  (a) Precipitation and evaporation flux values (negative for downward flux) 
as a function of days of the year recorded over a 20-day period (meteorological station at 
Selhausen, Germany), (b) measured Green’s function represented in the time domain with a 
measurement time step of 15 min, (c) water content inferred from a GPR signal inversion, and 
(d) maximum PtP reflection recorded in a time-domain GPR signal. In (a) and (c), the gray 
patches correspond to the time when there was almost no evaporation. (Adapted from Jadoon, 
K. Z. et al., Near Surface Geophysics, 8(6), 483–491, 2010.)
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Figure 2.9c shows the soil moisture inferred from time-lapse GPR measurements. 
The top few centimeters of the soil were sensitive to evaporation and dried more 
rapidly. This effect can be observed by the faster decrease in the GPR-derived soil 
moisture. During the night, a slight increase in the surface soil moisture occurred, 
most likely because of the dew, which can be observed in the GPR-estimated soil 
moisture. For instance, in Figure 2.9a, four gray patches represent the periods when 
there was almost no evaporation. These periods are highlighted in Figure 2.9c, show-
ing the corresponding slight increase in the GPR-derived water content. Three undis-
turbed cylindrical samples of 100 cm3 were extracted near the time-lapse GPR 
setup. The mean saturated soil moisture estimated from the three soil samples was 
0.412 m3/m3. At the time of the precipitation events, the mean of the three maxi-
mum soil moisture estimated by GPR was 0.426 m3/m3, which is very close to the 
saturated soil moisture inferred from the soil samples. The slight difference in the 
saturated soil moisture obtained by the two methods may be due to the different 
characterization scales, soil spatial variability, and the petrophysical model relating 
dielectric permittivity to water content, or a combination of these three major fac-
tors. Figure 2.9d depicts the maximum peak-to-peak (PtP) amplitude of the signal 
recorded between 10.5 and 11.0 ns in Figure 2.9b. The trend of the PtP amplitude 
corresponded well to the evaporation and precipitation events. The maximum PtP 
amplitude can be observed during precipitation events, and the decreasing trend 
shows the effect of evaporation.

2.4.6  teMPoRal StaBility of Soil MoiStuRe PatteRnS

Soil moisture is an ephemeral variable characterized by a high spatial and temporal 
variability. When installing soil moisture point measurement devices (e.g., TDR 
and capacitance probes), representative locations of a field or catchment in terms of 
soil moisture would be preferred. In that respect, several authors have investigated 
the temporal stability of soil moisture pattern (e.g., Guber et al. 2008). Using time-
lapse GPR measurements, we characterized the spatiotemporal soil moisture distri-
bution in a 2.5-ha agricultural field in Vieusart, Belgium, using five high-resolution 
acquisitions of GPR data in March and April 2010 (Minet et al. in preparation; 
Figure 2.10).

The first three dates were characterized by dry conditions, whereas rainfalls were 
observed the day before the fourth date. In Figure 2.10, zones where interpolated soil 
moisture values are equal to the field average (±0.01 m3/m3) are outlined by black 
hatched areas. These zones intersect between the five dates (orange areas), indicat-
ing time-stable locations for the field average soil moisture. There was a remarkable 
temporal stability of soil moisture patterns for the first three and the two last dates, 
respectively. However, due to moderate rainfalls (24.8 mm), the soil moisture pattern 
largely changed between the third and fourth dates. In particular, the zones indicat-
ing the spatial-average soil moisture shrank from dry to wet conditions as the stan-
dard deviation of soil moisture increased. Finally, the time-stable zones indicating 
the field average appeared to be located in mid-slopes areas, as already noticed by 
Jacobs et al. (2004). Nevertheless, field acquisitions in other seasons are needed to 
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fully investigate soil moisture patterns and to relate them to soil and/or topographic 
attributes.

2.5  CONCLUSIONS

In this chapter, we emphasized the high capabilities of GPR for soil moisture char-
acterization at the field scale in order to bridge the scale gap in soil moisture sens-
ing between large-scale remote sensing platforms and small-scale invasive sensors. 
We presented an advanced off-ground GPR method for quantitatively measuring 
soil moisture based on the VNA technology and an accurate 3-D modeling of GPR 
wave propagation in the antenna–soil system. It is worth noting that this GPR 
approach also applies to common time-domain GPR systems. This proximal sens-
ing GPR method proved to be particularly appropriate for soil moisture mapping at 
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FIGURE 2.10  Soil moisture maps in a 2.5-ha field in Vieusart, Belgium, for five dates in 
March and April 2010. Temporal stability of field average soil moisture (±0.01 m3/m3) is out-
lined by hatched areas. (Adapted from Minet, J. et al., Spatiotemporal pattern of soil moisture 
measured by a proximal GPR in an agricultural field, in preparation.)



27Advanced Ground-Penetrating Radar for Soil Moisture Retrieval

a high spatial resolution at the field scale due to its rapidity and to the air-launched 
configuration of the antenna. The soil moisture measurements were found to be 
highly accurate and precise when comparing with the ground-truth measurements 
and repeating the acquisition. The relatively large footprint of the GPR antenna 
allows for integrating the soil moisture measurement at a larger support scale than 
invasive sensors. When compared to commonly used ground-wave analysis based 
on on-ground GPR, the observed differences were mainly attributed to the differ-
ent depths of characterization. The off-ground GPR system resulted in similar soil 
moisture maps compared to ground-based radiometry, whereas the latter technique 
required ground-truth measurements of soil moisture for calibration with respect 
to the surface roughness characterization. The large frequency bandwidth at which 
the GPR operates allowed for maximizing the information retrieval capabilities 
and, especially, to characterize a two-layered or continuously varying moisture 
profile. The off-ground GPR was also used for time-lapse measurements of soil 
moisture that were interpreted according to meteorological conditions. Finally, 
time-lapse measurements over a field allowed for revealing the temporal stabil-
ity of soil moisture patterns. This tool is promising for studying the spatiotempo-
ral variability of soil moisture at the field scale, validation of remote sensing of 
soil moisture products, improvement of hydrologic modeling through data assimi-
lation, and precision agriculture and irrigation applications. In particular, high-spa-
tial-resolution GPR acquisitions may be combined with high-temporal-resolution 
grounded sensor networks for an unprecedented spatiotemporal characterization of 
soil moisture patterns.
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3.1  INTRODUCTION

The dynamics of coastal zones with intensive sea–land interactions are complex, and 
their interaction mechanisms are under continuous investigation. The coastal pro-
cesses and their variability are driven by the interaction of waves, currents, winds, 
and tides and their enormous forces that are applied on the bathymetry, causing mas-
sive changes in the coastal geomorphology by accreting or eroding the shoreline. 
The sensing, monitoring, and modeling of such physical processes of coastal envi-
ronments are crucial for the sustainable development of coastal regions and effective 
management of the available land and water resources.

The acquisition of the appropriate data is essential but challenging, as the spatial 
extent of the coastal phenomena varies from centimeters to kilometers, and the time 
scale of the processes varies from milliseconds to decades. An example of the inter-
action of the phenomena is illustrated in Figure 3.1 for Sylt, a barrier island in North 
Sea. The general practice has proven that a coastal monitoring system works well 
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FIGURE 3.1  Bathymetry and synergy of the hydrodynamic processes in the area of inves-
tigation. Symbols mark the position of the instruments during the experiment. The dashed 
square demonstrates the coverage area of the radar.
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when employing a multidisciplinary approach for diagnosing the dynamics of beach 
and littoral zones. Typically, the monitoring data of physical processes are acquired 
with in situ probes, which provide long-term time series data with high temporal 
resolution. Their main disadvantages are the high cost of deployment and mainte-
nance, as well as the limited spatial information. On the other hand, satellite remote 
sensing products have good spatial coverage, but their temporal and spatial resolu-
tions in littoral zones are insufficient for resolving the scales of dominant phenom-
ena. Similarly, bathymetric surveys are rare and expensive due to the long shipping 
time. Consequently, the temporal evolution of the morpho-dynamically active areas 
is almost always undersampled by in situ measurements, or in other words, huge 
sand transports during storm events cannot be monitored. The bathymetry in most 
of the studies is considered static, even though it represents the response of the sys-
tem to the forcing. By combining the advantages of the in situ observations with the 
remote sensing data, the ideal instrument is a ground-based synoptic sensor, which 
provides two-dimensional (2-D) time series data from the sea surface, independent 
of external factors such as daylight or meteorological conditions. X-band radars are 
devices that fulfill those observational requirements.

This chapter is focused on the determination of the bathymetry and current field 
based on the analysis of inhomogeneous radar image sequences of a dynamic and 
dispersive surface. The core of the method is the analysis of the wave field properties 
in intermediate depths and their inversion by a known wave theory. The principle 
of the method is the wave shoaling as the wave field approaches the shore or shal-
low areas as well as the depths where it interacts with the sea bottom and where the 
waves are shortened. By having series of sea surface images, the determination of 
the local phase velocity is possible by geolocating the distance between successive 
wave crests based on the inversion for the estimation of the local bathymetry and 
current field. The method is independent of the imaging device but requires image 
sequences. This general principle has been used in several investigations (Seemann 
et al. 2000b; Hasan and Takewaka 2007). In this study, a relatively new algorithm is 
applied, which is the Dispersive Surface Classificator (DiSC; Senet et al. 2008). The 
objective of this investigation is the measurement of the sea surface current field and 
the estimation of the bathymetric change in the coastal zone of Sylt during a 10-day 
severe storm.

3.1.1  aRea of inveStigation

The island of Sylt is the northernmost sandy barrier island of the Frisian island chain 
on the German North Sea coast; it is located about 30 km off the mainland, close 
to the Danish border. The shape of the island is oblong due to the hydrodynamic 
impact. This study focuses on the large sandy spit system at the northern end of the 
island, List West, which was formed during the Holocene (Dietz and Heck 1952). 
The contemporary surface geological formation is based on the periodic growth and 
migration of sand dunes (Lindhorst et al. 2008), which propagate toward the tidal 
channel system to the north and the leeward side of the island. Nowadays, since 
1978, the shoreline has stabilized by regular beach nourishment, approximately 
every second year (Doddy et al. 2004).
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On the north side of the area of interest, there is a main shipping channel, Lister 
Tief. The width of this tidal channel is 2.5 km and its depth exceeds 30 m. At its bot-
tom, there are sand dunes having a 200–500 m wavelength and 5–10 m-height and 
migrating about 80 m per year (Hennings et al. 2004). The west side of the island, 
toward the open sea, is characterized as a strand plain, but at the isoline of 3 m, there 
is a long-shore bar, which has great seasonal, annual, and hyperannual variability in 
time and space. In addition, on the northwestern side of the island, there is a rela-
tively shallow, maximum-depth 12-m shipping channel, the Lister Landtief. Between 
the two channels, there are several shoals, where the wave field is refracted, and the 
wave field loses its energy by breaking. The tidal inlet is considered wave protected. 
Figure 3.1 illustrates all the geomorphological details, and the white square marks 
the exact area of interest.

The typical hydrodynamics of the island are dominated by a semidiurnal lower 
to upper mesotidal regime with a tidal range of 1.8–2.2 m (Backhaus et al. 1998). In 
the deep traffic channels to the west of List West, the current velocities measured 
by an acoustic Doppler current profiler (ADCP) are between 0.2 and 1.2 m/s with a 
moderate breeze condition (3–4 Beaufort; Cysewski 2003). Similar measurements, 
at the tidal inlet and in the tidal channel at the north of Ellenbogen, demonstrated a 
maximum near-surface current velocity of 2.0 m/s. High-resolution radar and ship-
based measurements have shown the significant impact of the bathymetry and of the 
submarine geostructures on the current field (Kakoulaki 2009). The westerly winds 
are dominant (Mueller 1980; Ahrendt 2001). The wave measurements at a depth of 
12 m offshore Westerland have shown that the dominant wave direction is west–
southwesterly during normal conditions and westerly during storm conditions. The 
mean wave height is calculated from the available data as 1.5 m, with a maximum 
value of 5 m (BSH 2009).

In the inlet, the tidal currents cause cross-shore transport through the channel 
between the barrier islands. At the west side of the island, tidal and wave-induced 
currents are dominant seaward of the long-shore bar, resulting in sediment suspen-
sion and transport to the north (Sistermans and Nieuwenhuis 2004). The long-
shore transport along the coast depends on the approaching angle of the waves 
to the shore. With foreshore normal or slightly oblique waves and a long-shore 
variation in wave height, a cell circulation system is generated. Judging from the 
orientation of the coast and the lack of embayment and cusps along the beach, it 
seems that usually the waves break with an appreciable angle with respect to the 
shore; therefore, the flow is dominated by a long-shore directed current, and the 
circulation cells have not been observed in the spatial scale of the experiment 
(Figure 3.1). In general, the near-shore flow is the complex, synergic result of the 
waves and tides, so in any case, the impact of the water circulation is the continu-
ous erosion and movement of the sediment offshore and to the northern end of the 
island.

3.1.2  exPeRiMental SetuP

The complexity of the natural environment requires synergetic monitoring by sev-
eral systems. Radar data sets are acquired by Helmholtz-Zentrum Gessthacht (HZG) 
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in the area for more than a decade. In the following paragraphs, details about the 
instrumentation for all the analyzed data are presented.

3.1.2.1  Radar Data
The monitoring station was mounted near the lighthouse List West on the island of 
Sylt. The radar radius covered the Lister Landtief and part of the Lister Tief. The 
instrument used for acquisition of the sea surface is a software–hardware combina-
tion described in many publications (e.g., Borge et al. 1999), as part of the Wave 
Monitoring System (WaMoS), consisting of a Furuno FR 1201 nautical radar, a 
WaMoS II analog–digital converter, and a WaMoS II software package for the acqui-
sition of the radar images. The instrument used for observation is a ground-based 
nautical X-band radar with horizontal polarization, mounted 25 m above the Normal 
Zero reference level, which is considered a common reference level in Germany. The 
grazing incidence angle (the angle between the horizon and the radar view direction) 
varies between 1º and 5º, depending on the distance from the radar; therefore, the 
radar measurement is considered as a low-grazing-angle measurement.

Sequences of radar data are acquired on an hourly basis. The sequences consisted 
of 256 individual images with an interval of 1.8 s between successive images, which 
are determined by the antenna rotation time. The antenna period may be impacted 
by the wind; therefore, the total duration of the sampling varies, but it is approxi-
mately 8 min. The polar images cover a radius of a nautical mile and are interpolated 
to a Cartesian grid with a cell size of 7 m × 7 m, corresponding to the spatial resolu-
tion of the radar. The size of one image is 576 pixels × 576 pixels.

3.1.2.2  Meteorological and Oceanographic Measurements
The rest of the in situ instrumentation covers the experimental and operational needs 
for the monitoring of the coastal environment. The wave heave and direction were 
measured in the vicinity (5.5-m depth) of the radar range by a directional wave-rider 
Mark II, which is operated by HZG. The offshore wave conditions (13-m depth) 
are monitored operationally by the Federal Maritime and Hydrographic Agency of 
Germany (Bundesamt für Seeschifffahrt und Hydrographie; BSH) 16 km south. At 
a nearby position, the tide-level data were acquired by a gauge. A second gauge was 
recorded at the Port of List, approximately 10 km inside the tidal basin. The time 
shift for the two measuring points from the area of investigation is known from the 
tidal calendar. The weather parameters were measured by an automatic meteorologi-
cal weather station, manufactured by Siggelkow Geraetebau GmbH, mounted on 
the radar mast, approximately 3 m below the radar antenna and extrapolated at a 
10-m height by assuming a logarithmic profile. In addition, the wind speed, wind 
direction, and air pressure data are available at the Port of List by the Seewetteramt 
Hamburg part of the Meteorological Service for Germany and were used for the 
cross validation of the meteorological measurements and for filling gaps in the time 
series.

3.1.2.3  Multibeam Echosounder Data
For the validation of the DiSC bathymetry, bathymetric data from the multibeam 
echosounder EM 3000 from Simrad-Kongsberg have been acquired. The bed relief 
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of the surveyed area was mapped by coupling the multibeam survey technique with 
high-accuracy positioning systems. EM 3000 is designed to be operated in coastal 
areas (operation depth of 3–200 m and operation frequency of 300 kHz, with a 
ping repetition rate of 15 Hz). The three-dimensional (3-D) sonar head positions 
and orientations were determined by combining antenna position, gyro-compass, 
and motion sensor data. The exactness of ship position accuracy is on the order of 
centimeters. The multibeam echosounder measurements were further processed by 
a digital terrain model with the “Seabed” algorithm (Anonymous 2003). The grid 
size of the final output is 2 m × 2 m, and the value of each grid cell is determined by 
averaging more than 25 data points. The multibeam echosounder’s data for the DiSC 
validation were acquired on 25 August 2003, 2 days before a storm. For  comparison 
with the DiSC results, the echo soundings have been averaged spatially in the radar 
grid with a resolution of 42 m × 42 m (Figure 3.2).

3.2  LITERATURE REVIEW

In this section, a literature review is provided on the application of remote sensing 
methods for the monitoring of the bathymetry and current field in the littoral zone. 
For the extraction of the parameters, different platforms and sensors have been used, 
for example, airplanes (Piotrowski and Dugan 2002), satellites (Pleskachevsky 
et al. 2010), and even ground-based sensors, cameras (Stockdon and Holman 2000; 
Holland 2001), and radars (Bell 1999; McGregor et al. 1998; Senet et al. 2008). 
However, all the algorithms could be categorized as three different approaches: 
(1) the modulation of the short-scale surface roughness due to the topography, which 
changes the radar reflectivity, (2) the average of sea surface image sequences and its 
calibration to depth, and (3) the inversion of the wave field propagation.

3.2.1  iMaging the SeaBed toPogRaPhy By RoughneSS Modulation

In the early 1980s, with the broad expansion of civil radar applications, the hydro-
dynamic interaction theory for the radar imaging mechanism of the seabed was 
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FIGURE 3.2  Multibeam echo sounder bathymetric data. Left: Native spatial resolution of 
grid 2 m. Right: Spatial resolution of grid 42 m for comparison with the radar.
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presented (Alpers and Hennings 1984). According to this theory, the imaging is 
attributed to surface effects induced by current variations over bottom topogra-
phy. The current modulates the short-scale surface roughness, which is displayed 
as difference in radar reflectivity. This approach has been discussed by many 
researchers (Shuchman et al. 1985; Zimmerman 1985; Hennings 1990; Romeiser 
et al. 1997; Vogelzang et al. 1997). In 1998, an overview of general spatial scales 
of bed forms and ocean floor topography as a function of water depth by using dif-
ferent remote sensing radar systems was given by Hennings (1998). In 2000, based 
on those approaches, a commercial system for the determination of the bathymetry 
(Bathymetry Assessment System) was launched (Calkoen et al. 2001). In the frame of 
the Operational Radar and Optical Mapping in monitoring hydrodynamic, morpho -
dynamic, and environmental parameters for coastal management—OROMA project 
(Ziemer et al. 2004)—a similar algorithm for the radar imaging mechanism of the 
seabed by analyzing very low grazing angle radar data was demonstrated (Hennings 
and Herbers 2006).

3.2.2  aveRaged RadaR iMage Sequence

The averaging of image sequences is the evolution of the previously mentioned meth-
odology. The introduction of ground-based remote sensing permitted the acquisi-
tion of image sequences of the sea surface; the hydrodynamic modulations (e.g., 
wave breaking or changes of the current regime due to bathymetric changes) were 
imaged, and their spatial differences could be identified by averaging in time; the 
general trend of the quantities could be determined by analyzing long time series 
of the averaged images. First studies have been based on video image sequences 
(Holman et al. 1993). This hardware–software combination video system is known 
as Argus. Similar to video-based methods, time-averaged radar sequences are cali-
brated according to the underlying bathymetry (Wolff et al. 1999; Ruessink et al. 
2002; Takewaka 2005; McNinch 2007), because in those methods, the backscatter 
intensity (related mainly to the wave breakers) is important. The actual depth infor-
mation refers mainly to the position of sand bars or other geomorphological struc-
tures. This property has been used successfully for the assimilation of radar data in 
hydrodynamic modeling (van Dongeren et al. 2008). Recently, analysis of long time 
series of averaged radar images sequences has been used for dune tracking in order 
to quantify the bed-load transport (Davies 2009). In all these different approaches, 
the meteorological and oceanographic conditions are taken into account for the cali-
bration of the images.

3.2.3  inveRSion of the wave field PRoPagation

The determination of the bathymetry by the two previously presented methods is 
beyond the interest of this chapter. Bathymetry can be estimated from fundamental 
physical properties of waves propagating over an inhomogeneous bathymetry, as the 
celerity of ocean waves is measureable in image sequences and is readily related to 
the underlying depth through the dispersion relationship. Since WWII, the bathym-
etry in coastal environments has been estimated by utilizing ocean wave shoaling 
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photographic imagery and the observed reduction of ocean wave phase speed with 
decreasing water depth (Williams 1946). Since then, the same basic principle has 
been applied successfully with different algorithmic implementations, especially 
since the development of operational ground-based video imagery systems (for a 
review, see the work of Stockdon and Holman 2000; Holamn and Stanley 2007). 
Similar techniques have also been applied in wave flume experiments for the deter-
mination of the local bathymetry (e.g., Catalán and Haller 2008). In addition, sig-
nificant results on this topic have been acquired from airborne optical measurements 
(Piotrowski and Dugan 2002; Dugan et al. 2003).

In parallel with these optical-based methods, microwave imaging of the wave field 
has been developed. Grazing incidence radars have been built and used for research 
purposes, leading to a broader understanding of the physics of sea clutter, which 
underpins the interpretation of image data captured from marine radars (Wetzel 
1990). Crombie (1955) was the first to record the phenomenon of radar backscatter-
ing from sea waves, after which it became a main investigation issue when Wright 
(1966) published his oceanographic observations based on ground-based radars. 
Since then, the backscattering mechanism from the ocean surface has been studied 
theoretically and experimentally for many years (Barrick 1968; Hasselmann 1971; 
Krishen 1971; Plant 1977; Alpers and Hasselmann 1978), and many other methods 
for the first 30 years of research were summarized by Hasselmann et al. (1978), but 
still there is ongoing research (Lee et al. 1995; Hyunjun and Johnson 2002; Haller 
and Lyzenga 2003; Catalán et al. 2008).

Despite the absence of one commonly accepted theory for the backscattering 
mechanism, the imaging of the wave field with radars has been in use since the early 
1960s. Oudshoorn (1961) was monitoring the wave field in the challenging area of 
the harbor mouth at Rotterdam in order to monitor the transformations and inter-
actions of the wave field due to the constructions. Several more researchers (Wright 
1965; Wills and Beaumont 1971; Evmenov et al. 1973) have published photographs 
of radar scopes showing waves. The analysis of these kinds of photos for the quan-
titative extraction of wave properties was introduced by Mattie and Lee (1978) and 
ameliorated by Heathershaw et al. (1979). Making use of digitized radar images, 
the 2-D (Hoogeboom and Rosenthal 1982) and 3-D spectra of spatial radar images 
were calculated (Young et al. 1985). The development of stable spectral analysis 
was originally applied to ship-based radar data by Ziemer and Rosenthal (1987) 
and gradually led to the development of WaMoS I (Ziemer 1991, 1995; Ziemer and 
Dittmer 1994). Similar systems with WaMoS II have been presented by several 
research groups (Hirakuchi and Ikeno 1990) and companies (Gronlie 1995; Borge 
et al. 1999; Reichert et al. 2007).

In the last decade, improvements in this field were made possible to establish 
effective methodologies for the monitoring of the wave field, develop robust algo-
rithms for spectral analysis of image sequences, and commercialize several different 
ground-based radar systems. These improvements led to creating several methodolo-
gies for bathymetry reckoning that have been published based on the wave celerity 
inversion. Bell (1999) tried to trace the motion of the wave crests by spatial cross 
correlation in time; the distribution of the wave phase speeds is estimated and the 
depth is calculated by using the linear dispersion relationship; the tidal signal is 
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clearly identified and validated with in situ data. In addition to that publication, 
Seemann et al. (2000a) presented the very first version of DiSC in the account 
German Association of Pattern Recognition (DAGM) Symposium. These two efforts 
inspired the worldwide radar community. In the publication by Senet et al. (2000c), 
the surface current field was taken into consideration for homogeneous areas, and by 
applying 3-D spectral filtering on the 3-D complex image spectrum, the interesting 
spectral parts of the wave field were isolated and inverted in local scale for the deter-
mination of the bathymetry. Even though it lacked a result validation, this contribu-
tion was an important and innovative approach. Trizna (2001) extensively discussed 
the observed ambiguities from the inversion of the linear theory for the determina-
tion of the bathymetry. In the investigation by Hasan and Takewaka (2007), a similar 
method was presented, with its main difference to the previous investigations being 
that it is the maximum entropy method that has been used for the calculation of the 
wave number leading to the generation of reasonable bathymetric results. However, 
some of the validation data are approximately 20 years old, which is not reasonable 
for areas with such high variations according to the conclusions of the previous work 
(Galal and Takewaka 2008). According to Bell et al. (2004), the wave dispersion 
relationship (Hedges 1976) is inverted with significant results, and since then, this 
algorithm has been ameliorated and validated several times (Bell 2008; Hessner and 
Bell 2009; Flampouris et al. 2009a).

In the context of the ValDiSC (Senet and Seemann 2002a,b) and the OROMA 
projects (Ziemer et al. 2004), the DiSC algorithm was approved. Several research 
efforts have been published during the development (Senet et al. 2000a,b; Seemann 
et al. 2000a,c; Senet 2004), and an alternative method combining the advantages of 
the previous investigations has recently been presented (Senet et al. 2008) for the 
determination of the bathymetry from radar image sequences. The method analyzes 
inhomogeneous image sequences of dynamic dispersive boundaries to determine 
the physical parameters (bathymetry and current field) based on the deformation of the 
wave spectrum and its reformation in local scale by using a selected wave the ory. The 
DiSC algorithm is mature enough and is currently used quasioperationally for ocean-
ographic investigations (e.g., Chowdhury 2007; Alamsyah 2008). The accuracy of 
the linear version of DiSC is of the order O(10%) in comparison with echo soundings 
(Flampouris et al. 2008), and recently, DiSC has been extended with nonlinear wave 
theories (Flampouris et al. 2009b). It should be emphasized that a local or nearby gen-
erated wind sea permits DiSC to give results in a more excellent manner, because the 
frequency spread improves the accuracy of the current in the wave direction travel, 
and the directional spread improves the accuracy of the perpendicular component of 
the velocity to the wave travel direction (Senet et al. 2001). Each of the derived cur-
rent vectors is an independent measurement and independent form of the neighboring 
values. The research for the further development of the algorithm of DiSC has been 
completed and, for the first time, is presented in the following sections.

3.3  DISPERSIVE SURFACE CLASSIFICATOR

DiSC is an algorithm that allows the calculation of water depth and surface cur-
rent maps from radar image sequences of the sea surface. The method of DiSC is 
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designed based on the dispersion relationship, in which the dependency of the phase 
speed (celerity) of surface waves may be confirmed according to the Doppler effect 
on the near-surface current in shallow areas with varying water depth. The imple-
mented method is based on Cartesian images. The first step of the signal process-
ing pipeline consists of the transformation from polar to Cartesian coordinates. The 
actual DiSC processing steps are outlined in Figure 3.3. The main building blocks 
of the DiSC algorithm are the directional-frequency decomposition of the wave field 
and two following regression steps resulting in the required depth and current maps.
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FIGURE  3.3  Top: Simplified DiSC algorithm flowchart. Based on the recorded Radar 
image sequence (ia), the 3-D spectrum is calculated (ib), subsequently is inverted for the 
calculation of the corresponding wave components (ic). The bathymetry and the current field 
(id) are calculated by inverting the dispersion relation. Bottom: Dispersion relation of linear 
surface gravity waves in the 3-D Ω domain. (iia) Deep water dispersion shell, (iib) intrinsic 
shallow water dispersion shell, and (iic) Doppler-shifted deep water dispersion shell influ-
enced by near-surface current.
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3.3.1  Signal PRoceSSing algoRithM

3.3.1.1  Polar to Cartesian
The transformation of the coordinates in the radar data from polar to Cartesian was 
realized by the use of the nearest neighbor interpolation method on the polar grid 
(Seemann and Senet 1999). The polar coordinates (distance from radar and angle 
from north) for each radar cell are matched to the Cartesian grid. All the radar image 
sequences analyzed are geocoded and oriented northward. The exact geographical 
coordinates are known, because the radar antenna’s position, height, and viewing 
directions are determined by a differential global positioning system.

3.3.1.2  Directional-Frequency Decomposition
The frequency decomposition of the field of the imaged waves is accomplished with 
the fast Fourier transformation (FFT) algorithm. Using a 3-D FFT, the sequence of 
wave images (Figure 3.3ia) is transformed from the spatial–temporal to the wave-
number frequency (Figure 3.3ib). The 2-D frequency slices are filtered directionally 
(red ellipse in Figure 3.3ib) and transformed to the spatial-frequency domain using 
a 2-D inverse FFT, resulting in a complex-valued single-(wave) component image. 
Figure 3.3ic shows the phase pattern of one wave component after the directional-
frequency decomposition. The phase image outlines a pattern with spatially varying 
wavelength.

3.3.1.3  Wave Number and Dispersion Regression
The basic idea of the local wave number determination from a complex-valued single- 
component image relies on the idea that the local wave number is given, except for 
the imaginary number i, as the proportionality factor between the local slope and 
image value (Havlicek and Bovik 1995). In a local neighborhood, this dependency is 
solved in the least squares sense.

The final step of the DiSC algorithm consists of the calculation of the local water 
depth and near-surface current (Figure 3.3id). The dispersion relation defines a sur-
face in the wave number-frequency domain (Figure 3.3ii). The form of the dispersion 
relation depends on the water depth and the near-surface current vector.

Each wave number-frequency component of the wave field represents a point in 
the wave number-frequency space. The long, small-wave number waves (relative to 
water depth) contain information about the water depth (Figure 3.3iia and iib), and 
the short, large-wave number waves allow the retrieval of the current. The direc-
tional spread of the wave field allows the determination of the current vector com-
ponent perpendicular to the main wave propagation direction (Figure 3.3iic). These 
dependencies allow the retrieval of the parameter water depth and current vector 
from the wave component using the least squares regression method.

3.3.2  aPPlicaBle Sea wave ModelS

The analysis of the image sequence by DiSC for the extraction of the wave field 
properties is independent of the inverted theory. This means that any dispersion 
model could be applied for the estimation of the bathymetry and current field. Bell 
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et al. (2004) inverted Hedges’ dispersion, and Catalán and Haller (2008) achieved 
significant results from a wave flume experiment with Kirby’s dispersion. A com-
parative study of the performance of the inversion of three different wave theories 
(linear, Hedges’, and Kirby’s; Figure 3.4) has been implemented by using the DiSC 
algorithm for the inversion and in situ bathymetric data for validation (Flampouris et 
al. 2011). For the mean wave conditions of the experiment, the theoretical difference 
of Hedges’ and of Kirby’s from the linear dispersion was calculated as 6% and 7%, 
respectively; in practice, the difference was 8% and 7%, respectively.

In general, Kirby’s dispersion was proved slightly more accurate, but in absolute 
numbers, as the difference from the linear theory was less than 0.2 m. By consider-
ing the limitations of the radar imaging and of the analytical algorithm, the signifi-
cance of the inverted theory is limited.

3.4  POSTPROCESSING PROCEDURES

Because DiSC relies on the dispersion relation, the water depth is given precisely 
as an instantaneous water level. To use the DiSC bathymetry for coastal research or 
monitoring purposes, the depth maps have to be referenced. Here, two options are 
discussed: a tidal gauge and echo sounding not so distant in time that the mean and 
the general pattern of the bathymetry have not changed significantly. To improve the 
accuracy of the retrieved bathymetry, a tidal cycle with 12 radar sequences each hour 
is analyzed. Both processing schemes are outlined in Figure 3.5.

If only a tidal gauge is available, the individual DiSC depth maps are corrected 
with the offset between the instantaneous and the referenced water levels, following 
an averaging procedure. If bathymetric data from a different source, for example, in 
situ survey, are available, then a regression analysis is performed instead. The result 
of some years of experience is that, especially for deeper water, DiSC underestimates 
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the water depth (Flampouris et al. 2008), and only if very long waves are present 
would the slope of the regression line be close to 1. If echo soundings are available, 
then a more accurate procedure is to use the linear regression coefficients (offset 
and slope of the regression line) to apply the correction. As in the case with the tidal 
gauge, the referenced DiSC maps from individual radar sequences are averaged.

In Figure 3.6, both methods are compared. By taking the differences between the 
averaged and referenced DiSC bathymetries with the echo sounder, it is noted that, in 
both cases, the results are not Gaussian distributed (long tails for large positive and 
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negative values in the histogram). The accuracy is quantified with ordering statistics 
(red lines: 16%, 50%, and 84%) in addition to mean ± standard deviation (green 
lines). The overall result of the two methods is that both have comparable accuracy, 
instead of the standard deviation, where the deviation around the median defined by 
qdev = (q84% – q16%)/2 (68% of the data are inside the interval) is given by 1.82. 
The offset referencing results in an error that is depth dependent. This is avoided by 
regression referencing. The statistical parameters of the depth difference for both 
methods are summarized in Table 3.1.
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FIGURE  3.6  Comparison of the two referencing methods. Left: Offset method. Right: 
Regression method.

TABLE 3.1
Basic Statistical Quantities of the Error for the Offset and Regression Methods

Mean (m) St. Dev. (m) Median (m) qdev (m)

Offset reference 0.24 1.58 0.11 1.00

Regression reference 0.23 1.82 –0.03 1.23
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3.5   BATHYMETRIC AND CURRENT FIELD MONITORING 
DURING A STORM: THE SYLT ISLAND CASE STUDY

The extended validation of DiSC permits the application of the method for the moni-
toring of bathymetry and the current field. In this section of the investigation, ocean-
ographic and meteorological observations are integrated for the identification of a 
10-day storm’s impact, which includes the local bathymetry as well as the current 
field during the trespassing of a low-atmospheric-pressure system across the coastal 
area of northern Sylt Island. Both quantities are extracted by applying the DiSC algo-
rithm on a time series of radar image sequences, which are acquired every 30 min. 
This effort is one of the few studies on geomorphology due to one individual storm, 
and it also is the first time that there are time series of current field measurements in 
the coastal area during a severe storm.

3.5.1  MeteoRological and oceanogRaPhic conditionS

During the last decade, radar data have been acquired under different meteorological 
and oceanographic conditions. This study is focused on the severe storm of the last 10 
days of February 2002 (February 20–28, 2002). For this event, 100 radar data sets have 
been analyzed. These data sets correspond to three different periods: period A, February 
20–21; period B, February 27; and period C, February 26–28. Periods A and B are used 
for extraction of the bathymetry, and period C is used for calculation of the current field.

The storm began as a coalescing low-pressure system crossing the North Sea with 
a W, NW direction, February 20–21. A second low-pressure system passed between 
February 22 and 24, and on the 26th, there is the trespassing of an extreme low 
front, which causes the most severe effects. The direction of the last two systems is 
westerly. The wind speed for the 10-day period of data acquisition was stronger than 
8 m/s (75% of the data), and more than 10% of the wind measurements exceed the 
20-m/s threshold. The directional wind window is southwest to west, and only less 
than 5% is from a different direction, which mainly was from the north. As displayed 
in Table 3.2, the 10-min averaged time series are illustrated in Figure 3.7, middle 
panel. In all the three periods, the wind conditions were stronger than 7 Beaufort.

During the 10-day experiment, the air pressure exhibited significant variability; 
the maximum air pressure was 1015 hPa, and the minimum was 965 hPa (Figure 
3.7, upper panel). During data acquisition of period A, the air pressure increased 
by approximately 25 hPa, and during period B, it was constant at approximately 

TABLE 3.2
Wind Conditions during the Observation Periods

Period A Period B Period C

Minimum wind speed (m/s) 11.1 10.3 8.7

Maximum wind speed (m/s) 22.3 16.5 24.7

Mean wind speed (m/s) 17.3 14.2 15.4

Wind direction NW SW W
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990 hPa. During period C, it increased by approximately 15 hPa. Over the period 
of the current field observation, a low-pressure system trespassed, which caused a 
rapid decrease in the air pressure of 20 hPa in 10 h, followed by a rapid increase of 
approximately 20 hPa in 7 h. During the last 26th hour of the current field observa-
tion, the air pressure presented a small variability of 5 hPa.
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The water level record proves the impact of both wind stress and air pressure on 
the water level, as seen in Figure 3.7 (lower panel). During the westerly strong winds 
(February 22–23), the air pressure is constant, but the water level measurement is 1.5 
and 2 m above the mean sea water level despite the neap tide. The difference of the high 
water with the astronomical prediction varies between 1 and 1.5 m. During the last part 
of the storm (February 26–27), the synergy of the trespassing of the extreme low front 
with the westerly wind prevented the ebb phase of the tide. Because of this, the flooding 
phase lasted 18 h. The correlation of the water level with air pressure proved that the 
decrease in air pressure caused the continuous flooding. After stabilization of the air 
pressure, the normal behavior of the tidal cycle was reestablished. In general, the impact 
of air pressure variation on the water level has been broadly discussed during the last 
two centuries, for example, by Ross (1854) and Doodson (1924), who introduced the 
terminology “inverted barometer response” (Proudman 1929; Munk and MacDonald 
1960; Wunsch 1972; Dickman 1988; Ponte 1994; and many others; a review could be 
retrieved from the work of Wunsch and Stammer 1997), and still, there is ongoing 
research. All of these publications are based on water-level measurements or modeling, 
but herein, the subject is the response of the current field at the mouth of the tidal inlet.

3.5.2  StoRM iMPact on the BathyMetRy

To identify the storm impact on the geomorphology of the littoral zone, periods A 
and B have been analyzed and compared. For both periods, a 12-h time series of 
DiSC depths have been referenced, as described in Section 3.4; hence, two bathy-
metric maps from the initial and final phases of the storm are available. For Figure 
3.8, depth contours are given with a 1-m interval. The deeper transverse channel at 
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the center of the image is identified as the shipping way (Lister Landtief), which is 
also shown in Figure 3.1. To determine a common reference, the tidal gauge mea-
surements extrapolated in the area of interest were used. The area of results could 
be separated into three distinct subareas that were near the shore (southeast), the 
channel, and the shoaling (northwest) according to the basic geomorphological char-
acteristics. The minimum depth retrieved by DiSC is approximately 4 m, which 
is the limit of the method, due to the spatial resolution of the radar and the wave 
conditions. At its core is the linear dispersion relation that is not a valid assumption 
over the shoals. The area of investigation is on the eastern coast of the North Sea, 
where the fetch for the development of the waves is large enough for the creation and 
propagation of long waves, which have the additional effect of the wind during the 
storm. These waves, which indicate the bathymetric and current field information, 
tend to break in shallow areas. This affects the microwave imaging of the waves, and 
the assumed wave model is no longer applicable.

The comparison of the bathymetries between periods A and B demonstrates 
that there is appreciable sediment accretion in the channel of approximately 0.5 m. 
During period A, the spatial pattern of the depth is uniform and well formed, whereas 
during period B, the influence of the storm is obvious. The bathymetry of the chan-
nel presents discontinuities, and the isodepth patches in the channel are no longer 
uniform. The near-shore geomorphological structures have propagated from south to 
north as an effect of the dominant wind and wave conditions. This is most obvious at 
the northern part, where the channel has narrowed.

For the investigation of the position of the sediment deposition and erosion during 
the storm, a characteristic cross section connecting the two shallowest points and 
crossing the main channel was taken into account. Figure 3.9, from O1 to O2, best 
shows this relation. The sources of accumulated sediment are probably the shallower 
areas in the south near the shore and at the shoaling in the northwest, which have 
been eroded, exceeding in some cases 1 m. The source of the sediment could not be 
from north of the area of investigation, because there is a second deep channel where 
the sediment has only accumulated. The quantity of the missing sediment is less than 
that deposited in the channel; hence, it is assumed that the general sediment motion 
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FIGURE 3.9  Cross sections of the estimated depth for periods A and B, from point O1 to 
point O2 (see Figure 3.8).
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from south to north was boosted by the storm. Near the shore, on the northeastern 
side, the underwater spit embayed by the isoline at 7 m has been propagated during 
the storm and, similarly, the geomorphological feature on the northwestern side. In 
the west, during the first period, there is a shoal (approximately 3 m deep) that was 
eroded approximately 2 m during the storm. The mean difference of the sediment 
volume during the two periods is approximately –220,000 m3. This result lies within 
the error bounds of the method or the mean error of the offset method with a value of 
0.24 m, which corresponds to a volume of 295,000 m3. Despite this, there is a clear 
change in the patterns of the geomorphological structures, which proves the motion 
of the sediment.

3.5.3  cuRRent field MonitoRing duRing the StoRM

During period C, the wave field was monitored by a radar for 45 h at 30-min inter-
vals; the current field has been extracted using DiSC with a 40-m spatial resolution, 
and it covered an area of 3 km2. The time series of the current field shows that, in 
shallow areas (over the shoal at the northwest side of the area and close to the shore), 
there are often missing values, mainly during the ebb phase and the low-wave condi-
tions. This is due to the limitations of the method. Due to the breaking waves, it is 
impossible to be inverted for the determination neither by bathymetry nor current. 
In the central shipping channel, there are continuous measurements. The extracted 
current velocities are integrated over the wave height, because they have been cal-
culated by the Doppler shift of the current on the waves. As the wave height varies 
between 1 and 3 m and the area of investigation is relatively shallow (mean depth is 
approximately 8 m), the DiSC current field could be considered as a depth-integrated 
current field measurement.

Figures 3.10 and 3.11 illustrate the current field measurements during the tres-
passing of the low-pressure front and during the stabilization of the air pressure, 
respectively. The spatial resolution of the current fields in the figures is 80 m × 
80 m for half the measurement to preserve the clarity of the images. The spatial 
time series of the current field demonstrates the interaction of the local bathymetry 
with the impact of the sea bottom morphology on the circulation. In the shallow 
areas (northwest and near the shore), the current speed over the shoals is increased 
(as expected from the continuity). In addition to that, the direction of the current 
field for both flooding and ebbing is steered by the direction of the local geomor-
phological features. For instance, in the channel, the current direction is the same 
with the direction of the channel, or circular current features around the shoal are 
formed.

At the beginning of the observations, the ebb was hindered, as extensively 
described in Section 3.5.1; the flooding lasted for more than 13 h (Figures 3.10 and 
3.12b), from 0 to 13 h, as a response to the trespassing of the low-pressure front 
(Figure 3.12c). During the period of the missing ebbing, the mean velocity is rela-
tively low, approximately 0.5 m/s, which does not explain the slight increase in water 
level. The explanation for this is that, in the northern part of the tidal inlet, which is 
not imaged with the radar but is the main outflow channel, even under these condi-
tions, still there is outgoing flow. Hence, the increase of only 0.5 m of the water level 
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could be explained. The maximum speed depends on the position of the measure-
ment and varies between 1.2 and 2.5 m/s; the minimum velocity was recorded in 
the channel at 0.2 m/s. The current direction is northwesterly, with small deviations 
(Figure 3.13); as it is expected, the maximum of the standard deviation of the veloc-
ity is higher at areas where there are missing values, approximately, 70°, but still, the 
main current direction is constant and steered by the local geomorphology. In the 
channel, the standard deviation of the direction is as low as 35°.

Afterward, with the stabilization of the air pressure, the normal behavior of the 
tide is restored; the tidal period is approximately 13 h. The ebbing lasts approxi-
mately 6 h, and the flooding at 6.5 h, which is confirmed by calculating the auto-
correlation of the current field (Figure 3.14) time series after the trespassing of the 
low-pressure front shown in Figure 3.10. Despite their short length, there is a clear 
signal of the tidal period.

Figure 3.12 depicts all of the available information that permits the determination 
of the mechanism during the whole period of the observations. During the abnor-
mal conditions, the continuous flooding is correlated with the low pressure, and the 
variations of the wind speed and direction have a minor effect on the current veloc-
ity. The increase in wind speed during time steps 4–6 h caused a peak of the current 
speed in time step 7. After the stabilization of the air pressure, the wind direction is 
also constant, but the increase in wind speed has an impact on the current field, for 
example, around the 23 h of observations.

The current speed was higher during ebbing (Figure 3.12a), between 15 and 17 h 
and 28 and 30 h, due to the piled water on the shore. As previously mentioned, the 
geomorphology plays an important role for the current field velocity and direction, as 
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depicted in Figure 3.13. The illustrated time series of the current velocity and direc-
tion are indicative for the whole area and for the exact positions that can be seen in 
Figure 3.10. The time interval is 0.5 h. All the time series of direction show similar 
behavior: the first 13 h there is continuously flooding, and afterward, there is the 
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normal tidal signal. In the shallow areas, positions E and D are the strongest currents 
that have been recorded, with the maximum speed at 2.6 m/s. Within the channel 
(positions A and B), the maximum speed is much lower at 1.2 m/s. At the northeast-
ern end of the channel (position C), where it is a narrow opening to the open sea, 
the maximum current speed is approximately 2 m/s, and the minimum monitored 
0.2 m/s during slack water. A characteristic example of the effect of the local geo-
morphology example is south of the northwest shoal (position E), where the current 
is parallelized by the geological structure (Figure 3.15).

Although the current direction is stable during the different phases of the tide, the 
current velocity has time variability, which is approximately 0.25 m/s from time step 
to time step. The standard deviation of the U and V components has been calculated 
to be 0.25 and 0.16 m/s, respectively. The standard deviation of the integrated 1.5-m 
current measurements by ADCP acquired in the same area from a pile during the 
European Union Product Lifecycle Management and Information Tracking Using 
Smart Embedded Systems (EU PROMISE) project (Lane et al. 2000) is 0.21 m/s 
for the U component and 0.13 m/s for the V component. This statistical comparison 
proves that the uncertainty of the DiSC method is comparable with the uncertainty 
of the state-of-the-art measurements by ADCP. The advantage, though, of the radar-
deduced currents is the spatial coverage by independent current measurements.
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3.6  APPLICATIONS AND APPLICABILITY OF DiSC

DiSC could be part of a coastal monitoring system that could be combined with 
bathymetric ship surveys or other remote sensing and in situ methods. Despite the 
fact that the DiSC depth accuracy is one order of magnitude lower in comparison 
with the in situ surveys, DiSC has several advantages. In contrast to the side scan 
sonar campaigns are the quasi-instantaneous measurement and the ability to measure 
during extreme storm conditions, so at times at sandy coasts, the highest morpho-
dynamical changes occur. Presumably, it could be stated that a combination of the 
two methods delivers the most valuable output as temporally coarse, cost-expensive 
but highly accurate side scan data sets. These are to be completed with temporally 
fine DiSC water depth maps. As with DiSC, current vector maps can be retrieved by 
high-frequency (HF) radars. HF radars measure on a coarser spatial scale and are 
therefore not competing. All other methods are point or measurements that measure 
the current vector mechanically or acoustically. An extensive comparison of the cur-
rent measurement instruments is given by Lane et al. (1999). For complex bathym-
etries and current regimes, spatial methods can deliver eddy features that are not 
detectable by point measurement devices.

As the study case of Sylt Island proved, the application of DiSC would offer 
potential advantages to the different user communities:

 1. Coastal and offshore engineering. The impact of offshore structures and 
morpho-dynamic processes should be studied.

 2. Coastal protection. Shallow-water sandy bathymetries should be monitored 
in order to trigger protection activities in time.

 3. Harbor authorities. Exposed harbor entries can be monitored upon local 
current regimes that are critical for shipping traffic.

 4. Numerical modeling. Spatial DiSC data can be utilized for validation, 
fusion, and assimilation of numerical model data.

 5. Search and rescue. With current vector data, the drift of an object can be 
targeted and could be used for the optimization of rescue operations.

3.7  CONCLUSIONS

DiSC determines the water depth utilizing shallow water waves and the surface 
current vector fields from both shallow- and deep-water waves. Therefore, DiSC is 
applicable in shallow waters for water depth measurements and in any waters retriev-
ing the surface current field under the assumption of wave field stationarity. For the 
determination of the bathymetry, long waves (e.g., a swell system) are necessary as 
carriers of the bathymetric information. As they approach the coastal zones, they 
are refracted due to the local depth, and by inverting their spectral properties, the 
depth could be retrieved. In contrast, the effect of the current on the wave spectrum 
is proportional to the wave number. It is more effectual for short-wind sea waves than 
for long swells. In summary, DiSC provides bathymetric and current field measure-
ments, with known limitations when the environmental conditions become critical 
for the rest of the in situ measuring devices in the littoral zone.
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Two postprocessing methods have been presented for the referencing of the 
DiSC bathymetry. The first one is based on tidal gauge measurements and assumes 
the homogeneity of water level for the whole area. For the second approach, the 
radar depth maps are considered as proxy data, and the use of an independent 
bathymetric data is necessary for the referencing. The offset referencing method 
is more widely applicable because only gauge measurements or modeled water 
level is required, but the error of the final bathymetric map depends on the actual 
depth. The main characteristic of the regression method is the luck of a trend, but 
the disadvantage is the need for echo soundings. The statistics of the two methods 
proved that their consistencies are similar but the deviation of the offset method is 
0.25 m smaller.

The 12 h averaged with the offset method bathymetry of DiSC has a mean error 
on the order of 0.3 m or a mean relative error over the whole area of approximately 
10%. The error depends mainly on the relation between the wavelength and the local 
depth. It is increased in the deep areas where the wave field does not interact with 
the sea bottom. In addition, the DiSC current field measurement has a comparable 
variability of approximately 0.25 m/s with the state-of-the-art point measurements 
such as ADCP.

By knowing the accuracy and the variability of the two products in this study, 
the impact of a storm on the littoral bathymetry has been qualitatively identified 
and quantitatively estimated, and current field measurements have been recorded in 
a tidal inlet during stormy conditions and during the trespassing of an extreme low-
atmospheric-pressure front. The bathymetric comparison proved that the 10 days 
of storm changed the main characteristics of the geomorphological features by the 
motion of vast amount of sediment for this short period. In shallower areas, the esti-
mated difference of the bathymetry is more than 1 m, the near-shore geostructure 
has propagated toward the north, the ship channel was widened, and a significant 
quantity of sediment was deposited in it.

This is the very first time of acquiring time series of the current field in the lit-
toral zone with a 0.5-h time step and 40-m spatial resolution. These unique data 
permit the identification of the interaction between the current field and the geo-
morphological features such as the ship channel and the shoals. The direction of 
the current is defined by the local bathymetry, which also has an impact on the 
current velocity. The spatial gradient of the velocity field proved, during flood-
ing approximately 50% difference between the velocity magnitude in the deeper 
part of the channel and the shallow areas. In addition, due to the synoptic current 
measurements, the formation of sea surface hydrodynamic features (e.g., eddies 
during slack water) could be observed and studied. Furthermore, in this very spe-
cific case, the “inverted barometer” effect on the current field in a coastal area has 
been observed.

In general, the present scientific investigation illustrates the potential of 
ground-based remote sensing methods in the small-area changes in the coastal 
environment caused by mesoscale forcing, because DiSC offers spatial and tem-
poral information simultaneously, which is impossible to be obtained with typical 
in situ measurements. The combination of the nautical radar with the DiSC algo-
rithm is a mature and validated technology for the operational determination of the 
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bathymetry. Further research is warranted for the current field, mainly on a long 
validation of DiSC, with point measurements taken during different wind and sea 
state conditions.
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4 Comparative Analysis of 
Surface Energy Balance 
Models for Actual 
Evapotranspiration 
Estimation through 
Remotely Sensed Images

Carmelo Cammalleri, Giuseppe Ciraolo, 
Antonino Maltese, and Mario Minacapilli

4.1  INTRODUCTION

A correct estimation of both the temporal and spatial distribution of evapotranspira-
tion (ET) is essential to manage water resources, in particular, in Mediterranean areas, 
where water scarcity and a semiarid climate often cause fragility and severe damage to 
agro-ecosystems. The determination of ET is not simple due to the heterogeneity and 
complexity of hydrological processes. Following these needs, recently, the scientific 
community has developed detailed mathematical models for simulating land surface 
fluxes by integrating essential climatic data and remote sensing images to estimate 
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quantitative soil and canopy parameters such as temporally and spatially distributed 
ET (Menenti 2000). Some reviews of relevant algorithms that were proposed to esti-
mate surface energy fluxes and ET based on remotely sensed images can be found in 
the literature (Kustas and Norman 1996; Kalma et al. 2008; Schumugge et al. 2002).

A common way of estimating ET is to rearrange the energy balance equation and 
solve it for latent heat flux, λET (in watts per square meter), as a residual term:

	 λET = Rn – G0 – H, (4.1)

where λ is the latent heat of vaporization (in joules per kilogram), Rn is the net radia-
tion (in watts per square meter), G0 is the soil heat flux (in watts per square meter), 
and H is the sensible heat flux entailing the heat exchange between the surface and 
the atmosphere due to the temperature gradient (in watts per square meter).

Typically, with reliable estimates of solar radiation, differences between remote 
sensing estimates and observed values of available radiation (Rn – G0) are within 
10%; as a consequence, the largest uncertainty in estimating λET comes from com-
puting H. Following a classical approach of micrometeorology (Brutsaert 1982), sen-
sible heat flux in the atmospheric boundary layer close to the surface where energy 
exchange occurs because of the potential temperature gradient can be expressed as

 H
c T
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c T T
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p
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p h a

ah

= =
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where ρ (in kilograms per cubic meter) is the air density, cp is the specific heat of 
air (in joules per kilogram per kelvin), T0h is the so-called “aerodynamic surface 
temperature” (in Kelvin), Ta is the air temperature at some reference height above the 
canopy (in Kelvin), and rah is the aerodynamic resistance to heat transfer between the 
nominal source height corresponding to T0h and the reference height (in seconds per 
meter). If the radiometric temperature, Tr (in Kelvin), obtainable from thermal remote 
sensing is used as T0h, empirical corrections to Equation 4.2 should be applied.

Numerous methods have been proposed over the years to solve this problem; a 
common approach was to introduce an additional resistance, the so-called “excess 
resistance,” to be added to rah to account for differences between T0h and Tr (Kustas 
et al. 1994). Another approach, generally suitable for homogeneous land cover, is to 
assume an empirical relationship between Tr and δT = (T0h – Ta) to be calibrated on 
the basis of boundary conditions. These are derivable through theoretical hypotheses 
or directly from information within images. These approaches, known in the litera-
ture as a “single source,” treat the unique soil–canopy layer as semitransparent to 
radiation. Theoretically, it works well only under restricted surface conditions, and it 
does not work where Tr depends on vegetation/soil interactions.

On the other hand, the more physically based “two-source” approach, namely, 
vegetation and soil layers, takes into account this heterogeneity and explicitly pro-
vides the factors mainly influencing Tr and T0h. This approach uses two sets of soil 
and canopy aerodynamic resistances connected in series or parallel, accounting for 
the interactions between vegetation and soil energy fluxes. Another class of remote 
sensing–based models to retrieve the actual ET is based on the simple empirical 
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analysis of the correlations between Tr and vegetation indices or surface albedo (e.g., 
Moran et al. 1994; Roerink et al. 2000).

In this chapter, the “single-source surface energy balance algorithm for land 
(SEBAL)” (Bastiaanssen et al. 1998a,b), the “two-source energy balance (TSEB) mod-
eling scheme” (Norman et al. 1995), and the “simplified-surface energy balance index 
(S-SEBI)” (Roerink et al. 2000) were analyzed and compared with each other to model 
surface energy fluxes in an agricultural area characterized by typical Mediterranean 
crops. A reliable accounting of fragmentation of these landscapes usually requires the 
processing of a high-spatial-resolution data sets, many being remotely sensed. The 
impact of different spatial resolutions on model-derived fluxes was also investigated 
to understand the main conceptual differences between the two models, which use a 
“single-layer” (SEBAL) and a “two-layer” (TSEB) scheme, respectively.

4.2  MODEL DESCRIPTIONS

A detailed description of the SEBAL and TSEB models can be found, respectively, in the 
work of Bastiaanssen et al. (1998a,b) and of Norman et al. (1995) and Kustas and Norman 
(1999a,b). The first comparison between the two models in the same study area can be 
found in the work of Ciraolo et al. (2006). In this section, we describe only the main dif-
ferences of the models, with particular attention to the sensible heat flux computation.

In both models, Rn can be estimated by computing the net available energy, thus 
accounting for the rate lost by surface reflection in the shortwave (0.3–2.5 μm) and 
emitted in the longwave (6–12 μm) parts of the spectrum:

 R R T Tn swd a r= − + −′( ) ( ),1 0
4 4α ε ε σ σ  (4.3)

where Rswd is the global incoming solar radiation in the shortwave (in watts per 
square meter), α is the surface albedo (dimensionless), ε′ is the atmospheric emissiv-
ity (dimensionless), ε0 is the surface emissivity (dimensionless), and σ is the Stefan–
Boltzmann constant (in watts per square meter per Kelvin to the fourth power).

Moreover, the TSEB model splits Rn between canopy (Rn,c) and the soil (Rn,s) by 
means of an exponential extinction law, where the decay factor is computed as a 
function of leaf area index (LAI; in square meters by square meters):

 R R LAIn s n z, = −( )exp . / cos( ) ,0 45 2 θ  (4.4)

 Rn,c = Rn – Rn,s (4.5)

where Rn is computed using Equation 4.3, and θz (rad) is the solar zenith angle.
The soil heat flux is commonly computed using empirical approaches: In SEBAL, 

G0 is expressed as a semiempirical fraction of Rn, accounting for albedo, normalized 
difference vegetation index (NDVI), and surface temperature:

 G R
T

n
r

0
2 40 003 0 006 1 0 98= + −

α
α α( . . )( . )NDVI . (4.6)

In TSEB, G0 is expressed as a fraction cg (≈0.35) of Rn at the soil surface Rn,s.
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The estimation of H in Equation 4.2 requires the computation of rah, which in SEBAL 
is based on the single-layer approach (Figure 4.1, left panel) given by
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where k is the von Kármán number (0.41), u is the wind speed at height z (in meters 
per second), Ψh and Ψm are the two stability correction functions for momentum and 
heat transfer, respectively, and LMO is the Monin–Obukhov length (in meters).

The correction functions Ψh, Ψm, and LMO depend on H and then on rah. For this 
reason, the solution of Equations 4.2 and 4.7 is calculated by means of an iterative 
procedure. In SEBAL, as stressed in the previous paragraph, the empirical adjust-
ment of Equation 4.2 is carried out assuming a linear relationship between Tr and 
δT = (T0h – Ta) to be calibrated on the basis of two boundary conditions, including dry 
nonevaporating and fully wet surfaces.

In contrast to SEBAL, the TSEB scheme considers the contributions of soil and 
canopy separately (Figure 4.1, right panel) and uses a few additional resistances to 
retrieve H. In particular, H is expressed as the sum of the contributions of soil, Hs, 
and canopy, Hc, according to the assumption of an “in-series” resistance network 
(Shuttleworth and Wallace 1985).

This allows computing T0h in Equation 4.2 by using the following expression:
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FIGURE 4.1  Scheme of the key energy balance variables and “in-series” resistances used 
in SEBAL (left panel) and TSEB (right panel) models.
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where Tc is the canopy temperature (in Kelvin), Ts is the soil temperature (in Kelvin), 
rs is the soil resistance to heat transfer (in seconds per meter) (Sauer et al. 1995), and 
rx is the resistance of the canopy boundary layer (in seconds per meter; McNaughton 
and van den Hurk 1995).

An estimate of the vegetation directional fractional cover, fθ, (dimensionless) is 
used to estimate Tc and Ts from Tr using the following equation:

 T f T f Tr c s= + − θ θ
4 4

1 4
1( ) ,

/
 (4.9)

whereas rs is computed from a relatively simple formulation predicting the wind speed 
close to the soil surface (Goudriaan 1977; Norman et al. 1995; Kustas and Norman 
1999a,b), and rx is derived assuming a parameterization suggested by Grace (1981).

With the additional use of the Priestley–Taylor formulation (Priestley and Taylor 
1972) for estimating canopy transpiration and, consequently, Tc, the closure of the set of 
available Equations 4.8 and 4.9 is achieved. In the TSEB model, since Priestly–Taylor 
formulation is appropriate for well-watered grass surface, when the canopy is in water 
stress, the result is an overestimation of canopy transpiration, which in turn results in 
a condensation on the soil surface based on the energy balance principle. The latter 
condition is not physically realistic during daytime and is overridden by searching for a 
new solution by iteratively reducing the Priestley–Taylor coefficient (Kustas et al. 2004).

For both models, once the spatial distributions of Rn, G0, and H are obtained, the 
spatial distribution of the instantaneous λET (in watts per square meter) is computed 
using Equation 4.1. Additionally, the fluxes can be used to derive the evaporative 
fraction, Λ (Menenti and Choudhury 1993):

 Λ =
−

λET
R Gn 0

.  (4.10)

Different from the SEBAL and TSEB models, S-SEBI is a simplified approach; first 
introduced by Roerink et al. (2000), it allows the direct computation of instantaneous 
evaporative fraction from an analysis of the correlation between the surface albedo 
and Tr . It has been observed that Tr and α are correlated over an area characterized 
by constant atmospheric forcing and their relationship can be applied to determine 
the effective land surface properties (Menenti et al. 1989). A simple representation 
of the S-SEBI basic principle is given in Figure 4.2.

Basically, the α–Tr scatterplots are bounded by two lines representing minimum 
and maximum Tr values for all albedo conditions (as shown in Figure 4.2). These two 
lines correspond to the maximum sensible heat flux (Hmax) and, subsequently, low 
ET, and to the maximum latent heat flux (λETmax) and, therefore, the potential ET. 
With these assumptions, the evaporative fraction can be determined as

 Λ = + −
− + −
a b T

a a b b
H H r

H E H E

α
α( ) ( )

,  (4.11)
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where aH and aE are the slopes of the line of the high and low temperature, respec-
tively, and bH and bE are the intercepts of the same lines.

Both slope and intercept parameters depend on surface albedo; these values can 
be inferred by means of least squares regression between the classified values of 
α and the corresponding 5th and 95th Tr percentiles. The daily integration of λET 
and  the computation of ETd (in millimeters per day) can be performed using the 
self-preservation property of Λ during cloud-free days. In fact, several studies (e.g., 
Brutsaert and Sugita 1992; Crago 1996) demonstrated that, within daylight hours, Λ is 
almost constant in time. This fact suggests using Λ as a temporal integration param-
eter. Following these considerations, ETd spatial distribution can be derived using

 ET
R

d
n d≅ Λ , ,
λ

 (4.12)

where Rn,d represents the averaged net daily radiation that can be derived by 
direct measurement or using the classical formulation proposed by the Food and 
Agriculture Organization (FAO) publications n° 56 (in megajoules per square meter 
per day) (Allen et al. 1998).

4.3  STUDY AREA

The above-mentioned approaches were applied in a test area covering approximately 
160 ha within the “Basso Belice” irrigation district (Figure 4.3). It is located in the 
western coast of Sicily, Italy, in which land is predominantly for arboreal crops 
such as olives, grapes, and citrus fruits. From a climatic point of view, the area 

329

321

313

305

297
0.06 0.13 0.20 0.28 0.35

Albedo

Hmax(α)

λETmax(α)

La
nd

 su
rfa

ce
 te

m
pe

ra
tu

re
 (K

)

FIGURE 4.2  Scatterplot of surface albedo (α) versus the land surface temperature (Tr). Dashed 
lines represent the maximum sensible heat fluxes (Hmax) and maximum latent heat fluxes (λETmax).
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is characterized by a typical Mediterranean climate with moderate rainfall during 
autumn and winter periods, very high air temperature, and little precipitation during 
summer months. In the period 2005–2008, the total annual rainfall ranged between 
450 and 650 mm, whereas the atmospheric evaporative demand was between 1000 
and 1200 mm. The morphology of the area is prevalently flat, and soils are mainly 
alluvial deposits characterized by loam and sandy loam textures.

The study area includes the “Rocchetta” farm (shown in Figure 4.3), which was 
interested by a set of in situ campaigns. The analysis of the landscape of this sub-
area highlights a northern part mainly covered by olive, grape, and bare soil fields 
of moderate size, with a square-shaped water body in the northeastern corner. In 
the central area, there are alternating fields, including vineyards (fields V1 and V2, 
demarcated by blue marine and green lines, respectively), an olive orchards, and cit-
rus orchards (fields C1 and C2, denoted with red and orange lines, respectively), with 
varying fractional vegetation cover, canopy height, and field size. The southern part 
of the area is mainly characterized by olive orchards and, in particular, an olive field 
extending about 13 ha (field O, delimited by the blue line in Figure 4.3), where two 
different micrometeorological stations were installed to measure energy fluxes: a 
small aperture scintillometer (SAS) system and an eddy covariance (EC) flux tower. 
We had a meteorological station of the Servizio Informativo Agrometeorologico 

EC

125 m

SAS

SIAS weather station n. 302

Olive field (O)
Citrus field (C1)
Citrus field (C2)
Grape field (V1)
Grape field (V2)

N

0 25 50 75 100
km

FIGURE 4.3  Orthophoto of the study area, with colored lines demarcating the analyzed 
fields; in particular, the blue line encompasses the olive orchard (O) monitored by the two 
micrometeorological stations (denoted as SAS and EC).
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Siciliano (SIAS) installed at the center–eastern side of the experimental field with 
a meteorological regional information system, which provides hourly independent 
measures of the main meteorological variables. They include incoming solar radia-
tion, air temperature, pressure and humidity, wind velocity, and rainfall.

4.4  REMOTE SENSING DATA ACQUISITION AND PROCESSING

The remotely sensed imagery was collected during two distinct periods—in the 
spring and summer of 2005 and 2008. In particular, between June and October 2008, 
seven high-resolution airborne images were acquired at a height of about 1000 m 
above  ground level. The instruments onboard the platform were a Duncantech 
MS4100 multispectral camera able to acquire images in three spectral bands—green (G; 
530–570 nm), red (R; 650–690 nm), and near-infrared (NIR; 767–832 nm) wavelengths—
and a Flir SC500/A40M camera recording the thermal images (TIR, 7.5–13 μm).

The nominal pixel resolution was approximately 0.6 m for visible (VIS)/NIR and 
1.7 m for TIR. Figure 4.4 reports the scheduling of all acquisitions (vertical black 
lines), overimposed on the temporal trend of daily reference ET (ET0, green dotted 
line on the left axis) computed by means of the FAO-56 formulation (Allen et al. 
1998) and the total daily rainfall (P, blue line on the right axis) as measured by the 
SIAS weather station.

The ET0 analysis highlights a constant maximum atmospheric demand of about 
6 mm day–1 in June–July, which linearly decreases to a value of about 3 mm day–1 
in October; this variability corresponds to potentially high vegetation stress in the 
first period, followed by reduced atmosphere demand in the latter. Two moderate 
rainfall events (of about 10 and 25 mm) occurred between the fifth and sixth remote 
sensing acquisitions. These events have made different the two latest acquisitions 
from the previous overpasses in terms of water availability and potential water stress 
conditions.

The G, R, and NIR spectral bands were radiometrically calibrated and atmo-
spheric-corrected by means of the empirical line method (Slater et al. 1996) using 
the data collected during in situ campaigns. The in-reflectance images were used to 
derive the surface albedo (Price 1990) and NDVI (Rouse et al. 1974). The TIRs were 
empirically calibrated to retrieve the surface radiometric temperature by applying 
a linear regression between the remotely observed data and in situ measurements, 
adopting the NDVI-derived surface emissivity as proposed by Sobrino et al. (2007).

Additionally, to analyze the effects of spatial resolution on the modeled fluxes, 
two different data sets were acquired during the spring and summer of 2005: an air-
borne Natural Environment Research Council (NERC) set of images was acquired 
in May, including an Airborne Thematic Mapper (ATM) and a Compact Airborne 
Spectrographic Imager (CASI-2) multispectral image, both of which were character-
ized by high spectral and spatial resolution (3 m); besides, an Advanced Spaceborne 
Thermal Emission and Reflection (ASTER) satellite image, acquired in August, was 
characterized by three VIS–NIR bands having a 15 m spatial resolution and five 
thermal infrared bands with a 90 m resolution.

From a radiometric point of view, the ATM sensor records the incoming radiation 
in 11 spectral bands ranging from VIS and NIR (bands 1–8) to shortwave infrared 
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(bands 9 and 10) and to thermal infrared (band 11). The CASI-2 sensor has been 
set up to detect specific vegetation characteristics by recording the spectral radi-
ance in 12 VIS and NIR narrow bands. A field survey has been simultaneously car-
ried out to measure spectral and physiological vegetation parameters. An empirical 
line method (Slater et al. 1996) has been applied to calibrate and correct CASI-2 
images. Albedo and vegetation index maps have been retrieved using these spectral 
reflectance bands. The temperatures recorded by the ATM thermal band were com-
pared to ground temperatures measured at the same time of the acquisition in several 
points to allow an empirical calibration.

The ASTER image was recorded on August 16, 2005 (day of the year [DOY] 229) at 
about 1100 h local time. The image has been georeferenced, radiometrically calibrated 
(Epema 1990), and atmospherically corrected (Chavez 1988). As for the ATM ther-
mal image, the atmospherically corrected radiometric temperature has been retrieved 
using field temperature measures carried out simultaneously to the satellite overpass.

4.5  APPLICATIONS AND RESULTS

The three models described in the previous sections were applied to the remotely 
sensed data set. In particular, as a preliminary analysis, models’ performances were 
tested based on the 2008 data set when micrometeorological measurements were 
available. Successively, the effects of spatial resolution were discussed using the 
2005 multiresolution data set.

4.5.1  Model PeRfoRMance coMPaRiSon

The comparison among the three models introduced in Section 4.2 was performed in 
terms of ETd, considering this output as a synthetic descriptor of all the modeled fluxes 
and representing the observable variable generally required in agro-hydrological appli-
cations. Figure 4.5 reports the ETd maps retrieved as the temporal average of the seven 
available dates. These maps allow a preliminary qualitative analysis of the models’ 

ETd (mm day–1)
0.0 6.0

FIGURE 4.5  Daily actual evapotranspiration maps for the three adopted models retrieved 
as the average of the seven acquisition dates: SEBAL model, left panel; TSEB model, center 
panel; S-SEBI model, right panel.
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outputs in terms of spatial distribution. The analysis highlights a substantial agreement 
among the three ETd maps, with only slight differences over bare soil in the upper part 
of the study area in the case of S-SEBI.

The validation was realized by comparing modeled daily fluxes with those 
observed by the micrometeorological stations installed in the olive field O (see 
Figure 4.3), as detailed by Cammalleri et al. (2010). In particular, the scatterplot in 
Figure 4.6 compares the TSEB outputs and measured ones.

On the basis of these results, the TSEB outputs were considered as a reference 
in the following model intercomparison. In particular, the mean absolute difference 
(MAD) statistical index was evaluated to quantify the agreement among the models’ 
outputs. Moreover, the relative error (RE), an index of relative agreement, was com-
puted to divide the MAD by the average ETd and express it as percentage values. The 
bar plots in Figure 4.7 report the field-averaged ETd (and the corresponding standard 
deviation) obtained for each acquisition and mean values in correspondence of the 
main fields in the study area.

These results show a general agreement among the three models, with ETd values 
ranging between 1.0 (for grape fields) and 8.0 (in citrus fields) mm day–1. The only 
significant difference is observable in the third acquisition (DOY 204) when SEBAL 
overestimates ETd of about 1 mm day–1 in comparison with the other two models, 
approximately twice the MAD observed in the olive field. Additionally, the verti-
cal bars in Figure 4.7 show similar behavior for the three models during the whole 
period with the standard deviation obtained from the retrieved maps. Moreover, the 
analysis of standard deviations highlights a higher variability associated with the 
grape (V1 and V2) and olive (O) fields if compared to the dense citrus field (C1). 
This behavior is particularly evident during the first three acquisitions, which were 
characterized by higher values of ET0 and significant within-field variability. The bar 
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FIGURE 4.6  Scatterplot among daily energy fluxes observed by the micrometeorological 
stations and modeled by TSEB in the olive field.
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plots in Figures 4.8 and 4.9 report both MAD and RE values obtained for the five 
analyzed fields and the whole scene during the entire period. In particular, Figure 
4.8 shows the MAD values of SEBAL and S-SEBI (assuming TSEB outputs as ref-.8 shows the MAD values of SEBAL and S-SEBI (assuming TSEB outputs as ref-
erence). The analysis of the bar plots in Figure 4.8 highlights some discrepancies 
occurring in the vineyard (in particular, within the field V1) associated with the first 

10.0
ET

d (
m

m
 d

ay
–1

)

8.0

6.0

4.0

2.0

0.0

–2.0

10.0

ET
d (

m
m

 d
ay

–1
)

8.0

6.0

4.0

2.0

0.0

–2.0

10.0

ET
d (

m
m

 d
ay

–1
)

8.0

6.0

4.0

2.0

0.0

–2.0

10.0

ET
d (

m
m

 d
ay

–1
)

8.0

6.0

4.0

2.0

0.0

–2.0

C1 C2 O V1 V2 ALL C1 C2 O V1 V2 ALL

C1 C2 O V1 V2 ALL C1 C2 O V1 V2 ALL

C1 C2 O V1 V2 ALL C1 C2 O V1 V2 ALL

C1 C2 O V1 V2 ALL C1 C2 O V1 V2 ALL

Field Field

DOY 163 DOY 185

DOY 204 DOY 235

DOY 247 SEBAL
TSEB
S-SEBI

DOY 284

DOY 295 Mean

FIGURE 4.7  Bar plots showing field-averaged ETd for the seven acquisition dates and the 
in-time average (Mean). Vertical bars indicate the standard deviation of modeled ETd.
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acquisition dates (especially for DOYs 163 and 204) that were characterized again by 
a higher atmospheric demand and an early stage in vegetation growth.

A partial explanation of this behavior can be found in the magnitude of the fluxes 
modeled by TSEB. For the first acquisition (DOY 163), the RE index inadequately 
described the results due to the extremely low value returned by TSEB (about 
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FIGURE 4.8  Bar plots showing MAD values in correspondence of the five analyzed fields 
and for the whole scene (ALL) in each acquisition and for the entire period (Mean).
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0.1 mm day–1). For the other two early dates (DOYs 185 and 204), the three models 
return different values, and S-SEBI generally produces higher values in vineyard 
fields.

Results of the S-SEBI model are remarkably different, in terms of RE, from those 
of TSEB. Differences are evident also for the citrus fields (C1 and C2) during the last 
two overpasses (DOYs 284 and 295), although values are only slightly greater than 
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20%. Finally, high MAD values were observable for the SEBAL model during the 
first dates in fields C1 and C2; however, in this case, RE values are largely lower than 
20% due to high flux magnitude.

The comparison on the whole scene highlights a good agreement among the results 
of the three models, with MAD values almost always lower than the defined upper 
limit. This result indicates that the high information content of the remotely sensed 
images is sufficient to characterize the available energy partition, as quantified by 
Λ, independently by the adopted approach, and that, in the analyzed case, both the 
simplified and complex models accurately characterize the average water stress at the 
scene scale. Yet, higher discrepancies are evident over fields characterized by low veg-
etation coverage and high atmospheric water demand. In correspondence of the last 
two acquisitions, carried out after two rainfall events, the water availability increase 
made negligible the discrepancies among models in terms of both MAD and RE.

4.5.2  analySiS of the Pixel-Size effect

On the basis of the results previously shown, the successive analyses were focused 
only on the residual energy balance approaches SEBAL and TSEB. For this reason, 
the two models were applied based on two sets of data acquired by airborne and satel-
lite platforms as previously reported. Models’ outputs were analyzed and compared 
in terms of pixel-by-pixel scatterplots. The pixel-size effect was analyzed by applying 
the models to the NERC airborne images aggregated to different resolutions up to 
the ASTER satellite ones (90 m × 90 m). Finally, results obtained with the artificially 
degraded data were compared with the one retrieved with actual ASTER data.

4.5.2.1  SEBAL versus TSEB: NERC Data
In order to evaluate the effect of pixel size on modeled fluxes, the input airborne 
data for the SEBAL and TSEB models were aggregated as suggested by Anderson 
et al. (2004) and Liu et al. (2007) to the spatial resolutions of 30, 60, and 90 m. The 
scatterplots in Figures 4.10 and 4.11 show the pixel-size effect in terms of energy 
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FIGURE 4.10  Scatterplots of SEBAL modeled energy fluxes (H and λET, on left and right 
panels, respectively) using 3 m versus input data with different spatial resolutions.
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flux estimation through the SEBAL and TSEB models, respectively, with different 
input spatial resolutions. Results in Figure 4.10 show that SEBAL overestimates H if 
compared with the one obtained using the higher pixel size resolutions. The overes-
timation causes an underestimation of instantaneous λET up to 100 W m–2, reaching 
1 mm day–1 in terms of ETd. The H overestimation is probably related to the choice 
of boundary conditions that are not well defined at the lower resolution due to the 
high spatial fragmentation of the landscape. This hypothesis is partially confirmed 
by the increase in model errors with the reduction of spatial accuracy in the input 
data (Cammalleri et al. 2009). Moreover, it is interesting to note that, contrary to that 
modeled, the available energy is substantially insensitive to the input spatial resolu-
tion (not shown here). Results of the TSEB model do not show the same behavior. 
However, turbulent fluxes modeled by TSEB are weakly affected by the pixel-size 
degradation, as shown in the scatterplots the reported in Figure 4.11. These results 
highlight the TSEB capability to correctly model soil and canopy contributions inde-
pendent of the input spatial resolution.

4.5.2.2  SEBAL versus TSEB: ASTER Data
The effect of pixel-size degradation was also analyzed by applying both the SEBAL 
and TSEB models on the ASTER image. These data were used as a corroboration 
of the results obtained with the artificially obtained data. As shown in the NERC 
degraded data set, the tendency to an underestimation of daily ET using SEBAL is 
confirmed by the scatterplots displayed in Figure 4.12a through c. The ETd underes-
timations are mainly due to an overestimation of sensible heat fluxes. These under-
estimations range between 50 and 90 W m–2, corresponding to 0.8 and 2.5 mm day–1 
at daily scale.

The G0 analysis shows that the SEBAL model estimates an almost-constant value 
of 90 W m–2, whereas TSEB values range between 70 and 120 W m–2. The behavior 
is justified by the small variability of the quantities involved in SEBAL G0 modeling 
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at a 90 m resolution due to the sparse crop distribution in the study area. However, 
the errors in ETd estimations seem more correlated with the H ones mainly due to the 
smaller magnitude of the difference of the G0-modeled fluxes. Besides, an accurate 
choice of well-defined boundary conditions within the study area was problematic 
due to the comparable dimension between the average field and pixel sizes; for this 
reason, the difference of results between the TSEB and SEBAL H fluxes is compa-
rable with the one obtained using the NERC data aggregated at a 90 m resolution.

4.6  CONCLUSIONS

Three approaches to retrieve the daily actual ET based on remotely sensed images 
were tested on an agricultural site characterized by typical Mediterranean crops and 
climate. The analyzed models were (1) SEBAL, based on the single-source residual 
surface energy balance; (2) TSEB, based on the two-source modeling of the surface 
energy budget; and (3) S-SEBI, adopting a semiempirical assessment of evaporative 
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fraction based on the scatterplot between the albedo and surface radiometric tem-
perature. The analysis of models’ performances was realized by adopting two differ-
ent data sets: the first one built up by seven airborne high-resolution images acquired 
between June and October 2008, and the second data set acquired during the spring 
and summer of 2005, including an ATM and CASI-2 high-resolution images as well 
as an ASTER moderate resolution multispectral image. A preliminary validation of 
the TSEB-modeled fluxes was performed using micrometeorological data acquired 
over an olive field by means of an EC and scintillometer stations. The validation 
highlights a good performance of the TSEB model, with average errors on ETd of 
about 0.5 mm day–1.

As a general conclusion, the analyses assess that the SEBAL model causes an over-
estimation of sensible heat fluxes H mainly due to an underestimation of the aerody-
namic resistance to heat transport, which does not take into account the soil–canopy 
interaction, as well as to difficulties to accurately define boundary conditions at low 
spatial resolution. By focusing on the ETd evaluation, the effect can be compensated by 
an overestimation of soil heat flux, especially for the high-spatial-resolution airborne 
images. This compensation of fluxes in the single-source model, however, produces 
similar ETd estimations to that retrieved by the more detailed two-source model.

The analysis of the three models’ differences (assuming the previously vali-
dated TSEB as reference) highlighted a good agreement between the average ETd 
assessments on the whole scene. The comparison of MAD and RE statistical indi-
ces in five fields of the study area emphasized the greater discrepancies in areas 
characterized by low vegetation coverage (vineyards) in case of high atmospheric 
water demand. Additionally, in some cases, areas having high vegetation coverage 
(citrus orchards) also showed significant differences. These areas, which generally 
correspond to the boundary conditions in the self-calibration procedure adopted in 
SEBAL and S-SEBI, seem to be the more sensitive to the arbitrary parameterization 
of these models. Moreover, clearly, dates characterized by high water availability 
show negligible or at least less significant ETd differences among models’ retriev-
als. Differences found on vineyards, characterized by strong heterogeneity and low 
vegetation coverage, suggest the need for further improvement on the modeling of 
energy flux partition for these kinds of crops.

Pixel-size dimension is crucial for surface energy balance applications over agri-
cultural fields that are highly fragmented (of the order of hectares or less). From this 
point of view, the case study showed that the spatial resolution of the ASTER ther-
mal band could be considered as an upper limit to accurately identify the spatial dis-
tribution of ETd with TSEB. This is mainly due to the model capability to correctly 
identify soil and canopy contributions to the surface energy budget. On the contrary, 
the ASTER resolution is not appropriate to apply the SEBAL single-source model 
over agricultural fragmentized landscape, since the hypothesis of homogeneous land 
cover is not achieved and due to the complexity to define adequate boundary condi-
tions, especially over small study areas. For all these reasons, the TSEB approach 
seems the more “operational” method to be used with commonly available moderate 
resolution remote sensing data, thus removing the dependency from an arbitrary 
selection of boundary conditions, which is a strong limitation in a highly fragmented 
landscape and in areas characterized by an elevated degree of water stress.
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5.1  INTRODUCTION

Where human populations exist, water and its proper management remain a critical 
and important issue across diverse regions of the world. This is particularly acute in 
semiarid regions. The proper allocation and management of limited water resources 
in locations that are vast in spatial extent necessitate important surface and mete-
orological information in order to accurately estimate evapotranspiration (ET) at 
relevant spatial and temporal resolutions. The need for an accurate accounting of 
consumptive water use continues to dominate ET research, largely because in many 
regions throughout the world, available water resources are insufficient to meet all 
water use demands. Thus, an accurate accounting of consumptive water use (or ET) 
through evaporation (soil and/or plant surfaces) is indispensible (Brutsaert 1982) and 
is at the core of many hydrologic studies.

ET is a complicated and important component of the hydrologic water balance 
or water cycle. The difficulty of estimating ET arises from the physical and chemi-
cal interactions that exist among the soil, vegetation, and surface–boundary layer 
meteorological continuum. The diversity of soils, vegetation types in both native and 
modern agricultural systems, and varying local meteorological conditions present 
unique challenges to quantifying partitioning of incident thermal radiation into the 
components of the surface energy balance (SEB) to ultimately estimate ET at spatial 
and temporal scales that are commensurate with water management needs.

Remote sensing offers the opportunity to capture critical surface information 
that can be processed into regional estimates of sensible heat from which ET can 
then be computed as a residual of a regional SEB. Critical to supporting regional-
scale attempts to estimate ET through remote sensing algorithms is the ability to 
validate remotely based estimates of ET with sound physically based measure-
ments. One component that is a complicating factor for semiarid regions is advec-
tion of saturation deficit over irrigated fields. The term “saturation deficit” means 
warm dry air is advected from hot dry surfaces to cool wetter surfaces that are 
under irrigation.

A direct approach over semiarid surfaces is problematic with eddy covariance 
(EC) measurements under certain conditions. However, one approach that offers a 
measure of self-consistency is to examine the energy balance closure values, defined 
as the ratio of turbulence energy fluxes over available energy (Xiao et al. 2011). As 
reported data continue to grow over a range of surfaces and conditions, it is clear 
that there is a systematic bias in EC flux estimates and the range of energy balance 
closure values can be large and variable at any given location (Xiao et al. 2011). The 
implications for this bias are compelling for specific issues such as water and carbon 
dioxide (CO2) budgets. At present, there remains no general agreement as to the 
causes of the bias, or what, if anything, to do in response.

EC estimates of heat and water evaporation are a standard for characterizing sur-
face energy fluxes over diverse ecosystems. These measurements are often used in 
conjunction with remote sensing experiments to serve as validation points for esti-
mating heat fluxes and evaporation rates at varying spatial scales. This study focuses 
on EC measurements in dry land and irrigated agriculture surfaces in a semiarid 
region of Texas, USA, where extreme events of saturation deficit advection occur 
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and challenge the interpretation of some of the EC measurements. In particular, we 
investigated characteristic eddy sizes and intermittency during extreme advective 
events.

5.2  SURFACE ENERGY BALANCE

5.2.1  eneRgy Balance equation

The SEB at a surface is most recognized in its simplified form as a linear function 
expressed as

 Rn – G – H – LE = 0, (5.1)

where Rn is the net radiation (incoming short- and longwave minus outgoing short- 
and longwave radiation) partitioned into the soil heat flux (G), sensible heat flux 
(H), and latent heat flux (LE; all units are in watts per square meter) that the energy 
released or absorbed during a phase change from liquid to vapor during evaporation 
from soil and/or vegetation surfaces. Equation 5.1 does not account for photosyn-5.1 does not account for photosyn-.1 does not account for photosyn-
thetic activity and heat storage for above-ground vegetation, as it is assumed for this 
study to have been negligible relative to the turbulent fluxes of heat and water vapor 
(H and LE, respectively).

For hydrologic studies, Equation 5.1 provides a means of quantifying the most 
difficult component of the SEB, that is, LE, for the estimation of ET. The simplified 
SEB model affords the ability to partition the available energy (Rn – G) at a surface 
into the turbulent fluxes of H and LE. Additionally, when using the EC technique to 
measure direct H and LE fluxes, the ratio of the sum of the turbulent fluxes to the 
available energy allows us to have a means of assessing the quality of the measure-
ments of turbulent fluxes via the energy closure approach that will be presented later.

Quantifying the SEB for any surface requires sound instrumentation and mea-
surement techniques that produce the most reliable and accurate estimates of the 
energy balance (Equation 5.1). In this study, we focused on quantifying and under-5.1). In this study, we focused on quantifying and under-.1). In this study, we focused on quantifying and under-
standing the SEB for an irrigated cotton field in a semiarid environment because of 
the unique case where irrigated (wet) surfaces are surrounded by vast dry surfaces 
and thus represent an ideal condition to study the effects of advected warm dry air 
moving over a wet surface and imparting additional energy in the form of a satura-
tion deficit that enhances ET in addition to the available energy fluxes. This can 
result in substantial increases of ET, making simple ET model estimates generally 
fail to account for all factors.

Remote sensing applications to the canopy or surface temperature would provide 
a direct incorporation of these temperatures into energy balance models to estimate 
ET. Canopy temperatures can be placed directly into simpler forms of the energy 
balance to estimate evaporation as

 
LE R G C

T T
rn p

c a

a

= − − −
ρ

( )
,
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where LE, Rn, and G have been previously defined; ρ is the water vapor density (in 
kilograms per cubic meter); Cp is the specific heat of air (in joules per kilogram); ra is 
the aerodynamic resistance (in second per meter); and Tc and Ta are the canopy and air 
temperatures respectively (in degrees Celsius). Estimation of LE requires a measure 
of basic energy balance components, canopy temperature, and air temperature and an 
estimate of the resistance term for sensible heat transfer. In this approach, there has to 
be an estimate of the ra term that is often derived from fairly simple approximations of 
canopy turbulence parameters (zo and d) and wind speed. Canopy temperature–based 
models for ET estimation have been evaluated by comparing direct measurements of 
LE from lysimeters and those estimates from Equation 5.2 for a number of locations 
and crops (Hatfield et al. 1984). Standard error of the regression lines was 75 W m–2, 
indicating agreement between the two ET methods.

Regional estimates of evaporation are possible with remotely sensed data, and 
most of the approaches are considered to be single-source ET models. Zhang et al. 
(1995) applied Equation 5.2 to regional ET estimates in France and found that the dif-5.2 to regional ET estimates in France and found that the dif-.2 to regional ET estimates in France and found that the dif-
ference between a remote sensing model and area ET averages obtained from ground-
based stations was within 28 W m–2. The application of a single-source model begins 
to encounter problems when there is a partial canopy-covered surface, which often 
exists in agricultural systems (Kustas et al. 1989; Hall et al. 1992; Vining and Blad 
1992). Problems with single-source models can be attributed to differences between 
the “aerodynamic” and “radiometric surface temperature” (Norman and Becker 
1995). Other “two-source” approaches that consider energy exchanges from both soil 
and vegetation components account for the differences between radiometric tempera-
ture and aerodynamic temperature and thus represent an advance over single- and 
two-source models (e.g., Norman et al. 1995; Kustas and Norman 1999). The use of 
canopy or surface temperatures as direct inputs into large-scale ET models provides 
a spatial representation of water use that is not possible with single energy balance 
systems. In the application of canopy temperatures, the problem of incomplete ground 
cover is critical because of the potential differences in temperature between the soil 
and the crop. The development of multiscale approaches combining thermal, visible, 
and near-infrared imagery from multiple satellites to partition the fluxes between the 
soil and canopy offers the potential for future improvements in the use of surface 
temperature at a range of scales from 1 m to 10 km (Anderson et al. 2007). This type 
of method shows the further refinement in the ability to use remote sensing as an 
assessment tool for ground-based observations as well as a method for regional-scale 
measurements. Application of remote sensing of thermal radiation offers a potential 
for new advances in our understanding of the complexities of the surface–atmosphere 
exchanges. These data are available in the study we conducted; however, the focus 
was directed toward quantifying the advection and turbulence dynamics of the sur-
face before comparing methods applicable to regional-scale assessments.

5.2.2  eddy covaRiance

Turbulent fluxes of sensible and latent heat can be measured directly with fast- response 
sonic anemometers and infrared gas analyzers (IRGAs). Sonic anemometers measure 
the wind velocities in three-dimensional (3D) space (x, y, and z), and in meteorological 
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terms are identified as u, v, and w (streamwise, lateral, and vertical) directions. IRGAs 
that are specific to water vapor (ρv) and, more recently, CO2 absorption are also fast-
response measurements capable of sampling at the same rate as the sonic measurements 
of the velocity components. When appropriately used together over most types of veg-
etated surfaces, sonic anemometers and IRGAs provide high-frequency measurements 
(typically between 10 and 20 Hz) of vertical wind velocity, mass, and scalar concentra-
tions of state variables that represent critical exchange processes (ρv, CO2, heat, and 
momentum) between a surface and the boundary layer of the atmosphere that is in 
direct contact and influenced by the surface. These fast-response measurements of state 
variables result in time series data statistically analyzed into the commonly known EC.

The term covariance is a well-established statistical function representing an esti-
mate of the variation between two variables and can be either positive or negative. 
The variables need not be specified as dependent and independent. EC is the most 
physically direct method for measuring heat and mass fluxes between a surface and 
the atmosphere (Baldocchi et al. 1988). For vertical fluxes of scalars and momentum, 
fast-response sensors measure the fluctuating components of w (vertical velocity) 
that transport other entities such as ρv, T, u, v, and CO2 that can then be used to 
compute vertical, latent, and sensible heat fluxes as well as momentum components 
of the turbulent flow field. Other horizontal covariances can also be computed, but 
for this chapter, we confined ourselves to the vertical plane. EC instruments are well 
suited for continuous long-term monitoring of field-scale processes that include heat, 
momentum, water vapor (ρv), and CO2 exchange and transport. In general, the cova-
riance of any two variables can be expressed as (Steel and Torrie 1980)

 
cov( , ) ( )( ),x y i iN

x x y y= − −∑1
 

(5.3)

where cov(x,y) is the covariance of any two variables, with the subscript i indicating 
an instantaneous value and the overbar denoting a time average. In the context of 
Equation 5.3, the EC samples turbulent motions, that is, instantaneous fluctuations 
(e.g., xi and yi) about mean values (x and y overbars), to assess the net difference 
in scalar or mass motions between a surface and the overlying boundary layer of 
the atmosphere. The practical application of this task is accomplished using statisti-
cal techniques of the instantaneous w velocity and scalar or mass constituents to 
compute a vertical mass flux density using Reynolds’ (credited with establishing the 
theoretical framework for the EC technique) rules of averaging (Reynolds 1895), 
conveniently expressed in simplified form for H and LE as

 
H C q w Tp= + ′ ′( )ρ ( . ) ,1 0 84

 
(5.4)

 
LE v Lv w= ′ ′( )ρ ρ ,

 
(5.5)

where H and LE are the turbulent flux densities for heat and water vapor (in watts per 
square meter), respectively; ρv is the water vapor density (in kilogram per cubic meter); 
Cp (1 + 0.84q) is the specific heat of moist air (in joules per meter); q is the specific 
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humidity (dimensionless); Lv is the latent heat of vaporization (in joules per kilogram); 
w is the vertical wind velocity (m s–1); T is the temperature (°C); primes represent 
instantaneous fluctuations; and overbars represent a time average. Equations 5.4 and 5.5 
serve as the fundamental expressions to the turbulent flux exchange over most surfaces.

Determining the appropriate interpretation for EC measurements so that they rep-
resent the flux density of scalars and mass exchanged between the boundary layer and 
the underlying surface is a contemporary challenge to micrometeorologists (Foken 
and Wichura 1996). On the one hand, the challenge is to be able to assess the level 
of accuracy for EC measurements for H and LE so that water management issues are 
adequately provided for but with respect to remote sensing validation. On the other 
hand, the EC estimates of H and LE need to be valid and accurate representations 
of the surface state conditions in order to serve as validation points for regional ET 
estimates using remote sensing techniques.

5.3  SITE DESCRIPTION AND INSTRUMENTATION

The study was conducted at the United States Department of Agriculture Agricultural 
Research Service (USDA-ARS) Conservation and Production Research Laboratory 
(CPRL) in Bushland, TX, during the summer of 2008. The geographic coordinates 
of the CPRL are 35°11′N, 102°06′W, and its elevation is 1170 m above mean sea 
level. This facility is dedicated to research, providing technology for sustainable 
agricultural production systems in harsh semiarid environments. A critical focus of 
this facility is to conduct basic research to improve productivity and water use effi-
ciency in irrigated and dryland cropping systems representing the southwestern US.

This study was part of a multi-institutional research effort involving scientists and 
engineers from universities and state and federal research agencies. The location of 
this site is characterized by a regional extensive patchwork of irrigated and dryland 
surfaces, shown in Figure 5.1.

FIGURE 5.1  Remote sensing image of the region surrounding the USDA-ARS CPRL in 
Bushland, TX. Upper off-center border (magenta) in the image is the boundary of the CPRL.
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This patchwork environment creates a complicated network of dry-to-wet con-
trasts, creating large vertical gradients in saturation deficit so that variations and 
strength of wind speeds often produce large changes in saturation deficit over the 
irrigated surface. The advection of saturation deficit in which dry surfaces act as 
local sources of saturation deficit (warmer and drier air) can move over wetter 
surfaces (from irrigation) and thus enhance ET. Moreover, the regional extent of 
this patchwork surface lends itself to an additional but much larger spatial scale of 
sources of the regional advection of saturation deficit. Figure 5.2 provides an excel-5.2 provides an excel-.2 provides an excel-
lent overview of the challenging objectives to be investigated, which is estimating 
ET over variable (dry wet) surfaces using aircraft-based remotely sensed parameters.

Figure 5.2 shows an enhanced scene of the actual study site located within 
the CPRL boundary (yellow boundary), where both fields were planted in cotton 
(Gossypium spp.). The right half of the image in Figure 5.2 was regularly irrigated 
with a lateral move irrigation system, and the left half received water only during 
precipitation events.

The USDA-ARS precision weighing lysimeters at the CPRL site are described 
in detail by Marek et al. (1988). Briefly, all four lysimeters utilize a 3 m × 3 m sur-
face dimension (9 m2) and 2.3-m-deep soil monoliths. The lysimeters are placed 
on 45-Mg lever-load cell scales. Data acquisition was accomplished using a CR7X 
Campbell data logger with a 15-bit resolution. Since the surface area is 9 m2, 

450 m

Flux-3NW Flux-1NE

Flux-2SEFlux-5SW

Lysimeter-SW Lysimeter-SE

Lysimeter-NELysimeter-NW

200 mTexas orthoimagery program

FIGURE 5.2  Dry-land cotton field (left half) and irrigated cotton field. Field dimensions 
were 200 m east to west and 450 m north to south. Locations of four precision weighing 
lysimeters and four EC surface energy balance systems (SEBSs) are noted on the figures with 
their identification labels.
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9 kg of mass represents 1 mm of water depth equivalence. The data from the 
lysimeters will be used to compare and evaluate the EC measurements of ET, but 
at the time of publishing this chapter, the lysimeter data analysis was not fully 
completed.

Figure 5.3 shows one of the four EC SEBSs used in this study. Briefl y, each sys-5.3 shows one of the four EC SEBSs used in this study. Briefl y, each sys-.3 shows one of the four EC SEBSs used in this study. Briefly, each sys-
tem consisted of a Campbell Scientific, Inc.* 3D sonic anemometer, Li-Cor LI7500 
infrared gas analyzer, a four-way component Kipp & Zonen CNR1 net radiometer, 
three radiation energy balance soil heat flux plates, six copper–constantan soil ther-
mocouples, a Stevens Vitel soil moisture probe, a Vaisala HMP45C temperature and 
humidity probe, a Texas Electronics Inc. tipping rain gauge sensor, Li-Cor upward 
and downward looking photosynthetically active radiation (PAR) sensors, and two 
Apogee Inc. infrared sensors (one with a 45° view angle and the other a nadir-looking 
view angle).

The sonic and IRGAs for each of the four EC SEBSs were located at approxi-
mately 2.3 m above ground level. The sampling frequency for the EC was 20 Hz, 
while for all other slow-response sensors (Rn, G, Ta, humidity, PAR, IRT, and pre-
cipitation) it was 10 s. Online turbulent fluxes from the high-frequency EC data 
were computed and output to storage every 15 min along with all ancillary sur-
face meteorological measurements. Additionally, all high-frequency EC data were 
preserved for postprocessing and spectral analysis. The average 15-min data were 

* Mention of trade names or commercial products in this publication is solely for the purpose of provid-
ing specific information and does not imply recommendation or endorsement by the USDA.

FIGURE 5.3  EC SEBS over an emerging cotton field. EC is oriented to due south; the lat-
eral irrigation system is in the background.
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used as a first look (approximation) at the fluxes during the campaign. After the 
campaign, the high-frequency data (20 Hz) were then processed in much greater 
detail to arrive at the final turbulent fluxes for H and LE as described in the follow-
ing section.

5.4  DATA TREATMENT

5.4.1  SPectRal analySiS

The turbulent process responsible for the exchange and transport of vertical fluxes 
of heat and water vapor contains spectral information that describes the contribu-
tion of various frequencies to the observed velocity variances that are ultimately 
component turbulent kinetic energy or covariances. Turbulent flows typically found 
in the boundary layer (near a surface) are a superposition of many eddies varying in 
scale and frequency. These eddies that are energy containing interact continuously 
with the mean wind flow from where most of their energy is derived from and with 
each other (i.e., eddy interaction at local and regional scales). To better understand 
the turbulent processes associated with the vertical transport of fluxes (flux covari-
ance), it is necessary to evaluate the cospectrum of turbulent motions that exist in 
the boundary layer of the atmosphere. This can be accomplished with the following 
expression (Garratt 1975):

 

′ ′
∞

∫w dwχ χ= S ( )ω ω ,
0  

(5.6)

where Swχ is the cospectral density between w and χ representing the amount of flux 
associated with a particular frequency, and ω is related to the natural frequency by 
a factor of 2π.

5.4.2  ogive PlotS

Ideal conditions for EC require that the surface of interest be homogeneous, level, 
and uniform in vegetative cover, resulting in no advective effects, no sinks or 
sources exist in the atmosphere above the surface, and the concentration of the 
variable of interest varies significantly with time (Baldocchi et al. 1988). These 
fundamental assumptions were the foundation for the development and use of EC 
as a measurement technique for turbulent fluxes. Unfortunately, natural environ-
ment is anything but uniform and level. Although agricultural surfaces, to a first 
order, may appear uniform, variability in soil type and moisture content creates 
variability in the turbulent fluxes. Overlying all of this is the large diversity of 
landscapes spanning vast geographic regions. A critical question when using EC 
is how long one must sample in order to gain sufficient information from the tur-
bulent eddies advecting over a surface. If we consider a turbulent flux, the corre-
sponding cospectrum must vanish at the low- and high-frequency limits. A simple 
approach to aid in identifying the appropriate averaging period is through the use 
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of the cospectrum. For any covariance, it is mathematically a cumulative cospec-
trum expressed simply as

 

Γw ww
Co x dxχ χλ

χ
( )

1
( ) ,=

′ ′

∞

∫
0  

(5.7)

where Γwχ is the cumulative cospectrum energy, and Cowχ is the cospectrum of w and 
χ. The graph of Γwχ is often called an “ogive” (oh-jive) curve (Desjardins et al. 1989; 
Friehe et al. 1991; Lambert et al. 1999). The resulting ogive curve is the integration 
under the cospectral curve showing the cumulative contribution of eddies of increas-
ing time to the total transport. An example of an ogive curve is shown in Figure 5.4. 
In this example, the accumulation of the covariance of w and χ begins at the high 
frequency and reaches an asymptote on the low-frequency end. The asymptote at 
the low frequency indicates that no additional energy is being added to the total flux 
exchange between the surface and boundary layer. If we were to draw a vertical line 
somewhere along the asymptote in an idealized ogive and extend it to the x-axis, 
which is the natural frequency (  f  ) and invert f, this would result in seconds and, 
consequently, an appropriate averaging time for these specific data. This is a rather 
simple approach but very helpful in assessing appropriate averaging times.

5.4.3  eneRgy Balance cloSuRe

The energy balance closure is another approach used to determine the reliability or 
quality of the individual component measurements of the SEB (Equation 5.1). It is 
computed as the ratio of the turbulent fluxes for H and LE to the available energy 
(Rn – G) expressed as

 
EB

H LE
R Gc
n

= +
−

,
 

(5.8)

0.15

0.10

0.05

0.001 0.01 0.1 1 10
f

Cowχ

FIGURE  5.4  Generalized ogive plot showing accumulated energy from all contributing 
eddies from the time period. Note the sigmoid shape and asymptotic leveling at the low-
frequency end.
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where EBc is the energy balance closure, and the terms have been previously defined. 
For many EC measurements, typical closure ratios can range from 0.7 to 0.9, where 
higher closure ratios indicate better measurements, whereas lower values suggest not 
necessarily bad measurements but the conditions were such that fluxes measured 
by the SEB were not well coupled to the boundary layer. There can be many other 
reasons for low closure ratios. These range from frequency response issues with the 
sonic and IRGA, that is, the instruments are missing important eddies that contain 
substantial flux information, sensor separation issues, and misplacement of the SEB 
with respect to the surface of interest, that is, placed in a location where a different 
surface may be influencing the measurements. The location of the available energy 
sensors in a highly variable field will adversely affect the closure ratio, as it may 
not be representative of the surface. Equation 5.8 does provide a means of assessing 
the repeatability and a quality assurance check of the measurements comprising the 
critical components of the SEB.

5.5  DATA PROCESSING

This section provides a brief description of the spectral techniques used to study 
turbulence, in particular, the turbulent exchange of heat and water vapor near the 
surface. This is the most fundamental technique to begin to gain an understand-
ing through spectral analyses of the fluctuations in the boundary-layer turbulence 
exchange of heat and water in a semiarid landscape under advective events. Spectral 
analysis is a useful method to assess the reliability of flux measurements (Kaimal 
and Finnigan 1972).

5.5.1  calculation of SPectRa

Data were acquired using programmable Campbell Scientific Inc. CR5000 data 
loggers. High- and low-frequency data were stored onto high-density compact flash 
cards that were part of the CR5000 peripheral package. Compact flash cards were 
exchanged weekly from each of the EC SEBSs and stored onto multiple computers at 
the CPRL site. We used the MATLAB® (MathWorks) and Mathematica (Wolfram) 
software platforms for developing algorithms for data processing that included tur-
bulent flux calculations and spectral analysis.

Power spectra and cospectra were computed using the complex fast Fourier trans-
form (FFT). The FFT software from the MATLAB and Mathematica platforms do 
not require that the number of data be a power of 2, so we were able to use the full 
length of our data runs. At 20 Hz, runs of 60 min resulted in high-frequency data 
records of 72,000 points for u, v, w, T, CO2, and ρv. Before applying the FFT algo-
rithms, the original 20-Hz data needed to be evaluated using common procedures in 
micrometeorology. These included a despiking routine to locate suspect individual 
data points that exceeded a threshold value represented by a unique multiple of the 
standard deviation of each of the high-frequency parameters. When a parameter 
exceeded a threshold limit, it was replaced with an averaged nearest neighbor (10 on 
either side) value. Actual data spike replacement for this data set was insignificant.
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Next, linear trends were removed, and for these data, we did not apply a taper-
ing window to any of the time series data. Although an excellent discussion on the 
effects of applying a tapering window to time series data can be found in the work 
of Kaimal and Finnigan (1994), we chose to adhere to the recommendation of Stull 
(1988) to do as little conditioning of the original time series as possible. For our initial 
analysis, we focused on surface conditions that maximized our instrument deploy-
ment configuration as well as what would be typical conditions during the growing 
season at Bushland. This meant wind directions that were southerly, were steady, and 
typically ranged between 4 and 8 m s–1. The southerly winds took advantage of the 
longest fetch condition to ensure that EC measurements represented the best possible 
measurements of the turbulent fluxes representative of the cotton surface.

5.5.2  calculation of tuRBulent fluxeS

Once the data were despiked and detrended, hourly averages of H and LE were 
computed using Equations 5.3 and 5.4. This represents the initial and most basic 
turbulent flux calculation. Additional corrections are needed to extract the maximum 
amount of information from the EC approach. The first correction involves a mathe-
matical rotation of the individual wind and scalar covariances referred to simply as a 
two-dimensional coordinate rotation. Tanner and Thurtell (1969) first defined a natu-
ral wind coordinate system to be a right-handed system where the x-axis is parallel 
to the mean wind flow, with x increasing in the direction of the flow. This approach 
assumes that, for a flat surface, there is no correlation between the lateral and verti-

cal velocities ′ ′ =( )v w 0 . The transformation to this coordinate is accomplished as a 

two-step rotation procedure involving three rotation angles.
A complete description can be found in the original report of Tanner and Thurtell 

(1969) and of McMillen (1988). Another approach preferred by some is the planar fit 
coordinate rotation, and for a discussion of the application of this approach to more 
complex terrain, the reader is directed to Wilczak et al. (2001) and Lee et al. (2004). 
The next correction, which is now considered a standard and important procedure, 
corrects for the influence of density fluctuations on trace gas concentrations; for this 
topic, the water vapor flux is the WPL correction (correction according to Webb, 
Pearman, and Leuning), which is fully developed by Webb et al. (1980) and further 
discussed by Lee et al. (2004).

Additional corrections needed to recover turbulent flux losses are related to EC 
instrumentation and the inability to completely sample all flux-containing eddies. 
As a result, EC systems tend to underestimate the true boundary layer flux. This 
underestimation or downward bias is a result of the physical limitations in instru-
ment size and shape, separation distances between the sonic and IRGA, response 
times of the sensors, electronic filters to reduce noise of the output signal, and pro-
cessing algorithms used to separate fluctuations from a mean. Lee et al. (2004) dis-
cussed at length the various issues pertaining to flux attenuation. For this study, we 
employed the corrections to the turbulent fluxes to account for spectral attenuation 
losses from sensor separation and frequency response as described by Moore (1986) 
and Massman (1991).
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5.6  RESULTS

A first look at the data in its unprocessed state can often reveal unique features of 
the turbulent flow. Figure 5.5 shows a 25-s snapshot of 20-Hz u and w on 27 July 
2008 at 1900 h under relatively stable conditions. At this time, maximum advection 
is occurring as is indicated by H values greater than –100 W m–2. Note that the nega-
tive sign indicates a downward transport of saturation deficit. The x-axis is the time 
in 0.05-s increments; the y-axis is the velocity for u (Figure 5.5a) and w (Figure 5.5b) 
in meters per second. The velocity component u is in the streamwise direction of the 
mean flow. The mean wind velocity was high, with the u velocity ranging from less 
than 4 m s–1 to greater than 11 m s–1. Discrete structures can be readily observed in 
the u data in Figure 5.5a. The dashed oval highlights such a structure. This lasted 
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approximately 5 s, with an average mean wind speed of ~6 m s–1, and assuming 
Taylor’s hypothesis, the mean eddy diameter for this event was approximately 30 
m. Other distinct eddies are also evident at ranges of spatial and temporal scales 
that demonstrate the variability and nature of eddies within eddies. The vertical 
wind velocity plot (Figure 5.5b) is less defined than u but is to be expected, since the 
surface acts as a firm boundary. Nevertheless, careful observation does reveal finer 
features in the vertical motions as well as a range of spatial scales. Vertical gusts 
both in the updrafts and downdrafts can be observed to peak between –3 and 3 m s–1, 
which is indicative of low-frequency eddies (large) penetrating the surface boundary 
that contain substantial energy that can influence interpretation of turbulent fluxes 
of heat and water vapor.
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FIGURE 5.6  July 27, 2008, 1900 h (stable conditions), 25 s of instantaneous raw 20-Hz air 
temperature (a) and water vapor concentration (b) data.
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Figure 5.6a and b shows for the same day and time period raw 20-Hz time series 
for air temperature, and water vapor concentration, respectively. Here, we can observe 
that under, stable conditions, the temperature and water vapor concentrations are 
inversely related. Decreasing temperature with time can be observed with increasing 
water vapor concentration from the IRGA (see highlighted sections in Figure 5.6). At 
1900 h, the available energy is minimal, but the advection of saturation deficit or H is 
still considerable (–71 W m–2) and is driving the humidification of the air above the 
cotton canopy (decreasing temperature while increasing water vapor concentration). 
Energy extracted from the overlying advected air evaporates water at the surface, 
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thus decreasing the air temperature while increasing the water vapor concentration 
resulting from continued evaporation in the absence of significant available energy 
(Rn – G).

Figure 5.7 shows T and ρv for the same day but under unstable conditions at 1300 
h. Here, we observe temperature and water vapor concentrations to be strongly corre-
lated. Increases in temperature match increases in water vapor concentrations. Under 
unstable conditions, the available energy is now the dominant source of energy for 
evaporation to proceed to where approximately 90% of the available energy is con-
sumed by evaporation, while the remaining available energy is partitioned into a 
positive H (i.e., away from the surface). Both Figures 5.6 and 5.7 demonstrate how 
well coupled the surface becomes to the overlying boundary layer under different 
conditions of stability and advection of saturation deficit. Up and down drafts are 
very well correlated, indicating a well-mixed layer as the mean wind flow traverses 
across the irrigated cotton field. Figure 5.6 shows how increasing temperatures are 
closely matched with increasing water vapor concentration when warmer drier air is 
added to the volume of air space over the irrigated surface and the additional satura-
tion deficit acts to increase the vapor pressure gradient, thus increasing evaporation 
from the wet surface.

After examination of initial raw data, we developed some example ogive plots for 
the heat and water vapor fluxes (Figure 5.8). Sensible heat flux ogive (Figure 5.8a) 
shows that, from 1300 to 1600 h, the cumulative heat flux ogive curve is relatively 
well behaved, as observed by the expected sigmoid shape. Note that it is not entirely 
smooth even after substantial smoothing with a Daniel window, and in fact, it can 
be observed that there are times during the 3-h period where the heat flux is slightly 
negative, indicating that heat is moving toward the surface and that advection of 
saturation deficit is developing. What is also interesting is that the ogive curve does 
not completely reach its asymptote until at least 0.0002, which translates to over 80 
min. Contrast this with the ogive (Figure 5.8b) for wρv and we observe a consider-
ably different curve. First, there is a wider range of scales of eddies spanning four 
decades of frequencies that are contributing to the LE flux compared with what was 
observed for H. There are multiple periods where the LE flux is negative, indicating 
that, with the strong winds during the study, there are actually sources of water vapor 
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FIGURE 5.8  July 27, 2008, 3-h ogive for wT (a) and wρv (b) from 1300 to 1600 h under high 
winds and unstable conditions.
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originating far beyond the local surface. This has implications for interpreting the 
LE and H fluxes during periods of intense wind speed and substantial instability. The 
asymptote for the LE fluxes occurs around 0.0004, which is approximately 42 min 
substantially less than for H.

Figure 5.9 shows computed H and LE fluxes for 27 July, 0900–2300 h, computed 
as 5- (Figure 5.9a) and 30-min (Figure 5.9b) averages. Normally, 5-min averages 
are considered too short of a time period to compute a valid flux. However, what is 
interesting is that, for both H and LE, the general diurnal trend, as well as the major 
flux peaks, is clearly present as observed in the 30-min average fluxes. This suggests 
that, under the conditions in this study, with large available energy, strong winds, 
and advection, shorter averaging times for the EC data produce essentially the same 
fluxes as those with a longer averaging period (30 min), suggesting that these condi-
tions represent a well-coupled surface–boundary layer capturing the dominant fea-
tures of turbulent flux exchanges as well as individual bursts of flux exchange readily 
observed in the 5-min averages. Note that the bursts are oscillatory—high one 
moment, low another—indicating the numerous spatially and temporally variable 
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eddies moving past the EC system. The large low-frequency trend (30 min) is radia-
tion driven, but shorter and oscillatory bursts are a turbulence-driven process involv-
ing low- and high-frequency turbulence.

Overall, in this study, we had not yet completed the closure evaluation for the 
entire season, but we had evaluated the closure ranges for the selected days and 
found a range of closure values from 0.75 to 0.92. These closure values are typical of 
those reported by other studies in semiarid environments (Prueger et al. 1996, 2004; 
Kalthoff et al. 2006; Xiao et al. 2011).

We may then look at an example power spectrum during the afternoon period 
from 1300 to 1600h on 27 July 2008. First, it should be noted that, for all power, 
the x-axis values are normalized with height of the measurement z and mean wind 
speed u (not to be mistaken with instantaneous u). The spectra (y-axis values) were 
normalized with the friction velocity (u*) and the natural frequency ( f ). Cospectra 
are normalized in the same way for the x-axis values, whereas the y-axis values are 
normalized by temperature and humidity scales defined as θ* = H/u* and q* = LE/u*, 
respectively.

The w spectrum is shown in Figure 5.10a and at first look appears, in general, 
very much as the Kansas spectrum (Kaimal and Finnigan 1972; McNaughton and 
Laubach 2000, whose work was focused on advection). The primary difference 
between our spectra and those of McNaughton and Laubach (2000) is the magnitude 
of the strength of our spectra, which is greater by a factor of 3. McNaughton and 
Laubach (2000) stated that large-scale motions must be essentially horizontal near a 
surface. We reasoned that our results are unique relative to their study because of the 
difference in surface conditions; theirs was a rice paddy, and ours was an irrigated 
cotton field. The rice paddy is essentially a free water surface, whereas our cotton 
canopy during the mid- to late-afternoon period caused the surface soil to become 
a source of significant thermal buoyancy combined with the unsteady convective 
boundary layer overhead, resulting in considerably stronger vertical motions than 
those of McNaughton and Laubach (2000). Considerable spectral broadening is evi-
dent in our results between the ranges of 0.01 and 1 and is attributed to the variability 
in wind speed and the convective instabilities in the overhead flow.
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FIGURE 5.10  July 27, 2008, 3-h power spectra for w (a) and u (b) from 1300 to 1600 h under 
high winds and unstable conditions.
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The u spectra for the same day and time period are presented in Figure 5.10b. 
Here, we observed two distinct peaks: first in the low-frequency range with a peak 
at approximately 0.005 and the second much broader peak from 0.02 to 0.2. The 
broad spectral peak suggests the presence of an inner layer scaling turbulence that 
is a result of processes caused by the effects of surface friction. The larger peak in 
the low frequency is a result of outer layer scaling resulting from large-scale motions 
in the convective boundary layer with a length scale corresponding to the height of 
the local inversion base at the top of the convective boundary layer. These eddies 
are passing overhead at a speed set by the mean wind velocity (McNaughton and 
Laubach 2000).

The concept of inner and outer layer scaling was proposed by Townsend (1961), 
but for momentum transport, it was extended to include scalar admixtures (Bradshaw 
1967; Högström 1990; Katul et al. 1996, 1998; Raupach et al. 1991). This concept 
brought an understanding about how low-frequency scales of eddies interact with 
high-frequency scales at a surface to consequently increase the challenge of inter-
preting turbulent fluxes at a local surface. This was necessary because of intruding 
scales of motions that bring to the surface layer scalars and mass, which are often 
outside the local footprint of the surface. In semiarid regions where irrigation is the 
primary source of water, ET processes are routinely affected by these types of scal-
ing motions.

Example cospectra for wT (H) and wρv (LE) are shown in Figure 5.11. First, we 
look at the cospectra for sensible heat flux H (Figure 5.11a). A spectral gap is easily 
observed, separating the large-scale motions from the turbulent fluctuations. Large-
scale motions are contained between 0.001 and 0.01. Turbulent motions begin at 
about 0.02 and continue well into the high-frequency range of approximately 4. 
Since this is a continuous cospectrum from 1300 to 1600 h, we conclude from this 
plot that, under highly convective conditions, we have large-scale motions in the 
overhead flow. If we assume Taylor’s hypothesis, denormalize the frequency by u/z 
and invert the peak contribution (~0.006) to seconds, and then multiply by the mean 
wind speed, we derive an eddy diameter of about 375 m. These are substantially 
large eddies originating outside the local surface of interest, penetrating the sur-
face boundary layer, and influencing the SEB measurements. The next feature that 
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FIGURE 5.11  July 27, 2008, 3-h power cospectra for wT (a) and wρv (b) from 1300 to 1600 h 
under high winds and unstable conditions.
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we observe is the broad spectral peak punctuated by multiple distinct minor peaks 
beginning at about 0.09–0.4. This region is the energy-containing range, where the 
dominant portion of the turbulent energy produced is from buoyancy and shear 
stresses. The inertial subrange is characterized by substantial turbulent variability, 
indicating strongly unstable surface conditions. The subinertial range is the region 
where energy is neither produced nor dissipated but rather energy is transferred 
down to ever-decreasing scales. Distinct oscillations in the turbulent flow indicate 
a range of eddy motions responsible for the dominant transport of heat. The inten-
sity of the turbulence perturbations is noted for this condition of strong winds and 
surface instability as observed by the magnitude of the cospectral energy of the 
turbulence and is actually equivalent and at times greater than the energy of larger 
low-frequency eddies. The significance of this response is presently undetermined. 
Figure 5.11b shows the cospectral plot wρv (LE). The spectral gap observed for the 
heat flux is clearly absent for the water vapor flux. Beginning at 0.01, the cospectral 
shape and slope of the subinertial range is nearly identical with the heat flux. During 
this period, the conditions for EC measurements were nearly ideal, and the results 
were consistent with those reported by Goulden et al. (1996) and McNaughton and 
Laubach (2000). There is more power in the cospectra for LE compared to H, which 
is expected given the large LE fluxes shown in Figure 5.9b.

The spectral (power and cospectra) results show that turbulence will affect heat 
and water vapor transport in different ways. Although it is not shown in this chapter, 
calm periods limit the turbulent exchange for scalar and mass fluxes. During more 
turbulent periods, that is, higher winds, turbulence does affect the exchange of heat 
and water vapor through the boundary layer.

5.7  CONCLUSIONS

Preliminary data and results from an experiment in Bushland, TX, have been ana-
lyzed in this study. This experiment focused on estimating ET over irrigated cotton 
surfaces in a heterogeneous landscape using remotely sensed thermal measurements 
from an aircraft platform. Multiple EC systems were deployed over the heteroge-
neous landscapes to provide validation points for the remotely sensed estimates 
based on satellite images. Agricultural production in a semiarid climate inherently 
produces a patchwork heterogeneous surface characterized by multiple wet and dry 
surfaces, producing large gradients in saturation deficit (advection) that would result 
in variations in the transport of warm dry air originating from nonirrigated surfaces 
and transporting to the irrigated surfaces. This results in enhancing ET and modify-
ing the SEB and has obvious implications for energy balance and ET studies and 
for computing and interpreting reliable ET fluxes to provide validation points to 
compare with remotely sensed ET estimates. Examination of raw EC high-frequency 
data revealed distinct eddy structures that were spatially variable in time and space 
and readily observable in the horizontal component of the mean wind. The vertical 
velocity was less clear, but still, distinct structures could be seen. Temperature and 
water vapor concentrations over the irrigated cotton were well coupled through most 
portions of the day that included stable and unstable conditions. Latent and sensible 
heat flux time traces computed as 5- and 30-min averages suggest the presence of 
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high-frequency fluxes superimposed on a longer low-frequency trend. Power spec-
tra for w and u showed the presence of an unsteady low-frequency overhead flow, 
resulting in a broadening and substantial variation of the spectral peak for the ver-
tical velocity w. This implies that large-scale motions can manifest themselves in 
the surface–boundary layer, resulting in enhanced turbulence affecting the actual 
covariance estimates. The power spectra for u showed a major peak at low frequen-
cies (0.001–0.01) and a broad second peak in the higher frequency range (0.03–0.2). 
These power spectra results were not atypical for the conditions of this study and also 
suggest that the assumptions related to the Monin–Obukhov scaling theory may not 
be suited for conditions where the presence of advection is routine and a dominant 
feature of the landscape. Cospectra results for H and LE under typical conditions for 
this location clearly showed a spectral gap for the heat flux, again underscoring the 
clear presence of large low-frequency events that can impact the measurements over 
a surface. We concluded by stating that, in spite of the results that we have observed 
in the Texas study, EC provides the most physically correct measurement of turbu-
lent fluxes for heat and water vapor. Additional corrections to compensate for or take 
into account the additional energy in the form of saturation deficit to ET measure-
ments need to be considered and developed.
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6 Spatiotemporal 
Interactions among 
Soil Moisture, 
Vegetation Cover, and 
Evapotranspiration in 
the Tampa Bay Urban 
Region, Florida

Ni-Bin Chang and Zhemin Xuan

6.1  INTRODUCTION

More than half of the world population live in cities (Population Reference Bureau 
2007). Many cities in dry land environments, such as Las Vegas and Phoenix in the 
southwest United States, are increasingly faced with water problems due to their 
rapidly growing populations. Approximately 2.8 billion people have suffered from 
weather-related disasters since 1967, with droughts comprising 60% and floods 
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30% of the total events (Kogan 1998). Recent extreme hydroclimatic events in the 
east and southeast regions of the United States include droughts in Maryland and 
the Chesapeake Bay area in 2001–2002, the Peace River and Lake Okeechobee in 
South Florida in 2006, and Lake Lanier in Atlanta, GA in 2007. The occurrence 
of droughts in several regions has led to studies on their impact, mostly on water 
availability or water shortage with regard to public needs and ecosystem conserva-
tion (Haase 2009). All these weather events impact ecosystem processes and ser-
vices, triggering a need for advanced ecohydrologic studies, especially in coastal 
urban regions where most of the population live. As a consequence, urban hydrol-
ogy or hydrometeorology is playing a pivotal role on regional water balance and 
conservation.

Cities in subtropical or temperate regions with ample precipitation will not be 
spared the flood and drought impacts arising from global climate change. Especially, 
urban regions are more vulnerable to climate change impacts, and many of these 
regions have grown large enough to affect the hydrologic characteristics due to 
continuous urban sprawl and expansion. This is because urbanization increases the 
impervious area and decreases the vegetation cover, which weakens the urban infil-
tration and flood storage capacity. In short, urbanization brings surging demand in 
response to flood and drought control, water supply, urban drainage, and infrastruc-
tures. Conversely, more intense heat conductivity produces more heat than natural 
ecological environment, which causes the urban heat island effect and an obvious 
increase in evapotranspiration (ET). To better understand urban land use dynamics 
and water sustainability in urban regions, a resilience theory offers insights into the 
behavior of complex systems and characterizes the importance of system criteria 
such as system memory, self-organization, and diversity (Adger et al. 2005; Allenby 
and Fink 2005). On a long-term basis, remote sensing technologies, as demonstrated 
in this study, may provide us with quantitative ways of measuring urban system 
adaptive capacity in relation to system memory, self-organization, and diversity over 
seasons and identify emerging threshold limits in the assessment of ecosystem resil-
ience in urban regions (Blackmore and Plant 2008). These relevant events in rela-
tion to urban system adaptive capacity mainly include, but are not limited to, flood, 
drought, and water pollution, which first require a comprehensive understanding in 
connection with the density and intensification of the soilborne properties such as 
soil moisture, ET, and vegetation cover.

Soil moisture and ET are the two major elements of the water cycle. Soil moisture 
is important to the growth and survival of plants. Its availability depends on the 
frequency and amount of precipitation, evaporation rate, soil type, vegetation cover, 
slope, and depth of groundwater table. Soil moisture has vital significance to climate, 
hydrology, ecology, and agriculture and also indicates the storage of water in the soil 
available for evaporation. Soil moisture and ET are affected by both water and energy 
balances in the soil–vegetation–atmosphere system, which involves many complex 
processes in the hydrologic cycle and ecosystem dynamics at the earth’s surface. 
The traditional method for measuring soil moisture is in situ, which can accurately 
assess the moisture content of soil profile from simple point measurements. Field 
campaigns, however, are not only time consuming but also difficult to measure with 
high efficiency over larger regions. The use of advanced sensing, monitoring, and 
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modeling with computational intelligence techniques to retrieve spatiotemporal pat-
terns is needed. Remote sensing methods can provide such indirect measurement 
for extracting areal estimates of soil moisture. Long-term and large-scale dynamic 
monitoring of soil moisture can be carried out with high reliability and is labor 
saving, fast, and economical. Overall, the present study is designed to produce a 
soil moisture estimation algorithm via a machine learning analysis and to generate 
monthly soil moisture data from May 2005 to April 2006. Then, 1 year of enhanced 
vegetation index (EVI) and ET data from May 2005 to April 2006 were collected on 
a monthly basis from the moderate resolution imaging spectroradiometer (MODIS) 
Terra and the geostationary operational environmental satellite (GOES) images, 
respectively. It is followed by investigating the spatiotemporal interactions between 
soil moisture, EVI, and ET at scales at least as small as 1 km in the Tampa Bay urban 
region in Florida. The seasonal comparisons among soil moisture, EVI, and ET may 
improve understanding of the water cycle, urban micrometeorology, and ecohydrol-
ogy to ultimately aid in urban planning and management.

6.2  MATERIALS AND METHODS

6.2.1  eStiMation of enhanced vegetation index

Vegetation indices have been developed to qualitatively and quantitatively assess 
vegetation covers using spectral measurements (Bannari et al. 1995). The first earth 
resources satellite, Landsat 1, launched in 1972, was a remarkable effort to use elec-
tromagnetic spectral response to evaluate vegetation cover. The uses of the red and 
near-infrared spectral bands of the sensors onboard satellites are very well suited 
for assessing vegetation covers (Weier and Herring 2006). The green vegetation 
strongly absorbs red light (Landsat band 3) through the photosynthetic pigments 
such as chlorophyll a. In contrast, the near-infrared wavelengths are half reflected 
by and half passed through the leaf tissue, regardless of their color. There are more 
than 35 vegetation indices (Bannari et al. 1995); most use the red and the near-
infrared bands, whereas others incorporate additional parameters to compensate for 
atmospheric and/or soil background corrections. Selecting the right vegetation index 
might greatly affect the accuracy of change detection of vegetation cover.

The normalized difference vegetation index (NDVI) is a normalized ratio from 
−1 to +1, calculated as the difference between the near-infrared (NIR) and red bands 
(RED) by their sum:

 NDVI
NIR RED
NIR RED

= −
+

( )
( )

.  (6.1)

EVI is designed to enhance the vegetation signal with improved sensitivity to 
avoid saturation issues in high biomass regions where NDVI cannot perform well. 
Whereas NDVI is chlorophyll sensitive, EVI is more responsive to canopy struc-
tural variations, including canopy type, plant physiognomy, canopy architecture, and 
improved vegetation monitoring through a decoupling of the canopy background 
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signal, and a reduction in atmosphere influences (Huete et al. 1999). The values of 
EVI are computed as follows:

 EVI G
NIR RED

NIR C RED C Blue L
= × −

+ × − × +
( )

( )
,

1 2
 (6.2)

where NIR, RED, Blue are atmospherically corrected or partially atmospherically 
corrected for Rayleigh and ozone absorption and surface reflectances; L is the can-
opy background adjustment that addresses nonlinear, differential NIR, and red radi-
ant transfer through a canopy; and C1 and C2 are the coefficients of the aerosol 
resistance term. The blue band is particularly included to correct for aerosol influ-
ences in the red band. The coefficients adopted in the MODIS-EVI algorithm are 
L = 1, C1 = 6, C2 = 7.5, and G (gain factor) = 2.5.

Careful analyses of data by Gillies et al. (1997) showed a unique relationship 
among soil moisture, NDVI, and land surface temperature (LST) for a given region 
(Wang et al. 2006). This study follows the same philosophy to correlate soil mois-
ture, LST, and vegetation index simultaneously; however, NDVI only correlates well 
with the leaf area index (LAI) and biomass up to a threshold level. This threshold has 
been found between an LAI of 2 and 6, depending on the type of vegetation and the 
experimental conditions employed in the study (Hatfield et al. 1985). The saturation 
effects of NDVI can be shown by plotting the values of NDVI given to individual 
pixels versus the actual level of vegetation abundance of those pixels as measured 
in the field (Hatfield et al. 1985). In other words, NDVI has saturation issues in a 
high-greenness area, because the capacity for differentiation decays quickly, making 
the NDVI formula produce unrealistically high biomass estimates for large NDVI. 
This is exactly what Florida encounters, because the high-greenness areas appear 
everywhere in this “sun-shine” state. The EVI values are generally better in terms 
of saturation issues in high-biomass areas compared to NDVI (Huete et al. 2002). 
Hence, the present study used EVI instead of NDVI for analysis.

6.2.2  eStiMation of Soil MoiStuRe

6.2.2.1  Remote Sensing Image Collection
To measure soil moisture, the satellite sensors can be classified into two catego-
ries, namely, optical remote sensing and microwave remote sensing. Optical remote 
sensing uses optical equipment to detect and record the surface radiation, reflection, 
and scattering of electromagnetic waves under a corresponding spectrum section 
and analyze their characteristics and change on the earth’s surface. Optical remote 
sensing normally covers three optical wavelengths, namely, the infrared, visible, 
and ultraviolet spectra. Multispectral remote sensing uses several different spectra 
simultaneously on a target or selected spectra to obtain a variety of information 
corresponding to various spectrum sections. It combines the advantages of both 
visible and infrared remote sensing technologies and, thus, can distinguish various 
targets from background properties. Visible spectral remote sensing, with an oper-
ating wavelength of 0.38–0.76 μm, has the longest history of application and is the 
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principal means for earth observations. Infrared remote sensing imaging detects the 
temperature difference between a target and the surrounding environment. The big-
gest advantage of infrared remote sensing is that the image can be obtained without 
lighting or under cloud cover.

Microwave remote sensing, with a wavelength of 1–1000 mm, detects microwave 
radiation, reflection, or scattering from a ground target and can be divided into active 
and passive microwave remote sensing. Active microwave remote sensing consists of 
imaging radar, microwave scatterometer, and microwave altimeter; passive micro-
wave remote sensing refers mainly to various microwave radiometers that measure 
weak microwave radiation emitted from various objects in nature to measure a tar-
get’s radiation properties and actual temperature. Passive microwave systems have 
been widely used as a direct remote sensing method to explore the capability of 
remotely measuring soil moisture (O’Neill et al. 1996; Njoku and Entekhabi 1996; 
Burke et al. 2001) and groundwater recharge (Jackson 2002). Later, active microwave 
systems were developed and combined with passive remote sensing for earth obser-
vations (Moran et al. 1997; Kustas et al. 1998; Glenn and Carr 2003). Remarkable 
progress has been made in the use of spectral images from active or passive satellite 
sensors for surface soil moisture mapping, where surface soil moisture is the average 
moisture in the top few centimeters of soil layer (Grayson et al. 1997; Western and 
Grayson 1998; Wilson et al. 2003, 2004; Makkeasorn et al. 2006).

The processing procedure of microwave remote sensing is time consuming and 
labor intensive due to its fine resolution. More recent soil moisture studies tend to use 
multispectral remote sensing for relatively large areas (Wang et al. 2007; Casper and 
Vohland 2008; Merlin et al. 2010). The MODIS sensor is an advanced multipurpose 
sensor and is a key instrument aboard the Terra (Earth Observing System [EOS]–
AM) and Aqua (Earth Observing System [EOS]–PM) satellites operated by the 
National Aeronautics and Space Administration (NASA). Surface reflectance, LST/
emissivity, and vegetation indices of MODIS satellite data are available from NASA.

6.2.2.2  Urban Environment and Ground-Truth Data Collection
The Tampa Bay urban region mainly includes the Hillsborough, Manatee, and Alafia 
River Basins. There are 16 standard land use classes as classified by the United 
States Geological Survey (USGS) in the land use and land cover (LULC) map shown 
in Figure 6.1a. They include open water, barren land, cultivated crops, deciduous 
forest, developed area with high intensity, developed area with medium intensity, 
developed area with low intensity, developed area with open space, emergent herba-
ceous wetlands, evergreen forest, hay/pasture, herbaceous land, mixed forest, peren-
nial snow and ice, shrub/scrub, and woody wetlands. The urban and developed areas 
are mainly distributed at north Tampa Bay and lower south Tampa Bay. Most of 
the grassland (herbaceous land) is located at upstream the Hillsborough and Alafia 
catchments.

Remote sensing methods can achieve indirect measurements for extracting large-
scale areal estimates of soil moisture. Yet, in situ measurements of soil moisture that 
provide exact values limited as point observations are still needed as ground truth for 
remote sensing image processing. The in situ soil moisture sampling was launched 
in the Tampa Bay watershed on 29 December 2009 (Figure 6.1b). All ground-truth 



118 Multiscale Hydrologic Remote Sensing: Perspectives and Applications

Ta
m

pa
 w

at
er

sh
ed

s
Ri

ve
rs

O
pe

n 
w

at
er

Ba
rr

en
 la

nd
Cu

lti
va

te
d 

cr
op

s
D

ec
id

uo
us

 fo
re

st
D

ev
el

op
ed

, h
ig

h 
in

te
ns

ity
D

ev
el

op
ed

, l
ow

 in
te

ns
ity

D
ev

el
op

ed
, m

ed
iu

m
 in

te
ns

ity
D

ev
el

op
ed

, o
pe

n 
sp

ac
e

Em
er

ge
nt

 h
er

ba
ce

ou
s w

et
lan

ds
Ev

er
gr

ee
n 

fo
re

st
H

ay
/p

as
tu

re
H

er
ba

ce
ou

s
M

ix
ed

 fo
re

st
O

pe
n 

w
at

er
Pe

re
nn

ia
l s

no
w

/ic
e

Sh
ru

b/
sc

ru
b

W
oo

dy
 w

et
la

nd
s

La
nd

co
ve

r

G
ro

un
d 

tr
ut

h 
29

D
ec

09
Ri

ve
rs

0
3

6
12

18
24

km
0

2
4

8
12

16

N S

W
E

N S

W
E

km

Ta
m

pa
 w

at
er

sh
ed

s

(a
)

(b
)

FI
G

U
R

E 
6.

1 
Ta

m
pa

 B
ay

 w
at

er
sh

ed
 m

ap
s.

 (
a)

 L
U

L
C

 m
ap

. (
b)

 S
am

pl
in

g 
lo

ca
ti

on
 a

nd
 t

he
 g

ro
un

d-
tr

ut
h 

m
ap

 w
it

h 
45

 p
oi

nt
 m

ea
su

re
m

en
ts

 a
ro

un
d 

th
e 

Ta
m

pa
 B

ay
 w

at
er

sh
ed

 c
ol

le
ct

ed
 o

n 
D

ec
em

be
r 

29
, 2

00
9.



119Spatiotemporal Interactions among Ecohydrological Factors

measurements of soil moisture in this study were collected at a depth of 5 cm under-
ground using the FieldScout TDR 300 soil moisture meter (Wilson et al. 2003; 
Spectrum Technologies, Inc. 2004). The time-domain reflectometry (TDR) method 
has been popular, because it provides measurements of in situ soil moisture content 
with high accuracy (Roth et al. 1992; Walker et al. 2001). The TDR 300 sensor rods 
used in our measurements were 7.5 cm in length. We measured the soil moisture 
content of soil 5 cm below the surface by inserting the probe at an angle of 40° 
from the flat ground. Every two sampling locations were more than 1.5 km apart. A 
Global Positioning System (GPS, GARMIN GPSMAP 76CSx) was connected to the 
soil moisture meter to record the precise corresponding longitude and latitude data. 
Before going to the field, the TDR probe was calibrated by a gravimetric measure-
ment method within a range of 0%–30% moisture (i.e., converted the gravimetric to 
the volumetric moisture content). An average value of three gravimetric measure-
ments was used to calibrate each TDR measurement.

6.2.2.3  Derivation of Soil Moisture from MODIS Data
The principle of evolutionary computation (EC) is rooted from genetic algorithms 
(GAs) first developed by Holland (1975), evolution strategies developed by Rechenberg 
and Schwefel (Back et al. 1997), and evolutionary programming developed by Fogel 
et al. (1966). All three were eventually combined into one entity called “evolution-
ary computation” (Gagne and Parizeau 2004). Under the EC framework, the genetic 
programming (GP) is generally considered as an extension of GA. The well-known 
GP approach was invented by Koza (1992), which became the best advancement to 
create best selective nonlinear regression models in terms of multiple independent 
variables later on. In this study, we use the GP software, Discipulus, developed by 
Francone (1998) to solve the GP model.

Based on the regression relationships developed by the GP technique, soil mois-
ture maps at a 1-km resolution over the study area can be produced (Makkeasorn et 
al. 2006). Initially, 16-day EVI and daily LST/emissivity L3 Global 1-km MODIS 
satellite images for the date 29 December 2009 were used as independent variable 
inputs to the GP model. The GP-based nonlinear function derived in the evolution-
ary process uniquely links crucial input variables, including EVI and LST, with the 
well-calibrated soil moisture data. The soil moisture data set was divided into a GP 
model calibration with 40 data points and a GP model verification with 5 data points. 
The square of the Pearson product moment correlation coefficient (R-squared) was 
used to verify the effectiveness of model development.

6.2.3  eStiMation of evaPotRanSPiRation

ET is the depletion of water of the soil in vapor form through evaporation and tran-
spiration. The loss of water through the plant’s respiration is called transpiration, 
whereas the evaporation is the water loss directly through the soil. Osmosis, the dif-
fusion driven by a salinity gradient, forces water to move from plant roots upward 
to the leaves and vaporize to the air at the stomata. A high salinity level in soil 
would reduce the gradient of salinity, which reduces the driving force of water move-
ment in plants. ET rates would be lower in high-salinity soil under the same weather 
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conditions and plant species. In general, ET rates near seashores would be lower than 
ET rates inland under the same weather and plant conditions, which are the cases in 
many coastal cities.

Understanding ET allows efficient water management planning for land use appli-
cations and agricultural activities. Various factors affecting ET include temperature, 
relative humidity, wind speed, and solar energy; for example, a sunny day with strong 
wind and dry air would naturally increase the ET rates. Soil types and conditions 
also affect ET rates. Clays can likely hold water better than sand or silts because of a 
strong chemical interaction between water and clays at the molecular level; therefore, 
ET rates in clays are normally lower than in sand at the same weather conditions. 
However, long-term ET rates in clay are normally higher, because sand will lose 
water much quicker and dry out in a short time period, assuming a limited amount of 
available water, whereas clay would slowly lose water over a longer time.

ET can be estimated by using either remote the sensing technology or mathe-
matical models. Large-scale ET estimation is critical to numerous practices from 
regional water resources management to local irrigation scheduling (Bastiaanssen 
et al. 1998a,b; Kite and Droogers 2000; Schuurmans et al. 2003). The National 
Oceanic and Atmospheric Administration (NOAA) GOES (Jacobs et al. 2008), 
USGS Landsat (Bastiaanssen et al. 1998a,b), and the NASA MODIS (Nagler et al. 
2005a,b) satellites all provide estimations of ET.

In this study, daily average ET data derived from GOES data and hydrologic 
models can be retrieved from the USGS Web site directly (i.e., USGS spatiotempo-
ral GOES-based data; http://hdwp.er.usgs.gov/et.asp). USGS produced retrospective 
potential evapotranspiration (PET) and reference evapotranspiration (RET) esti-
mates throughout Florida at a 2-km and daily resolution using a combination of 
satellite (NOAA GOES) and land-based (weather stations) methods to compute ET. 
The overall effort may provide gridded estimates of solar radiation, net radiation, 
PET, RET, and actual ET at a 2 km × 2 km grid scale and a daily time scale from 
2002 to 2008 for the entire state of Florida. The satellite-derived solar insolation 
data set required calibration to correct for biases embedded in temporal-, seasonal-, 
and cloudiness-related models (Jacobs et al. 2008). This was achieved through a 
comparison with available ground-based pyranometer measurements (Jacobs et al. 
2008). Upon calibration, the quality of the solar insolation product was improved 
(Jacobs et al. 2008). Because RET is used mainly for agricultural use, PET data were 
downloaded for the first day of each month during the study period to retrieve the ET 
monthly maps. To harmonize the overall consistency in terms of spatial resolution, 
ET data were finally resampled at a 1-km scale to be comparable with soil moisture 
and EVI data sets.

6.3  RESULTS AND DISCUSSION

6.3.1  geneRation of Soil MoiStuRe MaPS

After constructing the soil moisture estimation algorithm, 16-day EVI (Figure 6.2) 
and daily LST/emissivity L3 Global 1-km MODIS satellite images (MOD13A2) for 
the first day of each month during the study period were processed and input into the 
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FIGURE 6.2  Sixteen-day EVI maps of the Tampa Bay watershed. (a) 04/23/2005–05/08/2005; 
(b) 05/25/2005–06/09/2005; (c) 06/26/2005–07/11/2005; (d) 07/28/2005–08/12/2005; 
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FIGURE 6.2  (Continued) (e) 08/29/2005–09/13/2005; (f) 09/30/2005–10/15/2005; (g) 11/01/ 
2005–11/16/2005; (h) 11/17/2005–12/02/2005;
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FIGURE 6.2  (Continued) (i) 12/19/2005–01/03/2006; ( j) 01/17/2006–02/01/2006; (k) 02/18/ 
2006–03/04/2006; (l) 03/21/2006–04/05/2007.
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GP model to retrieve the soil moisture value for a 1-year span. EVI maps from May 
2005 to April 2006 in the Tampa Bay watershed (Figure 6.2) were used to visually 
show the high percentage of vegetation cover (shown in green) and bare soil (shown 
in red). Lower EVI values appear on the west part of the study area year round, espe-
cially in the area along Tampa Bay, the location of the major metropolitan area. The 
pattern verifies that urbanization has a remarkable effect on the natural vegetation 
cover. The rest of the Tampa Bay watershed (i.e., suburban area) exhibits a signifi-
cant seasonal change of the vegetation cover over a year, evidenced by the overall 
drop in EVI values below 0.45 in November and recovery along the Hillsborough 
River beginning in April and continuing through summer. Expanded green areas can 
be observed around the wet season. In addition, LST data in the same region were 
used based on MODIS products (MOD11A1). When LST readings were disturbed by 
cloud cover, an 8-day LST (MOD11A2) was used instead of a 1-day LST.

Model screening and selection were carried out based on the fitness value, caus-
ing many GP-derived models to be rejected due to either overfitting or poor fitness. 
For overfitting, our findings indicate that less complex-structured models may have a 
better chance to survive the final selection. Only the top 30 models with the highest 
level of fitness were selected for further evaluation; however, the best model based 
on the fitness of the training data may not perform as well as those cases based on 
the unseen data. Therefore, the GP model that performed well on both the unseen 
data set and the calibration data set was chosen for this study. Consequently, the 
best GP-derived model of soil moisture was chosen based on R-squared calculated 
from the corresponding unseen data set. The computational time required to create 
a GP-derived model depends on the amount of input data, the number of variables, 
and/or the complexity of embedded intrinsic features of nonlinearity.

Findings indicate that the best GP model can be derived from the 45 valid data 
points. The GP-based soil moisture estimation model can be expressed in terms of 
a convoluted form (see Equation 6.3). It produced an R-squared value of 0.67 for the 
calibration with 40 data points and 0.91 for the verification and 5 unseen data points 
(Figure 6.3). The estimation errors could be related to insurmountable discrepancies 
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that arose, because the equation was driven by a match between ground-based point 
measurements and MODIS images with 1 km × 1 km footprints of EVI and LST 
data.

Soil moisture [volumetric water content (VWC; in percent)]

 = X(1)X(2) + 2X(2) + 6.099 (6.3)
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where V(0) is the MODIS 16-day EVI, and V(1) is the MODIS daily LST (in degrees 
Celsius).

Based on the GP-derived model derived above, a soil moisture map from May 
2005 to April 2006 in the Tampa Bay watershed was generated (Figure 6.4) using a 
geographical information system (GIS; ArcInfo 9.3) with a daily forecasting scheme. 
The derived soil moisture pattern is similar to the EVI pattern displaying obvious 
seasonal changes of the soil moisture distribution on a monthly time scale. For each 
month, the stepped variation of soil moisture is apparently consistent with that of 
EVI. During June and July 2005, the MODIS 8-day LST images had been partially 
contaminated by cloud so that the soil moisture maps only show partial estimates.

6.3.2  RetRieval of SPatioteMPoRal ecohydRologic PatteRnS

The ET value is normally consistent with the wet–dry season pattern. In Florida, the wet 
season normally begins in late May and ends in mid-October. ET in the urban area is 
higher than the surrounding area during the wet season, and vice versa, which demon-
strates the possible heat island effect in Tampa Bay as rainfall intensifies and becomes 
more frequent. More rainwater leads to a high ET; therefore, urbanization and ET are 
influencing each other. The lower soil moistures were always found in the surrounding 
urban and suburban interfaces of the Tampa Bay region, which is identical with the 
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FIGURE  6.4  Derived soil moisture maps of the Tampa Bay watershed. (a) 05/01/2005; 
(b) 06/01/2005; (c) 07/01/2005; (d) 08/01/2005; 
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FIGURE 6.4  (Continued) (e) 09/01/2005; (f) 10/01/2005; (g) 11/01/2005; (h) 12/01/2005;
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FIGURE 6.4  (Continued) (i) 01/01/2006; (j) 02/01/2006; (k) 03/01/2006; (l) 04/01/2006.
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FIGURE 6.5  Daily ET maps of the Tampa Bay watershed. (a) 05/01/2005; (b) 06/01/2005; 
(c) 07/01/2005; (d) 08/01/2005;
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FIGURE 6.5  (Continued) (e) 09/01/2005; (f) 10/01/2005; (g) 11/01/2005; (h) 12/01/2005;
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FIGURE 6.5  (Continued) (i) 01/01/2006; (j) 02/01/2006; (k) 03/01/2006; (l) 04/01/2006.
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observed low ET pattern in the wet season (see Figure 6.5). These concomitant soil 
moisture patterns and ET fluctuations vary among urban patches from downtown to 
rural areas and closely follow the urban gradient. Land with less vegetation cover has a 
poorer capacity to store rain water. Compared to the LULC maps (Figure 6.1a), higher 
soil moistures corresponded to the wetlands in the Hillsborough River and Alafia River 
Basin area, as well as cultivated crops in the Manatee River and Little Manatee River 
Basin area. Compared with the EVI values, the ET values from May 2005 to April 2006 
in the study area (Figure 6.5) look more varied and sensitive, and they soared in July.

To further explore the temporal patterns, the three parameters, EVI, ET, and soil 
moisture, were plotted in pairs to verify relationships. The average EVI, ET, and 
soil moisture in the Tampa Bay study area may be calculated by averaging every 
pixel value to generate the daily average value of each in GIS. The highest value 
of the time series soil moisture data was 61.19% in July, and the lowest value was 
5.61% in February (Figure 6.6a). Both EVI and ET pixel values were treated the 
same way to create the time series plots (Figure 6.6b and c). EVI ranged from 0.28 
to 0.41. The time series ET data show a multipeak pattern with salient oscillations 
(Figure 6.6a and b). These peak values of ET in Figure 6.6a with hydrometeorologi-6.6a and b). These peak values of ET in Figure 6.6a with hydrometeorologi-.6a and b). These peak values of ET in Figure 6.6a with hydrometeorologi-6.6a with hydrometeorologi-.6a with hydrometeorologi-
cal implications are driven by the heterogeneity of LULC, soil moisture, and LST 
simultaneously. In the wet season, ET was sensitive and varied greatly in response 
to the rain events; in the dry season, it rose steadily. There was no strong linear cor-
relation between the two parameters of ET and soil moisture or ET and EVI. Yet, 
Figure 6.6a and b showed clear seasonality effects. Interactions between EVI and 
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soil moisture (Figure 6.6c) showed a relatively consistent cyclic pattern. The varia-6.6c) showed a relatively consistent cyclic pattern. The varia-.6c) showed a relatively consistent cyclic pattern. The varia-
tion of EVI and soil moisture showed a full cycle of sinusoidal wave shape, which 
reflects a high degree of correlation between EVI and soil moisture. For an example, 
the highest and lowest values for both EVI and soil moisture appear in June and 
February, respectively. However, this could also be partially because soil moisture 
was estimated using EVI and LST in a GP model.

Overall, time series data analyses for pairwise ET–soil moisture, ET–EVI, and 
soil moisture–EVI comparisons reveal that soil moisture more closely follows the 
same temporal trend as EVI in the context of urban microscale ecohydrologic assess-
ment. Such an ecohydrologic assessment can support urban landscape management 
to further reflect the dynamics of urban LULC as well as measure and analyze sus-
tainability through metrics applied at various spatial scales, from neighborhood to 
regional, in the urban regions.

6.4  CONCLUSIONS

It has long been recognized that soil moisture at 1–2 m below ground level regu-
lates atmospheric energy exchange at land surface and affects all aspects of urban 
ecosystems. The urban patch can exchange heat by convection (sensible heat flux), 
conduction (contact with soil), evaporation (latent heat flux), radiation (long- and 
shortwave), and respiration (latent and sensible). Specifically, water loss rates 
influence ecosystem productivity by controlling water availability and through 
feedback on temperature via latent heat transfer (evaporative cooling). Yet, water 
use efficiency varies among patches, plant species, and especially location on the 
urban gradient. In addition, local interactions of human and biophysical processes 
affect the landscape patterns associated with a number of ecohydrologic factors 
such as precipitation, ET, soil moisture, and vegetation cover. To explore such bio-
physical conditions, this study showed the multitemporal ecohydrologic assess-
ment of urban water storage and ecosystem dynamics in connection to possible 
seasonality effects.

Soil moisture as a useful drought index has vital significance in the fields of 
climate, hydrology, ecology, and agriculture. ET is a key component of global 
climate systems, looping the water cycle, energy cycle, and carbon cycle. Both 
parameters play important roles on urban hydrology, and both are closely related 
to vegetation cover and land use dynamics in urban regions. In this study, soil 
moisture was estimated using EVI and LST, both of which are products from 
MODIS Terra with a 1 km × 1 km resolution in 1 year (May 2005–April 2006). 
A GP model was designed to produce the soil moisture model by linking MODIS 
measurements to ground-truth soil moisture measurements. ET data derived by 
GOES data were included for comparative analysis. Overall, the time series ET 
data showed a multipeak pattern with salient oscillations driven by the heteroge-
neity of LULC and LST. There was a high positive correlation between EVI and 
soil moisture. Such findings may offer reference basis for urban planning and 
design in the future.
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7.1  INTRODUCTION

7.1.1  Motivation of Study

The occurrence of historical droughts led to studies on their impact and assessment 
methods. Droughts differ from most natural hazards in several important ways: 
(1)  a  slow-onset, creeping phenomenon occurs; (2) duration varies from event to 
event; (3) there is no universal definition; (4) no single drought index can identify 
precisely the onset and severity of the event; (5) spatial extent can be much greater 
than that of other natural hazards, making assessment difficult; (6) the core area or 
epicenter can change over time, reinforcing the need for continuous monitoring; and 
(7) impacts are generally difficult to quantify with cumulative effects. In particular, 
monitoring these phenomena in a fast-growing urban region where the multitempo-
ral changes of land use and land cover (LULC) can affect holistic drought assess-
ment is a challenge (Tadesse et al. 2005).

The early quantitative indices based on climatic and meteorological observations 
include the Palmer drought severity index (PDSI; Palmer 1965), rainfall anomaly 
index (van Rooy 1965), and Palmer crop moisture index (Palmer 1968). Current 
drought measurement relies on biophysical parameters such as vegetation indices 
(VIs), land surface temperature (LST), soil moisture, albedo, and evapotranspira-
tion (ET). Vegetation health is an essential indicator, and vegetation cover was once 
considered a good surrogate index for drought monitoring (Tadesse et al. 2005). The 
most frequently used VIs are the normalized difference vegetation index (NDVI; 
Rouse et al. 1974), the soil-adjusted vegetation index (SAVI; Huete 1988), the modi-
fied SAVI (MSAVI; Qi et al. 1994), and the enhanced vegetation index (EVI; Huete et 
al. 1999). With the aid of NDVI, other vegetative drought indices such as the vegeta-
tion condition index (VCI) and temperature condition index (TCI) have been shown 
useful for drought detection (Kogan 1995; Bhuiyan et al. 2006). Some recent drought 
monitoring models were developed with the aid of satellite remote sensing imager-
ies in relation to those VIs and LST using a combination of LST from thermal band 
data versus VIs from visible and near-infrared (NIR) data (Bayarjargal et al. 2006; 
Ghulam et al. 2007). To gain more insight into the relationship between vegetation 
vigor and moisture availability, several more remote sensing–based drought indices 
were developed (Ji and Peters 2003). Some early drought indices such as the Keetch–
Byram drought index are also starting to include the El Niño/southern oscillation 
information to address global climate change impacts (Brolley et al. 2007).

In most urban drought events, drought might simultaneously turn pastures brown, 
threaten shrubs and trees, and result in low vegetation cover and high LST. In the 
last two decades, to reflect the drought impacts with multiple aspects, many satellite-
derived indices have been specifically developed to function as drought indicators 
of plant water content, water stress, VIs, LST, soil moisture, and ET (Brolley et al. 
2007; Kimura 2007; Ghulam et al. 2007). However, a composite drought indicator 
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based on multiple drought indices might be more suitable to justify the extent and 
severity of a drought event and to trigger appropriate actions within a drought miti-
gation plan. Achieving such goals must rely on remote sensing technologies to col-
lect intensive spatial information with different features.

7.1.2  BackgRound of the Single dRought index

Various satellite-derived VIs have been developed to quantitatively assess vegetation 
covers using spectral measurements (Bannari et al. 1995). The uses of red and NIR 
spectral bands of the sensors on board satellites are well suited for assessing vegetation 
covers (Weier and Herring 2006). Photosynthetic pigments in green vegetation strongly 
absorb red light (such as Landsat band 3) through chlorophyll a. In contrast, NIR wave-
lengths are half reflected by and half passed through the leaf tissues, regardless of their 
color (USGS-ARS 2006). Bannari et al. (1995) reviewed 35 VIs and found that most 
used red and NIR bands, whereas others incorporated additional parameters to com-
pensate for effects of confounding factors, such as background effects (soil brightness 
and soil color), atmospheric effects (absorption and scattering), and the effects of sensor 
response and calibration. In 2001, Peddle and Brunke conducted a review on the 10 
most commonly used VIs in forestry applications. Each VI has strengths and weak-
nesses. For instance, the ratio vegetation index does not perform well when the vegeta-
tion cover is less than 50% but is the best index for dense vegetation cover (Jackson 
1983). The NDVI first proposed by Rouse et al. (1974) is able to reduce the effect of sen-
sor degradation by normalizing the spectral bands; this index is sensitive to low-density 
vegetation such as semiarid areas (Tucker and Miller 1977; Kerr et al. 1989; Nicholson 
et al. 1990). Besides, LST retrieval was carried out using the thermal bands of thematic 
mapper/enhanced thematic mapper plus (TM/ETM+) data to support the application 
of the radiance transfer equation (Qin et al. 2001). The equations for NDVI (Rouse et 
al. 1974; Tucker 1979), SAVI (Huete 1988), MSAVI (Qi et al. 1994), and adjusted NDVI 
(ANDVI; Liu et al. 2008) were collectively employed to produce a suite of VIs in support 
of advanced drought impact assessment. Examples of VIs that are insensitive to atmo-
spheric effects include the global environment vegetation index (Pinty and Verstraete 
1992) and the EVI (Huete et al. 1999). The EVI was developed to improve sensitivity in 
high-biomass regions while reducing atmospheric effects and can be regularly produced 
from the moderate resolution imaging spectroradiometer (MODIS) on the National 
Aeronautics and Space Administration (NASA)’s Terra satellite (Huete et al. 1999).

Using NDVI and SAVI without regard to LST conditions cannot accurately 
address actual urban drought episodes, yet LST can be directly linked to LULC, soil 
moisture, VIs, and ET. Monitoring temperature conditions using a remote sensing 
method can obtain spatial distribution and temporal changes of soil heat flux with 
high precision to capture the spatiotemporal variations of drought impact associated 
with varying weather conditions. With the aid of remote sensing technologies, the 
vegetation index/temperature trapezoid (VITT) eigenspace may explain such land 
surface processes (Han et al. 2006).

Waston et al. (1971) first proposed a simple model to calculate thermal inertia with 
daily difference in LST. Many scientists have carried out a variety of experimental 
studies with respect to thermal inertia principles (Price 1977, 1985; England 1990; 
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England et al. 1992; Xue and Cracknell 1995). The negative correlation between 
LST and VIs was found with various remote sensing data at different spatial scales 
and temporal resolution for microclimate studies in developed regions. Moron et al. 
(1994) thought that the scatterplot-combined NDVI and LST data are trapezoidal 
from a theoretical point of view. Carlson et al. (1994) and Goetz (1997) analyzed 
NDVI and LST data derived from different resolutions of the sensors and found that 
a significant negative correlation exists between LST and NDVI.

Soil moisture plays a key role in surface–subsurface water and heat exchanges 
through infiltration, percolation, and capillary processes. When the range of vegeta-
tion cover and soil moisture in the study area was large, the scatterplot-combined 
NDVI and LST remote sensing data resulted in a triangle, which can be verified 
using the soil–vegetation–atmosphere transfer model (Price 1990; Carlson et al. 
1995a; Gillies et al. 1997; Sandholt et al. 2002). Weng et al. (2004) investigated the 
applicability of using a vegetation fraction derived from a spectral mixture model as 
an alternative indicator of vegetation abundance and found that LST had a slightly 
stronger negative correlation with the unmixed vegetation fraction than with NDVI 
for all land cover types across the spatial resolution from 30 to 960 m. This may be 
further linked to the effect of urban heat island (UHI). Chen et al. (2006) studied the 
spatial and temporal relationships between LST and VIs based on the analysis of UHI 
effects due to urbanization impacts. Martha et al. (2008) further described the spatial 
relationship among satellite-derived LST, circumpolar arctic vegetation, and NDVI.

In comparison, spatial VITT has been applied widely in many studies reflect-
ing the potential impact of LST on NDVI. Several studies that monitored ET and 
soil moisture with spatial VITT have illuminated this correlation between LST and 
NDVI (Goward and Hope 1989; Price 1990; Ridd 1995; Gillies et al. 1997; Gillies 
and Carlson 1995; Sandholt et al. 2002; Wang and Moran 2004; Han et al. 2006). 
Moron et al. (1994) explained the algorithm of the crop water stress index (CWSI), 
which avoids measurements of leaf temperature when studying vegetation cover. 
The slope of scatterplot-combined LST and VI represents the degree of crop water 
stress gradient based on the negative relationship between LST and VI (Carlson et al. 
1995b; Moran et al. 1996; Fensholt and Sandholt 2003; Venturini et al. 2004; Wang 
et al. 2007). Such findings lead to a more accurate evaluation of the spatial and tem-
poral variations of drought. The water stress index method is the ratio of actual ET 
and potential ET, which is a kind of CWSI. With this ratio, Jackson and Idso (1981) 
put forward the CWSI concept, and Moron et al. (1994) proposed the water deficit 
index (WDI). In addition, the moisture index method is an approach for monitoring 
regional drought with water characteristics of strong absorption in shortwave infra-
red band (Xu 2006; Fensholt and Sandholt 2003; Chen et al. 2005). For example, 
Kogan (1995) proposed the VCI, and McFeeters (1996) proposed the normalized 
difference water index (NDWI) by combining the Landsat TM green band and the 
TM NIR band; both VCI and NDWI are variations of the moisture index method.

7.1.3  need to develoP a coMPoSite dRought indicatoR

A number of specific indices for drought monitoring and assessment have been 
recently developed. Wang and Takahashi (1999) developed the WDI and applied this 
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method to monitor drought of the Loess Plateau region, China. Based on the spatial 
VITT, Sandholt et al. (2002) proposed the temperature vegetation drought index 
(TVDI) for monitoring the regional drought. The TVDI method, based on the spatial 
VITT, is also a kind of moisture index method. Mika et al. (2005) modified the PDSI 
for monitoring regional soil moisture. Helen et al. (2006) detected drought effects 
on vegetation water content and fluxes in Chaparral, CA, with a 970-nm water band 
index. Bhuiyan et al. (2006) studied drought dynamics in the Aravalli region, India, 
and compared different drought indices with one another. These indices include the 
standardized precipitation index (SPI), standardized water-level index, VCI, TCI, 
and vegetation health index. Livada and Assimakopoulos (2007) detected drought 
events across spatial and temporal domains with SPI.

With the advancement of the TVDI design principle, this chapter presents sev-
eral composite indicators of TVDIs (TVDI_NDVI, TVDI_ANDVI, TVDI_SAVI, and 
TVDI_MSAVI) that were designed to combine temperature with different VIs (NDVI, 
ANDVI, SAVI, and MSAVI) for comparisons. It leads to the test of TVDI adaptation 
and application potential for monitoring regional drought holistically. In addition, 
the regional water stress index (RWSI) was designed based on the CWSI mechanism 
as a reference basis to aid in the classification of regional drought events in concert 
with the identified spatial patterns between LST and VIs (NDVI, ANDVI, SAVI, and 
MSAVI). The interrelationship between TVDIs and RWSI can then be analyzed to 
provide scientific guidance for monitoring regional drought events using a suite of 
integrated remote sensing technologies.

7.2  MATERIALS AND METHODS

7.2.1  Study aRea

The study area is located at Laizhou Bay in Shandong, China (Figure 7.1), latitude 
36°49ʹ30ʺ–37°21́40ʺ and longitude 119°0′50″–119°43′44″. The length along the east–
west and north–south directions is approximately 62 km × 58 km, respectively. The 
total study area is 223,316 ha, but the length of the meandering coastal line within 
the study area, where the active floodplain was formed by sediment laden water 
being released from the neighboring river channel through the regional morphologi-
cal and sedimentary dynamics, is about 100 km long. Five cities, including part of 
Shouguang City, Laizhou City and Pingdu City, the Hangting area of Weifang City, 
and most of Changyi City, are situated along this coastal line. The sediment distri-
bution in the alluvial plain ranges from fine sand (close to the low water line) to the 
typical mud carried by flood currents. Close to the open ocean, this area has a moist, 
warm, temperate continental monsoon climate (Cao 2002; Wang et al. 2002; Guan 
et al. 2001).

7.2.2  iMage PRoceSSing of MultiSenSoR data

A flowchart of image processing can be used to explore the relationships between 
LST and VIs for drought monitoring (Figure 7.2). First, Landsat TM/ETM+ images, 
digital elevation model (DEM) data, and climate data were collected. The DEM data 
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collected by the Shuttle Radar Topography Mission (SRTM) were applied; the avail-
able DEM data in this study are SRTM3 with a 90-m resolution. The climate data 
were collected from the National Meteorological Center of China Weather Bureau. 
The spectrum of climate data includes average temperature, maximum tempera-
ture, minimum temperature, precipitation, average wind speed, and amount of cloud 
cover, among others. All data sets were vectorized and interpolated as grid data 
sets with the universal transverse mercator (UTM) projection in advance to ease the 
application in a geographical information system.

Noise reduction is necessary for remotely sensed images, especially for the ther-
mal infrared band. Noise may affect the retrieval of LST, sensible heat flux, and 
latent heat flux. There is periodic noise (e.g., stripes in the TM/band 6) and nonpe-
riodic noise (e.g., speckles). In this study, a self-adaptive filter method was used to 
remove nonperiodic noise, and the fast Fourier transform method was used to auto-
matically remove periodic noise; both were performed with the ERDAS IMAGINE 
software. The unreferenced images were then rectified and georeferenced by a set 
of characteristic ground points. To analyze spatiotemporal changes in the LULC of 
our study area at the 1:100,000 scale, multitemporal images must be coregistered 
in the same coordinate system (e.g., UTM/WGS84). In this study, the raw images 
were georeferenced to a common UTM coordinate system, and we then resampled 
all images to unify relative resolution in images of different sizes using the nearest 
neighbor algorithm with a pixel size of 30 m × 30 m. This adjustment was carried out 
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FIGURE 7.1  Location of the study area in Shandong, China.



145Remote Sensing Drought Assessment in a Coastal Urban Region

for all bands, including the thermal band. The root mean square error of rectification 
was less than 0.5 in this study.

Following the flowchart streamlines (Figure 7.2), Landsat TM/ETM+ images 
were processed for the identification of LULC change, VIs, LST, and heat fluxes. 
LULC associated with May 7, 1987 and May 2, 2000 in the study area was analyzed 
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FIGURE 7.2  Flowchart of image processing for exploring the relationships between LST 
and VIs for drought monitoring.
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with respect to the proper interpretation of Landsat TM/ETM+ images and validated 
with ground-truth data. Regional-scale heat fluxes were estimated with the aid of 
remote sensing images and the surface energy balance algorithm for land (SEBAL) 
model (Bastiaanssen et al. 1998a,b). All preparatory efforts led to the development 
of TDVI and RWSI for final analysis in the context of drought monitoring. The fol-
lowing sections will introduce these algorithms and equations in a greater detail.

7.2.3  RetRieval of lulc PatteRnS

After a plethora of investigations of synergistic potential with regard to the use of 
multisource and multisensor data, this study applies the four-, three-, and two-band 
false-color composites of Landsat satellite data to characterize the LULC of the study 
area. With the aid of high-resolution remote sensing images collected on May 7, 1987 
(Landsat TM) and May 2, 2000 (Landsat ETM+), LULC classes were extracted 
based on computer-aided manual interpretation. The projection was made possible 
based on WGS_1984_UTM_Zone_50N. A large set of pixels was used for training 
to optimize the representation of environmental heterogeneity in this coastal bend. 
Classification accuracy was assessed with spectral and field-checked error matrices 
over different categories of LULC patterns.

7.2.4  RetRieval of land SuRface heat fluxeS

With Landsat satellite images, the heat fluxes (Rn, Gn, H, and LE) in this study 
were estimated by the traditional surface heat balance equations in the SEBAL 
model (Bastiaanssen et al. 1998a,b). The SEBAL model can assimilate multisource 
and multisensor information to estimate land water and heat fluxes, making use of 
the regional advantage of remote sensing technology. These equations are based 
on the theory that incoming net solar radiation drives all energy exchanges on the 
earth’s surface and can be expressed as a surface energy balance equation as follows 
(Bastiaanssen et al. 1998a):

 Rn = H + Gn + LE, (7.1)

where Rn is the net radiation flux (in watts per square meter), Gn is the soil heat flux 
(in watts per square meter), H is the sensible heat flux (in watts per square meter), and 
LE is the latent heat flux (in watts per square meter). As long as the values of Rn, Gn, 
and H are known, the LE value can be calculated to obtain ET.

In Equation 7.1, net radiation is the summation of soil heat flux, sensible heat 
flux, and latent heat flux, as indicated, and can be calculated on the basis of the land 
surface radiation as follows:

 R R T Tn s s a a s= − + −↓( ) ( ),1 4 4α ε σ ε  (7.2)

where Rs↓ is the incident solar shortwave radiation, also known as the total solar 
radiation (in watts per square meter); α is the surface albedo (in percent); εs is the 
surface emissivity (dimensionless); σ is the Stefan–Boltzmann constant (5.6696 
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× 10−8 W m−2 K−4); Ts is the surface or canopy temperature (in Kelvin), retrieved from 
remote-sensing data such as TM/ETM+ and MODIS data; Ta is the air temperature 
(in Kelvin) of reference height (Z2); and εa is the atmospheric emissivity (dimension-
less), calculated by the empirical formula (Bastiaanssen et al. 1998a,b).

The instantaneous soil heat flux is defined as a function of surface albedo, vegeta-
tion index, and surface temperature (Bastiaanssen et al. 2000a,b):

 G
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where Ts is the surface temperature (in Kelvin). In particular, Gwater = 0.5Rn is 
employed for water body in the study area.

H (sensible heat flux) is a form of heat exchange between surface and atmospheric 
turbulence, which can be expressed as
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= − =ρ ρ
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,  (7.4)

where ρa is the air density (in kilograms per cubic meter), cp is the air heat capacity 
at constant pressure (1004.07 J kg–1 K–1), Ts is the surface or canopy temperature 
(in Kelvin), Ta is the air temperature (in Kelvin) of reference height (Z2), dT is the 
temperature difference (in Kelvin) over the two heights of Z2 and Z1, and rah is the 
aerodynamic resistance (in meters per second) between Z2 and Z1. The calculation 
of H for each pixel is an iterative procedure to minimize the discrepancy due to a 
small sample size, which is deemed a methodological advancement in this study.

 LE = Rn – G – H 

 or

 H = LE – Rn + G. (7.5)

According to the above parameter settings and modeling mechanisms 
(Bastiaanssen et al. 1998a,b; 2000a,b), a computer program was designed using 
Arc/Info 9.0 Macro Language and Compaq Visual FORTRAN 6.5 mixed-language 
programming to generate the ultimate SEBAL computational code. The SEBAL 
computer package can be operated in a Microsoft Windows system using the 
Environmental Systems Research GRID module as the major data format. This 
study follows Equations 7.1 through 7.5 for the derivation of heat fluxes.

7.2.5  RetRieval of lSt

To facilitate the application of the radiance transfer equation, Qin et al. (2001) 
derived an approximate expression for LST retrieval suitable for thermal bands of 
TM/ETM+ data as follows:

 T a C D b C D C D T D T Cs a= − − + − − + + −{ ( ) [ ( ) ] }/ ,6 6 6 6 6 6 6 6 6 6 61 1  (7.6)
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where Ts has the LST (in Kelvin), and a6 and b6 are the regression coefficients. For the 
possible temperature range 0–70ºC, a6 = –67.35535 and b6 = 0.458608. Coefficients 
C6 and D6 are defined for approximation expressed as follows:

 C6 = ε6τ6 (7.7)

 D6 = (1 – τ6)[1 + (1 – ε6)τ6], (7.8)

where Ta is the average effective mean atmospheric temperature (in Kelvin), τ6 is the 
atmospheric transmittance (in percent), and ε6 is the ground emissivity (dimension-
less). Therefore, if we know the parameter values of Ta, τ6, and ε6, the LST of each 
pixel can be derived using Equations 7.6 through 7.8. This study followed Equations 
7.6 through 7.8 to derive the LST data.

7.2.6  calculationS of NDVI, ANDVI, MSAVI, and SAVI

The equations for NDVI (Rouse et al. 1974; Tucker 1979), SAVI (Huete 1988), MSAVI 
(Qi et al. 1994), and ANDVI (Liu et al. 2008) are summarized as follows:

 NDVI nir red

nir red

= −
+

ρ ρ
ρ ρ

 (7.9)
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where ρred is the red-band (0.63–0.69 μm) reflectance, ρnir is the NIR band (0.76–
0.90 μm) reflectance, ρblue is the blue-band (0.45–0.52 μm) reflectance, ρgreen is the 
green-band (0.52–0.60 μm) reflectance, and L is an adjustment factor according to 
minimum background effects (L = 0.5 in general). This study followed Equations 7.9 
through 7.12 to derive VIs.

7.2.7  calculationS of RWSI

According to the CWSI (Jackson and Idso 1981), this study defined RWSI as follows:

 RWSI
ET
ETwet

= −1 ,  (7.13)
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where ET is the regional actual ET (in cubic meters per hectare per day), and ETwet 
is the regional potential ET (in per cubic meter per hectare per day). Potential ET is 
the maximum ET under ideal water conditions, assuming that the sensible heat flux 
is minimum (H ≈ 0), and all effective energy received by the land surface is used for 
ET. This amount of energy is λETwet = Rn – G. If the energy balance equation can be 
applied to replace the term ETwet in Equation 7.13, we have

 RWSI
ET
ET

H
R Gwet n

= − =
−

1
λ
λ

,  (7.14)

where H is the sensible heat flux (in watts per square meter), Rn is the net radia-
tion flux, and G is the soil heat flux (in watts per square meter). These parameters 
can be calculated using the SEBAL model (Bastiaanssen et al. 1998a,b); therefore, 
the regional deficit of water and the occurrence of drought can be monitored on a 
real-time basis with the aid of remote sensing technologies. This study followed 
Equations 7.13 and 7.14 to derive RWSI.

7.2.8  calculationS of TVDI

Different VIs such as NDVI, ANDVI, MSAVI, and SAVI may have different linkages 
with LST providing the design basis of the VITT. Sandholt et al. (2002) pointed out that 
the simplified triangle space of LST–NDVI may exhibit soil moisture contours reflect-
ing the spatial patterns of the VITT, which leads to the definition of TVDI as follows:

 TVDI
Ts Ts
Ts Ts

= −
−

min

max min

,  (7.15)

where Tsmin is the minimum LST given the NDVI along the wet edge (K), Tsmax is 
the maximum LST given the NDVI along the dry edge (K), and Ts is the LST in any 
given pixel (K) (Figure 7.3).

The TVDI value along the wet edge is 0, whereas the TVDI value along the dry 
edge is 1. This led the TVDI value to be between 0 and 1 in any pixel. The larger the 
TVDI value, the lower the soil moisture content. According to TVDI’s definition, to 
obtain the soil moisture value, the parameters of Ts, Tsmin, and Tsmax must be obtained 
at first. Then, both the expressions of Tsmin and Tsmax can be fitted as a function in 
terms of NDVI and Ts, thereby generating the TVDI value based on Equation 7.15. 
When the NDVI value is between 0.1 (bare soil) and 0.6 (closed canopy of vegetation; 
Price 1985), the correlation between LST and NDVI is high. This allows us to fit wet 
and dry edges with NDVI values when calculating TVDI. Hence, with the simplified 
triangle space among LST_VI, Tsmax, and Tsmin, linear regression equations (Tsmax = 
a1 + b1 × VI and Tsmin = a2 + b2 × VI) can be derived to carry out the calculations in 
Equation 7.15. These regression equations are as follows:

 Tsmax = a1 + b1 × VI (7.16)

 Tsmin = a2 + b2 × VI. (7.17)
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Thus, Equation 7.15 becomes

 TVDI
Ts a b VI

a b VI a b VI
=

− + ×





+ × − + ×
∫2 2

1 1 2 2( ) ( )
.  (7.18)

Based on the parameters of LULC, VIs, LST, RWSI, and TVDIs generated with 
the above algorithms, the spatial patterns of LULC, VIs, and LST and their inter-
relationships can be analyzed with respect to five RWSI classification categories for 
assessing the regional drought events. This endeavor would enable us to derive the 
linkages between the RWSI and the TVDIs and therefore help identify the possible 
adaptation and application potentials of theses four types of VIs (i.e., NDVI, ANDVI, 
SAVI, and MSAVI) proposed for monitoring the regional drought, as described in the 
next section. This study followed Equations 7.15 and 7.18 for the derivation of TVDIs 
(TVDI_NDVI, TVDI_ANDVI, TVDI_SAVI, and TVDI_MSAVI).

7.3   RESULTS OF SPATIAL ANALYSIS FOR DROUGHT ASSESSMENT

7.3.1  SPatial PatteRnS of lulc, viS, and lSt

Landsat TM data were used for the analysis of LULC. With the aid of ground-truth 
data throughout the calibration and validation stages, LULC can be classified into 
seven categories, including farmland, grassland, woodland, water bodies, beach 
land, buildup land, and saline–alkali land. In 2000, the farmland accounted for 46% 
of the total area, followed by water body and the saline–alkali land, which accounted 
for 23% and 12% of the total area, respectively. In addition, built-up land (cities, rural 
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FIGURE 7.3  Spatial VITT configured by NDVI and LST.
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residential areas, and other constructed land) and beach land accounted for 11% and 
6% of the total area, respectively. Thus, four major types of land cover, including 
farmland, saline–alkali land, built-up land, and water body, accounted for 92% of 
the total study area in 2000.

The spatial variations of LULC can be compared over two decades between 1987 
and 2000 (Figure 7.4), featuring the four dominant types of land use in the study 
area: beach land, water body, saline–alkali land, and farmland. The distribution of 
grassland and woodland in this area is small, accounting for only 2.1% and 0.3% of 
the entire region, respectively, in 2000. The change of land cover from 1987 to 2000 
is 34,446 ha, which accounted for 15.4% of the total study area. In particular, the 
area of grassland, beach land, and saline–alkali land decreased by 0.32%, 9.8%, and 
4.46%, respectively. Within 13 years, the saline–alkali land had been largely trans-.46%, respectively. Within 13 years, the saline–alkali land had been largely trans-46%, respectively. Within 13 years, the saline–alkali land had been largely trans-%, respectively. Within 13 years, the saline–alkali land had been largely trans-
formed into built-up land (10.5%) and shrimp ponds (22.9%) due to fast urbanization.

It is indicative that two types of land cover, water body (shrimp pond) and build-
up land, increased faster than others with rates of 11.95% and 3.47%, respectively, 
due to rapid economic development. In contrast, saline–alkali land, beach land, and 
grassland decreased drastically, because these land cover types were heavily con-
verted to shrimp ponds along the coastal region to support the food market. At the 
same time, a large portion of saline–alkali land and beach land were changed into 
farmland and built-up land, thereby creating a salient net decrease in saline–alkali 
land in this region (Figure 7.4a and b).

The spatial distribution values in 2000 clearly indicate that VIs were lower in 
coastal areas covered with beach land and saline–alkali land and higher in areas far 
from the seashore covered with farmland and grassland (Figure 7.5). When compar-7.5). When compar-.5). When compar-5). When compar-
ing the spatial patterns of VIs in 2000, the averages of NDVI, ANDVI, SAVI, and 
MSAVI of the entire study area were 0.21, 0.05, 0.14, and 0.12, respectively. The value 
of ANDVI was only one-fourth the corresponding NDVI value, whereas SAVI and 
MSAVI were about one-half. This implies that the four algorithms based on different 
VIs would certainly exhibit different characteristics in drought impact assessments.
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FIGURE 7.4  LULC maps in 1987 (a) and 2000 (b).
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The disparate outcome of VIs used for drought impact assessment is due to a few 
refinements included in calculations of ANDVI, SAVI, and MSAVI. For instance, to 
resolve the barrier of vegetation index saturation issues, Gitelson et al. (1996) intro-
duced the green band to calculate VIs. To reduce the impact of soil background on 
VIs, Huete (1988) incorporated the soil background adjustment factor (L) to refine 
VIs. On the same basis, the term L can be used directly to address the impact of soil 
background on VIs in the algorithms of ANDVI, SAVI, and MSAVI. Comparatively, 
the green and blue bands were collectively used to calculate ANDVI, whereas the 
green band was independently used to calculate MSAVI. As a consequence, these 
three VIs (ANDVI, SAVI, and MSAVI) yielded quite-different values when compared 
with the baseline NDVI value in our analysis.

LST distributions in the study area on May 7, 1987 and May 2, 2000 can be esti-
mated using the Landsat TM/ETM+ data (Qin et al. 2001). These spatial distribution 
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maps would be helpful for drought impact assessment (Figure 7.6). The distribution 
of LSTs shows that higher LSTs were salient at saline–alkali land (34.8°C in 1987 
and 33.2°C in 2000), built-up land (31.8°C in 1987 and 32.9°C in 2000), cities and 
towns (32.8°C in 1987 and 32.0°C in 2000), and settlements (32.6°C in 1987 and 
31.7°C in 2000); in comparison, lower LSTs can be found for shrimp ponds (26.0°C 
in 1987 and 26.9°C in 2000), beach land (28.7°C in 1987 and 26.0°C in 2000), and 
water body (23.0°C in 1987 and 21.7°C in 2000).

The difference between LST maps in 2000 and 1987 indicates a decreasing trend 
due to the changes of LULC associated with farmland and grassland, accounting for 
47.3% of the total study area within a 13-year time frame. Conversely, LST expe-.3% of the total study area within a 13-year time frame. Conversely, LST expe-3% of the total study area within a 13-year time frame. Conversely, LST expe-% of the total study area within a 13-year time frame. Conversely, LST expe-
rienced an increasing trend near the seashore covered with beach land and saline–
alkali land, accounting for 32.2% of the entire study area within the same time 
frame. LSTs for areas covered with water body and built-up land were unchanged, 
accounting for only 18.1% of the entire study area from 1987 to 2000. The change in 
the average LST from 30.02°C in 1987 to 29.23°C in 2000, a decrease of 0.79°C, in 
the study area is interesting and likely due to the changes in the LULC.

The coastal urban region covered with beach land and saline–alkali land had 
relatively lower VI values. Conversely, the inland region covered with farmland and 
grassland had relatively higher VI values. It is noticeable that the regional economic 
development in these two decades led to a significant reduction in saline–alkali 
land and an increase in shrimp pond, farmland, and built-up land, resulting in a net 
decrease in LST. Besides, NDVI is highly nonlinear, saturating for highly vegetated 
areas that triggered the inclusion of L for calculating ANDVI, SAVI, and MSAVI. 
Since these three VIs are rarely saturated, the adaptation for a better drought impact 
assessment can be warranted when facing drastic changes in LULC conditions, espe-
cially in fast-growing, rapidly changing urban regions.
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FIGURE 7.6  LST maps in 1987 (a) and 2000 (b).
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7.3.2   Building a RelationShiP Between TVDI and 
RWSI foR dRought iMPact aSSeSSMent

A clear pathway for drought impact assessment is found in a region where soil mois-
ture changes from dry to wet as the land cover changes from bare soil to closed 
vegetation (Figure 7.3). Such a change would make the LST data of all pixels form 
a trapezoidal region in a two-dimensional plain (Moron et al. 1994). The borders 
of this trapezoid in the LST–NDVI scatterplot (Figure 7.3) can be determined by 
analyzing extreme soil conditions from bare soil and closed vegetation, to saturated 
soil, and soil with minimum water content. Clearly, when surface evaporation and 
transpiration are stronger, the values of LST become lower, and the soil moisture 
content becomes higher, making the distribution of points (NDVI, LST) closer to the 
border of wet conditions.

A summary of RWSI maps in 1987 and 2000 indicates that the larger the values 
of RWSI, the higher the drought impact (Figure 7.7). Average RWSIs in the study area 
were 0.51 in 1987 and 0.30 in 2000, which means that the water shortage in 1987 
was more severe than that in 2000. Because the areas of unused land (saline–alkali 
land and beach land) in 1987 were larger than those in 2000, the vegetation cover 
was sparse, and the ET was stronger in 1987. As a consequence, the deficit of soil 
water was relatively larger. Areas covered with saline–alkali land and low density 
of grassland exhibited larger RWSI (Figure 7.7), both of which are mainly located in 
the transition regions between urban and rural areas where the ET was salient. The 
soil moisture in the coastal area covered with beach land and the inland area covered 
with farmland yielded lower RWSI, implying relatively abundant water conditions.

Conversely, when the surface evaporation and transpiration are lower, the values 
of LST become higher, and soil moisture contents become lower, moving the dis-
tribution of points (NDVI, LST) closer to the border of dry condition. Therefore, 
according to the holistic pattern between LST and VIs in the context of the spatial 
VITT, Sandholt et al. (2002) proposed the TVDI, which has been widely used in 
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FIGURE 7.7  RWSI maps in 1987 (a) and 2000 (b).
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the regional monitoring of soil moisture and drought impact assessment. This study 
particularly concatenated on the integration between RWSI and TVDI to develop a 
composite indicator for drought impact assessment. This new scheme sets RWSI as a 
reference base to address regional water deficit with respect to four intensity catego-
ries coupled with a suite of TVDIs (i.e., TVDI_NDVI, TVDI_ANDVI, TVDI_SAVI, 
and TVDI_MSAVI) concomitantly. This synergistic approach results in a more adap-
tive way of assessing drought impact.

Four subgroups of TVDI distribution maps in 1987 and 2000 (Figures 7.8 and 
7.9) were organized to address individual contribution associated with TVDI_NDVI, 
TVDI_ANDVI, TVDI_SAVI, and TVDI_MSAVI. Numerically, the range of the TVDIs 
should be between 0 and 1, with larger values of TVDIs implying lower soil mois-
ture content. The spatial distributions of soil moisture represented by the TVDIs 
across these four subgroups look similar. Comparatively, areas with higher TVDIs 
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FIGURE 7.8  TVDIs maps in 1987. (a) TVDI_N (NDVI). (b) TVDI_A (ANDVI). (c) TVDI_S 
(SAVI). (d) TVDI_M (MSAVI).
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are always located in the transition regions covered with low density of grassland and 
saline–alkali land, whereas areas with lower TVDIs are often located at the coastal 
regions covered with beach land and inland regions covered with farmland. The 
condition of soil moisture reflected by the values of TVDIs is generally close to that 
reflected by the values of RWSI.

Comparing the spatial distributions of TVDIs in 1987 and 2000, the average val-
ues of TVDIs of the study area in 1987 were 0.44, 0.41, 0.36, and 0.43 associated 
with TVDI_SAVI, TVDI_ANDVI, TVDI_NDVI, and TVDI_MSAVI, respectively. In 
addition, the average values of TVDIs of the study area in 2000 were 0.43, 0.40, 0.42, 
and 0.43 associated with the same four subgroups, respectively. Hence, three of the 
four subgroups (i.e., TVDI_SAVI, TVDI_ANDVI, and TVDI_MSAVI) confirmed that 
the water shortage in 1987 was more severe than that in 2000; therefore, based on 
TVDI_NDVI values of 0.42 in 2000 and 0.36 in 1987, we can summarize that the 
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drought condition was more severe in 1987 than that in 2000. Yet, the remaining 
question is why the values of TVDI_NDVI showed such a disparate outcome.

Because of the effects of soil background, linkages between RWSI and TVDIs 
(TVDI_NDVI, TVDI_SAVI TVDI_ANDVI, and TVDI_MSAVI) would be more 
meaningful if the same intervals of 0.01 used for RWSI were employed as drought 
intensity categories. With this classification scheme, the space–time soil moisture 
dynamics in the nexus of RWSI, TVDI, and relative soil moisture changes could be 
collectively revealed (Tables 7.1 and 7.2). These drought intensity categories can be 
presented as a series of deliberate scatterplots in 2000 (Figure 7.10) by a systematic 
structure of drought levels for regional drought impact assessment. The exclusion of 
soil background in NDVI resulted in discrepancies. Conversely, the inclusion of an 
adjustment factor for soil background in ANDVI, SAVI, and MSAVI promoted assess-
ment accuracy. This observation is reaffirmed by the relatively inconsistent trends 
between RWSI and TVDI_NDVI compared to other cases (Figure 7.10a).

As the values of TVDIs increase, the values of RWSI also increase (Figure 7.10 
and Table 7.1), resulting in a positive correlation in both 1987 and 2000; however, 
some exceptions exist. Such multitemporal, nonlinear interrelationships between 

TABLE 7.1
Interrelationships between rWSI and tVDIs

tVDI(SaVI)_rWSI tVDI(aNDVI)_rWSI

Year 1987 2000 1987 2000

RWSI 0–0.87 0–0.81 0–0.90 0–0.89

TVDI 0–0.65 0–0.76 0–0.59 0–0.74

r 0.96 0.93 0.97 0.94 

tVDI(MSaVI)_rWSI tVDI(NDVI)_rWSI

Year 1987 2000 1987 2000

RWSI 0–0.88 0–0.82 0–0.85 0–0.82

TVDI 0–0.62 0–0.73 0–0.61 0–72

r 0.96 0.93 0.95 0.94

TABLE 7.2
Regional Drought Intensity Categories

Class Relative Soil Moisturea rWSI Drought Level

1 <0.4 >0.892 Heavy drought

2 0.4–0.5 0.752–0.892 Medium drought

3 0.5–0.6 0.612–0.752 Light drought

4 0.6–0.8 0.332–0.612 Normal

5 >0.8 <0.332 Wet spell

a Relative soil moisture = soil moisture/soil saturation moisture × 100.
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RWSI and TVDIs can be further described based on the partitioned ranges of RWSI. 
However, when the degree of regional drought was more severe and the values of 
RWSI reached a higher level (RWSI approximately > 0.8), the relationship between 
RWSI and TVDIs was weakened, because TVDIs cannot reflect the actual condition 
of soil moisture. When the values of RWSI were between 0 and 0.8, a significant posi-
tive correlation between RWSI and TVDIs was found in both 1987 and 2000, with the 
correlation coefficient (r) 0.95. At a practical level, the advanced intensity classifica-
tion of regional drought (Table 7.2) facilitates comparisons. We can conclude that the 
use of TVDIs for monitoring drought is only suitable for wet, normal, and light dry 
conditions. In other words, when RWSI ≤ 0.8 (medium dry), the values of TVDIs can 
reflect the drought condition correctly; yet, that was not the case when RWSI > 0.8 
(medium dry and heavy dry).

7.4  DISCUSSION OF THE URBAN HEAT ISLAND EFFECT

7.4.1  uRBan heat iSland effect

The partitioning of sensible and latent heat fluxes and, thus, surface radiant tem-
perature response is a function of varying surface soil water content and vegetation 
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cover (Weng et al. 2004; Chen et al. 2006; Xie et al. 2010). Extensive comparisons 
between LST and VIs associated with the two LULC analyses (1987 and 2000) in 
our study area help identify different relational patterns as a result of the distribution 
of these heat fluxes at the ground level. Our study uniquely found that LST and VIs 
were negatively correlated in most cases of low, medium, and high vegetation cover, 
except for the case of high-density vegetation cover in 2000 due to the effect of UHI.

For detailed comparisons, if the average LST (30.02°C) of the study area in 1987 
was set as a reference temperature, the difference of LST between the reference 
temperature and specific land use is phenomenal: −0.75°C for farmland, 1.39°C for 
built-up land, 3.93°C for saline–alkali land, −1.91°C for beach land, and −4.76°C for 
water body. This individual finding supports the urbanization effect on LST from 
1987 to 2000. In particular, the rise of 1.39°C, on the average, over built-up land 
was phenomenal. If we set the average LST of the study area in 2000 (29.23°C) as 
the reference temperature, the LST of farmland was 0.82°C lower, that of built-up 
land was 3.12°C higher, that of saline–alkali land was 4.13°C higher, that of beach 
land was 3.21°C lower, and that of water body was 3.21°C lower. The urbanization 
effect on LULC in 2000 was far greater than that in 1987, and the proportion of 
built-up land in 2000 occupied 3% more than that in 1987, and therefore, the UHI 
effect in 2000 was proved more influential. This is further supported by a 3.17°C 
higher LST of built-up land in 2000 when compared with its counterpart, which 
was 1.48°C higher in 1987.

7.4.2  andvi effect on lSt and uhi

The turning point in scatterplot data for RWSI and TVDIs (Figure 7.10) can be used 
as an example to explain the relationship between ANDVI and LST. The analysis 
can be conducted by means of four subgroups (i.e., ANDVI < 0, ANDVI between 0 
and 0.03, ANDVI between 0.04 and 0.19, and ANDVI > 0.20) across the scatterplot 
of 2000. A comparative analysis of the areas with ANDVI > 0.20 in 1987 and 2000 
yields some insight. The entire study area can be classified into four groups: 8.5% in 
1987 and 24.2% in 2000 is the first, 13.8% in 1987 and 22.2% in 2000 is the second, 
57.2% in 1987 and 49.4% in 2000 is the third, and 20.5% in 1987 and 4.2% in 2000 is 
the fourth. A direct comparison of these groups shows that the density of vegetation 
cover in 1987 was significantly higher than that in 2000, especially the much higher 
ANDVI 1987 value (>0.19) compared to that in 2000.

The area with the ANDVI value > 0.19 in 1987 and 2000 can be used to support a 
focused analysis (see Figure 7.11), indicating that the selected area is tied to the sec-7.11), indicating that the selected area is tied to the sec-.11), indicating that the selected area is tied to the sec-11), indicating that the selected area is tied to the sec-1), indicating that the selected area is tied to the sec-), indicating that the selected area is tied to the sec-
ond turning point that is probably tied to UHI (Figure 7.10). This area was covered 
mainly by farmland (crop), some scattered rural settlements, and sporadic urban 
built-up land, accounting for 19.2% LULC of the total study area in 2000. The area 
with ANDVI values between 0.04 and 0.19 accounted for the additional 72.72% of 
the study area. Together, both types of LULC accounted for 91.92% of the total study 
area. In addition, the area with ANDVI values between 0 and 0.03 accounted for 
5.91% of the total study area in 2000 compared to 0.36% in 1987. Collectively, these 
scattered rural settlements and urban land contributed to the overall LST directly 
and UHI indirectly in 2000.
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7.5  CONCLUSIONS

This chapter has presented a spatial and temporal, synergistic investigation between 
two types of drought indices associated with two satellite-based LULC maps of part 
of the Laizhou Bay in Shandong, China, in 1987 and 2000. With the aid of advanced 
contemporary remote sensing technologies, cross linkages and cross comparisons 
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are possible. Spatial information of RWSI calculated with the SEBAL model, LST 
retrieved with an existing algorithm, and VIs computed with their respective four 
algorithms can be collectively aggregated to conduct a holistic drought impact 
assessment. Four refined TVDIs (i.e., TVDI_NDVI, TVDI_ANDVI, TVDI_MSAVI, 
and TVDI_SAVI) were employed according to the principle of the spatial VITT 
theory, which helps identify the spatiotemporal relational patterns between LST 
and VIs directly and between TVDIs and RWSI indirectly.

Research findings indicate that, because the factor of soil background adjustment 
was introduced into the algorithms for the derivation of the ANDVI, SAVI, and the 
MSAVI, these three VIs are more adaptive to cope with the vegetation index satura-
tion issues as compared to the use of traditional NDVI. When evaluating the subgroups 
based on different densities of vegetation cover, the relational patterns between LST and 
VIs were different in both 1987 and 2000. A lower density of vegetation cover resulted 
in positive correlations between LST and VIs (correlation coefficient > 0.96), a medium 
density resulted in negative correlations between LST and VIs (negative correlation 
coefficient ≥ 0.99), and a higher density resulted in negative correlations between LST 
and VIs in 1987 with less UHI, but became positive in 2000 with obvious UHI.

TVDIs and RWSI can be combined as a composite indicator to address soil mois-
ture dynamics and drought impacts. When the values of RWSI were integrated into 
TVDI_SAVI, TVDI_ANDVI, and TVDI_MSAVI for drought assessment, we found 
that the shortage of soil water in 1987 was more severe than that in 2000; however, 
the use of TVDI_NDVI did not produce the same conclusion because TVDIs are 
suitable for monitoring situations of wet, normal, and light dry of drought when 
RWSI < 0.752. In the situation of medium dry (RWSI ≤ 0.8), TVDIs can still accu-
rately monitor drought. Yet, when dealing with medium dry and heavy dry (RWSI > 
0.8), TVDIs cannot accurately portray the situation of water shortage and drought 
assessment; therefore, TVDIs should not be used to monitor the medium and heavy 
drought alone when RWSI > 0.8. We concluded that the composite indicator based 
on combined TVDIs and RWSI would be more suitable than a single drought index 
in drought impact assessment, especially in a fast-growing urban region. Overall, 
the use of remote sensing technologies for the identification of LULC as well as the 
calculations of vegetation cover and heat fluxes proved effective for developing a 
composite indicator for drought impact assessment in urban regions.
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8 Modeling Stream Flow 
Changes with the Aid of 
Multisourced Remote 
Sensing Data in a Poorly 
Gauged Watershed

Zhandong Sun, Christian Opp, 
Thomas Hennig, and Ni-Bin Chang

8.1  INTRODUCTION

Exploring water resources management decisions can be supported based on a 
variety of hydrologic modeling techniques (Chow et al. 1988; Singh 1995). Yet, the 
essential collection of meteorological and catchment properties (e.g., precipitation, 
temperature, land use and vegetation, soil, topography, and lithology) is inevitable. 
The hydrologic modeling applications for watershed management are often limited 
by data acquisitions, especially in regions with a weak infrastructure, such as those in 
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arid and mountainous regions, where conventional observations are not available at a 
sufficient spatial resolution (Mcculloch 2007). Consequently, hydrologic predictions 
in response to climate change impacts are difficult to evaluate (Abdulla et al. 2009).

Both observational studies and modeling outputs have suggested changes in 
extreme events for future climates significantly in China (Easterling et al. 2000; Sun 
et al. 2010). Adaptation to climate variability and change is important both for impact 
assessment and for policy development (Smith et al. 2000), especially in some arid 
regions due to the vulnerability in adaptation (Kelly and Adger 2000). Facing this 
challenge, the International Association of Hydrological Sciences (IAHS) has initi-
ated a plan on predictions in ungauged basins (PUB) to promote hydrologic practices 
(Sivapalan et al. 2003; Wagener et al. 2004). According to the “IAHS decade on 
predictions in ungauged basins, 2003–2012” (Sivapalan et al. 2003), there is a need 
to develop evaluation methods that can operate anywhere, independent of watershed 
borders and gauges. At the same time, the increasing weather and climate extremes 
call for some simple, pragmatic approaches to estimate runoff in poorly gauged 
watersheds. For most cases, the runoff at the watershed scale is controlled by meteo-
rological processes, particularly at a monthly scale; therefore, an approach using 
an artificial intelligence model with the aid of remote sensing data may become an 
indispensable means to estimate runoff in a poorly gauged watershed.

Remote sensing and image processing can help retrieve spatiotemporal features 
from past decades, which is the information that cannot be collected by point mea-
surements at the ground level (Wagner et al. 2003). The aims of such applications 
are to (1) measure spatial, spectral, and temporal information and (2) provide data 
on the state of the earth’s surface. Previous studies suggested that remotely sensed 
data should provide major benefits to hydrologic system analysis and water resources 
management; yet, application potential with practical benefits was limited by mod-
eling skill. One reason for this barrier is the lack of mathematical tools to convert 
remotely sensed data to the type of information useful to seamlessly fit into the 
actual needs in water resource systems (Kite and Pietroniro 1996). Some statisti-
cal models played an important role in translating data to information (Chang et al. 
2009); however, limited by the inherent modeling structure and the semiempirical 
nature, the breakthroughs in applications using statistical models were not salient. 
Vastly improved instrumentation for sensing, logging, and transmitting hydrometric 
measurements already facilitates retrieval of information from the far corners of 
the earth’s surface (Mcculloch 2007). As we move from a data-poor to a data-rich 
era due to the advances of remote sensing technologies, knowledge discovery and 
management via a plethora of data mining and machine learning techniques become 
promising, facing massive data sets (Harvey and Jiawei 2001).

Parameterization of hydrometeorological processes by advanced artificial intelli-
gence methods has been widely used in modern hydrology (Storch and Zwiers 1999). 
The empirical orthogonal function (EOF) is one of the decomposition procedures 
used to investigate the spatiotemporal behavior of hydrometeorological processes; 
thus, the main variance characters of meteorology are expected to be retrieved by 
this technique (Puebla et al. 1998). Increasingly, models featured with artificial neu-
ral networks (ANNs) have been used in a wide range of disciplinary fields and have 
become practical tools in hydrologic analyses for predictions. In many applications, 
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ANNs can be designed to formulate a quantitative linkage between input and output 
variables through a numerical approximation of the neural network. Ideally, influen-
tial factors can be identified with a semiempirical approach for cases in which physi-
cal processes are not fully understood or are highly complex with nonlinear nature. 
When influential factors associated with such physical processes cannot be realized 
up front, additional methods such as EOF may combine with ANNs to provide syner-
gistic effects in hydrologic system analysis. The case study in the Tarim River Basin, 
China, is a response to recent scientific hypothesis stating that the impact of climate 
change in this study region has dominated the flow regime since the late 1980s. To 
confirm this hypothesis, the main objectives of this study are to (1) extract the spatial 
patterns of the precipitation and temperature variance from the Tropical Rainfall 
Measuring Mission/Precipitation Radar (TRMM/PR) and the moderate resolution 
imaging spectroradiometer (MODIS) land surface temperature (LST) matrix data 
using EOF technique and (2) generate a group of input variables for the ANN model 
to simulate the stream flow change based on the patterns achieved from the above 
EOF analysis, thereby providing some numerical endeavor for hydrologic research 
in poorly gauged basins.

8.2  STUDY AREA

The Tarim River Basin is the largest continental river basin in Central Asia. Far 
from oceans, the lower Tarim River Basin is often characterized by extremely arid 
conditions due to the rain shadow of the surrounding Tienshan, Pamirs, Kunlun, 
and Altun mountains. Its annual precipitation varies from 17 to 42 mm, whereas the 
annual potential evaporation varies between 2500 and 3000 mm (Hou et al. 2007). 
It is considered one of the most environmentally degraded regions in the world (Sun 
et al. 2010). Due to stream flow interruption, the lower Tarim River and the Lop Nur 
Lake (once the largest lake in the arid region of China) dried up in 1972 and 1970, 
respectively (Figure 8.1).

The study area is the main tributary of Bosten Lake, situated in the Tarim River 
Basin. With a yearly precipitation of less than 50 mm in most parts of the Tarim 
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FIGURE 8.1  Location of the study area in the Tarim River Basin, Xinjiang, China. Core 
study area is enclosed in the red line.
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River Basin, Central Asia, the area is considered one of the most arid regions in the 
world. Its water supply comes mainly from the mountain regions through stream net-
works, and the runoff is important for both agricultural activities and natural envi-
ronments. However, surface runoff generation is a complex and dynamic process 
in this watershed, especially in the context of spatial variability in mountain areas 
with very few observations (Beskow et al. 2009). Challenge in hydrologic modeling 
arises from the fact that the meteorological parameters often vary dramatically with 
topographic change (Zhai et al. 1999).

As part of the Tarim River Basin, the core study area in this chapter, covering 
1.8 × 103 km2, is a typically mountainous watershed in southern Tienshan. Its altitude 
varies between 1100 and 5000 m above mean sea level, which results in a remarkable 
spatial variation in precipitation and temperature. Precipitation can range from 30 to 
1000 mm, depending on the complex climatic and topographic conditions created by 
the distribution of glaciers on the central mountain tops. The headwater of the river 
originating from glaciers runs through alpine meadows and narrow gorges and has 
an annual discharge of 25–57 × 108 m3, recorded by the Dashankou hydrologic sta-
tion at the mountain outlet (Sun et al. 2010).

From the perspective of hydrometeorology, runoff formation depends on the 
interaction of climatic factors, specifically the ratio between heat and moisture. 
Hydrologic models aim at mathematically representing the hydrologic system from 
precipitation to stream flow. The complexity of the models varies with user require-
ments and data availability. These hydrologic models vary from simple statistical 
techniques that use graphical methods for their solution to the first-principle physics-
based simulation models depicting the complex three-dimensional (3-D) nature of a 
watershed (Chow et al. 1988). Due to the geographical complexity of this study area 
and the lack of in situ observations, employing a complex 3-D simulation model is 
highly unlikely. Hence, the concatenation of two artificial intelligence models (EOF 
and ANN) driven by remote sensing data may overcome these barriers to predict 
runoff over such a complex terrain.

8.3  MATERIALS AND METHODS

The flowchart for runoff simulation and prediction in this study (Figure 8.2) starts 
with the collection and processing of TRMM/PR and MODIS/LST images to gener-
ate the essential precipitation and LST time series data for simulation. With the aid 
of hydrologic data, such as the historical runoff data and the digital elevation model 
(DEM), spatial analysis may be carried out in sequence with possible time lags in 
an ANN model employing one hidden layer. When the criterion for stopping the 
iteration is available, the ANN output ensures that the predicted runoff is as close as 
possible to the observed runoff during the supervised training process. The model 
can then be used for simulation and prediction.

8.3.1  Satellite data

Runoff cannot be measured directly with remote sensing images, but the remote sens-
ing techniques can be used indirectly to support the measurements and predictions 
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of some hydrologic variables. The question is how to use remotely sensed data to 
foster the generation of hydrologic parameters as inputs to support predictive algo-
rithms or operational models for estimating runoff. The satellite-derived precipita-
tion products and LST data have been widely available over the past few years. In 
this study, precipitation and LST are estimated with the aid of remotely sensed data. 
The availability of TRMM/PR and MODIS/LST monthly data allows us to investi-
gate precipitation and temperature changes at a much better spatial resolution, but 
more efforts are still ongoing to evaluate the performances of algorithms used to 
estimate precipitation (Marks et al. 2000), as well as to refine and validate MODIS/
LST (Wan 2008).

In this study, LST was selected as a substitute parameter for evaporation and 
glacier melting. The MODIS/LST monthly data were composed from the daily 
MOD11C1 product and were stored as the averaged values of clear-sky LSTs dur-
ing a monthly period, beginning March 2000, in a 0.05° × 0.05° geographic climate 
modeling grid. Besides, the TRMM/PR data (3B43 [V6]) have been available since 
January 1998 in a 0.25° × 0.25° geographic grid. Because the validation of TRMM/
PR and MODIS/LST data was widely performed (Bowman 2005; Yatagai and Xie 
2006), these grid data have been widely adopted for climate, hydrology, and eco-
system studies with spatial scales from mesolevel to macrolevel. With the image 
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FIGURE 8.2  Flowchart for runoff simulation and prediction in this study.
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sequence, the original pixel value was replaced with the anomaly calculated by the 
time series of the respective pixel. Thus, the fields of precipitation and LST were 
smoothly established for EOF analysis.

8.3.2  analySiS of the eMPiRical oRthogonal function

The main mechanism of the EOF is to fulfill a linear transformation of the original 
data, producing a new set of orthogonal functions that exclude redundant informa-
tion and extract the embedded patterns (Bjornsson and Venegas 1997). For a spatio-
temporal field, the mathematical form of the EOF can be defined as

 ij ki

k

m

kjU z=
=
∑

1

, (8.1)

where i = 1, . . . , m; j = 1, . . . , n; m is the number of sites (or grids); n is the time 
series length; φij are the ith components of the jth random vector for the centralized 
and normalized data (e.g., in our case, they are time series LST or precipitation); Uki 
are the weight coefficients representing the contribution of the kth component at the 
ith site (i.e., Uki are the components of the eigenvectors of the correlation matrix); 
and zkj are the time-dependent functions of the kth component of expansion (i.e., the 
so-called amplitude functions). Note that the weight coefficients Uki vary between 
the time series data (or between different sites) but are constant in time.

The EOFs are the eigenvectors. The relative importance of any individual EOF to 
the total variance in the field is measured by its associated eigenvalue. In practice, 
we often sort eigenvalues and corresponding eigenvectors in decreasing order, thus 
using the first several leading EOFs to explain the principal variance. Each EOF is 
associated with a series of time coefficients that describe the time evolution of the 
particular EOF. The term is also interchangeable with the geographically weighted 
principal component analysis in geophysics. It is noticeable that some of the most 
important oscillations in the climate system were derived from the EOF analysis 
(Storch and Zwiers 1999).

8.3.3  aRtificial neuRal netwoRk Modeling

An ANN model is a flexible mathematical structure capable of identifying complex 
nonlinear relationships between input and output data sets. However, neural nets 
contain no preconceptions of the model shape and are, consequently, ideal for cases 
with low system knowledge. ANN models have been found useful and efficient, 
particularly in problems for which the characteristics of the processes are difficult 
to describe using physical equations (Hsu et al. 1995). There are many successful 
applications of ANN as rainfall–runoff models (Minns and Hall 1996; Rajurkar et 
al. 2002; Jeong and Kim 2005; Chen and Adams 2006; El-Shafie et al. 2008, 2011). 
Typically, neural networks are composed of simple elements operating in parallel. 
The network is adjusted based on a comparison of the output and the target. Neural 
networks are often trained to perform a particular function by adjusting the values 
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of the connections (weights) between elements until the network output matches the 
target. In this study, we use a feedforward network with the default tan-sigmoid 
transfer function in the hidden layer:

 f(x) = [1 + exp(–x)]–1. (8.2)

In practice, many neural network modeling tools are available. In this study, the 
MATLAB® neural network fitting tool was applied, which solves the input–output 
fitting problem with a two-layer neural network model. In this analysis, the input 
variables include the time series data of temperature and precipitation collected at 
six points. In the training period, three hidden layers were chosen, and the train-. In the training period, three hidden layers were chosen, and the train- In the training period, three hidden layers were chosen, and the train-
ing performance was evaluated using mean square error and regression analysis. 
Overfitting has to be avoided when splitting the data sets for training and verification.

8.4  RESULTS

8.4.1  outPut of the eof analySiS

In this study, we investigated the fields of monthly precipitation (Figure 8.3) during 
1998–2008 and LSTs (Figure 8.4) during 2000–2008 over the study area. The EOF 
analysis extracted large-scale spatial structures for precipitation and temperature. 
The eigenvalues and their explainable weights for the first four leading EOFs were 
recorded (Table 8.1). Because the eigenvalues were sorted in decreasing order, the 
principal variance mainly comes from the first several EOFs; the first four EOFs 
collectively can explain about 93.8% and 98.5% of the total variability for the two 
time periods of 1998–2008 and 2000–2008 associated with monthly precipitation 
and LSTs, respectively. Overall, the leading patterns show strong independence 
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FIGURE 8.3  Monthly TRMM rainfall estimate (3B43 [V6]) in July 2005 around the study 
area.
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according to a general rule proposed by North et al. (1982) that, to some extent, 
ensures that the leading EOFs explain most physical meanings or implications 
embedded in the system (described in Section 8.4.2). In summary, the EOF analysis 
yields not only spatial patterns but also their temporal processes correspondingly, 
which can be used for periodic analysis, interpolation, and forecasting (Loboda et al. 
2005), although this is not the focus in this study.

8.4.2  SPatial PatteRnS of the fiRSt fouR leading eofS

Standard deviation is often used to describe variance in statistics. Both leading EOFs 
and standard deviation can reveal and interpret variance in a field. Although the lead-
ing EOFs are often similar to the characteristics of standard deviation, the EOFs have 
more comparative advantages than standard deviation. Besides, the spatiotemporal 
patterns of the first four EOFs for precipitation and temperature (Figure 8.5) may 
exhibit relatively lucid and integrated spatial structures. These spatial structures of 
succeeding patterns are gradually scattered but coherently concatenated over space 
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FIGURE 8.4  MODIS/LST data in July 2005 around the study area.

TABLE 8.1
Eigenvalues and Their Explainable Weights in Precipitation and Temperature

TRMM/
PR EOF1 EOF2 EOF3 EOF4

MODIS/
LST EOF1 EOF2 EOF3 EOF4

Value 82,752 3494 1571 1461 Value 82,2411 5852 4650 2410

% 87 3.7 1.6 1.5 % 97 0.7 0.5 0.3

Note: %: The proportion of total variance that can be explained by the corresponding EOF.
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and time. For example, the first three leading EOFs of precipitation have already 
explained most of the spatial variability in the data set. There are four high-value 
regions in EOF1 (Figure 8.5a, blue arrows), and these regions are also highlighted in 
the other three patterns. Interpretation of EOFs is important for further applications. 
In addition to the spatial structure and temporal process, other physical mechanisms 
of EOFs, such as topographic and atmospheric circulation characteristics, are often 
adopted. A primary analysis reveals that the physical meaning of the EOF1 is related 
to the route of prevailing winds and topographic change. High-value regions often 
fall on slopes against the advancing route of water vapor.

Compared with precipitation, the temperature variance is relatively consistent 
and homogeneous in space; thus, the major spatial variance of LST mainly appears 
in EOF1 (Figure 8.5b). The variance of LST may be affected by factors such as 
vegetation, wind, and slope direction. In this study, our interest was focused on pro-
cesses of evapotranspiration and glacier melting, which are expected to be reflected 
by the LST changes.
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8.4.3  conStRuction of inPut vaRiaBleS foR ann Modeling analySiS

In physics, the EOF can be understood as a spatial standing wave. During the evolu-
tion, all spatial variables move up and down but remain in the same spatial struc-
ture or position to keep the systematic form. Thus, the changing process could be 
measured or substituted by some marked points (e.g., arrows in Figure 8.5), which 
largely reduce the intertwined complexity in space and time. In this context, based 
on the spatial structures extracted from the EOF analysis, a numerical scheme for 
screening all groups of spatial variables was established to pin down the exact loca-
tions where the major variance occurs in association with monthly precipitation and 
LSTs. These clues guide the location choices for input variables to the ANN model.

All TRMM/PR and MODIS/LST grids can be used as input variables for ANN 
modeling to improve the overall accuracy, but this is unnecessary, given that an 
ANN model requires a lot of key data to guarantee the credibility of the forecasting 
practices and completing successful runs is time consuming (Sha 2007). Hence, we 
identified six measurement points (Figure 8.6) as key locations, because in reality, 
most nearby grids are of a similar temporal pattern. In other words, the EOF analy-
sis enables us to extract spatial variables of similar temporal pattern that can still 
explain most changes in precipitation or temperature in the study area simply based 
on a few sites or grids. The combined information captured from EOF1, 2, and 3 
may serve as a group of input variables associated with the six measurement points 
(Figure 8.6) to drive an ANN model (Table 8.2). Using these few variables, the ANN 
model arrived at almost the same output as those cases employing an exhaustive 
number of variables. Overall, the strength of this study is combining spatial patterns 
extracted from remote sensing data using the EOF analysis that explicitly delineate 
the periodic features of the runoff from long-term time series observations to enrich 
the input data sets of the ANN model. It leads to substantial savings of computational 
resources in the runoff prediction.
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FIGURE 8.6  Sampling points of precipitation and LST selected in the study area. Dark 
areas indicate a higher altitude in DEM. Stream flow was measured at the Dashankou station.
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8.4.4  outPut of ann Modeling analySiS

The historical discharge record was based on the hydrologic station at Dashankou. In 
this analysis, 70% of samples were used for training and the remaining 15% for vali-
dation. The ANN modeling work is generalized to stop training before overfitting 
can occur. The training stopped at iteration 9 when the validation error increased. 
According to the results, no significant overfitting occurred. The final mean squared 
error between outputs and targets was relatively small. The output closely tracked 
the targets for training, testing, and validation (Figure 8.7), with R-values of 0.96, 
0.91, and 0.81, respectively, and 0.91 for the total response.

8.5  DISCUSSION

Glacier-melt supply is an important source of runoff in this study area. Normally, the 
runoff depth should be lower than precipitation in most of the glacier-fed streams. 
The comparison between runoff depth and precipitation for the Kaidu River from 
1998 to 2000 confirms this hypothesis (Figure 8.8). Both time series data fit together 
well with the same trend before 2002. However, the runoff depth started exceeding 
precipitation in 2001 and 2002 and then dropped significantly after 2002, although 
the precipitation remained relatively stable.
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FIGURE 8.7  Fittings of the output (dotted line) and target (blue solid line), including train-
ing, testing, and validation periods.

TABLE 8.2
Combined Information Extracted from the EOF Analysis in Support of the 
ANN Modeling Input

Type Variable Data Source Length (Month)

Precipitation Pv1 TRMM/PR monthly accumulated 96

Pv2 TRMM/PR monthly accumulated 96

Pv3 TRMM/PR monthly accumulated 96

Land surface 
temperature

Tv1 MODIS/LST monthly mean 96

Tv2 MODIS/LST monthly mean 96

Tv3 MODIS/LST monthly mean 96

Runoff Rv Gauged values monthly 96
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Glaciers in this region have been retreating since the 1980s under the global 
warming impact. According to the remote sensing image interpretation, up to 40% 
of glacier cover vanished between 1984 and 2000 (Figure 8.9). The retreat of glaciers 
in the last two to three decades played an important role in sustaining the stream 
flow. Small-scale glaciers situated in relatively low-altitude zones are more sensi-
tive to global warming. As these small-size glaciers began to gradually diminish in 
our study area, the runoff generation mechanism was changed from a precipitation-
driven mode to a glacier melt–oriented mode. This seems especially salient in the 
early 2000s. Small- and mid-sized glaciers are more sensitive to rising temperatures, 
which resulted in an ample runoff period (1998–2002). As these glaciers diminished, 
the water supply from melting glaciers began to lessen. This change resulted in a 
sharp drop in runoff after 2002, and as a result, runoff depth fell back to a normal 
level under the mean precipitation.

Such a significant drop disrupts the ANN modeling in our case due to glacier 
melt. This is not unusual when some unknown physical mechanisms that are not 
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likely present could disturb the training process of the ANN model. Output of this 
modeling work is satisfied, mainly because the training process covers the turning 
point where a sudden drop occurred (e.g., covers the period before and after 2002). 
If the training process is carried out using the data sets before 2003, then the factors 
causing the sudden drop cannot be captured by the ANN model; thus, the quantita-
tive relation achieved in the ANN modeling work may be deemed unreliable.

8.6  CONCLUSIONS

The applications of remote sensing images and the EOF analysis in this study provide 
more spatially representative data to verify some scientific hypotheses on the effects 
of climate change. By using the EOF analysis, the behavior of the spatial patterns of 
monthly precipitation and LST was smoothly extracted. A group of input variables 
was derived from identified spatial patterns via the EOF analysis to support the ANN 
modeling analysis. This success led to the smooth prediction of stream flow changes 
during the study period, which would otherwise be limited by the proper handling 
of tremendous amount of input data in the ANN modeling analysis. Results indi-
cate that the approach integrating the ANN model into spatial statistical output in 
association with the EOF analysis shows promise in rainfall–runoff modeling for an 
ungauged, glacier-fed basin environment.

To improve the prediction accuracy, the hydrologically and hydraulically relevant 
variables (e.g., soil moisture, vegetation, land cover, and water stage) and basin char-
acteristics (e.g., topography and surface roughness) can also be included in future 
modeling work. Some of these variables may be acquired by using special remote 
sensing technologies. Based on these additional data sources, the proposed approach 
may be reinforced, signified, and magnified to properly handle a variety of ungauged 
watersheds with spatial variation of rainfall, the heterogeneity of watershed charac-
teristics, and their complicated impacts on runoff at different temporal and spatial 
scales. Methods of making use of the spatiotemporal data that can be more effi-
cient to aid in different modeling platforms than the ANN model require additional 
research in the future.
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9 MODIS-Based Snow 
Cover Products, 
Validation, and 
Hydrologic Applications

Juraj Parajka and Günter Blöschl

9.1  INTRODUCTION

Water stored in the snowpack represents an important component of the hydrologic 
balance in many regions of the world. Snow cover mapping is particularly impor-
tant in mountains where an increased demand for water resources often leads to 
intense competition for water between human society and freshwater ecosystems. 
Monitoring and modeling of snow accumulation and snow melt are particularly diffi-
cult in some areas because of the large spatial variability of snow characteristics and, 
often, limited availability of ground-based hydrologic data. Satellite imagery is an 
attractive alternative relative to ground-based data, as the resolution and availability 
do not depend much on the terrain characteristics.

Since the mid-1970s, a wide variety of remote sensing products has been used 
to map the changes in snow cover from global to catchment scales. In recent years, 
numerous applications of moderate resolution imaging spectroradiometer (MODIS) 
snow cover products have demonstrated their high accuracy and consistency with 
other satellite and ground-based snow observations or reanalyses of regional climate 
models (Parajka and Blöschl 2008b). Many studies found MODIS snow cover prod-
ucts very useful in hydrologic applications of assessing the snow resources, even if 
they give the spatial extent of the snow cover only (Blöschl et al. 1991). Regional 
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snow cover patterns are complementary to catchment runoff forecasting in connec-
tion with the structure and state of hydrologic processes in various watershed models 
(Grayson et al. 2002) and provide a very important source of information in recent 
regional climate and global change assessment studies (Pu et al. 2007).

The goal of the chapter is to present an overview of the accuracy, availability, and 
recent hydrologic applications of different MODIS snow cover products. The chapter 
is organized as follows. Section 9.2 provides a summary of available data sets and 
describes basic principles and concepts used in snow cover mapping. The accuracy 
of MODIS snow cover products is discussed in Section 9.3. Numerous compari-
sons of MODIS snow cover images with other satellite-derived snow products and 
ground-based snow depth (SD) measurements have confirmed their high accuracy 
and consistency, especially for clear-sky conditions. In many parts of the world, 
however, cloud obscuration or contamination has been found as the major obstacle 
to applying the MODIS snow cover images. Section 9.4, hence, summarizes vari-
ous approaches used for cloud impact reduction. The main objective here is to dis-
cuss numerous filtering techniques, which are remarkably efficient in cloud impact 
reduction in image processing. The overview of various hydrologic applications of 
MODIS data sets is presented in Section 9.5. This section includes studies focusing 
on seasonal, interannual, and subpixel variability of snow cover, validation of snow 
(sub-) models, and assimilation of MODIS snow cover into hydrologic simulations. 
Final remarks and conclusions are given in Section 9.6.

9.2  MODIS SNOW COVER PRODUCTS

MODIS is an imaging spectroradiometer that employs a cross-track scan mirror, 
collecting optics, and a set of individual detector elements to provide imagery of 
the earth’s surface and clouds in 36 discrete, narrow spectral bands from approxi-
mately 0.4 to 14.4 μm (Barnes et al. 1998). It is a key component of the National 
Aeronautics and Space Adminstration (NASA)’s Earth Observing System, and cur-
rently (January 2011), it is onboard two satellites, Terra and Aqua. The Terra satellite 
has started the observations in February 2000; the Aqua satellite was launched in 
July 2002. Both satellites use the same type of MODIS instrument, but the dif-
ferences in their orbits result in different viewing and cloud cover conditions. The 
most noticeable difference between these two satellites is the local equatorial cross-
ing time, that is, approximately 10:30 a.m. in a descending mode for the Terra and 
approximately 1:30 p.m. in an ascending mode for the Aqua satellite. The geoloca-
tion accuracy of MODIS instrument is about 45 m for Terra and 60 m for Aqua 
(George Riggs, personal communication, also see Wolfe et al. 1998). From a variety 
of geophysical products derived from MODIS observations, a suite of global snow 
cover products are available through the Distributed Active Archive Center located 
at the National Snow and Ice Data Center (NSIDC; www.nsidc.org). The products 
are available at different spatial and temporal resolutions, and their basic summary 
is presented in Table 9.1.

The MODIS snow products are created as a sequence of products beginning with a 
swath (MOD10_L2, MYD10_L2) and progressing, through spatial and temporal trans-
formations, to daily, 8-day, and monthly global snow products with a spatial resolution 
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of 500 m and 0.05° (Table 9.1). The swath product has a coverage of 2330 km (across 
track) × 2030 km (along track; Riggs et al. 2006). The MOD10A1 and MYD10A1 
V005 products are georeferenced to an equal-area sinusoidal projection with a spatial 
resolution of 500 m within 1200 km × 1200 km tiles. Daily snow cover maps are con-
structed by examining the multiple observations acquired for a day that are mapped to 
each grid cell. A scoring algorithm based on pixel location, distance from nadir, area of 
coverage in a grid cell, and solar elevation selects an observation for the day. The main 
idea of scoring is to select the observation nearest the nadir with the greatest coverage 
at the highest solar elevation (Riggs et al. 2006). The same principle, but applied for 
multiple days of observations, is examined for the 8-day MOD10A2 and MYD10A2 
products. Eight-day periods are fixed, begin on the first day of each year, and may 
extend into the following year; but in each new year, the 8-day period starts over again 
on 1 January (Hall and Riggs 2007). If snow cover is found for any day in a composite 
8-day period, then the pixel is labeled as snow. If no snow is found but there is a pixel 
value (e.g., land class) that occurs more than once, that value is placed in the cell (Hall 
et al. 2006a, 2007a). In order to facilitate comparison with other hemisphere-scale 
maps, climate modeling grid (CMG) products on a 0.05° latitude/longitude resolution 
(cylindrical equidistant projection) are also created. Fractional snow cover within a 
CMG cell is based on the area of snow cover mapped into each cell from the 500-m 
resolution daily snow cover product (Hall et al. 2006b, 2007b). The daily MOD10C1 
and MYD10C1 products for a month are used to generate the monthly MOD10CM and 
MYD10CM products, respectively. The algorithm computes a filtered average frac-
tional snow cover value for each cell in the CMG (Hall et al. 2006c,d). More details 
about different MODIS products have recently been summarized by Riggs and Hall 
(2011).

The snow mapping algorithm is continually being improved. The most current 
version is Version 5 (V005) available from NSIDC. It contains information about 
snow cover (classification of cloud-free land or inland water body pixels as snow-
covered or snow-free), fractional snow cover (the percentage of snow cover estimated 
on a pixel-by-pixel basis), and a quality assessment flag. The snow albedo data array 
added in Version 4 (V004) is in pace with a provisional status (Hall et al. 2007a). The 
basic principle of snow cover mapping is based on the difference between the infra-
red reflectance of snow in visible and shortwave wavelengths, threshold-based crite-
ria tests, and decision rules. The mapping algorithm also uses other MODIS products 

TABLE 9.1
MODIS Snow Cover Data Products and Their Naming Convention

MODIS Data Set Terra Aqua

5-Min L2 Swath 500 m MOD10_L2 MYD10_L2

Daily L3 Global 500 m Sinusoidal Grid MOD10A1 MYD10A1

8-Day L3 Global 500 m Sinusoidal Grid MOD10A2 MYD10A2

Daily L3 Global 0.05° CMG MOD10C1 MYD10C1

8-Day L3 Global 0.05° CMG MOD10C2 MYD10C2

Monthly L3 Global 0.05° CMG MOD10CM MYD10CM
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as an input: the MODIS (Level 1B) radiance data (Guenther et al. 2002), the MODIS 
cloud mask (Ackerman et al. 1998; Platnick et al. 2003), and the MODIS geolocation 
product for latitude and longitude, viewing geometry data and the land/water mask 
(Wolfe et al. 2002). Only the general methodology is presented in this chapter. Full 
details of the mapping algorithm are available in the “Algorithm Theoretical Basis 
Document” (Hall et al. 2001) and can be seen at the NSIDC and MODIS Snow and 
Sea Ice Global Mapping Project Web pages (http://www.nsidc.org and http://modis-
snow-ice.gsfc.nasa.govweb).

The mapping approach exploits the high reflectance in the visible and the low 
reflectance in the shortwave infrared part of the spectrum by the normalized differ-
ence snow index (NDSI; Hall et al. 2001). The NDSI allows us to distinguish snow 
from many other surface features such as clouds that have high reflectance in both 
the visible and the shortwave infrared parts of the spectrum (Hall et al. 1998). The 
NDSI can usually separate cumulus clouds from snow, but it cannot always separate 
optically thin cirrus clouds (Hall and Riggs 2007). For Terra data, the NDSI calcula-
tion is based on MODIS bands 4 (0.55 µm) and 6 (1.6 µm):

 NDSITERRA = (Band 4 – Band 6)/(Band 4 + Band 6). (9.1)

MODIS band 6 detectors failed on Aqua shortly after launch, so band 7 (2.1 µm) is 
used instead to calculate the NDSI for Aqua (Hall et al. 2000, 2003):

 NDSIAQUA = (Band 4 – Band 7)/(Band 4 + Band 7), (9.2)

where “Band” stands for the reflectance of the channel. The fractional snow cover 
map is estimated based on the regression technique (Salomonson and Appel 2004). 
The fractional area (in percent) of each pixel covered by snow is calculated for both 
land and inland water bodies not covered by clouds and over the range of NDSI 
values from 1 to 100. Fractional snow may be mapped over the whole NDSI range 
indicative of snow (Salomonson and Appel 2006).

 Snow Fraction = –0.01 + 1.45 × NDSI. (9.3)

The MODIS snow mapping algorithm is automated, which means that a consis-
tent data set may be generated for long-term climate studies that require snow cover 
information (Hall et al. 2002a). Its main advantages rest on the fact that there is very 
efficient tradeoff between spatial and temporal resolution and mapping accuracy 
and that it is adaptable to a range of illumination conditions. The main limitation 
is that there is always inevitable missing information during cloud coverage and 
beneath dense forest canopies (Hall et al. 2001). The reduction of clouds is possible, 
and the potential methods are summarized in detail in Section 9.4. Mapping snow in 
forested locations is based upon a combination of the normalized difference vegeta-
tion index (NDVI) and the NDSI (Hall et al. 1998). Applications of the NDVI allow 
for the use of different NDSI thresholds for forested and nonforested pixels without 
compromising the algorithm performance for other land cover types. However, such 
a mapping approach can only be applied to the Terra data. The NDSI/NDVI test for 
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snow in vegetated areas was disabled for Aqua imagery, because the use of band 7 
resulted in too much false snow detection (Hall et al. 2003).

9.3  MODIS SNOW COVER VALIDATION

The resolution and accuracy of the actual snow cover to which remote sensing products 
can represent are critically important for both climate and hydrologic studies, as they 
are the main determinants of the products’ usefulness. Numerous studies have been 
conducted to evaluate the accuracy of MODIS snow products, either based on com-
parisons with other satellite-derived products, reanalyses of regional climate simula-
tions, or comparisons with point ground-based (in situ) SD measurements (Table 9.2). 
Table 9.2 contains summary information about study region, MODIS product tested, 
validation data set, and the overall accuracy (OA) for clear sky conditions when given.

Early validation studies assessing the relative accuracy of MODIS against other 
satellite snow products often used a limited number of MODIS images. Hall et al. 
(2002b) and Klein and Barnett (2003), for example, found that MODIS tended to 
map more snow than the National Operational Hydrologic Remote Sensing Center 
(NOHRSC) and Special Sensor Microwave Imager (SSM/I), especially at the begin-
ning of the snow season when the more frequent temporal coverage of MODIS 
permitted mapping of shallow snow deposits from fleeting storms. In similar com-
parisons, Bitner et al. (2002) found that MODIS mapped more discontinuous snow 
cover under the forest canopy than the NOHRSC product, particularly when large 
areas of discontinuous snow cover occurred in the forested areas of the mountains. 
Maurer et al. (2003) reported that, on the average, the MODIS images classified 
fewer pixels as cloud and misclassified fewer pixels than did the NOHRSC product.

Numerous later validation studies examined the accuracy of MODIS against in situ 
station data. The number of in situ observations applied in the validation varied between 
4 (e.g., Tong et al. 2009b) and more than 2000 (Simic et al. 2004; Ault et al. 2006) sta-
tions. As is indicated in Table 9.2, nine validation studies were performed in Northern 
America (including continental United States, Canada, and Alaska), five in China, 
and two in Austria and Turkey. Overall, most of them reported 85%–99% OA during 
clear-sky conditions. The MODIS product summary page (MODIS 2010) states that 
“the maximum expected errors are 15 percent for forests, 10 percent for mixed agricul-
ture and forest, and 5 percent for other land covers. The maximum monthly errors are 
expected to range from 5 percent to 9 percent for North America, and from 5 percent to 
10 percent for Eurasia. The maximum aggregated Northern Hemisphere snow mapping 
error is estimated to be 7.5 percent. The error is highest, around 9 percent to 10 percent, 
when snow covers the Boreal Forest roughly between November and April.” If one 
interprets this error as 100-OA used in Table 9.2, these figures are consistent with those 
in Table 9.2. As is documented, for example, in Parajka and Blöschl (2006, 2008a), the 
OA of MOD10A1 and MYD10A1 over Austria was about 95%. An example of seasonal 
evaluation of mapping accuracy is presented in Figure 9.1. The left and right panels 
show MODIS (MOD10A1) accuracy to map snow and land, respectively.

Figure 9.1 shows that the mapping accuracy of MODIS over Austria has a clear 
seasonal pattern related to the overall percentage of snow coverage with smaller errors 
in summer and larger errors in winter. However, for a given percentage of snow cover, 
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the errors were smaller in spring, when there was a well-developed snowpack, than they 
were in early winter. There was little bias throughout the year. This was in agreement 
with results from North America, with MODIS missing snow in approximately 12% of 
the cases and mapping too much snow in 15% of the cases (Klein and Barnett 2003). 
In November and December, however, MODIS slightly overestimated snow cover. It is 
likely that these biases were related to a tendency for shallower snowpacks in November 
and December as compared with the mid-winter and early spring months. While Simic 
et al. (2004) found a similar seasonal pattern of MODIS snow product errors, they 
attributed the larger winter errors to the detection algorithm and stressed the need to 
correct for tree and surface shading effects in winter when solar zenith angles are large.

Gao et al. (2010a,b) compared the annual and seasonal accuracies of MOD10A1 
and MYD10A1 Version 5 products over Alaska and the Pacific Northwest. They 
showed that MOD10A1 (Terra) has higher accuracies than MYD10A1 (Aqua), espe-
cially in October, February, and March (Gao et al. 2010b). The annual accuracy over 
Northwest Pacific was somewhat lower (90.4% and 88.3%) compared with that over 
Alaska (94.1% and 91.6%), but the evaluation was based on a longer time period.

Several validation studies were performed also in China. Pu et al. (2007) tested 
the MOD10A2 snow product at 115 climate stations on the Tibetan Plateau. The OA 
of MOD10A2 was in a range between 84% and 91% and increased with the num-
ber of persistent snow cover days. Similar accuracies were reported by Liang et al. 
(2008a) for MOD10A1 in the northern Xinjiang region. The OA in the winter months 
was 86.7% and 93.4% with respect to 20 in situ measurements and advanced micro-
wave scanning radiometer for EOS (AMSR-E), respectively. Even higher agreement 
was reported for this region in the period 2001–2005 (Liang et al. 2008b; Wang et 
al. 2008). Liang et al. (2008b) reported 98.5% OA of the MOD10A1 product for 
clear-sky conditions. They found that the OA depends mainly on SD and land cover 
type. MOD10A1 accuracy increased with SD equal or greater than 3 cm, but MODIS 
generally did not identify any snow for SDs less than 0.5 cm. MODIS had the ten-
dency to map more snow on cropland and to map less snow on grassland, open shrub 
land, and urban and built-up areas. Wang et al. (2008) examined the accuracy of the 
MOD10A2 product and found 94% snow mapping accuracy at SDs ≥4 cm but a very 
low accuracy (39%) for patchy and shallow snowpacks. Wang et al. (2009) tested 
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FIGURE 9.1  Seasonal evaluation of MODIS (MOD10A1) mapping accuracy over Austria. 
Assessment is based on analyses presented by Parajka and Blöschl (2006).
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daily and 8-day products (from both Terra and Aqua satellites) in the hydrologic year 
2004 and reported accuracies (for SDs ≥4 cm) in a range of 96.3% (MYD10A2) to 
98.8% (MOD10A1 and MYD10A1).

The validation studies against in situ observations were biased to the MOD10A1 
product. The median of OA of the MOD10A1 validation studies was above 94%. 
Larger mapping errors were reported only at a small number of stations, which were 
likely affected by specific local meteorological and/or physiographic conditions 
(e.g., low solar illumination conditions or false land/water mask along coastline). A 
detailed discussion of the source and propagation of MODIS snow mapping errors is 
presented by Riggs and Hall (2011). They note that “aside from potential mapping or 
geolocation errors, most snow detection errors are associated with non-ideal condi-
tions for snow detection or with snow/cloud discrimination.” Although the problem 
with cloud obscuration could be partly alleviated by compositing of MODIS images 
(e.g., as in the MODIS 8-day products), the cloud cover and snow/cloud discrimina-
tion is still considered the main limitation of MODIS snow cover products.

9.4  METHODS FOR CLOUD IMPACT REDUCTION

The validation studies summarized in the previous section drew two main conclusions. 
First, the MODIS snow cover products are, overall, in good agreement with avail-
able satellite and ground-based snow data sets. The mapping accuracy depends on the 
region and season, but very often, it is within a range that makes the data very useful 
and attractive for hydrologic applications. The second conclusion is that clouds may 
severely limit the application of MODIS snow cover products. Again, cloud coverage 
depends on region and season, but very often, it is a real problem instead of an artifact 
of the MODIS snow mapping algorithm. As shown by Parajka and Blöschl (2006), 
for example, clouds cover 63% of Austria on the average, and cloud coverage is even 
larger in the winter. A similar average cloud cover of about 70% is indicated by Tong 
et al. (2009b) for the Quesnel River Basin, 50%–60% for Alaska (Gao et al. 2010b), 
or 45% in North America (Zhou et al. 2005). Wang et al. (2009) reported 44%–47% 
cloud coverage on the average in the Xinjiang region, which was, interestingly, larger 
than 75% during fractional snow conditions. This indicates that the MODIS cloud 
mask has the tendency to map edges of areas of patchy or thin snow as cloud.

There is a continuous effort to reduce cloud obscuration in the MODIS snow 
data product by improving the cloud mask (e.g., Ackerman et al. 1998; Riggs and 
Hall 2003; Lyapustin et al. 2008), which permits more snow to be mapped if it is 
present (Hall and Riggs 2007). Extensive testing of liberal cloud masks showed that, 
although it provided excellent results in some areas of the globe, it may cause prob-
lems in other areas (Hall et al. 2010). Thus, it is not available as part of the most 
recent MODIS Collection-5 snow cover product suite. Future revision of the MODIS 
mapping algorithm foresees further improvements in the clouds/snow discrimination 
technique (Riggs and Hall 2011). However, in many regions, the expected improve-
ments will not be large, as the cloud coverage is real.

An alternative idea of cloud impact reduction in MODIS snow cover products 
is based on combining MODIS data in time (temporal filter), space (spatial filter), 
or with products from different (multisensor) platforms (e.g., passive microwave 
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products). As clouds vary more quickly in time than the snow cover does, one would 
expect that combining the data decreases the cloud coverage significantly. However, 
one would also expect that the accuracy of the snow cover maps so obtained would be 
lower than that of the original MODIS product because of the time and space shifts 
introduced. Table 9.3 summarizes the studies investigating different approaches 
and the tradeoff between cloud impact reduction and overall mapping accuracy. It 
includes the study region and time period of the evaluation, method used for cloud 
impact reduction and cloud coverage, and OA obtained by the reduction approach.

Table 9.3 indicates that numerous studies examined the performance of combining 
MODIS data from the Terra and Aqua satellites, whose observations are shifted only 
by a few hours. Parajka and Blöschl (2008a) reported a reduction of clouds from 63% 
to 51.7% and practically the same 95% OA. Wang et al. (2009) examined the map-
ping accuracy of the combined (MOD10A1/MYD10A1) MODIS product separately 
for land, snow, and fractional snow classification. They found a 7%–17% decrease in 
clouds and 7%–10%, 2%–15%, and 7%–17% increases in land, fractional snow, and 
snow cover mapping accuracy, respectively. Gao et al. (2010b) investigated the Terra 
and Aqua combination over Alaska and found a 7%–12% reduction in clouds. The 
corresponding overall clear sky accuracy of the combined product was 92.3%, which 
means a slight decrease with respect to the 94.1% accuracy of Terra, but an increase 
with respect to the 91.6% accuracy of Aqua. Gao et al. (2010a) assessed the accu-
racy of the combined product over the Pacific Northwest. They showed that a Terra/
Aqua combination reduced cloud coverage by 5%–14% on monthly and 8%–12% on 
annual time scales. The OA of the combined product was 89.7%, which is 0.7% less 
and 1.4% more than the reported MOD10A1 and MYD10A1 accuracies, respectively.

Alternative options for temporal merging include the replacement of cloud pixels 
by noncloud observations that have occurred at the same pixels within a predefined 
temporal window. Different types of fixed or flexibly defined temporal windows have 
been tested in recent years. Gao et al. (2010a) tested the accuracy of fixed 2-, 4-, 6-, 
and 8-day combined products and found 25% (2-day) to 48% (8-day) cloud impact 
reduction in comparison to MOD10A1 and a corresponding 0.9%–2.6% decrease 
in accuracy. Parajka and Blöschl (2008a) examined the performance of fixed 1-, 3-, 
5- and 7-day windows and reported 18% (1-day) to 47% (7-day) cloud impact reduc-
tion, and the corresponding 1.1%–3.4% decrease in OA, respectively. An example of 
the seasonal tradeoff between accuracy and cloud impact reduction for January and 
October is shown in Figure 9.2.

Flexible temporal filters replace cloud-covered pixels by using multiple MODIS 
images until a predefined maximum cloud coverage threshold is reached. Gao et al. 
(2010a) tested the performance of the flexible filter with 10% cloud threshold and 
reported 34% reduction in clouds and 0.5% decrease in OA with respect to the com-
bined Terra/Aqua product. The same method and cloud threshold were examined 
by Wang et al. (2009) and Xie et al. (2009). They reported similar accuracies as for 
the standard 8-day product and 25% to 30% cloud impact reduction in Colorado and 
Xinjiang, respectively. The average number of images used in the composition was, 
however, between 2 and 3. A similar method was presented by Hall et al. (2010), who 
replaced the cloud pixels with the most recent cloud-free observations. The cloud-
gap-filling approach was applied to the 0.05° resolution CMG daily snow cover 
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product (MOD10C1), and its effectiveness was tested by data assimilation in the 
Noah land surface model. The results showed that the filtered snow-covered product 
improved the SD bias efficiency of data assimilation by 8%.

The spatial filter approach replaces pixels classified as clouds by the class (land or 
snow) of the majority of noncloud pixels in an eight-pixel neighborhood. The spatial 
filter applied to the combined Terra/Aqua product was examined by Parajka and 
Blöschl (2008a). They found that the spatial merging resulted in a further 6% reduc-
tion in cloud cover and only a slight 0.7% decrease in the OA. Tong et al. (2009b) 
applied the spatial filter to the 8-day MOD10A2 product and reported a reduction 
of the percentage of cloudy days from 15% to 9% in the Quesnel River Basin. The 
percentage of cloudy days was even more reduced with respect to MOD10A1 (see 
evaluation in Table 9.3). At the same time, the OA of the spatially filtered prod-
uct increased by about 2% compared to MOD10A2 and by about 10% compared to 
MOD10A1 at higher elevations.

An alternative to spatial filters for cloud impact reduction is the method based on 
snow line elevation. This approach assumes that the vertical snow cover distribution 
is similar within a region. Parajka et al. (2010) tested the snow line elevation method 
over Austria and found that this approach was remarkably robust, including for cases 
where only a few percentage of the pixels were cloud free. The cornerstone of this 
method is a reclassification of pixels assigned as clouds based on a comparison of 
their elevation with the mean elevation of all snow and land pixels. The assessment of 
the OA for cloud-free pixels was similar to the MOD10A1 product and only slightly 
decreased for cases when clouds covered more than 90% of Austria. When consid-
ering clouds as false classification, the decrease in cloud extent can be translated 
into a significantly higher mapping performance of the snow line elevation method. 
The overall annual accuracy ranged from 48.7% to 81.5%, depending on the cloud 
threshold used compared, with 38.5% for the original MOD10A1 product. A more 
favorable mapping performance of the snow line approach was found, especially for 
cases when the snow cover started to build or melt, which is documented by higher 
mapping accuracies in November, December, and April.

The combination of different spatial and temporal filters was examined by 
Gafurov and Bárdossy (2009). They tested a sequence of six methods (combination 
of Aqua and Terra, temporal and spatial filters, snow line, and climatologic method), 
which resulted in total removal of clouds in the Kokcha River Basin. The accuracy 
against the artificially masked MOD10A1 product was above 90%.

Multisensor approaches take advantage of the high spatial resolution of MODIS 
images and the cloud penetration of passive microwave sensors (Gao et al. 2010a,b). 
The resulting maps thus provide daily cloud-free snow cover maps at coarse spa-
tial resolution. The combination of MODIS images with the passive microwave 
AMSR-E product is presented in the work of Liang et al. (2008a) and Gao et al. 
(2010b). Liang et al. (2008a) reported 75% accuracy of the combined product against 
20 in situ observations, instead of 34% accuracy of MOD10A1 in all weather condi-
tions (in all weather condition assessment, the pixels with clouds are considered as 
mapping error). An 86% accuracy in all weather conditions was obtained by Gao et 
al. (2010b), which was much higher than the 31%, 45%, and 49% accuracies of the 
Terra, Aqua, and Terra/Aqua combined snow cover products, respectively.
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The assessment of different cloud impact reduction methods showed that simple 
mapping techniques are remarkably efficient in cloud impact reduction and still in 
good agreement with ground snow observations. The main strength of the merging 
approaches lies in their simplicity and robustness. They can be easily applied in an 
operational context without much additional data as would be needed in assimila-
tion schemes. The choice of approach among those presented here will depend on 
the purpose of application and how much accuracy one is prepared to trade in for 
a reduction in cloud coverage. Overall, Table 9.3 suggests that the tradeoff between 
cloud coverage and mapping accuracy depends on the season. As progressively more 
data are merged, the cloud coverage decreases but so does the accuracy. The largest 
decrease in snow mapping performance occurs typically in November, February, and 
March, which are the transition periods, representing the start of snow accumulation 
and melt, respectively (in the Northern hemisphere). These periods are most sensi-
tive to the replacement of pixels, especially when using the temporal filter approach.

9.5   MODIS APPLICATIONS IN WATERSHED 
HYDROLOGIC MODELING

MODIS applications in hydrology-related studies include the assessment of interan-
nual and seasonal snow cover variability and its relation to stream flow, subpixel and 
fractional snow cover estimation, support for snow water equivalent (SWE) interpo-
lation, validation and parameterization of land surface and conceptual hydrologic 
models, and operational snowmelt runoff forecasting. A summary of these studies, 
the type of MODIS product, details about the study region, and the type of MODIS 
implementation is given in Table 9.4.

The numerous applications of MODIS snow cover data in hydrologic studies dem-
onstrate that MODIS products provide very attractive information for mapping the 
spatial and temporal changes in snow cover. The studies focusing on snow-covered 
area (SCA) and related characteristics typically include an accuracy assessment, and 
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FIGURE 9.2  Tradeoff between the OA and cloud coverage obtained by different spatial and 
temporal merging approaches of MODIS. (From Parajka, J. and Blöschl, G., Water Resources 
Research, 44, W03406, 2008a. With permission.)
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thus most of them are summarized in the validation section (Table 9.2). Some addi-
tional studies include analyses of the relationships between snow cover and terrain 
and hydrometeorological characteristics (Poon and Valeo 2006; Tong et al. 2009a,b; 
Jain et al. 2009; Xu and Li 2010), evaluation of the effects of cloud and forest mask-
ing on snow cover monitoring (Poon and Valeo 2006; Zhang et al. 2010), assessment 
of different snow cover–related characteristics such as snow cover onset and melt 
days or snow cover duration (Wang and Xie 2009; Gao et al. 2011), support for SWE 
estimation (Drusch et al. 2004; Durand et al. 2008; Bavera and de Michele 2009; 
Bocchiola and Groppelli 2010; Harshburger et al. 2010), and fractional and sub-
pixel snow cover mapping (e.g., Kaufman et al. 2002; Salomonson and Appel 2006; 
Dozier et al. 2008; Sirguey et al. 2008, 2009).

One of the main interests, from the hydrologic perspective, is the potential of 
MODIS images for assisting in stream flow simulation and prediction. Related stud-
ies either implement MODIS SCA directly as a model input or assimilate MODIS 
data into hydrologic model simulation, calibration, or validation. Rango et al. (2003, 
2004) and Lee et al. (2005) used the daily MODIS snow cover product as an input 
to simulate stream flow in the Rio Grande Basin using the snowmelt runoff model 
(SRM). They found that snow depletion curves derived from MODIS enabled effi-
cient stream flow simulations and forecasts, with the stream flow simulation accuracy 
(coefficient of determination) ranging from 0.768 (Rango et al. 2003) to 0.89 (Lee 
et al. 2005) in the Upper Rio Grande Basin and a somewhat lower accuracy of 0.57 
in the smaller Rio Ojo Basin (Lee et al. 2005). An even lower accuracy (0.43) was 
reported by Nitin (2004) in the Elaho Basin of British Columbia; however, the fore-
casts did not use direct observations of climate variables. The 8-day MODIS product 
helped predict the general seasonal trend in snowmelt runoff but not the daily stream 
flow variations. Wang et al. (2010) used the SRM to simulate the annual potential 
snowmelt in the period 2000–2008. They reported a negative relationship between 
annual air temperature and MODIS-derived SCA proportion and an increasing trend 
of annual air temperatures and SCA since 2000.

Implementations of MODIS data for calibrating and validating watershed hydro-
logic models indicated that MODIS snow data generally improved the snow cover 
simulations and did not change much the model performance with respect to run-
off. For example, Rodell and Houser (2004) and Andreadis and Lettenmaier (2006) 
assimilated MODIS snow cover observations into the snow water storage of a hydro-
logic model and assessed the assimilation efficiency against snow ground observa-
tions. They found that snow assimilation resulted in more accurate snow coverage 
simulations and compared more favorably to ground snow measurements. Déry et al. 
(2005) used the MODIS snow areal depletion curves to constrain the subgrid-scale 
parameterization of the catchment-based land surface model (CLSM) and found 
improvements in the timing and the amount of snow cover ablation and snowmelt 
runoff. Udnaes et al. (2007), Parajka and Blöschl (2008b), and Şorman et al. (2009) 
examined the potential of MODIS data for calibrating and validating a conceptual 
hydrologic model. Their results indicated that the use of the MODIS snow cover 
improved the snow model performance and also slightly improved the runoff model 
efficiency. Parajka and Blöschl (2008b), for example, showed that, in a verification 
mode, the median (Nash–Sutcliffe) model efficiency of runoff over 148 catchments 
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increased from 0.67 to 0.70 if MODIS data were used for calibration as compared 
to the case where no MODIS data were used. As an example, Figure 9.3 shows a 
comparison of MODIS snow patterns and snow simulations based on a hydrologi-
cal model. In one variant (center panel), the model was calibrated to runoff alone, 
while in the other variant (lower panel), the model was calibrated to both runoff and 
MODIS snow cover. Particularly in the eastern part of the region, the improvements 
of the snow simulations by the use of MODIS are apparent.

A more detailed analysis of the value of MODIS data is presented in Figure 9.4. 
A conceptual hydrologic model (in detail described, e.g., by Parajka et al. 2007) has 

MODIS

Simulated (without MODIS)

Simulated (with MODIS)

Land Snow Clouds/No data

200 km

FIGURE 9.3  Comparison of MODIS (MOD10A1) snow cover data (top panel) with snow 
simulations with (bottom panel) and without (center panel) using MODIS for the model cali-
bration. The region shown is part of the Eastern Alps on May 2, 2001.
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been used to simulate snow processes and runoff in the 198-km2 Vils catchment 
again for two variants. The Vils catchment is located in the western part of Austrian 
Alps, the mean catchment elevation is 1980 m above sea level, and the mean annual 
precipitation is about 1800 mm. When MODIS data are used for calibration of the 
hydrologic model, the snowpack evolution is simulated much better as demonstrated 
by comparison with both the MODIS data and ground observations of SD. It should 
be noted that the SD data were not used in modeling and, therefore, constitute inde-
pendent information for validating the model. As it can be seen in the lower panel, 
the improved snow simulations also enhance the runoff simulation, although to a 
lesser extent.

Brown et al. (2008) and MacDonald et al. (2009) compared MODIS data with snow 
cover simulations of the semidistributed land use–based runoff processes (SLURP) 
and Generate Earth Systems Science (GENESYS) hydrologic models, respectively. 
They reported that MODIS data were very valuable to examine the strengths and 
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FIGURE 9.4  Comparison of hydrological simulations with and without using MODIS snow 
cover data for model calibration. Top panel: MODIS snow cover area. Center panel: Simulated 
snow water equivalent (SWE) with (blue line) and without (red line) using MODIS as well as 
mean observed snow depth (SD) in the catchment. Bottom panel: Simulated runoff with (blue 
line) and without (red line) using MODIS as well as observed runoff (dashed black line). Vils 
catchment, Austria (198 km2), calibration period. (From analyses presented in Parajka, J. and 
Blöschl, G., Journal of Hydrology, 358, 240–258, 2008b. With permission.)
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limitations of the model structure and different types of model inputs. Su et al. (2008) 
assimilated MODIS snow cover fraction into continental SWE fields simulated by a 
highly complex land surface model. The evaluation over North America showed that 
the assimilation method more accurately simulated the seasonal variability of SWE 
and reduced the uncertainties in the ensemble spread. Kuchment et al. (2010) applied 
MOD10L2 data for validating and refining the parameterization of a physically based 
snowpack model. They found that the model allowed a satisfactory reproduction of 
SCA temporal changes for open areas, but a decreasing accuracy was found when 
forested pixels were included in the evaluation. The effect of forest was also exam-
ined by Roy et al. (2010), who reported an underestimation of SCA in the forested 
study region. They assimilated SCA from MODIS into a one-layer energy budget 
model and found that the direct assimilation improved the stream flow simulation for 
the spring periods. The runoff model efficiency and stream flow peak identification 
improved by 0.11%–0.13% and 19%–36%, respectively.

The methodology used for assimilating MODIS data into hydrologic mod-
els needs to account for the differences between these two snow representations. 
Typically, hydrologic models simulate the amount (volume) of water stored in the 
form of snow (in millimeters SWE), whereas the MODIS snow cover data show 
only whether the spatial unit of the snow mapping (pixel) is covered by snow or land 
or is classified as missing information (mostly clouds). The main implication of the 
different representations is that some relationship between the (modeled) SWE and 
the presence of snow at the pixel scale (from MODIS) needs to be established. This 
relationship usually takes on the form of thresholds (i.e., no snow coverage assumed 
below an SWE threshold; catchment assumed snow-free if percentage of SCA of a 
catchment is below an SCA threshold). Sensitivity analyses presented by Parajka and 
Blöschl (2008b) and Nester et al. (in press) indicated that the magnitude of the snow 
model efficiency was sensitive to the choice of the SWE threshold but not sensitive 
to the choice of the SCA threshold. The analysis of the seasonal distribution of snow 
underestimation errors indicated that the MODIS misclassification errors, especially 
in the summer months, may significantly affect the magnitude of the snow model 
efficiency. Parajka and Blöschl (2008b) hence suggested a 25% threshold value of 
SCA for robust snow underestimation error assessment. Roy et al. (2010) tested a 
simple direct insertion assimilation approach based on an empirical SWE threshold 
compensating for the small amount of snow that satellite sensors cannot identify dur-
ing the melting period. They found the best runoff model performance when a 3–6 
cm threshold was added to the model in the case that MODIS indicated snow and the 
model indicated less snow than this threshold.

The selection of the cloud threshold affects how much information is used in the 
evaluation of the snow model performance and how representative the MODIS SCA 
is. Parajka and Blöschl (2008b) and Su et al. (2008) found that a 60% and 50% cloud 
cover threshold, respectively, is a reasonable compromise between snow data avail-
ability and SCA robustness. Udnaes et al. (2007) and Roy et al. (2010) estimated and 
integrated snow cover data into hydrologic modeling only when clouds obscured less 
than 30% of the catchment. Andreadis and Lettenmaier (2006) used a 20% cloud 
cover threshold to decide whether or not it is necessary to assimilate the MODIS 
observations into the macroscale hydrologic model. On the other hand, Rodell and 
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Houser (2004) suggested that MODIS observations may still be useful for a 94% 
cloud cover threshold.

Other thresholds were investigated when passive microwave remote sensing prod-
ucts were used to classify the land as snow or no snow. Tong et al. (2010) applied 
MOD10A2 as ground truth for the assessment of the SSM/I mapping performance 
and showed that increasing the threshold from 0 to 12–37 mm increased the overall 
mapping accuracy from 50% to 90%.

9.6  CONCLUSIONS

The MODIS instruments were launched in 2000 and 2002. In spite of a design life 
of 6 years, MODIS has delivered comprehensive snow cover information for more 
than a decade. Numerous studies showed that the MODIS snow cover products are, 
overall, in good agreement with other satellite data and ground-based snow data. 
The mapping accuracy depends on the region and the season and, very often, is 
within a range that makes the data very useful and attractive for hydrologic applica-
tions. Obscuration by clouds may limit the application potential of MODIS snow 
cover products significantly. Simple cloud impact reduction methods based on data 
merging were demonstrated to be remarkably efficient without deteriorating the 
snow mapping performance much relative to ground snow observations. The main 
strength of the merging approaches lies in their simplicity and robustness. They can 
be easily applied in an operational context without much additional data as would 
be needed in assimilation schemes. Numerous applications of MODIS snow cover 
data in hydrologic studies show that MODIS products provide very attractive infor-
mation for mapping the spatial and temporal changes in snow cover. The methodol-
ogy for assimilating MODIS data into hydrologic models needs to account for the 
differences between the two snow representations (presence of snow in the case of 
MODIS, SWE in the case of the models). Threshold methods are usually used to link 
these two representations. Assimilation of MODIS data generally improves the abil-
ity of the hydrologic models to simulate snow processes, although the improvement 
in terms of simulating runoff is usually smaller. In the near future, more hydrologic 
applications of using MODIS data for real-time forecasting, such as flood forecasting 
or stream flow forecasting under climate change impact, are expected.
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10.1  INTRODUCTION

Snow comprises only about 5% of all precipitation reaching the earth’s surface (Hall 
and Martinec 1985), but has a great impact on the earth’s energy balance due to 
its high albedo and low thermal conductivity (Hall and Riggs 2007). According to 
Brooks et al. (2003), a third of the water used for irrigation in the world comes from 
snowpack and its subsequent melt (p. 373), 50%–90% of the yearly precipitation and 
runoff in Arctic regions comes from snow fall (König 2001), and much of the water 
supply used for domestic purposes originates as snowpack, particularly in moun-
tainous areas throughout the world (Hall and Riggs 2007). Water accumulated and 
stored as snow, therefore, forms an important component of the hydrologic cycle in 
many regions of the world (Parajka and Blöschl 2008b).

Notwithstanding the importance of snow and the resulting melt, several studies 
have indicated a reduction in annual snowpack accumulation that has been occurring 
over the past half-century. For example, snowpack in the mountains of the western 
United States has declined as a result of a warming climate from its value in 1950 
(Mote 2003, 2006; Cayan et al. 2008; Barnett et al. 2005; Day 2009). A decline in 
snow cover extent has been indicated by satellite measurements since 1966 (Robinson 
1999). Some have attributed the reduction in snowpack accumulation of the western 
United States to a shift in winter precipitation from snow toward rain (Van Kirk and 
Naman 2008; Mote 2006; Regonda et al. 2005); this is supported by the reports of 
others who have observed a shift in the timing of snowmelt runoff toward earlier in 
the water year (Gillan et al. 2010; Stewart et al. 2004; Van Kirk and Naman 2008). 
Extrapolating the trend of warming climate, Barnett et al. (2005) projected that the 
western U.S. spring stream-flow maximum will come about 1 month earlier by the 
year 2050.

The reduction in snowpack accumulation, acceleration of melt, and the observed 
and projected shift to earlier timing of spring runoff have led to an increased interest 
in the use of available snow cover information to model snowmelt runoff processes 
associated with climate change scenarios. In response to this heightened interest, the 
aims of this chapter are to (1) provide a review of the present state of snowmelt runoff 
modeling and remote sensing of snow for use in snowmelt runoff models (SRMs), 
(2) present a technique for combining ground-based snow data with remote sensing 
to generate snow-covered area (SCA) depletion curves, and (3) describe a case study 
of snowmelt runoff modeling for climate change scenarios with respect to changing 
temperature and precipitation patterns.

10.2  SNOWMELT MODELING

Most models of snowmelt runoff consist of two components: a snowmelt model, 
which simulates the process of snow accumulation and melting, and a transforma-
tion model, which takes the snowmelt or the rainfall as input data and yields the 
basin runoff as output (WMO 1986). Undoubtedly, spatially distributed hydrologic 
models of snow-dominated areas must incorporate a snowmelt component owing to 
the significance of snow to the hydrologic cycle of those areas (Garen and Marks 
2005). Because snowmelt is a primary water input to the soil and stream system, melt 



215Modeling Snowmelt Runoff under Climate Change Scenarios

modeling is a crucial element in any attempt to predict runoff from snow-dominated 
areas (Hock 2003).

10.2.1   coMPaRiSon of teMPeRatuRe index and eneRgy 
Balance Modeling aPPRoacheS

Melt models developed to simulate the accumulation and melt of snowpack can be 
broadly categorized as either temperature index also known as degree-day mod-
els or energy balance models. All the operational runoff models use one of these 
two approaches for modeling snowmelt. According to Rango and Martinec 
(1994), most of the operational runoff models reported in the literature employ 
the degree-day approach. These include the Streamflow Synthesis and Reservoir 
Regulation (SSARR) model (U.S. Army Corps of Engineers 1975), tank model 
(Sugawara et al. 1984), University of British Columbia watershed (UBC) model 
(Quick and Pipes 1977), SRM (Martinec and Rango 1986), Hydrologiska Byråns 
Vattenbalansavdelning model (Bergstrom 1975), empirical regressive model (Turcan 
1981), and HyMet model (Tangborn 1984). Some employ the energy-based approach, 
including the energy and mass-balance model (ISNOBAL; Marks et al. 1999), energy 
balance model for snow and soil (SYNTHERM; Jordan 1991), simultaneous heat and 
water model (Flerchinger and Saxton 1989), Système Hydrologique Européen model 
(Morris 1982), and Utah energy balance model (Tarboton et al. 1995).

The degree-day or temperature index approach has been in use for over 75 years 
(Collins 1934); Hock (2003) reported that Finsterwalder and Schunk (1887) first used 
empirical relationships between air temperatures and melt rates for an Alpine glacier 
as the predecessor of temperature index models. Since then, many researchers have 
employed the simplicity of the degree-day melt model in simulating snowmelt and 
also for operational SRMs.

The degree-day approach involves computing the daily snowmelt depth by multi-
plying the number of degree-days by the degree-day factor (Kustas et al. 1994). This 
modeling approach can be used over large areas with limited data input requirements 
yet can provide realistic simulations of discharge (Brubaker et al. 1996). However, 
the degree-day method only works under conditions where the energy input into the 
snow cover can be easily predicted by the temperature or where there is a well-defined 
relationship between the energy input into the snow and the air temperature (Garen 
and Marks 2005). It has been shown to work poorly under conditions lacking a good 
relationship between the temperature and the energy input into the snowpack such as 
rain on snow. Hock (2003) also pointed out that the basic degree-day approach does 
not account for topographical effects such as slope, aspect, and shading, which are 
common with complex mountains. Nevertheless, due to their good performance, low 
data requirements, and simplicity, Hock (2003) argued that temperature index mod-
els will retain their leading position in snowmelt modeling in the future.

In contrast, the energy balance melt approach, as illustrated in Figure 10.1, is a 
more physically based type of model, enabling it to account directly for many of the 
physical processes that affect snowmelt (Kustas et al. 1994). Incorporating the physi-
cal processes involved in snowmelt increases the data input requirements needed to 
run these models. Previous studies emphasized that there is the scarcity of input data 
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available to run energy balance models (Kustas et al. 1994; Singh et al. 2000), which 
has prevented them from gaining dominance over the temperature index approach. 
Although energy balance models have been used successfully in some studies like 
the work of Garen and Marks (2005), it is noteworthy to point out that many of the 
required input data, including radiation/incoming thermal radiation, net radiation, 
cloudiness, wind speed, and humidity, are not readily available. Despite their sup-
port and use of energy balance models, Garen and Marks (2005) emphasized that 
the process involved in data preparation is not only time consuming but also subject 
to a lot of human errors due to the extensive manual editing and manipulation that 
may be difficult to automate. Adding to the list of challenges, Day (2009) indicated 
that several problems arise concerning the use of this approach in the field owing to 
the technicalities of the procedure. These difficulties might pose a challenge to the 
universal acceptability of the model. Rango and Martinec (1995) “felt the theoretical 
superiority of energy balance model is outweighed by its excessive data require-
ments in basin-scale models” (as cited by Ferguson 1999; see Figure 10.1).

Brooks et al. (2003) also opined that, owing to complex data requirements, the tem-
perature index is in greater use compared to the energy balance model. Furthermore, 
Hock (2003) emphasized that the temperature index melt method often outperforms 
distributed energy balance models at the catchment scale. Although energy balance 
models are capable of achieving greater accuracy than the temperature index method 
under challenging energy exchange circumstances such as imposed by rain on snow 
events (Garen and Marks 2005), the temperature index method retains its promi-
nence for routine hydrological applications.

One way of improving the accuracy of the temperature index approach might be 
to incorporate some components of energy balance models to mitigate the fact that 
temperature index models lack rigorous physically based algorithms (Brubaker et 
al. 1996). Kustas et al. (1994) incorporated the radiation component into the degree-
day model and found that the combination gave better snowmelt estimates than the 
degree-day model, but concluded that computations of snowmelt by radiation are 
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FIGURE 10.1  Diagram of the energy balance snowmelt model components (energy fluxes in 
normal type; water fluxes in italics). (Adapted from Marks, D. et al., Hydrological Processes, 
13, 1935–1959, 1999; Garen, D. C. and Marks, D., Journal of Hydrology, 315, 126–153, 2005.)
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sensitive to the estimated albedo values, which might make the approach more suit-
able for runoff simulations than for real-time runoff forecasts. However, Brubaker et 
al. (1996) found out that the addition of the net radiation component to temperature 
index-based SRM only improved results in two out of six snowmelt seasons. Gillan 
et al. (2010) also employed the combination of the radiation component together with 
the temperature index–based snow accumulation model; the result compared well 
with ground measurements.

Nevertheless, as observed by Rango and Martinec (1995), temperature index 
models produce good results when used in connection with runoff models like SRM. 
This is because daily deviations are easily smoothed out by the basin response. In 
addition, the temperature index-based SRM can easily be used in evaluating various 
climate change scenarios associated with a temperature change, because tempera-
ture is one of the key climate variables to be affected by climate change (Kustas et 
al. 1994).

10.2.2  SnowMelt Runoff Model—StRuctuRe and detailS

The SRM is classified by the World Meteorological Organization (WMO 1990) as a 
deterministic conceptual model using semidistributed or larger subareas (elevation 
zones; Van Katwijk et al. 1993). The SRM is designed to simulate and forecast daily 
stream flow in mountainous basins where snowmelt is a major runoff component 
and has also been applied to evaluate the effect of a changed climate on seasonal 
snow cover and runoff (Martinec et al. 2005). The fundamental principle of SRM 
is to use a temperature index or degree-day factor in the algorithm to model snow-
melt with the aid of the ratios of snow cover at the watershed scale determined from 
remote sensing observations, leading to the simulation of stream flow from the basin 
(Wang et al. 2010; Day 2009; Brubaker et al. 1996). The model is an improvement on 
the traditional degree-day approach, since it makes use of remotely sensed observa-
tions of the SCA (Kustas et al. 1994). Among several snowmelt forecasting models, 
SRM is the most widely used (Tekeli et al. 2005; Ferguson 1999) and the most suc-
cessful model for simulating runoffs (Wang and Li 2006). Its ability to make use of 
remotely sensed snow cover observations has further increased the applicability of 
SRM to larger basins, even though it was developed in small European basins by 
Martinec in 1975. To date, the model has been applied to over 100 basins, situated 
in 29 different countries as reported by Martinec et al. (2005). Furthermore, SRMs 
were used several times on different basins to simulate the effects of climate change 
on snowmelt runoff patterns (Martinec and Rango 1989; Hong and Guodong 2003; 
Rango and Martinec 1994; Van Katwijk et al. 1993). Such success is largely due to 
the simplicity of the model and the readily available input parameters that can be 
determined easily from basin characteristics of geography, hydrology, and climate 
(Hong and Guodong 2003).

Three basic input variables required by SRM to simulate snowmelt runoff or daily 
discharge include precipitation, temperature, and SCA (Martinec and Rango 1989; 
Martinec et al. 2008); these three SRM variables are also major variables in sce-
narios of climate change (Hong and Guodong 2003). While precipitation and tem-
perature are easily obtained from published climate data, the SCA can be obtained 



218 Multiscale Hydrologic Remote Sensing: Perspectives and Applications

from remotely sensed observations and satellite monitoring (Martinec and Rango 
1989). The primary SRM equation is

 Q c a T T S c P
A

kn Sn n n n Rn n n+ += + + ⋅ −1 1
1000

86 400
1[ ( ) ]

,
( )∆ ++ +Q kn n 1,  (10.1)

where Q is the average daily discharge (in cubic meters per second); cS and cR represent 
the runoff coefficients for snow and rain; a is the degree-day factor (in centimeters per 
degree Celsius per day); T is the daily mean air temperature, which when taken for a 
day yields degree-days (°C days); ΔT is the temperature lapse rate–based degree-day 
adjustment to the hypsometric elevation of a specific basin or zone in the model from 
the temperature measurement station (in degree-days); S is the percentage of snow cover 
(in percent); P is the precipitation (in centimeters); A is the area of the basin or zone (in 
square kilometers); K is a recession coefficient (dimensionless); and n is an index for the 
sequence of days during the discharge computation period (dimensionless).

The user selects a threshold, Tcrit, that determines whether precipitation falls as rain 
and runs off immediately or is classified as snow and is kept in storage over a previ-
ously snow-free area until melting conditions occur; A is the area of the basin or zone 
(in square kilometers); k is a recession coefficient indicating the rate of decline of dis-
charge from one day to the next; n is the day count index throughout the melt period; 
and the ratio 1000/86,400 is a conversion factor from the depth of daily precipitation 
or snowmelt (in centimeters) over area A to discharge (in cubic meters per second).

T, S, and P are variables that must be supplied either by measurements or other 
means of determination on a daily basis and may be modified to simulate the impacts 
of climate change. cS, cR, a, ΔT, Tcrit, k, and a lag time are parameters for which there 
are physically realistic ranges and that are characteristic of a given basin or, more 
generally, for a specific climate (Martinec et al. 2005). Some of these parameters 
change throughout the melt season in response to changing implicit conditions such 
as the seasonal variation in solar radiation loading and state of meltedness of the 
snowpack, also known as “ripeness.”

10.2.3  cliMate change Modeling with SRM

Owing to the simplicity of the model and the fact that two of the three major SRM 
variables are also the major variables produced by climate models with regard to sce-
narios of climate change, several researchers used SRM for the purpose of modeling 
the effects of climate change on snowmelt runoff patterns (Van Katwijk et al. 1993; 
Rango and Martinec 1994; Harshburger et al. 2010). Changes in temperature, pre-
cipitation, and SCA are simulated by modifying the model input for the respective 
variables in order to reflect the potential change in climate (Van Katwijk et al. 1993). 
While changes in temperature and precipitation can be obtained from the results of 
climate modeling experiments, this is not true of SCAs. In view of the fact that the 
decline of snow cover extent depends not only on the initial snow reserve but also 
on climatic conditions that may vary from year to year, modified depletion curves 
(MDCs) are generated with the aim of normalizing differences between years. These 
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MDCs express the SCA as a function of cumulative snowmelt depth computed each 
day. This relationship is used to derive the daily snow cover extent in the new cli-
mate (Van Katwijk et al. 1993; Rango and Martinec 1994; Harshburger et al. 2010). 
Presently, a program subroutine has been added to current versions of SRM that 
automatically modifies the snow cover depletion curves in accordance with the new 
temperature and precipitation in the climate change scenarios (Rango and Martinec 
1994; Martinec et al. 2008). Hence, it is no longer necessary to assemble a set of 
MDCs in order to forecast the future course of the conventional depletion curves 
(CDCs); instead, the SRM program uses the real seasonal snow cover of the pres-
ent as monitored by satellites and models a climate-affected seasonal snow cover 
that is used to evaluate the effect of a modified climate on runoff in mountain basin 
(Martinec et al. 2005).

According to Wang and Li (2006), the possible changes of snowmelt runoff in the 
upper Heihe watershed of northwestern China in response to a prescribed scenario 
of climate warming of 4°C were successfully simulated using SRM. Similar to the 
results of other studies, the results of the investigation indicated that the hydrograph 
shifted earlier in the snowmelt season, yielding an increase in flows early in the melt-
ing season and a decline in flows later in the melting season (Wang and Li 2006). 
Likewise, three mountains in Canada, United States, and Europe were selected by 
Martinec and Rango (1989) to examine the effect of climate warming on snowmelt 
runoff using the SRM simulation model. According to these studies, the runoff in 
the snowmelt season was first simulated using the basic input variables, namely, pre-
cipitation, temperature, and SCA. Subsequently, the simulation was carried out using 
the changed values of the basic variables as provided by the climate scenarios. The 
various findings also indicate an increase in snowmelt season runoff and a change in 
the appearance of SCA that receded much more rapidly under a warming climate.

More recently, Wang et al. (2010) have conducted a study on an inland river basin 
in northwestern China using SRM with the aim of analyzing and forecasting the 
responses of snowmelt runoff to climate change under a warming scenario. Warming 
scenarios included annual increases of air temperature (+2°C, +4°C, and +6°C) 
while precipitation values were unchanged. Results indicate a shift in the start time 
of snowmelt runoff by about 6 and 9 days earlier with air temperature increase of 
+4°C and +6°C, respectively. Earlier snowmelt runoff and larger discharge were also 
observed with increasing air temperature; these results agree with previous research 
findings (see Table 10.1), which also indicated earlier melting of mountain snow-
packs, earlier dates for spring runoff, and a general change in the seasonal distribu-
tion of runoff (Barnett et al. 2005; Dettinger et al. 2004; Stewart et al. 2004). Other 
studies also indicate increased winter and spring runoff and decreased summer run-
off (Zhu et al. 2005) as observed by Wang et al. (2010).

SCA or its fraction is one of the three principle input variables required by SRM, 
and whether measured or modeled, it plays an equally important role in energy bal-
ance snowmelt modeling. As noted above, temperature and precipitation, or per-
turbations of them relative to some base period, are generated by climate change 
models; however, snow-covered fraction for climate change simulations must be 
obtained elsewhere. The climate change module of SRM generates these based on 
historical snow depletion curves. In order to generate these MDCs accurately, they 



220 Multiscale Hydrologic Remote Sensing: Perspectives and Applications

should be based on input from a wide range of historical snowmelt conditions to 
determine the repeatable or invariant characteristics of snowmelt depletion.

10.3  REMOTE SENSING OF SNOW

SCA obtained from satellite images plays a crucial role in modeling snowmelt 
runoff processes (Brubaker et al. 1996) associated with climate change scenarios. 
According to Wang et al. (2010), SCA is the key feature for describing the snow 

TABLE 10.1
Summary of Studies on the Responses of Snowmelt Runoff to 
Climate Change

Study Location
Climate Change 

Variables Effect on Snowmelt

Wang and Li (2006) Heihe Watershed, 
China

ΔT = 4°C Forward shifting of 
snowmelt season

Van Katwijk et al. 
(1993)

Selected basins in 
Western North 
America

ΔT = 1°C, 3°C, 
and 5°C
ΔP = 0%

Forward shifting of 
snowmelt season by 
5 days, 20 days, and 
30 days, respectively

Hong and Guodong 
(2003)

Gongnaisi River 
Basin, China

ΔT = 4°C
ΔP = 0%

30 days forward shift in 
snowmelt season

Brubaker et al. (1996) Dischma Basin in the 
Swiss Alps

ΔT = 3°C
ΔP = 0%

Forward shift in 
snowmelt season by 
45 days

Stewart et al. (2005) American Watersheds ΔT = 1°C–3°C 1–4 weeks forward shift

Cayan et al. (2001) Western United States ΔT = 1°C–3°C 1–3 weeks earlier onset 
of spring

Paugoulia (1991) Mesochora catchment 
of the Acheloos 
River in Central 
Greece

ΔT = 2°C, ΔP =10%
ΔT = 2°C, ΔP = 0%
ΔT = 4°C, ΔP = 0%
ΔT = 4°C, ΔP = 10%

Runoff peak shifted 
2 months earlier for all 
these scenarios

Paugoulia (1991) Mesochora catchment 
of the Acheloos River 
in Central Greece

ΔT = 1°C, ΔP =10%
ΔT = 1°C, ΔP = 20%
ΔT = 2°C, ΔP = 20%

Runoff peak shifted 
4 months earlier from 
April to December

Wang et al. (2010) Heihe River in 
Northwestern China

ΔT = 4°C, 6°C The start time of 
snowmelt runoff 
happened about 6 and 
9 days earlier with air 
temperature increase 
of +4°C and +6°C, 
respectively

Martinec et al. (2005) Rio Grande Basin at 
Del Norte

ΔT = 4°C About 30-day shift in 
snowmelt season
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distribution, and it is also the basic input to SRM. Accurate determination of the 
time series of SCA is, therefore, essential in order to simulate correctly melt pro-
cesses and predict daily flows (Walter et al. 2005), forecast runoff (Salomonson and 
Appel 2004), and understand the impacts of climate change (Robinson et al. 1993; 
Wang et al. 2010).

10.3.1  IN SITu MeaSuReMent hiStoRy

Starting in the 1930s, conventional methods including the use of snow courses/ 
surveys and snow pits began to be used to obtain point measurements of snow water 
equivalent (SWE; Dressler et al. 2006). These manual methods worked well in pro-
viding historical records of SWE; however, the low spatial and temporal resolution 
of the data, coupled with the labor intensiveness of data collection from these snow 
courses, was a significant drawback to the usefulness of the conventional methods. 
Installation of an automated network of snow telemetry (SNOTEL) sites began in 
1963, with the aim of supplementing and, to some extent, replacing the manually 
operated snow courses (Serreze et al. 1999). Real-time data of SWE can be collected 
from these SNOTEL stations; likewise, SCAs can be derived from the snow melt-out 
dates as described by Garen and Marks (2005). The high temporal resolution of the 
SNOTEL sites and the automated nature of data collection serve as improvements 
over the snow courses. Notwithstanding the high temporal resolution of the infor-
mation available from these automatic stations (Egli 2008), the spatial resolution of 
this information is generally coarse (Farinotii et al. 2010). For example, a study con-
ducted by Bales and Rice (2006) in Sierra Nevada showed the presence of snow at 
higher elevations, even when all snow at lower elevations where the surface measure-
ment stations were located had melted. Furthermore, SNOTEL stations and other 
point stations are not present in many areas of the world (Ault et al. 2006); hence, 
they cannot be employed to monitor snow activities or the distribution of snow on a 
global level (Molotch 2009).

10.3.2  Satellite hiStoRy

A more spatially complete and comprehensive view of snow cover extent requires 
information from satellite-borne sensors (Robinson et al. 1993) due to the large spa-
tial coverage of satellite remotely sensed data (König 2001) in contrast to the low 
spatial coverage of the SNOTEL sites. This realization coupled with the importance 
of knowing the distribution of snow over a large area led the National Oceanic and 
Atmospheric Administration (NOAA) to commence the first operational snow map-
ping over Northern Hemisphere land surfaces in 1966 (Robinson et al. 1993). Since 
then, progress has been recorded in the utilization of space-borne sensors toward 
monitoring the variability of snow extent in space and time (Salomonson and Appel 
2004). In 1972, the very high resolution radiometer (VHRR) with a spatial resolution 
of 1.0 km was launched, followed by the advanced VHRR launched in 1978 having 
a spatial resolution of 1.1 km.

In order to generate snow cover information on a larger scale as well as to generate 
information on snow volume, which was not possible with optical sensors launched 
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earlier, the space-borne passive-microwave sensors Nimbus-7 scanning multichan-
nel microwave radiometer (SMMR) and special sensor microwave imager (SSM/I) 
were launched in late 1978 and 1987, respectively (Derksen et al. 2005; Robinson et 
al. 1993). Other advantages of passive microwave sensors over the optical sensors 
include the ability to observe the earth’s surface when rainfall or darkness is present 
and under cloudy conditions (Gao et al. 2010b).

10.3.3  PaSSive MicRowave—Snow dePth and aRea coveRage

As reported in several studies, passive microwave radiometers have the ability to 
penetrate clouds and also estimate SCAs under conditions of rainfall and darkness. 
While visible imagery provides the highest spatial resolution from satellites, micro-
wave techniques are required to observe the snow fields under low light or obscured 
conditions such as at night and/or under cloud cover (Grody and Basist 1996). As 
a result of their cloud-penetrating power and various retrieval algorithms, passive 
microwave radiometers have the capacity to make virtually all-weather observa-
tions of surface parameters, including water vapor, integrated cloud liquid water, 
precipitation (surface rain rate and accumulation amount), sea surface wind speed, 
sea surface temperature, sea ice concentration, SWE and/or depth, and soil mois-
ture content (Kawanishi et al. 2003). Furthermore, they have the ability to penetrate 
snowpacks and also provide information about snow depth (SD) and SWE unlike 
the visible and infrared measurements, which can only provide information on the 
spatial extent of snow cover (Grody and Basist 1996; Chang et al. 1990; Hallikainen 
and Jolma 1986; Chang et al. 1987; Kawanishi et al. 2003). Measurement of SD and 
SWE is made possible through the relationship that exists between the microwave 
brightness temperature emitted from a snow-covered surface and the mass of snow 
deposition that can be represented by either the combined snow density and depth 
or the SWE (Kelly et al. 2003). In fact, the scattering effect of snow particles that 
redistributes the upwelling radiation according to snow thickness and grain size has 
been acknowledged (Chang et al. 1987) as the physical basis for microwave detection 
of snow.

Several space-borne microwave imagers on satellites have been developed, includ-
ing the earlier Nimbus-7 SMMR, the SSM/I, and one of the latest and most advanced 
instruments, that is, the advanced microwave scanning radiometer for the Earth 
Observing System (AMSR-E) onboard Aqua. The SSM/I, a conically scanning radi-
ometer with channels at 19, 22, 37, and 85 GHz, was launched on the Air Force Block 
5D satellites in 1987, 1989, and 1991 (Grody and Basist 1996). The 85-GHz chan-
nel of the radiometer provides a higher spatial resolution of 15 km compared to the 
25-km resolution of the channels on SMMR. Unfortunately, the spatial resolutions 
of the SMMR and SSM/I radiometers tend to limit their effective use to regional 
studies (Kelly et al. 2003). On the other hand, AMSR-E is a conically scanning total 
power passive microwave radiometer sensing microwave radiation (brightness tem-
peratures) at 12 channels and 6 frequencies ranging from 6.9 to 89.0 GHz (http://
www.ghcc.msfc.nasa.gov/AMSR/instrument_descrip.html). Launched in May 2002 
aboard Aqua (Kawanishi et al. 2003), AMSR-E was an improvement over the exist-
ing space-borne microwave radiometers in many areas. First, the spatial resolutions 
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ranged from 5.4 to 56 km, thus providing finer spatial resolution imagery with bet-
ter retrieval accuracy compared to SSMR and SSM/I (Pulliainen 2006). Second, 
AMSR-E provides measurement at approximately 1:30 a.m. and 1:30 p.m., an observ-
ing local time that is not covered by the existing measurement of SSM/I (Kawanishi 
et al. 2003). Also, the better vegetation penetration abilities make AMSR-E’s 6.925-
GHz channels very useful compared to the frequency bands of SSM/I and SMMR 
(Jackson and Hsu 2001). Despite various advantages of AMSR-E over the other pas-
sive microwave instruments, it is important to note that AMSR-E and other advanced 
microwave instruments still use the dual-frequency approach of identifying snow 
cover used in the older radiometers (Grody and Basist 1996). Snow cover produces 
a positive difference between low- and high-frequency channels, called a scattering 
signal that is detectable by the dual-frequency approach (Grody and Basist 1996).

Apart from identifying snow cover by its volume-scattering signature, researchers 
have also used passive microwave radiometers to conduct several studies on SD and 
its water equivalent in different parts of the world. The scattering signal, that is, the 
brightness temperature difference between vertically polarized AMSR-E (SSM/I) 
channels of 18.7 (19.0) and 36.5 (37.0) GHz, is the most commonly used index to 
derive SWE or SD (Chang et al. 1987; Pulliainen 2006). According to Kelly et al. 
(2003), a surface scattering signal can be detected using the expression developed by 
Chang et al. (1987) to estimate SD using microwave observations:

 SD = a(Tb18H – Tb36H) (for SMMR) (10.2)

where Tb18H and Tb36H are the horizontally polarized brightness temperature at 18 
and 37 GHz, respectively, and SD is the snow depth (in centimeters), whereas a is a 
coefficient determined from radiative transfer model experiments of snow (Kelly et 
al. 2003). The snow density was assumed to be 0.3 Mg/m3 (Chang et al. 1987). For 
AMSR-E, the spectral difference index (Tb, 18.37V – Tb, 36.5V) is commonly used 
for SWE and SD retrieval (Pulliainen 2006). To convert SD to SWE, a snow cover 
algorithm was developed and utilized. On the other hand, Kelly et al. (2003) factored 
in the grain size and volume fraction of the snow, because the emitted microwave 
brightness temperature of a snowpack is related to the grain size and volume fraction 
of the snow. The inclusion of these two parameters brought about a new form of the 
equation for estimating SD:

 SD = b(ΔTb)2 + c(ΔTb)2, (10.3)

where ΔTb is the brightness temperature difference between the Tb19V and Tb37V 
for SSM/I, and b and c are the coefficients empirically related to the grain size and 
the volume fraction, respectively. These coefficients can be derived from the follow-
ing equations:

 b = 0.898 (gs/mv)–3.716 (10.4)

 c = 1.060 (gs/mv)–1.915. (10.5)
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10.3.4  ModeRate ReSolution iMaging SPectRoRadioMeteR

In recent years, the moderate resolution imaging spectroradiometer (MODIS) satel-
lite sensor has been used in a number of studies and gained widespread acceptance 
(Gao et al. 2010a,b; Parajka and Blöschl 2008a,b; Hall and Riggs 2007; Salomonson 
and Appel 2004; Gillan et al. 2010; Molotch and Margulis 2008; Dozier et al. 2008; 
Homan et al. 2011). This is particularly true in view of the importance and benefits 
inherent in accurate estimation of snow cover extent for modeling snowmelt runoff 
processes associated with climate change scenarios.

MODIS, an image spectroradiometer, is one of the advanced satellite sensors 
that employ a cross-track mirror, collecting optics, and a set of individual detec-
tor elements to provide imagery of the earth’s surface and clouds in 36 discrete, 
narrow spectral bands from approximately 0.4 to 14.0 μm (Barnes et al. 1998). As 
the most comprehensive Earth Observing System (EOS) sensor designed by the 
National Aeronautics and Space Administration (NASA), MODIS has a combina-
tion of unique features, including the ability to observe measurements at three 
spatial resolutions on a daily basis and a wide field of view. For example, the 
MODIS snow product (MOD 10) creates automated daily, 8-day composite, and 
monthly regional and global snow cover maps (Ault et al. 2006). Furthermore, 
the spatial resolution of the MODIS instrument varies with the spectral band and 
ranges from 250 m to 1 km at nadir (Hall et al. 2002). These distinct features 
enable it to monitor a variety of geophysical products on the earth’s surface on 
a daily basis in contrast to Landsat’s enhanced thematic mapper plus (ETM+), 
which can only image a given area of the earth’s surface once every 16 days.

The MODIS instruments are mounted on two satellites, Terra and Aqua. Terra, 
the first EOS satellite, was launched on 18 December 1999 and commenced observa-
tions in February 2000 (Parajka and Blöschl 2008b). Aqua, the second EOS satellite, 
was launched on 4 May 2002 (Gao et al. 2010b) and started the observations in the 
same year. The two satellites convey the same type of MODIS instruments, but they 
differ in their local equatorial crossing time. While Terra passes from north to south 
across the equator in the morning (around 10:30 a.m.), Aqua passes from south to 
north over the equator in the afternoon (around 1:30 p.m.).

The global daily snow cover product is provided through the Distributed Active 
Archive Center of the National Snow and Ice Data Center (NSIDC). The snow maps 
are gridded in equal-area tiles in a sinusoidal projection. Each tile consists of a 
1200 km × 1200 km data array, which corresponds to 2400 pixels × 2400 pixels at 
a 500-m resolution (www.nsidc.org). In addition to the 500-m resolution, snow maps 
are also available at 0.05° and 0.025° resolutions on a latitude/longitude grid known 
as the climate-modeling grid (Halls and Riggs 2007; see Figure 10.2).

MODIS snow cover data are based on a snow mapping algorithm that employs 
a normalized difference snow index (NDSI; www.nsidc.org). Through the strong 
reflectance in the visible and the strong absorption capacity in the shortwave infrared 
part of the spectrum, the NDSI makes it possible to differentiate snow from other sur-
face features (Parajka and Blöschl 2008b). The spectral signatures of clouds and snow 
can be similar. As a result, snow/cloud discrimination with MODIS is not always 
reliable (Dozier et al. 2008). Nevertheless, snow and cloud discrimination is based on 
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differences between cloud and snow/ice reflectance and emission properties (http://
ndsic.org/data/docs/daad/mod10a2_modis_terra_snow_8-day).

To calculate the NDSI, the automated snow mapping algorithm uses at-satellite 
reflectance in MODIS bands 4 (0.545–0.565) and 6 (0.628–1.652) for Terra data, 
whereas bands 4 and 7 are used in calculating the NDSI for Aqua data (Hall and 
Riggs 2007; Parajka and Blöschl 2008b):

 NDSI = (MODIS4 – MODIS6)/(MODIS4 + MODIS6) (for Terra data) (10.6)

 NDSI = (MODIS4 – MODIS7)/(MODIS4 + MODIS7) (for Aqua data). (10.7)

The adoption of band 7 in the Aqua MODIS algorithms was a result of the failure 
of a larger percentage of band 6 detectors on the Aqua MODIS shortly after launch.

Unforested pixels where the NDSI ≥ 0.4 and band 2 (0.841 – 0.876 μm) reflectance > 
0.11 are mapped as snow covered (Molotch and Margulis 2008). The mapping of snow 
cover becomes limited in areas with dense forest canopies. In forest canopies, eventu-
ally, the snow falls off the canopy to the ground, where it is difficult to detect (Hall et al. 
2006). In order to overcome this problem, the NDSI and the normalized difference veg-
etation index (NDVI) are used together for snow mapping in forested locations (Hall 
et al. 1998). However, the combination of NDSI and NDVI is only useful for forestland 
snow mapping with Terra data; it cannot be applied to Aqua data due to increased false 
snow detection observed when applied to Aqua imagery (Hall et al. 2006).

Parajka and Blöschl (2008a) summarize the conclusions of various studies con-
ducted on the accuracy of MODIS into two points. First, MODIS snow cover products 
are very accurate (~93%) in estimating snow cover extent under clear-sky conditions 
(Hall and Riggs 2007), but the degree of accuracy varies by land cover type and 
snow condition. The accuracy of MODIS under clear-sky conditions was found to be 
95% in a study conducted by Parajka and Blöschl (2006) over Austria and about 94% 
in a study by Hall and Riggs (2007). Wang et al. (2008) also reported an accuracy 
of 94% for snow and 99% for land when compared with ground-based SD measure-
ments. This advantage has made MODIS the preferred product of several researchers 
who have used it in estimating snow cover extent across different parts of the world.

Snow

Open water

Land

Cloud

Missing data

Night observation

Mask

FIGURE 10.2  MODIS global 8-day snow extent (March 30 to April 6, 2003). (Courtesy of 
the NSIDC.)
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Second, each of the studies agreed that cloud obscuration is the main limitation 
in utilizing snow products from optical sensors including MODIS (Xie et al. 2009; 
Wang et al. 2008; Parajka and Blöschl 2008b). As with other optical sensors, the 
accuracy of MODIS snow products under cloudy conditions has been the subject 
of many studies, because cloud cover obscures snow cover monitoring capability. 
According to Xie et al. (2009), the snow classification accuracy of Terra MODIS 
daily snow cover product (MOD10A1) was reported to be 44% in all weather con-
ditions, whereas that of Aqua MODIS (MYD10A1) was 34%. Gao et al. (2010b) 
reported slightly higher snow accuracies of 46.8% and 39.5% for MOD10A1 and 
MYD10A1, respectively, in all weather conditions.

In order to benefit from the high spatial and temporal resolution of MODIS 
snow products and also improve the accuracy of MODIS snow data products under 
unfavorable conditions caused by clouds, rainfall, or darkness, several researchers 
attempted various strategies to enhance the overall accuracy of the MODIS snow 
cover product under all weather conditions (Gafurov and Bardossy 2009; Gao et al. 
2010a,b; Parajka et al. 2010; Parajka and Blöschl 2008a; Molotch and Margulis 2008; 
Hall and Riggs 2007; Dozier et al. 2008). Approaches used to address cloud interfer-
ence include spatial and/or temporal filtering and combinations of various sensors 
(multisensor; e.g., see the work of Gao et al. 2010a and Parajka and Blöschl 2008b).

Combination of MODIS products from the Aqua and Terra satellite platforms 
involves merging the two products, observed on the same day shifted by several 
hours, on a pixel-by-pixel basis as described by Parajka and Blöschl (2008a). Values 
of cloud-obscured pixels from one platform can be replaced by the corresponding 
values of cloud-free pixels from the other platform (Gafurov and Bardossy 2009).

In spatial filtering, cloud pixels are replaced by the value held by the majority of 
cloud-free pixels (either land or snow) in an eight-pixel neighborhood surrounding 
the obscured pixel. In the case of a tie among the values of the neighboring pixels, 
Parajka and Blöschl (2008a) assigned the pixel value to be snow covered.

In the third approach, called temporal filtering or temporal deduction, the value 
of cloud pixels is replaced with the value from the same pixel under cloud-free con-
ditions from the preceding and following days (Gao et al. 2010a). The idea behind 
using this approach is that it allows the use of information from the cloud-free days 
to represent the observation during the cloudy days. For example, out of 5 days of 
observation, if the first and last 2 days indicate snow coverage while the middle day 
is cloudy, the cloud-covered day would be assigned as being snow covered. Three 
situations may occur if a pixel is obstructed by clouds in the image of a particular 
day and the preceding and following days are clear. The situations and the temporal 
filtering in the work of Gao et al. (2010a) are as follows:

 1. If the corresponding pixel values in both images of the preceding and following 
days have snow, the cloud pixel of the current day is presumed to have snow.

 2. If the corresponding pixel values in both images of the preceding and follow-
ing days are land, the cloud pixel of the current day is presumed to be land.

 3. If the corresponding pixel values in both images of the preceding and fol-
lowing days are different, for example, one is snow and the other is land, the 
cloud pixel is left unchanged.
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This set of responses only resolves the cloud-obstructed pixel for a snow-free 
period or for a continuous snow-covered period (Gao et al. 2010a).

The application of the three approaches (combination of Aqua and Terra MODIS, 
spatial filtering, and temporal filtering) over the region of Austria in the work of 
Parajka and Blöschl (2008a) yielded a significant decrease in cloud coverage. For 
example, percentages of cloud coverage before the merger of the two products were 
61.4% and 55.6% for Aqua and Terra, respectively. After combination, the cloud cov-
erage of the merged product was reduced to 46.2%. The cloud coverage decreased 
another 6% to 14% upon the application of a spatial filter to the merged Aqua and 
Terra snow products. The largest cloud coverage reduction as stated by Parajka and 
Blöschl (2008a) was achieved when temporal filtering was applied to the merged 
Terra and Aqua map products, resulting in about 50% cloud coverage reduction with 
1-day temporal filtering during the winter months.

In addition to the spatial and temporal filtering applied to the combined Aqua 
and Terra MODIS product, Gafurov and Bardossy (2009) included the snow line 
method in the list of cloud removal methodologies used over the Kokcha Basin in 
the northeastern part of Afghanistan. This approach is based on the snow transi-
tion elevation. The basic idea of this method as stated by Parajka et al. (2010) is to 
estimate the regional snow line elevation and reclassify all the cloud-covered pixels 
based on their vertical position relative to the snow line. Above the snow line, all 
pixels are assumed to be snow covered, whereas all pixels are land covered below 
the snow line. This concept is used to reclassify cloud-covered pixels in such a way 
that all cloud-covered pixels above the snow line are reclassified as snow; likewise, 
all cloud-covered pixels below the snow line are reclassified as land. Parajka et 
al. (2010) achieved an impact reduction due to cloud cover from 60% to 10% with 
MODIS/Terra data with the snow line method.

Other researchers combined passive microwave sensor data with MODIS data 
in order to benefit from the cloud-penetrating power of passive microwave radiom-
eters and the high spatial and temporal resolutions of optical sensors. For instance, 
Foster et al. (2007) showed that blending of snow cover products gives more accu-
rate determination of snow cover measurements when compared to the accuracy 
obtained from using either MODIS or AMSR-E alone. Foster et al. (2007) blended 
Aqua MODIS together with AMSR-E, while Liang et al. (2008) blended the Terra 
MODIS daily snow cover product together with the AMSR-E daily SWE product to 
obtain new snow cover products at a 500-m resolution. Both studies increased the 
accuracy of snow cover determination through the MODIS/AMSR-E combination.

Building on the previous works, Gao et al. (2010b) blended the Terra and Aqua 
MODIS snow cover products with AMSR-E SWE. Owing to the different encoding 
schemes, they started by using unifying codes to transform the original integers of 
the MODIS and AMSR-E snow products into new unified codes in such a way that the 
new integers in both products will have the same meaning and, therefore, be compat-
ible. Before assigning the unifying codes, AMSR-E was resampled and reprojected 
from a 25-km resolution to a 500-m resolution to enable combination. Subsequent to 
the creation of the unifying coding system for the products, Terra and Aqua MODIS 
images were combined first as one Terra–Aqua combined (TAC) image according to 
a priority principle in which a lower integer value is replaced with a higher integer 
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value; for example, snow-free land (25) and cloud (50) detected by one sensor would 
be replaced by snow (200) if observed in the other. This procedure is similar to what 
was done by Wang et al. (2009), Parajka and Blöschl (2008b), and Gafurov and 
Bardossy (2009) during the combination of the Aqua and Terra MODIS products. 
The remaining cloud pixels in the TAC are then replaced by the corresponding pixel 
values from the unified AMSR-E, thus generating a new snow cover map with a 
500-m resolution from the combination of Aqua, Terra, and AMSR-E (Gao et al. 
2010b). The overall accuracy obtained from these blended products was 86% com-
pared with 31%, 45%, and 49% of the Terra, Aqua, and Terra/Aqua-combined snow 
cover products, respectively, under all sky conditions.

As noted earlier, SCAs derived from satellite products serve as important data 
input for SRM to simulate and forecast runoff, both during the snowmelt period and 
for conditions of a changed climate. To produce snow cover and runoff for a changed 
climate, SRM uses measured snow cover from satellite monitoring in the present cli-
mate (Martinec et al. 2008) and modifies them in accordance with changes to the rate 
of degree-day accumulation from warming or cooling and in accordance with changes 
to new snow accumulation from precipitation associated with a climate scenario. A 
limited number of studies have been published regarding effects of climate scenarios 
on snowmelt runoff, yet such studies are important from a planning and adaptation 
perspective. The next section describes a case study in which several climate change 
scenarios are simulated in SRM, and conclusions are drawn from this work, some of 
which are directly relevant to the case study and others are more generalized.

10.4   SNOWMELT RUNOFF MODELING UNDER CLIMATE 
CHANGE—SNAKE RIVER HEADWATERS CASE STUDY

10.4.1  Model StRuctuRe of SRM

The SRM used in this chapter and illustrated in Figure 10.3 is a temperature degree-
day-based model that calculates daily snowmelt, combines this with daily precipi-
tation, and transforms these quantities into a daily runoff component and adds the 
remainder into a runoff recession component according to Equation 10.1 (Martinec 
et al. 2005). In practice, if the elevation range of a basin exceeds 500-m, a basin 
is subdivided into multiple elevation zones (see Figure 10.3), and the first term on 
the right-hand side of Equation 10.1 is applied to each zone. These terms are added 
together, and Equation 10.1 is solved to get the total contribution to daily flow from 
the different zones.

10.4.2  data SouRceS

Data used in this project were obtained from the Natural Resource Conservation 
Service (NRCS) SNOTEL Network, the U.S. Geological Survey (USGS) National 
Water Information System (NWIS), the U.S. Bureau of Reclamation (USBR) Pacific 
Northwest Hydromet Network, and the NSIDC. The SNOTEL data used in this study 
were taken from 11 stations in and around the hydrologic basin simulated in this 
study, whose location is shown in Figure 10.4. The stations used were Base Camp, 
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FIGURE  10.3  Structure of SRM for a basin divided into three elevation zones. (From 
Ferguson, R. I., Progress in Physical Geography, 23(2), 205–227, 1999.)
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East Rim Divide, Granite Creek, Gross Ventre Summit, Gunsight Pass, Lewis Lake 
Divide, Philips Bench, Snake River Station, Thumb Divide, Togwotee Pass, and 
Two Ocean Plateau. Further information about these stations may be obtained from 
NRCS (http://www.wcc.nrcs.usda.gov/snotel/Wyoming/wyoming.html). The data 
used from these stations for snowmelt runoff modeling included daily time series 
of average air temperature and precipitation depth, together with accumulated pre-
cipitation and SWE to assist in determining a snow-covered area for years prior to 
availability of satellite snow cover data.

The USGS (http://waterdata.usgs.gov/id/nwis/current/?type=flow?) NWIS was 
used to obtain daily average stream flow data for model testing purposes. Historical 
stream flow data were taken from gage number 13022500, labeled “Snake River AB 
Reservoir NR Alpine WY,” which lies in the Upper Snake River Basin. Stream flow 
at this gage is modulated significantly both within and between years by storage in the 
Jackson Lake Reservoir, which is recorded by the USBR Hydromet network (http://
www.usbr.gov/pn-bin/arcread.pl?station=JCK). “Natural” or unregulated daily aver-
age stream flow at the USGS gage site was recovered by adding the daily change in 
volumetric reservoir storage at the Jackson Lake divided by the time step (1 day), 
expressed in cubic meters per second, to the measured flow rate.

Snow-covered area data were obtained from the Terra satellite’s MODIS 8-day L3 
global 500-m grid composite SCA products (MOD10A2) available from the NSIDC 
(see Hall et al. 2006). Ninety-six remotely sensed images were used, covering the 
period from February to August for the years 2003–2006. The snow cover images 
were processed in the Geographic Information System (GIS) ArcGIS software pack-
age to extract the basin area, delineate the basin zones used in the SRM, and then 
calculate the fraction of SCA within each elevation zone.

10.4.3  BaSin chaRacteRiSticS

The snowmelt runoff modeling carried out in this work was applied to a basin located 
in western Wyoming, in the United States, shown in Figure 10.4. It serves as the 
headwaters of the Snake River and drains across the Snake River Plain of southern 
Idaho and represents an important water resource for agriculture, and power genera-
tion, in-stream fish requirements, as well as municipal, commercial, and industrial 
uses. The basin is designated by USGS Hydrologic Unit Codes 17040101, 02, and 
03, known as the Snake Headwaters, Gross Ventre, and Greys-Hobock, respectively 
(Seaber et al. 1987). It drains an area of 8894 km2 (3465 mi2) and spans an elevation 
range of 1737–4194 m above mean sea level (amsl; 5799–13,760 ft). This basin was 
selected because it supplies the South Fork of the Snake River, which accounts for 
more than one-third of the total annual volume of flow across the Snake River Plain.

To run SRM, a basin must be divided into one or more elevation zones. In the 
present case, the parent basin ranged from 1737 to 4194 m amsl, an elevation span of 
2457 m. For modeling purposes, the basin was subdivided into five elevation zones 
of 500-m each. Figure 10.5 shows the basin and the area occupied by each elevation 
zone.

Table 10.2 shows for each elevation zone the elevation range, the zone area, the 
hypsometric mean elevation (i.e., the area-weighted average zone elevation), and 
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the number of SNOTEL stations lying within each elevation zone. There were no 
SNOTEL stations that lay within the elevation range of zones 4 and 5; however, the 
total area occupied by these zones was only 1.2% and 0.01% of the total basin area, 
respectively, so the contribution of these zones to the overall snowmelt runoff was 
negligible. The number of stations in zones 1 through 3 was roughly proportional to 
the fraction of the total basin area occupied by each zone.

Legend
SRM zones
value

1
1–2
2–3
3–4
4–5

SRM zone map

FIGURE 10.5  Study basin and elevation zone subdivisions.

TABLE 10.2
SRM Zone Description Data

SRM Zone
Elevation Range 

(m amsl) Area (km2)
Hypsometric Mean 

Elevation (m)
No. of SNOTEL 

Stations

1 1737–2237 2300 2087 3

2 2237–2737 4490 2482 5

3 2737–3237 1992 2890 3

4 3237–3737 111 3286 0

5 3737–4194 0.96 3820 0

Total: 8893.96



232 Multiscale Hydrologic Remote Sensing: Perspectives and Applications

10.4.4  Model vaRiaBleS

10.4.4.1  Temperature and Precipitation
SRM operates using daily temperature and precipitation data corresponding to the 
hypsometric mean elevation of each zone. Analysis of the SNOTEL data time series 
indicated that, for temperature, there was a general altitudinal lapse rate, but that there 
was a fair amount of scatter, possibly caused by microclimate effects associated with 
individual stations. For precipitation, there was no apparent altitudinal gradient. In 
order to maintain as robust of a time series data set as possible, a virtual station was 
created, whose elevation was the arithmetic average of all 11 SNOTEL stations within 
the basin. The temperature time series data were produced at this virtual station by 
taking the average of the average daily temperature at each of the 11 SNOTEL sta-
tions when data for all 11 stations existed. Similarly, the precipitation time series data 
were produced at the same virtual station by taking the arithmetic average of the daily 
precipitation values at all 11 SNOTEL stations. This precipitation time series at vir-
tual station is equivalent to the basin-wide average precipitation that would be calcu-
lated using the arithmetic mean method (Chow et al. 1988), which is appropriate since 
no altitudinal or geographical pattern was evident among the precipitation stations.

10.4.4.2  Snow-Covered Area
SRM requires a daily time series of S, the fraction of SCA for each elevation zone 
throughout the snowmelt season. These time series are known as CDCs. A fraction 
of SCA was derived from the Terra satellite’s MODIS 8-day L3 global 500-m grid 
composite SCA products (MOD10A2) available from the NSIDC (Hall et al. 2006). 
This product uses an 8-day temporal filter to generate a composite snow cover image. 
The primary purpose of the filter is to remove cloud cover. The filter examines a 
series of eight consecutive daily remotely sensed snow cover images and assigns the 
value of “snow” to every pixel for which a “snow” value was observed for that pixel 
within any of the eight images. The first day of the 8-day sequence is assigned to the 
composite snow cover image.

Ninety-six remotely sensed images were used, covering the period from February 
to August each year from 2003 through 2006. Each image covered a large portion 
of the northwestern United States.  The snow cover images were processed in a GIS 
software package to extract the portion corresponding to the basin area, delineate 
the basin zones used in the SRM, and then calculate the fraction of SCA within each 
elevation zone.

Since these were an 8-day product and SRM requires daily S values, that is, the 
ratio of SCA to total zone area, as input data, a method was developed in which S was 
represented with a Gaussian curve during the melt period as follows. Day of year was 
used to represent the random variable, t, and S corresponded to 1 – F(z), where z is a 
standard normal random variable derived from t as

 z = (t – t50)/σt, (10.8)

where t50 is the day of year on which S = 50% within a given elevation zone based 
on MODIS data, and σt is the standard deviation of t required to cause the slope and 



233Modeling Snowmelt Runoff under Climate Change Scenarios

curvature of the S curve to approximate the rate of depletion of S derived from the 
time sequence of the MODIS 8-day snow cover product. Gaussian cumulative distri-
bution function values, F(z), can be obtained from tables or polynomial approxima-
tions such as (Chow et al. 1988)

 B z z z z= + + + +1
2

1 0 196854 0 115194 0 000344 0 019527
2 3

. . . .
44

4





−

 (10.9)

where |z| is the absolute value of z, F(z) = B for z < 0, and F(z) = (1 – B) for z ≥ 0. As 
noted above, S =1 – F(z), so this yields

 S = 1 – B for z < 0 
(10.10) or 

 S = B for z ≥ 0. 

This is illustrated in Figure 10.6 with 8-day composite MODIS SCA data and 
Gaussian CDCs for zones 1–4 in 2003. The large amount of scatter in the MODIS 
S values may be attributed to cloud cover and the effect of snow settling off of for-
est canopies, both of which cause an underestimation of reported SCA. Therefore, 
the Gaussian curve is fitted approximately as an outside envelope to the right of the 
available MODIS-derived S data.

The climate change scenarios applied in this work, described below, represent a 
perturbation in temperature and precipitation from a base period from 1980 through 
1999. In order for the climate change snowmelt runoff simulations to represent per-
turbations to this base period, it is important to reference them to measured and/
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or simulated snowmelt runoff from the base period. Therefore, SCA estimates are 
required for the base period in order to run the historical simulations. However, this 
base period predates the launch of the Terra satellite, so MODIS snow cover mea-
surements were not made at that time, and S curves or CDCs must be synthesized by 
some alternatives.

One possible alternative may be derived from a comparison of time series of 
SWE data from SNOTEL stations with CDCs from MODIS data in the years they 
are available. Unlike the MODIS CDCs that represent basin or zone spatial aggre-
gations, SNOTEL station time series represent point measurements of SD or, simi-
larly, SWE. Nevertheless, the behavior of an individual SNOTEL station’s SWE time 
series relative to the entire basin or zone is often consistent.

The strongest direct connection between individual station SWE and MODIS 
SCA corresponds to the point in time when snow disappears from a SNOTEL sta-
tion, that is, the case when SWE becomes zero. Ideally, this would correspond to 
the day when the MODIS snow cover pixel corresponding to the location of the 
SNOTEL station would change from “snow” to “snow-free land.”

There are spatial and temporal scale differences between MODIS and SNOTEL 
data, namely, we have used the MODIS 8-day temporal filter product whose spatial 
resolution is 500-m at nadir, whereas SNOTEL measurements cover 7 m2 and are 
taken in daily time steps here. These scale differences along with random variabil-
ity prevent perfect pixel-to-SNOTEL-station correlation. Taking a more statistical 
approach, we assumed that each station generally corresponds to the same fraction 
of the basin or zone that melts out concurrently. In other words, a station that melts 
out early 1 year, say around the date, t, when S(t) reduces to 0.9, will generally melt 
out with the first 10% of area every year; similarly, stations that melt out approxi-
mately with the 30th, 50th, or 90th percentiles of area do so relatively consistently 
from year to year. Others have pointed out that factors such as invariant topography 
and physically forced wind directions might produce consistent spatial patterns of 
melt out from year to year (Kirnbauer and Bloschl 1994; Sturm et al. 1995) and that 
persistence of spatial patterns may enable forms of depletion curves that are stan-
dard from year to year (Luce et al. 1999; Luce and Tarboton 2004). In the present 
application, this spatial consistency is demonstrated in Figure 10.7, which displays 
the time series of 2003 MODIS Snow Cover Fraction and the fitted Gaussian S curve 
in Figure 10.6, SRM zone 2.

In addition, the melt-out dates of all 11 SNOTEL stations within the basin are 
plotted directly on the Gaussian curve in Figure 10.7. This is done by assigning the 
same snow cover fraction, S(t), to each melt-out date as that corresponding to the 
Gaussian curve on the same day. Zone snow–covered fraction on the day of melt 
out for a given station is assumed to be consistent from year to year. Consequently, 
each year, it is assumed that, regardless of when it actually occurs, the melt-out date 
for a given station corresponds to the same zone snow cover fraction as it did in 
2003. Figures 10.8 through 10.10 plot the melt-out dates from the subsequent years 
2004–2006 with the same snow cover fraction as assigned to the station from 2003.

These are plotted together with the zone 2 MODIS snow-covered fractions from 
the corresponding year. Despite modest scatter, there is good agreement between 
the SNOTEL and MODIS data in each panel. It is important to note that, apart from 
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assigning the value of snow cover fraction at melt-out to each SNOTEL station by 
means of the 2003 MODIS data, the MODIS data and SNOTEL data in Figures 10.8 
through 10.10 are independent. In other words, the good agreement is entirely due 
to the year-to-year similarity in the spatial pattern of melt out, and that both MODIS 
and the SNOTEL stations capture this phenomenon.

For these years, the Gaussian curve is fitted by selecting appropriate t50 and σt 
values for Equation 10.8, where t50 is the date on which 50% of snow cover remains, 
and σt controls the slope and curvature of the line. The user could use a variety of 
curve-fitting procedures to accomplish this practice. Given the close correspondence 
of the MODIS snow cover fraction and SNOTEL data, this method was applied to 
the base years to determine the Gaussian S curve for snow-covered fraction using the 
available SNOTEL data in the absence of MODIS data. Two example years, namely, 
1989 and 1995, are shown in Figures 10.11 and 10.12.

In these figures, the melt-out date from each SNOTEL station is plotted with the 
corresponding SRM zone 2 SCA fraction determined from the 2003 MODIS data, 
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and a Gaussian curve is fitted to the data. The results in these figures are typical of 
the excellent fit obtained for other years in the base period. Although the SCA frac-
tions are derived from a particular, single MODIS year’s data (2003), they are able to 
represent a wide range of conditions experienced throughout the base period and up 
through 2006, in which the 50% SCA, t50, varied across a range of approximately 50 
days within each SRM zone, and the variation of melt rate as described by σt varied 
from 16 to 28 days within zone 2 and from 8 to 30 days across all zones.

This method is superior to the snow-level method of other studies (e.g., Garen 
and Marks 2005) in which the elevation of the snow line is set to correspond to the 
elevation of a SNOTEL station on its day of melt-out. The latter method requires 
all elevation zones in SRM to melt out temporally exclusive of one another, that is, 
zone 1 must entirely melt out before zone 2 can begin to melt out, and so on. This 
is not physically realistic, and Garen and Marks (2005) noted that it is only a crude 
estimate that they used as an independent check of other SCA generation methods. 
In contrast, our method provides a realistic melt-out, with S(t) curves for different 
elevation zones that overlap in time based on the temporal pattern observed from 
satellite imagery. It also allows SNOTEL stations across a whole range of elevations 
to provide information about the time series of SCA for each of the SRM elevation 
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FIGURE 10.9  Same as Figure 10.8, but for 2005.
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zones, even when the SNOTEL station lies outside the elevation range of a particular 
zone. SRM was able to generate new S(t) curves automatically for the climate change 
scenarios based on degree-days of melt as described by Martinec et al. (2005).

10.4.5  Model PaRaMeteRS

SRM has been designed so that these model parameters are based on physically 
observable properties or processes so that they can be derived from measurements 
or estimated by hydrological judgment based on basin characteristics, physical laws, 
theoretical relations, or empirical regression relations. The model parameters are 
shown in Equation 10.1 and defined thereafter. The parameters are not calibrated or 
optimized from historical data, and when occasional adjustments are made to the 
data after they have been determined for the basin, such changes should always fall 
within the range of physically and hydrologically acceptable values. Martinec et al. 
(2005) provided an extensive discussion with regard to how to determine the param-
eter values for a particular basin.
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FIGURE 10.11  Same as Figure 10.8, but for 1989, when MODIS data were not yet available.
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10.4.6  cliMate change

The focus of this research is to project the range of likely impacts of climate change 
on the water supply and distribution across the Snake River Plain of southern Idaho. 
Given the high degree of uncertainty in future climate, a broad range of model- 
projected climate change scenarios were incorporated into this analysis. The sce-
narios used were selected from among the output from running 18 different models 
for the Intergovernmental Panel on Climate Change (IPCC) in preparation for the 
IPCC Fourth Assessment Report (AR4; http://www.ipcc.ch/publications_and_data/
publications_and_data_reports.shtml). Each model was run using a variety of car-
bon emission scenarios developed by the IPCC. The A1B emission scenario was 
developed based on an economic rather than environmental focus, assuming rapid 
global economic growth in which income and social and cultural interactions con-
verge between regions and assuming a balanced emphasis on carbon and noncarbon 
emitting energy sources, especially after the year 2050. In this scenario, world popu-
lation is anticipated to peak at 9 billion in 2050 and then decline gradually. In this 
study, results obtained from a general circulation model (GCM) corresponding to the 
A1B emission scenario were used.

A comparison of the output from the collection of GCMs showed that greater 
uncertainty existed for precipitation than for temperature. Therefore, in order to 
encompass a wide range of possible outcomes for this region, precipitation was used 
as the differentiating variable regarding which GCMs output to select for use in this 
research. Three internationally recognized GCMs were selected, which captured a 
wide range of change in precipitation, approximating the 10%, 50%, and 90% prob-
ability density function quantiles developed by the National Center for Atmospheric 
Research (NCAR) from the output of the 18 GCMs run for the IPCC AR4. These 
were called the “DRY,” “MID,” and “WET” models, respectively. The selected 
GCMs are summarized in Table 10.3.

The NCAR extracted regionally specific data from these model outputs for an area 
extending 5.6° in latitude and longitude, centered at Southern Idaho and Southwestern 
Montana. This area is approximately 500 km across. The climate change scenarios 
do not account for local differences, such as those that would result from altitudinal 
gradients or windward/leeward differences on opposing sides of mountain ridges; 
instead, this downscaling is accomplished through our use of SNOTEL data.

The climate change scenarios provide perturbations relative to a “base period” 
for two time periods referenced as the years “2030” and “2080.” The base period 
represents the average of GCM simulations of 1980–1999. The “2030” period is the 

TABLE 10.3
GCMs Used in This Study

Wet Middle Dry

Canadian Centre for Climate 
Modeling and Analysis 
(cccma.t63)

National Center for Atmospheric 
Research (pcm)

U.S. Department of Commerce/
NOAA/Geophysical Fluid 
Dynamics Laboratory (gfdl0)
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average of model simulations of the years 2020–2039, and the “2080” period is the 
average of model simulations of the years 2070–2089. Each change scenario was 
represented by a percentage change to monthly precipitation and a degree change 
to monthly temperature for the 12 months of the year, relative to the corresponding 
months of the base period simulation.

Collectively, these results provided a range of moisture scenarios covering dry, 
average, and wet for each of two time periods for a total of six different scenarios 
presented in Table 10.4. As indicated earlier, the GCM output represents a monthly 
average and does not indicate how daily or interannual variability can change. One 

TABLE 10.4
Idaho GCM Output for Selected Models

Wet Middle Dry

Canadian (cccma.t63) NCAR (PCM) NOAA (gfdl0)

Precipitation 
(%)

Temperature 
(°C)

Precipitation 
(%)

Temperature 
(°C)

Precipitation 
(%)

Temperature 
(°C)

2030 (2020–2039)
January –15.99 1.21 –2.33 0.99 –6.51 0.32

February 23.16 1.93 4.43 0.77 –10.87 1.37

March 13.28 1.21 0.75 0.73 1.19 1.95

April 11.63 0.85 –0.12 0.47 11.80 1.03

May 21.03 1.44 7.41 0.79 1.62 0.21

June 18.01 0.61 7.99 0.83 –17.70 0.15

July –2.92 0.88 –4.43 1.11 –32.36 3.17

August 15.95 0.44 3.92 0.90 –47.88 3.51

September 9.26 0.01 –17.01 1.28 0.38 1.68

October 17.15 1.10 13.87 0.80 –3.71 1.95

November 22.37 0.49 –3.92 0.55 0.81 1.51

December 22.83 1.71 –4.19 1.03 –1.82 1.20

Annual 12.93 0.99 1.16 0.86 –7.64 1.50

2080 (2070–2089)
January 4.52 3.38 6.95 3.84 –10.69 3.34

February 37.30 4.40 14.12 3.60 6.60 4.61

March 24.66 2.58 9.35 1.64 14.44 3.98

April 36.00 2.58 10.85 1.51 19.35 2.98

May 20.94 3.33 11.00 1.60 2.38 2.10

June –6.83 2.85 11.79 2.50 –26.66 2.83

July –9.16 3.08 –4.90 2.97 –50.35 7.50

August –7.66 2.44 8.13 2.82 –47.16 8.52

September 16.70 2.50 –29.77 3.30 –40.71 5.48

October 13.25 3.04 12.96 2.26 –18.14 4.28

November 36.41 2.10 1.46 1.99 6.71 3.68

December 23.48 3.93 –3.90 2.72 31.55 3.25

Annual 17.41 3.02 5.32 2.56 –6.75 4.38
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of the most straightforward ways of applying the GCM output was to combine it 
with an observed weather database. This was accomplished by adding the tempera-
ture changes to the observed record (e.g., adding the monthly January temperature 
increase from a particular scenario to each day of the observed January data, adding 
the February increase to the observed February data, and so on) and multiplying the 
monthly percentage change in precipitation plus 1 (e.g., 1 + 0.05) by the correspond-
ing month’s observed daily precipitation record. This effectively leaves the historic 
variability in the observed record unchanged, except that the temperature data are 
shifted by a fixed amount and the precipitation data are scaled. In the present case, 
we combined each of the selected GCM scenarios with the daily SNOTEL observa-
tions from the basin of interest to generate a 24-year perturbed daily climate. The 
SNOTEL observations ran from 1983 through 2006, overlapping almost completely 
with the “base period” of the climate simulations.

10.4.7  ReSultS and diScuSSion of SnowMelt Runoff Modeling

Results of snowmelt runoff modeling are presented as annual hydrographs in 
Figures 10.13 and 10.14 for the South Fork of the Snake River at the gage above the 
Palisades Reservoir near Alpine, WY. Table 10.5 shows annual average percentage 
changes to the total snowmelt runoff volume corresponding to each climate sce-
nario. Figures 10.13 and 10.14 include daily flows from measurements and historical 
simulations averaged over water years 1983 through 2006, referenced as “Measured” 
and “Simulated,” respectively. The figures also include simulated flows for the six 
climate change scenarios, referenced by means of the particular climate change sce-
nario (e.g., “2030—Wet”). Figure 10.13 contains the results from the 2030 model 
scenarios, and Figure 10.14 contains the results from the 2080 model scenarios. The 
climate change simulations result from applying prescribed monthly changes to tem-
perature and precipitation corresponding to each climate change scenario, to each 
year of the 1983–2006 historical period, running SRM with the perturbed input data 
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set, and then averaging the results for each day of the water year over the 24-year 
period.

The results of these climate scenario simulations indicate changes to two impor-
tant aspects of the hydrograph:  (1) total annual volume of discharge and (2) within-
year timing of runoff. Table 10.5 shows by what percentage each of the climate 
scenario’s annual volume differs from the historical simulated annual volume. The 
total annual volume of stream flow varied by climate scenario and was primarily 
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FIGURE 10.14  Comparison of the 2080 climate change simulated daily discharges with 
measured and historical simulated discharges. Each curve is averaged over a 24-year period.

TABLE 10.5
Comparison of Changes Associated with Six Climate Scenarios Relative to 
the Simulated Historical Flows

Snowmelt Runoffa 
(Percentage Change) Peak Advanceb (Days) V50 Advancec (Days)

2030—Wet 13.4 6 5

2030—Mid 0.5 5 3

2030—Dry –5.4 5 3

2080—Wet 19.5 8 14

2080—Mid 5 7 6

2080—Dry –1.9 7 13

a Snowmelt runoff represents annual volumetric percentage changes.
b Peak advance is the number of days that the peak of the hydrograph moves earlier in the melt season 

relative to the historical simulation.
c V50 is the number of days earlier that 50% of the total annual volume flows out of the basin relative to 

the historical simulation.
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driven by changes to precipitation for each scenario. The 2030 and 2080 “Wet” 
scenarios produced significant increases in the annual streamflow of 13.4% and 
19.5%, respectively, which were slightly larger than the respective annual percent-
age changes in precipitation for the study area; the two “Dry” scenarios produced 
slight decreases in the annual flow volumes, –5.4% for 2030 and –1.9% for 2080, 
which were less than the reductions in annual precipitation; the two “Mid” sce-
narios produced increases in annual flow volumes of 0.5% and 5.0%, which were 
quite close to the annual percentage changes in precipitation corresponding to those 
two scenarios. The exacerbation of annual flow volume for the two “Wet” scenarios 
and the reduction for the two “Dry” scenarios of annual flow volume relative to 
the percentage changes of precipitation are primarily the result of the time of year 
the increase or decrease of precipitation occurs. The climate in this region gener-
ally has wet winters and dry summers. The six climate scenarios generally show 
an increase in winter precipitation and a decrease in summer precipitation. The 
increase in winter precipitation is more pronounced for the “Wet” scenarios, and 
the decrease in summer precipitation is more pronounced for the “Dry” scenarios, 
resulting in the relative exacerbation or reduction in annual stream flow volumes 
noted above.

The temporal distribution throughout the year of perturbations to temperature 
and precipitation has a significant impact on how a climate scenario impacts snow-
melt runoff. For the 2030 period, annual average temperature increases ranged from 
+0.86°C to +1.50°C, and annual percentage changes to precipitation ranged from 
–7.64% to +12.93%. For the 2080 period, annual average temperature increases 
ranged from +2.56°C to +4.38°C, and annual percentage changes to precipitation 
ranged from –6.75% to +17.41%. In our usage, the temperature and precipitation per-
turbations from the GCMs were specified on a monthly basis as shown in Table 10.4, 
and for several of the scenarios, there was substantial monthly variability around the 
annual averages listed above. Most notably, the mean annual temperature increase of 
4.38°C corresponding to the 2080 Dry scenario has most of the temperature pertur-
bations, which fall above the mean occurring during July through September, when 
most of the snowmelt has already occurred. Also for the Dry scenario at both 2030 
and 2080, large double-digit percentage reductions to precipitation occur during the 
summer and early fall, which are historically the dry months in the study region. 
Both of these temperature and precipitation extremes on the hot/dry side occur at 
times of year, which somewhat dampen out their effect with regard to snowmelt 
runoff compared to what their effect would be if they occurred in the spring. In con-
trast, the large percentage increases in precipitation from the “Wet” GCM are largely 
driven by increases in precipitation during winter months, which tends to exaggerate 
their effect on snowmelt runoff through large increases in precipitation during some 
of the wettest months.

It is useful to compare the magnitude of simulated changes from a range of cli-
mate scenarios with the range of historical observations. In our case study, the simu-
lated changes to average annual stream flow volume ranged between about –5% and 
+20%. The historical range of precipitation relative to the median annual precipita-
tion during the base period was –36% to +52%; during this same period, the range of 
the annual stream flow volume relative to the median was –37% to +83%.
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In addition to changes in the annual volume of flows, there is a change in the tim-
ing of when the snowpack melts and becomes stream flow, as is evident in Figures 
10.13 and 10.14. The timing of the historical simulated values closely corresponds 
to the timing of the measured flows. However, all the climate change scenarios pro-
duce earlier spring runoff. This is consistent with what others have found for the 
Pacific Northwest, both looking at historical trends from the 1950s to the present 
and using climate forecasts (e.g., Stewart et al. 2004). Table 10.5 lists the number of 
days that the hydrograph peak advances earlier in the spring relative to the time of 
occurrence of the peak for the simulated historical flows. These ranges between 5 
and 8 days, with 2080 climate scenario value peaks occurring earlier than those of 
the 2030 scenarios. Another way of looking at this is to consider the relative timing 
of when 50% of the total annual volume of runoff has occurred, as shown in the last 
column of Table 10.5. For the 2030 scenarios, this ranges between 3 and 5 days, but 
for the 2080—Wet and 2080—Dry scenarios, this occurs 13 or 14 days earlier than 
the historical case. Corresponding to a shift toward earlier spring runoff, there is a 
reduction in summer runoff that manifests itself in several of the changed-climate 
scenarios. These shifts in timing are partially the result of increased winter time pre-
cipitation, especially in the two Wet scenarios, but are mostly driven by the modeled 
temperature increases, which appear in every month of every scenario.

10.5  CONCLUSIONS

In this chapter, we have reviewed and discussed the two major types of snowmelt 
models based on a temperature index (degree-day) approach and a surface energy 
balance approach, respectively. Although the energy balance approach is more phys-
ically accurate, the lack of availability of the data required to run these models and 
the complexity of assembling data sets over a spatially distributed grid reduce the 
usability of these models. The data required by energy balance models are not usu-
ally provided by climate models. Temperature index models, such as SRM, on the 
other hand, have much simpler data requirements. This makes them more suitable 
both for historical and operational studies and makes them even more desirable for 
climate scenario studies, since temperature and precipitation are the most common 
and readily available outputs from climate models.

In addition to temperature and precipitation, SRM requires time series of SCA as 
a data input that is assumed to be provided by means of remote sensing. At present, 
the snow cover product from the MODIS sensor borne by the Terra and Aqua satel-
lites is considered to be the best source of data owing to their short repeat cycle and 
good spatial resolution. The downside of this sensor is its inability to penetrate cloud 
cover. Various spatial and temporal filters and combinations of data from differ-
ent satellite sensors and platforms including passive microwave are currently being 
developed to minimize the cloud obscuration problem. In the work presented here, 
we used an 8-day composite temporal filtered MODIS product for our SCA.

No satellite data existed in many years from which we cannot derive the essen-
tial S(t) curves. In order to synthesize SCA time series, or S(t) curves, and over-
come this issue of lacking satellite data, we developed and presented a method of 
merging MODIS snow cover products with ground-based SNOTEL data. SRM can 



244 Multiscale Hydrologic Remote Sensing: Perspectives and Applications

generate new S(t) curves automatically for the climate change scenarios from the 
curves generated for the historical period based on degree-days of melt as described 
by Martinec et al. (2005).

Finally, we employed SRM both in a historical simulation mode and in a climate 
scenario mode. For the climate simulations, we used results from three different, 
internationally recognized GCMs (see Table 10.3) generated for the IPCC using 
the A1B carbon scenario. The temperature and precipitation output corresponded 
to monthly averages over two 20-year modeling periods centered at the years 2030 
and 2080, relative to the base period 1980–1999, providing six different climate sce-
narios to simulate in SRM (see Table 10.4).

Annual stream flow hydrographs from the SRM simulations associated with the 
historical period and the six climate scenarios are shown in Figures 10.13 and 10.14. 
The historical mode shows that the observed stream flow was accurately simulated by 
SRM using the SCA method that we developed. For the climate change simulations, 
four of the simulations produced an increase in the annual volume of streamflow, 
and two produced a reduction; in all cases, this was due to corresponding changes 
in annual precipitation. In addition, all climate scenarios advanced the spring runoff 
earlier in time, both in terms of the occurrence of the peak runoff and in terms of the 
time at which 50% of the total water-year flow occurred. This occurred because all 
of the climate scenarios showed temperature warming through every month of the 
year, albeit in different amounts in different months.

There are several significant conclusions that may be drawn from these results. 
One relates to the variation of impact of climate change, that is, whether a cli-
mate change scenario, particularly related to precipitation, exacerbates or damp-
ens the effect of the precipitation changes on annual stream flow runoff volume. 
When simulating the effects of climate change on snowmelt runoff, it is important 
to differentiate when and how perturbations to temperature and precipitation vary 
throughout the year. This ought to be done at least on a seasonal basis, but prefer-
ably at a monthly time step. In our case study, the effect of an annual increase in 
precipitation became more pronounced with respect to annual streamflow, whereas 
the effect of a decrease in annual precipitation was slightly dampened owing to when 
these changes occurred throughout the year. Secondly, there are differing degrees of 
uncertainty between output variables from climate models. Precipitation is among 
the less certain. Therefore, it is important to simulate a range of values of these 
variables in order to gain a perspective on the breadth of possible impacts of climate 
scenarios. Thirdly, under a global warming scenario, runoff will move earlier into 
the springtime. This may have important implications for retention, storage, and 
distribution of the water resources.

Snowmelt runoff has tremendous importance for much of the world. This impor-
tance spans a wide geographic as well as sectoral range. Consequently, there are 
many uses for simulations of climate change impacts on snowmelt runoff, especially 
for developing adaptation plans for a wide range of impacts. Remote sensing pro-
vides useful input for snowmelt runoff modeling and will continue to increase in 
importance as new methods and instruments can be developed and as existing chal-
lenges to its use are overcome.
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11.1  INTRODUCTION

Floods are the most recurring and devastating natural hazards that impact human 
lives and cause severe economic loss throughout the world. With the onset of climate 
change, the varying intensity, duration, and frequency of floods will likely threaten 
many more regions of the world (McCarthy 2001; Jonkman 2005). Consequently, 
the current trend and future scenarios of flood risks demand accurate spatial and 
temporal simulations to predict the potential flood hazards. Techniques utilizing 
satellite remote sensing data to detect floods and monitor their spatiotemporal 
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extents can provide objective information for flood control and hazard mitigation 
(Smith 1997; Brakenridge and Anderson 2003; Brakenridge et al. 2003). A good 
example could include the orbital sensors, such as the moderate resolution imag-
ing spectroradiometer (MODIS), which provide reliable data to help detect floods 
in regions where no other means are available for flood monitoring (Brakenridge 
2006; Brakenridge et al. 2007). Such data, with global coverage and frequent obser-
vations of the region of interest after certain processing, could potentially provide 
timely information on the areal extent of flooding. To date, satellite images have 
become practical tools for development of rapid and cost-effective methods for 
hydrologic predictions of floods in poorly or even ungauged river basins around 
the globe, regardless of political boundaries. It has been demonstrated that orbital 
remote sensing technologies can be used for mapping of river inundation, and these 
advances have shown a great potential to directly or indirectly measure runoff 
(Birkett et al. 2002; Brakenridge 2006).

The use of satellite imagery for flood mapping began with the use of the 
Landsat Thematic Mapper (France and Hedges 1986), the Landsat Multispectral 
Scanner (France and Hedges 1986), the Satellite Pour l’Observation de la Terre 
(Jensen et al. 1986; Watson 1991; Blasco et al. 1992), the Advanced Very High 
Resolution Radiometer (Xiao and Chen 1987; Barton and Bathols 1989; Gale and 
Bainbridge 1990; Rasid and Pramanik 1993; Sandholt et al. 2003), the advanced 
spaceborne thermal emission and reflection radiometer (ASTER), the MODIS, and 
the Landsat-7 sensors (Wang 2004; Wang et al. 2002; Stancalie et al. 2004). For a 
comprehensive review on extraction of flood extents and surface water levels from 
various satellite sensors, please refer to the literature (Watson 1991; Smith 1997; 
Puech and Raclot 2002).

Satellite remote sensing data have emerged as a viable alternative as well as a 
supplement to in situ observations due to their capability to cover vast ungauged 
regions. Microwave satellite data can be effectively used for flood monitoring 
without regard to the cloud cover. The spatial resolution of the data at a 10-km 
grid scale, such as the Advanced Microwave Scanning Radiometer for the Earth 
observing system microwave data, is relatively coarse for flood mapping. Satellite 
radar imagery proved invaluable in mapping flood extents (Horritt 2000; Horritt 
and Bates 2002; Schumann et al. 2007). Flooding maps derived from synthetic 
aperture radar (SAR) sensors were used as a result to validate hydraulic models 
(Horritt et al. 2007; Di Baldassarre et al. 2009). Limitations of this process were 
noted though, and examples include SAR’s inability to detect flooding in urban 
areas, inaccurate image calibration that leads to geometric and radiometric distor-
tions, difficulties for data processing, and low temporal resolution with a revisit 
time of 35 days (Schumann et al. 2007). Contrary to spaceborne microwave data, 
visible/infrared sensors aboard the MODIS Terra satellite can detect floods with 
relatively high spatial (30-m ASTER and 250-m MODIS) and temporal (daily if it 
is clear sky) resolution around the globe. In the past decade, noticeable efforts were 
made to investigate the potential for using flood inundation maps derived from 
optical remote sensing sensors to validate the performance of hydrologic models 
in sparsely or ungauged river basins (Brakenridge 2006; Brakenridge et al. 2007). 
Khan et al. (2011a) emphasized the use of the iterative self-organizing data analysis 
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technique algorithm (ISODATA) to retrieve the flooding pixel, which was derived 
from the work of Jensen (2005) and Campbell (2007), and also cross-validated by 
Brakenridge (2006) and Brakenridge et al. (2007) in their global flood monitoring 
system using MODIS and ASTER.

This study presents an all-inclusive methodology to calibrate a hydrologic model, 
simulate the spatial extent of flooding, and evaluate the probability of detecting 
inundated areas based entirely on satellite remote sensing data. These data include 
topography, land use along with land cover, precipitation, and flood inundation 
extent. MODIS- and ASTER-based flood inundation maps with raster format were 
derived to benchmark the distributed hydrologic model, leading to the smooth sim-
ulations and the spatial extent of flooding and associated hazards. The objective 
of this research work is to combine remotely sensed multispectral estimates that 
include optical and microwave data sets within a hydrologic modeling framework 
to characterize the spatial extent of flooding over scarcely gauged basins. Such an 
effort will potentially improve flood predictions and flood management in ungauged 
catchments.

11.2  METHODOLOGY

The methodology contains three major steps. First, the data from MODIS and 
ASTER sensors were archived and processed to derive flood inundation maps for the 
selected events. Second, a grid-based distributed hydrologic model was implemented 
and further calibrated using the satellite-derived flood inundation maps in the study 
area. Finally, the performance of hydrologic prediction in the selected river basin is 
evaluated by comparing the simulated flood inundation extents with those derived 
from MODIS and ASTER imageries. Out of seven news-reported flood events in 
the study basin, we carefully selected three events with high-quality remote sensing 
imagery. In addition, the flood prediction model used in this study was well cali-
brated in this basin by historical data (Khan et al. 2009).

11.2.1  Satellite-BaSed flood inundation MaPPing

There are several methods of identifying flooded versus nonflooded areas using 
optical remote sensing imagery (Jensen 2005; Jensen et al. 1986). The first step is 
to identify spectral classes within the imagery. One of the widely used clustering 
algorithms applied for this study is ISODATA, which uses the Euclidean distance 
in the feature space to assign every pixel to a cluster through a number of itera-
tions (Jensen 2005). Spectral classes identified by unsupervised classifications are 
the natural, inherent groupings of spectral values within a scene of remote sens-
ing data (Campbell 2007). ISODATA begins with either arbitrary cluster means or 
means of an existing signature set, and each time the clustering repeats, the means 
of these clusters are shifted. The new cluster means are used for the next iteration. To 
perform ISODATA, the analyst selects the number of spectral classes, a convergence 
threshold, and the number of iterations for the algorithm that introduces considerable 
subjectivity into the classification process (Lang et al. 2008). This process of flood 
region classification was performed using the ENVI software. The method for flood 
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detection and mapping using satellite imageries included the following steps (Khan 
et al. 2011a).

 1. Terra MODIS near real-time subsets covering the study region were 
retrieved from the National Aeronautics and Space Administration (NASA) 
web site http://rapidfire.sci.gsfc.nasa.gov/subsets.

 2. Color composite images were downloaded for image processing. The false 
composite of MODIS bands 1, 2, and 7 (red, near-infrared, and shortwave 
infrared) has a resolution of 250 m. The true color composite of MODIS 
bands 1, 3, and 4 was used for visual interpretation.

 3. False color composite images were the subset to the region of interest, and 
ISODATA classification was performed (20 classes and 3 iterations).

 4. All of the water classes were combined into one water class.
 5. The raster-type images were exported in a geographical information system 

(GIS)- compatible format for further processing.
 6. The images obtained in step 5 were overlaid on the true color image to 

remove the cloud contamination and shadows that were falsely classified as 
water.

 7. The final product overlaid in the GIS environment under a reference water 
layer (Shuttle Radar Topography Mission [SRTM]-based water bodies) was 
used to identify the current flooded areas.

11.2.2  hydRologic Modeling

A distributed hydrologic model (coupled routing and excess storage [CREST]) devel-
oped by Wang et al. (2011) was used to generate modeled flood areal extents for 
comparison with the satellite-based flood inundation maps. The distributed CREST 
hydrologic model is a hybrid modeling strategy that has recently been developed by 
the University of Oklahoma (hydro.ou.edu) and the SERVIR Project Team in NASA 
(www.servir.net). CREST simulates the spatiotemporal variation of water fluxes and 
storages on a regular grid, with the grid cell resolution being user defined. The scal-
ability of model simulations is accomplished through subgrid-scale representation 
of soil moisture variability (through spatial probability distributions) and physical 
process representation. CREST can also simulate inundation extent in an effort to 
obtain spatial and temporal variation of floodwater within a grid-based domain. For 
more information regarding the CREST model, please refer to the work of Wang 
et al. (2011).

To apply CREST over the study area at a 1-km spatial resolution, local drain-
age direction and accumulation were established using a 30-arc-second-resolution 
SRTM digital elevation model from HydroSHEDS data. The precipitation forcing 
data are the Tropical Rainfall Measuring Mission (TRMM)-based multisatellite 
precipitation analysis 3B42 real-time (TMPA 3B42RT) products (Huffman et al. 
2007). The subscript ‘RT’ refers to real time, which in reality refers to pseudo real 
time where data are available via the Internet with an 8–16 h latency for the end 
user. 
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11.2.2.1  Model Calibration and Validation
The CREST model was calibrated using available daily observed discharge data 
for the period between 1998 and 2004. A 1-year period (1998) was used for warm-
ing up the model states. The model utilizes a global optimization approach to 
capture the parameter interactions. An autocalibration technique based on the 
adaptive random search (ARS) method (Brooks 1958) was used to calibrate the 
CREST model. The ARS method is considered adaptive in the sense that it uses 
information gathered during previous iterations to decide how simulation efforts 
are expended in the current iteration. The two most commonly used indicators for 
the model calibration, in order to get the best match of model-simulated stream-
flow with observations, are the Nash–Sutcliffe coefficient of efficiency (NSCE; 
Nash and Sutcliffe 1970) and relative bias ratio (Bias). These two criteria were used 
as objective functions for the automatic calibration in such a global optimization 
approach as defined by Equations 11.1 and 11.2. The best skill occurs with NSCE ≈ 
1 and Bias ≈ 0%.
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where Qi,o is the observed discharge of the ith time step, Qi,c is the simulated dis-
charge of the ith time step, and Qo is the average of all the observed discharge values.

Indicators of all results from the CREST autocalibration form a normal distribu-
tion with near-zero Bias as a mathematical expectation.

11.2.2.2  Flood Prediction Module
The CREST flood prediction model uses one of the model outputs known as the grid-
to-grid total free water to simulate flood extents. A predefined total free water depth 
threshold of approximately 70 mm is employed in order to determine flood inun-
dated extents. This value is not fixed, but changes with the calibration of satellite-
based flood inundation images are used during the autocalibration process.

Finally, the simulated inundation extents were compared to the flood inundation 
maps that were derived from satellite imageries. Several categorical verification 
statistics, which measure the correspondence between the estimated and observed 
occurrence of events, were used in this study. The probability of detection (POD), 
false-alarm ratio (FAR), and critical success index (CSI) were the most important 
verification statistics. POD measures the fraction of observed events that were cor-
rectly diagnosed, and it is also called the ‘‘hit rate’’ (Table 11.1). FAR gives the frac-
tion of diagnosed events that were actually nonevents. CSI gives the overall fraction 
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of correctly diagnosed events by CREST. Perfect values for these scores are POD = 
1, FAR = 0, and CSI = 1.

 POD
Hits

Hits Misses
=

+
 

 FAR
False alarms

Hits False alarms
=

+
 

 CSI
Hits

Hits Misses False alarms
=

+ +
. 

11.3  EAST AFRICA CASE STUDY

11.3.1  Study aRea and data PRePaRation

The rainy season that onsets from October through early December brings dev-
astating floods in Uganda, Kenya, Tanzania, and other countries in East Africa 
almost every year. This region, surrounding Lake Victoria, is heavily populated 
with around 30 million people (Figure 11.1). During December 2006, the United 
Nations Office for the Coordination of Humanitarian Affairs estimated that 1.8 mil-
lion people had been affected by the flooding in Kenya, Ethiopia, and Somalia. 
Repeated flooding affects many lives, particularly in the Lake Victoria region. With 
an area of 68,600 km2, Lake Victoria is the second largest freshwater lake in the 
world. Nzoia, a subbasin of Lake Victoria, was chosen as the study area because 
of its regional importance, as it is a flood-prone basin and also one of the major 
tributaries to the shared waters of Lake Victoria. The Nzoia River Basin covers 
approximately 12,900 km2, with elevation ranging between 1100 and 3000 m. The 
annual average rain within the region is 1500 mm. Table 11.2 lists recent flooding 
events investigated in this study.

TABLE 11.1
Contingency Table for CREST-Simulated and Satellite-Based 
Flood Extent

Satellite Flood Extent

Yes No

CREST Flood Extent Yes Hits False alarm

No Misses Correct rejection

Source: Khan, S. I. et al., IEEE Transactions on Geoscience and Remote Sensing, 
49(1), 85–95, © 2011 IEEE.
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FIGURE 11.1  Map showing the Nzoia River Basin in Lake Victoria region, East Africa. 
(Modified from Khan, S. I. et al., Hydrology and Earth System Science, 15(1), 107–117, 2011. 
With permission.)

TABLE 11.2
Selected Flood Events, Location, Flooded Areas/River; Verified with the DFO 
Flood Inventory

Events
Images Retrieved 

(Day of Year) Countries Affected Rivers Flooded

1 12/4/2006 (338) Kenya
Tanzania
Uganda

 – Kenya: Ewaso Nyiro, Uaso Nyiro, Tana 
River, and tributaries. Ramisi. Lak Dera, 
Lak Bor, Lagahar. Ndarugu. Sosiani. 
Ramisi. Nzoia. Ongoche, Kuja, Migori, 
Ongohe. Nyamasaria, Sabaki

 – Uganda—River Ssezibwa
 – Tanzania—Wembere, Mwanza

2 8/15/2007 (227)
8/22/2007 (234)
8/24/2007 (236)

Uganda
Kenya

Tanzania

 – Kenya—Nzoia, Sabwani, Malakisi, 
Malaba, Rongai

 – Uganda—Kirik, Moroto, Aswa, Ora, 
Ssezibwa, Dopeth. Muzizi. Nyangoma

 – Tanzania—Wembere, Mwanza

3 12/11/2008 (317) Kenya
Uganda

 – Western Kenya, Nzoia River

Note: Numbers in parentheses are the Julian days of the corresponding year.
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11.3.2  Satellite ReMote SenSing data

In this study, we used both MODIS and ASTER images in support of flood inunda-
tion mapping. MODIS instruments onboard the NASA Terra and Aqua satellites 
offer a unique combination of near-global daily coverage with acceptable spatial 
resolution. These capabilities are being utilized for flood monitoring at a regional 
and global scale. Smith (1997), Brakenridge and Anderson (2003), and Brakenridge 
et al. (2003) demonstrated that MODIS data can be used to distinguish between 
flooded and nonflooded areas with suitable spatial resolution. This can be very cru-
cial in regions where no other means of flood monitoring are available. NASA’s 
Goddard Space Flight Center, through the rapid response system, processes and dis-
plays images in near real time or within 2–4 h of retrieval. MODIS rapid-response 
data are available from Terra and Aqua in near real time at http://rapidfire.sci.gsfc 
.nasa.gov/. This system, initially developed for fire hazard detection and monitor-
ing, can be utilized for flood detection throughout the globe. Several spectral bands 
at spatial resolutions of approximately 250 and 500 m are appropriate for accurate 
discrimination of water from land. Excluding the effects of cloud cover, there is also 
global coverage on a near-daily basis.

One important piece of technology to note is ASTER, which is an imaging instru-
ment flying on the Terra satellite launched in December 1999 as part of NASA’s 
Earth Observing System. ASTER is also a cooperative effort between NASA, Japan’s 
Ministry of Economy, Trade and Industry, and Japan’s Earth Remote Sensing Data 
Analysis Center. ASTER is an advanced multispectral imager with high spatial, 
spectral, and radiometric resolution. The ASTER instrument covers a wide spectral 
region, from visible to thermal infrared, with 14 spectral bands. It has a total of 14 
bands in visible to near-infrared (VNIR), shortwave-infrared (SWIR), and thermal-
infrared (TIR) wavelengths. The ground resolutions of the VNIR, SWIR, and TIR 
images are 15, 30, and 90 m, respectively (Fujisada et al. 1998; Yamaguchi et al. 
1998). Data from this sensor can be acquired on demand from the Land Processes 
Distributed Active Archive Center at the Earth Resources Observation Systems Data 
Center managed by the United States Geological Survey, with the standard hierar-
chical data format (http://LPDAAC.usgs.gov). In this study, we followed the strate-
gies  for flood inundation mapping and inundation extent investigation based on 
the techniques developed by the Dartmouth Flood Observatory (DFO; http://www 
. dartmouth.edu/~floods/).

11.3.3  data foR the hydRologic Model

The key remote sensing data sets, which enable the development of a distributed 
hydrologic model in the Nzoia subbasin, include the following:

 1. The digital elevation data from SRTM (Rabus et al. 2003; http://www2 
.jpl.nasa.gov/srtm/) and SRTM-derived hydrologic parameter files of 
HydroSHEDS (Lehner et al. 2008).

 2. The rainfall data from the TRMM-based multisatellite precipitation analy-
sis 3B42 real time (TMPA 3B42RT) operating in near real time (Huffman 
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et al. 2007). The data are available on the TRMM web site (http://trmm 
.gsfc.nasa.gov) at 0.25° × 0.25° spatial and 3-h temporal scales within 50° 
N–S latitude band.

 3. Soil parameters are provided by the FAO (2003; http://www.fao.org/AG/agl/
agll/dsmw.html).

 4. The MODIS land classification map used as a surrogate for land use/
cover, with 17 classes of land cover according to the classification in the 
International Geosphere–Biosphere Programme (Friedl et al. 2002).

 5. Global daily potential evapotranspiration data were obtained from the 
Famine Early Warning Systems Network (http://earlywarning.usgs.gov/
Global/index.php).

11.4  RESULTS AND DISCUSSION

In this section, we presented the CREST model calibration and validation, followed 
by the application of the two alternative methods for inundation mapping, namely, 
CREST-simulated and satellite-based methods to generate the flood inundation 
maps for three different flood events in the study area. The comparisons of CREST-
simulated flood extents with satellite-based observations provide an evaluation of 
the CREST model performance in simulation of the spatiotemporal evolution of the 
flood inundation extent.

11.4.1  hydRologic Model caliBRation

Comparisons between the observed precipitations and the simulated runoffs dur-
ing the calibration period (1985–1998) in the Nzoia River Basin are described in 
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FIGURE 11.2  Comparison between observed and simulated runoffs during the calibration 
period associated with precipitation in the Nzoia River Basin (1985–1998). (From Khan, S. I. 
et al., Satellite remote sensing and hydrological modeling for flood inundation mapping in 
Lake Victoria Basin: Implications for hydrologic prediction in ungauged basins, in AGU Fall 
Meeting, San Francisco, CA, 2009. With permission.)



260 Multiscale Hydrologic Remote Sensing: Perspectives and Applications

Figure 11.2. The optimized parameter value with NSCE = 0.873 and Bias = –0.228% 
was found as a final result of the ARS method. General agreement for model calibra-
tion can be confirmed to prove the effectiveness of this CREST model. The follow-
ing three sections depict the details for model validation.

11.4.2  evaluation of event 1

Figure 11.3a2 illustrates a false color composite of MODIS scenes for 4 December 
2006. Based on the false color composite, the flood extent is extracted using the 
ISODATA classification, shown in Figure 11.3a1. The December event was also sim-
ulated using the distributed hydrologic model CREST. Intercomparisons between the 
satellite-based flood extent and CREST flood inundation map are shown in Figure 
11.4a; the regular river channel and water bodies are shown as light blue, MODIS 
detections are in black, and CREST is blue in color. The overlapping flooded areas 
from the MODIS image and CREST prediction are shown in red. Further examina-
tion of flood extents from both CREST and MODIS indicates that the spatial pat-
terns of the flooded areas are similar, as illustrated in Figure 11.4a. To quantify this 
similarity, a spatial correlation is introduced and analyzed on a pixel-by-pixel basis. 
If a pixel is classified in the same category (regular river channel and water bodies 
and flooded area) on both inundation maps, the pixel is recoded as 1 (hit); otherwise 
(nonflooded areas), the pixel is recorded as 0 (miss).

Figure 11.5a shows the statistical comparison between the flood extents derived 
from MODIS and CREST for the December 2006 event. POD shows an increase 
from 0.23 at a radius of 250 m to 0.75 at a radius of 1000 m and increased to 0.98 at 
a radius of 2000 m. Figure 11.5a also illustrates that within the 250-m radius, FAR 
could be as high as 0.7. With the increase in radius to 1000 m, however, FAR ends 
up being reduced to 0.18. CSI is improved from 0.14 within 250 m to 0.64 with an 
increase in radius to 1000 m. With a further increase in radius to 2000 m, CSI is 
improved to 0.92. Thus, the two maps show a spatial agreement of 92% at a radius 
of 2000 m in Figure 11.5a.

11.4.3  evaluation of event 2

A well-documented flood event that occurred during August 2007, with an estimated 
return period of 10 years, was used to validate the CREST model performance. 
MODIS-based flood extent maps shown in Figure 11.3b1 through d1 are for 15, 22, 
and 24 August 2007, respectively. Figure 11.3b2 through d2 shows the false-color-
composite (bands 7, 2, and 1) MODIS scenes. The statistical comparison between the 
CREST and MODIS flood inundation extent for these events is presented in Figure 
11.5a through d. Figure 11.5b reveals that, on August 15, 2007, POD is increased 
from 0.37 to 0.93, with an increase in radius from 250 to 1000 m. Similarly, FAR 
and CSI show improvements with an increase in radius for other days of this event 
(Figure 11.5c and d).
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ungauged basins, in AGU Fall Meeting, San Francisco, CA, 2009. With permission.)
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11.4.4  evaluation of event 3

For the November 2008 event, the ASTER image with higher spatial resolution is 
shown in Figure 11.5c. The POD of CREST shows an increase from 0.46 at a radius 
of 30-m to 0.88 at a radius of 600 m. Figure 11.5c also illustrates that, within a 30-m 
radius, FAR could be as high as 0.75. With the increase in radius to 600 m, however, 
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FAR is substantially reduced to as low as 0.15. The CSI is improved from 0.19 at 30 
m to more than 0.76 at a radius of 600 m.

11.5  CONCLUSIONS

To characterize the spatial extents of flooding over sparsely gauged or ungauged 
basins, this study compared the best available remote sensing images with the mod-
eling outputs derived by a well-calibrated hydrologic model—CREST.  Practical 
implementation was assessed by a case study in the Nzoia River Basin, a subba-
sin of Lake Victoria in Africa. MODIS Terra- and ASTER-based flood inundation 
maps were produced over the region and used to benchmark the effectiveness of a 
distributed hydrologic model that simulated the inundation areas. The analysis also 
showed the deepened value of integrating satellite data such as precipitation, land 
cover type, topography, and other products, as inputs to the distributed hydrologic 
model. We concluded that the quantification of flooding spatial extent through opti-
cal sensors can help calibrate and evaluate hydrologic models and, hence, potentially 
improve hydrologic prediction and flood management in ungauged river basins. The 
broader impact of such a study is to provide a rapid, cost-effective tool to progres-
sively build an essential capacity for flood predictions and risk reductions in poorly 
or ungauged basins located in many underdeveloped countries in Africa and South 
Asia. Operationally, implementing this strategy in those areas will provide flood 
managers and international aid organizations a realistic decision support tool in 
order to better assess emerging flood impacts.
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12.1  INTRODUCTION

Precipitation, an important input for land surface processes such as the hydrologic 
cycle and vegetation growth, is characterized by high spatial and temporal vari-
ability. Traditionally, precipitation measurements are available at rain gauge points, 
which are usually too sparsely distributed to capture spatial variability; therefore, 
these point data need to be interpolated to estimate the spatial distribution of pre-
cipitation. Development of methods to interpolate precipitation data from sparse 
networks of rain gauge stations has been a focus of past research (e.g., Phillips 
et al. 1992; Hasenauer et al. 2003). In recent years, the U.S. National Weather 
Service (NWS) installed a network of (approximately 160) Weather Surveillance 
Radar—1988 Dopplers (WSR-88Ds) radar stations as part of a Next Generation 
Radar (NEXRAD) program that began implementation in 1991 (Young et al. 2000; 
Hardegree et al. 2008). The NEXRAD products, located in the Contiguous United 
States (CONUS) at approximately 4 × 4 km2 resolution, provide nominal coverage of 
96% of the country (Crum et al. 1998). The ability of NEXRAD to provide spatially 
distributed precipitation estimates makes it one important source of precipitation 
information for hydrologists and natural resources managers. The NEXRAD pre-
cipitation products have been used for multiple purposes in hydrologic modeling and 
agricultural and rangeland management (e.g., Diak et al. 1998; Krajewski and Smith 
2002; Zhang et al. 2004; Hardegree et al. 2008).

Two major issues arise concerning the application of NEXRAD. One is the lack 
of a NEXRAD geoprocessing and georeferencing tool (Hardegree et al. 2008). 
Digital, distributed precipitation NEXRAD products in binary-coded format can be 
obtained from NWS; however, a few user-friendly software or analysis tools exist in 
the public domain to facilitate accessibility of radar precipitation products. Although 
ideas for practical application of NEXRAD precipitation in agricultural and water 
resources management have been derived, implementation has been relatively slow 
(Hardegree et al. 2008).

A second issue is accuracy of estimates (Krajewski and Smith 2002). In gen-
eral, traditional rain gauges are able to provide more accurate measurements of 
precipitation than NEXRAD, because they physically measure the depth of precipi-
tation. Many previous studies evaluated the accuracy of the NEXRAD data using 
rain gauge data and reported substantial discrepancies (Krajewski and Smith 2002). 
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Although errors exist in NEXRAD precipitation products, radar estimates remain 
a viable source of precipitation data, especially as radar algorithms are improved 
and denser rain gauge networks are created for radar validation (Habib et al. 2009). 
Nevertheless, previous efforts to improve the accuracy of NEXRAD showed the 
potential of calibrating NEXRAD data using rain gauge data (e.g., Seo et al. 1990; 
Steiner et al. 1999; Haberlandt 2007; Li et al. 2008; Zhang and Srinivasan 2010) to 
provide more accurate spatial precipitation.

The aims of this chapter are to (1) briefly review the NEXRAD precipitation 
image products from NWS and its validation and calibration using rain gauge obser-
vations and (2) introduce and illustrate the application of NEXRAD Validation and 
Calibration (NEXRAD-VC) (Zhang and Srinivasan 2010), a geographic information 
system (GIS)-based, user-friendly software, for processing, validating, and calibrat-
ing NEXRAD data.

12.2  LITERATURE REVIEW

12.2.1  nexRad PReciPitation PRoductS

The production of NEXRAD precipitation products involves several major proce-
dures and various “stages” of processing by the NWS (Anagnostou and Krajewski 
1998; Fulton et al. 1998). First, a radar system measures the reflectivity of a volume 
of air by scanning over a fixed polar grid with a radial resolution of 1° in azimuth 
by 1 km in range. The relationship between these reflectivities and precipitation is 
expressed in the so-called Z–R relationship. The NEXRAD precipitation algorithms 
utilize a power law Z–R, which is formulated as

 R = aZb, (12.1)

where R is the precipitation rate (in millimeter per hour), a and b are adjustable 
parameters, and Z is the radar reflectivity factor and is expressed in linear units (in 
millimeter to the sixth power per cubic meter). The default values of a and b are 0.017 
and 0.714, respectively. Deriving a single equation accurate for every storm type and 
intensity is often not possible, leading scientists to generate different relationships 
case by case (e.g., the convective Z–R relationship and the Rosenfeld tropical Z–R 
relationship; for more details, see http://www.roc.noaa.gov/ops/z2r_osf5.asp) for con-
verting the reflectivities into precipitation rates contingent on the precipitation type. 
The first precipitation estimates are referred to as Stage I data. Next, Stage II data are 
produced through correcting Stage I data using bias adjustment (BA). Finally, Stage 
III mosaics the data from multiple radar systems for the areas under the umbrella 
of more than one radar unit. Based on several years of operational experience with 
Stages II and III, much of the software was overhauled in 2000 and redeveloped into 
the multisensor precipitation estimator (MPE) and enhanced multisensor precipitation 
estimator  (http://www.nws.noaa.gov/oh/hrl/dmip/stageiii_info.htm), which incorpo-
rates the precipitation measurements from gauges and precipitation estimates from 
NEXRAD and geostationary operational environmental satellites (Wang et al. 2008). 
Most of the NWS cooperative observers’ data have been used as a quality control 
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for MPE NEXRAD results (http://water.weather.gov/about.php). Further information 
about MPE NEXRAD is provided by Seo and Breidenbach (2002). The MPE prod-
ucts are precipitation approximations over a grid of about 4 × 4 km2, usually referred 
to as a Hydrologic Precipitation Analysis Project (HRAP) grid (Reed and Maidment 
1999). MPE analyses generated by the 12 river forecast centers (RFCs; http://water 
.weather .gov/precip/rfc.php) are used to create a mosaic for a national Stage IV prod-
uct at the National Centers for Environmental Prediction over CONUS at hourly, 6-h, 
and daily temporal scales (http://www.emc.ncep.noaa.gov/mmb/ylin/pcpanl/stage4/). 
Daily NEXRAD data from 2006 and later across CONUS can also be obtained in 
shapefile and network common data form (NetCDF) formats (http://water.weather 
.gov). These daily NEXRAD data are derived from hourly NEXRAD precipitation 
data (in compressed binary format) provided by the RFCs in the United States.

12.2.2   validation and caliBRation of nexRad 
PReciPitation iMageS uSing Rain gauge data

One central question for the application of NEXRAD precipitation data in earth 
system modeling is: How good are these estimates? (Krajewski and Smith 2002). 
NEXRAD performance is influenced by many factors such as range degradation, 
beam blockage in complex terrain, and quality of rain gauge data incorporated in 
NEXRAD (Smith et al. 1996; Steiner et al. 1999; Stellman et al. 2001). The errors 
associated with rain gauge observations may also lead to uncertainty of evaluation 
of NEXRAD performance (Ciach and Krajewski 1999; Ciach et al. 2007; Villarini 
et al. 2009). It is important to realize the limitations of using rain gauge observations 
to validate NEXRAD data. In this study, due to the difficulty of obtaining true pre-
cipitation values, rain gauge observations were assumed to be the “ground truth” and 
used to validate and calibrate NEXRAD data.

Many studies evaluated the accuracy of the NEXRAD data using rain gauge data. 
For example, Steiner et al. (1999) evaluated hourly NEXRAD products in mountainous 
regions and found that underestimation and nondetection of precipitation are significant 
concerns. Young et al. (2000) evaluated NEXRAD Stage III products in Oklahoma 
and found that the bias of NEXRAD reached about 20%. Jayakrishnan et al. (2004) 
compared rain gauge observations with WSR-88D Stage III precipitation data over the 
Texas–Gulf basin and found large differences (about 42% of the rain gauge measure-
ments) between the two precipitation data sources. Dyer and Garza (2004) reported sig-
nificant underestimation of Stage III products at a basin-average scale over Florida. Xie 
et al. (2006) evaluated NEXRAD Stage III precipitation data over central New Mexico, 
a semiarid area, and found that NEXRAD pronouncedly overestimated seasonal pre-
cipitation accumulation by 11%–88% during monsoon season or underestimated by 
18%–89% during nonmonsoon season compared with rain gauge observations.

Recent studies showed the improvement of NEXRAD performance through the 
transition from Stage III to MPE. Yilmaz et al. (2005) reported the superior perfor-
mance of MPE to Stage III for basin-average precipitation estimation, especially 
in winter. Wang et al. (2008) validated NEXRAD MPE and Stage III precipitation 
products using rain gauge observations in the upper Guadalupe River Basin in Texas. 
MPE has a higher capability for precipitation detection, higher linear correlation, 
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and lower relative difference compared with rain gauge measurements than the Stage 
III data. Overall, Stage III overestimated ~20% precipitation (in 2001), whereas 
MPE underestimated 7% (in 2004). Yet, Westcott et al. (2008) showed that MPE 
underestimated average county-level monthly precipitation over nine states in the 
midwestern United States. At a daily temporal scale, MPE overestimated precipita-
tion depth for precipitation events with low values and predicted similar or lower 
precipitation depth for precipitation events with larger values (Westcott et al. 2008). 
Young and Brunsell (2008) evaluated both Stage III (1998–2002) and MPE (2003–
2004) precipitation products using approximately 1200 rain gauges in the Missouri 
River Basin. They found that MPE performed better than Stage III for warm seasons 
but worse than Stage III in cold seasons. Despite the overall improvement of MPE 
over Stage III, MPE bias reached ~40% in cold seasons and ~20% in warm seasons.

The spatial mismatch between the scale of precipitation estimates by NEXRAD 
and rain gauges is worth noting. Precipitation variability at a small spatial scale 
reported in previous research (e.g., Krajewski et al. 2003) may lead to inconclusive 
and misleading comparisons between the areal NEXRAD estimates and observa-
tions from a single rain gauge (Kitchen and Blackall 1992; Habib et al. 2009). The 
subgrid variability effect was emphasized by Young et al. (2000). Wang et al. (2008) 
evaluated a case using the precipitation from the nine NEXRAD grids surrounding 
the rain gauge and suggested to limit NEXRAD and a single rain gauge comparison 
under uniform precipitation events when a dense rain gauge network is not available. 
Recently, Habib et al. (2009) have highlighted the importance of using a dense rain 
gauge network to validate NEXRAD. The comparison of MPE products with pixel-
average gauge precipitation is expected to reduce the effect of single-gauge uncer-
tainty and lead to more accurate evaluation of NEXRAD errors (Habib et al. 2009). 
By using a dense rain gauge network in south Louisiana, Habib et al. (2009) found that 
the bias between MPE and rain gauge observations is very small over an annual scale; 
however, the bias reached ±25% of the total precipitation depth for half of the events 
and exceeded 50% for 10% of events in 2004–2006. The large differences between 
NEXRAD and rain gauge observations are expected to have significant implication 
for the application of NEXRAD data and evaluation of the quality of NEXRAD 
precipitation products; therefore, necessary corrections must be made before their 
application in earth system modeling (Jayakrishnan et al. 2004). Although NEXRAD 
provides precipitation data with much better spatial sampling frequencies, compared 
with rain gauges, the estimates from NEXRAD are less accurate.

Efforts were exerted to improve the accuracy of NEXRAD using rain gauge mea-
surements using various numerical schemes of interpolation. Seo (1998) and Seo et 
al. (1990, 1999) used cokriging and simple kriging with varying local means (SKlm) 
methods to correct NEXRAD precipitation products using rain gauge observations. 
Steiner et al. (1999) applied a BA method to correct NEXRAD in Goodwin Creek, 
a small research watershed in northern Mississippi. Haberlandt (2007) applied krig-
ing with external drift (KED) and indicator kriging with external drift (IKED) for 
the spatial interpolation of hourly precipitation from rain gauges using additional 
information from radar, which clearly outperformed the univariate interpolation 
methods. Li et al. (2008) developed a linear regression–based kriging method to 
calibrate daily NEXRAD precipitation using rain gauge data and applied it in Texas 
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to estimate daily spatial precipitation in 2003. These results show the potential of 
calibrating NEXRAD data using the rain gauge observation with the aid of specific 
interpolation schemes. Zhang and Srinivasan (2010) compared the performance of 
BA, regression kriging (RK), and SKlm for incorporating rain gauge observations 
into NEXRAD. Their results show that SKlm performs best among these methods.

12.3   OVERVIEW OF THE NEXRAD VALIDATION 
AND CALIBRATION SOFTWARE

GIS is a powerful tool for facilitating geospatially related research, including spatial 
interpolation of climate data and analysis of storm kinematics (Tsanis and Gad 2001; 
Zhang and Srinivasan 2009). Xie et al. (2005) developed a program for automated 
processing of NEXRAD Stage III data using Arc Macro Language. Hardegree et 
al. (2008) modified the NWS source code to provide decoding and georeferencing 
tools. Hydro-NEXRAD is a web-based software for obtaining historical custom-
ized NEXRAD-based radar precipitation maps (products) from some 40 WSR-88D 
radars covering mainly the central and eastern United States (Krajewski et al. 2011). 
Customized basin-centered NEXRAD products can be requested from Hydro-
NEXRAD at http://hydro-nexrad.net/hydronexrad_v0.7/index.html. Recently, Zhang 
and Srinivasan (2010) have developed the NEXRAD-VC software for automated 
processing and calibrating NEXRAD data for hydrologic and ecological modeling 
(Sexton et al. 2010; Srinivasan et al. 2010).

12.3.1  featuReS of nexRad-vc

NEXRAD-VC is an extension of ArcGIS 9.x to facilitate spatial precipitation esti-
mation (Figure 12.1). Its major advantage is the provision of a user-friendly means 
of deriving precipitation data from the compressed binary format of NEXRAD and 
incorporate rain gauge observations to improve the accuracy of the NEXRAD data. 
The following are the major features of NEXRAD-VC.

 1. Few requirements on input data preparation. Users of NEXRAD-VC only 
need to prepare rain gauge shapefiles, precipitation records for each rain 
gauge in text format and hydrologic unit (e.g., subbasin) shapefiles. In addi-
tion, users need to download NEXRAD data in NetCDF or compressed 
binary file format, which will be sequentially read by NEXRAD-VC and 
transformed into ArcGIS grid format.

 2. Automatic projection transformation. NEXRAD-VC provides an automatic 
projection transformation function to spatially match the rain gauge and 
hydrologic unit shapefiles with NEXRAD data. NEXRAD data in NetCDF 
and compressed binary formats are in the HRAP grid coordinate system 
with a polar stereographic projection true at 60°N, 105°W. In most cases, 
rain gauge and hydrologic unit maps are in some projected coordinate sys-
tems. The automatic projection transformation function of NEXRAD-VC 
can save time by transforming the NEXRAD data to the projection of the 
rain gauge and hydrologic unit maps.
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 3. Validation and calibration of NEXRAD data using rain gauge observa-
tions. NEXRAD-VC can identify the concurrent paired precipitation 
records where both rain gauge observations and NEXRAD data are avail-
able. Using these pairs of records, different statistical evaluation coefficients 
are calculated to evaluate the accuracy of NEXRAD data and the cross-
validation performance of different NEXRAD data calibration methods.

 4. Multiple output files. NEXRAD data calibrated by different methods are 
output in raster format, which can be easily visualized using ArcGIS or 
other GIS software. The spatial average precipitation is derived for each 
hydrologic unit and output in text format for distributed hydrologic and 
ecological modeling. In addition, rain gauge observations, NEXRAD esti-
mates, and calibrated NEXRAD values using the specified cross-validation 
method are output in one text file for each rain gauge. These output files 
allow users to validate the accuracy of NEXRAD data and evaluate the 
performance of different calibration methods.

12.3.2  nexRad caliBRation algoRithMS in nexRad-vc

A number of spatial prediction techniques are available. Ordinary kriging (OK) and 
simple kriging (SK) (Isaaks and Srivastava 1989) are two widely used univariate 
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FIGURE  12.1  Work flowchart of GIS-based NEXRAD evaluation and calibration pro-
gram. (Adapted from Zhang, X. and Srinivasan, R., Environmental Modelling & Software, 
25, 1781–1788, 2010.)
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methods for spatial precipitation estimation using rain gauge observations. When 
combining NEXRAD and rain gauge observations data to estimate spatial precipi-
tation, the NEXRAD estimates are often taken as an auxiliary variable or external 
drift. The simple BA method, which aims at calibrating the NEXRAD estimated 
mean to match the rain gauge observed mean precipitation, has been widely used 
to calibrate NEXRAD data for distributed hydrologic modeling (e.g., Steiner et al. 
1999; Zhang et al. 2004). Relatively complex geostatistical procedures are promising 
methods for combining rain gauge observations with NEXRAD data for better spa-
tial precipitation estimation (Seo 1998; Seo and Breidenbach 2002; Seo et al. 1990; 
Haberlandt 2007; Li et al. 2008; Zhang and Srinivasan 2010). Based on the above 
research, several multivariate methods (BA, SKlm, RK, and KED) are included in 
NEXRAD-VC. The following sections describe a few key methods.

12.3.2.1  Bias Adjustment
Operational radar precipitation estimates rarely match amounts recorded by rain 
gauges; therefore, the radar precipitation estimates are adjusted using the informa-
tion provided by rain gauges (Steiner et al. 1999). A simple BA method is to remove 
the average difference between the radar estimates at the rain gauge locations and 
the corresponding gauge precipitation amounts:

 Radj = B ⋅ Rori (12.2)
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where Radj is the bias-adjusted NEXRAD, Rori is the original NEXRAD, B is the BA 
factor, and Z(xi) and R(xi) are the rain gauge–observed and NEXRAD-estimated 
precipitation at a location xi. Steiner et al. (1999) applied this BA method in Goodwin 
Creek, a small research watershed in northern Mississippi, and achieved radar pre-
cipitation estimates with root mean square errors of approximately 10% for storm-
based total precipitation accumulations of 30 mm or more.

12.3.2.2  Ordinary Kriging
Kriging is a group of advanced geostatistical techniques that provide the best linear 
unbiased estimate. The aim of these spatial prediction techniques is to estimate the 
value of a random variable (precipitation amount), Z, at one or more unsampled 
points from a set of sample data (Z(x1), Z(x2),…,Z(xn)) at points (x1, x2,…,xn) within 
a spatial domain. In kriging methods, the random variable Z is decomposed into 
a trend (m) and a residual (ε), where Z(x) = m(x) + ε(x). The kriging estimator is 
given by a linear combination of the surrounding observations (Goovaerts 1997). 
The weights of the points that surround the predicted points are calculated based 
on the spatial dependence (i.e., semivariogram or covariance) of the random field. 
Previous studies (e.g., Goovaerts 2000; Hengl et al. 2004; Haberlandt 2007; Li et al. 
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2008) showed that the performance of kriging methods can be improved by using 
external information to estimate m(x).

In OK, a common type of kriging practice, the trend is considered unknown and 
constant. OK estimates the unknown precipitation depth at the unsampled location 

u as a linear combination of neighboring observations: Z u Zui

i

n

i( ) [ ( )]=
=
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x . The 

optimal weights are obtained through solving a series of linear functions known as 
the OK system (Goovaerts 2000):
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where μ(u) is the Lagrange parameter accounting for the constraint on the weights, 
and hij denotes the separation distance between sampled location xi and xj. The semi-
variance γ(h) is computed using the following:
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where h is the difference between two point locations, N(h) is the number of pairs of 
points separated by h, and z(xi) – z(xi + h) is the value difference between point xi and 
another point separated by distance h.

12.3.2.3  Simple Kriging 

The SK estimator is Z u m u Z m iui

i

n
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x . SK assumes that the trend 

of the random variable is known and constant. The equation system used to estimate 
the weights in Equation 12.1 is

 λuj
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where C(h) is the spatial covariance between two points separated by distance h.

12.3.2.4  Regression Kriging
RK is a technique that combines the theory of generalized linear models with kriging 
(Hengl et al. 2004). In RK, the trend m(x) is commonly fitted using linear regression 
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analysis. The general form of m(u) is βk k

k

K

y u( )
=
∑

0

, where y1(u), y2(u), . . . , yK(u) are 

known external explanatory variables, the coefficients βk are unknown trend model 
coefficients to be determined, and K is the number of predictors. In this study, the 
trend surface is obtained by m(x) = β0 + β1R(x). Using the pairs of R(xi) and Z(xi) 
values at the points with both NEXRAD estimates and rain gauge observations, 
the coefficients β0 and β1 are estimated by least square regression. The continuous 
gridded NEXRAD data allow a continuous trend surface m(x) to be obtained. The 
residual ε(x) can be calculated at a series of rain gauge locations (x1, x2,…,xn). The 
unknown residual ε(u) at the unsampled location u is a linear combination of neigh-

boring observed residuals, λ εε
ui
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n
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[ ( )]x . Thus, we can obtain continuous surfaces 

of both m(x) and ε(x), leading to the predicted precipitation field [Z(x)]. According 
to Hengl et al. (2004), the optimal weights of neighboring residuals are estimated by 
solving the OK system:
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where λε
ui  is the weight assigned to the residual at location xi (ε(xi)), and n is the num-

ber of surrounding observations. The semivariance γε(h) is computed using
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where ε(xi) – ε(xi + h) is the residual difference between point xi and another point 
separated by distance h. The trend model coefficients are preferably solved using 
the generalized least squares (GLS) estimation to account for spatial correlation of 
residuals (Cressie 1985):
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− −
y C y y C zε ε1 1

, (12.9)

where y is a matrix of predictors at all observed location with a dimension of (n × 
K + 1), z is the vector of observed data, and C is the n × n covariance matrix of the 
residuals:
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where β̂βGLS is the GLS estimate of (β0,β1), and Cε(xi,xj) is the covariance of residuals 
of point pairs (xi,xj). The GLS method was suggested to estimate the trend through 
an iterative means. The ordinary least squares (OLS) estimates are obtained, and a 
variogram is fitted to the residuals. This variogram is then used in the GLS regres-
sion method to reestimate the trend. These procedures are repeated until the esti-
mates stabilize. The convergence of this iterative GLS process may require much 
time and computational resources. Practically, a single iteration can be used as a 
satisfactory solution (Kitanidis 1994). In this study, three iterations were adopted to 
estimate the GLS residuals.

12.3.2.5  Kriging with External Drift
In RK, the trend of the random variable is constant. While in real-world problems, 
some spatial processes include varying trend or “drift” (Webster and Oliver 2007), 
in KED, the trend m(x) of the random variable is not stationary, which can take into 
account both the spatial dependence of the variable and its linear relation to one or 
more additional variables (Ahmed and De Marsily 1987). The form of m(x) in KED 
is the same as that in RK; however, the coefficients βk are unknown coefficients to 
be determined. The expression for the KED estimate of Z(u) is the same as that of 
OK, but the equation system used to obtain the optimal weights of KED is different. 
These equations are expressed as
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where μk, k = 0,1,…,K, are Lagrange multipliers. The number of equations needed 
to be solved depends on the number of additional variables used to estimate the 
trend. In this study, the trend surface is obtained by m(x) = β0 + β1R(x). Note that 
the semivariance function γε(hij) is estimated from the residuals but not the original 
observed data. Such an estimate is difficult to obtain, because oftentimes, direct 
observations of the residuals are not available. One way of dealing with drift is to use 
trend surface analysis and remove it from the data to obtain the residuals variogram, 
which is then computed and modeled (Webster and Oliver 2007). The GLS method 
was suggested to estimate the trend through an iterative means. These estimates are 
obtained, and the variogram is fitted to the residuals. This variogram is then used in 
the GLS method to reestimate the trend, and the procedures are repeated until the 
estimates stabilize (e.g., Hengl et al. 2004).
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12.3.2.6  Simple Kriging with Varying Local Means
Goovaerts (2000) used SKlm to incorporate secondary information for improving 
spatial prediction of precipitation. Similar to RK, SKlm also uses linear regression to 
estimate the varying means: m(x) = β0 + β1R(x). The major differences between RK 
and SKlm are that (1) SKlm uses OLS to estimate the varying means and (2) SKlm 
uses a different set of equations to estimate the weights in Equation 12.11. The opti-
mal weights are obtained by solving Equation 12.12:
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where Cε(h) is the spatial covariance of residuals at two points separated by distance 
h. For more detailed information on SKlm, please refer to the work of Goovaerts 
(1997).

12.3.2.7  Semivariogram Model
Kriging methods require semivariogram models to be fitted to the experimental 
semivariogram values. In this study, one type of semivariogram models (i.e., spheri-
cal model) was applied:
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This semivariogram model is combined with a nugget-effect model for the fitting of 
the experimental semivariogram of daily precipitation. Following Cressie’s (1985) 
methods, the semivariogram model is fitted using regression such that the weighted 
sum of squares (WSS) of differences between experimental ˆ( )γ hk  and model γ(hk) 
semivariogram values is minimum:
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The weights ω(hk) were taken as N(hk)/[γ(hk)]2 to give more importance to the first 
lags and those computed from more data pairs. For each day, the semivariogram 
model was trained to fit the empirical semivariogram values, and the parameters with 
smaller WSS values were used in the Kriging interpolation. A global optimization 
algorithm, particle swarm optimizater (PSO), was used to calibrate the nonlinear 
semivariogram models (Kennedy and Eberhart 2001). PSO is a population-based sto-
chastic optimization technique inspired by the social behavior of bird flocking or fish 
schooling (Kennedy and Eberhart 2001). During the optimization process, to find 
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the global optimum, each particle in the population adjusts its “flying” according to 
its own flying experience and its companions’ flying experience (Eberhart and Shi 
1998). The basic PSO algorithm consists of three steps: (1) generating particles’ posi-
tions (coordinate in the parameter space) and velocities (flying direction and speed), 
(2) updating the velocity of each particle using the information from the best solution 
that it has achieved so far (personal best) and another particle with the best fitness 
value obtained so far by all the particles in the population (global best), and finally, 
(3) calculating the new position of each particle by adding the updated velocity to 
the current position. For further information about PSO, please refer to the work of 
Kennedy and Eberhart (2001).

12.3.3  accuRacy evaluation coefficientS

Multiple evaluation coefficients have been applied to validate the accuracy of 
NEXRAD precipitation images and compare the performance of different calibra-
tion techniques. Following previous research (e.g., Jayakrishnan et al. 2004; Xie et 
al. 2006; Haberlandt 2007; Wang et al. 2008; Young and Brunsell 2008), we assumed 
the rain gauge observation as the ground truth for validating NEXRAD data in this 
study. Several evaluation coefficients were selected to compare the rain gauge obser-
vations with NEXRAD estimates and predicted values by different techniques:

 1. NEXRAD detection conditioned on gauge observations exceeding a given 
threshold (Young and Brunsell 2008)
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 where Drain is the success rate that NEXRAD detects precipitation events, zj 

denotes rain gauge observed precipitation, i = 1,2,…S, where S is the avail-
able number of pairs of rain gauges and NEXRAD values, and ẑ j  denotes 
the NEXRAD estimation of precipitation. If t is true, φ(t) = 1; otherwise, 
φ(t) = 0. The threshold that must be exceeded is denoted by thresh. In this 
study, thresh was set to 0.254 mm, which is the minimum resolution of the 
tipping bucket rain gauge in the study area. Similarly, the success rate that 
NEXRAD detects no-rain events is defined as
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 2. Estimation bias (EB), calculated as

 EB = 100 × ED/z, (12.17)

 where ED is the difference between estimated and observed precipitation 
(ẑ z− ), and z and ẑ  are observed and estimated precipitation, respectively.

 3. Estimation efficiency (EE), calculated as
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 4. Coefficient of determination (R2), calculated as
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 where ẑaverage and zaverage are average values of estimated and observed pre-
cipitation, respectively. According to Xie et al. (2006), only pairs of con-
current nonzero precipitation values from both rain gauges and NEXRAD 
were used for comparison.

 5. Ratio of variance (RVar), calculated as

 RVar
Var z
Var z

= [ ˆ]
[ ]

,  (12.20)

 where Var z[ ˆ]  and Var[z] are variances of estimated and observed precipitation.

The above six coefficients are applied to evaluate the NEXRAD data using 
observed rain gauge data. Coefficients Drain and Dno-rain are indicators of the capabil-
ity of NEXRAD to successfully identify the presence and absence of precipitation 
events, respectively; higher values of Drain and Dno-rain mean better performance. R2 
measures the correlation between rain gauge observations and NEXRAD estimates; 
larger R2 means stronger correlation. EE indicates how well the plot of the rain gauge 
observed value versus the predicted value fits the 1:1 line and ranges from –∞ to 
1 (Nash and Sutcliffe 1970); when EE values are equal to 1, the prediction is con-
sidered to be “perfect.” The smaller the EB values, the better the performance of 
predicted values. Because the interpolation algorithms usually lead to a smooth-
ing of the observations and the loss of variance, which is considered undesired for 
distributed hydrologic modeling (Haberlandt 2007), RVar is a coefficient used to 
evaluate whether the predicted precipitation preserves the variance. The closer RVar 
approaches 1, the better the spatial precipitation preserves the observed variance.
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12.4   CASE STUDY 1: COMPARING NEXRAD PRECIPITATION 
DATA WITH RAIN GAUGE OBSERVATIONS

Based on literature review, MPE was selected for NEXRAD performance evalua-on literature review, MPE was selected for NEXRAD performance evalua-literature review, MPE was selected for NEXRAD performance evalua-
tion, because it is more reliable than Stage III and has been available since 2002 or 
2003. Because most of the NWS cooperative observers have been used as a qual-
ity control on the NEXRAD MPE data (http://water.weather.gov/about.php), another 
set of independent rain gauge observations is required to validate the performance 
of NEXRAD data. Precipitation records from four rain gauges in the Little River 
Experimental Watershed (LREW) in the southern plains region of Georgia (eleva-
tion about 200 m) and four rain gauges in Reynolds Creek Experimental Watershed 
(RCEW) in the mountainous region of Idaho (elevation about 2000 m) were used in 
this case study. The locations of rain gauges and corresponding to NEXRAD grids 
in Idaho and Georgia (Figure 12.2) are referred to as I and G, respectively. The high 
density of these two rain gauge networks allows further assessment of the effect of 
subgrid heterogeneity on the validation of NEXRAD. The rain gauge data used here 
have been described by Seyfried et al. (2001), Hanson (2001), and Bosch et al. (2007).

12.4.1   PeRfoRMance of nexRad in a MountainouS 
Region veRSuS SoutheRn PlainS

Daily precipitation observations in 2003 and 2004 from the two dense rain gauge net-
works were used to evaluate NEXRAD performance. Daily NEXRAD precipitation 
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FIGURE 12.2  Locations of the NEXRAD grids and rain gauges (left: I grid; right: G grid).
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was obtained by aggregating hourly MPE NEXRAD data from http:// amazon.nws 
.noaa.gov/hdsb/data/nexrad/nexrad.html and used to calculate Drain, Dno-rain, EB, R2, 
and EE. Among these statistics, EB was calculated using accumulated precipita-
tion depth, whereas the others were calculated from daily precipitation data. The 
evaluation coefficients were calculated by using precipitation record collected from 
each rain gauge and mean gauge precipitation as ground truth (Table 12.1). The 
results show that NEXRAD performed better in the southern plains region than 
in the mountainous region. Over a 2-year time frame, NEXRAD underestimated 
67%–83% in the I grid, whereas in the G grid, EB of NEXRAD was much smaller, 
ranging from −8% to 32%. In the I grid, the accumulated precipitation depth from 
rain gauges ranged from 919 to 1825 mm, which is substantially larger than the 
NEXRAD estimate of 301 mm. Values for R2 and EE from the G grid are much 
higher than those from the I grid. For example, R2 ranged from 0.82 to 0.94 in the 
G grid and 0.29 to 0.39 in the I grid, indicating poor performance of NEXRAD 
to capture the variance of daily precipitation under a complex terrain. Coefficients 
Drain and Dno-rain show that NEXRAD has difficulty detecting precipitation events in 
mountainous regions; Drain values (83%–93%) in the G grid were much higher than 
those (66%–87%) in the I grid. The poor performance of NEXRAD in the moun-
tainous region may be because of (1) the complex terrain that leads to beam block-
age and ground returns (Steiner et al. 1999) and (2) the low density of rain gauges 
and radar systems in Idaho. The significant bias of NEXRAD precipitation estimate 
in the mountainous grid makes it risky to apply NEXRAD precipitation images in 

TABLE 12.1
Evaluation of Daily NEXRAD Products in 2003 and 2004 for the Eight Rain 
Gauges in the G (Upper Table) and I (Lower Table) Grids

P44 P46 P48 P49
Gauge 
Mean NEXRAD

Accumulated 
precipitation (mm)

1599.74 2465.23 2307.17 2110.88 2120.76 2119.63

Drain 83% 91% 93% 93% 90%

Dno-rain 91% 94% 93% 93% 95%

EB 32% –14% –8% 0% 0%

R2 0.82 0.87 0.91 0.94 0.92

EE 0.61 0.86 0.89 0.93 0.92

147_PCP 167_PCP 155_PCP rmsp_PCP
Gauge 
Mean NEXRAD

Accumulated 
precipitation (mm)

919.3 1449.6 1258.9 1825.8 1363.4 301.43

Drain 66% 84% 87% 83% 83%

Dno-rain 95% 96% 94% 96% 96%

EB –67% –79% –76% –83% –78%

R2 0.39 0.34 0.38 0.29 0.36

EE 0.26 0.13 0.18 0.07 0.15
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hydrologic and ecological modeling and analysis. In southern plains, NEXRAD is 
more effective for precipitation estimation.

12.4.2  PeRfoRMance of nexRad in waRM SeaSon veRSuS cold SeaSon

Accumulated precipitation depth in cold (October–March) and warm (April–
September) seasons in 2003 and 2004 (Figure 12.3) shows that, in the I grid, accu-
mulated precipitation depth was much larger in the cold season than that, in the warm 
season. However, NEXRAD estimated that precipitation depth in the cold season is 
lower than or similar to that in the warm season. In the cold season, the NEXRAD 
estimated precipitation is only 9.4%–21.3% (2003) and 10.6%–21.1% (2004) of the 
precipitation depth observed at rain gauges. In contrast, the NEXRAD estimated 
preciptation in the warm season accounts for 33.6%–54.4% (2003) and 32.2%–59.3% 
(2004) of the observed accumulated precipitation. In the G grid, NEXRAD per-
formed much better for estimating accumulated precipitation in both the warm and 
cold seasons. The substantial difference between NEXRAD performance in the cold 
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and warm seasons in the mountainous grid is because frozen precipitation is frequent 
in the mountainous region and is challenging for both rain gauge and NEXRAD 
measurements. In the southern plains (Figure 12.3), no substantial difference was 
noted between the performance of NEXRAD in the warm and cold seasons. In most 
cases, the NEXRAD estimated accumulated precipitation was about 80%–120% of 
that observed by rain gauges, except for rain gauge P44 in the warm season of both 
2003 and 2004. This may be because the temperature in the southern plains is higher 
than zero in the cold season, leading to rare frozen precipitation events.

12.4.3  effect of SuBgRid heteRogeneity on nexRad PeRfoRMance

Precipitation depth observed at the rain gauges under the same NEXRAD grid 
shows substantial variability (Table 12.2; Figure 12.3). For example, in the I grid, the 
147_PCP observed precipitation depth is 919 mm, which is only about half of that 
observed at rmsp_PCP. In the G grid, the precipitation depth measured by P48 (2484 

TABLE 12.2
Validation of NEXRAD for Rain Events with Different Spatial Variability for 
the I Grid

147_PCP 167_PCP 155_PCP rmsp_PCP
Gauge 
Mean NEXRAD

Uniform Accumulated 
precipitation 
(mm)

207.3 235.6 228.5 238.4 227.45 70.94

Drain 88% 96% 96% 96% 96%

Dno-rain 96% 96% 96% 96% 96%

EB –66% –70% –69% –70% –69%

R2 0.53 0.53 0.59 0.55 0.56

EE 0.36 0.31 0.35 0.32 0.34

Medially 
variable

Accumulated 
precipitation 
(mm)

636 987.3 875.6 1240.8 934.925 183.24

Drain 71% 72% 72% 72% 72%

Dno-rain 100% 100% 100% 100% 100%

EB –71% –81% –79% –85% –80%

R2 0.27 0.22 0.31 0.21 0.26

EE –0.15 –0.42 –0.32 –0.45 –0.38

Highly 
variable

Accumulated 
precipitation 
(mm)

76 226.7 154.8 346.6 201.025 47.25

Drain 35% 59% 59% 52% 47%

Dno-rain 87% 96% 83% 92% 95%

EB –38% –79% –69% –86% –76%

R2 0.10 0.03 0.00 0.00 0.01

EE –0.38 –0.27 –0.37 –0.26 –0.34
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mm) is much higher than that observed at P44 (1609 mm). For each precipitation 
event, given the availability of rain gauge network with high density, the coefficient 
of variation (CV) is calculated using observations from rain gauges instead of using 
precipitation estimates from NEXRAD grids. To examine the effect of the subgrid 
heterogeneity of precipitation distribution on NEXRAD performance, we followed 
Habib et al. (2009) and classified precipitation events into three categories: uniform 
(CV < 0.2), medially variable (0.2 ≤ CV < 0.5), and highly variable (0.5 ≤ CV). The 
evaluation coefficients were calculated to illustrate the performance of NEXRAD 
data under different precipitation variability conditions.

The evaluation coefficients were calculated using precipitation events with uni-
form, medially variable, and highly variable distribution, respectively (Tables 12.2 
and 12.3). For the I grid, NEXRAD performance decreases as precipitation vari-
ability increases. For example, ranges of Drain are 88%–96%, 71%–72%, and 35%–
59%, respectively, under uniform, medially variable, and highly variable conditions. 
Values of R2 decrease from 0.53–0.59 for uniform events to 0.21–0.31 for medially 

TABLE 12.3
Validation of NEXRAD for Rain Events with Different Spatial Variability for 
the G Grid

P44 P46 P48 P49
Gauge 
Mean NEXRAD

Uniform Accumulated 
precipitation 
(mm)

713.98 799.83 773.16 730.25 754.31 730.37

Drain 95% 97% 97% 97% 97%

Dno-rain 98% 98% 98% 98% 98%

EB 2% –9% –6% 0% –3%

R2 0.83 0.90 0.91 0.90 0.90

EE 0.82 0.90 0.91 0.90 0.89

Medially 
variable

Accumulated 
precipitation 
(mm)

731.98 1396.26 1307.51 1218.42 1163.54 1113.12

Drain 89% 87% 91% 89% 86%

Dno-rain 38% 100% 71% 67% –

EB 52% –20% –15% –9% –4%

R2 0.89 0.89 0.93 0.97 0.95

EE 0.45 0.86 0.89 0.94 0.95

Highly 
variable

Accumulated 
precipitation 
(mm)

153.78 269.14 226.50 162.21 202.91 276.14

Drain 58% 73% 82% 83% 74%

Dno-rain 65% 78% 77% 77% 82%

EB 80% 3% 22% 70% 36%

R2 0.18 0.27 0.41 0.76 0.56

EE –2.85 0.16 0.29 0.47 0.09
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variable precipitation events and further to 0.0–0.1 for highly variable precipitation 
events. In comparison to precipitation events that are medially or highly variable, the 
other evaluation coefficients also confirm that NEXRAD performs equally or better 
for uniform precipitation events. A similar trend of NEXRAD performance over 
precipitation events with different variability is observed in the G grid. From uni-
form condition, the bias of NEXRAD precipitation is very small, ranging from −9% 
to 2%. For medially variable and highly variable precipitation events, the EB values 
are −20%–52% and 3%–80%, respectively. Further analysis of the other evaluation 
coefficients shows a similar trend. A possible reason for the elevated performance of 
NEXRAD data for uniform precipitation events is that capturing rainfall variability 
within the 4 × 4 km2 NEXRAD grid for highly variable precipitation events is dif-
ficult, therefore leading to an unrealistic estimation of mean precipitation.

Also note the substantial difference between the evaluation coefficients calcu-
lated using measured precipitation data from different rain gauges (Tables 12.2 and 
12.3). One rain gauge cannot accurately represent the mean precipitation over one 
NEXRAD data pixel, especially under a high-precipitation-variability condition; 
therefore, using a single rain gauge to evaluate the performance of NEXRAD is 
inconclusive. Although a comparison of a NEXRAD estimate with pixel-average 
gauge precipitation is expected to reduce the effect of single-gauge uncertainty and 
lead to more accurate evaluation of NEXRAD errors (Habib et al. 2009), in the two 
NEXRAD grids examined here, the mean rain gauge observations did not provide 
the best evaluation coefficients. For the I grid, evaluation coefficients calculated by 
using 155_PCP were comparable to or better than those calculated using other rain 
gauges. In the G grid, the best evaluation coefficients, in many cases, were provided 
by P49. The spatial scale of mean gauge observations is assumed to be closer to the 
scale of NEXRAD-estimated precipitation; however, it is difficult to estimate areal 
mean precipitation with only four gauges. In addition, the overshooting and ground 
return problems of NEXRAD may lead to a mismatch between the area detected 
by NEXRAD and that measured by rain gauges. Overall, the results presented here 
show the significant effect of subgrid heterogeneity of precipitation on NEXRAD 
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performance and emphasize the importance of using high-density rain gauge net-
work to evaluate NEXRAD performance.

12.4.4  nexRad PeRfoRMance foR houRly and daily teMPoRal ScaleS

Hourly NEXRAD products are valuable for flood forecasting. Hourly precipitation 
from different sources for September 6, 2004 (Figure 12.4) was analyzed using daily 
precipitation aggregated from hourly NEXRAD estimates. This aggregation may 
cancel out errors at an hourly time scale. To provide insight into NEXRAD perfor-
mance at an hourly time scale, the evaluation coefficients were also calculated using 
hourly NEXRAD data in 2003 and 2004. Due to the difficulty of obtaining hourly 
rain gauge data for the mountainous grid, only the G grid is assessed here. Note that 
the accumulated precipitation depth from hourly data (Table 12.4) is higher than 
that from daily data (Table 12.3) for the G grid, because if more than 4 h is missing 
values in 1 day, that day will be skipped in the daily analysis. NEXRAD performed 
better for precipitation detection at an hourly time scale, except for rain gauge P48. 
In terms of the bias of the accumulated precipitation depth, NEXRAD performance 
was similar for these two temporal scales. At a daily temporal scale, the capability 
of NEXRAD to capture precipitation variance was much better than at an hourly 
temporal scale. Overall, daily NEXRAD products are more reliable for hydrologic 
and hydrometeorological modeling and analysis.

12.5   CASE STUDY 2: CALIBRATING NEXRAD PRECIPITATION 
DATA USING RAIN GAUGE OBSERVATIONS

Previous research has shown that the bias of NEXRAD can exceed 20% (e.g., Young 
and Brunsell 2008; Young et al. 2000; Jayakrishnan et al. 2004; Xie et al. 2006; 
Zhang and Srinivasan 2010). Therefore, it is important to conduct quality control 
and necessary corrections of NEXRAD products before their application in hydro-
logic and hydrometeorological modeling (Jayakrishnan et al. 2004). In the following 
sections, we examined three different calibration techniques for incorporating rain 
gauge observations into NEXRAD products (Zhang and Srinivasan 2009, 2010): 

TABLE 12.4
Evaluation of Hourly NEXRAD Products in 2003 and 2004

P44 P46 P48 P49
Gauge 
Mean NEXRAD

Accumulated 
precipitation (mm)

1605.28 2476.754 2320.29 2120.646 2130.742 2135.61

Drain 97% 97% 66% 97% 98%

Dno-rain 99% 99% 99% 99% 99%

EB 33% –14% –8% 1% 0%

R2 0.56 0.61 0.69 0.75 0.72

EE 0.14 0.61 0.69 0.74 0.70
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BA, SKlm, and RK. Cross validation, a common method used to evaluate the predic-
tion performance of spatial interpolation methods (Isaaks and Srivastava 1989), was 
applied to compare the performance of various methods for calibrating NEXRAD 
products using rain gauge data. In the procedure, data from each of the rain gauges 
are temporarily removed one gauge at a time, and the remaining data are used to esti-
mate the value of the deleted datum. For each time step, we estimated precipitation 
at each of the 15 rain gauges using the observed precipitation of the surrounding rain 
gauges and compared the estimates with rain gauge observations. This method is 
the so-called leave-one-out cross validation, which is computationally intensive but 
can provide more accurate model evaluation than other split-sample cross-validation 
schemes (Kohavi 1995; Zhang et al. 2009).

12.5.1  little RiveR exPeRiMental wateRShed (lRew)

The LREW in Georgia (Figure 12.5) was selected as the study area to evaluate dif-
ferent methods for calibrating the NEXRAD data using rain gauge observations. The 
LREW in southwest Georgia is the upper 334 km2 of the Little River and the subject 
of long-term hydrologic and water quality research by the Agricultural Research 
Service, U.S. Department of Agriculture (USDA-ARS) and cooperators (Sheridan 
1997). Land use within the watershed is approximately 50% woodland, 31% row 
crops (primarily peanuts and cotton), 10% pasture, and 2% water. The LREW is 
currently selected as an experimental watershed for the USDA’s Conservation Effect 
Assessment Project to evaluate the economic and environmental effects of agricul-
tural land management practices. The development of accurate spatial precipitation 
is needed to accurately model agricultural crop growth in this area. Precipitation 
occurs almost exclusively as rainfall with an annual mean of 1000 mm at Tifton, 

Georgia

Outlet
Rain gauge
Streams
Watershed
NEXRAD grid

0 4 8 km

N

FIGURE 12.5  Locations of rain gauges and NEXRAD grids used in the LREW.
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GA. Daily precipitation records from 5 years were collected from 15 rain gauges in 
this study area. The annual areal mean precipitation amounts were 1045.4, 1132.23, 
1203.57, 871.24, and 891.92 mm for 2002, 2003, 2004, 2006, and 2007, respectively. 
Both a wet year (2004) and dry years (2006 and 2007) were included in the analysis.

12.5.2  oveRall aSSeSSMent of nexRad PRoductS

Coefficients Drain and Dno-rain were calculated using the entire test data set to assess 
the ability of NEXRAD to detect rain presence and absence. The 5 years of daily 
data at 15 gauge stations resulted in 27,390 pairs of gauge-radar observations avail-
able for analysis. Of these pairs, 27,105 were used after excluding pairs with miss-
ing values. The calculated Drain and Dno-rain were 82.8 and 95.6, respectively. These 
values show that NEXRAD data performed better for detecting no-rain events than 
for rain events. Using all the rain gauge–NEXRAD data pairs with nonzero precipi-
tation values, three evaluation coefficients (EB, R2, and EE) were calculated (Table 
12.5). NEXRAD estimates had high correlation with rain gauge observations (R2 = 
0.83). To show the effect of precipitation variability on NEXRAD data performance, 
the evaluation coefficients were calculated for rain events with different spatial vari-
ability (Table 12.5) and showed that NEXRAD data performed better for precipita-
tion events with small variability. For example, R2 increased from 0.51 for highly 
variable condition to 0.88 for the uniform condition, and EE increased from 0.45 for 
highly variable condition to 0.88 for the uniform condition.

12.5.3   viSual inSPection of PReciPitation MaPS 
oBtained By diffeRent MethodS

The difference between spatial precipitation maps estimated by different methods 
was visually examined for 2 days: October 13, 2002 and July 22, 2003 (Figures 12.6 
and 12.7). Note that the grid map used to represent LREW spatial precipitation 

TABLE 12.5
Validation of NEXRAD Products Using Rain Gauge Data for Rain Events with 
Different Spatial Variability

Mean 
Precipitation (mm)

Number of 
Pairs EB r2 EE

Uniform Rain gauge 14.31 3395 –4.82% 0.88 0.88

NEXRAD 13.62

Medially 
variable

Rain gauge 9.47 3088 –1.68% 0.73 0.71

NEXRAD 9.31

Highly 
variable

Rain gauge 3.17 4273 1.26% 0.51 0.45

NEXRAD 3.21

All Rain gauge 8.5 10756 –2.94% 0.83 0.83

NEXRAD 8.25
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(Figures 12.6 and 12.7) is different from that for the LREW NEXRAD basin (Figure 
12.5), because the spatial precipitation maps were generated by transferring the 
basin map to ~4 km grids.

The precipitation distribution maps estimated by the different techniques on 13 
October 2002 are pronouncedly different (Figure 12.6). SKlm and RK combined 
the properties of both rain gauge and NEXRAD data, which predicted much lower 
precipitation in the southwest than NEXRAD and BA. NEXRAD overestimates the 
mean precipitation by 16.39%, whereas the other techniques obtained EB values 
<2% (Table 12.6). The EE values indicate the superior performance of SKlm and 
RK. The EE values of SKlm and RK (>0.6) are much higher than those obtained 
by the other two methods (<0.1). The RVar values show the preferred property of 
NEXRAD and BA to approach the variance of the observed data. Both SKlm and 
RK lost some variance information with RVar values between 0.71 and 0.75. The 
NEXRAD and BA have RVar values close to 1.

116 mm

32 mm

NEXRAD Bias

RK SKlm

FIGURE 12.6  Spatial precipitation estimated by different methods on October 13, 2002.

86 mm

1 mm

NEXRAD Bias

RK SKlm

FIGURE 12.7  Spatial precipitation estimated by different methods on July 22, 2003.
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The precipitation maps estimated by the four prediction techniques on July 22, 
2003 (Figure 12.7) all have similar spatial precipitation distribution patterns, with the 
highest precipitation in the southeast and higher precipitation in the southwest than in 
the north. Note that NEXRAD systematically underestimated the precipitation amount 
with an EB value of 36.52%. Through the BA, the accuracy of NEXRAD was signifi-
cantly improved. In terms of EB and EE, SKlm and RK outperformed the other tech-
niques. The RVar values of SKlm and RK are also closer to 1 than the other methods.

12.5.4  coMPaRing the PeRfoRManceS of diffeRent caliBRation MethodS

12.5.4.1  Overall Performance Assessment
The BA, RK, and SKlm methods were applied to calibrate NEXRAD data using 
the observed rain gauge data, and the evaluation coefficients for the three methods 
were calculated (Table 12.7). The same pairs of data used to validate NEXRAD data 
were used to calculate the coefficients by replacing the NEXRAD estimates with the 
calibrated NEXRAD values from BA, RK, and SKlm using the leave-one-out cross-
validation method. After calibrating NEXRAD data using rain gauge data, perfor-
mance measures Drain and Dno-rain were slightly improved. For detection capability 

TABLE 12.6
Comparison of the Performance of Different Methods on 3 Days

NEXRAD BA SKlm RK

October 13, 2002 Mean 73.43 63.09 60.95 60.33

SDV 19.14 16.45 16.52 16.39

EB 16.39% 0.20% 1.29% 0.41%

R2 0.32 0.27 0.67 0.66

EE –0.26 0.08 0.65 0.68

RVar 1.07 0.95 0.77 0.73

July 22, 2003 Mean 22.38 35.26 37.15 37.09

SDV 7.41 11.68 17.73 16.82

EB 36.52% 0.32% 0.59% 0.24%

R2 0.88 0.86 0.93 0.92

EE –0.11 0.75 0.92 0.93

RVar 0.40 0.59 1.02 0.98

TABLE 12.7
Evaluation Coefficients of Different Calibration Methods

Evaluation Coefficients

Methods Drain (%) Dno-rain (%) Drain + Dno-rain  (%) EB r2 EE

BA 82.66% 97.27% 179.94% 0.33% 0.83 0.85

RK 86.87% 96.01% 182.88% –1.25% 0.90 0.92

SKlm 87.47% 96.05% 183.52% –0.69 0.92 0.92
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assessment, SKlm and RK performed much better than BA for detecting rain pres-
ence, whereas BA slightly outperformed the other two methods for detecting no-rain 
events. The highest success rate for detecting both rain presence and absence (Drain + 
Dno-rain) obtained by SKlm indicates its superior detection capability to the other 
methods. Compared with NEXRAD data, SKlm can improve the success detection 
rate for both rain presence and nonpresence and the overall success rate (Drain + 
Dno-rain) was improved from 178.4% to 183.52%. For the overall bias correction, the 
three calibration techniques performed equally well. In terms of the other two evalu-
ation coefficients, R2 and EE, SKlm performed best. In comparison to NEXRAD 
data, both RK and SKlm pronouncedly improved R2 and EE. The overall assessment 
results show that, among the three calibration techniques, SKlm performed best for 
calibrating NEXRAD data using rain gauge data in this study area.

12.5.4.2  Performance Comparison for Daily Spatial Precipitation Prediction
Spatial precipitation maps are critical inputs for distributed hydrologic and ecologi-
cal models. The capability of different calibration methods for spatial precipitation 
prediction was evaluated using 693 days, with both rain gauge and NEXRAD areal 
mean precipitation values larger than 0 because R2 is not meaningful for zero areal 
mean precipitation. For each day, four evaluation coefficients (EB, R2, EE, and RVar) 
were calculated. Evaluation coefficients for different calibration techniques were 
calculated for 693 days (Table 12.8). In comparison to NEXRAD data, all three cal-
ibration techniques substantially improved the EB and EE values. Note that the cor-
relation coefficient obtained by BA is less than that of NEXRAD data, whereas RK 
and SKlm obtained larger R2 than NEXRAD data. The RVar values indicate that, on 
the average, NEXRAD and BA can preserve precipitation variability better than RK 
and SKlm. For most days, the smoothness effect of RK and SKlm leads to RVar val-
ues <1 and loss of precipitation variability. The numerous whiskers in Figure 12.8d 
indicate that NEXRAD and BA overestimate rianfall variability for many days. In 
general, SKlm outperforms the other two methods for calibrating NEXRAD data 
using rain gauge observations in terms of EB, R2, and EE but performs less than 
NEXRAD and BA in terms of capturing spatial precipitation variability.

Further analysis shows that no one method can consistently outperform the others 
in terms of all evaluation coefficients and for all days. According to the percentage 

TABLE 12.8
Mean Evaluation Coefficients of Different Methods for 
693 Days

Methods

Evaluation Coefficients

NEXRAD BA RK SKlm

EB 95.28 14.60 5.36 4.26

R2 0.60 0.51 0.60 0.66

EE –7.48 –2.99 0.40 0.49

RVar 1.13 1.18 0.76 0.72
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TABLE 12.9
Percentage of Days That Different Prediction 
Methods Perform Best in Terms of EB, r2, EE, 
and rVar

NEXRAD BA RK SKlm

EB 2.31% 48.20% 22.37% 34.78%

R2 45.17% 3.17% 13.71% 43.00%

EE 9.38% 3.03% 11.26% 77.92%

RVar 21.93% 27.27% 42.14% 17.75%
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FIGURE 12.8  Boxplots of daily evaluation coefficients ([a] for Absolute EB, [b] for R2, 
[c] for EE, and [d] for RVar) of the 693 days (lower and upper lines of the “box” are the 25th 
and 75th percentiles of the sample, respectively; the distance between the top and bottom 
of the box is the interquartile range; the line in the middle of the box is the sample median; 
“whiskers” are lines extending above and below the box; plus signs are values that are more 
than 1.5 times the interquartile range away from the top or bottom of the box; notches in the 
box represent a robust estimate of the uncertainty about the medians for box-to-box compari-
son; boxes whose notches do not overlap indicate that the medians of the two groups differ 
at the 0.05 significance level). (MATLAB 2007. MATLAB Technical Documentation. The 
MathWorks Inc., Natick, MA.)
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of number of days that different methods performed best for the four evaluation coef-
ficients (Table 12.9), BA, NEXRAD, SKlm, and RK perform best in terms of EB, 
R2, EE, and RVar, respectively. Implementing multiple methods to estimate spatial 
precipitation maps is a practical way of providing a more accurate spatial precipita-
tion map.

12.6  CONCLUSIONS

NEXRAD has emerged as a valuable precipitation product. In this chapter, we 
reviewed the current literature on accuracy evaluation of NEXRAD and calibrated 
NEXRAD data using rain gauge observations. The review indicates that the develop-
ment of user-friendly GIS-based NEXRAD processing and calibration software is 
critical for the application of NEXRAD precipitation products in hydrology, ecology, 
agriculture, and meteorology. We have also introduced recently developed GIS soft-
ware (NEXRAD-VC) that can calibrate NEXRAD data with rain gauge observations 
using geostatistical approaches and automatically process NEXRAD data for hydro-
logic and ecological models. NEXRAD-VC can (1) automatically read NEXRAD 
data in NetCDF or XMRG format, transforming the projection of NEXRAD data to 
match rain gauge observations, (2) apply different geostatistical approaches to cali-
brate NEXRAD data using rain gauge data, (3) evaluate the performance of differ-
ent calibration methods using the leave-one-out cross-validation scheme, (4) output 
spatial precipitation maps in ArcGIS grid format, and (5) calculate spatial average 
precipitation for each spatial modeling unit used by hydrologic and ecological mod-
els. NEXRAD-VC is a public-domain software, which is expected to facilitate the 
application of NEXRAD.

Two case studies on evaluating the accuracy of NEXRAD and calibrating 
NEXRAD data with rain gauge observations were presented. The first case study 
examined the performance of NEXRAD in a mountainous region versus the south-
ern plains in the United States and during a cold season versus a warm season. In 
addition, we explored the effect of subgrid variability and temporal scale. Results 
from these comparisons indicate that (1) NEXRAD performs better in the plains 
region than in a mountainous region with complex terrain, (2) NEXRAD performs 
better in a warm season than in a cold season, (3) NEXRAD should be evaluated 
using a dense rain gauge network to reduce the influence of subgrid heterogeneity 
of precipitation distribution, and (4) NEXRAD performs better at a daily temporal 
scale than at an hourly temporal scale. These conclusions are derived based on the 
analysis of two NEXRAD grids; their validity should be further examined using 
high-quality data in other regions. Overall, the assessment of NEXRAD indicates 
the need to remove bias of the NEXRAD precipitation product before its application.

The second case study examined the performance of three methods that use both 
rain gauge and NEXRAD data for precipitation estimation in LREW. A visualization 
process illustrated that substantial differences exist among the spatial precipitation 
maps estimated by the different methods. On the average, although SKlm outper-
forms the other methods in terms of EB, R2, and EE, it performs the weakest in terms 
of preserving variability of the spatial precipitation distribution. Further analysis 
of the performance of different methods for daily spatial precipitation estimation 
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shows that no one method can perform better than the others in terms of all evalu-
ation coefficients for all days. For practical estimation of precipitation distribution, 
implementation of multiple methods is recommended to predict spatial precipitation.
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13 Radar Polarimetry 
for Rain Estimation

Qing Cao and Guifu Zhang

13.1  INTRODUCTION

For decades, the weather radar has played an important role in quantitative precipi-
tation estimation (QPE). The radar has the advantage of large coverage and short 
data-updating intervals. As a result, it has been widely used by the international 
meteorological/hydrological community. There are numerous weather radar net-
works in the world. The largest one is the U.S. Next-Generation Radar (NEXRAD) 
network (Fulton et al. 1998), composed of 159 Weather Surveillance Radar-1988 
Doppler (WSR-88Ds). Another example is the European Weather Radar Network 
(OPERA), consisting of radars in 28 European countries (Holleman et al. 2008). 
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Accurate QPE requires accurate informative radar measurements. Traditional 
weather radars measure the single-polarization radar reflectivity factor (Z), which is 
used for QPE. Because this observational information is limited by several aspects, 
the accuracy of QPE is constrained by such limitations as well (Atlas and Ulbrich 
1990). Since the 1970s, radar polarimetry has attracted intensive research interest in 
the radar meteorology community (Seliga and Bringi 1976; Doviak et al. 2000; Bringi 
and Chandrasekar 2001; Zhang et al. 2001; Brandes et al. 2002; Matrosov et al. 2002; 
Ryzhkov et al. 2005a,b). The additional polarimetric radar measurements of differen-
tial reflectivity (Zdr or ZDR), specific differential phase (KDP), and copolarization cor-
relation coefficient (ρhv) provide new insight into precipitation microphysics and allow 
for more accurate rainfall estimation. Through its 30 years of research and develop-
ment, radar polarimetry has matured as a valuable technique in QPE.

Many studies have shown that QPE can be improved with polarization diver-
sity (e.g., Bringi and Chandrasekar 2001; Zhang et al. 2001; Brandes et al. 2002; 
Matrosov et al. 2002; Ryzhkov et al. 2005a,b). The dual-polarization radar is grad-
ually taking the place of the single-polarization radar in current operational net-
works (Doviak et al. 2000). For example, the dual-polarization upgrade of the U.S. 
NEXRAD network began in 2009 and will be completed in 2012. The number of 
polarimetric radars in the European network, OPERA, has also grown (Holleman 
et al. 2008). QPE based on polarimetric radar data could become popular for major 
operational radar networks in the near future. 

The common methods for polarimetric radar–rain estimation are based on empiri-
cal relations or raindrop size distribution (DSD) retrievals (Bringi and Chandrasekar 
2001). Polarimetric relations are normally in power-law form and can be regarded 
as the revision of traditional R–Z relations with the polarimetric parameters Zdr and/
or KDP . Different combinations of the relations are usually recommended for dif-
ferent situations (Ryzhkov et al. 2005a). DSD retrieval was not attractive, because 
radar reflectivity used alone allows for only a simple DSD model (e.g., Marshall 
and Palmer 1948). With the introduction of dual- polarization observations without 
sacrificing the variability of DSDs, more complicated models can then be applied to 
retrieve DSDs, resulting in improved rain estimation (Ulbrich 1983). Recently, DSD 
retrieval has become a hot topic for dual-polarization radar applications (Zhang et 
al. 2001; Bringi et al. 2002; Gorgucci et al. 2002, 2008; Brandes et al. 2004a,b; 
Anagnostou et al. 2008). DSD retrieval is also applied frequently in rain estimation 
using dual-frequency radars (Meneghini and Liao 2007). Current DSD retrievals 
generally apply a two-parameter model such as the exponential model, the con-
strained-gamma (C-G) model, or a one-parameter-fixed gamma model. This chapter 
addresses the advancement of rain estimation using polarimetric radar data.

13.2  POLARIMETRIC RADAR MEASUREMENTS

When radar is used to measure precipitation, what it measures are compositive back-
scattering signals from hydrometeors within a radar resolution volume. Each particle 
contributes to the total signal received by the radar, depending on its size, shape, 
orientation, composition, location, and other factors such as temperature, radar fre-
quency, antenna pattern, and scanning. As a result, the distribution of hydrometeors 
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is essential in understanding radar measurements. This section focuses on the basis 
of radar measurements associated with the DSD and rain physics. The following 
part first introduces several radar variables, which are important for rain estimation.

13.2.1  RadaR vaRiaBleS

While a radar wave is incident on hydrometeors, its energy is either scattered or 
absorbed by the hydrometers. For monostatic radar applications, the backscattering 
energy is usually represented using the backscattering cross section σh (or σv), with 
subscripts h and v denoting the wave polarization at horizontal and vertical direc-
tions, respectively. The radar reflectivity (or reflectivity factor) is defined as 

 Z
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where λ is the radar wavelength, K = (εr – 1)/(εr + 2), εr is the complex dielectric constant 
of water; D denotes the effective diameter of raindrop, and N(D) indicates the particle 
size distribution or DSD. Parameter |K|2 has a small variation for water, generally 0.91–
0.93 for a wavelength between 0.01 and 0.1 m (Doviak and Zrnić 1993). The reflectivity 
is related to the signal power scattered by all the hydrometeors within a sampling vol-
ume. Radar reflectivity is usually shown in logarithmic scale, that is, ZH,V = 10log10 (Zh,v), 
in decibels of Z. Equation 13.1 suggests that radar reflectivity should be proportional to 
the number concentration of raindrops. Moreover, it is sensitive to the particle size. For 
example, radar reflectivity for Raleigh scattering is about the sixth moment of size dis-
tribution. If the particle size is doubled, the reflectivity would increase by about 18 dB.

Except for very small ones (e.g., D < 0.1 mm), raindrops are not generally spherical. 
A raindrop becomes more oblate as its size increases. This kind of oblateness results in 
the difference between horizontal and vertical scattering cross sections. Therefore, the 
reflectivity difference contains the size information of raindrops. The corresponding 
radar differential reflectivity (in decibels), ZDR, is defined in the logarithm domain as 
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Since the differential reflectivity is the ratio of reflectivity measurements between 
the h and v channels, it is insensitive to the absolute radar calibration of reflectivity. It 
is also insensitive to partial radar beam blockage. Moreover, differential reflectivity 
is independent of the concentration of scatterers, which is affected by propagation 
effects such as attenuation.

The copolar correlation coefficient is an indicator of decorrelation between back-
scattering signals at the horizontal and vertical polarizations. It is given by
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where “| . |” means the complex norm, and shh (or svv) is the backscattering amplitude 
of a particle at the horizontal (or vertical) polarization. Generally, the correlation 
coefficient would decrease when particles have irregular shapes or when there is 
much uncertainty in the canting angles. In addition, if there are mixed particles with 
different phases, the correlation coefficient would be reduced as well. The value is 
normally high for hydrometers that are oriented and smooth. For example, the cor-
relation coefficient for rain is about 0.98–1.

Differential phase (ΦDP) is the accumulated phase difference between the hori-
zontal and vertical polarizations along a propagation path. It is a variable associated 
with forward scattering. The specific differential phase (KDP) is defined as the range 
derivative of the one-way differential phase. Typically, it is computed by 

 K f f N D dDDP h v km= − −∫180 1λ
π

Re( ) ( ) (deg ), (13.4)

where Re means the real part of a complex number, and fh (or fv) is the forward 
scattering amplitude at the horizontal (or vertical) polarization. The value of KDP 
increases with increasing particle oblateness. It is dependent on the hydrometeor 
number concentration but less sensitive to the size distribution than ZH and ZDR. KDP 
is independent of radar calibration and partial beam blockage and relatively immune 
to hail contamination in rain estimation (Doviak and Zrnić 1993). 

13.2.2  RadaR MeaSuReMentS

As for radar measurements, rain echo has distinctive characteristics (Schuur et al. 
2003; Ryzhkov et al. 2005b). There is a wide range of ZH values. Generally, heavy 
rain has a ZH larger than 40 dBZ, and light rain has a ZH of 25 dBZ or below. A 
storm core of heavy rain normally has a large ZH value. Sometimes, hail can be 
found within the storm core. In that case, the ZH value would be larger than that 
for rain, usually larger than 50 dBZ. ZDR is generally between 0 and 5 dB, depend-
ing on the intensity of rain. Its value is small (close to 0 dB) for light rain. With an 
increasing concentration of large raindrops, the ZDR value increases. For melting 
hail, ZDR normally has a large value, which might be larger than 5 dB. Rain signal 
generally has a ρhv close to 1 (>0.98). If other species (such as snow/hail) are mixed 
with rain, ρhv would decrease. Nonrain echo generally has a smaller ρhv than rain. 
For example, the ρhv of biological scatterers or ground clutters is mostly <0.85. The 
contamination of nonrain scatterers would cause ρhv to decrease. In addition, the ρhv 
value for rain signals with a low signal-to-noise (SNR) is lower than that for a high 
SNR. Practically, a threshold of 0.95 is sometimes applied to ρhv to roughly identify 
the rain signal. The KDP value is dependent on the radar frequency. Given the same 
DSD, higher frequencies would cause a larger measurement of KDP. For the S-band 
radar echo of rain, KDP is normally 0–3° km−1. Snow and hail have a lower KDP due 
to their lower dielectric constants and more random orientation, as compared with 
raindrops. Dry hail (or dry snow) has a smaller KDP than melting hail (or wet snow), 
typically –0.5–0.5° km−1. Other scatterers such as birds or clutters generally yield a 
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very noisy KDP. Further understanding of polarimetric radar measurements can be 
found in the literature (Straka et al. 2000; Schuur et al. 2003), which gives detailed 
descriptions of the polarimetric characteristics of different scatterers. 

An example of polarimetric radar measurements is shown in Figure 13.1. This 
is a squall line followed by a large region of stratiform precipitation, which has a 
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FIGURE  13.1  Example of polarimetric radar measurements (S-band KOUN, 0850UTC, 
May 13, 2005, EI = 0.5°): (a) radar reflectivity; (b) differential reflectivity; (c) correlation 
coefficient; (d) specific differential phase; and (e) radar echo classification (BD: big drop; RH: 
rain/hail mixture; HR: heavy rain; R: moderate/light rain; NR: nonrain echo).
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melting layer about 3 km thick. These are plan position indicator (PPI) images of 
ZH, ZDR, ρhv, KDP, and radar echo classification results. The data for these images are 
measured by the S-band National Severe Storm Laboratory (NSSL) Polarimetric 
WSR-88D (KOUN) radar, which has a beam width of 1°. As shown in the figure, ZH 
values within the storm core are large. Because there exists a rain/hail mixture, some 
ZH values are close to 60 dBZ. Accordingly, ZDR values within the storm are mostly 
greater than 3.5 dB. The “big drop” region generally has a relatively large ZDR and 
small ZH compared to normal values for stratiform rain. The image of ρhv indicates 
a large region of rain, where the value is generally greater than 0.95. For rain signals 
within the range of 100 km, most ρhv values are larger than 0.98. For rain signals at 
a far range (e.g., >100 km north), the ρhv value is around 0.95, which is a little lower 
than the normal value of rain signals. It is likely that the partial signals come from 
the melting layer and that the mixture of melting snow/hail has contaminated the 
rain signal. The region around the radar site has a ρhv around 0.8. The rain signal in 
this region has been contaminated by ground clutter. A line of low ρhv (about 0.4), 
which is in front of the squall line, is clearly shown on the image. This is the signa-
ture of the gust front, which consists mainly of nonhydrometeor scatters. As the KDP 
image shows, KDP is a little noisy in the light-rain region, where there may be a few 
small negative values. This is because that the KDP value depends on the ΦDP mea-
surement. However, the ΦDP measurement is noisy when the SNR is low. In this case, 
most of the stratiform rain has a KDP below 0.5° km–1. In the region of convective 
rain, KDP is generally larger and sometimes might be greater than 1° km–1. Generally 
speaking, the KDP measurement is more erroneous than the other three variables. 
The measurement ρhv can be used as an indicator of signal type or signal quality. 
The measurements ZH, ZDR, and KDP can be applied quantitatively for rain estimation.

13.3  POLARIMETRIC RADAR–RAIN ESTIMATION

In general, the rain variables of interest are rainfall rate (R), total raindrop concen-
tration (NT), rainwater content (W), and various characteristic sizes (e.g., median 
volume diameter D0). All of these variables are closely related to DSD, which can be 
expressed based on the following equations: 
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where Dmin/max is the minimum/maximum raindrop diameter, and v(D) is the fall-
ing velocity of raindrop. Empirical relations can be found between radar vari-
ables and rain variables. These relations are not directly associated with the DSD. 
Each relation works only with given radar–rain variables and, more specifically, 
for one radar frequency. Therefore, the applications of empirical relations are not 
flexible. However, using DSD retrievals, all the rain variables of interest can be 
calculated. 

13.3.1  eMPiRical RadaR–Rain eStiMation

The traditional radar–rain estimation applies power-law R–Zh relations. It has been 
realized that the coefficient and the exponent in the power-law relation have large 
variability (Doviak and Zrnić 1993). Many R–Zh relations have been reported for 
different rain types, seasons, and locations. Rosenfeld and Ulbrich (2003) gave a 
complete review of those R–Zh relations and summarized microphysical processes 
that might cause R–Zh variability. The essential reason is that Zh alone cannot pro-
vide a unique quantification of R, given the DSD variability. 

Dual-polarization measurements help better represent DSD variability and there-
fore improve empirical estimation. Polarimetric radar–rain estimators generally 
have the following forms: 

 R Z Z aZ Zb c( , )h dr h dr=  (13.9)

 R K aKb( )DP DP=  (13.10)

 R K Z aK Zb c( , )DP dr DP dr= , (13.11)

where a, b, and c are constant parameters. The derivation of those relations requires 
a key assumption of raindrop shape, which is important for the quantification of 
polarimetric measurements. Generally, there are three kinds of raindrop axis ratio 
relations. The empirical relations introduced by Pruppacher and Beard (1970), Green 
(1975), and Chuang and Beard (1990) focus on the raindrop shape under an equi-
librium condition. Other studies, such as Pruppacher and Pitter (1971), Beard et al. 
(1983), Beard and Jameson (1983), and Beard and Tokay (1991), found that collision, 
wind shear, and turbulence could lead to the oscillation of raindrops, whose shapes 
would be more spherical than shapes under an equilibrium condition. Keenan et al. 
(2001) and Brandes et al. (2002; BZV model) derived raindrop axis ratio relations 
from previous observations or relations with an experimental regression procedure. 

Different raindrop shape assumptions could result in different calculations of 
polarimetric variables. Brandes et al. (2002) illustrated with a specific example that 
the simulated ZDR using the equilibrium shape model is 0.2 dB larger than the cor-
responding value calculated using the experimental shape model. As a result, con-
stant parameters for polarimetric rain estimators (e.g., Equations 13.9 through 13.11) 
also depend on the assumption of raindrop shape. Table 13.1 lists some polarimetric 
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estimators, which are evaluated by Ryzhkov et al. (2005a). These empirical relations 
are specific for S-band applications.

Bringi and Chandrasekar (2001) gave a detailed analysis of estimation error for 
empirical polarimetric estimators. There are different error structures for those esti-
mators. Polarimetric estimators have their own advantages and disadvantages. For 
example, when rain is intense and/or mixed with hail, KDP generally has a better 
representation of rain physics. In that case, R(KDP) normally has a small error of rain 
estimation. However, when rain is light, the measurement error of KDP is relatively 
large, and it is not appropriate to apply R(KDP). Ryzhkov et al. (2005a) show a “syn-
thetic” approach, applying R(Zh,Zdr), R(KDP), and R(KDP,Zdr), with a minor difference 
from power-law forms, in three different ranges of rainfall rate. For R < 6 mm–1, 
R(Zh,Zdr) is applied; for R > 50 mm–1, R(KDP) is applied; and R(KDP,Zdr) is applied for 
other cases.

Figure 13.2 shows the rain retrievals using different estimators for radar measure-3.2 shows the rain retrievals using different estimators for radar measure-.2 shows the rain retrievals using different estimators for radar measure-
ments shown in Figure 13.1. Figure 13.2a to c gives the results of three empirical 
estimators, which are developed by the NSSL. R = 0.017Zh

0.714 is a default estimator 
applied by NEXRAD for midlatitude rain (Fulton et al. 1998). The other two estima-
tors are polarimetric estimators listed in Table 13.1. Figure 13.2d shows the result of 
DSD retrieval, which will be addressed in the next subsection. The polarimetric esti-
mators have an evident improvement in the region of strong convection. The R(Zh) 

TABLE 13.1
List of Different Polarimetric Rain Estimators

r(Zh,Zdr) a b c Raindrop Shape

1 6.7 × 10–3 0.927 –3.43 Equilibrium model

2 7.46 × 10–3 0.945 –4.67 BZV model

3 1.42 × 10–2 0.77 –1.67 Equilibrium model

4 1.59 × 10–2 0.737 –1.03 Bringi’s model

5 1.44 × 10–2 0.761 –1.51 BZV model

r(KDP) a b
 

Raindrop Shape
1 50.7 0.85   Equilibrium model

2 54.3 0.806   BZV model

3 51.6 0.71   Goddard’s model

4 44.0 0.822   Equilibrium model

5 50.3 0.812   Bringi’s model

6 47.3 0.791   BZV model

r(Zdr,KDP) a b c Raindrop Shape
1 90.8 0.93 –1.69 Equilibrium model

2 136 0.968 –2.86 BZV model

3 52.9 0.852 –0.53 Equilibrium model

4 63.3 0.851 –0.72 Bringi’s model

Source: Ryzhkov, A. et al., Journal of Applied Meteorology, 44, 502, 2005. With 
permission.
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estimator apparently overestimates the rainfall rate for convective cores, because the 
Zh value has been significantly enlarged by a few large drops and/or the contamina-
tion of melting hail. Because an increase in drop size also causes an increase in Zdr, 
the R(Zh,Zdr) estimator effectively reduces the overestimation of R(Zh). The R(KDP) 
estimator, less sensitive to the hail contamination, also has a smaller but more rea-
sonable estimation than R(Zh) in this region. However, the uncertainty of the KDP 
measurement is much larger than Zh or Zdr. It is shown in Figure 13.2c that in a light-
rain region, R(KDP) has a worse rain estimation than the other estimators. 

One inconvenience of an empirical approach is that empirical relations are not 
identical for different radar platforms. There have been many polarimetric radar–
rain relations for S-, C-, and X-band applications (Zhang et al. 2001; Brandes et al. 
2002; Bringi and Chandrasekar 2001; Matrosov et al. 2002; Cao 2009). Due to the 
diversity of radar frequency, these relations cannot match the frequency of every 
radar platform exactly. Characterization error of radar variables could be introduced 
in the polarimetric estimator and would consequently increase the rain estimation 
error. Another inconvenience of the empirical approach is that a set of relations needs 
to be derived to estimate other rain variables of interest. Similarly, those relations are 
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also frequency dependent. Compared with the empirical approach, DSD retrieval is 
more flexible for the application of measurements on different radar platforms. 

13.3.2  dSd-BaSed RetRievalS

13.3.2.1  DSD Models
DSD provides fundamental information on rain microphysics. If the DSD is known, 
all rain variables can be derived through DSD integration (as shown in Equations 
13.5 through 13.8). There are some popular relations to model a DSD in the meteo-3.5 through 13.8). There are some popular relations to model a DSD in the meteo-.5 through 13.8). There are some popular relations to model a DSD in the meteo-3.8). There are some popular relations to model a DSD in the meteo-.8). There are some popular relations to model a DSD in the meteo-
rological community. Marshall and Palmer (1948) proposed the well-known M–P 
model, N(D) = 8000exp(–ΛD), which has been used widely in the last 50 years. It is 
a single-parameter model with a slope parameter Λ. It was helpful in bulk-scheme 
rain parameterization and radar–rain estimation when single-polarization weather 
radars prevailed. Later, the exponential model, N(D) = N0exp(–ΛD), was applied. 
It is a two-parameter model with an additional concentration parameter, N0. It is 
more flexible than the M–P model, since the latter is equivalent to the exponential 
model with a fixed N0. It can be applied for dual-frequency/dual-polarization weather 
radars. Ulbrich (1983) introduced the gamma model as

 N(D) = N0Dμexp(–ΛD).  (13.12)

Compared with the exponential model, Equation 13.12 includes a third parameter, 
shape μ. It has been widely accepted that the gamma model can represent well the 
variability of natural DSDs. Some recent studies applied the normalized gamma 
DSD (Bringi et al. 2002). 

Another three-parameter model is the lognormal model (Markowitz 1976) 
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where NT is the total number concentration, and η and σ are the mean and standard 
deviation of Gaussian distribution, respectively. This model follows the assump-
tion that DSD parameters can be modeled as random variables from a multivariate 
Gaussian distribution. It is compelling in that it uses the probability theory to explain 
DSDs and the mathematical calculations are not complicated. However, it does not 
provide the best match with observed DSDs. 

Although a three-parameter model is a better way of representing natural DSDs 
than one- or two-parameter models, there exist challenges for practical radar–rain 
retrievals. Generally, radar measurement error would be propagated, leading to the 
deterioration of the retrieval result. Three-parameter DSD models require indepen-
dent information from at least three measurements. However, the error effect might 
outweigh the contribution if multiple measurements are applied. In practice, a two-
parameter model is often preferred, because radar reflectivity and differential reflec-
tivity are believed to be relatively reliable compared with other radar measurements. 
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Several researchers (e.g., Ulbrich 1983; Chandrasekar and Bringi 1987; Haddad et 
al. 1997) have shown that the retrieved three parameters of the gamma model (N0, μ, 
and Λ) are not mutually independent. Through disdrometer observations, Zhang et 
al. (2001) and Brandes et al. (2004a) found that µ is highly related to Λ. Zhang et al. 
(2001) proposed the C-G DSD model with an empirical μ – Λ relation. Reducing the 
observation error effect through the method of DSD sorting and averaging based on 
two parameters (SATP), Cao et al. (2008) refined the μ – Λ relation with disdrometer 
observations in central Oklahoma as

 μ = –0.0201Λ2 + 0.902Λ – 1.718. (13.14)

Zhang et al. (2003) and Cao and Zhang (2009) further showed that the constraint 
relation was physically meaningful. The C-G model, reducing the gamma model to 
two parameters, facilitates DSD retrieval from dual-polarization or dual-frequency 
radar measurements. Meanwhile, it represents natural DSDs better than other one- 
or two-parameter models (Brandes et al. 2004b; Zhang et al. 2006; Cao et al. 2008). 

13.3.2.2  DSD Retrieval
In a DSD model, rain properties can be retrieved through polarimetric radar mea-
surements, presumably with several different approaches. Previous studies mainly 
applied a direct approach to retrieve the DSD (Zhang et al. 2001; Gorgucci et al. 
2002, 2008; Brandes et al. 2004a,b; Meneghini and Liao 2007; Anagnostou et 
al. 2008). Error in radar measurements had seldom been considered in the direct 
approach. Recently, a Bayesian approach and a variational approach have been intro-
duced by Cao et al. (2009, 2010). These two methods aim at the optimal use of radar 
measurements to improve the DSD retrieval by reducing the effect of measurement 
error. The rest of this subsection briefly describes the direct approach but places 
emphasis on the Bayesian and variational approaches for DSD retrieval. 

13.3.2.2.1 Direct Approach
In a direct approach, the unknown DSD parameters are solved directly and determin-
istically from radar measurements. This approach implies that radar measurements 
could represent the truth of rain properties. If an exponential model is applied, two 
measurements, such as radar reflectivity and differential reflectivity, are required to 
solve two DSD parameters (using Equations 13.1 and 13.2). Any polarimetric mea-3.1 and 13.2). Any polarimetric mea-.1 and 13.2). Any polarimetric mea-3.2). Any polarimetric mea-.2). Any polarimetric mea-
surement can be used to do the retrieval. Considering that measurement error may 
propagate into the retrieval result, direct retrieval mostly applies to Zh and Zdr, which 
are believed to be more reliable than other measurements. To solve Equations 13.1 
and 13.2, backscattering amplitudes of raindrops are needed. In general, these values 
are computed theoretically using the T-matrix method based on assumptions related 
to raindrop shape, canting angle, frequency, and temperature (Zhang et al. 2001). The 
uncertainty of the direct approach would come partially from these assumptions. 

Figure 13.2d shows an example of applying the direct DSD retrieval, in which 
the Zh and Zdr measurements as well as a C-G DSD model are used. It is shown that 
the DSD retrieval has a very similar result to the R(Zh,Zdr) estimator, except for the 
north/southwest region (>100 km), where the radar echoes come partially from the 
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melting layer. The similarity is due to the fact that both methods apply the same 
polarimetric measurements. However, it is worth noting that the DSD retrieval is 
able to estimate other rain variables such as NT and D0. To achieve this goal with the 
empirical method, different empirical relations are required. 

The direct approach is straightforward and applied by many researchers not only 
for rain estimation but also for attenuation correction issues. For example, Meneghini 
and Liao (2007) applied the DSD retrieved directly from measurements to correct the 
attenuation backward along the radar beam path. Unfortunately, the direct approach 
does not consider the effect of measurement error in the retrieval. This approach 
regards measurement error as a physical change in the DSD, sometimes causing the 
retrieval result to be unreliable, especially when the SNR is low. For example, light 
rain generally has a small differential reflectivity where the measurement might be 
negative due to the system error. In such a case, the direct retrieval would have no 
solution. 

13.3.2.2.2 Bayesian Approach
Considering its potential to reduce error effects, the Bayesian theory offers a prom-
ising approach to optimize the use of measurements (Evans et al. 1995; McFarlane 
et al. 2002; Di Michele et al. 2005; Chiu and Petty 2006). Let us suppose that x 
represents a set of rain parameters that need to be retrieved from radar measurement 
y. According to the Bayesian theorem, the a posteriori probability density function 
(PDF) Ppost(x|y) is given by 
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where Ppr(x) is the a priori PDF of state x, and Pf (y|x) is the conditional PDF of 
observation y, given a state x. Given an observation y, the conditional expected value 
E(.) and standard deviation SD(.) of state x are then calculated by integrating over the 
entire range of x as
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Cao et al. (2010) present a DSD retrieval example of the Bayesian approach. For a 
DSD retrieval, the state x denotes a set of DSD parameters. The key to the Bayesian 
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approach is the correct prior information on these DSD parameters. Cao et al. (2010) 
applied the C-G model as the basis of the DSD retrieval, setting x = [ , ]′ ⋅ ′N0 Λ  and 
y = [ZH, ZDR], where ′ = − − −N N0 10 0 10

1 3log [log ( )]mm mµ  and Λ′ = Λ0.25 (mm–1/4 ). To 
construct the prior probability, they utilized a large dataset of disdrometer measure-
ments (>30,000 1-min DSDs). The DSD fitting procedure followed the truncated 
moment fit (TMF) method described by Vivekanandan et al. (2004), which utilizes 
the second, fourth, and sixth DSD moments to fit gamma parameters, N0, Λ, and µ. 

Figure 13.3 shows the joint distribution of DSD parameters. The joint a priori PDF 
of ′N0  and Λ′ is equal to the normalization of this distribution. It comes entirely from 
the disdrometer observation and is free of any mathematical function. Therefore, it 
gives a reasonable estimation of the actual a priori probability. It is better than any 
presumed model such as Gaussian distribution, which is often used as the a priori 
PDF in many other Bayesian studies.

The conditional PDF Pf(y|x) defines an error model for the measurement. 
Generally, the measurement error is assumed to be Gaussian distributed. The condi-
tional PDF then follows a bivariate-normal distribution: 
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where η and σ2 indicate the mean and variance, respectively, and the variable ρ denotes 
the correlation coefficient between the ZH and ZDR measurement errors, in which the 
error should include both observation and model errors. Generally, observations of 
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FIGURE 13.3  Contour of the occurrence frequency of joint estimated DSD parameters, ′N0 
and Λ′. The interval of unmarked contours between 10 and 100 is 10. (From Cao, Q. et al., 
Journal of Applied Meteorology and Climatology, 49, 973, 2010. With permission.)
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ZH and ZDR could be considered to have independent observation errors. Most previ-
ous Bayesian studies have only considered the observation error and assumed ρ = 0. 
If the C-G DSD model were applied in the forward operator of ZH and ZDR, model 
error would be introduced, and the model errors of ZH and ZDR tend to be correlated. 
Although ρ should vary with different ZH−ZDR pairs, the effect of ρ on the retrieval is 
not essential. For the sake of simplicity, Cao et al. (2010) assumed a constant ρ = 0.5, 
which denotes a moderate correlation between the errors of two variables.

Theoretically, parameter σ2 stands for the variance of model and measurement 
errors. Given that ZH is more reliable than other radar parameters, and its measure-
ment error is generally accepted as 1–2 dB, σ ZH

 can be assumed to be constant 
2 dB. Parameter σ ZDR

 is assumed to be a function of ZH and ZDR. It is shown that 
disdrometer-based ZH and ZDR for rain data fall mostly in a bounded region (Cao et 
al. 2008). Dashed lines shown in Figure 13.4 give the upper and lower boundary of 
such a region. Within the bounded region, σ ZDR

 is assumed to be a constant 0.3 dB. 
If the observed ZH and ZDR fall outside this region, σ ZDR

 is believed to be larger than 
the one inside the region. This assumption is reasonable, because normal ZDR should 
have a small observation error, while abnormal ZDR could be attributed with a large 
observation error. The σ ZDR

 value is given by a function as 
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FIGURE 13.4  Sketch figure of ZDR versus ZH from 2DVD measurements. The solid line 
denotes the mean curve. (Data from Equation 13.15 of Cao, Q. et al., Journal of Applied 
Meteorology and Climatology, 47, 2238, 2008. With permission.) The upper bound and lower 
bound are given according to the mean curve. (Data from Cao, Q. et al., Journal of Applied 
Meteorology and Climatology, 49, 973, 2010. With permission.)
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where ZDR
up  ZDR

low( ) denotes the upper (lower) boundary. Equation 13.19 implies that, 
if an observed ZDR deviates from the normal range of rain data, ZDR would be less 
reliable in representing rain.

The procedure for Bayesian retrieval is briefly described below. Given the radar 
measurements ZH and ZDR, the conditional probability can be calculated by Equations 
13.18 and 13.19. Knowing the a priori PDF of DSD parameters, mean values and 
standard deviations of DSD parameters are retrieved by applying Equations 13.16 
and 13.17. Next, the gamma DSD is constructed using retrieved mean values. Finally, 
rain variables of interest can be calculated from the retrieved gamma DSD. 

13.3.2.2.3 Variational Approach
A storm normally has a spatial dependence attributed to the physical process of its 
evolution. As a result, radar measurements of a storm would have a spatial correla-
tion, which can be used to minimize the measurement error. A variational scheme 
not only considers qualities and reliabilities of different radar measurements but also 
utilizes the spatial information to optimize the retrieval (Ide et al. 1997). Multiple 
observations can be easily balanced with error-based weighting and optimally used 
in the scheme. Attenuation correction can be embedded into the forward observation 
operator and optimized as well. Some studies (e.g., Hogan 2007; Xue et al. 2009) 
applied radar measurements in a variational scheme for the retrieval of integral 
parameters such as rainfall rate. Since the DSD is of greater interest, a variational 
scheme can be introduced below for the retrieval of DSD parameters to show the 
basic concept of the variational approach. 

The major purpose of the variational approach is to minimize the cost function 
based on multiple observations, for example 

 J J J J JZ Z K( ) ( ) ( ) ( ) ( )x x x x x= + + +b H DR DP
, (13.20)

where

Jb b
T

b( ) ( ) ( )x x x B x x= − −−1
2

1

J H HZ Z Z Z Z ZH H H H H H

T
( ) ( ) ( )x x y R x y= −  − 

−1
2

1

J H HZ Z Z Z Z ZH H H H H H

T
( ) ( ) ( )x x y R x y= −  − 

−1
2

1

J H HK K K K K KDP DP DP DP DP DP

T
( ) ( ) ( )x x y R x y= −  −

−1
2

1  .

The cost function J is composed of four parts. Jb is the background term. The other 
three terms correspond to the observations of ZH, ZDR, and KDP, respectively. In the 
equations, superscript T denotes the matrix transpose; x is the state vector, and xb is 
the background or first guess; y contains radar observations; H denotes the nonlinear 
observation operator of radar measurements; B is the background error covariance 
matrix; R is the observational error covariance matrix; and subscripts ZH, ZDR, and 
KDP are used to denote the terms for corresponding observations. 
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The size of matrix B is n2, where n is the size of state vector x. The full matrix is 
usually large (e.g., n might be an order of magnitude of 6). Matrix computation and 
storage, especially for the inversion of B, can be a major problem during the iterative 
minimization of the cost function. To solve this problem, a new state variable v is 
introduced, written as

 v = D–1δx (13.21)

with δx = x – xb and DDT = B (Parrish and Derber 1992). Notation δ indicates the 
increment. D is the square root of the background error covariance matrix B. This 
way, the inversion of B is avoided. The minimization of cost function J can be 
achieved by searching the minimum gradient of cost function ∇vJ, which is given by

 
= + −( ) +−
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Z Z
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(13.22)

where H represents the Jacobian operator, a matrix containing the partial derivative 
of observation operator H with respective to each element of the state vector, and d 
is the innovation vector of the observation, that is, d = y – H(xb).

The spatial influence of the observation is determined by the background error 
covariance matrix B. Huang (2000) showed that the element bij of matrix B could be 
modeled as a spatial filter:

 b
r

r
ij b

ij

L

= −








σ 2

2

22
exp ,  (13.23)

where subscripts i, j denote two grid points in the analysis space, σ b
2 is the back-

ground error covariance, rij indicates the distance between the ith and jth grid points, 
and rL is the decorrelation length of observed storm. In this study, rL is assumed to 
be constant in the two-dimensional analysis space, that is, the error covariance is 
spatially homogeneous in the horizontal plane, as is the isotropic covariance in the 
work of Liu and Xue (2006). The square root of B, D can be computed by applying 
a recursive filter described by Gao et al. (2004) and Liu and Xue (2006). This way, 
the cost of computation and storage can be reduced significantly (by a factor of B’s 
dimension), compared to the computation of inversion of B.

The parameters in state vector x are DSD parameters N0 and Λ at every grid point 
of the analysis region. The C-G model (Equation 13.14) is applied, reducing the 
gamma model freedom to 2. Forward operators of intrinsic ZH, ZDR, and KDP follow 
Equations 13.1, 13.2, and 13.4. Specific attenuations at the horizontal (AH) and verti-
cal (AV) polarizations are calculated by 

 A D N D dDH,V ext
H,V 1(dB km )= × −

∞

∫4 343 103

0
. ( ) ( )σ , (13.24)
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where σ ext
H,V  is the extinction cross section at horizontal or vertical polarizations, 

respectively. The specific differential attenuation ADP is defined as

 A A ADP H V
1(dB km )= − − . (13.25)

If specific attenuations are known, the attenuated ZH and ZDR at each range gate can 
be calculated by

 Z n Z n A i r
i

n

H
a

H H( ) ( ) ( )= −
=

−

∑2
1

1

∆  (13.26)

and

 Z n Z n A i ra
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n

DR DR DP( ) ( ) ( )= −
=

−

∑2
1

1

∆ , (13.27)

where numbers i and n denote the ith and nth range gates from the radar location, 
respectively, and Δr is the range resolution.

It is expensive to directly compute the transpose of linearized operator H, which 
is the matrix of the partial derivatives. In general, the adjoint method is applied to 
compute HT efficiently without storing the full matrix. However, it is hard to repre-
sent the derivatives functionally in terms of DSD parameters, given that the scatter-
ing amplitude of raindrop is precalculated using the T-matrix method. Therefore, 
the lookup table method is applied for the H calculation. There are a total of six 

tables of the derivatives, i.e., H DR DP H DR DP∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

Z Z K Z

N

Z

N

K
Λ Λ Λ

, , , , ,
0 0
∗ ∗ NN0

∗ . In each lookup 

table, the derivative values are precalculated for parameters Λ and N0
∗ discretized at 

an interval of 0.1. Interpolation between the intervals can be performed to further 
improve the accuracy. Similarly, the calculations of intrinsic (i.e., nonattenuated) ZH, 
ZDR, KDP, AH, and ADP are made efficient by the lookup table method as well, given 
any two state parameters. As a result, the observational operator H is computed as 
the combination of different values found in various lookup tables, avoiding integral 
calculations in the forward model. 

The iteration procedure for minimizing the cost function is shown in Figure 13.5. 
At the beginning of the program, necessary data files such as all lookup tables, 
the background, radar-measured ZH, ZDR, KDP, and SNR are loaded. With the initial 
state vector (e.g., set v = 0), intrinsic variables (i.e., ZH, ZDR, KDP, AH, and ADP) are 
found for each grid point through lookup tables. Corresponding Jacobian matrices 
Hs are constructed based on the lookup tables as well. After the interpolation from 
grid points to the observation points, attenuated ZH and ZDR are calculated accord-
ing to Equations 13.26 and 13.27. The calculated and measured ZH, ZDR, and KDP are 
used in Equation 13.22 to calculate the gradient of the cost function. The initial first 
guess is always assumed to be the background. During the minimization process, the 
state vector is updated at each loop until the iteration converges. If the background 
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contains no useful information (e.g., the constant background), the analysis field based on 
the first guess may not be satisfactory. In such a case, the analysis result is considered as 
a new first guess and used to repeat the minimization process. In general, several outer 
loops would give the satisfactory result, which has a relatively small cost function.

13.3.3  iSSueS in RadaR–Rain eStiMation

The accuracy of radar–rain estimation depends on many factors. Observation error 
and contamination from other scatterers are examples of factors that can add to the 
uncertainty of estimation. The rest of this subsection addresses some of these issues 
for practical applications of radar observations.

13.3.3.1  Measurement Errors
In addition to the variational method mentioned previously, a common method of 
reducing the error effect is smoothing. For example, the estimation of KDP is usually 
done by a gradient calculation averaging ΦDP over multiple range gates. As described 
by Ryzhkov et al. (2005a), the 9-gate (or 25-gate) averaging approach was introduced 
as “lightly filtered” (or heavily filtered) for KOUN radar data processing. Hubbert 
and Bringi (1995) applied a low-pass filter on ΦDP measured along a radar beam path. 

Start of
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Initialization

Forward model

Search minimum
cost function

Update state
variables

Update first
guess
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Finish

Yes
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No

FIGURE 13.5  Flowchart of the variational retrieval scheme for DSD retrieval. (From Cao, 
Q., Zhang, G., and Xue, M., Variational retrieval of raindrop size distribution from polari-
metric radar data in presence of attenuation. Preprint, 25th Conference on IIPS, AMS Annual 
Meeting. Phoenix, AZ, January 11–15, 2009.)
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Other radar measurements such as radar reflectivity and differential reflectivity are 
also smoothed sometimes (e.g., over a 1-km range) before the rain estimation. Lee et 
al. (1997) introduced a speckle filter technique, which could be used for radar appli-
cations (Cao et al. 2010). In general, the smoothing would lower the range/angular 
resolution of radar measurements. However, it is useful to obtain a better rain estima-
tion with a smaller variance.

13.3.3.2  Clutter Filtering
Ground clutter is attributed to the side-lobe effect of the radar antenna. The sid-
elobe effect is strong for low-elevation scanning. Clutter is usually observed in the 
area close to the radar, but it is sometimes measured at a farther range due to the 
effect of abnormal propagation. The signal of clutter is normally strong, as if there 
were intense precipitation, and should be removed before the radar measurement is 
applied for rain estimation. 

To remove ground clutter, legacy radar systems usually apply various notch filters 
such as finite/infinite impulse response (FIR/IIR) filters (Torres and Zrnić 1999; 
Golden 2005). The latest clutter filtering techniques are mostly based on spectrum 
analysis, for example, the Gaussian model adaptive processing (GMAP) algorithm 
introduced by Siggia and Passarelli (2004). Spectrum-based clutter filtering can 
reconstruct the weather signal when clutter and weather signals are mixed and 
removed together. This kind of filtering ameliorates the deficiency of the conven-
tional notch filters. 

In practice, clutter identification is usually needed for efficient clutter filtering. 
Compared with weather signals, the phase of clutter signals is normally more sta-
tionary. This is a key character of most ground clutter and can be utilized for iden-
tification. The typical algorithm is the clutter mitigation decision (CMD) system 
introduced by researchers at the National Center for Atmospheric Research (NCAR; 
Hubbert et al. 2009). Recently Moisseev and Chandrasekar (2009) have proposed 
a new algorithm, applying dual-polarization spectral decomposition to identify the 
clutter on this front. 

13.3.3.3  Classification
Radar–rain measurements are usually contaminated by nonrain signals from snow, 
hail, clutter, insect, bird, bat, and airplane. A common situation can be seen during 
a convective–stratiform storm. The melting hail usually exists in the convective core 
and results in a large reflectivity, which might be larger than 55 dB. This measure-
ment could cause an unrealistic estimation of extremely intense rain. The similar 
situation of melting hail/snow happens within the melting layer of stratiform. Above 
the melting layer, the radar measures the graupel, ice crystal, dry snow, or hail. 
Those radar measurements do not reflect the rain properties of the storm and would 
again lead to an incorrect estimation of the rain. 

The most advanced algorithms of hydrometer classification are currently based on 
dual-polarization radar measurements. The fuzzy-logic scheme is the basis for most of 
the algorithms, such as the radar echo classifier developed by NCAR (Vivekanandan 
et al. 1999; Kessinger et al. 2003), the polarimetric hydrometeor classification algo-
rithm developed by NSSL (Straka et al. 2000; Zrnić et al. 2001; Schuur et al. 2003), 
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and the hydrometeor classification system developed by Colorado State University 
(Liu and Chandrasekar 2000; Lim et al. 2005). In general, these algorithms output 
more than 10 distinct species of rain, snow, hail, and clutter. It is worth noting that 
it is not easy to find accurate membership functions to discriminate those species. 
In practice, the decision of membership function depends on experience. This is the 
fundamental limitation of the fuzzy-logic approach. Nevertheless, the classification 
algorithms improve our understanding of radar signals and guide rain estimation.

13.3.3.4  Attenuation Correction
Precipitation attenuation is one of the major problems for radar–rain estimation. 
Attenuation cannot be ignored, especially for weather radars operating at very 
high frequencies, for example, at C- and X-bands. Previous algorithms for single-
polarization radars are based mainly on the Hitschfeld–Bordan algorithm and its 
revised version (e.g., Delrieu et al. 2000; Zhang et al. 2004; Berne and Uijlenhoet 
2006), where the power-law relation between attenuation and radar reflectivity must 
be assumed deterministically. When dual-polarization measurements became avail-
able, the phase term was extensively used to improve attenuation correction. Bringi et 
al. (1990) proposed a direct correction method based on the deterministic power-law 
relations between attenuation and phase term, that is, A aKb

H DP=  and A cKd
DP DP=  . 

This kind of correction, which is based directly on phase term, is referred to as the 
direct-phase approach (e.g., Matrosov et al. 2002). It was found that exponents and 
coefficients of these relations are dependent on various factors such as temperature, 
drop shape model, and DSD variation. Many algorithms, therefore, have focused on 
the finding of optimal exponents or coefficients. For example, those parameters can 
be fitted from either observations (Ryzhkov and Zrnić 1995; Carey et al. 2000) or 
simulations [e.g., the ZPHI method proposed by Testud et al. (2000) and Gorgucci 
and Chandrasekar (2005)]. Bringi et al. (2001) extended the ZPHI method and pro-
posed the self-consistency (SC) approach to obtain optimal parameters for related 
empirical relations. The SC method was further modified/improved by Park et 
al. (2005), Vulpiani et al. (2005), Anagnostou et al. (2006), Gorgucci and Baldini 
(2007), and Liu et al. (2006). The most promising method of attenuation correction is 
through the variational approach (e.g., Hogan 2007; Xue et al. 2009; Cao and Zhang 
2009). However, it is not as mature as phase-based algorithms. There are still issues, 
which are beyond the scope of this book, to be addressed. 

13.3.3.5  Model Error, System Bias, and Calibration
Even without the effects mentioned previously in this section, model errors would 
still affect rain estimation. It is worth noting that radar measurements do not directly 
represent rain variables. Some empirical models (e.g., R–Zh) are derived through 
comparing/fitting observations from radar with in situ instruments (e.g., rain gauge). 
The more general way is the radar forward model, which is based on the scattering 
theory and reasonable assumptions. For both approaches, model error is an inevitable 
problem. Does the model error matter? What if radar measurements have a bias as 
the radar–rain model predicts? Comparing radar observations with in situ measure-
ments could be a practical way of evaluating the radar–rain model. This comparison 
makes sense if in situ measurements are assumed to be the truth. Corresponding bias 
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could be calibrated through the comparison to reduce the effect of model error and/
or system bias. 

Figure 13.6 shows an example of radar calibration with disdrometer observations. 
Radar measurements over the disdrometer site are used. The height and volume 
differences of sampling space are ignored for both instruments. Radar reflectivity 
and differential reflectivity are calculated based on the raindrop scattering model 
(Equations 13.1 and 13.2). As shown in the fi gure, radar-measured differential refl ec-3.1 and 13.2). As shown in the fi gure, radar-measured differential refl ec-.1 and 13.2). As shown in the fi gure, radar-measured differential refl ec-3.2). As shown in the fi gure, radar-measured differential refl ec-.2). As shown in the figure, radar-measured differential reflec-
tivity has a slightly larger value than the calculation based on the radar scattering 
model. This might be due to the model error, instrumental difference, or lack of cali-
bration in the measurements. If the measurements of the disdrometer are trustwor-
thy, the radar measurements should be calibrated according to them. The difference 
between two lines is averaged and found to be –1.08 dB for ZH or 0.36 dB for ZDR. 
Then, the radar-measured ZH and ZDR of the whole PPI scanning should be calibrated 
by subtracting these two values before they are used for the rain estimation.

13.4  VALIDATIONS AND APPLICATIONS

Radar–rain estimations can be validated using in situ observations. The observa-
tional instruments, such as disdrometer and rain gauge, are commonly used in the 
radar meteorological community. Since these instruments are normally capable 
of measuring raindrops/rainwater directly, it is believed that their measurements 
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measurements (May 13, 2005; radar EI = 0.5°; disdrometer: ~28 km). (From Cao, Q. et al., 
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represent rain physics much better than radar observations, which come from the 
indirect scattering effect of raindrops. Therefore, the comparison between in situ 
observations and radar–rain estimations could give an objective evaluation of the 
rain estimator.

13.4.1  diSdRoMeteR

The disdrometer is an effective tool for rain microphysical study, because it can 
measure DSDs. The traditional disdrometer is the impact type (e.g., Joss–Waldvogel 
disdrometer), which is designed based on the measurement of raindrop momentum 
(Tokay et al. 2001). Recent disdrometers apply the optical technique, for example, 
the one-dimensional laser optical disdrometer (Parsivel disdrometer) and the two-
dimensional video disdrometer (2DVD; Kruger and Krajewski 2002). The disdrom-
eter with the optical technique provides not only more accuracy but also additional 
measurements of the shapes and falling velocities of the raindrops. 

Figure 13.7 shows an example of a comparison between radar retrievals and dis-3.7 shows an example of a comparison between radar retrievals and dis-.7 shows an example of a comparison between radar retrievals and dis-
drometer observations on May 2, 2005. The disdrometer data were collected by a 
2DVD deployed at ~28 km south of the radar. The disdrometer has a high resolution 
(0.132 mm) and a sampling area of ∽100 cm2 in measuring raindrops. It uses 41 size 
bins with a bin width of 0.2 mm, indicating a range of 0–8.1 mm in diameter for 
raindrop measurements. The radar data were collected by KOUN. The data have 
been filtered by eliminating nonrain echoes, that is, using the threshold of correlation 
coefficients larger than 0.9. The data also have been smoothed using measurements 
at five range gates. The retrieval was based on the direct approach mentioned in the 
previous section. Specifically, the retrieval applied the C-G DSD model with a con-
straint relation updated by Cao et al. (2008).

There are three different rain variables, R, D0, and NT, which are compared in 
Figure 13.7. R is approximately proportional to the 3.67th moment of the DSD, 
while NT is equivalent to the 0th moment of the DSD. In addition, D0 is related 
to the third-order distribution of DSD. The single-parameter DSD model, which 
is intrinsically assumed by traditional R–Z relations, cannot provide reasonable 
retrievals for all these rain variables. The C-G DSD model, using two parameters, 
provides more flexibility in rain estimation. As the figure shows, the temporal 
variation of radar retrieval matches the disdrometer observation well for all the 
variables. 

It is worth noting that the sampling volume difference should be considered dur-
ing the validation of radar–rain retrieval. For example, the typical sampling volume 
of a 2DVD within a 1-min interval is about 3–5 m3. For KOUN, however, the typical 
sampling volume at 28 km is about 0.05 km3. If the inhomogeneity of rain is strong, 
the sampling volume difference can cause a large difference in measurements by 
two instruments. For the example shown in Figure 13.7, it was a stratiform precipita-3.7, it was a stratiform precipita-.7, it was a stratiform precipita-
tion during 1100–1330 UTC. Most values of radar reflectivity were 25–35 dBZ. The 
rain was less likely inhomogeneous, and the effect of sampling volume difference 
is not remarkable for the comparison. This example demonstrates the application of 
disdrometer in the validation of radar–rain retrieval. On the other hand, this example 
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also illustrates that polarimetric radar measurements are helpful in rain estimation, 
given an appropriate DSD model.

13.4.2  Rain gauge

Unlike the disdrometer, the rain gauge can measure only the accumulated rainfall. 
However, it has a simpler structure and a much lower cost compared with the dis-
drometer. Therefore, surface observational networks usually apply the rain gauge 
to measure the amount of rainfall. The rain gauge network can provide a spatial 
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distribution of the rainfall, which is useful for the spatial validation of radar rain 
estimation. 

The following case study presents the application of rain gauge for the valida-
tion of radar rain estimation. Rain gauge measurements from six sites of Oklahoma 
Mesonet are used. As shown in Figure 13.8, the KOUN radar is located at cen-3.8, the KOUN radar is located at cen-.8, the KOUN radar is located at cen-
tral Oklahoma. The six sites (noted by triangles in the figure), named SPEN, MINC, 
CHIC, NINN, WASH, and SHAW, are located at 35.7 km north, 45.0 km west, 47.0 km 
southwest, 53.6 km southwest, 28.7 km south, and 48.8 km east of KOUN, respec-
tively. The six Mesonet sites are not far from the radar. As to the low-elevation scan 
(e.g., EI = 0.5°), the radar beam over these sites is likely under the melting layer. The 
standard rain gauge used by Mesonet has a sampling area of ~0.07 m2. With accu-
mulated rainfall being recorded every 5 min, the accuracy of the rain gauge is about 
±5% over the range of 0–50 mm h–1. 

The case shown in Figure 13.1 is used to present the rain retrieval. Detailed descrip-3.1 is used to present the rain retrieval. Detailed descrip-.1 is used to present the rain retrieval. Detailed descrip-
tion can be found in the work of Cao et al. (2010). The retrieval applies the Bayesian 
approach and two radar observations, ZH and ZDR. A data quality control has to be done 
before ZH and ZDR can be used. In this case, the nonrain radar echoes were removed 
using the classification results. The removed region was interpolated from observations 
at adjacent rainy regions. ZH and ZDR were then smoothed further using the speckle 
filter. The whole radar dataset was calibrated with the disdrometer observations (see 
Figure 13.6). 

Figure 13.9 shows the 1-h rain accumulation comparison. The thick solid lines 
represent the rain gauge observation. The thin solid lines indicate that the Bayesian 
retrieval results from using polarimetric data ZH and ZDR. As a reference, dashed lines 
represent the result of a NEXRAD single-polarization estimator, R = 0 017 0 714. .Zh  . 
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The Bayesian retrieval gives a result that captures the temporal variation of rain 
gauge measurement. The single-polarization estimator normally overestimates rain-
fall during the convection while performing fairly well in the stratiform region. 
It is worth noting that mixtures of rain/hail might exist near the convective core 
(e.g., around 0655 UTC at MINC), where radar-measured ZH and ZDR are sometimes 
extremely large (e.g., ZH > 55 dBZ and ZDR > 3.5 dB). If quality control was not 
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measurements at six sites: (a) CHIC; (b) MINC; (c) NINN; (d) SHAW; (e) SPEN; (f) WASH. 
(From Cao, Q. et al., Journal of Applied Meteorology and Climatology, 49, 973, 2010. With 
permission.)
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performed, the rainfall rate estimated from contaminated ZH and ZDR would be much 
larger than 100 mm h–1. In situ measurements in the figure, however, show that this 
is not the case. Radar retrievals in Figure 13.9 demonstrate that radar data quality 
control (i.e., using radar measurements [classified as rain] from an adjacent area to 
interpolate over a hail-contaminated region) can provide a reasonable rain estimate 
for the contaminated region. 

13.5  CONCLUSIONS

This chapter addresses radar polarimetry for rain estimation, including its basis and 
methods. Compared with rain estimation based on single-polarization radar mea-
surements, dual-polarization radar observations can improve rain estimation with 
a better representation of DSD variability. The study presents two major methods 
for polarimetric radar rain estimation, including the empirical method and the DSD 
retrieval method. For the empirical method, three estimators, R(Zh,Zdr), R(KDP), and 
R(KDP,Zdr), are commonly used. These estimators have their own advantages and dis-
advantages. This chapter emphasizes the DSD retrieval method, because it is more 
flexible in obtaining rain variables than the empirical method. Besides the direct 
approach, two other recently proposed approaches are discussed. The Bayesian and 
variational approaches optimize the use of polarimetric radar measurements. The 
Bayesian approach applies the historical statistical information of rain, while the 
variational approach uses the spatial information of rain. Both approaches can utilize 
multiple observations, making the algorithms extendable for more variables. Thus 
far, there are still issues to be worked out for these two approaches. The major issues 
include the accuracy of radar forward models and the quality of data. However, the 
concept of optimization of radar observations would be meaningful in rain estima-
tion. In this context, a two-order C-G DSD model was applied to illustrate the three 
approaches of DSD retrieval. It is worth noting that these approaches are also appli-
cable for other DSD models if the necessary revisions are made. 

It can be concluded that, first, the characterization of rain/hail/snow microphys-
ics should be studied further. Any progress on the modeling of DSD and/or radar 
variables could strengthen the estimation/retrieval algorithms. In addition, classifi-
cation of hydrometeors is helpful for obtaining the correct rain estimation. Second, 
rain estimation would benefit from higher quality radar data. The data quality could 
be improved either from the upgrade of radar hardware or applying proper quality 
control algorithms. Third, rain estimation would be improved with the optimal use 
of multiple radar observations. Minimization of the error effect would be the goal 
of this approach. In any circumstances, radar polarimetry is a promising way for 
accurate rain estimation.
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14.1  INTRODUCTION

Water vapor is the most important greenhouse gas, much more effective than CO2. It 
governs the atmospheric water cycle and is a key component in atmospheric chem- chem-chem-
istry. The frequent occurrence of phase transitions from vapor to liquid water or ice 
crystals further enhances the importance of atmospheric humidity. Cloud forma- humidity. Cloud forma-humidity. Cloud forma-
tion and the various forms of precipitation certainly belong to the most important 
weather phenomena. The strong temperature dependence of the saturation vapor 
pressure in combination with vertical transport processes causes a large variability 
of the atmospheric humidity, which exists on practically all scales from turbulence 
to global distribution.

In view of its importance, the detection and observation capabilities for atmo- of its importance, the detection and observation capabilities for atmo-of its importance, the detection and observation capabilities for atmo-detection and observation capabilities for atmo-observation capabilities for atmo-
spheric water vapor are far from suffi cient, both for the operational global observa- water vapor are far from suffi cient, both for the operational global observa-water vapor are far from suffi cient, both for the operational global observa-far from suffi cient, both for the operational global observa-sufficient, both for the operational global observa-
tion system and for detailed process studies. Most routine observations are still made 
using in situ sensors on radiosondes. Standard capacitive humidity sensors (e.g., 
Vaisala RS80-H and RS90), which act as the backbone of weather forecast centers, 
do not provide reliable measurements in the upper troposphere and above at tem-
peratures below –40°C. More accurate measurements of low humidity in this region 
can be performed using sophisticated in situ instruments that have been developed 
for operation on balloons or aircraft. They are the frost-point hygrometers (Oltmans 
1995; Ovarlez 1991; Busen and Buck 1995), Lyman-α hygrometer (Zöger et al. 1999), 
and tunable-diode-laser hygrometer (May 1998; Sonnenfroh et al. 1998). However, 
data provided by these instruments are limited to one- dimensional vertical (bal-
loons) and horizontal (aircraft) profiles. Apart from the problems caused by the sen- caused by the sen-caused by the sen-
sor properties, the sampling strategy is limited by typically only two instantaneous 
measurements per day at a relatively small number of stations worldwide, which does 
not permit a characterization of the water vapor distribution. Satellite-borne passive 
remote sensing instruments, in contrast, provide global observations. Unfortunately, 
current satellite instruments such as SAGE II (Mauldin III et al. 1985) and HALOE 
(Russell et al. 1993) have insufficient vertical resolution in many cases and tend to 
have large error bars for data collection in the upper troposphere. HALOE is capable 
of observing water vapor from the troposphere up to the upper mesosphere with a 
vertical resolution of approximately 2 km and with an accuracy of ±10% between 
0.1 and 100 mb, rising to ±30% at the boundaries of the observational range (Harries 
et al. 1996).

For process studies, the vertical structure of the atmosphere is of great impor-
tance. An airborne differential absorption lidar (DIAL) can provide two-dimen-
sional water vapor measurements along extended cross sections with high accuracy 
and spatial resolution and, thus, fills the gap between existing in situ instruments and 
passive remote sensing sensors. During the first two decades of DIAL development, 
the basic theory was initialized, the relationship between signal-to-noise ratio and 
detection limits was elucidated, and DIAL systems in both the visible and infrared 
spectral regions were developed (Collis and Russell 1976; Killinger and Mooradian 
1983; Measures 1984). In the early days, building DIAL was difficult. The systems 
were complex and costly, and their long-term stability was bad. They required highly 
trained operators and frequent adjustments. These difficulties severely limited the 
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applications of DIAL systems. During the past two decades, progress have been 
made in all of the areas, including laser technique, detection technique, mechanics 
design, and software development, which bring DIAL systems into broad and 
practical applications.

In this chapter, the theory of the DIAL technique is reviewed, and the system-and the system-system-
atic and random errors are discussed first. Progress in the development of DIAL 
techniques for water vapor profiling is described in three wavelength regions: 720, 
820, and 940 nm. Recent advances in multiwavelength DIAL are summarized, and 
finally, some conjectures are offered on technology areas that will most likely be in 
rapid progress in the near future.

14.2  METHODOLOGY

Range-dependent differential absorption of laser radiation by water vapor represents 
a selective and sensitive method for measuring the vertical profi le of absolute humid- method for measuring the vertical profi le of absolute humid-method for measuring the vertical profile of absolute humid-
ity. In principle, the DIAL technique is based on comparing the backscattered sig- technique is based on comparing the backscattered sig-technique is based on comparing the backscattered sig-
nals of two laser pulses having slightly different wavelengths. One pulse is emitted 
on the center of a water vapor absorption line (online wavelength). The other is emit- absorption line (online wavelength). The other is emit-absorption line (online wavelength). The other is emit-
ted on the line wing where absorption is negligible or significantly reduced (offline 
wavelength). This is shown schematically in Figure 14.1.

As the laser pulses propagate through the atmosphere, part of their energy is 
backscattered to the instrument by particles, typically aerosols or hydrometeors, and 
by molecules in the atmosphere. The lidar return from the “off” laser wavelength 
provides a reference signal for the atmospheric scattering from molecules and aero- scattering from molecules and aero-scattering from molecules and aero-
sols and for the slowly varying “background” atmospheric absorption that is com- “background” atmospheric absorption that is com-“background” atmospheric absorption that is com- atmospheric absorption that is com-atmospheric absorption that is com-
mon to both lidar wavelengths. The length of the laser pulse transmitted into the 
atmosphere defines the length of the scattering volume. The location of this volume 
is very precisely determined by the traveling time of the laser pulse from the trans- very precisely determined by the traveling time of the laser pulse from the trans-very precisely determined by the traveling time of the laser pulse from the trans-
mitter to the scattering volume and back to the receiver.

Backscatter
volume

Receiver

Laser

P0on/off

Pon/off(R1)

Pon/off(R2)
R1

R2
∆R

λoff

λon λ
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FIGURE 14.1  Conceptual drawing of the DIAL principle.
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14.2.1  geneRal lidaR equation

The power detected by the lidar system at the transmitted wavelength λ can be 
expressed by the elastic backscatter lidar equation: 

 P R P R
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R
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R( , ) ( , ) ( , ) expλ η λ τ β λ α= ⋅
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where P(λ,R) is the power received from range R, R = (R1 + R2)/2, P0 is the average 
transmitted power during the laser pulse, η(λ,R) is the receiver efficiency, A is the 
receiver area, c is the speed of light, τ is the laser pulse duration, and β(λ,R) and 
α(λ,R) are the atmospheric backscatter coeffi cient and atmospheric extinction coef- backscatter coeffi cient and atmospheric extinction coef-backscatter coefficient and atmospheric extinction coef-
ficient at range R. 

For a DIAL system, the laser transmitter usually has a narrow spectral linewidth 
of hundreds or tens of megahertz. Thus, η(λ,R) and β(λ,R) can be assumed to be con-
stant for all λ	within the transmitted spectrum. Moreover, of the total atmospheric 
extinction coefficient including interested gaseous absorption, molecular scattering, 
and particle scattering, only gaseous absorption shows rapid spectral variation. If we 
define the gaseous absorption coefficient for a spectral distribution ls(ν) as

 α α ν ν νab ab sR R l d( ) ( , ) ( )= ∫  (14.2)

and ignore spectral distribution changes on its way down and up to the distance R, 
we can derive a lidar equation in differential form with direct physical interpretation:
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14.2.2  dial equation

Next, we consider a lidar operating at two wavelengths λon and λoff where water vapor 
has correspondingly larger and smaller absorption cross sections, and we define Pon 
as the lidar signal at wavelength λon and Poff as the signal at λoff. Normally, the offline 
wavelength is chosen to be far from any other absorption lines but close enough to the 
online wavelength such that the aerosol properties, backscatter, and extinction can 
be assumed the same. Under these conditions, the DIAL equation can be written as

 
d
dR

P R
P R
on

off
ab on ab off abln

( )
( )

( ), ,= − =2 2α α α∆ . (14.4)

It is the basis for water vapor retrievals. The term dlnη(R)/dR is omitted, because 
it describes the differences of the detection sensitivity for online and offline 
wavelengths and is too specific for each individual DIAL system. This sensitive 
difference can be minimized by proper design of the system. 
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With a laser transmitter having a narrow spectral linewidth, the absorption coef-
ficient can be given directly by the product of the absorption cross section and the 
molecule number density. Thus, we have

 ∆ ∆α α α ρ σ λ σ λ ρ σab ab on ab off n on off n= − = ⋅ − =, , ( ( ) ( )) , (14.5)

where ρn is the molecule number density of the trace gas, and σ is the molecular 
absorption cross section. In the idealized case, we find that
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Equation 14.6 shows that DIAL is a self-calibrating measurement technique. All 
instrument constants are removed by the sequential operations of forming a ratio 
and taking the derivative with respect to range. However, it is based on the assump- with respect to range. However, it is based on the assump-with respect to range. However, it is based on the assump- it is based on the assump-is based on the assump-based on the assump-d on the assump- on the assump- assump-
tion that there is no range-dependent difference in the DIAL responses at the two 
different wavelengths. In fact, Fredriksson and Hertz (1984) provided an extensive 
summary of experimental problems that could cause systematic differences at the 
two wavelengths and consequent errors in the measured value of ρn. 

In practice, DIAL signals are not recorded or analyzed as continuous functions 
but as values in discrete range bins. Expressing the derivative in Equation 14.6 in 
terms of a range increment ΔR, we have

 ρ
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off on

off on
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For a real DIAL system, the term in parentheses in Equation 14.7 is resolvable. For 
a given Δσ, this term sets the detection limitation (ρn,lim) of a system. Equivalently, 
Equation 14.7 can also be used to design a DIAL to fi nd the minimum range resolu-7 can also be used to design a DIAL to fi nd the minimum range resolu- can also be used to design a DIAL to fi nd the minimum range resolu-also be used to design a DIAL to fi nd the minimum range resolu-be used to design a DIAL to fi nd the minimum range resolu-to design a DIAL to fi nd the minimum range resolu- design a DIAL to fi nd the minimum range resolu-DIAL to fi nd the minimum range resolu- to find the minimum range resolu- minimum range resolu-minimum range resolu-
tion (ΔRmin) for a given value of Δσ. 

14.2.3  dial MeaSuReMent eRRoRS

When Equation 14.7 is used to derive the water vapor density from measurements 
of Pon(R) and Poff(R), it is necessary to know the parameters determining the 
differential cross section (Δσ)/absorption cross section (σon and σoff). Moreover, 
for high-resolution measurement the spectral distributions of the transmitted and 
backscattered light have to be treated carefully, especially in the case that the 
transmitted spectrum is not much narrower than the absorption line. Ismail and 
Browell (1989) presented a thorough analysis of the sensitivity of DIAL measure-(1989) presented a thorough analysis of the sensitivity of DIAL measure-presented a thorough analysis of the sensitivity of DIAL measure- a thorough analysis of the sensitivity of DIAL measure-a thorough analysis of the sensitivity of DIAL measure-
ments to both differential absorption errors and random signal errors. The former 
type of error arises from both atmospheric and system effects, including tempera- including tempera-including tempera-
ture and pressure sensitivities of the trace gas spectrum, Doppler broadening of 
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the Rayleigh return, possible shift of the laser line, and uncertainties in its spectral 
purity and center wavelength. 

14.2.3.1  Absorption Cross-Section Errors
A general expression of the absorption cross section at a wavenumber ν is given by

 σ ν ε ν ν( ) ( , ) ( , , )= −S T p TiΛ 0 , (14.8)

where ν0 is the center wavenumber of an absorption line, S(T,ε) is the line strength 
of the transition at temperature T and initial state energy ε, Λ(ν – ν0, pi, T) is the line 
shape function, and pi is the partial pressure. For water vapor, these two functions are
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where S0 is the absorption line strength under standard conditions, kB is the Boltzmann 
constant, and ΛV is the Voigt absorption line function, which is a good approximation 

for the actual line shape. Re indicates the real part of the complex function, and i = 1 . 
The parameters fD and fC of the Voigt function describe the linewidths (full width 
half maximum [FWHM]) of Doppler and collision broadening, respectively. Both 
of them are pressure and temperature dependent. For a gas mixture, the effective 
collision broadened width is given by
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where fC,i(p0,T0) is the collision broadened width at standard conditions, and ηC,i 

is the temperature exponent of collision broadening for a single component of the 
mixture. The linewidth of the Doppler broadened spectrum is

 f
k T
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D

B= ⋅8 2
2 0
ln ν . (14.12)
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Except for the effects on the line shape, pressure and temperature can also induce 
the shift of the line center. The shift with air pressure is described as

 ν ν α
η

0 0 0
00( , ) ( , )p T p T p
T
Tair shift air

dp

− = =




 , (14.13)

where αair is the line shift coefficient, and ηdp is the temperature coefficient of the 
pressure shift.

Nowadays, all the parameters needed for the calculation of the absorption cross 
section at the commonly used absorption lines of water vapor DIAL have been pre-
cisely measured in the laboratory based on tunable laser spectroscopy (Grossmann and 
Browell 1989a,b). Water vapor retrieval errors caused by unknown temperature profiles 
should be minimized by proper selection of temperature-insensitive water vapor lines.

In addition to the precise determination of these atmospheric effects, the dif-
ferential cross-section errors can also be minimized by proper design of the laser 
transmitter. A common problem for lasers is spectral purity caused by spontaneous 
emission. Spectral purity is defined as the ratio of the energy within the acceptable 
absorption line spectral limits to the total energy. Since a portion of laser energy is 
unabsorbed when it passes through the atmosphere, the effective absorption cross 
section is lowered by its presence. The evaluation shown in Ertel (2004) indicated 
that small amounts of spectral impurity can produce large systematic errors. For 
most water vapor DIAL applications, lasers with spectral purity >0.995 are nec-
essary if no knowledge of the actual amount of spectral purity can be obtained. 
Another crucial requirement is the laser frequency stability. The laser wavelength 
must be stabilized precisely at the center of the absorption line. For small values of 
drift, the DIAL measurement error is high. To maintain a <3% measurement error of 
water vapor, the laser frequency stability has to be smaller than 80 MHz. 

14.2.3.2  Random Signal Errors
Usually, the measured water vapor profile also contains random errors. Random 
errors are caused by noise in the signal. The main sources of random error include 
(1) variability of the photon statistics in the lidar return signal, (2) noise resulting 
from detector dark current, and (3) noise in the background signal. One can minimize 
the random error associated with DIAL measurements by maximizing the signal- 
to-noise ratio. The signal-to-noise ratio increase can be achieved in several ways, 
including an increase in laser-pulse energies or pulse repetition rates, an improve- an increase in laser-pulse energies or pulse repetition rates, an improve-an increase in laser-pulse energies or pulse repetition rates, an improve- rates, an improve-rates, an improve-
ment in the optical throughput of the system, the use of a detector system with higher 
quantum efficiency or lower dark-current noise, and the selection of a narrowband 
optical filter that rejects most of the day background light and retains high optical 
efficiency. Besides, the precision of a DIAL measurement can be improved by signal 
averaging horizontally and vertically. The resulting improvement scales accordingly 
(Ismail and Browell 1989):
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where δρn/ρn corresponds to the random error, and Δx and ΔR are the horizontal 
and vertical resolutions of the DIAL measurement, respectively. It is worthwhile to 
note that signal averaging in the vertical direction is more efficient than averaging 
horizontally. This averaging of signals also results in a reduction in the vertical and 
horizontal resolutions. Thus, a tradeoff is necessary to achieve a balance between 
spatial resolution and measurement precision (typically, a vertical range resolution of 
200–300 m and an average of 300–600 laser shot pairs are used in data reduction).

14.3  AIRBORNE H2O DIAL SYSTEM

Since the first application of the DIAL technique in 1966 (Schotland 1966), a number 
of systems for water vapor profiling have been demonstrated. The basic setup of a 
DIAL system is shown in Figure 14.2. It consists of a transmitter (containing a laser 
emitting on online/offline wavelength) and a receiver. Short laser pulses with a few 
to hundreds of nanoseconds duration and specific spectral properties are generated 
by the laser. In most cases, a beam expander within the transmitter unit is used to 
reduce the divergence of the light beam before it is sent out into the atmosphere. At 
the receiver end, a telescope is used to collect the photons backscattered from the 
atmosphere. It is usually followed by an optical analyzing system, which, depend- followed by an optical analyzing system, which, depend-followed by an optical analyzing system, which, depend-
ing on the application, selects specific wavelengths or polarization states out of the 
collected light. The selected radiation is directed onto a detector, where the received 
optical signal is converted into an electrical signal. The intensity of this signal in its 
dependence on the time elapsed after the transmission of the laser pulse is deter- transmission of the laser pulse is deter-transmission of the laser pulse is deter-
mined electronically and stored in a computer. 

The applicability of most systems before 1996 was severely limited by imperfec-
tions of the laser systems. For an overview of DIAL developments before 2000, see 
the work of Weitkamp (2005). During the last 10 years, rapid progress has been 
made by H2O DIAL practitioners. With the application of the injection seeding tech-
nique, frequency stability and spectral purity were dramatically improved (Chyba 
et al. 1997; Wulfmeyer et al. 1995; Ehret et al. 1998). With the availability of reli-
able and affordable pump lasers (high-brightness diode lasers), simplified resona-
tor designs, ultrastable mechanical setups for the resonator and the coupling of the 
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FIGURE 14.2  Principle setup of the DIAL system.
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subsystems, and automated system control, the operation of the DIAL system has 
been simplified, the cost has been lowered, and the long-term operation stability 
has been improved. Furthermore, better retrieval techniques and methods have been 
developed, so the measurement accuracy has been increased. 

Water vapor absorption lines are present in many regions of the infrared spec-
trum. For DIAL work, the most suitable wavelengths are around 730, 820, and 
940 nm, where interference with other gases is minimal, suitable laser sources and 
sensitive detectors are available, and a wide range of line strengths is covered. The 
advanced airborne DIAL system operating around each wavelength range and some 
of the most valuable measurement results are particularly presented in this study. 

14.3.1  aiRBoRne h2o dial aRound 730 nM

The operation on absorption lines around 730 nm is usually obtained by a high-
power, single-frequency, tunable alexandrite laser. The most advanced and famous 
H2O DIAL system operating around the 730-nm range is the Lidar Embarque pour 
l’etude des Aerosols et des Nuages, de l’interaction Dynamique-Rayonnement et du 
cycle de l’Eau (LEANDRE II) of the Centre National de la Recherche Scientifique. 
The design details of the LEANDRE II system and the DIAL signal processing were 
given by Bruneau et al. (2001a,b). The main structure and the measurement accuracy 
of this system are briefly presented here. 

14.3.1.1  General Description
A diagram of the LEANDRE II system is presented in Figure 14.3, and the main 
properties are summarized in Table 14.1. The transmitter of LEANDRE II is a flash 
lamp–pumped alexandrite laser, which operates in a double-pulse, dual-wavelength 
mode in the 730-nm spectral domain. A pair of 50-mJ pulses at online and offline 
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FIGURE 14.3  Setup diagram of LEANDRE II H2O DIAL system.
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wavelengths with a linewidth of 1.3 pm and typically larger than 99.99% spectral 
purity are emitted at a 50-μs time interval, with a repetition rate of 10 Hz. The 
central wavelength is controlled in real time on a shot-to-shot basis by a wavemeter 
with an absolute accuracy of 140 MHz. The required narrow spectral linewidth is 
achieved by using filter and intracavity etalons. This technique results in a bandwidth 
of 560 MHz, so corrections are applied if measurements are performed in the upper 
troposphere, where the linewidths of water vapor absorption lines become smaller. 
After the first reflection, the laser beam passes through a five-beam expander and 
is directed along the telescope’s line of sight by a mirror placed in front of the tele- line of sight by a mirror placed in front of the tele-line of sight by a mirror placed in front of the tele-
scope’s secondary mirror (coaxial configuration). The output divergence of the laser 
can be adjusted from 0.5 to 3 mrad to yield eye safety on the ground. A large steering 
mirror whose size covers the telescope aperture (300 mm) enables measurements to 
be made at various angles (zenith, nadir, or ±15° scanning from nadir). The receiver 
is a 30-cm aperture telescope with a 3.5-mrad fi eld of view and a 1-nm fi lter band--cm aperture telescope with a 3.5-mrad fi eld of view and a 1-nm fi lter band-cm aperture telescope with a 3.5-mrad fi eld of view and a 1-nm fi lter band- a 3.5-mrad fi eld of view and a 1-nm fi lter band-a 3.5-mrad fi eld of view and a 1-nm fi lter band--mrad fi eld of view and a 1-nm fi lter band-mrad field of view and a 1-nm fi lter band--nm fi lter band-nm filter band-
width. The emitter with the wavemeter, the telescope, the reception optics, and the 
detector are placed in an optical container with a dimension of 1.50 × 0.90 × 0.45 
m3. The power supplies for the detector and various mechanisms (mask, diaphragm, 
filter holder) are placed in an auxiliary electronic unit near the optical bench. The 
two main electronic units have a dimension of 0.60 × 0.60 × 1.60 m3 and contain 
standard 6-m racks. The power supply and cooling unit of the laser, the laser itself 
and wavemeter control electronics, the steering mirror control electronics, and the 
signal digitizers are located in the first unit. The second unit contains two computers: 
the first for real-time control of the instrument and data recording and the second for 
calculation and display of the scientific results. 

TABLE 14.1
Major Properties of the LEANDRE II H2O DIAL System

Emitter

Spectral range 727–770 nm

Pulse energy 2 × 50 mJ ± 10%

Repetition rate 10 Hz

Temporal pulse width 225 ns

Double-pulse temporal separation 50 μs

Double-pulse spectral separation 442 pm

Linewidth at λon 1.3 pm (2.4 × 10–2 cm–1)

Spectral positioning accuracy <0.25 pm (5 × 10–3 cm–1)

Spectral purity >99.99%

Receiver 30 cm

Telescope diameter

Field of view 1.5–8 mrad

Photomultiplier efficiency 4%

Filter: max transmission/bandwidth 57%/1 nm

Digitizer 12 bits/10 MHz
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The characteristics of LEANDRE II are defined for measuring the water vapor 
mixing ratio with an systematic error of less than 2% and an accuracy better than 
0.1 g/kg in the first 5 km of the atmosphere with a range resolution of 300 m, an inte-
gration on 100 shots that corresponds to a 10-s operation time and, thus, a horizontal 
resolution of approximately 1 km with the Naval Research Laboratory (NRL) P-3 
flight speed of about 150 m/s. The overall accuracy, excluding the uncertainty of line 
parameters, is estimated to be ~10% (Bruneau et al. 2001a).

14.3.1.2  Transmitter
The layout of the laser resonator is illustrated in Figure 14.4. The laser head includes 
a dual flash lamp bielliptical pump cavity with an alexandrite rod at the Brewster 
angle, which reduces the risk of optical damage on the crystal faces. The tempera-which reduces the risk of optical damage on the crystal faces. The tempera- reduces the risk of optical damage on the crystal faces. The tempera-The tempera-he tempera-
ture of the laser head is controlled at 45°C ± 1°C by a water-cooling system. A beam 
expander is inserted between the alexandrite rod and the etalon to reduce the energy 
density on the coatings of etalons. A Lyot filter, a thin angle-tuned etalon (0.6-mm air 
gap, 28% refl ectivity), and a thick piezo-tuned etalon (6-mm air gap, 28% refl ectiv-, 28% refl ectivity), and a thick piezo-tuned etalon (6-mm air gap, 28% refl ectiv- 28% refl ectivity), and a thick piezo-tuned etalon (6-mm air gap, 28% refl ectiv- refl ectivity), and a thick piezo-tuned etalon (6-mm air gap, 28% refl ectiv-reflectivity), and a thick piezo-tuned etalon (6-mm air gap, 28% refl ectiv-), and a thick piezo-tuned etalon (6-mm air gap, 28% refl ectiv- and a thick piezo-tuned etalon (6-mm air gap, 28% refl ectiv-(6-mm air gap, 28% refl ectiv-6-mm air gap, 28% refl ectiv- air gap, 28% refl ectiv-air gap, 28% refl ectiv-, 28% refl ectiv- 28% reflectiv-
ity) are inserted into the cavity to obtain the desired spectral position and linewidth. 
Because the loss induced by the thick etalon increases rapidly with the angle of 
incidence, this etalon is kept at small incidence and tuned by means of piezoelectric 
(PZT) spacers. The peak transmission of these three components is tuned to locate 
at λon. The spectral position and linewidth of the emission are determined mainly by 
the thick etalon, and the filter and thin etalon are used to ensure spectral purity. In 
addition, an acousto-optic modulator (AOM) and a Pockels cell are inserted into the 
cavity. For each flash lamp emission, the laser is Q switched twice at a 50-μs inter-
val, which is controlled by the AOM. During the second Q switch, an ~1-kV square 
pulse is applied to the Pockels cell. This voltage causes a change in the state of polar- This voltage causes a change in the state of polar-This voltage causes a change in the state of polar-
ization of the light coming onto the Lyot filter, which induces a shift of the filter’s 
peak transmission wavelength. The voltage applied to the Pockels cell is adjusted 
precisely to produce a spectral shift that is equal to the free spectral range (FSR) of 
the thin etalon (0.44 nm). The thickness of the thick etalon is carefully adjusted to 
be 10 times the thickness of the thin etalon. This way, the FSR of the thin etalon is 
exactly 10 times that of the thick etalon, and a peak transmission coincidence occurs 
at the shifted wavelength, allowing the second pulse to be emitted with few losses. 

CM PC LF AOM

AR BE FP1 FP2 OC

FIGURE 14.4  Layout of the alexandrite laser cavity. CM: cavity mirror; PC: Pockels cell; 
LF: Lyot filter; AOM: acousto-optic modulator; AR: alexandrite rod; BE: beam expander; FP: 
Fabry–Perot etalon; and OC: output coupler.
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The laser is placed in a closed container equipped with electrical resistors and fans. 
A small portion of the beam exiting the container passes through a photoacoustic 
cell filled with 25 hPa of water vapor plus 100 hPa of nitrogen. This transmitted 
signal is monitored and recorded for the verification of the spectral positioning. 
The laser is driven by a dedicated electronics system that controls the power unit 
and generates the control signals for flash lamp charge and trigger, Q switching, 
and wavelength commutation with proper timing. The electronics system permits 
the positioning of the servo-controlled filters and driving of the PZT spacers of the 
thick etalon. It also checks the temperatures, the switch flows placed in the cooling 
circuit, and the simmer current in the lamps. It generates alarms and stops laser 
operation, if necessary, for material safety. The laser cavity and intracavity devices 
are supported by a mechanical frame of high rigidity and stability based on a set 
of three longitudinal Invar bars. After the mechanics are locked in the laboratory, 
cavity realignment is usually unnecessary, even after handling, onboard installation, 
and flight of the laser.

14.3.1.3  Receiver
The Ritchey–Chrétien telescope is used to collect the backscattered signal. Its aper-is used to collect the backscattered signal. Its aper-collect the backscattered signal. Its aper- the backscattered signal. Its aper- aper-
ture is 300 mm, and the total length is 0.80 m. The field of view of the telescope 
can be adjusted from 1 to 9 mrad by a motorized diaphragm placed at the focus. 
The coaxial configuration of the emitter and the receiver enables the geometric fac- receiver enables the geometric fac-receiver enables the geometric fac-
tor of the lidar to approach unity at ranges as short as 500 m. The receiving optics 
includes a field lens, a collimating lens, an interference filter, and the detector. The 
transmission central wavelength is selected by a three-cavity interference filter with 
a spectral width of 1 nm and a peak transmission of 55%. It is mounted on a motor- width of 1 nm and a peak transmission of 55%. It is mounted on a motor-width of 1 nm and a peak transmission of 55%. It is mounted on a motor- 1 nm and a peak transmission of 55%. It is mounted on a motor-1 nm and a peak transmission of 55%. It is mounted on a motor- nm and a peak transmission of 55%. It is mounted on a motor-nm and a peak transmission of 55%. It is mounted on a motor- 55%. It is mounted on a motor-55%. It is mounted on a motor-. It is mounted on a motor-mounted on a motor-
ized wheel. The fi lter’s central wavelengths are chosen to match the selected absorp- wheel. The fi lter’s central wavelengths are chosen to match the selected absorp-wheel. The filter’s central wavelengths are chosen to match the selected absorp- to match the selected absorp-to match the selected absorp-
tion lines. Fine-tuning of the spectral band for optimum transmission at both λon 
and λoff is obtained by tilting the filter. The temperature of the receiving unit is kept 
within ±1 K to ensure constant spectral positioning of the fi lters. The overall opti-to ensure constant spectral positioning of the fi lters. The overall opti-o ensure constant spectral positioning of the fi lters. The overall opti- ensure constant spectral positioning of the fi lters. The overall opti-ensure constant spectral positioning of the fi lters. The overall opti- of the fi lters. The overall opti-of the filters. The overall opti-
cal transmission of the receiver, from the steering mirror to the detector (including 
the interference filter), is approximately 25%, which is measured with a tunable 
continuous wave laser. A Thorn EMI 9658 photomultiplier is used as the detector. 
The high voltage can be modifi ed from 950 V to 1250 V in four steps correspond- modifi ed from 950 V to 1250 V in four steps correspond-modified from 950 V to 1250 V in four steps correspond-V to 1250 V in four steps correspond-to 1250 V in four steps correspond- correspond-correspond-
ing to gain levels from 105 to 106. The detector is associated with a preamplifier and 
an impedance adapter, and the resulting detection sensitivity ranges from 0.1 to 1 
μW/V. The signal is digitized by a 12-bit analog-to-digital converter (ADC 600 from 
Burr-Brown) with a 10-MHz sampling rate and a sensitivity of 0.8 mV/digit. The 
fast 2048-gate memory permits a 200-ms signal recording. A second, synchronous 
digitizing channel with the same characteristics is connected to a fast photodiode to 
observe the emitted pulses. This channel provides the temporal reference for the sig- the emitted pulses. This channel provides the temporal reference for the sig-the emitted pulses. This channel provides the temporal reference for the sig- the temporal reference for the sig-the temporal reference for the sig-
nal emission and recording of the pulse temporal profile and energy. The digitized 
signals are recorded on a shot-to-shot basis on an Exabyte tape recorder. Aircraft 
navigation data, instrument parameters, and emitted wavelengths are also recorded 
with the same device. A real-time Hewlett-Packard processor collects the data and 
ensures the synchrony of the recordings.
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14.3.1.4  Application Examples
The latest field campaign that LEANDRE II participated in is the International H2O 
Project (IHOP_2002). It took place over the Southern Great Plains of the United 
States from May 13 to June 25, 2002. The main objective of this field campaign 
was to determine if improved measurements of water vapor lead to a corresponding 
improvement in our ability to predict convective rainfall amounts. In this project, the 
LEANDRE II DIAL system was equipped on an NRL P-3 aircraft and accomplished 
24 missions (total of 142-h scientific flights). 

During the missions for bores investigation, the vertical structure of the bore 
was investigated with the nadir-pointing DIAL LEANDRE II from an altitude of 
4.5 km mean sea level (MSL) on June 20, 2002, Oklahoma panhandle (Flamamt et 
al. 2004). The evolution of the bore was best captured along the westernmost north–
south oriented leg. The flight track is shown in Figure 14.5 by blue lines. Three 
passes were made along that leg: 0329–0352 UTC, 0408–0427 UTC, and 0555–0616 
UTC (see vertical cross sections of the water vapor mixing ratio in Figure 14.5).

On the first overpass (0329–0352 UTC), the wavelike signatures were fully devel-
oped just north of the Kansas–Oklahoma border. The LEANDRE II water vapor 
mixing ratio cross section clearly shows an undisturbed inversion layer at a height of 
1.7–2.7 km MSL. This layer descended 0.5 km in elevation just ahead of the bore as 
the aircraft penetrated the leading fine line at 0340 UTC. Two or three perturbations 
are evident. This is then followed by a continuous rise in the height of the inversion 
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100°W35°N
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FIGURE 14.5  NRL P-3 flight track (blue) on June 20, 2002. The water vapor mixing ratio 
vertical cross sections shown in Figure 14.5 were acquired on the most (shortest) north–south 
oriented leg.
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FIGURE 14.6  Water vapor mixing ratio measured by LEANDRE II.
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layer to an altitude of 2.5–3.5 km by 0345 UTC (37.1°N shown in Figure 14.6). Three 
distinct solitary waves were observed within the inversion surface. The crest-to-crest 
spacing of the waves is 15 km. On the second overpass (0408–0427 UTC), NRL P-3 
crossed over the bore at 0415 UTC. The same three waves appear in the data, with a 
horizontal wavelength of 17 km. The waves are amplitude ordered, with the leading 
one (the bore head) displaying a 0.7-km amplitude and the second and third ones 
showing a 0.4-km amplitude (crest to trough). For the final overpass (0555–0616 
UTC), the bore was passed at 0602 UTC. During this period, the ground-observing 
systems at Homestead were also sampling this feature very intensively. The most 
beautiful wave patterns on this day were captured by LEANDRE II with this pass 
through what is apparently a very well-defined soliton composed of more than nine 
waves, with a wave spacing of 11–12 km. Another interesting feature seen in this 
display is that the amplitude ordering is no longer present; instead, the inversion 
surface is lifted successfully higher by each passing wave, from 1.3 to 1.7 km MSL 
with the first wave to eventually 2.1 km MSL by the fourth wave, after which the 
depth of the  layer remains essentially the same. This gives valuable information 
about the length scale of the transition region and suggests an interesting hypothesis 
that the  demise of the soliton was brought about by the flattening of the leading 
wave in  the wave train. Also of considerable interest is the appearance of “ghost” 
oscillations at a 3.2-km altitude in phase with those much lower. These features may 
actually be cloud-induced lifting below that altitude. The lack of any vertical tilt 
reveals that these are trapped waves occupying a deep layer from 1.3 to 3.3 km MSL. 
Besides the wave patterns, other remarkable features observed by LEANDRE II 
concerned the structure of the water vapor field in the lower troposphere. Figure 14.7 
evidences the presence of two moisture-laden layers (the layer closest to the surface 
being the atmospheric boundary layer [ABL] and the other corresponding to an ele-
vated layer) separated by a thin and extremely dry layer. This thin dry layer was also 
seen on the water vapor mixing ratio profiles measured by dropsondes in this area. 
Back-trajectory analyses conducted with the NOAA HYSPLIT 4 Model (Draxler 
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FIGURE 14.7  Water vapor mixing ratio derived from LEANDRE II at 0415 UTC (dashed 
lines). A comparison water vapor mixing ratio profile derived by Lear Jet dropsonde launched 
at –99°E/35.44°N on June 20, 2002 at 0420 UTC is shown as solid line.
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and Hess 1998) suggest that the origin of air masses sampled in these layers were 
diverse, that is, the Gulf of Mexico for the ABL, Canada for the thin dry layer, and 
the U.S. West Coast for the elevated moist layer. The thin dry layer could be identi-
fied unambiguously well to the south of the bore. This layer was no longer observed 
to the north of the bore head, possibly due to the enhanced entrainment at the top of 
the ABL in connection with turbulent eddies within the bore head.

14.3.2  aiRBoRne h2o dial aRound 820 nM

The most widely used laser material for 820-nm lasers is the Ti:Al2O3 (Ti:Sa) 
crystal, which has not only favorable lasing properties but also physical properties. 
Crystals of Ti:Sa exhibit a broad absorption band located at the blue–green region. 
Tens of nanosecond pulses can be directly generated by pumping with Q-switched, 
frequency-doubled neodymium (Nd):YAG lasers. The fluorescence peaks of Ti:Sa 
at 780 nm, with a 180-nm bandwidth (FWHM). Therefore, the tunable output from 
Ti:Sa lasers is highest between 700 and 900 nm. Besides, Ti:Sa has very high ther-Sa lasers is highest between 700 and 900 nm. Besides, Ti:Sa has very high ther- lasers is highest between 700 and 900 nm. Besides, Ti:Sa has very high ther- and 900 nm. Besides, Ti:Sa has very high ther-and 900 nm. Besides, Ti:Sa has very high ther- Besides, Ti:Sa has very high ther-Ti:Sa has very high ther-Sa has very high ther- has very high ther-has very high ther- very high ther- high ther-high ther-
mal conductivity, exceptional chemical inertness, and mechanical rigidity. One of 
the most important applications of Ti:Sa lasers is as a laser transmitter in water vapor 
DIAL instruments (Moore 1997; Ertel 2004; Schiller 2009). 

The Lidar Atmospheric Sensing Experiment (LASE) Instrument of the National 
Aeronautics and Space Administration (NASA) Langley Research Center is the first 
fully engineered, autonomous DIAL system for the measurement of water vapor in the 
troposphere (aerosol and cloud measurements are included). A double-pulsed Ti:Sa 
laser transmitting in the 815-nm absorption band of water vapor is used as a laser 
emitter by LASE. This instrument was thoroughly described by Killinger et al. (1983).

14.3.2.1  General Description
Figure 14.8 shows a schematic diagram of LASE, consisting of a laser system, 
detector system, signal processor system, and control and data system. LASE was 
originally designed and operated from the Q-bay of the high-altitude NASA ER-2 
aircraft in 1995. Since 2001, it has been reconfi gured to fl y on the NASA DC-8 air- in 1995. Since 2001, it has been reconfi gured to fl y on the NASA DC-8 air-. Since 2001, it has been reconfi gured to fl y on the NASA DC-8 air- Since 2001, it has been reconfi gured to fl y on the NASA DC-8 air- has been reconfigured to fly on the NASA DC-8 air-
craft, where it acquired data simultaneously in the nadir- and zenith-pointing modes 
to permit coverage over the troposphere. 

As already mentioned, a Ti:Sa-based laser system is used as a transmitter. The 
wavelength of the Ti:Sa laser is controlled by injection seeding with a diode laser 
(LD) that is frequency locked to a water vapor line using an absorption cell. The 
LASE detector system consists of two silicon avalanche photodiodes (APDs) and 
three digitizers to cover a large signal dynamic range (106). The signal processor 
system is designed to be relatively insensitive to rapid changes in signal levels. The 
LASE data system on the DC-8 enables real-time and postflight analyses onboard 
the aircraft. A 275-MHz Alpine w/DEC Alpha CPU with 128-MB-memory 12-GB 
data storage is used for data processing and analysis. In the current mode of opera-
tion, LASE can be locked to the center of a strong water vapor line and can also be 
tuned to any spectral position on the absorption line electronically to choose the suit-
able absorption cross section for optimum measurements over a large range of water 
vapor concentrations in the atmosphere.
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14.3.2.2  Transmitter
The Ti:Sa laser is designed to operate in a double-pulse mode (separated by 400 μs) at 
5 Hz, with an output pulse energy of 150 mJ and a pulse duration of 30 ns (FWHM). 
It is pumped by a frequency-doubled Nd:YAG laser and injection seeded with a 
single-mode LD (Barnes and Barnes 1993; Barnes et al. 1993a,b). The Ti:Sa cavity 
is an unstable resonator (as shown in Figure 14.9) consisting of two 18-mm-long 
Brewster-cut Ti:Sa rods. Other resonator components include an output coupler 
(graded reflective mirror), a high reflective end mirror, a four-plate birefringent filter, 
and a hollow retro-reflector. The total cavity length is 1.5 m. The spectral linewidth 
of the unseeded Ti:Sa laser is 1 nm, and the tuning range includes the required 813–
819 nm wavelength region. Fine linewidth and wavelength control of the Ti:Sa laser 
is achieved by using the single-mode LD as an injection seeder. The LD has 100-mW 
output power and is injected through the high reflective end mirror. The spectral 
linewidth of the seeded Ti:Sa laser is less than the required 1.0 pm. Greater than 99% 
spectral purity is ensured also by injection seeding, which is measured using the 
absorption-to-transmission ratio of laser pulse through a 200-m-path-length water 
vapor–filled cell. The central wavelength of the Ti:Sa laser is determined by the LD 
seeder, the wavelength of which is locked onto a selected water absorption line. A 
fraction of the frequency-modulated light of the seeder passed through a multipass 
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FIGURE 14.8  LASE system diagram configured inside the DC-8 aircraft.
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cell filled with water vapor. By detecting the null of the transmitted light, the diode 
wavelength can be locked onto the absorption line. The tunable diode laser seeds the 
pulsed laser alternately between the “online” wavelength, the first pulse of the pulse 
pair, located at the center of the water vapor line, and the “offline” wavelength, the 
second pulse of the pulse pair, typically located 20–80 pm away from the “online” 
wavelength. The accuracy of the online wavelength is verified by comparison with 
the line-locked wavelength of the diode and is further validated by spectral purity 
measurements.

The strong vertical absorption gradient of atmospheric water vapor requires the 
LASE measurement to typically use a strong water vapor line to detect low concen-
trations of water vapor at high altitudes and weak water vapor lines to detect much 
higher concentrations at lower altitudes. To satisfy this requirement, the wavelength 
of the seeder is accurately positioned (to within 0.1 pm) on the slope of a strong water 
vapor absorption line, hence enabling the accurate selection of absorption cross sec-
tion. This slope position is accomplished by a precise current pulse to the diode that 
has been characterized. This new approach allows a single strong water vapor line to 
be used to probe both the higher and lower altitudes along a single ground track. In a 
repeating sequence, a pulse pair of online and offline (for high-altitude water vapor 
detection) is alternated with a pulse pair of “sideline” and offline (for lower altitude 
water vapor detection). This way, nearly simultaneous measurements of the atmo-
sphere from sea level to about 14 km are accomplished along a single ground track.

14.3.2.3  Receiver
The LASE telescope is a mechanically and thermally stable F/21 Dall–Kirkham 
design. The focal length of the telescope optics is 800 cm, and the collecting area is 
0.1 m2. The field of view can be continuously adjusted from 0.15 to 3.0 mrad. The 
receiver optics is polarization insensitive and includes an interference filter that can be 
actively tilt tuned to the desired water absorption line wavelength. Its layout is shown 
in Figure 14.10. The received light is split into three output channels. In one channel, 
the transmitted light (~1% after the beamsplitter) is detected by a 20-mm-diameter 
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FIGURE 14.9  Setup of the Ti:Sa transmitter of the LASE water vapor DIAL system. BRF: 
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silicon quad detector for measuring the laser-to-telescope alignment. The remaining 
99% of the light is reflected to 1.5-mm-diameter silicon APDs placed at the focus 
of the other channels. Before reaching the silicon APDs, the light passes through an 
interference filter to reduce background light levels. The second beamsplitter is used 
to split the light; 11% is refl ected to the low-gain APD channel, and 85% is transmit-split the light; 11% is refl ected to the low-gain APD channel, and 85% is transmit- the light; 11% is refl ected to the low-gain APD channel, and 85% is transmit-; 11% is refl ected to the low-gain APD channel, and 85% is transmit-% is refl ected to the low-gain APD channel, and 85% is transmit- is reflected to the low-gain APD channel, and 85% is transmit-% is transmit-is transmit-
ted to the high-gain APD channel. The beamsplitter is polarization insensitive and 
slightly wedged. A uniform image at the APDs is obtained by imaging the telescope 
entrance pupil onto the APD with a triplet lens. To realize 24-h detection actually, 
two interference filters are used inside the receiver. They are mounted on a rotation 
stage. One filter is used for day and the other for night missions. The typical day 
filter has a peak transmission of 48% and a bandwidth (FWHM) of 350 pm. The 
peak transmission of a typical night filter is 65%, with a bandwidth of 990 pm. The 
selected filter is tilt tuned to the desired laser wavelength and is adjusted to compen- compen-compen-
sate for ambient temperature changes. The light signals are converted to electrical 
signals at the APDs, which are followed by transimpedance amplifiers. Each APD 
and amplifier is housed in a detector preamplifier unit (DPU) in the signal processor 
system. The responsivity of each of the DPUs is nominally set to 75 A/W at the 
operating wavelengths. The bandwidth of each of the DPUs is nominally set to 2.5 
MHz. The electrical outputs of both DPUs enter the differential inputs of the signal 
processing module. After passing through a 1.5-MHz Bessel filter, the signals enter 
12-bit digitizers. The digitizer conversion speed is 5 MHz, which exceeds the Nyquist 
sampling criteria. The LASE Coherent Timebase provides the digitizer clock and 
trigger pulses that synchronize the digital output of the three science channels.

14.3.2.4  Application Examples
During the LASE validation field experiment in September 1995, the LASE water 
vapor profile measurements were found to have an accuracy of better than 6% or 
0.01 g/kg across the entire troposphere (Browell et al. 1997). For the Convection and 
Moisture Experiment (CAMEX-3 and CAMEX-4), LASE operated using one strong 
and two weak water vapor sideline positions in both the nadir and zenith modes, 
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thereby simultaneously providing data above and below the aircraft. Typical horizon- data above and below the aircraft. Typical horizon-data above and below the aircraft. Typical horizon-
tal and vertical resolutions for water vapor profiles between 0.2- and 12-km altitude 
are 14 km (1 min) and 330 m, respectively, for nadir and 70 km (3 min) and 990 m, 
respectively, for zenith. In CAMEX-4, LASE was deployed on the NASA DC-8 air- for zenith. In CAMEX-4, LASE was deployed on the NASA DC-8 air-for zenith. In CAMEX-4, LASE was deployed on the NASA DC-8 air- In CAMEX-4, LASE was deployed on the NASA DC-8 air-CAMEX-4, LASE was deployed on the NASA DC-8 air- LASE was deployed on the NASA DC-8 air- was deployed on the NASA DC-8 air- deployed on the NASA DC-8 air-deployed on the NASA DC-8 air-
craft and simultaneously measured high-resolution cross sections of water vapor 
distributions above and below the aircraft to evaluate the impact of high-spa tial-reso- the impact of high-spa tial-reso-the impact of high-spa tial-reso-
lution water vapor distributions on forecasts of hurricane track and intensity.

LASE measured water vapor profiles in the vicinity of Hurricanes Erin and 
Humberto and Tropical Storm Gabrielle during five long-duration flights in CAMEX-
4, which occurred over the same region in August–September 2001 (Ferrare et al. 
2002; Mahoney et al. 2002). Here the LASE measurements during Erin and Gabrielle 
are described, and the impact on hurricane forecast is presented. 

LASE measurements were made on 10 September 2001 to characterize the mois-
ture environment associated with hurricane Erin, which was situated at 35.5°N 
latitude and 65.1°W longitude. Sustained winds of 105 kts and a clear eye with a 
diameter of 30 km were associated with this storm. The DC-8 flew at an altitude of 
28,000 ft and circumnavigated the hurricane to gather data to help improve short- 
and medium-term hurricane track predictions. The DC-8 flight tract overlaid on sat-
ellite imagery is shown in Figure 14.11. LASE nadir measurements of water vapor 
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FIGURE 14.11  (Left) GOES-8 water vapor imagery showing the DC-8 flight track in rela-
tion to hurricane Erin. (Right top) LASE water vapor mixing ratio profiles acquired during 
CAMEX-4 on September 10, 2001. Nadir and zenith water vapor profiles have been com-
bined in this image. The DC-8 flight altitude is shown by a black line. (Right bottom) Same 
as the top panel but showing LASE total scattering ratio measurements. LASE measurements 
show considerable variation in water vapor during this flight.
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mixing ratio and aerosol scattering ratio are also shown in the figure. Moisture levels 
were high in the northeastern quadrant, with water vapor mixing ratios exceeding 
5 g/kg up to and above 6 km, where a number of rain bands were located. Dry air 
was located in the subsiding region in the northwest of the storm, and more than an 
order of magnitude variation in water vapor in the mid- and upper-troposphere was 
observed. An elevated aerosol layer was clearly shown in the south of the storm. 
Regions of high relative humidity (>80%) were well correlated with the observation 
of clouds, with aerosol scattering ratios exceeding 6. 

LASE measured the fine structure of moisture field near the center of tropical storm 
Gabrielle on September 15, 2001 when this storm left the Florida coast. After landfall 
over Florida, the storm reemerged over the Atlantic and was located near 30°N lati-
tude and 79°W longitude. The storm exhibited an unusual structure with convection 
in the north and northeastern quarters and dry air in the south and southeast. A time 
series of water mixing ratios vary by nearly two orders of magnitude (from ~0.03 to 
>2.0 g/kg) from an altitude of 8 km. LASE measurements were particularly valuable 
in showing dry air between 7 and 11 km, which inhibited the rapid redevelopment of 
this tropical storm as it left the Florida coast (shown in Figure 14.12). 

The impact of LASE data on model forecasts was determined for these two tropi-
cal storm/hurricane systems: Erin and Gabrielle. The forecasts were made using a 
Florida State University global spectral model (Krishnamurti et al. 1998). The verti-
cal resolution of the LASE water vapor data is 330 m, and the horizontal resolution 
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is about 14 km. In this study, the analysis was performed horizontally at a resolu-
tion T126 (i.e., this has a transform grid separation of roughly 1° latitude) and 14 
sigma levels vertically. All the observations were processed in bins of volume 25 
km × 25 km × 300 m. In each bin, the observations were processed according to 
their distance from the respective center of the bin. A value of 10% observational 
error corresponding to relative humidity was assigned to these observations in the 
data analysis. The control (CTRL) forecasts included European Center for Medium 
Range Weather Forecasts (ECMWF) plus rain rate estimates in its initial state at the 
resolution T126. The experiment LASE is the same, with the addition of the LASE 
water vapor profiles. 

The forecast tracks for Erin and Gabrielle are presented in the left panel of Figure 
14.13. The legends indicate the different model runs for each storm. The best tracks 
provided by the National Hurricane Center are also shown. There is an improvement 
in track forecasts as LASE data are added. We noted a positive impact from LASE 
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data on hurricane forecasts for each of these storm forecasts compared to the control 
runs. These impacts are clearly noted in the analysis and in the medium-range fore-
casts. In general, the inclusion of the LASE moisture data reduced the track error by 
100 km on 3-day forecasts.

The intensity forecasts and the issue of sensitivity to LASE data sets are addressed 
from an examination of the maximum wind in the isotach fields at the 850-hPa sur-
face in the storm vicinity for these experiments. The right panel of Figure 14.13 
illustrates the intensity errors at 12-h intervals for both of the storms. The intensity 
error was calculated as the difference between the experiment and the correspond-
ing observed intensity. It can be seen that the initial errors are large in both of 
the experiments and they amplified more with the time integration; however, these 
errors are slightly reduced in the LASE experiments compared to the CTRL. On the 
average, the skill from the LASE experiment is consistently higher compared to the 
CTRL run, and a 20–25% improvement was obtained in the reduction of intensity 
errors.

14.3.3  aiRBoRne h2o dial aRound 940 nM

Unlike the transmitter designed to operate near 730 nm and 820 nm (corresponding 
to the weak 4ν vibrational absorption band of water vapor), the transmitter that 
works in the 940-nm spectral region uses the one order of magnitude stronger 3ν 
vibrational absorption band for its measurements. The 940-nm transmitters have the 
advantage of a much higher measurement sensitivity in regions of low water vapor 
content in the upper troposphere and lower stratosphere.

Laser emission in the 940-nm region can be obtained by means of the Ti:Sa laser, 
optical parametric oscillator (OPO), and LD pumped solid-state laser. With the 
focus on high-quality water vapor measurements in the upper troposphere and lower 
stratosphere, an airborne water vapor DIAL system operating in the 940-nm region 
has been developed at the German Aerospace Centre (DLR; Ehret et al. 2000). This 
system uses an OPO with high peak and average power that fulfills all spectral 
requirements for water vapor measurements. This DIAL system has been aboard the 
DLR research aircraft Falcon 20E since 1999 in the Mesoscale Alpine Program field 
campaign (Bougeault et al. 2001).

14.3.3.1  General Description
The schematic setup of the airborne DLR H2O DIAL system mounted in the meteo- DIAL system mounted in the meteo-DIAL system mounted in the meteo- system mounted in the meteo-system mounted in the meteo- mounted in the meteo-mounted in the meteo- meteo-meteo-
rological research aircraft Falcon 20E is shown in Figure 14.14. The key element of 
this instrument is the transmitter, which is based on an injection-seeded, narrow-
band OPO. At 925 nm, the output energy of the OPO is about 18 mJ per pulse, 
which degrades to 12 mJ for operation at 935 nm. The high-wavelength flexibility 
of the OPO allows an easy selection of proper water vapor absorption lines around 
935 nm to be most sensitive for mixing ratio measurements in the upper troposphere 
over a large dynamic range. Uncertainties in the water vapor retrieval stem from 
both systematic and statistical errors. The systemic error is estimated to be about 
5%. The statistical error of this DIAL measurement is controlled by horizontal and 
vertical data smoothing. Atmospheric backscatter and depolarization is measured 
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simulta neously both at 1064 and 532 nm. The most important specifications of the 
instrument are summarized in Table 14.2.

14.3.3.2  Transmitter
The DIAL transmitter is based on an injection-seeded OPO, constructed as a 
compact three-mirror ring resonator with the nonlinear crystal KTP. The OPO is 
pumped by the frequency-doubled, Q-switched Nd:YAG laser. The repetition rate 
of the pump laser is 100 Hz, and the average output power at 1064 nm is over 20 W. 
Approximately 50% of the fundamental energy can be converted into 532 nm. A 
12-mJ pulse energy at 935 nm is achieved with 100-mJ pump energy; the corre-
sponding average power is 1.2 W. The rest of the laser light at 1064 and 532 nm is 
used for high-spatial-resolution aerosol backscatter measurements. A lower than 1 
GHz, the spectral linewidth of OPO output is achieved by an injection seeding tech-
nique with a single-mode external-cavity diode laser. A small absorption cell with an 
effective path length of 36 m filled with water vapor at a pressure of 1 mbar is used 
for wavelength positioning and stabilization. The seed wavelength can be scanned 
over four absorption lines with different absorption strengths in the 935-nm region. 
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FIGURE 14.14  Setup of the airborne DLR H2O DIAL system.
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This allowed proper absorption line selection. The seeder wavelength is stabilized 
by a computer-controlled feedback loop based on the transmission measurements 
of the seed beam through the absorption cell (photodiodes PD1 and PD2 in Figure 
14.14). The seed beam is transferred by a single-mode polarization maintaining fiber 
and injected into the OPO cavity via one of the cavity mirrors. To stabilize the out-
put wavelength of OPO, the cavity length of OPO is matched to the wavelength of 
the seed beam by a PZT element attached to the cavity mirror. The spectral line-
width of the OPO at 935 nm is measured to be 140 MHz when seeded and approxi- MHz when seeded and approxi-MHz when seeded and approxi-
mately 90 GHz (0.26 nm) in the unseeded operation. Since the spectral width of 
the latter is much broader compared with the bandwidth of water vapor absorption 
line (1–2 GHz), the unseeded multimode signal can be used as offline wavelength. 
Therefore, dual-wavelength operation is simply achieved by chopping the seed beam 
at a repetition rate of 50 Hz. The spectral purity is measured by a long-pass (100-m) 
absorption cell filled with water vapor. The transmitted energy is measured by a pho-
todiode (PD3). The ratio of the transmission signals for the seeded (narrowband) and 
unseeded (broadband) pulses give an absolute measure of the spectral purity. A com-
puter controls feedback loop–maintained maximum spectral purity by changing the 
voltage on the PZT element, which adjusted the OPO cavity length. This stabiliza-
tion technique was proved to be very efficient and reliable during in-flight operation.

14.3.3.3  Receiver
The DRL H2O DIAL aboard the aircraft can acquire data in either the nadir or zenith 
pointing mode. The backscattered photons are collected by a Cassegrain telescope 
with a diameter of 35 cm and a focal length of 500 cm. The received light is split into 
three channels: one for water vapor measurements (935 nm) and two for aerosol mea- water vapor measurements (935 nm) and two for aerosol mea-water vapor measurements (935 nm) and two for aerosol mea-
surements (532 and 1064 nm). Silicon APDs are used to detect the lights at 935 and 
1064 nm, whereas the light at 532 nm is measured by two photomultipliers. The field 
of view of the telescope can be adjusted individually for each channel by different 

TABLE 14.2
Specifications of DLR H2O DIAL

Parameter Value

Wavelength (nm) 925–940 1064 532

Pulse energy (mJ) 12–18 50 40

Repetition rate (Hz) 50 (on/off ) 100 100

Pulse length (ns) 7 15 11

Bandwidth (GHz) 0.14/90 (on/off ) 0.05 0.05

Spectral purity (%) >99 – –

Detector Si:APD Si:APD
p&v pol

PMT
p&v pol

Filter FWHM (nm) 1 1 1

Filter transmission (%) 65 40 55

Telescope Cassegrain, ϕ 35 cm; field of view: 1–2 mrad

Data acquisition 14 bit, 10 MHz



360 Multiscale Hydrologic Remote Sensing: Perspectives and Applications

apertures placed at the telescope focal plane in each channel. The field of view is 
typically set to 2 mrad for the water vapor channel and 1 mrad for the aerosol chan- 1 mrad for the aerosol chan-1 mrad for the aerosol chan-
nels. To suppress solar background radiation, light passes through the temperature-
stabilized filters with a 1-nm (FWHM) bandwidth before reaching the detectors. 
The signals are digitized with a resolution of 14 bit at a sampling rate of 10 MHz and 
stored on a hard disk, magnetic tape, and removable magneto-optic disk. All storage 
and system are controlled by an especially designed computer that also allows real-
time monitoring of backscatter profiles and important aircraft parameters.

14.3.3.4  Application Examples
This DIAL system was aboard the Falcon 20 aircraft and performed 13 local flights 
during the campaign Tropical Convection, Cirrus and Nitrogen Oxides Experiment 
(TROCCINOX), which took place in Brazil. The main focus of this campaign is the 
investigation of the convection and corresponding modification of the humidity field 
at upper tropospheric levels. Hence, anvils of deep convective cumulonimbus (Cb) 
clouds are investigated, with a focus on the outfl ow of air masses at the top trans-are investigated, with a focus on the outfl ow of air masses at the top trans- investigated, with a focus on the outflow of air masses at the top trans- the top trans-the top trans-
ported upward from the low or middle troposphere.

Preliminary results from the TROCCINOX campaign are shown in Figures 14.15 
and 14.16. Upper level clouds extended up to a 16-km height. Cb outflows have been 
observed at a tropopause level between 11 and 16 km as indicated by high H2O mix-
ing ratio variation (as shown in Figure 14.15, which is the sum of all DIAL profiles 
measured during TROCCINOX). Above 16 km (lower stratosphere), the H2O varia-
tion is low. Hygropause in 15–16 km is visible, indicated by a constant lower mixing 
ratio (~2.5 μmol/mol). In Figure 14.16, the particle backscatter at the tropopause 
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region (~15 km) shows color ratios close to unity and depolarization ratios in the 
range between 10% and 20%, indicating the existence of ice particles. The convec-
tive outflow associated with the formation of cirrus clouds at the tropopause level is 
also clearly visible. Furthermore, a very humid layer with a sharp vertical gradient at 
a 10-km height can be seen entering the scene from the north.

14.3.4  aiRBoRne Multiwavelength h2o dial 

To extend the measurement range into the stratosphere (20 km), a H2O DIAL 
covering the high-humidity dynamic range is required. The new-generation DIAL 
operating at multiple wavelengths (several water vapor absorption lines with one or 
more order of magnitude different absorption strength) is one of the solutions. The 
water vapor absorption lines located at the spectral region of 935/936, 942/943, and 
944 nm are proved to be good options. OPO (Wirth et al. 2009), Raman lasers, Ti:Sa 
lasers, and LD-pumped Nd-doped lasers (Hollemann et al. 1995; Lin et al. 2010) 
have been used to generate these wavelengths. The stable multiwavelength operation 
is realized by the injection seeding technique with multiseeders. 
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14.3.4.1  OPO-Based DIAL
The most advanced instrument demonstrated in DRL is a four-wavelength OPO-
based DIAL using the H2O absorption lines in the 935-nm region (shown in Figure 
14.17). The basic requirement for the transmitter system is to generate nanosecond 
single-frequency light pulses at four wavelengths between 935 and 936 nm, hav-
ing a total average power in the range of 10 W. On the basis of the experience with 
the previous system (Ehret et al. 2000), an Nd:YAG laser in the master oscillator/
power amplifier configuration followed by two nonlinear conversion stages is used 
(shown in Figure 14.18). First, the radiation of the pump laser is frequency doubled 
and then converted to a wavelength of 935 nm by an OPO. The output of the OPO 
is repetitively switched between two wavelengths at a rate of 50 Hz. Two identical 
laser systems are operated temporally interleaved, resulting in a total pulse rate of 
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200 Hz and a repetition rate for the four-wavelength pulse train of 50 Hz (see Figure 
14.18). Table 14.3 summarizes measured values for the most important performance 
parameters of the transmitter.

The receiver uses a standard monostatic setup with a 48-cm Cassegrain tele-
scope. The different wavelengths are separated by dielectric beam splitters. Standard 
1-nm bandwidth interference filters are used to suppress the solar background. 
Depolarization channels are available at 532 and 1064 nm. Photomultipliers are 
used  for the 532-nm channels, and APDs are used for the infrared channels. The 
APDs are temperature stabilized to 18°C to assure a constant responsivity. The detec-
tors, their high-voltage power supplies, the temperature controllers (for the APD), the 
current amplifiers, and the analog-to-digital converters are integrated into small (108 
mm × 80 mm × 51 mm), well-shielded modules to reduce the risk of electromagnetic 
interference from laser power supplies and other electronics such as computers and 
aircraft intercom. 

A compact setup is designed for boarding on the Falcon 20 aircraft (shown in 
Figure 14.19). A single-laser system, including pump laser, OPO, beam-conditioning 
optics, power supplies, and control electronics, is integrated into a single housing 
with dimensions of 999 mm × 412 mm × 257 mm. Two of these units are stacked 
over one another. The overall weight at the given high-stiffness requirements for a 
stable transmitter/receiver overlap is minimized by finite-element mechanical simu-
lations. The total weight of this DIAL instrument is 450 kg (with dimensions of 1.7 
m × 1.1 m × 1.2 m). The DIAL horizontal and vertical resolutions range from 150 m 
in the boundary layer to 500 m in the upper troposphere. The accuracy is estimated 
to be 0.6 g/kg.

Compared with the OPO, Raman, and Ti:Sa lasers, the LD-pumped Nd lasers 
operating in the 4F3/2→4I9/2 transition, such as Nd:CLNGG, Nd:CNGG, Nd:YGG at 
935 nm (Löhring et al. 2009; He et al. 2009), Nd:GSAG at 943 nm (Strohmaier et al. 
2007; Kallmeyer et al. 2007, 2009), and Nd:YAG at 944 nm, have a reduced weight 
and are more compact. In addition, due to diode pumping, the Nd-doped lasers are 
more efficient and also more reliable and have longer lifetimes.  

The setup of a transmitter based on an injection-seeded Nd:GSAG laser is shown 
in Figure 14.20. A folded cavity containing the Nd:GSAG laser is used. A 30-mJ 

TABLE 14.3
Transmitter Performance Parameters

Parameter Value

Wavelength (nm) 935 1064 532

Pulse energy (mJ) 45 120 75

Repetition rate (Hz) 100 100 100

Pulse length (ns) 5.5 8 7.5

Beam quality M2 7.6 1.5 1.8

Linewidth (MHz) 150 54 –

Spectral purity (%) ≥99.9% – ≥99.995%

Frequency stability (MHz) ≤30 ≤1 –
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output pulse energy at 942–943 nm is obtained by dual-end pumping with LDs. The 
narrowband output of the Nd:GSAG laser is generated using the injection seeding 
technique. A distributed feedback diode laser is used as seeder, the wavelength of 
which is stabilized by an active control loop based on transmission measurements 
of the seed beam through the absorption cell. The seed beam is injected into the 
laser cavity via the polarizer. To stabilize the output wavelength of the Nd:GSAG 
laser, the cavity length is matched to the wavelength of the seed beam by a PZT ele-
ment attached to the high-reflectivity mirror. The spectral linewidth of the seeded 
Nd:GSAG laser is measured to be 50 MHz, and the spectral purity is 99%. The 
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selection of the H2O absorption line is accomplished by a precise current pulse to the 
diode that has been characterized.

14.4  CONCLUSIONS

Airborne H2O DIAL has been proven to be the most suitable tool for two-dimensional 
water vapor measurements along extended cross sections, with high accuracy and 
spatial resolution. Its measurement range covers the ground to the lower strato-. Its measurement range covers the ground to the lower strato-the lower strato-lower strato-strato-
sphere. The water vapor profiles produced by airborne H2O DIAL improved our 
understanding of water vapor trends and of radiative forcing by water vapor in the 
upper troposphere and lower stratosphere. Moreover, these high-resolution data can 
improve the weather forecast accuracy (such as tropic storm/hurricane). 

Any lidar technique is dependent on the availability of suitable lasers, but for 
DIAL, the requirements are especially inflexible, because the required laser charac-
teristics are determined by the spectra of the molecules to be measured. The biggest 
problem has historically been to develop reliable lasers with outputs at appropriate 
wavelengths. Fortunately, steady progress is being made with tunable laser sources, 
an injection seeding technique, and an active feedback control loop. Tunable lasers 
enable researchers to optimize the wavelength choices. In addition, OPOs and 
LD-pumped solid-state lasers hold the promise of compact, all-solid-state systems.

Continued progress can be expected in the area of multiwavelength DIAL; this 
area of research has already produced larger humidity dynamic range, higher spatial 
resolution, and DIAL accuracy. Ultimately, one might expect that instruments and 
algorithms will be developed to obtain range profiles of multiple gasses simulta-
neously, along with aerosol characteristics. Airborne H2O DIAL systems will, no 
doubt, continue to gain acceptance as costs become lower, reliability gets better, and 
algorithms to provide reduced data in real time are implemented in software.
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15 Global Precipitation 
Estimation and 
Applications

Yang Hong, Sheng Chen, Xianwu Xue, 
and Gina Hodges

15.1  INTRODUCTION

Precipitation is the primary driver of the hydrologic cycle and the main input of hydro-
meteorological models and climate studies. Therefore, accurate measurement of pre-
cipitation at a range of spatial and temporal resolutions is invaluable for a variety of 
scientific applications. However, accurately measuring rainfall has been a challenge 
to the research community predominantly because of its high variability in space and 
time. There are usually two major techniques for precipitation measurement: (1) surface- 
based rain gauges and weather radar and (2) space-based meteorological satellites.

A rain gauge, for instance, collects rainfall directly in a small orifice and mea-
sures the water depth, weight, or volume. Rain gauges provide the best available 
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point measurements of precipitation; however, they suffer from poor spatial coverage 
and lack of areal representation over land, which becomes particularly problematic 
for intense rainfall with high spatial variability. The development of weather radar 
after World War II has dramatically increased our ability to measure high-resolution 
precipitation data in space and time. For example, with the available radar systems, 
regional-scale studies can be performed across the United States, Western Europe, 
and a few other regions across the globe. However, precipitation observations from 
rain gauge networks and weather radar systems are inadequate for obtaining global 
precipitation products and evaluation of weather and climate models at global scales, 
particularly in oceanic, remote, or developing regions. Even in the United States, 
many mountainous regions (e.g., Western United States) also suffer from poor 
ground radar coverage due to significant blockage. The limitations of rain gauges 
and weather radar systems highlight the attraction of space-based meteorological 
satellites to measure global precipitation data for hydrological cycle and climate 
studies.

The estimation of precipitation on a global basis is therefore only viable through 
the utilization of Earth observation satellites. The first meteorological satellite 
was launched in 1960, and since then, a plethora of sensors have been developed 
and launched to observe the atmosphere (Gruber and Levizzani 2008). These sen-
sors fall into two main categories: visible/infrared (VIS/IR) sensors available 
from Geosynchronous Earth Orbit (GEO) and Low-Earth Orbiting (LEO) satel-
lites, and microwave (MW) sensors, currently only available from LEO satellites. 
Consequently, researchers have come to blend VIS/IR and MW sensors flying on GEO 
or LEO satellites over the last three decades for the majority of the information used 
to estimate precipitation on a global basis. The World Climate Research Programme 
(WCRP) established the Global Precipitation Climatology Project (GPCP), which 

�e Global Precipitation Climatology Project (GPCP)

0 5 10(mm/day)
A 25-year precipitation climatology (1979–2003)

based on observations from multiple satellites

FIGURE 15.1  Pattern of average precipitation, or precipitation climatology, over the globe 
showing high rain features of the tropics, dry subtropics, and precipitation patterns associated 
with mid-latitude storm tracks. (Courtesy of NASA.)



373Global Precipitation Estimation and Applications

has been succeeding in producing precipitation data of 2.5° × 2.5° (latitude– 
longitude)  monthly  accumulations of estimates since 1979 (Adler et al.  2003), as 
shown in Figure 15.1. Since 1996, the daily 1° gridded rainfall product has been 
archived under the auspices of the Global Energy and Water Cycle Experiment. In 
recent years, numerous applications of hydrology and water resource management 
have imposed a growing need for precipitation measurements at subdaily sampling 
frequencies (3-h or hourly) and higher spatial resolutions (25 km or down to geosta-
tionary satellite pixel resolution, 4 km). These satellite-based high-resolution precip-
itation products have been developed by combining information from IR, VIS, and 
MW observations (Hsu et al. 1997; Sorooshian et al. 2000; Kidd et al. 2003; Hong et 
al. 2004; Joyce et al. 2004; Turk and Miller 2005; Huffman et al. 2007). 

This chapter provides an overview of satellite remote sensing precipitation esti-
mation sensors, algorithms, and products. Then we briefly introduce potential hydro-
logic applications of the global precipitation datasets. It leads to the application of a 
distributed hydrological model for global and regional flood predictions.

15.2  SATELLITE SENSORS AND PRECIPITATION RETRIEVAL

15.2.1  Review of Satellite SenSoRS

Most of the coverage in satellite precipitation estimates depends on input from two dif-
ferent sets of satellite sensors (Table 15.1). The first major data source for satellite pre-
cipitation estimates is the window channel (~10.7 µm), which consists of IR data that 

TABLE 15.1
Summary of Key Satellites and Sensors Currently Employed by Mainstream 
Precipitation Algorithms from Two Kinds of Orbiting Satellites

Geostationary Satellites

Satellite  Sensor  Spectral Range  Channels  Resolution (km)

GOES E/W GOES I-M Imager Visible and IR 5 1–4

Meteosat 5,7,8 MVIRI and SEVIRI Visible and IR 3–12 1–4

MTSAT Imager Visible and IR 5 1–5

Low Earth Orbiting Satellites

Satellite  Sensor  Spectral Range Channels  Resolution (km)

NOAA 10-12 AVHRR Visible and IR 5 1.1

AMSU A and B PMW 15/5 50

TOVS (HIRS/MSU/
SSU)

Sounder 5 1–4

DMSP F-13/14/15/16 SSM/I and SSM/IS PMW 7

TRMM TMI PMW 9 5–50

PR Radar 1 4.3

MODIS/Aqua AMSR-E PMW 25
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are being collected by the international constellation of GEO satellites. The Climate 
Prediction Center (CPC) of the National Oceanic and Atmospheric Administration 
(NOAA)/National Weather Service merges the international complement of GEO-IR 
data into half-hourly 4 km × 4 km equivalent latitude–longitude grids (hereafter the 
“CPC merged IR”; Janowiak et al. 2001). The IR brightness temperatures (Tb) are cor-
rected for zenith angle viewing effects and intersatellite calibration differences. The 
suite of geostationary satellites is able to continuously monitor the earth, providing 
data every 15 min in the operational mode. 

Compared with the GEO satellite observations, passive microwave (PMW) data 
collected from LEO satellites have a more direct relationship to the hydrometeors 
that result in surface precipitation; however, they suffer from low temporal sam-
pling resolution. These LEO satellites include the Tropical Rainfall Measuring 
Mission (TRMM) Microwave Imager (TMI), Special Sensor Microwave Imager 
(SSM/I) on Defense Meteorological Satellite Program (DMSP) satellites, Advanced 
Microwave Scanning Radiometer-Earth Observing System (AMSR-E) on Aqua, and 
the Advanced Microwave Sounding Unit-B (AMSU-B) on the NOAA satellite series. 
Even merging all of the available PMW observations within every 3-h time window, 
there are still significant coverage gaps, only representative of about 80% of the 
earth’s surface in the latitude band 50°N–S.

15.2.2  iR-BaSed Rainfall eStiMation algoRithMS 

IR methods were among the first to arrive, historically, in the remote sensing of 
rainfall since the late 1970s (Arkin and Meisner 1987). Because satellites measure 
rainfall as an integral of space at a point in time, the sampling frequency (4 × 4 km2 
and 30-min sampling interval) of IR-based rainfall estimation algorithms offer the 
unique advantages of both extensive global coverage as well as relatively high tem-
poral sampling rates. The majority of algorithms attempt to correlate the surface rain 
rate with IR cloud-top Tb using the information extracted from IR imagery. The algo-
rithms developed to date may be classified into three groups, depending on the level 
of information extracted from the IR cloud images. They include cloud pixel–based, 
cloud window–based, and cloud patch–based. Several examples of these algorithms 
may clarify this classification further.

15.2.2.1  Cloud Pixel–Based Algorithms
The Geostationary Operational Environment Satellite (GOES) Precipitation Index 
(GPI) developed by Arkin and his colleagues (Arkin and Meisner 1987) is a cloud pixel 
based algorithm that assigns a constant conditional rain rate of 3 mm/h to pixels with 
a cloud-top temperature lower than 235 K, and zero rain rates otherwise over a 2.5° × 
2.5° area. The GPI is essentially an area–time integral approach to rainfall estimation 
at a large scale.

Another pixel-based algorithm is the auto estimator algorithm, which utilizes a 
power-law function to fit the IR–RR relationship. Pixel rainfall values are further 
adjusted using the hydroestimator (HE) algorithm (Scofield and Kuligowski 2003), 
which takes into account several correction factors, such as relative humidity and 
precipitable water. This method is computationally inexpensive but is subjective 
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with respect to the data pairs selected to fit the power-law curve, resulting in dif-
ficulty implementing this single curve for complex cases. Ba and Gruber (2001) pro-
posed the GOES Multispectral Rainfall Algorithm to combine information from five 
GOES channels to optimize the identification of raining clouds. Calibration of rain 
rate for each indicated raining cloud, referenced by its cloud-top pixel temperature, 
was then completed.

15.2.2.2  Cloud Window–Based Algorithms
Cloud local texture−based approaches retrieve pixel rain rates by extending the map-
ping from one single pixel to a range of the neighborhood pixel coverage. Wu et al. 
(1985) used 24 brightness temperature texture features to retrieve rainfall within a 
neighborhood size of 20 km × 20 km. Hsu et al. (1997) developed the Precipitation 
Estimation from Remotely Sensed Information Using Artificial Neural Networks 
(PERSIANN) system, which calculates rain rate at a 0.25° × 0.25° latitude–longi-
tude resolution, based on the brightness temperature variations in a neighboring cov-
erage of 1.25° × 1.25°.

15.2.2.3  Cloud Patch–Based Algorithms
Cloud patch–based approaches estimate rainfall based on information extracted 
from the entire cloud coverage determined by various segmentation methods. One 
early example of patch-based algorithms is the Griffith–Woodley technique (Griffith 
et al. 1978), which segments a cloud patch with an IR temperature threshold of 253 K 
and tracks it through its life cycle. The Convective–Stratiform technique (Adler and 
Negri 1988) is another example of the cloud patch–based approach. It screens con-
vective cells based on the local minimum of IR temperature and assigns different 
rainfall amounts to convective and stratiform components separately. Pixel rain rates 
are proportionally distributed starting from the coldest pixel to higher temperature 
pixels. Xu et al. (1999) proposed another approach, which determines different 
temperature thresholds by separating the rain/no-rain pixels in a cloud patch using 
SSM/I MW rainfall estimates.

On the basis of the previous cloud-window-based PERSIANN system, Hong et 
al. (2005) developed an automated neural network for cloud patch–based rainfall 
estimation. The self-organizing nonlinear output (SONO) model accounts for the 
high variability of cloud–rainfall processes at geostationary scales (i.e., 4 km and 
every 30 min). Instead of calibrating only one IR–RR function for all clouds, SONO 
classifies varied cloud patches into different clusters and then searches a nonlinear 
IR–RR mapping function for each cluster. This designed feature enables SONO 
to generate various rain rates at a given brightness temperature and variable rain/
no-rain IR thresholds for different cloud types, which overcomes the one-to-one 
mapping limitation of a single statistical IR–RR function for the full spectrum of 
cloud–rainfall conditions. In addition, the computational and modeling strengths of 
neural networks enable SONO to cope with the nonlinearity of cloud–rainfall rela-
tionships by fusing multisource datasets. Evaluated at various temporal and spatial 
scales, SONO shows improvements of estimation accuracy, both in rain intensity 
and in the detection of rain/no-rain pixels. Further examination of SONO adaptabil-
ity demonstrates its potential as an operational satellite rainfall estimation system 
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that uses passive MW rainfall observations from low-orbiting satellites to adjust the 
IR-based rainfall estimates at the resolution of geostationary satellites.

With respect to the use of information, both pixel- and window-based approaches 
utilize limited attributes of the cloud patches. Rain rates retrieved from these 
methods tend to be nonunique and may be insufficient to identify the relationships 
between cloud types and surface rain rates (Hong et al. 2004). Cloud patch–based 
approaches, on the other hand, attempt to include more information from the cloud 
images and are likely to provide a more reliable rainfall retrieval system than the 
pixel-based approaches. Therefore, successful characterization of cloud patch–based 
imagery information can be one step toward better estimation of rainfall.

15.2.3  Mw-BaSed Rainfall eStiMation 

Kummerow et al. (2007) provided a review of the satellite MW-based rainfall esti-
mation algorithms that have evolved steadily from the early Electronically Scanning 
Microwave Radiometer in the 1970s to the current SSM/I, AMSU, and TRMM 
Microwave Imager and Aqua AMSR-E sensors. These algorithms can be roughly 
categorized into three classes: (1) the “emission”-type algorithms (Wilheit et al. 
1991; Berg and Chase 1992; Chang et al. 1999), which use low-frequency channels 
to detect the increased radiances due to rain over radiometrically cold oceans, (2) the 
“scattering” algorithms (Spencer et al. 1983; Grody 1991; Ferraro and Marks 1995), 
which correlate rainfall to radiance depressions caused by ice scattering present in 
many precipitating clouds, and (3) the “multichannel inversion”–type algorithms 
(Olson 1989; Mugnai et al. 1993; Kummerow and Giglio 1994; Smith et al. 1994; 
Petty 1994; Bauer et al. 2001; Kummerow et al. 2001), which seek to invert the entire 
radiance vector simultaneously.

Among these algorithms, the algorithms developed by Wilheit et al. (1991) and 
Kummerow et al. (2001) are used operationally for the TMI as well as the AMSR-E, 
while the algorithms developed by Wilheit et al. (1991) and Ferraro and Marks (1995) 
are used with SSM/I in the GPCP over ocean and land, respectively. More recently 
PMW observations from the AMSU-B instrument have been converted to precipita-
tion estimates at the National Environmental Satellite Data and Information Service 
(NESDIS) with operational versions supported by the algorithm developed by Weng 
et al. (2003). It is most recently described by Ferraro et al. (2005). In each case, 
algorithms have been optimized for the corresponding satellite sensor. Therefore, 
algorithm intercomparison efforts initially aimed at identifying the “best” algorithm 
for all sensors have not made much headway, as each algorithm appears to have 
strengths and weaknesses related to specific applications.

Kummerow et al. (2007) also proposed the next advancement in global precipita-
tion monitoring, which is the Global Precipitation Measurement (GPM) mission. Of 
utmost importance, GPM is a transparent, parametric, and unified algorithm that 
ensures uniform rainfall products across all MW sensors from all satellite platforms. 
A mission of GPM’s scope requires the international community to participate in the 
algorithm development, refinement, and error characterization. A generalized para-
metric framework will avoid the impasse of cross-evaluation of previous MW algo-
rithms that are designed for specific radiometers with defined frequencies, viewing 
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geometries, spatial resolutions, or noise characteristics. Ultimately, such robust algo-
rithms can attribute the differences between sensors to physical differences between 
observed scenes rather than artifacts of the algorithm.

15.3  GLOBAL SATELLITE PRECIPITATION PRODUCTS

15.3.1  MultiSenSoR Blended gloBal PReciPitation PRoductS oveRview

In an attempt to improve the accuracy, coverage, and resolution of global precipitation 
products, researchers have increasingly moved toward using combinations of GEO 
VIS/IR and LEO MW sensors. The first such blending algorithm was performed at 
a relatively coarse scale to ensure reasonable error characteristics. For example, the 
GPCP multisensor combination is computed on a monthly 2.5° latitude–longitude 
grid (Adler et al. 2003) and at 1° daily (Huffman et al. 2001). In the past several years, 
a number of fine-scale estimates were in quasioperational production, including the 
University of California Irvine PERSIANN (Hsu et al. 1997; Sorooshian et al. 2000), 
Climate Prediction Center morphing algorithm (CMORPH) (Joyce et al. 2004), the 
Naval Research Laboratory Global Blended–Statistical Precipitation Analysis (Turk 
and Miller 2005), the TRMM-based Multisatellite Precipitation Analysis (TMPA) 
(Huffman et al. 2007), and PERSIANN Cloud Classification System (PERSIANN-
CCS) (Hong et al. 2004, 2005). Due to page limits, we can only briefly describe the 
GPCP, TMPA, and PERSIANN-CCS operational algorithms, generating global pre-
cipitation products at grid resolutions of monthly 2.5°, 3-hourly 0.25°, and 1-hourly 
0.04°, respectively. To date, the most commonly available satellite global rain prod-
ucts are summarized in Table 15.2.

TABLE 15.2
Summary of Global Satellite Rainfall Products for Studies of Climate, 
Weather, and Hydrology

Product Name Agency/Country Scale Period

GPCP (Adler et al. 2003) NASA/USA 2.5° monthly 1979–

CMAP (Xie et al. 2003) NOAA/USA 2.5° 5-day 1979–

GPCP IDD (Huffman et al. 2001) NASA/USA 1° daily 1998–

TMPA (Huffman et al. 2007) NASA-GSFC/USA 25 km/3-hourly 1998–

CMORPH (Joyce et al. 2004) NOAA-Climate Prediction 
Center/USA

25 km/3-hourly 2002–

PERSIANN (Sorooshian et al. 2000) University of Arizona/USA 25 km/6-hourly 2002–

NRL-Blend (Turk and Miller 2005) Naval Research Lab/USA 10 km/3-hourly 2003–

GSMAP (http://sharaku.eor.jaxa.jp) JAXA/Japan 10 km/hourly 2005–

UBham (Kidd et al. 2003) University of 
Birmingham/U.K.

10 km/hourly 2002–

PERSIANN-CCS (Hong et al. 2004) University of California 
Irvine/USA

4 km/half-hourly 2006–

HE (Scofield and Kuligowski 2003) NOAA/NESDIS 4 km/half-hourly
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15.3.2  gloBal PReciPitation cliMatology PRoject

The first such multisensor blending algorithm is the GPCP combination computed 
on a monthly 2.5° latitude–longitude grid from 1979 to present. The Mesoscale 
Applications and Processes Group at NASA/GSFC developed and computed the 
current GPCP Version 2 Satellite-Gauge dataset based on a variety of input datasets 
provided by other GPCP components (Huffman et al. 1997; Adler et al. 2003). 

GPCP is a mature global precipitation product that uses multiple sources of obser-
vations, including surface information, to permit a more complete understanding of 
the spatial and temporal patterns of global precipitation. The merging of estimates 
from multiple sources takes advantage of the strengths offered by each type: (1) local 
unbiased estimates where rain gauge data are available, (2) physically based MW 
rain rates estimated from LEO satellites, and (3) high-temporal-resolution indirect 
estimates from VIS/IR sensors on GEO satellites. Data from over 6000 rain gauge 
stations together with satellite IR and PMW observations have been merged to esti-
mate monthly rainfall on a 2.5° global grid from 1979 to the present. The GPCP 
Global Precipitation Climatology Centre (GPCC) maintains a collection of high-
quality rain gauge measurements that are used to prepare comprehensive land-based 
rainfall analyses. The careful combination of satellite-based rainfall estimates pro-
vides the most complete analysis of rainfall available to date over the global oceans 
and adds necessary spatial detail and bias reduction to the rainfall analyses over 
land. In addition to the combination of these datasets, careful examination of the 
uncertainties in the rainfall analysis is provided as part of the GPCP products. Given 
its monthly 2.5° resolution, GPCP is of help in representing temporal and spatial 
variations of precipitation for climate change and water cycle studies.

15.3.3  tRMM-BaSed MultiSatellite PReciPitation analySiS algoRithM

According to Huffman et al. (2007), the TMPA is intended to provide a “best” esti-
mate of quasiglobal precipitation from the wide variety of modern satellite-borne 
precipitation-related sensors and surface rain gauge networks. The TMPA estimates 
are produced in four stages: (1) the MW precipitation estimates are calibrated and 
combined; (2) the IR precipitation estimates are created using the calibrated MW 
precipitation; (3) the MW and IR estimates are combined; and (4) the rain gauge 
data are incorporated. Figure 15.2 presents a block diagram of the TMPA estimation 
procedure. Each TMPA precipitation field is best interpreted as the precipitation 
rate effective at the nominal observation time. TMPA provides two standard 3B42-
level products for the research community: the near-real-time 3B42RT and post-real-
time 3B42V6, both available at 3-hourly and 0.25° grid resolution covering the globe 
50°S–N latitude band.

The real-time product, 3B42RT, uses the TRMM Combined Instrument (TRMM 
precipitation radar and TMI) dataset to calibrate precipitation estimates derived 
from available LEO MW radiometers and then merges all of the estimates at 3-h 
intervals. Gaps in the analyses are filled using GEO IR data regionally calibrated 
to the merged MW product. The post-real-time product, 3B42V6, adjusts the 
monthly accumulations of the 3-hourly fields from 3B42RT based on a monthly 
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gauge analysis, including the Climate Assessment and Monitoring System 0.5° × 
0.5° monthly gauge analysis and the Global GPCC 1.0° × 1.0° monthly gauge prod-
uct. The monthly ratio of the satellite-only and satellite–gauge combination is used 
to rescale the individual 3-hourly estimates. Therefore, the gauge-adjusted final 
product, 3B42V6, has a nominal resolution of 3-hourly time steps and 0.25° × 0.25° 
spatial resolution within the global latitude belt 50°S–N. More recently, Huffman 
et al. (2007) have described how the 3B42RT product is scaled using the TRMM 
Combined Instrument. Applying a bias correction without the need for monthly 
gauge accumulations may have significant benefits for real-time users of rainfall 
products, especially in ungauged basins (Figure 15.3).

Although estimates are provided at relatively fine scales (0.25° × 0.25°, 3-hourly) 
in both real time and post real time to accommodate a wide range of researchers, 
the most successful use of the TMPA data is when the analysis takes advantage of 
the fine-scale data to create time/space averages appropriate to the user’s applica-
tion. Huffman et al. (2010) also described that an upgrade for the research quality 
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post-real-time TMPA from version 6 to version 7 (in beta test at press time) is 
designed to provide a variety of improvements that increase the list of input data-
sets and correct several issues. Future enhancements for the TMPA will include 
improved error estimation, extension to higher latitudes, and a shift to a Lagrangian 
time interpolation scheme.

15.3.4  PeRSiann-ccS algoRithM

The PERSIANN-CCS algorithm extracts local and regional cloud features from 
GEO IR satellite imagery, with MW and ground radar rainfall data blending or 
training, in estimating finer-scale (i.e., 0.04° × 0.04°, 30-min) rainfall products. As 
shown in Figure 15.4, this algorithm processes satellite cloud images into pixel rain 
rates by (1) separating cloud images into distinctive cloud patches through a water-
shed segmentation algorithm; (2) extracting pixel-, window-, and batch-level cloud 
features, including coldness, geometry, and texture; (3) clustering cloud patches into 
well-organized subgroups via a self-organizing feature mapping algorithm; and (4) 
mapping the nonlinear cloud-top temperature and rainfall (Tb–R) relationships for 
the hundreds of classified cloud groups by blending with the MW or gauge-cor-
rected radar rainfall database, with one nonlinear fitting curve per cluster. Thus, 
PERSIANN-CCS is able to generate various rain rates at a given brightness tem-
perature and variable rain/no-rain IR thresholds for different cloud types, which 
overcomes the one-to-one mapping limitation of a single IR–RR function for the full 
spectrum of cloud–rainfall conditions. In addition, PERSIANN-CCS offers insights 
into explaining the classified patch features with respect to their pixel rainfall dis-
tributions. PERSIANN-CCS can be used not only as a fine-scale rainfall estimation 
scheme but also as an explanatory tool to analyze the cloud–rainfall system.

FIGURE 15.3  A snapshot of TRMM rainfall across the planet is now possible every few 
hours using multiple satellites. New, advanced satellites also allow for detailed analysis of 
storm rainfall structure through the use of spaceborne radar, including this look at a hurri-
cane eye and surrounding towers of convection. (Courtesy of NASA/TRMM.)
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The PERSIANN-CCS algorithm processes real-time GOES cloud images into 
pixel rain rates as described by Hong et al. (2004). Afterward, an automated neural 
network for cloud patch–based rainfall estimation (SONO) (Hong et al. 2005) has 
been developed to sequentially adjust the real-time product using composite MW 
precipitation estimates from LEO satellite platforms, such as TRMM. The real-
time data from the current version of PERSIANN-CCS are available online both 
at regional (http://hydis8.eng.uci.edu/CCS/) and global scales (http://hydis8.eng.uci 
.edu/GCCS/). PERSIANN-CCS has been evaluated in the continental United States 
for its general performance (Hong et al. 2004, 2005) and in the complex terrain 
region of western Mexico for its ability to capture the climatological structure of 
precipitation with respect to the diurnal cycle and regional terrain features (Hong et 
al. 2007a).

15.4   HYDROLOGICAL APPLICATIONS OF 
GLOBAL PRECIPITION PRODUCTS

There have been numerous applications of satellite precipitation products in climate and 
hydrologic studies (Yong et al. 2010). We implemented a simplified Global Hydrological 
Model (GHM) (Hong and Adler 2008) in the real-time global flood calculations forced 
by TMRMM-based real-time multisatellite rainfall information (http://trmm.gsfc.nasa 
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.gov/). GHM has been run on multiple years of TRMM precipitation data with the 
averaged annual runoff (1999–2008) comparing well with GRDC gauge observations 
(Hong et al. 2007b). It consistently performs well over the locations of 488 gauge stations 
that represent 72% catchment coverage of actively discharging land surface (excluding 
Antarctica, the glaciated portion of Greenland, and the Canadian Arctic Archipelago). 

Since 2010, the second version of GHM, the distributed Coupled Routing and 
Excess STorage (CREST) (Wang et al. 2011) hydrological model, has been jointly 
developed by the University of Oklahoma (http://hydro.ou.edu) and NASA SERVIR 
Project Team (http://www.servir.net). Shown in Figure 15.5a is an example of a real-
time global flood prediction, at 1/8th degree latitude–longitude resolution, using a 
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combination of data from the TMPA rain products, NASA Shuttle Radar Topography 
Mission, and other global geospatial data sets such as the United Nations Food and 
Agriculture Organization soil property, MODIS land use, and land cover types. Shown 
in Figure 15.5b is the hydrograph of Nzoia Basin in Kenya for flood monitoring. 

15.5  CONCLUSIONS

Over the past half century, rapid development of satellite remote sensing techniques 
has provided better precipitation quantification over regions with limited or no 
ground measurements. Since the launch of TRMM (http://trmm.gsfc.nasa.gov) in 
1997, we have witnessed the unprecedented development of various new satellite-
derived precipitation products with quasiglobal coverage. TRMM was the first satel-
lite dedicated to rainfall measurement and is the only satellite that carries IR, VIS, 
and passive/active MW sensors. Now in its 13th year, the TRMM mission has pro-
vided a wealth of knowledge on severe storms and short-duration climate shifts such 
as El Niño. Successes of the TRMM warrant a future ambitious GPM mission being 
launched in 2013 (http://gpm.gsfc.nasa.gov).

As a prelude to GPM, TRMM has exceeded expectations; however, the mission 
has inherent limitations of spatiotemporal coverage and limited sensitivity to frozen 
precipitation. A critical element driving the scientific objectives of GPM is to under-
stand which scientific problems TRMM has not been able to address. The GPM 
mission is an international space network of satellites designed to provide the next-
generation precipitation observations from LEO MW sensors every 2–4 h anywhere 
in the world. GPM consists of both a defined satellite mission concept and ongoing 
scientific collaboration involving the global community. The GPM concept centers 
on the deployment of a “core” observatory carrying advanced active and passive 
MW sensors in a non-Sun-synchronous orbit to serve as a physics observatory to 
gain insights into precipitation systems and as a calibration reference to unify and 
refine precipitation estimates from a constellation of research and operational satel-
lites. When multiple spacecraft are used in conjunction with these active and passive 
remote sensing instruments, the spatial and temporal coverage of global precipita-
tion observations will be improved in the GPM era. It is also expected that future 
GPM algorithms will be able to fully characterize uncertainties at certain space and 
time scales, as desired by users. Such a complete error characterization does not cur-
rently exist and is undoubtedly the great challenge facing the community.
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16 Instantaneous 
Precipitation and Latent 
Heating Estimation over 
Land from Combined 
Spaceborne Radar and 
Microwave Radiometer 
Observations

Mircea Grecu, William S. Olson, 
and Chung-Lin Shie

16.1  INTRODUCTION

Accurate precipitation estimates over land are crucial in hydrologic applica-
tions. Despite the existence of dense networks of weather radars in some regions 
of the globe, there are still large regions of land that are not covered by ground-
based weather radar systems. Although ground-based weather radars, such as Next 
Generation Radar (NEXRAD), can facilitate the derivation of such estimates at the 
regional scale, in many instances, satellite observations are required for quantitative 
precipitation estimation in both terrestrial and oceanic environments. In some occa-
sions, the only areal precipitation estimates in some regions of the world are those 
that can be derived from satellite observations. 

The existence of various passive microwave instruments onboard research and 
operational satellites, along with the upcoming deployment of additional precipitation 
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instruments into space (Hou et al. 2008), makes satellite precipitation estimates 
suitable for hydrologic applications. It is expected that, through the deployment of 
the Global Precipitation Measurement (GPM) Mission (Hou et al. 2008), satellite 
precipitation observations at every location around the world every 2–4 h will be 
globally collected (Hou et al. 2008). The high temporal sampling may significantly 
reduce sampling errors to a level that is acceptable for hydrologic applications. In 
addition to small sampling error, improvements in satellite precipitation estimates 
are expected in the GPM era. These improvements will be achieved through the 
use of high-quality physically consistent databases of precipitation and associated 
brightness temperatures. That is, given the multitude of precipitation profiles that 
can be associated with an instantaneous set of brightness temperatures at a given 
location, a priori information is required to derive unique estimates from satellite 
radiometer observations. Bayesian formulations (Kumerrow et al. 1996; Pierdicca et 
al. 1996) have been extremely popular in the last 15 years in deriving unique physi-
cally acceptable precipitation retrievals from satellite radiometer observations. In 
Bayesian formulations, given a set of instantaneous brightness temperature observa-
tions at a specific location, search procedures are used to determine the precipitation 
profiles in the database that are characterized by brightness temperatures similar 
to the actual observations, and a composite solution is determined on the basis of 
these profiles. Although other retrieval formulations are possible (e.g., the reduction 
of the number of variables through statistical procedures to a small set that can be 
determined through inverse radiative transfer modeling), Bayesian formulations are 
preferable due to their computational efficiency and relative simplicity. 

Before the deployment of the Tropical Rainfall Measuring Mission (TRMM) 
(Simpson et al. 1996), the construction of databases to support Bayesian precipitation 
retrievals from satellite radiometer observations relied on cloud-resolving models 
(CRM) (Kumerrow et al. 2001). However, systematic differences between TRMM 
Precipitation Radar (PR) estimates and TRMM Microwave Imager (TMI) estimates 
derived using databases constructed from CRM simulations were noted (Adler 
et  al.  2000) and were interpreted in various studies (Masunaga and Kummerow 
2005; Grecu and Olson 2006) as potential limitations in CRM-based databases. The 
existence of coincident TRMM PR and TMI observations make possible the devel-
opment of precipitation brightness temperatures databases directly from observa-
tions (Masunaga and Kummerow 2005; Grecu and Olson 2006). Such databases 
were proven to significantly reduce the systematic difference TRMM PR and TMI 
estimates over oceans (Grecu and Olson 2006). Although overland radiometer pre-
cipitation retrieval algorithms have been derived from coincident TRMM PR and 
TMI observations (Grecu and Anagnostou 2001), such algorithms are applicable 
only to TMI-like instruments and therefore not appropriate for the derivation of 
unified satellite precipitation estimates from a variety of instruments envisioned by 
Hou et al. (2008). To derive unified satellite precipitation over land, the TRMM PR 
and TMI observations have to be converted into precipitation and other variables 
to which the satellite radiometer observations are sensitive (e.g., nonprecipitating 
cloud, water vapor, surface emissivity, or surface temperature), from which satel-
lite brightness temperatures can be calculated at frequencies and resolutions spe-
cific to other existent satellite radiometers. Such conversions, commonly known as 
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combined retrievals, had been carried out over oceans (Grecu et al. 2004; Masunaga 
and Kummerow 2005), but to a significantly smaller extent over land. 

The challenges in deriving satellite combined radar–radiometer retrievals over 
land stem from the fact that land is usually characterized by large emissivity, which 
makes it hard to distinguish the precipitation signal from variations in surface emis-
sivity. This is the reason why only high-frequency radiometer observations (37 GHz 
and higher) are directly used in radiometer retrievals over land. Lower frequency 
observations are used to quantify the impact of other factors (e.g., surface emissivity 
and liquid water path) on the brightness temperature observations that are directly 
used in retrieving precipitation. High-frequency radiometer observations over land 
(37 GHz to a certain extent but especially 85 GHz and higher) are highly sensitive to 
the electromagnetic properties of solid precipitation particles (e.g., ice crystal, snow 
flakes, graupel, and hail particles) above the freezing level and significantly less sen-
sitive to properties of liquid-phase precipitation. Nevertheless, because the amount 
of solid precipitation at a given location is correlated to the amount of precipitation 
below the freezing level, it is possible to infer that the surface precipitation from 
observations is mostly sensitive to precipitation particles above the freezing level. 
Brightness temperatures characterized by a surface temperature below the freezing 
temperature are not necessarily easier to interpret, because in such situations, snow 
may accumulate on the ground, which can significantly affect the surface emissiv-
ity. Despite being more ambiguous than over ocean retrievals, combined TRMM 
radar–radiometer precipitation over land are extremely useful, because they can be 
used to construct databases of precipitation and associated brightness temperatures 
for sensors with different geometries, frequencies, and resolutions than those of 
TMI’s. Thus, the utility of coincident PR TMI observations demonstrated by Grecu 
and Anagnostou (2001) and McCollum and Ferraro (2003) can be extended to other 
sensors. An example of such a sensor is AMSU-B (Goodrum et al. 1999) onboard 
the U.S. National Oceanic and Atmospheric Administration satellites. AMSU-B is a 
sensor that features five channels between 89 and 183.30 GHz and a spatial resolu-
tion near a nadir of 15°km. Given the significant different viewing geometry as well 
as the existence of sounding channels, the observed TMI brightness temperatures 
can be used in the development of a precipitation AMSU-B brightness temperature 
database only through a combined PR TMI retrieval.

In this study, a methodology for estimating precipitation and latent heating over 
land from combined radar–radiometer retrieval is presented. A brightness temper-
ature sensitivity analysis that justifies the combined methodology is discussed in 
Section 16.2. Details concerning the mathematical formulation and its solution are 
given in Section 16.3. Implications on the incoming GPM Mission and issues that 
need to be addressed by future research are emphasized in Section 16.4. 

16.2  BRIGHTNESS TEMPERATURE SENSITIVITY ANALYSIS

Although significantly better determined than radiometer-only observations, single-
frequency radar-only observations cannot be uniquely associated with precipita-
tion. This is because the particle size distribution (PSD) variability within radar 
observing volumes exhibits at least two degrees of freedom. That is, at least two 
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independent variables are needed to quantify the variability of PSDs within radar 
observing volumes. The radar reflectivity observations are sensitive to both these 
parameters. Therefore, one cannot accurately describe the PSD within an observing 
volume from a single-parameter radar observation. To mitigate this indeterminacy, 
it is customary in retrievals from spaceborne single-frequency radar observations to 
assume that one PSD parameter can be derived from independent considerations and 
to explicitly retrieve the other parameter (Ferreira et al. 2001; Grecu and Anagnostou 
2002). Specifically, the PSDs are assumed to follow a normalized gamma distribu-
tion, that is, the number of particles of a given size D is

 N D N f D D D Dw( ) ( )( ) exp[ ( . )( )]= − +µ µµ/ /0 03 67 , (16.1)
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Nw(cm–1 m–3) is a normalized concentration parameter equivalent to that of an expo-
nential PSD with the same hydrometeor water content and particle median volume 
diameter D0(cm), and parameter μ is a shape factor. Given the normalized gamma 
distribution, D0 is explicitly retrieved for each bin within a vertical profile of radar 
reflectivity, while only one parameter is used to describe the vertical variability of 
Nw. This parameter is inferred from the condition that physical variables such as path 
integrated attenuation (PIA) and brightness temperatures simulated from the radar 
retrievals are in agreement with the actual observations of these variables. It should 
be mentioned that, although there are no actual PIA observations, PIA estimates can 
be derived from the analysis of the radar surface return (Meneghini et al. 2000). The 
shape factor, μ, has a smaller impact on the reflectivity rain relationships (Ferreira 
et al. 2001) and is usually assumed known.

From the practical perspective, it is useful to determine how sensitive the bright-
ness temperatures simulated from radar retrievals are to the normalized concen-
tration parameter Nw. The simulated PIAs are known to be highly sensitive to Nw 
(Ferreira et al. 2001; Grecu and Anagnostou 2002), but the determination of Nw 
based on PIA estimates from the surface reference technique (SRT) of Meneghini 
et al. (2000) may be subject to large uncertainties, because the SRT PIAs estimates 
are subject to large uncertainties (especially over land). It is therefore beneficial to 
incorporate brightness temperature information into the determination of Nw.

To investigate the sensitivity of simulated brightness temperatures to Nw, TRMM 
observations can be used. Shown in the top panel of Figure 16.1 is a vertical cross 
section through the field of reflectivity observations collected by the TRMM PR over 
Oklahoma on November 30, 2006. The associated water content field derived by the 
application of the radar-only retrieval algorithm of Grecu and Anagnostou (2002) 
is shown in the bottom panel of Figure 16.1. The retrieval algorithm is based on 
an analytical attenuation correction procedure developed by Hitschfeld and Bordan 
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(1954). The PIA derived from the Hitschfeld and Bordan procedure is compared with 
the SRT PIA (which is a standard TRMM product), and if they do not match Nw is 
adjusted. The default values of Nw are set to 2.2 × 104 cm–1 m–3 for stratiform rain and 
2 × 105 cm–1 m–3 for convective rain according to Testud et al. (2000). The adjusted 
values are truncated not to exceed 10 times the default values or be more than 10 
times smaller than the default values. This is because the SRT PIA may be subject 
to quite-large random errors that can affect the retrievals through unrealistic Nw 
values. As explained by Grecu and Anagnostou (2002), TRMM TMI-like brightness 
temperatures can be simulated from the PR-only retrievals. The brightband height 
(which can be readily determined from reflectivity profiles) and a constant lapse rate 
of 6 K km–1 are used to derive the temperature profiles used in the radiative transfer 
calculations.

Whenever the brightband signature is missing, the freezing level is determined by 
interpolation from neighboring profiles. The relative humidity, and cloud water and 
cloud ice profiles are set to fixed predefined values determined from cloud resolving 
simulations of the actual storm sampled by TRMM. Although customized cloud-
resolving simulations for every single storm observed by TRMM are not possible, 
the relative humidity, and cloud and ice profiles can be set on the basis of simula-
tions of similar events. The surface emissivity is set to 0.9. As mentioned before, the 
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FIGURE 16.1  PR reflectivity observations (top) and associated precipitation retrievals (bot-
tom) for a TRMM pass over Oklahoma on November 30, 2006.
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surface emissivity may represent one of the largest sources of uncertainties in the 
interpretation of radiometer observations over land. Although models for simulating 
the surface emissivity as a function of various parameters such as soil moisture, soil 
type, vegetation type, snow depth, soil temperature, and frequency exist, they are 
still under development and likely to undergo improvements through extensive vali-
dation. The strategy in this study is not to mitigate uncertainties in retrieval through 
improved surface emissivity modeling but through retrieval formulations that are 
least sensitive to uncertainties in surface emissivity.

Shown in the top panel of Figure 16.2 is the sensitivity of 85-GHz simulated 
brightness temperatures to PSD-induced changes in the hydrometeor contents. That 
is, retrievals with Nw values slightly different from the radar-only retrievals are per-
formed, and the ratio of brightness temperature differences to the water content dif-
ferences is calculated.

As apparent in Figure 16.2, Nw changes above the freezing level have the most 
significant impact on 85-GHz simulated brightness temperatures. Shown in the bot-
tom panel of Figure 16.2 are differences between perturbed 85-GHz brightness and 
nominal 85-GHz brightness temperature. That is, the nominal parameters used in 
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the calculation of 85-GHz brightness temperatures (i.e., surface emissivity, surface 
temperature, relative humidity profile, and cloud water profile) are modified, and the 
brightness temperatures are recalculated. The differences relative to the nominal 
brightness are displayed in Figure 16.2 in red for 0.05 reduction in the surface emis-6.2 in red for 0.05 reduction in the surface emis-.2 in red for 0.05 reduction in the surface emis-
sivity, blue for 4-K reduction in the surface temperature, green for 10% reduction in 
the relative humidity, and orange for no cloud water. It may be noted in the bottom 
panel of Figure 16.2 that parameters not describing precipitation (i.e., surface emis-6.2 that parameters not describing precipitation (i.e., surface emis-.2 that parameters not describing precipitation (i.e., surface emis-
sivity, surface temperature, etc.) do not have a large impact on simulated brightness 
temperatures in precipitating regions. This is an indication that 85-GHz brightness 
temperatures might be used to improve the estimation of hydrometeors above the 
freezing level. The relative humidity parameterization appears to have an impact 
on 85-GHz simulated brightness temperatures, but uncertainties in describing the 
relative humidity profiles in precipitating regions are not deemed to have as large an 
impact as Nw-induced changes in the hydrometeor water content. In nonprecipitat-
ing regions, it is difficult to interpret the 85-GHz brightness temperature, because 
the surface conditions as well water vapor and cloud water have a notable impact 
on brightness temperatures. This is why precipitation retrieval from passive-only 
observations over land is extremely challenging. Nevertheless, information can be 
extracted from high-frequency radiometer observations in precipitating regions, 
because absorption by precipitation is effective in masking the surface. A general 
methodology to make use of the high-frequency radiometer information in space-
borne radar retrievals is presented next.

16.3  COMBINED RADAR–RADIOMETER ALGORITHM

As previously mentioned, satellite radar–radiometer algorithms were developed and 
applied for retrievals over oceans (e.g., Grecu and Anagnostou 2002; Masunga and 
Kummerow 2005). Little consideration had been given to combined retrievals over 
land because the variability of surface parameters such as emissivity and tempera-
ture had been deemed to considerably limit the informational content of radiometer 
observations. Nevertheless, the analysis in the previous section suggests that, in pre-
cipitating regions, most of the signal in the 85-GHz brightness temperature is sensi-
tive to the electromagnetic properties of hydrometeors above the freezing level. The 
existing radar–radiometer algorithms do not effectively exploit this fact. For exam-
ple, the algorithm of Grecu and Anagnostou (2002) employs only one parameter per 
profile to describe the Nw variability, while Masunaga and Kummerow (2005) used 
an equivalent parameter, namely, the mean particle diameter. Both these algorithms 
feature a variable related to the density of ice particles, but observational and theo-
retical studies (Westbrook et al. 2004) suggest that such a variable is not necessarily 
an independent variable and should be parameterized as a function of the particle 
size diameter rather than independently retrieved. Therefore, it is beneficial to allow 
for more flexibility in the vertical variation of Nw instead of exclusively attributing 
discrepancies between simulated and observed 85-GHz brightness temperatures to 
uncertainties in the ice-phase density parameterization. A general formulation was 
developed by Grecu and Anagnostou (2002) to retrieve precipitation from satellite- 
combined radar–radiometer observations based on the solution of an optimization 
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problem. The function to be minimized is derived from the likelihood of observa-
tions conditioned by the set of variables to be retrieved. Specifically, if X is the set 
of variables to be retrieved (including two-parameter, i.e., Nw, D0, representation of 
precipitation in each radar observing volume), ZM and TB

M are actual observations, 
and Z(X) and TB(X) are model predicted observation, the objective function is
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Superscript T indicates the transpose of a vector. The weighting matrices WZ and WT 
represent the sum of the corresponding observation and model error covariances, 
and WX is the covariance of an a priori estimate of X denoted as MX. PIAs is the 
PIA estimated from the SRT (Meneghini et al. 2000) or other reference not consid-
ering passive observations, and WPIA is the associated error covariance. Covariance 
matrices W can be estimated through simulation experiments as described by Grecu 
and Anagnostou (2002). The low-frequency observations do not have to be excluded 
from the formulation but appropriately weighted in Equation 16.3. Simulations of 
low-frequency brightness temperatures considering various surface conditions is 
conducive to large standard deviations, which will effectively account for indetermi-
nacy in these temperatures in Equation 16.3. 

In the original formulation of Grecu and Anagnostou (2002), the objective func-
tion in Equation 16.3 was reduced to a function of a small number of variables (i.e., 
three), but this kind of reduction can affect the accuracy of retrievals by not making 
optimal use of all available information. From the computational perspective, the 
number of variables does not need to be reduced, the formulation being tractable in 
the form expressed in Equation 16.3. The weighting matrices WX can be efficiently 
handled through a singular value decomposition (SVD). That is, assuming that WX is 
estimated from NA a priori realizations of X that can be stored in a NA by N matrix 
where N is the number of elements in X, one can use the SVD to determine the posi-
tive eigenvalues of WX and the associated eigenvectors. Then, MX–X can be rewritten 
as a function of these eigenvectors, which allows for the transformation of WX into 
diagonal matrix. Thus, Equation 16.3 can be readily implemented and efficiently 
used in real-time applications, provided that an effective mathematical procedure to 
minimize F is used. 

To minimize F, Grecu and Anagnostou (2002) used the gradient-based optimiza-
tion of Byrd et al. (1995) with the gradient evaluated using the adjoint model compiler 
of Giering and Taminski (1998). The efficient evaluation of F’s gradient prohibits the 
use of naïve methodologies (e.g., finite differences) and requires the use of advanced 
techniques such as the derivation of an adjoint model. The adjoint model is practi-
cally the reverse evaluation of the tangent linear model. That is, because the tangent 
model is the product of a sequence of Jacobians of partial transforms, the reverse 
evaluation (starting from the end) of this product is significantly less intensive from 
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the computational standpoint if the Jacobians are sparse matrices. This is the case 
for the one-dimensional (1-D) Eddington radiative transfer model use by Grecu and 
Anagnostou (2002). The derivation of the adjoint for 3-D radiative transfer models 
is more complicated, because given their complexity, automatic differentiation pro-
cedures are likely to encounter difficulties regarding dependencies among variables. 
However, the necessity to develop efficient procedures to evaluate the Jacobian does 
not hinder the use of Equation 16.3 with 3-D radiative transfer models.

An efficient procedure for evaluating the Jacobian can be readily developed for 
3-D Monte Carlo radiative transfer models. Three-dimensional Monte Carlo radia-
tive transfer models have become increasingly popular in recent years (Davis et al. 
2005) and are deemed to be important in the remote sensing of physical variables 
that exhibit strong horizontal variability. Precipitation is such variable, and the use 
of the 3-D Monte Carlo radiative transfer model in precipitation retrievals is likely to 
improve their accuracy. Mathematically, the radiative transfer equation is a Fredholm 
integral equation of the second kind that can be iteratively solved (Farnoosh and 
Ebrahimi, 2008). Monte Carlo solutions of the radiative transfer equation involve the 
evaluation of the associated integrals using statistical methods. That is, any integral 
can be interpreted as the expected value of a random variable. Specifically, if f(x) 
is the function to be integrated on domain D, one can randomly sample a random 
variable in the domain D from an appropriate probability distribution function and 
evaluate the integral as
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If the integral of the derivative of f (x,λ), that is, ∂λ			f (x,λ), is needed, one does not 
have to regenerate random numbers X from p(x) but simply evaluate ∂λ		f (x,λ) for the 
random variables X generated in the evaluation of I. That is,
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Because most of the computational effort is spent in generating X as a function of the 
atmospheric electromagnetic properties, the evaluation of ∂λI does not significantly 
add to the cost of evaluating I. Therefore an improved radiative transfer model can 
be used in Equation 16.3.

Another improvement in the combined retrieval can be achieved through a more 
general radar profiling algorithm to provide the start point in the minimization of F. 
Grecu and Anagnostou (2002) used the Hitschfeld and Bordan (1954) methodology 
to correct for attenuation and derive a radar solution. The limitation in the Hischfeld 
and Bordan approach is that it requires that the specific attenuation in a given radar 
observing volume is a constant power of reflectivity, that is

 k = αZβ	, (16.6)
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where k is the specific attenuation, Z is the reflectivity factor, and α and β are known 
parameters. In addition to the power-law dependence, β has to be constant in range 
for the Hitschfeld and Bordan methodology to apply. Grecu et al. (2011) showed that 
Equation 16.6, with being β constant, does not have to be satisfied if an iterative solu-
tion of an implicit equation is derived. Specifically, a constant in range parameter β 
can be determined such that k = α/Zβ is a weak function of Z in an implicit equation.

In summary, the formulation in Equation 16.3 is general and allows for the deri-6.3 is general and allows for the deri-.3 is general and allows for the deri-
vation of improved estimates of precipitation over land. Improvements are not likely 
to originate in better methodologies to combine the satellite information but in better 
interpretation of satellite information through more accurate and computational effec-
tive physical models. The methodology of Grecu and Olson (2006) can be used to attach 
latent heating profiles to the retrieved precipitation profiles. Specifically, cloud-resolving 
model simulations can be used to create lookup tables of the mean latent heating vertical 
structure and surface precipitation rate. The model heating vertical profiles and surface 
precipitation rates can be sorted by convective–stratiform classification, and the radar 
echo top and mean model heating profiles and surface rain rates can be calculated and 
tabulated as functions of the convective–stratiform class and the radar echo top. Given 
the convective–stratiform classification and the echo-top height, the corresponding 
tabulated heating profile can be extracted and rescaled by the combined surface pre-
cipitation rate estimate. The improved solid-phase precipitation estimates can be used 
to filter out inappropriate cloud model simulations. That is, given that the most recent 
CRMs (e.g., the Weather Research and Forecasting Model) feature several microphysi-
cal schemes, the microphysical schemes producing solid-phase hydrometeors statisti-
cally inconsistent with the combined retrievals can be eliminated from the latent heating 
database. Thus, more realistic latent heating lookup tables can be derived, which will 
facilitate the improvement of the latent heating estimates.

16.4  CONCLUSIONS

In this study, the problem of retrieving precipitation over land from spaceborne 
combined radar and radiometer observations is considered. Combined retrievals 
are deemed superior to radar-only retrievals, but the utility of combined retrievals 
over land has not been fully assessed yet. Difficulties are expected to arise due to 
the high emissivity of land. A sensitivity analysis is performed to assess the main 
cause of variability in 85-GHz brightness temperatures in precipitating clouds. It is 
found that the 85-GHz brightness temperatures are mostly sensitive to the amount of 
hydrometeors above the freezing level. This is an indication that 85-GHz brightness 
temperatures can be used to improve the accuracy of both solid- and liquid-phase 
estimates relative to radar-only retrievals. A general combined retrievals methodol-
ogy is presented in the chapter. The use of 3-D radiative transfer models and efficient 
computational methodologies are likely to facilitate more accurate combined retriev-
als. In particular, the determination of the radiative transfer model Jacobian at the 
same time with the brightness temperatures along with a more flexible radar profile 
algorithm is expected to positively affect the retrievals.

The derivation of combined radar–radiometer precipitation retrievals from over-
land GPM observations can facilitate the development of physically consistent 
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databases of precipitation and associated brightness temperatures. Such databases 
can be successfully used to derive unified overland satellite radiometer precipita-
tion algorithms. Such advancements will be crucial in the achievement of GPM’s 
objectives to improve satellite precipitation estimation using multiple instruments on 
TRMM and other satellites for the preparation of developing knowledge and tech-
niques suitable for transfer to the next-generation constellation-based GPM mission.
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17.1  INTRODUCTION

Soil moisture variability, both in space and time, plays a key role in global water 
and energy cycles. Soil moisture is a key control on evaporation and transpiration at 
the land–atmosphere boundary; thus, real-time monitoring of soil moisture dynam-
ics is very useful not only for understanding land surface–atmosphere interactions 
but also for water and climate studies. In addition, regional drying and wetting of 
soil moisture trends have profound impacts on climate variability, agricultural sus-
tainability, and water resources management (Jackson et al. 1987; Topp et al. 1980; 
Engman 1991). Soil moisture is especially important in arid or semiarid regions, as 
it is the critical hydrologic parameter for effective water resource management in 
these environments. However, unlike other hydrologic variables such as precipita-
tion, soil moisture observations are not readily available with the required space and 
time coverage for global studies. In situ measurements of soil moisture are currently 
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limited to discrete observations at point locations, and such sparse measurements 
cannot be simply extrapolated to represent the highly variable soil moisture at the 
regional or global scale.

Therefore, satellite remote sensing is desired to retrieve global soil moisture 
information that can potentially improve numerical weather prediction, flood risk 
assessment, and agricultural and water management efficiency (Betts et al. 1996; 
Entekhabi et al. 2010). This chapter overviews the remote sensing techniques and 
satellite missions for soil moisture estimations, with particular focus on commonly 
used microwave remote sensing. Due to page limits, the list of the sensors covered in 
this chapter is in no way a complete representation of the numerous remote sensing-
based soil moisture retrieval methods.

17.2  MICROWAVE REMOTE SENSING OF SOIL MOISTURE

Satellite remote sensing instruments used for soil moisture estimations include 
the multispectral scanner, thermal infrared scanner, thematic mapper, synthetic 
aperture  radar (SAR), and microwave radiometers (Walker 1999; Wang and Qu 
2009). The main differences among these sensors and techniques are the wave-
length used from the electromagnetic spectrum, the source of the electromagnetic 
energy, the response measured by the sensor, and the physical relation between the 
response and the soil moisture content. The sensitivity of microwave responses to 
soil moisture variations and the relative transparency of microwaves to the atmo-
sphere make microwave sensors especially well suited for remote sensing of soil 
moisture (Schmugge et al. 1974). More importantly, microwave signals can pen-
etrate, to a certain extent, the vegetation canopy and retrieve information from 
the subsurface (Brown et al. 1992; Engman 1991; Schmullius and Furrer 1992). 
Currently, microwave radiometers are being actively investigated for soil moisture 
estimation; therefore, in this chapter, we briefly discuss microwave techniques, fol-
lowed by a discussion of possible applications at the global scale. 

17.2.1  active MicRowave ReMote SenSing of Soil MoiStuRe

Active microwave sensors are based on the technique of Radio Detection and 
Ranging (RaDaR). This type of method consists of a transmitter that emits the radia-
tion toward the earth’s surface and an antenna that measures the returning backscat-
tered radiation. The strength of the backscattered signal, measured to discriminate 
between dry and wet soils and the time delay between the transmitted and reflected 
signals, determines the distance to the surface. The ratio of the strength of the emit-
ted to transmitted signals, termed the backscattering coefficient, depends on the sur-
face reflectivity and the antenna characteristics (Behari 2005).

Active microwave sensors have shown great potential in high-spatial-resolution 
soil moisture estimation for catchment-based hydrologic applications (Makkeasorn 
et al. 2006). Spaceborne active microwave sensors such as SAR are able to provide 
high spatial resolution (up to 1 m) but have relatively low temporal resolution com-
pared with passive microwave sensors (an important difference between the two 
types of sensors). For example, passive microwave sensors generally provide low 
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spatial resolutions (10 km) with a relatively higher temporal resolution (12–24 h). 
In addition, active microwave sensors are more sensitive to surface characteristics 
such as surface roughness, topographic features, and vegetation canopy than pas-
sive systems (Baghdadi et al. 2008; Ulaby et al. 1996). Examples of spaceborne 
active microwave sensors for soil moisture measurements include Radarsat 2 SAR, 
ENVISAT Advanced Synthetic Aperture Radar (ASAR), and Advanced Land 
Observing Satellite (ALOS) Phased Array Type L-band Synthetic Aperture Radar 
(PARSAR).

17.2.2  PaSSive MicRowave ReMote SenSing of Soil MoiStuRe

Passive microwave sensors measure the self-emitted and/or reflected emission from 
the earth’s surface. A radiometer measures the intensity of radiations from the bare 
soil surface, which is proportional to the product of the surface temperature and 
the surface emissivity, or microwave brightness temperature (Engman and Chauhan 
1995). The amount of energy generated at any point within the soil volume depends 
on the soil dielectric properties and the soil temperature at that point. Passive micro-
wave sensors utilize the 1–10 GHz range (L- to X-band) in the electromagnetic spec-
trum to estimate the soil moisture content. Moreover, L-band radiometers at 1.4 GHz 
and 21-cm wavelength have shown potential for surface soil moisture measurements 
(Entekhabi et al. 1994; Njoku and Entekhabi 1996; Njoku and Kong 1977; Simmonds 
and Burke 1998). In comparison with active microwave sensors, passive observations 
are less sensitive to surface roughness, vegetation, and topography. 

Examples of spaceborne passive microwave sensors for soil moisture measurements 
include the Scanning Multichannel Microwave Radiometer (SMMR) on Nimbus-7, 
the Special Sensor Microwave/Imager (SSM/I) on the Defense Meteorological 
Satellite Program, the Tropical Rainfall Measuring Mission Microwave (TRMM) 
imager, the Advanced Microwave Scanning Radiometer-EOS (AMSR-E) on Aqua, 
the Soil Moisture and Ocean Salinity (SMOS) Mission by the European Space 
Agency (ESA), and the NASA Soil Moisture Active and Passive (SMAP) Mission.

17.3   CURRENT AND FUTURE SATELLITE 
SOIL MOISTURE MISSIONS

17.3.1  aqua aMSR-e gloBal daily Soil MoiStuRe MeaSuReMentS

Global soil moisture is currently obtained from the AMSR-E instrument onboard the 
National Aeronautics and Space Administration Earth Observing System (NASA 
EOS) Aqua satellite launched on May 4, 2002. AMSR-E collects passive micro-
wave data over the globe, allowing the production of a comprehensive dataset of soil 
moisture in regions of low-density vegetation cover. The AMSR-E sensor provides 
potentially enhanced soil moisture estimates in comparison with previous space-
borne radiometers such as SMMR and SMM/I. This improvement can be attrib-
uted to the higher spectral and spatial resolution that ranges from approximately 
60 km at 6.9 GHz to 5 km at 89 GHz (Njoku et al. 2003). The AMSR-E global 
gridded land surface products include daily measurements of surface soil moisture. 
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These measurements are derived from the sensitivity of microwave surface emis-
sivity to the moisture content of the top few centimeters of soil. The availability of 
global daily AMSR-E soil moisture products since 2002 can be potentially useful for 
hydrometerological applications such as drought and flood predictions. Figure 17.1 
shows AMSR-E accumulated seasonal soil moisture maps for 2003.

17.3.2  SMoS MiSSion

The ESA launched the SMOS Mission in November 2009. It is commonly known 
as the Water Mission and is meant to provide new insights into the earth’s water 
cycle and climate. In addition, it aims at monitoring snow and ice accumulation 
and providing better weather forecasting. The mission has a low-Earth, polar, sun- 
synchronous orbit at an altitude of 758 km. An important aspect of this mission is that 
it carries out a completely new measuring technique: the first polar-orbiting space-
borne 2-D interferometric radiometer instrument called the Microwave Imaging 
Radiometer with Aperture Synthesis. This novel instrument is capable of observing 
both soil moisture and ocean salinity by capturing images of emitted microwave 
radiation around a frequency of 1.4 GHz or wavelength of 21 cm (L-band) (Kerr et 
al. 2001; Bayle et al. 2002; Font et al. 2004; Moran et al. 2004). The science goal 
of this mission is to measure soil moisture with an accuracy of 4%, volumetric soil 
moisture at a 35–50 km spatial resolution and 1–3 day revisit time, and ocean surface 
salinity with an accuracy of 0.5–1.5 practical salinity units for a single observation 
at a 200-km spatial resolution and 10–30 days of temporal resolution (Delwart et al. 

JFM AMJ

ONDJAS

Surface soil moisture (g/cm3)

<.06 .08 .10 .12 .14 .16 .18 >.20

FIGURE 17.1  Global mean surface soil moisture derived from AMSR-E data. The top left 
image is for 2003 from January to March (JFM), the top right is from April to June (AMJ), 
the bottom left is from July to September (JAS), and the bottom right is from October to 
December (OND). (Modified from Wagner, W. et al., Nordic Hydrology, 38, 1, 2007. With 
permission from IWA Publishing.)
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2008). It is anticipated that the SMOS data will help improve short- and medium-
term weather forecasts and also have practical applications in areas such as agri-
culture and water resource management. Additionally, climate models and global 
energy and water cycle studies should benefit from having a more precise picture of 
the scale and speed of movement of water in different components of the hydrologi-
cal cycles (Figure 17.2).

17.3.3  SMaP MiSSion

SMAP is one of the four first-tier missions recommended by the National Research 
Council Earth Science Decadal Survey Report. SMAP may provide global views 
of the earth’s soil moisture and surface freeze/thaw state, introducing a new era 
in hydrologic applications and providing unprecedented capabilities to investigate 
the cycling of water, energy, and carbon over global land surfaces. Moreover, these 
estimates are also helpful in understanding terrestrial ecosystems and the hydrologi-
cal processes that interlink the water, energy, and carbon cycles. Soil moisture and 
freeze/thaw information provided by SMAP also lead to improved weather fore-
casts, flood and drought forecasts, and predictions of agricultural productivity and 
climate change. This mission intends to contribute to the goals of the carbon cycle 
and ecosystems, weather, and climate variability earth science focus areas, as well 
as hydrological science.

The SMAP mission will include synthetic aperture radar operating at the L-band 
(frequency: 1.26 GHz; polarizations: HH, VV, HV) and an L-band radiometer (fre-
quency: 1.41 GHz; polarizations: H, V, U). At an altitude of 670 km and a sun-
synchronous orbit, its antenna scan design yields a 1000-km swath, with a 40-km 
radiometer resolution and 1–3 km SAR resolution that provides global coverage 
within 3 days at the equator and 2 days at boreal latitudes (>45°N). The science 
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FIGURE 17.2  SMOS released its first soil moisture map taken on June 12, 2010. Its most 
surprising finding is the unusual wetness in western African and central U.S. soils. (From 
Nature News, Satellite Spots Soggy Soil, Published online June 30, 2010, Nature, doi:10.1038/
news.2010.325, 2010. With permission.)
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goal of SMAP is to provide estimates of soil moisture in the top 5 cm of soil with an 
accuracy of 0.04 cm3/cm3 volumetric soil moisture, at a 10-km resolution, with 3-day 
average intervals over the global land area. These measurements will not be suitable 
for regions with snow and ice, mountainous topography, open water, or dense veg-
etation with total water content greater than 5 kg/m2 (Entekhabi et al. 2010; Das et 
al. 2011). The planned SMAP science data products are shown in Table 17.1. More 
information on the SMAP mission and its capabilities can be found at http://smap 
.jpl.nasa.gov.

17.3.4  SoMe otheR active Soil MoiStuRe SenSoRS

On the basis of the RaDaR technique, active microwave sensors produce electromag-
netic energy and record the amount of energy returned from the illuminated target 
to yield a variable called the backscattering coefficient, which is used to determine 
surface moisture (Ulaby et al. 1986). Over the past three decades, the radar imaging 
technique has evolved from the traditional Real Aperture Radar system before 1978 
to the current widely used SAR system, which artificially synthesizes a large antenna 
using the Doppler history of radar echo generated by the forward motion of moving 
platforms such as aircrafts or satellites. This unique feature of SAR systems can 

TABLE 17.1
SMAP Science Data Product Description, Resolution, and Latency

Data Product Description
Spatial 

Resolution
Median 
Latencya

L1A_Radar Radar raw data in time order — 12 h

L1A_Radiometer Radiometer raw data in time order — 12 h

L1B_S0_LoRes Low resolution radar σo in time order 5 × 30 km 12 h

L1B_TB Radiometer TB in time order 40 km 12 h

L1C_S0_HiRes High-resolution radar σo (half orbit, 
gridded)

1 × 1 km to 
1 × 30 km

12 h

L1C_TB Radiometer TB (half orbit, gridded) 40 km 12 h

L2_SM_Ab Soil moisture (radar, half orbit) 3 km 24 h

L2_SM_P Soil moisture (radiometer, half orbit) 40 km 24 h

L2_SM_A/P Soil moisture (radar/radiometer, half orbit) 9 km 24 h

L3_F/T_A Freeze/ Thaw state (radar, daily composite) 3 km 48 h

L3_SM_Ab Soil moisture (radar, daily composite) 3 km 48 h

L3_SM_P Soil moisture (radiometer, daily composite) 40 km 48 h

L3_SM_A/P Soil moisture (radar/radiometer, daily 
composite)

9 km 48 h

L4_SM Soil moisture (surface and root zone) 9 km 7 days

L4_C Carbon and net ecosystem exchange 3 km 14 days

Source: http://smap.jpl.nasa.gov/science/dataproducts/.
a The SMAP Project will make the best effort to reduce the data latencies beyond those shown in this table. 
b Research product with possible reduced accuracy. 
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generate images of relatively higher azimuthal resolution, even using a physically 
small antenna at longer radar wavelength (i.e., 24-cm L-band). Examples of space-
borne active microwave sensors for soil moisture measurements include Radarsat 2 
SAR, ENVISAT ASAR, and ALOS/PARSAR. Table 17.2 lists the system param-
eters of current commonly used SAR-based radar imaging systems.

As shown in Table 17.2, active microwave sensors for soil moisture estimation gener-
ally suffer from low temporal resolution, an important difference from passive micro-
wave sensors, so there are no SAR-based soil moisture products suitable for daily or 
subdaily hydrological applications on a global basis. However, active microwave sen-
sors have great potential in high-spatial-resolution soil moisture estimation (up to a 1-m 
grid scale) for catchment-based hydrological applications (Makkeasorn et al. 2006). 
Additionally, active sensors are more sensitive to surface characteristics, implying 
potentially higher accuracy of soil moisture estimations (Baghdadi et al. 2008). 

17.4   HYDROLOGICAL APPLICATIONS OF 
SOIL MOISTURE PRODUCTS

Satellite-based soil moisture estimates with global coverage can be useful for many 
research and practical applications across several disciplines, including hydrology, 
meteorology, ecology, and climatology. For example, knowledge of antecedent soil 
moisture conditions provides a key source of predictability for hydrologic modeling. 
Such information can be retrieved from combined active and passive microwave 
instruments aboard spaceborne satellites. In a previous global hydrological runoff 
simulation, the satellite TRMM rainfall product was used as a proxy of antecedent 
moisture conditions by using an antecedent precipitation index (API; Hong et al. 
2007) for regions lacking soil moisture observations. Figure 17.3 shows the AMSR-E 
soil moisture daily data availability in 2005 and also indicates soil moisture generally 
correlates with API, but the coefficient becomes saturated after 9-day antecedence. 

TABLE 17.2
System Parameters of Different SAR-Based Active Microwave Sensor 
Platforms for Soil Moisture Estimation

System Parameters Radarsat 2 SAR ENVISAT ASAR ALOS PALSAR

Incidence angle 20°–50° 23° 10°–51°
SAR band C C L

Wavelength (cm) 5.7 5.7 23

Polarization HH VV HH, VV, VH, HV

Resolution (m) 3–100 30 10–100

Revisit (day) 24 35 46

Source: Modified from Hossain, A. K. M. A. and Easson, G., Microwave Remote Sensing of Soil Moisture 
in Semi-arid Environment, Geoscience and Remote Sensing, Pei-Gee Peter Ho (Ed.), ISBN: 978-
953-307-003-2, InTech, Available from http://www.intechopen.com/articles/show/title/micro wave-
remote-sensing-of-soil-moisture-in-semi-arid-environment, 2009.
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Additionally, the spatial information of soil moisture provided by AMSR-E remotely 
sensed data has considerable potential to improve hydrological prediction at large 
scale. The anticipated SMAP mission is expected to be better suited than the current 
AMSR-E for hydrological simulation.

In a recent validation study of SMOS soil moisture product, Juglea et al. (2010) 
simulated the soil moisture of a whole SMOS pixel at 50 × 50 km in Spain for the 
period 2004–2008 using a land surface model called Soil–Vegetation–Atmosphere–
Transfer (SVAT). Ground and meteorological measurements over the 50-km grid 
area are used as the inputs to the SVAT model, and the simulated results are com-
pared with ground in situ soil moisture observations and remote sensing soil moisture 
data from the AMSR-E and the European Remote Sensing Satellites Scatterometers. 
Juglea et al. (2010) concluded that the SVAT model simulated soil moisture data are 
adequate for validating the SMOS soil moisture estimation and also expected future 
works of simulating the SMOIS brightness temperature into the SVAT model as part 
of the SMOS validation activities.  

17.5  CONCLUSIONS 

This chapter summarized the satellite remote sensing sensors commonly used 
for soil moisture estimation, with a particular focus on microwave remote sens-
ing methods. Both passive and active microwave remote sensing methods are 
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FIGURE  17.3  (a) AMSR-E effective daily soil moisture count (days) for year 2005. 
(b) Boxplots of correlation coefficient between AMSR-E soil moisture and TRMM multisatellite 
precipitation analysis–based API.
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introduced, and mainstream soil moisture satellite missions such as Aqua, SMOS, 
and SMAP are described. With the all-weather capabilities of microwave satellite 
remote sensing, these instruments render the unique opportunity for research and 
applications. Nevertheless, ground validation of satellite-derived data is a crucial 
aspect of these earth observation missions.

The availability of global daily soil moisture products provided by satellite 
remote sensing undoubtedly have substantial potential to improve global energy and 
water cycle studies. However, the utility of these observations has not been fully 
employed in hydrologic applications. One reason is the relatively coarser spatial 
resolution of these estimates, which range up to tens of kilometers. Nonetheless, to 
take full advantage of the future missions such as the SMAP Mission, to be launched 
in 2014, innovative new algorithms to assimilate the soil moisture products into 
physics-based hydrologic models are needed. It is anticipated that the more accu-
rate and higher resolution measurements of soil moisture and soil freeze/thaw states 
from SMAP will improve our understanding of regional water balance, ecological 
productivity, and hydrological processes that connect the energy, water, and carbon 
cycles.
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18.1  INTRODUCTION

Environmental changes and human activities can alter the earth’s ecosystems and 
biogeochemical cycles, which are critical to sustaining the earth’s living environ-
ment. Ecosystems respond continuously to environmental change and variability as 
well as to numerous disturbances caused by human activities and natural events. 
Responses include changes in ecosystem distribution and extent, impacts on natural 
resources (e.g., food, fiber, fuel, and pharmaceutical products), ecosystem services 
(e.g., treatment of water and air, climate and weather regulation, carbon and nutri-
ent storage and cycling, habitat, maintenance of water resources), and variations in 
fundamental processes, including exchanges of energy, momentum, trace gases, and 
aerosols with the atmosphere, which in turn influence climate. Vegetation properties 
are key elements in the study of the global carbon cycle and ecosystems. Monitoring 
global vegetation properties from space can contribute significantly in improving our 
understanding of land surface processes and their interactions with the atmosphere, 
biogeochemical cycle, and primary productivity. 

One commonly used tool in vegetation monitoring is a remote sensing–based 
index such as the normalized difference vegetation index (NDVI) derived from opti-
cal satellite sensors, which are mainly dependent on the green leaf material of the 
vegetation cover (Tucker 1979; Huete 1988; Myneni et al. 1995a,b; Gitelson et al. 
1996). NDVI is directly related to the photosynthetic capacity (i.e., the live green 
material of the vegetation) and, hence, energy absorption of plant canopies (Myneni 
and Ganapol 1992; Sellers et al. 1992; Inoue et al. 2007). NDVI observations have 
significantly improved our understanding of the characteristics and variability of 
vegetation cover at the pixel, local, regional, and global scales. Numerous vegeta-
tion properties have been derived from NDVI. Examples include leaf area index 
(Chen and Cihlar 1996; Fassnacht et al. 1997; Turner et al. 1999; Haboudane et al. 
2004), photosynthetically active radiation (Asrar et al. 1984; Hatfield et al. 1984; 
Choudhury 1987; Baret and Guyot 1991; Asrar et al. 1992; Myneni and Williams 
1994; Friedl and Davis 1995; Myneni et al. 1997; Cohen et al. 2003), chlorophyll 
concentration in leaves (Yoder and Waring 1994; Gitelson and Merzlyak 1997; Broge 
and Leblanc 2000; Daughtry et al. 2000; Dawson et al. 2003; Sims and Gamon 
2003), above-ground biomass (Todd et al. 1998; Labus et al. 2002; Foody et al. 
2003), net primary productivity (Ruimy et al. 1994; Hunt 1994), fractional vegeta-
tion cover (Purevdorj et al. 1998; Gitelson et al. 2002), and vegetation water content 
(Tucker 1980; Ceccato et al. 2001).

Calculation of the NDVI is sensitive to a number of perturbing factors that include 
(1) atmospheric effects (the actual composition of the atmosphere with respect to 
water vapor and aerosols); (2) clouds (deep, thin, shadow); (3) soil effects (moisture 
state, color); (4) snow cover and anisotropic effects (geometry of the target); and (5) 
spectral effects (different instruments). These factors introduce uncertainty in quan-
titative assessments. A major limitation of the NDVI and similar indices is that the 
optical sensors can only monitor a very thin layer of the canopy. They cannot provide 
information on woody biomass and total above-ground live carbon, which are of great 
interest to carbon cycle modeling and ecological applications. However, frequent cov-
erage and high spatial resolution are of great benefit in the application of the data.
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It is well known that passive microwave sensors are sensitive to variations in 
vegetation properties in a relatively thick layer of the canopy. However, current sat-
ellite sensors such as Advanced Microwave Scanning Radiometer (AMSR-E), the 
Tropical Rainfall Measuring Mission Microwave Imager, and WindSat have coarse 
spatial resolutions (a few tens of kilometers). In comparison with optical sensors, 
passive microwave sensors can be used both day and night, can penetrate clouds (all 
weather), and are less affected by atmospheric conditions. Collectively, these satel-
lites have a long period of record and might be useful as either a primary or comple-
mentary tool for assessing the impacts of global climate change on carbon cycling 
and ecosystem variability, or vice versa. 

Deriving vegetation information from passive microwave instruments has been 
explored in previous studies. Some of the earliest investigations (Choudhury and Tucker 
1987; Choudhury et al. 1987) showed that microwave polarization difference tempera-; Choudhury et al. 1987) showed that microwave polarization difference tempera- et al. 1987) showed that microwave polarization difference tempera-showed that microwave polarization difference tempera-
tures (MPDT) at 37 GHz were highly correlated to NDVI in arid and s emiarid regions 
and related to variations in leaf water content (Pampaloni and Paloscia 1986; Kerr and 
Njoku 1990; Jackson and Schmugge 1991; Le Vine and Karam 1996; Njoku and Li 
1999). Based on the microwave radiative transfer theory and field measurements, we 
know that MPDT is affected not only by the vegetation properties but also by the sur-affected not only by the vegetation properties but also by the sur- by the vegetation properties but also by the sur-but also by the sur-sur-
face effective reflectivity (soil moisture and roughness) and the physical temperature.  

To minimize the physical temperature effects, Becker and Choudhury (1988) 
p roposed the normalized microwave polarization difference index C ∙ (TBv – TBh)/ 
(TBv + TBh) for a given frequency, where C is a scale factor. Here TBv and TBh are the 
brightness temperature for horizontal h and vertical (v) polarization. This is also 
referred to as the normalized polarization index (PI; Paloscia and Pampaloni 1992). 
They derived a microwave vegetation index based on the difference in normalized 
brightness temperature (normalized by thermal infrared measurements) at two fre-
quencies, ∆Tn = Tn( f2) – Tn( f1). This approach was used for detecting the biomass 
and water conditions of agricultural crops using data at 10 and 36 GHz. The impact 
of physical temperature on vegetation properties derived using this technique is 
minimal (Justice et al. 1989; Paloscia and Pampaloni 1992; Njoku and Chan 2006). 

The microwave vegetation indices described above can be useful if all other per-
turbing factors are uniform. However, depending on the sensor frequencies and the 
level of vegetation present, they can be significantly affected by soil emission varia-
tions resulting from soil moisture and surface roughness conditions. This problem can 
limit the value of such a product in global vegetation monitoring. In a recent study, 
Njoku and Chan (2006) developed a combined vegetation and surface roughness 
parameter using multitemporal AMSR-E data analyses. Most of the variation of this 
estimated parameter could be attributed to changes in vegetation water content. 

Another index, defined as the microwave emissivity difference vegetation index 
(EDVI), 2(TBp( f1) – TBp( f2))/(TBp( f1) + TBp( f2)), was proposed by Min and Lin (2006). 
It was intended for application to dense forest conditions using 19- and 37-GHz 
observations, where both measurements do not “see” the ground surface. It was dem-
onstrated that the EDVI was more sensitive to and correlated with evapotranspiration 
than the NDVI and that it could be used to estimate turbulent flux.  

The advantages and disadvantages of the optical-based NDVI and microwave-
derived vegetation indices in monitoring vegetation properties (MPDT and PI) were 
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demonstrated by Becker and Choudhury (1988) and Justice et al. (1989). NDVI 
mainly responds to a thin layer of the canopy (leaves), while a microwave index 
includes information about both the leafy and woody parts of the vegetation due 
to greater penetration and sensitivity. In the current work, it is our hypothesis that 
the microwave-derived vegetation indices can provide vegetation information that is 
complementary to that provided by optical sensors. 

In deriving vegetation indices from satellite measurements using either optical or 
microwave observations, we face two problems: the effects of the atmosphere and 
the background (surface underlying the vegetation) signals. Microwave observations 
are less affected by atmospheric conditions than traditional optical methods. On the 
other hand, the variability in the background emission signals resulting from the 
soil state can have a greater effect on the microwave observations than when using 
optical sensors that only sense the canopy. Not accounting for the variability in the 
background contribution is a major reason why the microwave vegetation indices 
derived in the previous studies may have not been widely used in monitoring global 
vegetation information. The effect of the background emission signal must be incor-
porated to derive a reliable and useful vegetation index.

In this chapter, we explore and demonstrate a new technique for deriving micro-chapter, we explore and demonstrate a new technique for deriving micro- we explore and demonstrate a new technique for deriving micro-
wave vegetation indices (MVIs) using passive microwave radiometer AMSR-E data 
(Kawanishi et al. 2003). Unlike microwave vegetation indexes derived in previ-. Unlike microwave vegetation indexes derived in previ-
ous studies, the MVIs derived here are independent of soil surface emission signals 
and depend only on vegetation properties such as vegetation fractional coverage, 
biomass, water content, temperature, the characteristics of the scatterer size, and 
the geometry of the vegetation canopy. This method provides a new opportunity 
to establish a long-term global dataset for monitoring vegetation cover using all-
weather passive microwave instruments. In the next section, the physical principles 
and the methodology used to develop the new MVIs based on the AMSR-E sen-
sor configuration are introduced. In Section 18.3, how the MVIs can be derived 
from AMSR-E measurements is described, and their general characteristics are dis-
cussed as well. Comparisons of the MVIs and NDVI (Moderate Resolution Imaging 
Spectroradiometer [MODIS]) in assessing the global vegetation pattern during dif-
ferent seasons and for specific land cover types are presented in Section 18.4, which 
is followed by our conclusions obtained from this study in Section 18.5.

18.2   THEORETICAL BASIS OF THE NEW 
MICROWAVE VEGETATION INDICES

18.2.1  MicRowave eMiSSion Model 

The microwave emission model that we used to derive the microwave vegetation indices 
is the ω–τ model derived from a zeroth-order radiative transfer solution (Ulaby et al. 
1982). This model is commonly used to describe microwave signals at low frequencies 
and employed as an inversion model to retrieve soil moisture information for AMSR-E 
(Njoku et al. 2003, 2006). For a satellite footprint with a fraction of vegetation cover Fv 
at a given viewing angle and frequency f, the measured brightness temperature without 
considering atmospheric effects can be written as a four-component model:
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where ε is the emissivity, and L = exp(–τ/cos(θ)) is the one-way attenuation factor. 
The variables θ and τ are the sensor viewing angle and the optical thickness of veg-
etation canopy. The superscripts v and s in Equation 18.1 indicate the vegetation and 
soil components, and the subscript p is for the polarization status. The emissivity 
of the vegetation canopy is given by ε ωp

v
pL= − ⋅ −( ) ( )1 1 . Rp

e
p
s= −1 ε  is the surface 

effective reflectivity. Tv and Ts are the vegetation and soil temperatures, respectively. 
The first term in Equation 18.1 is the upward emission signal from the vegetation 
canopy. The second term is the downward vegetation emission signal reflected back 
by the soil surface after passing through the vegetation cover again. The third term 
is the soil emission signal after it passes through the vegetation cover. The last term 
is the direct soil emission signal that is not affected by the vegetation cover with (1 – 
Fv) for the fraction of the bare surface within the footprint that can be seen under the 
sensor viewing angle. Equation 18.1 can be rearranged as a two-component model:
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Equation 18.2 indicates that the measured brightness temperature at a given fre- indicates that the measured brightness temperature at a given fre-indicates that the measured brightness temperature at a given fre-
quency f and polarization p can be linearly related to the soil surface emissivity. The 
intercept of this linear relation in Equation 18.2 is a product of vegetation tempera-
ture and the vegetation emission component that includes the direct vegetation emis-
sion signal and the part of the reflected vegetation emission signal. For simplicity, we 
denote the intercept of Equation 18.2 as the vegetation emission component:
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(18.3)

The slope of this linear relation in Equation 18.2 is a product of temperatures and 
the vegetation effect, which is related to the overall transmissivity. We simply denote 
this as the vegetation transmission component:

 
V f F F L f T F f L f Tt v v p s v p

v
p v( ) [ ( )] [ ( ) ( )]= − + ⋅ ⋅ − ⋅ ⋅1 ε .

 (18.4)

The first term in Equation 18.4 is directly related to the background soil surface emis-
sion signals. The second term in Equation 18.4 is the reflected vegetation emission 
signal. Both the slope Vt and intercept Ve are functions of the vegetation fractional 
cover, temperature, and other physical properties, including the biomass, water 
content, and characteristics of the scatter size, shape, and orientation of vegetation 
canopy. As shown in Equations 18.3 and 18.4, as the vegetation optical thickness 
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increases, the vegetation emission component Ve will increase, and the vegetation 
transmission component Vt will decrease at a given frequency, vegetation fraction 
cover, and physical temperature. For bare surfaces, when Fv is zero Ve will be zero, 
and Vt/Ts will be unity. On the other hand, Vt will approach zero for very thick veg-
etation cover such as a very dense forest when the sensor cannot “see” the ground. 
Typically, Ve is a positive number (greater than zero), and Vt/Ts is a number between 
zero and unity for vegetated surfaces when Ts ≈ Tv. 

18.2.2   chaRacteRiSticS of BaRe SuRface eMiSSion SignalS 
in two adjacent aMSR-e fRequencieS

To characterize the frequency dependence of surface emission signals with the 
objective of minimizing the effects of the ground surface emission signals in deriv-
ing microwave vegetation indices, we first evaluated the characteristics of bare sur-
face emission signals at different AMSR-E frequencies. This was done by generating 
a simulated surface emission database for the sensor parameters of AMSR-E with 
frequencies, 6.925, 10.65, and 18.7 GHz of polarizations v and h, and an incidence 
angle of 55° using the advanced integral equation model (AIEM) (Chen et al. 2003). 
This database included a wide range of volumetric soil moistures (2%–44% at a 2% 
interval). Surface roughness parameters included the root mean square (rms) height 
from 0.25 to 3 cm at a 0.25-cm interval and correlation length from 2.5 to 30 cm at a 
2.5-cm interval. In total, there were 2904 simulated emissivities for each frequency 
and polarization. The commonly used Gaussian correlation function was used in 
the simulation, since it is a good approximation for the microwave measurement 
frequencies of this study. 

Figure 18.1 shows the entire set of AIEM model simulated surface emissivities, 
with X-band 10.65 GHz as the x-axis. The corresponding emissivities for the same 
surface properties (soil moisture and roughness properties) of C-band 6.925 GHz and 
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FIGURE 18.1  Relations of AIEM model simulated surface emissivities at 55° for the dif-
ferent frequencies.
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Ku-band 18.7 GHz are plotted as the y-axis on the top and bottom rows, respectively. 
From the left to right columns, the plots are for V, H, and V&H polarizations, respec-
tively. The V&H plots are the plots where both simulated emissivities of the V and 
H polarizations are on the same plot. Based on Figure 18.1, we noted the following 
characteristics of the frequency dependence of the bare surface emission signals at 
6.925, 10.65, and 18.5 GHz:

• Bare surface emissivity always increases as the frequency increases for 
the same soil moisture and roughness properties. It was shown in a study 
to develop a parameterized surface emission model (Shi et al. 2005) that 
the surface roughness effect on bare surface emission signals has a similar 
magnitude at our study frequencies. The change in surface emissivity as 
a function of frequency is mainly due to the frequency dependence of the 
dielectric properties of the soil liquid water properties. Higher soil moisture 
will result in a larger difference in surface emissivities at different frequen-
cies than for low-soil-moisture conditions. The larger frequency difference 
will lead to greater surface emissivity differences than that at smaller fre-
quency differences. This can be seen by comparing the top (10.65 GHz 
versus 6.925 GHz with 3.625 GHz frequency difference) and bottom (10.65 
GHz versus 18.7 GHz with 8.05 GHz frequency difference) row plots in 
Figure 18.1.

• The bare surface emissivities at two adjacent frequencies of AMSR-E are 
highly correlated and can be approximated by a linear function. These 
relations are neither affected by soil moisture nor by surface roughness 
properties. Therefore, they can be used for a wide range of soil conditions.

• These linear relations for soil emissivities at two adjacent AMSR-E 
frequencies are minimally affected by the polarization status (right-side 
column of Figure 18.1). 

Therefore, we can describe the bare surface emissivities at two adjacent AMSR-E 
frequencies as a linear function as

 
ε εp
s

p
sf a f f b f f f( ) ( , ) ( , ) ( )2 1 2 1 2 1= + ⋅ , (18.5)

where the a and b parameters are independent of polarization and depend only on the 
pair of frequencies used. They can be determined by the regression analyses using 
the AIEM model simulated database. For the AMSR-E sensor
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p
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The errors generated by Equations 18.6 and 18.7 are generally negligible. The 
root mean square errors of the relative error represented by Equation 18.6 when 
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using all AIEM simulated surface emissivities are 0.35% and 0.63% for the v and h 
polarizations, respectively. For Equation 18.7, they are 0.8% and 1%, respectively.

The relation of bare surface emissivities between two adjacent AMSR-E frequen-
cies as described above is a key discovery that makes it possible to minimize the 
effects of the soil surface emission signals when deriving the MVIs that are only 
related to vegetation properties. 

18.2.3  develoPMent of MicRowave vegetation indiceS 

The second radiative transfer model at a given frequency can be rearranged as
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By inserting Equation 18.8 into Equation 18.5 with the two adjacent frequencies of 
AMSR-E measurements at a given polarization, we can cancel out the surface emis-a given polarization, we can cancel out the surface emis-, we can cancel out the surface emis-
sivities and obtain
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Rearranging Equation 18.9, we obtain 
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where
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and 
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(18.12)

Equation 18.10 indicates that brightness temperature observations at a given polari-
zation p observed with two adjacent AMSR-E frequencies can be described as a linear 
function. The intercept Ap and slope Bp of this linear function in Equation 18.10 are 
the microwave vegetation indices that are defined in this study. They are indepen-
dent of the underlying soil/surface signals and dependent only on vegetation proper-
ties such as the vegetation fraction cover, temperature, biomass, water content, and 
characteristics of the scatter size, shape, and orientation of vegetation canopy. 
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18.3   DERIVATION OF THE MICROWAVE VEGETATION 
INDICES FROM SENSOR MEASUREMENTS AND 
THEIR PHYSICAL CHARACTERISTICS 

18.3.1   deRivation of MicRowave vegetation indiceS 
fRoM aMSR-e MeaSuReMentS

At the passive microwave footprint scale, the observed vegetation canopy signals 
represent the overall effect of the mixture of different vegetation canopy types pres-the mixture of different vegetation canopy types pres- different vegetation canopy types pres-y types pres- types pres- pres-
ent. When many different types of vegetation canopies with different scatter sizes, 
shapes, and orientations are averaged, we may reasonably assume that there is no 
significant impact on the polarization dependence of the vegetation signals. This 
assumption has been widely used in many studies for deriving soil moisture and 
vegetation properties using passive microwave sensors (Owe et al. 2001; Paloscia 
et al. 2006; Njoku and Chan 2006; van de Griend and Wigneron 2004), although 
it needs to be further investigated. On the basis of this assumption, the vegetation 
components of Ve in Equation 18.3 and Va in Equation 18.4 and the microwave veg-
etation indeces Ap and Bp in Equation 18.10 will be independent of polarization. The 
polarization difference of brightness temperature at a given frequency can be used to 
eliminate the effects of the vegetation emission component Ve( f ), that is

 T f T f f f V fBv Bh v
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h
s

t( ) ( ) ( ( ) ( )) ( )− = − ⋅ε ε . (18.13)

As it can be seen from Equation 18.5, the polarization difference of ground surface emis-
sivity at adjacent AMSR-E frequencies is ε ε ε εv
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Therefore, the ratio of the polarization difference of ground surface emissivity at adjacent 
AMSR-E frequencies is a constant of b(f1,f2), because the parameters a(f1,f2) and b(f1,f2) 
in Equation 18.5 are polarization independent. Using this property and Equation 18.13, 
we can derive the Bp parameters of the MVIs that are not affected by ground surface 
emission signals by using the ratio of the polarization differences obtained from two 
adjacent AMSR-E frequencies, that is
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Using the ratio shown in Equation 18.14 results in the cancellation of the effects 
of ground surface emission signals and the derivation of the microwave vegetation 
index Bp parameters, as defined in Equation 18.11. At this point, the subscript p in 
the Bp parameter is dropped, since it is no longer dependent on the polarization status 
for the B parameter of MVIs derived by Equation 18.14, since the assumption of no 
polarization dependence for the vegetation components has been made. Furthermore,  
similar to the B parameter derivation, the A parameter that was defined in Equation 
18.12 can be estimated from the average of both v and h polarization measurements:
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Based on Equations 18.14 and 18.15, these microwave vegetation indices, the A and 
B parameters, can be directly derived using dual-frequency and dual-polarization 
measurements. 

18.3.2  geneRal chaRacteRiSticS of MicRowave vegetation indiceS

For a given frequency pair of the sensor, we expect that the sensor will have specific 
penetration limitations over different land cover vegetation types and properties. It is 
important to understand the behavior of the estimated MVIs under different penetra-
tion conditions typical of different vegetation covers. 

For bare surfaces, the estimated B parameter will approach the coefficient b( f1,f2) 
that is used to describe the linear relation of bare surface emission signals between 
two adjacent AMSR-E frequencies. This would be very close to unity, as shown in 
Equations 18.6 and 18.7. The estimated A parameter would be very close to a( f1,f2) ∙ 
Ts and on the order of several kelvin, since a( f1,f2) could be very small (Equations 18.6 
and 18.7). 

For vegetated surfaces, when the sensor can partially “see” through the vegetation 
canopy at both AMSR-E frequencies, the A parameter increases and the B param-
eter decreases as the vegetation canopy becomes thicker. This is because the fre-
quency dependence of the vegetation emission component increases as the frequency 
increases for the same type of vegetation canopy. Therefore, the Ve( f2) at a higher 
frequency is always greater than that of Ve( f1) at a lower frequency due to the larger 
vegetation emission signal at the higher frequency than that at the lower frequency 
for the same vegetation canopy properties. This leads to the A parameter having a 
positive value (>0) and increasing as the vegetation canopy becomes thicker, which 
can be seen in Equation 18.14. However, the A parameter is affected not only by the 
vegetation properties but also by the surface physical temperature (Equations 18.3 
and 18.12). The B parameter, on the other hand, exhibits the opposite behavior. This 
is because the B parameter describes the ratio of the transmission component Vt( f2)/
Vt( f1) at two frequencies and decreases as the vegetation canopy becomes thicker. 
Thicker/Denser vegetation cover corresponds to more attenuation by the vegeta-
tion canopy. Since the transmission component Vt is inversely related to the optical 
thickness of the vegetation canopy, a smaller vegetation transmission component is 
expected at the higher frequency than that at the lower frequency for the same veg-
etation physical properties. As a result, the B parameter has a range of values between 
0 and 1, since Vt( f2) ≤ Vt( f1) for f2 > f1. As can be seen from Equations 18.4 and 18.11, 
the microwave vegetation index B parameter is insensitive to the physical tempera-
ture, because the ratio of Vt( f2)/Vt( f1) minimizes the physical temperature effects as 
described (Equation 18.14), as long as Tc ≈ Ts. Therefore, the B parameter is mainly 
affected by the vegetation properties and not the surface physical temperature.

For vegetated surfaces, when the sensor at only one frequency f1 can “see” through 
the vegetation canopy but the other cannot (frequency f2 of AMSR-E measurements), 
the estimated A and B parameters exhibit a wide range, depending on the vegetation 
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fraction cover Fv and homogeneity of the surface emissivity properties. For surfaces 
fully covered by vegetation, Fv = 1, no ground surface emission signal can be mea-
sured at frequency f2. The estimated B would be close to zero, since Vt( f2) = 0. For 
partially covered surfaces, 0 < Fv < 1, the derived B parameter from Equation 18.14 
becomes
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since Vt( f2) = (1 – Fv) ∙ Ts when setting Lp = 0 for a nonpenetrable vegetation canopy. 
Since 1 – Fv in the numerator of Equation 18.16 is always less than the term 1 – Fv + 
Fv ∙ Lp( f1) – F p pv

v
1L f⋅ ⋅ε ( ) in the denominator of Equation 18.16, the vegetation com-

ponent of B(  f1,f2) is always less than unity. However, there are large uncertainties 
in the derived B parameters that mainly result from the spatial inhomogeneity char-
acteristics of the surface emission signals, depending on how significant the differ-
ences are between the surface emission signals ( ( ) ( ))ε εv

s
h
s

sf f T2 2− ⋅  in the vegetation 
gaps (only partial of the footprint) observed by the high-frequency channel and those 
of ( ( ) ( ))ε εv

s
h
s

sf f T1 1− ⋅  observed from the whole footprint by the low-frequency chan-
nel. For instance, if the soil surface in the openings between the vegetation is much 
wetter than that averaged over the whole footprint, ( ( ) ( ))ε εv

s
h
s

sf f T2 2− ⋅  can be signifi-
cantly larger than ( ( ) ( ))ε εv

s
h
s

sf f T1 1− ⋅ , which would lead to the estimated B parameter 
being greater than unity. The opposite situation may also occur, ( ( ) ( ))ε εv

s
h
s

sf f T2 2− ⋅  
being significantly smaller than ( ( ) ( ))ε εv

s
h
s

sf f T1 1− ⋅ , which would result in a very 
small estimated B parameter. It can be seen that the estimated B parameter under 
these conditions has large uncertainties and does not have comparable vegetation 
information as when both frequencies can “see” the ground surface.

For vegetated surfaces, when the sensor cannot “see” through the vegetation can-
opy at both frequencies, the derived B parameter would be close to the parameter 
b( f1,f2) for a bare surface case when 0 < Fv < 1. In the case of Fv = 1, Vt = 0 at both 
frequencies. The fluctuations of the derived B parameters observed on different days 
would be mainly due to different atmospheric conditions.

As discussed above, the MVIs derived by Equations 18.14 and 18.15 have a non-
unique relation in regions where the sensor can “see” the ground surface at both fre-
quencies and the regions where the sensor cannot “see” ground surface at one or both 
frequencies. For instance, the B parameters derived from the bare surfaces could 
have a similar magnitude as that derived from a dense forest with the fraction cover 
Fv < 1. It is a limitation of the currently available sensor due to its vegetation penetra-
tion capability. However, the MVIs derived by Equations 18.14 and 18.15 do have a 
unique relation in vegetation bare soil and short vegetation when both frequencies 
can “see” through the vegetation covers. Therefore, our newly developed MVIs may 
only be reliable for the short vegetation covers.
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18.4  EVALUATION OF THE MICROWAVE VEGETATION INDICES 

To assess or evaluate these new microwave vegetation indices, we need to compare 
them with ground-based studies or other satellite-derived vegetation indices at the 
regional and global scales. Ground measurements can provide the accurate vegeta-
tion information and are critical for quantitatively assessing microwave interactions 
with the vegetation properties; however, there are only a few such data sets available 
from specific field campaigns for a limited range of land cover types (Jackson et al. 
2005). The measurements are commonly obtained at points or at very high resolu-
tions and are not comparable to the spatial scale of the passive microwave satellite 
measurements. Because of the complexity of natural surfaces, especially for coarse- 
resolution passive microwave measurements at tens of kilometers, we do not fully 
understand how to scale small-scale relations to satellite footprints. Therefore, for 
the purposes of this initial study, we chose to compare the new MVIs with the widely 
accepted optical sensor vegetation index (NDVI). We compared the general global 
patterns and the seasonal phenology of NDVI over a 1-year period (2003) to the 
MVIs to assess their potential in global vegetation monitoring. The global map of the 
land cover types in the International Geosphere-Biosphere Program (IGBP) scheme 
(http://modis-land.gsfc.nasa.gov/landcover.htm) is used to interpret the analyses.

18.4.1  data

One year of AMSR-E level 3 brightness temperature data from 1 January to 31 
December 2003, obtained from the National Snow and Ice Data Center (http://nsidc 
.org/daac/amsre/), were analyzed. This product is the 25 km × 25 km grid data resa-grid data resa- resa-
mpled from AMSR-E level 2A brightness temperature data into a global EASE-GRID 
projection (http://nsidc.org/data/docs/daac/ae_land3_l3_soil_moisture.gd.html). Only 
the descending pass data (night pass) were used to minimize the errors that could result 
from the physical temperature differences between vegetation and soil.

It has been demonstrated that radiofrequency interference (RFI) has a significant 
impact on the retrieval of land surface geophysical properties from satellite microwave 
observations (Li et al. 2004; Njoku et al. 2005). While RFI has not been well character-
ized, strong RFI may result in an irregular frequency gradient of the observed bright-
ness temperatures. Except for snow-covered areas, the observed microwave signals at the 
higher frequency are generally greater than that observed at the lower frequency when 
there is no significant atmospheric effect. A negative frequency gradient for the satel-
lite observations has been utilized to identify strong RFI signals (Li et al. 2004; Njoku 
et al. 2005). However, an effective technique for identifying weak RFI signals, which 
may contribute to significant errors in estimating land surface properties, has not been 
developed yet. For the MVIs, RFI may result in the estimated MVIs being out of range. 
Therefore, evaluating the A and B parameters derived from the different frequency pairs 
against their normal observed range, A > 0 and 0 < B < 1, at each frequency pair can be 
used to partially eliminate the pixels that are contaminated.

The general characteristics of the estimated MVIs described in Section 18.3.2 
and the effects of strong RFI on the MVIs allow us to establish certain criteria for 
quality control in interpreting the MVIs, which are summarized in Table 18.1. The 
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first criterion (TBv < TBh) looks for whether there is significant RFI in the h polar-
ization but not in the v polarization measurements, since we expect, TBv > TBh. The 
second evaluation criteria tests whether TBp(high frequency) – TBp(low frequency) 
< –5 K or not, which indicates possible strong RFI contamination (Li et al. 2004; 
Njoku et al. 2005). 

Following RFI screening, the MVIs are derived using Equations 18.14 and 18.15 
using the two frequencies and polarization observations. If we use the three lowest 
AMSR-E frequencies (6.925, 10.65, and 18.7 GHz) and two polarizations (v and h), 
there are four possible MVIs that can be derived. At this point, a third screening 
criterion is then applied to evaluate whether the estimated MVIs fall within a reason-
able range. This involves evaluating the estimated A and B parameters of the MVIs 
from each frequency pair to see if they are in the normal range and excluding the 
data if abnormal. In addition, we ran a moving median filter with seven measure-
ments in the time domain to reduce the fluctuations caused by the effects of the dif-
ferent atmospheric conditions. 

The MVIs derived from the AMSR-E L3 brightness temperature were evaluated 
using the MODIS 16-day NDVI composite data at a 25-km resolution for the same 
study period. To ensure that the best NDVI value is selected to represent the 16-day 
composite period, three approaches are used in the MOD13A2 algorithm (Huete et 
al. 2002; Land Processes Distributed Active Archive Center; http://edcdaac.usgs .gov/
modis/dataproducts.asp). The 1-km MOD13A2 data are then mosaicked, reprojected to 
geographic projection (latitude/longitude), and averaged into the 0.25° resolution data. 

18.4.2  gloBal PatteRn and SeaSonal vaRiation analySeS

In evaluating whether the microwave and optical sensor–derived vegetation infor-n evaluating whether the microwave and optical sensor–derived vegetation infor-
mation can be used synergistically in monitoring vegetation phenology, we com-
pared the observed global patterns for different seasons and the seasonal variations. 
Figures 18.2a through c and Figures 18.3a through c show the mean monthly values 
for April and July 2003 for the NDVI derived by MODIS, the AMSR-E-derived 
MVI A parameters using the low-frequency pair (6.925 GHz/10.65 GHz), and the 
high-frequency pair (10.65 GHz/18.7 GHz), respectively. The corresponding MVI B 
parameters are shown in Figures 18.2d and e and 18.3d and e, respectively. For the 
northern hemisphere, April represents the early spring (emergent vegetation), and 
July the summer (vegetation reaching its peak value in many places). At the most 
general level, the MVI A parameters are positively related to NDVI, while the B 

TABLE 18.1
Criteria for Detecting Unexpected Signals due to Strong RFI and 
Snow Cover

Criteria No. Test Criteria Function

1 TBv < TBh RFI in h but not v

2 TBp(high frequency) – TBp(low frequency) ≤ –5 RFI in low frequency 

3 A < 0 or B > 1 Test A and B in physical range



424 Multiscale Hydrologic Remote Sensing: Perspectives and Applications

parameters are inversely related to NDVI. These patterns were examined in more 
detail by continent in the following section. 

18.4.2.1  Eurasia
The overall patterns of both the optical- and microwave-derived vegetation indices 
are similar. In April (Figure 18.2), the high latitudes (above 60°N) that are mainly 
shrubland have snow cover, resulting in low or negative NDVI values (Figure 18.2a). 
The corresponding areas in the MVI images have high B values (larger than 0.9) and 
low A values (<40 K). The white areas indicate that the observed A and B parameters 
were out of range as a result of the snow cover. The corresponding NDVI values are 
negative. In July (Figure 18.3), the NDVI values have increased significantly, with 
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FIGURE  18.2  April monthly mean values for (a) NDVI, (b) A(6.925 GHz/10.65 GHz), 
(c) A(10.65 GHz/18.7 GHz), (d) B(6.925 GHz/10.65 GHz), and (e) B(10.65 GHz/18.7 GHz).
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values as high as 0.7, which reflects the seasonal vegetation growth. The correspond-
ing MVI shows a significant decrease in the B values to 0.5–0.8, while the A values 
increased to around 80–120 K. 

The region between 40°N and 60°N latitudes are mainly evergreen needleleaf 
forest, croplands, grasslands, and shrublands. These exhibited large changes in both 
the optical- and microwave-derived vegetation indices between April and July. The 
NDVI values increased from a range of 0.2–0.6 to 0.6–0.9. The B values for the 
corresponding areas decreased from 0.6–0.8 to 0.4–0.6, and the A values increased 
from a range of 20–100 K to 80–160 K. 
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FIGURE  18.3  July monthly mean values for (a) NDVI, (b) A(6.925 GHz/10.65 GHz), 
(c) A(10.65 GHz/18.7 GHz), (d) B(6.925 GHz/10.65 GHz), and (e) B(10.65 GHz/18.7 GHz).
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Below 40°N latitude, vegetation cover is dominated by mixed forest and cropland 
in the regions of eastern and southern China, India, and Pakistan and the countries 
surrounding Thailand. The range of NDVI values from April to July exhibits only a 
small change, but more areas have higher values. Similar behavior was also observed 
in the seasonal change of the MVIs. The evergreen broadleaf forest in Southeast 
Asia remained almost unchanged, with values characteristic of very high levels of 
vegetation for both the optical and microwave vegetation indices. The barren areas in 
Tibet and western Asia show only a slight change in both the optical and microwave 
images. 

18.4.2.2  Africa and Australia
From the north to south over the African continent, the land cover types exhibit a 
clear pattern that reflects the transition of increasing vegetation from dessert/bar-
ren–shrubs–savannas–woody savannas to the evergreen broadleaf forest, followed by 
decreasing vegetation from woody savannas–savannas and back to shrubs. The cor-
responding vegetation indices derived from both MODIS and AMSR-E show not only 
that the spatial distributions of vegetation are related with the land cover types but also 
the strong spatial consistency between the optical and microwave measurements. 

The desert and barren regions have values that indicate bare surfaces or no vegeta-
tion cover in both the optical- and microwave-derived vegetation information for both 
April and July and exhibit no significant change with season. It is interesting to note that 
the B parameters for the low- and high-frequency pairs have a similar range (~0.9). The 
A parameter ranges from 26 to 29 K for the low-frequency pair and from 10 to 100 K 
for the high-frequency pair in both April and July. However, there is a noticeable change 
in mean values over this region from April to July, with more areas covered by lower B 
(decreased from 0.82 to 0.77) and higher A (increased from 52 to 66 K) values (Figures 
18.2c, 18.2e, 18.3c, and 18.3e). This change might result from the sparse shrubs in these 
regions that are dominated by the woody component with leaves. 

In regions of evergreen broadleaf forest, the MODIS-derived NDVI exhibits very 
high values. The AMSR-E-derived MVIs exhibit some of the highest A parameter 
and the lowest B parameters values. As expected, both the NDVI and MVIs show no 
significant change between April and July. Regions with the values of the vegetation 
indices that indicate denser vegetation in the northern hemisphere extend further 
north between April and July, while the reverse occurs in the southern hemisphere 
reflecting seasonal changes in vegetation.

In Australia, where most regions are covered by shrubs, the vegetation distribution 
patterns in both the MODIS- and AMSR-E-derived vegetation indices agree very 
well. When compared to April, the July observations show a significant decrease 
in the MVIs derived by the high-frequency pair observations for the seasonal dif-
ference in the southern hemisphere, while both NDVI and the MVIs derived by the 
low-frequency pair observation show no significant change. 

18.4.2.3  South America 
The distribution patterns of all optical- and m icrowave-derived vegetation index 
images agreed well and correlated to the land cover types. The evergreen broadleaf 
forest area is characterized by low MVI B values and high A values as well as high 
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NDVI in the April images. Regions covered by savannas and a deciduous broadleaf 
forest exhibit moderate to low MVI B values and moderate to high NDVI and A values. 
The north–south orientated stripe of shrubland along the west coast of the continent is 
clearly shown in all optical- and microwave-derived vegetation index images for both 
April and July. This is characterized by high microwave B values and low NDVI and 
microwave A values. The Amazon River system is very distinct in the MVI images. 
AMSR-E measurements in both frequencies cannot “see” through the dense Amazon 
rainforest vegetation canopy (canopy fraction cover Fv < 1), which results in polariza-
tion difference measurements close to zero for densely vegetated areas. 

The measured microwave signals, Equations 18.14 and 18.15, only reflect the sig-
nals from the Amazon River. As a result, the B parameters derived from the bare 
ground surfaces could have similar magnitudes as those derived from a dense forest 
with the fraction cover Fv < 1. It is clear that the derived MVIs can have a nonunique 
relation in those regions where the sensor cannot “see” the ground surface in at least 
one frequency. This is a limitation of the currently available AMSR-E sensor due to 
its vegetation penetration capability. Therefore, it is likely that the technique should 
only be used in regions with bare soil or short vegetation.  

18.4.2.4  North America
This region shows the most disagreement between the MODIS and AMSR-E veg-
etation indices. At high latitudes, in northern Canada, the NDVI exhibits a large 
change in magnitude and coverage, extending northward significantly from April to 
July. However, the MVIs show very little response to the vegetation changes in these 
regions. The MVIs from the low-frequency pair (6.925 GHz/10.65 GHz) show a rea-
sonable agreement in pattern and seasonal change within regions of the western and 
central portion of the United States but have poor agreement in the eastern to central 
part of the United States. The microwave MVIs derived with the high-frequency pair 
(10.65 GHz/18.7 GHz) agree well in both pattern and seasonal change in April and 
July. This behavior is most likely due to widespread significant RFI in the 6.925 GHz 
measurements over the United States (Li et al. 2004; Njoku et al. 2005).

As a further examination of the capability of the microwave vegetation indices in 
monitoring seasonal changes of vegetation, we calculated the coefficients of varia-
tion for both the NDVI and MVIs for January 1 to December 31, 2003. The coef-
ficient of variation is a measure of the degree of variation (defined as the ratio of the 
standard deviation to its mean value). It can be used as an indication of the seasonal 
variation of the index relative to its annual mean value during 2003. Figure 18.4 
shows the coefficient of variation values for the optical and microwave indices. The 
global statistical mean values of the coefficient of variation in 2003 for each major 
land cover type from the IGBP database are summarized in Table 18.2. With the 
exception of grassland, all of the A values of the MVIs indicate seasonal variations 
ranging from 0.08 to almost 0.50 of their annual mean values, which is less than that 
observed for NDVI (0.20–0.63). Seasonal variations of the B values range from 0.05 
to almost 0.23 of their annual mean values. It was expected that the A values would 
exhibit greater seasonal variation than B, because they are affected not only by the 
vegetation properties but also by the surface temperature, which would have some 
correlation with vegetation growth. 
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In general, the MVIs show less seasonal variability than NDVI. This is likely due 
to the larger seasonal variations of the NDVI values, which reflects the dominance 
of the leafy part of vegetation and its seasonal variation. The woody part is expected 
to vary slowly over time as the vegetation grows and to exhibit less seasonal varia-
tion. In comparison, the high frequency pair–derived B values (Figure 18.4e) for all 
land cover types are larger than the low-frequency-pair values (Figure 18.4d). This 
may be the result of the high-frequency microwave signals being more sensitive to 
the crown and leafy part of vegetation properties, while the low-frequency micro-
wave measurements are more sensitive to the stems and woody part of vegetation 
properties. 

Of the different land cover types, needleleaf forests (both evergreen and decid-
uous) and mixed forests have the highest coefficients of variation for both NDVI 
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FIGURE  18.4  Coefficient of variations for (a) NDVI, (b) A(6.925 GHz/10.65 GHz), 
(c) A(10.65 GHz/18.7 GHz), (d) B(6.925 GHz/10.65 GHz), and (e) B(10.65 GHz/18.7 GHz) in 
2003.
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(0.36–0.62) and MVIs (A: 0.30–0.49 and B: 0.12–0.23). Land covers with low coef-
ficients of variation include broadleaf forests (both evergreen and deciduous), savan-
nas, and woody savannas with 0.20–0.24 for NDVI, 0.08–0.18 for A, and 0.05–0.10 
for B parameters. The other land covers (cropland, grassland, and shrubland) have 
moderate coefficients of variation values for both NDVI and the MVIs. 

The coefficients of variation of A are only slightly lower than those of NDVI, 
and both have very similar distribution patterns above 20°N latitude (Figure 18.4a 
through 18.4c). Below 20°N, especially over Africa, there are some disagreements in 
the patterns, primarily when the A values are less than 0.10. This can be attributed 
to the small standard deviation and large mean values in these regions, which results 
in the small coefficients of variation values. 

The MVI B values, especially for the high-frequency pair, exhibit a large sea-
sonal variation for evergreen broadleaf forests, with magnitudes comparable to those 
of grassland, cropland, and the evergreen needleleaf forest. On the other hand, the 
coefficients of variation of NDVI for these regions are comparable to those of barren 
or dessert regions. This is clearly shown in Figure 18.4e for the tropical rain forest 
regions near the equator. This effect is mainly due to the very low mean values of B 
parameters in these regions.

18.4.3  analySeS of Mvi’S new infoRMation foR vegetation MonitoRing 

To assess whether the microwave vegetation indices have significant new or comple-
mentary information compared to NDVI, we performed the following analyses: (1) 
examination of the global distribution pattern of the correlation coefficient between 

TABLE 18.2
Global Mean Values of Coefficient of Variation of MVIs and NDVI for 
Different Vegetation Types in 2003

Land Cover
a(6.925 GHz/
10.65 GHz)

a(10.65 GHz/
18.7 GHz)

B(6.925 GHz/
10.65 GHz)

a(10.65 GHz/
18.7 GHz) NDVI

Evergreen 
needleleaf forest

0.3972 0.3693 0.1234 0.1490 0.4417

Evergreen 
broadleaf forest

0.0981 0.0821 0.0548 0.1037 0.2052

Deciduous 
needleleaf forest

0.4238 0.4916 0.1715 0.2265 0.6253

Deciduous 
broadleaf forest

0.1850 0.1408 0.0723 0.0783 0.2435

Mixed forest 0.3065 0.3235 0.1192 0.1560 0.3562

Shrubland 0.3273 0.3398 0.0632 0.0869 0.3470

Woody savannas 0.1691 0.1334 0.0895 0.1039 0.1956

Savannas 0.2033 0.1605 0.0778 0.0961 0.2156

Grasslands 0.3249 0.3353 0.0825 0.1274 0.3064

Croplands 0.2701 0.2682 0.0807 0.1057 0.3515
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NDVI and the MVIs for different vegetation types/land covers, (2) scatter plot analy-
sis of NDVI versus the MVIs, and (3) selected samples of data to evaluate what 
complementary vegetation information is provided by the MVIs.  

Table 18.3 summarizes the global mean values of the correlation coefficients of 
the AMSR-E MVIs and the MODIS NDVI in the year 2003 for each major land 
vegetation cover type from the IGBP global map. Figure 18.5 shows the global dis-
tribution of the correlation coefficients R for the B values. This analysis was limited 
to the B values because of the similarities in the correlation coefficients in both 
their distribution pattern and magnitudes for A and B from each frequency pair. 
The highest correlations were found in regions of deciduous needleleaf forest and 
grassland, where the correlation coefficients were 0.77 and 0.69 for NDVI with A 
and B, respectively. Land cover classes showing moderate correlations (R = 0.36–
0.68) included evergreen needleleaf forest, mixed forest, woody savannas, savannas, 
shrublands, and croplands. No correlation was found between the MVIs and NDVI 
for the evergreen broadleaf forest and barren or desert. These results are expected, 
because there is no significant change in NDVI measurements during the year for 
an evergreen broadleaf forest, and there is no vegetation in barren or desert areas. 

The global statistical mean values for the deciduous broadleaf forest regions 
indicated that the correlation is extremely low for the low-frequency-pair MVIs 
(A = 0.19 and B = –0.12). However, there was a rather high correlation for the high-
frequency-pair MVIs. Regions of evergreen broadleaf forest are mainly located in 

TABLE 18.3
Global Mean Values of Correlation Coefficients of MVIs and NDVI for 
Different Vegetation Types in 2003

Land Cover
a(6.925 GHz/
10.65 GHz)

a(10.65 GHz/
18.7 GHz)

B(6.925 GHz/
10.65 GHz)

a(10.65 GHz/
18.7 GHz)

Evergreen 
needleleaf forest

0.6782 0.6042 –0.6524 –0.5102

Evergreen 
broadleaf forest

–0.0351 –0.0833 0.0312 0.0801

Deciduous 
needleleaf forest

0.8715 0.8324 –0.8369 –0.7722

Deciduous 
broadleaf forest

0.1915 0.5995 –0.1221 –0.5384

Mixed forest 0.5237 0.5151 –0.4728 –0.4405

Shrubland 0.5342 0.3629 –0.5527 –0.3672

Woody savannas 0.5040 0.3820 –0.5057 –0.3958

Savannas 0.6534 0.4527 –0.6564 –0.4673

Grasslands 0.7187 0.7131 –0.6979 –0.6961

Croplands 0.5243 0.4348 –0.5078 –0.4271

Barren or sparsely 
vegetated

0.0683 0.0291 –0.0562 –0.0241
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North America, where there is significant RFI in the 6.925-GHz measurements (Li 
et al. 2004; Njoku et al. 2005). This would introduce large uncertainties and make 
the MVIs derived from the low-frequency pair unreliable.  

Figure 18.6 (left) shows the scatter plots of NDVI and the low-frequency-pair B 
values for the global observations obtained during 2003. These global data sets are 
for three forest types: deciduous needleleaf forest (top), representing the forest class 
with the highest correlation (0.87 and 0.83) with NDVI measurements; mixed forest 
(middle), representing the forest class with the moderate correlation (0.52 and 0.51); 
and evergreen broadleaf forest (bottom), representing the forest class with very low 
correlation (–0.04 and –0.08). It can be seen that, for any given NDVI observation 
(a given value on the x-axis), the observed B value (y-axis) for the same location can 
have a large dynamic range. This range reflects the differences in the optical and 
microwave sensitivities to the different vegetation properties. It is mainly due to 
the intrinsic differences between what microwave and optical sensors observe and 
their sensitivities to different parts of vegetation properties. While NDVI represents 
the information on a thin layer of the canopy (leaves, the living green material), the 
microwave sensor measures the contributions from a thicker layer that includes both 
the leafy and woody parts of the vegetation. Therefore, for a specific NDVI value, 
the MVI might exhibit a range of values that reflect the differences in the vegeta-
tion’s fraction cover, structure, sizes, and water content or wet biomass. These are 
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FIGURE 18.5  Correlation coefficients between NDVI and MVI (a) B(6.925 GHz/10.65 GHz) 
and (b) B(10.65 GHz/18.7 GHz) calculated in 2003.
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associated with differences in the contribution of the woody part of the vegetation 
properties in the observations. 

Comparisons of the B values for the different frequency pairs showed that the 
high-frequency pair (10.65 GHz/18.7 GHz) on right side of Figure 18.6 exhibited a 
larger dynamic range than the low-frequency pair (6.925 GHz/10.65 GHz) for all 
three forest types. This is also likely to be due to the high-frequency microwave 
channels being more sensitive to the crown and leafy parts of the vegetation and the 
low frequencies being more sensitive to the stems and woody parts. Based on these 
analyses, there is an indication that the different frequency pairs provide additional 
vegetation information.
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FIGURE 18.6  Scatter plots of observed vegetation indices through year 2003 for NDVI 
versus B parameters, B(6.925 GHz/10.65 GHz), at the left column for three short vegetation 
types: grasslands (top row), shrublands (middle row), and croplands (bottom row). The right 
column shows B(6.925 GHz/10.65 GHz) versus B(10.65 GHz/18.7 GHz) of MVIs for corre-
sponding to short vegetation types.
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Figure 18.7a shows the time series of observations in 2003 for NDVI along with the B 
values (both pairs) for two samples of open shrublands in Quebec, Canada (55.37°N and 
76.01°W), and Kamchatka, Russia (54.69°N and 157.74°E). These are examples of sites 
that exhibit seasonal variation and have a good correlation between NDVI and the MVIs. 
While the NDVIs in these two samples have similar shapes in their seasonal change and 
a similar magnitude with maximum values around 0.75, the seasonal variations of B for 
the samples in Figure 18.7a and b exhibit significantly different magnitudes and shapes. 
This result indicates that, for similar NDVI observations, the MVIs can be significantly 
different and provide additional new vegetation information. Again, it is because of the 
intrinsic differences in the observations between microwave and optical sensors and their 
sensitivities to different parts of vegetation properties. The B values in Figure 18.7b show 
significant decreasing and increasing trends before the growing season between April–
May and October, which might indicate that the dielectric properties of the woody part 
of shrub may change as a result of the transition from frozen to thaw. 

The two other plots in Figure 18.7 are for the southern hemisphere in western 
Australia (22.54°S and 123.64°E; Figure 18.7c and the northern hemisphere in New 
Mexico, United States (32.46°N and 104.38°W; Figure 18.7d). These were selected as 
examples of areas where the NDVI shows almost no seasonal variation (values close 
to 0.2 all year long). This response indicates that the vegetation is mostly woody 
shrubs with almost no leaves. It can be seen that the B values from the low-frequency 
pair (6.925 GHz/10.65 GHz) from both samples are almost constant throughout the 
year but with different magnitudes. The offset is likely a result of the fraction cover 
and size of shrubs, which causes differences in their scattering properties. However, 
the B values derived for the high-frequency pair show a significant change in mag-
nitude and reflect the seasonal vegetation growth characteristics in the different 
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hemisphere very well. It also shows the seasonal vegetation growth (November 
to February) in the southern hemisphere in Figure 18.7c and the growing season 
between April and October in the northern hemisphere in Figure 18.7d.

In an earlier section, several other microwave indices were discussed. Figure 18.8 
shows the 2003 polarization difference MPDT (Choudhury and Tucker 1987) in the left 
column, the polarization index PI (Becker and Choudhury 1988) in the middle column, 
and the MVI B parameters in the right column. The sites used here are the Coordinated 
Enhanced Observing Period observation sites of the World Climate Research Program. 
The site in Mongolia (http://data.eol.ucar.edu/codiac/dss/id=76.124), 46.55°N and 
106.65°E, represents grassland (top row), and the other in Tibet, China (http://
monsoon.t.u-tokyo.ac.jp/camp/tibets/), 34.22°N and 92.44°E, represents shrubland 
(bottom row). The green curves from the left to right columns are the field measure-
ments of soil temperature (Mongolia site), soil moistures at 3–4 cm depth, and NDVI 
from MODIS, respectively. There were no in situ soil temperature measurements avail-
able for the Tibet site; therefore, the 36.5-GHz-brightness-temperature measurements 
were used to indicate temperature trend (Owe et al. 2001).

All three microwave vegetation indices MPDT, PI, and B parameters obtained 
over the Mongolia site agree with the relations presented in the literature (Choudhury 
and Tucker 1987; Becker and Choudhury 1988; Paloscia and Pampaloni 1988; Owe 
et al.  2001). Values are generally inversely related to vegetation optical thick-
ness (Figure 18.8, top row). The MVIs B parameters derived in this study showed 
consistent characteristics for both sites (top right side and bottom rows of Figure 
18.8). However, the MPDT and PI data for the Tibet site (Figure 18.8, bottom row) 
showed opposite behavior; they increased as NDVI increased from May to June. 
These results indicate that there are large uncertainties when using MPDT and PI 
to present vegetation signals. These uncertainties might be explained by recalling 
that—MPDT is affected by three factors: the surface emission signal in terms of 
polarization difference, the vegetation transmissivity Vt, and the surface tempera-
ture as shown in Equations 18.13 and 18.4. The other index PI is affected mainly by 
the surface emission and vegetation. For a fixed surface emission and temperature 
values, MPDT and PI will decrease as Vt decreases, since they will have an inverse 
relation with vegetation optical thickness (Paloscia and Pampaloni 1988; Owe et al. 
2001). However, MPDT and PI will increase as soil moisture increases for a given 
vegetation transmissivity. MPDT is also proportional to surface temperature. As a 
result, whether MPDT and PI measurements could show an inverse relation with 
vegetation optical thickness is dependent on which signal change is the dominant 
signal in the time series plots. When the impact of the vegetation signal (optical 
thickness) change is greater than that of soil moisture and/or temperature change, 
MPDT and PI will show a negative relation with vegetation. This is the case for the 
Mongolia site (Figure 18.8, top row). However, the opposite relation can be observed 
when the impact of soil moisture and/or temperature change is larger than that of 
vegetation change, as shown in bottom row of Figure 18.8 for the Tibet site. 

All these results clearly demonstrate that significant new vegetation information 
can be provided by the MVIs, because they reflect not only the leafy part of veg-
etation information but also the woody part of the vegetation information resulting 
from the intrinsic differences between what microwave and optical sensors observe. 
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Especially, the MVI-provided woody part of vegetation information can be the com-
plementary information to NDVI in global vegetation monitoring from space.

18.5  CONCLUSIONS

In this chapter we demonstrated a new set of MVIs using AMSR-E observations. 
The basis of the approach is that the bare surface emission signals of a surface for 
two adjacent AMSR-E frequencies are highly correlated and can be well described 
by a linear function with coefficients that only depend on the frequency pair used 
and are polarization independent. This important finding then leads to the assump-
tion that the two adjacent AMSR-E frequencies in vegetated surfaces can also be 
described as a linear function by canceling out the background emission signal com-
ponents. The intercept, A, and the slope, B, of this linear function are the MVIs. 
This minimizes dealing with background soil emission signal problems encountered 
with other microwave indices. We demonstrated that A is positively correlated to 
NDVI and that it is affected not only by the vegetation properties but also by the 
surface physical temperature. On the other hand, B is negatively correlated to NDVI 
and is only affected by the vegetation properties. Both can be directly derived from 
AMSR-E measurements under the assumption that there is no significant polariza-
tion dependence of the vegetation emission and attenuation properties. 

To evaluate the microwave vegetation indices, we compared MVIs with the NDVI 
measurements derived from MODIS for the year 2003. Comparisons of the vegeta-
tion indices derived from the optical and microwave sensors showed:

• The general global distribution and the seasonal change patterns of the 
MVIs derived by the microwave sensor are consistent with those of NDVI 
derived by the optical sensor. However, their range of values in a region 
(considering the overall range for each index) and responses to seasonal 
change can be significantly different. These variations are associated with 
land cover type and are due to the differences in sensitivity of the optical 
and microwave observations to different parts of vegetation canopy. 

• For monitoring vegetation phenology, the MVIs, in general, show less sea-
sonal variability than NDVI, since the woody part of vegetation exhibits 
less seasonal variation, while the larger seasonal variations of the NDVI 
are mainly due to the seasonal changes of the leafy part of the vegetation. 
Our overall impression from the limited analyses conducted here is that the 
high frequency pair–derived MVIs are more sensitive to seasonal vegeta-
tion change than those derived by the low-frequency pair because the high-
frequency microwave signals are more sensitive to the crown and leafy part 
of vegetation properties while the low-frequency microwave measurements 
are more sensitive to the stems and woody part of vegetation properties. 
Therefore, the high frequency pair–derived MVIs are likely to be more 
useful in monitoring vegetation phenology.

• It is clear that optically based vegetation indices such as NDVI are responsive 
to a thin layer of the canopy (leaves, the living green material). Microwave 
sensors can provide significant new vegetation information due to greater 
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penetration of the canopy and sensitivity to both the leafy and woody parts 
of the vegetation. It was shown that the MVIs can have a large dynamic 
range for a given NDVI value, which results from differences in vegetation 
fractional cover, structure, size, and water content or wet biomass, espe-
cially due to the differences in the woody part of the vegetation that optical 
sensors have virtually no sensitivity to. Based on these results, we concluded 
that the microwave vegetation indices derived here can provide new and 
complementary information (to NDVI) on vegetation that can improve our 
ability to monitor global vegetation and ecosystem properties from space. 

Due to the sensor limitations (frequencies of AMSR-E) in penetrating differ-
ent vegetation covers and the complexity of the earth’s surface, we realize that the 
microwave vegetation indices need further study. We have only evaluated MVIs in a 
qualitative way by comparing them with NDVI measurements. There are likely to be 
further caveats that have not been discovered yet. The following section summarizes 
potential issues or weakness of the MVIs and their computation:

• In deriving MVIs, we clearly stated the assumption that there was insignifi-
cant polarization dependence on vegetation at the frequencies and scales of 
AMSR-E. At coarse resolution, this assumption is very reasonable for most 
land surfaces. However, this needs to be further examined for vegetation 
types with a preferred orientation structure such as in forests.

• The technique is based on the specification that both frequencies in the 
pair can penetrate the vegetation cover. For other cases, the values-derived 
MVIs are expected to have noncomparable values and unreliable estima-
tions when one or both of frequencies cannot penetrate the vegetation cover 
because of the sensor limitation. As a result, the relation between MVIs 
and vegetation is not monotonic, as demonstrated in Section 18.3.2. This 
limitation will be less significant when lower frequency sensors become 
available, that is,  SMOS and SMAP.

• As part of the data processing in deriving MVIs, we used a very simple 
technique (a median filter in the time domain) to reduce the uncertainties 
caused by the atmospheric effects. The significance and implications of 
atmospheric effects needs further study.

• The evaluation of applying the MVIs was demonstrated qualitatively, in 
a manner similar to the interpretation of NDVI. Further studies utilizing 
modeling and field verifications are needed for the quantitative descriptions 
on how to separate the vegetation signals between leafy and woody parts 
and how to derive the important useful vegetation parameters such as bio-
mass or other properties.
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19.1  INTRODUCTION

Terrestrial water cycle is of critical importance to a wide array of Earth system 
processes. It plays a central role in climate and meteorology, plant community 
dynamics, and carbon and nutrient biogeochemistry (Vörösmarty et al. 1998). Evapo -
transpiration (ET) is an important component of the terrestrial water cycle. At the 
global scale, it represents more than 60% of precipitation inputs (L’vovich and White 
1990), thereby conveying an important constraint on water availability at the land 
surface. Through links between stomatal conductance, carbon exchange, and water 
use efficiency in plant canopies (e.g., Hari et al. 1986; Raich et al. 1991; Woodward 
and Smith 1994; Sellers et al. 1996; Farquhar et al. 2002), ET serves as a regulator of 
key ecosystem processes. This, in turn, controls the large areal distribution of plant 
communities and net primary production of vegetation (e.g., Dang et al. 1997; Oren 
et al. 1999; Misson et al. 2004; Zhao and Running 2010).

Runoff or blue water is usually the major accessible renewable water resource 
for human uses. For a watershed, runoff is roughly the balance between precipi-
tation received from the atmosphere and ET (green water) lost to the atmosphere. 
ET consists of evaporation from soil, evaporation from intercepted precipitation by 
plants, and transpiration via plant tissues. Over a relatively long period (i.e., a sea-
son or a year), the available water for humans and ecosystems in a given region 
can be approximated by the difference between accumulated precipitation and ET 
(Donohue et al. 2007). Demand for the world’s increasingly scarce water supply is 
increasing rapidly, challenging its availability for food production and putting global 
food security at risk. Agriculture, upon which a burgeoning population depends for 
food, is competing with industrial, household, and environmental uses for this scarce 
water supply (Vörösmarty et al. 2010; Rosegrant et al. 2003). Yet, all signs of sus-
tainability suggest that water scarcity is getting worse and will continue to do so 
(United Nations World Water Assessment Program 2003; Millennium Ecosystem 
Assessment 2005). Improving water resource management can alleviate water cri-
sis and reduce droughts, wildfire, dust storms, and flooding (Cleugh et al. 2007). 
This requires reliable and timely quantification of water cycling at regional levels. 
However, over the last decade in the last millennium, there was a widespread loss 
of hydrological monitoring networks in both developed and developing countries, 
which is of great concern to the scientific community for managing water resources 
and detecting the impact of climate change on the hydrological cycle (Shiklomanov 
et al. 2002). Hydrologic models are the centerpiece of terrestrial water cycle studies, 
because modeling is the only method for understanding ecosystem processes in an 
interactive manner, integrating the various scales of measurements and predicting 
the impacts of geophysical and biogeochemical factors on the water cycle.

Remotely sensed data, especially those from polar-orbiting satellites, provide 
us with temporally and spatially continuous information over vegetated surfaces 
and are useful for accurately parameterizing surface biophysical variables, such as 
albedo, biome type, and leaf area index (LAI) (Los et al. 2000). As a result, remote 
sensing data can greatly reduce the uncertainties in ET estimates. The Moderate 
Resolution Imaging Spectroradiometer (MODIS), onboard the NASA satellites Terra 
and Aqua, may be the most complex instrument built on a spacecraft for civilian 
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research purposes (Guenther et al. 2002). The MODIS sensor provides higher qual-
ity data for monitoring terrestrial vegetation and other land processes than previous 
sensors such as the Advanced Very High Resolution Radiometer (AVHRR), not only 
because of its narrower spectral bands that enhance the information derived from 
vegetation (Justice et al. 2002), onboard calibration to guarantee the consistent time-
series reflectance (Guenther et al. 2002), and orbit and altitude satellite maneuvers 
to ensure subpixel geolocation accuracy (Wolfe et al. 2002) but also because leading 
scientists are working as a team to improve the accuracy of the data from low-level 
reflectance data to derived high-level land data.

This chapter concentrates on applying satellite data to terrestrial ET and water 
cycle studies. Within this context, we reviewed the history of the development of 
regional and global ET models, described the MODIS global terrestrial ET algo-
rithm and its applications, and discussed the model uncertainties to the remote sens-
ing data and meteorological data.

19.2  LITERATURE REVIEW

19.2.1  SuRface eneRgy Balance ModelS

Because remote sensing can provide land surface temperature (LST) information 
through thermal spectral bands, energy balance–based models have been proposed 
and widely used. In the early stage of energy balance–based models, most studies 
used high-resolution remote sensing data; some data sources are even from airborne 
sensors or sensor mounted above a site (e.g., Kalma and Jupp 1990; Norman et al. 
1995; Bastiaanssen et al. 1998a,b; Su 2002). The energy balance models calculate the 
ET through the residual of the surface absorbed energy as follows. The surface net 
radiation (Rn) partitions into three components, including latent heat (λE), sensible 
heat (H), and soil heat fluxes (G; Equation 19.1).

 Rn = λE + H + G. (19.1)

G is calculated with some empirical relationship between Rn and other biophysi-
cal variables, such as LST, surface reflectance, vegetation cover fraction estimated 
with normalized difference vegetation index (NDVI), and LAI (Norman et al. 1995; 
Bastiaanssen et al. 1998a; Bastiaanssen 2000; Su 2002; Nishida et al. 2003a,b). The 
sensible heat term (H) is estimated by a function of the difference (ΔT) between sur-
face dynamic temperature (T0) and air temperature (Ta) at a given height.
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where ρ is the air density, cp is the specific heat of air at constant pressure, and ra 
is the resistance to convective heat transfer and radiative heat transfer. Although 
surface dynamic temperature is different from remotely sensed LST, all energy bal-
ance–based models use remotely sensed LST to replace T0 in Equation 19.2. Some 
models, such as the Surface Energy Balance Algorithm for Land (Bastiaanssen et al. 
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1998a) directly assume there is a linear relationship between LST and ΔT(=T0 – Ta) 
to free the requirement of air temperature. The aerodynamic resistance, ra, can be 
estimated from Equation 19.3 using z0V (the roughness length for water vapor) in 
place of z0H, although in practice the two are usually assumed to be equal.
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where k is von Karman’s constant (=0.4), U is the wind speed at the reference height 
z, d is the zero-plane displacement height, z0 and z0H are the roughness lengths for 
momentum and sensible heat, respectively, and ΨM and ΨH are the stability correction 
functions for momentum and heat, which depend on the Monin–Obukhov length L 
(Kaimal and Finnigan 1994).

As a result, λE or ET is the residual of net surface radiation after the other two 
terms being solved.

 λE = Rn – G – H. (19.4)

Uncertainties in LST can result in error in H estimates, and in some cases, the error 
can be large enough to obtain negative ET. To improve the estimates, Su (2002) 
constrained H through the potential wet H and dry H, refined algorithms for sur-
face resistance calculation. Su (2002) named his model as Surface Energy Balance 
System (SEBS). However, application of SEBS with MODIS LST as input showed 
disagreement between the modeled ET and the ET measured at eddy flux towers 
(McCabe and Wood 2006).

19.2.2  ModelS uSing the RelationShiP Between vegetation index and lSt

Another family of method using LST to estimate ET is based on the relationship 
between VI and LST. Nemani and Running (1989) showed the utility of a scatterplot 
of vegetation index-LST (VI-LST) on a group of pixels inside a fixed square region 
in a satellite image. The air temperature, and soil and vegetation surface temperature 
required for ET estimates are obtained through the VI-LST triangle plot for an image 
window (Nishida 2003a,b). However, Hope et al. (2005) found that the relationship 
between thermal infrared–based LST and NDVI at high latitudes is opposite to that 
of midlatitude regions, because arctic tundra ecosystems characterized by perma-
frost provide a large sink for energy below the ground surface. Also, the algorithm 
is too complex, and some key biophysical processes are hard to be parameterized at 
the global scale. More importantly, the method requires LST, and this constrains its 
application at the global scale as detailed below.

Both energy balance–based and VI-LST triangle methods require reliable 
remotely sensed LST, which makes them impractical to be applied at the global 
scale. Although we, thus far, have the most advanced MODIS sensor and standard 
8-day MODIS LST at a 1-km resolution, two major reasons restrain the application 
of energy balance–based models at the global scale. First, MODIS LST is the average 
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of cloud-free LST (Wan et al. 2002), and thus, an 8-day composite daytime LST may 
be overestimated at the average overpass time due to the exclusion of cloudy days. 
In regions with high frequency of cloudiness, it is almost impossible to obtain tem-
porally continuous LST. Figure 19.1 shows the percentage of missed 8-day MODIS 
LAI during the growing season due to cloudiness (Zhao et al. 2005), which clearly 
shows that the frequency of cloud cover at an 8-day interval is considerably high, 
especially for areas with rain forests and maritime climate. Globally, for vegetated 
land, the mean percentage of missing 8-day MODIS data due to unfavorable atmo-
spheric conditions is 44.61% (±23.65%), with 38.43% vegetated areas having more 
than 50% missing 8 days in a growing season (Figure 19.1). 

Courault et al. (2005), Su (2005), and Glenn et al. (2008) have given excellent 
reviews of these LST-based ET models. Unlike surface-contaminated albedo or LAI, 
which can be simply filled with data in adjacent clear sky periods, contaminated 
LST cannot be simply filled, because it is largely influenced by synoptic weather 
conditions. A regional ET estimate using NOAA/AVHRR data over most parts of 
the central United States has clearly demonstrated that the energy balance model 
cannot work for areas with cloud cover (Mecikalski et al. 1999) (Figure 4). Second, 
these LST-required ET algorithms have uncertainties largely due to uncertainties in 
LST. Zhan et al. (1996) assessed four energy balance–based ET models and found 
only one with estimates close to the measured, and models are sensitive to ΔT and 
other surface parameters. Similarly, Cleugh et al. (2007) compared a surface energy 
balance model with the Penman–Monteith (hereafter P–M) method (Monteith 1965) 
and found that the energy balance model failed because of its sensitivity to small 
errors in LST. Because of these problems, energy balance models are impractical for 

0 16 33
Mean % filled MODIS 8-day periods (2000–2006)

50 66 83 100

FIGURE  19.1  Seven-year mean percentage of MODIS 8-day LAI period contaminated 
by unfavorable atmospheric conditions, especially by cloud cover, during growing season, 
defined as the annual NPP quality. A similar situation can be applied to MODIS LST, mak-
ing it impractical to use an energy balance model to calculate ET globally. The white area in 
land is barren or inland water. (From Zhao, M. et al., Remote Sensing of Environment, 95, 
164, 2005. With permission.)
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application at the global scale in an operational manner; however, they often work 
well within a narrow range of surface conditions for which they were developed 
and calibrated (e.g., Wood et al. 2003; French et al. 2005; Bastiaanssen et al. 2005; 
Courault et al. 2005; Tasumi et al. 2005; McCabe and Wood 2006).  

19.2.3  PenMan–Monteith logic

Monteith (1965) eliminated surface temperature from Equations 19.1, 19.2, and 19.4 
to give 
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where λE is the latent heat flux (in watts per square meter), λ is the latent heat of 
ET (in joules per kilogram), s = d(esat)/dT is the slope of the curve relating saturated 
water vapor pressure (esat; in Pascals) to temperature (in pascals per Kelvin), A is 
available energy (in watts per square meter), ρ is air density (in kilograms per cubic 
meter), Cp (in joules per kilogram per Kelvin) is the specific heat capacity of air, e 
is the actual water vapor pressure (in pascals), and ra is the aerodynamic resistance 
(in seconds per meter). The psychrometric constant γ (in pascals per Kelvin) is given 
by γ = (Ma/Mw)(CpP/λ), where Ma (in kilograms per mole) and Mw (in kilograms per 
mole) are the molecular masses of dry air and wet air, respectively, and P is the 
atmospheric pressure (in pascals) (Maidment 1993). All inputs have been previously 
defined, except for surface resistance, rs, which is an effective resistance accounting 
for evaporation from the soil surface and transpiration from the plant canopy.

Over extensive and moist surfaces when rs approaches zero or when rs << ra, 
Equation 19.5 reduces to the equilibrium ET rate: 
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which is limited only by available energy. Raupach (2001) demonstrates why 
Equation 19.6 is the theoretical upper limit for regional ET from land surfaces, where 
moisture availability is not constrained. Conversely, when ra << rs, ET is largely con-
trolled by the surface resistance, and Equation 19.5 then reduces to
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where VPD = esat – e is the vapor pressure deficit. The full P–M equation provides a more 
robust approach for estimating land surface ET, because (1) it combines the main drivers 
of ET in a theoretically sound way; (2) it provides an energy constraint on the ET rate; 
(3) modeled ET fluxes are not overly sensitive to any of the inputs [Thom (1975) provides 
a more extensive discussion about the sensitivity of the P–M equation to its inputs]; and 
(4) it has been successfully used to both diagnose and predict land surface ET. 
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Cleugh et al. (2007) used the more theoretically based P–M (Equation 19.5) 
(Monteith 1965) to estimate ET over Australia with MODIS data. On the basis of 
Cleugh et al.’s (2007) model, Mu et al. (2007a) developed a remotely sensed ET model 
(RS-ET) to obtain the first remotely sensed global terrestrial ET map, suggesting it 
is applicable to operationally estimate global ET in near real time at satellite sensor 
resolution. The RS-ET algorithm employs reanalysis surface meteorological data 
from the Global Modeling and Assimilation Office (GMAO 2004; v. 4.0.0) in the 
National Aeronautics and Space Administration (NASA), with MODIS land cover, 
albedo, LAI, and enhanced vegetation index (EVI) as inputs for regional and global 
ET mapping and monitoring. On the basis of the RS-ET model (Mu et al. 2007a), 
Zhang et al. (2009) developed a model to estimate ET using remotely sensed NDVI 
data; Yuan et al. (2010) modified the RS-ET model by adding the constraint of air 
temperature to stomatal conductance and calculating the vegetation cover fraction 
using LAI instead of EVI.  

There are also other methods using remote sensing data to estimate global ET. For 
example, Fisher et al. (2008) used the Priestly and Taylor (1972) method to estimate 
global ET using AVHRR data; Jung et al. (2010) used a machine learning method to 
upscale the FLUXNET tower data to calculate the global ET. A standard and near-
real-time remotely sensed terrestrial ET data product can provide critical informa-
tion on the regional and global water cycle and resulting environment changes.

19.3   THEORETICAL BASIS OF THE GLOBAL 
MODIS ET (RS-ET) ALGORITHM

The RS-ET algorithm uses the well-known P–M equation (Equation 19.5; Mu et al. 
2007a). The RS-ET algorithm considers both the surface energy partitioning pro-
cess and environmental constraints on ET and calculates ET as the sum of plant 
transpiration and soil evaporation. The vegetation cover fraction is estimated with 
MODIS EVI; the net solar radiation is partitioned into components of vegetation 
and soil; stomatal conductance at the leaf level is controlled by VPD and minimum 
air temperature; leaf conductance is then upscaled to the canopy level with MODIS 
LAI; soil evaporation is estimated by the potential soil evaporation and reduced by 
air humidity and vapor pressure deficit. The RS-ET algorithm has been validated 
with measured vapor fluxes at eddy flux towers and tested at the global scale. In this 
section, we detail how the RS-ET model estimates ET by using MODIS and daily 
meteorological data.

19.3.1  MatheMatical deScRiPtion

In the RS-ET model, ET is the sum of water lost to the atmosphere from the soil sur-
face through soil evaporation and from plant tissues via transpiration (Figure 19.2). 
Plant transpiration and soil evaporation are separated by vegetation cover fraction 
(FC) derived from MODIS EVI. Plant transpiration is largely determined by stomatal 
openness at the leaf level and canopy conductance at the canopy level, and therefore, 
canopy conductance is critical to ET estimate. Evaporation from soil is constrained 
by relative humidity and vapor pressure deficit.
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Input data to Equation 19.5 include daily meteorology (temperature, actual vapor 
pressure, and incoming solar radiation) and MODIS land cover (Friedl et al. 2002), 
albedo (Schaaf et al. 2002), LAI (Myneni et al. 2002), and EVI (Huete et al. 2002) 
(Figure 19.2). In addition, this algorithm is computed daily to take advantage of 
widely available daily meteorology, overcoming the obstacle of using the 8-day 
MODIS LST data.

19.3.2  vegetation coveR fRaction

NDVI and EVI are designed to provide consistent, spatial, and temporal comparisons 
of global vegetation conditions that can be used to monitor photosynthetic activity 
(Tucker 1979; Justice et al. 2002; Huete et al. 2002). The primary disadvantage of 
NDVI is the inherent nonlinearity of ratio-based indices and the influence of addi-
tive noise effects, such as atmospheric path radiances. NDVI also exhibits scaling 
problems and asymptotic (saturated) signals during high-biomass conditions. It is 
very sensitive to canopy background variations, with NDVI degradation particularly 
strong at higher canopy background brightness (Huete et al. 2002). EVI was devel-
oped to optimize the vegetation signal with improved sensitivity in high-biomass 
regions and improved vegetation monitoring through a decoupling of the canopy 
background signal and a reduction in atmosphere influences, using the equation
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where ρ is the surface reflectance in each respective band; L is the canopy back-
ground adjustment that addresses nonlinear, differential, near-IR and red radiant 
transfer through a canopy; C1 and C2 are the coefficients of the aerosol resistance 

Legend for the evapotranspiration (ET) flowchart
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FIGURE 19.2  Flowchart of the logic behind RS-ET algorithm for calculating daily MODIS 
ET. (From Mu, Q. et al., Remote Sensing of Environment, 111, 519, 2007. With permission.)
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term, which use the blue band to correct for aerosol influences in the red band; and 
GF (gain factor) = 2.5. More details can be found in the work of Huete et al. (2002).

FC is defined as the fraction of ground surface covered by the maximum extent of 
the vegetation canopy (varies between 0 and 1). EVI was used to calculate the vegeta-
tion cover fraction as
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where EVImin and EVImax are the signals from bare soil (LAI → 0) and dense green 
vegetation (LAI → ∞), respectively (Gutman and Ignatov, 1998), which are set as 
seasonally and geographically invariant constants 0.05 and 0.95, respectively. When 
FC is greater than 1, Fc is 1, and when Fc is less than 0, Fc is 0. Several sensitivity 
experiments have been done, setting (EVImin, EVImax) as (0.01, 0.99), (0.05, 0.92), 
(0.11, 0.92), and (–0.5, 0.99), respectively. There is not much difference between the 
root mean square error (RMSE; <1.00 W ∙ m–2), bias (~3.00 W ∙ m–2), and correlation 
coefficient (<0.01) from different sensitivity experiments (Mu et al., 2007).

The net radiation is linearly partitioned between the canopy and the soil surface 
using this vegetation cover fraction (FC) such that

 

A F A

A F A

C C

SOIL C

= ×

= − ×( )1 ,
 

(19.10)

where AC and ASOIL are the total net incoming radiation (A) partitioned into the canopy 
and soil, respectively. The soil heat flux (G) is considered to be negligible.

19.3.3  canoPy conductance calculation

For many plant species, stomatal conductance (CS) decreases as VPD increases, 
and stomatal conductance is also limited by both low and high temperatures (Jarvis 
1976; Sandford and Jarvis 1986; Kawamitsu et al. 1993; Schulze et al. 1994; Leuning 
1995; Marsden et al. 1996; Dang et al. 1997; Oren et al. 1999, 2001; Xu et al. 2002; 
Misson et al. 2004). VPD is calculated as the difference between saturated air vapor 
pressure, as determined from air temperature (Murray 1967), and actual air vapor 
pressure. Because high temperatures are often accompanied by high VPDs, only 
constraints on stomatal conductance for VPD and minimum air temperature are 
used, ignoring constraints resulting from high temperature. LAI was used as a scalar 
to convert the stomatal conductance (CS) calculated at the leaf level to a canopy con-
ductance (CC) (Landsberg and Gower 1997):

 

C c m T m VPD

C C LAI

S L

C S

= × ×

= ×

( ) ( )min

 

(19.11)
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where cL is the mean potential stomatal conductance per unit leaf area, m(Tmin) is a 
multiplier that limits the potential stomatal conductance by minimum air tempera-
tures (Tmin), and m(VPD) is a multiplier used to reduce the potential stomatal conduc-
tance when VPD is high enough to inhibit photosynthesis (Jarvis 1976; Sandford and 
Jarvis 1986; Kawamitsu et al. 1993; Schulze et al. 1994; Leuning 1995; Marsden et 
al. 1996; Dang et al. 1997; Oren et al. 1999, 2001; Xu and Baldocchi 2002; Misson 
et al. 2004). In the case of plant transpiration, the surface conductance is equal to 
the canopy conductance, and hence, the surface resistance (rs) is the inverse of the 
canopy conductance (CC). In Equation 19.5, ra is set as a constant 20 m/s. The LAI 
in Equation 19.11 is obtained from the global 8-day standard MODIS LAI product, 
which is estimated using a canopy radiation transfer model combined with remotely 
sensed surface reflectance data (Myneni et al. 2002). The constraints for the mini-
mum air temperature (Tmin) and VPD are calculated as
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where close indicates nearly complete inhibition (full stomatal closure), and open indi-
cates no inhibition to transpiration (Table 19.1). When Tmin is lower than the threshold 
value Tmin_close or VPD is higher than the threshold VPD_close, the temperature or 
the water stress will cause the stomata to close almost completely, halting plant tran-
spiration. On the other hand, when Tmin is higher than Tmin_open and VPD is lower than 
VPD_open, there will be no temperature or water stress on transpiration. The multipli-
ers range linearly from 0.1 (nearly total inhibition, limiting rs) to 1 (no inhibition) for 
the range of biomes also used in the MOD17 gross and net primary production (GPP/
NPP) algorithm, which are listed in a Biome Properties Look-Up Table (BPLUT; Table 
19.1) (Heinsch et al. 2003; Running et al. 2004). Complete details on the derivation of 
the algorithm and the values used in the BPLUT can be found elsewhere (Running et 
al. 2000; Heinsch et al. 2003; Zhao et al. 2005). The effect of soil water availability is 
not included in the ET algorithm. Some studies have suggested that atmospheric condi-
tions reflect surface parameters (Morton 1983) and VPD can be used as an indicator 
of environment water stress (Running and Nemani 1988; Granger and Gray 1989). 
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In addition, Mu et al. (2007b) found that VPD alone can capture interannual vari-
ability of the full water stress from both the atmosphere and soil for almost all of 
China and the conterminous United States, although it may fail to capture the full sea-
sonal water stress in dry regions experiencing strong summer monsoons.

19.3.4  Soil evaPoRation

To calculate soil evaporation, the potential evaporation (λESOIL_POT) is first calculated 
using the P–M method (Equation 19.5). The total aerodynamic resistance to vapor 
transport (rtot) is the sum of surface resistance (rs) and the aerodynamic resistance for 
vapor transport (rv) such that rtot = rv + rs (Van de Griend 1994). A constant rtotc (107 
s∙m–1) for rtot is assumed globally based on observations of the ground surface in tiger 
bush in southwest Niger (Wallace and Holwill 1997), but it is corrected (rcorr) for 
atmospheric temperature (T) and pressure (P) (Jones 1992), with standard conditions 
assumed to be T = 20°C and P = 101,300 Pa.
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where rv (in seconds per meter) is assumed to be equal to the aerodynamic resistance (ra; 
in seconds per meter) based on Equation 19.5, since the values of rv and ra are usually 
very close (Van de Griend 1994). The aerodynamic resistance (ra) is parallel to both the 

TABLE 19.1
BPLUT for the RS-ET Algorithm

Parameter ENF EBF DNF DBF MF WL Wgr Csh Osh Grass Crop

Tmin_open 
(°C)

8.31 9.09 10.44 9.94 9.50 11.39 11.39 8.61 8.80 12.02 12.02

Tmin_close 
(°C)

–8.0 –8.0 –8.0 –6.0 –7.0 –8.0 –8.0 –8.0 –8.0 –8.0 –8.0

VPD_close 
(Pa)

2500 3900 3500 2800 2700 3300 3600 3300 3700 3900 3800

VPD_open 
(Pa)

650 930 650 650 650 650 650 650 650 650 650

Note: ENF, evergreen needleleaf forest; EBF, evergreen broadleaf forest; DNF, deciduous needleleaf 
forest; DBF, deciduous broadleaf forest; MF, mixed forest; WL, woody savannas; Wgr, savannas; 
Csh, closed shrubland; Osh, open shrubland; Grass, grassland, urban and built-up, barren, or 
sparsely vegetated; and Crop, cropland.
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resistance to convective heat transfer (rc; in seconds per meter) and the resistance to radia-
tive heat transfer (rr; in seconds per meter) (Choudhury and DiGirolamo 1998) such that
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Here, rc is assumed to be equal to boundary layer resistance, which is calculated 
in the same way as the total aerodynamic resistance (rtot) based on Equation 19.13 
(Thornton, 1998). Finally, the actual soil evaporation (λESOIL) is calculated in 
Equation 19.14 using the potential soil evaporation (λESOIL_POT) and the complemen-
tary relationship hypothesis (Fisher et al. 2008), which defines land–atmosphere 
interactions from the vapor pressure deficit and relative humidity (RH; in percent).
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To examine the sensitivity of λESOIL to rtot in Equation 19.13, different values for 
rtotc were used in the algorithm. The observed average latent heat flux (LE) over the 
19 flux towers is 66.9 W ∙ m–2, while the average estimated LE is 61.0 W ∙ m–2 driven 
by tower meteorological data and 65.6 W ∙ m–2 driven by the reanalysis data from the 
Global Modeling and Assimilation Office (2004). When rtotc is 10 s ∙ m–1, much lower 
than 107 s ∙ m–1, soil evaporation is much higher, and hence, LE is much higher, with 
the average tower-driven LE of 86.0 W ∙ m–2 and GMAO-driven LE of 98.7 W ∙ m–2. 
However, when rtotc ranges between 50 and 1000 s ∙ m–1, there is little difference in 
the soil evaporation results, and there is therefore little change in LE (tower-driven LE 
average of 54.4–64.6 W ∙ m–2 and GMAO-driven LE average of 58.9–70.0 W ∙ m–2). 
The value of 50 s ∙ m–1 was chosen as the lower bound, because it is very close to the 
mean boundary layer resistance for vegetation under semiarid conditions, and there is 
little variation around this mean (Van de Griend 1994). Finally, the latent heat flux for 
the ecosystem is calculated as the sum of the transpiration (Equation 19.5) and the soil 
evaporation (Equation 19.15).

19.4  PREPROCESSING INPUT MODIS AND METEOROLOGY DATA

The RS-ET algorithm requires meteorological data and MODIS land surface proper-
ties as inputs for ET estimates. The GMAO meteorological data have a 1.00° × 1.25° 
resolution. The GMAO dataset is also used in the calculation of MODIS GPP and 
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NPP (Running et al. 2004). Remote sensing inputs include MOD12Q1 land cover 
(Friedl et al. 2002), MOD13A2 EVI (Huete et al. 2002), MOD15A2 LAI (Myneni et 
al. 2002), and the 0.05° albedo from MOD43C1 (Schaaf et al. 2002).

19.4.1   SPatially SMoothing coaRSe ReSolution 
gMao into ModiS ReSolution

The resolution for GMAO meteorological data is too coarse for a 1-km2 MODIS 
pixel. Zhao et al. (2005) found that, in the Collection 4 MODIS GPP/NPP algorithm 
(MOD17), each 1-km pixel falling into the same 1.00° × 1.25° GMAO grid cell inher-
ited the same meteorological data, creating a noticeable GMAO footprint (Zhao et 
al. 2005) (Figure 19.1a and c). Such treatment may be acceptable on the global or 
regional scale, but it can lead to large inaccuracies at the local scale, especially for 
terrain with topographical variation or located in relatively abruptly climatic gradi-
ent zones. To enhance the meteorological inputs, Zhao et al. (2005) have nonlinearly 
interpolated the coarse resolution GMAO data to the 1-km2 MODIS pixel level based 
on the four GMAO cells surrounding a given pixel. Theoretically, this GMAO spatial 
interpolation improves the accuracy of meteorological data for each 1-km2 pixel, 
because it removes the abrupt changes from one side of a GMAO boundary to the 
other. In addition, for most World Meteorological Organization (WMO) stations, 
spatial interpolation reduced the RMSE and increased the correlation between the 
GMAO data and the observed WMO daily weather data for 2000–2003, suggesting 
that the nonlinear spatial interpolation considerably improves GMAO inputs. For the 
RS-ET process, this method was also adopted to enhance the GMAO quality at the 
MODIS pixel level.

19.4.2  teMPoRally inteRPolating contaMinated oR MiSSing ModiS data

Similar to MODIS GPP/NPP datasets, the input MODIS datasets have gaps caused 
by cloud contaminations or other unfavorable atmospheric conditions (Zhao et al. 
2005). These problems are solved by temporally filling input data gaps as proposed 
by Zhao et al. (2005).

The 8-day MODIS LAI (MOD15A2) (Myneni et al. 2002) and 16-day MODIS 
EVI (MOD13A2) (Huete et al. 2002) contain some cloud-contaminated or missing 
data. According to the MOD15A2 quality assessment scheme provided by Myneni 
et al. (2002), Fraction of Photosynthetically Active Radiation (FPAR)/LAI values 
retrieved by the main algorithm (i.e., radiation transfer process, denoted as RT) are 
most reliable, and those retrieved by the backup algorithm (i.e., the empirical rela-
tionship between FPAR/LAI and NDVI) are less reliable, because the backup algo-
rithm is employed mostly when cloud cover, strong atmospheric effects, or snow/
ice is detected. The LAI retrievals by the backup algorithm have low quality and 
should not be used for validation and other studies (Yang et al. 2006). The missing 
or unreliable LAI, NDVI, and EVI at each 1-km MODIS pixel are temporally filled 
based on their corresponding quality assessment data fields as proposed by Zhao 
et al. (2005). The process entails two steps (Zhao et al. 2005) (Figure 1a and c). 
If the first (or last) 8-day LAI (16-day NDVI, EVI) is unreliable or missing, it will 
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be replaced by the closest reliable 8-day (16-day) value. This step ensures that the 
second step can be performed, in which other unreliable LAI (NDVI, EVI) will be 
replaced by linear interpolation of the nearest reliable values before and after the 
missing data point.

For MODIS albedo, the 10th band of the white-sky albedo from the 0.05° 16-day 
MOD43C1 bidirectional reflectance distribution function (BRDF) products was used 
(Schaaf et al. 2002). This MODIS albedo is used to calculate reflected solar radiation 
and, hence, the net incoming solar radiation. The unreliable or missing albedo data 
are also temporally filled with the method proposed by Zhao et al. (2005).

Since Collection 4 MODIS data do not have a 0.05° global EVI product, the 0.05° 
global EVI (Equation 19.8) (Huete et al. 2002, 2006) is calculated using the 0.05° 
MODIS 43C3 BRDF quality-controlled surface reflectance. Then, EVI gaps are 
filled due to unreliable or missing BRDF reflectance with the method proposed by 
Zhao et al. (2005).

South America is the area where cloud contamination is most serious and the LAI 
seasonality is very small. To explore how the quality-controlled interpolations alter 
and enhance the input MODIS data quality, the 8-day composited LAI values were 
compared in the Amazon for the original data integrated from MOD15A2 without 
the temporal interpolation and the enhanced LAI values with the interpolation for the 
period of March 21–28, 2001, during the wet season with the worst cloud contamina-
tion (Figure 19.3). The original LAI values were too small (<2.0 m2 ∙ m–2) for a large 
area surrounding the Amazon River, the result of severe cloud contamination. The 
MODIS land cover indicates that most forests in the northern part of South America, 
as shown in Figure 19.3, are evergreen broadleaf forests (EBFs). Field LAI observa-19.3, are evergreen broadleaf forests (EBFs). Field LAI observa-.3, are evergreen broadleaf forests (EBFs). Field LAI observa-
tions revealed a mean LAI of 4.8 ± 1.7 for 61 observations in tropical EBFs (Asner 
et al. 2003; Malhi et al. 2004, 2006). There are a few pixels for which the enhanced 
LAI values were smaller than the original data because of the bad QCs. Overall, 
however, after temporal filling, LAI values in the Amazon were much higher, and 
the spatial pattern is more realistic.
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FIGURE 19.3  Eight-day composite LAI in the Amazon region for the 8-day period 081 
(March 21–28) in 2001 for the (a) original with no temporal interpolation of the LAI and 
(b) temporally interpolated LAI. (From Mu, Q. et al., Remote Sensing of Environment, 111, 
519, 2007a. With permission.)
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19.5  VALIDATIONS AT FLUX TOWER SITES

19.5.1  flux toweRS

The AmeriFlux network (http://public.ornl.gov/ameriflux/) was established in 1996 
as a network of field sites that provide continuous observations of ecosystem level 
exchange of CO2, water, and energy. AmeriFlux, part of the global FLUXNET net-
work, is currently composed of 106 sites in North America, Central America, and 
South America. FLUXNET, an international network measuring terrestrial carbon, 
water, and energy fluxes at multiple time scales, coordinates regional and global 
analyses of observations from eddy covariance tower sites. Until March 1, 2010, 
more than 500 tower sites (Figure 19.4) are operating on a long-term and continuous 
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FIGURE 19.4  (a) Distribution of FLUXNET tower sites. (b) Growth rate of FLUXNET, 
1992–2010. (From http://www.fluxnet.ornl.gov/fluxnet.)
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basis, and FLUXNET data are available for download from the Oak Ridge National 
Laboratory Distributed Active Archive Center (http://daac.ornl.gov/FLUXNET/fluxnet 
.shtml). These flux towers cover all typical land cover types and climates. This long-term 
tower data will help scientists validate the regional and global ET results. The indirect 
ET validation effort with precipitation and MODIS GPP at the regional and global scales 
will also continue to help in the development of global ET product. More work will be 
done with watershed mass balance and gridded hydrologic model–based measures of 
regional ET (for example, see the work of Hamlet et al. 2007). The RS-ET algorithm has 
been validated at 19 AmeriFlux eddy covariance tower sites (Table 19.2, Figure 19.5), 
which cover six typical land cover types and a wide range of climates.

19.5.2  validation ReSultS

For each tower, ET was estimated using two different sets of meteorological data: 
(1)  integrated meteorological data derived from the half-hour observations at flux 
tower sites and (2) the GMAO meteorological data at a 1.00° × 1.25° resolution. ET 
was calculated for the vegetated 3 × 3 1-km2 MODIS pixels surrounding each site 
driven by the preprocessed GMAO and MODIS data and averaged across all pixels. 
These averages were then compared with the tower ET observations.

For site observations of ET and meteorology, the half-hourly data provided by 
the tower researchers were aggregated into daily data without using additional qual-
ity control, and there was no gap filling for these data to maintain the integrity and 
originality of the observations. Since the observed water vapor fluxes are the sum of 
the plant transpiration and soil evaporation and it is not possible to separate the two 
fluxes using standard flux tower data, only the total ET estimates by RS-ET were 
compared with the observed total ET.

Figure 19.6 shows the comparison of the annual mean MODIS LE estimated 
using the ET algorithm to observations at 19 eddy covariance flux tower sites (Mu et 
al. 2007a). The correlation coefficients between the LE observations and estimates 
are R = .86 (p < .00001) when the algorithm is driven by tower-specific meteorology 
(Figure 19.6a) and R = .86 (p < .00001) for the global GMAO meteorology (Figure 
19.6b). The relative error between the 8-day averaged LE estimates driven by GMAO 
and tower meteorology is 14.3%, indicating that meteorology plays an important role 
in the accuracy of the RS-ET algorithm. In addition to predicting the annual ET, the 
RS-ET algorithm captures seasonal variation, for example, at Duke_pine in North 
Carolina and Barrow in Alaska as depicted in Figure 19.7.

19.5.3  unceRtainty in Site-BaSed validationS

When driven by tower meteorological data, the average RMSE of the 8-day latent 
heat fluxes over the 19 flux towers by RS-ET against ET observations was 27.3 and 
29.5 W ∙ m–2, respectively, driven by GMAO meteorology. The average correlation 
coefficient between the ET estimates and observations for the 8-day results was 0.72 
with GMAO meteorological data and 0.76 with tower meteorological data. The exist-
ing biases between the ET estimates and the ET observations may be influenced by 
the following: 
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TABLE 19.2
Locations, Abbreviations, and Biome Types (in Parentheses); Latitude (Lat); 
Longitude (Lon); Elevation (Elev, in Meters); Annual Mean MODIS EVI (EVI); 
Annual Mean LAI (LAI); and Published Papers for the 19 AmeriFlux Eddy 
Flux Towers

Site Abbrev. Lat Lon Elev EVI LAI Citation

Kennedy Space 
Flight Center 
scrub oak, FL

KSCOak 
(DBF)

28.61 –80.67 3 0.40 3.8

Austin Cary, FL AUS (ENF) 29.74 –82.22 50 0.41 4.4 Powell et al. 
2005

Donaldson, FL Dnld (ENF) 29.75 –82.16 50 0.39 3.0 Clark et al. 
2004

Mize, FL Mize (ENF) 29.76 –82.24 50 0.37 3.6 Clark et al. 
2004

Duke Forest 
hardwoods, NC

DukeHdwd 
(DBF)

35.97 –79.10 0 0.41 4.2 Stoy et al. 
2006

Duke Forest pine, 
NC

Duke_pine 
(ENF)

35.98 –79.09 163 0.41 4.2 Stoy et al. 
2006

Walnut River, KS Walnut (Grass) 37.52 –96.86 408 0.28 1.3

Vaira Ranch, CA Vaira (Grass) 38.41 –120.95 129 0.30 2.1

Tonzi Ranch, CA Tonz (Savanna) 38.43 –120.97 177 0.30 1.9

Blodgett, CA Blod (ENF) 38.90 –120.63 1315 0.37 3.6 Goldstein et 
al. 2000

Bondville, IL Bond (Crop) 40.01 –88.29 213 0.40 2.8

Niwot Ridge 
Forest, CO

NwtR (ENF) 40.03 –105.55 3050 0.28 2.2

Black Hills, SD BlkHls (ENF) 44.16 –103.65 0 0.32 2.9

University of 
Michigan, MI

UMBS (ENF) 45.56 –84.71 234 0.35 3.1

Fort Peck, MT FtPeck (Grass) 48.31 –105.10 634 0.16 0.4

Lethbridge, 
Alberta

Leth (Grass) 49.71 –112.94 960 0.16 0.3 Flanagan et 
al. 2002; 
Wever et al. 
2002

Campbell River, 
Vancouver 
Island, BC

CampRvr 
(ENF)

49.85 –125.32 300 0.40 3.9

BOREAS NSA, 
Old Black 
Spruce, 
Manitoba, 
Canada

NOBS (ENF) 55.88 –98.48 259 0.25 2.5 Dunn and 
Wofsy 
2006; data 
version: 
June, 2006

Barrow, AK BRW (OShrub) 71.32 –156.63 1 0.26 0.7
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 (1) Algorithm input data. Biases exist for all input datasets, and they can intro-
duce uncertainties in estimated MODIS ET. MOD12Q1 accuracies are 
in the range of 70% to 80%, with most mistakes between similar classes 
(Gao et al. 2005). Misclassification of the land cover will result in using 
the wrong parameters for VPD and minimum air temperature for stoma-
tal conductance constraints, resulting in less accurate ET estimates. While 
approximately 62% of MODIS LAI estimates were within the estimates 
based on field optical measurements, the remaining values overestimated 
site values (Heinsch et al. 2006). Overestimates of LAI may result in over-
estimates of ET, even if other input data such as the meteorological data and 
MODIS EVI data are relatively accurate. The inaccuracy in MODIS EVI 
will lead to miscalculation of FC and, hence, ET. An extreme experiment 
conducted by setting Fc as 1.0 for all 19 towers shows that the tower-driven 
RMSE increases from 27.3 to 40.1 W ∙ m–2, and from 29.5 to 49.6 W ∙ m–2 
when driven by GMAO data. Although the temporal filling of unreliable 
MODIS data, including LAI, EVI, and albedo, greatly improves the accu-
racy of inputs, the filled values are artificial and contain uncertainties. The 
global daily GMAO is a reanalysis dataset with coarse spatial resolution; its 
quality can have large influences on MODIS ET estimates. 

 (2) Algorithm limitations. Issues remaining in the ET algorithm might contrib-
ute to the differences between the tower ET observations and the MODIS 
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FIGURE 19.5  Distribution of the 19 AmeriFlux eddy flux towers used for verification of 
the ET algorithm.
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FIGURE  19.6  Comparison of annual LE observations from 19 AmeriFlux sites and ET 
estimates averaged over a MODIS 3 3-km cutout. Data were created using (a) tower-specific 
meteorology and (b) global GMAO meteorology. (From Mu, Q. et al., Remote Sensing of 
Environment, 111, 519, 2007. With permission.)
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ET estimates. Biophysical parameters, such as CL, VPD_close, and VPD_
open, used in the algorithm have the same values for a given biome type. 
However, for different species within the same biome type, the differences 
in these parameters can be large (Turner et al. 2003a,b). Water stress and air 
temperature stress can greatly affect the ET estimates. Uncertainties from 
inputs can introduce biases in ET estimates that are difficult to detect. For 
example, when no water or air temperature stress was put on the stomatal 
conductance, the tower-driven RMSE increased from 27.3 W ∙ m–2 (with 
stress) to 43.2 W ∙ m–2, and from 29.5 W ∙ m–2 (with stress) to 46.3 W ∙ m–2 

when driven by GMAO data. The average LE bias of the tower-driven LE 
estimates to the LE observations changed from –5.8 W ∙ m–2 (with stress) to 
19.9 W ∙ m–2 and from –1.3 W ∙ m–2 (with stress) to 23.3 W ∙ m–2 when driven 
by GMAO data. In addition, only little knowledge is obtained regarding 
some parameters (e.g., boundary layer resistance for soil evaporation) and 
the mechanisms involved. Therefore, further study is needed to improve the 
ET algorithm for some ecosystems such as those in arid areas.

 (3) Scaling from tower to landscape. The size of the flux tower footprint is 
largely influenced by tower height and local environment conditions (Cohen 
et al. 2003; Turner et al. 2003a,b). The direct comparison of observed ET 
with the estimated ET from the 3 × 3 1-km2 MODIS across all 19 sites may 
introduce uncertainties due to the differences in tower footprints for differ-
ent towers and under varying environmental conditions for a given tower. 
In heterogeneous areas, the differing scales of the tower and MODIS ET 
estimates should be performed via an upscaling process, such as that used 
during the Bigfoot study (Cohen et al. 2003; Turner et al. 2003a,b). The 
expense and intensity of such a study, however, limits our ability to perform 
such comparisons.

19.6   APPLICATIONS OF THE RS-ET ALGORITHM AT 
THE REGIONAL AND GLOBAL SCALES

19.6.1  Regional and gloBal validationS

In addition to the direct evaluation of ET through measurements at eddy flux towers 
as shown above, ET can be indirectly validated with precipitation and MODIS GPP 
at the regional and global scales.

The RS-ET algorithm was applied globally with the 0.05° resolution MODIS 
input data and GMAO data. The 0.05° resolution global ET dataset during 2000–
2006 were used to do the global validation work. The spatial pattern of the mean 
global annual total ET during 2000–2006 is reasonable, with a maximum ET of 1100 
mm∙year–1 and an area-weighted average of 351 ± 221 mm∙year–1 over vegetated land 
areas (Figure 19.8). As expected, tropical forests have the highest ET values, while 
dry areas and areas with short growing seasons have low estimates of ET. The ET for 
temperate and boreal forests lies between the two extremes (Figure 19.8). The mag-19.8). The mag-.8). The mag-
nitudes and spatial patterns of global ET generally agree with estimates provided in 
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the literature (Calder et al. 1986; Bruijnzeel 1990; Frank and Inouye 1994; Leopoldo 
et al. 1995; Liski et al. 2003; Kumagai et al. 2005; Pejam et al. 2006).

Precipitation is not an input to the ET algorithm, and over a relatively long period, 
ET should be less than precipitation according to the water balance theory. Figure 
19.9a shows that the MODIS ET is less than precipitation according to Chen et al. 

0 150 300 450
Global annual MODIS ET (2000−2006) mm ∙ year–1

600 750 900

FIGURE  19.8  Mean global ET driven by interpolated GMAO meteorological data and 
0.05° resolution MODIS data during 2000–2006 with a maximum ET of 1092 mm ∙ year–1 
and an area-weighted average ET of 351 ± 221 mm ∙ year–1 for vegetated land areas.
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(2002). Since GPP and ET are tightly coupled through stomatal control during pho-
tosynthesis, GPP can also be used to validate the ET product on a regional to a global 
basis. High MODIS GPP should correspond to high ET, although the correlation 
should not be perfect, as radiation drives GPP much more strongly than ET (Körner 
1994; McMurtrie et al. 1992; Running and Kimball 2005). Figure 19.9b reveals that 
areas with high annual MODIS GPP (Zhao et al., 2005) correspond favorably with 
areas with high annual ET during 2000–2006. This validation effort will continue 
during the development of the MODIS ET products.

19.6.2  SeaSonality and inteRannual vaRiaBility

The global ET products over 2000–2006 have also been analyzed to ascertain if they 
reproduce well-known published findings of seasonality and interannual variability. 

19.6.2.1  Seasonality
For the 2000–2006 MODIS record, the ability of the ET algorithm to capture sea-
sonality has been examined. In the northern hemisphere, spring (MAM, Figure 
19.10) is the onset of the growing season; ET increases, reaching a peak in summer 
(JJA). In autumn (SON), ET begins to drop, with the lowest values in winter (DJF). 
Regionally, JJA and SON are relatively dry seasons in the Amazon, and Huete et al. 
(2006) found that vegetation grows better in dry seasons than in wet seasons (MAM 
and DJF). Transpiration, the major component of ET in dense vegetation, dominates. 
Therefore, plants grow better during JJA and SON, and ET is higher (Figure 19.10). 

19.6.2.2  Interannual Variability
The RS-ET algorithm also has the ability to capture the response of terrestrial eco-
systems to extreme climatic variability at the regional scale. Figure 19.11 shows the 
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SON DJF
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FIGURE 19.10  Spatial pattern of global MODIS ET seasonality during 2000–2006.
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anomalies of global ET from 2000 to 2005 as estimated from the 0.05° MODIS ET 
product, demonstrating the sensitivity of terrestrial ecosystem to widespread drought 
in the midwestern United States, Canada, and China during 2000; extensive drought 
over North America and Australia in 2002; drought in Australia in 2003; drought 
across northern Canada in 2004; and drought in the Amazon in 2005. Although radi-
ation is the dominant limiting factor for vegetation growth in the Amazon (Nemani 
et al. 2003), the Amazon experienced the worst drought in 40 years during 2005 
(Hopkin 2005), and water became the dominant limiting factor.

19.6.3  vaRiance and unceRtainty in Regional and gloBal et

We evaluated the quality of GMAO and other two well-known reanalysis meteo-
rological datasets, ECMWF (ERA40) and NCEP reanalysis I, by comparing them 
with other quasiobservational datasets, such as gridded climate data from Climate 
Research Unit (CRU) in the United Kingdom (New et al., 1999, 2000) and down-
ward solar radiation (S↓s) from the International Satellite Cloud Climatology Project 
(ISCCP) (Zhang et al., 2004). Below are the comparison results.

For the S↓s comparison, we have accounted for the overestimation S↓s of ISCCP 
from 15°S to 15°N with a bias of 21.3 W ∙ m–2 (equivalent to 1.84 MJ ∙ m–2 ∙ day–1) 
relative to the surface observations (Zhang et al. 2004). NCEP always overestimates 
S↓s when compared with the 17-year ISCCP annual mean by latitude (Figure 19.12a), 

2000 2001

2002 2003

2004 2005

ET anomaly (mm ∙ year–1)
–120 –80 –40 0 40 80 120

FIGURE  19.11  Spatial pattern of 0.05° resolution global MODIS ET anomalies during 
2000–2005.
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and its bias relative to ISCCP ranges from 1.41 to 5.15 MJ ∙ m–2 ∙ day–1 (+6.8% to 
+73% of ISCCP). The NCEP area-weighted average bias is +20% of ISCCP S↓s. This 
higher S↓s will produce overestimated global ET if other surface variables are accu-
rate. Generally ECMWF S↓s agrees well with ISCCP, but in the tropics from 20°S 
to 20°N, ECMWF S↓s tends to be lower, with an area-weighted average bias of –1.58 
MJ ∙ m–2 ∙ day–1, or nearly –8.4% of ISCCP. The lower ECMWF S↓s will eventually 
generate underestimated ET due to the large vegetated areas and high productivity 
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FIGURE  19.12  Comparison of the climatological zonal mean of (a) surface downward 
solar radiation (S↓s), (b) average temperature (Tavg), (c) vapor pressure (ea), and (d) VPD from 
NCEP and ECMWF, with ISCCP (1984–2000) and CRU (1961–1990) datasets, respectively, 
and intercomparison of three reanalyses for (e) 2000 and (f) 2001. Overestimated surface 
short wave radiation by ISCCP from 15°S to 15°N with bias of 21.318 W · m–2 (equivalent 
to 1.84 MJ ∙ m–2 ∙ day–1) relative to the surface observations has been accounted for in this 
comparison (see text). (From Zhang, Y. C. et al., Journal of Geophysical Research, 109, 
D19105, 2004. With permission.) These comparisons are only for vegetated land surfaces. 
The vegetated land area is shown in gray scale, where darker shades represent more vegetated 
areas. Vertical dotted lines denote the location of equator. (From Zhao, M. et al., Journal of 
Geophysical Research, 111, G01002. With permission.)
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in the tropics if other surface variables are accurate. Compared with the ECMWF 
and NCEP zonal mean S↓s from 2000 and 2001 (Figure 19.12e), GMAO S↓s is rela-
tively more accurate, except for much lower values in high latitudes of the northern 
hemisphere.

Compared with the 30-year annual mean Tavg in the CRU (Figure 19.12b), NCEP 
tends to have lower values for almost all latitudes, with particularly large negative 
biases (area-weighted bias of –1.43°C) from 20°S to 20°N. ECMWF generally agrees 
well with the CRU but is somewhat higher in middle high latitudes and a little lower 
in the tropics. For the 2000 and 2001 intercomparison (Figure 19.12f), NCEP tends 
to have the lowest Tavg, ECMWF has the highest, and GMAO is in the middle for 
most latitudes. Although the bias in Tavg is small, a small bias in temperature can 
introduce relatively large errors in VPD and, consequently, in global ET because of 
the nonlinear relationship between Tavg and both VPD and ET.

A comparison of vapor pressure (e) shows that NCEP has higher values than 
CRU in tropical and boreal latitudes, while ECMWF agrees well with CRU (Figure 
19.12c). The area-weighted average biases at any given latitude are relatively small, 
with values of 2.92 Pa (0.22%) and 64.04 Pa (4.89%) for CMWF and NCEP, respec-
tively. The 2000 and 2001 reanalyses intercomparison (Figure 19.12g) shows that 
GMAO e is generally good in the middle and high latitudes of the northern hemi-
sphere relative to ECMWF. GMAO underestimates e in the tropics and southern 
hemisphere (54.75°S to 8°N), with an area-weighted bias of 102.93 Pa (5.57%) with 
respect to e in ECMWF.

NCEP has considerably lower VPD than both CRU and ECMWF (Figure 19.12d). 
The area-weighted mean bias along latitude reaches –185 Pa (–25.66%) compared 
with CRU. ECMWF generally agrees well with CRU with an area-weighted aver-
age bias of 2.55 Pa (0.35%). Comparison of reanalyses from 2000 and 2001 (Figure 
19.12h) shows that GMAO is closer to ECMWF than NCEP, although GMAO VPD 
tends to be lower from approximately 5°S to 40°N, and there are some discrep-
ancies between GMAO and ECMWF at other latitudes. Both Figures 19.12d and 
19.12h show that NCEP has lower VPD overall and it is much lower in tropical 
areas.

Figure 19.13 is the spatial pattern of annual total MODIS ET driven by GMAO, 
ECMWF (ERA40), and NCEP1, and Figure 19.14 is the corresponding zonal mean. 
Obviously, ET by GMAO has more detailed spatial ET variations than the other 
two, largely because first, GMAO has the finest resolution (1.0° × 1.25°) among the 
three meteorological datasets, and second, overall, GMAO has the best quality at the 
global scale, except for its low radiation in equatorial regions. Although ERA40 also 
has high accuracy, its S↓s is largely underestimated in tropical regions, resulting in 
unreliable low ET estimates in the tropics. 

In extratropical regions, both ETs by GMAO and ERA-40 have similar magni-
tudes, while coarser spatial resolution of ERA40 (2.5° × 2.5°) reduces the details of 
spatial pattern in estimated ET relative to that by GMAO. Although NCEP1 has the 
highest S↓s in the tropics (Figure 19.12e), its lowest VPD (Figure 19.12h) counter-19.12e), its lowest VPD (Figure 19.12h) counter-.12e), its lowest VPD (Figure 19.12h) counter-19.12h) counter-.12h) counter-
acts high solar radiation and results in a low ET, as shown in both Figures 19.13 and 
19.14. This is because VPD is not a dominant stomatal conductance control for the 
tropical forests, but the low VPD term will underestimate ET in the P–M equation. 
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However, in extratropical regions, VPD from NCEP1 is a little underestimated, 
and this would have much less effect on ET estimations because of the internal 
offsets by VPD itself in the ET algorithm. Low VPD can underestimate ET in the 
P–M equation, while low VPD can also relax water constraints on stomatal conduc-
tance, because most ecosystems in these regions are controlled by water availability 
(Nemani et al. 2003), resulting in overestimated ET. Therefore, the highest ET by 
NCEP1 in the extratropical regions is largely caused by the highest S↓s in NCEP1, 
as shown in Figure 19.12e. On the basis of our previous similar work on MODIS 
GPP/NPP (Zhao et al. 2006), the way in which meteorological variables influence 
MODIS ET are somewhat different from that in MODIS GPP/NPP and are more 
complex. 
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FIGURE 19.13  Results of the annual total ET in 2001 derived using (top) GMAO, (middle) 
ECMWF, and (bottom) NCEP1. Nonvegetated areas, such as barren or inland water, are 
shown in white over land.
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19.7  FURTHER IMPROVEMENTS

In the RS-ET algorithm, ET was calculated as the sum of the evaporation from 
moist soil and the transpiration from the vegetation during daytime. Nighttime ET 
was assumed to be small and negligible. Soil heat flux (G) was assumed to be zero. 
For daily calculations, G might be ignored (Gavilána et al. 2007). G is a relatively 
small component of the surface energy budget relative to sensible and latent energy 
fluxes for most forest and grassland biomes (Ogée et al. 2001; da Rocha et al. 2004; 
Tanaka et al., 2008) and is generally less than 20% of net incoming radiation for the 
forest and grassland sites from this investigation (e.g., Weber et al. 2007; Granger 
1999, http://www.taiga.net/wolfcreek/Proceedings_04.pdf). However, the assump-
tion of negligible G in the RS-ET algorithm is a significant concern for tundra. In 
the Arctic–Boreal regions, G can be a substantial amount of net radiation, espe-
cially early in the growing season. The assumption of a negligible G may be valid 
in midlatitude regions on a daily basis; however, in these areas, a substantial portion 
of net radiation melts ice in the active layer, especially early in the growing season 
(Harazono et al. 1995; Engstrom et al. 2006). The RS-ET algorithm neglected the 
evaporation from the intercepted precipitation from plant canopy. After the event of 
precipitation, part of the vegetation and soil surface is covered by water. The evapo-
ration from the saturated soil surface is much higher than the evaporation from the 
unsaturated soil surface, and the evaporation from the intercepted water by canopy 
is different from the canopy transpiration. Mu et al. (2011) have improved the RS-ET 
algorithm by (1) simplifying the calculation of vegetation cover fraction; (2) calculat-
ing ET as the sum of daytime and nighttime components; (3) calculating soil heat 
flux; (4) improving the methods of estimating stomatal conductance, aerodynamic 
resistance, and boundary layer resistance; (5) separating dry canopy surface from the 
wet, and hence, canopy water loss includes evaporation from the wet canopy surface 
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FIGURE 19.14  Zonal mean annual total MODIS ET estimated by three reanalysis daily 
meteorological datasets, GMAO, ERA40, and NCEP1. (Based on data in Figure 19.13.)
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and transpiration from the dry surface; and (6) dividing soil surface into saturated 
wet surface and moisture surface, and thus, soil evaporation includes potential evap-
oration from the saturated wet surface and actual evaporation from the moisture 
surface. Figure 19.15 shows the flowchart of the improved MODIS ET algorithm.

The improved MODIS ET algorithm was applied globally over 2000–2010 using 
the input global 1-km2 MODIS data: (1) Collection 4 MODIS land cover type 2 
(MOD12Q1) (Friedl et al. 2002); (2) Collection 5 MODIS FPAR/LAI (MOD15A2) 
Myneni et al. 2002); (3) Collection 5 MCD43B2/B3 albedo (Schaaf et al. 2002). The 
input nonsatellite data are NASA MERRA GMAO daily meteorological reanalysis 
data with a spatial resolution of 0.5° × 0.6° from 2000 to 2010. Figure 19.16 shows 
the average annual global terrestrial ET estimates by the improved MODIS ET algo-
rithm over 2000–2010.

The total global annual ET over the vegetated land surface areas during 2000–
2010, 63.4 × 103 km3, estimated by the improved algorithm, agrees well with an ET 
of 65.5 × 103 km3 over the terrestrial land surface as reported by Oki and Kanae 
(2006). The improved global total ET is a little less than 65.5 × 103 km3 as reported 
by Oki and Kanae (2006), because the MODIS ET does not include urban and barren 
areas since there is no MODIS LAI/FPAR for these land cover types. The improved 
MODIS ET algorithm needs more validation work at FLUXNET towers, global 
watersheds, and field data.
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FIGURE  19.15  Flowchart of the improved MODIS ET algorithm. (From Mu, Q. et al., 
Remote Sensing of Environment, 115, 1781. With permission.)
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19.8  CONCLUSIONS

The terrestrial water cycle plays a central role in climate and meteorology, plant 
community dynamics, and carbon and nutrient biogeochemistry. ET is the second 
largest component (after precipitation) of the terrestrial water cycle at the global 
scale and thereby conveys an important constraint on water availability at the land 
surface. Accurate estimation of ET not only meets the growing competition for the 
limited water supplies and the need to reduce the cost of the irrigation projects but 
also is essential to projecting potential changes in the global hydrological cycle 
under different climate change scenarios. Remote sensing data sometimes can also 
detect mechanisms not observable with field measurements, and remote sensing data 
may even assist in selecting appropriate sites for field observations and help validate 
or drive hydrological models. ET can be used to calculate regional water and energy 
balance and soil water status; hence, it provides key information for water resource 
management. With long-term ET data, the effects of changes in climate, land use, 
and ecosystem disturbances (e.g., wildfires and insect outbreaks) on regional water 
resources and land surface energy changes can be quantified. With the improved 
quality and increasing spatial coverage of ground-based data, improved quality of 
satellite data, and the increasing knowledge gained from these data, the performance 
of ET models will continue to be enhanced, thereby enhancing our ability to study 
the earth as a system.
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20.1  INTRODUCTION

Global water cycle directly affects the global circulation of both atmosphere and 
ocean and, hence, is instrumental in shaping the weather and climate of the earth. 
However, our quantitative knowledge of the global water cycle is quite poor; large-
scale measurements of the states and fluxes of various global reservoirs on time 
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scales appropriate to their dynamics are deficient. Terrestrial water storage (TWS), 
as a fundamental component of the global water cycle, is of great importance for 
water resources, climate, agriculture, and ecosystem. TWS controls the partitioning 
of precipitation into evaporation and runoff and the partitioning of net radiation into 
the sensible and latent heat fluxes. More importantly, TWS change (TWSC) is a basic 
quantity in closing terrestrial water budgets (Ngo-Duc et al. 2005; Güntner et  al. 
2007; Syed et al. 2008; Yeh and Famiglietti 2008).

Among various components of the global water cycle, TWS is one of the most 
difficult to estimate. Despite its importance, no extensive networks currently exist for 
monitoring large-scale TWS variations and its constitutive components. Reliable data-
sets of large-scale TWS are extremely scarce. The role of TWS in the global water 
cycle has received relatively little attention compared with other hydro-meteorological 
processes. As our understanding of interactive Earth system processes grows and the 
need for more accurate assessment of world water resources increases, our capabil-
ity to accurately quantify TWS variations must be greatly expanded. In addition to 
contributing to water resources management, better characterization of large-scale 
TWSs will improve basin- and regional-scale water balance studies, enable better 
parameterizations in land surface models (LSMs), and contribute to improved under-
standing of land surface–atmosphere interactions.

Historically, global hydrological cycles have been assessed by a synthesis of in situ 
observational data, for example, precipitation and streamflow from gauge measure-
ments or air humidity and pressure from atmospheric radiosonde data. Over the last 
two decades, global atmospheric reanalysis datasets estimated by the four-dimensional 
data assimilation technique have enabled global water balance estimation by using 
the atmospheric or combined land–atmosphere water balance computation (Oki et al. 
1995; Yeh et al. 1998; Oki 1999; Seneviratne et al. 2004; Hirschi et al. 2006, 2007; 
Yeh and Famiglietti 2008). The column-integrated water vapor convergence provides 
a global distribution of precipitation minus evapotranspiration if the temporal variation 
of precipitable water is considered to be zero. The combined land–atmosphere water 
balance computation using atmospheric and river discharge data can be used to esti-
mate the temporal change of spatially averaged TWS over large areas. The accuracy 
of atmospheric water balance computations is highly dependent on the size of the area 
investigated (>106 km2 as suggested by Rasmusson 1968, 1971 and Yeh et al. 1998).

Another alternative for large-scale TWS estimation is via the large-scale LSMs 
used for climatic studies. The state-of-the-art LSMs are constrained by realistic meteo-
rological forcing and ingest satellite- and ground-based observational data using data 
assimilation techniques. Although there is still much deficiency in model parameteriza-
tion and parameter calibration, to date, LSMs remain the only feasible tool to produce 
optimal fields of land surface states and fluxes over large areas at any time resolutions.

20.2   GRAVITY RECOVERY AND CLIMATE 
EXPERIMENT SATELLITE MISSION

Satellite observations of the earth’s time-variable gravity field from the Gravity 
Recovery and Climate Experiment (GRACE) mission (Tapley et al. 2004) have pro-
vided another unique opportunity of monitoring TWS variations from space (Rodell 
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and Famiglietti 2001). The twin satellites were launched on March 17, 2002, as a 
collaborative mission of the U.S. (National Aeronautics and Space Administration) 
and German (German Aerospace Center) space agencies. The GRACE mission 
deployed two identical satellites apart with approximately 220 km in identical orbits 
at approximately 500 km high. The satellites are continuously tracking each other 
using the K-Band Microwave Ranging System. Their separation and the rate, which 
vary as they pass over a not uniformly distributed gravity field, are measured with a 
precision of 10 μm. Other onboard instruments include accelerometers to distinguish 
velocity changes due to factors other than the gravitational perturbation of the earth 
(e.g., atmospheric drag and solar pressure). For more information on GRACE, see 
the comprehensive reviews by Ramillien et al. (2008) and Schmidt et al. (2008).

Monthly, seasonal, and interannual variations in gravity on land are largely due to 
corresponding changes in vertically integrated TWS (Tapley et al. 2004; Wahr et al. 
2004), and atmospheric pressure change. The latter has been removed from GRACE 
time-variable gravity solutions during the dealiasing process of GRACE data pro-
cessing (Bettadpur 2007). By exploiting the unique relationship between changes in 
gravity field and changes in mass at the earth’s surface, the month-to-month gravity 
variations obtained from GRACE can be inverted into global estimates of vertically 
integrated TWS with a spatial resolution of a few hundred kilometers and larger, 
with higher accuracy at larger spatial scales (Swenson et al. 2003; Wahr et al. 2004). 
This has allowed, for the first time, observations of variations in the total TWS (i.e., 
the sum of snow, vegetation water, surface water, soil moisture, and groundwater) 
from large river basins (Swenson et al. 2003; Chen et al. 2005; Seo et al. 2006) 
to continental scales (Wahr et al. 2004; Ramillien et al. 2005). This movement is 
deemed as new approaches to remotely estimate river discharge (Syed et al. 2005, 
2009), evapotranspiration (Rodell et al. 2004), and storage variations in groundwa-
ter (Yeh et al. 2006; Rodell et al. 2007; Strassberg et al. 2007; Rodell et al. 2009; 
Famiglietti et al. 2011), snow water storage (Frappart et al. 2005), and river storage 
(Frappart et al. 2008; Kim et al. 2009). More advances were geared toward monitor-
ing extreme hydrologic events (Andersen et al. 2005; Chen et al. 2009), and validat-
ing and improving water balance in global land surface hydrologic models (Niu and 
Yang 2006; Swenson and Milly 2006; Lo et al. 2010). However, while most of the 
studies above acknowledged that GRACE is monitoring the total TWS, a critical 
evaluation of the accuracy of GRACE water storage data and the potential for sepa-
rating GRACE signals into individual TWS components has yet to be conducted.  

The objective of this chapter is to explore the potential for GRACE to observe 
TWS variations and to develop a framework for its validation. The validation is 
based on the comparisons between GRACE TWS estimates and other estimates 
derived using the other independent approaches, including in situ direct observa-
tions, land surface modeling, and combined land–atmosphere water balance com-
putations. In this chapter, focus has been laced on the comparison of GRACE TWS 
estimates in Illinois with long-term observed water storage data provided by the 
Illinois State Water Survey (ISWS), including soil moisture, groundwater depth, and 
snow water equivalent. It is followed by a comparison of GRACE TWS estimates 
with the model simulation of TWS from a LSM, the Minimal Advanced Treatment 
of Surface Interaction Runoff (MATSIRO; see Takata et al. 2003) over the 20 large 
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river basins shown in Figure 20.1. These river basins are selected because of their 
wide coverage across diverse climatic zones in the world. Since all of them have a 
basin size larger than 106 km2, the combined land–atmosphere water balance compu-
tation is also applied (Section 20.4.3) to estimate seasonal TWSC, and the obtained 
results are compared with GRACE TWS data in Section 20.5.3.

20.3  BACKGROUND

20.3.1  teRReStRial wateR Balance coMPutation

The terrestrial water balance can be written as follows:

 
dS
dt

nD
ds
dt

S
dH
dt

dW
dt

P E Ry
S= + + = − − , (20.1)

where S is the total TWS (in millimeters), nD is the available storage depth of the 
soil (in millimeters), the product of soil porosity and root zone depth, s is the soil 
relative saturation (i.e., soil moisture content divided by soil porosity; in percent), Sy 
is the specific yield (i.e., the fraction of water volume that can be drained by gravity 
in an unconfined aquifer; in percent), H is the groundwater depth (in millimeters), 
WS is the total surface water storage, including the (accumulated) depth of snowpack 
(liquid equivalent), water in the lakes, and reservoirs (in millimeters), P is the pre-
cipitation rate (in millimeters per month), E is the evaporation rate (in millimeters 
per month), and R is the total runoff (i.e., measured streamflow; in millimeters per 
month). The hydrological storage terms in Equation 20.1 correspond to water stor-
ages in soil moisture, groundwater aquifer, and surface water. 

20.3.2  coMBined land–atMoSPheRe wateR Balance coMPutation

An overview of TWSC estimation using combined land–atmosphere water balance 
computation is given below. This approach serves as an independent estimation to 
compare with in situ measurements or GRACE TWS estimate. The atmospheric 
water balance equation can be written as follows (Peixoto and Oort 1992; Yeh et al. 
1998; Yeh and Famiglietti 2008):

 
dW
dt

E P Ca = − + , (20.2)

where Wa is the mean precipitable water (in millimeters), C(=–∇ ⋅ Q) is the mean 
convergence of lateral atmospheric vapor flux (in millimeters per month), and Q is 
the vertically integrated mean total moisture flux (in square millimeters per month). 
C can be calculated by taking the line integral of the moisture flux around the area 
under study. Wa and Q can be calculated by integrating the profiles of specific humid-
ity, and zonal and meridional wind components from the pressure at the ground sur-
face to that above which moisture content becomes negligible (i.e., 300 mbar in this 
study). The approach used here is essentially identical to that used by Yeh et al. (1998) 
and Yeh and Famiglietti (2008), where more details about the computation of atmo-
spheric vapor convergence can be found.
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The change of TWS can be derived by combining Equations 20.1 and 20.2 
(Seneviratne et al. 2004; Hirschi et al. 2006; Yeh and Famiglietti 2008):

 
dS
dt

C R
dW
dt

a= − − , (20.3)

which provides an independent estimate of the total TWSC. 
By averaging Equations 20.1 and 20.2 over long time series, all the derivative 

terms can be assumed negligible. Thus, by equating the two estimates of long-term 
evaporation, the following can be derived:

 R = C = –∇ ⋅ Q, (20.4)

which is an expression of that, for any climate equilibrium, the long-term conver-
gence of atmospheric moisture toward any hydrologic unit has to be balanced by the 
long-term net discharge of runoff out of the same hydrologic unit. Thus, R C=  (the 
overbars denote long-term averages) can be conceived as a criterion for evaluating 
the agreement between atmospheric and hydrologic datasets and for assessing long-
term water balance closure. 

In using water balance computation to evaluate budgets, it is important to real-
ize the characteristics and limitation of the water balance equations. Equations 20.1 
through 20.3 constitute the basis of the mass balance methods for the estimation 
of regional water balance components. These equations are valid for all scales. 
However, the accuracy by which each of the terms can be evaluated varies, depend-
ing on the spatial and temporal resolutions of the data used. The temporal change of 
storage is negligible for annual water balance for a suitable long period but not for the 
monthly water balance, since the storages may considerably delay the timing of dis-
charge runoff relative to the atmospheric moisture convergence into the region. For 
regions where runoffs are very low, TWSC follows closely the atmospheric moisture 
convergence. Conversely, for a region where most of the atmospheric convergence 
goes into the river runoff, the computed change in TWS is a mere residual of two 
large values and may be rather inaccurate.

 In the next section, the data sources that were used in this study are summa-
rized. These include GRACE monthly TWS data (Section 20.4.1), long-term in situ 
measurements of soil moisture and groundwater depth in Illinois (Section 20.4.2), 
land surface hydrological model simulations (Section 20.4.3), and National Centers 
for Environmental Prediction (NCEP)/National Center for Atmospheric Research 
atmospheric reanalysis data (Section 20.4.4).

20.4  DATA

20.4.1  gRace twS data

GRACE level-2 gravity fields (monthly Stokes coefficients) are officially released by 
three data centers: Center for Space Research (CSR, USA), GeoForschungsZentrum 
(GFZ, Potsdam, Germany), and Jet Propulsion Laboratory (JPL, USA). Gravity changes 
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observed by GRACE include all mass redistribution processes such as hydrologic redis-
tribution in surface and subsurface, ocean water movements and tides, variations of atmo-
spheric masses, and cryospheric changes. Therefore, appropriate corrections are required 
to separate hydrological signals, and background models are often used to remove other 
nonhydrological components. For example, the European Center for Medium-Range 
Weather Forecasts pressure field is used to remove the effect of atmospheric mass redis-
tribution. Modeled wind- and pressure-driven ocean motions are used to remove the 
tide and ocean water movement effects. Glacial isostatic adjustment effect is corrected 
by using postglacial rebound models. The errors in the short wavelengths, which appear 
as a north to south–oriented long stripe pattern, are dominant because those signals are 
attenuated more along the increasing latitudes. Swenson and Wahr (2006) investigated 
the spectral signature of the correlated errors in Stokes coefficients and introduced a 
filter to remove the “striping” problem. The version of the “dpc200711” dataset that was 
used in this study was destriped by using a modified algorithm proposed by Chambers 
(2006). The destriped filter is applied up to spherical harmonic degree 40 and truncates 
at the order; thus, the data only contain wavelengths longer than approximately 1000 
km. Afterward, the equivalent Gaussian smoother is applied with different half-widths 
of smoothing radius. In this chapter, destriping and 0-, 300-, 500-km smoothing applied 
monthly gravity fields from three major data centers are used to compare with TWS 
estimates derived from other independent approaches.

Previous studies on the evaluation of GRACE accuracy (e.g., Rodell and Famiglietti 
1999, 2001; Swenson and Wahr 2002; Swenson et al. 2003, 2006; Yeh et al. 2006) 
have indicated that TWS variations would likely be detectable, depending on the size 
of the region and the magnitude of the variations themselves. The accuracy of GRACE 
estimates of water storage variability within a region depends on the GRACE mea-
surement errors, and the degree to which the gravity signal from the water storage can 
be separated from other time-variable gravity signals (e.g., atmospheric mass redis-
tribution). In general, uncertainties in the GRACE-derived water storage variations 
decrease with increasing spatial and temporal scales. GRACE is capable of estimat-
ing monthly changes in TWS to accuracies of better than 1 cm of water depth for 
areas of >200,000 km2. Swenson et al. (2006) found that the GRACE TWS anomaly 
estimates agree well with in situ measurements in Illinois averaged over an area of 
~280,000 km2. Accuracy can be improved to better than a few millimeters for areas 
of >1,000,000 km2. This achievement indicates the potential for GRACE to provide 
direct measurements of seasonal TWS variations from individual river basins to con-
tinental water balance analyses, which are unprecedented in the history of hydrology.

However, GRACE signal separation can be a severe issue. GRACE gravity measure-
ment made in space provides no information about the vertical distribution of mass. With 
time-variable gravity signals alone, there is no way of telling whether a time-variable 
gravity signal is caused by mass variability at the earth’s surface, in the atmosphere, 
or deep within the mantle. Thus, GRACE data can be used to constrain only the verti-
cally integrated water storage variability (assuming other geophysical contributions; for 
example, atmospheric and solid earth mass changes are known or negligible) and cannot 
separate soil moisture from surface water or from water deeper underground.

Six-year (2003–2008) GRACE monthly TWS anomaly (TWSA) data for the 20 
selected river basins in Figure 20.1 are plotted in Figure 20.2. All of the nine GRACE 
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FIGURE 20.2  GRACE TWSA data in 20 selected large river basins worldwide. See text 
for explanation.



489Validation for Terrestrial Water Storage Variations

200

–200
2003T

W
SA

 (m
m

)

2004 2005 2006

Kolyma

2007 2008 2009

0

200

–200
2003T

W
SA

 (m
m

)

2004 2005 2006 2007 2008 2009

0

200

–200
2003T

W
SA

 (m
m

)

2004 2005 2006

Mackenzie

Lena

2007 2008 2009

0

200

–200
2003T

W
SA

 (m
m

)

2004 2005 2006

Mekong

2007 2008 2009

0

200

–200
2003T

W
SA

 (m
m

)

2004 2005 2006

Mississippi

2007 2008 2009

0

200

–200
2003T

W
SA

 (m
m

)

2004 2005 2006

Ob

2007 2008 2009

0

200

–200
2003T

W
SA

 (m
m

)

2004 2005 2006 2007 2008 2009

0

200

–200
2003T

W
SA

 (m
m

)

2004 2005 2006

Volga

Orange

2007 2008 2009

0

200

–200
2003T

W
SA

 (m
m

)

2004 2005 2006

Yenisey

2007 2008 2009

0

200

–200
2003T

W
SA

 (m
m

)

2004 2005 2006

Zambezi

2007 2008 2009

0

FIGURE 20.2  (Continued)
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datasets (from three data centers and each with three smoothing resolutions: 0, 300, 
and 500 km) are plotted with their averages plotted as black circles. GRACE data 
are known to have a resonance problem from July to October 2004 as can be seen in 
this figure. In 2004, a resonance caused the satellite to enter a near-repeat orbit (see 
the work of Wagner et al. [2006] for details). As observed, the differences among 
different GRACE data are small because of the relatively large size of selected river 
basins. However, a large disparity in the amplitude of seasonal TWS variations can 
be observed, ranging from ~20 mm in the Amur and Murray–Darling River basins 
to ~200 mm in the Amazon and Brahmaputra basins. 

20.4.2  illinoiS IN SITu oBSeRvationS

The in situ data used in this chapter include 25-year (1985–2009) monthly time 
series of soil moisture and groundwater depth in Illinois. Figure 20.3 shows the loca-
tions of data sampling networks in Illinois. Since consistent observed soil moisture 
and groundwater datasets with sufficient length and regional convergence are rarely 
available, Illinois is perhaps the most ideal region to validate GRACE TWS esti-
mates against in situ direct measurements.
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depth (GW), and streamflow (R) in Illinois.
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Soil moisture data were collected by the ISWS from 1981 to the present at 19 sta-
tions using the neutron probes technology. Weekly to biweekly measurements of soil 
wetness were taken at 11 soil layers with a resolution of about 20 cm down to 2 m 
below the surface, and no data were collected below 2 m. Sixteen of these 19 sites 
covering the period of GRACE data (2003–2008) were used in this study. The data 
on soil porosity, field capacity, and permanent wilting point were also provided in 
this dataset, which enables the estimation of the water-holding capacity of soil layers 
(Hollinger and Isard 1994; Yeh et al. 1998). The data on groundwater depth consists 
of 19 wells scattered relative uniformly over Illinois, which are used to monitor the 
unconfined silt loam aquifers. These aquifers are relatively shallow, and the average 
depth to the water table ranges between 1 and 10 m below the surface. Ten out of 19 
wells with the complete records from 2003 to 2008 were used in this study. For more 
details on the Illinois hydroclimatologic datasets, see the work of Yeh et al. (1998) 
and Yeh and Famiglietti (2008, 2009).

Twenty-five-year (1985–2009) monthly anomalies of observed Illinois state-average 
soil moisture and groundwater storage are plotted in Figure 20.4. For deriving water 
storage from soil moisture and groundwater depth measurements, the porosity was 
provided by ISWS for each of the 19 soil moisture monitoring stations, and the 
specific yield (Sy) was determined as 0.08 for the dominant soil type of silt loam 
in Illinois following the estimate by Yeh et al. (1998). The signatures of hydrologic 
extremes such as the late spring drought in 1988 and the summer flood in 1993 are 
clearly shown in Figure 20.4. Illinois has experienced another severe drought in 
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the spring and summer of 2005, which can also be clearly seen in the groundwater 
storage plot. More recently, from 2007 to 2009, both groundwater and soil moisture 
have been on a multiyear steep rising trend related to wetter climatic conditions in 
Illinois.

Previous studies on Illinois hydroclimatology (Yeh et al. 1998; Rodell and 
Famiglietti 2001; Seneviratne et al. 2004; Yeh and Famiglietti 2008) have concluded 
that the changes in groundwater and soil moisture are the largest components of 
TWS variations at the monthly time scale. Figure 20.4 indicates that both of them 
have comparable amplitude of about 50–100 mm. For the two subsurface storages, 
Yeh et al. (1998) showed the similarity in the seasonal cycle, with the peak occur-
ring in March and a trough in August (for soil moisture) or September (for ground-
water). Concerning snow, it is relatively insignificant, since Illinois is located at the 
upwind direction of Lake Michigan such that the lake-effect snow is irrelevant (Yeh 
et al. 1998). A close examination of the Illinois snow data reveals that, after a day 
with snow occurrence, the snow accumulation lasted only 1–5 days for most of the 
cases. Therefore, the snow storage effect in Illinois is insignificant in monthly water 
balance computation. Rodell and Famiglietti (2001) (Figure 20.2) further showed 
that monthly changes in snow and reservoir storage are only occasionally signifi-
cant, with a maximum of ~10 mm/month. In addition, Yeh et al. (1998) and Yeh and 
Famiglietti (2008) have found close agreement between regional evaporation esti-
mates from both the terrestrial and atmospheric water balance computations, sug-
gesting that the role of human withdrawal or interference in streamflow may not be 
significant in Illinois. Given the limited role of snow and other surface water storages 
in this region, they are no considered major TWS components here.

20.4.3  MatSiRo lSM

The hydrologic modeling framework used in this study consists of a LSM-MATSIRO 
(Takata et al. 2003; Kim et al. 2009) and a global runoff routing scheme–total run- and a global runoff routing scheme–total run-and a global runoff routing scheme–total run-
off integrated pathway (TRIP) (Oki and Sud 1998). The MATSIRO model has a 
single-layer of canopy, three variable snow layers with a subgrid distribution of snow 
cover, and five soil layers of 4-m total thickness. Similar to most LSMs, MATSIRO 
lacks any explicit representation of water table dynamics, which can have an impor-
tant contribution to seasonal TWS variations, particularly for humid regions such 
as Illinois. TRIP is a global river routing scheme that routes the runoff simulated 
by MATSIRO through river networks based on topographic gradient and an effec- through river networks based on topographic gradient and an effec- and an effec-ffec-
tive velocity defined as an integrated mean velocity of rainwater traveling from land 
surface to river mouth through various paths. Thus, TRIP can effectively simulate 
unrepresented fast subsurface processes as a part of its dynamics (Oki  1999). 
Therefore, river storage calculated by TRIP is virtually the water storage moving 
laterally toward stream outlets, including down-slope surface fl ow, shallow lat- down-slope surface fl ow, shallow lat-down-slope surface fl ow, shallow lat-surface fl ow, shallow lat-flow, shallow lat- shallow lat-lat-
eral groundwater movement, and channel flow. The MATSIRO-TRIP modeling 
framework was successfully applied to study the terrestrial water cycle (Hirabayashi 
et al. 2005; Kim et al. 2009) and the assessment of hydrologic extremes on the global 
scale (Hirabayashi et al. 2008).
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The MATSIRO-TRIP model simulations conducted here span over the period of 
GRACE mission from 2002 to 2007 with a global 1° × 1° grid resolution. Atmospheric 
forcing (precipitation, temperature, radiations, pressure, humidity, and wind speed) 
was based on atmospheric reanalysis data provided by the Japanese Meteorological 
Agency Climate Data Assimilation System (Onogi et al. 2007), and an altitude correc-
tion has been applied to temperature, pressure, and humidity (Ngo-Duc et al. 2005). 
Ensemble simulations were conducted by using five observed global precipitation 
datasets to reduce the uncertainties in forcing variables. Specifically,  three ground-
based observational products and two hybrid satellite products were retrieved from the 
Global Precipitation Climatology Centre, Global Precipitation Climatology Project, 
and Climate Prediction Center. All the reanalysis and observed precipitation datasets 
were bilinearly interpolated or aggregated into the 1° × 1° grids. Observed daily or 
monthly precipitation was disaggregated on the basis of the temporal distribution of 
6-hourly reanalysis precipitation fields. Input land surface properties, including land 
cover, soil texture, and soil and vegetation parameters, were specified according to the 
Global Soil Wetness Project 2 (Dirmeyer et al. 2006). Additional model parameters in 
MATSIRO followed the default values in the work of Takata et al. (2003).

In the MATSIRO-TRIP hydrologic simulations, the total TWS consists of three 
main components: soil moisture, snow water, and river storage. Soil moisture and 
snow water were calculated as the arithmetic mean of model ensemble simulations. 
To obtain optimal river storage simulations for the realization of temporal variations 
of effective velocity, the Bayesian model averaging (Duan et al. 2007) was applied 
to 10 TRIP runs with perturbed effective velocities ranging from 0.1 to 1.0 m/s with 
equal intervals. The average of ensemble simulations was optimized to maximize the 
weight-averaged likelihood of ensemble members, and the observed Global Runoff 
Data Center (GRDC) river discharge data were taken as the training data. The pro-
cedure was performed for each individual river basin in Figure 20.1, since effective 
velocity is highly dependent on basin-specific topography and river morphology. The 
simulated total TWSA was spatially averaged over each basin for the comparison 
with the GRACE TWS. More details on the MATSIRO-TRIP ensemble simulations 
can be found in the work of Kim et al. (2009).

20.4.4   data uSed in the coMBined land–atMoSPheRe 
wateR Balance coMPutation

The data needed for the combined land–atmosphere water balance computation 
(Equation 20.3) include the vertical profiles of atmospheric humidity, wind speed, 
and river discharge. For the atmospheric data, the output from the NCEP–Department 
of Energy Reanalysis 2 (Kanamitsu et al. 2002) was used here. It has a 6-hourly 
temporal resolution and a 2.5° × 2.5° horizontal resolution at eight pressure levels 
(1000, 925, 850, 700, 600, 500, 400, 300 mbar). Additional details about the reanaly-
sis data used here can be found in the work of Yeh and Famiglietti (2008). For the 
runoff, observed daily data provided by the GRDC for the selected 20 river basins 
were used. Since the majority of GRDC data are for the periods of the twentieth 
century and the length of data varies from basin to basin, only five basins with the 
data period covering the GRACE data period (2003–2008) were used in the analysis.
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20.5  RESULTS

20.5.1  gRace twSa veRSuS IN SITu MeaSuReMentS in illinoiS

Figure 20.5 presents the comparison of 7-year (2003–2009) monthly observed 
TWSA and GRACE TWSA data in Illinois. GRACE data taken from three data pro-
cessing centers (CSR, GFZ, and JPL), each with three different smoothing radii (500 
km, 300 km, and nonsmoothed), are plotted together to quantify the range of uncer-
tainty involved in GRACE data processing by different institutes and methods. Since 
GRACE data in June 2003 and January 2004 were missing, they were replaced by 
the linear interpolation from the data of adjacent 2 months. Also notice that GRACE 
data from July to October 2004 provided by GFZ seem to be problematic. 

As shown in this plot, the amplitude and seasonal variations of GRACE TWSA 
track those of in situ measurements reasonably well, although certain substantial 
differences exist in month-to-month variations. The correlation coefficients between 
observed TWSA and CSR/GFZ/JPL GRACE TWSA are 0.67/0.65/0.50 for the 500-km 
smoothed data, 0.71/0.62/0.59 for the 300-km smoothed data, and 0.73/0.52/0.59 for the 
nonsmoothed data. The GRACE TWS data satisfactorily capture the rising trend 
of storages during the period from mid-2007 to 2009 for both positive and nega-
tive annual peaks, as well as the magnitude of the trough that occurred in the mid-
2005 droughts in Illinois. However, although the nonsmoothed GRACE data match 
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well with observed timing of negative TWSA peak in 2005, all the smoothed data 
exhibited a consistent 2-month shift from July to September, reflecting the sensitiv-
ity of the adopted smoothing filters to estimated GRACE TWS signals. Smoothing 
(spatial averaging) of GRACE data is necessary to reduce the contribution of noisy 
short-wavelength components of the gravity field solutions. The estimated monthly sets 
of the spherical harmonic coefficients representing monthly mean global gravity fields 
is known to contain temporal aliasing errors, which are related to submonthly mass 
variations of atmospheric and oceanic circulations. For more discussion on this issue, 
see the work of Han et al. (2004), Winsemius et al. (2006), and Schmidt et al. (2008).

20.5.2   gRace twSa veRSuS hydRological Model 
SiMulation in laRge RiveR BaSinS

Figure 20.6 plots the comparisons of 1984–2005 monthly anomalies of 0–2 m soil 
moisture and total water storage simulated by MATSIRO with the corresponding 
observed soil moisture and TWS anomalies in Illinois. The MATSIRO simulations 
were constrained by observed streamflow data provided by the U.S. Geological 
Survey (USGS). As shown, MATSIRO successfully reproduces observed seasonal 
and interannual variability of total water storage except for 1993 and the period 
2003–2005. During the summer floods of 1993, MATSIRO undersimulated the 
nearly saturated condition of TWS, while during the period 2003–2005, it failed to 
simulate the multiyear declining trend of TWS, particularly in the summer months. 
Although lacking of groundwater representation, MATSIRO effectively lumps 
groundwater storage variability in its TWS simulations, as can be judged from the 
overall agreement between model simulations and observations shown in Figure 
20.6, except for the anomalously wet or dry periods when groundwater storage plays 
a critical role in TWS variations. The close agreement thus provides the credibility 
of using the MATSIRO model simulations in comparison with GRACE TWS esti-
mates over the selected 20 large river basins (Figure 20.1). 

Figure 20.7a presents the comparisons of the 6-year (2002–2007) mean annual 
cycle and monthly time series of total TWS anomalies between GRACE estimates 
and model simulations in the following 12 river basins: Amazon, Amur, Chang-
Jiang, Congo, Lena, Mackenzie, Mississippi, Murray-Darling, Ob, Volga, Yenesey, 
and Zambezi. The vertical bars in Figure 20.7a denote the range of interannual 
variability of monthly TWS variations. As observed in this figure, in general, the 
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MATSIRO model can reproduce the patterns (in terms of amplitude and timing) of 
GRACE TWS variations remarkably well at both seasonal (Figure 20.7a) and inter-20.7a) and inter-.7a) and inter-
annual (Figure 20.7b) time scales in most basins, although some month-to-month 
discrepancies can be significant, for example, in Congo, Lena, Mississippi, and 
Murray-Darling (Figure 20.7b).
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20.5.3   gRace twSa veRSuS coMBined land– atMoSPheRe 
wateR Balance eStiMateS

The application of the combined land–atmosphere water balance computation in 
deriving the estimate of TWSC (dS/dT in Equation 20.3) is largely limited by the 
availability of observed streamflow data within the GRACE period. Most of river 
discharge data provided by GRDC are only for the twentieth century, with only very 
little available for the twenty-first century. Therefore, only seven large river basins 
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(Mississippi, Columbia, Colorado, Mackenzie, Zambezi, St. Lawrence, and Yukon) 
are selected for comparing monthly TWSC estimated by the water balance approach 
to GRACE. The results are presented in Figures 20.8 and 20.9. Figure 20.8 shows 
the comparison of two TWSC estimates in the Mississippi River basin, where daily 
discharge data from 2004 to the end of 2009 (with 1-year missing data around 2005–
2006) were provided by the USGS. All the nine GRACE datasets (including, respec-
tively, three data processing centers and three smoothed radii) are plotted together, 
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with their average denoted by black circles. As seen, two independent estimates of 
monthly TWSC in the Mississippi basin show remarkable agreement in the timing of 
seasonal march; also, both of them have a similar amplitude of about 50 mm/month.

Figure 20.9 plots similar comparisons of two TWSC estimates over the Columbia, 
Colorado, Mackenzie, Yukon, St. Lawrence, and Zambezi River basins. The GRACE 
TWSC data, averaged from the nine datasets (three data centers and three smoothing 
radii), are plotted in Figure 20.9, where it clearly shows contrasting magnitudes of TWSC 
among six selected basins. Based on this plot, a reasonable match in the seasonal varia-
tions between two TWSC estimates can be observed for all the basins examined, but 
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the quality of comparison in terms of both the timing and amplitude vary considerably 
among basins. The comparisons are relatively good for the Columbia and Yukon basins, 
but less satisfactorily in the Colorado, St. Lawrence, and Zambezi basins.

It should be indicated that most of previous analyses of GRACE TWS (for example, 
see the work of Swenson et al. 2003, Wahr et al. 2004, Chen et al. 2005, Ramillien et al. 
2005, and Seo et al. 2006) have focused on the monthly TWSAs rather than the TWSC 
shown in Figures 20.8 and 20.9. As discussed by Yeh and Famiglietti (2008), reanalysis 
data–based estimates of monthly TWS variations, as derived by taking integration from 
the water balance–estimated TWSC, often contain an artificial multi year trend (“drift”) 
due to the common problems such as observing system changes or soil moisture nudg-
ing in most climate model simulations. Therefore, without correction, TWS estimates 
based on reanalysis data cannot be directly used to compare with other independent 
estimates such as that from GRACE or from model simulations. Also, in most studies 
of GRACE hydrologic applications (for example, see the work of Rodell and Famiglietti 
1999, 2001, Syed et al. 2005, and Yeh et al. 2006), the interest has been in the total 
TWSC (rather than TWS) because of its importance for water balance closure. Because 
monthly TWSC is estimated from TWSA by taking the difference between monthly 
water storage anomalies, small errors in TWSA will be amplified into larger discrepan-
cies in the derived TWSC. Thus, the overall agreement in the seasonal cycle as shown in 
Figures 20.8 and 20.9 is encouraging and indicates that, in addition to providing sound 
estimates of monthly TWSA as shown previously (Figures 20.5 and 20.7), GRACE data 
also have the potential for providing reasonable estimates of monthly TWSC at least for 
the selected river basins in Figures 20.8 and 20.9.

20.6  CONCLUSIONS

In this chapter, GRACE TWS data are compared with other independent estimates 
of TWS for selected regions and large river basins. The objective is to explore the 
potential for GRACE to observe TWS variations and to develop a framework for 
its validation. Long-term in situ measurements of soil moisture and groundwater 
depth in Illinois are used to validate GRACE TWS estimates. Seasonal and interan-
nual TWS variations at the continental scale are explored by comparing GRACE 
TWS with the global-scale hydrological model simulation and estimated inferred 
from combined land–atmosphere water balance computation for 20 selected large 
river basins. In general, the comparisons yield encouraging results as can be judged 
from the overall close agreement on the seasonal pattern of TWS variations between 
GRACE TWS and other independent estimates (Figures 20.5 and 20.7 through 20.9).

The proposed GRACE validation framework is based on the combination of 
comparing GRACE TWS data with direct observations, global-scale land surface 
hydrological simulations constrained by observed streamflow, and combined land–
atmosphere water balance computation based on atmospheric reanalysis data. The 
results obtained here can be expected to provide diagnostic information useful for 
the GRACE validation over major river basins or large continental regions, as well 
as to provide a benchmark for the LSM development and validation. Moreover, the 
diagnostic study presented here is expected to shed light on the strengths and limita-
tions of large-scale water balance computation and current atmospheric reanalysis 



502 Multiscale Hydrologic Remote Sensing: Perspectives and Applications

data in characterizing hydroclimatic variability at the continental basin scale. In 
addition to demonstrating current capabilities for remotely sensing TWS variations 
by GRACE, other broader goals of this chapter are to build an improved conceptual 
model of global TWSC and its relation to land surface water and energy fluxes and 
to understand their role in the global water cycle. The findings can be used to sup-
port the development of the representation of related TWS processes in land surface 
hydrological models (for example, see the work of Yeh and Eltahir 2005a,b).
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21.1  INTRODUCTION

Drought is the most complex and least understood of all natural hazards, affecting 
more people than any other hazard (Wilhite 2000). Bryant (1991) ranked natural 
hazards on the basis of various criteria, such as severity, duration, spatial extent, loss 
of life, economic loss, social effect, and long-term impact, and found that drought 
ranks first among all natural hazards (Narasimhan 2004). In spite of the economic 
and the social impact caused by drought, it is the least understood of all natural 
hazards owing to the complex nature and varying effects of droughts on different 
economic and social sectors (Wilhite 2000). The wide variety of sectors affected by 
drought, its diverse geographical and temporal distribution, and the demand placed 
on water supply by human-use systems make it difficult to develop a single defini-
tion of drought (Richard and Heim 2002). After analyzing more than 150 definitions 
of drought, Wilhite and Glantz (1985) broadly grouped those definitions into four 
categories: meteorological, agricultural, hydrological, and socioeconomic drought. 

Traditional drought monitoring is based on weather station observations or on 
the development of drought indices to investigate the severity of a drought incident. 
The direct station observations are currently restricted to discrete measurements at 
specific locations and lack continuous spatial coverage. A number of different indi-
ces based on hydrological and meteorological data have been developed to quantify 
drought. The most commonly used drought index is the Palmer Drought Severity 
Index (PDSI), which was developed by Palmer in 1965 (Palmer 1965). PDSI, how-
ever, was solely based on lump parameters, which do not consider the spatial vari-
ability, and therefore cannot reveal detailed spatial patterns of drought conditions. 

Recent technological advances in satellite remote sensing have offered a means 
for more effective drought monitoring across a much wider spatial and temporal scale 
and, at the same time, at a much higher spatial and temporal resolution (Engman 
1990). Research by using satellite data to monitor a variety of dynamic land surface 
processes began in the mid-1970s shortly after the surge in satellite development (for 
example, see the work of Anderson et al. 1976, Reed et al. 1994, Yang et al. 1998, 
and Peters et al. 2002). Numerous satellite-derived indices were developed to detect 
and monitor drought. 

While the first generation of remote sensing–based drought indices relied on the 
few optical bands as provided by traditional sensors such as the National Oceanic 
and Atmospheric Administration Advanced Very High Resolution Radiometer 
(NOAA AVHRR) or Landsat thematic mapper (TM) sensors, a new generation 
attempts to make use of the multiband capabilities of the National Aeronautics and 
Space Administration Moderate Resolution Imaging Spectroradiometer (MODIS) 
sensor onboard the Terra and Aqua satellites. Most recently, Wang and Qu (2007) 
have designed a new drought index, Normalized Multiband Drought Index (NMDI), 
based on one near-infrared and two shortwave infrared channels, exploiting the slope 
of the two water-sensitive absorption bands 6 and 7 of MODIS. It is essentially an 
improvement of the traditional normalized indices that usually use one sensitive 
band and one insensitive band. In this chapter, the theoretical basis of NMDI and 
its applications in drought monitoring and fire detection are presented sequentially. 
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21.2  LITERATURE REVIEW

21.2.1  dRought definition 

Drought is a recurring phenomenon that has plagued civilization throughout his-
tory. It affects natural habitats, ecosystems, and many economic and social sec-
tors, from the foundation of civilization—agriculture—to transportation, urban 
water supply, and the modern complex industries (Richard and Heim 2002). 
Drought is the most complex and least understood of all natural hazards, affecting 
more people than any other hazard (Wilhite 2000). Bryant (1991) ranked natural 
hazards on the basis of various criteria, such as severity, duration, spatial extent, 
loss of life, economic loss, social effect, and long-term impact, and found that 
drought ranks first among all natural hazards (Narasimhan 2004). Compared with 
other natural hazards such as flood and hurricanes that develop quickly and last 
for a short time, drought is a creeping phenomenon that accumulates over a period 
across a vast area, and the effect lingers for years even after the end of drought 
(Tannehill 1947). Hence, the loss of life, economic impact, and effects on society 
are spread over a long time, which makes drought the worst among all natural 
hazards. 

In spite of the economic and social impact of drought, it is the least understood 
of all natural hazards because of its complex nature and varying effects on different 
economic and social sectors (Wilhite 2000). The wide variety of sectors affected by 
drought, its diverse geographical and temporal distribution, and the demand placed 
on water supply by human-use systems make it difficult to develop a single definition 
of drought (Richard and Heim 2002). The difficulty of recognizing the onset or end 
of a drought is compounded by the lack of any clear definition of drought. Drought 
can be defined by various factors, such as rainfall amounts, vegetation conditions, 
agricultural productivity, soil moisture, levels in reservoirs and stream flow, or eco-
nomic impacts. In the most basic terms, a drought is simply a significant deficit in 
moisture availability due to lower than normal rainfall (http://www.ncdc.noaa.gov/
paleo/drought/drght_what.html). 

After analyzing more than 150 definitions of drought, Wilhite and Glantz (1985) 
broadly grouped those definitions into four categories: meteorological, agricultural, 
hydrological, and socioeconomic drought. 

• Meteorological drought: A period of prolonged dry weather condition due 
to precipitation departure

• Agricultural drought: Agricultural impacts caused by short-term precipita-
tion shortages, temperature anomaly that causes increased evapotranspira-
tion, and soil water deficits that could adversely affect crop production 

• Hydrological drought: The effect of precipitation shortfall on surface or 
subsurface water sources such as rivers, reservoirs, and groundwater 

• Socioeconomic drought: The socioeconomic effect of meteorological, agri-
cultural, and hydrologic drought associated with the supply and demand of 
the society 
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21.2.2  dRought indiceS 

On the basis of the defined drought criteria, the intensity and duration of drought, 
a number of different indices have been developed to detect, monitor, and evalu-
ate drought, each with its own strengths and weaknesses. Drought indices integrate 
various hydrological and meteorological parameters such as rainfall, temperature, 
evapotranspiration, runoff, and other water supply indicators into a single number 
and gives a comprehensive picture for decision making (Narasimhan and Srinivasan 
2005). Drought conditions are monitored constantly using these indices to provide 
current drought-impact information in the domains of meteorology, hydrology, agri-
culture, and water resources management.

Among various drought indices, PDSI (Palmer 1965) has been most commonly 
used for drought monitoring and forecasting, which was developed by Palmer to 
measure the departure of the moisture supply. Palmer based his index on the supply-
and-demand concept of the water balance equation, incorporating antecedent pre-
cipitation, moisture supply, and moisture demand. PDSI has gained the widest 
acceptance, because the index relies on a simple lumped parameter water balance 
model and is easy to apply. 

Despite the widespread acceptance of PDSI, various limitations have been 
observed by different studies (Akinremi and McGinn 1996; Alley 1984; Guttman 
1998; Narasimhan 2004), such as the large spatial resolution, poor performing of 
potential evapotranspiration calculation, and incomplete knowledge of water balance 
model physics. The large spatial resolution of model parameters, which is often com-
mon to most of the drought indices generated from hydrological and meteorological 
data, hampers their effective applicability for drought monitoring, since the recent 
developments of drought monitoring prefer specific indices that consider the spatial 
variability and can describe best the local and regional drought conditions.

21.2.3  Satellite ReMote SenSing foR MonitoRing dRought 

Satellite remote sensing has offered a means for more effective drought monitoring 
across a much wider spatial and temporal scale and, at the same time, at a much 
higher spatial and temporal resolution. Since the 1970s, a lot of studies have used 
satellite land observation data to monitor a variety of dynamic land surface processes 
(Anderson et al. 1976; Reed et al. 1994; Yang et al. 1998; Peters et al. 2002). Numerous 
satellite-derived indices were developed to describe the land surface, mainly of veg-
etation, with the potential for detecting and monitoring anomalies such as drought 
(Niemeyer 2008). In early 1990, Gutman (1990) presented an overview on the first 
generation of remote sensing–based drought monitoring, while Kogan (1997) pro-
vided an update in 1997. Most recent reviews were provided by Bayarjargal et al. 
(2006) and Niemeyer (2008).

The normalized difference vegetation index (NDVI) (Rouse et al. 1974; Tucker 
1979), which certainly is the most common vegetation index, has been extensively 
used in ecosystem and drought monitoring (Tucker and Choudhury 1987; Kogan 
1991; Kogan 1995; Yang et al. 1998; McVicar and Bierwirth 2001; Ji and Peters 
2003; Wan et al. 2004). By using the normalized reflectance difference between 
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the near-infrared (NIR) and visible red bands, the NDVI measures the changes in 
chlorophyll content and in spongy mesophyll within the vegetation canopy. Several 
variations of NDVI have been triggered thereafter for drought monitoring such as 
the vegetation condition index (Kogan 1990, 1995), the anomaly of NDVI (Anyamba 
et al. 2001), and the standardized vegetation index (Peters et al. 2002). However, the 
major limitation of NDVI for drought monitoring is the apparent time lag between 
a rainfall deficit and NDVI response (Reed 1993; Di et al. 1994; Rundquist and 
Harrington 2000; Wang et al. 2001), since it provides information on vegetation 
greenness (chlorophyll), which is not directly and uniformly related to the quantity 
of water in the vegetation (Ceccato et al. 2002).

Water stress causes physiological changes in vegetation, which in turn causes 
changes in the vegetation spectral signature (Marshall and Zhou 2004). Thus, drought 
monitoring is accomplished by observing the spectral variations of water absorption 
characteristics in the NIR and shortwave infrared (SWIR) regions (Marshall and 
Zhou 2004). The SWIR reflectance reflects changes in both the vegetation water 
content and the spongy mesophyll structure in vegetation canopies, while the NIR 
reflectance is affected by the leaf internal structure and leaf dry matter content but 
not by water content. Gao (1996) produced the normalized difference water index 
(NDWI) using the SWIR channel as the water absorption–sensitive band and NIR 
channel as the insensitive band. The combination of the NIR with the SWIR removes 
variations induced by the leaf internal structure and leaf dry matter content, improv-
ing the accuracy in retrieving the vegetation water content (Ceccato et al. 2001). 

While the first generation of remote sensing–based drought indices, either NDVI 
or NDWI, relied on the few optical bands as provided by traditional sensors such as 
NOAA AVHRR or Landsat TM, a new generation attempts to make use of the mul-
tiband capabilities of, for example, the MODIS sensor onboard the Terra and Aqua 
satellites. A recently developed index is the NMDI as proposed by Wang and Qu 
(2007). The NMDI is based on one NIR and two SWIR channels, exploiting the slope 
of the two water-sensitive absorption bands 6 and 7 of MODIS. It is essentially an 
improvement of the traditional normalized indices that usually use one sensitive band 
and one insensitive band. Section 21.3 will review the theoretical basis of NMDI.

For reliable and operational use of satellite remote sensing–based indices in 
drought monitoring, it is necessary to compare with ground measurements or tradi-
tionally used meteorological drought indices so as to establish how well the remotely 
derived indices reflect wet and dry conditions. Sections 21.4 and 21.5 attempted to 
evaluate the ability of NMDI for measuring and monitoring the drought conditions by 
comparing with the meteorological data, to investigate the relation between drought 
and wildfire occurrence, and to estimate the performance of NMDI for detecting for-
est fires burning in southern Georgia, USA, and southern Greece in 2007.

21.3   NMDI: A NORMALIZED MULTIBAND DROUGHT INDEX 
FOR MONITORING SOIL AND VEGETATION MOISTURE

In the applications of spectral variation of water absorption bands, several indices using 
reflectances from the NIR and SWIR channels have been proposed for remote sens-
ing of vegetation water content from space. The most popular NIR–SWIR vegetation 
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water index is NDWI, which has recently been used to detect and monitor the moisture 
condition of vegetation canopies over large areas (Xiao et al. 2002; Jackson et al. 2004; 
Maki et al. 2004; Chen et al. 2005; Delbart et al. 2005; Gu et al. 2007). Simple spectral 
indices, similar to NDWI, always use two bands, including one sensitive band and one 
insensitive band, to interpret changes in leaf water content. These simple indices were 
suggested for traditional sensors that have only a few optical bands. With more optical 
bands, the MODIS measurements might provide a good opportunity to estimate veg-
etation water content and soil moisture more accurately and robustly. We performed 
sensitivity studies of three SWIR bands of MODIS and observed that the reflectance of 
each SWIR band (Wang et al. 2008) illustrates that the reflectance of each SWIR band 
responds differently to variations in soil and vegetation moisture. We therefore defined 
the NMDI by combining multiple SWIR bands with a NIR band. 

21.3.1  foRMation of nMdi 

The following exponential model developed by Lobell and Asner (2002) was used to 
simulate the soil reflectance variations due to moisture change:

 R = f × Rdry + (1 – f  ) × Rdry × exp(–c × θ), (21.1)

where R is the soil reflectance at a particular wavelength, θ is the volumetric soil 
water content, Rdry is the reflectance of dry soil (at θ = 0.0), c describes the rate of 
soil reflectance change with moisture, and f is the ratio of the saturated to dry reflec-
tance. All variables, except for θ, are soil type and wavelength dependent. The soil 
reflectances with varying moisture content for mollisol, representative of a typical 
soil type in the temperate savanna, have been demonstrated in Figure 21.1a. 

The effect of leaf water content on canopy reflectance has been illustrated by 
using the leaf radiative transfer model Leaf Optical Properties Spectra (PROSPECT) 
(Jacquemoud and Baret 1990) and the canopy reflectance model Scattering by 
Arbitrarily Inclined Leaves (SAIL) (Verhoef et al. 1984), with a leaf area index 
(LAI) range of 0.5–6 assuming different leaf water contents (Figure 21.1b). 
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FIGURE 21.1  Model-simulated (a) soil spectra at various soil moisture values and (b) can-
opy spectra at different leaf water content (Cw) values for MODIS bands 1, 2, and 4 through 7.
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For both soil moisture and leaf water content, an increase in each is connected with 
a reflectance reduction. The sensitivities of MODIS bands 6 (1.64 µm) and 7 (2.13 
µm) responding to the moisture change, however, are definitely different. As shown 
in Figure 21.1, the slope between the 1.64- and 2.13-μm channels becomes steeper as 
soil moisture increases but flatter as leaf water content increases. On the basis of the 
characteristic “slope variation” in response to different kinds of moisture changes, the 
NMDI is defined by using three wavelengths, one in the NIR centered approximately 
at 0.86 µm and two in the SWIR centered at 1.64 and 2.13 µm, respectively:

 NMDI
m m m
m m

= ⋅ − ⋅ − ⋅
⋅ + ⋅ −

R R
R R

0 1 2

0 1

86 86 13
86 86

µ µ µ
µ µ

( )
(

R
RR2 13⋅ µm)

, (21.2)

where R represents the reflectance at the wavelengths denoted by the subscripts. 
To show that the NMDI can be used to monitor both soil and vegetation moisture 

contents from space, its sensitivities to bare soil or weak vegetation as well as heavy 
vegetation have been investigated.

Simulations are obtained by the coupled soil–leaf–canopy reflectance models 
with varying soil moisture from low to high values and an LAI range of 0.01–2. For 
bare soil or weakly vegetated areas with an LAI equal to 0.01, higher values of the 
NMDI indicate increasingly severe soil drought: the NMDI decreases from high val-
ues around 0.85 for extremely dry soil to low values around 0.15 for wet soil with soil 
moisture content higher than 0.3 (Figure 21.2a). The NMDI stops responding to soil 
moisture change starting from an LAI equal to 2; that is, no soil background effects 
are found on the NMDI for any soil moisture range. Therefore, for a vegetation can-
opy with an LAI equal to or higher than 2, which means heavily vegetated areas, the 
NMDI turns to be a complete index for estimating vegetation water content: lower 
NMDI values indicate increasingly severe vegetation drought (Figure 21.2b). 

21.3.2  validation

21.3.2.1  Soil Drought Monitoring
The soil moisture condition falls into three classes according to the volumetric soil 
moisture range: dry, 0–0.1; intermediate, 0.1–0.2; or wet, >0.2 (Idso et al. 1975; 

LAI

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

0 0.1 0.2 0.3 0.4 0.5 0 0.1 0.2 0.3 0.4 0.5
Soil moisture (Vol)

N
M

D
I

0.2

0.3

0.4

0.5

0.6

0.7

0.8

N
M

D
I

0.01
0.5
1
2

LAI

Cw (cm)

(a) (b)

0.5
1
2
3
4
5
6

FIGURE 21.2  Sensitivity of the NMDI to (a) soil moisture, and (b) leaf water content.



514 Multiscale Hydrologic Remote Sensing: Perspectives and Applications

Miller et al. 2004). In the absence of suitable field data, the usefulness of NMDI for 
remotely sensing soil moisture was demonstrate by using the bare soil spectra under 
various soil water contents reported in previous studies by Leblon (2000) and Bach 
and Verhoef (2003). Figure 21.3a is the spectral reflectance curves for Newtonia 
silt loam at dry to intermediate moisture contents from 0.008 to 0.202 as given by 
Leblon (2000). Figure 21.3b is the GeoSAIL (Bach et al. 2000) model simulated 
spectra of bare soil with varying soil moisture from dry, i.e., 0.005, to extremely wet, 
i.e., 0.6, according to Bach and Verhoef (2003).

The NMDI is constructed by using the reflectances corresponding to each 
MODIS band centered at 0.86, 1.64, and 2.13 µm based on Figure 21.3 with various 
soil moisture values. The results reinforce that the NMDI is highly sensitive to soil 
moisture change, gaining rapid reduction responding to soil moisture change from an 
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extremely dry to an intermediate and wet soil water status (Figure 21.4). The NMDI 
values are within the range of 0.7–1 when soil moisture is less than 0.1, which means 
dry-soil conditions. In other words, if the NMDI is greater than 0.7, we can conclude 
that the soil is dry. NMDI values are around 0.6 when soil moisture is about 0.2, 
which means intermediate moisture conditions. When the NMDI is less than 0.6, the 
soil is under wet conditions. 

21.3.2.2  Vegetation Drought Monitoring
We use examples similar to those reported in a study by Gu et al. (2007) to test the 
performance of the NMDI for monitoring vegetation drought. These authors ana-
lyzed 5-year (2001–2005) sets of MODIS NDVI and NDWI for grassland drought 
assessment for the Flint Hills of Kansas and Oklahoma, which centered at 35.25° 
latitude and –91.81° longitude. The drought conditions of the study area in 2003 and 
2004 have been identified by the United States Drought Monitor as severe and non-
drought category droughts, respectively. 

Eight granules of MODIS 8-day 500-m surface reflectance data (MOD09A1, 
Collection 4) from July to September were used to derive the NMDI. To illustrate 
the relation between the NMDI and vegetation drought conditions, four NMDI maps 
for the most severe drought periods in August and September at the Flint Hills are 
shown in Figure 21.5 in the severe drought year 2003 and the nondrought year 2004. 
Lower NMDI values indicate increasing severity of vegetation drought. The drought 
development from August to September can be detected clearly from NMDI images. 
NMDI values were much lower for the severe drought year (2003) than for the non-
drought year (2004). Also, lower NMDIs cover much broader areas in 2003 than in 
2004. Good agreements are shown between the above and Gu et al.’s (2007) results. 
It demonstrates the potential of the NMDI for monitoring vegetation drought.
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21.4  APPLICATION OF THE NMDI FOR DROUGHT MONITORING

For reliable and operational use of remotely sensing data in drought monitoring, it is 
necessary to compare with ground measurements or traditionally used meteorologi-
cal drought indices so as to establish how well the remotely derived vegetation water 
indices reflect wet and dry conditions. This work intended to evaluate the ability of 
different satellite-derived indices for measuring and monitoring drought conditions 
by comparing with the meteorological data and to investigate the relation between 
drought and wildfire occurrence using the state of Georgia in the United States as an 
example (Wang et al. 2009). 

21.4.1  Methodology

21.4.1.1  Study Area and Data
The study was conducted over Georgia bounded by 30–35°N latitudes and 81–85°W 
longitudes. Located in the southeastern United States, Georgia is frequently hit by 
recurring droughts and wildfires. The natural vegetation and cropland, mixed for-
est, woody savannas, and evergreen broadleaf forest occupy a great part of the land 
areas. 

The major datasets used in this work included a 7-year history of monthly 
PDSI, percentage area under droughts, fire number and burned area, and MODIS/
Terra 8-day surface reflectance, 8-day LAI, as well as 1-km Land Cover Type over 
Georgia, USA. Drought conditions were characterized by using the monthly PDSI 
and percentage areas under droughts. The drought severity categories were identified 
on the basis of PDSI values. Table 21.1 describes the ranges of PDSI value for each 
dryness level (http://drought.unl.edu/dm/classify.htm).

To investigate the dependency of wildfire occurrence on drought conditions, the 
monthly fire activity data over Georgia were collected from the Georgia Forestry 
Commission. This dataset represents a compilation of all fires occurring in Georgia 
during the period from 1957 to 2007 and contains information on fire number, area 
burned, and ignition source. Data were analyzed for the period of 2001–2007, during 
which time PDSI, MODIS, and fire data were all available. This period includes the 
recent catastrophic drought year of 2007 in Georgia, which has been reported as a 

TABLE 21.1
Drought Categories and PDSI Values

Drought Category PDSI Description

0 –0.99 or more Nondrought

D0 –1.0 to –1.9 Abnormally dry

D1 –2.0 to –2.9 Moderate drought

D2 –3.0 to –3.9 Severe drought

D3 –4.0 to –4.9 Extreme drought

D4 –5.0 or less Exceptional drought
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worse drought event than the one in 1954, which was identified as the “Drought of 
the Century” (http://southwestfarmpress.com/peanuts/080707-peanut-crop/). 

21.4.1.2  Methods
In addition to NMDI, MODIS NIR band 2 (0.86 µm) was combined with SWIR 
bands 5 (1.24 µm), 6 (1.64 µm), and 7 (2.13 µm), respectively, to derive vegetation 
water indices according to the following equations:

 NDWI2
m m

m m

, . .

. .

5 0 86 1 24

0 86 1 24
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+

R R

R R
µ µ

µ µ
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R R
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µ µ

, (21.5)

where R represents the reflectance at the wavelengths denoted by the subscripts. By 
combining information from NIR and SWIR channels, these indices are expected 
to be positively correlated with vegetation moisture conditions: the higher the index 
values, the wetter the vegetation (Wang and Qu 2007; Wang et al. 2008).

The relatively wetter and drier years were first identified using the 7-year time 
series of PDSI and the percentage area under droughts. These results were then 
compared with drought conditions represented by MODIS-derived vegetation water 
indices to evaluate the capability of each index for drought monitoring. Since the 
PDSI and the percentage area under droughts were area-average values, the MODIS-
derived vegetation water indices were averaged over the entire study area in the com-
parison. To further assess the drought monitoring performance of each water index, 
a scaled index has been employed to examine the index sensitivity corresponding to 
the wet and dry conditions. Finally, monthly fire activity data, including fire num-
ber and burned area, were used to investigate the relation between drought and fire 
occurrences.

21.4.2  ReSultS and diScuSSion

21.4.2.1  Vegetation Water Indices and Drought Condition Analysis
Time series of monthly PDSI and the percentage of area under severe drought cat-
egories of D2–D4 from 2001 to 2007 are shown in Figure 21.6a and b, respectively. 
Both figure panels illustrate that Georgia experienced the most severe drought in 
2007: the averaged monthly PDSI values are less than –3.0 from April to December, 
and starting in May, more than 50% of areas were under the severe drought category 
of D2–D4. Following closely behind 2007 as the driest year, 2002 and 2006 are 
also relatively dry, represented by lower PDSI values and many areas under severe 
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droughts. On the contrary, 2003 and 2005 are relatively wetter: all averaged monthly 
PDSI values are above –0.99, which means nondrought. None of the areas experi-
enced D2–D4 droughts in 2003 or 2005. 

The same 7-year history of NMDI, NDWI2,5, NDWI2,6, and NDWI2,7 was plot-
ted in Figure 21.7 to investigate the relation between the satellite-derived vegeta-21.7 to investigate the relation between the satellite-derived vegeta-.7 to investigate the relation between the satellite-derived vegeta-
tion water indices and drought conditions. During the summer months from May to 
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September, the drought conditions of each year indicated by NMDI, NDWI2,6, and 
NDWI2,7 agree well with what have been identified by the PDSI. The values of each 
index reach their lowest level in the driest year of 2007 and maintain lower levels in 
the dry years of 2002 and 2006 than in the relatively wetter years of 2005 and 2003. 
In terms of NDWI2,5, however, the highest values appear in 2004, while the relatively 
wetter year of 2005 has been sorted to the same group as the drier years of 2002 and 
2006. It means that 2004 will be identified as the wettest year and 2005 is the drier 
year, like 2002 and 2006, if using NDWI2,5 as the sole indicator. Obviously, the above 
conclusion derived from NDWI2,5 conflicts with the drought conditions identified by 
the PDSI and areas under droughts. Therefore, the following sections will mainly 
focus on NMDI, NDWI2,6, and NDWI2,7, which have consistent results with the PDSI.

With respect to the temporal distribution of each index, both NDWI2,6 and NDWI2,7  
curves are skewed right with high values from July to August, while the high values 
of the NMDI occur approximately 2 months earlier from May to June. LAI, defined as 
the leaf area per unit ground surface, is used as an indicator of leaf development stage 
in the area, denoted by the dashed black curve in Figure 21.7. The 7-year averaged 
LAI increases quasilinearly from March until approaching its maximum a few days 
after May, which means the leaves have reached full development. High LAI values 
are retained from June to July, until there is an abrupt decreasing trend starting in 
August, indicating that leaf senescence occurred. The seasonal variations of moisture 
conditions interpreted by the NMDI are consistent with LAI change: higher values in 
leaf development stage and a decrease in the period of leaf senescence due to the rip-
ening process, which reduces the vegetation water content in the leaves (Min and Lin 
2006). The assessment of seasonal rhythms of vegetation moisture by the NMDI is 
more dependable than NDWI2,6 and NDWI2,7: both NDWI2,6 and NDWI2,7 have clearly 
expressed peaks observed in August, while the LAI experienced a visible drop, caused 
by leaf fall. Thus, the NMDI leads to an improvement in representing physical proper-
ties of vegetation water content over the index, which uses a single SWIR band 6 or 7. 

To further assess the drought monitoring performance of each water index, the 
scaled index (Index*) has been employed to examine the index sensitivity corre-
sponding to the wet and dry conditions, which is the ratio of the difference between 
the wetter and drier years to the range of each index, that is,

 Index
Index Index
Index Index

* = −
−

×w d

s o

100 , (21.6)

where the subscripts w and d stand for values in wetter and drier years, and the sub-
scripts o and s stand for minimum and maximum values.

The sensitivity of each water index for drought monitoring is determined by the 
value of the scaled index: the higher the value, the more sensitive the index. Table 21.2 
lists the values of each scaled index between the relatively wetter year of 2005 and the 
severe drought year of 2007 from May to September. The NMDI exhibits a more rapid 
decrease than the two other indices from the wet year to the drought year. The aver-
age scaled NMDI during the growing season is up to 24%, with the peak approaching 
33% in August. The average scaled NDWI2,6 and NDWI2,7 are 18% and 12%, with the 
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highest value of 25% and 19%, respectively. These results demonstrate that the sensi-
tivity of NMDI to vegetation drought conditions has been enhanced by an average rate 
approaching 10% compared with the other two vegetation water indices.

Shown in Figure 21.8 is the spatial distribution of NMDI with a 1-km resolution 
over Georgia in June and August for the wet year of 2005 and the severe drought 

TABLE 21.2
Scaled Indices between the Years 2005 and 2007

Month

NMDI NDWI2,6 NDWI2,7

2005 2007 NMDI* 2005 2007 NDWI2,6* 2005 2007 NDWI2,7*

May 0.5214 0.4817 22.06 0.2534 0.1813 23.26 0.5644 0.4958 19.06

June 0.5312 0.4777 29.74 0.2712 0.1937 25.01 0.5833 0.5170 18.43

July 0.5221 0.4830 21.72 0.2827 0.2343 15.62 0.6107 0.5765 9.51

Aug 0.5145 0.4550 33.05 0.2866 0.2179 22.18 0.6248 0.5780 13.00

Sep 0.4731 0.4506 12.49 0.2199 0.2004 6.31 0.5651 0.5562 2.47

Average — — 23.81 — — 18.48 — — 12.49

(a) June 1, 2005 (b) August 20, 2005

(c) June 1, 2007 (d) August 20, 2007
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year of 2007. Lower values of the NMDI indicate increasing severity of vegetation 
drought. It is obvious that NMDI values are much higher in the wet year (2005) than 
in the severe drought year (2007). The NMDI images in year 2007 reveal the red-
colored areas associated with the severe drought. Drought development from June to 
August can also be detected clearly for both years from NMDI images, represented 
by the increased broader areas covered by yellow or red colors in August compared 
with that in June. It thus demonstrates the capability of the NMDI for monitoring 
vegetation drought: it provides more details in the quantitative estimates and spatial 
pattern of droughts than the sparse ground measurements or the lumped meteoro-
logical drought indices such as the PDSI.

21.4.2.2  Fire Activities and Drought Conditions
Analyses of forest fire activity have established that the moisture availability can 
influence the occurrence and behavior of wildland fires. Fire activity data, includ-
ing fire number and burned area from 2001 to 2007, have been combined with the 
PDSI and NMDI to investigate the connection between fire occurrence and moisture 
conditions.

The 7-year history of monthly fire numbers over Georgia is illustrated in Figure 
21.9a. The frequency of fire events revealed two peaks: the first, more distinct, 
increases from January and reaches its maximum at the beginning of spring (March), 
and the second, less expressed, is observed at the end of autumn (November). The fire 
number is minimal during the summer and early autumn from June to September. 

A strong connection has been observed between the annual fire numbers and 
annual PDSI values (Figure 21.9b), with an R2 greater than 0.8. It indicates that the 
fire occurrence is affected by drought: the total numbers of fire events in drier years 
with lower PDSI values are significantly larger than in wetter years with higher PDSI 
values. Fewer fires occurred in the wetter years of 2003 and 2005, while fires tended 
to occur in the drier years of 2007, 2002, and 2006, especially for large fires (Figure 
21.9a). Table 21.3 lists the number of fires with a burned area greater than 100 acres 
from 2001 to 2007. Since the average fire size in Georgia is about 5 acres, fires 
greater than 100 acres are relatively rare. As expected, only 8% of large fires in total 

3.5

3.0

2.5

2.0

1.5

1.0

0.5
0

20

40

60

80

100
R2 = 0.8115

0.0
Jan Mar May July

Month PDSI

Fi
re

 n
um

be
r (

10
00

)

Fi
re

 n
um

be
r (

10
,0

00
)

(a) (b)

Sep Nov

2001
2002
2003
2004
2005
2006
2007

–4 –2 0 2

FIGURE 21.9  Time series of (a) fire number over Georgia, 2001–2007, and (b) scatterplot 
of the annual PDSI versus fire number.



522 Multiscale Hydrologic Remote Sensing: Perspectives and Applications

occurred in the wetter years of 2003 and 2005, while approximately 70% occurred 
in the drier years of 2007, 2002, and 2006 in a 7-year period. It implies that drought 
intensity also influences fire extent and the most widespread fires occur in the driest 
years. 

Frequency analysis was employed to evaluate the connection between the NMDI 
and fire activity. The NMDI range, from the smallest to the largest value (0.35–0.55), 
was divided into 10 classes with an interval of 0.02. For each class, the number of the 
fire events occurred in the months when NMDI values fall within each designated 
category were summed up as the total fire events. The frequency was then defined 
as the total fire events divided by the number of months within each NMDI class. 
Figure 21.10 shows the scatterplot of NMDI classes and fi re frequencies. The fi re fre-21.10 shows the scatterplot of NMDI classes and fi re frequencies. The fi re fre-.10 shows the scatterplot of NMDI classes and fire frequencies. The fire fre-
quency and NMDI reveal a strong quasilinear connection with an R2 greater than 0.9. 
Higher fire frequencies corresponded to lower NMDI values, and the fire frequency 
dropped abruptly with the increase of the NMDI. Low NMDI values represent low 

TABLE 21.3
Summary of Fires Larger than 100 Acres

Year

Larger than 100 Acres

Fire Number Percentage (%)

2001 25 11

2002 36 16

2003 9 4

2004 32 14

2005 9 4

2006 39 17

2007 81 35

Total 231 100
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FIGURE 21.10  Scatterplot of the fire frequency and NMDI, 2001–2007. Frequency is cal-
culated as total fire events divided by the number of months within each NMDI class.
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moisture conditions, which enhanced fuel flammability and increased fire activity. 
The results reinforce the strong connection between fire occurrence and moisture 
availability. As an effective indicator of moisture conditions, the NMDI demon-
strates the potential for fire risk monitoring.

21.5   APPLICATIONS OF THE NMDI FOR 
ACTIVE FOREST FIRE DETECTION

Soil moisture and vegetation water content can influence the occurrence and behav-
ior of wildland fires. Since the NMDI can simultaneously monitor vegetation and 
soil water content, it should provide valuable information about wildland fire condi-
tions. We used the 2007 wildfires in southern Georgia (USA) and southern Greece 
to investigate the NDMI’s ability to detect forest fires. 

For realistic accuracy assessment, comparison with independent, direct fire obser-
vations is necessary. Given the strongly dynamic nature of active fires both in time 
and space, collecting an enough set of independent, coincident in situ observations 
is logistically difficult (Csiszar et al. 2006). Owing to the lack of suitable field data, 
index performance is evaluated by using the MODIS fire products. Performance 
measures (overall accuracy, commission error, and fire detection rate) extracted from 
the statistical analyses using the confusion matrices are used to verify the capacity of 
NMDI for active fire detection. 

21.5.1  Study aRea and data

A severe drought in the southeastern United States created record-breaking fire 
events along the Georgia/Florida border in 2007. The Sweat Farm Road Fire/Big 
Turnaround fire complex began to burn in southeastern Georgia during the afternoon 
hours of 16 April 2007, quickly exploded into a major fire, and became the largest 
wildfire in Georgia history. The study area was located at latitudes 30.8°N to 31.5°N 
and longitudes 82.0°W to 83.1°W. 

Throughout the summer of 2007, a series of massive forest fires broke out in 
several areas across Greece (http://en.wikipedia.org/wiki/2007_Greek_forest_fires). 
The most destructive and deadly fires raged from 23 to 27 August mainly in western 
and southern Peloponnese as well as in southern Euboea (Athens News Agency, 
2007). This study mainly focused on the Peloponnese Peninsula (36.4°N to 38.4°N, 
21.0°E to 23.5°E), where woody savannas, mixed forest, and cropland occupy a great 
part of the land area. 

The dataset is composed of MODIS L1B calibrated radiance (MOD02, 1 km, 
version 5), L1A geolocation data (MOD03, 1 km, version 5), and thermal anomalies, 
fires, and biomass burning product (MOD14, 1 km, version 5) acquired over the 
study areas for the fire periods. Reflectance from MODIS solar reflective bands 1 
(0.62–0.67 µm), 2 (0.84–0.876 µm), 6 (1.628–1.652 µm), and 7 (2.105–2.155 µm) are 
used to derive the NDVI and NMDI. The reflectance from MODIS bands 1 and 2, 
along with the brightness temperatures derived from MODIS thermal infrared band 
32 (11.77–12.27 µm), is employed to flag cloud pixels on the basis of the method 
developed by Giglio et al. (2003). The land/sea mask obtained from the MODIS L1A 
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geolocation data is applied to identify water pixels. MODIS active fire images with 
a 250-m spatial resolution provided by the MODIS Rapid Response Team (http://
rapidfire.sci.gsfc.nasa.gov/) and the active fire mask are used to evaluate the perfor-
mances of the NMDI for forest fire detection. Only Terra MODIS data are used in 
this study, the given that 15 of the 20 detectors in Aqua MODIS band 6 are either 
nonfunctional or noisy (Wang et al. 2006).

21.5.2  Methodology foR fiRe detection

By combining information from multiple NIR and SWIR channels, the NMDI has 
proven to be a good indicator for both soil and vegetation drought. For bare soil or 
sparsely vegetated areas, higher values of the NMDI indicate an increasing severity 
of soil drought, while for heavily vegetated areas with LAI ≥ 2, lower NMDI values 
indicate an increasing severity of vegetation drought (Wang and Qu 2007). Since 
NMDI can monitor both vegetation and soil water content at the same time, it is 
expected to provide accurate and valuable information about drought and fire condi-
tions, considering that the bare soil in the area will become exposed if vegetation 
burns.

Figure 21.12 describes the fl owchart of the application of the NMDI to moni-21.12 describes the fl owchart of the application of the NMDI to moni-.12 describes the flowchart of the application of the NMDI to moni-
tor soil and vegetation drought. First, the land/sea mask obtained from the MODIS 
L1A geolocation data and cloud mask derived on the basis of the method developed 
by Giglio et al. (2003) are applied to identify water- and cloud-free pixels for the 
study area. The vegetation index, the NDVI, derived from MODIS bands 1 and 2 
is employed to separate bare soil and vegetation pixels, given that the NDVI is one 
of the most extensively applied vegetation indices related to the LAI (Myneni et al. 
1995). In general, higher NDVI values represent denser vegetations, and if the NDVI 
value exceeds 0.4, the area is thought to be covered entirely by forest, greenery, or 
other vegetation (Suzuki et al. 2001; Nihei et al. 2002). The fixed NDVI threshold of 
0.4, instead of LAI value of 2, is employed to flag soil and vegetation pixels. A water- 
and cloud-free pixel will be mapped as vegetation if the NDVI is ≥0.4; otherwise, the 
pixel will be classified as soil.

The NMDI generated directly using Equation 21.2 as 

 NMDI
m m m
mveg =

⋅ − ⋅ − ⋅
⋅ + ⋅

R R R
R R
0 1 2

0 1

86 64 13
86 64

µ µ µ
µ

( )
( µµ µm m− ⋅R2 13 )

 

can be used to interpret vegetation moisture conditions for vegetation pixels, with 
lower values corresponding to increasing vegetation drought. NMDIveg takes values 
ranging between 0 and 1. In vegetated areas of the LAI greater than 2, it takes values 
ranging from 0.4 to 0.6 for moderate wet vegetations, greater than 0.6 for extremely 
wet conditions, while less than 0.4 for dry vegetations (Wang and Qu 2007). In burn-
ing areas, NMDIveg values decline to around 0.2 at the same time as the fire occurs.

Since the NMDI responds oppositely to soil moisture than vegetation water con-
tent, Equation 21.2 should be adjusted for soil pixels to keep consistency between 
these two moisture statuses. The previous study suggests that the possible range of 
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NMDI values for soil is between 0 and 1, with higher values indicating increasing 
soil drought, while the typical range is from 0.7 to 0.9 for very dry bare soil, 0.3–0.5 
for intermediate moisture conditions, and less than 0.3 for extremely wet soil (Wang 
and Qu 2007). The following format of the NMDI is adopted to monitor soil mois-
ture conditions: 

 NMDI
m m m
msoil = − ⋅ − ⋅ − ⋅

⋅ +
0 9

86 64 13
86

0 1 2

0

.
( )
(

R R R
R

µ µ µ
µ RR R1 264 13⋅ − ⋅µ µm m)

. (21.7)

By applying this modification, NMDIsoil can be used to interpret soil moisture sta-
tus in the same direction as NMDIveg: ranging from 0 to 0.9 with higher values indi-
cating wetter conditions, 0.4–0.6 for moderate wet soil, >0.6 for extremely wet soil, 
<0.4 for dry conditions, and <0.2 for extreme severity of soil drought, which may 
be induced by burning fires (Table 21.4). Several fires burning in southern Georgia, 
USA, and southern Greece in 2007 were selected to test the usefulness of the above-
mentioned water-related indices for fire detection. 

21.5.3  indiceS teSting and diScuSSion of ReSultS

21.5.3.1  Georgia Fires
We selected satellite data of forest fires in southern Georgia obtained on 17, 25, and 
29 April, relatively clear days and intense fire periods. 

Test Case 1: Fire on April 17 

The image of the Sweat Farm Road Fire was captured by the Terra MODIS at 15:40 
UTC on April 17 (Figures 21.11 and 21.12a). The locations where MODIS detected 
actively burning fires are outlined in red. The NMDI image (Figure 21.12b) derived 
by combining Equations 21.2 and 21.7 revealed the obvious red-colored “hot spots” 
associated with the fire areas in the active fire map. NMDI values are much lower 

Land/Sea mask
cloud mask

NDVI ≥ 0.4

Vegetation pixels

Soil pixels

Fire pixels

NMDI ≤ 0.2 Nonfire pixels

N

N

Y

Y

NMDIveg =
R0.86 µm – (R1.64 µm – (R2.13 µm)
R0.86 µm + (R1.64 µm + (R2.13 µm)

NMDIsoil = 0.9 –
R0.86 µm – (R1.64 µm – (R2.13 µm)
R0.86 µm + (R1.64 µm + (R2.13 µm)

FIGURE 21.11  Flowchart of the application of the NMDI for active fire detection.
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(NMDI ≤ 0.2) for the active fire pixels than nonfire pixels (NMDI > 0.5) identified 
by the MODIS active fire map. The much lower NMDI values separate the burning 
spots from the neighboring area. It illustrates that there are strong relations between 
the NMDI and fire activity. Compared with the 250-m resolution MODIS active fire 
map, the 1-km resolution NMDI image offered almost the same accurate depiction 
of the active fire shape, coverage, and location. 

Test Case 2: Fire on April 25

The Sweat Farm Road Fire continued to burn on April 25, 2007 when the Terra 
MODIS passed overhead and captured the active fire image (Figure 21.10a) at 
16:30 UTC time. As expected, the NMDI values are substantially lower for the 
pixels experiencing the active fire, which make them stand out from the surround-
ing areas (Figure 21.13b). 

Waycross

1
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0.6
0.5
0.4
0.3
0.2
0.1
0

Okefenokee
swamp

(a) (b)

FIGURE 21.12  Images on April 17, 2007 of Georgia: (a) active fire map provided by the 
Rapid Response Project and (b) NMDI. Active fires are outlined in red in active fire map, 
while they are denoted by red pixels in the NMDI image. The gradient color bar changing 
from deep red to deep green indicates the index value changing from 0 to 1. A special color 
of white for clouds appears at the bottom of scale.
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FIGURE 21.13  Images on April 25, 2007 of Georgia: (a) active fire map and (b) NMDI. 
Clouds are denoted by a white color.
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Test Case 3: Fire on April 29

The image in Figure 21.14a, taken at 16:05 UTC on April 29, 2007 by Terra 
MODIS, shows the Sweat Farm Road and Big Turnaround Fires in southern 
Georgia and the Roundabout Fire burning in northwestern Georgia. Two large 
blazes burning in the northwestern and southeastern parts of the study area were 
evident by the significant red-colored hot spots in the NMDI image (Figure 
21.14b). Compared with the former two NMDI images, it is clear that the Sweat 
Farm Road Fire had moved to the southeastern perimeter at the end of April. The 
NMDI is in good agreement with the MODIS active fire image, demonstrating 
once again that the NMDI is a sensitive indicator for active fire monitoring. In 
addition, the fires appeared to intensify somewhat on April 29 as indicated by the 
much deeper red-colored fire spots in the NMDI image.

Confusion matrices (Kohavi and Provost 1998) were conducted on the NMDI 
to further evaluate the accuracy of the active fire detection by comparing with the 
MODIS active fire mask (Table 21.5). If any fire is identified by the MODIS active 
fire mask, this fire spot will be marked as a fire pixel. When fire detection results 
using the NMDI agree with the MODIS products, a correct hit will be counted. 
The total numbers of correct fire hits and nonfire hits are represented by a and d, 
respectively. In case that the NMDI indicates a nonfire event at a certain location 
that disagrees with the MODIS product, the event is labeled as “fire missing.” The 
total number of fire missing is summed up as b. When NMDI data indicate fire 
but the MODIS product is fire-free, the event is labeled as “false alarm.” The total 
number of false alarms is denoted by c. 

In general, the overall accuracy of the fire detection rate can be evaluated as 
the proportion of the total number of correct hits:

 Overall accuracy = +
+ + +
a d

a b c d
. 

The fire detection rate is defined as the ratio of fire cases that were detected cor-
rectly by the NMDI to the total number of fire events:

1
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0.1
0

Roundabout Fire

Big Turnaround
Complex Fire

Sweat Farm
Road Fire

(a) (b)

FIGURE 21.14  Images on April 29, 2007 of Georgia: (a) active fire map and (b) NMDI.
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 Fire detection rate =
+
a

a b
. 

The false-alarm rate is the proportion of nonfire cases that were incorrectly clas-
sified as fire, as calculated using the following equation:

 False-alarm rate (commission error) =
+
c

c d
. 

Table 21.6 summarizes the fire detection results, including the total pixel 
amounts, fire pixels detected by MODIS products and NMDI, overall accuracy, 
false-alarm rate, and fire detection rate. The results show that the overall accuracy 
of active fire detection by using the NMDI is approaching 100%. The false-alarm 
rate is almost 0% except for 0.11% for the fire event on April 29. The average 
NMDI fire detection rate is about 80%, with the highest value above 90%. 

Both performance evaluations by image interpretation and statistical analyses 
indicate that the active fire detection using the NMDI is quite accurate for Georgia 
fires. To show that the NMDI is not site specific and can be applicable to different 
sites with different canopy characteristics, the wildfires that broke out in southern 
Greece are used to validate the application of the NMDI for fire detection.

21.5.3.2  Greek Fires
The most destructive fires that raged from August 23 to 25 in western and southern 
Peloponnese are selected for this case study. 

TABLE 21.5
Confusion Matrices for Fire Detection 
by the NMDI against MODIS Products

MODIS

NMDI

Fire Nonfire

Fire a b

Non-fire c d

TABLE 21.6
Comparison of Active Fire Detection Results by MODIS Products and NMDI 
(Georgia Fire)

MM/DD
Total 
Pixels

Fire Pixels
Correct 

Fire 
Hit (a)

Fire 
Missing 

(b)

False 
Alarm 

(c)

Correct 
Nonfire 
Hit (d)

Overall 
Accuracy 

(%)

False-
Alarm 
Rate 
(%)

Fire 
Detection 
Rate (%)MOD14 NMDI

04/17 2611 13 12 12 1 0 2598 99.96 0.00 92.31

04/25 7004 16 11 11 5 0 6988 99.93 0.00 68.75

04/29 6467 40 35 28 12 7 6420 99.71 0.11 70.00
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Test Case 1: Fire on August 23

Fires started in Greece on August 23, 2007. The red-colored dot in the NMDI 
image offers the accurate fire area mapping, which agrees well with the active 
fire location represented by the red circle in the MODIS active fire map (Figure 
21.15). The yellow- and red-colored areas at the top part of the NMDI image 
may suggest dry-soil conditions.

Test Case 2: Fire on August 24

On August 24, 2007, the MODIS active fire map captured five clusters of blazing 
fires as well as the billowing smoke from fires raging across Greece’s southern 
Peloponnese Peninsula (Figure 21.16a). The NMDI image provides exactly the 
same information about fire location, fire coverage, and fire shape as the active 

1
0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1
0

(a) (b)

FIGURE 21.15  Images on August 23, 2007 of Greece: (a) active fire map and (b) NMDI.
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FIGURE 21.16  Images on August 24, 2007 of Greece: (a) active fire map and (b) NMDI. 
Active fire clusters identified by each index are outlined by red ovals.
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fire map, without omitting the two relatively small fires at the top and middle part 
of the Peloponnese peninsula (Figure 21.17b). 

Test Case 3: Fire on August 25 

The active fire image captured by Terra MODIS on August 25 shows a line of fires 
stretching along the western coast of Greece’s Peloponnesus Peninsula (Figure 
21.17a). Once again, the NMDI shows the high performance and discrimination 
power in active fire detection. The deeper red color in the NMDI image compared 
with the former NMDI images reveals that forest fires are raging unabated on the 
Peloponnese Peninsula (Figure 21.17b). To the northeast, a fire is casting a plume 
of smoke in the active fire map, which can also be detected in the NMDI image 
(outlined by the red circle). 

The statistical analysis of the Greek active fire detection by the NMDI is sum-
marized in Table 21.7. With almost a 100% overall accuracy, less than 1% false-
alarm rate, and around 75% average fire detection rate, fire detection results using 
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FIGURE 21.17  Images on August 25, 2007 of Greece: (a) active fire map and (b) NMDI. 
The red oval represents fire that can only be identified by the NMDI.

TABLE 21.7
Comparison of Active Fire Detection Results by MODIS Products and NMDI 
(Greek Fire)

MM/DD
Total 
Pixels

Fire Pixels
Correct 
Fire Hit 

(a)

Fire 
Missing

(b)

False 
Alarm 

(c)

Correct 
Nonfire 
Hit (d )

Overall 
Accuracy 

(%)

False-
Alarm 
Rate 
(%)

Fire 
Detection 
Rate (%)MOD14 NMDI

08/23 32,047 11 10 7 4 3 32,033 99.98 0.01 63.64

08/24 32,080 72 68 54 18 14 31,994 99.90 0.04 75.00

08/25 20,856 125 119 100 25 19 20,712 99.79 0.09 80.00
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the NMDI match well with MODIS fire products. It thus demonstrates that the 
NMDI is not site specific and is expected to be applicable to different areas for 
active fire detection. Such a capacity can help monitor large-scale fire hazards and 
is therefore useful to carry out regional and global studies. 

21.6  CONCLUSIONS

A new developed moisture index, the NMDI, is designed for remote sensing of both 
soil and vegetation water content from space by using three channels centered near 
0.86, 1.64, and 2.13 µm. The study suggests that the possible range of NMDI values 
for soil is between 0 and 1, with higher values indicating increasing soil drought, 
while the typical range is from 0.7 to 0.9 for very dry bare soil, 0.3–0.5 for inter-
mediate moisture conditions, and <0.3 for extremely wet soil. For heavily vegetated 
areas with LAI ≥ 2, the NMDI takes values ranging from 0.4 to 0.6 for moder-
ate wet vegetations, >0.6 for extremely wet conditions, and <0.4 for dry vegetation. 
Therefore, by combining information from multiple NIR and SWIR channels, the 
NMDI has enhanced the sensitivity to drought severity and offers the potential for 
estimating water content for both soil and vegetations.

Using a 7-year history of the satellite measurements and meteorology data over 
Georgia, USA, the capability of the NMDI and other satellite-derived vegetation water 
indices for drought monitoring, as well as the connection between fire occurrence 
and drought conditions, are investigated. Results show that the drought conditions 
indicated by most of the selected indices are consistent with what have been identified 
by meteorology data. The NMDI, however, has demonstrated more dependable results 
regarding seasonal moisture variations. The seasonal variations of moisture condi-
tions interpreted by the NMDI agree well with LAI change: higher values during the 
leaf development stage and lower values in the period of leaf senescence. In addition, 
the NMDI exhibits quicker and stronger responses to moisture changes from wet to 
dry conditions: the sensitivity of the NMDI to vegetation drought conditions has been 
enhanced by an average rate of nearly 10% compared with the other two vegetation 
water indices. 

The fire frequency and NMDI reveal a strong quasilinear connection with an R2 
>0.9. Higher fire frequencies corresponded to lower NMDI values, and the fire fre-
quency dropped abruptly with the increase of the NMDI. As an effective indicator of 
moisture conditions, the NMDI demonstrates the potential for fire risk monitoring. 
Since the NMDI derived from MODIS NIR and SWIR channels has a spatial reso-
lution of 500 m, it could provide an effective alternative to traditional meteorology 
drought indices such as the PDSI for regional/national drought and fire risk monitor-
ing continuously over time with an improved spatial resolution.

The ability of the NMDI to detect forest fires was investigated by using fires 
burning in southern Georgia, USA, and southern Greece in 2007. MODIS fire prod-
ucts were applied for evaluating the fire detection performance. Taking advantage of 
information contained in multiple NIR and SWIR channels, the NMDI demonstrated 
high overall performance and discrimination power in fire detection. For each test 
case, the NMDI has strong signals corresponding to active fires and pinpoints the 
active hot spots accurately. The substantially lower NMDI values make the burning 
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pixels stand out from the neighboring areas. Compared with the 250-m resolution 
MODIS active fire map, the 1-km resolution NMDI image offered almost the same 
accurate depiction of the active fire shape, coverage, and location. Moreover, the 
NMDI provides quantitative hints about fire intensity, complementary to the burning 
locations outlined in the MODIS active fire map. Performance evaluations by using 
the statistical analyses reinforce that the active fire detection using the NMDI is quite 
accurate. The successful application of the NMDI for detecting fires in Georgia, 
USA, and Greece demonstrate that the NMDI is not site specific and can be appli-
cable to different sites with different canopy characteristics. 

Compared with the MODIS active fire algorithm, which exploits the strong emis-
sion of mid-infrared radiation from fires, the fire detection scheme utilizing the 
NMDI has the potential for increasing the spatial resolution of fire detection. The 
NIR and SWIR channels used in the NMDI have a resolution of 500 m, double 
the resolution of the channels currently used in the MODIS active fire detection algo-
rithm, providing four times the spatial resolution. Moreover, using the NMDI for fire 
detection is relatively simple and straightforward, possibly providing a convenient 
alternative to MODIS active fire products. 

The next generation of the MODIS sensor—the Visible/Infrared Imager/Radio-
meter Suite (VIIRS)—will have channels centered at 0.86, 1.61, and 2.25 µm (Ou et 
al. 2003). This new designed NMDI can be applied to VIIRS to extract information 
about soil and vegetation moisture. Future efforts are being directed to more fully 
exploit the potential of the NMDI as a drought and active fire–monitoring tool, for 
example, fire detection for other vegetation types and different geographic areas and 
validation by using measurements from high-resolution satellites or sensors. If more 
broadly applicable and reliable, this index may provide an opportunity to monitor 
drought and active fire in regional to global scales.
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