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Preface

It is widely believed that the pharmaceutical and biotechnology industry will be
one of the most active industrial fields in this new century because of the
information explosion in the field of genomics. As a result, the number of target
proteins that can yield important therapeutic agents is expected to increase
dramatically in the near future. Pharmaceutical drug discovery research is cur-
rently undergoing another tremendous change due both to automated combina-
torial/parallel organic synthesis and to high throughput biochemical screening.
Although it is one of the most important technologies in the history of modern
drug discovery, the pitfalls of combinatorial explosion must be avoided. The
costs of high throughput screening or automated synthesis per compound may
be low, but they will become fairly expensive when multiplied by millions. This
requires the development and adoption of technologies for making combinato-
rial synthesis and library design cost-effective. We have collected here various
technologies that should be used during the combinatorial library design.

The introductory chapter, presented by Hobbs and Guo, contains the
chemist’s view of combinatorial library design, which is by far the most important
aspect of a library design. As this aspect is discussed in considerable depth, this



chapter will also be helpful to computational chemists in learning the chemical as-
pects of a combinatorial library.

Part II contains the various design principles in drug discovery. For non-
computational chemists these chapters will be very useful for understanding the
rest of the book. Computational chemists may also find this section useful. It be-
gins with Ghose et al.’s fundamental aspects of pharmacophore modeling, fol-
lowed by Debnath’s classical QSAR methods, Crippen and Wildman’s 3D QSAR
review, Verkhivker et al.’s critical analysis of structure-based drug design, and
Tenette-Souaille et al.’s fast continuum electrostatics methods for structure-based
drug design. The last chapter in this section, by Oprea et al., broadly covers pro-
tein structure–based 3D QSAR as well as the concept of optimizing protein bind-
ing and pharmacokinetics simultaneously.

In Part III we include chapters on all software-tools-related materials cur-
rently available for library design. Chapter 8, by Viswanadhan et al., deals with
the definition and application of “druglikeness” to the design of combinatorial li-
braries. The next chapter summarizes recent neural net–based approaches for dis-
criminating druglike and non-druglike molecules. Chapter 10 by Brown et al. dis-
cusses the tools available in the Cerius2 package for designing diverse, druglike,
cost-effective combinatorial libraries. Clark discusses in Chapter 11 the tools gen-
erally used in diversity analysis, in particular those available in Sybyl software.
Chapters 12–14, by Tropsha, Gillet and Willet, and Good et al., describe three dif-
ferent approaches for library design. The last chapter in this section, by Horvath,
presents a novel approach to library design based on fuzzy logic.

Part IV deals with the applications of library design in the industrial setting.
Here the authors gave specific examples of libraries and the various tools that they
used during the design process. Chapter 16, by Schnur and Venkatarangan, details
a validation strategy and applications of cell-based diversity metrics. Chapters 17
and 19, by Joseph-McCarthy and Tondi and Costi, describe applications based on
protein structure–based combinatorial library design. In Chapter 18, Singh and
Treasurywalla describe a genetic algorithm and its application for lead generation.
Finally, in Chapter 20 Senderowitz and Rosenfeld describe the design and appli-
cation of libraries mimicking biological motifs.

The editors would like to express their heartfelt gratitude to their families
and mentors. Both want to thank their mentors, in particular Prof. Gordon M.
Crippen, who also took the time to contribute a fine chapter for this book. Arup K.
Ghose would like to thank Prof. A. U. De of Jadavpur University, who gave him
his first lesson in drug discovery research, and his wife, Chandralekha, and two
daughters, Monalisa and Kristy, for letting him take time from their lives to do this
job. Vellarkad N. Viswanadhan thanks Professors Wayne L. Mattice of the Uni-
versity of Akron, K. Sundaram of the University of Madras, and Dr. John N. We-
instein of the National Institutes of Health, who inspired and mentored his work
in molecular structure and design. He further thanks his wife, Raji, and daughters,
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Katya and Kalpa, for being patient and understanding about his weekend trips to
the office. Last, the editors are highly grateful to their employer, Amgen Inc., for
giving them the opportunity to work in this exciting field, and their colleagues
from the Molecular Structure and Design and Small Molecule Drug Design de-
partments, in particular Dr. John J. Wendoloski, who have been outstanding as
collaborators in their efforts to discover human therapeutics.

Arup K. Ghose
Vellarkad N. Viswanadhan
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Library Design Concepts and
Implementation Strategies

Doug W. Hobbs and Tao Guo

Pharmacopeia, Inc.
Princeton, New Jersey

I. INTRODUCTION

Bringing new drugs to market is an increasingly difficult task. The costs associ-
ated with research are rising, and the list of criteria necessary for acceptance con-
tinues to grow. According to statistics compiled by the Pharmaceutical Research
and Manufacturers of America (PhRMA), 90% of the compounds that enter the
development cycle fail to reach market (1,2). Many of the failures have been at-
tributed to poor pharmacokinetic performance that was not discovered until late in
development, after substantial research investment had already been made (3). At
the same time, accelerating improvements in high throughput screening (HTS)
and advances in molecular biology and genomics have led to a proliferation of
new potential targets that compete for resources. These targets offer the opportu-
nity for new and innovative products, as well as for leadership in the marketplace
by firms able to exploit such products effectively and expeditiously. Thus, phar-
maceutical companies are under the combined pressures to rapidly find leads for
the many new targets available and to focus on better quality leads with improved
chances of survival.

Combinatorial chemistry, which collectively refers to a variety of high
throughput synthesis methodologies, was developed, in part, to assist in address-
ing these needs. One of the key benefits of combinatorial chemistry is the extreme



efficiency with which large collections of compounds can be prepared. By opti-
mizing the process by which libraries are constructed, and with the aid of auto-
mated equipment, a single chemist can now produce 10,000–100,000 compounds
per year. While this is effective in supplying assays with an abundance of com-
pounds so that new leads can be identified, it does not directly address the poor
survival statistics of compounds as they progress through development. Even with
the increased supply of leads, there remains a critical need to choose the best lead
with the greatest potential for development. For this reason, it has become in-
creasingly apparent that effective library design must include both high through-
put synthesis techniques and thoughtful compound design to accelerate the devel-
opment of new drugs.

This chapter provides a medicinal chemist’s perspective of library design
for drug discovery. It is useful for medicinal chemists practicing combinatorial
chemistry, to consider the distinction between library design and compound de-
sign. Compound design refers to design decisions that are made with respect to a
single compound. A medicinal chemist will typically develop a hypothesis or ra-
tionale supporting a particular structure prior to synthesis. Based on detailed
knowledge of the biological target, individual compounds can be made to fit in an
enzyme active site, or to reproduce a desired conformation for binding to a recep-
tor. At the same time, choices are guided by an understanding of in vivo parame-
ters such as ADME (absorption, distribution, metabolism, and excretion) consid-
erations. Library design, on the other hand, must also consider explicitly the
process by which the compounds will be generated. In many cases, the process it-
self places limitations on the types of structure that can be obtained. The goal of
library design, therefore, is to balance the desire for efficient and rapid compound
synthesis with the requirement for well-designed compounds.

This chapter is structured to introduce and discuss the main issues relating
to library design. Since there are several excellent reviews covering nearly every
aspect of combinatorial chemistry and related technologies, some of the discus-
sions are brief and merely summarize the key issues. An attempt is made to draw
attention to subtle issues that have not been highlighted in other reviews, but this
is at the expense of comprehensive coverage of each topic. Sections II and III de-
scribe the available techniques for library construction. Section IV emphasizes
compound design issues and how they influence—and are influenced by—the im-
plementation strategy. The remaining sections present a limited number of exam-
ples taken from the literature to illustrate some of the library design principles in
action.

A. Defining the Goal

The first step in designing a library is to define the purpose, or the issue that the
library is intended to address. Libraries are designed for three common purposes,
which are discussed in the subsections that follow.

2 Hobbs and Guo



1. To Expand the Diversity of a Compound Collection for
General Screening

Libraries that fall into the first category are frequently referred to as “discovery”
or “prospecting” libraries (4). While all combinatorial libraries are likely to be
screened against many targets, discovery libraries are specifically built with broad
screening as their main objective. Since these facilities are intended to be screened
against a large number of potentially unrelated targets, a discovery library bene-
fits from being as large and diverse as possible. A general discussion of discovery
libraries and principles used in their design is presented in Section V.

2. To Find a Lead for a Specific Target

Commonly, the goal of library screening is to find a lead against a specific target
or family of targets. Libraries designed for this purpose are referred to as “fo-
cused,” or “targeted,” libraries. Typical design strategies involve the use of privi-
leged structure motifs or specific recognition elements that are suspected to be re-
quired for binding. In addition, the integration of combinatorial chemistry and
molecular modeling has proven very powerful, leading to structure-based, ratio-
nally designed libraries (5). A couple of examples of targeted libraries are pre-
sented in Section VI.

3. To Improve on an Existing Lead

In addition to finding new or novel leads, combinatorial chemistry is finding in-
creased application in lead optimization. Here, optimization refers not just to im-
provements in compound affinity, but also with respect to ADME properties.
Early in the history of combinatorial chemistry, it was believed that ADME opti-
mization was the exclusive domain of the medicinal chemist. More recently, it has
become clear that the distinction between medicinal chemistry and combinatorial
chemistry is arbitrary, and the tools and principles of combinatorial chemistry can
be applied to drug discovery all the way from lead generation to preclinical as-
sessment. The use of combinatorial chemistry to address lead optimization is dis-
cussed in Section VII.

There are many tools available for library construction. In many cases, the
desire to use a particular technique or piece of equipment will influence the struc-
ture, quantity, and number of compounds produced. Therefore, we next describe
the common methods of combinatorial chemistry so that their influence on library
designs can be assessed.

II. HIGH THROUGHPUT SYNTHESIS TECHNIQUES

Combinatorial chemistry collectively refers to a variety of tools and techniques.
Technically, the term “combinatorial” implies a degree of experimental design

Concepts and Implementation Strategies 3



whereby relationships between variables can be elucidated through the evaluation
of their combinations. In common usage, combinatorial chemistry also refers to
almost any method of high throughput synthesis. High throughput synthesis has
been enabled largely by the development of techniques that simplify the most
time-consuming aspects of organic synthesis.

A. Solid Phase Organic Synthesis (SPOS)

The syntheses of peptides (6) and nucleotides (7) on solid support are well-devel-
oped fields and have proven to be reliable and time-saving approaches to the
preparation of these biopolymers. Application of the same principles to the con-
struction of small diverse organic compounds has been the subject of intense in-
vestigation and several recent reviews cover research in the area (8–14).

The subsections that follow include some of the strengths and limitations of
the solid phase approach as applied to organic synthesis.

1. Solid Supported Synthesis Simplifies Workup

Since the desired products remain attached to an insoluble particle throughout the
synthesis, purification can be performed by simply filtering soluble reagents and
reactants away from the insoluble particle.

2. Excess Reagent Can Be Used to Drive Reactions to
Completion

Because separation of the resin from the reaction milieu is so easy, reactions can
be driven to completion by the use of excess reagents. Two different methods are
commonly practiced. For some reactions, especially those that involve an equili-
brating step, excess reagent/reactant is added all at once. An example is the for-
mation of an imine from a resin-bound amine and an aldehyde. According to Le
Châtelier’s principle, the equilibrium can be driven to the imine by increasing the
concentration of the aldehyde reactant. The other method for driving reactions to
completion is to perform the reaction in several cycles. This is practical because
the workup between reaction cycles is accomplished by simply washing the resin.
The value of this technique has been amply demonstrated during the synthesis of
long peptides, where it is critical to achieve efficiency exceeding 99% to maxi-
mize the yield of the product and minimize the formation of by-products, at each
coupling step.

3. Solid Supports Are Convenient to Manipulate

Since reaction quenching and workup involves filtration, and purification is de-
ferred until the compound is cleaved from the support, it is common for an entire
multistep synthetic sequence to be performed in a single filter-bottom reaction
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vessel. In addition, the demonstrated success of synthesizers for peptides and nu-
cleotides has amply proved that reliable instrumentation can be developed to han-
dle reagent addition, washing, and cleavage in an automated way.

4. The Use of Insoluble Supports Makes Pooled Synthesis
Practical

Pooled synthesis refers to the simultaneous synthesis of many compounds in a sin-
gle reaction vessel. This is a very important advantage, since it is through pooled
techniques that the greatest efficiency in compound synthesis can be achieved.
This technique is discussed further in Section III.B.

5. The Solid Support May Limit the Range of Chemistry

The solid support places various constraints on the chemistry. The most common
supports are gelatinous beads made from low cross-linked polymers. The struc-
ture of the polymer, degree of cross-linking, physical size, and swelling charac-
teristics all influence the chemistry in not entirely predictable ways. One of the
main limitations of SPOS therefore, is the effort that must go into reaction devel-
opment before library synthesis can begin. This limitation is counterbalanced by
research into new polymeric supports (15,16) and the active reporting in the chem-
ical literature of new chemical transformations that have been demonstrated on
solid phase (17).

6. Reaction Rates are Slower

Diffusion into and out of the polymer support can significantly decrease reaction
rates. However, other than needing to know when the reaction is complete, this is
rarely an issue in practice. Even with traditional organic synthesis methods, it is
commonplace to allow chemical reactions to proceed longer than absolutely nec-
essary. As long as the conditions are not particularly vigorous, there is usually no
harm done by allowing a reaction that is complete in 4 hours to run overnight.

7. There Must Be a Linker, and this May Limit Reaction
Conditions

The linker is a moiety that allows the product to be cleaved from the support. The
combination of support and linker can be viewed as a kind of protecting group.
Because of this conceptual analogy, the linkers are often adapted from known pro-
tecting groups. As with any other protecting group, the chemistry proposed for
compound synthesis must be compatible with the linker.

8. Cleavage from Resin Generates a Functional Group that
May Not Be Desirable in Products

While the linker serves to anchor the compound to the support, the linkage repre-
sents the functional group that is being protected on the molecule of interest. The
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linker and the linkage have a large impact on library design. To state the problem
simply: to use SPOS, there must be a functional group for attachment to the solid
support. If the molecule of interest does not provide an attachment site, then one
must be introduced. The extra functional group is incorporated into all the final li-
brary products having unknown or undesirable consequences on biological activ-
ity. One of the most active areas of research in SPOS is the development of strate-
gies for overcoming this limitation (18).

In designing a library, the requirement for an attachment site within the
molecule can be handled in several different ways. Figure 1 shows two examples
of cleavage liberating a functional group that is necessary for inhibition. In the
case of metalloproteases, the hydroxamic acid is necessary for binding to the ac-
tive site metal ion (19), and for thrombin and factor Xa the basic amidine is im-
portant for binding to the specificity pocket (20,21). In these cases, since the lib-
erated functional group is necessary for binding, it is not a liability in the products.

Another approach is to use a linker that can liberate different functional
groups upon cleavage. This is illustrated in Fig. 2 with acid-cleavable and photo-

6 Hobbs and Guo

Figure 1 The linker cleaves to liberate a functional group important for binding to the
target.

Figure 2 A single linker can liberate different functional groups upon cleavage.



cleavable linkers. In these cases, the linkage type itself can be exploited as a di-
versity element in the library design (22).

In certain cases, the cleavage reagent can be used to generate diversity. In
Fig. 3 amine nucleophiles are used to cleave the library member from resin. This
approach is limited, however, since to avoid contamination of the product,
the amine used for cleavage must be volatile or otherwise easily removed
(23–25).

Finally, many researchers have chosen to focus on “traceless” cleavage
methods, where the point of attachment to resin is obscured during the cleavage
process (Fig. 4) (26–29). It should be noted, however, that even the traceless meth-

Concepts and Implementation Strategies 7

Figure 3 Amine nucleophiles can be used as both cleavage reagent and diversity
element.

Figure 4 “Traceless” cleavage leaves no residual functional group in the product.



ods require a specific functional arrangement that will be present in all library
members.

9. Monitoring Reactions Is Less Convenient

Since the desired compound is bound to the support, such chromatographic tech-
niques as thin-layer chromatography (TLC) and high-performance liquid chro-
matography (HPLC) cannot be used effectively to monitor the reaction progress.
Instead, colorometric tests are used to test for the presence of particular functional
groups on resin (30–32), and both NMR and IR techniques have been adapted so
that resin-bound materials can be examined (33–37).

10. Relatively Small Amounts of Compound Are Produced

While in theory, one can use as much resin as necessary to produce any amount of
compound desired, large-scale preparation of compounds through SPOS is not
very cost- or space-efficient. However, with most screening operations moving to-
ward increased miniaturization, this is not usually a critical limitation. Many bio-
logical assays can be performed with picomolar amounts of material, and the for-
mats for high throughput screening are steadily moving toward the use of smaller
volumes. Conventional analytical methods such as HPLC and mass spectrometry
are already sensitive enough to provide purity and identity determination with the
amount of compound obtained from a single bead, and specialized detectors for
HPLC, such as CLND (chemiluminescent nitrogen detector) and ELSD (evapora-
tive light scattering detector), may have utility in providing quantitative data as
well (38–40).

B. Solution Phase Synthesis (41,42)

The number of synthetic methods available for construction of any molecule
vastly exceeds the number of methods known to proceed successfully on solid
support. Thus when medicinal chemists want to construct a compound in the ab-
sence of proven methods for doing so, they may feel torn between spending the
time to develop a synthetic route on solid support and resorting to methods more
familiar. Solution phase synthesis has a familiarity that allows rapid implemen-
tation by most medicinal chemists, with little or no additional time spent learn-
ing specialized techniques. For example, while reaction monitoring remains
cumbersome for solid phase reactions, for solution-based reactions TLC and
HPLC techniques work as expected. This makes it convenient to run reactions
with less up-front development and to follow reaction progress by means of
standard methods.

Approaches to converting solution phase chemistry into a high throughput
method focus on making product isolation more convenient. Most of the tech-
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niques rely on extracting components from the reaction milieu by taking advan-
tage of a “handle,” which is present in all compounds of the type one wants to re-
move. In a few cases, the handle is a moiety that has characteristic properties that
override the properties of the products. This allows for a common purification
strategy regardless of the compounds being synthesized. The synthesis of peptides
on linear soluble polymers was one of the first demonstrated examples of this
technique. Bayer and coworkers recognized the method as an alternative to solid
phase synthesis as early as 1971 (43,44). Since then, soluble polymers have been
used for combinatorial chemistry and organic synthesis primarily by Janda
(45–48). A related method, called fluorous synthesis (see Fig. 5), shares many of
the same advantages (49–51).

These strategies can be considered to be hybrid strategies that incorporate
some of the advantages of both solution phase and solid phase chemistry. They
also retain some of the limitations of the solid phase approach. Perhaps the biggest
advantage of any solution method is the ability to perform heterogeneous reac-
tions where the reagent is insoluble. Such reactions are not possible when the re-
actant is bound to a gelatinous polymer bead. On the other hand, one retains the
need for a linker and linkage, and in addition, the handle itself can impose restric-
tions on the chemistry. For example, reactions using fluorous components must
take place in solvents that are able to dissolve the fluorous compounds as well as
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to facilitate the desired reaction. Similar restrictions apply to soluble polymer sup-
ported synthesis.

The concept of a handle can be generalized further to include any common
physical property that would allow all members of the library to be separated from
by-products. This has been referred to as the principle of complementary reactiv-
ity (52). In Fig. 6, the product is characterized by a particularly acidic hydroxyl
function that is not present in the starting material. This allows the selective cap-
ture of only the product by the basic resin. In this case, the resin acts as both
reagent and purification medium (53).

Handles can also be attached to reagents or reactants. Resins that contain a
variety of functionality for catalyzing reactions or capturing excess reactants can
be made or purchased. A simple example is shown in Fig. 7, where an excess of
either reactant can be selectively removed leaving the product in solution
(52,54,55).

To summarize, the advantages of solution phase synthesis are the following:

1. Solution Phase Reaction Kinetics

Since reactions take place in solution, reaction rates are faster and more pre-
dictable.
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Figure 6 A functionalized resin acts as both reagent and purification medium.

Figure 7 Excess reagents and reactants can be removed with reactive resins.



2. A Wide Range of Solvents Can Be Used

There are a few exceptions, depending on which solution phase methodology one
chooses to use, but generally, any solvent necessary can be used for the desired
transformations.

3. Larger Quantities of Compound Can Be Made

Solid phase synthesis becomes impractical if the quantities desired exceed a few
hundred milligrams. Solution phase synthesis has no such restriction and is there-
fore more flexible in this regard.

4. No Linker/Linkage is Required

While this is a commonly stated advantage of solution methods, its real value de-
pends on the specific case. The development of traceless linkers and cleavage meth-
ods has given SPOS much of the same freedom (26). In addition, several methods
for solution synthesis rely on the attachment of the desired product to a “handle.”
While the handle is designed to allow convenient purification, it also imposes the
same linker/ linkage disadvantage of resin-based chemistry.
If one uses resin-based scavengers or reagents, there are another advantages:

5. Heterogeneous Reaction Conditions Can Be Used

This would appear to be an unsolvable limitation with SPOS techniques, and
therefore it is a chief advantage of solution methods.

6. Only One Reaction is Performed On Resin

Typical SPOS syntheses have more than one transformation, and the effect of the
support must be determined for each step. For a polymer-assisted solution synthesis,
the use of resin is less sophisticated. Either it is added as a reagent or it is used to cap-
ture excess reagent/reactant. In the latter case, the reaction that takes place on the
solid support does not need to be optimized, and in fact, does not even have to be ter-
ribly efficient, since more resin can always be added.

III. LIBRARY CONSTRUCTION STRATEGIES

The goal of high throughput synthesis is to speed up the process of synthesizing com-
pounds for evaluation. This goal is largely achieved in two ways: by simplifying
workup and purification via one of the synthetic approaches described in Section II,
and by formatting synthetic operations to make them more amenable to simultaneous
manipulation and automation. It is important to emphasize that the approach to high
throughput synthesis itself is a parameter that needs to be optimized.
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A. Parallel Synthesis

If traditional compound optimization can be approximated by the information
loop shown in Fig. 8 where information is gathered one compound at a time, then
the goal of parallel synthesis is to format the system so that operations are conve-
niently performed, one batch at a time (56).

Parallel synthesis can be performed either in solution or on solid support.
Current usage of the term is taken to mean that there is only one compound per re-
action vessel, but several are made concurrently using the same methodology. The
efficiency of the technique is gained by formatting the synthesis to make simulta-
neous manipulation more convenient. An example of a typical format for parallel
synthesis is a block of polypropylene or Teflon that has multiple filter-bottom
wells. Each well is essentially a different reaction compartment; however, the en-
tire array of reactions can be heated, cooled, or agitated as a single unit. These re-
action blocks can be manipulated manually or used with automated equipment.
For manual operation, since the block is arranged in two dimensions, it is most
convenient to explore two variables at a time and arrange the variables along the
axes of the reaction block. This results in an array of compounds that explore ev-
ery combination of the two variables. To explore a third variable, one can use an-
other reaction block. In the example shown in Fig. 9, 24 compounds are prepared
in a 6 � 4 matrix.

For manual operation, the two-variable experiment is most efficient, since it
makes maximum use of common reagents. The use of 8- or 12-channel pipets, for ex-
ample, allows convenient manual delivery of reagents in a 96-well synthesis block.
Supporting equipment, such as rotisserie ovens, benchtop vortexers, and washing sta-
tions, has been developed to accommodate parallel synthesis in blocks and to increase
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Figure 8 Parallel synthesis versus traditional compound optimization.



efficiency by automating repetitive processes. This semiautomated style of parallel
synthesis is inexpensive, modular, and allows for a very flexible workflow.

Fully automated synthesizers are also available from a variety of compa-
nies. These are complete units that provide liquid handling, temperature variation,
atmosphere control, and agitation, all controlled by a single computer-driven in-
terface. The controlling software offered by most of these workstations allows the
user to program complex or tedious operations that can be saved and used by oth-
ers. Almost every step in chemical synthesis can benefit from automated equip-
ment. Typical examples are weighing of sample containers, dissolution of solid
reagents/reactants, delivery of reagents/reactants to reaction vessels, workup, pu-
rification, and analysis of compound quality (57–59).

Parallel synthesis is particularly appropriate under the following conditions.

1. There is No Convenient Linkage Site in The Desired Structures

In this case parallel synthesis in solution may be most appropriate.

2. The Number of Synthons is Limited

For some compounds there are simply not very many reactants available for in-
corporation into the library.
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Figure 9 A 24-member library constructed in a two-dimensional array.



3. The Synthesis of Each Scaffold is Lengthy

When it is necessary to prepare several scaffolds for incorporation into the library,
it may be more efficient to prepare a small library around each scaffold as it is
made rather than to wait until they are all completed. In this way, screening can be
performed on the first collection while preparation of the other scaffolds is in
progress.

4. Purification is Necessary

In contrast to pooled synthesis (Sec. III.B), purification of the library members is
a feasible operation. This allows the use of chemical transformations that do not
yield highly pure products. In addition, larger amounts of pure compound are re-
quired for late-stage optimization and in vivo studies than can typically be ob-
tained by pooled synthesis methods.

B. Pooled Synthesis

Combinatorial chemistry originated, in part, from the solid phase peptide synthe-
sis methods developed by Merrifield (6,60). Many of the advantages of using in-
soluble supports were discussed in Section III.A. An additional benefit of solid
phase chemistry came with the realization that each solid support represents an in-
dividual reaction compartment. This concept was a major breakthrough, since it
enabled multiple reactions to be performed simultaneously by treating a mixture
of resin-bound substrates with a reagent in a single reaction vessel. Several varia-
tion of pooled synthesis have been described (61–63). The split-pool synthesis ap-
proach outlined in Fig. 10 is among the most popular and efficient (64). In this ap-
proach, individual reactions are performed to attach the first synthon to the resin
(e.g., A1, A2, A3). The subsequent mix and split steps are necessary to distribute
the “A” resins evenly, so that treatment in the next step with B1 and B2 generates
all combinations of A and B. This continues as described in Fig. 10 until all com-
binations of A, B, and C have been obtained.

A modification of this approach, called “direct divide,” was introduced to
better control the distribution of resins from one set of reactions to the next set
(Fig. 11) (65,66). This approach offers improved statistics with respect to achiev-
ing equal numbers of all combinations of products. The advantage shared by both
approaches is that relatively few steps are required to produce many products.
Pooled synthesis techniques have been used to prepare libraries of up to a million
compounds (67,68).

Unlike parallel synthesis, pooled synthesis is not just an extension of classi-
cal chemical synthesis. A great many more compounds can be prepared simulta-
neously, and because of this, special accommodations need to be made to ensure
efficient use of the technique.
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1. A Lot of Effort Is Required to Ensure Library Quality

Analysis of every compound is often impractical because of the number of com-
pounds that can be produced. Since compounds are screened without purification,
variation in yield and purity can confuse interpretation of the results. This means
that there must be very high standards for product quality, and the library chem-
istry must be optimized extensively before the library is actually constructed. This
is a key difference between libraries prepared by pooled synthesis and by parallel
synthesis. With parallel synthesis, the quality of compounds can be determined af-
ter synthesis. Any compounds that do not meet criteria for quality can be dis-
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Figure 10 Split-pool synthesis method.

Figure 11 Direct divide is another pooled synthesis method.



carded. For libraries prepared by pooled synthesis, the situation is more complex.
Statistical sampling of the completed library allows the assessment of the quality
of some products. It is an artifact of pooled synthesis methodology, however, that
any products that fail quality criteria are interspersed throughout the library and
cannot be removed. Therefore, the best opportunity for ensuring library quality
occurs before library construction, during early reaction development and
optimization.

To most chemists, reaction optimization refers to optimizing the yield and
purity of a single product. Reaction optimization for combinatorial chemistry,
however, requires developing an understanding of the relationship between reac-
tion parameters and reactant properties across a range of reactants. Consider the
Diels–Alder reaction as a simple example. Successful condensation is not accom-
plished by simply mixing any diene and dienophile under conditions that were op-
timized for cyclopentadiene. In this case, there is an additional dependence on the
electronic characteristics of the substrates, which need to be matched if cyclocon-
densation is to be successful. In practice, once the restrictions on the chemical
transformations have been identified, pooled libraries can be constructed with a
high degree of confidence in the chemistry. Sampling of the completed library by
liquid chromatography/mass spectrometry can then be used as a final check to
confirm overall library quality.

2. The Structure of Active Compounds Is Determined Indirectly

The power of the pooled synthesis approach is in its ability to produce large num-
bers of compounds very efficiently. However, one trade-off in this approach is
that the identity of any individual compound on a bead becomes lost in the pool-
ing process. When activity is observed in a biological assay, it can be difficult to
determine the structure of the active compound. The small amount of compound
produced may be insufficient for structural characterization. Several methods
have been developed to overcome this limitation, including deconvolution tech-
niques (69), indexing (70), and positional scanning (71,72). Excellent descriptions
of these techniques can be found in recent reviews (73,74). Indexing and postional
scanning techniques rely on preparing the library in subsets, each of which con-
taining one synthon which is defined. By comparing the subsets for biological ac-
tivity, one can estimate the impact of each synthon on overall activity. The struc-
ture of the active compound can then be inferred by extracting the most active
synthon from each position and combining these synthons. In deconvolution ap-
proaches, portions of the library are saved at each step prior to mixing. Since the
library is not mixed after the last step, the well in which biological activity is ob-
served defines the last synthon. This preferred synthon is then placed on precur-
sor resins, where the second-to-last synthon is known. In this way, preferred syn-
thons for each position can be identified.
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An alternative approach for the identification of active compounds from sin-
gle beads is to prepare encoded libraries (74). In encoding strategies the synthetic
history of each compound is described by a unique code. When biological activ-
ity is observed, the code can be read to determine the individual synthons from
which the active compound was assembled. Early encoding methods used nu-
cleotide sequences or peptide strands as the code elements. Similar to the way na-
ture uses DNA to encode for complex proteins, specific sequences of nucleotides
or amino acids were used to record each synthetic operation during library syn-
thesis. These codes could be read by means of well-established sequencing and
detection methods. More recent incarnations of encoding use nonsequential codes
made up from haloaromatic alcohols (75,76), dialkylamines (77), reactants en-
riched in specific element isotopes (78), radiofrequency transponders (79,80), and
laser optical synthesis chips (LOSCs) (81). One of the main advantages of encod-
ing methods is the ease with which many structures can be identified. Instead of
obtaining relatively few active compounds, dozens of compounds can be identi-
fied covering a range of activities. The greater number of compounds identified
allows more complete interpretation of structure–activity relationships (SAR),
which can guide subsequent efforts.

3. Multiple Variables Can Be Explored Simultaneously

Owing to the low throughput of serial compound synthesis, traditional drug dis-
covery often follows a path similar to the logical tree in Fig. 12. The complex re-
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Figure 12 Schematic representation of “one variable at a time” compound optimization.
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Figure 13 Large combinatorial libraries reveal the relationship between variables.



lationship between structure and biological activity is elucidated by evaluating the
impact of structural variables one at a time. This approach, termed OVAT (one
variable at a time), can be successful, but only when the variables are completely
independent.

In the alternative situation commonly found, changes in one variable mod-
ify the effect of other variables on activity. Large libraries constructed through
pooled approaches allow the evaluation of many structural changes and the rela-
tionship between them at the same time. Figure 13 shows a portion of the results
obtained from screening an encoded library at Pharmacopeia (T. Guo, personal
communication, 1999). The structure of active compounds was assigned based on
the code sequence. The frequency refers to the number of times the code for a par-
ticular variable was found among decoded structures. Examining the chart at R3

� amide, one can already see how the positional relationship on the aromatic ring
(ortho, meta, para) affects which substituent is favored at R2. For the ortho-sub-
stituted system, there is a strong preference for R2 � synthon 3. In the meta sub-
stituted series synthon 3 is not found. Synthon 1 and perhaps 4 are preferred. The
para-substituted series shows little activity. Examination of the chart at R3 � urea
shows a similar SAR pattern, with one interesting addition. When R3 � urea and
the substituent relationship is meta, synthon 10 now appears as one of the pre-
ferred components at R2. This synthon is notably absent in the series for R3 �
amide. These findings suggest that there is a relationship between the positional
isomer, R2, and R3. This synergistic relationship would have been difficult to un-
cover by means of OVAT optimization methods. These findings were confirmed
through resynthesis of the decoded compounds and thorough biological analysis.

IV. COMPOUND DESIGN WITHIN COMBINATORIAL
LIBRARIES

As the techniques associated with preparing combinatorial libraries increase in re-
liability, more attention is directed toward analysis of virtual libraries and com-
pound selection. Two areas have received a lot of attention: diversity analysis and
the determination of “druglikeness”.

A. Library Diversity

One of the main goals of diversity analysis is to maximize the information value
of each compound in a proposed library. Since it is rarely feasible to include ev-
ery available synthon in a library, diversity analysis tools provide for choosing
among available components to cover the broadest range of chemical space. In
theory, the screening results should then allow the correlation between specific
molecular descriptors and biological activity. In the past few years, a variety of de-
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scriptors and methods have been tested for their suitability in diversity assessment
(82–85). Several recent reviews cover this rapidly changing field (86–90).

Because one wants to ensure the value of a library prior to construction, it
has become common practice to build and evaluate a virtual library “in silico”
prior to synthesis. Virtual libraries represent a best guess regarding the structures
and precursors that can be included in the library. One can then evaluate the vir-
tual library with respect to diversity criteria before selecting a subset for actual
synthesis. Diversity analysis can be applied to the set of starting materials, as
well as to the final products. While analysis of the products appears to be more
effective at maximizing the diversity of a library (91), reactant analysis also has
some practical applications. Since the efficiency of combinatorial chemistry re-
lies to a large part on the fact that few starting materials give rise to many prod-
ucts, the list of starting materials is likely to be much smaller than a complete
listing of enumerated library products. In addition, given a list of available re-
actants, diversity can be assessed with respect to different criteria. For example,
a recent report describes the evaluation of a set of reactants in terms of reactiv-
ity by calculating the influence of molecular properties on the reactive center
(92). The results of this analysis would likely be different from an assessment of
the same list of reactants with respect to descriptors of biological relevance.
With this in mind, it is important consider that if a compound fails to undergo
the desired transformations, it really does not matter if the compound was pre-
dicted to have biological activity. Thus, unless the chemistry for the proposed li-
brary is very well developed, some amount of iteration between theoretical de-
sign and empirical testing must occur.

The difficulty with diversity analysis in general is that in spite of all the at-
tempts to arrive at a universal definition of diversity, our understanding of the term
remains subjective and highly dependent on the specific target. A central assump-
tion is that even if the optimal substituent is not present in the library, one that is
similar (according to diversity calculations) should have some observable activ-
ity. This assumption is not always correct. Most medicinal chemists have likely
encountered situations where seemingly very small changes in structure—such as
replacing methyl with ethyl, or changing the position of a substituent on an aro-
matic ring—led to very large changes in biological activity (93,94). To one target,
methyl and ethyl substituents may have similar affinities; to another, there results
an order-of-magnitude difference. With respect to the first target, including both
methyl and ethyl in the library is redundant and a waste of effort. For the second
target, the penalty for not including the correct one is, perhaps, to observe no ac-
tivity at all. The complexity of this problem is illustrated with the morphine
analogs in Fig. 14 (95,96). In this example, both affinity for the receptor and the
type of activity (agonist, antagonist) are sensitive to subtle changes in the nitrogen
substituent.
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B. Controlling Molecular Properties

Poor biopharmaceutical properties comprise one of the main reasons for the fail-
ure of drug candidates to reach the market (3). In particular, issues such as toxic-
ity, bioavailability, and metabolic fate become more important than affinity and
selectivity as the compound progresses through the development cycle. In an ef-
fort to avoid late-stage failures, most companies have begun to emphasize ADME
suitability earlier in the compound development process. Several groups have be-
gun publishing algorithms for determining such pharmaceutical suitability
(97–99). The typical approach is to choose a basis set from among known drug en-
tities, then to identify common characteristics that can conveniently be computed.
From there, the characteristics of any new compound can be compared against the
basis set to determine just how “druglike” the compound may be. An example of
this is the often reported “rule of five” which offers a simple method for assessing
the absorption potential of an unknown compound (Fig. 15) (100). Any compound
that exceeds the rule-of-five recommendations in two or more categories is pre-
dicted to have poor oral absorption.

Other algorithms, aimed at predicting aqueous solubility, metabolic suscep-
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tibility, and blood–brain barrier penetration, are also being pursued. While
progress in developing these methods is hampered by the difficulty of obtaining
good data for deriving a useful basis set, advances are being made in the develop-
ment of high throughput assays that model pharmacokinetic processes. High
throughput screens to evaluate the metabolism by cytochrome P450, solubility,
and cell permeability are all being pursued throughout the industry.

The tools described thus far offer guidance to the chemist in designing a qual-
ity library. However, several issues that influence library and compound design
have not yet been captured by an expert tool or computational algorithm. For ex-
ample, a chemist must use their understanding of reactant reactivity to choose frag-
ments that are compatible with all the steps in the proposed design. Consider the
hypothetical example in Fig. 16 (101). In the actual library, the substituents at R1

were represented only by simple alkyl and benzyl derivatives. Including a tertiary
amine synthon in step 1 would certainly enhance the diversity in that position.
However, since the final step involves alkylation with activated halides, having nu-
cleophiles at other positions in the molecule would likely produce by-products.

In another commonly encountered situation, portions of a library need to
be steered through different paths. This is done not only to avoid reactivity prob-
lems, as in the hypothetical example above, but also to ensure that the products
are balanced with respect to diversity and druglike characteristics. A simple ex-
ample can be described by using the pooled synthesis technique represented in
Figs. 10 and 11. According to that scheme, the products include every combi-
nation of every variable. If one synthon from each reactant list contains a car-
boxylic acid, then there will be at least one compound in the library that has
three acidic groups. The triacid thus formed may be a small percentage of the
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total library, but it is still a poor lead. With the computational tools currently
available, a chemist planning a library can repeatedly calculate properties and
reorganize the course of synthetic operations until the entire library has the fea-
tures and properties desired. To illustrate this concept, consider the library de-
scribed in Fig. 17. The first-generation library contained all combinations of the
four variables R1–R4, leading to a virtual library of 114,855 members. Analysis
of the enumerated products that would be generated in this library reveals an ex-
cess of lipophilic and high molecular weight compounds. Examination of the
rule-of-five exceptions indicate that the majority of the library has more than
one exception.

Figure 18 outlines the final version of the library. As can be seen, a more
elaborate splitting scheme was adopted to avoid the negative effects of combining
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Figure 17 Property analysis of a first-generation virtual library.



synthons with additive properties. For example, only the portion of the library
with low molecular weight R2a synthons is combined with the relatively high
molecular weight R3a synthons. Analysis of this version of the library shows sub-
stantial improvement in molecular properties and predicted bioavailability. The
portion of the library that was removed is shown in Fig. 19.

In summary, there is no “one best design” that can be obtained from virtual
library analysis. Instead, computational tools need to aid chemists in performing
trade-off analyses so that they can better weigh the impact of each design decision.
Library design involves balancing many parameters, and just as single-compound
design involves a high level of creativity on the part of the chemist, so does library
design, which focuses on compound design within the constraints of the high
throughput process.

Sections VI–VII include examples of libraries taken from the literature that
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serve to illustrate the principles already discussed. The sections are partitioned ac-
cording to whether the libraries were intended to be discovery, targeted, or opti-
mization libraries.

V. LOOKING FOR LEADS: DISCOVERY LIBRARIES

In contrast to targeted libraries, where there are typically specific structural fea-
tures guiding the library design, the design principles that guide discovery li-
braries are synthetic efficiency, diversity, and lead quality.

A. Synthesis of Oligomers

Oligomers have proven to be good synthetic targets for combinatorial synthesis.
Because they are made up of repeating units, relatively few reactions need to be
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optimized. In addition, when the monomer units are readily available, they can
rapidly produce very large and diverse libraries.

Peptides are the natural regulators of many physiological and disease pro-
cesses, and peptide libraries were among the first discovery libraries to be ex-
plored using combinatorial techniques (102). While peptides are easily con-
structed and a wide variety of amino acids monomers are available, peptides
beyond approximately four amino acids in size tend to be poor drug candidates.
Specifically, degradation by proteolytic enzymes, poor gastrointestinal absorp-
tion, rapid elimination, and conformational flexibility leading to poor selectivity
are problems frequently encountered with peptide leads. On the other hand, the
fact that diverse libraries can be made from optimizing only one reaction is very
compelling. One approach to balancing the ease of synthesis while addressing the
pharmacological issues has been to devise oligomers that contain isosteric re-
placements for the peptide backbone. Examples are peptoids (103), oligocarba-
mates (104–106), oligoureas (107), azatides (108), oligothioureas (109), and
oligomers of vinylogous sulfonamides (Fig. 20) (110).

A common feature of each example is the retrosynthesis of the structure to
monomer units, which are easily obtained. Comparison of the peptoid syntheses
outlined in Fig. 21, and entry 1 in Fig. 20, serves to illustrate the importance of this
retrosynthetic principle. The first reported synthesis of peptoids (Fig. 21) used N-
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Figure 20 Oligomer libraries containing isosteric replacements for a peptide backbone.



alkylglycines as the monomer units. Each monomer had to be synthesized in so-
lution in suitably protected form for incorporation into the growing oligomer.
Modification of the original procedure so that the N-alkylglycine monomers are
synthesized on resin from �-bromoacetic acid and an alkylamine afforded access
to a wider range of input materials, while removing the need for solution synthe-
sis and several protecting groups (111).

B. Efficient Construction

The fewer the linear steps in the synthesis of the library, the higher the yield. Even
when the steps involve very high-yielding deprotections, it is generally better if
such steps can be avoided. Libraries constructed around triazines and pyrimidines
are extremely efficient in this regard. Each halide on the heteroaromatic core can
be displaced with a nitrogen. However, as nitrogens are introduced, the reactivity
of the remaining halides is dramatically, reduced allowing sequential elaboration
of the core without the use of protecting groups (Fig. 22) (112,113).

Another method for increasing the efficiency of compound synthesis is to
employ multicomponent reactions, in which several diversity elements are
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Figure 21 Peptoid synthesis using preformed N-alkylglycines: PG, protecting group.

Figure 22 Triazine libraries can be constructed very efficiently because no protecting
groups are required.



brought together in a single step. Examples include the Ugi, Biginelli, Passerini,
and Tsuge reactions (Fig. 23). Both solid phase and solution phase examples have
been reported for several of these transformations (114–120).

C. Branching Strategies

Since developing chemistry for use with high throughput techniques requires sig-
nificant time in the reaction optimization phase, it makes sense to use that initial
investment in as many ways as possible. Several strategies have appeared that
make use of libraries that have already been constructed to produce new libraries
with different properties. Houghten and coworkers described the concept of “li-
braries from libraries” (121). Using this idea, a previously prepared peptide library
was converted to a new library by application of an additional reaction that affects
every member of the library (Fig. 24). In terms of efficiency, the one extra step
doubles the output. That is, another library is produced that is the same size as the
original.

Advanced intermediates can also be used as branching points to allow li-
braries presenting different structural motifs to be prepared. In Fig. 25 linear in-
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Figure 23 Multicomponent reactions introduce several variables in a single step.



termediates are treated with different reagents to affect different modes of
cyclization (67,122).

Certain reactions or functional groups can be pivotal in enabling branching
(123). For example, one of the key limitations of the Ugi reaction is the lack of
easily obtainable diverse isocyanides. Keating and Armstrong (116,124) ad-
dressed this key limitation by developing 1-isocyanocyclohexene as a “universal
isocyanide.” Thus, the Ugi product was an activated intermediate that could be
used to branch in several directions (Fig. 26).

A particularly impressive example of a single reaction that enabled sub-
stantial branching and product diversification is outlined in Fig. 27. The use of ni-
tro-activated aryl halides to facilitate the arylation of heteroatom nucleophiles has
been reported (125,126). This reaction alone allows the creation of motifs such as
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Figure 24 “Libraries from libraries” strategy.

Figure 25 Branching from an advanced intermediate creates different structural classes.



aryl piperazines and diaryl ethers, which have substantial precedent in bioactive
compounds. The aryl nitro group, however, is not typically a desirable aromatic
substituent for drug development purposes. Developing chemistry for the reduc-
tion of the nitro group on solid support (127–129) not only removed a potential
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Figure 26 Different scaffolds accessible through a single Ugi intermediate.

Figure 27 The use of nitro-activated aryl halides facilitates the synthesis of a wide range
of benzo-fused heterocycles.



metabolic liability but also created a new center for functionalization. Several li-
braries have taken advantage of this chemistry to prepare a wide range of benzo-
fused heterocycles (130–136).

VI. LEVERAGING KNOWLEDGE: TARGETED LIBRARIES

In contrast to discovery libraries, many libraries are built with a specific target in
mind. These targeted libraries are commonly constructed around motifs or func-
tional arrangements that are already known to bind or inhibit the target. Whereas
discovery libraries can be more liberal with respect to structural variation within
the library, targeted libraries usually conform more closely to known templates to
maximize the chance of finding biological activity. As a side benefit, the motiva-
tion to prepare specific structures in the library often fuels the development of new
synthetic methods for their high throughput synthesis.

Libraries directed toward enzyme inhibitors are good examples of this type
of strategy. Not only do many enzymes have X-ray structures available and well-
understood mechanisms of action, but often there are functional groups known to
target the active site and to act as transition state mimics. Another reason enzymes
are good targets for combinatorial approaches is that there may be several distinct
enzymes within a mechanistic class. Libraries with a bias toward that class of en-
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Table 1 Functional Groups that Bias Compounds Toward Enzymes of Specific
Classes

Enzyme class Functional group

Metalloenzymes Metal ligands
Hydroxamic acid
Thiol
Sulfonamide
Imidazole
Carboxylate

Trypsin family serine proteases Basic nitrogen for S'1 specificity pocket
Amidines
Guanidines
Lysine

Activated carbonyl
Aldehyde
�-Ketoester/amide

Aspartyl proteases Hydroxyethylene isosteres
Statine derivatives

Cysteine proteases �-Activated ketones
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Figure 28 Using statine derivatives to target a library toward aspartyl proteases.

zyme have improved chances of finding leads against multiple targets. Table 1
presents examples of functional groups commonly used to bias compounds to-
ward enzymes of specific classes (137).

Carroll and coworkers at Pharmacopeia used this strategy when construct-
ing an encoded library of statine analogs (138,139). The goal of this exercise
was the identification of leads against the aspartyl protease plasmepsin II, which
plays an important role in the malarial parasite Plasmodium falciparum. The se-
lection of synthons for the library was guided by published information, and the
library was constructed by using encoded pooled synthesis techniques. To eval-
uate selectivity, the human enzyme cathepsin D was chosen. Cathepsin D is an
aspartyl protease 37% homologous to plasmepsin II. After library synthesis, the
compounds were cleaved from the resin photochemically; then the bead eluent
was split and screened simultaneously against the two related proteases
(Fig. 28).

Based on 96 compounds that were decoded, interesting SARs emerged re-
lating to the control of selectivity. Compounds of interest were then resynthe-
sized to confirm activity. An important principle illustrated in this example is
that because of the large number of data points gathered, SAR was obtained for
both enzymes. In this case, it was found that cathepsin D was particularly sen-
sitive to changes in the R4 position, while plasmepsin II was more sensitive to
changes in R3. Figure 29 illustrates how the SARs derived from library screen-
ing can be used to rationally design compounds selective for each enzyme
target.

For nonenzyme targets, bias can also be built into the library design. In this
case, instead of being based on a mechanism of action, the structural features con-
tributing to a bias are frequently derived from empirical observation. Libraries
based on “privileged structures” are an appealing strategy for broad screening
against related families of targets. Examples of some privileged structures for G-
protein-coupled receptors (GPCRs) which have been used in library design are
shown in Fig. 30 (73,137,140,141).



Concepts and Implementation Strategies 33

Figure 30 Examples of some GPCR privileged structures.

Figure 29 Selective inhibitors of two aspartyl proteases can be found in a single targeted
library.

An excellent example of targeted library design comes from researchers at
Merck (142–144). The objective of the research was the identification of leads for
each of the five somatostatin receptor subtypes (sstr1–sstr5). The library design
began with conformational analysis of the cyclic hexapeptide L-363,377, which



Figure 31 Molecular modeling and database mining aid library design.

was a selective antagonist for sstr2 (Fig. 31). From the peptide, a pharmacophore
model was generated, which was then used to search their internal compound col-
lection. This resulted in the identification of the nonpeptide sstr2 inhibitor L-
264,930 which could be conveniently dissected into three portions, designated X,
Y, and Z.

A 31,600-member library (accounting for uncontrolled asymmetric centers,
the total number of compounds was 88,270) was constructed by means of mix and
split techniques, and iterative deconvolution was used to identify the active
compounds.

Because the library was designed around an sstr2 selective inhibitor, the
majority of activity found in the first library was sstr2 activity (Fig. 32).
However, enough activity could be seen in assays for the other receptors to
guide the design of additional libraries. Three additional libraries were con-
structed, each design guided by the knowledge obtained from the preceding
ones. Library 2 increased the diversity of the Z (amine) synthon and yielded se-
lective inhibitors for sstr1 and sstr3, and libraries 3 and 4 narrowed the
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Figure 33 Merck’s somatostatin library 2 produced selective inhibitors for sstr1 and
sstr3.

Figure 32 Merck’s somatostatin library 1 yielded sstr2 selective structures.



search to aryl indoles and afforded inhibitors for sstr4 and sstr5 (Figs. 33 and
34).

Among the many useful concepts highlighted by this work, the use of a large
library directed toward one target (sstr2), to identify initial leads to guide the de-
sign of follow-up libraries is particularly noteworthy.

VII. MOVING BEYOND AFFINITY: OPTIMIZATION
LIBRARIES

It is relatively common in drug discovery programs for high affinity leads to fail ow-
ing to poor pharmacokinetic performance. Because of this, an increasing number of
high throughput synthesis applications are surfacing in the area of lead optimization,
where the modification of pharmacokinetic properties is the primary objective.
Thrombin and FPT, the examples to be discussed in this section, are particularly in-
teresting because both involve the use of combinatorial chemistry to search for al-
ternatives to the privileged structure motifs that are highly preferred by the targets.

A. Improving Molecular Properties

1. Thrombin

Thrombin has been a target for structure-based drug design for many years. It is
a classic example for targeted library design as well, since it has well-under-
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Figure 34 Merck’s somatostatin libraries 3 and 4 resulted in sstr4 and sstr5 selective
compounds.



stood structural preferences. In particular, the P1 site of thrombin (‘recognition
pocket’) contains an acidic residue (Asp189) that has been extensively exploited
in compound and library design. Using concepts like those discussed in Section
VI, compounds and libraries containing guanidine and amidine moieties have
been designed to interact with Asp189 and orient inhibitors in the active site
(20,145–148). Despite the accumulated knowledge, however, success in bring-
ing small-molecule inhibitors into the clinic has been limited. In many cases this
is due to poor oral bioavailability that is caused, in part, by the basic P1 binding
moiety. It may appear somewhat ironic that the basic residues, which were de-
signed into the structures to bias them toward thrombin, are key contributors to
poor pharmacokinetic performance and are thus among the most desirable to re-
move (149).

A library described by scientists at Merck is a good example of the use of
high throughput synthesis in conjunction with molecular modeling to address
pharmacokinetic limitations of the lead structure (150). The rationale for library
design came from the observation of a hydrophobic region in the P1 pocket, indi-
cated by X-ray structures, that was not being filled by most of the known in-
hibitors. Based on this observation, a parallel library was constructed focussing on
variation of the P1 binding unit (Fig. 35). From this library was found the 3-
chlorobenzyl derivative, which was further optimized in solution to afford the 2,5-
dichlorobenzyl inhibitor.

In general terms, this example illustrates a common strategy for drug dis-
covery that is increasingly being applied to combinatorial chemistry: First, a lead
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Figure 35 Rational design of a parallel library to improve physicochemical properties of
thrombin inhibitors.



was obtained by using privileged structure motifs, such as the tripeptide backbone
and basic residues for P1 binding, to bias compounds toward thrombin and to ori-
ent the structures in the active site. Next, efforts focused on optimizing the re-
maining positions to improve affinity. Finally, with affinity that was more than ad-
equate, efforts could be directed toward removing the biasing functionality, which
in this case was detrimental to oral bioavailability.

2. FPT

The work from Abbott Laboratories on non-cysteine-containing Ras farnesyl-
transferase (FPT) inhibitors represents another good example of the use of high-
throughput techniques to search for new leads with improved molecular proper-
ties (151). This case has several similarities to the thrombin example just
described. Leads for FPT have been identified by using rational drug design. One
of the privileged structural arrangements that allow biasing toward FPT is a thiol,
which serves to mimic a critical cysteine residue in the natural substrate. The same
privileged functional group is ultimately a detriment to drug development owing
to its metabolic susceptibility. Figure 36 shows the C-terminal tetrapeptide of Ras
and the lead that was designed to mimic it.

38 Hobbs and Guo

Figure 37 Parallel synthesis was used to search for a non-thiol-containing lead
compound.

Figure 36 Structure of the Ras C-terminal peptide mimic described by Abbott.



The objective of library synthesis was to identify a replacement for the
thiol functionality in the lead. As illustrated in Fig. 37, the biaryl aniline was
used as a convenient intermediate. From the library was found a nicotinic amide
derivative with activity that was weaker than the original lead, but still consid-
ered promising. The nicotinamide derivative was then subjected to a variety of
modifications through use of traditional medicinal chemistry. The results of
medicinal chemical optimization are outlined in Fig. 38.

This example illustrates the complementarity of combinatorial and medici-
nal chemical approaches. Combinatorial chemistry was well suited to rapid mod-
ification of the biaryl aniline intermediate because the chemistry for derivatization
of the aniline is well established and reliable, and there are an enormous number
of commercially available synthons that could be examined. Other changes, such
as transposing the nitrogen or adding a methyl group to the biaryl, are more eas-
ily accomplished via traditional synthetic methods.

VIII. CONCLUSION

A short history and some of the key contributions that led to modern combinato-
rial chemistry can be listed.

1. Solid phase peptide synthesis demonstrated the value of polymeric
beads to aid in handling and purification.

2. The success of solid phase peptide synthesis provided incentive for the
development of equipment that could perform automated synthesis.

3. Automated peptide synthesis demonstrated that a single reaction
(amide bond formation) could be optimized to be very nearly indepen-
dent of the specific substrates.
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Figure 38 Further optimization of a library-generated lead through medicinal chemistry.



4. The split-pool concept illustrated how reactions could be performed si-
multaneously, amplifying one’s effort manyfold.

5. High throughput screening creates a demand for more compounds.
6. Gene sequencing and functional genomics create an opportunity for

new targets.

Fueled by the interest of the pharmaceutical industry, progress in developing
combinatorial chemistry as a practical tool for drug discovery is moving very
rapidly. Early in the development of combinatorial chemistry, the main parame-
ters that constrained library design were the lack of versatile chemistry and
tools. Today, there are ample reactions that have been proven to succeed by us-
ing high throughput techniques, and a wide variety of instruments are available
for automating the process. With the implementation details reliably established,
and a wealth of chemical transformations available, the focus has moved back
to what has always been the medicinal chemist’s main objective: how to design
the best drugs. A big difference, however, is the number of compounds being
designed together. Combinatorial chemistry has become a statistical science. In-
stead of thinking in terms of individual compounds, the emphasis is on popula-
tions, and operations that can be done on large groups have become increasingly
valuable. Because of this, more chemists are looking to computational tools to
aid them in making design decisions. The development of these tools is cur-
rently one of the most active areas of combinatorial chemistry and computer-
aided drug design, as evidenced by the remaining chapters in this book. Thus to
answer the question “How does one design a library?” one responds, “It de-
pends.” Many parameters need to be considered together, and ultimately the an-
swer is dependent on the creativity and value judgments of the individual
designer.

REFERENCES

1. Lipper RA. E pluribus product. Modern Drug Discovery 1999; Jan/Feb:55–60.
2. Johnson D. The discovery-development interface has become the new interfacial

phenomenon. Drug Discovery Today 1999; 4:535–536.
3. Studt T. Drug development bottlenecks not cured by technology alone. Drug Dis-

covery Dev 1999; Jan:40–41.
4. Spaller MR, Burger MT, Fardis M, Bartlett PA. Synthetic strategies in combinato-

rial chemistry. Curr. Opin Chem Biol 1997; 1:47–53.
5. Antel J. Integration of combinatorial chemistry and structure-based drug design.

Curr Opin Drug Discovery Dev 1999; 2:224–233.
6. Merrifield RB. Peptide synthesis. I. The synthesis of a tetrapeptide. J Am Chem Soc

1963; 85:2149–2154.
7. Letsinger RL, Mahadevan V. Oligonucleotide synthesis on a polymer support. J Am

Chem Soc 1965; 87:3526–3527.

40 Hobbs and Guo



8. Hermkens P, Ottenheijm H, Rees D. Solid-phase organic reactions: A review of re-
cent literature. Tetrahedron 1996; 52:4527–4554.

9. Hermkens P, Ottenheijm H, Rees D. Solid-phase organic reactions. II. A review of
the literature Nov 95–Nov 96. Tetrahedron 1997; 53:5643–5678.

10. Booth S, Hermkens PHH, Ottenheijm HCJ, Rees DC. Solid-phase organic reactions.
III. A review of the literature Nov 96–Dec 97. Tetrahedron 1998; 54:15385–15443.

11. Früchtel JS, Jung G. Organic chemistry on solid supports. Angew Chem Int Ed Engl
1996; 35:17–41.

12. Osborn HMI, Khan TH. Recent developments in polymer supported synthesis of
oligosaccharides and glycopeptides. Tetrahedron 1999; 55:1807–1850.

13. Lorsbach BA, Kurth MJ. Carbon–carbon bond forming solid-phase reactions. Chem
Rev 1999; 99:1549–1581.

14. Gordon K, Balasubramanian S. Recent advances in solid-phase chemical method-
ologies. Curr. Opin Drug Discovery Dev 1999; 2:342–349.

15. Hudson D. Matrix assisted synthetic transformations: A mosaic of diverse contribu-
tions. I. The pattern emerges. J Comb Chem 1999; 1:333–360.

16. Hudson D. Matrix assisted synthetic transformations: A mosaic of diverse contribu-
tions. II. The pattern is completed. J Comb Chem 1999; 1:403–457.

17. Brown RCD. Recent developments in solid-phase organic synthesis. J Chem Soc
Perkin Trans. 1 1998:3293–3320.

18. James IW. Linkers for solid phase organic synthesis. Tetrahedron 1999; 55:
4855–4946.

19. Floyd CD, Lewis CN, Patel SR, Whittaker M. A method for the synthesis of hy-
droxamic acids on solid phase. Tetrahedron Lett 1996; 37:8045–8048.

20. Kim SW, Hong CY, Koh JS, Lee EJ, Lee K. Solid phase synthesis of benzamidine-
derived sulfonamide libraries. Mol Diversity 1998; 3:133–136.

21. Mohan R, Yun W, Buckman BO, Liang A, Trinh L, Morrissey MM. Solid-phase
synthesis of N-substituted amidinophenoxy pyridines as factor Xa inhibitors. Bioorg
Med Chem Lett 1998; 8:1877–1882.

22. Fivush AM, Wilson TM. AMEBA: An acid sensitive aldehyde resin for solid phase
synthesis. Tetrahedron Lett 1997; 41:7151–7154.

23. Gayo LM, Suto MJ. Traceless linker: Oxidative activation and displacement of a
sulfur-based linker. Tetrahedron Lett 1997; 38:211–214.

24. DeGrado WF, Kaiser ET. Solid-phase synthesis of protected peptides on a polymer-
bound oxime: Preparation of segments comprising the sequence of a cytotoxic 26-
peptide analog. J Org Chem 1982; 47:3258–3261.

25. Voyer N, Lavoie A, Pinette M, Bernier J. A convenient solid phase preparation of
peptide substituted amides. Tetrahedron Lett 1994; 35:355–358.

26. Reitz AB. Recent advances in traceless linkers. Curr Opin Drug Discovery Dev
1999; 2:358–364.

27. Woolard FX, Paetsch J, Ellman JA. A silicon linker for direct loading of aromatic
compounds to supports. Traceless synthesis of pyridine-based tricyclics. J Org
Chem 1997; 62:6102–6103.

28. Cobb JM, Fiorini MT, Goddard CR, Theoclitou M-E, Abell C. A decarboxylative
traceless linker approach for the solid phase synthesis of quinazolines. Tetrahedron
Lett 1999; 40:1045–1048.

Concepts and Implementation Strategies 41



29. Bräse S, Enders D, Köbberling J, Avermaria F. A surprising solid-phase effect: De-
velopment of a recyclable “traceless” linker system for reactions on solid support.
Angew Chem Int Ed Engl 1998; 37:3413–3415.

30. Vojkovsky T. Detection of secondary amines on solid phase. Pept. Res 1995;
8:236–237.

31. Krchnak V, Vagner J, Lebl M. Noninvasive continuous monitoring of solid-phase
peptide synthesis by acid–base indicator. Int J Pept Protein Res 1988; 32:415–416.

32. Chu SS, Reich SH. NPIT: A new reagent for quantitatively monitoring reactions of
amines in combinatorial synthesis. Bioorg Med Chem Lett 1995; 5:1053–1058.

33. Anderson RC, Stokes JP, Shapiro MJ. Structure determination in combinatorial
chemistry: Utilization of magic angle spinning HMQC and TOCSY NMR spectra in
the structure determination of Wang-bound lysine. Tetrahedron Lett 1995; 30:
5311–5314.

34. Shapiro MJ, Chin J, Marti RE, Jarosinski MA. Enhanced resolution in MAS NMR
for combinatorial chemistry. Tetrahedron Lett 1997; 38:1333–1336.

35. Look GC, Holmes CP, Chinn JP, Gallop MA. Methods for combinatorial organic
synthesis: The use of fast 13C analysis for gel phase reaction monitoring. J Org
Chem 1994; 59:7588–7590.

36. Yan B, Sun Q, Wareing JR, Jewell CF. Real-time monitoring of the catalytic oxida-
tion of alcohols to aldehydes and ketones on resin support by single-bead Fourier
transform infrared microspectroscopy. J Org Chem 1996; 61:8765–8770.

37. Rahman SS, Busby DJ, Lee DC. Infrared and Raman spectra of a single resin bead
for analysis of solid-phase reactions and use in encoding combinatorial libraries. J
Org Chem 1998; 63:6196–6199.

38. Taylor EW, Qian MG, Dollinger GD. Simultaneous on-line characterization of
small organic molecules derived from combinatorial libraries for identity, quantity,
and purity by reversed-phase HPLC with chemilumiscent nitrogen, UV, and mass
spectrometric detection. Anal Chem 1998; 70:3339–3347.

39. Fitch WL, Szardenings AK. Chemiluminescent nitrogen detection for HPLC: An
important new tool in organic analytical chemistry. Tetrahedron Lett 1997; 38:
1689–1692.

40. Kibbey CE. Quantitation of combinatorial libraries of small organic molecules by
normal-phase HPLC with evaporative light-scattering detection. Mol Diversity
1995; 1:247–258.

41. Suto MJ. Developments in solution-phase combinatorial chemistry. Curr Opin Drug
Discovery Dev 1999; 2:377–384.

42. Parlow JJ, Devraj RV, South MS. Solution-phase chemical library synthesis using
polymer-assisted purification techniques. Curr Opin Chem Biol 1999; 3:320–336.

43. Mutter M, Hagenmaier H, Bayer E. New method of polypeptide synthesis. Angew
Chem Int Ed Engl 1971; 12:811–812.

44. Bayer E, Mutter M. Liquid phase synthesis of peptides. Nature 1972; 237:512–513.
45. Han H, Wolfe MM, Brenner S, Janda KD. Liquid-phase combinatorial synthesis.

Proc Natl Acad Sci USA 1995; 92:6419–6423.
46. Gravert DJ, Janda KD. Synthesis on soluble polymers: New reactions and the con-

struction of small molecules. Curr Opin Chem Biol 1997; 1:107–113.

42 Hobbs and Guo



47. Gravert DJ, Janda KD. Organic synthesis on soluble polymer supports: Liquid-
phase methodologies. Chem Rev 1997; 97:489–509.

48. Lee JK, Angulo A, Ghazal P, Janda KD. Soluble-polymer supported synthesis of a
prostanoid library: Identification of antiviral activity. Org Lett 1999; 1:1859–1862.

49. Studer A, Hadida S, Ferritto R, Kim S-Y, Jeger P, Wipf P, Curran D. Fluorous syn-
thesis: A fluorous-phase strategy for improving separation efficiency in organic syn-
thesis. Science 1997; 275:823–826.

50. Curran DP, Hadida S. Tris(2-(perfluorohexyl)ethyl)tin hydride: A new fluorous
reagent for use in traditional organic synthesis and liquid phase combinatorial syn-
thesis. J Am Chem Soc 1996; 118:2531–2532.

51. Studer A, Jeger P, Wipf P, Curran DP. Fluorous synthesis: Fluorous protocols for
the Ugi and Biginelli multicomponent condensations. J Org Chem 1997; 62:
2917–2924.

52. Flynn DL, Crich JZ, Devraj RV, Hockerman SL, Parlow JJ, South MS, Woodard S.
Chemical library purification strategies based on principles of complementary
molecular reactivity and molecular recognition. J Am Chem Soc 1997; 119:
4874–4881.

53. Kulkarni BA, Genesan A. Ion-exchange resins for combinatorial synthesis: 2,4-
Pyrrolidinediones by Dieckmann condensation. Angew Chem Int Ed Engl 1997;
36:2454–2455.

54. Flynn DL, Devraj RV, Parlow JJ. Recent advances in polymer-assisted solution-
phase chemical library synthesis and purification. Curr Opin Drug Discovery Dev
1998; 1:41–50.

55. Kaldor SW, Fritz JE, Tang J, McKinney ER. Discovery of antirhinoviral leads by
screening a combinatorial library of ureas prepared using covalent scavengers.
Bioorg Med Chem Lett 1996; 24:3041–3044.

56. Selway CN, Terrett NK. Parallel-compound synthesis: Methodology for accelerat-
ing drug discovery. Bioorg Med Chem 1996; 4:645–654.

57. Weller HN, Young MG, Michalczyk SJ, Reitnauer GH, Cooley RS, Rahn PC, Loyd
DJ, Fiore D, Fischman SJ. High throughput analysis and purification in support of
automated parallel synthesis. Mol Diversity 1997; 3:61–70.

58. Kyranos JN, Hogan JCJ. High-throughput characterization of combinatorial li-
braries generated by parallel synthesis. Anal Chem News Features 1998; June:
389–395.

59. Calvert S, Stewart FP, Swarna K, Wiseman JS. The use of informatics and automa-
tion to remove bottlenecks in drug discovery. Curr Opin Drug Discovery Dev 1999;
2:234–238.

60. Merrifield RB. Solid-phase synthesis. Science 1986; 232:341–347.
61. Sebestyen F, Dibo G, Kovacs A, Furka A. Chemical synthesis of peptide libraries.

Bioorg Med Chem Lett 1993; 3:413–418.
62. Lam KS, Salmon SE, Hersh EM, Hruby VJ, Kazmierski WM, Knapp RJ. A new

type of synthetic peptide library for identifying ligand-binding activity. Nature
1991; 354:84–86.

63. Houghten RA, Pinilla C, Blondelle SE, Appel JR, Dooley CT, Cuervo JH. Genera-
tion and use of synthetic peptide combinatorial libraries for basic research and drug
discovery. Nature 1991; 354:84–86.

Concepts and Implementation Strategies 43



64. Furka A, Sebestyen F, Asgedom M, Dibo G. General method for rapid synthesis of
multicomponent peptide mixtures. Int J Pept Protein Res 1991; 37:487–493.

65. Baldwin JJ, Horlbeck E. Encoded libraries may be created using split-pool or direct
divide synthesis. US Patent 5,663,046, 1997.

66. Burbaum JJ, Ohlmeyer MHJ, Reader JC, Henderson I, Dillard LW, Li G, Randle
TL, Sigal NH, Chelsky D, Baldwin JJ. A paradigm for drug discovery employing
encoded combinatorial libraries. Proc Natl Acad Sci USA 1995; 92:6027–6031.

67. Houghten RA, Pinilla C, Appel JR, Blondelle SE, Dooley CT, Eichler J, Nefzi A,
Ostresh JM. Mixture-based synthetic combinatorial libraries. J Med Chem 1999;
42:3743–3778.

68. Feng S, Kapoor TM, Shirai F, Combs AP, Schreiber SL. Molecular basis for the
binding of SH3 ligands with non-peptide elements identified by combinatorial syn-
thesis. Chem Biol 1996; 3:661–670.

69. Erb E, Janda KD, Brenner S. Recursive deconvolution of combinatorial chemical li-
braries. Proc Natl Acad Sci USA 1994; 91:11422–11426.

70. Berk SC, Chapman KT. Spatially arrayed mixture (SpAM) technology: Synthesis of
two-dimensionally indexed orthogonal combinatorial libraries. Bioorg Med Chem
Lett 1997; 7:837–842.

71. Dooley CT, Houghten RA. The use of positional scanning synthetic peptide combi-
natorial libraries for the rapid determination of opioid receptor ligands. Life Sci
1993; 52:1509–1517.

72. Pinilla C, Appel JR, Bondelle SE, Dooley CT, Eichler J, Ostresh JM, Houghten RA.
Versatility of positional scanning synthetic combinatorial libraries for the identifi-
cation of individual compounds. Drug Dev Res. 1994; 33:133–145.

73. Floyd CD, Leblanc C, Whittaker M. Combinatorial chemistry as a tool for drug dis-
covery. In: King FD, Oxford AW, eds. Progress in Medicinal Chemistry. Vol. 36.
Amsterdam: Elsevier Science, 1999, pp. 91–168.

74. Baldwin JJ, Dolle R. Deconvolution tools for solid-phase synthesis. In: Czarnik
AW, DeWitt SH, eds. A Practical Guide to Combinatorial Chemistry. Washington,
DC: American Chemical Society, 1997, pp 153–174.

75. Ohlmeyer MHJ, Swanson RN, Dillard LW, Reader JC, Asouline G, Kobayashi R,
Wigler M, Still WC. Complex synthetic chemical libraries indexed with molecular
tags. Proc Natl Acad Sci USA 1993; 90:10922–10926.

76. Nestler HP, Bartlett PA, Still WC. A general method for molecular tagging of en-
coded combinatorial chemistry libraries. J Org Chem 1994; 59:4723–4724.

77. Ni Z-J, Maclean D, Holmes CP, Murphy MM, Ruhland B, Jacobs JW, Gordon EM,
Gallop MA. Versatile approach to encoding combinatorial organic syntheses using
chemically robust secondary amine tags. J Med Chem 1996; 39:1601–1608.

78. Wagner DS, Markworth CJ, Wagner CD, Schoenen FJ, Rewerts CE, Kay BK, Gey-
sen HM. Ratio encoding combinatorial libraries with stable isotopes and their util-
ity in pharmaceutical research. Comb. Chem. High Throughput Screening 1998:
143–153.

79. Nicolaou KC, Xiao XY, Parandoosh Z, Senyei A, Nova MP. Radiofrequency en-
coded combinatorial chemistry. Angew Chem Int Ed Engl 1995; 34:2289–2291.

80. Moran EJ, Sarshar S, Cargill JF, Shahbaz MM, Lio A, Mjalli AMM, Armstrong
RW. Radio frequency tag encoded combinatorial library method for the discovery

44 Hobbs and Guo



of tripeptide-substituted cinnamic acid inhibitors of the protein tyrosine phosphatase
PTP1B. J Am Chem Soc 1995; 117:10787–10788.

81. Xiao X-Y, Zhao C, Polash H, Nova MP. Combinatorial chemistry with laser optical
encoding. Angew. Chem Int Ed Engl 1997; 36:780–781.

82. Martin EJ, Blaney JM, Siani MA, Spellmeyer DC, Wong AK, Moos WH. Measur-
ing diversity: Experimental design of combinatorial libraries for drug discovery. J
Med Chem 1995; 38:1431–1436.

83. Pearlman RS, Smith KM. Novel software tools for chemical diversity. Perspect.
Drug Discovery Design 1998; 9:339–353.

84. Brown RD, Martin YC. Use of structure–activity data to compare structure-based
clustering methods and descriptors for use in compound selection. J Chem Inf Com-
put Sci 1996; 36:572–584.

85. Patterson DE, Cramer RD, Ferguson AM, Clark RD, Weinberger LE. Neighborhood
behavior: A useful concept for validation of “molecular diversity” descriptors. J
Med Chem 1996; 39:3049–3059.

86. Willett P. Using computational tools to analyze molecular diversity. In: Czarnik
AW, DeWitt SH, eds. A Practical Guide to Combinatorial Chemistry. Washington
DC: American Chemical Society, 1997.

87. Mason JS, Pickett SD. Partition-based selection. Persp Drug Discovery Res 1997;
7/8:85–114.

88. Mason JS, Hermsmeier MA. Diversity assessment. Curr Opin Chem Biol 1999;
3:342–349.

89. Gorse D, Rees A, Kaczorek M, Lahana R. Molecular diversity and its analysis. Drug
Discovery Today 1999; 4:257–264.

90. Kauvar LM, Laborde E. The diversity challenge in combinatorial chemistry. Curr
Opin Drug Discovery Dev. 1998; 1:66–70.

91. Gillet VJ, Willett P, Bradshaw J. The effectiveness of reactant pools for generating
structurally diverse combinatorial libraries. J Chem Inf Comput Sci 1997; 37:
731–740.

92. Braban M, Pop I, Willard X, Horvath D. Reactivity prediction models applied to the
selection of novel candidate building blocks for high-throughput organic synthesis
of combinatorial libraries. J Chem Inf Comput Sci 1999; 39:1119–1127.

93. Kubinyi H. Similarity and dissimilarity: A medicinal chemist’s view. Perspect. Drug
Discovery Design 1998; 9/10/11:225–252.

94. Roques BP, Noble F, Daugé V, Fournié-Zaluski M-C, Beaumont A. Neutral en-
dopeptidase 24.11: Structure, inhibition, and experimental and clinical pharmacol-
ogy. Pharm Rev 1993; 45:87–146.

95. Sugg EE. Nonpeptide agonists for peptide receptors: Lessons from ligands. Annu.
Rep Med Chem 1997; 32:277–283.

96. Giannis A, Kolter T. Peptide mimetics for receptor ligands: Discovery, develop-
ment, and medicinal perspectives. Angew Chem Int Ed Engl 1993; 32:1244–1267.

97. Koehler RT, Dixon SL, Villar HO. LASSOO: A generalized directed diversity ap-
proach to the design and enrichment of chemical libraries. J Med Chem 1999;
42:4695–4704.

98. Wang J, Ramnarayan K. Toward designing drug-like libraries: A novel computa-
tional approach for prediction of drug feasibility of compounds. J Comb Chem
1999; 1:524–533.

Concepts and Implementation Strategies 45



99. Clark DE. Rapid calculation of polar molecular surface area and its application to
the prediction of transport phenomena. 1. Prediction of intestinal absorption. J
Pharm Sci 1999; 88:807–814.

100. Lipinski CA, Lombardo F, Dominy BW, Feeney PJ. Experimental and computa-
tional approaches to estimate solubility and permeability in drug discovery and de-
velopment settings. Adv Drug Delivery Rev 1997; 23:3–25.

101. Lee M, Nakanishi H, Kahn M. Enlistment of combinatorial techniques in drug de-
velopment. Curr Opin Drug Discovery Dev 1999; 2:332–341.

102. Pavia MR, Sawyer TK, Moos WH. The generation of molecular diversity. Bioorg
Med Chem Lett 1993; 3:whole issue.

103. Simon RJ, Kania RS, Zuckerman RN, Huebner VD, Jewell DA, Banville S, Ng S,
Wang L, Rosenberg S, Marlowe CK, Spellmeyer DC, Yan R, Frankel AD, Santi
DV, Cohen FE, Bartlett PA. Peptoids: A modular approach to drug discovery. Proc
Natl Acad Sci USA 1992; 89:9367–9371.

104. Cho CY, Moran EJ, Cherry SR, Stephans JC, Fodor SPA, Adams CL, Sundaram A,
Jacobs JW, Schultz PA. An unnatural biopolymer. Science 1993; 261:1303–1305.

105. Moran EJ, Wilson TE, Cho CY, Cherry SR, Schultz PG. Novel biopolymers for drug
discovery. Biopolymers 1995; 37:213–219.

106. Paikoff SJ, Wilson TE, Cho CY, Schultz PG. The solid phase synthesis of N-alkyl-
carbamate oligomers. Tetrahedron Lett 1996; 37:5653–5656.

107. Burgess K, Ibarzo J, Linthicum DS, Shin H, Shitangkoon A, Totani R, Zhang AJ.
Solid phase syntheses of oligoureas. J Am Chem Soc 1997; 119:1556–1564.

108. Han H, Janda KD. Azatides: Solution and liquid phase syntheses of a new pep-
tidomimetic. J Am Chem Soc 1996; 118:2539–2544.

109. Smith J, Liras JL, Schneider SE, Anslyn EV. Solid and solution phase organic syn-
theses of oligomeric thioureas. J Org Chem 1996; 61:8811–8818.

110. Gennari C, Nestler HP, Salom B, Still WC. Solid-phase synthesis of vinylogous sul-
fonyl peptides. Angew Chem Int Ed Engl 1995; 34:1763–1765.

111. Zuckerman RN, Kerr JM, Kent SBH, Moos WH. Efficient method for the prepara-
tion of peptoids [oligo(N-substituted glycines)] by submonomer solid-phase syn-
thesis. J Am Chem Soc 1992; 114:10646–10647.

112. Hajduk PJ, Dinges J, Schkeryantz JM, Janowick D, Kaminski M, Tufano M, Augeri
DJ, Petros A, Nienaber V, Zhong P, Hammond R, Coen M, Beutel B, Katz L, Fesik
SW. Novel inhibitors of Erm methyltransferases from NMR and parallel synthesis.
J Med Chem 1999; 42:3852–3859.

113. Chen C, Dagnino RJ, De Souza EB, Grigoriadis DE, Huang CQ, Kim KI, Liu Z,
Moran T, Webb TR, Whitten JP, Xie YF, McCarthy JR. Design and synthesis of a
series of non-peptide high-affinity human corticotropin-releasing factor1 receptor
antagonists. J Med Chem 1996; 39:4354–4357.

114. Bicknell AJ, Hird NW, Readshaw SA. Efficient robotic synthesis. Multi-component
preparation of a trycyclic template by solid phase Tsuge reaction. Tetrahedron Lett
1998; 39:5869–5872.

115. Armstrong RW, Combs AP, Tempest PA, Brown SD, Keating TA. Multiple-com-
ponent condensation strategies for combinatorial library synthesis. Acc Chem Res
1996; 29:123–131.

116. Keating TA, Armstrong RW. Postcondensation modifications to Ugi four-compo-
nent condensation products: 1-Isocyanocyclohexene as a convertible isocyanide.

46 Hobbs and Guo



Mechanism of conversion, synthesis of diverse structures, and demonstration of
resin capture. J Am Chem Soc 1996; 118:2574–2583.

117. Wipf P, Cunningham A. A solid phase protocol of the Biginelli dihydropyrimidine
synthesis suitable for combinatorial chemistry. Tetrahedron Lett 1995; 36:
7819–7822.

118. Holmes CP, Chinn JP, Look GC, Gordon EM, Gallop MA. Strategies for combina-
torial organic synthesis: Solution and polymer-supported synthesis of 4-thiazolidi-
nones and 4-metathiazanones derived from amino acids. J Org Chem 1995; 60:
7328–7333.

119. Domling A, Chi K-Z, Barrere M. A novel method to highly versatile monomeric
PNA building blocks by multicomponent reactions. Bioorg Med Chem Lett 1999; 9:
2871–2874.

120. Mjalli AMM, Baiga TJ. Solid phase synthesis of pyrroles derived from a four com-
ponent condensation. Tetrahedron Lett 1996; 37:2943–2946.

121. Ostresh JM, Husar GM, Blondelle SE, Dorner B, Weber PA, Houghten RA. “Li-
braries from libraries”: Chemical transformation of combinatorial libraries to extend
the range and repertoire of chemical diversity. Proc Natl Acad Sci USA 1994;
91:11138–11142.

122. Nefzi A, Dooley C, Ostresh JM, Houghten RA. Combinatorial chemistry: From pep-
tides and peptidomimetics to small organic and heterocyclic compounds. Bioorg
Med Chem Lett 1998; 8:2273–2278.

123. Hermkens PHH, Hamersma H. Functional group transformation: An efficacy-en-
hancing approach in combinatorial chemistry. J Comb Chem 1999; 1:307–316.

124. Keating TA, Armstrong RW. Molecular diversity via a convertible isocyanide in the
Ugi four-component condensation. J Am Chem Soc 1995; 117:7842–7843.

125. Dankwardt SM, Newman SR, Krstenansky JL. Solid phase synthesis of aryl and
benzylpiperazines and their application in combinatorial chemistry. Tetrahedron
Lett 1995; 36:4923–4926.

126. Burgess K, Lim D, Bois-Choussy M, Zhu J. Rapid and efficient solid phase synthe-
ses of cyclic peptides with endocyclic biaryl ether bonds. Tetrahedron Lett 1997; 38:
3345–3348.

127. Meyers HV, Dilley GJ, Durgin TL, Powers TS, Winssinger NA, Zhu H, Pavia MR.
Multiple simultaneous synthesis of phenolic libraries. Mol Diversity 1995; 1:13.

128. Phillips GB, Wei GP. Solid phase synthesis of benzimidazoles. Tetrahedron Lett
1996; 37:4887–4890.

129. Hari A, Miller BL. A new method for the mild and selective reduction of aryl nitro
groups on solid support. Tetrahedron Lett 1999; 40:245–248.

130. Schwarz MK, Tumelty D, Gallop MA. Solid-phase synthesis of 1,5-benzodiazepin-
2-ones. Tetrahedron Lett 1998; 39:8397–8400.

131. Mayer JP, Lewis GS, McGee C, Bankaitis-Davis D. Solid-phase synthesis of benz-
imidazoles. Tetrahedron Lett 1998; 39:6655–6658.

132. Tumelty D, Schwarz MK, Needels MC. Solid-phase synthesis of substituted 1-
phenyl-2-aminomethyl-benzimidazoles and 1-phenyl-2-thiomethyl-benzimida-
zoles. Tetrahedron Lett 1998; 39:7467–7470.

133. Lee J, Gauthier D, Rivero RA. Solid phase synthesis of 1-alkyl-2-alkylthio-5-car-
bamoylbenzimidazoles. Tetrahedron Lett 1998; 39:201–204.

134. Lee J, Murray WV, Rivero RA. Solid phase synthesis of 3,4-disubstituted-7-car-
bamoyl-1,2,3,4-tetrahydroquinoxalin-2-ones. J Org Chem 1997; 62:3874–3879.

Concepts and Implementation Strategies 47



135. Thomas JB, Fall MJ, Cooper JB, Burgess JP, Carroll FI. Rapid in-plate generation
of benzimidazole libraries and amide formation using EEDQ. Tetrahedron Lett
1997; 38:5099–5102.

136. Wei GP, Phillips GB. Solid phase synthesis of benzimidazolones. Tetrahedron Lett.
1998; 39:179–182.

137. Dolle RE. Discovery of enzyme inhibitors through combinatorial chemistry. Mol
Diversity 1997; 2:223–236.

138. Carroll CD, Johnson TO, Tao S, Lauri G, Orlowski M, Gluzman IY, Goldberg DE,
Dolle RE. Evaluation of a structure-based statine cyclic diamino amide encoded
combinatorial library against plasmepsin II and cathepsin D. Bioorg Med Chem Lett
1998; 8:3203–3206.

139. Carroll CD, Patel H, Johnson TO, Guo T, Orlowski M, He Z-M, Cavallaro CL, Guo
J, Oksman A, Gluzman IY, Connelly J, Chelsky D, Goldberg DE, Dolle RE. Identi-
fication of potent inhibitors of Plasmodium falciparum plasmepsin II from an en-
coded statine combinatorial library. Bioorg Med Chem Lett 1998; 8:2315–2320.

140. Dolle RE. Comprehensive survey of chemical libraries yielding enzyme inhibitors,
receptor agonists and antagonists, and other biologically active agents: 1992 through
1997. Annu Rep Comb Chem Mol Diversity 1999; 2:93–127.

141. Dolle RE, Nelson KHJ. Comprehensive survey of combinatorial library synthesis:
1998. J Comb Chem 1999; 1:235–282.

142. Berk SC, Rohrer SP, Degrado SJ, Birzin ET, Mosley RT, Hutchins SM, Pasternak
A, Schaeffer JM, Underwood DJ, Chapman KT. A combinatorial approach toward
the discovery of non-peptide, subtype-selective somatostatin receptor ligands. J
Comb Chem 1999; 1:388–396.

143. Rohrer SP, Berk SC. Development of somatostatin receptor subtype selective ago-
nists through combinatorial chemistry. Curr Opin Drug Discovery Dev. 1999; 2:
293–303.

144. Rohrer SP, Birzin ET, Mosley RT, Berk SC, Hutchins SM, Shen D-M, Xiong Y,
Hayes EC, Parmar RM, Foor F, Mitra SW, Degrado SJ, Shu M, Klopp JM, Cai S-J,
Blake A, Chan WWS, Pasternak A, Yang L, Patchett AA, Smith RG, Chapman KT,
Schaeffer JM. Rapid identification of subtype-selective agonists of the somatostatin
receptor through combinatorial chemistry. Science 1998; 282:737–740.

145. Ogbu CO, Qabar MN, Boatman PD, Urban J, Meara JP, Ferguson MD, Tulinsky J,
Lum C, Babu S, Blaskovich MA, Nakanishi H, Ruan F, Cao B, Minarik R, Little T,
Nelson S, Nguyen M, Gall A, Kahn M. Highly efficient and versatile synthesis of li-
braries of constrained �-strand mimetics. Bioorg Med Chem Lett 1998; 8:
2321–2326.

146. Kim SW, Hong CY, Lee K, Lee EJ, Koh JS, Sung J. Solid phase synthesis of ben-
zylamine-derived sulfonamide library. Bioorg Med Chem Lett 1998; 8:735–738.

147. Illig C, Eisennagel S, Bone R, Radzicka A, Murphy L, Randle T, Spurline E, Jaeger
F, Salemme R, Soll RM. Expanding the envelope of structure-based drug design us-
ing chemical libraries: Application to small-molecule inhibitors of thrombin. Med
Chem Res 1998; 8:244–260.

148. Böhm H-J, Banner DW, Weber L. Combinatorial docking and combinatorial chem-
istry: Design of potent non-peptide thrombin inhibitors. J CAD Mol Design 1999;
13:51–56.

48 Hobbs and Guo



149. Kimball SD. Challenges in the development of orally bioavailable thrombin active
site inhibitors. Blood Coagul Fibrin 1995; 6:511–519.

150. Lumma WCJ, Witherup KM, Tucker TJ, Brady SF, Sisko JT, Naylor-Olsen AM,
Lewis SD, Lucas BJ, Vaca JP. Design of novel, potent, noncovalent inhibitors of
thrombin with nonbasic P-1 substructures: Rapid structure–activity studies by solid-
phase synthesis. J Med Chem 1998; 41:1011–1013.

151. Augeri DJ, O’Connor SJ, Janowick D, Szczepankiewicz B, Sullivan G, Larsen J,
Kalvin D, Cohen J, Devine E, Zhang H, Cherian S, Saeed B, Ng S-C, Rosenberg S.
Potent and selective non-cysteine-containing inhibitors of protein farnesyltrans-
ferase. J Med Chem 1998; 41:4288–4300.

Concepts and Implementation Strategies 49



This Page Intentionally Left Blank



51

2

The Fundamentals of
Pharmacophore Modeling in

Combinatorial Chemistry

Arup K. Ghose and Vellarkad N. Viswanadhan
Amgen Inc. 

Thousand Oaks, California

John J. Wendoloski

AstraZeneca
Boston, Massachusetts

I. INTRODUCTION

The concept of pharmacophore modeling is one of the oldest yet most widely used
concepts in today’s drug discovery research. The essential substructural moieties
of a molecule necessary for its pharmacological activity are called pharma-
cophores. This terminology was first introduced by Ehrlich (1), following the term
chromophore, which was used to represent the functional groups responsible for
the color of a compound. The interest in the idea of pharmacophores has grown
enormously in recent years owing to the availability of various automated com-
puterized software for identifying pharmacophores as well as their geometry
(2–7). The pharmacophoric information as well as their three-dimensional struc-
ture can often be used to identify novel pharmacologically active lead compounds
by searching various databases of known chemicals, like the Available Chemical
Directory (ACD) (8). Compounds having similar pharmacophoric groups often
have similar biological activity. Understandably, the existence of similar or the
same pharmacophoric groups does not guarantee that biological activity will be
similar. The differentiating structural moieties may cause enough repulsive inter-



action with the target protein/receptor to diminish or abolish its binding affinity,
or its chemical or physicochemical properties may be altered enough to prevent it
from reaching the binding site.

II. THE TRADITIONAL APPROACH TO IDENTIFYING A
PHARMACOPHORIC GROUP

Traditionally, pharmacophoric groups have been identified from structure–activ-
ity relationship (SAR) data. When a new class of compound is identified for a par-
ticular biological activity, medicinal chemists slowly modify its structure to opti-
mize its potency as well as to identify the important substructural moieties
responsible for the biological activity. The substructure or functional group that
decreases the biological activity most on removal is considered to be a pharma-
cophore. During SAR studies it is often found that chemically or physicochemi-
cally similar structural moieties keep the activity, although the efficacy may
change. The pharmacophore will not be identified unless such groups are catego-
rized under the same class. This makes the identification of a pharmacophore
somewhat more complex than a simple search of substructural units. In other
words, to correctly identify and understand pharmacophores, substructural units
having comparable chemical or physicochemical properties should be classified
under a broader class.

III. A GENERAL CLASSIFICATION OF PHARMACOPHORIC
GROUPS

Traditionally pharmacophoric groups are broadly classified as H-bond donors, H-
bond acceptors, hydrophobic groups, positively charged groups or dipoles, and
negatively charged groups or dipoles. This type of classification is useful for the
identification of pharmacophores, as well as for a qualitative interpretation of the
biological activity. An added advantage of this qualitative representation is that it
allows one to search an available chemical database leading to a substantially
larger number of virtual hits. A somewhat extended list of virtual hits may in-
crease the chance to find a better or novel lead, where reliable high throughput
screening is available. A broader classification of the pharmacophoric groups may
be advantageous. A hydrophobic group in a chemical structure comes in different
shapes and sizes, and the strength of a hydrogen donor or acceptor may also vary
considerably from one compound to other. Hence, for a particular biological ac-
tivity in a specified chemical class, only a few groups may give acceptable effi-
cacy. This may require a more precise definition of the groups, rather than just
specifying a class (hydrogen donor, hydrophobic, etc.). A quantitative interpreta-
tion of biological activity may need more elaborate properties like H-bonding
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ability, extent of van der Waals and hydrophobic interactions, solvation effect,
and partition coefficients. Please consult Chapters 3 and 4 in this volume for a
more elaborate discussion of these techniques.

IV. IDENTIFICATION OF PHARMACOPHORIC GROUPS

Identification of pharmacophoric groups may not be as simple as indicated thus
far when similar biological activity is exhibited by different classes of compounds
and the protein–ligand complex structures for different classes of ligands are un-
known. However, the situation may not always be as hopeless as we may think.
The identification of pharmacophores involves the following steps:

1. Selection of a set of active compounds
2. Dissection of the molecular structure into different classes of pharma-

cophoric groups
3. Analysis of the maximum number of common pharmacophoric groups

in all the selected active compounds
4. Deciding the geometrical feasibility in superimposing the equivalent

pharmacophoric groups in different compounds
5. Testing the pharmacophoric hypothesis

One should remember a few critical aspects of these steps:

1. Selection of compounds is a compromise: structurally very different
compounds may bind to different targets or locations to give the comparable bio-
logical activity. Combining different classes of compounds binding with different
targets, or at different binding sites of the same target, may lead to a wrong phar-
macophoric definition. However, when they bind at the same active site, ideas for
getting a new lead, or for modifying existing leads by adding features from the
other classes of compounds to make more potent (patentable, proprietary) com-
pounds, are generated. This is a valuable approach in industrial drug discovery re-
search. It is also known from X-ray crystallographic studies that very similar com-
pounds may sometimes bind in different modes in the same binding site. Despite
such occurrences, in drug discovery research, it is riskier not to rationalize the bi-
ological activities than to make a few mistakes in the process of rationalization.

2. The dissection of a molecule into substructural moieties for a pharma-
cophore identification problem may be best done by keeping a predefined set of
substructures with their pharmacophoric class types defined. The disadvantage of
this approach, however, is that deciding on a finite set of substructures that will
cover all organic molecules may be difficult if not impossible.

3. Classification of the substructural moieties in a few general classes cre-
ates problems in deciding the equivalent pharmacophoric groups, especially when
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the active compounds belong to many different structural types. Consideration of
shape, size, and physicochemical properties along with the geometric factors may
help the decision process.

4. The decision of the geometric feasibility for a superimposition of the
pharmacophore is a complicated factor and is determined by two issues: finding
the conformation(s) having the common geometry of the equivalent pharma-
cophores and evaluating the energetic accessibility of the conformation. For most
organic druglike molecules the conformational space may be too large to decide
these issues without ambiguity.

V. DETERMINATION OF PHARMACOPHORIC GEOMETRY

There are many different chemical and computational methods for the determina-
tion of pharmacophoric geometry. The chemical approaches try to constrain the
conformation by fixing the torsion angles to a few estimated torsion angles.
Adding rings or a double bond is common practice for constraining a molecular
conformation. If the resulting compound keeps acceptable activity, we accept the
geometry. Unfortunately, if the resulting compound does not show the activity,
the opposite conclusion is not always true. A compound may lose activity simply
because of the unfavorable interaction with the extra structural moiety added dur-
ing the constraint of the geometry.

The basic ideas behind all computational methods are very similar. Locate
a geometry that can be satisfied by a “physically realistic conformation” of all the
active compounds. The difference comes from the search method for the confor-
mation and the assumption of the “physically realistic conformation.” The most
simple conceptually, yet the most expensive search method computationally may
consist of generating all combinatorial grid conformations (divide each torsion an-
gle space, usually 0–360°, into smaller grids of ~20°) and comparing the low en-
ergy conformations. Distances of the pharmacophoric groups are the best coordi-
nates for structural matching, since they are invariant to translation or rotation. For
the same reason, some variations of distance features have been applied repeat-
edly in the description of pharmacophores (9–11).

Since 1977 when Crippen introduced the modern version of distance geom-
etry (12), there has been considerable improvement along this line. Crippen used
the common distance range information of the pharmacophoric points to deduce
their geometry (13). Distance geometry is a mathematical procedure of generating
the Cartesian coordinates of a set of points from their distance information. It can
handle situations with a limited inconsistent distance information to give the best
possible set of coordinates. It handles distance range information by selecting ran-
domly a value from the specified range and setting a penalty if, during iterative
improvement of the coordinates, the distance goes outside the specified range.
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This approach works very effectively when there is only one structure sat-
isfying the distance range. When a large number of conformations can be
mapped from the distance range information, it does not guarantee the lowest
energy conformation. To improve the situation two approaches were taken.
Crippen (14) developed “energy embedding” and Ghose and Crippen (15) sug-
gested distance mapping in the conformational space. In the latter approach mul-
tiple local distance matrices are constructed in the low energy conformational
region (Fig. 1).

Marshall et al. used an alternative approach in which they mapped the tor-
sion angles in distance space (16). The generation of a torsion angle map is com-
putationally more efficient, since once a grid size has been defined, one can very
easily, during the conformational search, assign a grid to each of the energetically
allowed conformations according to its distance property. Figure 2 presents a
schematic representation of torsional (orientation) mapping in the distance space.
The simplest approach to testing the feasibility of superimposition of a set of
equivalent atoms in two molecules is to compare their orientation maps. If a grid
is occupied by both molecules, those conformations are superimposable if their
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Figure 1 A schematic two-dimensional representation of distance mapping in the tor-
sional space. Here �1 and �2 are two torsion angles of interest. The grid points represent
the explored angles during torsional increment, the dotted squares represent the local dis-
tance range matrix of the pharmacophoric groups from the neighboring energetically ac-
ceptable grid points. For a feasibility of superposition of the pharmacophoric groups of two
molecules, we have to compare all local distance matrices of one with that of the other.



chirality is the same (15). The ultimate result from this type of comparison often
is dependent on the distance grid size.

The DHYDM (distance hyperspace distance measurement) method was
developed by Ghose et al. (2) to avoid the grid size problem of the orientation
map approach developed by Marshall et al. (16). In DHYDM, the distance of the
centroid of the grids occupied by the low energy conformations of the first
molecule from those of the second molecule in the distance space are used to
judge their superimposability. It is important to remember that two conforma-
tions lying near two corners of the same grid may be less similar than two con-
formations lying in two neighboring grids or even two conformations separated
by a grid. Such artifacts can be avoided if the conformational similarity is de-
termined by the distance in the “distance hyperspace.” It was possible to predict
a fairly accurate active conformation of compounds having eleven torsion an-
gles, using this method.

Sheridan et al. (17) formulated an elegant way of using Crippen’s distance
geometry program for superimposing molecules. In this approach they created

56 Ghose et al.

Figure 2 A schematic two-dimensional representation of torsional mapping in the dis-
tance space. Here d1 and d2 are two pharmacophoric distances of interest. The small squares
and circles represent the energetically acceptable conformations of two molecules. For a
feasibility of superposition of the pharmacophoric groups of two molecules, we have to lo-
cate a grid which is occupied by both the molecules. The distance grid size may be very im-
portant during the geometric comparison. Small grid size may create too many unoccupied
grids, leading ultimately to no common grid. A large grid size may put very different con-
formations on the same grid.



an ensemble distance matrix of all atoms of all the molecules that are to be su-
perimposed. The intramolecular atomic distance ranges are given the usual dis-
tance ranges for that molecule. Many of these distances are simply the bond dis-
tances, bond angle distances, and fixed torsion distances. The intermolecular
atomic distance ranges are zero to a small tolerance distance for the atoms to be
superimposed. The intermolecular atomic distances of the nonsuperimposed
atoms are evaluated from triangular inequality constraints by the distance ge-
ometry program. The method has some advantages over Crippen’s original
method, in which the constraints of the nonsuperimposed atoms of different
molecules from the superimposed atoms further decreased the acceptable solu-
tion space. However, it still has most of the limitations of regular distance ge-
ometry: namely, when there are multiple solutions of conformations, it does not
give any information about the other acceptable solutions, nor does it guarantee
low energy conformations.

Instead of searching and comparing all low energy conformations of all the
molecules of interest one may think of optimizing the fit function by modifying
the torsion angles. Payne et al. (18) went along that direction and applied a genetic
algorithm to optimize the fit function during pharmacophoric geometry
determination.

VI. MOLECULAR SIMILARITY METHODS AS AN
ALTERNATIVE TO PHARMACOPHORE MODELING

The objective of pharmacophore modeling often is to visualize similarities in ap-
parently different-looking molecules with similar biological activity, or differ-
ences in molecules with apparently similar-looking molecules with different bio-
logical activity. One may think of using overall molecular similarity for this
purpose. Although three-dimensional similarity is required for understanding
pharmacophoric features, we will discuss briefly the concept of two-dimensional
similarity as represented in the Tanimoto coefficient (19). In this method a molec-
ular structure is represented by a set of bit strings. Each bit string represents by a
substructural unit. When a substructure is present, the bit is turned on. Usually a
substructural unit has six bits. Multiple bits of the same kind are turned on when
there are multiple substructural units of this kind. The similarity between a query
structure and a test structure is represented by the Tanimoto coefficient T as fol-
lows:

T � �
Nq �

N

N
c

t � Nc
� (1)

where Nq � number of bit screens set in the query structure,
Nt � number of bit screens set in the test structure, and
Nc � number of bit screens common to both the query and test structures.
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A few interesting features of Tanimoto coefficients are as follows: (1) for a
pair of molecules, it is independent of which is the query structure and which is the
test structure; (2) for very similar monomeric and dimeric compounds, the coeffi-
cient will be close to 0.5; and (3) the maximum and minimum possible values of
the Tanimoto coefficient are 1 and 0, respectively. Modifications of the Tanimoto
coefficient are used in measurements for three-dimensional shape analysis (20).

We found that the combination of ALOGP atom type (21,22) (also known as
Ghose and Crippen atom type) representation of a molecule and the Tanimoto co-
efficient is an excellent way to determine similarity between molecules. Accord-
ing to this coefficient, which can be appropriately termed GCT (Ghose–Crippen’s
Tanimoto coefficient), Nc is the number of common atom types, Nq is the number
of atoms in the query molecule, and Nt is the number of atom in the test molecule.
One major advantage here is that in the molecular fingerprint there is a limit on the
number of bits for the reoccurrence of a substructure. Any substructure that occurs
more frequently than the limit in the bit representation is lost in this representation,
as well as in the Tanimoto coefficient of similarity. Any approach that keeps the
number of counts of the occurrence does not lose the information. The trade-off
here is in the computation time, since bit operation is much faster.

However, molecular similarity should be judged not only by matching
atoms or substructures but also by the physicochemical properties of the atoms.
Neglecting different substructures with similar physicochemical nature will de-
crease similarity in otherwise similar structures. To tackle this problem, Ghose et
al. (23,24) proposed several functions based on physicochemical properties to es-
timate the similarity between two molecules. The first two functions are of the all-
or-none type. Here, two atoms are assumed to be superimposed if they are within
a certain preassigned distance. Otherwise, they are not. The first function assumes
that the reference structure is the best possible structure, and any deviation of the
physicochemical properties from the reference structure will incur a penalty:

F1 � ∑
k

| Xk | � | Xk � Xj(k) | (2)

where Xk represents the physicochemical property of the kth atom of the reference
structure and j(k) is the test atom superposed on the kth atom of the reference
structure. The corresponding physicochemical property will be zero if no atom is
superimposed. The noncovalent interaction between ligand and receptor has three
major components: electrostatic, dispersive, and hydrophobic. Three physico-
chemical properties of atoms represent these forces, namely, atomic charge for
electrostatic interaction, atomic refractivity (25) for dispersive or van der Waals
interaction, and ALOGP (22) for hydrophobic interaction. When the relative im-
portance of these interactions is not known, the atomic parameters may be scaled
to give them equal weight. The foregoing function assumed that the interaction of
the ligand atoms with the receptor site is quadratic, and the reference structure lies
on the peak; therefore the interaction will decrease if the physicochemical prop-
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erty changes on either side of the ideal value. Unlike the Tanimoto coefficient, the
score is not normalized, and it depends on the reference. The Tanimoto coefficient
is mathematically advantageous. This scoring function represents physical status.

The interaction, however, is a linear function of these physicochemical
properties. The proportionality constant from one region to another may vary de-
pending on the receptor environment. Since the proportionality constants are not
known, let us assume that the reference molecule experiences attraction from the
receptor for all its atoms. In other words, the sign of the physicochemical property
for attractive interaction is the sign of the corresponding physicochemical prop-
erty of the reference structure. This gives a second function to express the good-
ness of a superposition:

F2 � ∑
k

�
X

|
k

X

X

k

j(

|
k)

� (3)

One deficiency (!) of functions (2) and (3) is that they assume that the in-
teractions are “all-or-none” type. In other words, full interaction is obtained when
a function is within a preassigned distance but none otherwise. This type of func-
tion has both merits and demerits. The interaction of the ligand atoms with the
neighboring receptor atoms depends not only on their types but also on their dis-
tance of separation. In the binding process, both protein and ligand relax to get the
maximum overall interaction. The relaxation is some times difficult to determine
even after the protein structure has been ascertained by X-ray crystallographic
techniques. When the protein structure is not known, and superposition is based
on grid conformations, the all-or-none hypothesis will avoid many complications.
However, those who prefer to use a distance-dependent fit function for superposi-
tion can use a third function. According to this function, each atom of the test
molecule will create a field on the various atoms of the reference molecule. The
interaction will be maximum when it occupies the same position as the reference
atom. These features are reflected in the following function (26):

F3 � ∑
i

∑
j

∑
k

(4)

where the summation over i represents the various physicochemical properties
to be used to evaluate the fit, the summation over j represents the various atoms
of the reference molecule, and the summation over k represents the various
atoms of the test molecule; rjk represents the distance between the jth atom of
the reference and the kth atom of the test, and different distance dependencies ni

were used for different physicochemical properties. For electrostatic interaction
the value was 1, for hydrophobic interaction the value 3 was used, and for dis-
persive interaction the value 6 was used for ni. Most of these methods eventu-
ally help to decide a better superposition of the molecules. The superimposed
structures can be used to identify the equivalent pharmacophores, which other-
wise may not be obvious.

Xj Xk
��
(1 � rjk)ni
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All these fit functions can often suggest a very plausible superposition of ap-
parently different-looking molecules that showed comparable biological activities
(27,28).

VII. PROTEIN BINDING SITE FOR THE EXPLORATION OF
PHARMACOPHORIC GROUPS AND GEOMETRY

The best verification of a pharmacophore hypothesis is the solution of the lig-
and–protein complex structure. The equivalent pharmacophore groups will bind to
the same region of the binding site. Alternatively, a protein structure and the knowl-
edge of the binding site can be utilized to generate a pharmacophore hypothesis.
Several programs can automatically dock small organic fragment at the active site
and identify the preferred binding site. DOCK (29), MCSS (30), LUDI (31), and
AUTODOCK (32) are a few of the ever growing list of programs (33) for this pur-
pose. See also Chapters 6 and 17 in this book. Such a pharmacophore hypothesis
based on a target protein structure can be used for searching compounds from a
molecular database and for designing compounds or combinatorial libraries (34).

VIII. GEOMETRY OF NATURAL SUBSTRATES, AGONISTS,
AND ANTAGONISTS AS A SOURCE OF
PHARMACOPHORIC HYPOTHESIS

In the natural biological process, often protein, peptides, and other bioorganic com-
pounds bind with the target protein of interest. Although protein–protein interac-
tion often involves a large surface and may be difficult to inhibit by means of a
small molecule (35), the structural study of such peptides and bioorganic molecules
often gives a good pharmacophoric hypothesis. Such a pharmacophore hypothesis
can be used to search databases of chemical compounds to generate novel leads.

IX. THE VARIOUS EXPERIMENTAL APPROACHES TO
VERIFY A PHARMACOPHORE MODEL

A complete pharmacophore model has two aspects: the nature of the pharma-
cophores and their orientation in three-dimensional space. A complete and unam-
biguous verification of a pharmacophore model needs a fairly rigid compound
with the required pharmacophores that showed the biological activity. If the com-
pound is flexible, we need the X-ray or NMR structure of the ligand–protein com-
plex. The synthesis of a fairly rigid system is often difficult, and such an approach
often fails simply because the extra structural moiety necessary to fix the confor-
mation may create a bad interaction with the binding protein, destroying its activ-
ity. Proposing a pharmacophore and later verifying it by X-ray or NMR tech-
niques is also not very common, although there are a few such examples in the
literature. Ghose et al. (2), for example, using their DHYDM method on a set of
partially constrained matrix metalloproteinase (MMP) inhibitors (Fig. 3), pro-
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Figure 3 The various constrained and unconstrained hydroxamic acid inhibitors of col-
lagenase, a matrix metalloproteinase, used for the evaluation of pharmacophoric geomoety.

posed a pharmacophoric geometry that was later found to be very close to the X-
ray crystallographic structure of the ligand in the ligand–protein complex (Fig. 4).
However, there are many different, somewhat ambiguous methods for the verifi-
cation of a pharmacophore model. The study of the crystal structure of the ligand



alone by X-ray or the solution of conformations by NMR spectra is sometimes
used to judge the validity of a pharmacophore model. However, since the active
conformation often is not the minimum energy conformation, or even the crystal
conformation (36), such approaches should be used with caution. Analysis of mul-
tiple active as well as inactive compounds of similar structures often throws more
light on the active conformation.

X. USE OF THE PHARMACOPHORE MODEL IN MEDICINAL
CHEMISTRY

The pharmacophore model is extremely useful in medicinal chemistry during the
process of a novel lead identification as well as during lead optimization. De-
pending on the throughput of the biological or biochemical screening, as well as
the availability of the compound library, the pharmacophore model can be used in
many different ways.

A. Search for Pharmacophoric Groups

If the natural substrate or a few active compounds are known in the literature, one
can dissect the structure to the standard pharmacophoric groups (as discussed in
Sect. III) and simply do a pharmacophore search in the available chemical library
or in a purchasable chemical directory like ACD. This approach is especially use-
ful if one has high throughput screening (HTS) and a relaxed budget for chemi-
cals. In absence of HTS, or if the budget for chemicals is tighter, one may try to
make an educated guess regarding the geometry of the pharmacophore, as dis-
cussed next.

B. Search for the Pharmacophores Satisfying the
Geometric Requirements

Knowledge of pharmacophore geometry may be very important because it trims
down the number of compounds that can satisfy the geometry. When a lot of in-
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Figure 4 A comparison of the active conformation of I (dual color) as predicted by the
DHYDM method with X-ray crystallographic conformation (monochrome).



formation about the active compounds is available in the literature, one may use
one of the methods discussed in Section V. Most database software as well as
molecular modeling software allow searching with distance constraints. The
search process is comparable to a substructure search and needs an extra step of
adding the necessary distance constraints. The search process may be rigid or flex-
ible. In a rigid search, only the conformations in the database are used for the ge-
ometric fitting. In a flexible search, the conformations are optimized for the fit-
ting. The number of hits in a three-dimensional search is often considerably less
than the substructural search. If there are not too many active conformations, one
may still use a few lowest energy conformations as a possible pharmacophoric
geometry.

C. Search for the Proper Scaffold to Hold the
Pharmacophoric Groups

When one is interested in synthesizing a few compounds that may satisfy the phar-
macophoric geometry, one can use the linking bonds of the pharmacophores to
search for scaffolds (37).

XI. USE OF PHARMACOPHORES IN COMBINATORIAL
LIBRARY DESIGN

There are two different types of use of pharmacophores in the combinatorial li-
brary design. A drug molecule usually contain pharmacophoric groups of various
types (as discussed in Sec. IV) in a flexible or rigid scaffold. When one is making
libraries for testing a large number of target proteins, the pharmacophoric diver-
sity (covering geometry, number of occurrences, and nature) should be as broad
as possible without sacrificing “druglikeness.” Most modeling software these
days gives various tools for studying the nature of pharmacophore diversity in a
library. Chapter 14 gives a detailed discussion of aspects of pharmacophore
diversity.

A. Generating Focused Libraries Satisfying
Pharmacophore Geometry and Nature

Given a pharmacophore hypothesis, it may be a better idea to generate a library of
compounds with some minor variation of geometry and nature than to synthesize
a single precise compound. Such variations and the number of compounds will
definitely increase the chance of finding a lead or a better compound. Although
several computer programs described in the literature [NEW LEAD (38),
SPROUT (39), HOOK (40)] that claim to do this job, a computational chemist of-
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ten must first convince a bench chemist, who will be making the compounds.
Complexity of structure and lack of a chemical synthesis plan are often obstacles.
We provide here a semiautomated approach that we found very useful to generate
ideas for “doable” libraries (34).

1. Start from one of the pharmacophoric groups. If it is a common sub-
structural moiety or a common functional group, use it as it is; otherwise consider
a functional group from which it can be made easily. For example, a carboxylic
acid may be a better choice than an amide, and so on.

2. Now search for reagents with the first pharmacophore and one or more
functional groups for combinatorial reactions to be used to attach the other phar-
macophores.

3. Now anchor the first pharmacophoric group of the reagent on the cor-
responding pharmacophore and orient the functional groups so that they point to-
ward the pharmacophore that will be added in the next steps by the combinatorial
reaction. The orientation process may be straightforward when the reagent is
fairly rigid or protein binding site is known.

4. Measure the approximate distance of the functional groups for combi-
natorial reactions to the pharmacophore to be attached.

5. Search for the reagent with the complementary functional group and the
pharmacophore group with the required distance. If all the pharmacophores are
not covered, it may be necessary to keep an extra functional group in this reagent
for further reaction.

The whole process can be best illustrated by a pharmacophore hypothesis
generated from the SH-PTP2 phosphotyrosine binding pocket (41). Consideration
of the various peptidic inhibitors or analysis of the binding pocket with probing
fragments and autodocking programs like MCSS showed at least four pharma-
cophoric binding sites (Fig. 5).

A cationic phosphate binding pocket
A hydrophobic pocket
Two other cationic and anionic charged pockets near Lys91 and Glu17,

respectively

The energetics of the binding groups suggests that the phosphate is the most
important pharmacophore. This is consistent with the fact that dephosphorylated
peptides had very low binding affinity for SH-PTP2. Phosphotyrosine-type com-
pounds with different phosphate mimicking groups may be the first choice if we
do not want to make any major change here (Fig. 6). We want to use the carboxy
functionality to add reagents that can reach the hydrophobic pocket and the Lys91
pocket. This decision may sometimes be dictated by the optimal docking of the
reagent or partially modified reagent (to make it similar to the final product),
where the X-ray structure of comparable ligand is not available. Here we will
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search for reagents that can be coupled with the carboxyl group (e.g., amines or
alcohols). Such a reagent should have a hydrogen-accepting functionality at a de-
sired distance, orientation that will bind with the lysine side chain, and so on. If
the first reagent is not very flexible, such a distance and orientation may be ob-
tained either by model building and minimization or even from the structure of the
X-ray ligand and the MCSS functional group. A few immediate hits in this search
were the m-aminobenzoic acids. To add the hydrophobic groups, one can easily
think of a phenolic OH group, which can be coupled with different alkyl halides.

These binding features of the protein were consistent with the relative bind-
ing affinities of several synthetic peptides, made here, whose IC50 values ranged
between the submicromolar and micromolar levels. Interestingly enough, an in-
dependent effort by Lunney et al. (42) showed that several closely related com-
pounds (Fig. 7) have a moderate binding affinity for the pp60 Src SH2 domain.

XII. PHARMACOPHORE MODEL AND 3D-QSAR

Pharmacophore modeling is most useful during the identification of a lead com-
pound. However, after that quantitative structure–activity relationship (QSAR)
and/or three-dimensional (3-D) QSAR becomes necessary for the lead optimiza-
tion. Most 3D-QSAR techniques need to superimpose the three-dimensional
structures of the inhibitors as the first step. The pharmacophore modeling may be
used as the basis for such a superposition. In general there are two types of 3D-

Figure 5 SHPT-P2 pharmacophores generated from the quantitative or qualitative anal-
ysis of the binding site or the various peptidic inhibitors.
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Figure 6 A hypothetical reaction scheme for a library for SH-PTP2, a cell division sig-
naling tyrosine phosphatase protein. The first reagent is a tyrosine phosphate mimicking
compound with the functionalities to attach the other pharmacophoric groups. The second
reagent was searched by means of the distance of the reaction functionality of the first
reagent from the cationic binding pocket. The second reagent can be any m-aminobenzoic
acid derivative, especially the ones with functionality like—OH, which can be used for
adding the hydrophobic pharmacophoric groups. In such a situation an alkyl halide satis-
fying the distance between the OH and the hydrophobic pharmacophore may be used as the
third reagent. By taking multiple compounds with the required distances for each reagent
class, one can easily make a focused library for the SH-PTP2 protein.

QSAR approach. In approaches like REMOTEDISC, which are based on physic-
ochemical properties, the atom-based local properties are clustered spatially from
the superimposed three-dimensional structures of the ligands and the clustered
properties are correlated with the biological activity; such methods give a physi-
cal interpretation of the nature of the hypothetical binding pocket of the protein.
The second type, the field-based approaches like CoMFA (Comparative Molecu-
lar Field Analysis), calculate the interaction of the ligand molecules with atoms
representative of the protein atoms at an arbitrarily defined set of grid points. The



interaction energies are correlated with the binding affinity to develop a compa-
rable interpretation of the nature of the protein binding pocket. What comes out of
these approaches depends on the conformation used as well as the mode of super-
imposition of the ligands. Since CoMFA does not supply any definite algorithm
for the superimposition of ligands, the pharmacophore modeling can be a good
way to initiate CoMFA. Hopfinger’s molecular shape analysis and APEX-3D of-
ten used pharmacophore hypothesis to develop a 3D-QSAR analysis.

XIII. CRITICAL ASPECTS AND COMMENTS

Pharmacophore modeling is an extremely useful tool in the early stages of drug dis-
covery research. It helps to find novel lead compounds and rationalize pharmaco-
logical activity in apparently different looking compounds. In addition, it qualita-
tively helps to optimize the activity of a lead compound. The popularity lies in the
qualitative nature of the approach also. Unlike a QSAR approach, it does not need
very precisely measured biological activity data. In general, pharmacophore mod-
eling is more useful than QSAR approaches at the initial phase of drug discovery.
The QSAR approaches become more useful during lead optimization.

One should, however, be critical while using a pharmacophore hypothesis.
Constraining the conformation often leads to a loss of binding affinity, although
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Figure 7 A few moderately active compounds found by Lunney et al. (42) for pp60 Src
SH2 domain, a closely related protein of SH-PTP2.



entropy gain arising from the reduced conformational distribution should facili-
tate binding. Problems in such molecules may be due to constraining the confor-
mation at an angle somewhat distant from the ideal angle or to bad interactions of
the constraining structural moiety with the enzyme binding site. It is not certain
how great a drop in the activity of a molecule should be acceptable during the de-
velopment or validation of a model.

The idea of pharmacophoric modeling does not hold if the inhibitors show
considerable activity even when one or more pharmacophoric groups do not reach
the same region of the active site. Forcing the molecules to attain a conformation
where equivalent groups occupy the same location in such a situation may give a
distorted pharmacophoric model. However, success in the drug design process is
so rare that the researchers in this area are often eager to take these risks. The only
suggestion to be offered here may be to analyze the suggested (computed) con-
formation using existing knowledge of conformation of similar molecules.

Pharmacophore modeling is based on the idea that similar inhibitors bind in
the same way at the active site. The X-ray crystallographic data of most lig-
and–protein complexes usually confirm this hypothesis. However, there are sev-
eral exceptions to this basic idea. Multiple binding modes may often result in a
binding pocket dominated by nondirectional forces (e.g., van der Waals, hy-
drophobic). The application of pharmacophore modeling in such a system may be
risky.

Staying close to a lead compound maximizes the chance of finding an ac-
tive compound. Unless it is necessary to get a very different compound (maybe for
patentability) one should try to make the smallest possible change from the lead
compound while searching a database.

Combinatorial chemistry is a major blessing for pharmacophore modeling.
Often the fate of a single compound was used to validate a pharmacophore model.
However, drug discovery is such an approximate science that one who decides
from the result of a single compound risks looking like a fool. With combinatorial
chemistry, we will be able to make a larger number of compounds with a speci-
fied range of pharmacophoric geometry and nature, although we do not recom-
mend a very big library for this purpose.
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I. INTRODUCTION

Drug design is a complex process and requires multidisciplinary approaches from
concept generation to lead optimization and to eventually putting a drug on the
market. As this subject is so vast, it is impossible to draw even an abbreviated pic-
ture of the whole topic in one chapter. Instead, the intention of the author is to pre-
sent the importance of the one-dimensional and two-dimensional quantitative
structure–activity relationship (QSAR) paradigm in drug design in as simplistic a
way as possible to a readership not sufficiently familiar with the field. Three-di-
mensional QSAR is covered in Chapter 4.

A. Background

Before we proceed with details of QSAR and its role in drug design, it is pertinent
to go over a brief background of the history of QSAR. The quest for structure–ac-
tivity relationship studies probably started in 1870 when the Russian chemist
Mendeleev tried to arrange elements in a periodic system in order of atomic
weights and discovered that similar properties were found in each of eight groups



in the matrix he drew. Though heavier elements were exceptions, the periodic
table achieved its preliminary success in classifying elements. True biological
structure–activity relationship studies, however, started in 1868 when Crum-
Brown and Fraser (1) first observed that the physiological activity of a series of
strychnine alkaloids was dependent on their quaternary substituents. They devel-
oped the following mathematical equation for the correlation.

� � ƒ(C )

According to this equation, biological activity � must be a function ƒ of chemical
structure C. In 1893, Richet (2) showed that the toxicity of some organic chemi-
cals (e.g., alcohols, ethers, ketones) was inversely correlated with their solubility
in water. Meyer (3) and Overton (4) in 1899 and 1901, respectively, correlated
oil/water partition coefficients with the activity of narcotic substances. Overton
observed that the narcotic activity progressively increased as the chain length of
the substituents increased. Following Overton’s work, Traube (5) in 1904 ob-
served a linear relationship between narcotic activity and surface tension. In a dif-
ferent twist to a series of structure–activity studies on narcosis already mentioned,
Seidell (6) in 1912 measured the solubility and partition coefficients of thymol to
understand the activity of this compound against hookworms. The first thermo-
dynamic interpretation of narcotic activity came from the work of Ferguson (7) in
1939. In 1942, Bell and Roblin (8) first showed a bilinear relationship of in-
hibitory activity of a large number of sulfonamides against E. coli with pKa. This
work later provided the basis for investigations into the mode of action of sulfon-
amide drugs. The major breakthrough in QSAR came indirectly through the work
of Hammett, when he postulated that the electronic effect of the substituents in the
benzene ring could be modeled by the ionization of simple meta- and para-substi-
tuted benzoic acids. This work led to the Hammett equation (9). Hammett defined
the electronic effect � as follows:

� � log KX � log KH

where KX and KH are the ionization constant of the substituted benzoic acid and
the parent benzoic acid, respectively. The first application of the Hammett-type
relationship to a biological system was reported by Hansen, in describing the ef-
fect of electronic parameter � on the toxicities of substituted benzoic acids (10).
During the same period, Zahradnik was also trying to develop a biological Ham-
mett equation from more fundamental principles and developed the constant � in
an analogous fashion to � (11)

log��
�

�

E

i

t
�� � 	�

where �i is the molar concentration of the ith compound and �Et is the corre-
sponding concentration of the ethyl analog; 	 depends on the sensitivity of the
system, and � is the substituent constant.
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Neither the Hansen nor the Zahradnik approach led to much success because
each was based on single-parameter linear relationships. Nevertheless, these
works motivated others to consider undertaking the development of biological
correlation studies. The first application of QSAR came from Hansch et al., who
in 1962 correlated the plant growth regulatory activity of phenoxyacetic acids to
Hammett constants and partition coefficients (12).

The major breakthrough in QSAR resulted when Hansch and Fujita in 1964
first showed that the biological activity could be correlated linearly by free en-
ergy–related terms (different physicochemical parameters) (13). In the same year,
Free and Wilson proposed a de novo method to derive the group contribution val-
ues and rationalize the data sets in quantitative terms (14). These two seminal
works opened up a new field of QSAR studies in biological systems.

II. METHODOLOGIES

Before I present different QSAR methods with examples, it is pertinent to discuss
briefly a few important criteria that need to be addressed before any QSAR model
can be developed correctly and effectively. These are (1) the expression of bio-
logical activity and (2) the selection of parameters.

1. Expression of biological activity. The success of any QSAR study de-
pends on a number of different factors, and biological activity data certainly are
crucial. The quality of any QSAR model depends on the type of data used to gen-
erate the model. The activity data must be reproducible and generated from a
smooth dose–response curve and multiple measurements for a particular dose
with as little error as possible. QSAR studies are often performed with free en-
ergy–related descriptors. Therefore, it is important and necessary to express the
biological activity in free energy–related terms (e.g., equilibrium or rate con-
stants). The change in free energy (
G0) in a biological system can be expressed
as the inverse logarithm of the molar concentration C to produce a certain biolog-
ical response as follows:


G0 � �2.3 RT log K ≈ log ��
C
1

��
The logarithmic conversion also transforms a skewed distribution, which is typi-
cally observed, of biological response to a normal distribution.

2. Selection of parameters. Selection of one or more appropriate parame-
ters is another important aspect in developing a meaningful QSAR. There is no
specific rule for selecting parameters; rather, the choice depends on the type of
system one is using, the nature of the interactions possibly responsible for the ac-
tivity, and so on. For example, if the activity depends on the passive transport of
the drugs to the receptor site, then hydrophobic terms (e.g., �, log P) may play an
important role. Generally, a number of different and wide-ranging parameters are
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selected, and an attempt is made to correlate them with the activity data. All pa-
rameters used to develop a model must be validated by a stepwise regression
method. For any multiparameter model, special care must be taken to ascertain
any collinearity between parameters. Collinearity, which may underestimate the
importance of certain parameter(s), may skew some important information for fu-
ture design processes.

Topliss and Costello suggest using at least five to six data points per pa-
rameter to avoid chance correlation and obtain meaningful statistical results with
a multiple regression approach (15). A large number of independent variables can
be used if the partial least-squares (PLS) technique is used (see Sect. IV. B).

A. Free–Wilson Method

Free and Wilson proposed a simplistic mathematical approach for structure–ac-
tivity studies in a congeneric series (14). The underlying concept of the approach
was based on the additivity principle. According to this principle, substituent
groups contribute in constant amounts and in an additive manner toward biologi-
cal activity and do not depend on any other structural changes in the compound.
In their original publication (14), Free and Wilson put forward a generalized math-
ematical model, as follows:

A � �aixi  �

where A is the activity data, ai is the contribution of the ith substituent and xi takes
a value of 1 when the substituent is present and 0 when it is absent; � is the aver-
age contribution of the parent molecule and is a constant term.

The mathematical model also includes symmetry equations (often called re-
striction equation), which assume that the summation of contributions of all sub-
stituents in a particular position is 0. According to this assumption, �aixi � 0.

The major drawbacks of the Free–Wilson method are as follows: (1) the ac-
tivity contribution of all substituents including H must be considered; (2) the sum-
mation of the group contributions at each position, the so-called symmetry as-
sumption, must be zero; and (3) the constant term (�) should be an overall average
of the biological activity of all the compounds used to develop the QSAR model.

These limitations led to the modification of the Free–Wilson method,
known as Fujita–Ban method. For an excellent review on Free–Wilson and Fu-
jita–Ban methods, readers are referred to the discussion by Kubinyi (16) and ref-
erences cited there.

B. Fujita–Ban Method

Fujita and Ban in 1971 proposed a modified mathematical equation (17), using the
logarithm of activity, which is a free energy–related term and additive in nature,
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represented as follows:

log ��
A

A

0
�� � �GiXi

where A and A0 are the activity data of the substituted and unsubstituted com-
pounds, respectively, Gi is the logarithm of the activity contribution of the ith sub-
stituent, and Xi has a value of 1 or 0 depending on the presence of the substituent
or its absence, respectively. For a set of substituents, the equation takes the fol-
lowing form:

log A � �GiXi  �

where � is a constant.
The major advantages of this modified method are as follows: (1) the struc-

tural matrix does not need to be transformed; (2) no restriction equation is neces-
sary; (3) the group contribution at each position is based on the parent compound
(i.e., H); and (4) the constant term (�) is calculated by the least-squares method
and is the theoretically predicted value for the unsubstituted compound. The ad-
dition or omission of a compound does not affect markedly the value of group con-
tributions. These advantages make the Fujita–Ban method preferable to the
Free–Wilson method. A number of applications of this method have been reported
(18–22).

C. Hansch–Fujita Method

The major breakthrough in defining the QSAR methodology occurred in the early
1960s when Corwin Hansch and Toshio Fujita recognized the importance of
physicochemical properties of chemical compounds in determining biological ac-
tivity and suggested that biological activity could be correlated with the summa-
tion of linear free energy–related terms. Thus, this approach was originally coined
as linear free energy relationships (LFER). Later this approach was termed, more
appropriately, as the extrathermodynamic approach and expressed by the follow-
ing equation:

log ��
C
1

�� � a�  b�  cEs  ���  constant

where C is the molar concentration of the compound to produce a certain biolog-
ical response, � is the hydrophobic contribution of the substituent and represented
by log PX/PH, � is the Hammett electronic descriptor of the substituent, repre-
sented by log KX/KH, Es is Taft’s steric parameter, and a, b, and c are the appro-
priate coefficients. In these expressions PX and PH are the octanol /water partition
coefficients of the substituted and unsubstituted compounds, respectively, and KX

and KH are the ionization constants at 25°C of the meta- or para-substituted and
unsubstituted benzoic acid, respectively. A detailed description of all these pa-
rameters is provided later (see Sec. III).
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Using a single parameter or multiple parameters, depending on the data set,
one can generate the correlation models. The parameters can be from experimen-
tal values (�, log P, �, etc.) or from theoretically calculated values [c log P, ener-
gies of lowest unoccupied molecular orbitals (LUMO) and highest occupied
molecular orbitals (HOMO), charge, etc].

1. Linear Model

As noted, biological activity can be correlated with a linear combination of
physicochemical parameters. There are hundreds of such examples in the litera-
ture. A number of examples showing linear dependence of activity on a single pa-
rameter are cited later (see Sec. III: Parameters). Here we give some examples of
activity that was shown to correlate with a combination of physicochemical pa-
rameters in a linear fashion. Unless otherwise mentioned specifically, statistical
terms in all correlation equations are represented by n as the number of com-
pounds used to derive the equation, r as correlation coefficient or r2 as correlation
variance, and s as standard deviation. In some cases, a cross-validated correlation
coefficient (q2 or r2

cv) also is reported. Generally, whenever possible the structure
of the parent compound is presented before the QSAR equation to provide infor-
mation on the substituent positions.

Smith et al. reported a classic example of QSAR analysis of the hydrolysis
of X-phenyl hippurates (I) by papain (23) as represented by the following linear
equation:

log ��
K

1

m
�� � 0.57(�0.20)�  1.03(�0.25) ��3

� 0.61(�0.29) MR4  3.80(�0.17)

n � 25, r � 0.907, s � 0.208

In this equation Km is the Michaelis–Menten constant at 25°C and pH 6.0, � is the
Hammett constant, ��3 is the hydrophobicity of the substituent at the meta position
[when the substituent � had a negative value, one used � for H and 0 for all para
substituents; when two meta substituents were present e.g., 3,5-(Cl)2, only one
was used; for unsymmetrical meta-disubstituted compounds a � value of 0 was as-
signed for the hydrophilic substituent]. The rationale was that only one meta sub-
stituent can contact the enzyme and the other metasubstituent is thus located in the
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surrounding aqueous phase. An earlier graphic analysis supports this rationale
(24). Finally, MR4 is the molar refractivity parameter for the para substituents; all
meta substituents got a value of 0. The coefficient of ��3 of 1 indicates that the sub-
stituents are largely desolvated.

Another example can be cited from the work of Debnath et al., concerning
the mutagenicity of quinolines (II) in Salmonella typhimurium TA100 (25):

log TA100 � 0.99(�0.44) log P � 1.48(�1.19) R8

� 2.68(�2.32) R6 � 3.19(�0.98)

n � 21, r � 0.842, s � 0.599

In this expression, TA100 represents the rate of mutation in revertants/nmol, P is
the experimentally determined octanol /water partition coefficient, and R is the
resonance parameter. The negative coefficients indicate that electron release to the
ring increases activity. The importance of this effect is more pronounced for six-
substituents than for eight-substituents, thus indicating that the field/inductive ef-
fect of the nearby nitrogen atom places the eight-substituent electrons under con-
siderable constraint.

2. Parabolic Model

Hansch and coworkers introduced the parabolic model in QSAR analysis upon re-
alizing that biological activity of hydrophobic drugs started to level off or de-
crease after reaching the optimum value. This was attributed to the entrapment of
the drugs in the lipid phase of the transport process (13,26). They analyzed a se-
ries of examples and proposed a second-order relationship of hydrophobicity (log
P) with biological activity as follows:

log ��
C
1

�� � a log P  b(log P)2  c

where a and b are the coefficients of the log P and (log P)2 terms, respectively,
and c is a constant term. Since then a great number of parabolic QSAR models
have been reported in the literature. The following examples illustrate the utility
of parabolic relationships in delineating biological activity.
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The inhibitory activity of uptake of the thyroid hormone L-triiodothyronine
(T3) by a series of phenylanthranilic acids (III) has been shown to correlate with
calculated log P (c log P) in a parabolic fashion as follows (27):

logit (%I ) � 3.92(�0.62) c log P � 0.35(�0.06) (c log P)2 � 11.0 (�1.6)

n � 22, r2 � 0.814, s � 0.164; c log P0 � 5.7

where logit (%I) � log [%I/(100 � %I)]; %I, is the percentage inhibition of
[125I]T3 uptake by H4 rat hepatocyte cells; c log P was calculated using CLOGP
v3.54 (28).

Hansch et al. recently used the affinity of a series of 1-ethyl-4-phenyl-
1,2,5,6-tetrahydropyridine-3-carboxylic acid derivatives (IV) to derive parabolic
models with the calculated bulk and polarizability parameter CMR for the five hu-
man muscarinic receptor subtypes (Hm1–Hm5) (29). The affinity was determined
by [3H]NMS (tritiated normal mouse serum) binding using membranes from
transfected Chinese hamster ovarian (CHO) cells. The activity, IC50, was ex-
pressed as the nanomolar (nM)

concentrations of the compound required to displace [3H]NMS by 50%. The equa-
tion developed using muscarinic receptor 1 (Hm1) is shown as an illustrative
example:

log ��
C
1

�� � 5.57(�1.27)CMR � 0.28(�0.07) CMR2 � 19.79(�6.11)

n � 20, r � 0.914, s � 0.316
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In this equation C is the concentration required to displace [3H]NMS by 50%. The
model shows that the affinity toward m1 increases initially as the substituent bulk
increases and starts decreasing as the bulk increases, probably indicating limited
bulk tolerance at the receptor site.

3. Bilinear Model

In a large number of cases, it has been found that biological activity increases with
hydrophobicity linearly up to a certain point and then decreases in a linear fash-
ion. The differences between observed and calculated biological activity were
found to be high if parabolic models were used. The bilinear model to describe the
nonlinear dependence of biological activity of drugs on hydrophobicity was pro-
posed by Kubinyi (30,31) and expressed as follows:

log ��
C
1

�� � a log P � b log (�P  1)  c

The terms a, b, and c are linear and can be calculated by multiple regression anal-
ysis, whereas � is a nonlinear term and must be calculated by an iterative method.

A few examples of the application of bilinear models in QSAR will illus-
trate this model. Kubinyi derived a bilinear QSAR on the reported neurotoxicity
data (32) [log (1/C )] of a series of alcohols with log P as follows (32):

log ��
C
1

�� � 0.89 (�0.05) log P � 1.77 (�0.10) log (�P  1)  1.59

n � 10, r � 0.998, s � 0.041; log � � �1.933, log P0 � 1.94

where C is the molar concentration causing 50% ataxia, and P is the octanol /wa-
ter partition coefficient. It is interesting to note that the ideal value of log P was
found to be around 2.0, an optimum value found in a number of cases, including
barbiturates, and anesthetic ethers, for crossing the blood–brain barrier.

Garg et al. recently reported (33) a bilinear model for the antiviral activity
data of cyclic urea (V) derivatives (34) against HIV-1 protease with c log P as
follows:
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log ��
C
1

�� � 0.77 (�0.25) c log P � 1.24 (�0.48)

� log(�.10clogP  1)  1.05 (�1.37)

n � 15, r � 0.902, s � 0.33; log � � �6.84, log P0 � 6.96 (7.75–6.17)

Here C is the concentration of inhibitors producing 90% inhibition of viral RNA
production in HIV-1 infected MT-2 cells. Ideal log P for this series of compounds
was around 7.0.

D. Multi-CASE Method (MCASE)

Klopman and his coworkers (35,36) developed a new-generation computer auto-
mated structure evaluation (CASE) program useful in drug design. The program
generates fragments consisting of 2–10 heavy atoms of all possible chains from
the input structure. These fragments are considered to be structural descriptors and
used to derive QSAR models for prediction of biological activity. Fragments re-
sponsible for activity (biophore) and detrimental for activity (biophobe) are iden-
tified by statistical evaluation based on a binomial distribution. For the prediction
of biological activity of a new compound, the program uses the information from
the learning set and assigns probabilities for the compound to be active or inactive
depending on the presence of biophores or biophobes.

Klopman and Ptchelintsev recently applied the Multi-CASE method to a se-
ries of 71 triazole alcohols to derive structure–antifungal, structure–teratogenic-
ity, and structure–therapeutic index relationships (36). The purpose of the study
was to identify potential biophores for antifungal activity and teratogenic activity
from the learning set (69 compounds) in order to predict the potential antifungal
and teratogenic activity of two compounds, ICI 153,066 from ICI and SCH 39304
from Schering-Plough and Sumitomo. The presence of certain biophores for anti-
fungal activity, identified through the analysis, predicted a probability of 97.1%
for the ICI 153,066 compound to be antifungal, but the presence of some bio-
phores for teratogenic activity predicted a probability of 93% for the compound to
be teratogenic. In the case of SCH 39304, the model did not predict any terato-
genic potential, whereas it gave more than 87% probability to its having antifun-
gal potency. The development of ICI 153,066 was aborted because of the terato-
genic effects, whereas SCH 39304 went into clinical development. The successful
application of the Multi-CASE program demonstrates the utility of this program
for drug design.

In a more recent study, Klopman and Tu selected a set of 1819 chemicals
out of 14,156 tested by the National Cancer Institute (NCI) and identified 74 frag-
ments that could explain the anti-HIV activity of all compounds (37). Ten diverse
sets of compounds were used as a test set, the activities of which were not known
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at the time of model development. The model correctly predicted the anti-HIV ac-
tivity of 8 out of 10 chemicals. This again shows the utility of this program in pre-
dicting biological activity.

E. Other Methods

1. Artificial Neural Network (ANNs)

Neural network (NN) techniques have been used successfully in QSAR (38–51).
This method is generally used when the data set size is large and the data cannot
be interpreted easily by linear functions. This method is generally used in QSARs
to describe a model with a nonlinear hypersurface.

Although there are different ways of constructing neural networks, the mul-
tilayer feedforward network with back-propagation is the one primarily used in
drug design. In such a model the units are organized in layers starting with input
units that are connected to the output unit through some layers of hidden units as
shown in Fig. 1. Signals of representative input information about the drugs (pa-
rameters) are propagated forward using connecting weights, from the input layer
to the output layer via the hidden units, and the output signals represent the pre-
dicted activity. Differences between the predictions and known activity are then
used to adjust the weights “backward” until those differences become small. The
major step in a neural network is to train the network using a representative train-
ing set. The design aspect of the neural network is very critical. If a network is
trained with a large number of parameters, it may overtrain the model and gener-
ate unreliable prediction results because of overfitting. On the other hand, an un-
dertrained neural network with too few parameters may generate poor results for
new predictions. The quality of the fit can be validated by “leave-one-out” cross-
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validation, whereby data are removed systematically, a neural network is trained,
and a prediction of the removed data is made based on the trained network. The
residual root-mean-squared error (rmse) or correlation coefficient (R) values are
also calculated to validate the model. A Bayesian regularization algorithm has
also been used to eliminate the need for a test model, since it minimizes a linear
combination of errors and weights (52,53).

Breindl et al. recently reported the use of a back-propagation artificial neu-
ral network for predicting the octanol/water partition coefficient (log P) of a large
number of organic chemicals (39). The neural net was trained with descriptors
found to be important as input parameters correlating log P with these parameters
by the multiple regression analysis. These parameters were calculated by means
of semiempirical molecular orbital calculations using AM1 and PM3 methodol-
ogy. A total of 1085 compounds were chosen for the back-propagation network;
980 compounds were used as training set and the rest as a test set. A three-layered
back-propagation network was used entailing 16–25 descriptors. The network was
trained until the rms error for log P fell below the 4% level. The overfitting of the
training set was avoided by checking the standard deviation of the test set. A very
good result was obtained. The correlation coefficient for the AM1 test set (r2) and
standard deviation (s) of the training set was 0.965 and 0.41, respectively. The
data were cross-validated, and an rcv of 0.93 was obtained. For the test set, the
statistics were r2 � 0.902, s � 0.53, and rcv � 0.915. The results obtained from
the PM3-generated set were slightly worse.

The major advantages of the neural networks are that they are nonparamet-
ric and nonlinear, and few statistical assumptions are required to build the model.
Its major disadvantage is that the model cannot be easily interpreted, especially in
physicochemical terms.

F. New QSAR Methods

1. HQSAR

Hologram QSAR (HQSAR) is a relatively new technique that does not require any
physicochemical descriptors or three-dimensional structure to generate struc-
ture–activity models. The method is based on the input of two-dimensional struc-
tures and biological activity. The structures are converted to all possible linear and
branched and overlapping fragments. The fragments are assigned a specific inte-
ger by using a cyclic redundancy check (CRC) algorithm. These integers are then
hashed to a bin in an integer array of fixed length. The arrays are known as the
molecular hologram, and the bin occupancies of the molecular holograms are used
as the descriptors. These descriptors are expected to encode the chemical and
topological information of molecules. The QSAR model is developed by using the
partial least-squares (PLS) regression technique and validated by the “leave-one-
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out” cross-validation technique. Once the final model has been obtained, PLS
yields the following equation correlating hologram bins with activity:

Ai � C  ∑
L

l�1

XilCil

In this expression, Ai is the activity of compound i, C is a constant, Xil is the holo-
gram occupancy value at position i or bin l, and Cil is the coefficient for the cor-
responding bin from the PLS run; L is the hologram length.

The fundamental difference between the HQSAR method and other frag-
ment-based methods (e.g., the Free–Wilson method, the multi-CASE method) is
that HQSAR encodes all possible fragments including overlapping fragments.
The method is very fast and can also be used to predict physicochemical proper-
ties (e.g., c log P). A number of applications of the HQSAR method were reported
in the late 1990s (54–57).

2. Binary QSAR

Binary QSAR is a relatively new QSAR technique, introduced to analyze large
data sets, especially from high throughput screening, where the biological data are
expressed in binary form (e.g., active/ inactive, pass/fail). We discuss this method
in more detail later (see Sec. VI.C.3).

III. PARAMETERS

The fundamental concept in QSAR analysis is to correlate activity data (biologi-
cal or physical) with chemical structures having certain characteristics and physic-
ochemical properties. These structural characteristics of the compounds as a
whole or parts thereof are defined as parameters (also known as descriptors).
When these parameters are used to correlate the activity data to generate models,
they should help to decode the information contained in them. The most important
forces responsible for drug action, starting from transport and metabolism to
drug–receptor interactions, can be classified under three main categories: elec-
tronic, hydrophobic, and steric. Since the detailed applications of all the parame-
ters are not within the scope of this chapter, we discuss only the parameters rele-
vant to and used most frequently in QSAR.

A. Electronic Parameters

A multitude of electronic parameters (e.g., � and modified � values, inductive and
field and resonance effects, pKa, dipole moments �, hydrogen-bonding parame-
ters, quantum chemical indices) have been used in QSAR models. A brief de-
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scription of some of the most widely used parameters is provided with simple ex-
amples (with only a single parameter used) of their use.

The most widely used electronic parameter is Hammett’s �, represented by
the following equation: log KX � ��  log KH, where KX and KH are the equilib-
rium or rate constants for the substituted X and unsubstituted analog, respectively.
In this equation � is the electronic substituent constant measured from the benzoic
acid system, while � is a susceptibility constant signifying the measure of the im-
portance of the electronic effect on a rate constant. The Hammett equation holds
when the reaction center (Q) in a compound (X—C6H4CH2—Q) has no effect due
to the resonance interaction of the aromatic ring system. A negative � value indi-
cates electron release by the substituent, whereas a positive value implies electron
withdrawal. The Hammett equation is an empirical equation, which has been ap-
plied to thousands of organic reaction systems. This approach also has been used
to explain activity in many biological QSAR models (58–60).

The role of � on the kinetic constant kcat for the hydrolysis of a series of N-
benzoylglycine pyridyl esters by papain has been demonstrated in the following
equation (61):

log kcat � 0.45 (�0.08)�  0.17 (�0.04)

n � 23, r � 0.933, s � 0.094

The Hammett � constants for substituents can be applied only when the
electron-releasing or withdrawing substituents are not in conjugation with the re-
action center. Modified � constants (e.g., � and ��) have been derived to incor-
porate through-resonance effects due to the conjugation. Few applications of �0 in
QSAR models have been reported. The electronic parameter �� has been derived
from para-substituted phenols or anilines where the substituents can donate an
electron pair to the reaction center, whereas � has been derived for substituents
capable of delocalizing a  charge. A number of applications of both these pa-
rameters in biological QSAR have been found.

Hansch et al. reported a correlation equation for mutagenicity of a set of
13 substituted (o-phenylenediamine)platinum dichlorides (VI) in the Ames test
using Salmonella typhimurium (TA92) showing the importance of electron with-
drawal by substituents R through resonance, as indicated in the following equa-
tion (62):
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log ��
C
1

�� � 2.23(�0.32) ��  5.78(�0.18)

n � 13, r2 � 0.956, s � 0.260

In this expression C is the molar concentration of a compound producing 30 mu-
tations/108 bacteria above background.

Hansch and Zhang recently described a number of QSAR models in which
toxicity values for phenols and anilines were correlated with a � term of the sub-
stituents (63). Substituents that increase the electron density on the aromatic ring
system were shown to potentiate toxicity. The toxicity was postulated to be medi-
ated by a radical reaction.

Oxidation of phenols by horseradish peroxidase (compound II):

log k � �2.48�  4.68

n � 9, r � 0.972, s � 0.352

Oxidation of anilines by horseradish peroxidase (compound II):

log k � �3.00�  4.79

n � 7, r � 0.986, s � 0.264

For nonaromatic and saturated compounds, Taft introduced the inductive
constant �* based on the rate constants of the hydrolysis of acetates (64).

The electronic effect of a substituent has been considered to be a combina-
tion of field/inductive (F) and resonance (R) effects. Swain and Lupton in 1968
proposed the following equation to define the field effect (65):

F � a�m  b�p  c

They further proposed that �p has both a field and a resonance component and can
be represented as follows:

�p � 	F  R

The major drawback of Swain and Lupton’s derivation of F and R values is that
they were not placed on the same scale as the Hammett � constants. Hansch et al.
later modified these values by appropriately scaling F and redefining Swain and
Lupton’s equation as follows (60):

F � 1.369 �m � 0.373 �p � 0.009

n � 14, r � 0.992, s � 0.042

Efforts were also made to split electronic effect into field/ inductive (�I) and res-
onance (�R) components as follows, and this effort was reviewed by Charton (66):

�p � �I  �R
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Excellent compilations of electronic parameters (including Hammett � as �m and
�p) have been provided by the Hansch group (60,67).

Theoretical parameters based on quantum chemical calculations were ap-
plied to several QSAR models, which are especially useful when no Hammett-
type electronic constants are available. Energy of lowest unoccupied orbitals
(�LUMO) and energy of highest occupied orbitals (�HOMO) have been quite exten-
sively used. According to the Koopmans theorem, �LUMO and �HOMO of a
molecule can be approximated as its electron affinity and ionization, respectively.
Following are some illustrative examples:

Tuppurainen et al. correlated mutagenicity of a series of lactone derivatives
with �LUMO as follows (68):

ln TA100 � �13.7 (�1.0) �LUMO � 12.7 (�1.0)

n � 17, r2 � 0.924, s � 1.26

The AM1 semiempirical method was used to calculate �LUMO values.
The application of �HOMO can be illustrated by the following example, in

which the radical scavenging activity of carbazoles was correlated with �HOMO

(63):

log ��
C
1

�� � 3.21 (�1.9) �HOMO  3.05 (�0.16)

n � 6, r � 0.916, s � 0.017

In this equation, C is the concentration of carbazole required to inhibit lipid per-
oxidation by 50% when administered orally to mice; �HOMO was calculated by the
AM1 methodology.

A multitude of electronic descriptor have found some application in QSAR
analysis. Examples include dipole moment � (69,70), ionization constants pKa

(71,72), atomic net charge q (73,74), superdelocalizability S (75,76), and molec-
ular electrostatic potential MEP (77,78).

B. Hydrophobic Parameters

The influence of hydrophobicity of chemicals (drugs) on biological activity is
probably the most widely studied area in drug design. Though Meyer and Over-
ton in 1889–1901 first deduced the successful correlation between oil/water par-
tition coefficients of some chemicals and their narcotic activity, it was not until
1964 that Hansch and his group first defined the hydrophobic substituent con-
stants for the benzene system in an analogous fashion to the Hammett equation,
paving the way for the hydrophobicity parameter used in QSAR. The hydropho-
bic substituent constant � was defined as follows:

log �
P
P

X

H
� � �
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where PX and PH are the partition coefficients of a compound with substituent X
and the parent compound, respectively, in an octanol/water system, and � is the
substituent constant for the group X. This solvent system has been accepted as a
standard system to measure the partition coefficients. The octanol/water partition
coefficient, designated log P, represents the overall hydrophobicity of a molecule,
whereas � represents the hydrophobicity of a substituent. Both these parameters
have been extensively used in QSAR models. Taylor has provided an elegant ac-
count of the history on development of hydrophobicity concept (79). An extensive
compilation concerning the use of hydrophobicity can be found in a book by Han-
sch and Leo (80).

Since the experimental determination of the partition coefficients of a large
set of compounds is a very tedious job, and often not feasible, a method of calcu-
lation of partition coefficients was proposed and pioneered by Rekker and his as-
sociates (81), using a fragmental approach. This approach had a number of draw-
backs and was later extensively modified and extended by Leo et al. (67,80,82),
resulting in the development of a computer program, CLOGP (28). The latest ver-
sion of this CLOGP program has no missing fragment and has achieved a signif-
icant milestone, demonstrated by the following correlation between measured log
P (m log P) and calculated log P (c log P).

m log P � 0.9 c log P  0.5

n � 10,000, r2 � 0.970, s � 0.278, q2 � 0.970

Several methods to calculate log P have been reported since then. For example,
Ghose and Crippen’s atom contribution method (83), Bodor’s quantum chemical
method (84), Klopman’s MultiCASE method (85), and Moriguchi’s method (86)
have been used in QSAR applications. We will try to illustrate the utility of hy-
drophobic parameters � and log P through several examples.

Hansch et al. correlated the Michaelis constant Km (reciprocal of the bind-
ing constant of substrates) for the interaction with papain of 16 hippurates of the
structure CH3OCOCH2NHCOC6H5—Y and found a linear relationship with � as
follows (24):

log ��
K

1

m
�� � 1.01 �  1.46

n � 16, r � 0.981, s � 0.165

The authors suggested that the partitioning patterns of the substrates into the en-
zyme–substrate (ES) complex and into the octanol system are similar and pro-
posed that the desolvation of the substituents is the principal driving force for
binding activity.

In another study, Sinclair et al. showed that the induction of cytochrome
P450 by a series of barbiturates (VII) is dependent linearly on the hydrophobicity
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of the whole molecule (87), as shown in the following equation:

log ��
C
1

�� � 1.02 log P  2.75

n � 9, r � 0.984, s � 0.186

where C is the molar concentration of barbiturates producing a 50% increase in
cytochrome P450 induction and P is the experimentally determined octanol/water
partition coefficient of the barbiturates.

The two examples above illustrate the influence of hydrophobicity of aro-
matic and cyclic heterocyclic compounds, respectively, on biological activity. The
next example correlates the hydrophobicity of short-chain aliphatic alcohols with
their ability to alter plasma membrane integrity (88). The membrane integrity was
quantified as a measure of lactate dehydrogenase (LDH) release by the alcohols,
designated LDH50:

log ��LD

1

H50
�� � 0.896 log P  0.117

n � 11, r � 0.993, s � 0.131

Again log P is the experimentally determined partition coefficient in octanol/
water.

Van Steen et al. have reported an excellent correlation between the inhibi-
tion constant Ki (expressed as pKi) of a set of eltoprazine (VIII) as 5-HT1A recep-
tor ligands and the calculated hydrophobic parameter c log P, as shown in the fol-
lowing equation (89):
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pKi � 1.26 c log P  3.32

n � 12, r2 � 0.83, s � not reported

For the homologous series of compounds investigated, the inhibition constant was
governed by the lipophilicity of the compounds; c log P values were calculated by
using the CLOGP program from Daylight C.I.S. Inc. (90).

Many studies use other hydrophobic parameters, such as RM and log k�
(known as capacity factor), derived from high performance liquid chromatogra-
phy (HPLC) measurements (91–95). The RM value is deduced from the Rf value
from the following equation:

RM � log ��Rf �

1

1
��

Log k� has been used to calculate the octanol /water partition coefficients, since
there is a linear relationship between these two parameters as outlined:

log Poct � a log k�  b

The values of a and b depend on the mobile and stationary phases used.
For ionizable compounds, values of log D (D is the distribution coeffi-

cient of drugs in two different solvent system, e.g., octanol/water), calculated on
the basis of experimental log P values at different pH are also used in QSAR
(96,97).

C. Steric Parameters

Steric (or bulk) effects often play an important and critical role in QSAR. Some-
times it is difficult to separate steric from electronic and hydrophobic effects. In
an attempt to distinguish between electronic and steric effects, Taft first intro-
duced the steric term Es based on the hydrolysis of esters of substituted acetic
acids (XCH2COOR) in acid solution and defined it as follows:

Es � log ��
k

k
X

H
��A

where k is the rate constant for the parent (H) and the substituted (X) acetic acid.
Hansch’s group developed a QSAR equation (98) correlating the potency of

seven pyridine (IX) derivatives in antagonizing the ability of angiotensin II to
contract the rabbit aorta with the Taft’s steric parameter Es as follows:

QSAR: A Versatile Tool in Drug Design 91



pA2 � �2.281 (�1.086) Es  5.996 (�1.492)

n � 7, r � 0.924, s � 0.591

Hancock et al. modified the Es parameter to include the contribution of
C—H hyperconjugation and proposed the following equation (99):

Es
c � Es  0.306(n � 3)

where n is the number of 	 hydrogens and 0.306 is a constant term obtained by
molecular orbital calculation.

Fujita and his group proposed that for complex biochemical steric effects of
branched substituents (—CR1R2R3), E s

c could be calculated as a summation of
steric effects of each component substituent (100). The fungicidal effects of
N-substituted aminoacetonitrile (RNHCH2CN) against “yellows” of the Japanese
radish, expressed as the 50% preventive dose (pED50), was found to be correlated
well with Fujita’s modified E s

c as follows (101):

pED50 � �0.61(�0.18) E s
c  1.52(�0.26)

n � 16, r � 0.88, s � 0.20

Molar refractivity (MR) defined by the Lorentz–Lorentz equation, is used in
QSAR as a bulk and polarizability parameter of a compound or a group and is
scaled by 0.1 to make it equiscalar with log P, �, and so on. In the
Lorentz–Lorentz equation:

MR � �
n

n

2

2

�



1

2
� �

M

d

W
�

where n is the refractive index, MW is the molecular weight, and d is the density
of the compound. Special care should be taken when using MR because a de-
scriptor as MR and � are often highly collinear.

Hansch and Caldwell reported (102) a correlation equation relating the in-
hibition of binding of tryptamine to rat cortical membranes by phenylethylamines
(X) with the steric parameter MR.

log ��
C
1

�� � 2.12 (�0.81) MR4  6.32 (�0.45)

n � 7, r � 0.949, s � 0.247

The positive coefficient in MR4 (MR value of substituent at the para position in
the benzene ring) indicates that larger substituents may favor binding of the lig-
ands to the receptor.
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In another study, Gao et al. reported negative coefficient with MR term
while correlating the relative binding affinities (RBAs) of 16	-substituted estra-
diol (XI) to the rat uterine estrogen receptor.

log RBA � �0.48 (�0.10)MR  2.08 (�0.28)

n � 22, r2 � 0.84, s � 0.432

The negative slope in MR suggests that the estrogen receptor cannot accommo-
date molecules with large substituents.

Verloop and his colleague recognized that the intermolecular interactions of
ligands or its substituents with the receptor are important in drug action and devel-
oped an algorithm, known as STERIMOL, to calculate five directionality parame-
ters: L, B1, B2, B3, and B4 (103). The length parameter L is defined as the length of
the substituent along the axis of the bond between the first atom of the substituent
and the parent molecule, and B1–B4, the width parameters, are determined by the
rotation of the substituent around the x axis, where B1 has the smallest value and B4

the largest. Realizing that a large number of data are required to establish any mean-
ingful statistics if all five parameters are to be used, Verloop et al. later modified
these parameters and proposed to use only the length parameter L and two width
parameters B1 and B5, where B5 is the maximum width parameter (104).

Gao et al. developed an equation with a sterimol parameter L using the rel-
ative binding affinities of six 7	-undecylestradiol (XII) derivatives to the calf
uterine estrogen receptor as follows (105):
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log RBA � �0.74(�0.25)L  2.25(�0.92)

n � 6, r2 � 0.94, s � 0.155

The negative coefficient in L suggests that longer substituents may have detri-
mental effects on receptor binding.

Hansch et al. developed a correlation model for H3–antagonist potency of a
set of eight para- and meta-substituted 4(5)-phenyl-2-[[2-[4(5)-imidazolyl]
ethyl]thio]imidazoles (XIII) using only the B5 parameter as follows (98):

pA2 � �0.403(�0.158) B5-4  8.620 (� 0.448)

n � 8, r � 0.931, s � 0.242

The negative coefficient in B5-4 (B5 values at the para position) indicates that sub-
stituents beyond a permitted maximum width at the para position may have detri-
mental steric effects on activity.

Molecular weight (MW), molecular volume (MV), and parachor are also
used as steric parameters (106–109).

D. Other Parameters

1. Hydrogen-Bonding Parameters

Hydrogen bonding is an important and critical property for biological activity of
a drug depending on drug–receptor interactions. The hydrogen bond parameters
are often used in correlation studies to develop QSAR models. One of the most
successful hydrogen bond parameters as indicator variable was devised by Fujita
et al. (110). The indicator value 1 was assigned when a molecule had the capabil-
ity of forming a hydrogen bond with the receptor and 0 when it had no such capa-
bility. Charton and Charton (111) modified the scale to include the number of hy-
drogen bonds forming capacity of a molecule or substituent. For example, the
amino group—NH2 has the proton donor capacity of 2, whereas the acceptor ca-
pacity is 1. Similarly,—OH has a proton donor capacity of 1 but a proton accep-
tor capacity of 2 because it has two lone pairs. Yang et al. introduced enthalpy val-
ues of hydrogen bonds to calculate a hydrogen bond donor parameter HB1, and a
hydrogen bond acceptor parameter HB2 (112). Abraham et al. (113) devised a
group hydrogen-bonding parameter K	 for proton donors and K� for proton ac-
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ceptors from a solvatochromic approach. Dearden and Ghafourian (114) proposed
that charge (QH) on a hydrogen atom connected to a electronegative atom and
charge (QMN) on a electronegative atom should represent hydrogen bond donor
ability and hydrogen bond acceptor ability, respectively.

2. Topological Descriptors

The topology of any molecule (i.e., positions of atoms and the bonds between
them) determines its three-dimensional structure. Attempts have been made to
generate molecular descriptors that encode the information about the structural
environment of atoms, bonds, branching, unsaturation, heteroatom content, cyclic
nature, and so on. These descriptors are often termed as topological descriptors
and used to develop QSAR models (see Table 1 for reference). The detailed de-
scription of each of these parameters is beyond the scope of this chapter. Some of
the descriptors used in QSAR studies are listed in Table 1, and their use is illus-
trated by selected examples.

A simple application of the connectivity index was reported by Kier et al. in
their very early work on the development of this parameter (115). The local anes-
thetic activity of 36 distinct compounds, represented as the minimum blocking
concentration (MBC) and measured experimentally on isolated nerve or muscle
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Table 1 List of Some Commonly Used Topological Descriptors in QSAR Studies

Index Description Ref.

Wiener index W, based on molecular  graph distance 204
Randic indices �, connectivity index; Wn, cyclicity 205, 206

constant
Kier and Hall indices 116, 146, 207–212
Valence molecular m�, m�v, m � 0, 1, 2, . . . , indicating

connectivity (chi) zero, first, second, . . . , order; v
indices stands for valence

Molecular shape (kappa) 1�, 2�, etc; 1�	, 2�	, etc.
indices

Topological state indices Ti, where i is the ith atom
Electrotopological state Ii, intrinsic state value of ith atom; Si,

(E state) electrotopological state of atom i;
I(H), E state for hydrogen atoms;
atom type and bond type E-state
indices

Balaban indices J, Jb, Jx, Jy; D2, centric index 117, 213–216
Basak indices ICr., information contents; SICr, 216, 217

structural information content;
CICr, complementary information
content



fibers, was correlated with the connectivity index � as follows:

log MBC � 3.55 � 0.762�

n � 36, r � 0.983, s � 0.390

A recent report by Gough and Hall utilized a number of different Kier and
Hall indices, including electrotopological state (E state), molecular connectivity,
and molecular shape, to correlate the antileukemic activity (medium effective
dose, MED) of a series of 37 carboquinones (XIV) (116):

pMED � �0.208 (�0.040)1�v  2.112 (�0.289) 4�v
PC

� 0.338 (�0.030)SsCH3 � 0.128 (�0.009)

Sarom  5.071 (� 0.436)

n � 37, r2 � 0.90, s � 0.21

In this expression 1�v and 4�v
PC are the valence molecular connectivity indices and

SsCH3 and Sarom are the atom-type E-state indices. The first-order connectivity
index 1�v decreases with increased chain branching, and a negative coefficient in-
dicates that the branching will enhance the activity. The 4�v

PC index increases with
increased adjacency. The positive coefficient of 4�v

PC signifies that the increased
adjacency will also increase the potency. The value of atom-type E state increases
as the number of participating atoms increases, since this value is the summation
E state of all atoms. The negative coefficient in SsCH3 indicates that as the num-
ber of CH3 groups increases the activity decreases. Similarly, since the coefficient
in Sarom is also negative, any decrease in the value of this index will increase
activity.

Recently, Balaban et al. have shown the use of several topological indices
in a correlation study on the structure and the normal boiling points (NBPs) of a
large number of acyclic carbonyl compounds by the following equation (117):

NBP � 302 (�13) Jy � 372 (�15) J  223 (�6) s0

 116(�9) IC2 � 272(�13) IC1 � 109(�11)

n � 200, r2 � 0.964, s � 6.93°C
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In this expression, Jy, J, IC1, and IC2 are defined as in Table 1; s0 is the sum of
square roots of the vertex degree (�i).

IV. STATISTICAL TECHNIQUES

Different statistical techniques are used in solving the correlation equation of bi-
ological activity with different parameters (physicochemical or others). Only two
techniques used most often in QSAR analysis are discussed.

A. Multiple Linear Regression (MLR)

Drug action is a complex process and often cannot be explained by a simple cor-
relation equation y � ax1  constant. Rather, it requires a multitude of descrip-
tors, and then the correlation equation can be represented as follows:

y � ax1  bx2  cx3  ���  constant

Multiple linear regressions can be used to solve this complex equation. A least-
squares technique can be used to obtain the coefficients of each independent vari-
able (x1, x2, x3, . . .). Several statistical parameters are used to evaluate the valid-
ity of the equation. These include the correlation coefficient r (often r2, which is
a measure of the explained variance), the standard deviation s, and F statistics. The
confidence intervals of all the regression terms are also calculated.

B. Partial Least Squares (PLS)

The PLS technique was introduced in QSAR to circumvent the problem of deal-
ing with more descriptors (independent variables) than the number of data points
(dependent variables) and for cases of descriptors that are not orthogonal, which
cannot be handled by the MLR method (for details on methods, advantages, and
disadvantages, readers are referred to Refs. 118 and 119). It is advisable to have
at least five dependent variables (e.g., biological data) per descriptor for an MLR
analysis. Since PLS deals with a large number of independent variables, a signif-
icantly high correlation coefficient (r2) is often achieved. However, this statistic is
not always sufficient unless validated by a cross-validation technique. In this pro-
cedure, generally the leave-one-out method is used. In other words, one com-
pound is removed from the data set randomly or systematically as the correlation
model is developed, and the excluded compound’s activity is then predicted from
the model. The cross-validated correlation (q2 or r2

CV) is then calculated. This
value is generally the indicator of the predictive value of the model. Other statis-
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tical parameters (e.g., standard deviation SPRESS, SDEP) are used for statistical
validation. For example, in the relations:

SPRESS � ��nP
�

R
a
ES

�

S
1

��1/2
and SDEP � ��PR

n
ESS
��1/2

PRESS is predictive residual sum of squares, n, the number of data points, and a
is the number of PLS components (often called latent variables).

C. Other Statistical Methods

Several other statistical techniques have been used in QSAR, including discrimi-
nant analysis (74,120–125), principal component analysis (PCA) and factor anal-
ysis (74,126,127), cluster analysis (128–132), multivariate analysis (121,133–
135), and adaptive least squares (136–138).

V. POTENTIAL ROLE OF QSAR IN DRUG DISCOVERY

QSAR methodologies have been applied to a wide variety of physical and biolog-
ical systems, and several excellent books and review articles on this topic have
been published (80,101,139–146). A review on this topic is beyond the scope of
this chapter, but we provide some examples of QSAR applications to different ar-
eas important in drug design. The idea here is to give some flavor of how this im-
portant technique can be beneficial in predicting not only biological activity but
also a multitude of other parameters important for the complex cycle of drug
design.

A. QSAR Applications

1. Physicochemical Properties

Quantitative structure–property relationship (QSPR) (147,148) has been applied
to calculate different physicochemical properties of chemicals, such as oc-
tanol /water partition coefficient (log P), pKa, boiling point, and solubility
(149–151).

Prediction of the Octanol/Water Partition Coefficient (log P). Moriguchi
et al. developed a quantitative structure–log P relationship method for calculating
log P (partition coefficient in octanol/water) based on 1230 diverse organic chem-
icals that included several drugs and agrochemicals using parameters for hy-
drophobic atoms, hydrophilic atoms, their proximity effect, unsaturated bonds, in-
tramolecular hydrogen bonds, ring structures, amphoteric properties, and some
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other structural parameters (Table 2) (86). The QSAR model to calculate log P
was developed using all 13 parameters described in Table 2 as follows:

log P � 1.244(CX)0.6  1.017(NO)0.9  0.406PRX � 0.145(UB)0.8

(t � 60.5) (t � 58.5) (t � 33.8) (t � 9.5)

 0.511HB  0.268POL � 2.215AMP  0.912ALK
(t � 5.9) (t � 19.6) (t � 19.5) (t � 9.5)

� 0.392RNG � 3.684QN  0.474NO2  1.582NCS
(t � 13.1) (t � 22.1) (t � 10.8) (t � 16.4)

 0.773BLM � 1.041
(t � 5.0)

n � 1230, r � 0.952, s � 0.411
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Table 2 Parameters Used and Their Description

Parameter Typea Description

CX

NO
PRX

UB
HB

POL

AMP

ALK

RNG

QN
NO2

NCS
BLM

N

N
N

N
D

N

N

D

D

N
N
N
D

Summation of numbers of carbon and halogen atoms weighted by
C:1.0, F:0.5, Br:1.5, and I:2.0

Total number of N and O atoms
Proximity effect of N/O;XMY:2.0, XMAMY:1.0 (X,Y:N/O,

A:C,S, or P) with a correction (–1) for carboxamide/sulfonamide
Total number of unsaturated bonds except those in NO2

Dummy variable for the presence of intramolecular hydrogen
bonds as ortho MOH and MCOMR, MOH and MNH2 and
MCOOH, or 8-OH/ NH2 in quinolines, 5- or 8-OH/ NH2 in
quinoxalines, etc.

Number of aromatic polar substituents (aromatic substituents ex-
cluding ArMCX2M and ArMCXBC�, X: C or H

Amphoteric property; 	-amino acid, 1.0, aminobenzoic acid, 0.5,
pyridinecarboxylic acid, 0.5

Dummy variables for alkane, alkene, cycloalkane, cycloalkene (hy-
drocarbon with 0 or 1 double bond)

Dummy variable for the presence of ring structures except benzene
and its condensed rings (aromatic, heteroaromatic, and hydro-
carbon rings)

Quaternary nitrogen: �N�, 1.0; N oxide, 0.5
Number of nitro groups
Isothiacyanato (MNBCBS), 1.0; thiocyanato (MSMCBMN), 0.5
Dummy variable for the presence of �-lactam

a N, numerical variable; D, dummy variable; takes a value of 1 if the molecule contains a certain sub-
structure (e.g., if a ring is present, the RNG dummy variable gets a value of 1) or a certain feature (e.g.,
for the presence of intramolecular hydrogen bond a value of 1 is assigned).



In this equation t is the t statistic for the coefficients, n the number of compounds,
r the correlation coefficient, and s standard deviation of the estimation error. The
higher t-statistic values in the hydrophobic term (CX)0.6 and hydrophilic term
(NO)0.9 indicate that log P depends predominantly on these two nonlinear terms.
The application of this method was also demonstrated. The utility of this method
is illustrated by the following example, in which the approach is used to calculate
log P for ampicillin (XV).

Molecular formula: C16H19N3O4S
CX � 1.0 � 16 (for C16) � 16.0
NO � 3  4 (for N3O4) � 7.0
PRX � 1.0 (for —CO—NH—)  1.0 (for —CO—N�)

 2.0 (for —CO—OH) � 4.0
UB � 6.0 (for 6 double bonds) � 6.0
RNG � 1.0 (for ring) � 1.0
BLM � 1.0 (for �-lactam) � 1.0
calculated log P � 1.244 � (16.0)0.6 � 1.017 � (7.0)0.9  0.406 � 4.0 

� 0.145 (6.0)0.8 � 0.392 � 1.0  0.773 � 1.0 � 1.041
� 1.06

CLOGP � 1.35 and experimental log P � 1.00

2. Prediction of pKa Values

A simple Hansch-type equation was reported by Mor et al. for a series of 4(5)-
phenyl-2-[[2-[4(5)-imidazolyl]ethyl]thio]imidazoles (see structure XIII) correlat-
ing pKa values with simple Hammett � parameters (152):

pKa � �1.17(�0.15) �  4.18(�0.06)

n � 11, r2 � 0.865, s � 0.161

The negative coefficient of the electronic term � indicates that electron-with-
drawing groups at X increase acidity. Absence of any hydrophobic or steric terms
indicates that the ionization of these compounds depends primarily on the elec-
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tronic effect. An attempt to separate inductive (F) and resonance effects (R) did
not produce any substantial improvement to the correlation:

pKa � �1.41(�0.24) F � 0.943(�0.249) R  4.27 (�0.10)

n � 11, r2 � 0.885, s � 0.157

3. Prediction of Aqueous Solubility

A six-descriptor QSPR model for aqueous solubility (SW) of a large data set (411
compounds) was proposed by Katritzky et al. (149) using the program CODESSA
(153):

log(Sw) � �16.1(�0.7) Qmin � 0.113 (�0.005) Nel  2.55(�0.22)

� FHDSA(2)  0.781(�0.064) ABO(N)  0.328(�0.037)
0SIC � 0.014(�0.002) RNCS � 0.882(�0.138)

n � 411, r2 � 0.879, s � 0.573, r2
cv � 0.874

where Qmin (charge on the most negative atom) and RNCS (relative negative-
charged surface area) are electrostatic descriptors, Nel (number of electrons) and
ABO(N) (the average bond order of nitrogen atoms) are quantum chemical de-
scriptors, and 0SIC is a topological descriptor and represents the structural infor-
mation content of zeroth order; FHDSA(2) is the fractional hydrogen donor sur-
face area descriptor. The t-test results show that Qmin and Nel are the two most
important contributing descriptors.

B. Biological Activity

1. Antiulcer Compounds

A report by Kamenska et al. (154) elegantly demonstrated the utility of QSAR
models developed for the H2-receptor antagonist data (pA2) of 14 N-[3-[3-(1-
piperidinomethyl)phenoxyl]propyl]amines (XVI) in predicting the activity of a
series of new compounds belonging to N-[3-[3-(1-piperidinomethyl)
phenoxyl]propyl]benzamides (XVII). The in vivo activity corresponded well to
the in vitro activity predicted from different QSAR models. The physicochemical
parameters used in the computer program OASIS were used. The best four mod-
els were as follows:
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pA2 � 22.96(�4.17) � 85.03(�12.16) SE
11 � 1.445(�0.504) �HOMO

n � 12, R2 � 0.85, s2 � 0.25
pA2 � 34.34(�4.92) � 89.06(�16.91) SE

11  2.148(�1.131) I�

n � 12, R2 � 0.79, s2 � 0.35
pA2 � �29.37(�7.75)  148.1(�29.63) SN

11  3.354(�1.364) I�

n � 12, R2 � 0.77, s2 � 0.37
pA2 � 32.12(�5.49) � 72.64(�12.16) SE

11 � 0.200(�0.20)log P

n � 12, R2 � 0.74, s2 � 0.44

where n is the number of data points, R2 is the coefficient of determination, and s2

is the variance; �HOMO, SE
11 and SN

11 are electronic parameters and represent ener-
gies of the highest occupied molecular orbitals, donor and acceptor superdelocal-
izability at position 11 (see XVI and XVII), respectively, and log P, the hy-
drophobicity parameter, was calculated by the Ghose and Crippen method (155).
The models showed dominance of electronic effects on pA2 activity. The negative
coefficients in �HOMO and SE

11 terms indicate that the pA2 activity depends on the
donor (acceptor) properties of the molecule, especially, at the NH reaction site at
position 11. This analysis is consistent with the finding that the H2-receptor activ-
ity depends on this NH group to form H bonds with the receptor. The dependence
of activity on log P, though, reflects the receptor interactions, but a very low co-
efficient with poor confidence interval value makes it virtually negligible. The
most notable feature of the study is that the QSAR models correctly predicted that
two of the most active compounds in vitro also would be most active in the in vivo
assay system.

2. Calcium Channel Activator

In another example for QSAR guided synthesis, a potent calcium channel activa-
tor was discovered (156). A QSAR model was developed for the inotropic activ-
ity “force EC50” (concentration required to increase developed tension to 50% of
the isoprenaline maximum) of a series of benzoylpyrroles using the simple hy-
drophobic substituent constant � and the Verloop STERIMOL parameter Bx cor-
responding to the width of the substituent opposite to the minimum width B1

(104):

log��fo1
rce
�� � 0.42(�0.15) �  0.33(�0.19)Bx � 1.97

n � 8, r2 � 0.79, s � 0.22

where [force] is the “force EC50” as defined before. According to the model, in-
creased force potency is expected by simply increasing the lipophilicity and size
of the substituent at position 2. (All the substituents in the data set were at posi-
tion 2.) The authors selected the benzyl group for possible synthesis because it has
large � (2.01) and Bx (6.02) values. According to the equation, the predicted
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“force EC50” value was 0.14 �M. After synthesis and testing, the compound
showed a “force EC50” value of 0.049 �M, an 80% increase over the most potent
compound tested in the original data set.

These examples show the utility of QSAR methods in drug design.

C. Toxicity

1. Mutagenicity and Carcinogenicity

Evaluation of mutagenicity (carcinogenicity) is one of the important steps before
compounds can be marketed as drugs. The establishment of the test system by
Ames (157) opened up a great opportunity to assess the potential toxicity of thou-
sands of industrial pollutants, chemical, and drugs. Several studies on QSAR of
mutagens and carcinogens have been reported. With the advent of combinatorial
synthesis and high throughput screening (HTS), millions of compounds are now
considered for drug discovery. Therefore, predictive QSAR models for toxicity
(including mutagenicity and carcinogenicity) will be more important for the drug
design process than ever before.

Hansch’s group reported a QSAR study of a series of triazenes (XVIII)
tested against Salmonella typhimurium TA92 with S9 activation (158). The tri-
azenes have been used for the treatment of melanoma. The equation shows that the
mutagenicity of this class of compounds can be explained by hydrophobicity (log
P) and the through-resonance electronic term � as follows:

log��
C
1

�� � 1.04(�0.17) log P � 1.63(�0.34) �  3.06(�0.43)

n � 17, r2 � 0.949, s � 0.315

where C is the molar concentration of triazenes producing 30 mutations above
background in 108 bacteria.

Because of the unavailability of � parameters, Shusterman et al. later used
MO-generated parameters (�LUMO and qN HOMO) to accommodate more com-
plex triazene molecules for QSAR studies (159).

The mutagenicity of aromatic nitro and amino compounds has been studied
extensively for QSAR model development (68,73,160–169). These groups are
present in many chemicals, pharmaceutical compounds, and environmental pollu-
tants and in compounds from grilled meat. In a study with a large number of data
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sets on aromatic nitro compounds, Debnath et al. reported the following equation
(160):

log TA98 � 0.65(�0.16) log P � 2.90(�0.59) log (� � 10log P  1)
� 1.38(�0.25) �LUMO  1.88(�0.39) I1 � 2.89(�0.81) Ia

� 4.15(�0.58)

n � 188, r2 � 0.810, s � 0.886, log P0 � 4.93(�0.35), log � � �5.48

Here TA98 is the number of revertants per nanomole of nitro compounds, �LUMO

is the energy of the lowest unoccupied molecular orbital as calculated by AM1, I1

is an indicator variable with a value of one for all compounds with more than two
fused rings, and Ia is an indicator variable for five compounds containing acen-
thrylene rings.

The �LUMO term indicates that lower the energy of the lowest unoccupied
MO, the better that LUMO can accept electrons and facilitate the reduction pro-
cess of the nitro group, which was thought to be important for the mutagenic ac-
tivity of this class of compounds. The bilinear relationship with log P shows that
the mutagenic potential is also enhanced with hydrophobicity up to a certain limit
and falls sharply over a value of around 5.0.

2. Phenol Toxicity

Selassie et al. reported an elegant study delineating the mechanism of toxicity of
phenols in leukemia cells (170). In a large series of simple substituted phenols,
two “novel and unusual” QSARs emerged. When only electron-releasing sub-
stituents were considered, both hydrophobicity (log P) and the electronic param-
eter � were found to be important:

log��
IC

1

50
�� � �1.58(�0.26) �  0.21(�0.06) log P  3.10 (�0.24)

n � 23, r2 � 0.898, s � 0.191

In this equation, IC50 is the concentration of phenols required to reduce inhibition
of growth by 50%, log P is the hydrophobicity parameter, and � is Brown’s mod-
ified Hammett electronic parameter. Two substituents, 3-NH2 and 4-NHCONH2,
had to be omitted to derive the model.

The QSAR on electron-attracting substituents did not show any dependence
on the electronic parameter. A simple equation with the log P term could explain
most of the variance:

log��
IC

1

50
�� � 0.62(�0.16) log P  2.35(�0.31)

n � 15, r2 � 0.845, s � 0.232
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One compound (3-OH) had to be omitted. The study clearly demonstrated that for
two different categories of substituted phenols, two types of mechanism were op-
erative for toxicity against leukemia cells. For electron-releasing substituents, for-
mation of radicals probably dominates in the toxicity process, whereas for elec-
tron-attracting substituents the process is probably governed by nonspecific
toxicity as manifested by dependence on a sole hydrophobicity term.

Selassie’s group has reported an improved QSAR model on a much larger
data set of phenols; homolytic bond dissociation energy (BDE) served as the elec-
tronic parameter, and log P was used (171). BDE was found by this group to be a
superior parameter to � and it directly measures the thermodynamics of phe-
noxyl radical formation. The model is represented by the following equation:

log��
C
1

�� � �0.19(�0.02)BDE  0.21(�0.03)log P  3.11(�0.10)

n � 52, r2 � 0.920, s � 0.202; q2 � 0.909

As in the preceding study, only electron-releasing substituents were used to derive
the equation. The coefficient in log P has identical values in both the equations.
The introduction of BDE parameter helped the inclusion of a large variety of phe-
nols, including naphthols, in the equation.

D. Pharmacokinetics

Absorption, distribution, metabolism, and excretion (ADME) play an important
role in designing drugs with the most desirable properties. Often, a candidate drug
that exhibits potent activity in in vitro systems fails to show the desired clinical ef-
fects in later stages of development and must be abandoned. To avoid this situa-
tion, application of ADME in the early stage of drug development is getting con-
siderable attention now a days (172,173). QSAR has been shown to be a useful
tool in using pharmacokinetics data to develop predictive ADME models (for an
excellent compilation of QSAR models, see Ref. 174) and can be of great use in
decision making on the potential of a compound to have ideal pharmacokinetic
profiles. This is a vast subject, which is not reviewed here. Instead, a few exam-
ples are presented to introduce the new practitioner of QSAR to the use of these
methods in structure–pharmacokinetics relationship studies. A number of excel-
lent articles have been published on this topic (174–179).

Recently, Clark reported a simple correlation model for the prediction of
blood–brain barrier (BBB) penetration from a large set of organic molecules us-
ing polar surface area (PSA) and calculated log P (180). The degree of BBB pen-
etration is usually expressed as the logarithm of the ratio of concentrations of com-
pounds in the brain and in the blood as log (Cbrain/Cblood) or simply as log BB. The
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model was developed with training set of 57 compounds and validated with two
different test sets. The following equation shows the QSAR model:

log BB � �0.0148 (�0.001) PSA  0.152

� (�0.036) c log P  0.139 (�0.073)

n � 55, r � 0.887, s � 0.354

Two compounds were dropped to derive the model. The negative coefficient in
PSA (PSA is an indicator of compound’s ability to form hydrogen bonds) and the
positive coefficient in c log P indicate that compounds that form fewer hydrogen
bonds with the solvent and are more lipophilic will be most likely to penetrate to
the brain.

Seydel et al. described studies on the relationship between the rate of elim-
ination (Ke) from the body of a series of ortho-, meta-, para- and ortho, para-sub-
stituted sulfapyridine (XIX) derivatives with physicochemical parameters (181).
The elimination of the compounds was measured in rats by analyzing blood sam-
ples after intravenous injection of 50 mg of compounds per kilogram of body
weight. The lipophilicity parameter 
Rm, the acid dissociation constant pKa, the
indicator variable I, and the Taft Es parameters were used in the correlation
studies.

The correlation study for para- and meta-substituted derivatives provided the fol-
lowing equation:

log Ke � �0.58(�0.1)
Rm  0.31(�0.03) pKa � 3.03

n � 9, r � 0.98, s � 0.12

When ortho- and ortho, para-substituted derivatives were considered, the follow-
ing QSAR was obtained:

log Ke � �0.83(�0.12)
Rm  0.16(�0.05) pKa � 1.53

n � 10, r � 0.94, s � 0.19

The combined data of these two series of compounds yielded the following
equation:

log Ke � �0.77(�0.09)
Rm  0.23(�0.03) pKa  0.26(�0.096)I � 2.8

n � 19, r � 0.95, s � 0.18
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In this equation, I is the indicator variable and has a value of 1 for all ortho-sub-
stituted compounds and 0 for meta- or para-substituted derivatives. The indicator
I could be replaced by the Es parameter and probably represents the steric effect
of ortho-substituted compounds. About 90% of the variance could be explained
just by the lipophilic and electronic terms.

VI. ROLE OF DIFFERENT DESCRIPTORS (PARAMETERS)
AND QSAR IN LIBRARY DESIGN

The introduction of combinatorial chemistry and high throughput screening tech-
nology in drug discovery has enabled the generation of enormous amounts of data
in a very short period of time. If the database is not selected properly, these ran-
dom screening techniques may generate redundant information, and a huge num-
ber of compounds may be produced that do not represent a sufficiently diverse set
of unique compounds. Eventually, the entire process may not be cost-effective. To
circumvent these problems, several useful and important techniques have been de-
veloped to optimize the diversity and to select druglike compounds with desirable
physicochemical properties from a large database or combinatorial library.
Though these methods cover a diverse array of techniques, we will concentrate on
the use of some of the descriptors and QSAR methods for designing combinato-
rial libraries and for analyzing their molecular diversity.

A. Separation of Druglike Molecules and Nondrugs from
Large Database

For the last few years, it has been realized that understanding the “druglikeness”
of chemical compounds with appropriate physicochemical properties in a
database is important and can be of great use for designing combinatorial li-
braries or for selecting compounds from a large database for screening
(43,182–184).

Lipinski et al. at Pfizer formulated the “rule of five” as a guiding tool to se-
lect drugs that should have a high probability of being orally available (185). This
rule was established after analysis of a set of calculated properties of 2245 drugs
in the World Drug Index (WDI) database. According to this rule, a compound is
likely to have poor absorption and permeation properties when number of hydro-
gen bond donors (any N—H, O—H) exceeds 5, the number of hydrogen bond ac-
ceptors (any N, O) exceeds 10, the molecular weight (MW) exceeds 500, and the
calculated octanol/water partition coefficient (c log P) exceeds 5. This general
rule applies to the majority of the drugs except for substrates for biological trans-
porters. Though this rule is not directly used to classify drugs and nondrugs, it can
be used to design combinatorial libraries or select compounds with ideal proper-
ties for screening.
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Ajay et al. used a Bayesian neural network (BNN) to distinguish drugs from
nondrugs in the Comprehensive Medicinal Chemistry (CMC) database, contain-
ing mostly druglike molecules, and in the Available Chemical Directory (ACD),
containing mostly nondruglike molecules (43). They have used seven one-dimen-
sional descriptors, namely log P, molecular weight (MW), number of hydrogen
bond donors (ND), number of hydrogen bond acceptors (NA), number of rotatable
bonds (NR), aromatic density (AR), kappa index (2�	, representing the degree of
branching), and 166 two-dimensional descriptors (keys) based on ISIS (Integrated
Scientific Information System) fingerprints, to train a set of 3500 compounds se-
lected by random partitioning from both the CMC and ACD databases. The seven-
descriptor set predicted over 80% of the CMC compounds correctly as potential
drugs, while a large number (30%) of compounds from ACD were classified as
druglike. The performance with two-dimensional descriptors was better, but the
best prediction was obtained when investigators uses a combination of one- and
two-dimensional descriptors. The BNN method correctly classified 90% of the
compounds from the CMC database, while it misclassified only 10% of the com-
pounds in the ACD database. The extrapolation ability of the model was also
demonstrated by the fact that it classified 80% of the molecules in the MDDR
(MACCS-II Drug Data Report) database as druglike.

Atom descriptors (186) were used by Sadowski et al. (182) in a feedforward
neural network method to develop a scoring scheme. These scoring functions
were used to distinguish drugs from nondrugs in two large databases, ACD (con-
taining 169,331 compounds) and World Drug Index (WDI), containing 38,416
compounds. This method successfully classified 77% of the compounds in the
WDI database as drugs and 83% of the compounds in the ACD database as non-
drugs. The robustness of the method was further ascertained by omitting from the
training set four categories of drugs in the WDI database (hormones and antago-
nists, and drugs affecting the nervous system, blood and cardiovascular, and res-
piratory system). The model developed with the rest of the compounds mostly cor-
rectly classified all these compounds as drugs.

Gillet et al. used the calculated property profiles (e.g., molecular weight, the
2�	 shape indices, number of aromatic rings, rotatable bonds, hydrogen bond
donors, and hydrogen bond acceptors) as a tool to differentiate between druglike
molecules in the WDI database (14,861 active molecules) from nondruglike
molecules in the SPRESI database (16,807 inactive molecules) (187). A genetic
algorithm approach for generating optimal weighted scores of the profiles was
used to rank unknown libraries of molecules for the probability of having biolog-
ical activity. The authors have applied these druglike profiles to unknown sets
consisting of NCI AIDS antiviral compounds, a dictionary of natural products,
and the Glaxo Wellcome proprietary database, and they report three to five times
enhancement over the random selection methods in finding the active molecules
from inactive ones.
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Ghose et al. recently described a knowledge-based approach for designing
combinatorial (or large) libraries containing “druglike” molecules (184). They an-
alyzed the physicochemical properties and structural characteristics of the
molecules in a commercially available database, the Comprehensive Medicinal
Chemistry (CMC) database, and developed a consensus definition of “druglike”
properties of a molecule. A total of 6304 different drugs that belong to seven dif-
ferent groups (based on diseases they affect) were analyzed for their calculated log
P, molecular refractivity (MR), molecular weight (MW), and number of atoms.
The log P and MR values were calculated using the ALOGP and AMR method,
respectively, of Ghose et al. (83,188). Two sets of ranges for the physicochemical
properties were determined based on drug molecules available in the CMC
database: (1) qualifying ranges (80% of the drugs in the database belonged to this
group) and (2) preferred ranges (50% of the drugs belonged to this group). The
qualifying range for calculated log P of the druglike molecules in the CMC
database was �0.4 to 5.6, whereas the preferred range was 1.3–4.1. The ranges for
other physicochemical properties were also determined. The ranges can be used
as a guiding tool to select druglike molecules from other databases. The ranges de-
termined for seven most important categories of drugs can be useful when one is
selecting druglike molecules for those particular targets.

The authors provided a succinct picture of the physicochemical characteris-
tics of different classes of drugs and described the characteristics of the drugs that
did not fall within these values. The authors also evaluated the presence or absence
of rings, special functional groups, or any particular substructure in a specific
class of drugs. This information is expected to be useful in designing combinato-
rial libraries or selecting compounds from libraries with appropriate physico-
chemical properties.

A recent study (123) reported classification methods to separate active and
inactive compounds in a diverse large database. A number of classification tech-
nique, (e.g., discriminant analysis, recursive partitioning and hierarchical ag-
glomerative clustering, and standard topology-based descriptors generated using
the Molconn-X program and binary structural keys from the ISIS programs) were
used to identify ACE inhibitors, �-adrenergic antagonists, and H2-receptor antag-
onists from the CMC database. The discriminant-based classification approach
showed better results in correctly identifying active compounds, while the binary
structural keys from the ISIS program showed better performance in classifying
inactive compounds.

B. Molecular Diversity Analysis

Physicochemical parameters have been used to assess the diversity of combina-
torial libraries (131,189). An oligo(N-substituted)glycine (NSG) peptoid combi-
natorial library based on the tyramine submonomer was reported by Martin et al.
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(189). A set of 15–20 descriptors representing lipophilicity, shape and branch-
ing, chemical functionality, and receptor recognition descriptors, such as hydro-
gen bond donors, hydrogen bond acceptors, and aromatics, were used for diver-
sity analysis of a pool of 721 primary amines and 1133 carboxylates. The
D-optimal design technique (190) was used to design the library with optimal
diversity.

Shemetulskis et al. used calculated physicochemical properties of chemi-
cals, such as CLOGP, CMR, and CDM (electronic dipole moment) for two com-
mercial databases, Chemical Abstracts structural database (CAST-3D) and May-
bridge (MAY), to compare the diversity space in their corporate database (CBI)
(131). A clustering technique was used to analyze the diversity. This technique,
which is useful in helping to select compounds from different databases to en-
hance the diversity space in an existing database, may increase the chances of
finding novel lead compounds.

Lewis et al. reported the use of molecular descriptors to generate a novel di-
versity property descriptor (DPD) code for the selection of a diverse set of com-
pounds from combinatorial libraries for biological screening. Six descriptors (H
acceptor, H donor, flexibility, electrotopological index, c log P, and aromatic den-
sity) were used (191).

C. Application of QSAR in Library Design

1. Inverse QSAR

An inverse QSAR method implemented in a new library design technique, known
as Focus-2D, has been recently reported by Cho et al. to rationally design a virtual
peptide combinatorial library (192,193). A preconstructed QSAR served as one of
the methods to select compounds with high predicted activity in a virtual library.
The method was validated by developing a QSAR equation using the GA-PLS
(genetic algorithm–partial least-squares) method from a training set of 28
bradykinin-potentiating (BK) pentapeptides and predicting the activity of the two
most active peptides from the equation. These researchers used topological de-
scriptors, calculated by the Molconn-X program, as well as several amino acid
based descriptors (Z1, Z2, and Z3) (194) related to hydrophobicity; bulk, and elec-
tronic properties, respectively, and isotropic surface area (ISA) and electronic
charge index (ECI) (195). Significant cross-validated correlation coefficients and
low standard error of predictions were achieved with both studies (i.e., The one
based on topology and the one based on amino acid descriptors). The method sug-
gested a number of amino acids as the preferred building blocks. These amino
acids were also present most frequently in the known active BK peptides. The re-
sults obtained from the training set of 28 pentapeptides were used to extrapolate
on a theoretically possible (3.2 million) pentapetides and comparable results were
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obtained. Since the training set population was very small compared to the theo-
retically possible peptides, a modified “degree of fit” condition was used to con-
trol the degree of extrapolation by excluding peptides that are structurally too dis-
tant from the training peptides.

2. Artificial Neural Network (ANN)

Burden and Winkler (52) recently reported the use of a multilayered feedforward
network trained by back-propagation methods to develop a benzodiazepine vir-
tual receptor for screening a 40,000-compounds database from Maybridge. A di-
verse set of 321 compounds belonging to benzodiazepines, arylpyrazoloquino-
lines, �-carbolines, imidazopyridazines, and cyclopyrrolones with reported
biological activity (pI50) was separated into a training set (270 compounds), a
validation set (30 compounds), and a test set (21 compounds). The input pa-
rameters for the neural nets were based on simple atomistic and functional group
representations of the molecules. The 21 input parameters were C(aromatic), C-4,
C-3, C-2, N(aromatic), N-3, N-2, N-1, O-2, O-1, S, P, Cl, F, Br, I, seven-membered
rings, six-membered rings, five-membered rings, four-membered rings, and
three-membered rings. The best results were obtained with a five-layered
(21:8:5:3:1) network with a low rmse (root mean square error) value and a cor-
relation coefficient r of 0.794.

3. Binary QSAR

Introduction of combinatorial chemistry for designing large libraries compelled
researchers to discover rapid robotic methods for assaying literally millions of
compounds in a short period of time. This rapid method is referred to as high
throughput screening (HTS). Often, this method just generates yes/no (active/in-
active; pass/fail) data, and the results are prone to error. Current QSAR method-
ologies require less heterogeneous compounds with continuous activity data and
lower error margins to have any predictive value. To overcome methodological
problems in current QSAR techniques and to handle such a huge amount of binary
data from HTS, Labute (196) introduced a method termed “binary QSAR” to han-
dle binary measurement data from HTS. Two very recent reports described the
successful use of this method for analyzing large sets of binary data (197,198).
This method is expected to help in extracting important structural information re-
quired for biological activity and to design more focused libraries for drug dis-
covery. For methodological details, readers are referred to recent articles by
Labute’s (196) and Gao et al. (198). The flowchart of the method is shown in
Fig. 2.

The performance of the QSAR model is measured by evaluating three lev-
els of prediction from the model. If m0 is the number of inactive compounds, m1

is the number of active compounds, c0 is the number of correctly predicted inac-
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tive compounds, and c1 is the number of correctly predicted active compounds by
the model, then:

100(c0 /m0) represents the percentage accuracy for active compounds
100(c1 /m1) represents the percentage accuracy for inactive compounds
100(c0  c1)/(m0  m1) represents the percentage of overall accuracy for all

compounds

The first report concerning the application of binary QSAR to a drug dis-
covery problem involving the QSAR analysis of estrogen receptor ligands was
published by Gao et al. (198) in 1999. The binding data, log RBA (relative bind-
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ing affinity) for 463 different estrogen analogs, were selected from the literature
and converted to binary data based on certain threshold criteria of activity. Specif-
ically, if the activity of certain compounds was equal to or greater than the thresh-
old value, any such compound was considered to be active; the rest were classi-
fied as inactive. Four hundred and ten compounds were selected for the training
set and 53 were used as a test set to validate the model. Thirteen different molec-
ular descriptors were used: four Kier and Hall connectivity indices (�), three Kier
shape indices (�), one flexibility index (�), one total hydrophobic surface area
(ASA-H), one aromatic bond (b-Ar) descriptor, one charge descriptor (peoe-PC),
and two indicator variables. Principal component analysis (PCA) was used with a
smoothing function to derive the model. The best non-cross-validated model ac-
curately predicted 85% of the active and 93% of the inactive, whereas the cross-
validated model predicted 76% of active and 93% of inactive compounds. The
model was validated on the test set, and 78% of the active compounds and 98% of
the inactive compounds were correctly predicted with an overall accuracy of 94%.

The advantages and disadvantages of the binary QSAR method also were
addressed by Labute (196). The method should be useful for selecting (prioritiz-
ing) compounds for HTS, for designing focused combinatorial libraries, and for
screening and synthesizing virtual libraries. One major drawback of this method
is the difficulty of interpreting the importance of descriptors in developing the
model.

VII. SOME EXAMPLES OF SUCCESSFUL QSAR
APPLICATIONS

The success of QSAR methodologies should not be judged by counting the num-
ber of drugs or pesticides that it helped to put on the market. QSAR plays a mul-
tifaceted role in a number of stages in the drug design process, and thus any con-
tribution of QSAR along this path should be considered a success. Moreover, drug
discovery usually takes place in pharmaceutical companies, which rarely report
successes in this area due to confidentiality restrictions. Nevertheless, it is worth-
while to briefly list (Table 3) some of the successful applications of QSAR known
from published data, to give additional  background to readers new to this field.
For detailed accounts of successful applications of QSAR methodologies, readers
may consult Refs. 101 and 199–203.

VIII. LIST OF SOFTWARE/DATABASES RELEVANT FOR
QSAR

Table 4 lists software relevant to QSAR studies, along with capabilities and
sources.
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Table 3 Successful Applications of QSAR in Developing Drugs and Herbicides

Type of agent Stage of development
(proprietary name) QSAR method used reached

Antiallergic: purinones (Zaprinast)
Antiallergic: pyranemaines
Cerebral vasodialator:

benzyldiphenylmethylpiperazines

Antibacterial: quinolone carboxylic
acid (Norfloxacin)

Antihypertensive: quinazolines
(MY-5561)

Anti-inflammatory: furoindole
carboxamides

Anticancer: acridines (m-AMSA)
Antiulcer: (Cimetidine)

Diuretics: 3-amino-1-
benzylpyrazolin-5-one
(Muzolimine)

Cardioselective �-adrenergic
blocker: (RS-51288)

Cardiotonic: (AR-L115)
Alzheimer disease: donezepil

hydrochloride (Aricept)

Antimigraine: (Lomerizine)
Herbicide: N-benzylacylamide

(Bromobutide)
Herbicide: triazinone (Metamitron)

Hansch type
Hansch type
Hansch type

Hansch type

Hansch type

Hansch type

Hansch type
Quantitative

comparison of
physicochemical
properties and
bioisosterism

Topliss procedure
(nonstatistical)

Hansch type

Cluster analysis
QSAR, molecular

modeling, molecular
shape analysis,
docking

QSAR
Hansch type

Hansch type

Clinical trial
Clinical trial
The QSAR study

helped to avoid
redundant synthesis
(the best candidate
designed by QSAR
had to be dropped
because of toxicity)

Marketed drug

Preclinical

Lead optimization

Marketed drug
Marketed drug

Marketed drug

Clinical trial

Advanced clinical trial
Marketed drug

Marketed drug
Marketed herbicide

Marketed herbicide
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Table 4 List of QSAR-Related Software, Capabilities, and Sources

Software/database QSAR-related capabilities Source (URL)

ACD/ Physicochemical
Laboratory

ADAPT

C2*QSAR

ChemPlus

CLOGP
C-QSAR

CODESSA

Galaxy

HINT
Molconn-Z

Kow Win

M-CASE, KLOGP

Molecular Analysis Pro

pKalc, PrologP,
PrologD

PCModels

Calculates pKa, log P, log D,
solubility, boiling point
and vapor pressure,
Hammett electronic
constants, liquid properties
(refraction, density, molar
volume, etc.)

Calculates descriptors,
develops QSAR

Creation of QSAR

QSAR properties

Calculates log P
Database of QSAR models,

develops QSAR

Descriptor generator, QSAR

Property calculation and
QSAR

Calculates log P, generates
molecular connectivity,
shape, and information
indices for QSAR

Calculates log P

Develops QSAR, calculates
log P

Calculates molecular
properties; QSAR

Calculates pKa, log P, and
log D

log P and polarizability
prediction

Advanced Chemistry
Development, Inc.

(www.acdlabs.co.uk)

Academic; available from
Dr. Peter C. Jurs

(zeus.chem.psu.edu)

Molecular Simulations, Inc.
(www.msi.com)

Hypercube, Inc.
(www.hyper.com)

Biobyte
(www.biobyte.com)

Semicon
(www.semichem.com)

AM Technologies, Inc.
(www.am-tech.com)

eduSoft, LC
(www.eslc.vabiotech.com)

Environmental Research
Center of Syracuse
Research Corporation

(esc_plaza.syrres.com)

Multicase, Inc.
(www.multicase.com)

ChemSW, Inc.
(www.chemsw.com)

Compudrug International,
Inc.

(www.compudrug.com)

Daylight Chemical
Information Systems, Inc.

(www.daylight.com)

continues



IX. CONCLUSIONS

The QSAR paradigm that started about 40 years ago continues to make its mark in
almost every area of the drug design process involving chemical library design and
the understanding of physicochemical properties of drugs and their pharmacoki-
netics, drug actions and mechanisms, or toxicity. Since the introduction of hy-
drophobicity in drug research by Hansch, we have learned to consider hydropho-
bicity in the transport of drugs and their bioavailability, in drug–receptor
interactions, and in many other aspects of drug actions. Lipinski’s “rule of five” is
now in everybody’s mind during the design of a drug or the selection of a drug from
a database. We have learned the concept of optimum values for hydrophobicity in
certain drug actions (e.g., drugs acting on the central nervous system). Hammett’s
� parameter in organic chemistry encouraged us to think about biological actions
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Table 4 Continued

Software/database QSAR-related capabilities Source (URL)

POLLY

ProChemist

QlogP

QuaSAR-Binary

ScilogP
SciQSAR

SIMCA

Sybyl QSAR
HQSAR

TOPIX, CLUSTER

Tsar

XlogP

Calculates molecular indices

Calculates log P, pKa,
solubility; performs QSAR

Calculates log P

Binary QSAR

Calculates log P
Creation of QSAR/ QSPR

Multivariate data analysis

Creation of QSAR
Hologram of QSAR

Calculates topological
descriptors; performs
cluster analysis

Creation of QSAR

Calculates log P

Contact Dr. Subhash C.
Basak, University of
Minnesotaa

Cadcom
(hom.worldnet.fr/cadcom)

Contact Nicholas Bodor,
University of Floridab

Chemical Computing Group,
Inc.

(www.chemcomp.com)

SciVision
(www.scivision.com)

Umetrics
(www.umetrics.com)

Tripos, Inc.
(www.tripos.com)

Software Development
Lohninger (SDL)

(www.lohninger.com)

Oxford Molecular Group
(www.oxmol.com)

Academic
(www.ipc.pku.edu.cn)

a e-mail address: slasak@wyle.nrri.vmn.edu
b e-mail address: bodorn@nervn.nerdc.ufl.edu



in terms of electronic effect and facilitated drug design. The concept of topology
has been widely used in drug design. All these and many other principles described
in this chapter contributed to the concept of rational design of drugs. Therefore, the
success of QSAR should not and must not be judged by its predictive potential for
designing new drugs. The true success of QSAR lies in the fact that the method fun-
damentally helped to motivate researchers to think rationally and to apply knowl-
edge from multidisciplinary areas to design effective drugs. As we move through
the new millennium, and the Human Genome Project matures, we will see the
emergence of new targets for drug discovery. There will be a pressing need to dis-
cover new and more selective drugs. QSAR methods, if applied judiciously, will
play an even more important and critical role in the drug discovery cycle.
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Quantitative Structure–Activity
Relationships (QSAR):

A Review of 3D QSAR

Gordon M. Crippen and Scott A. Wildman

University of Michigan
Ann Arbor, Michigan

I. INTRODUCTION

Here we consider a narrowly defined but still frequently occurring problem in
drug design that one might refer to as the unknown receptor 3D QSAR problem.
Given are the experimentally determined biological activity measurements for a
set of compounds and their chemical structures. These measured activities for all
the compounds, which are presumed to be the result of reversible binding to some
common site on some macromolecule, such as a protein, are expressed in terms of
�Gbind or some roughly equivalent scale, such as log Ki, or log IC50. While the
three-dimensional structures of these small ligand molecules may be estimated
with good molecular mechanics potentials, the three-dimensional structure of the
receptor site is unknown. (Otherwise, we are dealing with structure-based binding
modeling, quite a different problem, addressed by quite different methods: Good-
sell and Olson, 1990; Jones et al., 1997; Mankino and Kuntz, 1997; Sandak et al.,
1998). The objective is to use this given information to construct some sort of cor-
relation between ligand structure, including three-dimensional features, and the
observed activities. This relationship should map the three-dimensional structure
of a ligand into a quantitative estimate of activity that agrees well in some sense



with the observations for the training set of compounds, and it should produce use-
ful predictions for test compounds. If the only ligand features employed in the re-
lationship come from the covalent bonding of the ligand, the problem belongs to
traditional QSAR (Martin, 1978; Hansch and Leo, 1995).

The focus of this chapter is on the methodology employed in a bewildering
array of approaches going back at least 25 years (see Table 1). They share the com-
mon motivation that since the real receptor physically interacts with a three-di-
mensional ligand molecule in sometimes very specific ways that dramatically dis-
tinguish subtle isomers, the appropriate relation between structure and activity
must involve more three-dimensional features than physicochemical parameters of
substituents and indicator variables. From that common beginning, however, the
overall strategic goal splits between those who would construct a relation in terms
of such a realistic model of the receptor that prediction uses structure-based mod-
eling, versus those who seek a robust, predictive correlation that may in fact bear
little resemblance to the receptor–ligand complex when it is later determined ex-
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Table 1 Overview of 3D QSAR Methods

Paradigm Molecular Conformational
Method Realism alignment flexibility Stratagem

Receptor
Pharmacophore � User None Correlate residue–ligand

interaction to activity
YAK ���� User None Deduce receptor

structure
Distance geometry � User modes Implicit Distance interval matrix
Voronoi �� Automatic Implicit Search over interaction

energy
Egsets �� Automatic Implicit Search over partition

modes
Egsite � Automatic Implicit Search over site

geometry
EGSITE2 � Automatic Sampled Mixed integer program

Ligand
MSA �� User reference Sampled Overlap on reference
MTD �� User reference None Hypermolecule vertex

activity
REMOTEDISC � Automatic Sampled Primary site point

occupancy
CoMFA �� User None PLS and grid field
Molecular similarity �� User None PLS and grid field
Compass � Automatic Sampled Neural net and grid field



perimentally. As we will see, the degree of realism in a receptor model is not nec-
essarily reflected in the predictive power. These differences in overall goal may af-
fect the paradigm underlying a method. In the first extreme, the idea is to construct
a model of the receptor site at some level of realism by deductions made from the
given ligand structures and activities. The other extreme concentrates on the ligand
structures, reasoning that there must be common features found in the active
molecules and other features found only in the inactive ones. While the receptor
recognizes these features, they are properties of the ligands, not the receptor site.

Whatever the goal and paradigm a method subscribes to, there is a broad
range along the subjective/objective axis. At the subjective extreme, the user may
have to guess practically all features of the QSAR, and the computer algorithm
may do little more than quantitatively assess the quality of the guess. At the ob-
jective extreme, the user inputs the observed activities and covalent structures of
the ligands, and the algorithm deduces the receptor structure in full detail, includ-
ing the positioning of each ligand in the site, as well as a complete model for the
energetics of their interaction. Typically, the earlier methods have many subjec-
tive features, and even the most recent ones are not completely objective. Greater
objectivity requires more CPU time, so a key feature of many methods is the par-
ticular stratagem used to make the approach computationally feasible.

In what follows, we will first cover some of the receptor paradigm methods,
and then some of the ligand paradigm. In either case, important features are the
subjectivity/objectivity level and the stratagems employed.

II. RECEPTOR PARADIGM

A. Realistic Receptors

1. Pharmacophore

Before 3D QSAR there was the concept of the pharmacophore, a constellation of
a few special atomic groups in fixed relative positions, such that possessing the
pharmacophore is a requirement for high activity (Golender and Vorpagel, 1993;
Wermuth and Langer, 1993). Höltje and Kier (1974) started from a three-point
pharmacophore associated with sweet taste and a homologous series of com-
pounds sharing two of the required pharmacophore groups and varying the struc-
ture of the third. They found a particular positioning of a particular amino acid
sidechain, tyrosine, such that the observed activity correlated well with the calcu-
lated enthalpy of interaction between the sidechain and the third pharmacophoric
group. While this approach appears to be motivated by a desire to move away
from a completely empirical pharmacophore toward at least a sketchy view of part
of the receptor, the adjustment goal was clearly centered on good correlation,
rather than realistic portrayal of the binding site.
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2. YAK

The logical extrapolation of placing one amino acid sidechain of a receptor model
is to place many, preferably connected to some extent with peptide bonds (Höltje
et al., 1993). One method of constructing such minireceptors or pseudoreceptors
(Snyder et al., 1993) is YAK, which begins with a user-supplied superposition of
active ligands and uses a combination of forcefields and knowledge extracted
from the Protein Data Bank to place residues of likely types around the superim-
posed ligands at likely positions. The general goal of such a study is to deduce the
structure of the real receptor, rather than produce a correlation between activity
and calculated interaction between a ligand and the site model. Furthermore, the
result may well depend strongly on the superposition supplied to YAK. While that
need not be a pure guess on the part of the user, the superposition step is external
to the method and thus counts as a subjective factor. In one successful validation
study (Vendani et al., 1993), the superposition was determined from the crystal
structure of a protein–ligand complex, and then YAK reproduced many features
of that same protein’s binding site.

B. Abstract Receptors

1. Distance Geometry

For n atoms there are 3n coordinates and n(n � 1)/2 interatomic distances, yet dis-
tances are sometimes more convenient to work with. Suppose the receptor site is
represented as a few “site points” described in terms of their interpoint distances
plus or minus some flexibility factor �, and a conformationally flexible molecule
is described as interatomic distance intervals, [lij, uij], taken over a survey of low
energy conformations. Then if atom i is supposed to lie at site point I and atom j
at site point J, a necessary condition is simply that the intervals [lij, uij] and [dIJ �
�, dIJ � �] overlap. Let a binding mode denote which atom is supposed to be in
contact with which site point, allowing for unoccupied site points and unused
atoms, and a maximum occupancy of one atom at a site point (Fig. 1). Although
no elaborate superposition calculation is required to check the necessary geomet-
ric conditions for a mode, these distance conditions are not sufficient. It may be
impossible to find site point coordinates satisfying a given set of dIJ � �, and there
may be no single conformation having interatomic distances in all the required
overlap intervals. In practice, however, standard distance geometry methods
(Crippen and Havel, 1988) are usually successful at producing coordinates of the
site points for visual display.

The calculated binding or activity is assumed to be a sum of interactions be-
tween the atoms matched with site points and those site points. To speed subse-
quent calculations and to keep down the number of adjustable parameters, atoms
in the ligands are grouped together into a few united atoms (common ring struc-
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tures, functional groups, etc.). Likewise, the user assigns site points to a few dif-
ferent types. Thus the adjustable parameters are a table of interaction energies de-
pending on the united atom type and on the site point type. The objective is a least-
squares fit of observed and calculated activities as a function of the adjustable
interaction parameters. A touch of realism is added by permitting the model lig-
ands to try all the different geometrically allowed binding modes, just as the real
ligand at equilibrium occupies the real receptor site predominantly in the orienta-
tion and internal conformation that is energetically most favored.

The original distance geometry 3D QSAR (Crippen, 1979) was very sub-
jective in that the user had to choose a number site points of specified types in a
certain geometry, group ligand atoms into a few united atoms, and propose opti-
mal binding modes for each ligand. Only then did the algorithm take over, adjust-
ing the energy parameters for a least-squares fit and exhaustively searching all ge-
ometrically allowed modes to determine what binding mode of each ligand was
actually optimal, given the current energy parameter values.

There followed a long series of steps toward greater objectivity. Congeneric
series of ligands could be easily decomposed automatically into a small set of
shared united atoms (Crippen, 1980). Adjustment of the energy parameters be-
came much simpler with the introduction of quadratic programming, which is a
general procedure for optimizing a quadratic function subject to linear inequality
constraints. Here the optimization is still the least-squares fit of observed versus
calculated activities, given the user’s proposed optimal binding modes. The con-
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Figure 1 Schematic example of a distance geometry site with two molecules superim-
posed.



straints are that the proposed optimal modes are indeed better than other geomet-
rically allowed modes. Next (Crippen, 1981), interatomic distance intervals were
automatically determined by a coarse systematic search over rotatable bonds with
steric bump checking. This step also aids the user’s choice of united atoms. Auto-
matic recognition of conformationally independent chiral quartets of atoms per-
mitted construction of stereospecific site models in terms of intersite point dis-
tance matrices and noting chirality of some quartets of site points.

In fact, the user’s suggested binding modes can be guided in part by the
same decomposition algorithm applied to even sets of chemically diverse ligands
(Crippen, 1982), and then these modes imply intersite point distance constraints,
so that the site geometry can be determined from the proposed modes. Refinement
of this procedure (Ghose and Crippen, 1982) produces more clearly defined site
geometries. The initial dependency on suggested binding modes was relaxed sub-
sequently by an automatic procedure for revising the proposed modes so as to im-
prove the fit (Ghose and Crippen, 1983a, b).

Up to this point, predictions were limited to molecules that could be viewed
as constructed from the same set of united atoms found in the training set. On the
basis of covalent structure, one can assign atomic physicochemical parameters
such that the sum of the atomic hydrophobicities accurately match experimental
values for the octanol/water partitioning coefficient logP, and summed atomic po-
larizability properties match experimental molar refractivities (Ghose et al.,
1987). Thus instead of modeling the calculated activity as Gcalc � �contacts e(tA,
ts), where tA is the type of the united atom positioned at the contacted site point
having type ts, it can be expressed as still a linear combination of atomic hy-
drophobicities ha, atomic refractivities ma, and partial charges qa for those atoms
constituting the united atoms in the contacts for that binding mode, and the corre-
sponding three adjustable parameters (eh, em, eq) for site points of those types.

Gcalc � ∑
contacts

∑
a 	 A

[haeh (ts) � maem(ts) � qaeq(ts)] (1)

That way, the model can be tested with novel compounds as long as their con-
stituent atoms can be assigned physicochemical parameters (Ghose and Crippen,
1985a).

The distance interval matrix stratagem certainly saved a lot of computa-
tional expense in trying out different binding modes, but the conditions checked
were only necessary, not completely sufficient. For example, there may be an en-
ergetically reasonable conformation of a molecule such that a particular pair of
atoms are at their distance of closest approach, lij, and some other conformation
gives their greatest separation, uij; but there may well be intermediate distances in
the interval [lij, uij] that are found in no allowed conformation. An improvement
on this (Ghose and Crippen, 1985b) represents a conformationally flexible ligand
by a set of distance interval matrices, each covering a smaller patch of energeti-
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cally allowed conformation space without including so many disallowed confor-
mations. Checking the geometric feasibility of important binding modes can also
be further verified by determining site point coordinates and positioning the lig-
and onto them in three-dimensional space (Ghose and Crippen, 1984). The ap-
proach lacks realism also because it neglects activity contributions from atoms
that fall between the small site point spheres and because of the difficulty of mod-
eling steric effects by surrounding a site point available to atoms with a cluster of
“filled” site points that must be avoided by any atom (Crippen, 1979).

2. Voronoi Models

The advent of linearized embedding (Crippen, 1989) suggested a stratagem
switch. Here the ligand molecule is represented in the rigid valence geometry ap-
proximation as a collection of rigid rings or other groups connected by rotatable
bonds. Each rigid group has a local coordinate system specified by up to three unit
vectors, and the position of any atom in a particular conformation is a linear com-
bination of an overall molecular translation vector and these various unit vectors.
As conformations change, the relative orientations of some unit vectors change,
so conformational flexibility can be summarized as a matrix of intervals of inner
products on all pairs of unit vectors. On the other side (Crippen, 1987), a receptor
site can be abstractly modeled as a Voronoi complex, which consists of one or
more polyhedra or regions that divide up all space without overlaps. Each region
represents some pocket for binding possibly many atoms or some place that might
be sterically forbidden because it is where the polypeptide chain of the receptor
lies. The geometry of the regions are determined by the coordinates of one so-
called generating point per region, and each polyhedral region is just the set of all
points closer to its generating point than to any other (Fig. 2). It turns out that de-
manding that a given ligand bind in a particular mode (i.e., assignment of now
each atom to one and only one region) implies that a corresponding set of linear
inequalities has a solution. By discretizing unit vector orientations, an exhaustive
search for all possible binding modes is feasible for moderately flexible ligands
and site models built out of few regions.

The initial Voronoi method (Crippen, 1987) requires of the user the coordi-
nates of the generating points and choices of united atoms. Every atom in a ligand
contributes additively to the calculated activity, depending on its atom type and
the type of the region to which the particular mode assigns it, regardless of exactly
where in the region that atom would lie. The variables in the problem are these in-
teraction parameters. From there, the algorithm first enumerates all possible bind-
ing modes and then searches for a set of interaction parameter values such that the
optimal binding mode for each ligand agrees with the observed activity. Multiple
solutions are possible, so this search is carried out as a rough global search from
many random starts, locally minimizing by subgradient optimization a penalty
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function that is everywhere continuous but only piecewise differentiable. This
represents a significant step toward objectivity because the user no longer supplies
suggested optimal modes, which is the equivalent in other methods of the user-
supplied superposition hypothesis. It also leads to producing multiple site models
for a given training set, as a way of expressing the limitations of the training set
and estimated error in subsequent predictions.

Another innovation of Crippen (1987) is that the observed activities are no
longer taken to be single values, but intervals on the binding strength scale, like
error bars. This permits fitting imprecise data using given error estimates, and it
also implies that the fit is no longer a least-squares procedure. The penalty func-
tion used in parameter adjustment becomes zero whenever the calculated activity
for the optimal binding mode of each ligand lies anywhere within the correspond-
ing observed interval. Although the observed intervals may be broad in some
cases, no outliers beyond that are permitted for a solution. This implies that stan-
dard deviations, correlation coefficients, and even leave-one-out cross-validation
measures of the fit to the training set are not applicable any more.

Contrasting the key problems in the explicit site versus the ligand paradigms
led to a useful concept. In the site paradigm, there is an explicitly represented
model of the receptor site, and much of the computational effort goes into opti-
mally positioning a ligand in the site. In the ligand paradigm, the crucial step is to
superimpose particularly the active ligands in such a way as to demonstrate max-
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Figure 2 A schematic Voronoi site consisting of three infinite regions surrounding one
finite one.



imal molecular similarity. The intuitive choice in a congeneric series is to super-
impose the common ring system typically and then discuss differences in activity
as a function of the substituents at different positions, where now the positions in
different molecules having the same label in organic nomenclature coincide in
space. This idea has been generalized several different ways (Good et al., 1993a
and b; Klebe, 1993; Klebe et al., 1994; Carbó-Dorca et al., 1995; Castro and
Richards, 1998; Robert et al., 1999) to produce definitions of abstract molecular
similarity, such as the Carbo index, comparing electron density, and the Meyer in-
dex, which is based on the shape of the van der Waals surface. On the other hand,
one real enzyme might recognize two different ligands as equally good inhibitors
while another enzyme might find one to be greatly superior to the other. This
translates in the site paradigm to defining molecular similarity with respect to a
given site model, be it an approximation to a real receptor site or an artificial con-
struct. Bradley et al. (1993) gave such a definition of molecular similarity in terms
of simple Voronoi site models, showing how different models did or did not dis-
tinguish between certain kinds of isomers and so on. Site models involving large
regions might determine two ligands to be very similar because they always gave
similar calculated binding activities over a wide range of interaction energy pa-
rameters, even though their optimal binding modes for some particular choice of
parameters might not closely superimpose them!

The original Voronoi modeling programs were improved by relaxing the
discretization approximation in the search over all possible binding modes (Boulu
and Crippen, 1989). This required the numerical solution of a set of linear in-
equalities and quadratic equalities at each mode being tested. The search was nev-
ertheless made faster by branch-and-bound stratagems that eliminated classes of
modes on the basis of lack of overlap between interatomic distance intervals and
the matching interregion distance intervals. (For example, the minimal distance
between two polyhedral regions is the shortest distance between one point in the
first region and some point in the other, taken over all such pairs of points.) An-
other stratagem was that Voronoi regions are always convex, so the set of atoms
supposed to bind in one region must also be convex. Typically broad error bars on
the observed activities permit solutions involving few regions, and more precise
input data demanded more geometric detail in the site models. In any case, the user
still has to supply subjective guesses for generating point coordinates, usually
starting with few regions and proceeding to more complicated models until the ob-
served activities can be fit (Boulu et al., 1990).

3. Egsets

Site models are adjusted in the Voronoi approach primarily in terms of interaction
parameters. A particular choice of parameters implies that certain binding modes
of the ligands are optimal, and the corresponding calculated activities may or may
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not agree with the observed intervals. An alternative search strategy (Bradley and
Crippen, 1993; Srivastava and Crippen, 1993; Srivastava et al., 1993) is to sys-
tematically try different choices of proposed binding modes (as was done manu-
ally in the distance geometry approach). Such a choice puts constraints on the in-
terregion distance intervals and sometimes the chirality of quartets of regions. If
these constraints can be satisfied, the mode choice further puts constraints on the
interaction parameters to ensure that the proposed modes are actually optimal and
give calculated activities in agreement with the observed intervals. If no solution
can be found for a small number of regions, try more regions. If a solution is
found, its geometry is given in terms of interregion distance intervals and possi-
bly some chirality relations. Distance geometry embedding can then produce co-
ordinates of the centers of these regions, although they may not be necessarily
convex.

While Egsets relieves the user of supplying Voronoi generating point coor-
dinates, to keep the combinatorial search over proposed modes feasible, the user
still must greatly simplify the ligands into a few united atoms apiece. United
atoms are, however, required to be convex sets, even though eventually the re-
gions may not be convex. Convexity is an important stratagem because there are
relatively few partitions of a ligand into mutually exclusive and exhaustive con-
vex sets of superatoms. The binding modes in the search are then just assignments
of each convex set in a partition to a different region.

The adjustable interaction parameters are three physicochemical parameters
for each region, as in Eq. (1). These are further constrained by introducing an ar-
tificial ligand into the training set, namely, a very large, very hydrophobic one:
graphite (Bradley and Crippen, 1993). This ligand’s modest activity forces any
hydrophobic regions to be limited in size, but one with weak interactions could be
large and would represent the bulk solvent outside the receptor.

4. Egsite

The search for site models can be carried out in terms of the interaction energy pa-
rameters (Voronoi), the suggested optimal binding modes (Egsets), or the site ge-
ometry (Egsite). Choosing particular values for one aspect of the problem at least
constrains what the other aspects can be, and then it comes down to a quantitative
assessment of how efficient the search is in realistic problems. Egsite is centered
around a branch-and-bound search over possible site geometries for a specified
number of regions, beginning with the vaguest possible description and gradually
splitting up into mutually exclusive and more precisely specified alternative ge-
ometries. As an analogy, the interval [�1000, 1000] is a vague representation of
the number 5 � the interval [5,5], and [0, 6] is a more precise approximation.
Since a precise description of a site in this approach is expressed as a matrix of in-
tervals of interregion distances plus some possibly empty set of chirality designa-
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tions, then an imprecise description employs intervals of intervals of interregion
distances plus fewer chiral quartets. The mathematics of dealing with intervals
and intervals of intervals is all summarized by Crippen (1995).

Without getting into a lot of detail, the original Egsite algorithm starts with
initial conformational searches for the ligands summarized as interatomic distance
intervals and possibly some chiral quartets of atoms. The user specifies convex
sets of atoms to become united atoms. As before, modes amount to relatively few
partitions of the united atoms into convex subsets and assignment of each subset
to a different site region. Site regions are assumed to be convex, and the number
of regions is chosen by the user, typically starting with only a few. Interaction pa-
rameters amount to a hydrophobicity and a molar refractivity factor for each re-
gion, corresponding to the atomic hydrophobicities and refractivities. For a given
indefinite site description, modes are classed as certainly geometrically allowed
(“sure”), possibly but not certainly allowed depending on how subsequent refine-
ment proceeds (“may”), and certainly disallowed by this site and any subsequent
refinement of it (“bad”). Starting with the vaguest site description, the algorithm
carries out a depth-first search of increasing the precision of the description, which
tends to move “may” modes into either the “sure” or the “bad” category. At each
stage, a linear program is solved to determine whether there is any set of interac-
tion parameters such that some sure/may mode is optimal for each ligand and that
the corresponding calculated activity falls within the given observed interval.

For a sufficiently large number of regions, one or more solutions may be
found at different branches of the search tree. The geometric part of the solution
consists of more or less narrow intervals of interregion distance intervals plus pos-
sibly some chiral quartets of regions when stereospecific binding is important.
The energetic part really consists of not just a particular set of values for the in-
teraction parameters, but rather a feasible region in the multidimensional param-
eter space, as the linear programming terminology would call it. A subsequent
prediction of activity for some test ligand interacting with just one of the solution
site models yields now an interval of calculated activity, determined by linear pro-
gramming where the predicted activity is first maximized and then minimized
within the parameter feasible region.

Another innovation in a subsequent refinement of the approach (Schnitker
et al., 1997) is the constraint that one of the regions must represent the bulk sol-
vent by having fixed infinite diameter and zero interactions with atoms. The latter
is appropriate when the activity data compare the free solvated state of a ligand
with its bound state, as in �Gbind.

5. EGSITE2

The latest step (Crippen, 1997) on the road toward complete objectivity finally
eliminates the user’s subjective choice of united atoms. That means that it is no
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longer feasible to repeatedly, exhaustively examine all possible modes for each
ligand. Instead, a so-called basis set of modes is developed during the search for
site geometries whenever new, currently optimal modes are discovered. The con-
vexity stratagem used in previous approaches to drastically reduce the number of
modes is also abandoned. Instead, the site is described in terms of interregion dis-
tance intervals, which includes a putative diameter for each region. Then a mode
amounts to a choice of one “center” atom for some of the regions. Since confor-
mational flexibility is now represented by a small set of low energy conformers of
each ligand, we have interatomic distances for each conformer. Given the center
atoms specified by the mode, another atom falls into a particular region if it is
closer to that region’s center atom than any other region’s, and if it is within the
region radius of the center atom (Fig. 3). The resulting partitioning of the ligand’s
atoms among regions is more stable to shifts of center atom choices to nearby
atoms than in the analogous Voronoi region definition. Thus the mode definition
stratagem permits a reliable search for optimal binding modes, given some site ge-
ometry and the physicochemical property-related interaction parameters.

The search for solutions is carried out in the combined space of interaction
energy parameters and interregion distance bounds. Finding one solution is a
moderately complicated procedure involving solving a series of “mixed integer
programs” (Crippen, 1999), which determine values for the continuous geometric
and energetic parameters while automatically making decisions about which ba-
sis modes are allowed or disallowed for what reasons. If a solution is found, it is
automatically biased toward the least restrictive geometry possible (i.e., large re-
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surrounding solvent region. The larger explicit region is not convex.



gions lying near one another). Subsequent solutions can be found by adding a cut-
ting plane to the problem that excludes the preceding solution.

For all its strange formulation, EGSITE2 performs well on standard test
cases (Crippen, 1997), sometimes finding solutions with remarkably small train-
ing sets that nonetheless show respectable predictive power.

III. LIGAND PARADIGM

A. MSA

Molecular Shape Analysis (MSA) provides a variety of descriptors to be used in
conjunction with conventional QSAR descriptors in a linear regression, resulting
in a least-squares fit between observed and calculated activities (e.g., Hopfinger,
1980; Tokarsky and Hopfinger, 1994). Let a particular, low energy conformation
of an active ligand be designated as the “reference structure.” Then for any other
ligand, find the one low energy conformation out of several alternatives that can
be superimposed on the reference so as to maximize the overlap volume between
the two van der Waals surfaces. Descriptors for that ligand include the overlap
volume itself, the remaining volume outside the overlap, and related measures
(Fig. 4). The choice of which conformation of which ligand is to be the reference
structure is either left up to the user, or a wide variety of possibilities are tried, and
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the one giving the best fit is chosen. Clearly the key issue here is the reference
structure and the degrees of freedom that are hidden in the process of choosing
which structures to superimpose.

B. MTD

The Minimal Topological Difference (MTD) approach (e.g., Simon et al., 1976;
Simon, 1993; Simon et al., 1994) resembles MSA in that the user chooses some
conformation of a preferably rigid and highly active ligand and then superim-
poses a selected conformation of each of the other ligands onto it so as to maximize
the number of equivalent atoms superimposed, or some similar objective. Con-
sidering all molecules together in their superposition, atoms in this “hyper-
molecule” are clustered together to form a “vertex” if they lie within 0.5 Å of each
other (Fig. 5). Any one ligand occupies some subset of these vertices. Each vertex
is declared to be favorable, unfavorable, or irrelevant toward activity, and one
can use in a standard QSAR regression the MTD of a ligand, which is the number
of unfavorable vertices occupied minus the number of favorable ones. As in
MSA, there are extra degrees of fitting freedom available by searching for the fa-
vorable/unfavorable/irrelevant labelling of vertices that gives the best fit to the
training set.

C. REMOTEDISC

REMOTEDISC (receptor modeling from three-dimensional structure and
physicochemical properties: Ghose et al., 1989) resembles MTD in that low en-
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Figure 5 A schematic MTD superposition resulting in 11 sufficiently distinct hyper-
molecule vertices.



ergy conformations of active ligands found by systematic search over rotatable
bonds are superimposed upon the user’s chosen reference conformer of the se-
lected reference compound. The alignment algorithm is specified to begin by
matching triples of atoms in the ligand with triples in the reference having sim-
ilar interatomic distances and atom types, distinguishing seven broad categories.
Such a three-point match implies a unique rigid translation and rotation that in
general brings many of the ligand’s atoms near other reference atoms, so the
proposed superposition is scored on the basis of similarity between the physico-
chemical parameters of the atom pairs. When each compound in the training set
has been optimally superimposed in this way on the reference, each sufficiently
distinct atom position (equivalent to an MTD vertex) is said to be a site point,
but the user then selects a few highly occupied site points as having distinct
types, and all other site points assume the type of the nearest selected one
(Fig. 6). The calculated activity of a compound, given its optimal superposition
and assignment of atoms to site points, is just as in Eq. (1), except that
atoms are not grouped, and the weighted conformational internal energy of
the optimally superimposed conformer is also added in. The adjustable parame-
ters are the three interaction energy parameters (hydrophobicity, molar
refractivity, and partial charge) associated with each distinct site point type,
and these are adjusted to agree with the observed activities in a least squares
fit.

If the user has chosen few primary site points, there will be only three times
that number of adjustable parameters in the fit (Ghose and Crippen, 1990). Some
variables can be eliminated by reverse stepwise regression.
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based on three highly occupied site points.



D. CoMFA

The most commonly used 3D-QSAR method today is CoMFa (comparative
molecular field analysis: Cramer et al., 1988, 1993). Since development by
Cramer and coworkers in 1988, CoMFA has been used in countless drug discov-
ery projects and benchmark computational studies and has become the standard
3D-QSAR method that results of new methods are compared to. This is in part due
not only to the ease of application and availability in the SYBYL molecular mod-
eling package (Tripos), but also because it is clearly capable of producing reliable
results. It can provide the user with reasonable predictions of activity and a graph-
ical depiction of areas around a representative molecule that may be suitable for
specific kinds of modification. Many reviews of CoMFA analyses, results,
strengths and weaknesses are available (Folkers et al., 1993; Kubinyi, 1993;
Greco et al., 1997; Oprea and Waller, 1997).

As usual for the ligand paradigm, the key step is the alignment of one cho-
sen conformation of each ligand, but the alignment algorithm is external to
CoMFA. Specific results do depend on the type and quality of the alignment. Then
instead of what might be called the adaptive grid of site points in MTD and RE-
MOTEDISC, the aligned structures are placed inside a cubic lattice (Fig. 7). The
grid size of the lattice can affect results, but is commonly accepted at 2 Å spacing.
The exact position of the ligand set within the grid is also not supposed to be crit-
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Figure 7 A schematic CoMFA, molecular similarity, or Compass superposition.



ical, especially if the grid size is small (Cramer et al., 1988). Once the structures
are aligned and placed in the grid, energy values for steric and electrostatic inter-
actions for each ligand are calculated for a probe atom at each point on the grid,
and stored in a massive table of one row for each ligand and one column for each
grid point. The steric energy term is calculated by a standard Lennard-Jones po-
tential of the form
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as a Coulombic interaction. More recently a third term, representing a hydropho-
bic field calculated by HINT (Abraham and Kellogg, 1993), has become available
and is seen to improve results in some cases, while causing difficulties in others.
Additional terms have also been suggested. The energy data generated then are fit
to the experimentally determined biological data to generate the QSAR model.
Such an overdetermined system, with at least two energy terms for each of thou-
sands of grid points, can be a challenge to analyze in a robust way. CoMFA uses
partial least squares (PLS) (Wold et al., 1984, 1993) to accomplish this. PLS iden-
tifies which terms contribute most significantly to the fit through analysis of the
variance of the terms, usually finding a significant fit (if one exists) with fewer
than ten terms. It is common for CoMFA models to use five or fewer terms.

While it is important to fit the existing data, the real value of CoMFA, or any
QSAR method, is predictive ability. CoMFA measures predictive ability by cal-
culating q2 (cross-validated r2 or predictive r2) (Cramer et al., 1988; Kubinyi and
Abraham, 1993). This is accomplished by leaving a compound out of the fit and
then predicting the activity of that molecule for each compound, one at a time, un-
til all molecules have been predicted exactly once. The q2 value is then calculated
as follows:

q2 � 

SD �

SD
press

 (2)

where SD is the sum of the squared deviations of each biological activity value
from their mean, and “press” is the predictive sum of squares, the sum over all
compounds of the squared differences between the actual and predicted activity
values. A q2 in the range 0.5–0.6 indicates moderate predictive power, while a
high value for q2, a value near the fit r2, shows excellent predictive ability of the
model. This statistical analysis of the model is considered a necessary step in
CoMFA and most other QSAR methods.

Even though CoMFA is widely used and accepted, it is not without prob-
lems (Greco et al., 1997; Oprea and Waller, 1997). One set of CoMFA limitations
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comes in the calculation of steric and electrostatic interactions. The Lennard-
Jones 6–12 potential becomes very steep near the van der Waals surface of the
molecule. Therefore, small differences in position of the molecules due to align-
ment or position in the grid can dramatically change the potential energy at grid
points close to the surface. These differences may then be treated as significant de-
scriptors in the PLS analysis, whereas they would be dismissed as “nearly identi-
cal” by visual inspection. Additionally, the steric and electrostatic potentials used
by CoMFA evaluate as a singularity at atomic positions and are therefore nor-
mally limited to calculation only outside the volume of the molecule, and are cut
off at some arbitrary fixed value. Since the slopes of the Lennard-Jones and
Coulomb potentials differ, the cutoff values are exceeded at different distances
from the molecules, and while a smoothing procedure has been offered (Cramer
et al., 1993), adjusting the fields for simultaneous evaluation can result in the loss
of information for one of the fields.

It has also been noted that ligand–receptor interactions in nature may not be
accurately represented by including only steric and electrostatic terms. Significant
work has gone into including supplemental fields in CoMFA (Oprea and Waller,
1997), particularly the hydrophobic field calculated by HINT (Kellogg et al.,
1991; Abraham and Kellogg, 1993). Simply put, HINT uses the octanol/water par-
tition coefficient (logP) as atomic contributions generated from the fragment con-
stants of Hansch, to generate a map of the hydrophobic “field” of the molecule.
Inclusion of this field has led to modestly improved results in some cases and
slightly worse results in others (Kellogg et al., 1991). The trend does not seem to
be predictable. It is likely that there are additional fields that could be included in
CoMFA to improve fit; however, it is unclear whether this would be a result of ad-
ditional variables for PLS or if inclusion of these fields would reliably enhance
predictive ability (Oprea and Waller, 1997).

However, the two main difficulties associated with CoMFA are the choice
of a correct active ligand structure and the molecular alignment step. Almost all
ligands are significantly flexible, particularly in the environmental influence of a
receptor, and often ligands will not bind in that conformation determined to be the
“lowest energy conformation” by in vacuo computation (Jain et al., 1994).
CoMFA will use only a single conformation for each ligand in the data set and
does not treat ligand flexibility. Consequently, the molecular structure as it is eval-
uated for alignment and for steric and electrostatic interactions may not be the ac-
tive conformation. It has been argued that a series of similar molecules will all
adopt a similar binding mode and therefore CoMFA is robust even when the bind-
ing mode is incorrect, with serious limitations on the interpretation of the graphi-
cal output (Cramer et al., 1988). While CoMFA does appear to produce a reason-
able prediction of activity in these situations, the explanation is lacking.

The second main concern with the implementation of CoMFA is the nec-
essary molecular alignment (Jain et al., 1994; Greco et al., 1997; Schnitker et al.,
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1997). This difficulty is not limited to CoMFA; it appears in all 3D-QSAR
methods that involve an explicit alignment step. There are several computational
methods available to determine molecular alignment, including field-fit and ac-
tive analog methods. The active analog approach (Marshall et al., 1979, 1993)
consists of identifying a few (usually at least three) pharmacophoric groups in
the set of molecules, which are then superimposed by least-squares fit, usually
resulting in overlapping common internal molecular structure. The field-fit
(Cramer et al., 1991) techniques involve calculating or identifying interaction
fields or areas around a molecule which are then superimposed without consid-
ering the internal framework of the molecules. Each of these general techniques
has been implemented in a variety of ways, some of which include a degree of
conformational flexibility. In nature, however, what we would call molecular
alignment is really the determination of a binding mode and is therefore the re-
sponsibility of the receptor and the ligand together (Bradley et al., 1993; Crip-
pen, 1995). In the absence of a receptor environment, molecular alignment re-
mains, at best, ambiguous. Even if they have very similar structures, two
molecules may bind in similar spatial or in completely reversed orientations
experimentally. Algorithms for molecular alignment neglect this physical real-
ity, and therefore none of these methods can always reproduce the natural
molecular alignment that would be necessary for a truly realistic CoMFA. In-
stead, choosing an alignment in advance corresponds to choosing only one
possible binding mode, which may or may not agree with the positioning of
these same ligands in the real receptor. However, this may not always have se-
rious consequences for the fitting of the training set and even subsequent
predictions.

E. Molecular Similarity

A number of researchers have been working to establish a QSAR using molecu-
lar similarity measures. In general, molecular similarity indices (Good et al.,
1993a, b; Klebe et al., 1994; Carbó-Dorca et al., 1995; Castro and Richards, 1998;
Robert et al., 1999) provide a quantitative measure of how similar two molecules
are. There are several different measures used (Good et al., 1993b), the most com-
mon being the Carbo index, comparing electron density, and the Meyer index,
which is based on the shape of the van der Waals surface. Each of these indices
has also been modified to be calculated using electrostatic potential, electric field,
and combinations of all these measures. In 3D-QSAR applications, the index used
is calculated for the entire set of molecular structures on a three-dimensional grid
and the resulting similarity matrix is analyzed, often by PLS, in a manner similar
to that of CoMFA. As the similarity information is collected in a three-dimen-
sional manner, it can indeed provide details about the local geometry or property
differences, as is needed for 3D-QSAR. The different measures have each been
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developed into their own method, such as CoMSIA (Klebe et al., 1994), and each
shows results that are roughly comparable to CoMFA.

These techniques are also subject to the same pitfalls as CoMFA. Again,
there is likely some error caused by positioning molecules in the grid, the degree
of which will be determined by the similarity index used. However, these errors
are likely small and can be overcome by changing grid size or by attempting sev-
eral models, positioning ligands differently in the grid each time. Here too, the
largest problems are conformational flexibility and molecular alignment. In fact,
similarity indices may be even more sensitive to incorrect or poor alignment than
CoMFA.

F. Compass

An alternative to the single conformation and molecular alignment required by
other methods, Compass (Jain et al., 1994, 1995) introduces an iterative alignment
mechanism allowing conformational flexibility. In this regard, it is more objective
than MTD, MSA, REMOTEDISC, or CoMFA. The method starts with a user-de-
fined pharmacophore or common substructure, but then performs a conformation
search to generate a list of alternative structures for each molecule. An initial set
of conformations is chosen and aligned to form a first estimation of the model.
Each aligned conformation, called a pose, is represented as a set of “sampling
points” located outside but near the van der Waals surface of the molecule. Steric
and hydrogen bond donor/acceptor interactions are determined at each of these
points in a distance-dependent manner, rather than on a three-dimensional grid,
and the model is generated with a neural net instead of PLS. Compass then
chooses the best-fit pose of a representative molecule and develops a model based
now on poses of other molecules that match the best pose, a process that involves
selection of different conformations of molecules in the data set. After 50–100 it-
erations, the current set of poses are subjected to a new molecular alignment, cre-
ating yet another new set of poses, which will undergo the iterative model build-
ing process. After 0–5 iterations of the realignment loop, a final, self-consistent
model is developed, which includes predictions of activity and active conforma-
tion as well as a graphical display of results.

Compass has several advantages over CoMFA (Jain et al., 1994; Greco et
al., 1997). First, since the interactions are calculated at sampling points instead of
grid points, there is no dependence on positioning in the grid and none of the dif-
ficulties associated with the CoMFA interaction cutoff values. Moreover, sam-
pling points allow for the calculation of only a few hundred interactions rather
than the thousands associated with grid methods. The descriptors used are also de-
signed to be less sensitive to slight steric misalignment than those used in many
grid-based methods. Second, Compass includes ligand flexibility in an efficient
manner. As poses are selected and interactions are calculated, the information on
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previous poses is stored for possible future use, thereby speeding up the process,
as any conformation may be chosen as the new pose at any step. Third, the molec-
ular alignment, which is vitally important to all these methods, evolves as the
model is generated, thus compensating for any errors in the initial alignment. This
alone is a substantial and necessary improvement over previous methods. How-
ever, the iterative process that provides conformational and alignment flexibility
is subject to local minima traps (Greco et al., 1997). If the initial set of poses is not
diverse enough, it is likely that only still similar poses will be chosen in subse-
quent iterations, causing quick and false acceptance of the model. While methods
may be introduced to identify this predicament, it seems that this situation cannot
entirely be avoided.
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I. INTRODUCTION

Deciphering of the common successes and failures in ligand–protein docking,
revealed by using different docking strategies and energy functions, allows one
to establish fundamental connections between the topology of binding energy
landscapes and the results of docking simulations. Binding energy landscape
analysis is presented for the methotrexate–dihydrofolate reductase system,
which represents a common success in molecular docking of ligand–protein
complexes, and for the cyclodextrin glycosyltransferase–maltose complex,
which is an example of a common failure in molecular docking simulations. The
successes and failures in docking simulations are explained based on the ther-



modynamic properties determined from equilibrium simulations and the shape
of the underlying binding energy landscape. The robust topology of the native
structure is a decisive factor contributing to the thermodynamics and dynamics
of the methotrexate–dihydrofolate reductase (MTX–DHFR) system that appear
to be robust to structural perturbations, variations in the ligand composition, and
accuracy of the energetic model. A hierarchical approach that involves a
hierarchy of energy functions is proposed in the analysis of a common failure in
molecular docking. A protocol of identifying clusters of structurally similar low-
energy conformations, generated in equilibrium simulations with the simplified
energy function, and subsequent energy minimization with the molecular
mechanics force field, resolves a typical common failure in molecular docking.

II. PHYSICAL PRINCIPLES OF MOLECULAR
RECOGNITION

Computer simulations of ligand–protein interactions have become a valuable
tool in understanding the molecular recognition process on an atomic level and
facilitating structure-based ligand discovery (1–12). It has been recognized that
mechanisms of protein folding and ligand–protein binding are similar and can be
elucidated by studying the nature of the underlying energy landscape, which de-
scribes the free energy of the system as a function of its coordinates (13–18).
Common aspects of protein folding and ligand–protein binding phenomena in-
clude the existence of a thermodynamically stable native structure, a large num-
ber of conformational states available to the system, and the complex nature of
interactions, which in the case of molecular recognition results in a frustrated
binding energy landscape with a multitude of energetically similar but struc-
turally different ligand–protein binding modes (16–23). It has been widely ac-
cepted that the underlying physical forces that govern the process of ligand–pro-
tein binding are the same as in protein folding (24–26). The major components
of protein stabilization are hydrophobic interactions and hydrogen bonds, with
the hydrophobic effect representing the dominant force in stabilizing the protein
structure and defined as the combined effect of protein internal van der Waals
interactions and hydration of nonpolar groups (24,27). Theoretical studies have
used experimental results on the types of stabilizing forces in folding and bind-
ing to establish the appropriate energy models. Subsequently, analysis of the re-
sulting energy landscape has been used to examine the molecular basis of pro-
tein folding and ligand–protein binding phenomena and to elucidate the
thermodynamic stability and kinetic accessibility of the native structure, the na-
ture and origins of meta-stable folding intermediates, and ligand–protein inter-
mediate complexes (16–18,21–23,28–33).
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A. Computational Models of Ligand–Protein Binding
Thermodynamics

The development of structure-based drug design strategies requires the ability to
combine accurate computational free energy models and elaborate calorimetric
thermodynamic measurements to accurately interpret and predict binding affinity
of ligand–protein complexes from structural considerations. A detailed descrip-
tion of ligand–protein association implies a delicate balance between van der
Waals and electrostatic interactions, hydrogen bonding, solvation effects, and
conformational entropy, all of which are difficult to compute accurately
(2,5,25,34). In general, the first principles of statistical mechanics do not allow de-
composition of binding free energy into separate terms (35). However, complex
biophysical phenomena such as molecular recognition can be analyzed with em-
pirical free energy models that postulate a small number of terms contributing to
the binding process (36–39). Theoretical analysis of the thermodynamic aspects
of molecular recognition has led to a number of approaches (36–51) that describe
the essential steps of the binding process. Empirical binding free energy is typi-
cally comprised of enthalpy contributions resulting from the van der Waals and
electrostatic ligand–protein interactions, and entropic contributions resulting from
the release of water molecules from the ligand–protein interface during complex
formation (43,44). Knowledge-based statistical ligand–protein interaction poten-
tials derived from a database of inhibitor–enzyme complexes have been combined
with the solvation parameters, hydrophobicity, and conformational entropy scales
developed in protein folding and binding (37,39,48,51).

A structure-based thermodynamic analysis approach has been recently
introduced that is based upon structural parameterization of folding and binding
energetics of proteins, peptides, and synthetic ligands (52–58), as well as on the
formalism that identifies the probability of different protein regions and individual
amino acids being folded in equilibrium intermediates (59–64). The resulting
binding free energy model includes the generic portion of the Gibbs free energy,
calculated separately for the enthalpy and entropy components, and the electro-
static and ionization effects, as well as the contribution due to the change in
translational degrees of freedom. The enthalpy contribution of the free energy
results from the formation of van der Waals interactions, hydrogen bonding, and
concomitant desolvation of the interacting groups. This free energy component is
parameterized in terms of changes in apolar and polar solvent-accessible surface
areas. The entropy contribution is composed of solvation component and changes
in conformational degrees of freedom. Conformational entropy upon folding or
binding is evaluated by considering the following three contributions for each
amino acid: the entropy change associated with the transfer of a side chain from the
interior of the protein to its surface; the entropy change gained by a surface-exposed
side chain when the backbone changes from a unique folded conformation to an
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unfolded conformation; and the entropy change gained by the backbone upon un-
folding from a unique native conformation. The magnitude of conformational en-
tropy contributions for each amino acid has been estimated by computing the prob-
ability profiles of different conformational states as a function of dihedral angles
(52,56,64).

A detailed structural mapping of the binding energetics, which has been per-
formed for a number of peptidic and synthetic HIV-1 protease inhibitors (57), has
shown an excellent agreement with the experimental data. The major contribution
to the Gibbs free energy was determined by the hydrophobic effect resulting from
the favorable entropy of water molecules released from ligand and protein groups.
The enthalpy contributions were unfavorable at room temperature and were dom-
inated by the positive enthalpy of desolvating hydrophobic groups. The unfavor-
able desolvation enthalpy of hydrophobic groups dominated the overall enthalpy
component by offsetting the favorable enthalpy of forming inhibitor–HIV-1 pro-
tease interactions. These data are consistent with the analysis of hydration en-
thalpy and entropy contributions to protein folding, derived earlier in calorimetric
studies (65,66), and they support the notions that stabilizing forces in protein fold-
ing and ligand–protein binding are rather similar and that appropriately derived
energetic models can adequately describe both folding and binding phenomena.

A binding free energy model that includes a molecular mechanics interac-
tion energy term, empirical solvation, and conformational entropy terms was
compared with the calorimetric data on binding and protein unfolding (46,47).
This energy function was parameterized in terms of changes in the polar and
nonpolar solvent-accessible surface areas upon binding for a diverse set of lig-
and–protein complexes. It has been found not only that there is good agreement
between this simple theoretical model and calorimetric binding data, but also
that the binding free energy model can adequately describe the thermodynamics
of protein unfolding (47). Correlation between experimental binding free ener-
gies and theoretical models that describe binding in terms of changes in contri-
butions from the nonpolar and polar components at the ligand–protein interfaces
has been found in some complexes that associate as rigid bodies (25,67). It has
been also suggested that not only the hydration contributions but also the van
der Waals and electrostatic intermolecular interactions may be proportional to
the size of the ligand–protein interface (25). However, the presence of packing
defects, coupling between local folding and binding, and the presence of strong
interactions between a few residues in the ligand–protein interface (68) may
complicate binding affinity analysis. Consequently, even if general contributing
forces and interactions in ligand–protein binding are well established, the rea-
sonably accurate prediction of binding free energies requires a combination of
rigorous thermodynamic and structural information coupled with accurate repre-
sentation of the energetics of both unbound and bound states in the ligand–pro-
tein association reaction.
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B. Computational Models of Ligand–Protein Dynamics and
Molecular Docking

Computational studies of molecular recognition usually require the consistent and
rapid determination of the global energy minimum of a ligand–protein complex,
which must correspond to the experimentally solved X-ray structure (1,4,11). Re-
cent advances in computational structure prediction of ligand–protein complexes
utilize a diverse range of energetic models, based on either surface complemen-
tarity (69–76) or atom–atom representations of the intermolecular interactions
(21,77–81). A variety of optimization docking techniques include Monte Carlo
methods (82–84), molecular dynamics (85,86), genetic algorithms (87–89), and
tabu searching algorithm (90) and are focused primarily on molecular docking of
flexible ligands into proteins that are held fixed in a bound conformation, while
the internal degrees of freedom of the ligand and its rigid-body variables are opti-
mized. Combined flexible ligand docking and protein side chain optimization
techniques have been proposed in molecular recognition studies (91–93). A vari-
ant of the dead-end elimination (DEE) algorithm has been used to avoid a combi-
natorial explosion by restricting both the ligand and the side chains of the recep-
tor residues to a limited number of discrete low energy conformations (91). The
combinatorial problem in flexible peptide docking with major histocompatibility
complexes receptors was also approached by utilizing the DEE algorithm to opti-
mize protein side chains that adopt to the docked peptide conformations (92). A
hierarchical computational approach, introduced for predicting structures of lig-
and–protein complexes and analyzing binding energy landscapes, combines
Monte Carlo simulated annealing technique to determine the ligand-bound con-
formation with the DEE algorithm for side chain optimization of the protein ac-
tive site residues (93). In this method, each of the docked ligand conformations is
used to generate the template for a subsequent step of protein side chain opti-
mization with the DEE procedure. Local minimizations and energy evaluations of
the generated DEE solutions are performed at the final stage of this protocol.
Limited protein side chain flexibility has been employed in the GOLD program,
which takes into account rotational flexibility of hydrogens (89). Other ap-
proaches incorporate protein flexibility by using rotamer libraries of side chains
(76,91–93), Monte Carlo simulations combined with minimization in flexible
binding sites (84), or molecular dynamics docking simulations (86). A combina-
tion of energetic models with stochastic optimization techniques have led to a
number of powerful strategies for computational structure prediction of
ligand–protein complexes and docking of flexible ligands to a protein with a rigid
backbone and flexible side chains has now become more feasible (91–95). A sim-
plified energy function in combination with evolutionary sampling technique was
developed to satisfy both thermodynamic and kinetic requirements in docking
simulations by reducing frustration of the underlying binding energy landscape
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(21,22,78,96). Robust structure prediction of bound ligands given a fixed confor-
mation of the native protein was achieved with this family of energy functions by
generating binding energy landscapes with coexisting correlated, funnel-like
(97–99) and uncorrelated, rugged features. While adequate for nonpolar and hy-
drogen bonds patterns, this simplified energy model does not include a direct elec-
trostatic component and therefore may be expected to fail when extensive net-
works of electrostatic interactions are present in the crystal structures. By contrast,
the GOLD algorithm employs a template of protein hydrogen bond donors and ac-
ceptors, and it uses a genetic algorithm to sample intermolecular hydrogen bond
networks and ligand conformations (89). This approach lacks a desolvation com-
ponent and was found to be less suitable in finding hydrophobic interactions.
Docking methodologies implemented in such programs as Flex X (79,80), Ham-
merhead (81), and GOLD (89) have been validated on a large number of lig-
and–protein complexes with known crystal structures to test robustness of the
method. There have been also studies that employed explicit protein flexibility
(100,101). However, the results of flexible ligand docking with a receptor in the
absence of any experimentally known protein-bound conformation are consider-
ably less reliable (102). Applications of flexible ligand docking techniques range
from the analysis of the binding energy landscapes (103,104) to lead discovery
(17,105), database mining (106), and structure-based combinatorial ligand design
(107) and include simulations with ensembles of multiple ligands (108) and en-
sembles of multiple protein conformations (109,110).

Docking simulations usually determine a single structure of the complex
with the lowest energy and postulate that the lowest energy conformation corre-
sponds to the native structure. The number of low energy structures is usually very
large, and a computationally demanding task of finding the lowest energy struc-
ture does not imply its thermodynamic stability. Nevertheless, the structure pre-
diction problem implies determination of the ensemble of many similar confor-
mations that describe the thermodynamically stable native basin of the global
energy minimum rather than a single structure. The conjecture that there are more
low energy conformations surrounding the native state than nonnative local
minima was used to recognize near-native protein structures in ensembles of mis-
folded decoys (111). It was suggested that uniform sampling of the conforma-
tional space with the low resolution energy function followed by identification of
the largest cluster of structurally related low energy conformations may be more
efficient in finding the region of the conformational space that contains the native
structure than the energy-based criteria (111).

The NP hardness of the ligand–protein recognition problem, as in protein
folding, implies that for a given protein there may be ligands that do not find the
global free energy minimum on the binding energy landscape in a reasonable
amount of computer time, given a high degree of complexity and frustration of the
underlying binding energy landscape. Nevertheless, ligand–protein complexes
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with experimentally determined X-ray structures must recognize their global free
energy minimum rapidly and consistently. It was suggested that crystallographi-
cally solved structures of ligand–protein complexes have unfrustrated molecular
recognition landscapes (16,21–23) and thereby provide a framework for explor-
ing the relationship between the shape of these landscapes and the results of dock-
ing simulations.

We analyze the topological features of the native complexes that are critical
for robust structure prediction and thermodynamic stability and are determined by
early ordering of the recognition ligand motif in its native conformation. Struc-
tural stability of these motifs contributes decisively to the topology and thermo-
dynamic stability of the native ligand–protein complex (112). These molecular
fragments, termed recognition anchors, exhibit a high structural consensus or ac-
cessibility of the dominant native binding mode in docking simulations. In addi-
tion, when these molecular fragments are embedded in larger molecules, they
maintain structural stability of the bound conformation, a property that we termed
structural harmony (17,96). We have established that the results of kinetic dock-
ing simulations can be rationalized based on the thermodynamic properties of lig-
and–protein binding determined from equilibrium simulations and the analysis of
the binding energy landscape (103,104). We present the thermodynamic analysis
of the binding energy landscape for the methotrexate–dihydrofolate reductase lig-
and–protein complex, which is primarily determined by the topology of the native
binding mode, appears to be robust to structural perturbations and variations in the
ligand composition, and is relatively insensitive to the accuracy of the energetic
model describing ligand–protein interactions (103,104,113).

Comparing the results of validation docking experiments on a large number
of Protein Data Bank (PDB) ligand–protein complexes with the GOLD program
(89) and with our docking strategy (78), we have detected a number of complexes
for which both methods fail to predict the crystal structures. Misdocked predic-
tions in ligand–protein docking can be categorized as soft and hard failures. In soft
failure, the energy of the crystal structure, after minimization with the chosen
force field, is lower than the energy of the lowest energy conformation found in
docking simulations. A soft failure is due to a flaw in the search algorithm, which
is unable to find the global energy minimum. Hard failures are more difficult; they
arise when the energy of a misdocked structure is lower than the energy of the
minimized crystal structure. Hard failures result from an inability to accurately re-
produce subtle differences in the relative energies of alternate binding modes, a
problem that compounded by competing electrostatic and van der Waals interac-
tions, which results in a frustrated binding energy landscape.

Deciphering of the common hard failures in ligand–protein docking, re-
vealed by using different docking strategies and energy functions, allows one to
establish connections between topology of the binding energy landscapes and the
results of docking simulations. Following the notion that important aspects of lig-
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and–protein binding such as the thermodynamic stability and kinetic accessibility
of the native structure can be rationalized based on similarities with protein fold-
ing, we hypothesize that the native structure of the complexes that are hard fail-
ures in docking do not provide structurally robust and thermodynamically stable
topology, and misprediction of the crystal structure may result from high kinetic
accessibility of the misdocked binding mode that is only a meta-stable local
minimum. We find that hard failures in ligand–protein docking can arise when the
underlying energy landscape is rugged, with a number of misdocked frustrated
binding modes separated by high energy barriers, or when the landscape is
shallow and flat with small barriers and marginally stable binding modes. The re-
sults of docking and equilibrium simulations can be used not only to generate
binding energy landscapes but also to identify clusters of structurally similar con-
formations that can define the diversity of binding funnels (32,33,114) leading to
different local minima. We demonstrate the feasibility of predicting the crystal
structure of a ligand–protein complex that belongs to the class of common hard
failures in molecular docking by identifying clusters of structurally similar con-
formations followed by the energy refinement of cluster representatives. We show
how the thermodynamic analysis of the binding energy landscapes complements
the results of kinetic docking simulations in resolving a typical hard failure in
molecular docking and detecting the native binding mode that is represented by an
isolated island on a flat energy landscape with a narrow conformational funnel
leading to the crystal structure.

III. ENERGETIC ASPECTS OF LIGAND–PROTEIN BINDING:
HIERARCHICAL MODELS IN MOLECULAR DOCKING

A. Low Resolution, Knowledge-Based Energy Models

We have pursued a “plug-and-play” strategy with two different energy functions,
a molecular mechanics force field and a simplified energy function, along with
two different sampling techniques, evolutionary programming (78) and Monte
Carlo simulations (103,104,110). The knowledge-based simplified energetic
model includes intramolecular energy terms for the ligand, given by torsional and
nonbonded contributions of the DREIDING force field (115), and intermolecular
ligand–protein steric and hydrogen bond interaction terms calculated from a
piecewise linear potential summed over all protein and ligand heavy atoms (Fig.
1). The parameters of the pairwise potential depend on the six different atom
types: hydrogen bond donor, hydrogen bond acceptor, both donor and acceptor,
carbon-sized nonpolar, fluorine-sized nonpolar, and sulfur-sized nonpolar. Pri-
mary and secondary amines are defined to be donors, while oxygen and nitrogen
atoms with no bound hydrogens are defined to be acceptors. Sulfur is modeled as
being capable of making long-range, weak hydrogen bonds, which allows for sul-
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fur donor closer contacts that are seen in some of the crystal structures. Crystallo-
graphic water molecules and hydroxyl groups are defined to be both donor and ac-
ceptor, and carbon atoms are defined to be nonpolar. The steric and hydrogen
bond–like potentials have the same functional form, with an additional three-body
contribution to the hydrogen bond term. The parameters were refined to yield the
experimental crystallographic structure of a set of ligand–protein complexes as
the global energy minimum (21,78). No assumptions regarding either favorable
ligand conformations or any specific ligand–protein interactions were made, and
all buried crystallographic water molecules are included in the simulations as part
of the protein structure.
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Figure 1 (A) The functional form of the ligand–protein interaction energy. For steric in-
teractions, A � 0.93B, C � 1.25B, D � 1.5B, E � �0.4, F � 15.0, and B � rl � rp is the
sum of the atomic radii for the ligand and protein atoms. The atomic radius for carbon, oxy-
gen, nitrogen atoms is 1.8 Å, 1.8 Å for fluorine and 2.2 Å for sulfur. Chlorine and bromide
atoms are modeled as sulfur atoms. For hydrogen bond interactions, A � 2.3, B � 2.6, C
� 3.1, D � 3.4, E � �4.0, F � 15.0. For sulfur–hydrogen bond interactions, A � 2.7, B
� 30.0, C � 3.5, D � 3.8, E � �2.0, F � 15.0. For chelating interactions with the metals
A � 1.5, B � 1.7, C � 2.5, D � 3.0, E � �10.0, F � 15.0. For repulsive interactions, A
� 3.2, E � 0.1, F � 15.0, and B, C, and D are not relevant. A multiplicative desolvation
penalty of 1.0 is applied to the attractive portion of the interaction between nonpolar and
polar atoms. The units of A, B, C, and D are angstroms; for E and F the units are kilocalo-
ries per mole. (B) The hydrogen bond interaction energy is multiplied by the hydrogen
bond strength term, which is a function of the angle � determined by the relative orienta-
tion of the protein and ligand atoms. We defined � as the angle between two vectors, one
of which points from the protein atom to the ligand atom. For protein atoms with a single
heavy-atom neighbor, the second vector connects the protein atom with its heavy-atom
neighbor, while for protein atoms with two heavy-atom neighbors, it is the bisector of the
vectors connecting the protein atom with its two neighbors. The long-range component of
the repulsive term used for donor–donor, acceptor–acceptor, and donor–metal close con-
tacts is scaled according to the relative positioning of the two atoms. The scaling used is
equivalent to that used for hydrogen bonding. That is, the penalty is greatest when the an-
gle � is 180°, fading to zero at 90° and below.



B. All-Atom-Based Energy Models

The all-atom-based energy function employed in this study contains an in-
tramolecular term for the ligand, which consists of the van der Waals and torsional
strain contributions of the DREIDING force field (115) and an intermolecular
energy term that describes interactions between the ligand and the protein. The
short-ranged repulsive interactions present in many molecular force fields such as
AMBER (116,117) lead to rough energy surfaces with high energy barriers sepa-
rating local minima. In this force field, small changes in position can lead to sig-
nificant energy changes. For molecular docking simulations, it has been shown that
the energy surface must be smooth for robust structure prediction of ligand–pro-
tein complexes (21); softening the potentials is a way to smooth the force field and
enhance sampling of the conformational space while retaining adequate descrip-
tion of the binding energy landscape (103,118). We have shown that the modified
AMBER force field and the simplified piecewise linear (PL) energy function pro-
duce comparable results during docking simulations in predicting crystal structures
of ligand–protein complexes (103,104,110,113). Both the modified AMBER 
energy function and the PL energy function lack singularities at interatomic dis-
tances; they also do not effectively explore accessible ligand binding modes or
sample a large fraction of conformational space, particularly at high temperature.
These energy models have been adequate in structural and thermodynamic analy-
sis of MTX–DHFR and biotin–streptavidin complexes (103). The molecular
recognition energy function employed in the thermodynamic analysis of the
MTX–DHFR binding energy landscape, presented in this study, employs the mo-
dified AMBER force field to describe ligand–protein interactions with a soft core
smoothing component used to soften the repulsive part of the potential and includes
an implicit solvation correction. A solvation term was added to the interaction po-
tential to account for the free energy of interactions between the explicitly modeled
atoms of the ligand–protein system and the implicitly modeled solvent. The term
was derived by considering the transfer of an atom from an environment where it
is completely surrounded by solvent to an environment in which it has explicit
atomic neighbors (119). The solvation term reflects the driving force in ligand–pro-
tein binding that favors nonpolar groups to be buried at the interface, while this term
imposes a penalty on dehydration of polar groups that needs to be compensated by
formation of specific interactions. The proposed molecular recognition energy
model is believed not only to predict crystal structures of the ligand–protein com-
plexes as the global free energy minimum but also to faithfully reproduce the
energetics of transitions on the ligand–protein association pathway.

Although the standard AMBER force field is less amenable to searching, in
principle it should describe more adequately the energetics of ligand–protein in-
teractions, which is critical in recognizing the native binding mode for systems
that belong to the category of hard failures in molecular docking. In this case, we
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use the standard molecular mechanics AMBER force field in conjunction with a
desolvation correction (103,110,118) and an efficient parallel Monte Carlo dy-
namics using simulated tempering approach (120–125) to investigate the thermo-
dynamics of the underlying binding energy landscape. This type of generalized-
ensemble Monte Carlo methods employs global updates that significantly enhance
thermalization of the system and overcome slow dynamics at low temperatures on
rough energy landscapes, thereby permitting regions with a small density of states
to be sampled accurately.

IV. COMPUTER SIMULATIONS OF LIGAND–PROTEIN
BINDING

In simulations of ligand–protein interactions, the protein is held fixed in its bound
conformation, while rigid-body degrees of freedom and rotatable angles of the lig-
and are treated as independent variables. Ligand conformations and orientations
are sampled in a parallelepiped that encompasses the binding site obtained from
the crystallographic structure of the corresponding complex, with a 10 Å cushion
added to every side of this box in simulations of the MTX–DHFR system and 5 Å
cushion in simulations with the hard failure ligand–protein complexes. Bonds al-
lowed to rotate include those linking sp3-hybridized atoms to either sp3- or sp2-hy-
bridized atoms and single bonds linking two sp2-hybridized atoms. The ligand
bond lengths, the bond angles, and the torsional angles of the unrotated bonds
were obtained from the crystal structures of the bound ligand–protein complexes.
Crystallographic buried water molecules are included in the simulations as part of
the protein structure.

A. Monte Carlo Simulations of Ligand–Protein Binding

In Monte Carlo simulations of ligand–protein binding, we employed the dynami-
cally optimized acceptance ratio method whereby the maximum step sizes at each
temperature are dynamically chosen to optimize the acceptance ratio, which is the
ratio of accepted conformations to the total number of trial conformations (126).
At a given cycle of the simulation, each degree of freedom can change randomly
throughout some prespecified range determined by the acceptance ratio obtained
during the preceding cycle. This range varies from one degree of freedom to an-
other because of the complex nature of the energy landscape. At the end of each
cycle, the maximum step size is updated and used during the next cycle. The
moves are chosen as follows: a variable is selected at random, and then a uniform
random displacement is given along each rigid-body degree of freedom or a ran-
domly chosen dihedral angle of the ligand is rotated by a random angle along a
randomly chosen axis.
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In this approach, the simulations are arranged in cycles, and after a given cy-
cle i, where the average acceptance ratio for each degree of freedom j is �Pj�i, the
step sizes �i

j for each degree of freedom are updated for cycle i � 1 according to
the formula

� j
i�1 � � i

j (1)

where �Pideal� is the desired acceptance ratio, chosen to be 0.5. The parameters a
and b are used to ensure that the step sizes remain well behaved when the accep-
tance ratio approaches 0 or 1. They are assigned so that the ratio �i�1/�i is scaled
up by a constant value s for �Pj�i � 0, and down by the same constant for �Pj�i � 1.
Solving the equations
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with s � 3 yields a � 0.673 and b � 0.065.
We have performed equilibrium Monte Carlo simulations for the

MTX–DHFR wild-type complex and the mutated system with a fixed DHFR pro-
tein conformation at T � 100, 200, 300, 400, 500, 600, 700, 800, 900, 1000, 1500,
2000, 2500, 3000, 3500, 4000, 4500, and 5000 K. We updated the maximum step
sizes using the acceptance ratio method every cycle of 1000 sweeps, and stored
both the energy and the coordinates of the system at the end of each cycle. For all
these simulations, we equilibrated the system for 1000 cycles (or a million
sweeps), and collected data during 10,000 cycles (or 10 million sweeps) resulting
in 10,000 samples at each temperature. A sweep is defined as a single trial move
for each degree of freedom of the system.

An evolutionary algorithm, a stochastic optimization technique based on the
ideas of natural selection (78), was used in ligand–protein docking simulations of
the system that presents a hard failure in molecular docking. In this case, we have
carried out equilibrium simulations by using parallel simulated tempering dy-
namics (120–125) with 50 replicas of the ligand–protein system attributed re-
spectively to 50 different temperature levels that are uniformly distributed in the
range between 5300 and 300 K. Independent local Monte Carlo moves are per-
formed independently for each replica at the corresponding temperature level, but
after a simulation cycle has been completed for all replicas, configuration ex-
changes for every pair of adjacent replicas are introduced. The mth and nth repli-
cas, described by a common Hamiltonian H(X ), are associated with the inverse
temperatures �m and �n, and the corresponding conformations Xm and Xn. The ex-

ln[a�Pideal� � b]
��

168 Verkhivker et al.



change of conformations between adjacent replicas m and n is accepted or rejected
according to the Metropolis criterion with the probability

p � min(1, exp[�	])

where 	 � [�n � �m][H(Xm) � H(Xn)]. Starting with the highest temperature, ev-
ery pair of adjacent temperature configurations is tested for swapping until the fi-
nal lowest value of temperature is reached. This process of swapping configura-
tions is repeated 50 times after each simulation cycle for all replicas, whereby the
exchange of conformations presents an improved global update that increases
thermalization of the canonical simulation for each replica. During the course of
the simulation, each replica has a nonnegligible probability of moving through the
entire temperature range and the detailed balance is never violated, two conditions
that guarantee each replica of the system to be equilibrated in the canonical dis-
tribution with its own temperature (120–125).

B. The Weighted Histogram Analysis Method

The energy landscape approach (28–31) can elucidate such general properties of
molecular recognition as the nature of the thermodynamic phases and barriers on
the ligand–protein association pathway (103,104,110,113). This method evaluates
equilibrium thermodynamic properties of the system from Monte Carlo simula-
tions of the system at a broad temperature range with the aid of the optimized data
analysis and the weighted histogram analysis technique (126–132).

Monte Carlo simulations can be used to calculate equilibrium averages of
any quantity of interest, but in general computing these averages at different tem-
peratures requires independent simulations at each temperature. With the single-
histogram method, thermodynamic properties can be calculated at temperatures
other than the simulation temperature provided there is accurate sampling of the
density of states in the relevant range of energies (127,128,133–135). In practice,
this requirement limits the applicability of the single-histogram method to tem-
peratures near the simulation temperature. The multiple-histogram method
(128,129) optimally combines simulation data obtained at many discrete temper-
atures to provide an improved estimate of the density of states, which can then be
used over a range of continuous temperatures. A generalization of the multiple-
histogram method, the weighted histogram analysis method (WHAM), estimates
the density of states from data collected using umbrella sampling (128–130). All
these histogram methods have been applied to simulations of biomolecules. In lat-
tice models of protein folding, histograms have been used to calculate the native
state probability density as a function of temperature (133), as well as the poten-
tial of mean force (PMF) as a function of the number of native contacts (134,135).
Histograms have also been used to compute the PMF for both one-dimensional
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and multidimensional reaction coordinates at constant temperature (130–132).
While alternate methods such as free energy perturbation and various weighting
schemes are sufficient to compute one-dimensional PMFs, WHAM has been
shown to be preferable for computing two-dimensional PMFs (136).

In this work, we apply the weighted histogram analysis method to compute
ligand–protein binding energy landscapes, F(R, T ), as a continuous function of
temperature and reaction coordinate. They are determined by first tabulating two-
dimensional histograms Hi(E, R) from the various constant temperature equilib-
rium simulations i, and then solving the self-consistent multiple-histogram equa-
tions (128) to yield the density of states:

W(E, R) � (4)

where
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and gj depends on the correlation time 
j as gj � 1 � 2
j, nj is the number of sam-
ples at the temperature Tj.

Although these equations are expressions for the density of states as a func-
tion of both energy and reaction coordinate, the free energies are identical to those
obtained from the standard one-dimensional multiple histogram equation

W(E) � ∑
R

W (E, R) � (6)

where

Hi(E ) � ∑
R

Hi(E, R)  (7)

and Hi(E ) is the standard one-dimensional histogram as a function of energy.
These equations are precisely the self-consistent equations for the free energies in
the one-dimensional multiple-histogram equations. Hence, the one-dimensional
equations can be used to determine the free energies Fj and then to compute the
multidimensional density of states W (E, R). In this way, calculating the multidi-
mensional density of states as a function of E and R requires no additional com-
putational effort beyond tabulating the simulation data as a function of reaction
coordinate as well as energy; the only difficulty is that more sampling is required
to ensure adequate statistics.
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From the probability density W (E, R), the potential of mean force F (R, T )
at arbitrary temperature relative to a reference position Rc can be computed from
the probability density P (R, T ) as follows:

F (R, T ) � �kBT ln � � (8)

where

P (R, T ) � ∑
E

PT (E, R) (9)

PT (E, R) � W (E, R) exp ��
k
�

B

E
T

�� (10)

We define R to be the root-mean-square deviation (rmsd) of the ligand co-
ordinates from the native state, and the native state is chosen to be the reference
state, so Rc � 0.0.

The ligand–protein binding reaction is studied as a sequence of transitions
between different thermodynamic phases, where many conformations correspond
to each phase. The ligand–protein association pathways and ligand–protein states
are interpreted in terms of ensembles of conformations, where each step in the
molecular recognition mechanism is regarded as a transitions between ensembles
of rapidly interconverting conformations. Transitions between different phases of
the ligand–protein system are analyzed by defining two characteristic equilibrium
temperatures, Tbound and Tnative. Temperature is a convenient control thermody-
namics parameter that enables one to examine the cooperativity effects in lig-
and–protein binding, the relative effect of enthalpy and entropy, and mechanisms
of transitions between a free energy minimum corresponding to the native struc-
ture of the ligand–protein complex and a free energy minimum corresponding to
the entropically favorable phase of unbound ligand conformations. As entropy fa-
vors the random coil phase in protein folding at high temperature, so are unbound
ligand and protein favored at high temperature in the binding process. At lower
temperature, there may be nonspecific aggregation of the ligand either in the ac-
tive site or in an alternative binding site of the protein, which corresponds to the
collapsed globule state for proteins. At temperature Tbound, the ligand–protein sys-
tem undergoes a transition to the bound phase, which is either a nativelike com-
plex analogous to the molten globule state or a nonnative misdocked intermediate,
reminiscent of the frozen collapsed state in protein folding. At temperature Tnative,
the transition of the ligand–protein system to the native complex is complete. To
analyze the stage of the binding process when a transition to the native structure
is complete, we define all structures within Rnative � 1.5 Å from the native con-
formation to constitute the native binding domain or basin. From the temperature
profile of the probability of being in the native domain, one can define the transi-

P (R, T )
��
P (Rc ,  T )
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tion temperature Tnative by P (Rnative, Tnative) � 0.5 (133), where the probability of
being in the native binding domain is given by

P (Rnative, T ) � 

Cooperative binding is characterized by a narrow temperature interval be-
tween the transition temperatures Tbound and Tnative that guarantees the ther-
modynamic stability of the native complex at temperatures high enough to be ki-
netically reachable.

C. Similarity Clustering

Three-dimensional similarity calculations are based on the spatial proximity of
atoms in a binding site and the atom type. We distinguish four types of atom: hy-
drogen bond donors, hydrogen bond acceptors, hydrogen bond donors and accep-
tors, and nonpolar atoms. The atom type compatibility a (i, j ) is assigned a value
between 0.0 and 1.0, with the compatibility between two atoms of the same type
defined as 1.0 and that between donor and acceptor atom as 0.0; other combina-
tions of atoms have compatibilities between 0.0 and 1.0.

The spatial proximity between two atoms i and j is evaluated with a Gaus-
sian function p (i, j ) � 10(�r2

i/j/�
2) , where rij is the distance between atoms i and

j, and � � �c2/log10(p), where c and p denote the cutoff distance and the pro
ximity threshold, respectively. Both the cutoff distance and the proximity thresh-
old determine the shape of the Gaussian function to evaluate spatial proximity of
two atoms, with c � 3.0 Å and p � 0.000032.

We calculate a descriptor d(i,j ) from the spatial proximity and the atom type
compatibility:

d(i,  j) � p(i, j) * a(i, j) if r (i,  j) � c

d(i, j) � 0 if r(i,  j) � c

An atom descriptor Dn
m (i) for atom i in molecule m is then calculated by

summation over all N atoms in molecule n, Dn
m (i) � ∑N

j�1 dn
m (i, j). The inter-

molecular similarity between molecules m and n is given by the Tanimoto coeffi-
cient (137):

S (m, n) �

Molecules are grouped into clusters by comparing the intermolecular simi-
larity coefficient. The first molecule is assigned to the first cluster. The next
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molecule is assigned to the cluster in which a cluster member has the highest sim-
ilarity to the next molecule, if the similarity is above a threshold, chosen to be
0.85. Otherwise, the next molecule is assigned to a new cluster. The first member
of a cluster is called the cluster leader. After all molecules have been assigned to
clusters, the molecules are arranged in new order, starting with the largest cluster
and proceeding to the smallest cluster. The reordered set of molecules is subjected
to the same clustering procedure. This procedure is iterated until the information
entropy converges to a minimum. We analyze clusters with at least 100 members.
Since conformations that belong to the same cluster are equivalent with 85%
structural similarity, different clusters are compared by analyzing cluster leaders.

V. MOLECULAR RECOGNITION IN THE MTX–DHFR
COMPLEX: BINDING ENERGY LANDSCAPE ANALYSIS
OF A COMMON SUCCESS IN MOLECULAR DOCKING

By studying the binding energy landscape of the MTX–DHFR complex, which
presents a common success in molecular docking, we analyze the structural and
thermodynamic origins of the robustness of the native structure topology to struc-
tural perturbations and modifications of the ligand composition. We have recently
investigated the impact of ligand modifications on the thermodynamics of molec-
ular recognition of the MTX–DHFR system and analyzed a relationship between
binding mechanisms and the degree of ligand optimization (113) by applying the
concept of hot and cold errors developed originally in protein folding studies
(138). Mutations in protein sequences that are classified as cold errors affect the
dynamics of the folding process but retain the native structure. By contrast, hot er-
ror mutations have more dramatic consequences and lead to protein misfolding.
Native and near-native conformations are most affected by mutations, while their
effect on the ensemble of unfolded conformations is less pronounced (138). Hot
errors in the ligand are defined as those that destroy the thermodynamic stability
and kinetic accessibility of the native binding mode, leading to a more rugged
binding energy landscape with a misdocked lowest energy structure. The native
binding mode of the complex is still maintained when the cold errors are intro-
duced in the ligand, but a different shape of the energy landscape and more com-
plicated kinetics of binding may result (113).

We have established (112) the binding modes for three major components
of the MTX–DHFR complex in the complex with the Lactobacillus casei DHFR
(139). MTX consists of three major components: a pteridine ring, a p-aminoben-
zoyl group, and a glutamic acid moiety portion (Fig. 2). While the pteridine ring
is deeply buried in the active site and forms more than half of the hydrogen bonds
with DHFR, the glutamate conformation is determined by specific electrostatic in-
teractions of the glutamyl �-carboxylate with the guanidinium group of an argi-
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nine residue. We found that both the glutamate portion and the pteridine ring are
predicted consistently to bind in their crystallographic positions of the L. casei
DHFR complex, while the p-aminobenzoyl group is predicted to bind in the same
location that the pteridine ring binds in the MTX–DHFR complex (112). Hence,
MTX is an example of a high affinity inhibitor containing two anchoring sub-
structures that fulfill the kinetic requirements of structural consensus and struc-
tural harmony from docking simulations, but with the pteridine fragment presum-
ably more thermodynamically stable than the glutamate moiety. In addition, we
have shown that modifications in the pteridine ring of MTX belong in the category
of hot errors that destroy the native binding mode (112). By analyzing the binding
energy landscape of an all-carbon variant derivative of the pteridine fragment, we
found that the crystallographic binding mode becomes considerably less stable
relative to its alternate bound conformations. Furthermore, in a mutant of the
pteridine fragment where the pteridine ring hydrogen bond acceptors are replaced
with donors and donors replaced with acceptors, the crystallographic binding
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Figure 2 Breakdown of the MTX ligand into three components: pteridine ring, p-
aminobenzoyl, and glutamyl side chain. In the mutant form of MTX, the glutamyl side
chain is replaced by lysine.



mode is never thermodynamically stable even at low temperatures, although it is
still a local minimum (112).

The impact of ligand modifications on thermodynamic stability of the
MTX–DHFR complex was studied with lysine substituted for the glutamate side
chain of the MTX ligand (Fig. 2). In the native complex, each of the three moieties
of the MTX ligand makes favorable interactions, and most substitutions are likely
to replace some of these interactions by less favorable ones, thereby affecting the
energy of the native state. The replacement of the acidic Gln by the basic Lys,
which appeared to fall into this category, generates a chimera that consists of only
one pteridine anchor fragment coupled with the Lys side chain. We have shown
elsewhere that the predicted structure of the wild-type MTX–DHFR complex lies
within 1.0 Å rmsd of the crystallographic structure (Fig. 3a); and the predicted
structure of the mutant complex (Fig. 3b) is similar to the structure of the wild-type
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Figure 3 The crystal structure of MTX in the MTX–DHFR complex with the lowest en-
ergy conformation (red) obtained from 200 docking simulations, which defines its pre-
dicted structure (a), and the crystal structure of MTX in the MTX–DHFR complex with the
lowest energy conformation of the Lys mutant of MTX obtained from docking simulations,
which defines its predicted structure (b).



complex, with the exception of the portion of the ligand that was mutated (113).
The fact that the structure for the mutant complex is so close to the wild-type struc-
ture suggests that the Lys mutation does not destroy the native binding mode and
therefore may be regarded as a cold error.

Here, we focus on equilibrium aspects of the MTX–DHFR binding pro-
cess such as the number and nature of thermodynamic phases available to the
ligand–protein system and the relative stability of thermodynamically stable
states; we also examine the difference between hot errors in the pteridine frag-
ment of the MTX ligand and the potentially less severe cold error generated by
the Lys substitution of the Glu side chain. The binding energy landscape for the
MTX–DHFR complex at the transition temperatures is characterized by two ma-
jor domains that represent the unbound and bound phases separated by a pro-
nounced free energy barrier (Fig. 4a). The native binding domain of the
MTX–DHFR system extends to nearly 5.0 Å rmsd from the native structure:
there are no significant free energy barriers in this region. While there are local
minima of the MTX–DHFR system between 8 and 10 Å from the native struc-
ture, there is a broad funnel of conformations that extends approximately to 7.0
Å and leads to the native binding mode with moderate barriers. At high temper-
atures the unbound states are a stable thermodynamic phase of the ligand–pro-
tein system. The native binding domain of the MTX–DHFR system dominates
the thermodynamic equilibrium in the bound phase even at high temperatures
and bound states that form alternative local minima are never thermodynami-
cally stable. Because the crystal structure of the MTX–DHFR complex is ther-
modynamically stable at higher temperature than that of the mutated system
(Fig. 4b), it promotes the consistent acquisition of the native state and a direct
transition from random conformations in the unbound phase to the native bind-
ing domain for MTX–DHFR complex that forms the broad basin of attraction.
By contrast, a lower temperature is required to stabilize the native state for the
mutated system. In the computationally engineered Lys mutant of MTX, there is
an additional, meta-stable, local minimum located approximately 3.0 Å rmsd
from the low-energy structure (Fig. 4b). This meta-stable intermediate has lower
free energy than the native state at high temperature, and only at lower temper-
ature does the native state dominate the equilibrium. However, this intermediate
is not a consequence of trapping in a specific misdocked binding mode but
rather represents an ensemble of native like states. In this meta-stable interme-
diate, the pteridine ring is located in its native binding mode, with occasional
fluctuations of the four-amino group of the pteridine ring between native and
near-native conformations. However, the Lys side chain fluctuates significantly
in this binding domain. The transition to the native like bound conformations for
the computationally engineered system occurs at lower temperatures than for the
“optimal” MTX–DHFR system, so the system may get trapped in misdocked or
near-native-like conformations.
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The probability of being in the native structure for the pteridine anchor
moiety and the entire MTX ligand coincides at the equilibrium temperature
Tbound, when the MTX–DHFR system undergoes a transition to the bound phase
(Fig. 5a). The wild-type MTX ligand has a single-step transition to the native
structure of the complex. For the mutated ligand, by contrast, the pteridine ring
adopts the native conformation first, at higher temperature. Only at somewhat
lower temperature does the remainder of the ligand acquire the native confor-
mation (Fig. 5b). We have determined that for the MTX–DHFR complex, the
pteridine recognition anchor and the Glu side chain achieve their native confor-
mations concurrently, and thereby the pronounced thermodynamic stability of
the native structure leads to a single dominant funnel and eliminates not only
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Figure 4 The binding free energy as a function of rmsd from the crystallographic con-
formation for the wild-type MTX–DHFR complex at the transition temperatures Tbound �
1500 K and Tnative � 1000 K. The temperature-dependent binding energy profiles for (a),
the MTX–DHFR complex from T � 100–5000 K and (b) the Lys mutant MTX–DHFR
complex from T � 100–5000 K. In the binding energy profile, the reference energy F(R �
0, T ) is defined to be zero for each two-dimensional temperature slice.



frustrated regions, but also the necessity to form meta-stable, nativelike binding
domains (103,104,113). The Lys side chain acquires its lowest energy confor-
mation more slowly than the recognition pteridine anchor that results in the for-
mation of the meta-stable intermediate complex, coherent with the native struc-
ture topology. The shape of the binding energy landscape for the mutant system
dictates a more complicated scenario of binding, but the overall topology of the
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Figure 5 The native state probability as a function of temperature for (a) wild-type MTX
(solid line) and the pteridine fragment in MTX (dashed line) and (b) the Lys mutant MTX
ligand (solid line) and the pteridine fragment in the Lys derivative of MTX (dashed line).
The native state for the pteridine fragment in wild-type MTX is defined as the crystallo-
graphic conformation of the fragment in the complex with DHFR. The native state for the
pteridine fragment in the Lys mutant MTX ligand is defined as the conformation of the
fragment in the lowest energy conformation of the Lys mutant of MTX.



favored MTX binding mode is protected after this modification. The thermody-
namic analysis has shown that Lys substitution in MTX is an example of a cold
error in ligand design, since the native structure is preserved even though the dy-
namics of the binding process is affected. We find that structural stability of the
crystal structure of the native MTX–DHFR complex results from the native in-
teractions being significantly stronger on average than nonnative interactions,
which leads to a gradual decrease of the energy of the native domain and a sin-
gle, dominant conformational funnel directed to the crystal structure of the com-
plex. Although the binding mechanism is generally determined by the overall
shape of the binding energy landscape, the robust topology of the native struc-
ture contributes primarily to the thermodynamics and dynamics of the
MTX–DHFR system and explains the success of molecular docking simulations
in predicting the crystal structure of the complex.

V. MOLECULAR RECOGNITION OF THE CYCLODEXTRIN
GLYCOSYLTRANSFERASE–MALTOSE COMPLEX:
BINDING ENERGY LANDSCAPE ANALYSIS OF A
COMMON FAILURE IN MOLECULAR DOCKING

The hard failure we shall examined is a complex of cyclodextrin glycosyltrans-
ferase with maltose-bound molecule (Fig. 6) in domain C (pdb entry 1cdg) (140).
Three maltose binding sites have been observed on the surface of the enzyme, two
in domain E, and one in domain C. The maltose molecules bound in the E domain
interact with the protein residues that are implicated in a raw starch binding motif
conserved among a diverse group of starch-converting enzymes (140). In the third
carbohydrate binding site, located in domain C, the complex with the maltose
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Figure 6 The structure of maltose molecule.



molecule has been determined crystallographically. Docking simulations using ei-
ther the PL or the AMBER energy functions fail to predict the crystallographic
binding mode of the complex as the lowest energy structure. The native binding
mode was located in only a small fraction of docking simulations (Fig. 7a, c). The
lowest energy structure determined from docking simulations with the PL energy
function is located at rmsd � 6.1 Å from the crystal structure (Fig. 7b). The spec-
trum of low energy docking solutions consists primarily of the conformations that
belong to the misdocked binding mode and the conformations with the nativelike
binding mode are congregated at the tail of the spectrum (Fig. 7b). The lowest en-
ergy structure predicted with the AMBER energy function belongs to the same
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Figure 7 (a) The frequency of predicting binding modes of the 1cdg ligand–protein com-
plex with the piecewise linear energy function and (b) the rmsd of the docked conforma-
tions from the crystal structure ranked by energy. (c) The frequency of predicting binding
modes of the 1cdg ligand–protein complex with the AMBER force field. (d) The docked
conformations as a function of RMSD from the crystal structure ranked by energy.



misdocked binding mode identified earlier by means of the PL energy function
and is located at rmsd � 6.28 Å from the crystal structure (Fig. 7d). However, the
corresponding spectrum of low energy docking solutions is more rugged, with
three structurally different binding modes.

By performing equilibrium simulations, we generated the corresponding
binding free energy profiles and registered the lowest energy structures using both
energy functions. The predicted structure with the PL energy function is located
at rmsd � 6.19 Å (Fig. 8a) from the native state and the lowest energy conforma-
tion obtained in simulations with the AMBER force field resides at rmsd � 7.04
Å from the crystal structure (Fig. 8b). The energy values of the predicted confor-
mations, which belong to the same misdocked binding modes found in docking,
are lower not only than the energy of the crystal structure but also than the ener-
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Figure 8 The binding free energy landscape for the 1cdg complex with (a) the piecewise
linear energy function and (b) the AMBER force field. For each two—dimensional tem-
perature slice, the reference energy F(R � 0, T ) is defined to be zero.



gies of the corresponding predicted structures in the docking simulations. The
binding free energy profile constructed with the PL energy function has at least
four different binding domains, one of which is within 2.0 Å rmsd from the crys-
tal structure (Fig. 8a). Nevertheless, the misdocked binding mode at rmsd � 6 Å
from the crystal structure dominates thermodynamic equilibrium at the entire tem-
perature range and is more favorable than the crystallographic conformation. The
binding free energy profile is characterized by a broad basin of alternative con-
formations, which represents the major funnel on the energy landscape leading at
lower temperatures to a family of misdocked binding domains. At high tempera-
ture, when the system can explore efficiently the conformational space, a broad
basin in the region between 4 and 6 Å rmsd from the crystal structure is more sta-
ble and contributes to the thermodynamic equilibrium (Fig. 8a). The transition to
the well-defined misdocked binding mode occurs only at lower temperatures. The
funnel leading to the native structure narrows as temperature decreases, and the
native binding mode is represented by an isolated island of conformations in the
close vicinity of the crystal structure. Moreover, a significant energy barrier,
which emerges at lower temperature, separates this region from the rest of the con-
formational space (Fig. 8a). While there is a narrow, though well-defined, funnel
of conformations that leads to the native structure, the alternative binding modes
are thermodynamically stable at all temperatures, and this promotes the consistent
acquisition of the misdocked binding mode in docking simulations.

The true binding free energy landscape is multidimensional, whereas the
binding free energy profile that we analyze is only a one-dimensional projection
of this surface onto a single coordinate. One of the disadvantages of using rmsd as
a reaction coordinate for the ligand–protein binding process is that it is difficult to
distinguish energy minima that are distant from the crystal structure. For example,
it is not possible to unambiguously conclude whether a single, broad low energy
basin is located in the domain between 4 and 6 Å rmsd from the crystal structure,
or whether many different local ligand–protein binding modes exist at this region.
A convenient method to resolve this complication is to generate clusters of struc-
turally similar conformations, since two distinct binding modes will result in two
different conformational clusters. Structural clustering of the conformations gen-
erated from equilibrium simulations with the PL energy function produced the
largest size clusters located at rmsd � 5 and 6 Å from the crystal structure (Fig.
9a). Only a relatively small cluster of native conformations was detected at rmsd
� 1.0 Å from the native state, reflecting a narrow funnel in the proximity of the
crystal structure. However, energy minimization with the AMBER energy func-
tion of the cluster leaders yields the lowest energy structure, located at rmsd �
0.78 Å from the crystal structure (Fig. 9b). Hence, using a two-step protocol of
first identifying clusters of structurally similar conformations generated from
equilibrium sampling in the uniform temperature range from 300 to 5000 K with
the PL energy function, followed by minimization of the corresponding cluster
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leaders with the AMBER force field, resolves the hard failure in ligand–protein
docking and results in the structure prediction consistent with the crystallographic
binding mode.

The binding energy landscape generated with the AMBER energy func-
tion is rather flat, with a number of shallow meta-stable local minima separated
by small barriers. At higher temperatures a broad funnel of conformations in the
region between rmsd � 4 and 8 Å from the native structure contributes signifi-
cantly to the thermodynamic equilibrium (Fig. 8b). However, the relative stabil-
ity of the binding modes changes as the temperature lowers, and the binding
modes at rmsd � 3 and 7 Å from the crystal structure come to dominate the
thermodynamic equilibrium at lower temperatures. Interestingly, most of the
low docking solutions determined with the AMBER energy function belong to
the region of the conformational space that is more stable at higher tempera-
tures, and only a very small fraction of the predicted conformations populate re-
gions that become more stable at lower temperatures. There are no clusters of
structurally similar conformations sampled with AMBER that are centered
closer than 4.0 Å rmsd from the crystal structure (Fig. 9c). The hard failure in
docking with the AMBER energy function for the 1cdg ligand–protein system
results from a number of misdocked frustrated binding modes on the flat bind-
ing energy landscape with no significant barriers.
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Figure 9 (a) The size of structurally similar clusters for the 1cdg ligand–protein complex
with the piecewise linear energy function as a function of rmsd from the crystal. (b) The
RMSD of the conformations minimized with the AMBER energy function, ranked by en-
ergy. (c) The size of structurally similar clusters for the 1cdg ligand–protein complex with
the AMBER energy function as a function of rmsd from the crystal.



The bound conformation of the ligand in the crystal structure interacts by its
aromatic portion of the reducing sugar with the aromatic side chain of Trp413. The
bound maltose molecule makes five direct hydrogen bonds to the protein. The
carboxyl oxygen and NH group of Ile414 form hydrogen bonds with O-2� and
O-3� atoms of the ligand, respectively. In addition, the carboxyl oxygen of Glu411
interacts with O-2 and the carboxyl oxygen of Gly446 forms a hydrogen bond
with O-6 of the ligand (Fig. 10). The most populated binding mode, the largest
cluster of structurally similar conformations generated with PL energy function,
interacts with the same key protein residues, including Glu411 and Ile414, as the
crystal structure. This binding mode has different networks of hydrogen bonds
and, moreover, forms more hydrogen bonds than are formed in the crystal struc-
ture. The O-3 and O-3� atoms of the maltose bound molecule form two hydrogen
bonds with OE2 of Glu411 and O-2� interacts with the carboxyl oxygen of
Glu411. Other hydrogen bonds are formed with the carboxyl oxygen of Ile414,
nitrogens of the Trp413, and Arg412 side chains (Fig. 10).
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Figure 10 The crystal structure of the 1cdg ligand–protein complex with the lowest 
energy conformation obtained from docking simulations, which define its predicted 
structure.



VI. ANALYSIS OF THE COMMON HARD FAILURES IN
MOLECULAR DOCKING: LESSONS FROM VALIDATION
EXPERIMENTS

We discovered that for the 1cdg ligand–protein system the following two-step
protocol led to predictions in better agreement with experiment than using either
energy function by itself: identification of clusters of structurally similar low
energy conformations generated in equilibrium simulations with the simplified PL
energy function, followed by energy minimization with the AMBER energy func-
tion. This suggests that in some cases the PL energy function provides a better rep-
resentation of the binding energy landscape. The robustness of simplified energy
functions in structure prediction of ligand–protein complexes can generally be
increased by generating more adequate energy landscapes, and regions with a high
density of low energy states that describe the multitude of the binding modes must
be detectable during simulations. In contrast, a more detailed energy function can
produce kinetic traps because of high energy barriers and a rougher energy land-
scape susceptible to the precise geometry of the binding modes. Nevertheless, the
more complete AMBER energy function is required to correctly rank the result-
ing conformations.

A simple energy function was sufficient to describe for a given complex the
available binding modes that interact with the catalytic protein residues. A more
detailed energy function discriminated between the relative stabilization energy of
the binding modes determined by the precise balance of electrostatic and van der
Waals interactions. Generally, a hierarchical process of similarity clustering of
conformations generated from equilibrium simulations with a simplified energy
function followed by energy refinement with a molecular mechanics force field
may provide a useful approach in resolving a typical common failure in
ligand–protein docking. These results, which show that a multistep protocol im-
proves predictions of the crystal structure of the complex, may reflect hierarchical
features of the binding process itself.

In light of similarities between ligand–protein binding and protein folding
mechanisms, our hypothesis is related to a recent evolutionary protein folding
model (141). This model has shown that thermodynamic stability and kinetic ac-
cessibility of the native structure could have emerged during the evolution of the
protein function, namely, as a result of functional selection and structural stabi-
lization of active site residues sufficient for the protein to fold to its native state.
The stabilization of the protein structure was proposed to be hierarchical, where
the active site residues first fold to their native conformation, followed by so-
called coherent regions that are relatively unfrustrated and reach their folded con-
formation more slowly than the active site residues but faster than other, frustrated
regions. Following this evolutionary model, it is tempting to speculate that certain
conformations of a particular ligand that fulfill functional requirements, such as
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interactions with the catalytic protein residues, would have increased structural
stability. In the case of hard failure complexes, multiple binding modes have been
detected with the simplified energy function, each of which forms a stable net-
work of interactions with the same key catalytic residues, which results in forma-
tion of multiple funnels on the binding energy landscape. Subsequent energetic
stabilization of these binding modes determines the global free energy minimum
corresponding to the crystal structure of the complex. It is possible that for hard
failure complexes, the native binding modes with the lowest stabilization energy
may have developed from narrow conformational funnels. As a result, the crystal
structure could not be predicted as a single structure with the lowest energy, or by
identifying the largest cluster of structurally similar conformations, but rather by
energy refinement of all clusters.

VII. CONCLUSIONS

We have shown that well-optimized ligand–protein complexes, such as the
methotrexate–dihydrofolate reductase system, have a single dominant binding
funnel directed to the unique crystallographic binding mode, which is the thermo-
dynamically stable global free energy minimum, robust against various structural
perturbations. The results suggest that the important factor behind the consistent
and rapid determination of the crystal structure of a ligand–protein complex is the
shape of the binding energy landscape. Although the binding mechanism is gen-
erally determined by the shape of the entire binding energy landscape, the topol-
ogy of the native structure is a major factor contributing to the thermodynamics
and dynamics of the MTX–DHFR system. The pronounced thermodynamic sta-
bility of the native structure and the robust topology of the native binding mode,
determined by the recognition pteridine anchor of the MTX ligand, rationalize a
common success in molecular docking simulations of the MTX–DHFR complex
obtained with a broad variety of energy functions. In contrast, we find that the sta-
bility of the native binding modes for the hard failures determined with different
energy models is marginal, and minor structural changes will lead to changes in
the relative stability of the native binding mode. The interactions that stabilize the
crystal structure for these complexes may not stabilize near-native conformations
that lead to a diversity of binding funnels. This marginal stability of the binding
modes for hard failure complexes coupled with narrow regions in the conforma-
tional space that correspond to the nativelike conformations could make these sys-
tems highly sensitive to protein conformational fluctuations, and reliable structure
prediction for the ligand–protein complexes under study becomes even more
problematic with a flexible protein model. Subsequently, a very sensitive and
highly optimized energy function is required to rank correctly the relative stabi-
lization energy of the crystallographic binding mode of the hard failure complex.

186 Verkhivker et al.



This explains why common failures in molecular docking have been detected
when different energy functions and searching methods were used.

Common failures in predicting crystal structures of ligand–protein com-
plexes have been investigated for ligand–protein systems by a combined thermo-
dynamic and kinetic analysis of the binding energy landscapes. The topography of
the native binding funnels for hard failure complexes can be steep and narrow,
thereby precluding robust structure prediction of the crystal structure. We have
found that structural similarity can detect narrow funnels on a rugged surface and
isolated regions of conformational space that may contain crystal structure con-
formation. The topology of the binding modes is less sensitive to the details of
specific interactions, and a more adequate sampling of the multitude of the bind-
ing modes can be achieved with the PL energy function. The energy landscapes
generated with the AMBER force field generally either are more rugged, with a
number of misdocked meta-stable binding modes, or are characterized by shallow
and flat binding domains corresponding to the marginally stable local minima. We
have found that neither determining a single structure with the lowest energy nor
finding the most common binding mode topology is sufficient to predict crystal
structures of the complexes that belong to the category of hard failures. A com-
parison of a simplified, knowledge—based energy function and the molecular me-
chanics force field suggests that the more adequate sampling of the multitude of
the binding modes is achieved with the simplified energy function. A hierarchical
approach is proposed whereby structural similarity clustering of the conforma-
tions generated from equilibrium simulations with a simplified energy function is
followed by energy refinement with the AMBER molecular mechanics force field.
This protocol, which involves a hierarchy of energy functions (100,142), helps to
resolve some common failures in ligand–protein docking. Analysis of other cases
that represent hard failures in ligand–protein structure prediction involving both a
rigid and a flexible protein model provides a next step in developing improved
energy functions and docking strategies.
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I. INTRODUCTION

To discover drugs against human diseases, a plethora of methodologies have been
developed. These involve many research fields and activities ranging from purely
theoretical to experimental. Soon after computers became available at reasonable
prices, many investigators in pharmaceutical companies and nonprofit research
institutions realized the almost unlimited opportunities that the computational and
data handling power of computers can offer for the very difficult task of drug dis-
covery. After the information technology revolution of the last three decades, the
coming years will be characterized by major successes in genomics and pro-
teomics. The cloning and sequencing of the human genome as well as progress in
high throughput approaches to solve protein structures will generate very valuable
information on an ever increasing number of potential drug targets. Drug design
is significantly facilitated if the three-dimensional conformation of the protein tar-
get is known at the atomic level of detail. The large efforts invested in the deter-
mination of protein structures by pharmaceutical and biotechnology companies
are practical proof that knowledge of the three-dimensional conformation of pro-
tein targets is of paramount importance.



In this chapter we first review a number of approaches for structure-based,
computer-aided design. A detailed description of the continuum electrostatic ap-
proach developed in our research group for docking library of small to medium-
sized fragments is then presented. Finally, an application to the p38 mitogen-acti-
vated protein (MAP) kinase is discussed, and a brief outlook ends the chapter.

II. STRUCTURE-BASED LIGAND DESIGN APPROACHES

Computational tools that exploit knowledge of the three-dimensional structure of
a protein target are used for de novo design (1,2), improving lead compounds, and
helping in the selection of monomers to focus combinatorial libraries (3). Priori-
tization is done by empirical and knowledge-based scoring functions or force field
energy functions (4). Ligands are built by connecting small molecular fragments
or functional groups, often rigid, or even atoms. In the latter case, the methods
have shown significant flexibility with respect to the structures that can be ob-
tained (5–7). The main disadvantage of compounds generated by atom-based ap-
proaches is that they often have complicated structures and are in most cases very
difficult to synthesize. Hence, methods that build new compounds by combining
predefined fragments are more popular. The number of newly created bonds is
small, and therefore it is easier to control the chemistry (i.e., the synthesizability
and the chemical stability) of the designed molecules. Furthermore, fragments are
easily modeled, since such model parameters as partial charges, periodicity, and
the force constant of torsion angles are assumed to depend mainly on the fragment
and only to a lesser extent on the rest of the structure.

Fragment-based ligand design may be achieved in two ways. In the first,
small fragments are docked in the active site. The best positions of each fragment
type are retained and connected to generate candidate ligands. Alternatively, an
anchor fragment is docked in the binding site and the ligand is grown starting from
it. These approaches should not be considered to be mutually exclusive, but rather
as complementary, since they are useful for generating candidate ligands with dif-
ferent physicochemical characteristics and structural properties.

A. Methods Based on the Connection of Docked
Fragments

This approach has the advantage that the fragments occupy optimal positions and
are oriented such that their interaction with the protein is favorable. On the other
hand, the geometry of the bonds connecting the fragments to each other or to a
central template is not optimal and must be accepted with a certain tolerance ini-
tially. The mapping of a binding site–fragment assembly into complete ligands
can be performed by separate programs (8,9) or integrated in a single computa-
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tional tool (10). For site mapping, two main approaches have emerged: the first is
based on binding site shape descriptors and the second on multiple-copy tech-
niques.

With the program GRID (11), Goodford pioneered the use of molecular
probes to explore the surface of a protein and search for energetically favorable
positions. The interaction energies are then mapped onto a grid that describes the
regions of attraction between a probe and the protein. The surface descriptors thus
obtained can be used to screen a three-dimensional database of small compounds.
This task can be performed by the program CLIX (12). For each molecule, CLIX
attempts to make a pair of substituents spatially coincide with a pair of favorable
interaction sites proposed by GRID.

Several docking programs can map a protein binding site using small to
medium-sized molecular fragments, either rigid or partly flexible. The program
DOCK, which was first based on rigid docking and the use of geometrical criteria
to judge the complementarity between receptor and ligand, was therefore fast
enough to screen databases for leads (13). DOCK uses spheres complementarity
to the receptor molecular surface to create a space-filling negative image of the re-
ceptor site. Several atoms of the ligand are matched with spheres that define the
binding site. Flexibility (14) and a force field, such as energy function for scoring
(15), were included in later development of the program. DOCK has been used to
find novel micromolar inhibitors of enzymes (16,17).

FlexX (18) is a program for the fast docking of medium-sized flexible lig-
ands. It first positions a fragment of the ligand by mapping three interaction cen-
ters of the fragment onto three interaction points of the receptor. The ligand is then
constructed in an incremental way, and Böhm’s empirical function is used for
scoring (19). FlexX is fast enough to allow screening of small databases of lig-
ands. The docking of hydrophobic fragments has been slightly improved (20), and
the algorithm has been extended to predict the location of water molecules in the
binding site (21).

A number of genetic algorithms have been suggested for docking (22–24).
They combine speed with simplicity of concept. For example, GOLD (22) is based
on a genetic algorithm that encodes in the chromosomes the values of the dihedral
angles around rotatable bonds and positions the ligand in the binding site by means
of a simple least-squares fitting that maximizes the number of intermolecular hy-
drogen bonds. It also allows flexibility around bonds to hydrogen bond donors and
acceptors in the receptor. GOLD uses a force field with a simple approximation of
solvation consisting of precalculated atom type–based hydrogen bond energies.
The method has been tested on 100 complexes, leading to a success rate, defined
by the authors in a rather subjective way, of about 70% for redocking into the com-
plexed conformation (25). Docking into the unbound conformation was tested on
only three examples and gave mixed results (25). An accurate treatment of solva-
tion is essential for docking into a flexible binding site (26).
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Multiple-copy techniques use numerous fragment replicas, each transparent
to the others but subject to the full force field of the receptor, to determine ener-
getically favorable positions and orientations (functionality maps) of small
molecules or functional groups in the binding site of a protein (27–29) or RNA
(30). Although the multiple-copy, simultaneous search (MCSS) method was orig-
inally proposed in the context of a rigid receptor (28), it was extended to allow for
ligand and receptor flexibility (29,31,32).

We have developed a new continuum solvation approach called SEED,
which can be used for efficiently docking fragments into a rigid receptor (8). It
combines the advantages of shape descriptors and multiple-copy methods. Polar
and apolar vectors are distributed on the surfaces of the receptor binding site and
the fragments, and matched with each other, allowing exhaustive docking on a
discrete space. The main advantage of SEED over other docking programs is the
comprehensive treatment of electrostatic solvation effects in an efficient and ac-
curate manner. SEED is described in further detail in Section III.

The large amount of structural information in the functionality maps can be
exploited by other programs. The docked fragments can be linked together with
smaller (9,33) or larger (34–36) linkers. The program CAVEAT (34,35) was de-
signed to do interactive searches of three-dimensional databases to find molecu-
lar frameworks that can position functional groups in specific relative orienta-
tions. CAVEAT focuses on relationships between bonds; methods are
implemented to identify and classify structural frameworks. The HOOK algo-
rithm (36) uses “skeletons” from a database, on which “hooks” are defined, to
connect a set of functional groups previously docked in a binding site. The link-
age is accomplished by fusing the hooks with two or more methyl groups from the
functional groups. Computational combinatorial ligand design (CCLD) (9) is also
based on docking of functional groups with MCSS or SEED (8). The fragments
are ranked according to an approximated binding free energy. After classifying
positions into overlapping (i.e., mutually excluding) and bonding (i.e., possibly
bound by small linkers) pairs, CCLD creates ligands by linking the docked frag-
ments with the most favorable of the small linkers. To avoid combinatorial ex-
plosion, growing is discontinued when the average binding free energy of the frag-
ments in the new ligand exceeds a user-specified threshold.

Some programs integrate site mapping and fragment assembly. LUDI
(10,37) makes extensive use of empirical information derived from structural
databases. Interaction sites that indicate possible positions for functionalities
complementary to the receptor are defined and used to dock fragments from a
library. Alternatively, the output of GRID can be used for the definition of in-
teraction sites. The fragments are fitted on the interaction sites with the algo-
rithm published by Kabsch (38) and are connected with small linkers. Interac-
tion geometries were derived from structural data on small organic molecules
(39,40). The scoring function used in LUDI is empirical (19). The program was
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extended to take into account the synthetic accessibility of the constructed
molecules (41).

The program SPROUT (42) can deal either with a three-dimensional exper-
imental receptor structure or with a pharmacophore model derived from known in-
hibitors. Target sites in the binding pocket are identified and labeled by type. Frag-
ments, from a library presorted according to atomic and molecular properties, are
selected and overlaid on a target site. Once fragments have been docked into all
the target sites, the linking procedure is performed, taking into account the iden-
tity of the fragments. In the second phase, atom types are exchanged with others
of the same hybridization state to find a combination exhibiting optimal interac-
tions with the binding site.

In an effort to remain close to progress in modern chemistry, a number of
computational tools were further developed to facilitate the design of combinato-
rial libraries. CombiDOCK is a modified version of DOCK to efficiently screen a
large combinatorial library for a receptor (43). CombiDOCK first positions the
scaffolds in the binding site and, for each scaffold orientation, all potential frag-
ments are attached. The interactions between substituents and receptor are indi-
vidually scored, and factorial combinations of fragments are suggested. In LUDI,
a new procedure has been implemented to focus the design on a chemical reaction,
amenable to parallel chemistry (41,44).

B. Methods Based on the Progressive Buildup of Ligands

Ligand buildup is a powerful stepwise strategy for de novo ligand design. It starts
with a seed fragment placed in an appropriate region of the binding site. New lig-
ands are then grown by sequentially appending building blocks (fragments or
atoms). To avoid combinatorial explosion, a large fraction of all building blocks
is discarded at every step according to some heuristic scoring. This method has the
advantage that the newly formed chemical bonds have a correct geometry and that
the intraligand interactions can be taken into account during the design. On the
other hand, buildup approaches have difficulties in generating ligands that bind to
different pockets if these are separated by gap regions that do not allow specific
interactions. Moreover, the success of the growing procedure and therefore the
quality of the designed molecules depend dramatically on the position of the seed,
since the latter is usually kept fixed. The seed position(s) can be determined from
X-ray or NMR structures of ligand–protein complexes. If no structure is available,
seeds must be obtained by manual or computer-aided docking. Many programs
that implement the buildup strategy have been described in the literature, and the
following list is not exhaustive.

GenStar (45) and LEGEND (46,47) use single atoms as building blocks.
GenStar grows sequentially structures that are entirely composed of sp3 carbons.
It allows branching and ring formation. For each new atom generated, several
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hundred candidate positions with acceptable bond geometries are generated. Each
position is scored based on a simple binding site contact model, and the selected
position is chosen at random among the highest scoring cases. LEGEND works in
a similar way but uses the MM2 force field (48). The choice of the atom type is
driven by the protein electrostatic potential value at the atom position.

Both GroupBuild (49) and SMoG (50,51) use libraries of organic com-
pounds to design ligands. In these programs, each candidate fragment is attached
to the growing structure and rotated around the new bond in fixed increments. In
GroupBuild a standard molecular mechanics potential function is used to rank the
candidates. The chosen fragment rotamer is randomly selected among the top 25%
of fragment positions. SMoG uses a knowledge-based potential for the ranking.
The lowest energy rotamer’s acceptance is determined by a Metropolis Monte
Carlo criterion, which compares the new energy per atom with and without the
candidate fragment.

The buildup strategy has also been implemented in the programs GROW
(52), LUDI (41), and PRO_LIGAND (53). Their library of fragments is however
restricted to amino acids and amino acid derivatives. This has the advantage that
the designed ligands are synthetically accessible, but the explored chemical space
is relatively small. Moreover the energetics of the ligand can be studied by well-
parameterized force fields. On the other hand, peptides, besides their poor phar-
macological properties, represent special problems stemming from their great
conformational flexibility. This latter property is taken into account by using mul-
tiple conformers for each amino acid. The main differences between these three
programs lie in the scoring functions used to rank the ligands and in the way the
conformation libraries for the amino acids are generated. GROW’s scoring func-
tion is based on the AMBER force field (54) supplemented by a solvent-accessi-
ble surface approximation of solvation (55). LUDI and PRO_LIGAND use em-
pirical scoring functions combined with a rule-based interaction site strategy
(19,56). The GROW and PRO_LIGAND libraries contain low energy conforma-
tions, whereas LUDI uses conformations extracted from high resolution protein
structures.

C. Binding Energy

Ligand design involves the extension of the docking problem into chemical
space. The degrees of freedom to be optimized are not only the positional and
conformational variables of a particular compound, but, additionally, its chemi-
cal identity. This point of view makes one important problem in the field of lig-
and design particularly clear: the quality of the scoring or energy function used
to evaluate the different solutions. When the search space is very limited, as it
was, for example in the first programs that performed rigid docking (13), a very
simple energy function based on geometrical criteria suffices to recognize the
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correctly docked structures. When flexibility in the ligand (and the protein) is al-
lowed, the effect of solvation must be taken into account (26) to avoid sampling
irrelevant parts of the conformational space.

A simple example shows the higher quality requirements on the scoring
function for design purposes: assuming that the charge on an atom in a designed
ligand is a (continuous or discrete) variable of the optimization, any simple force
field–based energy function would tend to maximize the total charge (57). This is
however in disagreement with empirical data. Although sometimes high affinity
may be due to ionic interactions, often the desolvation penalty of full charges on
the ligand and the protein is stronger than the direct interaction.

Desolvation is the change in the solvation energy of the ligand and the re-
ceptor due to the displacement of high dielectric solvent by low dielectric solute
upon complex formation. This further indicates that the scoring function should
correspond to a difference between the free and the complexed states. The calcu-
lation of such differences is not necessary in docking because the term corre-
sponding to the free state identically cancels. Accurate and reliable prediction of
the absolute binding free energy for a medium-sized flexible ligand is currently
beyond the limits of routine calculations, since the most probable conformations
in water must be found, as well, and averaging with the correct thermodynamic
weights must be performed. Furthermore, in ligand design free energies are as-
sumed to be additive, although it is clear that this is only a crude approximation
(58).

The main task for a scoring function in a ligand design program is to find
the conformations with the lowest energies for every chemical species (be it atom,
fragment, or complete ligand) and, in the case of different chemical entities (e.g.,
a benzene and a guanidinium docking in the same binding pocket), to decide
which yields the lowest binding free energy. Both tasks and especially the latter
are not straightforward and will most probably have to be addressed at different
levels of accuracy during different stages of the design process. Recently, meth-
ods based on the combination of several models (multilayered scoring system,
consensus scoring) have been shown to increase the predictivity (59) and to re-
duce the number of false positives suggested by individual scoring functions (60).

III. THE SEED APPROACH

Figure 1 shows a flowchart of the library docking program SEED. A brief expla-
nation is given here; further details of the method (e.g., the clustering procedure
and evaluation of the van der Waals interactions) can be found in the original
paper (8). Different fragment types are docked in the order specified by the user.
After each fragment placement, the binding energy is estimated. The binding
energy is the sum of the van der Waals interaction and the electrostatic energy with
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Figure 1 Flowchart of the program SEED. The fast van der Waals energy is evaluated
by trilinear interpolation (114) from a grid (lookup table) using the geometric mean ap-
proximation (115–118). The fast total energy includes solvation and will be presented else-
where (Majeux et al., Proteins, 2001. In press).
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continuum solvation. Each fragment type is docked after all placement–energy
evaluations of the preceding fragment type have been made. The fragment dock-
ing procedure and electrostatic energy evaluation are outlined in this Section III.A
and III.B. For the docking of a library of 100 fragments into a rigid binding site of
about 25 residues, the latest version of SEED requires about 5 hours of CPU time
on a single processor (195 MHz R10000 or PentiumIII 550 MHz). For more than
one processor, the speedup is linear, and the docking of a library of 1000 fragments
would require about 6 hours on a cluster of eight commodity-price processors.

A. Fragment Docking

The binding site of the receptor is defined by a list of residues selected by the user.
Fragments that have at least one H-bond donor or acceptor are docked by using
the polar vectors. Given this definition, some “polar” fragments can have consi-
derable hydrophobic character (e.g., diphenyl ether). Therefore they are also
docked by the procedure for nonpolar fragments unless otherwise specified by the
user.

1. Docking of Polar Fragments

Polar fragments are docked to ensure the formation of one or more hydrogen
bonds with the receptor. The fragment is then rotated around the H-bond axis to
increase sampling. Figure 2 shows the sampling of docked positions for pyrrole
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Figure 2 Relaxed-eyes stereoview of benzene, acetone, and pyrrole docked by SEED
around a tyrosine side chain. The benzene groups are distributed above and below the plane
of the tyrosine phenolic ring, while pyrrole and acetone fragments are involved in hydro-
gen bonds with the tyrosine hydroxyl as donors and acceptors, respectively. Carbon atoms
are black, oxygen and nitrogen atoms dark gray, and hydrogen atoms light gray. Hydrogen
bonds are drawn with dashed lines.



and acetone around a tyrosine side chain. Ideal and close-to-ideal hydrogen bond
geometries are sampled in a discrete but exhaustive way.

2. Docking of Nonpolar Fragments

Hydrophobicity maps (61) are used to dock nonpolar fragments. The points on the
receptor SAS are ranked according to the sum of van der Waals interaction and re-
ceptor desolvation (61,62), and the n most hydrophobic points (where n is an in-
put parameter) are selected for docking. As an illustrative example, Fig. 3 shows
the most hydrophobic points on the ATP binding site of the p38 MAP kinase. For
both the fragment and the receptor, apolar vectors are defined by joining each
point on the SAS with the corresponding atom. Finally, nonpolar fragments are
docked by matching an apolar vector of the fragment with an apolar vector of the
receptor at the optimal van der Waals distance. To improve sampling, additional
rotations of the fragment are performed around the axis joining the receptor atom
and fragment atom (Fig. 2). To increase efficiency, nonpolar fragments are dis-
carded without calculation of the electrostatic energy if the van der Waals inter-
action is less favorable than a threshold value.

For both polar and nonpolar fragments, the docking is exhaustive on a dis-
crete space. The discretization originates from the limited number of preferred di-
rections and rotations around them. Fragment symmetries are checked only once
for every fragment type and are exploited to increase the efficiency in docking.

B. Electrostatic Energy with Continuum Solvation

The main assumption underlying the evaluation of the electrostatic energy of a
fragment–receptor complex is the description of the solvent effects by continuum
electrostatics (62–72). The system is partitioned into solvent and solute regions,
and appropriate values of the dielectric constant are assigned to each region. In
this approximation only the intrasolute electrostatic interactions need to be evalu-
ated. This strongly reduces the number of interactions with respect to an explicit
treatment of the solvent. Moreover it makes feasible the inclusion of solvent ef-
fects in docking studies where the equilibration of explicit water molecules would
be a major difficulty. In docking and even more in ligand design, the electrostatic
effects of the solvent must be modeled accurately; it has been shown that the con-
tinuum dielectric model provides an efficient and useful approximation of
molecules and molecular complexes in solution (62,63,73).

The difference in electrostatic energy in solution upon binding of a fragment
to a receptor can be calculated as the sum of the following three terms (9,65):

Partial desolvation of the receptor: electrostatic energy difference due to
the displacement of high dielectric solvent by the fragment volume
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Screened receptor–fragment interaction: intermolecular electrostatic en-
ergy between the fragment and the receptor in the solvent

Partial desolvation of the fragment: electrostatic energy difference due to
the displacement of high dielectric solvent by the receptor volume
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Figure 3 ATP binding site in the p38 MAP kinase (PDB file 1a9u, [94]). (Top) The hy-
drophobic pockets are colored in green using the hydrophobicity map approach (61). They
are referenced by numbers. The figure was made with GRASP (119). (Bottom) The yellow
spheres represent the most hydrophobic points (61) in the binding site. The residues lining
the binding site are displayed with cylinders. The molecular surface, calculated with the
Connolly algorithm (120), is displayed by white dots.



The definition of the solute volume (i.e., the low dielectric volume) is central in
the evaluation of these energy terms with a continuum model. The solute–solvent
dielectric boundary is described by the molecular surface (MS) of the solute (74).
A grid covering the receptor is utilized to identify the low dielectric volume. In a
first step, the volume occupied by the isolated receptor is defined on the grid. Sub-
sequently, for every position of a docked fragment, the volume enclosed by the
MS of the fragment–receptor complex is identified.

The screened fragment–receptor interaction and the fragment desolvation
are evaluated with a grid-based implementation (62,63) of the generalized Born
(GB) approximation (68–72). The GB approach would be too time-consuming for
the evaluation of the desolvation of the receptor, which is calculated as described
next.

1. Receptor Desolvation

The electrostatic desolvation of the receptor accounts for the loss of favorable re-
ceptor–solvent electrostatic interactions due to the removal of part of the highly
polarizable solvent to accommodate the volume of the fragment. This contribution
always disfavors association and can be calculated within the assumption of con-
tinuum electrostatics (62–64,68–72). The electrostatic energy E of the receptor in
solution can be expressed in terms of the electric displacement vector D (x) and
of a location-dependent dielectric constant � (x) as an integral over the three-di-
mensional (3D) space R3 (75):

E � �
8
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�
� �

R
3 �

D
�

2

(
(
x
x
)
)

� d3x (1)

Since D (x) is additive, for point charges it can be rewritten as a sum over all
charges i of the receptor:

D (x) � ∑
i

Di (x) (2)

As for the electrostatics, the displacement of solvent by the fragment volume at
the surface of the receptor has the sole effect of modifying the dielectric proper-
ties in the space occupied by the fragment. Over this volume, the dielectric con-
stant changes from the solvent value (�w) to the solute value (�p). Usually, �w is set
to 78.5, which is the value of water at room temperature, while the value of �p can
range from 1 to 4. In the limit in which D (x) does not change significantly upon
docking of the ligand, the variation of the electrostatic energy of the receptor (i.e.,
the desolvation) can be written according to Eq. (1) as an integral over the volume
occupied by the fragment (Vfragment):

�Edesolv � �
8
�
�
� �

Vfragment
D2 (x) d3x (3)
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where � � 1/�p � 1/�w. A 3D grid is built around the receptor and Eq. (3) be-
comes:

�Edesolv � �
8
�
�
� ∑

k�Vfragment

D2 (xk) �Vk (4)

where the index k runs over the grid points occupied by the fragment. The grid
spacing is usually 0.5 Å. The electric displacement of every charge of the recep-
tor can be approximated by the Coulomb field (62,71,76):
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where xi is the position of the receptor atom i and qi its partial charge. Equation
(5) is an analytical approximation of the total electric displacement and fulfills the
condition of validity of Eqs. (3) and (4): that is, D (x) is independent of the di-
electric environment. The receptor desolvation in the Coulomb field approxima-
tion results from Eq. (4) together with Eq. (5):
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The volume occupied by a docked fragment is the part of the volume enclosed by
the MS of the complex that was not occupied by the isolated receptor. It consists
of the actual volume of the fragment and the interstitial volume enclosed by the
reentrant surface between fragment and receptor.

It is important to note that the desolvation of a charged ion by a small non-
polar sphere at a distance r from the ion varies approximately as 1/r4 (Eq. 6). This
is a very short-range effect compared with the ion electrostatic potential, which
varies as 1/r.

2. Screened Fragment–Receptor Interaction

The fragment–receptor interaction in solution is calculated via the GB approxi-
mation (68). In a solvent of dielectric constant �w, the interaction energy between
two charges embedded in a solute of dielectric constant �p is
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where � � 1/�p � 1/�w,
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∑
i
j

i,j�fragm

and qi is the value of the partial charge i, while rij is the distance between charges
i and j, Ri

eff, the effective radius of charge i, is evaluated numerically on a three-
dimensional grid covering the solute as described elsewhere (62). It is a quantity
depending only on the solute geometry and represents an estimate of the average
distance of a charge from the solvent.

The intermolecular interaction energy is calculated as follows:

Eint � ∑
i�fragment

j�listi

Eij
int (9)

where listi contains the receptor atoms belonging to the neighbor list of atom i.
The electrostatic neighbor list includes all the receptor atoms of the van der Waals
neighbor list and one atom for every charged residue whose charge center is
within 13 Å of the closest binding site residue. Supplementing the van der Waals
neighbor list with a monopole approximation of distant charged residues dramat-
ically reduces the error originating from the long-range electrostatic interactions.

3. Fragment Desolvation

The fragment intramolecular energy in solution is calculated with the GB formula
as described in Ref. 62:
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where the two sums run over the partial charges of the fragment. Equation (10)
differs from Eq. (9) by virtue of the presence of the self-energy term ∑i Ei

self. This
term is not zero only in the case of intramolecular energies; Ei

self is the self-energy
of charge i and represents the interaction between the charge itself and the solvent.
It is calculated (62,71) as follows:
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where Ri
vdW is the van der Waals radius of charge i.

The difference in the intramolecular fragment energy upon binding to an un-
charged receptor in solution is

�E � Edocked � Efree (12)

where Edocked and Efree are the energies in solution of the fragment bound and un-
bound to the receptor, respectively. They are evaluated according to Eq. (10). For
the unbound fragment (Efree), the effective radii are calculated considering the
volume enclosed by the molecular surface of the fragment to be the solute. For the
bound fragment (Edocked), the solute is the volume enclosed by the molecular sur-
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face of the receptor–fragment complex. Efree is evaluated only once per fragment
type, while Edocked is recalculated for every fragment position in the binding site.

C. Validation

The approximations inherent to our continuum electrostatic approach were vali-
dated by comparison with finite difference solutions of the Poisson equation (8).
For this purpose, the three electrostatic energy terms were calculated with SEED
and simulations from the University of Houston Browning Dynamics (UHBD)
program (67,77), for a set of small molecules and ions distributed over the bind-
ing site of thrombin and at the dimerization interface of the HIV-1 aspartic pro-
tease monomer. The molecule set included acetate ion, benzoate ion, methylsul-
fonate ion, methylammonium ion, methylguanidinium ion, 2,5-diketopiperazine,
and benzene. There were 1025 fragment–receptor complexes analyzed for throm-
bin and 1490 for the HIV-1 protease monomer. The agreement between the two
methods is very good, and it is better for a solute dielectric constant of 4.0 than 1.0
(see Table II of Ref. 8). It was also shown that systematic errors (slope � 1) are
independent of the receptor and the solute dielectric constant and consequently
can be corrected by the use of appropriate scaling factors for the different energy
terms (62).

IV. ILLUSTRATIVE APPLICATION

A. The MAP Kinase Family

Mitogen-activated protein (MAP) kinases are essential enzymes for intracellular
signaling cascades because they phosphorylate several regulatory proteins. They
are responsive to hormones, cytokines, environmental stresses, and other extra-
cellular stimuli and are activated by a dual phosphorylation of a threonine and a
tyrosine residues in a TXY motif in the so-called phosphorylation lip. A MAP ki-
nase is characterized by its downstream substrates and by the kinases by which it
is preferentially activated. The best-characterized MAP kinases are the extracel-
lular signal–regulated kinases ERKs (TEY activation motif) (78,79), the c-Jun N-
terminal kinases JNKs (TPY motif) (80–82), and p38 (TGY motif) (83–86); p38
MAP kinase (also called CSBP2) plays a role in processes as diverse as transcrip-
tional regulation, production of interleukins, and apoptosis of neuronal cells. In-
hibitors of p38 activity could therefore be useful as a treatment strategy for in-
flammatory and neurodegenerative diseases.

All unphosphorylated forms of MAP kinases are similar in their topology,
which consists of two domains separated by a substrate binding cleft (87). The N-
terminal domain incorporates the glycine-rich loop, which contains the ATP bind-
ing motif GXGXXG, while the C-terminal domain contains the magnesium sites,
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the catalytic base, and the phosphorylation “lip” with the TXY motif (Fig. 4). Yet,
some noticeable differences affect the geometry of the ATP binding site: (1) the
phosphorylation lips vary in sequence and structure; (2) the relative orientation of
the two domains is different, leading to different domain interface shapes; and (3)
some residues in the ATP binding site are different (e.g., at position 106—se-
quence number according to p38—there is a Thr in p38, a Gln in the ERKs, and a
Met in the JNKs).

B. Specific Inhibitors of p38

The CSAID™ (cytokine suppressive anti-inflammatory drugs) class of anti-in-
flammatory compounds inhibits the synthesis of cytokines, such as interleukin 1
and tumor necrosis factor, by specific inhibition of the p38 MAP kinase
(83,88,89). They have a common chemical pattern: a central five-membered ring,
either imidazole or pyrrole, substituted by a pyridine or a pyrimidine ring at C-5,
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Figure 4 Molscript picture (121) of the p38 MAP kinase (PDB file 1a9u, Ref 94). Bio-
logically relevant regions of p38 are in dark grey.



a fluorinated or iodinated phenyl ring at C-4, and a third substituent at position
N-1 or C-2 (Fig. 5). These low molecular weight inhibitors and their analogs bind
to the ATP binding cleft of the unactivated form of p38 and are competitive with
respect to ATP. They are potent inhibitors, with IC50 in the nanomolar range, and
highly selective for p38 compared with the other MAP kinases.

Both biochemical and structural data suggest that the specificity toward p38
kinases is determined by differences in nonconserved regions within or near the
ATP binding site. In particular, a site-directed mutagenesis study demonstrated
the crucial role of Thr106 (90). The determination of the three-dimensional struc-
tures of the apo, unphosphorylated human, and murine p38 MAP kinases, free and
bound to various small-sized inhibitors, allowed investigators to gain more in-
sights into the structural affinity and specificity determinants of the p38 binding
site (91–94). The binding modes of the inhibitors share common properties: the
pyridine or pyrimidine nitrogen acts as hydrogen bond acceptor for the Met109
backbone NH, and the phenyl ring is inserted into a mainly hydrophobic pocket,
delimited by the Lys53 and Thr106 side chains. The former feature is analogous
to what is observed in complexes with ATP and with other protein kinase in-
hibitors (95–98). Conversely, the latter is unique to p38. The third substituent of
the central scaffold may also be involved in inhibitor selectivity by interacting
with various residues of the glycine-rich loop and occasionally with the Asp168
side chain. The imidazole scaffold is hydrogen-bonded to the Lys53 side chain.
Despite these common properties of inhibitor binding, the detailed organization of
the binding cleft differs in the structures of the complexes between p38 and two
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Figure 5 Chemical structure of a series of potent and selective p38 inhibitors: [94]. X �
N, CH; Y � N, CH; R1 � H, methylcyclopropyl, piperidinyl; R2 � H, 4-methyl-
sulfinylphenyl, piperidinyl; R3 � H, F; R4 � H, I, CF3. Compound 1 of the SEED fragment
library is 4-(4-fluorophenyl)-1-methyl-5-(4-pyridyl)-imidazole (i.e., R1 � CH3, R2 � H,
R3 � F, R4 � H, X � CH, Y � N). (From Ref. 94.)



series of inhibitors (93,94). The loop containing the ATP binding motif adopts dif-
ferent orientations, leading to a more or less open site, and the side chain orienta-
tion of some critical residues, (e.g., Lys53, Thr106, Asp168) depends on the pre-
sence or absence of the inhibitor in the site, as well as on the type of inhibitor
(93,94). Overall, the ATP binding site of p38 displays a remarkable flexibility.

C. Docking of Molecular Fragments with SEED

1. Fragment Library

A library of 70 mainly rigid fragments ranging in size from 7 to 31 atoms was
used in this study. It contains 17 apolar fragments (no hydrogen bond donors or
acceptors), 39 polar and neutral compounds, and 14 fragments with one or two
formal charges (Table 1). Many of the molecular frameworks found frequently
in known drugs (99) are included (e.g., benzene, pyridine, naphthalene, 5-
phenyl-1,4-benzodiazepine), and some of them can be used for the synthesis of
combinatorial libraries in the solid phase (100) or by portioning and mixing
(101). Fragment structures were generated with the molecular modeling program
WITNOTP (A. Widmer, Novartis Pharma Basel, unpublished). For each frag-
ment type, all the low energy conformations are included in the library (e.g., cis
and trans for 2-butene). Partial charges were assigned with an iterative method
based on the partial equalization of orbital electronegativities (MPEOE)
(102,103). The MPEOE implementation in WITNOTP reproduces the all-hy-
drogen CHARMm22 parameter set (Molecular Simulations Inc.) for proteins
and proteinaceous fragments. Fragment coordinates were minimized with the
program CHARMM (104), and the CHARMm22 parameter was set to an ave-
rage value of the energy gradient of 0.01 kcal/(mol Å) using a linear distance-
dependent dielectric function.

2. SEED Input Parameters

The same input parameters as in the original SEED paper (Table I in Ref. 8)
were used, except for the following ones. The interior dielectric constant was set
to 4 to model the electronic polarizability and dipolar reorientation effects of the
solute (105). The number of apolar vectors was increased from 100 to 150 be-
cause of the very large binding site, discussed shortly. Finally, the radius of the
probe sphere for the definition of the SAS (used for the selection of the apolar
vectors) was set to 1.4 Å (instead of 1.8 Å) to better define microcavities and
small crevices. The positions of the fragments were preselected by discarding
those whose geometric center was outside a sphere of 10 Å radius centered on
the center of the binding site. All polar fragments were docked using both polar
and apolar surface points.
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Table 1 Fragment Library

Number of atoms
Number of

H-bond
Formal

Fragment Heavy Total configurations Acceptors Donors charges

Apolar fragments
Ethane 2 8 1 — — 0
Propane 3 11 1 — — 0
Cyclopropane 3 9 1 — — 0
2-Methylpropane 4 14 1 — — 0
1-Butene 4 12 4 — — 0
2-Butene 4 12 2 — — 0
2-Methyl-2-butene 5 15 1 — — 0
2,2-Dimethylpropane 5 17 1 — — 0
Cyclopentane 5 15 1 — — 0
Benzene 6 12 1 — — 0
Cyclohexane 6 18 1 — — 0
Adamantane 10 26 1 — — 0
Dekaline 10 28 1 — — 0
Naphthalene 10 18 1 — — 0
N-Methylindole 10 19 1 — — 0
Tetraline 10 22 1 — — 0
Dibenzocyclohexane 14 26 1 — — 0

Neutral fragments with one or
more hydrogen bond groups
Dimethyl sulfoxide 4 10 1 1 — 0
Isopropanol 4 12 2 1 1 0
Imidazole 5 9 1 1 1 0
N-Methylacetamide 5 12 1 1 1 0
Pyrrole 5 10 1 — 1 0
N-methyl-methylsulfonamide 6 13 1 2 1 0
Oxazolidinone 6 11 1 2 1 0
Pyridine 6 11 1 1 — 0
Pyrimidine 6 10 1 2 — 0
2-Pyrrolidinone 6 13 1 1 1 0
4-Thiazolidinone 6 11 1 1 1 0
�-Valero lactam 7 16 2 1 1 0
3,4-Dihydroxytetrahydrofuran 7 15 4 3 2 0
Phenol 7 13 1 1 1 0
Tetrahydro-2-pyrimidinone 7 15 1 1 2 0
Cytosine 8 13 1 2 2 0
1,2-Dihydroxy benzene 8 14 1 2 2 0
1,2-Dihydroxy cyclohexane 8 20 4 2 2 0
2,5-Diketo-1,4-piperazine 8 14 2 2 2 0
Uracil 8 12 1 2 2 0
Indole 9 16 1 — 1 0
2-Methyl-3-amino 9 23 18 1 2 0

N-methylbutanamide

(continued)



3. System Setup

The structure of the human p38 with the inhibitor SB203580 inside the ATP bind-
ing site (94) was downloaded from the Protein Data Bank (code 1a9u) (106). The
water molecules and the inhibitor were removed. Hydrogen atoms were added
with the program WITNOTP. Partial charges were assigned to p38 with the
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Table 1 Continued.

Number of atoms
Number of

H-bond
Formal

Fragment Heavy Total configurations Acceptors Donors charges

Adenine 10 15 1 3 2 0
3,6-Dimethyl-2,5-diketo- 10 20 3 2 2 0

1,4-piperazine
Isoquinoline 10 17 1 1 — 0
N-Formyl-L-proline 20 19 8 3 1 0
Quinazoline 10 16 1 2 — 0
Quinoline 10 17 1 1 — 0
Tetrahydroquinoline 10 21 1 — 1 0
Guanine 11 16 1 3 3 0
Meso-Inositol 12 24 1 6 6 0
-Carboline 13 21 1 1 1 0
�-Carboline 13 21 1 1 1 0
Diphenyl ether 13 23 1 1 — 0
5-Methyl-3-methylsulfox- 13 25 8 2 — 0

deacetophenone
2,3,4-Furantricarboxylic acid 14 18 8 7 3 0
5-Phenyl-1,4-benzodiazepine 17 29 2 2 — 0
5-Phenyl-1,4-benzo- 18 30 2 2 1 0

diazepine-2-one
4-(4-Fluorophenyl)-1-methyl

5-(4-pyridyl)-imidazole (1) 19 31 2 2 — 0
Charged fragments

Methylammonium 2 8 1 — 1 	

Methylamidine 4 11 1 — 2 	

Methylguanidine 5 13 1 — 3 	

Tetrahydropyrrole 5 15 1 — 1 	

Piperidine 6 18 1 — 1 	

Benzamidine 9 18 2 — 2 	

5-Amidineindole 12 22 2 — 3 	

Acetate 4 7 1 2 — –
Methylsulfonate 5 8 1 3 — –
Benzoic acid 9 14 1 2 — –
L-Proline 8 17 2 2 1 	–
D-Proline 8 17 2 2 1 	–
Piperazine 6 18 1 — 2 		

Methylphosphate 6 9 1 4 — – –



MPEOE method (102,103) implemented in WITNOTP which, as mentioned ear-
lier, reproduces the all-hydrogen MSI CHARMm22 parameter set. The following
32 residues of the ATP binding site were used by SEED to position the apolar and
polar surface points for docking: Val30, Gly31, Ser32, Gly33, Ala34, Tyr35,
Gly36, Ser37, Val38, Cys39, Val50, Ala51, Val52, Lys53, Glu71, Leu75, Ile84,
Gly85, Leu86, Leu104, Val105, Thr106, His107, Leu108, Met109, Gly110,
Ala111, Asp112, Asn155, Leu167, Asp168, and Arg173.

4. Description of the Binding Site

Figure 3 displays the most hydrophobic regions of the ATP binding site together
with the most hydrophobic points. The hydrophobic regions were determined by
means of the method developed by Scarsi et al. (61). Five hydrophobic regions
of concave shape were found. They are designated as pockets 1–5 henceforth.
Region 5 is almost flat, and pockets 2 and 4 are less concave than pockets 1 and
3. Pocket 1, located between the Thr106 and Lys53 side chains, is occupied by
the phenyl group of the known inhibitors, while pocket 2, lined by the Thr106
and Met109 side chains, is occupied by the pyridine or pyrimidine cycle. The N-
substituent of the central imidazol or pyrrole groups is in contact with pocket 5,
close to the Val30 and Val38 side chains. Surprisingly, pockets 3 and 4 are
empty in the available crystal structures of the MAP kinase p38–inhibitor 
complexes.

The backbone NH of Met109 and the side chains of Lys53, Tyr35, Arg67,
and Arg173 are hydrogen bond donors in the protein binding site that can interact
with candidate ligands. Interesting hydrogen bond acceptors are in the side chains
of Asp168, Glu71, and Tyr35.

B. p38 Functionality Maps

The library used in this study contains 4-(4-fluorophenyl)-1-methyl-5-
(4-pyridyl)imidazole (compound 1, Fig. 5), which is a close analog of a class of
potent CSAID inhibitors of p38 (83,88,89). Compound 1 has three of the four
rings of the known inhibitors but lacks the C-2 substituent of the imidazole. Fig-
ure 6 shows that SEED docks compound 1 in the right orientation [heavy atom
root-mean-square deviation of 0.9 Å from the position of the inhibitor
SB203580, PDB code 1a9u (94)] and ranks it as best, among the 70 fragments
of the library, with a very favorable van der Waals energy (Table 2). Further-
more, the aromatic rings of the second and third best fragments, diphenyl ether
and dibenzocyclohexane, overlap the pyridine and phenyl rings of the inhibitor
SB203580. To better describe the SEED results, the functionality map discus-
sion is divided into three subsections according to the polar character of the
fragments.
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Figure 6 Relaxed-eyes stereoview of the p38 MAP kinase binding site (thin lines) with
the SB203580 inhibitor [94] (medium lines, green carbon atoms), and a close analog—that
is compound 1 (thick lines)—docked by SEED. Oxygen atoms are colored in red, nitrogen
in blue, sulfur in yellow, and hydrogen in cyan. Hydrogen bonds are shown by a red dashed
line.

1. Fragments Docked Using the Apolar Vectors

Common trends are observed for most of the apolar fragments containing a phenyl
ring, on one hand, and for most of the alkyl groups, on the other hand. Generally,
all hydrophobic pockets accommodate apolar fragments, but some preference is
observed for pockets 1–4, while pocket 5 is less favorable because it is almost flat.
As expected, the electrostatic intermolecular term and the desolvation of the apo-
lar fragment are negligible. We describe the results obtained with benzene and cy-
clohexane, as representative functional groups. Diphenyl ether, the fragment with
the second-best binding energy in the library after compound 1, is also analyzed
to describe the behavior of slightly polar fragments docked as apolar fragments.
In general, the functionality maps of nonpolar fragments are consistent with the
available structural data. Moreover, they indicate that the binding affinity might
be improved by supplementing the known ligands with substituents that fill the
pockets 3 and/or 4.

Benzene. A large energy gap (about 4 kcal/mol) is observed between the
representative of the first cluster and the representatives of the other clusters.
Moreover, the nine remaining members of the first cluster also have a more fa-



vorable energy than the positions in the following clusters. This difference is
mainly due to the large favorable van der Waals term (Table 2). The first cluster
of benzene is embedded in hydrophobic pocket 1, where the phenyl group of the
known inhibitors is placed. The orientation of its members is also similar to that
observed in the crystallographic structure (Fig. 7). The representatives of the re-
maining clusters display close energy values. The other apolar fragments contain-
ing a phenyl ring (e.g., naphthalene, tetraline, N-methylindole, dibenzocyclohex-
ane) show the same behavior: there is a large energy gap (from 2.5 kcal/mol to 4.0
kcal/mol) between the position of the first cluster and the other cluster represen-
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Table 2 Cluster Representatives of Fragments Docked Using the Apolar Vectors

Intermolecular interaction Electrostatic desolvation
energy (kcal/mol) energy (kcal/mol)

�Gbind

Rank van der Waals Electrostatic Receptor Fragment (kcal/mol)a Siteb

Benzene
1 �14.7 �0.6 3.4 0.3 �11.6 1
2 �10.1 0.0 2.0 0.3 �7.8 2
3 �11.3 0.3 3.1 0.3 �7.7 3
4 �10.7 0.5 2.8 0.3 �7.2 3
5 �11.0 0.1 3.6 0.3 �7.0 1

Cyclohexane
1 �11.3 0.2 2.4 0.0 �8.6 4
2 �13.1 0.1 4.6 0.0 �8.5 3
3 �11.1 0.1 2.7 0.0 �8.4 2
4 �13.0 �0.0 4.7 0.0 �8.3 1
5 �9.7 �0.2 3.6 0.0 �7.8 2,5

Diphenyl ether
1 �21.3 �0.9 5.5 0.5 �16.2 1,2
2 �19.9 �0.6 6.6 0.5 �13.4 1,2
3 �18.5 0.1 6.5 0.5 �11.4 3
4 �14.4 �0.5 3.8 0.4 �10.7 2,4
5 �17.0 �0.6 6.4 0.5 �10.7 3

4-(4-Fluorophenyl)-1-methyl-5-(4-pyridyl)imidazole
1 �26.0 �1.9 9.7 1.1 �17.1 1,2
2 �20.1 0.5 4.6 0.9 �14.1 2,4
3 �18.8 �1.0 5.9 1.0 �12.9 2,4
4 �18.7 0.2 5.6 1.0 �11.8 2,4
5 �21.1 �1.9 10.9 1.0 �11.2 1,2

a Sum of the values in the four preceding columns (i.e., intermolecular interaction and electrostatics desolvation
energies).

b Numbering of the hydrophobic pockets as defined in Fig. 3.



tatives. The phenyl ring of the best position is located in the hydrophobic pocket
1, except for N-methylindole, whose substituted five-membered ring is placed in
hydrophobic pocket 1.

Cyclohexane. Very close binding energies are obtained for the first four
cluster representatives (Table 2), although they are in four different regions of the
binding site. However repartitions between the different energy terms are not sim-
ilar: the fragments found in hydrophobic pockets 1 and 3 display a more favorable
van der Waals term than those in pockets 2 and 4. Conversely, the electrostatic de-
solvation term of the receptor is more favorable in the latter regions than in the for-
mer ones. The same trend is observed for benzene and for all apolar fragments,
which are small enough to fill only one pocket. This means that better van der
Waals contacts can be achieved in pockets 1 and 3, to the detriment of electrostatic
interactions of the receptor polar groups found in these regions. Except for
adamantane and propane, no energy gap is observed between the representative
positions of the first clusters of the aliphatic fragments. For the other alkyl groups
the position ranking is different for each fragment type, but the total binding en-
ergies are close to one another. The large, almost spherical, adamantane fragment
has a large energy gap (2.5 kcal/mol) between the second and the third cluster rep-
resentatives. The first two clusters are located in pockets 2 and 4, which are large
enough to contain this fragment while cluster 3 is in between. A 2.0 kcal/mol en-
ergy gap is observed between the representative of the first cluster of propane lo-
cated in hydrophobic pocket 1 and the remaining ones.
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Figure 7 Relaxed-eyes stereoview of the 10 best benzenes and pyridines docked by
SEED into the p38 MAP kinase. The bound conformation of the SB203580 inhibitor (94)
is displayed to show that the 10 best benzenes and pyridines match the corresponding
groups of SB203580.



Diphenyl Ether. This fragment contains two phenyl rings linked by an
oxygen atom. Here, it was docked using both the apolar and polar vectors, but
the best binding modes were obtained with the former. Owing to the size de-
pendence of the van der Waals interaction, the intermolecular energy is more fa-
vorable than for benzene and cyclohexane, and diphenylether ranks second
among the 70 compounds of the library. Energy gaps larger than 2.0 kcal/mol
exist between the representatives of the first and the second clusters and between
the second and the remaining ones. In the best binding mode, diphenyl ether
matches the pyridine and phenyl ring of the SB203580 inhibitor. Some positions
allow a weak hydrogen bond between the diphenyl ether oxygen and the side
chains of Tyr35 and Lys53.

Fragments containing a phenyl or pyridyl ring usually have the aromatic
ring in pocket 1. The position of the first cluster of 5-phenyl-1,4-benzodiazepine
is very interesting: the 5-phenyl substituent is located in pocket 1, while the ben-
zene ring is in pocket 2. For fragments with mainly apolar character, the binding
energies obtained by apolar docking are more favorable than those obtained by
polar seeding (data not shown), mainly because of a more favorable van der Waals
term. The regions occupied by the clusters are also different. For example, large
fragments, such as diphenyl ether or 5-phenyl-1,4-benzodiazepine, do not pene-
trate deeply into the binding site when they are docked using polar vectors. They
are placed at the entry of the binding site, being hydrogen-bonded to the side chain
of Tyr35 or to the backbone of the neighboring residues.

4-(4-Fluorophenyl)-1-methyl-5-(4-pyridyl)imidazole. Another interesting
example of apolar docking concerns compound 1, a close analog of a series of po-
tent p38 inhibitors (83,88,89). Compound 1 has the best binding energy of the 70
fragments of the library and is very close to the positions of the inhibitors in the
crystallized complexes with p38 (94) (the distances between corresponding heavy
atoms range between 0.8 and 1.0 Å). Interestingly, although it was placed using
the apolar vectors, the best binding mode has a good electrostatic interaction
(�1.9 kcal/mol) and makes two hydrogen bonds, with the backbone NH of
Met109 and the Lys53 side chain (Fig. 6), which are identical to those observed
for the inhibitors in the crystal structures. Similarly to what was observed for other
fragments docked using the apolar vectors, the representative of the first cluster
displays a large gap with the other cluster representatives (3 kcal/mol).

2. Polar Groups

Pyridine and pyrrole are analyzed because they represent hydrogen bond accep-
tors and donors, respectively. Their electrostatic interaction energy is somewhat
more favorable than that of the fragments without donors and acceptors. However,
the dominant term is still the van der Waals energy, because the receptor desolva-
tion penalty often compensates the favorable electrostatic interaction.
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Pyridine. Pyridine, as well as other fragments containing a similar ring,
are preferentially located in hydrophobic pocket 2, accepting a hydrogen bond
from the backbone NH of Met109, as the pyridyl group of the known inhibitors
(94). The main chain NH of Met109 is indeed the privileged partner of fragments
with a hydrogen bond acceptor. The orientation of the members of the first clus-
ter is very close to that of the corresponding ring in the crystallographic structure
(Fig. 7). The energy gap between the first cluster representative and the others is
almost 2 kcal/mol, although other cluster representatives of pyridine interact with
the Met109 NH. The difference is distributed among the two intermolecular terms
and the electrostatic desolvation, but the latter seems to play a significant role
comparing the energy profiles of the first position and of the fourth and the fifth,
given in Table 3. The other protein partners for hydrogen bond acceptors are
mainly Lys53 and Tyr35 side chains. For steric reasons, the latter is preferred by
large fragments, like diphenyl ether or 5-phenyl-1,4-benzodiazepine, because it is
at the entry of the ATP binding site.

Pyrrole. Pyrrole and fragments with hydrogen bond donors also interact
preferentially with the region around Met109. The main hydrogen bond acceptors
are the main chain CO groups of Met109, Gly110, and Val30. More seldom do the
side chain atoms of Tyr35, Glu71, and Asp168 play this role. Energy differ-
ences between cluster representatives are rather small. Many fragments in the
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Table 3 Cluster Representatives of Fragments Docked Using Polar Vectors

Intermolecular interaction Electrostatic desolvation
energy (kcal/mol) energy (kcal/mol)

�Gbind

Rank van der Waals Electrostatic Receptor Fragment (kcal/mol)a HB partners

Pyridine
1 �9.1 �0.6 1.4 0.8 �7.4 Met109-NH
2 �8.5 �2.0 4.1 0.8 �5.6 Lys53
3 �7.6 0.1 1.3 0.8 �5.4 Met109-NH
4 �9.2 �1.6 4.9 0.8 �5.1 Lys53
5 �9.1 �2.2 6.1 0.8 �4.4 Lys53

Pyrrole
1 �6.6 �0.3 1.1 0.3 �5.5 Met109-CO
2 �5.0 �0.5 0.8 0.3 �4.4 Val30-CO
3 �5.0 �0.4 1.0 0.3 �4.0 Val30-CO
4 �4.8 �0.5 1.3 0.3 �3.7 Met109-CO
5 �4.7 �0.3 1.1 0.3 �3.6 Gly110-CO

a Sum of the values in the four preceding columns (i.e., intermolecular interaction and electrostatics desolvation
energies).



library contain both donors and acceptors and occupy most of the pockets that are
favorable for either pyridine or pyrrole. For example, the representative position
of the first cluster of -carboline is involved in two hydrogen bonds with the pro-
tein, with the backbone donor and acceptor of Met109.

3. Charged Groups

The binding energy of functional groups with formal charge(s) is much less fa-
vorable than the one of neutral fragments (Table 4). This is consistent with the
lack of formal charges in the known inhibitors and indicates that the electrostatic
desolvation penalty cannot be neglected. Small or negligible energy differences
are observed between cluster representatives of charged groups, which suggests
that there is no really favorable region for the charged fragments of the SEED li-
brary inside the ATP binding site of the p38 MAP kinase. The results obtained for
acetate and methylammonium are described as exemplar negatively and positively
charged fragments, respectively (Table 4).

Acetate. The preferred protein partners for acetate are the Lys53 and
Arg67 side chains, which are located above hydrophobic pocket 3. This is also the
case for most of the negatively charged fragments. The methyl group of acetate of
the fourth cluster members is positioned in pocket 1. Arg173 and Tyr35 are the
other donors interacting with these groups. Interestingly, the best methylphos-
phate (charge of �2) is at the entry of the binding cleft and interacts with the loop
containing the consensus Gly-X-Gly-X-X-Gly sequence, which is known to bind
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Table 4 Cluster Representatives of  Charged Fragments

Intermolecular interaction Electrostatic desolvation
energy (kcal/mol) energy (kcal/mol)

�Gbind

Rank van der Waals Electrostatic Receptor Fragment (kcal/mol) HB partners

Acetate
1 �6.1 �7.5 3.6 7.6 �2.4 Arg67-H�21 Lys53-H�3

2 �5.9 �7.7 3.5 7.7 �2.4 Arg67-H�21 Lys53-H�3

3 �5.4 �8.1 3.4 7.9 �2.2 Arg67-H�21 Lys53-H�3

4 �8.5 �4.2 3.0 7.6 �2.1 Lys53-H�1

5 �4.9 �8.2 3.3 8.2 �1.6 Lys53-H�3 Arg67-H�21

Methyl ammonium
1 �1.9 �6.1 1.2 3.9 �2.9 Gly110-CO
2 �3.5 �3.7 1.2 3.2 �2.8 Asp112-O�2

3 �3.8 �3.6 0.9 4.3 �2.3 Gly110-CO
4 �5.4 �5.0 1.0 7.3 �2.0 Gly110-CO
5 �1.3 �6.9 1.6 4.7 �1.9 Met109-CO

a Sum of the values in the four preceding columns (i.e., intermolecular interaction and electrostatics desolvation
energies).



the phosphate group of ATP. However it has a binding energy of about 0 kcal/mol,
which is much less favorable than the one of the neutral fragments discussed ear-
lier. This suggests that the triphosphate moiety might contribute less than the base
to the binding affinity of ATP.

Methylammonium. Conversely to the negatively charged fragments, no
positively charged compound is deeply buried into the binding site. Such com-
pounds are mainly found in region 4, interacting with the backbone oxygen atom
of Gly110 and Met109, as well as with the Asp112 side chain. Other partners are
the Val30 carbonyl group and Asp168 side chain.

V. FUTURE DIRECTIONS

The Internet is providing an excellent opportunity for computer-aided drug de-
sign; user-friendly, interactive, and platform-independent WWW-based tools for
molecular modelling have existed for several years (107–109) and more will
emerge. In the near future, it is expected that multicenter ligand design will be-
come a reality, with several researchers working on the same target by library
docking and calculation of binding affinities distributed on several computers
connected by very fast networks.

It is clear from this and other chapters that drug design is a really multidis-
ciplinary research field; we hope that this book will spur interest and enthusiasm
for computer-aided drug design among chemists, physicists, biologists, and com-
puter scientists. Although the field is no longer in its infancy, new ideas and mul-
tidisciplinary approaches are required to meet the two main challenges: the accu-
rate estimation of binding affinity (4,110), and the large amount of data emerging
from the genomics and proteomics endeavors (111–113).
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I. INTRODUCTION

To reach the status of marketed drug, a chemical compound must exhibit, be-
sides high affinity and selectivity for the targeted binding site, good pharma-
cokinetic properties, minimal side effects, and low toxicity. A further require-
ment is patentability; that is, the compound must have nonobvious chemical
alterations compared to previously disclosed compounds. Historically, medicinal
chemistry efforts, as illustrated in Fig. 1, started from a lead structure that had
(typically) poor DMPK (distribution, metabolism, and pharmacokinetic) prop-
erties and micromolar affinity. Initial synthetic efforts were aimed at improving
the binding affinity (steps 1–10 in Fig. 1). Once medium- to low-nanomolar
affinity was achieved, DMPK properties were optimized (steps 11–23 in Fig. 1).
This process was far from trivial, since one had to preserve the molecular de-
terminants responsible for affinity while modifying the chemical structure to
achieve good DMPK properties. This often resulted in reduced binding affinity
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(steps 14, 16), and the process before optimal structures (step 23) were found
was often time-consuming.

These problems were, to a large extent, avoided by early in vivo screening
for good DMPK properties—a strategy that is currently used in many of the phar-
maceutical companies. While beneficial to the drug discovery process, the in vivo
DMPK screening strategy cannot cope with the increasingly large numbers of
compounds produced by current technologies. The advent of medium and high
throughput synthesis methods such as multiple parallel synthesis and combinato-
rial chemistry, combined with high throughput screening (HTS), has created a in-
creasing pressure to optimize both receptor binding affinity and DMPK properties
in the very early stages of drug discovery. Both types of property have been
amenable to empirical modeling within the quantitative structure–activity rela-
tionships (QSAR) paradigm (1–4). QSAR methods aim to explain and predict the
target property, which may include different forms of binding affinity measure-
ments (5), such as IC50 and/or Ki, but also different forms of DMPK property pro-
file (6,7), such as passive oral absorption, passive blood–brain barrier (BBB) per-
meability, or active components for certain carrier system for which experimental
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Figure 1 Schematic illustration of the traditional medicinal chemistry efforts in drug dis-
covery. The dashed line indicates the simultaneous optimization (ideal) approach. See text
for details.



data are available. One, however, must be careful to distinguish the active from
the passive component of the permeability mechanisms, since the former are un-
suitable to model in a single QSAR.

This chapter outlines key concepts related to binding affinity and pharma-
cokinetic property prediction. Receptor-based methods that model and predict
binding affinity are briefly discussed, together with methods that estimate oral ab-
sorption and BBB permeability. We then focus on the use of QSAR descriptors
relevant to DMPK models to estimate the binding affinity of small organic com-
pounds complexed with proteins.

II. BRIEF OVERVIEW OF CLASSICAL QSAR METHODS

Typically, QSAR data are stored in a table in which rows represent compounds
and columns represent physicochemical properties (descriptors). The first col-
umn after the compound identifier is usually the measured target property Y.
Then a statistical procedure, such as multiple linear regression (MLR), (1), pro-
jection to latent structures (PLS), (8), or computational neural networks (CNN),
(9), is used to find a mathematical model relating the observed measurement(s)
with some combination of the properties represented in the other columns.
There are many available QSAR descriptors, and the most appropriate choice is
not always obvious (1–4). However, about 80% of the over 6000 biological
QSAR equations stored in the Pomona College database (10) show significant
correlation with hydrophobicity-related descriptors. Cross-correlation, or the
collinearity between various descriptors, a problem that may lead to chance cor-
relations when using MLR techniques, can be appropriately dealt with by using
PLS (11).

“Classical” QSAR models, also known as Hansch analysis (1) or 2D-
QSAR, are regression (MLR) equations that relate the biological activity to the ef-
fects of modifying chemical substituents on a parent structure. A typical Hansch
analysis has the following form:

�log [Conc] � a (descriptor
steric ) � b (electronic

descriptor) � c ( descriptor
hydrophobic) � d (1)

where �log [Conc] is the negative logarithm of the biological activity. The coef-
ficients a, b, and c, and the intercept d, are usually determined by regression anal-
ysis. The quality of the resulting QSAR models can be judged by statistical means
such as r2 (the fraction of explained variance) and q2 (the cross-validated, or pre-
dictive r2).

The fraction of explained variance, r2, measures of the QSAR model’s abil-
ity to explain the variance in the data; in other words, it estimates the goodness of
fit of the regression model (see Eq. 2). The predictive r2, or q2, measures the in-
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ternal robustness of the QSAR model; in other words, it estimates the predictive
ability of the model (see Eq. 3). Predictive estimates are obtained either by use of
the cross-validation procedure (discussed shortly) or by predicting external com-
pounds (previously not used in the model):

r2 � 1 � (2)

q2 � 1 � �
PR

S
E
D
SS
� � 1 � (3)

where Y stands for target property values [Ya are measured (actual) values; Yc are
calculated values; Ym is the mean binding affinity of the N given ligands; Yp are pre-
dicted values.] PRESS is the sum of squared deviations between predicted (Yp) and
measured (Ya) binding affinity values over N ligands, and SD is the sum of the
squared deviations between the measured binding affinity values of the molecules
in the test set and the average Y value (Ym) for all N molecules in the training set.
Other statistical indices used in QSAR analyses have been detailed elsewhere (12).

Cross-validation (13) is a procedure in which one or more compounds are
excluded from the model, whereupon another model is derived using the reduced
training set. The excluded compounds are then predicted with this second model.
Cross-validation is typically performed in successive runs for randomly or sys-
tematically divided groups to test model significance. Cross-validation estimates
model robustness and predictivity to avoid overfitted QSAR models (13). In par-
ticular, PLS model complexity is established by testing the significance of adding
a new dimension (PLS component) to the current model. The optimal number of
PLS components is then chosen from the analysis with the highest cross-validated
r2 (q2) value (Eq. 3). In the most popular cross-validation technique, leave-one-
out (LOO), each compound is left out of the model once and only once, which
gives reproducible results. An extremely fast LOO method, SAMPLS (14), looks
at the covariance matrix only and allows the end user to rapidly estimate the ro-
bustness of QSAR models. Stone and Jonathan, who covered statistical methods
and the use of cross-validation (15), also offered a critical, comparative descrip-
tion for specific QSAR methods (16).

III. THERMODYNAMIC ASPECTS IN BINDING AFFINITY
PREDICTION

A. General Remarks. The Bioactive Conformation

QSAR methods are based on the linear free energy relationship (LFER) formal-
ism that relates �G°bind, the standard free energy of binding, to the logarithm of the

∑N
i�1(Ya � Yp)2 

��
∑N

i�1 (Ya � Ym)2

∑N
i�1(Yc � Ya)2 

��
∑N

i�1 (Ym � Ya)2
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dissociation constant, �log KD, at thermodynamic equilibrium concentrations of
the ligand, [L], receptor, [R], and the corresponding complex [L–R], for the reac-
tion L � R → L–R:

�G°bind � �RT ln �
[L
[L

�

][R
R
]
]

� � �RT ln KD � 2.303RTpKD (4)

where R � 8.314 J/mol � K and T is the temperature in degrees Kelvin. At 37°C,
�G°bind is approximately 6.0 pKD (kJ/mol), or 1.42 pKD (kcal/mol). We often re-
place �G°bind with �GL–R

bind by assuming the same reference state. The binding of a
ligand to a receptor, a multistep process, evaluated by the total �G°bind (Eq. 4), in-
cludes sequential steps going from independent ligands and receptors in the sur-
rounding physiological environment to the ligand–receptor complex.

Conformationally flexible compounds are mixtures of multiple conforma-
tional substates Li, i � 1, 2, . . ., n, of which only one (of very few) fit in the re-
ceptor binding site. Any solvent-accessible conformer can, in principle, transition
into the active one during this process. Some ligands may already be in their low-
est energy conformation when binding to the receptor, while other ligands may
have to transition to the active conformation (lower in energy); hence these lig-
ands exhibit—on the average—energies higher than the minimum energy (17).
All ligands having an energy higher than the minimum energy must have a higher
affinity than molecules occurring in the minimum energy conformation, indepen-
dent of the energy level of the receptor-bound conformation (17,18). It follows
that the concentration CF corresponding to the bioactive conformer, LF, represents
only a fraction �F of the total ligand concentration, CT:

CF � �F CT (5)

As a consequence, one can adjust (18) the biological activity Yexp of a ligand by
taking into consideration the concentration of its bioactive conformer, LF:

YF,adj � Yexp � log �F (6)

The relative amount, �F, of the bioactive conformer LF can be estimated accord-
ing to Boltzmann statistics (19), using Eq. (7):

�F �
(7)

where Ui are relative conformational energies, calculated by standard conforma-
tional analyses, and gi are the degeneration degrees of the conformational energy
levels due to the appearance of certain symmetric conformers (e.g., gauche
forms); UF and gF represent the corresponding properties for the bioactive con-
formation. If there is more than a single bioactive conformation, the correspond-
ing sum is performed in the denominator. Adjusted biological activities were used

gF exp(�UF/RT )
���
∑n

i�1 gi exp(�Ui /RT )
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to select bioactive conformers for a series of 25 acetylcholinesterase (AChE) sub-
strates in the absence of the binding site and were shown to fit well (18) into the
active site of a crystallographic structure of AChE (20), thereby indicating the po-
tential utility of this approach.

One must ascertain that no rate-limiting steps occur during intermediate
stages, and that nonspecific binding does not obscure the experimental binding
affinity. All the parameters that cannot be directly measured remain hidden (e.g.,
receptor-induced conformational changes of the ligand, geometric variations of
the binding site). QSAR methods use a time-sliced (frozen) model; that is, the sys-
tem is at equilibrium and time independent (18). Kinetic bottlenecks in the inter-
mediate steps may occur, and �GL–R

bind remains thermodynamic in nature (not ki-
netic).

B. Protein-Bound Waters and Hydrophobicity

Entropy is lost during reversible or irreversible ligand–receptor binding and
gained during the desolvation process (21) because of the waters freed from the
binding site and the ligand’s hydration shell. The entropy of releasing tightly
bound structural water molecules from a protein binding site into aqueous solu-
tion, which has been studied using high precision calorimetry (22), has been used
to determine Swr, the molar entropy of water release. The upper limit for Swr is 30
J K�1 mol�1 (22). The upper limit for the molar enthalpy of water release from the
protein, �Hwr, is 16 kJ/mol (22). For both Swr and �Hwr, the lower limit is set at
zero. The free energy of water release �Gwr has been estimated to vary between
�9 and 16 kJ/mol (22). Therefore, ligand-induced displacement of water
molecules from the protein binding site is not always beneficial.

A practical approach to address this issue has been proposed by Ladbury
and coworkers (21). In the first step, computer models can be used to identify
which water molecules are tightly bound to the protein in the binding site. A num-
ber of methods are available for this purpose (23,24). In a second step, one esti-
mates the effect of removing those water molecules on the free energy of binding
of the ligands of interest, using molecular modeling software (25). Displacing
tightly bound water molecules from protein binding sites has resulted in a number
of interesting ligands designed for HIV-1 protease (26) and for scyalone dehy-
dratase (27). However, the user must be aware that deprotonated carboxylate
and/or phosphate groups always have one or two water molecules in close prox-
imity. These waters are important in maintaining the protonation state of the an-
ions, and it is probably more difficult to replace them (28). Ligand–receptor ion
pairs are likely to be hydrated; otherwise they become hydrogen-bonded, neutral
interactions (28). Therefore, in the third step, one corroborates the computer cal-
culations with experimental evidence, to define the ligand design strategy
(whether to replace or not the tightly bound water). Water molecules can be ex-
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plicitly incorporated in three-dimensional QSAR (3D-QSAR) analyses to aug-
ment the predictivity and interpretability of the model system (29).

Hydrophobic forces play an important role in drug–receptor interactions.
While more difficult to visualize in contrast to hydrogen bonds, hydrophobic in-
teractions have been experimentally shown to yield higher affinity ligands than
their polar analogs, even at the expense of possible hydrogen bonds (30). The im-
portance of hydrophobic forces during ligand–receptor interactions is further sub-
stantiated by the fractional PLS contributions (31) of the VALIDATE (32) de-
scriptor set (described in Sect. IV.B). VALIDATE is a PLS-based model trained
on 51 diverse ligand–receptor pairs obtained from the Protein Data Bank (33). By
examining the VALIDATE contribution plot in Fig. 2, one can notice that hy-
drophobicity-related descriptors are dominant: The black bars represent the
lipophilic contact surface area, the intermolecular van der Waals (Lennard-Jones)
energy, and the receptor-based hydrophobicity parameter Hint LogP (34).

The importance of hydrophobic interactions is indirectly supported by two
observations (35) based on the property analysis of the Physician Desk Reference
(PDR) set of oral drugs: (1) the number of drugs in PDR that have between 0 and
2 hydrogen bond donors is four times higher than the number of drugs that have
between 3 and 5 hydrogen bond donors; and (2) over 50% of the PDR drugs have
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Figure 2 Fractional contributions of the VALIDATE descriptors to the final PLS model.
Black bars represent hydrophobic interactions; gray bars represent electrostatic interactions
(including hydrogen bonds); white bars represent entropy-associated interactions.



CLOGP (the logarithm of the calculated octanol/water partition coefficient: see
Ref. 36) value of 1 or higher—meaning that their nature is more hydrophobic than
polar.

C. Assumptions in Binding Affinity Prediction

One can use “classical” 2D-QSAR methods to investigate properties that relate to
�GL–R

bind at a macroscopic level. For details at the atomic level, and in particular for
those related to the ligand–receptor interaction, one must resort to 3D-QSAR
methods (12,37,38), or to scoring functions (39–42).

Both 3D-QSAR methods and scoring functions rely on a set of assumptions,
as follows (12,41):

The modeled ligand, not its metabolite(s) or any of its derivatives, produces
the observed effect.

The ligand is modeled in a single (bioactive) conformation that exerts the
binding effects; the dynamic nature of this process, as shown for lactate
dehydrogenase, that is likely to assume different conformational states at
the binding site (43), is typically ignored.

The geometry of the receptor binding site is, with few exceptions, consid-
ered to be rigid.

The loss of translational and rotational entropy upon binding (44) is as-
sumed to follow a similar pattern for all compounds, even though ther-
modynamic data suggest otherwise (45).

The entropic cost for freezing nonterminal single-bond rotors (46) is fre-
quently estimated only by counting the number of rotatable bonds (see
also Sect. IV.B.2).

The protein binding site is the same for all modeled ligands.
The on–off rate is similar for modeled compounds (i.e., the system is con-

sidered to be at equilibrium, and kinetic aspects are usually not consid-
ered).

Solvent effects, temperature, diffusion, transport, pH, salt concentrations,
and other factors that contribute to the overall �GL–R

bind are not con-
sidered.

Furthermore, for 3D-QSAR methods and scoring functions that are based on
molecular mechanics force fields, the binding free energy is largely explained by
the enthalpic component (the internal energy derived from force field calcula-
tions), which is prone to inherent force field errors.

Quite frequently, the binding free energy is expressed as the sum of the free
energy components, conceptually shown (5) in the following “master equation”:

�Gbind
L�R � �Gsol � �Gconf � �Gint � �Gmotion (8)
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which accounts for contributions due to the solvent (�Gsol), to conformational
changes in both ligand and protein (�Gconf), to the ligand–protein intermolecular
interactions (�Gint), and to the motion in the ligand and protein once they are at
close range (�Gmotion). This can been rewritten as follows:

�Gbind
L�R � �Gsol � �Uvac � T�Svac (9)

where �Gbind
L�R is separated, at equilibrium, into solvation effects (�Gsol) and two

components for the process in vacuum: the internal energy (�Uvac) and entropy
(T�Svac). One can calculate �Gsol with a variety of methods (5), while T�Svac is
often related to the number of nonterminal single bonds (32,47). Both �Gsol and
T�Svac are assumed to have similar values for congeneric series, hence Eq. (9) is
widely used in QSAR studies by expanding only the internal energy term:

�Uvac � �UvdW
L�R � �UCoul

L�R � �UL
distort � �UR

distort � �UR
conf (10)

which includes the steric (vdW) and electrostatic (Coul) aspects of the ligand–re-
ceptor interaction (�UvdW

L�R and �UCoul
L�R), the distortions (distort) induced by this

interaction in both ligand and receptor (�UL
distort and �UR

distort), and the ligand-in-
duced conformational changes of the receptor (�UR

conf). The agonist-induced con-
formational rearrangements of the receptor �UR

conf may be an important compo-
nent of signal transduction and are not considered to occur upon antagonist
binding to the same receptor (44).

3D-QSAR methods and scoring functions (see Ref. 48 and Chap. 5, this vol-
ume) use—with different approximations—the terms of the master equation, Eq.
(8), to predict �Gbind

L�R, once the pharmacological data have been converted to their
free energy equivalent via Eq. (4).

IV. PREDICTION OF BINDING AFFINITY

A. Binding Affinity Estimation Using 3D-QSAR Methods

Comparative molecular field analysis (CoMFA), (49) computes the steric 
(�UvdW

L�R) and electrostatic (�UCoul
L�R) interactions on an uniform grid around each

ligand, using hypothetical probe atoms that mimic receptor atoms (see Fig. 3).
These grid point calculated interaction energies are tabulated for each molecule
(row) in the series. The resulting matrix is analyzed with multivariate statistics,
yielding Eq. (11), which relates CoMFA fields to �Gbind

L�R:

�Gbind
L�R � ∑x,m

X,M AxUvdW (x, Lm) � ∑x,m
X,M BxUCoul (x, Lm) (11)

where a number X of grid-based probes (x) interact with a number M of ligand
atoms (Lm) (see Fig. 3), and Ax and Bx are regression coefficients.

In other words, CoMFA compares the molecular potential (steric and elec-
trostatic) energy fields of a series of ligands and searches for differences and simi-
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larities that can be correlated with differences and similarities in biological activity
values. In CoMFA, the receptor is approximated by a rigid grid, therefore �UR

distort

and �UR
conf are not computed. However, �UL

distort is indirectly included when a par-
ticular conformer is chosen for the alignment. Other 3D-QSAR methods that have
proved useful in estimating �Gbind

L�R are also available (50,51). While different 3D-
QSAR methods appear to yield models of equivalent statistical significance, the in-
formation extracted from these models can be quite different (52,53).

Ten years after the original CoMFA report (49), over 100 CoMFA models
had been reported on enzyme binding affinity, and over 100 CoMFA models on
receptor binding affinity (54). An alphabetical list of the 383 CoMFA references
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Figure 3 Flowchart of the CoMFA process: previously aligned ligands are submitted to
grid-probe (field) evaluation. The tabulated field values are then submitted to multivariate
analysis to derive QSAR models.



published between 1993 and 1997 is available (55). Over 200 papers illustrate the
use of CoMFA (and other 3D-QSAR methods) in estimating the binding affinity,
with an average prediction error of 0.6–0.7 log unit (0.85–1 kcal) for external sets
of compounds (54). This estimate, however, may not be accurate for entirely novel
classes of compounds. External predictivity with CoMFA models requires ade-
quate information to reproduce the alignment rule, but care needs to be exercised
that the prediction step uses interpolation, rather than extrapolation (12). For il-
lustrative purposes, this chapter focuses on binding affinity predictions for a di-
verse set of HIV-1 protease (56) inhibitors.

The training set consisted of 59 compounds from five structurally diverse
transition state isostere (TSI) classes: hydroxyethylamine, statine, norstatine, ke-
toamide, and dihydroxyethylene (57). The availability of X-ray crystallographic
data for at least one representative from each class bound to the protease provided
information regarding not only the active conformation of each ligand but also, via
superimposition of protease backbones, the relative positions of each ligand with
respect to one another in the active site of the enzyme. Relevant statistical models
(with r2 	 0.8 and q2 	 0.6) were obtained. The test set included 6 compounds
with known or inferred binding structure, as well as 30 other compounds with un-
known binding mode (58): 18 hydroxyethylureas (ligands having a different TSI)
and 12 dihyroxyethylenes. The graphical output resulted from this CoMFA study
(the CoMFA fields) was shown to be in good agreement with the HIV-1 protease
binding site (59).

For the external set, binding affinities were adjusted according to
Cheng–Prusoff equation (60):

IC50 � Ki �1 � �
K
S
M
�� (12)

where Ki is the inhibition constant (the equivalent of KD for enzyme kinetics in the
presence of a reversible inhibitor), S is the concentration of substrate, KM is the
Michaelis–Menten constant, and IC50 is the concentration of inhibitor that reduces
the reaction rate by 50%. External predictivity results for the 36 compounds,
based on the CoMFA model, were very high: q2 � 0.814 (see Fig. 4a). Upon
closer examination, two different KM values for the HIV-1 protease had been pub-
lished by the same laboratory for the dihyroxyethylene series: 0.064 mM (61) and
1.03 mM (62), respectively.

HIV-1 protease is sensitive to Na� concentrations in the assays, and the dis-
crepancy between the two reported KM values was due to the difference in Na�

concentrations used in the two assays (Tomasselli AG, personal communication,
1994). In fact, 2.0 mM was the correct KM value. Equation (12), was used to cor-
rect biological activities for the dihyroxyethylenes in both the training and the test
sets, and the CoMFA model was rederived. While the statistical relevance of the
PLS model did not change significantly, the external predictivity dropped signif-
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icantly: q2 � 0.487 (see Fig. 4b). This highlights the paramount importance of ac-
curate biological data in QSAR model derivation. Upon building a training set,
whether for 3D-QSAR or for scoring functions, one is rather limited by the avail-
ability of high quality experimental data.
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Figure 4 Experimental versus predicted pIC50 values for an external set of 36 HIV-1
protease inhibitors, using a CoMFA model. The initial KM value for HIV-1 protease was
0.064 mM, yielding a q2 of 0.814 (a), that was later adjusted to 2.0 mM, yielding a q2 of
0.487 (b). See text for details.



B. Binding Affinity Estimation Using Scoring Functions

Receptor-based scoring functions that rapidly estimate binding affinity are empi-
rical methods, which should be differentiated from free energy perturbation
(FEP) methods (63,64), which are computed from first principles. It is the very
fact that simplified assumptions are introduced in the empirical models that al-
lows these methods to gain in speed what they may lack in scientific rigor. One
of the fastest FEP techniques, the linear interaction energy approach (65), still
requires about 1 CPU-day per compound. This method, proposed by Åqvist et
al. (66), averages the interactions between the ligand and its surroundings using
molecular dynamics, separately in solution and in the receptor-bound state. In-
termolecular interaction energies derived from molecular mechanics have also
been successful in estimating the free energy of binding for a set of HIV-1 pro-
tease inhibitors (67).
There are three major categories of scoring functions.

1. Knowledge-based methods (68–70) use Boltzmann-weighted poten-
tials of mean force (PMF) derived from statistical analyses of ligand–receptor in-
teratomic contacts, based on available complexes in the PDB: Wallqvist (71),
Verkhivker (40,72), SMoG (73,74), Muegge (75,76), and DrugScore (77) are var-
ious implementations of this approach.

2. “Master equation” approaches (5), use semiquantitative estimates of 
the energetic contributions of various interaction types, as proposed by Williams
(46,78) and Rose (79,80). The Williams approach (46) was targeted 
at peptide–peptide interactions in particular (81), whereas Rose derived a 
scoring function intended for high throughput virtual screening of protein 
targets.

3. Regression-based methods are based on available biological activity for
training sets of ligand–receptor complexes extracted from the PDB: SCORE2
(82), VALIDATE (32), VALIDATEII (83,84), Pro_Score (85,86), Jain (42), Hor-
vath (87), and SCORE (88) have been published since 1996. These methods have
the disadvantage that they require biological input for parameterization, whereas
the other two approaches do not.
The reader is referred to the respective references for appropriate descriptions of
these approaches. In 1998 we reviewed the approaches of Wallqvist, Verkhivker,
Jain, and Rose (41). For illustrative purposes, we focus on VALIDATE, an em-
pirical paradigm that estimates �Gbind

L�R in the molecular mechanics approxima-
tion, based on the following equation:

�Gbind
L�R � 
1EvdW

L�R � 
2ECoul
L�R � 
3SF � 
4RC

� 
5RTB � 
6�HL
bind � 
7CSAL�R

lipophilic � 
8CSAL�R
hydrophilic

(13)

where 
1–
8 are PLS-fitted regression coefficients for the master equation terms
briefly discussed in the remainder of this section: Eqs. (14)–(20).
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1. Intermolecular Interaction Energies. The Steric Fit

Good structural complementarity is essential for the high affinity ligand–receptor
interactions. Nonbonded van der Waals (vdW) interaction energies, EL�R

vdW, are
based on the Lennard-Jones potential as follows:

EvdW
L�R � ∑i

L ∑j
R �ij ���Ri �

rij

Rj
��

�12

� 2 ��Ri �

rij

Rj
��

�6

� (14)

where �ij � (�i �j)�1/2 and rij is the distance between atom center i and atom cen-
ter j; Ri, �i are the vdW radius, and epsilon value of atom i, and Rj, �j are the vdW
radius, and epsilon value of atom j. The electrostatic interaction energy is the ex-
plicit sum of the Coulombic potentials:

� � �
4

1
�0
� ∑i

L ∑j
R �

q
r
i

i

q

j

j
� (15)

using partial atomic charges on the ligand (qi) and the receptor (qj).
Steric fit (SF), which describes the complementarity packing of the ligand

in the binding site, computes the number of ligand–atom/receptor–atom contacts
for each ligand atom (see Eq. 16). For example, the steroid ligands complexed
with DB3 antibodies (89) contain a considerable percentage of their atoms outside
of the active site, while HIV-1 protease inhibitors are largely surrounded by the
receptor. SF is expressed as follows:

SF � �
∑i,

N
j Cij
� (16)

where Cij is 1 for distances smaller than or equal to the sum (ri � rij � �) and 0 for
distances larger than the sum (ri � rij � �), N is the number of ligand atoms con-
tained in the active site, ri, rj are the vdW radii of atoms i and j, and � � 0.3 Å.

2. Hydrophobic Interactions. Entropic and Enthalpic Aspects of
Binding

For the partition coefficient, a negative value indicates a preference for a polar
(e.g., aqueous) environment, and a positive value indicates a preference for a non-
polar environment (e.g., octanol). VALIDATE computes the amount of hy-
drophilic and lipophilic surface areas as ratios to the total surface area of the bind-
ing site, attributing a value of RC � �1 for predominantly lipophilic binding sites
(e.g., HIV-1 protease) and a value of RC � �1 for predominantly hydrophilic
binding sites (e.g., L-arabinose binding protein). VALIDATE further computes
the ligand’s partition coefficient using the fragment-based H log P method in
HINT (34). The final value of the partition coefficient, PC, is:

PC � RC H log P (17)
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Any carbon that is covalently bound to no more than one noncarbon was consid-
ered to be lipophilic, and any hydrogen connected to such a carbon is also
lipophilic. All other atoms were considered to be hydrophilic.

Changes in conformational entropy occur when freely rotating fragments of
the ligand and receptor are forced to adopt rigid conformations upon binding (46).
VALIDATE estimates the change in conformational entropy by counting the
number of nonterminal single bonds, RTB (32,35,47). For flexible ring systems,
the number of degrees of freedom is of the order n � 4, where n is the number of
bonds in the ring. The rotatable bond count is:

RTB � Nrntsb � ∑
i

(ni � 4) (18)

where Nrntsb is the number of nonterminal single bonds and ni is the number of sin-
gle bonds in ring i. A more complete version of this descriptor can be found in Ref.
35.

The change in conformational enthalpy, �HL
bind, was approximated by the

amount of energy required for the ligand to adopt the receptor-bound conforma-
tion, defined by

�HL
bind � | EL

bound � EL
sol | (19)

where EL
bound is the energy of the ligand’s receptor-bound conformation and EL

sol is
the energy of the ligand in solvent at its nearest local minimum.

3. Surface Complementarity: The Ligand–Receptor Interface

The surface complementarity between the ligand and its binding site is known to
be very important (90–92) for binding affinity. However, one problem associated
with the development and validation of scoring functions is that the training sets
made up by known ligand–protein complexes possess almost perfect surface
complementarity. As a consequence, no regression-based scoring function can
deal with the fact that many complementarity mismatches in a computer-docked
binding mode would be severely unfavorable for affinity. VALIDATE is no ex-
ception: of the four surface components computed at the ligand–receptor interface
[i.e., lipophilic complementarity (nonpolar/nonpolar); hydrophilic complemen-
tarity (polar/polar, opposite charge); lipophilic/hydrophilic noncomplementarity
(polar/nonpolar); and hydrophilic (polar/polar, like charge) noncomplementarity,
respectively] only the lipophilic and hydrophilic complementarity were selected
by PLS as important for the final scoring function (see also Fig. 2).

In VALIDATE two types of contact surface area (CSA) calculation are
used: the absolute surface area between a ligand and a receptor and a pairwise
summation of receptor–ligand contact points. Both CSA calculations start from
256 evenly distributed points placed on the vdW surface of each receptor atom
whose vdW surface is within 5 Å of the atom center of any ligand atom. If a point
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on this surface is within a mean solvent radius (1.4 Å for water) of the vdW sur-
face of a ligand atom, it is considered to be a contact point. The type of each point
(i.e., polar or nonpolar), is then determined using the criteria discussed earlier. The
contact surface on each atom for each type of contact is then computed by divid-
ing the number of contact points of that type by 256 (the total number of possible
points) and then multiplying by the total surface area of the atom:

CSA � ∑R
i �

(4

2
r
5
i
2

6
CPi)
� (20)

where CPi is the number of contact points on atom i and ri is the vdW radius of
atom i.

In an extension of VALIDATE, 15 additional descriptors have been in-
cluded: 3 related to the number of hydrogen bonds of the ligand with the receptor
and in water, 3 AMSOL-estimated terms related to the ligand free energy of sol-
vation (93), the ligand’s dipole moment, and the highest occupied molecular or-
bital (HOMO) energy, among others (83). This scoring function, termed VALI-
DATE II, was specifically trained on a set of 39 HIV-1 protease inhibitors
extracted from the PDB and was later used to predict about 400 other inhibitors,
manually docked into the binding site. Most errors of prediction were for the
weak-binding ligands (affinity in the micromolar range), indicating that the goal
of accurately predicting such compounds has yet to be accomplished.

Mismatched ligand–receptor surfaces, as just discussed, are not penalized in
VALIDATE. One initiative to overcome this problem in training scoring func-
tions is provided in the framework of the Prometheus software from Protherics
(94). Their Property Viewer graphical interface allows the use of several types of
calculated property as filters on lists of scored binding modes, as provided by the
docking tools. Among these properties are a set of surface complementarity mis-
match descriptors (Waszkowycz B, personal communication, 2000). Refining
docking results using descriptors of this type may represent a useful way to over-
come the above-mentioned deficiency, common to most scoring functions. Dock-
ing tools are discussed next.

C. Tolerance for Protein Flexibility

Receptor-based binding affinity methods depend on the accuracy of the docking
method (95,96). Different approaches for docking small ligands into protein bind-
ing sites have been described in the literature. The performance of these methods
varies from a few CPU-seconds per molecule, for database docking tools, up to
CPU-days for methods based on molecular dynamics. The first docking tool was
the program DOCK (95) by Kuntz and coworkers, which treated both ligand and
protein as rigid bodies. Several methods that allow for full conformational flexi-
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bility of the ligand have recently been developed: FlexX (97), a program that
makes use of an incremental docking strategy of rigid fragments of the ligand,
GOLD (96), which applies an genetic algorithm (GA) to sample over all possible
combinations of intermolecular hydrogen bonds and ligand conformations, and a
GA-based version of DOCK (98) that treats ligands in a flexible manner. While
GOLD is not as fast as FlexX, it allows rotational flexibility for the protein side
chain hydrogens.

For many proteins, structural changes occur in the binding region upon lig-
and complexation. This problem was considered in the CASP2 contest of pro-
tein–ligand docking tools (99). To have any chance of finding the binding mode,
docking methods that entered the contest had to start from the complexed protein
structures (without the ligand), rather then using the uncomplexed proteins for
three of the CASP2 targets. These docking tools did not allow for protein flexi-
bility. Furthermore, examination of experimentally determined structures of pro-
tein–ligand complexes involving different ligands bound to the same target often
reveals modest but significant conformational changes in the target. Therefore, to
get truly predictive binding affinity scoring of combinatorial libraries, the treat-
ment of protein flexibility around the binding site by sufficiently fast docking
tools must be improved.

One approach to treat protein flexibility in docking was suggested by
Kuntz and coworkers (100), who perform docking into binding site models that
incorporate conformational variability from ensembles of experimental protein
structures determined by either NMR or X-ray crystallography. The Internal Co-
ordinate Mechanics (ICM) docking method allows for explicit protein flexibility
by applying a Monte Carlo–based global energy optimization algorithm in in-
ternal coordinates (101). The ICM method was applied for both protein–ligand
and protein–protein docking exercises.

The program SLIDE (screening ligand by induced-fit docking) provides one
significant step forward in combinatorial library evaluation, since it was specifi-
cally designed for high throughput database docking (102). SLIDE first identifies
a template of favorable hydrogen bond and hydrophobic interaction points in the
protein binding site. For each potential ligand, all triplets of corresponding inter-
action points are then mapped onto triangles of template interaction points.
Matches are identified via multidimensional hashing of triangles. The matched
ligand interaction centers define a rigid anchor fragment. All feasible anchor frag-
ments are then evaluated by rigid docking to the corresponding template points.
SLIDE then tries to resolve any collisions of the anchor fragments with protein
main chains by rigid-body translations. Flexibility is then introduced to all frag-
ments of the ligand (except the anchor fragment) and to the protein side chains, to
resolve any remaining collisions. The set of optimal rotations needed to resolve
these collisions is identified by using the mean-field optimization approach. In
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this way, the method can deal with “induced-fit” effects in ligand binding
(103,104) but does not provide a fully flexible treatment of the ligand conforma-
tions, as provided by DOCK, FlexX, or GOLD. Whatever it may lack in accuracy,
SLIDE compensates in speed: it docks over 100,000 compounds a day on an av-
erage workstation; for comparison, fast docking programs can handle 1000–2000
compounds a day (105).

D. Electrons: The Unresolved Issue

There are at least two major interactions that remain poorly addressed by scoring
functions, hence are likely to influence predictions of the binding affinity. These
are cation– interactions and CH– interactions.

1. Cation– interactions have been shown to play a major role in the ion
selectivity of potassium channels (106) and in the stabilization of the (charged)
quaternary ammonium group in acetylcholine to a -electron-rich region com-
prising aromatic rings (107). Over one-fourth of all tryptophan residues in the
PDB were shown (108) to be involved in energetically significant cation– inter-
actions (mostly with arginines). In fact, whenever a cationic side chain (Lys or
Arg) is near an aromatic side chain (Phe, Tyr, or Trp), favorable cation– inter-
action can be observed (108).

2. CH– interactions have been shown to be present in a number of lig-
and–receptor complexes. The following complexes are covered in Ref. 109 (their
PDB codes are in parentheses): heme/hemoglobin (2DHB), tri-N-acetyl-
chiotriose /lysozyme (1HEW), D-sorbitol/xylose isomerase (4XIA), FK506/
FK506-binding protein (1FKF), and phosphorylcholine/McPC603 immunoglob-
ulin (2MCP). While it is true that the attractive interactions between C—H groups
and -electron systems represent an extreme case of hydrogen bonding, we are far
from understanding the role of these weak, but multiple interactions, in biological
systems. In fact, CH– interactions have been suggested (109) to play a major role
in guiding acetylcholine into the aromatic gorge of AChE (20), instead of (or per-
haps in convergence with) the “aromatic guidance” mechanism proposed by Suss-
man et al. (110).

One approach that is suitable to model both cation– and CH– interactions
is the XED (extended electron distribution) approach, developed by Andy Vinter
(111,112). This approach is specifically designed to reproduce geometrical and
energetic aspects of these interactions and has been also been implemented in a
semiempirical quantum mechanical package (113). However, XED it is not yet
suitable for predicting binding affinity in a high throughput mode and is perhaps
better used in later stages of the drug discovery cycle, when lead compounds need
to be refined, rather than identified or optimized (Vinter JG, personal communi-
cation, 2000).
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V. PREDICTION OF DMPK PROPERTIES

A. General Comments

Since oral availability is an important desideratum for marketed drugs, the impor-
tance of pharmacokinetic property prediction during the early stage of drug dis-
covery has been recognized. Solubility, metabolism, and permeability have been
identified as important factors that influence oral availability. Although QSAR
models for the oral availability of certain classes of compounds have been derived,
a general model has yet to become available, probably owing to the diversity of
mechanisms involved (cf. Fig. 5).

Drug permeability, a major determinant of oral drug availability, is defined
as the ratio between the transport rate per area unit and the initial concentration.
Several mechanisms influence drug permeability: for example, a compound can
be absorbed through passive (transcelullar and paracelullar) or active mecha-
nisms. Passive drug absorption depends on the surface characteristics of the in-
testinal membrane (e.g., the size of the tight junctions, the amount of surface ex-
posed, the chemical composition of the membrane). There are two different kinds
of active absorption mechanism, namely, uptake or efflux of the compound. In
both cases, the active mechanism depends on the affinity and the kinetics of the
drug for a certain carrier system that transports the compound through the mem-
brane. While the driving force in the passive mechanism is the gradient concen-
tration of the drug between the two sides of the membrane, in the case of active
transport the mechanism is driven by pH gradient, ion gradient, or energy-depen-
dent processes (114).
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Several types of QSAR model predicting permeability properties from
molecular descriptors are available (115–122). One limitation of these models that
is not always recognized is that they can predict only the passive component of
oral drug permeability. Recently, models based on the program VolSurf have suc-
cessfully been used to predict and describe the passive component of the perme-
ability in the intestine and in the blood–brain barrier (123).

B. VolSurf

VolSurf, written by G. Cruciani and coworkers (119), is a program developed to
extract information from three-dimensional molecular interaction fields and con-
vert it into a few quantitative descriptors that can be easily understood and inter-
preted (124). Similar to the CoMFA fields described in Section III.B, molecular
interaction fields are tabulated energy values that account for the interaction be-
tween a given probe and the ligand of interest. Different molecular interaction
fields have been described, including the molecular electrostatic potential (125),
the molecular lipophilic potential (34,126), the steric, electrostatic, and H-bond
fields in CoMFA (49), and the GRID fields (127). VolSurf has been shown to be
particularly effective when used in conjunction with GRID fields.

GRID, written by P. Goodford (127), is a molecular mechanics–based pro-
gram that estimates the interaction energy between different ligand atom types and
specifically designed chemical probes placed at regular lattice points (in the same
way as CoMFA). These interactions are parameterized on the basis of detailed in-
formation derived from crystal structures. GRID energies are the sum of the
Lennard-Jones, electrostatic, and H-bond interactions between the target and the
probe. In the case of the DRY probe, which represents hydrophobic interactions,
the energy is computed as follows:

EDRY � Eentropy � ELJ � EHB (21)

where Eentropy is the ideal entropic contribution toward the hydrophobic effect in
an aqueous environment, ELJ is the Lennard-Jones term that accounts for the in-
duction and dispersion interactions, and EHB is the H-bond term that estimates hy-
drogen bond interactions between the ligand and the GRID water probe. The pro-
gram VolSurf transfers relevant information from the GRID field to specifically
tailored descriptors, as shown in Fig. 6. These descriptors, listed in Table 1, have
a direct chemical interpretability and are not dependent on the alignment used in
the GRID lattice.

VI. VOLSURF ESTIMATES OF BINDING AFFINITY

To avoid the historical problems in medicinal chemistry research that were illus-
trated in Fig. 1, namely, the sequential optimization of binding properties and
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DMPK properties in drug discovery, it is desirable to apply a unique set of molec-
ular descriptors that is amenable to QSAR models for both properties. Early inte-
gration of DMPK and toxicity models in combinatorial library design has been
proposed (128). Finding a unique set of descriptors to monitor these property
changes is far from trivial, inasmuch as both processes are influenced by (non)spe-
cific intermolecular interactions of the ligand with different physiological mi-
croenvironments, that is, the target binding site and cellular (membrane) barriers,
respectively. On the other hand, these interactions can be described by descriptors
of similar types: the lipophilic CSA in VALIDATE overlaps with the low energy
levels of the DRY probe in VolSurf, the hydrophilic CSA in VALIDATE matches
the water probe descriptors in VolSurf, while the steric complementarity fit in
VALIDATE corresponds to the critical packing descriptor in VolSurf (cf. Table
1). These properties are expected, however, to contribute differently to the bind-
ing affinity (where hydrogen bonds and hydrophobic contacts are expected to be
more directional), as opposed to membrane diffusion (where directionality is less
restrictive).

Since the VolSurf descriptors are well established in the area of DMPK
modeling (123), we have attempted to use the same descriptors to estimate recep-
tor binding affinity. VolSurf descriptors were calculated for the ligand, for the re-
ceptor, and for the ligand–receptor complex of 30 ligand–receptor pairs included
in the VALIDATE training set (129). Data are shown in Table 2 and Fig. 7. Two
sets of VolSurf descriptors (for the ligand and for the receptor) account for the sol-
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tained at different interaction energy levels.



vation–desolvation process that occurs during binding, while the complex-derived
VolSurf descriptors further estimate ligand–receptor complementarity, as well as
potential interactions in the binding site that may have not been addressed by the
ligand.

The data set consists of the following classes of protein–ligand pairs: five
HIV-1 protease, five thermolysin, four subtilisin, five endothiapepsin, seven
L-arabinose binding protein, and four antibody–steroid complexes, respectively.
The pKi value ranged between 5.4 and 11. Ligands and ligand–receptor complexes
were used in the neutral form (no functional groups were formally ionized), and
water molecules were removed from each binding site. Further modeling using
this data set is in progress (130).
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Table 1 VolSurf Descriptor Definition

1. Descriptors obtained from the hydrophilic (H2O) interaction

V: Volume of the water molecular interaction and field at 0.2 kcal/mol energy level
S: Surface of the water interaction field at the same 0.2 kcal/mol level
R: Rugosity: the ratio between the volume and the surface
G: Globularity: the ratio between the surface (S) and the surface of a sphere with the

same volume (V)
W1–W8: The volume of the hydrophilic interactions at 8 different energy levels: �0.2,

�0.5, �1.0, �2.0, �3.0, �4.0, �5.0. and �6.0 kcal/mol
IW1–IW8: The integy moments at the same energy levels than W1–W8
CW1–CW8: The capacity factors are the ratio between the hydrophilic regions (W1–W8)

and the molecular surface (S)
Emin1, Emin2, Emin3: The energy values for the three lowest energy minima
D12, D13, D23: The distances between the three minima

2. Descriptors obtained from the hydrophobic (DRY) interaction
D1–D8: The volume of the hydrophobic interactions at 8 energy levels: �0.2, �0.4,

�0.6, �0.8, �1.0, �1.2, �1.4. and �1.6 kcal/mol
ID1–ID8: The integy moment at the previous energy levels
HL1–HL2: Hydrophilic-lipophilic balance: the ratio between the volume of the hy-

drophilic regions at �3 and �4 kcal/mol and the  hydrophobic region at �0.6
and �0.8 kcal/mol

A: The strength of the amphiphilic moment
CP: Critical packing parameter
POL: Polarizability

3. Descriptors obtained from the polar (O) interaction
Wp1–Wp2: The volume of the interaction with the O probe at 8 different energy levels
HB1–HB8: The difference between the volume of the hydrophilic interaction (W1–W8)

and the O probe interactions (Wp1–Wp8) and represent the hydrogen bond
donor capability of the target



The PLS coefficients for the water probe have a positive sign for the ligand
(a positive contribution to the binding) and a negative sign for the receptor (a neg-
ative contribution to the binding; data not shown). This indicates that far less wa-
ter probe–ligand interactions are available in the receptor-bound state than with
the free ligand, illustrating the high versatility of water molecules as ligand inter-
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Table 2 The PDB Access Code and pKi Values for the VolSurf Data Set

PDB code pKi PDB code pKi

1aaq 7.93 2er9 7.4
1abe 7.01 2tmn 5.89
1abf 5.42 3sic 10.20
1apb 5.82 3tmn 5.9
1dbb 9 4er1 6.62
1dbj 7.6 4er4 6.8
1dbm 9.44 4phv 9.15
1eed 4.79 4tmn 10.17
1hiv 9.15 5sic 10.20
1hvi 10.5 5tmn 8.04
1tlp 8.55 6abp 6.36
1tmn 7.3 7abp 6.46
2dbl 8.7 7hvp 9.62
2er0 6.38 8abp 8
2er6 7.22 9abp 8

Figure 7 Experimental versus predicted pKi values using the LOO cross-validation pro-
cedure for 30 ligand–protein complexes (see Table 2): q2 � 0.86 and r2 � 0.73 for a two-
component model.



action partners. As discussed in 1997 by Ladbury et al. (21), water has a diminu-
tive size (thus, few steric constraints), allowing it to adopt suitable orientations for
both donating and accepting multiple hydrogen bonds. This further indicates that
both the ligand and the receptor need to be evaluated to obtain accurate VolSurf
models for binding affinity.

The PLS coefficients for the DRY (hydrophobic) probe have similar
weights in both ligands and receptors, displaying positive contributions at low en-
ergies and negative contributions at high energies of interaction (data not shown).
At low energy, the DRY probe estimates the nonpolar complementarity, whereas
at high energy, its contours are related to -electron interactions. The role of hy-
drophobic interactions during ligand–receptor binding was discussed in Section
III.B. However, -electron interactions are not adequately described by the cur-
rent scoring functions (see Sect. IV.D).

The fact that VolSurf, a program for DMPK modeling par excellence, yields
a statistically significant QSAR model for binding affinity suggests that it is pos-
sible to develop computer methods that will assist chemists in the simultaneous
optimization of both types of properties. The VolSurf model for binding affinity
is amenable to direct chemical interpretation, having the further benefit that the
VolSurf output for the ligand can be directly used to estimate DMPK properties
(if such QSAR models are available). This may become a drawback, since the
choice of conformation needs to be addressed prior to any VolSurf calculation. It
does not, however, constitute a problem in the presence of experimental evidence
such as X-ray crystallography or NMR findings. The choice of conformation must
be addressed by using a docking program (95,96), to place the ligand into the bind-
ing site.

The three-dimensional structures of the receptor and the receptor–ligand
complex, from NMR or X-ray crystallography, or perhaps from high quality ho-
mology models and docking, are required for this combined approach—which in
itself is a disadvantage. The approach further depends on the quality of the phar-
macokinetic data used to derive the QSAR models, as well as on the various types
of mechanism that could be involved in this process. In other words, if a com-
pound that permeates via passive mechanisms is desired, the QSAR model must
be fitted to experimental data that reflect only that mechanism, not to data that are
ambiguous with respect to the absorption mechanism.

VII. FINAL REMARK

What follows are some guidelines for combinatorial library evaluation with re-
spect to binding affinity and DMPK predictions:

In the absence of a receptor, use available QSAR models to predict binding
affinity; if no QSAR model is available, it is better to rely on molecular
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diversity software (131,132), using computational filters (133) such as
CLOGP (36), molecular weight, and polar surface area (134), perhaps in
connection with leadlike profiling (135).

In the presence of a receptor, but without solid experimental evidence to in-
dicate a unique binding mode, use a high throughput docking/scoring tool
such as SLIDE (102), or a PMF-based scoring function such as
DrugScore (77), in combination with a flexible docking tool such as
GOLD (96). Use any related QSAR models (when available). DMPK
property prediction tools are appropriate if micromolar leads are already
available.

When unambiguous binding modes are known, and a diverse set of ligands
is available in its receptor–bond conformation, use accurate scoring func-
tions such as SCORE2 (82) or SCORE (88); an alternative is the use of
VolSurf, as described in Section VI. With VolSurf, one can predict
DMPK properties for each ligand simultaneously.

Water may play an important role. This needs additional investigation, since
most of the docking tools do not make use of binding site waters. As dis-
cussed in Section III.B, there are three steps: (1) identify tightly bound
waters using the program GRID (127), (2) deliberately replace those wa-
ters by ligands designed for that purpose, and (3) corroborate computer
calculations with experimental evidence (are the designed compounds
more active?) to define the combinatorial ligand design strategy (i.e.,
whether to replace or not replace the water). Bear in mind that the free en-
ergy of water release from a protein binding site can be anywhere from
�9 to 16 kJ/mol (22), so replacing water molecules from the binding site
will not always result in increased binding affinity.

In this chapter, we have advocated the simultaneous prediction of both
DMPK properties (e.g., intestinal permeability) and receptor binding affinity by
using a unique set of descriptors for any given ligand. The effect of using the com-
bined DMPK/binding affinity prediction approach is illustrated in Fig. 8. The ad-
vantages of using such an approach have already been illustrated by Pickett and
colleagues, who used DMPK filters to enhance the Caco-2 cell permeability for a
combinatorial library (134). Such filters can be used to speed up high throughout
screening campaigns by zooming in on compounds that have appropriate physic-
ochemical characteristics, thus reducing the number of tested compounds, as well
as the number of potentially interesting hits to be analyzed. In later phases of the
drug discovery process, reliable chemical and biological information is available
if the combined DMPK/binding affinity prediction approach can be used to select
hits with good solubility, permeability, and potency. Finally, this combined ap-
proach can be applied with greater confidence in the lead optimization phase—
when three-dimensional structural and biological information is available—thus
further reducing the number of iterations in the drug discovery cycle.
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I. INTRODUCTION

The design of small-molecule libraries has emerged in recent years as one of the
important tasks aiding the multidisciplinary effort (computational, combinatorial,
and medicinal chemistry and biological testing) in pharmaceutical drug design
and development (1–6). In spite of the deployment of high throughout screening
(HTS) strategies for testing, it proves to be practically impossible or very expen-
sive to test large (corporate or publicly/commercially available) chemical libraries
because of their sheer magnitude. In several cases, HTS strategies would not even



be feasible. Thus, as a matter of economics and logistics, compound prioritization
for biological testing must occur at an early stage (reaction planning) and even at
subsequent stages of the drug development “funnel.” The process of prioritization
often involves obtaining the best compromise optimizing several factors: chemi-
cal diversity (5), druglikeness (7–10), and potential for biological/pharmacologi-
cal activity (11,12).

The initial steps of the process, which would be common to all libraries are
(1) identifying biologically and pharmacologically important physicochemcal
properties and (2) developing a consensus definition (7,8) and quantitative score
of “druglikeness” based on an analysis of known drug databases (9,10). Then,
given a reaction scheme or a library (vendor or corporate), compound/reagent se-
lections involve the following steps: (1) select initial sets of reagents compatible
with the given reaction from vendor databases, excluding cross-reactive groups;
(2) characterize the virtual libraries of compounds (which could include all the us-
able reagents) in terms of important physicochemical properties; and (3) make
selections based on diversity, drugability (13) and preferably potential for biolog-
ical activity. The chapter by Schnur and Venkatarangan (14) describes how de-
scriptors can be chosen so that known “actives” are clustered. Well-known prop-
erties considered to be relevant include molecular size (represented by molecular
weight, number of atoms, molar refractivity), shape (topological shape indices),
hydrogen-bonding character (number of hydrogen bond donors, acceptors), con-
formational flexibility (number of rotatable bonds), and lipophilicity (log P). All
these properties are represented in the default set of 50 descriptors available in the
Cerius2 (15) package. Principal component analysis of several of these properties
can then be performed for manageability and visualization (using the first three
components). Consideration of “receptor relevance” led to a unique representation
known as BCUT(5), wherein each molecule is represented as the eigenvalue of a
symmetric matrix, generated from an “atomic detail” representation of a receptor-
relevant property such as charge distribution (5).

In this chapter the Comprehensive Medicinal Chemistry (CMC) database,
available as an ISIS database (16), is used as the reference for profiling physiolog-
ically and pharmacologically relevant physicochemical properties and for com-
paring the profiles of drugable libraries. A working definition of “druglikeness” or
“drugability” is described, extending an approach described earlier (8). Further-
more, a score for “drugability” is defined based on molecular size and lipophilic-
ity. This score differs from earlier, more elaborate scores (9,10) based on neural
nets in that it uses only two properties (size and lipophilicity) and is not “trained”
to discriminate between drug and nondrug databases. Nevertheless, this score of-
fers a quantification of a Lipinski-like rule as a simple, single-number measure, as
part of an algorithm (DURGA) to select reagents/compounds (17). The operation
of this algorithm is demonstrated as an example of designing a drugable amide li-
brary and for selecting diverse, drugable compounds from a vendor database.
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II. DIVERSIFICATION USING REAGENT/DRUGABILITY-
BIASED GENERALIZED ALGORITHM (DURGA):
DEVELOPMENT AND APPLICATION

The goal here is to develop a general algorithm that in conjunction with a diver-
sity selection procedure, selects “drugable” diverse molecules. First, a brief
overview of earlier work is presented, along with some recent extensions in pro-
filing known drug databases, followed by a “consensus” definition of “drugabil-
ity.” Next a score is developed quantifying the drugability of a molecule relative
to these drug database profiles. A procedure is then outlined for using this score
as a penalty function, to bias diversity selections in a given “chemistry” space, in
favor of drugable molecules. Applications of this procedure to make selections of
diverse compounds from a vendor database and diverse reagents conforming to a
given well-plate format to form “drugable” combinatorial reaction products are
demonstrated.

A. Physicochemical and Functional Group Profiling of
Known Drug Databases

The Comprehensive Medicinal Chemistry (CMC) database, version 97.1 (16),
contains 7183 molecules and includes all known drugs and compounds in late-
stage clinical testing. Among the several drug database considered, which include
the MDL Drug Data Report (16) and the C & H Dictionary of Pharmaceutical
Agents (18), the CMC database appears to be the closest to an ideal drug database
with a reasonable size. The other databases contain a large fraction of compounds
in the early stage of drug discovery, hence not necessarily “druglike.” For this rea-
son, the CMC database was chosen to obtain physicochemical and functional
group profiles that could serve as a reference. From this database, several obvious
“nondrugs” (e.g., surgical aids, surfactants, aerosol) were eliminated at the outset.
This left us with 6304 compounds. Physicochemical profiling was then carried out
for seven pharmacologically and biologically relevant properties: log P, molar re-
fractivity, molecular weight, number of atoms, number of rotatable bonds, num-
ber of hydrogen bond donors, and number of hydrogen bond acceptors. Among
these properties, it is easily seen that uncertainty in predictions is higher for log P
than for others. Hence, it is important to choose and apply a method that is pre-
dictive for all classes of organic molecules of interest in medicinal chemistry, par-
ticularly for known drug molecules.

Lipinski’s (7) characterization of the drug databases used the Moriguchi
method (19), which was shown to be predictive for a small set of known drugs
with accurately measured values of log P. For this property, our earlier character-
ization of the CMC database (8) used the ALOGP method (20,21) which showed
a stable performance for molecules with diverse functionalities. We recently de-
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veloped a hologram-based method called (HLOGP (22) and showed it to be more
predictive than ALOGP [and an earlier version of CLOGP (23)] for a test set of
931 molecules. For a small test set of 19 drug molecules, the HLOGP method we
developed gave a better performance (r � 0.98; SD � 0.31) than all other meth-
ods tested [ALOGP, CLOGP, the Moriguchi method (19), and XLOGP (24)].
Hence, HLOGP is adopted here for profiling and comparison with the log P pro-
files obtained using the ALOGP method. Figure 1 shows that no major differences
exist between the ALOGP and HLOGP profiles, though there is a net increase in
the percentage occupancy in the range of �0.5 to 5.5 with the HLOGP profile rel-
ative to the ALOGP profile.

From these profiles, we then calculated two ranges that might be useful to
assess drugability: the “qualifying range,” which is the minimal range accommo-
dating 80% of the database, and the “preferred range,” which is the minimal range
accommodating 50% of the database. These calculated ranges are almost the same
regardless of which method is used for log P estimation (qualifying range, �0.2
to 5.2 for HLOGP; �0.4 to 5.5 for ALOGP; preferred range, 1.3–4.1 for both
ALOGP and HLOGP). While there are some compounds outside the qualifying
range among known drugs, for most medicinal/combinatorial chemistry applica-
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the “qualifying” range of CMC database.



tions, the log P ranges derived here should be appropriate. Though the HLOGP
method appears more accurate, we adopt the ALOGP profiles and estimates for
further analysis because of the close agreement of these two profiles and also be-
cause the ALOGP values are easily calculated using commercial modeling pack-
ages such as Cerius2 (15).

A quantitative examination of the profiles for three other properties led to
the determination of the qualifying and preferred ranges for molar refractivity
(AMR) 40–130 and 70–110; for molecular weight 160–480 and 230–390; and for
total atom count 20–70 and 30–55. Furthermore, profiles of H-bonding character
and internal flexibility (as measured by number of rotatable bonds) were also stud-
ied (Fig. 2). It is seen that each of these profiles exhibits distinct peaks that can be
utilized in a quantitative definition of drugability. It is also clear from the profiles
of Fig. 2 that the Lipinski criteria are too broad with respect to H-bonding char-
acteristics. Over 80% of the compounds in the database have one to six H-bond
acceptors and four or fewer donors. A more continuous distribution is seen in the
case of rotatable bond counts. For the present, however, the H-bonding and flexi-
bility properties are not monitored with respect to druglikeness, though these
properties will be used (in the following sections) in the assessment of diversity as
well as in library comparisons. Table 1 shows compounds identified from the
CMC database that violate the ranges defined here for the four properties:
ALOGP, molar refractivity, molecular weight, and number of atoms. Pharmaco-
logical/biological activities listed in the CMC database for these compounds are
also given in Table 1. It can seen that most of the compounds either work by
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272 Viswanadhan et al.

Table 1 Compounds Identified from the CMC Database Whose Properties Are Outside the
Property Ranges Defined for Drugability

Atom
Compound name Mol Wt ALOGP AMR count Activity type

4-Amino-3- 119.1 �1.4 27.4 17.0
Hydroxybutyric
acid

5-Piperidin-2-yl)-1, 475.6 5.6 140.7 72.0 Cholecystokinin receptor
4-Benzodiazepines antagonists

Acarbose 645.6 �6.6 140.0 87.0 �-Glucosidase inhibitor
Acebrochol 588.5 11.8 144.1 81.0 Hypnotic
Acetohydroxamic

acid 75.1 �1.2 15.8 10.0 Urease inhibitor
Acetylcysteine 163.2 �0.7 37.6 19.0 Mucolytic
Acipimox 154.1 �0.3 34.4 17.0 Antihyperlipoproteinemic
Acivicin 178.6 �1.2 38.1 18.0 Antineoplastic
Adenine 135.1 �1.2 36.3 15.0 Vitamin B4

Alanine 89.1 �0.6 21.5 13.0 Nutrient (amino acid)
Alanosine 149.1 �2.3 31.2 17.0 Antineoplastic
Alexidine 508.8 5.5 152.0 92.0 Antibacterial
Alinastine 433.6 6.6 133.3 71.0 Antihistaminic
Allantoin 158.1 �1.7 32.2 17.0 Vulnerary
Amikacin 585.6 �9.1 132.5 83.0 Antibacterial
Aminoethyl nitrate 106.1 �0.5 23.7 13.0 Vasodilator
Aminothiadiazole 101.1 �0.3 27.9 9.0 Antineoplastic
Arbekacin 552.6 �8.1 131.5 82.0 Antibacterial
Aspartic acid 133.1 �1.4 27.0 16.0 Nutrient (amino acid)
Azaguanidine 152.1 �1.4 36.6 15.0 Antineoplastic
Belfosdil 548.6 7.5 148.4 86.0 Antihypertensive (calcium

channel blocker)
Bialamicol 436.6 7.4 140.6 72.0 Antiamoebic
Bibn-99 568.2 5.6 158.8 82.0 Muscarinic M2 antagonist
Bromperidol

decanoate 574.6 7.8 152.2 78.0 Antipsychotic
Bronopol 200.0 �1.0 32.5 15.0 Antiseptic
Bucromarone 463.6 7.8 142.7 71.0 Antiarrhythmic (cardiac

depressant),
antidepressant

Buterizine 466.7 6.8 146.6 73.0 Vasodilator (peripheral)
Butikacin 571.6 �8.4 132.4 84.0 Antibacterial
Candocuronium 642.5 �2.3 151.7 76.0 Neuromuscular blocking

iodide agent
Carbantel lauryl 520.1 7.6 141.7 76.0 Anthelminthic

sulfate
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Table 1 Continued

Atom
Compound name Mol Wt ALOGP AMR count Activity type

Carebastine 499.7 5.7 148.2 74.0 Antihistaminic
Carzolamide 111.1 �0.7 27.6 13.0 Antineoplastic
Cefbuperazone 627.6 �1.1 152.9 71.0 Antibacterial
Chloramphenicol 561.5 8.2 147.5 79.0 Antibacterial,

palmitate antirickettsial
Citiolone 159.2 �0.5 39.1 19.00 Hepatic disorders

(therapeutic)
Clocapramine 481.1 5.6 141.5 71.0 Neuroleptic
Clodronic acid 244.9 �2.8 35.6 15.0 Calcium regulator, osteitis

deformans (therapeutic)
CP-0127 2805.3 �6.0 731.5 392.0 Bulk agent for

freeze-drying
Creatinine 113.1 �0.7 28.3 15.0 Antitubercular, anthelmintic
Cyacetacide 99.1 �2.0 23.8 12.0 Antibacterial

(tuberculostatic)
Cycloserine 102.1 �2.0 22.9 13.0 Detoxicant
Cysteine 121.2 �0.9 29.4 14.0 Chelating agent
Deferoxamine 560.7 �1.6 143.6 87.0
Deloxolone 556.8 6.6 151.4 92.0 Antimigraine
Dexfosfoserine 185.1 �2.7 32.4 19.0 Antineoplastic
Dezaguanine 150.1 �1.3 39.5 17.0 Antineoplastic
Diazouracil 139.1 �1.0 32.5 13.0 Alkalizing agent
Diethanolamine 105.1 �1.2 27.5 18.0 Antibacterial
Dihydrostreptomycin 583.6 �6.8 132.3 81.0 Antiinflammatory (topical)
Dimethyl sulfoxide 78.1 �0.8 19.0 10.0 Nootropic
Dimiracetam 140.1 �0.5 33.9 18.0 Bioflavonoid
Diosmin 608.5 �1.0 145.6 75.0
DL-Lactic acid 90.1 �0.6 18.4 12.0 Sleep enhancer
Draflazine 604.5 5.6 159.1 74.0 Antihistaminic
Ebastine 469.7 6.9 145.8 74.0 Antineoplastic
Edelfosine 524.7 6.3 147.4 94.0 Antineoplastic
Enocitabine 565.8 7.2 156.6 95.0 Aninflammatory (topical)
Enoxolone 470.7 5.3 132.7 80.0 Estrogen
Estradiol Undecylate 440.7 7.9 130.6 76.0
Etamestrol 534.8 7.6 152.8 74.0 Calcium regulator
Etidronic acid 206.0 �2.5 32.5 19.0 Vasodilator
Fenoxedil 486.7 6.4 142.9 77.0
Flotrenizine 492.7 7.1 144.8 74.0 Antifungal
Flucytosine 129.1 �1.4 28.1 13.0 Antineoplastic
Fluorouracil 130.1 �0.5 25.8 12.0 Antipsychotic
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Table 1 Continued

Atom
Compound name Mol Wt ALOGP AMR count Activity type

Fluphenazine 549.7 7.7 150.0 76.0
Enanthate
Fodipir 638.5 �3.1 142.2 74.0 Antiviral
Foscarnet 126.0 �1.4 16.6 10.0 Antiviral against wild-type

and mutant HIV strains
Fosfomycin 138.1 �1.0 25.0 15.0 Antibacterial
Fosfonet 140.0 �1.0 22.2 13.0 Antiviral
�-Aminobutyric 103.1 �0.4 26.0 16.0 Antihypertensive,

Acid neurotransmitter
Gefarnate 400.6 7.0 132.4 73.0 Anticholinergic

(antispasmodic)
Glutamic acid 147.1 �1.2 31.6 19.0 Acidifier (gastric)
Glycerin 92.1 �1.6 20.4 14.0 Reduces intraocular and

intracranial pressure
Glycine 75.1 �0.9 17.1 10.0 Nutrient
Guanazole 99.1 �0.8 28.0 12.0 Antineoplastic
Haloperidol 530.1 7.8 149.1 78.0 Antipsychotic

decanoate
Hesperidin 610.6 �1.1 143.8 77.0 Bioflavonoid
Histamine 111.1 �0.5 31.9 17.0 Stimulant (gastric

secretory)
Hydroxyurea 76.1 �1.7 14.5 9.0 Antineoplastic
Ilmofosine 526.8 6.6 149.8 91.0
Imexon 111.1 �0.6 26.1 13.0 Antineoplastic
Impacarzine 493.8 7.8 148.6 90.0 Antiviral
Iodocholesterol I 131 512.6 8.9 133.3 74.0 Radioactive agent
Isepamicin 569.6 �7.9 131.5 82.0 Antibacterial
Isoniazid 137.1 �0.8 37.3 17.0 Antibacterial

(tuberculostatic)
Keracyanin 632.0 �1.8 141.7 74.0 Visual adaptation to dark

(agent) 
L-749,805 569.6 5.4 149.1 71.0
Lapinone 456.7 8.0 137.8 77.0 Antimalarial
Lauralkonium 475.1 7.2 144.3 77.0

chloride
Levcycloserine 102.1 �2.0 22.9 13.0 Enzyme Gaucher disease

inhibitor, anticonvulsant
Lexacalcitol 460.7 6.0 137.0 81.0 Calcium regulator
Lidoflazine 491.6 5.7 143.6 71.0 Vasodilator (coronary),

calcium blocker
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Table 1 Continued

Atom
Compound name Mol Wt ALOGP AMR count Activity type

Lymecycline 602.6 �2.5 157.1 81.0 Antimicrobial
Meclorisone 567.6 7.3 148.4 78.0 Antiinflammatory (topical)
Dibutyrate
Mecysteine 135.2 �0.3 33.5 17.0 Mucolytic
Meglucycline 635.6 �4.9 156.6 82.0
Menatetrenone 444.7 6.9 146.6 73.0 Anticoagulant
Mercaptamine 77.1 �0.4 22.5 11.0
Methimazole 114.2 �0.3 33.8 13.0 Thyroid inhibitor
Methyl 110.1 �0.5 22.0 12.0 Antineoplastic

methanesulfonate
Methylformamide 59.1 �0.8 14.9 9.0 Antineoplastic
Mibefradil 495.6 7.2 140.1 74.0 Antihypertensive,

vasodilator
Moctamide 473.7 9.8 154.8 82.0 Antihyperlipoproteinemic
Mofarotene 433.6 7.3 136.2 71.0 Antineoplastic
Molfarnate 454.7 7.8 151.6 83.0
Monoethanolamine 61.1 �1.2 16.2 11.0 Sclerosing agent
Monoxerutin 654.6 �1.6 153.5 80.0 Antidote (specific)
Naboctate 511.8 11.2 157.3 90.0 Antiglaucoma agent,

antiemetic
Nadide 664.4 �1.9 139.4 72.0 Narcotic antagonist,

alcohol antagonist
Nafiverine 538.7 7.7 159.7 78.0 Anticholinergic

(antispasmodic)
Neomycin B 614.7 �10.6 139.1 88.0 Antibacterial
Niacinamide 122.1 �0.3 32.8 15.0 Vitamin (provitamin,

cofactor), Enzyme
cofactor

Nicoxamat 138.1 �0.7 34.3 16.0
Norcholestenol 512.6 9.6 133.2 74.0
Iodomethyl (131I)
Octafonium chloride 433.1 7.5 134.0 72.0 Antiseptic
Oftasceine 622.5 �1.8 152.7 71.0
Orlipastat 495.7 7.6 141.2 88.0 Hypolipidemic
Otilonium bromide 564.6 6.1 152.6 79.0 Anticholinergic

(antispasmodic)
Ouabain 584.7 �2.1 141.2 85.0 Cardiotonic
Oxidronic acid 192.0 �2.6 27.4 16.0 Calcium regulator, osteitis

deformans (therapeutic)
Oxiglutathione 612.6 �4.4 137.5 72.0 Antineoplastic
Pantethine 554.7 �3.2 139.9 78.0 Antilipemic
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Table 1 Continued

Atom
Compound name Mol Wt ALOGP AMR count Activity type

Paromomycin 615.6 �10.0 137.3 87.0 Antiamoebic
Pecocycline 585.6 �2.1 152.2 77.0 Antibacterial
Penoctonium 489.6 6.3 134.4 80.0 Anticholinergic

Bromide (antispasmodic)
Pentigetide 588.6 �5.3 135.6 77.0 Antiallergic
Phytonadione 450.7 9.7 144.2 79.0 Vitamin (provitamin,

cofactor),
prothrombogenic

Pidolic acid 129.1 �1.3 27.8 16.0 Humectant (as Na salt)
Pinaverium bromide 592.4 6.1 143.3 74.0 Anticholinergic

(antispasmodic)
Pipacycline 586.6 �3.0 156.0 80.0 Antibacterial
Piperazine 86.1 �0.7 26.3 16.0 Anthelminthic (as citrate)
Praxadine 110.1 �0.7 29.8 14.0
Probucol 516.8 9.8 159.7 83.0 Antihyperlipoproteinemic
Pyrazinamide 123.1 �0.7 30.5 14.0 Antibacterial

(tuberculostatic)
Quindecamine 454.7 8.0 142.0 72.0 Antibacterial
Ramoplanin A2 2554.1 �4.3 640.8 335.0 Antibacterial
Ristocetin 2067.9 �8.1 493.1 257.0 Antibacterial
RO-40-8757 433.6 7.3 136.6 71.0 Antineoplastic
Rolitetracycline 527.6 �1.4 140.7 71.0 Antibacterial
Ronipamil 460.8 8.4 147.7 82.0
Rutin 610.5 �1.3 141.8 73.0 Decreases capillary fragility
Serine 105.1 �1.8 23.1 14.0 Nutrient (amino acid)
Sevopramide 481.7 5.3 145.0 78.0
Streptomycin 581.6 �9.4 131.5 79.0 Antibacterial

(tuberculostatic)
Succimer 182.2 �0.5 38.2 16.0 Metal poisoning

(therapeutic)
Sucrose octaacetate 678.6 �1.1 143.8 85.0 Alcohol denaturant
Sucrosofate 982.8 �16.8 150.8 77.0 Antiulcerative (K salt)
Symetine 468.7 7.0 148.0 82.0 Antiamoebic
Taurine 125.1 �0.8 25.3 14.0 Hepatoprotectant,

antiulcerative
Taurultam 136.2 �1.5 30.6 16.0 Antibacterial, antifungal
Tefenperate 534.5 7.2 144.5 73.0
Terfenadine 471.7 5.3 146.0 76.0 Antihistaminic
Teroxalene 457.1 9.1 140.0 73.0 Antischistosomal
Teruficin 468.7 8.6 140.6 78.0



“chemical brute force” (e.g., antineoplastics, topical anti-infectives) or work dif-
ferently from most drugs (e.g., vitamins/cofactors and cholesterol).*

Profiling the variety and frequency of organic functional groups in the CMC
database can be useful in designing libraries with diverse functionalities of phar-
macological relevance. While the number of such groups is enormous, we identi-
fied 30 fairly common functionalities for profiling, including some reactive func-
tionalities (25) that should be avoided in potential drug candidates. Table 2 shows
normalized frequencies of these functional groups for the entire CMC database as
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Table 1 Continued

Atom
Compound name Mol Wt ALOGP AMR count Activity type

Testosterone 484.7 6.3 140.2 83.0 Androgen
Ketolaurate

Tetrazolyl glycine 143.1 �1.7 35.4 15.0 NMDA agonist
Thiocolchicoside 563.6 �0.6 148.4 72.0 Muscle relaxant (general),

Gynecologic disorders
Thiouracil 128.1 �0.2 34.0 12.0 Antianginal, thyroid

inhibitor
Threonine 119.1 �1.6 27.5 17.0 Nutrient (amino acid)
Tidiacic 177.2 �1.0 38.2 18.0 Hepatotherapeutic
Timonacic 133.2 �0.4 32.7 15.0 Choleretic
Tiopronin 163.2 �0.5 38.0 19.0 Cystinuria (therapeutic),

lead poisoning lead
poisoning (therapeutic)

Toripristone 457.7 6.0 142.0 73.0 Antiglucocorticoid
Trenizine 456.7 6.8 144.1 74.0
Trimethylcetyl 550.9 11.0 150.3 75.0

ammonium
Pentachlorophenate 121.1 �2.0 28.6 19.0 Alkalizer

tromethamine
UK-81352 584.7 �0.9 145.8 80.0 Antineoplastic
Uracil 112.1 �0.8 25.7 12.0
Urea 60.1 �1.3 13.1 8.0 Diuretic
Vapiprost 477.6 6.0 141.9 74.0 Antithrombotic
Vitamin E 430.7 11.2 137.6 81.0 Vitamin (provitamin),

vitamin (cofactor)
Zafirlukast 575.7 6.0 157.1 74.0 Antiasthmatic (leukotriene

antagonist)

* While this is true of most medicinal chemistry applications, “drugs” such as anticancer agents may
work by reactivity (“chemical brute force”).
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Table 2 Percentage Composition of Various Functional Groups Among Drugs Classified
by Disease State: (a) Anti-inflammatory, (b) Anti-depressant, (c) Antipsychotic, (d)
Antihypertensive, (e) Anticancer, and (f) the CMC Database

Number Functional group (a) (b) (c) (d) (e) (f)

I Carboxyl 38.91 2.70 1.82 23.64 9.05 15.06
II Alcohol 23.55 11.26 18.18 22.28 37.35 25.84
III Aldehyde 0.34 0.00 0.00 0.00 0.46 0.53
IV Alipathic primary amine 1.02 6.76 0.00 4.62 9.98 5.69
V Aliphatic secondary amine 0.34 20.72 0.91 17.12 3.71 9.10
VI Alipathic tertiary amine 7.17 52.25 92.73 17.93 13.69 29.59
VII Amino acid 0.68 0.00 0.00 1.36 1.16 1.49
VIII Aromatic primary amine 2.05 1.35 1.82 4.08 8.12 5.42
IX Aromatic secondary amine 12.97 4.50 11.82 8.15 12.30 7.16
X Aromatic tertiary amine 4.78 18.47 36.36 10.60 10.21 10.27
XI Carboxamide 20.48 23.87 20.91 28.80 25.29 27.15
XII Keto 31.06 3.60 23.64 5.71 25.29 15.71
XIII N-Oxide 0.00 0.00 0.00 0.82 0.23 0.19
XIV Nitro 0.68 0.45 0.00 3.53 2.55 2.63
XV Phenolic OH 6.48 1.80 2.73 6.79 13.46 10.23
XVI Epoxy 0.00 0.00 0.00 0.00 2.32 0.76
XVOO C—O—O—C 0.00 0.00 0.00 0.00 0.00 0.06
XVIII C—N—O—C 0.68 0.00 0.00 0.27 0.23 0.25
XIX C—N—N—C 5.80 2.25 0.00 3.80 0.93 1.55
XX C—N—S—Cf 0.00 0.00 0.00 0.00 0.00 0.06
XXI C—S—S—C 0.00 0.00 0.00 0.27 1.16 0.65
XXII C—S—O—Cg 0.00 0.00 0.00 0.00 0.00 0.00
XXIII Nucleoside 0.00 0.00 0.00 0.00 7.66 1.02
XXIV Pyridine 9.90 9.01 4.55 8.15 6.26 8.07
XXV Pyrimidine 0.68 0.90 0.00 4.08 6.26 2.45
XXVI Pyrrole 8.19 7.21 10.91 5.98 6.96 4.43
XXVII Benzene 76.45 92.34 97.27 79.35 43.85 70.28
XXVIII Furan 1.71 1.35 0.91 1.36 0.46 1.98
XXIX Thiophene 4.44 1.80 2.73 2.45 1.39 1.92
XXX Imidazole 3.07 0.45 1.82 5.98 8.82 6.01
XXXI Ester 25.26 2.70 7.27 25.00 19.95 18.19
XXXII Sulfonamide 5.46 1.35 2.73 8.70 0.93 4.51
XXXIII Sulfonic acid 0.00 0.00 0.00 0.27 0.93 0.65
XXXIV Alipathic ether 2.73 0.00 0.00 0.27 0.00 0.71
XXXV Aromatic ether 0.68 1.80 0.91 7.34 0.23 1.26
XXXVI Any heterocycle 57.68 67.12 95.45 73.37 66.59 66.84
XXXVII Aromatic heterocycle 35.15 23.42 24.55 32.07 29.47 28.39



well as for five subclasses of drugs. Of all the various functional groups, the ben-
zene ring appears to be the most abundant in the CMC database or any of the sub-
classes studied here. This observation is not surprising in view of the easy chem-
istry involving the benzene rings and the absence of stereochemical isomers. The
phenyl ring has a marginal desolvation cost (�0.9 kcal/mol), and it can serve as a
scaffold for polar or hydrophobic functionalities. Aromatic–aromatic interactions
involving benzene are fairly common in protein–ligand complexes. Heterocycles
are also a major structural component of drugs, though no single heterocycle dom-
inates the list. The pyridine ring is the most common of the heterocycles studied,
since the pyridine nitrogen can be a strong H-bond acceptor. Among other func-
tional groups, the alcoholic hydroxyl and carboxamide occur with a high fre-
quency in the CMC database as well as in the five classes shown. They are hy-
drophilic and chemically stable, neutral functional groups and are frequently
H-bond with protein/receptor targets. Because of its basicity and biochemical sta-
bility, the aliphatic tertiary amine is also a commonly occurring organic functional
group. Very few compounds were found with a single bond between heteroatoms
in the database; in such relatively rare cases, they are stabilized by a conjugated
CBX bond.

B. Consensus Definition of Drugability

Defining a druglike molecule is a debatable, contentious issue, in as much as the
drug databases are still evolving and future drugs will surely possess some char-
acteristics not found in existing drugs. Here, we regard druglikeness or drugabil-
ity as an initial constraint to the elimination of compounds that may not be useful
for screening, as a first filter in the drug development funnel. Lipinski’s (7) char-
acterization, though a logical first step in this regard, offers too broad a view of
drugability. As applied to our ACD sampler database containing over 36,457 com-
pounds, less than 12.5% of the compounds failed to satisfy the Lipinski criteria.
At the other extreme, the approaches of Ajay et al. (9) and Sadowski and Kubinyi
(10) seek to strongly discriminate between non drug (such as ACD) databases and
drug databases (such as CMC). Such a distinction may be useful in the later stage
of the drug development funnel, to prioritize the medical chemistry efforts the
picking potential drug candidates. However, for combinatorial chemistry efforts,
diversification would be seriously compromised if only a small percentage of ven-
dor databases were considered druglike. Hence, we attempted to arrive at a “con-
sensus” based on the foregoing physicochemical and functional group analysis,
leading to the following “consensus” definition of drugability of a molecule or
chemical library: (1) calculated log P (HLOGP/ALOGP) between �0.4 and 5.5;
(2) calculated molar refractivity (AMR) between 40 and 130; (3) molecular
weight between 20 and 70 and (4) atom count in the range of 20–70; (5) struc-
turally a combination of one or more of the following groups: a benzene ring, a
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heterocyclic ring, an aliphatic ring (preferably tertiary), a carboxamide, an alco-
holic hydroxyl and/or a keto group; and (6) chemically stable in physiological
buffer, as indicated by the absence of a reactive functional group or moiety.

C. A Quantitative Score of Drugability

To apply the consensus definition of drugability for chemical library, it is neces-
sary to quantitate the definition in the form of a “drugability” score. This score can
then be used in conjunction with a diversity selection algorithm to select members
of a virtual library. Though a good diversity algorithm can achieve functional
group diversification, selections based on the quantitative “drugability” score will
help narrow down the compound choices to within the qualifying ranges of the rel-
evant physicochemical properties. A simple score is devised here using the qual-
ifying and preferred ranges of lipophilicity, molar refractivity, molecular weight,
and number of atoms.

After the “qualifying ranges” have been rescaled from 0 to 1, the final score
is given by:

Score � 0.4*D1*D1 � 0.2*D2*D2 � 0.2*D3*D3 � 0.2*D4*D4 (1)

where the D’s are the distance from the center of the “preferred range.” D1 is cal-
culated using the following equations:

D1 � �
[ALOG

6
P
.
c

0
al � 0.4]
�� C1 (2)

where ALOGPcal is the calculated log P for the compound and C1 is the rescaled
coordinate of the center of the preferred range. Similarly,

D2 ��
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9
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0
l � 40]
�� C2 (3)

D3 ��
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32
t
0
� 160]
�� C3 (4)

D4 ��
[No_ato

5
m
0

s � 20]
�� C4 (5)

where AMRcal, Mol_Wt, and No_atoms refer to the calculated molar refractivity,
molecular weight, and total atom count of the molecule, respectively. The rescaled
coordinates of the center of the preferred range are 0.5165 (C1), 0.5555 (C2),
0.4690 (C3), and 0.4500 (C4) for the four corresponding properties.

Additionally, compounds in the preferred range are scored “0”; for com-
pounds in the qualifying range, the score is halved. The numerical values of the
weights assigned to the properties are somewhat arbitrary. Greater weight is given

280 Viswanadhan et al.



to lipophilicity, since the other three properties are strongly interrelated and in
essence represent molecular size.

D. Steps in Compound Selection

Let us begin by defining the “chemistry space” along with the drugable subspace
that should be covered by selected molecules following a diversity selection pro-
cedure. The default “combichem” set of descriptors, (excluding the total charge
for reasons described shortly) available in Cerius2 (version 4.0_ccH) (15) is used
to define the chemistry space (see Chap. 10, this volume). This set includes topo-
logical (Information Content, Balaban, and kappa indices; PHI; subgraph counts;
chi indices; Weiner and Zagreb indices) topographic (surface area), thermody-
namic (ALOGP, molar refractivity), and two- or three-dimensional structural
(principal moments of inertia, molecular volume, molecular weight, rotatable
bonds, H-bonding) properties, all of which are shown to be of biological and phar-
macological relevance. Hence this set is a good starting point to define the “chem-
istry” space.

For the purpose of defining the dimensions of the chemistry space, it is
imperative that the reference database be sufficiently big, since the size of the
virtual libraries usually considered for selections would be rather large
(104–106). These numbers far exceed the size of the CMC database. Hence, we
considered the Derwent World Drug Index (WDI) database (26) as the reference
database to define the dimensions of the chemistry space. A clean version (ex-
cluding high molecular weight compounds, etc.) of the database with approxi-
mately 35,000 compounds was created and used as the reference. We excluded
the total charge as a descriptor in the chemistry space, in as much as we felt that
the calculated values do not represent the biologically active form, and hence to-
tal charge is not a good diversity descriptor. The other 49 descriptors were com-
puted for this reference, and principal component analysis was performed on this
data set to reduce the dimensionality from 49 to 6, by selecting the 6 principal
components corresponding to the largest eigenvalues explaining over 90% of the
variance in the original data, and these PC dimensions then define the axes of
our chemistry space. This space can be populated either by obtaining com-
pounds from vendors or by in-house syntheses achieved by using combinatorial
chemistry methods. It must be emphasized that this space is used only for the di-
versification of compounds using a combination of properties considered im-
portant for chemical diversity. Compounds that fall within the same general area
of WDI within this space may well be “undruglike” because the earlier defini-
tion of druglikeness. On the other hand, compounds that do not overlap with
WDI in this space may well be druglike.

The PC loadings of the reference database were used to obtain the distribu-
tions of compounds in the chemistry space for virtual libraries examined. Sets of
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reagents identified from a vendor database search are initially screened for reac-
tive groups (other than the group of interest) and fingerprints are used to create a
short list of reasonable size by means of a general diversity algorithm (e.g., Sybyl
Selector). Starting from the initial sets of reagents, the first step of the algorithm
is to build a virtual library with all the reagents considered initially, also record-
ing the combination of reagents used for each molecule, in the case of a combina-
torial library. Then, the corresponding three-dimensional structures are generated
and important physicochemical properties are calculated. Then, the drugability
score (according to Eq. 1) is calculated from these properties for each molecule.
This score is used as a “penalty function” to constrain the compound selections,
such that both diversity and “drugability” of the selected compounds is optimal.
In the case of combinatorial libraries, the required well-plate format would be an
additional restraint. For the present purposes, the Cerius2 diversity algorithm is
used. It offers a choice of diversity scores and uses a Monte Carlo procedure to ob-
tain the selections conforming to a given well-plate format and a graded weight-
ing scheme (on a scale of 1–10) for biasing selections conform to a particular
range of a property such as  lipophilicity.

III. APPLICATIONS: ILLUSTRATIVE EXAMPLES

A. Comparison of ACD and CMC Databases and Selection
of Druglike Compounds from the ACD Database

The version of the ACD database (16) we considered contains nearly 200,000
compounds. For the purpose of the present illustration, a randomly selected part
of the ACD database (ACDS–ACD sampler) containing about 36,457 compounds
is used. The loadings obtained from the principal component analysis of the 49 de-
scriptors for the WDI database were used to compute PCs for the ACD subset. The
first three components are plotted for the ACDS and CMC databases in Fig. 3; it
is seen that these databases overlap considerably in the chemistry space, though
significant differences are discernible.

157 compounds are selected from the ACDS database under two condi-
tions: first, the compounds were chosen only on the basis of diversity; second,
the drugability score of Eq. (1) is applied as a “mild” penalty (1 on a scale of
1–10) for obtaining diverse compound selections. In both cases, the diversity al-
gorithm used a cell-based method (selecting one compound per cell). Figure 4
shows a histogram plot of percentage occupancies in different ranges of druga-
bility scores for the ACDS and CMC databases and also for the compounds se-
lected under the two different criteria. It can be seen that 70% of CMC and 66%
of the ACDS databases have a drugability score less than 1, indicating that the
ACDS database is not much different from the CMC database in terms of this
score and the corresponding property ranges. However, the value of using the
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drugability score as a restraint becomes obvious when we compare the percent-
age occupancies of the selected compounds with and without the drugability
constraint. When no constraint is applied, less than 20% of the selected com-
pounds have a high drugability score (� 1), whereas when a mild penalty is ap-
plied, 42% of the selected compounds have a score less than 1. The reason why
the selection process results in many compounds outside the “drugability” range
becomes obvious upon examining the loadings (weights) for various properties
for the first three principal components (PC1, PC2, and PC3). PC1 is dominated
by size and shape descriptors such as principal moments of inertia, molecular
volume, molecular weight, and molar refractivity, in addition to some informa-
tion and connectivity measures representing molecular topology. PC2 and PC3
are dominated by various topological indices (information and graph theoretic)
in addition to other structural descriptors. While the percentage of molecules in
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Figure 3 Comparison of the ACDS and CMC databases in the chemistry space defined
by the first three principal components from a PCA of 49 descriptors calculated for the
World Drug Index (light stars represent the ACD database and dark stars represent the
CMC database).



the ACDS database that depart from the property ranges used in Eq. (1) is rather
small, these compounds significantly contribute to the diversity of the chemistry
space represented by PC1, PC2, and PC3. This explains the selection of such
non druglike compounds when the drugability score is not used in the selection
process. Application of a drugability based constraint should be made an inte-
gral component of a compound acquisition strategy. The weight applied to the
penalty function determines the degree of loss in diversity of the resulting com-
pound selections, and one must balance the requirement of drugability against
that of diversity.

B. Selection of Reagents for a Combinatorial Reaction
Based on Analysis of Combinatorial Products

The design of combinatorial libraries involves both the selection/design of a com-
binatorial reaction and the selection of reagents (inputs) to the reaction. While the
former aspect is important, here we are concerned only with the second aspect of
reagent selections that ensure diversity and drugability of resulting libraries. Gen-
erally speaking, if the reaction is based on larger scaffolds or if the substituents
tend to be large, the resulting products will also be large and must be screened for
drugability. On the other hand, smaller or absent scaffolds tend to generate dru-
gable libraries where further screening may be unnecessary. Figure 5 shows a hy-
pothetical reaction scheme of the second category, for an amide library requiring
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Figure 4 Histograms of drugability scores for the ACDS database and compounds se-
lected under two different criteria with no drugability penalty and with a mild drugability
penalty.



an amine and an acid chloride. An ISIS search of the ACD database was con-
ducted for amines and acid chlorides, and this was followed by reactivity screens
to eliminate reactive groups undesirable in the final library. Then, 100 diverse
amines and 100 diverse acid chlorides were selected, using Sybyl/Selector(27)
with two-dimensional fingerprints as the variable. A virtual library of amides with
10,000 members is then constructed with these reagents using Cerius2/Com-
biChem/Library Builder. Using the loadings from the PCA analysis of WDI, PCs
were calculated for the amide virtual library. Figure 6 shows a plot of the first
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Figure 5 Hypothetical reaction scheme for an amide library.

Figure 6 A comparison of the amide library selections with the CMC database in the
chemistry space black dots represent compounds in the CMC database; light stars represent
compounds selected with no penalty for drugability; dark stars represent compounds se-
lected with a mild drugability penalty.



three components of WDI and the amide library. It can be seen from this figure
that while the amide library overlaps the WDI in the “chemistry space,” a good
number of compounds in the amide library lie outside the region of occupied by
WDI.

Using Cerius2 diversity selection tools, 160 compounds were selected for
20 	 8 well-plate format (20 amines and 8 acid chlorides), using two different cri-
teria: diversity of the final products and product diversity with a “mild” penalty
for compounds (products) deviating from a specified range of drugability. A
Monte Carlo algorithm is used for the selection of reagent subsets. Histogram
plots of the drugability scores of the initial set and the resulting subsets are shown
in Fig. 7, along with those of the CMC database. It is seen that the original library
can be considered “drugable” because it mostly conforms to the property ranges
used in Eq. (1). Still, the use of a mild drugability penalty is seen to significantly
increase the percentage of products having the drugability penalty score less 
than 1.

IV. CONCLUDING REMARKS

This chapter reviews recent developments in the analysis of drug databases for ar-
riving at a consensus definition of “drugability.” Quantitative criteria were devel-
oped for penalizing diversity selections for departing from this consensus defini-
tion, enhancing the conformity of the selected compounds with known drug
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Figure 7 Histograms of drugability scores for the amide library, the CMC database, and
compounds selected under two different criteria with no drugability penalty and with a mild
drugability penalty.



databases in terms of physiologically relevant physicochemical properties. These
criteria also reflect Lipinski’s (7) “rule of five” as we found that compounds vio-
lating Lipinski’s rules have high molecular weight and log P values. However, in
the context of the current definition, Lipinski’s rules are too broad: only 12.5% of
the ACDS are excluded by the Lipinski rules, whereas approximately a third of the
ACD compounds score poorly under the definition of Eq. (1). The current quanti-
tative definition can be easily incorporated in a diversity selection procedure, of-
fering a practical way to design combinatorial libraries or to select compounds.

Another important consideration for designing libraries is the potential for
biological activity, which should be assessed within the context of a design target
or mechanism of action (11,12). Though this is often considered to be a separate
design methodology (directed library design), the same general principles of li-
brary design discussed here are applicable, once the right scores have been iden-
tified. When the design target is known, a structure-based scoring function may be
used. This is often difficult because it depends on the quality of ligand docking,
which can be hard to assess. When the target (or mechanism of drug action) is un-
known, a model that predicts the mechanism or “activity” should be useful to ob-
tain the scores for directed library design.

More elaborate, neural net–based considerations of “drugability” use
ALOGP atom types, physicochemical properties, and so on (9,10; see also Chap.
9, this volume) to discriminate between a “nondrug” database such as ACD and a
known drug database such as the CMC database. However, in the initial stage of
finding suitable hits or even lead compounds, it is essential that the libraries be
suitably diverse. Otherwise, the selected compounds/reagents will not be diverse
enough. The current definition makes no assumptions on the “drugability” of ven-
dor databases and considers only overall ranges of properties to guide selections.
A function designed to discriminate between drug databases and general chemi-
cal libraries such as ACD will be useful to “funnel” hits or leads into develop-
mental candidates. Such an effort is under way (28).
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I. DRUGLIKENESS AS A GENERAL COMPOUND
PROPERTY

With the avalanche of compounds that can be synthesized by automated parallel
methods and can be tested by high-throughput screening, there is an increasing
need for fast and reliable computational filters that can reduce these astronomical
numbers to reasonable subsets. This need is manifest in areas like compound pur-
chase, compound selection for screening, and combinatorial library design. Orig-
inally, computational chemistry came up with answers to questions like the fol-
lowing:

Which subset of compounds spans the most diverse chemical space?
Which subset fills most effectively “holes” in an existing in-house inven-

tory?
Which subset is most similar to a known lead compound?

These questions are focused on the diversity/similarity problem in library design.
There are already many methods and computer programs available for this area
(for a recent review see Ref. 1). There exist validated techniques for describing
compounds by suited descriptors and for reasonable statistical assessment (2).
There is evidence that diversity-driven selections can increase the chances for
finding new lead compounds (3).



However, during the process of implementing approaches for compound se-
lection and applying them routinely, it became obvious that additional decision
criteria are needed which are quite different from mere diversity. It is obvious, that
“druglikeness” is related to biological, chemical, and physical properties like ac-
tivity, reactivity, synthesizability, bioavailability, and toxicity. Lipinski in a recent
study (4) demonstrated the importance of solubility and showed approaches for
assessing this problem by computational filters. Ghose et al. (5) investigated the
ranges of certain properties that discriminate between drugs and nondrugs, such
as log P, molar refractivity, molecular weight, and the occurrence of certain sub-
structures.

But there seem to be a number of additional compound properties that can-
not be assessed easily by computational procedures. Experienced medicinal
chemists have a feeling for this, often without even being able to name substruc-
tures or rules that discriminate between drugs and nondrugs. This knowledge
should nowadays implicitly be contained in chemical databases of drugs and ba-
sic chemicals. Very recently, the idea of using such databases for the construction
of computational filters that recognize and rank the druglikeness of chemical com-
pounds was almost simultaneously realized by several groups (6–8).

This chapter explains the principles of such methods and illustrates their
merits with several examples.

II. KNOWLEDGE SOURCES AND COMPUTATIONAL
TOOLS

A. Data Sources

As sketched in Section I, knowledge about drugs and nondrugs is implicitly con-
tained in publicly available databases. It is obvious that databases like World Drug
Index (WDI) (9), Comprehensive Medicinal Chemistry (CMC) (10), and MACCS
Drug Data Report (MDDR) (11) are relatively clean collections of drugs and drug-
like molecules. Of course, many compounds never come into the market and some
drug classes (e.g., cytostatics) are not typical drugs. But in principle, the vast ma-
jority of compounds in these databases were at least designed by medicinal chemists
with the intention of making drugs. The definition and representation of nondrugs is
more challenging. The only practical approach is to use databases of basic chemi-
cals like the Available Chemicals Directory (ACD) (12) or organic reaction
databases like SPRESI (13) and to assume that the rate of drugs in these databases
is much smaller and can in fact be ignored. By using such databases, by removing
reactive or otherwise unsuitable compounds, and by removing the exact matches of
compounds of the drug database from the nondrug database, it is possible to create
reasonable representations of drugs and nondrugs with several thousand com-
pounds. Section III, Applications, provides an example of database preprocessing.
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B. Descriptors

Several sets of descriptors exist for the representation of chemical structures.
There are many ready-to-use systems in program packages from such vendors as
Daylight, Tripos, and Molecular Design. Several of these systems have been eval-
uated (2). When choosing a suitable set of descriptors for the modeling of such a
general property as druglikeness, a good balance between generality and speci-
ficity must be found. Sometimes, a simple atom-type descriptor with about 100
entries seems to work better than a 2000-bit fingerprint (8). Section III gives an
example of such a descriptor that works.

C. Statistical Assessment

To derive knowledge from the above-mentioned databases, which are encoded by
a suited set of descriptors, a statistical classification method is needed. In princi-
ple, a clustering approach or any other unsupervised learning algorithm could be
used to derive clusters of similar compounds. The properties of the druglike clus-
ters could then be used for the classification of unknown compounds. A much
more straightforward approach is to use a supervised learning method like linear
regression, decision trees (14), or neural networks. Neural networks seem to be su-
perior because of their nonlinear behavior (see, e.g., Refs. 15 and 16). Professional
neural network software can be found in abundance (see, e.g., Ref. 17). In princi-
ple, a neural network can be treated as a black box that resembles a very simple
brain with neurons and axons and can be trained by confronting it with suitable
training data. In a more elaborate view, a neural network is a complex, nonlinear
equation that transforms the input data—in this case, the molecular descriptors—
into output values—in this case, an estimate of druglikeness. The aim during train-
ing is to minimize the error between the given output values and the ones calcu-
lated by the neural network. The properly trained network should then be able to
predict data it never saw during training.

D. Complete Classification Algorithm

The overall procedure is based on the data and methods mentioned in the preced-
ing sections. The first step is the proper selection of databases, of descriptors, and
of the classification approach. The second step is the learning phase. Here, the ap-
proach tries to extract knowledge from the databases and to translate it into a clas-
sification algorithm. In step three, this classification scheme is applied to arbitrary
compounds. The resulting classification scheme is illustrated in Fig. 1. A given
chemical compound is translated into a descriptor, which in turn is forwarded to
the classification tool (here a trained neural network), which ends up deciding
whether the compound is or is not druglike.
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III. APPLICATIONS

A. Published Approaches

Almost simultaneously, three different groups came up with different solutions for
the problem of druglikeness. Gillet and Bradshaw (6) used global structural fea-
tures like the number of hydrogen bond donors and acceptors, the numbers of ro-
tatable bonds and aromatic rings, the molecular weights, and a shape descriptor as
descriptors for the compounds in the World Drug Index and the SPRESI database
as collections of typical drugs and nondrugs. A genetic algorithm was used to de-
rive from the databases a weighting scheme that calculates the druglikeness of a
compound from these features. A significant discrimination between drugs and
nondrugs was achieved by this scheme. For example, when compounds from a test
set consisting of 10,000 drugs from the WDI plus 168,071 nondrugs from
SPRESZ were selected, the approach returned 2814 drugs within the top 10,000
compounds. This is enhancement by a factor of 5 over random selection (562
drugs expected).
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Ajay et al. at Vertex (7) investigated the use of two types of descriptor
(seven global molecular descriptors as in the Gillet paper and 166 MDL keys) and
of two classification methods (decision trees and feedforward neural networks).
The best approach was the combination of 78 descriptors with a neural network
that classified 80% of the drugs in the MDDR database correctly as drugs while
classifying about 90% of the ACD correctly as nondrugs. In addition, the calcu-
lated druglikeness of sets of drugs and nondrugs was compared with their diver-
sity. The authors showed that there is no simple relationship between these two
criteria.

Sadowski and Kubinyi at BASF (8) used the WDI and the ACD as
drug/nondrug representations, an atom type based descriptor, and a feedforward
neural network for the classification. Since this is the approach the author of this
chapter is most familiar with, it is used as a detailed example of how to create such
a computational filter.

B. A Recipe for a Computational Filter for Druglike
Molecules

The following steps were performed.
1. The ACD and WDI databases were preprocessed by removing reactive

compounds and duplicates and by removing the exact matches of WDI com-
pounds from the ACD. This left 169,331 nondrugs and 38,416 drugs.

2. All ACD and WDI compounds were assigned druglikeness scores of 0
and 1, respectively.

3. An atom type based descriptor was calculated for each molecule. This
descriptor is simply the counts of the 120 Ghose–Crippen atom types (18) in a
given molecule. These atom types represent very simple functional groups (e.g.,
“aliphatic CH2,” “aromatic carbon,” “amide nitrogen”). This descriptor—a very
simple type of a fingerprint—was found to have the ideal information content. The
originally 120 Ghose–Crippen types were reduced to those 92, which were popu-
lated at least 20 times in the training dataset.

4. From each of the two databases, 5000 randomly chosen compounds
were forwarded to the training of a feedforward neural network based on the pub-
lic domain program SNNS (17). SNNS was used to construct and train a neural
network with 92 input neurons (the atom type counts), 5 hidden neurons, and 1
output neuron (the druglikeness score). The training following the “back-propa-
gation with momentum” algorithm was performed over 2000 cycles with a learn-
ing rate of 0.2 and a momentum term of 0.1. The training pursued the aim of min-
imizing the classification error for the learning set of 5000 drugs and 5000
nondrugs.

The trained network was then used to reproduce the druglikeness scores of
the 10,000 training compounds and as a test case to predict the druglikeness of the
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remaining 165,331 nondrugs from the ACD and the remaining 33,416 drugs from
the WDI. Figure 2 shows the score distributions separately for the ACD and WDI
compounds in the training set (solid lines) and for the remaining whole databases
(dashed lines). Clearly, the network succeeded in correctly predicting the drug-
likeness for about 80% of the nondrugs and drugs in the training sets as well as for
the much larger test sets. That means that the success rate was the same for the
overwhelming majority of molecules in the whole databases the network never
saw during the training phase. To increase the rate of correctly classified drugs,
we currently use a score threshold of 0.3, which leads to 90% correctly classified
drugs and still about 70% correctly classified nondrugs.

A simple additional verification is shown in Table 1: the druglikeness scores
for a number of best-selling drugs ordered with respect to decreasing market vol-
ume (19). Again, with one exception (diclofenac), the compounds were clearly
classified as drugs with a score greater than 0.5.

A number of additional statistical tests in all three papers (6–8) hardened the
finding that the results of such an approach are absolutely valid. It is indeed pos-
sible to construct a filter that estimates the druglikeness of molecules just as a
large collective of medicinal chemists did over many years.
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C. Retrospective HTS

To demonstrate the similarity in behavior between the trained neural network and
experienced medicinal chemists, we analyzed retrospectively five high-through-
put screening (HTS) runs at BASF (exact data not shown). Figure 3 shows the per-
centage of predicted druglike molecules (score � 0.3) over four stages in the HTS
cycle: the totally screened compounds (some 100,000 compounds), the com-
pounds above a certain level of percentage inhibition (several thousand com-
pounds), the compounds above a certain IC50 level (several hundred), and finally
the compounds chosen from this last list by medicinal chemists as leads for fur-
ther development (about 10).
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Table 1 Calculated Druglikeness
Score for a Number of Best-Selling
Drugs

Name Score

Ranitidine 0.78
Enalapril 0.82
Fluoxetin 0.53
Aciclovir 0.64
Simvastatin 0.80
Co-amoxiclav

Amoxicillin 0.80
Clavulanic acid 0.68

Diclofenac 0.40
Ciprofloxacin 0.93
Nifedipin 0.76
Captopril 0.82
Diltiazem 0.80
Lovastatin 0.89
Cimetidine 0.72
Omeprazol 0.85
Cefaclor 0.67
Ceftriaxon 0.97
Estrogen

Estrone 0.62
Equilin 0.73

Cyclosporin 0.84
Beclometason 0.82
Famotidin 0.65
Salbutamol 0.93
Sertralin 0.65



In the first stage, simply all available compounds are selected for screening with-
out any selection criterion. The only selection criterion in the second and third
stages is activity at the biological target—percentage (% inh) inhibition and IC50,
respectively. Only in the last stage are additional criteria applied by the medicinal
chemists when selecting candidates from the lists of active compounds: synthetic
accessibility and variability, bioavailability, toxicity, and so on. Obviously, for the
five HTS runs the level of predicted druglikeness remains more or less the same
for the first three stages—about 50–60%. It jumps significantly up to 70–100%
druglikeness when the chemists select promising compounds by hand. This means
that the trained network makes on average the same choices as the chemists when
it comes to decision criteria beyond mere biological activity. This and not more
must be expected from such an approach.

IV. CONCLUSIONS AND OUTLOOK

A recipe was presented for a classification approach that can discriminate between
drugs and nondrugs. It was shown that such approaches decide on average like ex-
perienced medicinal chemists and can classify about 80% of drugs and nondrugs
correctly.

The approach is general and fast enough (0.01 s per molecule on an average
desktop computer) to process large compound libraries as produced by combina-
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torial chemistry. It should be used simultaneously with other criteria (e.g., the di-
versity of the products, the price of the starting materials) for the optimization of
combinatorial libraries and for the selection and prioritization of compounds for
purchase, synthesis, and biological testing. This approach can significantly enrich
compound collections with molecules having a better chance to become drugs. It
is an additional selection and design criterion that can be combined with more spe-
cific approaches like pharmacophore models, quantitative structure–activity rela-
tionships, or protein structure–based design.

The same principles of course can be applied to combinatorial library de-
sign. It should be kept in mind that the druglikeness estimates were obtained on
the basis of drug databases like the WDI on the one hand and simple chemical col-
lections like the ACD on the other. Therefore, druglikeness is always a property
of the complete synthesis product (which might be a drug) instead of a property of
individual building blocks (which probably can be found among the nondrugs in
the ACD). A reasonable design scheme might be to enrich combinatorial libraries
with druglike compounds and to combine this criterion with other criteria like di-
versity or the prices of the starting materials. Indirectly, also preferable building
blocks occurring most often in druglike products might be selected from the com-
pletely enumerated library. But in general, druglikeness must be assessed on the
product side.

It is stressed again that druglikeness in this context is the sum of properties
like protein binding groups, bioavailability, toxicity, synthesizability, and stabil-
ity. A high predicted druglikeness for a given molecule does not automatically im-
ply that this compound is biologically active. It simply means that medicinal
chemists would have voted similarly.

This classification approach can in principle be applied to more specific
properties like bioavailability, toxicity, or activity in certain biological assays. An-
other application currently pursue at BASF is the proper discrimination of crop
protection compounds from basic chemicals. The only prerequisite is the avail-
ability of at least 1000 valid examples for each class (bioavailable/not available,
toxic/nontoxic, etc.).
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I. INTRODUCTION

High throughput technologies are rapidly becoming an established part of the drug
discovery process. Combinatorial chemistry libraries are used in both the lead
generation and lead optimization phases of this process, and in either case a com-
putational library design process is typically used to aid the chemists in determin-
ing the library that should be synthesized and screened. The computational pro-
cess often starts with the specification of a virtual library, which contains all the
possible compounds that could be made within the scope of the chemistry that will
be used and the reagents available, commercially or otherwise, that are compati-
ble with that chemistry. From this virtual library one or more subsets are then se-
lected computationally.

One can distinguish the aims of this selection process for libraries intended
for lead generation and lead optimization. In the former case, one would ideally
wish to sample all the biological variation in the virtual library with as few com-
pounds as possible, thus seeking to maximize the chances of identifying all dif-
ferent types of active molecule in the virtual library while minimizing the synthe-
sis and screening effort. As will be discussed later (see Sect. II.B), in practice one
attempts to achieve this by sampling all chemical variation in a space that is
thought to be biologically relevant. For lead generation, the concepts of diversity,



coverage, and representativeness are used in the selection process. Diversity se-
lection aims to ensure that the chosen molecules are maximally different from
each other, making the implicit assumption that will enhance the probability of
finding active compounds of differing types. Coverage extends this concept to
suggest that one should also seek to ensure that all compounds in the virtual library
are represented in the design library, in an attempt to ensure that all different types
of biologically active molecule in the virtual library will be identified. Represen-
tativeness aims to sample the virtual library in such a way that the distribution of
molecules in chemical space (defined in Sect. II.B) in the selected set reflects that
in the virtual library.

For lead optimization, one wishes to expand the structure–activity relation-
ship (SAR) around a series of existing hits, identifying as many other hits of the
same “type” within the virtual library. The definition of type here depends on the
descriptors chosen to measure molecular similarity. For example, compounds may
be structurally similar in two dimensions, or have similar pharmacophore patterns
in three dimensions, or have similarities in binding to the three-dimensional struc-
ture of the target.

Whether one is making a diversity or a similarity selection, it is important
to take account of the space that has already been explored through screening of a
historical compound collection and/or libraries that have already been synthe-
sized. To do this one needs to be able to compare two or more sets of compounds
(libraries or compound collections) in a common or reference chemical space.
When making subset selections, one must consider the potential of the subset to
maximally augment the information that has already been obtained from the
screening effort to date. For diversity selection, one will wish to ensure that the
subset samples areas of space that have not previously been covered. Note that
such methods are equally applicable to compound acquisition in which one aug-
ments a compound collection through purchase of existing compounds from third-
party vendors, rather than selecting virtual compounds to be synthesized.

A number of methods have been proposed to address the diversity and sim-
ilarity problem, both in isolation and in the context of existing libraries, and we
will discuss our own methodologies in this chapter. Historically, library design
has tended to focus solely on this problem. However, many libraries resulting
from design by diversity analysis or resulting from design by the intuition of a
chemist have proven to be relatively poor at generating hits that were subse-
quently successful in medicinal chemistry. Often, the screening hits from a library
either were uninteresting to medicinal chemists or suffered from absorption, dis-
tribution, metabolism, excretion, and toxicity (ADME/tox) problems that proved
difficult and/or costly to resolve (1).

Recently, there has been a realization that designing a library purely for di-
versity or similarity is a somewhat naïve approach. Consideration must be given
to the properties of the molecules forming the set selected for synthesis such that,
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should they prove to be hits, they are less likely to cause ADME/Tox or synthesis
problems during lead optimization (2–4).

With the increasing throughput of the drug discovery process and the need
for cost efficiency, a design for a library must also strive to be efficient to synthe-
size and cost-effective. For this, the properties of the reagents that are required to
produce the products in the selected subset of the virtual library must be consid-
ered. They ought to be inexpensive, reliably and quickly obtained, and optimally
combined in conjunction with the synthetic protocol, automated or manual, used
to produce the library.

In summary, library design should incorporate the following:

A diversity or similarity selection method that can sample a virtual library
with the required behavior with respect to diversity, coverage, represen-
tativeness, or neighborhood sampling

A bias toward the selection of a set of molecules that have the characteris-
tics of a good leads, or “druglike” molecules

A bias toward the selection of a set of molecules that can be made with
reagents that are cost-effective and can be obtained within an appropriate
time frame

The necessary constraints to ensure that the library will be efficient to syn-
thesize, especially when robotic synthesis is to be used

This chapter will discuss software (5) developed to address each of these factors
and will show how they may be combined to produce a set of criteria for the li-
brary design that can be applied simultaneously to selection of a subset from a vir-
tual library.

II. THEORY AND METHODOLOGY

A. Search Space and Optimization

1. The Combinatorial Constraint

The efficiency of synthesis of a library is dependent on the methodology (either
automated or manual) used in its production. In some situations, particularly when
one is using a manual or semiautomated parallel synthesis approach, there are no
constraints on the way in which individual reagents will be combined. In this case,
cherry-picking methodologies are appropriate for the computational design.
Cherry-picking aims to select the most appropriate (diverse or similar) set of prod-
ucts, irrespective of the combinations of reagents that will be needed to make
them. Since it is without other constraints, this approach typically leads to the
most diverse (or similar) subset that can be selected. However, a cherry-picked li-
brary can be costly and inefficient in terms of the reagents it uses. In the extreme,
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every reagent will be used to produce only one product, and the total number of
reagents will be equal to the number of products multiplied by the number of po-
sitions of diversity within the library.

In effort to address this problem and to ensure synthetic efficiency, a com-
binatorial constraint is often applied to the library design. This constraint requires
that every reagent used at each diversity position be used in all combinations with
all reagents at every other diversity position, and that every reagent is used in the
design of full arrays and mixtures. The combinatorial constraint ensures that the
maximum number of products is obtained from the minimum number of reagents
and that the library will be synthetically efficient on array synthesis automation. It
does, however, place a restriction on the products that can be made, since indi-
vidual products can no longer be cherry-picked to be included in the library. In-
stead, the selection of a reagent implies that all products of that reagent with the
selected reagents at all other diversity sites must be included in the design. A com-
binatorial subsetting problem can be expressed as the selection of, for example, a
10 � 8 � 12 library with the implication that all 960 products will be made. The
equivalent cherry-picking problem would be expressed as the selection of a 960-
member library. The combinatorially constrained library will require 30 reagents,
whereas the cherry-picked library with three positions of diversity could require
up to 2880 (960 � 3) reagents, assuming that there are 960 or more suitable
reagents available for use at each position of diversity.

A third type of design that has recently emerged is that of sparse matrix li-
braries (6). In this case, a strict combinatorial constraint is not applied. Instead the
number of reagents is minimized (but does not have to be the absolute minimum),
and the resulting library mapped as efficiently as possible onto the synthesis
equipment. By allowing some relaxation of the absolute combinatorial constraint,
it has been found that libraries can be designed that better meet the design criteria
(diversity, properties etc.) while still being relatively efficient to synthesize. Such
a design could be achieved with the methodology discussed in Section II.D.

2. Search Space

The first problem that must be faced in library subsetting is that the search spaces
are extremely large, since the number of appropriate reagents that are available for
many typical chemistries is high and ever increasing. As an example, consider a
library with three positions of diversity in which there are 100 reagents available
for use at each position, giving a virtual library of 1 million members. Consider
the problem of selecting a library of 1000 molecules from this virtual library. If
the library is not combinatorially constrained, then there are C1000

1,000,000 � 103400

possible libraries. If the combinatorial constraint applies (see Sect. II.A.1), then
the subsetting problem is actually to select a 10 � 10 � 10 library and there are
C10

100 � C10
100 � C10

100 � 5 � 1039 possible libraries.

304 Brown et al.



3. Monte Carlo Optimization

The size of the search spaces (discussed in Sect. II.A.2) and the number of con-
straints that must be applied (discussed in Sect. I) suggest that the design problem
cannot be solved deterministically. Evolutionary algorithms have been success-
fully applied to many problems in which there is not only a vast search space but
also a number of factors that must be simultaneously optimized (7,8). In this work
we have made use of a Monte Carlo optimization procedure. Two versions of the
algorithm are implemented: one for simple product selection and another that in-
corporates the additional problem of mapping between reagents and products in
the case of combinatorial constrained selection.

Figure 1 shows a schematic view of the algorithm. For cherry-picking, an
initial subset of molecules is chosen at random from the pool of all available

Tools for Designing Combinatorial Libraries 305

Figure 1 Monte Carlo optimization procedure for cherry-picked and combinatorial
libraries.



molecules and the initial value of the objective function is calculated. The ob-
jective function (discussed in Sect. II.A.4) evaluates the quality of this subset, in
terms of the design criteria (diversity, similarity, druglikeness, cost-effective-
ness, etc.) that have been specified. Next, a new trial set is constructed by a sin-
gle-point mutation procedure in which one of the currently selected molecules is
replaced by a molecule not currently selected. Whereas the new molecule is
chosen at random among those not currently selected, the selection of the old
molecule is biased toward replacing a “bad” one and, therefore, improving the
value of the overall function. The value of the objective function is evaluated for
the trial set. If it is better than the current value, the trial set is accepted. If the
new value is worse, the Metropolis criterion is used to decide whether to accept
or reject the trial set. The exponential function for the Metropolis criterion is set
so that a decrease of 10% in the value of the diversity function is accepted 10%
of the time at a “temperature” of 300 K. If the trial set is accepted, it is com-
pared against the optimum set found so far and, if it is better, the optimum set
is replaced. The process is terminated after a maximum number of steps is
reached or if the optimum value of the function does not improve after a speci-
fied number of steps.

For design including the combinatorial constraint, we have used a similar
Monte Carlo strategy with the aim of optimizing the choice of R groups to per-
form true R-group, array-based optimization of the score of the resultant prod-
uct library subset. Our goal in this case is to choose an optimal subset corre-
sponding to a combinatorial library with a prescribed number of n1 reagent
choices for the R1 substituent, n2 for R2, and so on. We begin the optimization
by randomly selecting n1 R1 reagents, n2 R2 reagents, and so on, from a larger
virtual pool. The corresponding set of products is identified, and the diversity of
this subset is evaluated based on this resulting enumerated subset library. We
then take a Monte Carlo step, but this time instead of randomly “mutating” one
molecule, we “mutate” one R group by randomly replacing one of the currently
selected R-group choices in our subset with an unselected R-group reagent. We
then evaluate the objective function of the corresponding enumerated library
subset, accept or reject the trial R-group mutation with a Monte Carlo Metropo-
lis criterion as before. Again the process is iterated for many Monte Carlo steps
until convergence (i.e., no further improvement in the value of the diversity
function) has been achieved. A similar procedure has been described using a ge-
netic algorithm (9).

4. The Objective Function

The procedure depends on the specification of an objective function to determine
the suitability of the solution proposed at each iteration. The objective function
consists of a weighted combination of terms, each of which accounts for one of
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the constraints on the products or reagents previously described in Section I, that
is,

F � wds (DS) � ∑n
i�1 wiProductPenaltyi � ∑n

j�1 wjReagentPenaltyj (1)

where DS is the diversity or similarity score, wds, wi, and wj are weighting factors;
and n and m are the number of product and reagent constraints, respectively

The diversity selection algorithms that can be used in this objective function
are described in Section II.B, the penalty functions used to assess druglikeness are
described in Section II.C, and the functions used to assess cost-effectiveness in Sec-
tion II.D. Each of these functions returns a score that is normalized to be within a
specific range and then the total objective function is calculated as shown in
Eq. (1).

B. Diversity Selection Algorithms

Diversity and similarity methods are founded on the similar property principle,
which notes that structurally similar molecules have similar activities (10). What-
ever the selection method, the correct selection of a chemical space into which the
compounds are projected is essential, so that this neighborhood behavior holds
(11). Assessing diversity and similarity is a multistep process in which:

1. A series of descriptors is computed for each compound under consider-
ation.

2. The compounds are projected into a common chemical space of either
the original descriptors or a (usually smaller) set of descriptors derived
from the originals using a technique such as principal component anal-
ysis or factor analysis.

3. A subset of compounds is selected based on the members’ proximity
within the chemical space. This may be either based on a distance com-
putation or on the division of space into cells and the comparison of cell
occupancies of compounds.

A variety of descriptor types have been proposed ranging from 2D and 3D finger-
prints to topological and graph theory indices to BCUT descriptors and molecular
properties. An excellent review of these is given in a special issue of Perspectives
in Drug Discovery and Design (12) and in other chapters of this book, and it is not
the intention of this chapter to discuss this aspect of the methodology in detail.

Two classes of diversity metrics have been widely used. The first are parti-
tioning methods. These may employ clustering approaches, which divide the com-
pound pool into sets of similar compounds, or cell-based approaches, which sub-
divide each dimension in the chemical space into bins, thereby forming
hyperboxes in the space. For diversity, compounds are selected to sample differ-
ent boxes/clusters, while for similarity, compounds are drawn from the
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box(es)/cluster(s) closest to the target. Methods in the second set are based on
measuring the distance between pairs of compounds and then maximizing the dis-
tances between the selected set for diversity or minimizing the distances for sim-
ilarity. In either case, metrics are available that vary in the way in which they aim
to achieve diversity, coverage, and representativeness.

When selecting between the methodologies, one must consider the size of
the problem, the available time for its resolution, and the accuracy required. Cell-
based methods (discussed in detail in Sect. II.B.3) are the most approximate but
are the fastest. The speed results from the simplicity of simply dividing space into
cells. However this also introduces an approximation, since molecules in separate
cells are considered to be different, irrespective of whether they are far apart, or
adjacent but separated by an arbitrary cell boundary. Distance-based metrics (dis-
cussed in Sect. II.B.4) tend to be slower, since they require the computation of
pairwise distances or similarities, but are less approximate, since they do not suf-
fer from the edge effect. Clustering methods can be the most time-consuming, de-
pending on the algorithm used.

1. Reagent vs Product Diversity

Cherry-picking clearly works in the space of the library products. That is, it
is the library products whose descriptors are calculated and embedded in the
chemical space from which selections are made. For combinatorially constrained
design, it was initially assumed that optimizing product-based diversity could
be reasonably approximated by the optimization of the diversity of the reagent
R groups independently. That is, it was the reagents whose descriptors were
calculated and embedded in the chemical space. Merely combining these diverse
sets of reagents produced fully combinatorial libraries. Gillett and coworkers
refer to this assumption as the “diversity hypothesis” (3). If true, the diversity
of each substituent R group could be optimized by considering only the diver-
sity of the possible reagents at each substitution point in a library scaffold with-
out examining the diversity of the resulting products and without the need to
enumerate a full virtual library and evaluate its descriptors. However, this as-
sumption has been called into question (3,13). More recently, attention has been
given to the problem of attempting to design combinatorial libraries by optimiz-
ing the diversity of the products (product-based diversity) under the constraint
that the optimal library result from the full combinatorial explosion of a set of
selected reagents (3). It is the latter problem to which our methods are
addressed.

2. Requirements for a Diversity Selection Algorithm

To devise a procedure to optimize the diversity of a library in product (rather than
reagent) space, we need a protocol for assessing the diversity of any possible li-
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brary subset from the full virtual library being considered. We will assume that the
choice of descriptors to use has already been decided, and we focus here on the
problem of deciding how well the descriptor space is covered by a particular sub-
set library. We refer to any protocol that quantitatively assesses the coverage of
descriptor space as a diversity function. We have proposed (14) a set of require-
ments that a “perfect” diversity and coverage function should satisfy. It should be
noted that some of these critically affect combinatorial selection but may be re-
laxed for cherry-picking selection. The rules mainly arise from considerations
based on adding redundant or nonredundant molecules into our descriptor space
and address the diversity and coverage of the resulting sets. The proposed re-
quirements for a diversity function are as follows:

Requirement 1. Adding redundant molecules to a system does not change its
diversity.

Requirement 2. Adding nonredundant molecules to a system always in-
creases its diversity.

Requirement 3. Space-filling behavior should be preferred.
Requirement 4. Perfect (i.e., infinite) filling of a finite descriptor space

should result in a finite value for the diversity function.
Requirement 5. If the dissimilarity or distance of one molecule to all others

is increased, the diversity of the system should increase. However, as this
distance increases to infinity, the diversity should asymptotically ap-
proach a constant value.

A brief explanation for each requirement is given below; a full discussion is given
by Waldman et al. (14).

Requirement 1 follows from the simple consideration that adding redundant
molecules to a system does not increase coverage of the descriptor space. The di-
versity of the system (as opposed to the diversity per molecule) should not change,
since exactly the same space is sampled before and after the addition of a redun-
dant molecule.

Requirement 2 is almost a corollary to requirement 1. Since adding nonre-
dundant molecules (i.e., points in the descriptor space not already present) sample
or cover regions of the space not already sampled, it follows that the diversity of
the system as a whole should increase. Because requirements 1 and 2 refer to the
incremental change in diversity as molecules are added to the system, we have
termed them incremental diversity requirements.

Requirement 3 encapsulates the notion that one would rather fill large voids
than add new molecules that are close to already selected molecules.

Requirement 4 is particularly important in the comparison of libraries of un-
equal sizes. It encapsulates the notion that there is a finite limit on the diversity
that can be achieved by covering a finite space and that after a point, nothing is to
be gained by continuing to flood that space.
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The foregoing rules state that diversity should change under certain actions
(i.e. adding nonredundant molecules), but we have not stated by how much it
should change. To do this we must define the “sampling radius” that provides
some indication of how much of descriptor space is sampled by a particular
molecule. This concept of a sampling radius in descriptor space is intimately re-
lated to requirement 5. Recall that the ultimate goal of designing diverse libraries
is to maximize the probability of finding one or more biologically active com-
pounds. It is assumed that we have already chosen a set of descriptors that corre-
late with biological activity in the following sense. By the similar property prin-
ciple introduced in Section II.B, similar molecules (based on the values of their
descriptors) are assumed to be (probabilistically) more similar in their biological
activities than would be observed if molecules were selected at random. In other
words, molecules similar to an active molecule should tend to be more active than
a molecule chosen at random, and molecules similar to an inactive molecule
should be less active (on average) than a molecule chosen at random. This means
that molecules with similar diversity descriptors should have correlated biological
activities, while molecules with very different values for their diversity descrip-
tors have uncorrelated biological activities.

The transition from correlated to uncorrelated biological activities occurs
when molecules no longer sample a common region of descriptor space: that is,
when they are outside each other’s “sampling radius.” Once this has occurred, there
is no further gain in diversity by making the molecules any more dissimilar, be-
cause once the molecules do not overlap in their coverage of descriptor space, there
is no further gain in coverage by any additional increase in their separation from
each other. Of course, it is not truly correct to assign a “hard” value to the sampling
radius parameter, since the transition from correlated to uncorrelated biological ac-
tivity behavior occurs gradually and continually. Consequently, rather than state
that the diversity remains constant once molecules are outside each other’s sam-
pling radius, we propose as a requirement that the diversity should monotonically
increase and asymptotically approach a constant as a molecule becomes very dis-
tant from all others in a diversity descriptor space. One desirable feature of the
asymptotic behavior of diversity with distance is that it tends to reduce the possi-
bility that one or a few outliers in a system can dominate the diversity score.

3. Partition-Based Selection

In clustering or cell-based methods, a library subset is selected usually with the
goal of maximizing the number of occupied cells or clusters. The simplest diver-
sity function is one that simply counts the number of occupied cells or clusters and
compares that to the total number of cells occupied by the virtual library.
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This tends to reasonably obey requirements 1–5. Since redundant molecules will
occupy the same cell or cluster as an existing molecule in the system, the cell
count remains unchanged when redundant molecules are added, thereby satisfy-
ing requirement 1. A nonredundant molecule may belong to a previously unoc-
cupied cell or cluster, in which case the occupied cell count will increase. If it
belongs to an already occupied cell, then the cell count is unchanged. Thus,
we see that requirement 2 is partially satisfied (diversity increases sometimes
but not always). At least, the diversity does not decrease when nonredundant
molecules are added. Requirement 3, preferring space-filling behavior, is partly
adhered to in the sense that the function increases whenever an unoccupied cell
becomes occupied. Perfect filling of a finite space leaves the diversity function
finite, assuming that the number of cells partitioning the finite space is finite,
thereby satisfying requirement 4. As two molecules become very far apart, they
will occupy separate cells or clusters, but once this has occurred, the diversity
function will not increase any further, partly satisfying (since the approach is
not asymptotic) requirement 5. Furthermore, the cell size (actually the edge size)
effectively serves as the sampling radius parameter. Thus, most of the require-
ments tend to be satisfied or partly satisfied. The drawback to this approach is
that it is limited by the level of resolution provided by the cell divisions.
Thus, a set of moderately similar molecules all falling within the same cell or
cluster will appear to be less diverse than a set of molecules that are very simi-
lar but happen to lie across one or more cell boundaries thereby spanning
several cells.

Clustering methods can also experience this problem, since similar
molecules can sometimes be assigned to different clusters. There is no guarantee
that molecules within a cluster are all more similar to each other than to any
molecules outside the cluster. Thus, sets containing very similar molecules can
happen to occupy more cells or clusters than a set containing only moderately sim-
ilar compounds that all happen to lie within the same cell or cluster. This draw-
back is related to the failure to satisfy requirement 2. In these cases, adding nonre-
dundant molecules to an already occupied cell or cluster may result in an incorrect
assessment of the diversity of the system.

Another diversity function that can be used with cells or clustering methods
is the chi-squared statistic (�2). The definition of the diversity function in this case
is:
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where Ni is the number of molecules in cell i, Nsel is the total number
of molecules in the sublibrary, and Ncells is the total number of cell partitions.
The sum runs over all cells. This function attempts to produce a uniform
distribution of cell occupancies, rather than simply maximize the number of
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occupied cells. The minus sign in front of the sum ensures that more uniform
distributions are scored as being more diverse. For example, suppose diversity
space was divided into two cells (or clusters) and suppose there were two li-
braries, each containing 10 molecules. Let the cell occupancies for the first li-
brary be (5,5). Let the occupancies for the second library be (7,3). If we simply
count cells, the libraries are scored as equally diverse, since there are two occu-
pied cells in each case. However, the chi-squared diversity function considers
the (5,5) library to be more diverse, which is a desirable result. Nevertheless, the
chi-squared function does not satisfy incremental diversity (requirements 1 and
2), and this may result in some problems in its behavior. Our investigations of
the chi-squared function (14) have led us to conclude that it may be too strongly
biased toward producing uniform distributions while not placing enough em-
phasis on the goal of simply maximizing cell occupancies. For example, con-
sider a three-cell system containing six molecules. The ideal distribution is
(2,2,2). The chi-squared function ranks the two distributions (3,3,0) and (4,1,1)
as equivalent, whereas cell counting would prefer (4,1,1), since all three cells are
occupied.

Another function that tends to show behavior intermediate between the chi-
squared function and the cell occupancy count is one that measures the entropy (or
information content) of the system (15,16)
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This also favors more uniform distributions, but it would rank the (4,1,1) distri-
bution ahead of (3,3,0) in the example above. This function also does not strictly
obey requirements 1 and 2. However, it can be shown that requirement 2 is par-
tially satisfied in that adding a molecule to an empty cell will increase the cell en-
tropy diversity value. This behavior is not generally satisfied by the chi-squared
function, suggesting an additional theoretical reason for preferring the cell entropy
function.

The three functions are all attempting to address the diversity/coverage
question and, as we have attempted to show, do so to varying extents. A final met-
ric is aimed to address the representativeness question, this being the cell-based
density

RDensity � �∑ Ni ln ��
M
Ni

i
�� (5)

where the sum is over all filled cells, Ni is the number of molecules in cell i for
the subset, and Mi is the number of molecules in cell i for the full virtual library.
This metric aims to select a subset in which the distribution of molecules in
space in the subset mimics as closely as possible that in the virtual library.
Dense areas of space (highly populated cells) in the latter will be more heavily
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sampled in the subset than sparse areas of space (lowly populated cells) that will
be lightly sampled (and some may not be sampled at all). Since this is a repre-
sentativeness metric and not a diversity metric, it is not instructive to consider
its properties in relation to the list of requirements in Section II.B.2.

Whichever metric is used, one also needs protocols for choosing how to par-
tition each property for the cell-based approaches. Of course, ideally one would
like to use information on how the descriptors correlate with biological activity
data to guide these choices, as discussed earlier, but this information is typically
not available.

Consequently, after some investigation, we have settled on the following
default choice for the number of cells. The value is chosen such that the number
of occupied cells in the full virtual library is equal to (or just slightly greater than)
the number of molecules we are selecting for our subset library. This choice means
that if a combinatorial constraint was not imposed on the solution, each selected
molecule could occupy a different cell. We find in practice that the combinatorial
constraint rarely permits this ideal solution, and thus the fraction of occupied cells
in the sublibrary (relative to the ideal value of each molecule occupying a differ-
ent cell) serves as a reasonable measure of how much diversity is lost by the im-
position of the combinatorial constraint.

By default the descriptor space is partitioned as follows. Each descriptor
is uniformly partitioned (ranging from its minimum to maximum values) such
that the cell edge lengths for the descriptor are as uniform as possible while re-
quiring that the resulting number of occupied cells (in the virtual library) equal
the target value (number of molecules to select) or just exceed it. This parti-
tioning is achieved by means of an iterative algorithm that increases the number
of bins by one for the descriptor having the currently largest cell edge until the
resulting binning scheme results in the number of occupied molecules in the vir-
tual library being equal to or just exceeding the number of molecules to select
in the sublibrary.

In addition to this binning scheme, others are provided as alternatives:

Uniform, in which the number of bins for each descriptor is independently
set by the user and each axis is divided into that number of bins of equal
width.

Standard deviation based, in which the bin boundaries on each axis are
placed at whole numbers of standard deviations of the property on that
axis, centered at the mean.

Manual, in which the user defines each bin boundary for each axis.
Population weighted, in which each axis is independently divided into a

user-specified number of bin in such a way an equal number of molecules
falls into each bin on any given axis. (This concept was described by Bay-
ley and Willett in Ref. 17.)
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4. Distance-Based Selection

One of the first applications of distance-based selection was the use of D-Optimal
design by Martin et al. (18). However this can be computationally intensive for
data sets comprising large numbers of molecules and descriptors. Furthermore, it
suffers from the weakness that it tends to select outliers, while leaving regions
near the center or mean values of the data set unsampled, particularly when the
number of molecules far exceeds the dimensionality of property space.

We have developed a number of diversity metrics specifically designed to
avoid such problems. The first is MaxMin,

MaxMin � max{min[Dij]} where Dij � ∑ (xik � xjk)2 (6)

which functions as follows. Given a set of descriptors associated with each
molecule, calculate the distance between each pair of molecules in descriptor
space as D2

ij, the distance between molecule i and molecule j, xik is the value of the
kth descriptor for molecule i, and the summation runs over all descriptors k.

Now, for a given subset of molecules, find the minimum value of Dij for all
i,j pairs. Maximizing this function by using the Monte Carlo procedure described
in Section II.A.3 produces the optimally diverse set.

The PowerSum function. In this function,

PowerSum � max ���∑(D2
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the sum runs over all i,j pairs of the subset, Nd is the number of intermolec-
ular distances M(M � 1)/2, where M is the number of selected molecules
and npower is the exponent of the PowerSum function (npower ��1 cor-
responds to the reciprocal of the average of reciprocals, also known as the
harmonic mean, and is the value used by default). This function maxi-
mizes the harmonic mean of the squares of all intermolecular distances
between selected points.

The Product Function. In this function,

Product � max{(�D2
ij)1/Nd} (8)

the product of the squares of the intermolecular distances is maximized.

While the value of the MaxMin function is not explicitly dependent on the num-
ber of models in the subset, the PowerSum and Product functions are normalized
by the number of distances in the subset. These three functions show some differ-
ences in regard to the subsets of molecules they select, but they all share the char-
acteristic that higher values of the function correspond to subsets of molecules
with more different values of the molecular descriptors (i.e., more diverse sub-
sets).
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All these distance-based methods have been found to be very useful when
applied to cherry-picking. In particular, we have found that the MaxMin approach
is highly effective in selecting sets of molecules that provide optimal coverage of
a descriptor space (19). However, they are not useful for combinatorially con-
strained libraries. In particular, they do not satisfy the incremental diversity re-
quirements. For example, if we add a redundant molecule to the system, the
MaxMin diversity value goes to zero (rather than staying constant). If we add a
nonredundant molecule to the system, the MaxMin value either stays constant (the
minimum distance between all possible pairs may be unchanged) or decreases (the
new molecule may have a smaller distance to an existing molecule than the pre-
vious minimum value), rather than increasing as required.

The MaxMin function finds the closest pair of points in the system and as-
signs a diversity value based on the distance between the closest pair. This is fine
when we are free to take one of the molecules involved in the closest pair and re-
place it with another, more diverse molecule. However, in combinatorial opti-
mization, one does not replace a single molecule at a time, but rather attempts to
find a subset of R-group choices that optimize the diversity of the enumerated sub-
library. In this case, one needs to compare the diversity of different combinatorial
subsets. For example, it may be that one subset has a good overall coverage of de-
scriptor space but has a single pair of molecules quite close to one another, which
causes the MaxMin function to score the diversity as low. A second subset may
have a poorer overall coverage of the space but no pair of molecules is very close
to any another. MaxMin would score the second subset as more diverse than the
first, and this is clearly an undesirable result. It stems from the failure of MaxMin
to satisfy (even approximately) the incremental diversity requirements.

It has therefore been necessary to construct an additional diversity function
specifically for combinatorial optimization (14). In attempting to construct a new
function, we have found that a diversity function that exactly satisfies all the re-
quirements 1–5 can be constructed for a one-dimensional system (i.e., where there
is only a single descriptor used to characterize each molecule). In this case, each
molecule can be represented as a point on a one-dimensional line where the posi-
tion of the point corresponds to the value of its descriptor. A diversity function for
this system satisfying requirements 1–5 is illustrated in Fig. 2. Above each point
(molecule) on the line is drawn a normalized Gaussian curve. The Gaussians of all
the points are allowed to overlap, and the area under the envelope of the Gaussians
is taken as the diversity of the system. In this case, the width of the Gaussians
(taken to be equal for all the points) corresponds to the sampling radius parameter
discussed earlier. We can calculate the area under the curve exactly by partition-
ing the system into a set of Gaussian segments. This is shown by the vertical lines
going through each point and through each midpoint of neighboring pairs. The ar-
eas under the far-right and far-left Gaussians are each 1⁄2, as indicated on the fig-
ure. The area under each of the remaining Gaussian segments is 1⁄2, the error func-
tion, erf() (20), evaluated over the length of the segment. As shown in the figure,
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these segments occur in pairs of equal area, so the net result is a sum of error func-
tions plus one.

The area under the Gaussian envelope satisfies all the diversity require-
ments 1–5. Adding redundant points makes no change to the area under the Gaus-
sian envelope, since two coincident Gaussians will overlap into the envelope of a
single Gaussian. Conversely, adding nonredundant points always increases the
area of the Gaussian envelope. The area under the envelope is maximally in-
creased by adding points where the largest gaps between points exist, satisfying
requirement 3. The envelope of an infinite number of Gaussians over a finite line
segment is a rectangle over the line segment plus two half-Gaussians extending at
the right and left of the segment. The area under this region is 1 (for the two Gaus-
sian halves at the far left and far right) plus the height of the rectangle times the
length of the filled line segment. This value remains finite, thereby satisfying re-
quirement 4. Finally, as a point is moved to the extreme left or right of the line, the
area monotonically increases but asymptotically levels off (as the Gaussian of this
point no longer overlaps with any of the other points). Finally, the width of the
Gaussians acts as a sampling radius. Thus, this representation of diversity satisfies
all the requirements stated in Section II.B.2.

We can represent the area in the general case of an arbitrary number of
points on a one-dimensional line with the following formula:

A � 1 � ∑ erf ��	d
2
i,i�1
�� (9)

Here, the sum is over pairs of adjacent points, (i, i � 1). This function obeys re-
quirements 1–5. For example, in the case of adding a redundant point, the distance
d involving the redundant point pair is zero, and erf(0) � 0, so there is no change
in diversity. This is the mathematical equivalent of the statement that the envelope
of two Gaussians centered at the same point is a single Gaussian. We have also in-
troduced explicitly the width (or radius) parameter of the Gaussian into the argu-
ment of the error function via the parameter 	. The use of the sampling radius pa-
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rameter allows us to tune the behavior of the diversity function. Small values of 	
correspond to very wide Gaussians and lead to a nearly linear dependence of di-
versity on distance. Large values of 	 correspond to very narrow Gaussians and
lead to a dependence of diversity on distance that rises rapidly and then quickly
levels off to an asymptotic value.

Thus, we see that Eq. (9) provides a mathematical representation of diver-
sity that perfectly satisfies all the recommended requirements 1–5. However, it is
valid only for a one-dimensional system. The problem arises of how to generalize
the result to a multidimensional system (i.e., representing molecules in diversity
space using multiple properties or descriptors), which is the situation encountered
in practical applications. In principle, this could be done by attempting to calcu-
late the hyperdimensional volume of the envelope of multidimensional Gaussians
centered at each of the molecules in the space. This volume can be represented as
a multidimensional integral, and it does, in fact, satisfy all the five diversity func-
tion requirements. However, unlike the one-dimensional case, this multidimen-
sional Gaussian envelope volume does not have an analytical representation. One
possibility would be to evaluate the integral by approximate numerical quadrature,
but such an approach may lead to problems in high dimensional spaces where nu-
merical quadrature is difficult to perform accurately.

Instead, we have sought a different approach that results in a closed-form
(but approximate) expression for the diversity of a multidimensional system. This
alternate approach stems from the idea of treating the multidimensional case as a
pseudo-one-dimensional system and to then make use of the one-dimensional di-
versity result of Eq. (9). One possible way to do this would be to connect all the
points via a path and treat the line segments of the path as the quantities to sum
over in Eq. (9). Since we wish redundant points to make no contribution to the di-
versity, the path should directly connect points that are very close (or redundant)
to each other. This implies that we should seek the shortest path connecting all the
points (usually referred to as the traveling salesperson problem) (21) and use the
segments of this path in the diversity function of Eq. (9). However, problems arise
with this approach because the computation of the shortest path through the points
is a difficult problem known to be NP-complete (21). However, an alternative
treatment turns out to be available which still allows for the use of the one-di-
mensional formula, Eq. (9), while being far more computationally tractable. In-
stead of requiring that the points be connected via a path (which implies a set of
edges with no branching), we can relax this restriction and consider a set of con-
nections in which the edges are allowed to branch. A set of edges that connect a
set of points and are allowed to branch (and do not form any cycles) is known as
a spanning tree (21). Instead of trying to find the shortest path through the points,
we seek instead to connect the points with a minimum spanning tree, which is the
spanning tree that has the smallest value for the sum of its edge lengths (21). Fig-
ure 3 illustrates the minimum spanning tree for a two-dimensional set of points.
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We can use the minimum spanning tree to formulate a diversity function for
the multidimensional case as follows. First, connect the molecule points with a
minimum spanning tree. Assign a value for the sampling radius parameter, 	. For
each edge of the minimum spanning tree, calculate its error function (based on the
edge length times the sampling radius parameter) and sum over all the edges. The
diversity function can be represented by the following equation:

D � ∑ erf(	di) (10)

Here, the sum is over all the edges of the minimum spanning tree. The distance di

is the length of each edge. Here, we have absorbed the factor of 2 from Eq. (9) into
the radius parameter 	, and we have omitted the additive constant, 1, in front of
the sum, since it does not affect the relative diversity between systems. A similar
function for diversity using the minimum spanning tree was proposed in 1999 by
Mount and coworkers (22). The main difference between their function and ours
is the use of the error function in Eq. (10) (which stems from considerations of
overlapping Gaussians in one dimension). Their function involves summing up
the edge lengths of the spanning tree. As such, it relates diversity linearly with dis-
tance and satisfies only requirement 1.

This diversity function of Eq. (10) also satisfies requirement 1, since
adding redundant points adds edges of zero length to the minimum spanning
tree, which consequently adds zero to the diversity value [since erf(0) � 0]. This
function tends to satisfy requirement 2, but it is possible to devise cases in which
adding points can lower the score. However, requirement 2 is strictly satisfied
for the following cases. Adding a nonredundant point in the vicinity of an ex-
isting point will always increase the score. Adding a nonredundant point along
one of the edges of the spanning tree (or in the vicinity of such an edge) will
also always increase the score. The violation of requirement 2 occurs when the
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distances between points are very small (or 	 is very small), so that the error
function reduces to a linear function of distance, and we return to the diversity
function of Mount et al. (22). In this case, one can find examples in which
adding a point into the center of several points can cause the diversity value to
decrease. Fortunately, examples of this unusual behavior tend not to arise in
practice. Requirement 3 is also partly satisfied in essentially the same sense as
requirement 2. It can be shown that requirement 4 is not generally satisfied in
the multidimensional case, but this is not important for the applications in which
the combinatorial library optimizations all involve subset libraries of a fixed
size. Finally, requirement 5 is fully satisfied.

In choosing the 	 parameter for the minimum spanning tree method, we
have used a type of reasoning similar to that for choosing the cell size, discussed
in Section II.B.3. Ideally, we would like each selected molecule in our subset to
occupy a different region of descriptor space. In the case of the cell methods, this
(ideally) corresponds to a different cell for each molecule. In the case of the span-
ning tree method, we need to choose a value of 	 that produces a reasonable re-
sult for the diversity calculated by Eq. (10). Since the distances in typical de-
scriptor spaces are not bounded, a fixed choice for 	 may behave differently for
different libraries and/or descriptor sets. We deal with this issue by renormalizing
our descriptor space as follows. We determine the hypervolume of the descriptor
space from the minimum and maximum values of each descriptor (for a given vir-
tual library). A single scale factor is then applied to all the descriptors such that
the hypervolume of the space is set to the total number of molecules to be selected.
In an ideal case, each molecule would now occupy its own region of descriptor
space with a hypervolume of 1 and would be separated from its nearest neighbors
with a distance of about 1. With this choice for rescaling the descriptors, we then
simply set 	 � 1. This is equivalent to leaving the descriptors unscaled and set-
ting 	 as follows:

	 � ���
N
n
i�

se

1

l

Ri

��
1/n

(11)

where the Ri’s represent the range spanned by each of the n descriptors in the vir-
tual library.

C. Biasing Selection Toward Desirable Molecular
Properties

1. Druglike Libraries

Whether libraries are designed for lead generation or optimization, it is impor-
tant to consider the molecular properties of the molecules selected from the
virtual library. Considerable emphasis has recently been placed on identifying
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the characteristics of compounds that make them “druglike” or good develop-
ment candidates. The intent is to preferentially select for screening molecules
that, if found to be active and selected for further development, are not likely
to exhibit ADME/tox problems. In this way the drug discovery and develop-
ment cycle should be shortened and the failure rate of compounds should be
reduced.

2. Other Molecular Properties

Other constraints on whole-molecule properties may arise from the way in which
the library will be deconvoluted or decoded to identify the active molecules fol-
lowing high throughput screening. Again, this will be dependent on the method-
ology by which the library will be synthesized and screened and whether a tagging
strategy is being used. As an example, Brown and Martin (23) describe a library-
decoding strategy for mixtures in which the molecular weights of the active
molecule(s) are identified during the screening process. To identify the active
molecules, every molecule in the screening sample with a molecular weight equal
to that of one of the active samples must be resynthesized and rescreened individ-
ually. Constraining the design library to have only a few occurrences of molecules
with any one molecular weight minimizes the effort necessary for the deconvolu-
tion process.

3. Lead Optimization Using Activity Prediction Models

While this type of analysis is typically applied to calculated physical properties, it
can equally well be applied to any computed or experimentally measured property
of each member of the library. For example, a series of virtual high throughput
screening models, derived from techniques such as recursive partitioning or hy-
pothesis modeling, could be used to predict activities for each molecule in a vir-
tual library. A library design could then be focused toward molecules predicted to
be active while simultaneously maintaining the combinatorial constraint and sat-
isfying druglike or cost requirements.

4. Rule-Based Biasing

Two methods have been developed that allow for the specification of desirable or
undesirable features in the selected molecules, thereby allowing the selection to
be directed toward the former. Restraints may be applied as property ranges (dis-
cussed in this section) in which a penalty is assigned to any selected molecule
whose properties lie outside the desired range. Alternatively, libraries may be de-
signed to mimic one or more prespecified distributions of various properties (dis-
cussed in Sect. II.C.5).
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In the case of selecting druglike molecules, the best known set of formal
rules are those proposed by Lipinski et al. (2), who recommend that molecules be
selected according to these rules:

1. Molecular weight should not exceed 500.
2. Log P should not exceed 5.
3. The number of hydrogen bond acceptors should not exceed 10.
4. The number of hydrogen bond donors should not exceed 5.

To incorporate these and other range-based rules, product penalties are im-
posed by specifying a range on any calculated or measured properties of the
molecules. A penalty function (shown graphically in Fig. 4) is then applied to each
property in term. No penalty is incurred by any molecule that falls within the
range; outside the range the penalty increases with the square of the difference be-
tween the value and the nearest bound, up to a maximum at a user specified value.
Formally

�

p � 0 for l � x � u


p � Min[Cap, (l � x)2] for x � l (12)


p � Min[Cap, (x � u)2] for u � x

where 
p is the assigned penalty, l and u are the lower and upper bound, respec-
tively, x is the value of the property for the given molecule, and Cap is the maxi-
mum penalty value at the point at which the function is capped. When a number
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of range-based penalties are imposed, a separate weight may be set on each one to
allow user control over their relative importance.

It is significant to note that Eq. (12) provides a “soft” limit on the appli-
cation of rules. What this means in practical terms is that molecules that have
somewhat unfavorable characteristics in some properties but not in others can
still be selected. Consider the case of a diversity selection constrained by Lipin-
ski’s rules. A molecule with molecular weight 525 that is at a considerable dis-
tance from any other molecules in the diversity space may still be desirable to
include in the selected set and by making a large contribution to the diversity
score may do so despite the penalty score. Such an inclusion would not be pos-
sible with a hard cutoff (i.e., an elimination of all molecules �500). On the other
hand, a molecule with molecular weight 525 possessing a high degree of simi-
larity to another with molecular weight 325 is less desirable. The former com-
pound can represented by its chemically similar neighbor, thereby avoiding the
violation of the Lipinski rule for molecular weight without significantly com-
promising the diversity.

For a library subset, the total penalty is calculated by summing the contri-
bution from each molecule. This value is normalized such that the total penalty
equals one if each molecule violates each penalty range by one standard deviation.
Formally

P � �
Np

1
rop
� �

N
1
mol
� ∑i�1

Nprop �


w

i
2
i

� ∑i�1
Nmol 
p2

ij (13)

where Nprop is the number of properties being restrained, Nmol is the number of
molecules being selected, wi is the weight assigned for property i, i is by default
the standard deviation for property i evaluated over the full virtual library, and 
pij

is the penalty (as defined above) for molecule j and property i. While  can, of
course, be folded into the weight wi, its use in the formula is intended to allow the
weights to be more easily determined and transferred between different virtual li-
braries. The capping point is also set in terms of number of standard deviations
from the upper and lower bounds. The software also allows the user to specify a
value for  that may be based, for example, on another distribution (e.g., an in-
house compound collection or chemical database such as the World Drug Index:
WDI).

5. Profile-Based Biasing

Other sets of rules can be inferred from an analysis (similar to Lipinski’s) of a col-
lection of molecules known to have desirable properties. These might be known
drugs in the appropriate class, a list of which could be extracted from drug
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databases such as the WDI, or a set of known actives from screening. This type of
analysis was previously suggested by Gillett et al. (3). In the Cerius (1) imple-
mentation, a set of properties is first identified as important, and these are then
computed from the set of known drugs. Next a frequency histogram is computed
by binning each property across those molecules. This set of histograms, one for
each property, then encodes the rules that the design library should follow.

When a subset of the virtual library is to be scored during the optimization
process, each histogram from the subset is compared to the equivalent histogram
from the drug database. A penalty is calculated based on the difference between
both the upper and lower bounds and the relative frequency for each histogram
bin. An upper and lower bound is assigned on the relative frequency of each bin,
and a contribution is made to the penalty any time the relative frequency of the bin
in the subset library is outside this range; with the magnitude of the contribution
increasing with the square of the difference. User-controlled weights can be set on
the relative importance of each bin in each histogram. The penalty function is
shown graphically in Fig. 5.

Again, the penalty score must be normalized so that it can be appropriately
weighted against all other factors in the optimization. In this case, the score will
be approximately 1 if each histogram bin of each profile violates the bin range by
10%. Formally,
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1
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� ∑i�1

Nprop �
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D. Biasing Selection Toward Desirable Reagent Properties

It is assumed in this discussion that prior to specification of the virtual library,
reagent lists have been assembled to be compatible with the chemistry to be
used. Furthermore, it is assumed that the lists have been filtered to remove
reagents with reactive or other undesirable functionalities. In this way, every
member of the reagent list is assumed, within the constraint of the current
knowledge of the chemistry, to be appropriate on a chemical compatibility basis
and available for use in the design library. These assumptions notwithstanding,
economic and supply considerations suggest that all reagents may not be equally
desirable to use.

Factors to consider in selecting reagents include the total cost of the reagents
that will be used, a preference for reagents that are already available in in-house
stockrooms or from preferred suppliers, and even a chemist’s intuition about the
desirability of using each reagent. Furthermore, it may be desirable to minimize
the number of reagents used, such as in the design of sparse matrices (see Sect.
II.B.1). Note that this is not the same as using the minimum possible number of
reagents to make a given number of products, which is a concept captured in the
combinatorial constraint also discussed in Section II.A.1. Finally, it may be desir-
able to minimize the number of different suppliers that are used, both to ensure
timely delivery and to reduce the complexity of the ordering process.

At the reagent level, information about the source and cost of reagents is
provided to allow selections to be biased toward more desirable reagents. For this,
the software must be supplied with a unit cost for each reagent, the preferred sup-
plier (including in-house if applicable), and optionally a user-defined relative
penalty that might encode criteria such as ease of synthesis, toxicity, or chemist
preference. Separately, a relative penalty can be assigned to the use of each ven-
dor, allowing the user to encode preferences in the selection of vendor. Such codes
might be used to indicate reliability, speed of delivery, or geographical location,
for example.

In evaluating a subset library during the optimization, it is first necessary to
compute the total quantity of each reagent that will be required to make the library,
based on the amount of each product required. From this a number of factors can
be scored.

Total monetary cost of the reagents required
Total number of reagents used
Total of the user-defined reagent penalties
Total number of suppliers used
Total of the user-defined supplier penalties

Each or all of these can then form the basis for a total penalty based on the reagents
used in that subset, and relative weights can be assigned to each factor.
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Again a normalization factor is applied to the total score to allow it to be as-
signed a relative weighted against the based penalties

PReagents � NPen (w1Pcost � w2Pnumber_reagents

� w3Pnumber_suppliers � w4Preagent_penalties � w5Psupplier_penalties)�1
(15)

where w1–w5 are weight factors and NPen is the number of penalty terms used.

E. Library Comparison

The methods discussed so far in Section II have considered a single library. How-
ever, it is important to be able to consider the distribution in space of a number of
libraries, or compound collections, and to make selections that complement the set
of molecules already submitted to any screen of interest. Two tasks are of inter-
est: the comparison of the overall diversity of two libraries and the selection of a
subset of a library to augment an existing collection.

1. Defining a Chemical Space for Multiple Libraries

Before one can begin to analyze the overlap or diversity of a set of libraries, one
must define a common chemical space in which they may be compared. For fin-
gerprint metrics, it is sufficient to apply the same fingerprint algorithm to each set
of compounds, allowing the distances between any pair of compounds to be com-
puted irrespective of which library they are in. For continuous descriptors, one
must consider how to define the chemical space when using a data reduction tech-
nique such as a principal component analysis. Two cases can be identified.

Case 1. One set of compounds defines a reference space and another is a
set that is to be compared to that reference space. For example, a virtual
library might be compared to a set of known drugs to understand the over-
lap (and thus understand how druglike the members of the virtual library
might be). In this case the set of known drugs is clearly the reference
space. The principal component analysis is therefore run on this set alone,
and the resulting equations are then applied to the descriptors calculated
from the virtual library to embed the virtual library in the space of the
drugs.

Case 2. A common chemical space is to be calculated from all sets of
compounds, and no one set defines a reference. For example, a number of
virtual libraries can be synthesized, and the desire is to understand which
ones occupy the same area of chemical space and which are fundamen-
tally different. In this case the principal component analysis is run using
the descriptors from all sets of molecules, producing a common chemical
space defined by the variation of the descriptors across all the libraries.
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2. Comparing Whole Libraries

Having defined a common chemical space, one may first wish to compare the di-
versity of a pair of libraries. One method, the diversity integral method (24), uses
the following procedure to consider the amount of space spanned by each library.

1. Generate a set of random points that sample the property space covered
by the two libraries and calculate the distance between each random point and the
closest molecule in library 1 and library 2 (i.e., the minimum distance between the
random point and each library).

2. Calculate the sum over all the minimum distances between random
points and library 1 and random points and library 2, normalizing by the number
of random points.

3. The library with the lowest value of this sum is considered to be more
diverse; that is, it better samples the property space occupied by the two libraries.
This is based on the finding that on average, one can start from any point in the
property space and find a closer point in the library with the lower sum than in the
other.

A second method, the similarity method, considers the distances between
members of one library and another. For each member of one library, the nearest
neighbor in the other library is identified and the distance recorded. A frequency
distribution of these distances indicates the overlap of the libraries. A distribution
skewed toward small distances indicates a high degree of overlap, since most
molecules in one library have a relatively close neighbor in the other. Distribu-
tions in which the frequencies are skewed toward high distances indicate that the
libraries are reasonably well separated. The mean of these minimum distances
gives a single measure of the separation of the libraries.

3. Augmenting Existing Libraries

The methods described in Section II.E.2 allow the comparison of whole libraries
or compound collections. Another task is to select a subset of a library to augment
the space that has already been covered by existing compounds. One method to do
this is to use the similarity selection methodology just described (Sect. II.E.2).
Having computed the minimum distances between members of a candidate and
target library, one may augment the target with all compounds in the candidate li-
brary that are greater than a threshold distance from any member of the target li-
brary, to explore only new space. For use in library optimization, the selection
would be inverted to select all molecules in the candidate library within a distance
threshold of members of the target library; the latter being formed from the set of
currently identified hits.

An alternative to this is to use the same distance metrics and optimization
process discussed in Sections II.A.3 and II.B.4. The difference in this case is that
after selecting a subset of a candidate library during the Monte Carlo optimization,
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the diversity metric is calculated not only from the molecules in the selected sub-
set but from a combination of the selected subset plus all the members of the ref-
erence library. In this way, the diversity metric optimizes both the distances be-
tween the members of the selected subset and the distances between the reference
library and the subset. Since the reference library is fixed, the mutation step of the
Monte Carlo is only allowed to switch one member of the candidate library for an-
other. In this way, the selection is of the most diverse subset of the candidate li-
brary to best augment the reference library.

III. EXAMPLE APPLICATIONS

In this section we give two examples to demonstrate the application of some of the
methods we have described. The first, in Section III.A, demonstrates the use of
combined combinatorially constrained diversity, druglikeness and cost-effective-
ness constraints. The second (Sect. III.B) compares the various distance and cell
metrics for array optimization.

A. Diversity Analysis of an Ugi Library for Cost-
Effectiveness and Druglikeness

A virtual library was prepared based on an Ugi reaction (25) using 10 acids, 10
aldehydes, 10 amines (one of which was bifunctional), and 10 isonitriles, giving a
virtual library of 11,000 possible products. The design library was specified to be
4 � 4 � 4 � 4 (i.e., a combinatorially constrained selection) that would give ei-
ther 256 products or, if the bifunctional amine was among the selected set, 320.
Each reagent was extracted from the Available Chemicals Directory (ACD), with
a preferred supplier and unit cost.

The descriptor set chosen was the default set in Cerius2, a set of 50 physic-
ochemical properties including molecular weight, A log P (26), number of hydro-
gen bond donors and acceptors, number of rotatable bonds, surface area and vol-
ume, and the Balaban (27), PHI, Kappa, and CHI (28), Wiener (29), and Zagreb
(30) topological indices. The descriptors used are chosen to be reasonably fast to
calculate whilst still tending to group biologically similar molecules together.

A principal component analysis required five principal components to ex-
plain 93.8% of the total variance. Using the cell-based fraction measure (with
mean/variance normalized PCs), the space was divided into a total of 576 cells,
such that members of the virtual library occupied at least 256 cells. The Monte
Carlo optimization was set to run for 1,000,000 steps at 100 K, terminating after
100,000 idle steps.

Druglikeness criteria for the selection were defined from an analysis sim-
ilar to Lipinski’s (2) of the World Drug Index database (31) as follows. Of the
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54,944 unique molecules in the March 1998 version of the database, 7572
molecules were selected that had a USAN (U. S. adopted name) field, and 6489
were selected that had an INN (international nonproprietary name) field. The
union of these two groups gave 8504 molecules, which are presumed to be drug-
like. A series of descriptors was then calculated for this set, including structural
descriptors (molecular weight, rotatable bonds, number of hydrogen bond
donors and acceptors, AlogP and molar refractivity) and topological indices (3
kappa indices, a phi index, 5 chi connectivity indices, Balaban Jx, Wiener, Za-
greb). An upper bound constraint for each property was set at the value ex-
ceeded by 10% of the molecules in the data set. These ranges were then used as
penalty ranges for the design of the Ugi library subsets. Table 1 shows the range
of these properties in the Ugi virtual library and the bound established by the
above procedure.

The design aimed to select a combinatorially constrained 4 � 4 � 4 � 4 li-
brary to be both diverse (measured by the cell fraction), druglike (measured by
having molecular properties within the 90% upper bound found in the WDI) and
cost-effective (established by the total cost of all the reagents required to make the
library). In addition to a run to establish the best design library to satisfy these cri-
teria, other runs were done using either diversity alone or the total penalty alone
as objective functions to establish the optimal values for each criterion.
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Table 1 Property Ranges from WDI Subset

Descriptor Range in UGI library 90% cutoff in WDI_best

MW 399–669 550
Rotlbond 10–31 13
Hbond acceptor 2–13 9
Hbond donor 1–5 5
AlogP �4.2 to 8.2 5
MolRef 102–191 120
Balaban Jx 1.3–6.6 2.8
PHI 7.3–23.2 8
Kappa-1A 22.1–40.4 25
Kappa-2A 10.1–26.3 12
Kappa-3A 5.3–19.5 8
CHI-V-O 16.3–29.3 20
CHI-V-1 9.31–17.7 12
CHI-V-2 6.13–15.4 10
CHI-V-3P 3.88–11.1 8
CHI-V-3C 0.42–3.81 2.2
Wiener 1737–9940 4000
Zagreb 118–238 175



Table 2 shows the results of these runs. Examination of the diversity scores
in the table shows a range of 0.6 for the subset designed only for diversity to 0.23
for the subset designed only to minimize the penalties without regard for diversity.
Even in the case in which the set is optimized for diversity, 40% of theoretically
possible diversity is lost, that is, not all the possible cells of the diversity space are
occupied by the subset. This is due the imposition of the combinatorial constraint,
which prevents the algorithm from simply picking one compound per cell. With-
out this constraint (and without the penalty constraints) a diversity score of 1.0 is
achieved.

The imposition of additional restraints on the products and reagents results
in the loss of an additional 16% of diversity, beyond the diversity-only result. At
the same time the property profile with respect to druglikeness has been greatly
improved, the penalty score lowering from 1.2 to 0.06. Most remarkably the total
cost of the library has been reduced by over 15-fold (and, with the loss of an ad-
ditional 20% of diversity, it can be reduced a further 4-fold).

B. Comparison of Spanning-Tree and Cell-Based Metrics
for Array Optimization

A library was built with a benzodiazepine core together with a set of 20 R-group
substituents chosen from the available default set in the Cerius2 Analog Builder
(5). The library is illustrated in Fig. 6. It has three R-group positions in the ben-
zodiazepine core with (the same) 20 substituents available at each of the three R
groups. As such, the full virtual library constitutes a 20 � 20 � 20 array totaling
to 8000 molecules. Of the 50 descriptors described in Section III.A, 43 were com-
puted, and these were reduced to 3 descriptors by means of principal component
analysis.

First a 5 � 5 � 5 library was selected by means of the spanning-tree met-
ric, as shown in Fig. 7. The black spheres show the selected molecules embedded
in the space of the full virtual library. The most obvious omission from this library
is the molecule at the top of the space, which corresponds to the choice of R1 �
R2 � R3 � t-butyl. It can be seen that the selected molecules do a reasonable job
of covering the space with the exception of the region near the top occupied by the
single all-t-butyl compound. In Fig. 8, we show the equivalent selection using the
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Table 2 Results from Design of Ugi Library

Optimization Diversity Penalty Cost ($/mmol) Cost ratio

Only diversity 0.597 1.248 94749 80
Diversity - penalty 0.438 0.062 5630 5
Only penalty 0.234 0.02 1184 1



Figure 6 Structure of the benzodiazepine library.

Figure 7 MaxMin spanning tree selection of a 5 � 5 � 5 library from the 20 � 20 � 20
benzodiazipines. Selected molecules are in red in the original (black here), unselected in
white (gray here). Note that the uppermost molecule R1 � R2 � R3 � t-butyl is not selected.
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cell counts function to optimize the diversity of the system. In this case, the all-t-
butyl molecule is selected (note that t-butyl is present in the selection set for each
of the R groups), so the question of why this molecule was not chosen with the
spanning-tree method remains unanswered. It turns out that the cell counts selec-
tion gives a spanning-tree score of 52.6 while the spanning-tree score for the li-
brary optimized with the spanning tree function is 55.9, so the spanning-tree-op-
timized library is, in fact, more diverse based on the spanning-tree function. Close
inspection of the two libraries reveals that the spanning-tree-based library actually
has better coverage of the space in the lower regions (on the plot) of the diversity
space, while the cell counts library has noticeable gaps in this region. Note the lay-
ering or clustering effect present in the cell counts library in Fig. 8 with the gaps
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Figure 8 Cell-based selection of a 5 � 5 � 5 library from the 20 � 20 � 20 benzodi-
azipines. Only selected molecules are shown. Note that R1 � R2 � R3 � t-butyl is
selected.



between the clusters. This improved coverage of the lower part of the space turns
out to be significant enough to offset the loss of diversity due to the omission of
the all-t-butyl molecule for the spanning tree.

We earlier commented that in analyzing the cell-based metrics, the cell chi-
squared seems to be slightly inferior to both cell counts and cell entropy in terms
of producing optimally diverse libraries. To quantify this observation, libraries
were selected by means of each method, and each of the libraries obtained using
a cell-based method was evaluated with regard to its spanning-tree score normal-
ized (i.e., divided) by the spanning-tree score obtained for the corresponding li-
brary optimized using the spanning-tree function itself (i.e., the optimal spanning-
tree score achievable for that library). Thus, if a cell method produced a library as
diverse (assessed with the spanning-tree function) as the spanning-tree library, it
would achieve a (normalized) score of 1.0.

This experiment was repeated over a number of libraries sizes, using
various descriptor sets (14). It is found that the average score for the cell counts
(or cell fraction) method was 0.926, or equivalently, on average it achieved
92.6% of the diversity of the spanning-tree libraries. The cell entropy libraries
achieved an average score of 0.920, and the cell chi-squared libraries achieved
an average score of 0.910 showing very slightly improved results for the cell
counts and cell entropy methods relative to cell chi-squared. However, the re-
sults are sufficiently close that it would be best to consider all the cell-based
methods as yielding quite good results relative to the spanning-tree libraries.
Since the spanning-tree libraries take significantly longer to calculate, these re-
sults tend to further validate the use of the cell methods for larger libraries where
the spanning-tree method becomes impractical owing to its prohibitive cost in
computer time.

Experiments were performed to examine the assertion that independent di-
versity selection at each R-group position (the “diversity hypothesis” discussed
in Sect. II.B.1) is not a good protocol for selecting a diverse array-based library.
For the benzodiazepine library, we have performed R-group-based diversity se-
lection using the MaxMin method. Each R group was enumerated at a single po-
sition of the benzodiazepine core, and the MaxMin method was used to select
substituents at that R-group position. The resulting R-group selections were then
combined to give a combinatorial library. The diversity for the resulting libraries
was then compared to the diversity for the corresponding library obtained using
product-based selection with either the spanning-tree method or the cell counts
method. Over a range of libraries with various descriptors and sampling meth-
ods, the diversity for the R-group-based selections ranged from 46% to 85% of
the optimal diversity obtained for the product-based libraries (14). These results
tend to reconfirm that product-based diversity selection can yield significantly
improved results compared to R-group based selection, as has also been noted
by others (9,13).
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IV. SUMMARY AND CONCLUSIONS

In this chapter we have described a process for library design that incorporates
consideration of the efficiency and economics of:

Chemical synthesis, by considering the economics and expediency of ob-
taining reagents and efficiency of the synthesis process

Biological screening, by considering the coverage of chemical space to ob-
tain the maximum amount of information about biological activity with
the minimum number of compounds

Medicinal chemistry, by building in constraints on the compounds such that
they will be appealing hits for medicinal chemistry development and will
have a minimized chance of causing problems (such as ADME) in devel-
opment

We have described a number of options for the method by which each factor
may be measured and have implemented a method by which all may be optimized
simultaneously. We have described a number of diversity and similarity algorithms
for both cherry-picking and array design and discussed the implementation of new
algorithms for the latter that address the shortcomings of earlier approaches. We
have described methods with some approximations that are fast enough to handle
very large library designs typical of lead generation and others that are much more
exact that can be applied to smaller lead optimization problems.

The use of this software allows the chemists and modelers involved in any
drug discovery project to arrive at the library design that will satisfy the concerns
of both, and will allow rapid progress to be made in such a project.
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Relative and Absolute Diversity
Analysis of Combinatorial Libraries

Robert D. Clark
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St. Louis, Missouri

I. SCOPE

It would be presumptuous indeed to pretend that any single chapter in one book
could do full justice to the topic of molecular similarity and its distaff cousin, di-
versity. Several excellent books have already been devoted in whole or in part to
the subject (e.g., Refs. 1–4) and several excellent general reviews are available
(e.g., Refs. 5,6). The discussion here will lay out the broad range of applicable de-
scriptors and the important (dis)similarity measures used with them in some de-
tail, but will not delve deeply into the advantages and disadvantages of each one.
Nor will the closely related question of subset selection be gone into; the inter-
ested reader is referred to Chapter 13 in this volume.

Once the general foundation has been laid, specific examples of relative and
absolute diversity analysis will be presented for a specific set of descriptors and
similarity measures. The concepts involved are quite general and should find ap-
plication well beyond the particular application described here.

II. DESCRIPTORS

A large number of different descriptors and descriptor sets have been used or pro-
posed for evaluating molecular diversity in a context potentially applicable to li-
brary design and comparison. These include:

Substructural keys and hashed fingerprints (7)
Atom pairs (8,9) and topological torsions (10)



Connectivity indices (11–14) and BCUT descriptors (15,16)
Estimated physical properties (17)
Pharmacophore triplets and tetrads (18–22)

Other descriptors that have been used for assessing pairwise similarities in
structure are at present too slow in their calculation to be of general use in most
design methods, especially when one is working with fully enumerated combina-
torial libraries. Examples include molecular holograms, eigenvalues (EVA) and
fields (23,24); affinity profiles derived from DOCK scores (25); and autocorrela-
tion vectors such as WHIM descriptors (26).

Substructural keys are binary vectors for which the ith element is set to 1
if the corresponding substructure is contained within the structure in question; oth-
erwise that element is set to 0. Such vectors can be considered to be bit sets for an-
alytical purposes, which allows for very compact storage and easy computational
manipulation. MDL (27) supports a particular, copyrighted set of such keys di-
rectly, whereas UNITY (28) software allows users to define their own. These de-
scriptors perform well at differentiating among known classes of pharmacological
agents (7).

Fingerprints are also binary vectors but include information on all frag-
ments within a set of specified classes (e.g., all fragments made up of three non-
hydrogen atoms). Each such fragment sets one (more or less arbitrarily assigned)
bit in the fingerprint. This is a many-to-one mapping (“hashing”), so different
fragments can set the same bit.

The loss of information due to hashing can be minimized by hashing only
within classes for fragments made up of two to six atoms. In UNITY fingerprints,
for example, all fragments composed of two heavy atoms map to the first 85 bits
of the 998 in the default fingerprint definition, whereas fragments made up of
three heavy atoms map to bits 86–184. Hydrogens are included only for four-atom
fragments, which map into the block from bit 185 to bit 333. Heavy atom frag-
ments of four to six atoms map to bits 334–928.

The fingerprints also encode specific atom counts for O, N, S, P, and indi-
vidual halogens. Separate generic counts are included for heteroatoms and halo-
gens, and for distinct phenyl, five-membered, and six-membered rings. Bit 959 is
set for structures that contain silicon, and bit 960 is set for those that contain an el-
ement not covered elsewhere in the definition.

UNITY and SYBYL (28) fingerprint definitions can be modified by editing
the corresponding standard.2DRULES file.

Atom pair vectors are binary vectors in which each bit corresponds to a par-
ticular pair of atom types separated by a particular number of bonds. Atom types
for each element may be characterized in terms of the number of bonds they form
with heavy atoms, the number of �-electron pairs they bear, and the number of
bonded hydrogen atoms. Since these three numbers sum to the valence of the

338 Clark



atom, only two need be specified to fully characterize each atom type; the number
of bonded heavy atoms is usually used as one index. The separation is always tal-
lied in terms of topological distance, that is, the number of intervening bonds (or
atoms) in the shortest connecting path.

In the SYBYL implementation, a more complete atom typing system is
used, so that each atom in a molecule is classified as belonging to one of 15 dis-
tinct types:

C as sp3, sp2, aryl (�C.3�, �C.2�, or �C.ar�, respectively) or other
N as sp3, sp2, aryl (�N.3�, �N.2�, or �N.ar�) or other (�N.am� etc.)
O as sp3, sp2 (�O.3� or �O.2�) or other
S (�S�)
P (�P�)
Halogen (�F�, �Cl�, �Br�, or �I�)
Other heavy atoms

Each pairwise combination is allocated 10 bits in the atom pair vector to indicate
separations of from 1 to 10 bonds, giving a vector 1200 bits in length. These are
default values; the maximum degree of separation can be changed by editing
SYBYL’s standard.aprules file, as can the atom types considered.

Topological torsions are similar to atom pairs except that they encode the
presence of pairs of features separated by a particular topological distance; they
differ in that for torsions, the features are bonds rather than atoms. In the sim-
plest implementation, bond types are differentiated by both orbital type (e.g.,
C—C vs CBC vs C�C vs C:C [aryl]) and constituent elements (C�C vs
C�N), with bonds to hydrogen not taken into account explicitly. Atoms at
branch points and in rings set more bits than do atoms in open-chain substruc-
tures, particularly if separations of 0 bonds (i.e., atom triples) are counted. In ad-
dition, heterologous bivalent bond types (e.g., CBN) generally set more bits
than do homologous bond types (e.g., C—C) because they bear distinct attach-
ment points.
Connectivity indices are obtained by treating chemical structures as graphs. The
Wiener index W was devised as a way to quantitatively account for the effect of
branching on the boiling points of alkanes. It is simply the sum across all heavy-
atom pairs of the number of bonds in the minimum length path connecting those
pairs (14). Kier split out the contributions from each contributing path length and
introduced the minimum and maximum possible values as a way to normalize the
series of indices l� obtained:

l� � �
2Pl

mi

P

n

l

Pl
max

� (1)

where Pl is the number of paths of length l connecting distinct atom pairs within
the molecule of interest (11); the minimum and maximum possible values are
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straightforward functions of the number of heavy atoms (vertices) in the structure.
The W and l� indices are purely graph-theoretical shape descriptors, however,
which do not differentiate between carbon and other heavy atoms, or among sin-
gle, double, and triple bonds. Kier therefore proposed a subsidiary set of indices,
l��, which incorporate a correction term � based on deviations in bonded radii
from that of aliphatic carbon (12).

Molecular connectivities � were developed for similar purposes, with the
generalized definition given by:

l� � ∑ �
�

1
��	�i�
� (2)

where the summation is taken over all paths of length l in a molecule, the product
is taken over all atoms i in each path, and 	i is the degree of the vertex corre-
sponding to atom i - i.e., the total number of bonds to heavy atoms in which that
atom participates. The index originally proposed by Randic took no account of
differences in atom type (14). This was subsequently addressed by Kier and Hall
(13), who proposed treating 	 as an adjusted chemical valence 	v rather than as a
graph-theoretical quantity:

	i
v � Zi 
 ni

H (3)

where Zi is the number of valence electrons and ni
H is the number of hydrogens

borne by the atom in question. Replacing the 	i term in Eq. (2) with 	i
v yields va-

lence connectivities l�v, which are also widely used. Commercial packages such
as MolConn-Z (29) support the rapid calculation of these and hundreds of other
connectivity indices for any given molecule.

Such connectivity indices can all be obtained from a few simple matrices
widely used to characterize graphs in general. For a graph G of n vertices con-
nected by m edges, these are as follows:

1. The connectivity matrix C is an n � n matrix in which the ijth element
is 0 if and only if no edge connects vertices i and j. In the simplest (“uncolored”)
case, the 2m elements for which an edge does connect vertices i and j are set to 1.

Powers of the connectivity matrix Cl are n � n matrices obtained by mul-
tiplying C by itself l times. The nonzero off-diagonal elements in Cl indicate the
number of paths of length l that connect vertices i and j, whereas each diagonal el-
ement ii indicates the number of cycles of length l that include vertex i. Note that,
since each edge is itself a cycle of length 2, the diagonal elements in C2 are the de-
grees of the corresponding vertices.

2. The distance matrix D is an n � n matrix in which the value of the ijth
element is the length of the shortest connected path (“topological distance”) be-
tween i and j.

3. The adjacency matrix A is edge-oriented. It is an m � m matrix in
which the ijth element is 0 if and only if edges i and j do not share a common
vertex.
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Connectivity indices are then formally obtained by pre- and postmultiplying these
characteristic matrices by weighting vectors w, where the ith element in w is the
relevant property of vertex (atom) or edge (bond) i. The second-order connectiv-
ity index 2�, for example, can be obtained from the “square” of C by setting the
ith element of w to 1/�	�i�:

2� � wCCwT (4)

Similarly, Randic cites Lovasz and Pelikan’s suggestion of using the leading
eigenvalue derived from the adjacency matrix A as a descriptor (14).

BCUT descriptors correspond to the most positive and most negative eigen-
values derived from modified connectivity matrices. Here, a weighting vector of
atomic charges, polarizabilities, or the ability to accept or donate hydrogen bonds
is incorporated directly into C by setting each diagonal element ii equal to the ith
element in the corresponding w. Off-diagonal elements reflect the nature (single,
double, etc.) of the corresponding bond. Further “flavors” of descriptor are ob-
tained by varying how the off-diagonal elements are scaled with respect to the
property weights.

The DiverseSolutions (30) software package includes tools for choosing
two to three pairs of descriptors to be able to maximize the dispersion within each
descriptor and to minimize the correlation between descriptors across any partic-
ular data set.

The physical properties used in diversity analysis have by and large been
those previously found useful in studies of quantitative structure–activity and
structure–property relationship (QSAR and QSPR), including octanol/water par-
tition coefficient (log P), molar refractivity (MR), molecular volume, dipole mo-
ment, and various partial molecular surface areas. In principle, these can be ob-
tained by physical measurement. In practice, they are nearly always estimated by
using schemes based on fragment additivity or connectivity, and are supplemented
with connectivity indices of one kind or another.

Connectivity indices have been projected into three dimensions by replac-
ing topological distances with geometrical distances, as have atom pairs (31).
BCUTs can be similarly extended by replacing bond orders on the off-diagonals
with pairwise Euclidean (geometrical) distances. Both extensions require the
specification of reference conformations; typically those obtained from CON-
CORD (32) work quite well for this purpose.

Just as substructural fingerprints are binary vectors with roots in two-di-
mensional database searching, pharmacophore triplets and tetrads have their
roots in three-dimensional database searching. When such searches are run, sub-
structures are assigned to feature classes based on their potential modes of inter-
action with protein binding sites via hydrophobicity and hydrogen bonding. Indi-
vidual features are not discriminating enough to be useful; neither are pairs of
features. Picking up triplets and tetrads clearly has more potential in this regard
(see Chapter 14, this volume).
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The triangular and tetrahedral structures formed by pharmacophore triplets
and tetrahedra cannot readily be characterized in terms of topological distances,
however. Instead, the geometric distances between features are used, with the
lengths of each edge binned, typically with a resolution comparable to that used in
three-dimensional searches (i.e., about 0.5 Å).

The triplet-generating software package available from ChemX (33) uti-
lizes four feature types by default (hydrophobic, H-bond donor atom, H-bond
acceptor atom, and positive nitrogen) and divides the edge lengths up into 30
bins (19). The UNITY and Selector (28) software recognizes three atomic fea-
ture types by default (hydrophobic centers, donor atoms and acceptor atoms), as
well as two types of extension point (acceptor sites and donor sites), which in-
dicate the position a complementary donor or acceptor atom on the protein is
likely to occupy. With 27 half-angstrom bins for each edge, this produces de-
scriptors comprised of about 300,000 bits, one for each nondegenerate, geomet-
rically allowed triangle.

Four edges plus a chirality flag are required to define a tetrad. Taken to-
gether with the combinatorial increase in the kinds of tetrahedra that can be de-
fined, this leads to prohibitively cumbersome vectors. As a result, fewer, larger
bins are generally used, along with a somewhat coarser classification scheme for
feature types.

The primary motivation behind using pharmacophore triplets and tetrads is
the desire to efficiently capture the many different ways a ligand can interact with
a target protein, and the method used to sample the available conformational space
is critical to accomplishing this. The triplet generation approach taken by ChemX
is to “exhaustively” sample each molecular torsion at fixed intervals, typically in
30 or 60° increments, though researchers at Rhône-Poulenc and elsewhere have
created more complex schemes (22). The UNITY implementation, in contrast,
performs a random sampling of conformer space using a directed tweak algorithm
(34).

III. DESCRIPTOR TRANSFORMATIONS

The large ensembles of descriptors obtained by combining connectivity indices of
many different types tend to be redundant owing to correlation among the indices:
� and �, for example, are highly correlated both within and between series. Such
redundant data are inefficient to store, to manipulate, and to visualize. To mini-
mize such problems, several groups have applied principal components analy-
sis (PCA) to extract composite descriptors of greatly reduced dimensionality from
such ensembles (35,36). Each of the elements in these short vectors (typically six
dimensions or fewer) is a linear combination of the descriptors in the original en-
semble, selected so as to be mutually orthogonal.
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Others have used nonlinear mapping (NLM) as a less population-depen-
dent way to reduce the effective dimensionality of descriptors (5). In this ap-
proach, a set of artificial descriptors is created for each molecule, and the ensem-
ble is perturbed to minimize the deviation from the distances found in the original,
high-dimensional space.

Binning is often used to convert continuous, real-valued descriptors into in-
teger indices representing discrete intervals along the respective coordinate axis.
There is an implicit (and sometimes overlooked) assumption made in applying
this transform that proximity in terms of each descriptor implies a comparable de-
gree of similarity between the original structures, regardless of differences in the
values of other descriptors. In other words, binning assumes that the descriptors
involved are mutually independent in a statistical sense.

In many cases, intervals of constant size are used. Doing so entails an im-
plicit assumption that differences in value have essentially the same meaning ir-
respective of where the values being compared fall along a particular axis. Vari-
able intervals can be used instead, but their boundaries are generally set by
considerations of ease of analysis rather than by applying knowledge specific to
the underlying descriptor. Choosing interval boundaries such that each bin is
equally populated, for example, is a coarse form of ranking.

IV. RELATIONSHIPS AMONG DESCRIPTORS

It is tempting to simplify the discussion of relationships among the various de-
scriptors cited above by categorizing them as “2D” or “3D” depending on whether
their calculation requires specification of three-dimensional structure. This ap-
proach can be quite misleading, however. Because the analyses they are being
used for are needed to make decisions about which compounds to synthesize, it
must be possible to accurately estimate any descriptor used from structural for-
mulas. Hence, the underlying information content is the same for all of them.
Rather, the descriptors differ in their level of generalization and in their level of
structural specificity. This is best illustrated by considering some examples, such
as the three compounds shown in Fig. 1: 2-ethoxyethylmethylamine (1), N-methyl
morpholine (2), and p-toluamide (3).

Substructural fingerprints are completely specific. Molecule 1 contains 3
distinct two-atom fragments (CC, CN, and CO), 4 three-atom fragments (CNC,
COC, NCC, and CCO), 19 four-atom fragments (including hydrogen atoms), 3
five-atom fragments, and 2 six-atom fragments. Hence the total number of bits set
to 1 in the corresponding UNITY fingerprint (its cardinality) is 35. There are more
distinct fragments in 2 because the cyclization introduces branch points, so its fin-
gerprint has a higher cardinality. The mix of bond types in 3 introduces yet more
complexity, which is reflected in the fingerprint (Fig. 1) (29,37).
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Atom pair descriptors are less literal than substructural fingerprints. Frag-
ments containing C.ar, for example, share many physical properties but would be
distinct in fingerprints. Moreover, the presence or absence of any particular atom
pair is relatively independent of the atoms in the intervening structure.

There are 45 ways to pair up the 10 heavy atoms in 3, but the corresponding
atom pair vector has a cardinality of only 25 because of symmetry. The five dis-
tinct types (sp3, sp2, and aromatic carbons, one amide nitrogen, and one sp2 oxy-
gen) can pair up in 10 different ways. Some of these pairs are uniquely represented
and so set only one bit, but other pairs show up more than once and so set more
than one bit. The lone N.am–O.2 atom pair in 3, for instance, is separated by two
bonds and so sets the second bit in that block of the vector. Three bits are set for
the C.ar–C.ar atom pair (one, two, and three bond separation), and four bits are set
for each pairing of C.ar with another atom type.

Note that the carbon in the amide carbonyl is C.2 and so is distinct from the
aromatic ring carbons. This increases the resolution of the atom pair vectors pro-
duced. If the structure is entered in its Dewar form with localized single and dou-
ble bonds, each ring carbon becomes C.2 rather than C.ar, and fewer bits get set
in the atom pair vector (22 instead of 25).
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The presence or absence of rings is not encoded explicitly in atom pair vec-
tors. Ring closure, however, often alters some atom types (e.g., from sp2 to aro-
matic) and always shortens the topological distance between some atom pairs. As
a result, the number of rings is encoded in part implicitly, by bits that are not set.
The atom pair vector for 2, for example, has a cardinality of 9, whereas its alicyclic
analog 1 sets 14 bits—the same 9 bits set for 2 plus 5 bits for four-, five-, and six-
bond separated pairs “short-circuited” by ring closure.

Structure 2 also has more distinct topological torsions (viz., 18) than does 1
(which has 12), but far fewer than does 3 (with 29). Aromatization has relatively
little effect on the cardinality of topological torsions.

Figure 1 also presents values of c log P, CMR, molecular volume, and some
connectivity indices for the three model compounds under consideration; all were
calculated using ChemEnlighten (28). Note that discrimination between the com-
pounds increases as the path length considered increases.

Pharmacophore triplets are the most generalized structural descriptors listed
in Fig. 1. The entries shown reflect surveys across 10 or 100 conformers in
SYBYL. Though the number of triplets identified does not increase linearly with
the number of conformations sampled, it does increase steadily for flexible
molecules like 1. This is especially striking when one realizes that 1 contains no
hydrophobic centers to enrich the triplets. The values obtained illustrate the point
that the number of triplets found is dependent not only on the number of confor-
mations examined but also on the rigidity of the molecule in hand.

V. SIMILARITY AND DISTANCE MEASURES

Among the many possible ways to define pairwise similarity and dissimilarity
(38), the most familiar is the Euclidean distance d, which is also the most de-
manding in what is required of the underlying descriptors. Euclidean distance is
usually defined in terms of its square, both because it is slightly simpler to express
in that way and because working with the square wherever possible avoids the
computational cost involved in calculating square roots.

d2(x, y) � ∑ (xi 
 yi)2 (5)

If the Euclidean distance is to be meaningful, all contributing descriptors should
be set to a common scale—that is, made commensurate. This is often done by au-
toscaling each descriptor: subtracting off the sample mean and dividing the resid-
ual obtained by the sample standard deviation. Many descriptors do have a
roughly normal (i.e., Gaussian) distribution that justifies this treatment, but some
important ones do not.

Ranking is a more robust alternative to autoscaling, especially when the
ranks produced are expressed as percentiles to normalize them to the size of the
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data set of interest. The rank-transformed descriptor is then relatively independent
of sample size, and the relationship between naive and rank-transformed descrip-
tors will vary little from sample to sample. Rank transforms are particularly well-
behaved for the large data sets of interest in library design—provided, of course,
that the large data sets being considered represent statistically valid samplings of
the structural “universe” about which conclusions are to be drawn at the end of the
day.

Principal components analysis assumes that an underlying Euclidean dis-
tance measure is appropriate.

In the case of binary vectors, d2 reduces to the Hamming distance, H:

H(x, y) � ∑ | xi 
 yi | � | x � y | 
 | x � y | (6)

where the vertical bars within the summation denote absolute value of the differ-
ences between elements and those to the left denote the cardinality of bit sets. H
is sometimes referred to as the Manhattan or city-block distance.

Note that neither d nor H distinguishes between 0 and any other value of a
descriptor element. This implies that here we have interval- or ratio-scale de-
scriptors, which is the case for physical properties and BCUTs but is not neces-
sarily so for most of the other descriptors described above.

Other measures are more appropriate when the constituent descriptor ele-
ments are categorical in scale but are not tightly coupled, as is the case with fin-
gerprints and other bit set descriptors. In such cases, sharing the ith attribute (xi

� yi � 1) is strongly indicative of similarity, whereas a difference in the ith at-
tribute (xi � 1, yi � 0, or vice versa) is strongly indicative of dissimilarity. The
shared absence of a trait (xi � yi � 0), on the other hand, is very weakly dis-
criminating.

The cosine coefficient Cos is a similarity measure better suited for applica-
tions involving such binary vectors (39,40); it, too, has a simplified form (the
right-hand side of Eq. 7) specifically applicable to bit sets:

Cos(x, y) � � �
�
| x

|
�

x� ||�
y

y�
|
|�

� (7)

The definition implies that the value of Cos runs from 
1 to 1 for real-valued
descriptors and falls between 0 and 1 for descriptors (including bit sets) that are
strictly nonnegative. Negative correspondences (xi � yi � 0) contribute to nei-
ther the numerator nor the denominator of Cos. Note, too, that it scales the pair-
wise similarity by the number of substructures each contains, which parallels the
size and complexity of the structures in question. Cos (x, y) is, in fact, equal to
the cosine of the angle formed between the rays running from the origin out to
x and to y.

∑xiyi
��
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The Dice coefficient is a related measure employed by Carhart et al. (8) in
which the similarity is normalized with respect to the algebraic rather than to the
geometric mean of the size of the individual vectors:

sim(x, y) � � �|
2
x
|
|
x
�

�

|
y
y

|
|� (8)

The similarity measure most widely used for comparing bit sets (especially fin-
gerprints) is the Tanimoto coefficient T, whose general form is given by:

T(x, y) � (9)

The Tanimoto coefficient is particularly appropriate for assessing sparse binary
vectors such as substructural fingerprints (41). Treating such vectors as bit sets
yields a simplified form of the Tanimoto, which always falls between 0 and 1:

T(x, y) � �
|
|
x
x

�

�

y
y

|
|� � (10)

where the vertical bars again indicate cardinality. This calculation can be done
very quickly, which has helped make it popular for carrying out diversity analy-
ses on very large data sets.

The weakest and least demanding similarity measure derives from the sim-
plest possible assumption about similarity, namely, that two molecular structures
are similar if they generate identical descriptor values. This defines a dichoto-
mous similarity measure d0:

d0(x, y) � �1 : xi � yi for all i

0 : xi  yi for some i
(11)

In other words, two structures are the same if all their descriptors are the same;
otherwise they are different. This measure is appropriate when the descriptors in-
volved are categorical and extremely context dependent. It has seen a great deal
of direct use with pharmacophore multiplets, but it also underlies many cell-based
analysis methods. In the latter case, there is an implicit intermediate transform of
the descriptors into vectors of bin indices along each descriptor axis.

VI. NEIGHBORHOOD BEHAVIOR

In the end, biochemistry defines the only measure of similarity and dissimilarity
relevant to library design for drug discovery and development. Medicinal chemi-
cal experience clearly shows that molecular structure is closely related to biolog-

| x � y |
���| x | � | y | 
 | x � y |

∑xiyi
���

2 ∑xiyi
��
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ical activity, but not all descriptors derived from structure work equally well in
bridging that gap. This is less often due to any flaw in the descriptors than it is a
seductive tendency to misinterpret the similarity principle, which states that sim-
ilarity in structure implies similarity in biological activity (1). It does not follow
that similarity in biological activity implies similarity in molecular structure, how-
ever much we may want that to be the case.

Of the descriptors considered here, only fingerprints and, to a lesser extent,
atom pairs have been shown to display consistent neighborhood behavior (42).
The converse, on the other hand, is not necessarily true: molecules that exhibit
similar biological activity may have similar fingerprints, but they may not. Rather,
there are likely to be many disjoint islands of activity distributed across fingerprint
space for any particular biological target.

When a strong neighborhood property holds, only one compound need be
tested from each region in the descriptor space to determine with confidence
whether it is an “inactive” neighborhood. For fingerprints, this neighborhood ra-
dius (one minus the Tanimoto similarity) is about 0.15. If a compound is inactive,
compounds whose fingerprints have a Tanimoto similarity of 0.85 or greater are
usually inactive as well, in that they are very likely to all exhibit potencies within
about two orders of magnitude of the first (26,42).

Much more generalized descriptors serve to draw such islands of activity to-
gether and thereby expedite “island hopping” (43) between literal structural
classes. As this is done, however, inactive compounds generally get drawn in as
well, so more compounds need to be drawn from a given neighborhood to be con-
fident that the area is inactive.

If, for example, half of the compounds near a potent active are likely to be
effectively inactive in a given descriptor space, each area in that space must be
sampled three times to be reasonably confident (� 85% confidence) that the area
in question does not include actives.

Pharmacophore descriptors are the most generalized of those discussed
here. When used as a basis for 3D searches, they do well if more than 10%
of the structures they return are active. At this “density” in activity space, each
area would have to fail to produce an active compound 18 times before a
researcher could conclude with 85% confidence that the area is indeed devoid of
activity. Worse, those 18 samples have to be drawn as independent random sam-
ples to give this level of certainty, a goal not easily achieved in combinatorial
libraries.

The specificity of fingerprints makes for a relatively large number of sepa-
rate potential activity islands needing to be considered. In our experience, how-
ever, no descriptor put forward to date for use in comparing libraries provides a
high enough level of “island” consolidation vis à vis fingerprints to justify the re-
duction in efficiency produced by the uncertainty described above. The methods
to be described shortly focus on using fingerprints to keep interpretation as
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straightforward as possible. The methods presented can be equally well applied to
other descriptors, though the interpretation may not be as straightforward.

Recent work suggests that a modified Tanimoto similarity function may
give improved performance in compound selection (44). In particular, these au-
thors recommend allowing bits not set in either binary vector to make a substan-
tive contribution to similarity.

VII. RELATIVE DIVERSITY: COMPARING LIBRARIES TO
ONE ANOTHER

Measures of library similarity and diversity can be expressed in purely mathe-
matical and schematic terms. It is often useful, however, to connect the summary
statistics produced to particular examples as well. Here, we consider relationships
between three combinatorial libraries built in Legion (28) using similar sub-
stituents on a cyclohexane, pyrimidine, or pyridine core. The Chex and Pym cores
are each asymmetrically substituted at three positions to yield libraries comprised
of 2244 (11 � 12 � 17) compounds each. The Pyr library is similar in the kinds
of substituent employed but is larger—four substitution sites yield 6000 (6 � 10
� 10 � 10) compounds. The particular substituents, which include halogens,
pseudohalogens, alkyls, aryls, arylalkyls, ethers, thio ethers, and acyl groups, are
laid out in Fig. 2.

A. Union Bit Sets

One simple way to compare two libraries A and B is to treat each as the sum of its
parts. This has proven particularly appealing when one is using pharmacophore
multiplet descriptors as the basis for comparison. The binary vector for a library
is then simply taken as the union of the bit sets for the compounds that comprise
the library, and the library that includes more pharmacophore triplets or tetrads—
that is, the library with the bigger bit set cardinality—is the better library. When
comparing candidate libraries to those already in hand, the “better” candidate is
taken as that which includes more pharmacophore multiplets that are “new” with
respect to the reference library of compounds already in hand.

One drawback of this approach is that pharmacophore multiplets may well
be present in compounds that do not set the corresponding “bit.” With discrete tor-
sional sampling, this will occur when the requisite combination of torsions does
not fall close enough to the specified increments. For the fully flexible stochastic
search implemented in Selector (28), it occurs because complete sampling of con-
formational space would take a prohibitively long time.

Even were conformational sampling truly complete, a problem would arise
because even four features is a pretty minimal size for a biochemically specific
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pharmacophore. Moreover, the meaning of a given triplet is quite dependent upon
the molecular context in which it appears. The latter point, which is particularly
pertinent with regard to steric factors, can cause the same pharmacophoric bit to
be set by compounds with radically different biochemical properties.

Similar caveats apply when the descriptors in question are substructural
keys, whether they are specific or generalized—for example, in terms of the pres-
ence or absence of certain ring systems (45).

B. Pairwise Identity

Another approach is to apply the dichotomous similarity measure d0 to all possi-
ble pairs of compounds such that one member of the pair is drawn from A and the
other is drawn from B. Any member of A that is not identical to some member of
B scores 1 dissimilarity “point” for A, and any member of B that is not identical
to some member of A scores 1 “point” for B. Such comparisons are indistin-
guishable from bit set comparisons, and summary statistics can then be obtained
just as for single compounds. The Hamming distance between sets, for example,
is then given by:

H(A, B) � | A � B | 
 | A � B | (12)
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whereas the corresponding Tanimoto and cosine similarity coefficients are given
by:

T(A,B) � �
|
|
A
A

�

�

B
B

|
|� � (13)

and

Cos(A,B) � �
�
| A

| A�
�

||�
B

B�
|
|�

� (14)

This rationale is often not applied explicitly, but nonetheless it lies at the heart of
many cell-based analyses. The key to seeing this is to recognize the intermediate
binning transform (see above) applied implicitly when the cells are being defined.
Edge effects can introduce serious distortions into the statistics produced, partic-
ularly when the bin boundaries used are a function of the population being ana-
lyzed. Of more concern is the implicit assumption that occupancy of cells that are
close together but not identical is no more indicative of similarity than is occu-
pancy of cells that are far apart. Hence this approach discards a substantial amount
of potentially useful information.

No compound in any of the three example libraries is identical to any in one
of the others. The UNITY fingerprints reflect this fact, so the three are completely
dissimilar by this criterion.

C. Average Pairwise Similarity

More information can be obtained from library comparisons involving all pair-
wise similarities across a pair of data sets. One such approach exploits the fact that
the average of the cosine coefficient is equal to the cosine coefficient of the aver-
ages. If the centroid of each library is defined as the vector of descriptor values
wherein each element bears the (weighted) average value for that element across
all compounds in that library, then the cosine coefficient between the centroids
from two libraries A and B will be equal to the average cosine coefficient obtained
across all pairs of compounds such that one is drawn from A and the other is drawn
from B (39,40).

Centroid similarities can be calculated rapidly, but the centroids
themselves are, to some degree, artificial constructs. This is so for bit set de-
scriptors, since the “centroid” is almost always a vector of fractional values and
cannot itself be thought of as a bit set. Nonetheless, this similarity measure pro-
vides useful information regarding the relative separation between two libraries
(39). The average cosine coefficient calculated between the centroid of each li-
brary and its constituent compounds provides a summary measure of the size of
each library.

| A � B |
���| A | � | B | 
 | A � B |
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D. Nearest-Neighbor Profiles

Pairwise identity is a measure of the “exact redundancy” between libraries,
whereas average pairwise similarity considers aggregate properties only and takes
no account of redundancy. An intermediate, more detailed approach is to consider
the relative extent of near redundancy between two libraries as a measure of their
similarity. The simplifying assumption made here is that the similarity of any
compound to a reference library is dominated by its similarity to the most similar
compound contained in that library, that is, by its nearest-neighbor (NN) simi-
larity.

Figure 3 shows the nearest-neighbor profiles obtained by using the dbcmpr
function in Selector (28) for the Chex, Phym, and Pyr libraries with respect to one
another. Note that NN similarity is not symmetric, in that the profile of A with re-
spect to B (written as B ← A) is in general not the same as the profile of B with
respect to A (i.e., A ← B).

The asymmetry and complexities possible under nearest-neighbor similar-
ity measures are well illustrated by the interrelationships found among the
Chex, Pyr, and Pym libraries. When Chex is taken as the reference library, the
average nearest-neighbor Tanimoto similarity for Pyr is 0.311 (Fig. 3A), which
is somewhat greater than the corresponding average for Pym (0.271: Fig. 3B).
The complementary value obtained for Chex when the Pyr library is taken as
reference is 0.268 (Fig. 3C), which is significantly smaller than 0.311. The av-
erage NN similarity for Chex with respect to Pym, on the other hand, is 0.278
(Fig. 3E), which is slightly higher than the complementary value of 0.271
(Fig. 3B).

As one would expect based on their respective cores, the Pyr and Pym li-
braries are much more similar to each other than either is to Chex. Again, the av-
erage NN similarity is smaller when the Pyr library is taken as reference (0.550;
Fig. 3D) than when Pym takes that role (0.587; Fig. 3F).

Such differences indicate that one library may be “larger” than the
other in some sense. One way for this to occur is for one library to be contained
within another, as is illustrated schematically in Fig. 4. In such a situation, ev-
ery compound in the smaller set (hatched circles) will be similar to some com-
pound in the larger one (open circles), but there will be compounds in the larger
set that are relatively dissimilar to anything in the smaller. The net result is that
the NN similarity will be less when it is calculated using the “smaller” (less ex-
tensive) library as reference. Though it is less obvious, something similar occurs
whenever one library covers a significantly greater region of the descriptor
space.

Note that this effect can be severely exacerbated by outliers in the larger li-
brary. The distortion produced is minimal if the cosine or Tanimoto coefficient is
used as the measure of pairwise similarity and sparse bit sets such as fingerprints
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Figure 3 Tanimoto nearest-neighbor profiles for combinatorial libraries using UNITY
fingerprints and Tanimoto similarity obtained using dbcmpr from Selector. (A, B) Chex
taken as the reference database. (C, D) Pyr taken as the reference database. (E, F) Pym
taken as the reference database.



are used as descriptors. These measures expand distances that are small under Eu-
clidean or Hamming metrics, compressing smaller similarities (larger distances)
down into the lower end of the 0–1 range of similarities possible (Eqs. 7 and 10).
Outlier effects can be a severe problem with open-ended measures such as the Eu-
clidean metric.

Do the profiles shown in Fig. 3 prove, then, that the Chex and Pym libraries
are “bigger” than Pyr? Not quite, unfortunately. A similar effect occurs when li-
braries are comparable in extent but differ in intensity—typically simply because
one includes more compounds. This is most readily appreciated by considering
the case of one library that is a random subset of another, as illustrated in Fig. 5
for a 500-compound subset (Pyr500) drawn at random from the 6000-member Pyr
library and compared back to its complement, Pyr5500. Note that the effect is con-
sistent with that discussed above: taking the “smaller” library (here, in terms of
compound count rather than scope of chemistry) as reference yields a lower aver-
age NN similarity than the reverse (i.e., mapping the smaller library into the larger
one).

Fortunately, ambiguity due to differences in membership size can be cir-
cumvented by running the NN similarity profile against a random subset of the
larger library which is comparable in count to the smaller. When Chex and Pym
are compared to a 2200-compound subset of Pyr (Pyr2k) the respective average
NN similarities are nearly identical to those obtained with the full pyridine
library.
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Figure 4 Effect of spread on NN similarity. Two-headed arrows indicate mutual near-
est-neighbor distances (dissimilarities) that contribute equally to both sets. Light single-
headed arrows indicate distances that contribute only when the open circles are used as the
reference data set, whereas bold single-headed arrows indicate distances that are relevant
only when the hatched circles are used as reference.



VIII. ABSOLUTE DIVERSITY OF SINGLE LIBRARIES

The binary vector for a library can be taken as the union of the bit sets for the com-
pounds that comprise the library. Then the library that includes more pharma-
cophore triplets or tetrads—that is, the library with the bigger bit set cardinality—
is the bigger (and presumably better) library. This approach does not return much
detailed information about the libraries under consideration, however.

Comparing a library to itself is an obvious extension of the approach de-
scribed above to calculating the diversity of an individual library. In fact, this
proves rather disappointing, as is illustrated for the Chex, Pyr, and Pym libraries
in Fig. 6. Particularly distressing is the fact that the self-similarity of the subset is
lower (and the diversity therefore higher) than is that of the full set (Fig. 6C and
6D); in fact, the smaller the subset is, the more diverse it will appear to be. This
makes more sense, however, when the self-similarity is seen as an intensive mea-
sure diversity—that is, as a measure of density.

The total NN self-dissimilarity [obtained by subtracting the similarity from
1; for the Tanimoto coefficient operating on bit sets, this is known as the Soergel
distance (38,46)] is a better-behaved measure of extensive diversity in that the ex-
pected diversity of a randomly drawn subset is less than or equal to the diversity
of the full set from which it is drawn (47,48). Unfortunately, inequality does not
hold for all subsets, as one would wish it to.

The average distance from the “center” of a library is an obvious measure
of dispersion, hence can be a useful measure of extensive diversity. For the co-
sine coefficient, an appropriate centroid can be calculated directly (40); with the
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Figure 5 Similarity of a subset to its complement. Pry500 is a subset drawn at random
from among the 6000 compounds in Pyr, and Pyr5500 is the complementary subset.



Tanimoto coefficient, the “most central” compound is used, that is, the compound
for which the average similarity to others in the data set is greatest.

The total edge length of the minimal spanning tree (MST) is an
elegant alternative that has also been suggested as a measure of absolute library
diversity (49), where the MST is defined as the minimum possible sum of edge
lengths across an entire complete acyclic subgraph. The difference between this
approach and the total NN dissimilarity is illustrated schematically in Fig. 7,
where lightweight edges contribute equally to both measures. The dark
bold lines connect pairs of points that are each other’s nearest neighbors—that
is, reciprocal nearest neighbors (RNNs). Such edges count twice toward
the total NN dissimilarity, but only once toward the MST. The lighter bold
lines correspond to extensions needed to pull isolated “islands” together into a
single graph; these edges contribute to the MLT but are not nearest-neighbor
distances.
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Figure 6 Self-similarity profiles for the example libraries: (A) Chex, (B) Pym, (C) Pyr,
and (D) a 2200 compound subset (Pyr2K) drawn at random from Pyr.



For the set shown in Fig. 7, the aggregate length of the “extra” connections
is mostly offset by the elimination of double counting for RNN edges, so MST
yields a diversity statistic only 7% greater than the total NN distance method. The
discrepancy becomes large when the distance between clusters is much greater
than the average NN distance within clusters.

Neither dispersion nor MST is well suited for use with fingerprints, how-
ever, because the two share an implicit assumption: that the compounds making
up a data set convey substantial information about the properties of compounds
falling in the descriptor space between compounds in the set. But “between” has
little meaning in fingerprint space, and the relevance of exact values for relatively
large dissimilarities is questionable (50,51).

A better strategy is to select a maximally diverse (minimally redundant)
subset (52) of standard size from the library of interest, then determine its NN self-
similarity (47). This is analogous to measuring areas of rooms (or any other en-
closed space) by spreading a fixed number of dimes across the floor, keeping them
as far apart as possible, then determining the average distance between the dimes.
The bigger the floorspace available, the farther apart the dimes will be.

To illustrate this approach, maximally diverse subsets Chex*, Pym*, and
Pyr* comprising 100 compounds each were drawn from Chex, Pym, and Pyr, re-
spectively, using the dbdiss tool in Selector. Each was converted into a UNITY
database, then analyzed by using dbcmpr. The profiles obtained are shown in Fig.
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Figure 7 Schematic illustration of a minimal spanning tree (MST) for an arbitrary set.
The distances marked by dark bold lines count twice when the average NN dissimilarity is
calculated but only once when the size of the MST is calculated. The lighter bold lines in-
dicate distances that count toward the MST but do not contribute to the average NN dis-
similarity. The narrow lines are distances that contribute equally to both statistics.



8. The average NN self-similarity values obtained indicate that the three libraries
do indeed differ appreciably in diversity, with the pyrimidines being somewhat
more diverse (less self-similar) than the pyridines, and the cyclohexanes being
considerably less diverse. The sharp profiles obtained here make the ordering ob-
tained quite convincing, in contrast to the roundabout arguments involved in in-
terpreting the complex profiles in Figs. 3 and 6.

Figure 8 also includes the series of plots for A* ← A. These can serve to
show up cases of “hollow” data sets. A smooth hump centered about halfway be-
tween the self-similarity peak for the maximally diverse subset and 1 indicates a
relatively even distribution across the structural space circumscribed by the max-
imally diverse subset. All three libraries examined fulfill this criterion nicely,
from which one can conclude that they lack large “holes.” Getting the NN simi-
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Figure 8 Self-similarity profiles (dark symbols) for 100-compound, maximally diverse
subsets from each example library, along with comparisons against the parent set (lighter
symbols); an asterisk indicates a diverse subset. (A) Chex* taken as reference. (B) Pym*
taken as reference. (C) Pyr* taken as reference. (D) Pyr2K taken as reference.



larity profile of A with respect to A* is analogous to spreading pennies at random
around the room described above, then calculating the average distance from each
penny to the nearest dime so as to determine how open the room is.

Finally, note that the profiles obtained for Pyr and for Pyr2K are very simi-
lar indeed, with the random subset looking slightly less diverse, just as one would
expect. Such independence from the number of elements making up the set is key
to having a robust measure of absolute diversity.

IX. SUMMARY

Many classes of descriptor are available to the computational chemist for reduc-
ing chemical structures to readily manipulatable numerical representations.
Among these, substructural fingerprints exhibit good neighborhood behavior
when used in conjunction with Tanimoto similarity. Nearest-neighbor similarity
profiles give a good qualitative picture of the similarity between two libraries,
with the average NN similarity providing a reasonable quantitative measure of rel-
ative diversity. Self-similarity profiles provide an indication of intensive diversity
(nonredundancy), but are too locally focused to be useful for determining exten-
sive diversity. Profiles for maximally diverse subsets, on the other hand, are well
defined and can provide useful insight into absolute diversity and how evenly dis-
tributed a library is.
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I. INTRODUCTION

Rapid development of combinatorial chemistry and high throughput screening
techniques in recent years has provided a powerful alternative to traditional ap-
proaches to lead generation and optimization. In traditional medicinal chemistry,
these processes frequently involve the purification and identification of bioac-
tive ingredients of natural, marine, or fermentation products or random screen-
ing of synthetic compounds. This is often followed by a series of painstaking
chemical modification or total synthesis of promising lead compounds, which
are tested in adequate bioassays. On the contrary, combinatorial chemistry in-
volves systematic assembly of a set of “building blocks” to generate a large li-
brary of chemically different molecules that are screened simultaneously in var-
ious bioassays (1,2). In the case of targeted library design, the lead identification
and optimization task then becomes that of generating libraries with structurally
diverse compounds that are similar to a lead compound; the underlying assump-
tion is that structurally similar compounds should exhibit similar biological
activities. Conversely, structurally dissimilar compounds should exhibit very di-
verse biological activity profiles; thus the goal of the diverse library design is



to generate libraries with maximum chemical diversity of the composing com-
pounds (3).

In many practical cases, the exhaustive synthesis and evaluation of com-
binatorial libraries is prohibitively expensive, time-consuming, or redundant (4).
Theoretical analysis of available experimental information about the biological
target or pharmacological compounds capable of interacting with the target can
significantly enhance the rational design of targeted chemical libraries. In many
cases, the number of compounds with known biological activity is large enough
to develop viable quantitative structure–analysis relationship (QSAR) models
for such data set. These models can be used as a means of selecting virtual li-
brary compounds (or actual compounds from existing databases) with (high)
predicted biological activity. Alternatively, if a variable selection method
has been employed in developing a QSAR model, the use of only selected vari-
ables can improve the performance of the rational library design or database
mining methods based on the similarity to a probe. This procedure of using only
selected variables in similarity searches in the descriptor space is analogous
to the more traditional use of conventional chemical pharmacophores in
database mining.

The main objective of this chapter is to illustrate the principles of using
QSAR models for rational design of targeted chemical libraries and database min-
ing. We refer to these applications of QSAR models to predict biologically active
structures in virtual or actual chemical libraries as the inverse QSAR method. We
describe the development of algorithms for QSAR based on the principle of
stochastic optimization of variable selection to achieve highest value of cross-val-
idated R2 (q2). Using selected examples and methodologies developed in our lab-
oratory (5–7), we show that the use of preconstructed QSAR models improves the
efficiency of rational targeted library design and database mining.

II. GENERAL COMPUTATIONAL DETAILS AND
MOLECULAR DESCRIPTORS

Library design was based on the analysis of whole molecular structures as op-
posed to fragments; thus we used molecular connectivity indices (MCI) and atom
pair (AP) descriptors. MolConnX program (8) was used to generate topological
indices for all data sets and virtual library compounds. The AP descriptors were
generated as follows, using an approach initiated by Carhart et al. (9).

The key components of defining a set of atom pair descriptors include the
definition of atom types and the classification of distance bins. An atom pair is a
simple type of substructure defined in terms of the atom types and the shortest path
separation (or graph distance) between two atoms. The graph distance is defined
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as the smallest number of atoms along the path connecting two atoms in a molec-
ular structure. The general form of an atom pair is as follows:

atom type i—(distance)—atom type j

where (distance) is the graph distance between atom i and atom j in the case of
two-dimensional atom pairs description. (The distance can also be defined as the
physical distance between atoms i and j in the case of three-dimensional atom pair
description.)

SYBYL atom types (mol2 format) (10) were utilized as the starting point.
In principle, all SYBYL atom types can be used in the generation of atom pair de-
scriptors. To reduce the number of atom pair descriptors, however, we used only
10 atom types: (1) C.ar, aromatic carbons; (2) C.na, nonaromatic carbons; (3)
N.ar, aromatic nitrogen atoms; (4) N.na, nonaromatic nitrogen atoms; (5) O.3,
oxygen atoms in sp3 hybridization state; (6) O.2, oxygen atoms in sp2 hybridiza-
tion state; (7) S, all sulfur atoms; (8) P.3, phosphorus atoms; (9) X, halogen atoms;
(10) other atoms. The total number of pairwise combinations of all 10 atom types
is 55. Furthermore, 15 distance bins were defined in the interval between graph
distance zero (i.e., zero atoms separating an atom pair) to 14. Thus, a total of 825
(55 � 15) atom pair descriptors are generated for each molecular structure.

III. RATIONAL LIBRARY DESIGN USING ACTIVITY
PREDICTION FROM QSAR MODELS

To illustrate this approach, we consider the design of a pentapeptide combinato-
rial library with the bradykinin activity using a QSAR model derived for a small
bradykinin peptide data set. Figure 1 shows the schematic diagram illustrating the
targeted pentapeptide combinatorial library design using the FOCUS-2D method
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Figure 1 Schematic diagram of the library design by FOCUS-2D.



developed in our laboratory (5,6). The algorithm includes the description, evalu-
ation, and optimization steps.

To identify potentially active compounds in the virtual library, FOCUS-2D
employs stochastic optimization methods such as simulated annealing (SA)
(11,12) and genetic algorithms (GA) (13–15). The latter algorithm was used for
targeted pentapeptide library design as follows. Initially, a population of 100 pep-
tides is randomly generated and encoded using topological indices or amino acid
dependent physicochemical descriptors. The fitness of each peptide is evaluated
by its biological activity predicted from a preconstructed QSAR equation (see be-
low). Two parent peptides are chosen by using the roulette wheel selection method
(i.e., high-fitting parents are more likely to be selected). Two offspring peptides
are generated by a crossover (i.e., two randomly chosen peptides exchange their
fragments) and mutations (i.e., a randomly chosen amino acid in an offspring is
changed to any of 19 remaining amino acids). The fitness of the offspring peptides
is then evaluated and compared against parent peptides fitness, and two lowest
scoring peptides are eliminated. This process is repeated for 2000 times to evolve
the population.

A. GA-PLS QSAR Method

The algorithm of the GA-PLS method (16) is implemented in six steps as follows.
1. The MolConnX program (8) was applied to generate descriptor vari-

ables (460 topological indices) automatically for each data set represented in the
SMILES notation. All descriptors that were dependent on atom identification
(atom id: 150 descriptors) and descriptors with zero variance were removed.

2. An initial population of 100 different random combinations of subsets
of these descriptors (parents) was generated as follows. Each parent was described
by a string of random binary numbers (i.e., one or zero), with the length (total
number of digits) equal to the total number of descriptors selected for each data
set. The value of one in the string implied that the corresponding descriptor was
included for the parent, and the value of zero meant that the descriptor was ex-
cluded.

3. For every combination of descriptors (i.e., every parent), a QSAR equa-
tion was generated for the training data set using the partial least-square (PLS) al-
gorithm (17). Thus, for each parent a q2 value was obtained, which was further
used to calculate the following fitness function: 1 � (n � 1)(1 � q2)/(n � c),
where q2 is the cross-validated R2, n is the number of compounds, and c is the op-
timal number of components from PLS analysis. This fitness function was used to
guide GA. See our earlier paper (16) for more discussion on the selection of the
fitting function.

4. Two parents were selected randomly and subjected to a crossover (i.e.,
the exchange of the equal-length substrings), which produced two offspring. Each
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offspring was subjected to a random single-point mutation; that is, randomly se-
lected one (or zero) was changed to zero (or one) and the fitness of each offspring
was evaluated as described above (cf. step 3).

5. If the resulting offspring were characterized by a higher value of the fit-
ness function, then they replaced parents; otherwise, the parents were kept.

6. Steps 3–5 were repeated until a predefined convergence criterion was
achieved. As the convergence criterion, we used the difference between the max-
imum and minimum values of the fitness function. Calculations were terminated
when this difference was less than 0.02.

In summary, each parent in this method represents a QSAR equation with
randomly chosen variables, and the purpose of the calculation is to evolve from
the initial population of the QSAR equations to the population with the highest
average value of the fitness function. In the course of the GA-PLS process, the
initial number of members of the population (100) is maintained, while the av-
erage value of the fitness function for the whole population converges to a high
number.

B. Development of a QSAR Model

Pentapeptide analogs of BK have been described either by topological indices or
by a combination of physicochemical descriptors, generated for each amino acid.
The topological indices of virtual pentapeptides were calculated using the Mol-
Conn X program (8). The MOLCONN format (8), which is the standard input file
format for MolConn X, was used to input the structure of each peptide: atom id,
the number of hydrogens connected, atom type, and atom ids of all other het-
eroatoms were listed in a connection table, separated by a comma for each het-
eroatom of the peptide. Amino acids were predescribed in this way, and the con-
nection tables of selected amino acids were combined as necessary to construct
the input file for MolConn X (8).

We have also employed several amino acid based descriptors, including Z1,
Z2, and Z3 descriptors (related to hydrophilicity, bulk, and electronic properties of
individual amino acids, respectively) reported by Hellberg et al. (18), as well as
isotropic surface area (ISA) and electronic charge index (ECI) descriptors re-
ported by Collantes and Dunn (19). In this case, virtual pentapeptides were en-
coded in the form of a string of descriptor values. Each string consisted of 15 de-
scriptor values (five blocks of three descriptors per amino acid) when Z
descriptors were used, or 10 descriptor values (five blocks of two) for ISA-ECI
descriptors.

Ufkes et al (20) used 28 BK potentiating pentapeptides as a training set to
develop a QSAR equation that was employed to predict the bioactivity of virtual
library peptides. The log relative activity index (RAI) values of bradykinin poten-
tiating pentapeptides were used as dependent variables. The original publication
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(20) gives a detailed description of the assay as well as the calculation of relative
activity index values.

The two most active compounds, VEWAK and VKWAP, were excluded
from the training set. The calculated log RAI values compared favorably with the
experimental data (data not shown). Although the activities of the two excluded
peptides were underestimated (the experimental values of log RAI were 2.73 and
2.35 for VEWAK and VKWAP, respectively), the QSAR equations correctly pre-
dicted them to have activities higher than those of compounds in the training set.
Thus, the log RAI values of 1.79, 1.48, and 1.47 were obtained for VEWAK us-
ing ISA-ECI, Z1-Z2-Z3, and topological indices, respectively, and the log RAI val-
ues of 1.80, 1.74, and 1.95 were obtained for VKWAP using ISA-ECI, Z1-Z2-Z3,
and topological indices as descriptors, respectively.

The statistics obtained from the PLS regression analyses and the GA-PLS
method applied to the training set using ISA-ECI, Z1-Z2-Z3, and topological in-
dices are shown in Table 1. To test the reliability of the prediction using precon-
structed QSAR equations with these descriptors, we incorporated the modified

368 Tropsha

Table 1 Summary of Statistics

PLS
GA-PLS:

ISA-ECIa Z1-Z2-Z3
b Topological indicesc

Number of crossovers 0 0 0 2000 10000
Number of compounds 28 28 28 28 28
Number of variables 10 15 160 45 23
ONCd 3 2 1 2 5
q2e 0.725 0.633 0.367 0.533 0.845
SDEPf 0.410 0.464 0.598 0.524 0.322
Fitnessg 0.702 0.619 0.367 0.515 0.818
RSD of the X matrixh 0.886 0.818 0.381 0.134 0.195
SDEEi 0.313 0.315 0.544 0.466 0.260
R2 0.840 0.831 0.476 0.630 0.899
F values 42.020 61.355 23.575 21.289 38.984

a ISA-ECI (n � 28, k � 3).
b Z1-Z2-Z3 (n � 28, k � 2).
c Topological indices: n � 28, k � 1 for 0 crossover; n � 28, k � 2 for 2,000 crossovers; and n � 28,

k � 5 for 10,000 crossovers.
d The optimal number of components.
e Cross-validated R2.
f Standard error of prediction.
g [1 � (n � 1)(1 � q2)]/(n � c).
h The residual SD of the X matrix.
i Standard error of estimate.



“degree of fit” condition originally developed by Lindberg et al. (21). According
to this condition, if RSD of dependent variables of a virtual peptide is less than the
RSD of the X matrix of the training set, the predicted values are considered to be
reliable. If this condition is not met, the log RAI of the virtual peptide is not pre-
dicted or is set to a low log RAI number to avoid selecting it. The condition does
not allow the FOCUS-2D program to overextrapolate. Since the number of pep-
tides in the training set is very small compared to theoretical number of different
pentapeptides (3.2 million), the extrapolation of QSAR relationship should be
done very carefully in small increments, and the “degree of fit” condition imple-
mented here allows us to do this. The RSD values of the X matrix of the training
set of 0.886, 0.818, and 0.195 were obtained for ISA-ECI, Z1-Z2-Z3, and topolog-
ical indices description methods, respectively, and used to test the reliability of the
prediction (Table 1).

C. Design of a Targeted Library with Bradykinin (BK)
Potentiating Activity

The results obtained with FOCUS-2D and a QSAR-based prediction are shown in
Fig. 2 for Z1-Z2-Z3 descriptors. The position-dependent frequency distributions of
amino acids in highest scoring pentapepeptides are shown before (Fig. 2a) and af-
ter (Fig. 2b) FOCUS-2D. To evaluate the efficiency of stochastic sampling, the
entire pentapeptide library (that includes as many as 3.2 million molecules) was
also generated and subjected to evaluation using the same QSAR model, and the
results are shown in Fig. 2c. Apparently, the populations after FOCUS-2D and the
exhaustive search were very similar. With Z1-Z2-Z3 descriptors, FOCUS-2D anal-
ysis selected amino acids E, I, K, L, M, Q, R, V, and W. Interestingly, these se-
lected amino acids included most of those found in two most active pentapeptides,
VEWAK and VKWAP (excluded from the training set for the QSAR model de-
velopment). Furthermore, the actual spatial positions of these amino acids were
correctly identified: the first and fourth positions for V; the second and fifth posi-
tions for E; the third position for W; and the second and fifth positions for K. More
detailed analysis of these results (cf. Fig. 2b, 2c) may suggest which residues
should be preferably chosen for each position in the pentapeptide to achieve a li-
brary of limited size with high predicted bradykinin activity.

IV. RATIONAL DATABASE MINING USING DESCRIPTOR
VARIABLES SELECTED BY QSAR MODELS

The search for active compounds in chemical databases can be also conducted on
the basis of chemical similarity to an active compound (probe) calculated in the
descriptor space. The protocol for the similarity search is given in Fig. 3. First, a
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Figure 2 FOCUS-2D using Z1-Z2-Z3 description method and a QSAR equation: (a) ini-
tial population, (b) final population after FOCUS-2D, and (c) final population after the ex-
haustive search.



similarity probe is chosen and its numerical descriptors are calculated. Then, us-
ing either the whole set of descriptors or descriptors chosen by a variable selec-
tion QSAR, the similarity of this probe molecule to every molecule in the database
is computed as the value of the Euclidean distance between the two molecules in
multidimensional descriptor space. All compounds in the database are sorted in
descending similarity to the probe molecule, and a certain number of top-ranking
compounds are suggested as the active compounds. The hit rate is evaluated as the
number of known active molecules found in the set of selected compounds.

To demonstrate the effectiveness of the method, a QSAR analysis of a set of
estrogen receptor ligands was performed, with MCI and AP serving as molecular
descriptors. The usefulness of selected descriptor-based similarity searching is
demonstrated in a database mining experiment. A known estrogen receptor ligand
was chosen as a probe molecule, and molecular similarity was calculated by
means of either the whole set of connectivity descriptors, or a subset of descrip-
tors selected by the variable selection QSAR model.

A. QSAR Based on the K Nearest-Neighbors (KNN)
Principle

In principle, the KNN technique is a conceptually simple, nonlinear approach to
pattern recognition problems. In this method, an unknown pattern is classified ac-
cording to the majority of the class labels of its K nearest neighbors of the train-
ing set in the descriptor space.

The assumptions underlying KNN-QSAR method are as follows. First,
structurally similar compounds should have similar biological activities, and the
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activity of a compound can be predicted (or estimated) simply as the average of
the activities of similar compounds. Second, the perception of structural similar-
ity is relative and should always be considered in the context of a particular bio-
logical target. Since the physicochemical characteristics of receptor binding sites
vary from one target to another, the structural features that can best explain the ob-
served biological similarities between compounds are different for different bio-
logical end points. These critical structural features are defined in this work as the
topological pharmacophore (TP) for the underlying biological activity. Thus, one
of the tasks of building a KNN-QSAR model is to identify the best TP. This is
achieved by the “bioactivity-driven” variable selection, that is, by selecting a sub-
set of molecular descriptors that afford a highly predictive KNN-QSAR model.
Since the number of all possible combinations of descriptors is huge, an exhaus-
tive search of these combinations is not possible. Thus, a stochastic optimization
algorithm (i.e., simulated annealing) has been adopted for an efficient sampling of
the combinatorial space. Figure 4 shows the overall flowchart of KNN-QSAR
method, which involves the following steps.

1. Select a subset of n descriptors randomly (n is a number between one
and the total number of available descriptors) as a hypothetical topological phar-
macophore (HTP).

2. Validate this HTP by a standard cross-validation procedure, which gen-
erates the cross-validated R2 (or q2) value for the KNN-QSAR model built using
this HTP. The standard leave-one-out procedure has been implemented as fol-
lows.

a. Eliminate a compound in the training set.
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b. Calculate the activity of the eliminated compound, which is treated
as an unknown, as the average activity of the K most similar compounds found in
the remaining molecules (K is set to 1 initially). The similarities between com-
pounds are calculated using only the selected descriptors (i.e., the current trial
HTP) instead of the whole set of descriptors.

c. Repeat this procedure until every compound in the training set has
been eliminated and predicted once.

d. Calculate the cross-validated R2 (or q2) value using Eq. (1), where
yi and ŷi are the actual activity and the the predicted activity of the ith compound,
respectively, and y� is the average activity of all the compounds in the training set.
Both summations are over all the compounds in the training set.
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Since the calculation of pairwise molecular similarities, hence the predic-
tions, are based upon the current HTP, the obtained q2 value is indicative of the
predictive power of the current KNN-QSAR model.

e. Repeat calculations for K � 2, 3, 4, . . ., n. The upper limit of K is
the total number of compounds in the data set; however, the best value is found
empirically between 1 and 5. The K that leads to the best q2 value is chosen for the
current KNN-QSAR model.

3. Repeat steps 1 and 2, the procedure of generating trial HTP’s and cal-
culating corresponding q2 values. The goal is to find the best HTP that maximizes
the q2 value of the corresponding KNN-QSAR model. This process is driven by a
generalized simulated annealing using q2 as the objective function.

B. Application of the KNN Method to Estrogen Receptor
Ligands

Fifty-eight estrogen receptor ligands were chosen as a comprehensive test case for
the KNN-QSAR technique. This data set was successfully analyzed earlier by
Waller et al. (22), who used the comparative molecular field analysis (CoMFA)
method.

In the KNN-QSAR method, nvar (the number of descriptors to be selected)
can be set to any value that is less than the total number of descriptors generated
by a molecular description method. Since the optimum value of nvar is not known
a priori, several runs are usually needed to examine the relationship of the pre-
dictive power of a model (quantitated by a q2 value) and the number of descrip-
tors selected (nvar). Figure 5 shows this relationship when MCI was used to de-
scribe each of the estrogen receptor ligands.
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When the real activity values for estrogen receptor ligands were used in the
KNN-QSAR analysis, the q2 values was 0.77, 0.63, and 0.48 for a 10-descriptor
model, a 60-descriptor model, and a 120-descriptor model, respectively. To show
the robustness of KNN-QSAR analysis, one needs to demonstrate that no compa-
rable q2 values can be obtained when randomly shuffled activity values or ran-
domly assigned activity values (but within the same range as the real activity) are
used in KNN-QSAR analysis. Figure 5 also includes the q2 vs nvar relationships
when three randomly assigned activity values were used in the KNN-QSAR anal-
ysis. Overall, these q2 values are very low in comparison to those of the actual data
set. This suggests that the KNN-QSAR models obtained for the real data set are
distinguishable from those for random data sets. One can also observe that the q2

values decrease when the number of descriptors increases. On the surface, this
may be counterintuitive. The intuition may come from the fact that the more de-
scriptors are used in multiple linear regression analysis, the higher regression co-
efficient is normally obtained. However, it should be kept in mind that the KNN-
QSAR is not based on a regression method, but rather on the similarity principle.
Theoretically, there should be no apparent trend in q2 vs nvar relationships, al-
though in many practical situations, q2 tends to decrease slightly when the num-
ber of descriptors increases. Conceivably, there should be one optimum number
of descriptors, where either the q2 is the highest or the separation between the q2

for the real data set and those for random data sets is the largest.
Figure 6 plots the predicted vs actual activity during the cross-validation

process for a 10-descriptor model. Apparently, the trend of the predicted values is
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Figure 5 The relationship of q2 to nvar for estrogen receptor ligands using MCI as molec-
ular descriptors, (nvar is the number of descriptors selected for a KNN-QSAR model). The
results for both the actual estrogen data set and three data sets with random activity values
are included.



similar to that of the real activity values. The results of KNN-QSAR modeling
were in fact better than those reported by Waller et al. (22) using CoMFA analy-
sis in terms of the q2 values (0.77, vs 0.59 from Waller et al.).

C. Database Mining Using Estrogen Receptor Ligands as
Probe Molecules

To demonstrate the effectiveness of molecular similarity based database mining,
eight molecules were chosen arbitrarily from the known estrogen receptor ligands
as the query molecules (or probes), one from each of the eight compound classes
described elsewhere (22). These were 2,4,6-trichloro-4�-biphenylol, butylben-
zylphthalate, 2-tert-butylphenol, coumestrol, DES, estradiol, HPTE, and M1. The
typical result of the similarity search is given in Fig. 7, which shows the following
four curves: (1) the hit rates obtained in the ideal case, where every compound
found at the top 58 is actually a known estrogen receptor ligand (this is the upper
limit that anyone would like to reach), (2) the hit rates obtained by a random search,
(i.e., a random sampling of a number of compounds followed by an examination of
how many known estrogen receptor ligands are found), (3) the results obtained
from similarity searches based on the whole set of descriptors and (4) the results
based the KNN-QSAR selected descriptors. Our results show that in most cases,
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receptor ligands using MCI as molecular descriptors.



the hit rates obtained by similarity search for the known estrogen receptor ligands
are more than two times higher than what would be expected by a random search.
This demonstrates the effectiveness of the similarity search strategy. It should be
noted that in five out of eight cases, the hit rates obtained using KNN-QSAR se-
lected descriptors were better than those obtained using the whole set of descrip-
tors, indicating that KNN-QSAR selected descriptors are better suited for similar-
ity searches. It also implies that the KNN-QSAR method captures the critical
structural features that distinguish the activities of the underlying compounds.

V. CONCLUSIONS AND PROSPECTUS

One important aspect of any QSAR investigation is the potential application of the
derived QSAR models. It is common to think that in the case of three-dimensional
QSAR such as CoMFA, the results could be used to predict the modifications of
known compounds that may lead to more potent ligands. Such applications are not
possible using GA-PLS or KNN-QSAR methods, since the relationship between
molecular descriptors such as connectivity indices or atom pairs and the underly-
ing chemical structures are not obvious: although molecular descriptors can be
calculated for any molecular structure, the opposite is not straightforward. How-
ever, as we demonstrate in this chapter, the results of QSAR analyses could be
used, in a fairly straightforward manner, to search for biologically active
molecules in existing databases or virtual chemical libraries. Thus, a precon-
structed QSAR model can be used to directly predict biological activity of sam-
pled chemical structures, and the selection of actual or virtual compounds can be
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Figure 7 Comparison of hit rates for known estrogen receptor ligands for ideal, random,
and similarity-based search with butylbenzylphthalate as the probe.



based on the (high) value of predicted biological activity. Alternatively, the se-
lection of active compounds can be based on their similarity to a known active
probe (lead) molecule. We showed that similarity searches using the descriptor
variables selected by a QSAR model (termed here topological pharmacophore),
are in general more efficient than using all available descriptors. We believe that
the use of QSAR modeling in rational library design (or database mining) as il-
lustrated in this chapter should be increasingly explored to improve the design of
chemical libraries with desired activity.
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I. INTRODUCTION

A. Molecular Diversity Analysis

One of the principal objectives of molecular diversity analysis is to devise com-
putational methods that ensure coverage of the largest possible expanse of chem-
ical space in the search for bioactive molecules. The concept of diversity is nor-
mally quantified by using techniques derived from those developed for similarity
searching in chemical databases, which involves measuring the degree of struc-
tural similarity (or dissimilarity) between two molecules by a comparison of the
sets of descriptors that characterize those molecules (1). There has thus been much
interest in measures of structural similarity (including both the descriptors that are
employed to characterize molecules, and the coefficients that are employed to
quantify the degree of resemblance between two molecules’ sets of associated de-
scriptors) and in ways in which such measures can be used in diversity analyses
(2,3), in particular in methods for selecting compounds to maximize their struc-
tural diversity (4).

The similar property principle states that structurally similar molecules are
likely to have similar properties and activities (5,6), with the result that uncon-
strained use of the combinatorial synthesis and high throughput screening pro-



cesses that characterize modern pharmaceutical and agrochemical research could
lead to very large amounts of redundant SAR information. Considerations of cost-
effectiveness hence dictate that as few compounds as possible should be selected
for synthesis and testing while still maintaining structural diversity (i.e., covering
the full range of structural types that are present in a database, either real or vir-
tual). This simple requirement presupposes a quantitative definition of structural
diversity, or diversity index, and many such definitions have been described: thus,
Gillet references eight different indices (2), and new ones continue to be reported
in the literature. Assume that an index, I, has been defined that can be readily cal-
culated for a set of compounds that have been chosen by some selection algorithm.
Then the maximally diverse, n-compound subfile from an N-compound parent file
(with, typically, n � 104 and N � 106) can be obtained by the simple procedure
shown in Algorithm I.

The reader should note that this procedure will return just a single set of
compounds, Subfile, but there may well be several, or many, that all possess the
same maximal value for the chosen diversity index I; similar comments apply to
several of the other algorithms discussed in this chapter.

The problem with Algorithm I is that it requires the generation and
evaluation of no less than N!/[n!(N � n)!] index values, and this factorial time
dependency makes it computationally infeasible for values of n and N typical
of those encountered in the context of chemical libraries; nonchemical studies of
the maximum diversity problem are discussed by Kuo et al. (7) and Ghosh (8).
The need for cost-effective approaches to the design of combinatorial syntheses
has led to considerable interest in more efficient methods for selecting diverse
sets of molecules, with three principal approaches having been described
thus far: cluster-based, partition-based, and dissimilarity-based (DBCS) com-
pound selection. We shall describe the first two approaches briefly before fo-
cusing upon DBCS algorithms in the remainder of this chapter. Sections II–IV
review the range of algorithms that are available, and Section V
then discusses one particular DBCS approach that has been developed in
Sheffield.

B. Cluster-Based and Partition-Based Methods for
Compound Selection

Cluster analysis, or clustering, involves subdividing a group of objects (chemical
molecules in the present context) into groups, or clusters, of objects that exhibit a
high degree of both intracluster similarity and intercluster dissimilarity (9,10). It
is thus possible to obtain an overview of the range of structural types present
within a data set by selecting one, or some small number, of the molecules from
each of the clusters resulting from the use of an appropriate clustering method on
that data set.
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Cluster-based methods have been widely used for molecular diversity stud-
ies (see, e.g., Refs. 11–13), but they are increasingly being supplanted by dissim-
ilarity-based and partition-based methods for compound selection. The latter ap-
proach requires the identification of a set of p characteristics, these typically being
molecular properties that would be expected to affect the ability of a small
molecule to bind to a protein (14). The range of values for each such characteris-
tic is divided into a set of subranges (15). The combinatorial product of all possi-
ble subranges then defines a p-dimensional grid of bins (or cells) that is referred
to as a partition, and each molecule is assigned to the bin that matches that
molecule’s set of characteristics. A subset is obtained by selecting one (or some
small number) of the molecules from each of the bins. Partition-based selection is
much faster than the other two approaches and has certain advantages: it permits
the rapid identification of the sections of structural space that are underrepre-
sented, or even unrepresented, in a database, and it is easily applied to tasks such
as the identification of structural overlap in databases and the mapping of struc-
tural space (16).

C. Dissimilarity-Based Methods for Compound Selection

Cluster-based and partition-based approaches identify a set of dissimilar
molecules indirectly, since the approaches involve the identification of clusters or
bins, respectively, of similar molecules. DBCS, conversely, tries to identify a set
of dissimilar molecules in a data set directly, using some quantitative measure of
intermolecular structural dissimilarity (17). However, as will be illustrated by the
algorithms discussed in this chapter, the way in which this identification is ef-
fected will be determined by several factors: whether a library (i.e., a set of com-
pounds) or a combinatorial library (i.e., a set of compounds that can be generated
by a combinatorial synthesis procedure using the minimum number of reactants)
is required; and by the size and precise nature of the data set from which the com-
pounds are to be selected. This data set may be a real data base, such as a corpo-
rate structure file, a carefully selected file of reactants, such as all the commer-
cially available primary amines, or a virtual database, consisting of the fully
enumerated set of products for a combinatorial synthesis. A structurally diverse li-
brary can be created very simply by means of what is commonly referred to as
“cherry-picking,” the selection of individual compounds without any considera-
tion of the structural relationships between those selected. Cherry-picking is con-
ceptually simple but is most unlikely to result in a combinatorial library, even if
extensive subsequent processing is applied to identify commonly occurring reac-
tants. Thus alternative approaches are required, depending upon whether the se-
lection is carried out in reactant space or product space. The relative merits of re-
actant-based and product-based selection [first described by Martin et al. (18) and
by Good and Lewis (19), respectively] have been much debated, particularly with
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regard to the greater level of diversity achievable with product-based selection
(20–22).

The factorial time dependency of Algorithm I has meant that algorithms that
are to be used on an operational basis for library design are, of necessity, unable
to guarantee the identification of the most diverse set of compounds; instead, they
achieve efficiencies of operation by means of various heuristics that provide good,
but nonoptimal, sets of molecules. Many different DBCS algorithms have been re-
ported in the literature (see, e.g., Refs. 17–20, 22, 25–46), but it is possible to iden-
tify three broad classes that encompass the various procedures that have been de-
scribed: maximum dissimilarity algorithms, sphere-exclusion algorithms, and
optimization algorithms (although there are, as will be seen, strong connections
between these approaches).

II. MAXIMUM DISSIMILARITY ALGORITHMS

The basic maximum dissimilarity algorithm was first described by Kennard and
Stone (47) and is shown in Algorithm II, where an n-molecule Subfile is to be cho-
sen from an N-molecule File. This greedy algorithm was used in the early studies
of Lajiness (25) and Bawden (26) and permits many variants to be implemented,
depending upon the precise way in which steps 1 and 3 are implemented.

The starting molecule in step 1 can be obtained by, inter alia: choosing it at
random, choosing that molecule that is most dissimilar to the other molecules in
File, or choosing that molecule that is nearest to the center of of File [assuming a
quantitative definition of the center of a set of molecules, as is required in some
chemical applications of clustering (48)]. Step 3 in Algorithm II requires a quan-
titative definition of the dissimilarity between a single molecule in File and the
molecules currently comprising Subfile, so that the most dissimilar molecule in
File can be identified in each iteration of the algorithm. The constitution of Sub-
file will thus be determined by the way in which “most dissimilar” is defined, with
different definitions leading to different final sets of molecules (29): this situation
is analogous to that encountered in hierarchic agglomerative clustering, where a
whole family of different, but related, classifications can be obtained by using
slightly different interobject similarity coefficients (49).

Examples of dissimilarity measures that have been used for DBCS include
MaxMin (31) and MaxSum (37) [these two definitions have also been studied by
Ghosh in an analysis of exact solutions to the maximum diversity problem (8)].
Let DIS(A,B) represent the dissimilarity between two molecules, or sets of
molecules, A and B. Consider a single compound, J, taken from File and the m
molecules that form the current membership of Subfile at some stage in the selec-
tion process shown in Algorithm II; then the dissimilarity between J and Subfile,
DIS(J, Subfile), is given by
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∑ DIS (J,K )

using the MaxSum definition, and

minimum{DIS(J,K)}

using the MaxMin definition, with K (1 � K � m) ranging over all of the m
molecules in Subfile at that point. The molecule chosen for addition to Subfile in
step 3 (i.e., the molecule that is considered the most dissimilar) is then that which
has the largest value of DIS(J, Subfile). In this respect, the MaxMin and MaxSum
definitions can be regarded as the DBCS equivalents of the single-linkage and
group-average hierarchic agglomerative clustering methods, and it would be pos-
sible to generate other types of maximally diverse subset by using the definitions
that underlie other such clustering methods, such as the median or centroid meth-
ods (9,49).

A single-linkage clustering is closely related to the minimal spanning tree
(MST) for the same set of objects (50) and it is thus hardly surprising that an MST
has been used for compound selection (45). Let M be an N � N dissimilarity ma-
trix in which the element M(I,J ) contains the dissimilarity between the Ith and Jth
molecules in a file of size N molecules. Then a spanning tree is a set of N � 1 ma-
trix elements that connects all the molecules, and the MST is the spanning tree
with the minimum sum of weights (i.e., minimum sum of dissimilarities in the pre-
sent context); thus the diversity here is the sum of just some of the intermolecular
dissimilarities, rather than all of them as in the MaxSum algorithm, and the diver-
sity will be maximized if this minimum sum is as large as possible. This approach
is appealing given that there are several fast algorithms available for generating an
MST (see, e.g., Refs. 51–53). The selection algorithm of Mount et al. starts by cal-
culating the MST for a randomly selected set of n molecules; it then tries to im-
prove the diversity score by swapping in new molecules and calculating the re-
sulting MST each time, and continuing until no further increase in diversity can
be obtained (45). The procedure is closely related to the optimization algorithms
described later in Section IV.

The basic maximum dissimilarity algorithm shown in Algorithm II has an
expected time complexity of O(n2N ); since n is normally some small fraction of
N (such as 1 or 5%), this represents a running time that is cubic in N, which makes
it extremely demanding of computational resources if File is at all large. Holliday
et al. (28) described a MaxSum selection algorithm with a time complexity of
O(nN ), using an equivalence that had been developed by Voorhees for the rapid
implementation of group-average document clustering (54). However, analyses of
the MaxSum definition by Agrafiotis and Lobanov (41) and by Mount et al. (45)
showed that its use for DBCS could result in subfiles containing pairs (or larger
groups) of closely related molecules. This limitation was demonstrated experi-
mentally by Snarey et al. (46) in a comparison of different DBCS algorithms,
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which showed that MaxMin was more effective than MaxSum in identifying
database subsets exhibiting a range of biological activities. The MaxMin dissimi-
larity definition is not normally as fast in practice as MaxSum, but it also can be
implemented with an O(nN ) time complexity (31,34). In fact, since MaxMin is
based on identifying nearest neighbors, it is possible to use the extensive work that
has been carried out on fast algorithms for nearest-neighbor searching in low-di-
mensional spaces, and Agrafiotis and Lobanov have used one such approach,
based on k-d trees, to obtain an algorithm with a time complexity of only O(n log
N ) for this purpose (41).

III. SPHERE-EXCLUSION ALGORITHMS

A significant modification of the maximum dissimilarity algorithm is obtained by
specifying a threshold dissimilarity t and then rejecting the molecule selected in
step 2 of Algorithm II if it has a dissimilarity less than t with any of the compounds
already in Subfile. This is analogous to enclosing the current contents of Subfile
within hyperspheres of radius t [in a manner reminiscent of the neighborhood cri-
terion advocated by Patterson et al. (6) for the evaluation of diversity metrics] and
yields the sphere-exclusion approach first described by Hudson et al. (30). Here,
a molecule is selected, either at random or using some rational basis, for inclusion
in Subfile, and the algorithm then excludes from further consideration all other
compounds within the sphere centered on that selected compound, as shown in Al-
gorithm III. It is not possible to derive an expected time complexity for the run-
ning time of this algorithm, since such an analysis would require information
about the distribution of intermolecular dissimilarities in the file that was being
processed (to be able to predict the fraction of the file excluded by each iteration
of step 3). This distribution is dependent both upon the natures of the molecules
involved and upon the nature of the coefficient that is used for the calculation of
the dissimilarities (55,56).

Many variants are again possible, depending upon the manner in which
stage 2 is implemented. Thus, one can choose the molecule that is most dissimilar
to the existing Subfile, in which case different results will be obtained (as with the
maximum dissimilarity algorithms) depending upon the dissimilarity definition
that is adopted. Alternatively, a compound can be selected at random, as in the DI-
VPIK algorithm reported by Nilakantan et al. (35), which is very fast in operation
but in which the random element results in nondeterministic solutions. Several
sphere-exclusion algorithms were included in the comparative evaluation of
Snarey et al. (46), who found that they were broadly comparable in effectiveness
to the MaxMin algorithm.

The close relationship that exists between the maximum dissimilarity and
sphere-exclusion algorithms is evidenced in work by Clark and Langton on their
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OptiSim (for optimizable K-dissimilarity selection) program (36,38). Algorithm
IV shows that OptiSim makes use of an intermediate pool of K selected com-
pounds, here called Sample. The mode of processing and the characteristics of the
final set of selected molecules are determined by the value of K that is specified,
with values of K equal to 1 and to N corresponding to (versions of) the sphere-ex-
clusion and maximum dissimilarity algorithms, respectively. Clark suggests that
the latter mode of processing will yield sets of molecules that are structurally more
diverse than those resulting from the sphere-exclusion approach, which are likely
to be more representative of the original file from which they were selected (36);
a further discussion of these complementary characteristics is presented by Clark
and Langton (38).

The final algorithm to be discussed in this section can be regarded as being
closely related to Algorithm III, since it again makes use of a dissimilarity thresh-
old to exclude closely related compounds; however this threshold is used in a very
different way. In addition, the algorithm provides an exact solution, rather than
adopting the greedy heuristics that underlie the preceding algorithms, albeit at the
cost of a large reduction in the file sizes that can be processed. We have noted that
the identification of the maximally diverse subset (or subsets) by enumeration is
infeasible because of the factorial nature of Algorithm I; indeed, the diverse sub-
set problem is known to belong to the class of NP-complete algorithms for which
no efficient polynomial time algorithm exists (or is even expected to exist) (7,8).
However, it is possible to use the experience gained with other types of NP-com-
plete problem (57) to devise a DBCS algorithm that is capable of identifying the
maximally diverse subset when n and N are sufficiently small: for example, one
might wish to select the most diverse set of 25 haloketones from all those in the
Available Chemicals Directory (58) to act as one of the sets of reactants for the
synthesis of a thiazoline-2-imine combinatorial library (59) (as shown in Fig. 1).
This is in marked contrast to the algorithms discussed thus far, which are suitable
for cherry-picking on a very large scale (given a sufficiently rapid calculation of
the dissimilarities that provide the inputs to these algorithms).

Brown and Martin, who carried out a detailed verification of the similar
property principle (13,60), showed that given a molecule of known activity, there
is a high a priori probability that any of that molecule’s near neighbors will also
be active [where a near neighbor is deemed to be one that has a Tanimoto simi-

Dissimilarity-Based Compound Selection 385

Figure 1 Combinatorial synthesis of a thiazoline-2-imine library.



larity (1) of at least 0.85 when the molecules are characterized by Tripos UNITY
2D fingerprints (61)]. This observation provides a simple basis for DBCS by en-
suring that no two molecules in the final Subfile will be strongly similar to each
other. The dissimilarity criterion is implemented by the excluded-sphere tech-
nique in Algorithm III or by applying a threshold in step 2 of Algorithm II, but it
will result in the identification of only a single set of molecules meeting the crite-
rion: the algorithm of Gardiner et al. (39) is designed to identify all such sets that
satisfy it.

As with the MST algorithm described in Section II.A, let M be an N � N
dissimilarity matrix in which M(I,J ) contains the dissimilarity between the Ith and
Jth compounds in a file of N compounds; here, these molecules will typically be
all the available reactants of some particular type, as described earlier. A graph G,
which we refer to as a subset selection graph, is created from M by applying a
threshold dissimilarity t and then setting each element M(I,J ) to unity (or zero) de-
pending upon whether it is greater than (or not greater than) the threshold. The
complete set of subsets satisfying the dissimilarity criterion is then the set of n-
vertex cliques in G, where a clique is a subgraph in which every vertex is con-
nected to every other vertex and is not contained in any larger subgraph with this
property (62); that is, each clique in the subset selection graph thus denotes a set
of n molecules for which none of the n(n � 1) dissimilarities are less than t.

Gardiner et al. report a comparison of several clique detection algorithms
when applied to the processing of subset selection graphs (39) and suggest that
one due to Babel (63) is sufficiently fast to enable the procedure to be applied to
the selection of reactants for combinatorial synthesis. Once all the subsets have
been generated by the procedure, which is summarized in Algorithm V, a further
filtering step, based on criteria such as cost, physicochemical parameters, or di-
versity index values, can be employed to identify the particular set of molecules
that will be chosen for use in some application.

Clique detection is known to be NP complete, except in the case of special
types of graph, and any specific NP-complete problem can be translated into any
other such problem (57). It is thus to be hoped that the use of clique detection (as
here) will spur researchers to consider other types of procedure that might be ap-
plied to the identification of maximally diverse sets of reactants.

IV. OPTIMIZATION ALGORITHMS

Algorithm V is able to identify all the maximally diverse subfiles only because the
search space that it explores (i.e., the space of all possible n-molecule subfiles se-
lected from a limited number of reactants) is extremely restricted, and there are no
obvious algorithmic enhancements that could possibly enable it to process data
sets of the size that can be encompassed by the maximum dissimilarity and sphere-
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exclusion algorithms discussed earlier. Similar comments would seem to apply to
other exhaustive search algorithms: for example, Ghosh reports experiments to
obtain exact solutions using the MaxMin and MaxSum criteria and found that they
were only feasible when n � N � 50 (8).

Several researchers have thus developed methods for sampling these large
chemical search spaces using techniques for combinatorial optimization. One ap-
proach has involved the theory of D-optimal and S-optimal designs (18,43,64), but
this has been criticized on the grounds of selecting extreme outliers (34) and (like
MaxSum) molecules that are very similar to each other (45); accordingly, we shall
focus attention here on the several studies that have been carried out using genetic
algorithms and simulated annealing (19,20,32,33,40,42,65).

We shall introduce the optimization approach by describing the genetic al-
gorithm (GA) that we have developed in Sheffield for product-based library de-
sign, where the full set of products from a combinatorial synthesis is enumerated
and molecules are then selected subject to the combinatorial constraint (20). As-
sume a two-component combinatorial synthesis in which n1 of the N1 possible first
reactants are to be reacted with n2 of the N2 possible second reactants. The chro-
mosome in the GA contains n1 � n2 elements, each specifying one possible reac-
tant, and the cross-product of these two sets of reactants then specifies one of the
size n1n2 possible combinatorial libraries that could be synthesized, given the two
complete sets of reactants. The fitness function for the GA is a diversity index
quantifying the diversity of the size n1n2 library encoded in each chromosome, and
the GA thus tries to evolve chromosomes that maximize the value of this index.
In principle, any index could be used for this purpose: that initially adopted (20)
was the mean pairwise dissimilarity index of Turner et al. (66), which can be cal-
culated very rapidly (a prerequisite for use in a GA-based application where very
large numbers of fitness values may need to be calculated). SELECT, a develop-
ment of this basic GA, is discussed in more detail later, in Section V.

Another early example of an optimization approach to product-based library
design is provided by the HARPick program of Good and Lewis (19). Here, a
molecule is characterized by its constituent three-point pharmacophores, these be-
ing generated from an approximate 3D structure, and the diversity of a putative
combinatorial library is given by a function based on the number of distinct phar-
macophores present in that particular library. Simulated annealing (SA) is used to
optimize the combinatorial libraries [a GA-based version has also been described
(65)], but the scoring function for the annealing not only tries to maximize the
pharmacophore-based diversity but also tries to ensure an approximately even dis-
tribution of the molecules comprising the encoded library across three properties
(the number of heavy atoms in a molecule, the largest triangle perimeter for any
of the three-point pharmacophores in that molecule, and the largest triangle area
for any of these pharmacophores) that provide crude, but rapidly computable,
measures of molecular shape.
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SA-based selection algorithms have also been described by Hassan et al.
(32) and by Agrafiotis (33), who characterize molecules by principal components
derived from calculated physical properties (topological and information content
indices, and electronic, hydrophobic, and steric descriptors) or by low-dimen-
sionality autocorrelation vectors describing the distribution of the electrostatic po-
tential over the van der Waals surface of a molecule, respectively. The SA in both
cases is driven by a scoring function that uses one of several different intermolec-
ular distance coefficients, with Agrafiotis noting the benefits to be gained from a
clear separation of selection algorithm and scoring function (33).

The principal aim of most of the selection algorithms discussed thus far is
to maximize the diversity of the subfiles that result from their use. There are, how-
ever, many other criteria that may need to be considered in the design of computer
bioactive molecules, such as reactant costs, synthetic feasibility, and “rule-of-
five” considerations. Such criteria can be included in a lead discovery program in
an initial filtering step [as reviewed by Dunbar (67) and by Walters et al. (68)] or,
as advocated by Agrafiotis (33) and Good and Lewis (19), in the fitness or penalty
function that drives a selection procedure. This can be achieved by drawing upon
several recent “drug-ability” studies, that is, statistical analyses of chemical
databases that seek to identify criteria that can discriminate between druglike and
non-drug-like molecules (69–73). SELECT provides a typical example of work in
this area; other such programs are HARPick, as mentioned previously, and PIC-
COLO developed by Zheng et al. (74).

V. DESIGNING COMBINATORIAL LIBRARIES WITH
SELECT

SELECT performs product-based selection taking direct account of the combina-
torial constraint. The GA that lies at its heart employs a multiobjective fitness
function that allows many properties to be optimized simultaneously, facilitating
the design of combinatorial libraries that are, by definition, synthetically efficient
and are optimized with respect not just to diversity but also to other user-defined
properties of importance in designing bioactive molecules. The program can also
be used to design libraries that complement existing libraries and to explore dif-
ferent library configurations, as discussed in detail by Gillet et al. (42).

SELECT can be used with a range of types of descriptor: thus far, we have
employed both Daylight (75) and UNITY (61) fingerprints and Molconn-Z pa-
rameters (which are real numbers that have been standardized to fall in the range
0 . . . 1) (76). It is also hospitable to a range of diversity indices, with those stud-
ied thus far being the sum-of-pairwise dissimilarities calculated using the cosine
coefficient and implemented using the centroid algorithm of Turner et al. (66),
SUMCOS; the sum-of-pairwise dissimilarities using the Tanimoto coefficient,
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SUMTAN; and the average nearest-neighbor distance using the Tanimoto coeffi-
cient, NN. SUMCOS for a library of N molecules is defined as follows:

where Cos(J,K ) is the similarity between molecules J and K defined using the co-
sine coefficient; SUMTAN is defined in just the same way, but with Tan(J,K ), the
similarity between molecules J and K defined using the Tanimoto coefficient, re-
placing Cos(J,K ); and NN for a library of N molecules is defined as follows:

where min(1 � Tan(J,K )) is the distance from molecule J to its closest neighbor,
K.

We noted in Section I the differences between reactant-based and product-
based selection, and Gillet and Nicolotti report detailed experiments demonstrat-
ing the increased level of structural diversity that can be obtained when SELECT
is used to implement product-based, as against reactant-based, DBCS (22). Here,
we focus upon SELECT’s multicomponent fitness function which enables it to de-
sign libraries in product space where the properties of individual molecules within
these libraries are optimized simultaneously with the library’s structural diversity.
Specifically, the physicochemical property profiles of the libraries are optimised
with respect to the profile of the same property in some reference collection, for
which we normally use the World Drugs Index (hereafter WDI) database of
known drugs (77) (although any other specific collection could be used for this
purpose).

The fitness function is of the form

wD(D) � wC(C) � wf1�ƒ1 � wf2�ƒ2 . . .

where the first term, wD(D), describes the diversity of the library that is being de-
signed, using one of the three diversity indices listed above. The second term,
wC(C ), is designed to force the library to be different from some existing reference
collection; for example, it may be desirable to ensure that the library is maximally
dissimilar from a library that has already been synthesized and tested. This weight
can be set to zero if there are no such additional libraries that need to be consid-
ered. The remaining terms in the fitness function, wf1�ƒ1, wf2�ƒ2, and so on, re-
late to physical properties of molecules that are thought to affect their ability to
function as a drug (such as the molecular weight, the numbers of rotatable bonds,
hydrogen donors and acceptors, and the octanol/water partition coefficient) and
can be calculated rapidly enough to permit the processing of libraries of realistic
size. A physical property of the library is optimized by comparing the distribution

∑N
J�1 min(1 � Tan(J,K ))

			
N

∑N
J�1 ∑N

K�1 1 � Cos(J,K )
			

N2
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of its values in the library with the distribution of values of the same property in
the WDI. The various w terms act as weights that reflect the relative importance
of each of the various components of the fitness function, thus allowing the de-
signer to control the characteristics of the libraries that are produced.

The effectiveness of this procedure will be illustrated with reference to a
three-component library that is based on a thiazoline-2-imine template (59), as
shown in Fig. 1. Here, the R1 reactants are isothiocyanates, the R2 reactants are
amines, and the R3 reactants are haloketones. Ten isothiocyanates, 40 amines, and
25 haloketones were selected at random to give a fully enumerated virtual library
of 10,000 thiazoline-2-imines. The molecules in this set were represented by Day-
light fingerprints and the diversity measure used was SUMCOS, with the number
of rotatable bonds and the molecular weight as the physicochemical properties of
interest; other studies of this data set are described by Gillet and Nicolotti (42).
The experiments reported here compared the physicochemical property profiles of
diverse libraries selected by analyzing reactant space with the profiles of the same
physicochemical properties in libraries selected from product space that are opti-
mized on property and diversity, simultaneously. In each case, the profile is
recorded in a series of 20 bins, where each bin represents the percentage of com-
pounds in the library having a given number of rotatable bonds or having molecule
weight within a given range. In the case of rotatable bond profiles the bins repre-
sent the occurrence of 0, 1, 2, . . ., 
 19 rotatable bonds, while in the case of molec-
ular weight profiles the bins cover the following ranges: 0 . . . 49, 50 . . . 99 . . .�
950.

SELECT was first used to generate diverse sets of reactants (6 isothio-
cyanates, 10 amines, and 15 haloketones) and hence to generate a combinatorial
library in reactant space containing 900 thiazoline-2-imines, for which the profiles
of rotatable bonds and molecular weights were then calculated. SELECT was next
run to choose an analogous 900-molecule library in product space, with the library
optimized on both diversity and the rotatable bond profile, and finally in the same
way but using both diversity and the molecular weight profile. In each case, the
fitness function consisted of the sum of two weighted terms, the diversity term and
the relevant property term. The property was included in the fitness function as the
rmsd between the distribution of the property in the library represented in a chro-
mosome and the distribution of the property in WDI, where the distributions are
given as percentages. The weight assigned to diversity was 1.0 and the weight as-
signed to the rmsd of the property was 0.1, these weights being chosen so that the
rmsd property values were approximately in the same range of values as diversity.
The results of these runs are illustrated in Fig. 2, where it can be seen that that sim-
ple reactant-based selection often results in libraries with poor physicochemical
property profiles. The product-based selection, conversely, has enabled the con-
struction of libraries with profiles that are much more “WDI-like” and are thus
more likely to contain bioactive compounds.
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VI. CONCLUSIONS

A selection procedure for library design involves three major components: the
descriptors that are used to characterize the molecules in a data set, a subset se-
lection algorithm that operates on these descriptions, and a diversity index that
quantifies the degree of structural diversity in the resulting subset. This chapter
highlights the second of these components, summarizing some of the many
DBCS algorithms that have been reported in the literature and are now being in-
creasingly widely used for library design. This algorithmic focus means that lit-
tle attention has been given here to the biological activities of the molecules se-
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Figure 2 Profiles for (a) numbers of rotatable bonds and (b) molecular weight of thia-
zoline-2-imine libraries.
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lected by these procedures. There are, however, an increasing number of empir-
ical studies now appearing in the literature that take account of bioactivity data
in evaluating selection algorithms: reviews of this work up till mid-1998 are pre-
sented by Willett (4) and by Snarey et al. (46), while more recent studies in-
volving DBCS include those by Potter and Matter (78,79) and by Bayada et al.
(80).

Work in Sheffield has involved several different DBCS algorithms, but we
are now focusing attention upon the GA-based approach embodied in SELECT.
GAs have been widely adopted for various aspects of molecular diversity analy-
sis in addition to those discussed here (see, e.g., Refs. 81–84): they seem particu-
larly well suited to the present application owing to the ease with which it is pos-
sible to include a range of additional molecular features in the optimization.
SELECT currently employs just a few, rapidly calculated physicochemical prop-
erties, but many other characteristics could be included, such as the reliability of
a reactant supplier or the synthetic feasibility of each product molecule. We hence
believe that this approach can provide the chemist with a powerful tool to design
libraries that not only are diverse but also contain molecules that are typical of
those encountered in realistic lead development programs.
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ALGORITHMS

Algorithm I. DBCS Using Enumeration

1. Initialize I to ��.
2. Generate a new n-molecule Subfile and calculate the value of its diver-

sity index, i.
3. If i 
 I then I: � i and store Subfile.
4. Return to step 2 if not every possible distinct Subfile has been tested.
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Algorithm II. DBCS Using a Maximum Dissimilarity
Algorithm

1. Initialize Subfile by transferring a molecule from File.
2. Calculate the dissimilarity between each remaining molecule in File

and the molecules in Subfile.
3. Transfer to Subfile that molecule from File that is most dissimilar to

Subfile.
4. Return to step 2 if there are fewer than n molecules in Subfile.

Algorithm III. DBCS Using a Sphere-Exclusion Algorithm

1. Define a threshold dissimilarity t.
2. Transfer a molecule from File to Subfile.
3. Remove from File all molecules that have a dissimilarity with the trans-

ferred molecule of less than t.
4. Return to step 2 if there are molecules remaining in File.

Algorithm IV. DBCS Using the OptiSim Algorithm (36,38)

1. Define a threshold dissimilarity t.
2. Initialize Subfile by transferring a molecule from File.
3. Select a molecule from File. If it has a dissimilarity less than t with any

molecule in Subfile then remove it from File; otherwise add it to Sam-
ple.

4. Repeat step 3 until Sample contains K molecules.
5. Transfer to Subfile that molecule from Sample that is most dissimilar to

Subfile. Return the remaining members of Sample to File.
6. Return to step 3 if there are fewer than n molecules in Subfile.

Algorithm V. DBCS Using a Clique Detection Algorithm to
Identify All Subsets Meeting a Dissimilarity
Criterion

1. Define a threshold dissimilarity t.
2. Generate an N � N dissimilarity matrix in which M(I,J ) contains the

dissimilarity between molecules I and J.
3. Generate a graph G from M by setting each element M(I,J ) to one (or

zero) if it is greater than (or not greater than) t.
4. Use a clique detection algorithm to identify the set of size-n cliques in

G.
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I. INTRODUCTION

Ligand–protein binding interactions are primarily governed by three-dimensional
(3D) spatial interactions. Consequently, in an ideal world one would wish to ap-
ply 3D descriptors when undertaking molecular selection for most computer-
aided molecular design (CAMD) problems. Unfortunately, even the fastest ap-
proaches typically require molecular superimposition in coordinate space before
most 3D molecular descriptors can be utilized (1). As a result, the CPU time
needed for such calculations is too large to cope with the virtual data set sizes of
most combinatorial library calculations or compound selection exercises. To over-
come this problem, a number of descriptors with 3D content have been devised
that circumvent the need for molecular superposition. In their original guises such
descriptors were primarily designed as shape similarity measures based on match-
ing interatomic distance distributions (2–5). It was soon realized, however, that



elements of molecular chemistry could be incorporated to produce full pharma-
cophoric fingerprints (6–10). A pharmacophore is defined here as a critical three-
dimensional geometric arrangement of molecular fragments forming a necessary
but not sufficient condition for biological activity (11,12). The use of such de-
scriptors has formed a mainstay of ligand-based virtual screening for much of the
last decade. These descriptors have proven to be excellent for divorcing the 3D
structural requirements for biological activity from the 2D chemical makeup of a
ligand. The resulting measures are thus able to exploit even limited data regarding
a target to discover structurally novel active chemotypes. This proven ability, to-
gether with calculation speeds that permit their use on data sets deemed too large
for most other 3D measures, make them attractive as combinatorial library de-
scriptors. In this chapter we further highlight reasons for their utility and detail the
techniques applied thus far in their exploitation.

II. WHY USE 3D PHARMACOPHORES? A SHORT HISTORY
OF THEIR APPLICATION IN CAMD

Single-pharmacophore searching has been a successful method of virtual screen-
ing for many years now. As we have already mentioned, we are focusing on phar-
macophores based on 3D arrangements of critical functionality. In general such
functionality is atom based and is defined in terms of generic chemical properties
(e.g., acid, base, hydrophobe, aromatic, etc.), although other properties (e.g.,
planes, normals, potential target atom positions) are sometimes used. The relative
positions of these features can be described using interfeature distances and/or by
specifying 3D coordinates (typically with some spherical tolerance). Such meth-
ods provide an excellent paradigm for discovering structurally novel active
chemotypes based on potential ligand binding modes, with hit rates for selected
data sets of 1–20% (depending on the quality of the pharmacophore and care taken
in compound filtering) (13–18). The importance of these techniques is such that
they have been reviewed many times (19–21) and continue to be an active area of
research (22–29).

Such techniques have also been extended to encompass structure-based vir-
tual screening. By exploiting structural information taken directly from the target
active site, it is possible to discover ligands with both diverse chemotypes and bind-
ing modes. As a result, structure-based screening is potentially even more power-
ful than ligand-based pharmacophore searching (30–34). This advantage is also the
source of a major problem for structure-based searching tools, however, since the
thousands of putative ligand–receptor orientations tested make the searching pro-
cess very CPU intensive. In the past, it was not uncommon to spend one or two
weeks searching a database of 100,000 structures [DOCK (35) searching, single
conformers only]. To combat this, methods were developed to introduce active site
pharmacophore constraints into the searching model (36–40). When combined
with the definition active site critical regions (e.g., a crucial salt bridge interaction)
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(41), the resulting site point definition is essentially a series of n-point pharma-
cophores (for a DOCK search, n would be the number of matching nodes re-
quested). Using such an approach dramatically decreases the number of nonpro-
ductive (low chemical complementarity) ligand–receptor orientations, producing
increases in search speed (up to two orders of magnitude) and better hit rates (42).

The searches described thus far generally require either a postulated crucial
pharmacophore for binding or a target active site. It is often the case, however, that
this amount of structural information is not available, with only a single lead (e.g.,
competitor ligand or peptide substrate) being accessible. With technologies such
as genomics lining up an ever increasing queue of potential targets with only lim-
ited biological information, this scenario is likely to become increasingly com-
mon. Further, the virtual data set sizes that must be analyzed for combinatorial
chemistry library are generally beyond the 3D search techniques requiring molec-
ular superpositions. As a result, alternative 3D technologies are required for ap-
plication in these situations. This has been accomplished primarily through the
creation of pharmacophore descriptors using atom pair histograms (7) and phar-
macophore triplet (6,8) and quartet (9,10) binary fingerprints (see Fig. 1 for a sum-
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mary of descriptor generation). These techniques have been shown to extract ac-
tive compounds with diverse structures from databases using the fingerprint of a
single lead [substrate (including peptide) and small-molecule inhibitor] (7,10).

The foregoing examples clearly illustrate that pharmacophore descriptors
contain important information relating to potential biological activity. Together
with the relatively rapid search speeds and alignment-independent nature of phar-
macophore fingerprints, this makes such descriptors natural choices for combina-
torial library design. Such descriptors can be used in several ways. They can be
used in a simple way as a biologically relevant measure of diversity. The goal is
then to select reagents that give products maximizing the coverage of possible
pharmacophore shapes. Alternatively, focused libraries can be created by using
pharmacophore constraint fingerprints. These can be based on an active site (43),
target family (9), or something more generic—for example, biasing based on com-
parison with the pharmacophores of a large set of druglike molecules (9,43) [such
as the MDL Drug Data Report (44) (MDDR)]. The pharmacophore fingerprint can
encode multiple hypotheses, with the optimization goal of maximizing library
overlap with this fingerprint. In the text that follows, we examine a number of such
techniques.

III. PHARMACOPHORES IN COMBINATORIAL LIBRARY
DESIGN: THE DIVISION OF DESCRIPTOR SPACE AND
OTHER IMPORTANT ISSUES

The two most widely applied methods for dividing descriptor space in combina-
torial library design involve the application of clustering techniques (45–48) and
cell-based partitioning (49,50) (see also Chap. 16, this volume). Clustering
methodology can be defined as the division of a group of objects into clusters with
high intracluster similarity and intercluster dissimilarity. Partitioning involves the
subdivision of property space into a number of regions (bins). Partition-based pro-
filing is then generally defined as the selection of an object subset for maximal
coverage of these property bins.

The primary reason for constructing large diverse libraries is to enhance the
diversity of in-house screening databases. Understanding the descriptor space al-
ready covered is thus crucial to ensuring diverse selections relative to an existing
data set. Similarly for focused libraries it is often important to understand which
areas of descriptor space are already covered, since in general it is these regions
that we wish to occupy with the new data set. Classic clustering techniques (51,52)
do not usually encompass the concept of data set comparison. As a consequence,
while they are fine for determining an internally diverse set, they are not adept at
calculating interlibrary diversity. It is possible to use clustering in terms of mini-
mizing (diverse library) and maximizing (focused library) similarity relative to an

402 Good et al.



existing data set (53). While this technique is sound for focused libraries, it is not
generally suitable for database enhancement. This is because the CPU bottleneck
for such a calculation is the comparison of potential library compounds with the
existing data set. If this reference molecule group is large (as is the case for in-
house screening databases), the time required for library analysis can become pro-
hibitively long. The calculation times of partitioning techniques tend to scale lin-
early with the number of molecules being processed. As a result of this advantage,
the paradigm is more suitable (faster) for the large data sets that must be analyzed
in combinatorial library design. Further, the resultant cells provide a consistent
frame of reference in property space, making comparison and visualization be-
tween molecular data sets a simple process.

Pharmacophores provide an excellent measure for use with partitioning,
since each pharmacophore naturally forms a single cell within descriptor space.
With clustering, the use of pharmacophores is trickier, since the molecular fin-
gerprints tend to be both too sparse and too sensitive:

1. Too sparse. For example, the average “druglike” molecule in the Stan-
dard Drug File (SDF) (59) has about 250 pharmacophores in a three-point phar-
macophore descriptor regimen with 184,884 theoretically accessible pharma-
cophores (55), making the similarity measure very discontinuous. This problem is
made serious because many implementations of pharmacophore fingerprint
(56,57) use a large number of distance bins—for example, the 32 bin settings
(with narrow 0.1–1.0 Å bin ranges used by default in Chem-Diverse (56,58)—to
increase pharmacophore diversity. Unfortunately, to ensure rapid keying times,
conformational searching tends to be coarse. As a result, the extra molecular sep-
aration produced by high bin count leads to descriptor artifacts, since a small dif-
ference in distance can easily lead to different distance bin assignments.

2. Too sensitive. The number of pharmacophores present in a given
molecule varies as n(n � 1)/2!, n(n � 1)(n � 2)/3! and n(n � 1)(n � 2)(n � 3)/4!
times the number of pharmacophore points, for two-, three-, and four-point phar-
macophore descriptors, respectively. Small molecular differences can thus poten-
tially lead to large differences in fingerprint.

Since clustering methods generally employ data from molecular similarity
comparisons, these issues require mitigation before pharmacophore can be em-
ployed in this manner. This has been accomplished in three ways.

1. The assignment of coarser bins (8,9), with as few as six bins used with
sizes of 2.5–5.0 Å.

2. The application of bin “bleeding.” This technique increments bins on
either side of the bin in which the distance is found to reside (7,59).

3. Modification of the Tanimoto index (9,52) denominator (the most
commonly applied equation for similarity calculations) to reduce sensitivity
to total pharmacophore count. Equations (1) and (2) highlight these potential
modifications.
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TAB � → TM
AB (1)

TM
AB � (2)

where T � Tanimoto similarity
TM � modified Tanimoto similarity

P � property (in this case 0/1 from binary pharmacophore fingerprint)
A � database molecule
B � reference molecule
n � number of theoretically accessible pharmacophores
i � ith pharmacophore

With suitable preparation, pharmacophores are thus amenable to both meth-
ods for dividing descriptor space, examples of which will be given later in the
chapter.

Another important issue to consider is that of descriptor validation. This is
a complex subject that contains many potential pitfalls for those attempting to ad-
dress it. Sections IV–VIII describe a number of methods used to apply pharma-
cophores to library design. The methodologies covered should allow the reader to
gain a deeper understanding of the issues involved before the topic of validation
is tackled in more detail (Sect. IX).

IV. INITIAL APPROACHES TO PHARMACOPHORE
LIBRARY DESIGN: CHEM-DIVERSE

The program Chem-Diverse (58,59) was the first commercial offering (60) to ex-
ploit 3- (and more recently 4-) point pharmacophore information in diversity anal-
ysis. The software provides a number of useful tools for library design and is prob-
ably the most widely used software for this form of profiling. The Chem-Diverse
protocol for molecular diversity uses an algorithm designed to maximize cover-
age of pharmacophore space by potential combinatorial chemistry products (Fig.
2). A core paradigm in Chem-Diverse is the generation and comparison of phar-
macophore fingerprints on the fly. The pharmacophores of any accepted molecule
are added to a binary ensemble pharmacophore key describing the entire data set
selected so far. Compounds are deemed acceptable if the pharmacophores they ex-
press overlap with the ensemble key by less than a user-defined amount: that is,
the molecule contains a significant number of previously unseen pharmacophores.
As a consequence, the results of such searches are dependent on the order in which
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the molecules are selected from the database of potential library products. In its
default form the program relies exclusively on the binary ensemble fingerprint to
guide explicit selection. Additional constraints regarding, for example, druglike-
ness, flexibility, and size must be treated implicitly through filtering and virtual li-
brary preordering (e.g. from smallest to largest). The binary form of the ensemble
fingerprints also limits their utility, since such a key registers only whether a par-
ticular pharmacophore exists in the selected molecular ensemble, not how many
times it is found. As a result, the ensemble key is prone to saturation, even when
artificially small distance bins are applied, as they are in the default Chem-Diverse
settings (32 bins with bins widths as small as 0.1 Å). Further, Chem-Diverse
chooses molecules based purely on what it considers to be the most diverse set of
products (“cherry-picking”), with no explicit reference to the constituent reagents.
Consequently, the program will often make a combinatorially inefficient selection
of products. By inefficient we mean that, for example, when selecting 100 prod-
ucts for a two-component combinatorial library, rather than choosing a 100% ef-
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Figure 2 Outline of Chem-Diverse compound selection strategy. (Adapted from Ref.
55.)



ficient 10 � 10 reagent set, the software will choose products containing a larger
reagent subset, say 28 � 17. Using such a selection would be both costly and com-
plicated to program up on the synthesis robot and is thus termed inefficient (and
is generally unpopular with chemists). To achieve an efficient subset using Chem-
Diverse, increasingly constrained successive selections must be executed and an-
alyzed to determine the most frequently occurring reagents.

V. ADDRESSING DEFICIENCIES IN THE CHEM-DIVERSE
APPROACH: THE HARPICK PROGRAM

To address many of these Chem-Diverse issues, Good et al. (55,61,62) created the
HARPick program. The basic outline of HARPick is illustrated in Fig. 3. This
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Figure 3 Outline of HARPick compound selection strategy. (Adapted from Ref. 55.)



software was designed to overcome many of the issues associated with the Chem-
Diverse protocol described above.

A. Introducing Stochastic Optimization

The main structure of the HARPick program revolves around the application of
stochastic optimization [in this case Monte Carlo simulated annealing (63):
MCSA]. The use of such methodology offers a number of potential advantages.

1. Reagent selection and diversity evaluation can be decoupled from each
other. It is then possible to make selections in reagent space, while diversity is cal-
culated in product space. Consequently, the user still has direct control over the
number of reagents selected from each component of a combinatorial synthesis.
As a result it is possible to undertake product-based calculations that ensure
reagent selections of maximum combinatorial efficiency.

2. Because of this independence, it is a simple task to introduce flexible
scoring functions that include many diverse properties. This is important, since the
nature of a diverse molecule is such that it will often tend to be an outlier in prop-
erty space. For example, in pharmacophore space polyfunctional large flexible
molecules, which tend to have large diverse fingerprints, are a popular choice in
an unconstrained calculation. Thus, as well as including pharmacophores as our
primary descriptor, it is important to add secondary descriptors. The real advan-
tage of this is that such properties do not necessarily need to be made optimally
diverse. Rather, they can be designed to act as moderating descriptors, ensuring a
balance between a desired diversity profile and sensible compound selection.

B. Pharmacophore Profiling Alterations

While the standard three-point, seven-type (hydrogen bond donor, hydrogen bond
acceptor, basic, aromatic, hydrophobe, acidic, variable, e.g., hydrogen bond donor
and acceptor, privileged: (see Sect. VII) Chem-Diverse pharmacophores were also
used by HARPick, numerous changes were made to improve performance.

1. The primary alteration was to reduce from 31 to 17 the number of dis-
tance bins used in the key creation. This increased coarseness was justified by the
coarseness of the Chem-Diverse conformational search. The 17 bins have been
tailored to approximate the 20% tolerance determined experimentally for 3D
database searches involving rule-based conformational analyses (64) (it may be
that this is still not coarse enough, since as we mentioned in Sect. III, some appli-
cations have reduced the bin count as low as 6). The resulting combination of 84
variants of three points with 17 bins produces a total of 184,884 geometrically ac-
cessible pharmacophores.

2. To use a stochastic optimization algorithm for reagent selection, molec-
ular pharmacophore keys need to be accessed as and when required. It was thus
not possible to use the on-the-fly generation procedure employed in Chem-Di-
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verse. Rather, procedures were developed to store the keys in compressed form
ahead of the HARPick run.

3. The majority of pharmacophores present in a molecule tend to be small
relative to the largest pharmacophore in the structure, and thus they are less likely
to play a key role in ligand binding. A novel self-consistent method for pharma-
cophore removal was thus developed to permit the user to strip these pharma-
cophores from the fingerprint. The technique allows the user to determine the min-
imum ratio required for pharmacophore perimeter, relative to the largest perimeter
found for all pharmacophores in the current structure. Since all calculations are
carried out with respect to the internal pharmacophore geometries of each indi-
vidual molecule, no structure can lose all its pharmacophores, only the ones de-
fined as small. The resulting fingerprints are more compact (often by � 60%) and
should provide a better description of the relevant molecular properties.

C. Implementation of a Customizable Scoring Function

To fully exploit the advantages of the stochastic optimization paradigm, a variety
of property measures were incorporated into the HARPick profiling function:

1. The main descriptor Unique, is equivalent to the Chem-Diverse scoring
function. That is, Unique keeps a count of the number of pharmacophores bins oc-
cupied in the selected set of library products.

2. Three crude measures of molecular shape were introduced, in conjunc-
tion with a partition function designed to ensure even descriptor distribution
across selected products. The measures were heavy-atom count (ha), largest tri-
angle perimeter present for all pharmacophores found (pp), and largest triangle are
present for all pharmacophores found (pa).

Partscore � (3)

where partscore � partition score
maxo � maximum possible mean absolute deviation (when all

molecules occupy a single partition)
ō � mean molecule occupation across all partitions p
oj � number of molecules occupying partition j

3. To allow control over molecular flexibility, a function incorporating the
number of calculable conformations for each molecule (as defined by the confor-
mational search criterion used in fingerprint creation) was included.

Flex � �
∑N

i�

n
1 ƒi
� (4)

where Flex � flexibility score

maxo � ∑p
j�1 �(o�� �� o�j)�2�

���
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ƒi � number of calculable conformations for molecule i
n � number of selected molecules

4. To fully exploit the pharmacophoric data available, it is was considered
necessary to move beyond binary key descriptions of libraries. This was accom-
plished by storing the pharmacophores of the selected products as a histogram
rather than a simple fingerprint. In this way the frequency with each pharma-
cophore was hit could be taken into account. To this end a constraining function
was added to the profiling routine, weighting pharmacophore selection toward
filling relative diversity voids (diverse libraries) or frequently hit regions (focused
libraries):

Conscore � ∑a
i�1 OiSi (5)

where Conscore � constraint score
Oi � number of times pharmacophore i has been hit for molecules

selected from current data set
Si � score associated with pharmacophore i for the constraining li-

brary
a � number of accessible pharmacophores

Si � [max(0,(avcov � Oci))]� (6)

where max(0,(avcov � Oci)) � maximum of the values 0 and avcov � Oci

avcov � average pharmacophore count across all occu-
pied pharmacophores in constraining library

Oci � number of molecules containing pharmacophore
i in the constraining library

� � user-defined weight

avcov � (7)

min(Oci,	)) � minimum of the values Oci and 	
	 � user-defined maximum contribution to avcov by

any single pharmacophore
Uniquec � number of pharmacophore bins occupied in con-

straining library

5. To provide a weighting against promiscuous molecules (structures ex-
hibiting many pharmacophores), the total number of pharmacophores present in
all currently selected molecules (Totpharm) was also included in the function de-
nominator.

∑a
i�1 min(Oci,	)
��

Uniquec
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6. The total number of scoring molecules (S) in the selected set was also
included to minimize the number of unacceptable molecules (products that fail
user-defined bounds on properties such as maximum flexibility and pharma-
cophore promiscuity).
These features were combined to create a single overall scoring function.

Energy �
(8)

where w, x, y, z � user-defined weights.

D. HARPick Application

The utility of HARPick was tested in a number of ways. Two data sets were used
in the studies: (1) 20,168 molecules taken from the SDF and (2) a simple hypo-
thetical combinatorial library comprising two components undergoing amide
bond formation (Fig. 4). The second data set comprised 67 amino acids and 505
acids, giving a total library size of 33,835 products.

In the first investigation, the importance of a nonbinary pharmacophore
scoring function was studied. This was undertaken through an analysis of
the SDF structures. Over 68% of all HARPick theoretically accessible
pharmacophores were found to be present in the data set. Further, the distribu-
tion of pharmacophores is far from even, with ~56,000 hit 1–10 times and
~27,000 hit more than 50. The full results of this analysis are shown in Fig. 5.
When one considers that the average size of a company compound collection
will be far in excess of 20,000, this highlights the issue of binary fingerprint
saturation.

A second study was run to test the behavior of the secondary descriptors
in the HARPick scoring function. Chem-Diverse was used to select a diverse

Uniquew � Conscore � Partscorex
pp � Partscorex

pa � Partscorex
ha � S

��������
Totpharmy � Flexz � n
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Figure 4 Combinatorial library reaction used in HARPick analyses. (Adapted from Ref.
55.)



subset of molecules from the SDF data based on pharmacophore diversity.
Molecules were ordered according to heavy-atom count (smallest to largest),
with the maximum permitted pharmacophore overlap percentage between each
keyed molecule and the total library key set to 60%. All molecules in the set
were processed, with any passing the selection criterion being added to the se-
lected subset. This calculation resulted in the selection of 372 molecules.
HARPick runs were then initiated on the same SDF data set, with the program
configured to select an identical set size (372) using different diversity criteria.
Three random runs were also undertaken to provide a baseline comparison. The
property distributions for these calculations are shown in Fig. 6 and Table 1. In
the Chem-Diverse and in all HARPick runs the number of pharmacophores de-
termined are significantly greater than in random runs. All the HARPick runs
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Figure 5 Results of first HARPick investigation: three-point pharmacophore frequency
distribution histogram for 20,169 SDF molecules; number of theoretically accessible phar-
macophores, 184,884, total pharmacophore count, 4,797,745 (using a perimeter cutoff of
0.7), number of unique pharmacophere triplets in library, 126,553 (this represents more
than 68% (126,553/184,884) of the theoretically accessible pharmacophores. (Adapted
from Ref. 55.)



were run with the shape partition functions active: Eq. (3), weight x set � 0 in
Eq. (8). It can be seen that for all the runs the resulting partition scores are sig-
nificantly improved versus Chem-Diverse. When a constraint on the total phar-
macophore count is introduced in run 2 active (y set � 0 in Eq. 8), the total
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Figure 6 Data from second HARPick study. The left-hand y axis is for the library se-
lections, while the right is for the full data set. Note the ability of HARPick to redis-
tribute its selections more evenly throughout the partitions, In contrast, the Chem-Di-
verse selections have a distribution similar to that seen in the full data set. (Adapted from
Ref. 55.)

Table 1 Data from Second HARPick Study

Property partition

Calculable HARPick scoring
Unique Total

function scores
conformer function weights

Calculation pharmacophores pharmacophores ha pp pa count w, x, y, z

Chem-Diverse 49,829 68,987 0.33 0.66 0.43 2.2 � 108 Not applicable
HARPick 1 105,222 419,870 0.97 0.69 0.70 4.0 � 108 1, 1, 0, 0, 0
HARPick 2 61,913 93,977 1.00 0.90 0.85 6.4 � 108 1, 1, 1, 0.75, 0
HARPick 3 70,656 137,801 0.90 0.79 0.54 2.4 � 106 1, 0.5, 0.75, 0.33
Random 39,625 80,556 0.54 0.47 0.34 1.1 � 108 Not applicable

a Pharmacophore counts data and HARPick constraint weights are included. Incorporate these constraints into Eqs. (3)–(8) to better determine their
effect. A perfect partition score is 1.0.

Source: Adapted from Ref. 55.



pharmacophore count drops by greater than a factor of 4 relative to run 1. In run
3, when the flexibility constraint is activated (Eq. 4, weight z set � 0 in Eq. 8),
the total calculable conformer count is reduced by factor of ~90. These results
illustrate the ability of a multicomponent scoring function to control the proper-
ties in the resulting library selection. They also highlight the need for multiple
runs to tweak the scoring function weights sufficiently to give the desired result.
This provides another major reason for storing pharmacophore fingerprint data
ahead of time, since fingerprint calculation is the major CPU bottleneck for any
pharmacophore-based calculation.

For the final investigation, the behavior of the nonbinary pharmacophore
scoring function was tested (Eqs. 5–7). To accomplish this, two selections of 1000
compounds (20 � 50 reagent array) from data set 2 was undertaken against the
SDF data set. In the first, Conscore was deactivated (� weight set to 0), allowing
selections based purely on internal diversity. For the second run, an avcov 	 value
of 10 was set (which for the SDF set translates to pharmacophore bins with an oc-
cupation level of 7 or less scoring), and � was set to 1. The resulting selections
were thus constrained to find pharmacophores present seven or fewer times in the
SDF data set. In addition three random 20 � 50 reagent selections were run to pro-
vide baseline results. The results (see Table 2) highlight the utility of the nonbi-
nary term. For ~20% additional total pharmacophores in the library, a greater than
100% increase in pharmacophores occupying low occupancy SDF pharma-
cophores is achieved. By inverting the Conscore term, one can use the procedure
to convert the method to select for high occupancy bins, a requirement for focused
library designs.

The foregoing results illustrate the great flexibility of this kind of stochas-
tic optimization methodology, variants of which are now being employed by
many other researchers for library design (65–67). As with HARPick, most such
implementations have been undertaken “in-house” by pharmaceutical compa-
nies. One commercial variant of this approach is soon to made available, how-
ever (67).
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Table 2 Results of the Third HARPick Analysisa

Pharmacophores

HARPick Run Unique Total Found in scoring bins

Unconstrained 78,567 806,539 99,696 (12%)
Conscore, constrained 79,125 1,079,998 203,061 (19%)
Random 51,791 1,033,772 51,837 (5%)

Source: Adapted from Ref. 55.



VI. LIBRARY PROFILING FUNCTIONS BASED ON
STATISTICAL ANALYSIS OF PHARMACOPHORE
FINGERPRINT ENSEMBLES: PHARMPRINT

McGregor and Muskal (68) recently proposed a new variant of three-point phar-
macophore fingerprint analysis for library design. Of the seven pharmacophoric
atom types described in Section V, B, six were applied, and the “donor and accep-
tor” definition was replaced by “all remaining unassigned atoms.” It is of interest
that the addition of this extra type resulted in improved QSAR model statistics, the
reason for which was ascribed to indirect volume description. There were six dis-
tance bin (8), giving a total of 10,549 accessible pharmacophores that passed the
triangle rule (the length of one side cannot exceed the length of the other two)
and/or were redundant by symmetry. To validate the descriptors, they were applied
as PLS (69) QSAR variables for three estrogen receptor (ER) data sets previously
analyzed using other QSAR descriptors (70). The resultant models were found to
be more predictive than those developed using CoMFA, CODESSA, and holo-
graphic QSAR approaches (70). In the fourth test a model was derived from 15 ac-
tives (activity set to 1.0) from data set 1 of the initial QSAR studies, plus 750 “in-
actives” extracted from the non-ER active structures in the MDDR (activity set to
0.0). This manipulation of the activity data was designed to mimic the kind of
“noisy” results one would see from high throughput screens. Analysis of the resul-
tant model was initiated by scoring 250 MDDR ER active molecules, 86 ER ac-
tives from a combinatorial library, and 8290 “inactives” from the remainder of the
MDDR not used in model training. Using a cutoff value of 0.2 to define the bound-
ary between active and inactive, in all three cases more than 87% of each test set
was assigned correctly. It is the intention of the authors that such models be applied
as the primary constraint in focused library designs. An added attraction of this
technique is its ability to turn the QSAR model into a graphic based on the highly
weighted pharmacophores. This is illustrated in Fig. 7, which shows the highest
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Figure 7 Most positively weighted pharmacophore in study 4 of McGregor and Muskal,
mapping the natural ligand estradiol (top) and the most potent data set compound, diethyl-
stilbestrol (bottom). (Adapted from Ref. 68.)



positive weighted pharmacophore for the test 4 QSAR equation in two diverse ER-

 active chemotypes.

VII. COMBINATORIAL LIBRARY DESIGN BASED ON
RELATIVE DIVERSITY/SIMILARITY: EXPLOITATION OF
“PRIVILEGED” SUBSTRUCTURES

Another potentially powerful use for pharmacophore fingerprints is in the appli-
cation of pharmacophoric descriptors altered to provide a “relative” measure of
diversity/similarity (9,43). In this method one of the points in the pharma-
cophoric description is forced to be a group, substructure or site point of inter-
est. The fingerprint thus obtained describes the possible pharmacophoric shapes
from the viewpoint of that special point/substructure, creating a “relative” or
“internally referenced” measure of diversity (see Fig. 8). This method has been
extensively used to design combinatorial libraries focused with respect to 7-
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Figure 8 Privileged substructures derived from analyses of GPCR druglike ligands in
the MDDR (44). A sample privileged pharmacophore is shown for one of these ligands.
(Adapted from Ref. 9.)



trans membrane G-protein-coupled receptors (7TM-GCPRs) (9). Such receptors
form a large family of important biological targets for which no high resolution
experimental 3D structures are published. Design must therefore generally be
focused around the ligands, and this can be usefully addressed through the ap-
plication of 7TM-GPCRs “privileged” substructures (often spanning several tar-
gets—see Fig. 8). By focusing this measure around the privileged substructure
of interest, it is possible to obtain a novel quantification of all the 3D pharma-
cophoric shapes containing the substructure. The goal of the published library
design was to synthesize novel structures containing privileged substructure
reagents/cores. Reagents were selected both to enrich the relative 3D pharma-
cophoric shapes of known ligands, together with the pharmacophores not in ex-
isting structures. In this way the resulting library could explore new 3D phar-
macophoric diversity focused around features known to be important for
biological activity. The Ugi reaction, a four-component condensation reaction
was chosen for the library, and over 100,000 compounds were synthesized. Priv-
ileged substructures such as biphenyl tetrazole were used, for example, at the
amine position (see Fig. 9).

The focus of the work was on GPCRs with peptidic endogenous ligands, so
only ligands reported to be active for receptors in this class were used. A “privi-
leged” pharmacophore fingerprint was calculated for this subset of structures, fo-
cused around the substructure of interest (a dummy atom was placed as a centroid
of the substructure and assigned a special atom type that was forced to be one of
the four points of the pharmacophore tetrahedron: Fig. 8).
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Figure 9 Library design using privileged substructures with Chem-Diverse. The Ugi re-
action used is illustrated, together with graphs highlighting pharmacophore selection per-
formance. (Adapted from Ref. 9.)



The next stage of the design process was to create a virtual combinatorial li-
brary. This was accomplished by optimizing each reagent position in turn, through
the calculation of privileged pharmacophore fingerprints for each candidate
reagent of all the products in the potential library. The privileged substructure was
included in one or more of the reagents for the other positions, and either already
selected or representative sets of reagents were used for the other three compo-
nents to generate the Ugi products. The combinatorial library was then designed
by using Chem-Diverse to compare each reagent fingerprint with the fingerprint
for the known drug ligands (MDDR fingerprint). The first reagent selected was the
one that would give library compounds with the most number of privileged phar-
macophores in common with the drug set. These pharmacophores exhibited by the
library compounds from the selected reagent were then removed from the finger-
print of the drug set. The next reagent was selected based on the maximum num-
ber of common privileged pharmacophores with the new smaller MDDR finger-
print. This process was repeated until no more reagents could be found that
contributed a nontrivial number of new privileged pharmacophores. The total
number of new pharmacophores (in this case with no restriction to contain privi-
leged substructures) was also monitored and optimized. Figure 9 illustrates ex-
ample results from one of the Ugi library optimizations.

Cell-based analysis of the pharmacophore fingerprint was used to monitor
progress, particularly with regard to whether a given chemistry could yield further
compounds matching the design criteria. The authors used these monitors to show
that the same Ugi chemistry could indeed yield significant new diversity for mul-
tiple 14,000-compound libraries, but that diminishing returns were obtained after
three libraries. By analyzing the remaining MDDR-pharmacophore fingerprint, it
was shown that most of the remaining pharmacophores to be matched contained
acids and/or bases, and the chemistry approach was modified to use masked acids
(t-butyl esters) and bases (BOC-protected) in the Ugi reaction. This example il-
lustrates how the ability to rapidly determine which cells/partitions are empty, and
by extension which pharmacophores are missing, provides a natural basis for iter-
ative library design of further libraries.

VIII. SPEEDING UP PHARMACOPHORE DESCRIPTOR
ANALYSIS: GRIDDING AND PARTITIONING (GAP)
APPLIED TO REAGENT SELECTION

While whole-molecule pharmacophore descriptors provide a viable technique for
library design, the methodology is still computationally intensive relative to 2D de-
scriptor-based technology. With a 190 MHz R10000 CPU, HARPick can process
about 20,000 druglike compound phamacophore fingerprints per day (55). With
multiprocessor servers it is possible to process up to a million fingerprints per day.
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Nevertheless, for some larger libraries, the possible reagent combinations can be
counted in the hundreds of millions. It is thus inevitable that for many libraries
some reagent prefiltering is required. In the case of HARPick, 2D fingerprint clus-
tering was used to preselect a subset of reagents before the pharmacophore analy-
sis was undertaken (55). It was realized early on, however, that a technique more
consistent with the whole-molecule descriptor would be preferable for this task.

Of equal or greater importance is the fact that as combinatorial chemistry
departments have matured, a need has developed for an easily accessible set of in-
house monomers available for library generation. These monomers again need to
be diverse and able to probe regions of space via attachment to known leads. All
the advantages inherent in 3D descriptors are equally applicable to monomer se-
lection and to whole molecules. Further, the combinatorial issues of monomer se-
lection conformational searching are far less daunting, since the compounds are
much smaller. As a consequence, a more detailed conformational search paradigm
may be employed in descriptor creation.

To exploit 3D descriptors for monomer selection, the GaP program was de-
veloped (71). The GaP procedure is outlined in Fig. 10. The methodology is sim-
ilar to that employed in HARPick, with a stochastic optimization technique em-
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Figure 10 Outline of GaP compound selection strategy.



ployed in conjunction with multiple component scoring function dominated by a
pharmacophore-based descriptor. The specifics of GaP operations are as follows.

1. Orient all reagents into a common frame of reference. Here this is
achieved via alignment of the reagent attachment bond along the x axis
from the coordinate origin.

2. Undertake a systematic conformational analysis of the reagent, allow-
ing free rotation (1- or 2-degree increments) about the attachment bond.
This is undertaken within a 1 Å density rectilinear grid centered on the
origin. A different grid is used for each pharmacophore atom type
(donor, acceptor, acid, base, aromatic, combined donor/acceptor, and
heavy atom).

3. For each molecule, map the position of the relevant pharmacophore
types within each grid, marking the cubes within which they fall. Pairs
of points are also tracked [e.g., “basic group in cube centered at (4, 4,
4) and aromatic ring centered in cube at (8, 0, 3)].

4. Combine the resultant pharmacophore descriptors with other secondary
measures to ensure sensible selections [molecular weight, flexibility,
numbers of acidic/basic/donor/acceptor groups, c log P and a “com-
plexity index” (71)].

5. Use the scoring function in conjunction with a genetic algorithm to
make the reagent selections.

As with HARPick, unconstrained (pharmacophore-only) searches were found to
produce selections dominated by large flexible molecules rich in pharmacophoric
functionality. Figure 11 illustrates the effect of secondary descriptor incorpora-
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Figure 11 Graph highlighting the effect of scoring function modification on reagent se-
lection in GaP. By normalizing the pharmacophore count with an Nrot denominator term (ga
modified to ga_norm), the resultant compound selections are significantly more rigid.



tion. The results show the average flexibility of 50 monomers selected by means
of a genetic algorithm from a set of 385 primary amines. It is clear that the intro-
duction of appropriate secondary descriptors significantly constrains the relative
flexibility of the resulting selections. These results again illustrate the utility of
secondary descriptor incorporation, ensuring that diverse selections are made
within a more sensible property space.

IX. WHY USE 3D PHARMACOPHORES? DESCRIPTOR
VALIDATION

Understanding the utility of a selected descriptor is an important aspect of any li-
brary design. There are many facets to this understanding, and it is hoped that hav-
ing read the preceding sections, the reader will be better equipped to deal with
those pertaining to pharmacophores. The following section highlights these issues
through reference to general CAMD application experience and by means of ex-
plicit validation examples.

A. Implicit Validation

From our own perspective, much implicit descriptor validation can be drawn from
knowledge regarding classical CAMD studies. Section IX.B highlights many of
the useful properties of pharmacophores, together with numerous references to
their successful application. Their ability to determine 3D similarities in struc-
turally diverse molecules is a key feature of these descriptors, no matter what
problem they are applied to. Further, the hit rates for many pharmacophore
searches have been published or are known from in-house work. As a conse-
quence, we have an objective criterion upon which to determine the quality of our
internal screening databases. For example, given a 1% hit rate, we could objec-
tively set 100 instances of any biologically relevant pharmacophore as the target
frequency of occurrence for the database. Given that most in-house databases are
heavily biased toward particular historical targets, one would actually expect the
general hit rate to increase as more diverse libraries are added (at least for novel
targets, e.g., those determined from genomics).

The issues of implicit descriptor properties have been discussed in the liter-
ature. We have already alluded to some of these. Clark et al. (72) also raised the
issue of pharmacophore descriptors when making comparisons to the topoisomer
approach. In their work they raise a number of points regarding pharmacophore
measures:

1. The authors recognized the potential for oversensitivity in the
descriptors.
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2. They surmised that since such descriptors comprise potentially many
thousands of theoretically accessible pharmacophores, they would tend
to have a lower information density than their field-based counterparts.

3. The multiconformational information content of such descriptors was
said to potentially blur meaningful distinctions between molecules.

4. Finally, they did not see an obvious way in which such descriptors
could be used for visual inspection of any relationships between
molecules.

All these points have been addressed in various part of this chapter.
The problems of oversensitivity and information content (points 1 and 2) are

addressed by careful fingerprint construction and similarity index use (Sec. III).
Further, the QSAR results of McGregor and Muskal (68) (Sec. 6) would suggest
that their informational content is potentially superior to that of their 2D and field-
based counterparts.

While it is true that there is a blurring of molecular properties in a multi-
conformational content (point 3), that information content is more complete than
to that achieved from a single conformation. Further, the resulting descriptors also
permit alignment independent analysis, which forms an important property, par-
ticularly for product-based designs.

With respect to point 4, again the Pharmprint (Sec. VI) and HARPick (Sec.
V) techniques illustrate how it is possible to visualize pharmacophoric descriptors.

These points illustrate that, while there are issues with the exploitation of
any descriptor, careful application can lead to success.

B. Explicit Validation

A number of papers have also been written that attempt to address the validation
issue in an explicit manner (57,73–76). Within these publications, two primary
concepts have been applied to analysis of biological data. In the first the idea of
“neighborhood” behavior (73) is promoted as a measure of descriptor utility. The
idea is that if a descriptor is able to cluster molecules with a particular biological
activity, the descriptor encodes information regarding the requirements for that
activity, and by extension is a useful measure of diversity. Analysis using this
technique comparing 2D fingerprints [e.g., MACCS (77) and Unity fingerprints
(78)] with pharmacophore fingerprints led to the conclusion that 2D descriptors
performed better than their 1D and 3D counterparts (57,74). Unfortunately there
are a number of issues with the studies undertaken. The first relates to the data sets
employed. Most have been taken from databases of drugs/compounds from the
clinic (e.g., the MDDR). The problem with such an approach is that the resultant
biological activity class sets contain many closely related analogs, which by their
nature are very similar in 2D terms. As a result, one would expect at least a slight
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biasing of the results toward 2D descriptors, making the study somewhat rhetori-
cal. Further, the parameters used to set up the pharmacophore descriptors were
less than ideal. For example, in one study only single conformations were used in
the pharmacophore fingerprint calculation (74), and in the other the oversensitive
Tanimoto index (Eq. 1) was employed with too tight a bin setting (27 bins from
2.5–15 Å in steps of 0.5 Å, with five types: acceptor atoms, acceptor sites, donor
atoms, donor sites, and hydrophobes, giving a total of 307,020 bits) (57). The
problems with such settings have already been extensively highlighted (see Secs.
III and V). Limited studies of this kind have also been undertaken within Bristol-
Myers Squibb using more optimum settings for pharmacophore fingerprint gen-
eration [four-point pharmacophores, seven distance bins, and full conformational
analysis (9)], with quite different results. An example is shown in Fig. 12. This
study illustrate the hit rates obtained by similarity ranking of roughly 150,000
compounds containing some 250 known melatonin antagonists. The graph shows
the number of active compounds located across the first 1000 compounds in the
list when the data set was ranked using melatonin as the probe molecule. It is clear
that of the 2D descriptors shown, only the most generic atom pair (79) descriptor
(which in many respects is essentially a two-point pharmacophore fingerprint with
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Figure 12 Active compound selection hit rates for similarity analysis of database con-
taining around 250 known melatonin antagonists. The excellent performance of the phar-
macophore descriptors is clear. The complementarity of atom pair and pharmacophore de-
scriptors when combined is also noteworthy.



intercenter distance replaced by bond count) produces comparable results. Fur-
ther, running a 2D Unity similarity search with 50% similarity cutoff produced a
hit list of 1669 compounds containing 10 melatonin actives. In contrast, the phar-
macophore search finds 93 actives in the first 1669 compounds, an enrichment of
exceeding ninefold. We are currently undertaking preliminary studies on systems
with a much wider divergence in active ligand chemotypes. Preliminary results
here suggest hit rates even more favorable to pharmacophore fingerprints, with no
2D methods (including atom pairs) able to better random hit rates. (as one would
expect given the wide range of structural types). It is of interest that averaging the
four-point pharmacophore/atom pair rankings leads to even better results in the
melatonin investigation, highlighting the potential advantages of combined de-
scriptors [something that was also noted in one of the published validation studies
(57)].

The second technique for validating descriptors may be termed “coverage
analysis” (76). With this method the ability to include as many molecules with dis-
tinct biological activity classes as possible in a diverse selected set is used as a
measure of descriptor quality. The technique has the advantage of not being bi-
ased by the presence of close analogs in the data sets, since it is biological class
coverage rather than clustering capability that is being tested. Published studies
using this technique again suggest a better performance using 2D descriptors (57)
(e.g., 58% vs. 49% coverage from 55 biological classes, for a selection of 60
molecules from a 1268-compound subset), but these results are once more subject
to the caveat of suboptimal pharmacophore fingerprint construction.

Similar studies have been undertaken at Glaxo Wellcome, and again quite
different results were obtained. A set of known drugs was extracted from the
World Drug Index (54), with each molecule having one, and only one, reported
mechanism of action. The set was filtered to remove alkylating agents and
molecules where the mechanism of action was felt to be too generic, such as “an-
tifungal.” The final set contained 653 compounds with 104 reported mechanisms.
A random selection was made from the set of 653 drugs, with multiple subsets of
1 to 50% being constructed. The number of unique biological activities was de-
termined for each subset, and each selection was performed 1000 times. A variety
of commonly applied chemical descriptors and selection methods were applied to
the data set. These include 2D MACCS public keys and Wards clustering of Tan-
imoto similarity, BCUT descriptors (50) with a cell-based selection and Cerius2
combinatorial chemistry consortium (67) default properties with principal com-
ponent analysis. The two 3D pharmacophore key methods studied were Chem-Di-
verse sequential selection procedure (default three-point, seven-type pharma-
cophore keys), and an extension of the GaP program (71) using three-point
pharmacophore keys from Catalyst (60). Pharmacophore center types similar to
Chem-X (see Sects. IV–V) with bin distances as reported by Mason et al. (80)
(creating a key based on six distance bins with ~6000 bits) were employed. For
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the GaP keys, Wards clustering and Tanimoto similarity were again used. BCUT
descriptors were calculated with Diverse Solutions software, which yielded a five-
dimensional property space. The cell-based selection was performed in the
Cerius2 software (81), to aid comparison with other properties (not shown). The
Cerius2 default properties are mainly topological indices, supplemented by 1D
terms such as molecular weight and rotatable bonds, totaling 49 descriptors. PCA
was used to reduce the dimensionality, yielding a set of six principal components
that cover more than 90% of the variance in the data. Before application of the
Chem-X selection method (discussed in Sect. IV), the molecules were first sorted
by the length of their SMILES strings. Other sorting procedures (random, phar-
macophore promiscuity) failed to improve the results. To select different percent-
ages of the set, the acceptance criterion for new molecules was changed from the
default “10% of pharmacophores must be new” down to the simple “displays at
least one new pharmacophore”.

The results of this analysis are shown in Fig. 13. The reported “gold stan-
dard” for this type of work is Wards clustering with MACCS keys (74). As can be
seen, the 3D GaP descriptors are at least as good (despite the use of the oversen-
sitive Tanimoto index), with both methods giving improvements over random of
several standard deviations. The deficiencies of the Chem-Diverse selection
method are well illustrated. Although initially very good, as the pharmacophore
keys are saturated the selection becomes poorer, until eventually it is little better
than random (highlighting the descriptor saturation problem). The widely used
BCUT descriptors do not perform well in this study, and the superiority of
MACCS keys over simple molecular properties is exemplified.
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Figure 13 Results of biological activity class hit rate analysis for diverse compound sub-
set selections using a variety of descriptors. Again the excellent performance of pharma-
cophore keys is worthy of note.



Work still needs to be done with such validation experiments. For example,
further investigation is required into the performance of combined descriptors.
Also much is left to study regarding the relative performance of different phar-
macophore fingerprints (e.g. the utility of two- vs. three- vs. four-point descrip-
tors). Nevertheless, these studies again demonstrate the biological relevance of 3D
pharmacophore keys. Further, they highlight the potential pitfalls of descriptor
validation, since it is clear that not all descriptors (pharmacophores and others) are
created equal.

X. CONCLUSIONS

This chapter highlights the potential utility in library design of pharmacophores,
which possess a proven ability to divorce the 3D structural requirements for bio-
logical activity from the 2D chemical structure. Such descriptors can be alignment
independent, with calculation speeds rapid enough to permit their use on library
profiling data sets, a task deemed too large for most other 3D descriptors. When
carefully applied and used in combination with other properties to ensure a bal-
anced selection, pharmacophore-driven scoring functions thus provide a powerful
tool for library design.
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I. INTRODUCTION

Combinatorial chemistry, a major drug discovery tool, heavily relies on chemoin-
formatics (1,2) and molecular modeling to manage the huge flux of structural in-
formation related to potentially feasible combinatorial products, and to intelli-
gently direct synthesis efforts toward products with a maximal chance of fulfilling
the stringent conditions required of a drug molecule. Until recently, even the num-
ber of combinatorial products that potentially could have been obtained on the ba-
sis of commercially available starting materials and relatively simple two- or
three-step chemistries would have largely exceeded the available modeling ca-
pacities. In response to these novel constraints, molecular modeling tools dedi-
cated to combinatorial chemistry (3–5) have been successfully developed. Soft-



ware packages aimed at processing large sets of molecules are nevertheless re-
stricted to the fast bidimensional (topological) (6–8) description of combinatorial
products, thus avoiding the computational effort due to geometry buildup and con-
formational sampling. Conformer generation may require seconds to minutes of
CPU time per molecule, depending on the effort spent to score the relative rele-
vance of the visited phase space region (using a simple bump check criterion to re-
ject impossible geometries vs. performing a full-blown potential energy evalua-
tion). Therefore, 3D descriptors may be routinely used to characterize libraries
containing 104–105 compounds.

Ingenious solutions featuring combinatorial product descriptors defined in
terms of the descriptors of their corresponding building blocks (9), therefore not
requiring explicit construction of products, are successfully exploiting the “com-
binatorial advantage” to significantly reduce the cost of descriptor evaluation. The
generation of 3D descriptors in the latter context is especially rewarding, since the
computationally intensive 2D → 3D conversion is performed at a building-block
level, scaling as the sum of implied combinatorial reagents. However, such an ap-
proach accounts for only the structural features confined within every building
block, but not for the global structural features of the final combinatorial product,
since no information about the relative positioning of the building block moieties
in the final product is provided.

The use of geometry-dependent descriptors to characterize molecules may
prove an important source of artifacts, if the typical variance of such descriptors
with respect to a set of conformers of a same molecule is comparable to the
variance expected within a set of single conformers of different molecules. In
particular, a molecule for which single conformations are generated according to
different geometry builders may be the source of significantly different 3D de-
scriptor values in function of the used 2D → 3D conversion strategy. A similar-
ity search routine based on these 3D descriptors may actually rank two such
conformers as “dissimilar” species, failing to recognize that they represent the
same molecule!

There is an ongoing debate (10,11) with regard to the superiority of 3D over
2D descriptors, since the benefits of including geometric information may be
counterbalanced by previously discussed artifacts. Nevertheless, 3D information
is essential for the understanding of structure–property relationships, justifying
the investment of research effort into developing novel 3D descriptors that are less
dependent on conformational sampling. The present work focuses on this impor-
tant problem, describing the following:

An algorithm for the generation of multiconformational models of the
combinatorial products by concatenation of building-block conformers
obtained from an adapted conformational sampling approach. This
scheme successfully opens the way to the characterization of the global
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structural product features, while fully preserving the computational ad-
vantage due to relegation of the 2D → 3D conversion step at a build-
ing-block level.

The definition of fuzzy bipolar pharmacophoric autocorrelograms (FBPA),
fuzzy logic-based 3D descriptors, taken as averages with respect to all the
sampled conformers.

Based on this high throughput methodology, we will discuss drug design
tools dedicated to the buildup and exploitation of a virtual library of chemically
feasible compounds, such as the following:

Rule-based chemical filters designed to allow the enumeration of the chem-
ically feasible combinatorial products in contrast to all the mathemati-
cally possible pairs, triplets, or multiplets of building blocks

The use of similarity metrics based on the previously defined FBPA, for
high throughput similarity searches

The aim is to provide an overall view of the potential applications of the compu-
tational tools in drug design.

In particular, a critical analysis of the potentialities and limitations of 
similarity-based searches for active analogs will try to situate this methodo-
logy within the everyday context of the drug discovery activity. Real-life vali-
dation studies must go beyond the estimation of some statistical quality parame-
ter of the algorithm according to ever so ingenious in silico simulations, and 
they must account for the manifold heuristic factors interfering with the research
process.

First, an in silico “seeding” experiment was performed to demonstrate the
ability of the FBPA metric to retrieve structurally different known farnesyl pro-
tein transferase inhibitors-“hidden” among large compound collections-on the ba-
sis of their low dissimilarity score with respect to an active reference molecule.
This simulation also provided a benchmark against which to compare the dis-
criminant powers of different “classical” dissimilarity metrics against the FBPA
approach.

Second, the design and testing results of a small focused library of dopamine
transporter (DAT) ligands, relying on combinatorial FBPA-selected nearest
neighbors from the virtual collection of synthetizable products, were shown as a
typical example of the practical results that can be achieved with this methodol-
ogy.

Eventually, a more complex lead optimization program in which high
throughput modeling and similarity searches were synergistically combined 
with substructure searching techniques and—most important—medicinal chem-
istry know-how, lead to the discovery of novel, nanomolar �-opiate receptor 
ligands.
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II. METHODS

A. From Reagents to Building Blocks to Combinatorial
Products: The “Virtual Chemistry Engine”

A first task of molecular modeling in combinatorial chemistry is the automated
enumeration of the expected combinatorial products of a library, on the basis of
the reagents used to build it. Several approaches to this problem have already been
reported and implemented in different commercially available software packages.

“Analog builders” (12) ornate a common scaffold of the library with the cor-
responding “groups” provided by each of the synthons for each predefined “sub-
stitution point” of the scaffold [provided different software (13) was employed
earlier to automatically “extract” these substructures that actually appear in the
combinatorial products out of the actual synthon molecules submitted to the given
chemical transformation]. This buildup of combinatorial products is a purely topo-
logical operation, involving the updating of the connectivity tables to include the
newly formed bonds between the scaffold and the added fragments. Some soft-
ware packages also generate a very crude 2D/3D model of the resulting compound
by adjusting the available coordinates of the group atoms to ensure a reasonable
length and orientation of the newly formed bonds, but to obtain clash-free 3D ge-
ometries of the combinatorial products, no attempt is made to optimize the rela-
tive orientations of the introduced substituents.

In contrast to analog builders, general methods for the modeling of chemi-
cal transformations are based on open-ended “chemical languages” (14) with a
well-defined grammar, allowing the description of virtually any chemical trans-
formation, including those involving ring closures. This description implies the
characterization of the common chemical environment of each functional group
implied in the transformation, to allow the software to automatically detect the
corresponding representatives in every submitted synthon molecules. Further-
more, mapping rules outlining the equivalencies between the groups in the start-
ing and final products must be provided. Graphical interfaces allow the input of a
simple reaction sketch and automatically convert it to the corresponding expres-
sion processed by the chemical language interpreter. The enumeration of combi-
natorial products by this algorithm is a purely topological operation.

A different combinatorial product buildup strategy has been adopted in the
present work, formally representing each product as resulting from the coupling
of two “building blocks” by means of a single, double, or partially double bond.
In this context, the term “building block” is used to design any conveniently cho-
sen molecular fragments allowing the representation of the combinatorial prod-
ucts as pairs of such fragments, linked by only one bond. A rule-based “chemical
filter” performs the automated conversion of the input reagent structures into the
corresponding “building blocks,” according to the following steps.

Detection and deletion of counterions if the synthon appears under the form
of a salt in the input files.
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Detection of the reactive center in a synthon molecule according to the in-
put list of (electrophilic or nucleophilic) functional groups that display an
appropriate reactivity in the chemical synthesis envisaged. Nucleophilic
groups may be specified in choosing the type of the nucleophilic center
and its substitution count, whereas the nature of the leaving group and the
nature of the electrophilic center must be specified for a complete desig-
nation of electrophilic groups. For example, “Hydroxyl group@Carbonyl
group” describes the carboxylic group in an acylation process (Fig. 1).
Recognition of the outlined functional groups is rule-based, and the func-
tional groups of significantly different reactivity, such as amines, ani-
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Figure 1 Graphical interface of the “chemical filter.”



lines, and amides, are distinguished. After having detected a putative re-
active center (RC), in its default mode, the software breaks the bond be-
tween the reactive center and the leaving group (if necessary) and labels
the reactive center by adding a “D” dummy atom to it (Fig. 2A). How-
ever, in an alternative “RC cutoff” mode, the bond between the reactive
center and the rest of the molecule will be broken, and the reactive center
deleted (Fig. 2B). If multiple potentially reactive centers exist in a
molecule, the software generates all the possible building blocks, but
flags those species and issues a warning diagnostic allowing the user to
check whether some or all must be discarded. An error flag is attached to
all the synthons in which no reactive centers have been detected.

Optional “transformation” of the building blocks, by replacing the dummy
atom, denoting the free valence of the RC by a “transformer” moiety that
can be assimilated to the common scaffold of analog builders. These
transformer moieties may represent any valid chemical substructures,
with two specifically labeled centers: the anchoring point to the building
blocks to be transformed and the new “reactive center,” evidenced by its
bond to a “D” atom and denoting the point at which the coupling to the
combinatorial partners will occur.

Molecular mass and rotatable bond number evaluation, issuing a warning
message if the user-specified threshold values are exceeded.

Detection of unwanted groups, potentially harmful for the synthesis yield or
for the biological properties of the combinatorial products. If such groups
are detected, a specific warning flag will be attached to those building
blocks.

Optional automated detection and deletion of classical protective groups
such as BOC (benzyloxycarbonyl), FmOC (fluorenylmethyloxycar-
bonyl), or t-butyl esters.

As shown in Fig. 2, this approach can be consistently used to generate any
combinatorial library that could be constructed by analog builders, having the spe-
cial advantage of the straightforward functional group–based definition of the re-
quired chemical profiles. This is unlike classical software (15) requiring multiple
substructure-based queries to perform the selection of synthons qualifying for a
given chemical synthesis. To maximize the relevance of the selected building
blocks at every step of the synthesis, the algorithm is completely interactive and
the automated decisions to select/discard a given synthon may be easily overrid-
den by the user. The approach does not however support ring closure reactions in-
volving polydentate synthons. The major advantage of this library construction
philosophy resides in the fact that it can be generalized to handle molecular ge-
ometries and to rapidly build 3D multiconformational models of combinatorial
products starting from conformer families of the constituent “building blocks.”
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Figure 2 Various applications of the “synthon–building-block–combinatorial product”
buildup strategy. (A) Building an amide library with building-block linker bond identical
to the one formed in the chemical transformation. (B) Modeling of a library of heterocy-
cles, involving a ring closure step. The formal building-block linker bond is chosen to be
exocyclic by using the “RC cutoff” and “transformer” options to conveniently define build-
ing blocks already including the heterocyclic scaffold. (C) Modeling of a library involving
multiple synthesis steps. Dimeric combinatorial subproducts are generated at a first stage
and then submitted to the “Chemical Filter” to be converted into building blocks.



B. Exploiting the “Combinatorial Advantage” for High
Throughput Generation and Analysis of 3D-
Multiconformational Models of Combinatorial Products:
The “Ghost Database” Mechanism

The key advantage of parallel high throughput organic synthesis (HTOS) of
combinatorial libraries over classical medicinal chemistry is the ability to gen-
erate a large quantity of compounds. This quantity scales as the product of used
synthons of each type, whereas the up-front, labor-intensive steps including the
preparation (purchasing, weighing, dissolving) of the synthons only scales as the
sum of synthon numbers. Synthesis robots are in charge of the “combinatorial
explosion” step at a relatively low cost. By analogy, an optimal molecular mod-
eling scheme of combinatorial products would maximally benefit from this
“combinatorial advantage” if the rate-limiting step of geometry buildup and con-
formational sampling could be performed at building-block level (16). This
would allow the combinatorial building mechanism to use predefined building-
block geometries to rapidly construct conformer families of the combinatorial
products.

Two main problems have to be solved before such an approach can be
enabled:

1. Building blocks must be defined to ensure that in order to form a com-
binatorial product, only one new bond needs to be established between
two partners.

2. The predefined building block conformers must be representative of the
geometries adopted by that substructure in the combinatorial products,
not of the geometries adopted by the synthon molecule itself.

Although there is no absolutely general solution satisfying the first issue, the
library enumeration strategy described previously specifically focuses on the de-
scription of combinatorial products as building block pairs linked by a unique
bond and may cover a wide range of arbitrarily complex chemistries. To address
the second issue, a conceptually simple “maximum constraint conformational
sampling” approach of building-block geometries has been developed as part of
the present work, relying on the standard conformational sampling procedure used
by the Catalyst (catConf) software (13). Prior to submission to the conformational
sampling algorithm, the dummy “D” atom representing the free valence of the RC
of every building block is replaced by a “spaceblocker” template, and the result-
ing “chimerical” molecule is submitted to catConf, using the “best” sampling
mode and allowing for 20 kcal/mol of excess strain energy with respect to the best
conformer or for a maximal number of typically 20 conformers. In the resulting
conformers, the spaceblocker template is deleted and replaced again by the “D”
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marker atom of the free valence of the building block. The spaceblocker moiety
was chosen to satisfy the following constraints:

Being bulkier than most of the combinatorial partners a building block may
encounter in a combinatorial library, so that the space it occupies in the
vicinity of the RC, which remains free of atoms after deletion of the
spaceblocker, is large enough to accommodate these combinatorial part-
ners.

Being apolar, to avoid the formation of fictive hydrogen bonding or
charge–charge interactions between the functional groups of the building
block and the spaceblocker atoms, forcing the former to fold over the lat-
ter.

Being void of internal degrees of freedom, to minimize the computer time
spent to sample the meaningless conformational space of the space-
blocker itself. Since the catConf software recognizes topological symme-
try and avoids sampling of “degenerate” rotatable bonds, a fully sym-
metrical moiety in which all the � bonds are 3-fold symmetry axes
represents an elegant solution to this problem.

A species thought to best fulfill these conditions is the tris(triiodo-
methy)silyl moiety —Si(Cl3)3.

The restricted conformations of the building blocks obtained after the space-
blocker moiety has been severed are next oriented with their free valence along
the z axis, with the RC at the origin of the coordinate system, the “D” free valence
label at positive z values and one of the remaining RC substituents in the y–z plane.
Whenever the RC may adopt different hybridizations in function of the nature of
the coupling chemistry, distinct sets of coordinates reflecting the possible local
RC geometries are created. For example, if amine building blocks are modeled,
the resulting hybridization of the nitrogen atom RC in R1R2N—D after the con-
formational sampling of R1R2NH—Si(Cl3)3 will be sp3. An alternative set of co-
ordinates in which the geometry of the N atom is set (by relocating the dummy
atom D) to the planar sp2 configuration is also created and stored on disk to be
used for the buildup of amides. The original set of building-block geometries with
an sp3 nitrogen will be used to generate conformers of combinatorial products of
N-alkylation reactions.

The set of routines in charge of building multiconformational 3D models of
combinatorial products on the basis of the previously described sets of restricted
conformations of building blocks will be further on referred to as the “ghost
database” mechanism (GDbM). This mechanism is completely transparent to the
user and automatically takes over control to generate the required structures of
combinatorial products whenever the system encounters a molecule ID that can be
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successfully interpreted as a combinatorial compound name of the following
form:

[First Building Block ID]-(special character denoting the type of the linker
bond: single, double, partially double)-[Second Building Block ID]

Performing the actual buildup of the conformers of the combinatorial product is
actually as fast as the input of the corresponding molecular file, and therefore
the system actually behaves as if the combinatorial product structures were ac-
tually stored on disk in a fictive “ghost database.” This buildup occurs in sev-
eral steps.

Syntactic analysis of the combinatorial compound name, broken up into the
two names of component building blocks and the type of the newly
formed bond.

Retrieval of the sets of conformers stored for each of the building blocks,
corresponding to the proper hybridization status of the reactive centers as
defined by the order of the newly formed bond.

Pairwise coupling of the current conformers of the building blocks. Given
that all building-block geometries have their “free valence” oriented
along the z axis, this operation resumes to a mirroring of the coordinates
of the second building block with respect to the x–y plane, followed by
their translation along the z axis to ensure a natural length for the newly
formed bond.

A two- or three-step torsional driving around this newly formed bond, in
function of the nature of the newly formed bond.

Bump check of the rotamers resulting from the previous step. If no bad
contacts are observed, the conformers of the combinatorial product are
registered, otherwise they are discarded. The loop continues with the
next possible combination of building block conformers, until a prede-
fined number (typically 40) of valid product geometries have been reg-
istered.

To evaluate the quality of the geometries provided by the “ghost database”
mechanism, a series of 350 randomly cherry-picked combinatorial products is-
sued from four different libraries (amides, carbamates, ureas, and hydrazones)
have been built using this approach. A single conformer per compound out of the
set produced by the GDbM was subjected to minimization using the CVFF force
field (17). The change in internal energy accompanying the rearrangement of the
molecular geometry during minimization has been monitored and stored for fur-
ther analysis. At each iteration it, the average drift of atomic coordinates (ADAC):

ADAC(it) � (1)
∑i�1,N ∑j�1,3 (xi, j

(it�0) � xi, j
(it))2

���
3N
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and the maximal interatomic distance change (MICD, where di,k represents the
Cartesian distance between two atoms i and k):

MICD(it) � max
k�i;i�1, N

| di, k
(it�0) � di, k

(it) | (2)

have been monitored against the excess of strain energy �(it) of the current ge-
ometry with respect to the found energy minimum. These values were extracted at
the points of the minimization trajectory intersecting the excess strain energy
thresholds of 	 � (
20, 
10, 
5, 
2, 0 kcal/mol) with respect to the CVFF op-
timum. Their averages over the molecules in this set, as well as their maximal val-
ues observed within that set are reported in Table 1. In parallel, the same simula-
tion was run with departure geometries taken (1) as the lowest energy conformers
found by the catConf software and (2) as minimum energy conformers according
to the universal force field (UFF) (18).

C. Fuzzy Bipolar Pharmacophore Autocorrelograms
(FBPA)

In a similarity space based on 3D descriptors, a single molecule may be alterna-
tively positioned at different points of this space, if different geometries were used
to evaluate the 3D indices. Therefore, a key requirement of any similarity met-
ric—the identity of any molecule to itself ([A � B] �� [dissimilarity(A,B) �
0])—may be violated if no measures are taken to ensure that strictly the same 3D
models were generated for every occurrence of a molecule in a study. In particu-
lar, topologically highly similar pairs of compounds that might in principle also
adopt similar 3D folds may no longer be recognized as being similar species if the
2D → 3D conversion algorithm produced a completely different geometry for
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Table 1 Monitoring the Average Drift of Atomic Cooridnates (ADAC) and Maximal Interatomic
Distance Change (MIDC)a

	
〈ADAC(it)�ε(it) � 	〉 〈MID(it)�ε(it) � 	〉 max(ADAC�ε(it) � 	) max〈MIDC�ε(it) � 	〉

(kcal/mol) GDbM cat UFF GDbM cat UFF GDbM cat UFF GDbM cat UFF

20 0.11 0.03 0.03 0.59 0.18 0.20 1.02 0.44 0.52 5.73 2.21 2.92
10 0.25 0.07 0.11 1.18 0.37 0.53 1.46 0.70 1.81 7.71 3.45 7.67
5 0.41 0.16 0.25 1.87 0.81 1.18 1.85 1.22 2.16 8.88 6.10 8.40
2 0.66 0.35 0.45 2.83 1.64 2.06 2.27 1.73 2.28 11.92 8.20 13.13
0 0.93 0.59 0.73 3.75 2.67 3.20 2.43 2.18 2.71 13.61 8.50 13.98

a These represent the degree of structural change required to reach the nearest point within 	 kcal/mol from the next local optimum on the CVFF-based
potential energy surface, starting from initial molecular geometries obtained from the ghost database mechanism (GDbM), the catConf sampling al-
gorithm (lowest energy conformer obtained in “best” sampling mode, abbreviated “cat”), or energy-optimized catConf geometries, using the Univer-
sal Force Field (UFF). The table shows both average values of these descriptros taken over the 350 combinational product structures used in this study
and the maximal fluctuations.



each one of them. The original 3D fingerprints introduced in this paper, the fuzzy
bipolar pharmacophore autocorrelograms (FBPAs) and the FBPA-based dis-
similarity metric, have been defined to minimize the chance of such artifacts. The
main measures taken to achieve this goal were as follows.

1. Molecular fingerprint buildup as an average of the individual confor-
mational fingerprints of the diverse sampled conformers. While any two confor-
mational fingerprints may widely differ, the “consensus” descriptor built by aver-
aging over a representative, albeit not exhaustive, set of diverse conformers is less
likely to show a marked dependence on used the sampling scheme.

2. The use of fuzzy logic to build and compare these 3D fingerprints,
avoiding the “all-or-nothing” bitwise match of binary 3D fingerprints (19), in
which sampling artifacts triggering differences in geometry may result in revers-
ing the on/off status of the corresponding bits. By contrast, the fuzzy similarity
score defined here continuously decreases as the observed differences between the
monitored geometrical features increase.

1. Pharmacophoric Features: Bipolar Pharmacophore Types
(BPT)

Six classical pharmacophoric features—hydrophobicity (H), aromaticity (AR),
hydrogen bond acceptor (HBA) and donor (HBD) character, as well as cationic
(POS) and anionic (NEG) character—are considered for the construction of the
FBPA. An automated feature assignment routine is used to detect all the heavy
atoms representing each of these features, according to empirical rules defining
the most probable ionization status of the functional groups at pH 7. Labeled as
hydrophobic are all the halogen atoms, sulfur, and carbons, except for the carbons
in aromatic systems, guanidines, and carboxylate groups. Every individual carbon
or heteroatom member of an aromatic ring is taken as a representative of the aro-
matic feature (aromaticity is checked for any ring system involving only sp2-hy-
bridized atoms according to the hybridization flag in Cerius2, by summing the
number of � electrons and applying Hückel’s “4n 
 2” rule). Any O or N atoms
with a free electron pair are considered to be hydrogen bond acceptors, while any
heteroatom explicitly bound to a hydrogen is labeled as donor. Aliphatic amino
groups (including hydrazines) and guanidines/amidines, but not aniline groups or
amides, are considered to be protonated, that is, carriers of a positive charge, ac-
cordingly acting as hydrogen bond donors and not acceptors. The positive charge
feature in guanidines/amidines is assigned to the central C atom. Aniline and
amide—N atoms are on the contrary labeled as (neutral) hydrogen bond acceptors.
Carboxylate groups (and the equivalent tetrazole rings) are representatives of the
anionic feature (associated with the C atom). Carboxylate oxygens are marked as
hydrogen bond acceptors. Imidazoles (but not benzimidazoles or imidazoles sub-
stituted by electron-attractive groups such as phenyl or nitro), are reserved for spe-
cial treatment, owing to ambiguity concerning their protonation status at pH 7:
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two different fingerprints will be generated for such compounds, the first assum-
ing a neutral, the second a protonated imidazole ring.

The 1⁄2 Nf (Nf � 1) � 21 pairwise combinations of the Nf pharmacophoric
features we consider (H–H, H–AR, H–HBA, . . . , H–NEG, AR–AR, AR–HBA, .
. . , AR–NEG, . . . , . . . , POS–NEG, NEG–NEG) will be referred to later as “bipo-
lar pharmacophore types” (BPTs). A pair of atoms in which the first partner pos-
sesses one, and the second the other feature defining a given BPT is said to
“match” or “represent” the given BPT. For example, an atom pair might consist of
an alcoholic–OH group and the �NH group of an indole ring represents the
(HBD–HBD), (HBD–AR), (HBA–HBD), and (HBA–AR) bipolar pharma-
cophore types. Formally, if BPT (a, b) � (ƒa, ƒb) is a pair of two specified features
ƒa and ƒb (a, b � 1, . . ., Nf), for a pair of atoms (i, k) with i ~ ƒa and k ~ ƒb (e.g., i
having feature ƒa and k feature ƒb), we can write (i, k) ~ BPT (a, b).

2. FBPAs Represent the Conformer-Averaged Distance
Distribution Densities of the Sets of Distances Between the
Atom Pairs Representing Every BPT

For each available conformation of the current molecule, a complete interatomic
distance matrix dik is first calculated. At next step, the algorithm sequentially
browses through the 21 BPTs, selectively analyzing the pairs of atoms matching
the current BPT to build the conformational distance distribution histogram of this
BPT. It uses Nbin � 12 distance bins with a width of 1 Å, homogeneously span-
ning a range between 3 and 15 Å, to classify all the atom pairs matching the cur-
rent BPT (a, b). The most straightforward scheme to assign the pairs (i, k) ~ BPT
(a, b) into these distance bins is to consider all the pairs with 	 � dik  	 
 1 as
members of bin 	. However, this leads to “binning artifacts” for pairs separated
by distances that are very close to an integer value, their classification in the lower
or upper bin being decided by irrelevant fluctuations setting the actual distance
slightly above or below the threshold 	. The “smoothing out” of binning artifacts
used to build property-weighted autocorrelograms as input for neural networks
(20) led to powerful molecular descriptors. This work features a slightly different
solution to this problem, introducing a probability p(d, 	) of association of an
atom pair at distance d to a bin 	:

�
[d* �0.5] � d* 
 1.5 if 	 �� [d* � 0.5] � 2

p(d*, 	) � d* � 0.5 � [d* �0.5] if 	 �� [d* �0.5] � 1

0 otherwise

(3)

where the notation [x] stands for the integer (truncated) part of x. Here d* repre-
sents a normed interatomic distance forced to take values between 3.5 and 15.5 Å,
so that atom pairs at d  3.5 Å or pairs at d � 15.5 Å will be counted, respectively,
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in the first and last bin rather than being ignored for falling out of the considered
binning range:

3.5 if d  3.5

d* � �d if (3.5 � d � 15.5 (3�)

15.5 if d � 15.5

Accordingly, an atom pair separated by a distance of exactly 5.5 Å will be
assigned to a single distance bin 	 � 3 with a probability of p(5.5, 3) � 1. At 5.4
Å however, the atom pair would have been classified in bin 	 � 2 with a proba-
bility of p(5.4, 2) � 0.1 and in bin 	 � 3 with a probability of p(5.4, 3) � 0.9. All
the short-distance pairs of bonded and geminal atoms (d  3.5) are assigned to bin
	 � 1, whereas all the pairs exceeding the maximal distance range are grouped in
the last bin, 	 � Nbin.

The molecular fuzzy bipolar pharmacophore autocorrelogram is defined as
the vector of the fuzzy (assignment probability-weighted) number of atom pairs of
the given bipolar pharmacophore type BPT(a, b) assigned to each distance bin 	,
averaged over the set of sampled conformers:

�M (a, b, 	) � �∑(i,k)~BPT(a,b) p(d*ik, 	)�conformers of M (4)

The FBPA of a compound M consists of 1⁄2Nf (Nf 
 1) � Nbin � 21 � 12 �
252 components �M(a, b, 	) and can be represented as a set of 21 distance distri-
bution histograms. Each of these histograms is associated with a pharmacophoric
feature pair BPT(a, b) � (ƒa, ƒb), with 1 � a � b � Nf, and monitors the popula-
tion of matching atomic pairs within each of the Nbin distance bins. Figure 3 pro-
vides a comparative display of the populated histograms from the FBPA of three
compounds (histograms corresponding to feature pairs represented in at least one
of the three compounds).

3. FBPA-Based Similarity Metric: Definition and Calibration

A quantitative measure �(m, M) of the dissimilarity of two molecules m and M
can now be defined as the “distance” between their representative points in the
space of the FBPA descriptors. However, not all the possible metrics that could be
defined in the 252-dimensional space of the FBPA vectors are equally relevant
measures of molecular similarity. A convenient way to define a metric accounting
for the specific structure of the FBPA descriptors is the introduction of feature
pair partial dissimilarity scores �a,b(m, M), each comparing the distance distribu-
tion histogram associated to a BPT (a, b) in m to its counterpart in M, defined as
follows:

�a,b(m, M) � 1 � (5)
2(�m � �M)a,b

����
(�M � �M)a,b 
 (�m � �m)a,b
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where

(�m � �M)a,b �

∑Nbin

	1�1 ∑Nbin

	2�1 �m (a, b, 	1)�M (a, b, 	2)exp[��(	1 � 	2)2]
(6)

It can be seen that at very large values of the “fuzziness” factor �, the con-
volution product (Eq. 6) resumes to a scalar product between the vectors describ-
ing the distance distribution density of the given BPT (a, b) and Eq. (5) becomes
the classical Dice dissimilarity metric (21). The intuitive example of four hypo-
thetical molecules A, B, C, D, each displaying a unique peak corresponding to an
atom pair of given BPT at 4, 6, 12, and 14 Å, respectively, offers a straightforward
explanation of the importance of an appropriate calibration for the fuzziness fac-
tor �. The molecules are predicted to be completely dissimilar with respect to each
other (� � 1.0) at very large � values and perfectly identical (� � 0.0) at � � 0.
The fuzziness factor should be set to obtain dissimilarity coefficients agreeing
with the intuitive observation that A is similar to B and practically equally dis-
similar with respect to C and D [e.g., 0 � �(A, B) � �(A, C)  �(A, D) � 1]. The
sensitivity of the metric to conformational sampling artifacts decreases with de-
creasing � (note that in the preceding example, molecule B could have actually
represented the same chemical species A, in which the small offset of peaks was
due to the use of different sampling procedures to build the geometries). However,
too low an � value would force the metric to completely ignore the differences in
distance separating the atom pairs of given type, degenerating into a dissimilarity
score based on the differences of total numbers of pairs of the given BPT, disre-
garding their interatomic distances. Formally, increasing the tunable parameter �
from 0 to large values gradually turns the FBPA dissimilarity score from a feature
pair count-based metric (like the ISIS key similarity score, with the difference that
the monitored “fragments” represent pairs of pharmacophoric features) into a full-
blown 3D metric. The fitting of � is expected to reveal an optimal configuration
at which the FBPAs best combine the robustness of substructure key fingerprints
and the information richness of 3D descriptors.

The global dissimilarity score �(m, M) can now be introduced as a weighted
average of the partial dissimilarity scores with respect to all the bipolar pharma-
cophore types BPT (a, b) represented in at least one of the molecules m and M
(otherwise, the denominator of Eq. 5 being zero, the corresponding partial dis-
similarity score is not defined):

�(m, M) �

(7)

The feature weighing factors w(a); a � 1, . . ., Nf represent five supplemen-
tary fittable parameters of the dissimilarity metric, encoding the relative impor-

∑Nƒ
a�1 ∑Nƒ

b�a w(a)w(b)�a,b (m, M) | (�M � �M)a,b 
 (�m � �m)a,b � 0
�������

∑Nƒ
a�1 ∑Nƒ

b�a w(a)w(b) | (�M � �M)a,b 
 (�m � �m)a,b � 0



Figure 3 The FBPA of two biologically related molecules (D2 inhibitors) display an eas-
ily observable covariance, by contrast to that of a third randomly picked compound void of
D2 inhibitory activity. Each histogram is associated to a feature pair (a,b), displaying on Y
the “fuzzy” total number of atom pairs of corresponding type classified in each of the 12
distance bins on X.
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Figure 3 Continued.  Each histogram is associated to a feature pair (a,b), displaying on
the y axis the “fuzzy” total number of atom pairs of corresponding type classified in each
of the 12 distance bins shown on the x axis.



tance of the six pharmacophoric features considered (Eq. 7 being invariant to the
rescaling of the weighting parameters, one of the w coefficients can be arbitrarily
set to 1.0).

In the present work, the weighing factors and the fuzziness factor � were si-
multaneously optimized with respect to the following maximal diversity selection
problem (22,23): a set of Nlig � 75 different reference ligands (24), subdivided
into Nfam � 14 activity families, each containing three to five ligands of a given
receptor or enzyme, has been encoded under the form of FBPA. Pairwise dissim-
ilarity scores �(m, M) | w,� have been generated at all possible configurations of the
fitted parameters given by a systematic grid sampling a judiciously chosen pa-
rameter space (0  w(a) � 1; 0.1  �  3). At each such point in parameter space,
a “spread” diversity selection (25) defined the “most diverse” subsets of Ndiv �
10, 11, . . ., 25 members out of Nlig compounds. As shown in Fig. 4, the number
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Figure 4 Number of distinct activity families nfam(Ndiv) (y axis) for which at least one
representative ligand has been included in the selection of the Ndiv (x axis) most diverse lig-
ands out of a total set of Nlig � 75 ligands belonging to a total of Nfam � 14 activity fami-
lies. Different selections of most diverse ligands were performed with various dissimilar-
ity metrics based on pharmacophoric fingerprints (FBPA and BPF) and, respectively,
topological and shape descriptors implemented in the QSAR package of Cerius2 from MSI,
with (MSI-PC) or without (MSI ALL) reduction of the dimensionality of the correspond-
ing Euclidean descriptor space to five principal components. The results obtained with
FBPA correspond to the optimal setup of its fittable parameters, maximizing the average
ratio �nfam/Ndiv� at all Ndiv � Nfam.



of activity families nfam(Ndiv) represented in each of these subsets reflects the
overall quality of the dissimilarity metric: an optimal metric would pick each
molecule from another family [e.g., nfam(Ndiv) � Ndiv until Ndiv � Nfam]. A unique
quality criterion was chosen as the average ratio �nfam/Ndiv� at all Ndiv � Nfam, and
the parameter setup yield maximizing this criterion has been adopted as a “gen-
eral diversity” setup of the FBPA-based metric.

4. FBPA-Based Query Scores: Asymmetric Similarity Scores

The previously defined similarity metric can be used to quickly retrieve the “near-
est neighbors” m of a reference compound M, out of a very large collection of
molecules described by their FBPA. However, the set of potentially interesting
analogs of M may be expanded to include the m that are not strictly similar, but
contain all the pharmacophoric features of M and also include supplementary
pharmacophoric features not present in M. These latter would be a source of dis-
similarity between m and M according to Eq. (5). The previously discussed simi-
larity metric can be easily converted into a “pharmacophore query scoring” func-
tion �*(M,m) quantitatively expressing the extent to which the pharmacophoric
pattern of M is represented in m, without introducing penalties if m actually pos-
sesses an even richer pharmacophore:

�*a,b(m, M) � 1 � (8)

where

�*m (a, b, 	) � min[�m(a, b, 	), �M (a, b, 	)] (9)

Actually, the impact of the presence of supplementary pharmacophoric pat-
terns in the candidate molecule on its ranking as a potentially interesting analog of
M could be fine-tuned by means of a subunitary control parameter �, using:

�m
(�) (a, b, 	) � (1 � �)�*m (a, b, 	) 
 ��m (a, b, 	) (10)

At �  1, the corresponding similarity score is asymmetric (26,27)—de-
pendent, for example, on the choice of reference and candidate compound. The
setup � � 1 corresponds to the use of the original symmetric similarity metric.

5. FBPA Robustness with Respect to the Conformational
Sampling Used: Comparison of GDbM-Derived and catConf-
Derived Autocorrelograms

The extremely fast access to 3D-multiconformational models mainly serves to
characterize the tens to hundreds of millions of potentially feasible combinatorial
compounds in terms of FBPA (in more rigorous modeling studies, the GDbM con-
former sets might be used as a diverse collection of raw starting geometries to be

2(�*m � �M)a,b
����
(�M � �M)a,b 
 (�*m � �*m)a,b
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energy-minimized prior to their use, at a computational cost that may appear rea-
sonable in the context of, e.g., binding energy predicting simulations). Therefore,
the quality of GDbM conformational sampling was also evaluated in terms of the
reproducibility of the obtained FBPA: Would the FBPA obtained from sets of
conformers from different sampling algorithms be significantly different from the
ones built from GDbM geometries? Is the number of considered conformations
important to ensure the convergence to a reproducible average molecular FBPA?
To answer these questions, a set of 200 randomly cherry-picked combinatorial
products were submitted to three different conformational sampling calculations:
(A) generation of up to 40 conformers/molecule with GDbM, (B) generation of up
to 40 conformers/molecule with catConf (13) (“best” sampling mode), and (C)
generation of a single conformer/molecule with catConf (“best” sampling mode).
For each molecule, the FBPA obtained on the basis of the conformational family
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Figure 5 Dissimilarity of the FBPA obtained from GDbM conformer collections vs.
those of different conformer families of the same molecule. This statistical study involved
200 combinatorial products, the z axis displaying the fraction of molecules for which the
conformational sampling artifacts led to dissimilarity scores within each bin shown on the
x axis. (A) Multiple catConf conformers (up to 40) with optimal fuzziness factor � � 0.32.
(B) Same as (A) but with � � 5. (C) Single catConf geometries, with � � 0.32.



A (GDbM) was compared to its counterparts built from conformer sets B and C,
in terms of the FBPA dissimilarity metric, at “standard” fuzziness factor � � 0.32
and at � � 5.0, respectively (Fig. 5). The monitored fraction of molecules (%) for
which the artifactual dissimilarity between the fingerprints based on different
sampling approaches falls within each of 10 dissimilarity classes defined within a
dissimilarity range of [0, 0.5] represents a distribution of the probability of failure
to generate a consensus descriptor for the molecule. Ideally, if both sets A and B
exhaustively cover the conformational space of the molecule, they should lead to
identical 3D fingerprints, which may significantly differ from the ones generated
on the basis of a single conformer. A higher degree of “fuzziness” of the dissimi-
larity metric is expected to reduce the impact of the conformational sampling
noise.

D. Virtual Screening of the Potential Fingerprint Library of
Combinatorial Compounds (PFL) Based on FBPA
Query/Similarity Scores

By using chemical filtering tools to enumerate all the viable reagents for each
chemical synthesis protocol, and using the ghost database mechanism to generate
conformers, the construction of a potential fingerprint library (PFL) enumerating
the FBPAs of up to 108 combinatorial products can be achieved in about 1 month
on a single-processor workstation.

By relying on the “similarity paradigm” or “neighborhood behavior” (28), a
central working hypothesis in medicinal chemistry according to which “similar”
molecules will display similar activities, the PFL can be mined for compounds
that display pharmacophore similarity with respect to reference structures of de-
sired physicochemical and biological properties.

Since certain aspects of molecular structure (such as chirality) are not en-
coded by FBPA, and given the unavoidable loss in information occurring when a
structure is reduced to a molecular size–independent fingerprint, FBPA matching
is best used as a high throughput filter to discard obviously dissimilar candidates.
Shrinking the initial search space (the PLF, 108 compounds) concentrates the best
matching candidates into a subset of few thousand, also including some “false
similars” due to fingerprint artifacts. ComPharm, a refined similarity metric based
on molecular overlay (29), is applied at a later stage to discard the latter. To re-
trieve the corresponding matches from the PLF, this two-stage virtual screening
approach (Fig. 6) may use different pharmacophoric hypotheses as starting points.

The structures of active compounds can be used for strict similarity searches
as well as for pharmacophore queries. This represents a default option
when a shortage of examples of actives renders structure–activity data
unavailable for the biological target of interest. The obvious drawback of
this approach stems from the implicit assumption that all the pharma-
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cophore elements present in the lead structure are relevant for the bio-
logical activity under consideration and must be matched by the virtual
hits. Active compounds that fail to match irrelevant pharmacophoric fea-
tures of the lead will be discarded by the pattern recognition algorithm.

If a set of diverse active leads is available, the subset of pharmacophoric fea-
tures shared by all the actives can be retrieved using any hypothesis gen-
eration software (or plain common sense) to define the basic pharma-
cophore that is supposed to yield the activity of interest. Such a consensus
pharmacophore hypothesis can be easily encoded as a FBPA and used to
query the PFL, while direct confrontation of the hypothesis to 108 3D
structures would be unfeasible—this is actually performed at the next
step, when the FBPA-filtered best matching candidates are superimposed
on the hypothesis.

Site- or ligand-based hypotheses are appropriate when a 3D crystal structure
of the macromolecular target is available and can be used to define the co-
ordinates and pharmacophoric nature of anchoring points at which the
presence of specific ligand groups is expected. These can be defined from
the actual binding models of ligands in ligand–target complexes or from
the distribution of the functional groups of the assumed site walls that are
potentially accessible to the ligand. The candidate structures that were
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Figure 6 Virtual screening approach using the FBPA metric as a high throughput filter
aimed at reducing the scope of the initial search against 108 combinatorial compounds
down to a few thousand best matching candidates among which the most relevant virtual
hits can be selected on the basis of refined, overlay-based pharmacophore similarity calcu-
lations.



successfully overlaid on the pharmacophore hypothesis can be easily
docked into the active site.

E. Validation Studies of the Virtual Screening Approach

The validation of the virtual screening techniques is a nontrivial task, implying
many different aspects, many of which are heuristic and cannot be unambiguously
quantified. Two main categories of validation studies are reported here.

1. “Seeding” Experiments: An In Silico Validation of the FBPA
Similarity Metric

Two structurally different classes farnesyl protein transferase (FPT) inhibitors
(30,31), were used in a “seeding” study designed to answer the following ques-
tion: Supposing that only one representative family A is known, while the “un-
known” inhibitors of chemotype B are members of a compound library, would the
FBPA-based selection and testing of nearest neighbors of lead A from this library
be a winning strategy over the “blind” high throughout screening of the full col-
lection, providing a more effective discovery of B inhibitors? Figure 7 shows the
two classes, A and B.

In a first experiment, two large collections of combinatorial compounds—a
part of our corporate collection (150,000 molecules) and a general lead-seeking li-
brary (24,000 molecules), both including several sublibraries issued from various
connecting chemistries—were “seeded” with the 37 FPT inhibitors of family B,
most of which displayed IC50 values in the micromolar range. FBPAs were gen-
erated for both these collections and for the reference member of family A. Even-
tually, the similarity scores with respect to the reference were calculated accord-
ing to Eq. (7) for each member of the “seeded” sets (original libraries including
FPT inhibitors “hidden” among the combinatorial compounds), using the weigh-
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Figure 7 (A) The reference lead used as a starting point for the “discovery” of an alter-
native structural family “hidden” among large collections of combinatorial compounds. (B)
Examples of some family members.



ing factors obtained as shown in Section II.C.3. The members were ranked in de-
creasing order of their similarity scores, and the fraction of family B (y%) found
among the best ranked x% of the library was plotted as a function of x% (Fig. 8).

A comparative study of various diversity metrics was then performed, using
a smaller set of 629 drug molecules from the U.S. Pharmacopeia as the basis li-
brary to be seeded with the B family. The metrics (Fig. 9) were tested for their
ability to retrieve the “B” family among the nearest neighbors of the reference
lead, as described earlier.

The FBPA-based similarity metric.
Euclidean metric involving descriptors calculated with the Cerius2 software

including the electrotopological state keys (32), charge and dipole, struc-
tural and shape terms, A log P98, and topological indices (12).
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Figure 8 Results of the seeding experiment show (y axis) the percentage of the active
FPT inhibitor family B that would have been discovered by screening the corresponding
percentage of the total library given on the x axis if high throughput screening of this li-
brary had been prioritized to test compounds with high FBPA similarity scores with respect
to the reference lead first. By contrast, the retrieval rate of the family B ligands would in-
crease linearly with the fraction of the screened collection if compounds were screened in
random order.



Three- and four-point (33) pharmacophore fingerprint-based similarity met-
rics, where the fingerprints were built on the basis of multiconformational
models involving up to 20 conformers, using the catDB and Cerius2 soft-
ware tools. A Dice (21) metric has been employed to evaluate the corre-
sponding similarity scores.

2. Similarity-Search-Directed Synthesis of Active Lead Analogs

In a first example reported here, the structure of a dopamine transporter (DAT) lig-
and reported in literature (34) was used as the source of an FBPA-based “strict”
similarity query returning structures of the nearest neighbors from a potential fin-
gerprint library that, at the time of this experiment, featured only 5 million com-
binatorial candidate compounds. Typically, several practical design and synthesis
constraints eventually define the exact set of molecules that are actually made on
the basis of the list of the virtual hits. In this situation, the best virtual hits were

HT Sampling and Fuzzy Similarity Metrics 453

Figure 9 The ability of various similarity metrics to “discover” family B of FPT in-
hibitors, “hidden” among 629 drugs of the U.S. Pharmacopeia, by selection of nearest
neighbors of the reference compound (Fig. 7A).



seen to belong to a quite homogeneous family of amides and a list of the most of-
ten recurring building blocks found in the majority of virtual hits resumed to a pair
of carboxylic acids and 21 aromatic amines, all of them previously obtained by re-
ductive amination of aromatic aldehydes with BOC-piperazine. The resulting
small combinatorial library of 21 � 2 amides was integrally synthesized, purified,
and tested, with the results shown in Table 2. The most active analog structures
are given in Table 3. To evaluate the relative potency of the lead vs. the virtual hit
with the largest percent of inhibition at 10 �M, the IC50 value of the former was
reevaluated under the experimental conditions used for the latter.

3. Applications of the Virtual Screening Approach in Lead
Optimization

As part of a discovery program of potent �-opiate receptor ligands, a lead opti-
mization experiment described in more detail elsewhere (35) started from a mi-
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Table 2 Reference DAT Ligand Structure and Screening Results of a Small
Combinational Library Designed to Encompass Most of the Nearest Neighbors of the
Reference Structure Selected by Using the FBPA Metric from the Potential Fingerprint
Library



cromolar hit (Fig. 10) obtained from the primary screening of a lead-seeking car-
bamate library. Interestingly, this compound does not include any basic amino
group thought to be an important pharmacophore element for �-opiate affinity.
Therefore, the research for more potent analogs of this lead has been conducted
along two conceptually “orthogonal” directions.

1. Searching for novel molecular topologies compatible with the given
pharmacophore pattern. Using the virtual screening methodology as shown in
Fig. 6, the best matching candidates of the reference hit were selected out of the
PFL of 80 million combinatorial candidates by an FBPA similarity search and
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Table 3 Structures and Potencies of the Most Active 
Members of the Focused Library from Table 2



then ranked in terms of their ComPharm overlap scores with respect to the refer-
ence. These “virtual hits” may show widely different molecular topologies and/or
originate from different connecting chemistries. However, since the reference hit
itself is a combinatorial member of the PFL, this compound as well as many other
“me too” analog carbamates (issued from alcohols and amines with slightly dif-
ferent substitution patterns not impacting the overall pharmacophore) are also ex-
pected to figure among the virtual hits.

2. Searching for optimized pharmacophore patterns by insertions, substi-
tutions, and deletions of pharmacophoric substituents of the main building block
scaffolds. Rather than using only the building blocks appearing in the virtual hits
(see the example of DAT ligands), the main scaffolds represented in these build-
ing blocks were used to conduct substructure queries in the corporate reagent
database and in commercial databases such as ACD, employing the ISIS/Base
software. The resulting extended building block families around every scaffold
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Figure 10 A lead optimization program starting from a micromolar �-opiate primary hit
and using both pharmacophore-based and substructure-based searches to discover a struc-
turally diverse set of potent leads.



yield combinatorial products featuring pharmacophoric patterns that are either en-
riched, conserved, or improverished with respect to the reference. Changes af-
fecting the nature of the substituent acting as reactive group require, if possible,
an appeal to other connecting chemistries. In particular, the retrieval of aldehydes
Ri—CHBO with the same scaffolds Ri found in the alcohols Ri—CH2—OH
gives way to the design of reductive amination products. These feature a suppos-
edly important basic amino group, in contrast to the amide-type nitrogen in the
corresponding carbamates.

Eventually, all the building blocks selected were merged and used to design
combinatorial focused sublibraries, representing all the implied retrosynthetic
routes. However, these sublibraries were not synthesized and tested as such. A to-
tal of 344 representative compounds were “cherry-picked” to minimize the syn-
thesis effort, including (1) all the analogs explicitly retrieved by the virtual screen-
ing approach and (2) other combinatorial compounds chosen such that each of the
building blocks selected is represented several times.

III. RESULTS AND DISCUSSION

A. Validation of the Molecular Geometries Sampled by the
Ghost Database Mechanism

It is difficult to define an absolute “quality” criterion of a molecular geometry.
Neither the potential energy differences, nor the rms deviations of atomic posi-
tions represent unambiguous measures of the distance between the departure and
the optimum geometries. On one hand, an unminimized conformer may be of high
energy, although geometrically very similar to the next energy minimum of the
potential energy surface, typically due to a short-range repulsive van der Waals
contact that can be relaxed by means of a minimal atomic displacement of a few
tenths of an angstrom. On the other hand, the minimization of a departure geom-
etry already low in energy may be nevertheless accompanied by significant
changes in molecular geometry if flat regions of the potential energy surface are
crossed.

The geometrical criteria defined earlier can be viewed as an empirical mea-
sure of the shortest path length required to reach the neighborhood of conformers
within 	 kcal/mol with respect to the next local minimum of the CVFF-based po-
tential energy surface. In other words, they express a distance or dissimilarity be-
tween the departure conformer and the closest “reasonable” geometry of low
strain energy, according to the currently applied molecular Hamiltonian. Table 1
shows that, on the average over all molecules, the atoms of the GDbM structures
must be shifted by only 0.1 Å to reach the potential energy zone within 
20
kcal/mol with respect to the next local optimum. While in the worst situation,
reaching this potential energy zone was accompanied by geometrical rearrange-
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ments implying interatomic distance changes of up to 5.7 Å, such events appear
to be rare: the corresponding average over all compounds of the largest fluctua-
tion of interatomic distances within each molecule was only 0.6 Å. Geometries
obtained from catConf and UFF local optima appear to be only marginally closer
than GDbM structures to the low energy zones of the CVFF potential surface. On
the average over all compounds, the largest interatomic distance changes expected
in a molecule upon CVFF energy minimization are 2.7–3.8 Å. The starting ge-
ometries less affected by minimization are the ones stemming from catConf, while
the ones provided by GDbM do not behave significantly worse than the UFF op-
timal conformations, which were shown to be clearly different from CVFF opti-
mal conformations. It can therefore be concluded that the GDbM geometries are
comparable to the ones obtained on the basis of low cost/low quality force fields.
Since MIDC scores monitor the largest fluctuation of interatomic distances seen
in a molecule, using CVFF to optimize GDbM geometries would not dramatically
alter the overall image of the interatomic distance distribution pattern on which
the FBPA are based.

B. Calibration of the FBPA-Based Similarity Metric

The optimal feature weights and fuzziness factor maximizing the ability of the
FBPA metric to discriminate between ligands displaying different types of bio-
logical activities are listed in Table 4. As expected, the weighing factors associ-
ated to the polar pharmacophoric features, which are generally believed to confer
the specificity of the ligands, were found to be consistently higher than the ones
of the hydrophobic and aromatic features. While hydrophobic site–ligand contacts
are thought to represent the most important contribution to the binding free en-
ergy, the same is basically true for most of the ligand–receptor interactions. Hy-
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Table 4 Optimal Parameters of the FBPA
Metric, Maximizing Its Ability to Discriminate
Between Ligands Belonging to Different 
Activity Families

Weighing factor Value

Aliphatic 0.41
Aromatic 0.24
Hydrogen bond acceptor 1.00
Hydrogen bond donor 0.78
Cation 0.68
Anion 0.76
Fuzziness factor � 0.32



drophobic and aromatic groups are ubiquitous in all the druglike molecules, rep-
resenting a less important differentiation criterion between different biological
categories.

From the overall performance of the optimal FBPA metric with respect to
the problem used to calibrate its parameters (Fig. 4), we saw that FBPA outper-
forms both our previously reported, less elaborate BPF-based metric (16) and the
Euclidean metrics based on topological and shape descriptors and their most rel-
evant five principal components. The quality of diversity selections performed on
the basis of the FBPA metric is near optimal, whereas molecular topology and
shape alone, ignoring the chemical nature of the included atoms, are basically un-
able to discriminate between classes of biological activity and appear to be no bet-
ter than random selections.

C. Robustness of FBPA with Respect to Conformational
Sampling Artifacts

Earlier (Fig. 5), we compared the expected fluctuations of the dissimilarity scores
obtained from a molecule represented by its GDbM conformer set ( 40 con-
formers) and from alternative conformer families of the same compound. Ideally,
these dissimilarity scores should be zero, independently of the sampling algo-
rithms used, if these provide an exhaustive exploration of the conformational
space. The FBPAs built on the basis of up to 40 catConf geometries actually com-
pared fairly well with those obtained from GDbM structures (series A of Fig. 5),
and the use of fuzzy scoring effectively “smoothed out” the differences due to
sampling. Indeed, series B, comparing exactly the same two sets of conformers as
series A, evidenced an increased probability of diverging dissimilarity scores
when a “less fuzzy” scoring function was used. However, the failure to sample
several significant conformers of the molecules may result in quite different
FBPA fingerprints. Series C, comparing a single catConf geometry with the
GDbM conformer set, evidenced an even larger rate of inconsistent scores than in
series B, in spite of fuzzy scoring. Therefore, it may be concluded that, as ex-
pected, both the use of multiple conformers to build the FBPA and the application
of fuzzy scoring functions to compare them significantly enhance the robustness
of these 3D descriptors.

D. Validation of the Virtual Screening Algorithm

From a technical point of view, the virtual screening algorithm discussed in this
chapter is a pattern recognition approach and should be judged in terms of its suc-
cess in retrieving compounds with pharmacophoric patterns that are similar to the
reference hypothesis. However, there is no absolute recipe to define “pharma-
cophoric pattern similarity” or any other type of structural similarity. In principle,
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any mathematical function fulfilling the conditions of a metric in a given vector
space can be used as a similarity score.

1. Similarity-Based Search Tools as “Expert Systems”

Structural similarity is first of all a heuristic concept, and the possible mathemat-
ical definitions of structural similarity may agree more or less with a medicinal
chemist’s point of view about “similar molecules.” A virtual screening algorithm
acting as an “expert system” (e.g., selecting the analogs that a medicinal chemist
would have picked out for synthesis and testing out of large databases) would al-
ready represent an extremely useful tool in drug design. However, it would obvi-
ously be difficult to give any quantitative estimate of its beneficial effects on the
discovery of novel drugs. Furthermore, algorithms based on pharmacophoric pat-
tern recognition may outperform the human operator in retrieving analogs that,
from the latter’s point of view, bear no obvious similarity to the lead at first sight
(the two rightmost analogs among the “best matching candidates” in Fig. 6). How-
ever, their similarity to the lead can be easily understood and accepted by the
medicinal chemist upon analysis of the superimposition model (upper right-hand
corner, Fig. 6) showing how pharmacophorically related groups can be brought to
overlap. The human view of molecular similarity is heavily biased toward topo-
logical “substructure” similarity, and, not astonishingly, most of the patents cov-
ering classes of therapeutically active compounds rely on a connectivity-centric
approach featuring a basic scaffold and its substituents (Markush representations).
Alternative, pharmacophore-based similarity metrics are excellent tools for re-
trieving compounds of similar pharmacophore group distributions of completely
different connectivity with respect to a lead structure.

2. Structural Similarity and Property Similarity: The “Similarity
Paradigm”: Interpretation of the “Seeding” Experiments

From a practical point of view, however, the algorithm is expected to successfully
select compounds that are likely to display similar properties with respect to the
lead molecule. In other words, the “structural similarity” defined by the algorithm
is expected to significantly correlate with the “property similarity” evidenced by
experimental methods. Insofar as the descriptors entering the similarity metric are
not drawn from exhaustive docking (36) simulations evidencing both the ener-
getic and entropic aspects of the interaction of ligands with their targets, there is
no fundamental reason to expect any absolute guarantees that a near neighbor of
a given lead will certainly “inherit” the biological activity of the lead. The “simi-
larity paradigm” relating the structural to the property similarity is actually a sta-
tistical law: the density of actives in a set of molecules that are similar to an active
lead must exceed the density of actives in a set of “randomly chosen” molecules.
This is clearly evidenced in Fig. 8, where more than 90% of the family of struc-
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turally distinct FPT inhibitors (Fig. 7B) are found among the 4% of compounds
that are best ranked in terms of their FBPA similarity with respect to the reference
ligand. In other words, a high throughput screening experiment conducted in the
order of increasing dissimilarity with respect to the lead A and terminated after
testing 4% of the compounds would nevertheless have discovered the large ma-
jority of a completely original family B of FPT inhibitors. By contrast, random
screening of the same collection to achieve the same result would have required a
roughly 20-fold larger screening effort! Such an interpretation of a seeding exper-
iment is however an oversimplified view of the much more complex reality of the
drug discovery effort. Some of the other aspects that should be included in this
analysis are enumerated as follows.

1. Many compounds not belonging to the “hidden” family to be retrieved
may well be active FPT inhibitors, even though they were not counted as such in
this particular in silico experiment. This is a general weakness of all the purely vir-
tual validation studies of active analog retrieval methods making reference to elec-
tronic databases of untested compounds. Only the actual testing of the entire li-
brary would allow a realistic estimate of the overall enrichment factor achieved by
the computational approach.

2. It is convenient to think about the “false positives”—inactives that were
ranked higher than the truly active compounds—as being misclassified by the vir-
tual screening software because of an “overestimated” similarity score with re-
spect to the lead. In principle, an attempt to correct such problems by recalibration
of the similarity metric could be envisaged. However, some of such “should-be
actives” may actually represent “me too” compounds, strongly related to the ref-
erence lead. A forced reparameterization of the similarity metric in order to rank
them in the list of candidates, if at all possible, would lead to highly counterintu-
itive results from a medicinal chemist’s point of view.

3. Point 2 also evidences the nonnegligible impact of the choice of the
“hiding” set on the result of a seeding experiment. In an ideal experiment, the set
of presumed inactives against which the search of the hidden actives is conducted
should in principle represent a homogeneous density coverage of the whole struc-
tural space occupied by the 1018 (37) “druglike” molecules. This is never the case
in real drug discovery programs. It is relatively easy to achieve impressive en-
richment factors when searching for the actives among diverse compounds. In the
currently shown example, each of the many pharmacophore patterns is repre-
sented by a small number of examples. In such cases, it is highly improbable that
one will encounter a massive set of inactive molecules also displaying the wanted
patterns, and therefore erroneously selected among the “virtual hits.” By contrast,
if virtual screening were used to discriminate between active and inactive mem-
bers of a focused library with a high degree of common pharmacophoric patterns,
where activity/inactivity is controlled by local structural details of the compounds,
the observed enrichment factors may be much lower.
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4. The failure of the methodology to “discover” a set of structurally unre-
lated compounds does not necessarily invalidate the utility of the virtual screen-
ing approach. A failure can be considered as such only if the existence of a dif-
ferent metric, successfully evidencing the similarity of those apparently unrelated
families, actually proves that the problem was solvable in terms of the “similarity
paradigm.” Indeed, ligand families of a given target may actually display differ-
ent pharmacophore patterns corresponding to different anchoring modes to the
site, or even bind to different sites. It is not to be expected that such families
should ever be discovered on the basis of similarity considerations starting from a
representative of another one. Therefore, “seeding” experiments expected to be
successful without being trivial are not easy to design. In particular, experiments
reporting statistics of retrieval of a heterogeneous set of actives against a single
reference lead are always difficult to interpret. It is unclear how many of the “hid-
den” compounds are reasonably similar (in terms of action mechanism) to the
lead, in order to count them among the molecules that can be reasonably expected
to be virtual hits.

5. As previously discussed, a “seeding” experiment offers no hints of the
number or structural class of the actives not selected among the best ranked and
therefore lost if the systematic high throughput screening of libraries were to be
replaced by a virtual-screening-based selection of compounds to screen. Obvi-
ously, the search for actives with novel pharmacophore patterns must be con-
ducted by means of “blind” high throughput screening experiments or targeted
“mutations” of the current pharmacophores (e.g., medicinal chemistry experi-
ments involving insertions and/or deletions of functional groups). Knowledge of
the 3D structure of the target would be of great help in this approach. The virtual
screening tool may then be successfully used to extract all the possible chemo-
types of the library of potentially synthetizable compounds fitting every given
pharmacophore. The concerted application of the two approaches is required for
the early discovery of drug candidates, sufficiently diverse to ensure that at least
one of these starting points displays selectivity, bioavailability, and metabolic sta-
bility profiles promising enough to justify further optimization work.

3. Comparative Study of the Performances of Similarity Metrics
in “Seeding” Experiments: Fuzziness vs. Informational
Content

A comparative study of the performance of different similarity metrics with re-
spect to the same retrieval problem of active FPT inhibitors of family B has been
undertaken against a smaller “hiding” set of 629 drugs from the U.S. Pharma-
copeia (see Fig. 9).

A first interesting observation is that in the current experimental setup, the
use of the same FBPA metric reported in the previous seeding experiment would
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yield only a 10-fold enrichment—10% rather than 4% of the entire library must be
screened before 90% of family B can be discovered. Enrichment factors are not
invariant with respect to the size of the “hiding” library—they would be, though,
if (1) the size of the hidden set would scale up proportionally to the size of the li-
brary and (2) the increase in library size was achieved not by populating novel re-
gions of the structure space, but by increasing the compound density in the struc-
ture space zones already populated by the initial collection. In the current
experiment, 35 members of family B are found among the first 52 best ranked
compounds. The screening of this subset would have yielded a hit rate of 67.3%,
leaving not much space for further improvement.

It can be seen that the Euclidean metric based on “classical” molecular de-
scriptors completely failed to recognize the similarity between families A and B,
actually biasing the selection against these molecules that appeared more distant
from the reference than many of the supposedly FPT-inactive members of the
“hiding” set. Although the electrotopological state keys conveyed information
about the types and numbers of heteroatoms, none of these descriptors unambigu-
ously described the relative arrangement of the functional groups in the
molecules.

By contrast, both the FBPA and the three-point pharmacophore fingerprint
metrics display a significant enrichment in FPT B-family members in the neigh-
borhood of reference A. Intriguingly, the four-point pharmacophore fingerprints,
encoding the relative position of quadruplets of groups rather than triplets or pairs,
actually perform significantly worse in this test. It might be argued that four-point
pharmacophores actually selected other actives from the “hiding” set—although
to our knowledge none of the included drug molecules act against FPT, the possi-
bility that some of them display a residual activity on this target cannot be ex-
cluded. However, an analysis of the four-point pharmacophore dissimilarity
scores revealed that the nearest neighbor of the reference compound A had a dis-
similarity of 0.98 on a scale between 0 (identical) and 1 (completely different).
Even the most similar of the compounds from the screened collection has virtu-
ally no four-point pharmacophores in common with the reference molecule, com-
pared to the wealth of pharmacophore bits highlighted by each compound! This is
most likely a consequence of the markedly discontinuous nature of these finger-
prints, where each combination of pharmacophore group types and the corre-
sponding intergroup distances are associated with a particular bit in the overall
fingerprint. Inevitably, such a four-point pharmacophore is prone to be very sim-
ilar to many other four-point pharmacophores consisting of the same functional
groups at roughly the same distances—except for the one distance that exceeds the
cutoff value delimiting them. Highlighting a given three-point pharmacophore bit
involves fewer constraints than hitting a given four-point pharmacophore. The
probability that similar molecules fail to highlight exactly the same bit in the phar-
macophore fingerprint, highlighting related pharmacophores instead, is signifi-
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cantly enhanced in four-point over three-point pharmacophore models. Since the
relatedness of the pharmacophores associated with each bit is not accounted for by
the scoring function, the existing elements of similarity are not recognized. The
fuzziness of the FBPA scoring function, designed to avoid exactly this type of ar-
tifact, compensates for the more important informational contents stored in three-
point pharmacophore fingerprints. With four-point pharmacophores, however, the
absence of fuzzy scoring becomes the dominant effect and causes an overall loss
of discriminant power.

4. Discovery of Active Dopamine Transporter Ligands by
FBPA-Based Similarity Searching

Tables 2 and 3 regroup the experimental results obtained with the small combina-
torial library, designed to encompass all the virtual hits produced by a similarity
search around a lead from the literature, against a potential fingerprint library fea-
turing 5 million combinatorial candidates. The most striking structural difference
between the lead and its analogs is the replacement of the diphenylmethyl ether
moiety with a diphenylketone fragment. It is difficult to evaluate the performance
of the algorithm in terms of the enrichment rate of actives in the focused library.
The discovery of four compounds with an inhibition percentage over 70% (hit rate
of about 10%) may represent a significant enhancement over “blind” HTS results
of lead-seeking libraries (no such data were available). But is the size of this fo-
cused library sufficient to ensure statistical relevance of these hit rates? None of
the hits showed a stronger potency than the lead, the best of them being actually
10 times weaker—as pointed out earlier, nothing in the pattern recognition ap-
proach allows the actual prediction of the activities of analogs. However, the most
interesting feature in these compounds is the presence of the amide bond, opening
a second retrosynthetic pathway accessible by combinatorial chemistry. There-
fore, a three-step focused library could now be easily designed for further opti-
mization of the new lead, exploiting the available building block diversity of aro-
matic acids, cyclic diamines, and aromatic aldehydes. This enlargement of the
scope of the synthesis effort may eventually prove to be more beneficial than the
occasioned loss of one order of magnitude in terms of potency. Backed by a quite
small synthesis and screening effort, the utilization of the FBPA-based virtual
screening approach has led to the “discovery” of a novel strategy for the synthe-
sis of DAT ligands. Certainly, the “merit” of the methodology does not reside in
the purposeful “design” of the novel synthesis route, but in having showed that the
amide derivatives are pharmacophorically compatible with the lead structure and
should not be discarded (as would have probably happened with a substructure
search procedure). This may be important, or it may prove to be just another dead
end among other research directions, but nevertheless the potentiality of this sim-
ilarity searching tool as an “idea generator” for medicinal and combinatorial
chemists is illustrated.
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5. Optimization of �-Opiate Ligands

Some of the representative � ligands and their respective IC50 values are given in
Tables 5–8. As shown in Table 7, replacing the benzimidazolone fragment in the
reference (Table 5) by the “spiro” moiety, shown by the virtual screening ap-
proach to be pharmacophorically equivalent, yields a class of topologically dif-
ferent carbamates that mostly conserve the low micromolar affinity of their par-
ent compound. According to Tables 6 and 8, the exploration of alternative
pharmacophore patterns by introduction of positive charges successfully led to the
discovery of two distinct structural families of low nanomolar �-opiate binders.

In this experiment, there is no meaningful way to quantitatively score the
contribution of the FBPA-based methodology to the success of this real-life ex-
periment, in which it was used as a tool among many others. Nevertheless, at least
four broad conclusions with respect to the role of similarity searches in the drug
discovery process can be drawn from this example.

1. A first general remark is that the FBPA-based similarity metric, an im-
plicit function of both molecular size and number of polar groups in the two
molecules being compared, is highly relevant with respect to the “druglikeness”
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Table 5 Generic Template, Substitution Patterns, and Activities against Certain
�-Opiate Receptorsa
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a These are �-opiate receptors of “benzimidazolone” analogs that are pharmacophorically sim-
ilar with respect to their “parent” reference lead. Largest pharmacophore difference in this se-
ries: replacement by the —NO2 group in R1 by a hydrophobic atom/group. Largest topologi-
cal difference within this series: ring opening (R2–R3). Shaded rows represent compounds
selected by the virtual screening approach.
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Table 6 Benzimidazolone-Based Derivatives That Are Pharmacophorically 
Radically Different from the Parent Compound Owing to the Replacement of the 
Carbamate Linker by a Positive Ionizable Group
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a Shaded compounds were “discovered” by the virtual screening approach because their pharma-
cophoric patterns were similar to the ones of the reference lead, despite differences in connectivities.
The other two molecules present supplementary pharmacophore groups not present in the lead and
are not similar to it according to the “strict” FBPA metric.

Table 7 Various Carbamates Featuring the “Spiro” Chemotypea
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of compounds. Any near neighbor of a druglike lead respecting the “rules of five”
(38) will most likely also abide by these rules. Therefore, this metric can be suc-
cessfully used for the design of “druglike” combinatorial libraries; that is, “drug-
likeness” may be seen as a valuable “by-product” of the FBPA-based selection
mechanism.

2. The lead optimization scheme described here accumulates the strengths
of both medicinal chemistry and combinatorial chemistry. The optimal pharma-
cophore was sought using search tools and electronic databases to select all the
pharmacophoric patterns that were easily attainable by coupling of available
building blocks. This may appear as a serious restriction with respect to classical
medicinal chemistry, where labor-intensive chemistry is performed to achieve any
desired substitutions thought to represent an “interesting” novel pharmacophore
pattern. In this context, the ability of the FBPA-based searches to furnish alterna-
tive molecular topologies that are pharmacophorically equivalent significantly
loosened this restriction. Indeed, a pharmacophoric pattern difficult to achieve on
a given molecular skeleton may be brought within the scope of efficient resynthe-
sis based on high throughput coupling chemistries when one is considering other
potential ligand chemotypes. Two structurally different and highly potent �-lig-
and families, involving the synthesis of a few hundred analogs, were discovered
within a period of weeks.

3. The major result obtained from the FBPA-based similarity metric was
the insight that the novel “spiro” chemotype may successfully replace the benz-
imidazolone moiety without significantly modifying the overall pharmacophore
pattern of the molecule. The “breakthrough” in potency was not a result of this
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Table 8 “Spiro” Compounds Derived from the Virtual Screening Hits from
Tablea

a These hits were derived as the result of a voluntary pharmacophore mutation replacing the
carbamate linker with a positive ionizable tertiary amino group. The molecules differ with
respect to the reference lead from both topological and pharmacophoric point of view.
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substitution, but required a major step away from the original pattern in pharma-
cophore space—the introduction of a positive charge. However, the discovery of
two potent, structurally different lead families offers a potentially capital backup
option if one should prove to be incompatible with the pharmacokinetic con-
straints imposed to a drug molecule.

4. A quite obvious conclusion pertaining to all pharmacophore-based sim-
ilarity search methods, irrespectively of the metrics they use, appears nevertheless
worth restating at this point: a similarity search around a weak binder with an ob-
viously suboptimal pharmacophore pattern is expected to discover nearest neigh-
bors with suboptimal pharmacophoric patterns—and therefore weak binders like
the parent lead! To discover the optimal binding pattern based on a pharma-
cophore similarity search would imply selection of all neighbors within a similar-
ity sphere of radius Ropt, representing the dissimilarity score of the current vs. op-
timal pharmacophore pattern (see Fig. 11). Obviously, Ropt is an unknown
parameter at the moment the search is done, and the larger the cutoff taken, the
larger the number of inactives selected among the quickly increasing set of neigh-
bors. If starting and optimal pharmacophore patterns are different enough, then
setting a low cutoff radius to select a set with a significant enrichment factor in de-
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Figure 11 A possible distribution of actives and inactives in the “structure space”
around a lead of average potency. The nearest neighborhood of a lead with a suboptimal
pharmacophore pattern is enriched in analogs with similar potencies (compound activities
are suggested by the intensity of gray shading; dark � potent). Ropt represents the differ-
ence between the reference and the optimal pharmacophore of a potent ligand according to
the pharmacophore dissimilarity metric.



tectable actives is unlikely to yield any major improvement of affinity among the
selected compounds. By contrast, setting a high cutoff value may well allow the
selection of much more potent actives, but with no reduction at all of the experi-
mental effort compared to “blind” high throughput experiments.

Pharmacophore query procedures (asymmetric similarity scores) may select
analogs with novel features that enrich the original patterns and may serendipi-
tously contribute to the improvement of their binding properties. However, the cur-
rent experimental setup extended the scope of the search for the optimal pharma-
cophore pattern even more than a pharmacophore query approach would have done:

It included analogs with impoverished pharmacophore patterns, which
would have been discarded by a pharmacophore query approach for fail-
ing to match all the groups available in the reference compound.

It included analogs based on commercial building blocks from the ACD that
were not represented in the potential fingerprint library because they did
not figure on the list of accessible starting materials at the moment the
search was initiated.

IV. CONCLUSIONS

No attempt to reduce the heuristic concept of molecular similarity to a mathemat-
ical expression representing a distance metric in a descriptor space, no matter how
ingenious, can ever compensate for the inherently imprecise working hypothesis
behind the seemingly rigorous mathematical treatment. This central hypothesis,
the “similarity paradigm,” is best expressed as a statistical law stipulating that the
probability of discovering actives of the same type as a reference lead is locally
enhanced among the set of compounds occupying the near neighborhood of the
reference, compared to the average chance of hitting such a molecule over the
whole accessible volume of the structure space. The present work focused on the
potentialities and caveats of various applications of this hypothesis in the drug de-
sign process. In an innovative technical context, the use of specific high through-
put multiconformational modeling of combinatorial compounds and effective fin-
gerprinting of average pharmacophoric patterns set new limits for the size of the
primary pool of potentially synthetizable candidates against which various types
of similarity query can be performed without compromising the relevance of the
similarity metric.

Pharmacophore-based similarity metrics, and in particular the FBPA-based
methodology presented here, are potent tools that allow the discovery of com-
pletely novel molecular connectivities, nevertheless conserving the original phar-
macophoric patterns. This extremely useful feature displays an obvious synergy
with the medicinal chemist’s ability to imagine and synthesize compounds with

HT Sampling and Fuzzy Similarity Metrics 469



alternative pharmacophoric “ornaments” around a given skeleton motif. The com-
bination of the two approaches led to the discovery of two structurally distinct and
very potent �-ligand families, instead of only one such family likely to be dis-
covered on the basis of a classical lead optimization approach not backed up by
searches for novel chemotypes.

Real-life validation experiments of this type are also the ones most difficult
to analyze in terms of optimality of their experimental design, in order to quanti-
tatively score the advantages and misses triggered by the use of the similarity
screening approach. In drug discovery, often hindsight is required to outline the
single most important discovery that led to the success of a program.

Therefore, the drug discovery laboratory environment is too complex to
serve as a playground for theoretical validation studies of hypotheses concerning
the “optimal” mathematical definition of the molecular similarity metric. How-
ever, imperfect in silico validation simulations can nevertheless be valuable
benchmark tools to compare the performances of different similarity metrics with
respect to a given problem. This chapter has discussed the problem of the retrieval
of structurally dissimilar analogs “hidden” within large sets of combinatorial and
drug molecules. Interestingly, the use of fuzzy logic to score molecular dissimi-
larity appears to be a key factor in ensuring the robustness of the similarity metric
with respect to geometric artifacts that may affect the 3D models of the com-
pounds. The using of three- or four-point pharmacophore fingerprints does not im-
prove the discriminant performance of the former and actually decreases that of
the latter with respect to two-point FBPAs, which are less rich in information but
greatly benefit from their “fuzziness.”
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I. INTRODUCTION

Now that the methods for combinatorial synthesis have matured to a stage at
which use of the resultant libraries is routine in the drug discovery process, the
druglike character (1) of the molecules contained in libraries has become a criti-
cal area for design. Library quality is a key consideration for design whether the
library is large or small. Over the last several years, many groups have developed
methods and tools for designing diverse libraries (2–13) and various commercial
tools have appeared on the market (14), but only recently has the computational
emphasis shifted toward designing screening libraries that are druglike as well as
diverse. Maximal diversity is no longer an adequate design criterion; library mem-
bers must possess structural and/or property diversity relevant to the biological ac-
tivity they are synthesized to explore. Much method development has focused on
using commercial and corporate databases to develop diversity/similarity assess-
ment and sampling tools (5–20). The next logical step is to find and define those

Portions of this work have been excerpted and/or adapted from J. Chem. Inf. Comput. Sci. 1999;
39:36–45. Copyright 1999 American Chemical Society.
* Current affiliation: Bristol-Myers Squibb, Princeton, New Jersey.
† Current affiliation: R. W. Johnson PRI, Raritan, New Jersey.



druglike (21–23) and activity-optimizing properties that will enable rational de-
sign of screening and other types of combinatorial library.

II. REAGENT BASED VS PRODUCT BASED DESIGN?

A key consideration in combinatorial library design is that small numbers of syn-
thons yield large numbers of products; thus it becomes essential to find a means
for selection of these small building blocks from the large superset of available
reagents. This method should be flexible enough to achieve the desired level of di-
versity appropriate to the library’s intended use. While it is intuitively reasonable
and can be demonstrated (24) that analysis of product diversity is more desirable
than that of synthon diversity, reagent/synthon selection is generally more feasi-
ble in terms of scale. Another important factor enters into the decision to design a
library via building blocks rather than final products: synthetic feasibility. For the
bench chemist, the cold hard reality of combinatorial synthesis lies, not in the ac-
tual library construction, but in developing practical reaction conditions for the
entire set of selected reagents and over the entire set of conversions needed for that
library. Often a set of reagents selected by an automated computational technique
contains either obviously chemically unfeasible compounds or ones that owing to
the vagaries of Mother Nature simply fail when tested on solid phase. Substitu-
tions have to be made that may modify but must not destroy the diversity design.
Since tight timelines are an integral part of pharmaceutical development, an iter-
ative process for reagent selection must be fast and easy. Adherence to a very strict
formal experimental design is difficult at best, and a means of finding replacement
synthons for the design is essential. While optimal diversity may be an aestheti-
cally desirable goal, it is far more pragmatic to strive for a library design whose
diversity is defined by synthetic reality. It should also be based on understandable
metrics that can be used later for a structure–activity relationship (SAR) hypoth-
esis (or, perhaps, if synthesis is truly problematic, for a reactivity hypothesis).

One method (25) to achieve this is a fast, simple, property-based tool that
groups synthons according to common property descriptors. The chemist chooses
and adjusts the properties that he or she believes to be appropriate for the library
design and can manually select the most desirable starting materials. (Automated
subset selection is provided as well, if the chemist chooses to use it.) As a result,
the library design method incorporates “medicinal chemistry intuition,” synthetic
feasibility, and the ability to make quick substitutions by selecting another com-
pound from the same group. The emphasis is shifted from covering property space
to mapping feasible parts of property space. Holes in the mapped property space
either are understood to be synthetically unreachable or are consciously omitted.
These property-based groupings also allow easy use of “druglike” filters or of fil-
ters based on ADME (adsorption, distribution, metabolism, excretion). Thus,
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some filled regions of the property space are omitted for sampling because they
would produce undesirable products.

III. PROPERTY SPACE, LIBRARY SIZE, AND BIOLOGICAL
ACTIVITY

Since library design by this method employs a kind of “hypothesis space,” the in-
tended use of the library is an important design factor. Is this a lead discovery li-
brary, a targeted discovery library, or an optimization library? The ultimate library
size, amount of diversity/property space covered, sampling density of the space
required to find actives, and the diversity metrics used to define the space are all
determined by the intended use of the library. While the library should cover a re-
gion of diversity space, it is assumed that actives for a given target will be clus-
tered together. Depending on the space and the nature of the target, the activity
space may be broad or spiky. Clearly, the selection of appropriate metrics to deal
with some of these issues poses a difficult problem.

Let us examine the requirements for libraries of different types. A discov-
ery screening library for which the target assays are unknown or are themselves
very diverse may be designed to cover a large region of diversity space; whether
it does so sparsely or densely is a function of library size and the technology avail-
able. If lead finding is the only goal, the library can be smaller and sparser than if
an initial SAR around possible leads is also desired. A targeted discovery library
is most likely one that is intended to find leads for a target or family of targets
about which some information is known, but for which most probably X-ray crys-
tal structures are unavailable for structure-aided design. Alternatively, they may
be used to supplement the latter design method. This type of combinatorial library
generally contains fewer chemotypes (cores) than the screening library and is usu-
ally intended to provide some SAR. In this case, a smaller region of diversity
space is sampled, and the issue is coverage of that region. A larger denser library
may provide more SAR information depending on the nature of the biological ac-
tivity. If the activity being sought is sensitive to small structural changes, dense
sampling of the space may be essential. If the activity tolerates fairly broad struc-
tural changes, a much smaller, sparser library design will suffice to find the SAR.
The same considerations regarding the nature of biological activity apply to opti-
mization libraries. These are by definition the least diverse, since they concentrate
on a fairly small region of diversity space and their purpose is specifically to find
the most potent druglike molecules. The quest at this stage may actually be simi-
larity rather than diversity if bioisosteric substitutions are required.

How does one select the metrics that define a diversity space (also called
chemistry space)? Clearly, the diversity one achieves will be dependent on the
metrics chosen to define the diversity space hypothesis. The best set of metrics
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may well differ depending on the type of library or target. Ideally those metrics
should be orthogonal to each other and, from an ideal mathematical perspective,
continuous. This last is a difficult requirement to fill in chemistry space, so we
need to modify it in practice. Gaps or voids in property space are acceptable if it
is possible to determine whether they can be filled. If at all possible, the metrics
used should be interpretable by the chemist and usable for follow-up library de-
sign and SAR exploration.

It is clear that whatever diversity space is used for library design and analy-
sis, it must have some validation with regard to biological activity. Obviously, it
is also necessary to analyze the product diversity in libraries designed using a syn-
thon approach. Since the ability to compare sets of large combinatorial libraries
for relative coverage of diversity space was considered to be essential for the ap-
plication examples discussed, a cell-based diversity analysis method was chosen
as the most appropriate. In contrast to that of clustering methods, the property
space in cell-based methods can be independent of the molecules studied. As a re-
sult, molecules can be added or deleted from the set and different sets of molecules
compared in the same space. Pearlman’s “Diverse Solutions” (26) can easily han-
dle individual analyses of the libraries under consideration, which ranged from
20,000 to 170,000 members and can evaluate merged sets of hundreds of thou-
sands of compounds. The BCUT metrics (26) used by this program are based on
simple physical properties such as partial charge, hydrogen bonding, and polariz-
ability, and therefore should relate to biological activity. We have found this to be
the case (25). In addition, we sought to find the means of performing comparable
analyses with alternative descriptors within the MSI Cerius2 (27) tool set. Such
methods and descriptors sets were found.

IV. METHODS

A. Synthon Selection/Activity Clustering Tool

The synthon selection tool has been discussed at length elsewhere (25), and the
method has been implemented in Cerius2 (28). The binning method has an addi-
tional use, however, in the analysis of activity clusters, so a brief description is
needed.

Our diversity tool assists in choosing, from among a list of synthons char-
acterized by various molecular properties, a subset in which all feasible combina-
tions of these properties are represented. The basis of this approach is the QSAR
assumption that, in the case of potential drug molecules, there is a reasonable
number of simple whole-molecule properties that may discriminate, alone or in
combination, between actives and inactives for a given target. The tool also may
be used to bin active neighbors in diversity space based on their distances from
each other in that property space.
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To make the problem manageable, the range of possible values for each
property is subdivided into two or three ranges. For instance, log P could be sub-
divided into low, intermediate, and high ranges, which we will denote by “–,” “0,”
and “�,” respectively. A property such as the presence or absence of a hydrogen
bond donor on the molecule can be denoted by just “�” or “–”. Any synthon that
we might consider using for a given step, if it meets all synthetic criteria, is thus
assigned to a particular “bin.” This bin is identified by the property pattern that de-
scribes it, that is, “�” for lipophilic, “–” for not having a hydrogen bond donor,
“0” for not having an overall charge, or “� – 0.” These “bins” correspond to the
rows of a full factorial design (29) of either three levels or mixed two and three
levels.

Choosing a diverse set of synthons relative to a set of parameters now sim-
ply reduces to taking at least one out of each of the filled bins: one from “� � �,”
one from “� � –,” one from “� 0 �,” one from “� 0 –,” and so on. When a bin
is empty, the particular combination of parameters may be physically difficult or
impossible to realize. Most real-world parameters are not completely independent,
so finding a small, charged, lipophilic molecule, for instance, would be difficult.
Another more interesting possibility is that the set from which we are choosing our
fragments lacks some perfectly reasonable cases and so we should go look for
other possible sources—possibly custom synthesis—from which we can fill at
least some of these bins.

The analysis of activity clusters is a matter of adjusting the “� – 0” thresh-
old ranges of the metrics for a set of products until the actives of interest appear in
one bin, which may be a very nonsymmetrical multidimensional space. (Activity
is used as one of the parameters.) Some of the metrics from the original diversity
space may turn out to be irrelevant for activity and others may form relevant sub-
spaces (25,30). The tool thus provides an easy means of visualizing (via multi-
property histograms) n-dimensional activity space. Examples of this will be pro-
vided.

B. Diverse Solutions Cell-Based Analyses

For the analyses discussed, various versions of Pearlman’s “Diverse Solutions”
were used. The methodology and parameters used by this program are discussed
elsewhere (26), but a brief overview may be useful.

The descriptors used in Diverse Solutions are extensions of parameters
originally developed by Frank Burden (31). The Burden parameters were based
on a combination of the atomic number for each atom and a description of the
bond types for adjacent and nonadjacent atoms. Pearlman expanded the types of
atomic property considered, expanded the measures for connectivity relation-
ships, and introduced various weighting schemes. The resultant whole-molecule
descriptors, called “BCUTs,” correspond to the highest and lowest eigenvalues
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of matrices that contain the property of interest on the diagonal and some
form of interatomic distance relationship on the off-diagonal. Since there are
many choices for connectivity and atomic information and many possible scal-
ing factors to weight the relationship between these two types of information, a
large number of BCUT metrics may be generated. A need arises then for an al-
gorithm to select which ones should actually be chosen as the axes for a chem-
istry space. Pearlman and Smith developed a chi-squared-based “auto-choose”
algorithm to accomplish this (26). The algorithm examines all possible combi-
nations of metrics and evaluates both their orthogonality and the ability of the
resultant chemical spaces to distinguish the structural differences in a compound
population.

The specific set of descriptors used for the analyses discussed were the 3D
hydrogen-suppressed BCUTs. The default properties used for the matrix diago-
nals included Gasteiger charges, tabulated polarizability, hydrogen bond donors,
and hydrogen bond acceptors. All the default distance relationships and weight-
ing factors were included. Although Pearlman recommends removing 10% of
the molecules in libraries analyzed as outliers, all molecules that could be suc-
cessfully converted from Daylight (32) SMILES to 3D structures (SYBYL mol2
files or MACCS sd) via CONCORD3.2.4 (33) were used. While this yields
larger diversity or chemistry spaces with more voids, it was felt that all
molecules that were actually synthesized and screened should be included in the
analysis. Visualization of the resultant chemistry spaces was performed by se-
lecting subsets from the entire library that could be viewed in either SYBYL6.3
(or 6.4) (33) or in Cerius2 (27). In general, subset selection was done by pro-
portional cell-based sampling with a sample size corresponding to roughly 10%
of the actual library. Since Diverse Solutions chemistry spaces range from four
to six parameters depending on the size and diversity of the combinatorial li-
brary being studied, it is easiest to look at all possible 3D subspaces using the
selected subset of molecules. (This assumes the ability to rotate the subspace on
a computer screen, an obvious impossibility in a 2D document.) This, in fact,
proves interesting when the bioactive structures are added to the subset. (There
is no guarantee that any subset picking method will find any of the actives,
much less all of them, so the picked set is manually supplemented.) It now be-
comes possible to find receptor-relevant subspaces visually. [Since this work
was done, Pearlman has implemented algorithms for finding receptor relevant
subspaces in Diverse Solutions (30).]

C. Cerius2 Cell-Based Analyses

The molecular descriptors and, alternatively, their principal components can be
used as input to the Cerius2 cell-based diversity analysis. The choice of the molec-
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ular descriptors to be used for diversity analysis depends on a number of factors.
These include the speed with which the descriptors can be calculated for practical
situations and the goal of the diversity analysis. The 2D structure captures many
of the physical properties and much of the reactivity of a molecule (34). In addi-
tion, practical considerations make 2D descriptors an obvious choice. On the other
hand, if the purpose of the diversity analysis is to cluster biologically active
molecules, the 3D descriptors may be considered. A number of 2D and 3D de-
scriptors can be calculated in Cerius2 (35).

The choice of descriptors for a particular target depends on the identifica-
tion of the descriptors that are able to separate the active molecules in diversity
space from the inactives. One such approach (36) is to identify the descriptors
that contribute to activity by using 3D-QSAR analysis on a subset of active
molecules. The analysis used genetic function approximation (GFA) with partial
least squares (PLS) to select the descriptors (37,38). The next step was the cal-
culation of the significant descriptor set identified from the 3D-QSAR analysis
for the combinatorial library. The dimensionality of these descriptors was fur-
ther reduced using principal component analysis (PCA) (39). All descriptors
were assigned the same weight by setting the mean to zero and the variance to
unity. Usually a variance of 90% of the information determines the number of
principal components. This number is usually 5–10 components. All the mem-
bers of the combinatorial library were included in the analysis. The subset pick-
ing was done using cell-based density to cover about 10% of the library size.
Different metrics available as a target function to evaluate the coverage of the
selected subsets include cell-based fraction, cell-based chi-squared, cell-based
entropy, and cell-based density (40). A Monte Carlo algorithm was used to op-
timize the diversity function (8).

V. APPLICATIONS OF CELL-BASED DIVERSITY ANALYSIS

Comparisons of the library being designed with preexisting libraries or other
structural databases with cell-based methods (26) are straightforward and need not
be addressed in this chapter.

Since diversity spaces are ultimately useful only if they actually cluster ac-
tives, we have looked at numerous examples of our combinatorial libraries and
their corresponding activity data for various targets. A very early study (25) us-
ing Diverse Solutions BCUT-based chemistry spaces investigated this with a se-
ries of actives from a library designed to inhibit carbonic anhydrase. As shown
in Fig. 1, there are two major clusters and one minor cluster in this representa-
tive 3D subset, which was based on charge, polarizability, and H-bond donation.
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This result is reasonable based on structure classes studied. Experimentally they
fall into three types. Another study (25) included an analysis of eight actives
found for CXCR2 receptor from a 170,000-compound library. As shown in Fig.
2, it was possible to find a 3D subspace that clustered the actives. The other pos-
sible subspaces did not cluster them. The worrisome aspect of this analysis is
that it is unlikely that any subset picking method on this library would have
found these compounds. Assuming that it is reasonable to use diversity spaces
as hypothesis spaces for designing active compounds, it is clear from this ex-
ample that optimal sampling density of a space for a particular target must be
considered. It also illustrates the usefulness of large discovery libraries for tar-
gets with “spiky” activity profiles.
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Figure 1 Clusters of carbonic anhydrase actives (gray, circled) in diversity space. (Re-
produced/adapted with permission from J Chem Inf Comput Sci 1999; 39:36–45. Copy-
right 1999 American Chemical Society.)



In another study of BCUT-derived diversity spaces, five libraries, includ-
ing three discovery and two focused ones, and containing multiple core
structures, were compared in a common 6D diversity space with their actives for
a particular target. Not only was it found (25) that the actives do cluster better
in some subspaces than in others, but it also became apparent that the more ac-
tive compounds clustered more closely. Activity data ranged from ~100 �M to
less than 10 nM. To provide further insights into the activity clusters, the
BCUTS for some 90 actives were imported into our factorial design tool and the
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Figure 2 Eight CXCR2 receptor actives (circled) in 150,000 compound library. The
axes correspond to BCUT charge, polarizability, and hydrogen bond descriptors. (Repro-
duced with permission from J Chem Inf Comput Sci 1999; 39:36–45. Copyright 1999
American Chemical Society.)



parameter thresholds were set so that all actives less than 1 �M were in one bin
[–000000]:
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The qualitative message here is clear: while the more active compounds
cluster together, there are also many compounds that are less active (bold) in the
same region of cell-based BCUT diversity space. Clearly, in this instance, the pa-
rameters function well for diversity and lead finding/optimization but are not ap-
propriate as QSAR (41) parameters. Actives do cluster, but less active compounds
will be found in the same cells.

Another test of diversity spaces with regard to activity clustering is the ex-
amination of actives for two related targets for which one wants to find selectiv-



ity. An example is shown in Figs. 3–8. The four-dimensional chemistry space for
these analyses is described by the following BCUT 3D hydrogen-suppressed de-
scriptors:

1. Lowest eigenvalue of BCUT Gasteiger charge with inverse distance
squared and scale factor 1.00

2. Highest eigenvalue of BCUT Gasteiger charge with inverse distance to
the sixth and scale factor 1.00

3. Highest eigenvalue of BCUT hydrogen acceptor with inverse distance
and scale factor 1.00

4. Lowest eigenvalue of BCUT polarizability with inverse distance
squared and scale factor of 1.00

The actives for the two targets (plasmepsin II and cathepsin D) share com-
mon regions of the diversity space but also have nonoverlapping regions. Figure
3 illustrates two libraries that were designed through a combination of structure-
aided and diversity approaches. Figure 4 shows that the decodes (structures iden-
tified from their tags) from the plasmepsin II screen cluster in BCUT-derived di-
versity subspaces. Figure 5 illustrates that decodes from the two libraries, which
have different cores, cluster in some subspaces. Figure 6 shows that in some of the
subspaces, the decodes for plasmepsin II and cathepsin D cluster selectively. Fig-
ure 7 highlights the most selective cathepsin compounds and illustrates that these
compounds cluster tightly in at least one subspace and that in three of the sub-
spaces shown they are not located in the same regions of diversity space as the
plasmepsin II hits. Figure 8 shows a less happy result for the most selective plas-
mepsin II compounds: it was not possible within this diversity space to find a 3D
subspace that selectively clustered these hits. They are all fairly near the regions
of cathepsin D activity. The implication here is that another description is needed
to understand plasmepsin II selectivity, whereas the descriptor set does seem to
explain the cathepsin D selectivity.

Since it was of interest to our group at Pharmacopeia to find out whether
the descriptor sets available in Cerius2 could similarly show activity and selec-
tivity clustering, the same data set was analyzed using a PCA-based descriptor
space derived from the default (35) descriptor set. The result is shown in Fig. 9.
Clearly, both plasmepsin II and cathepsin D decodes cluster in this space, al-
though not as selectively as might be desired. Figure 10 illustrates the use of the
prototype (pre-Cerius2 integrated version) factorial design tool to visually ex-
amine the activity clusters. The top third of the figure focuses on the plasmepsin
II hits, and the center highlights the cathepsin D hits. In the latter case, it is pos-
sible to adjust the property thresholds so that all the cathepsin decodes are in the
[000] bin (along with many other compounds from the library). While the bin
may contain inactive compounds (or ones that for some reason were not chosen
for decoding), it certainly represents a relevant region of diversity space to use
for subsequent design. In the case of plasmepsin II, the top third of the figure
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Figure 3 Two libraries (hydroxystatin in black and hydroxyphosphinate in gray) designed to be active for plasmepsin II and
cathepsin D in 3D subsets of BCUT-based diversity space. The axes for these plots are as follows: top right, x, y, x � chemistry
space descriptors 1, 2, 3 as listed in text; top left, x, y, z � 2, 3, 4; lower left, x, y, z � 1, 2, 4, and lower right, x, y, z � 1, 3, 4.
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Figure 4 Plasmepsin II decodes (black) in 3D subsets of BCUT-based diversity space. The axes are described in Fig. 3.
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Figure 5 Plasmepsin II decodes in 3D subsets of BCUT-based diversity space with actives from the two libraries in black
and dark gray � signs. The hydroxystatin library is represented by gray dots. The hydroxyphosphinate library is represented by
light gray � signs. The axes are described in the legend to Fig. 3.
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Figure 6 Plasmepsin II (black �) and cathepsin D (gray �) decodes in 3D subsets of BCUT-based diversity space. The axes
are described in the legend to Fig. 3.
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Figure 7 Plasmepsin II (black �) and cathepsin (gray �) decodes in 3D subsets of BCUT-based diversity space. The most
selective cathepsin D decodes are in light gray. The axes are described in the legend to Fig. 3.
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Figure 8 Plasmepsin II (black �) and cathepsin D (gray �) decodes in 3D subsets of BCUT-based diversity space. The
most selective plasmepsin decodes are very light gray � signs. The axes are described in the legend to Fig. 3.
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Figure 9 Plasmepsin II (*) and cathepsin D (�) decodes in Cerius2 PCA space de-
rived using default descriptors. The axes correspond to the first three principal compo-
nents.

shows that the decodes are spread out across a number of bins. There is some
concentration with regard to PCA1—no hits were found in the range below the
[–] threshold. These results are thus qualitatively similar to those from Diverse
Solutions for this data set. It is certainly true that either the BCUTs or the PCAs
or both could be used for these targets to select additional compounds for
screening or for resynthesis and follow-up assays.

Another example of diversity spaces that are validated through clustering of
actives involves a set of combinatorial libraries diverse enough to yield hits across
a variety of targets and yet similar enough to hit the same set of targets. In this par-
ticular case, selectivity in diversity of space between hits for CXCR2 receptor and
B1 receptor will be examined. Figures 11 and 12 show the some interesting 3D
subspaces from Diverse Solutions with and without a 10% subset of the combina-
torial libraries from whence the highlighted actives came. Again, it is possible to
find subspaces that cluster the activities with some amount of selectivity. The six-
dimensional chemistry space for these libraries is described by the following hy-
drogen-suppressed, nonlinearly scaled BCUT descriptors:

1. Lowest eigenvalue of BCUT Gasteiger charge with inverse distance to
the sixth with scale factor 0.5
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2. Lowest eigenvalue of BCUT Gasteiger charge with inverse distance
squared with scale factor 2.00

3. Highest eigenvalue of BCUT hydrogen acceptor with inverse distance
with scale factor 0.5

4. Highest eigenvalue of BCUT hydrogen donor with inverse distance
with scale factor 0.3

5. Highest eigenvalue of BCUT-tabulated polarizability with inverse dis-
tance squared with scale factor 2.00

6. Lowest eigenvalue of BCUT-tabulated polarizability with inverse dis-
tance to the sixth with scale factor 2.00

Figure 10 Clustering of actives in the presence of subset of the combinatorial libraries
using Cerius 2 PCA-based diversity space. The upper third shows attempts to cluster plas-
mepsin II selectively (light gray bins). The middle shows clustering of the cathepsin D ac-
tives into the [000] bin.
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Figure 11 CXCR2 (black �) and B1 receptor (gray �) actives with a subset of the combinatorial library in 3D subspaces from
Diverse Solutions. The axes for these plots are as follows: top right, x, y, x � chemistry space descriptors 1, 2, 3 as listed in text; top
left, x, y, z � 2, 3, 4; lower left, x, y, z � 3, 4, 5 and lower right, x, y, z � 4, 5, 6.
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Figure 12 CXCR2 (black) and B1 receptor (gray) actives without the subset of the combinatorial library in 3D subspaces from Diverse
Solutions. The axes for these plots are as follows: top right, x, y, x � chemistry space descriptors 1, 2, 3 as listed in text; top left, x, y, z �
2, 3, 4; lower left, x, y, z � 3, 4, 5, and lower right, x, y, z � 4, 5, 6.
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Figure 13 illustrates the use of CXCR2 receptor actives to find other possible hits
for screening. The left-hand side shows the distribution of the active compounds
from several libraries. The eight most active compounds of 146 clustered in the
same bin and 36 additional actives were found in that same region of diversity
space. The bins showing the region where the most active compounds are found
are shown in lighter gray. The right-hand side illustrates results obtained when the
same threshold values were used for purposes of virtual screening. The bin con-
taining the most active compounds has been opened to examine the list of addi-
tional compounds that are found in that region of diversity space. There are 67
compounds in that bin—44 are known actives from the training set, and 23 more
are recommended for further screening.

The separation of the CXCR2 receptor and B1 receptor actives in diversity
space was also examined using a Cerius2 cell-based method. The GFA/PLS
(37,38) analysis on a subset of actives for both the targets yielded a set of de-
scriptors (36). The descriptors selected for diversity analysis include the E-state
sum indices (42) for the elements C, N, O, and S, charged partial surface area (43)
descriptors, A log P (44,45), number of rotatable bonds, number of hydrogen bond
donors, number of hydrogen bond acceptors, molecular weight, and the desolva-
tion free energy in water/octanol (46). The first three principal components (PCs)
of these descriptors were used as input for subset picking. As shown in Fig. 14, it
was possible to cluster the actives of both the targets separately in the PC-based
descriptor space. This suggests that although derived from a common core, the
two targets have different pharmacophores (36). The more active molecules were
more tightly clustered. It was seen that the less active compounds fell in bins ad-
jacent to the more active compounds. Although the information in the descriptors
used in this study was not adequate to discriminate between the more active and
less active molecules for a given target, the analysis was able to identify activity
space for CXCR2 receptor and B1 receptor for further lead optimization and fo-
cused library design. Since the descriptor set includes “druglike” properties, fo-
cused library can be designed with ADME considerations in mind. Another ob-
servation made was that some of the less active molecules for the two targets fell
in a common area in diversity space between the two target active clusters. This
may mean that some of these less active molecules are less discriminant or have
somewhat nonspecific binding with respect to the two targets. An interesting fol-
low-up analysis would be to keep track of active space and druglike space for a
virtual focused library design.

Further analysis of the PC-derived active space for CXCR2 receptor and B1
receptor was done using the factorial design tool (25). Ninety-eight compounds
were selected for the two targets ranging in activity of ~ 12 �M to less than 10 nM.
The first three PCs for the subset were used in the factorial design tool. The thresh-
olds were adjusted such that the activity value of less than 300 nM fell in the bin
[***0], with the * representing the PCs. One bin (bold) represents the B1 recep-
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Figure 13 Use of CXCR2 actives to find other possible hits for screening. (Left) Distribution of the active compounds from several li-
braries. The bins showing the region where the most active compounds are found are in lighter gray. (Right) The same threshold values were
used for purposes of virtual screening. The bin containing the most active compounds has been opened to examine the list of additional com-
pounds that are found in that region of diversity space.
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tor set and the other bin (bold) represents the CXCR2 receptor set. The actives of
the two targets were separated based on the third principal component, but the in-
actives [***�] were in adjacent bins. Based on the highly weighted variables in
the third PC and the threshold value separation of the two targets, it may be pos-
sible to identify the significant separate descriptors that separate the actives of the
two targets in descriptor space. Although this exercise was not done, a QSAR
analysis will probably provide the same information for the same set of descrip-
tors and data set.
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Figure 14 CXCR2 (gray) and B1 receptor (black) actives separated in PC-derived de-
scriptor space using Cerius2.
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VI. CONCLUSIONS

We have discussed the utility of a simple property-based reagent/synthon
selection tool intended for the bench chemist. This tool is designed to bin
reagents according to patterns based on the ranges of a set of user-selected prop-
erties that form a diversity hypothesis. Since the chemist may select synthons
manually from the bin sets, choices may be biased to allow for synthetic feasi-
bility and medicinal chemistry knowledge/intuition. Simple whole-molecule
property sets have been found that are in concert with the medicinal chemist’s
intuition and knowledge of molecular similarity. The same tool is also useful in
the analysis and visualization of activity clusters from n-dimensional diversity
spaces.

In addition, we have found it useful to analyze these synthon-designed li-
braries as full product libraries by cell-based analyses using Diverse Solutions,
both as individual libraries and for library comparisons. The size of the individual
libraries analyzed ranged from several thousand to 170,000 compounds.

Moreover, active molecules have been found to cluster in various 3D sub-
spaces of higher dimensional diversity spaces. In particular, for an analysis based
on five libraries, it was found that actives clustered better in some subspaces than
others and that more active compounds were more tightly clustered. Since multi-
ple scaffolds were present in the libraries, their proximity in diversity space sug-
gests the possibility of a common pharmacophore for this target. An important ob-
servation about the BCUT parameters used for this analysis is that they function
well as SAR indicators by clustering actives, but they are not QSAR descriptors.
Less active compounds were found in proximity to more active ones. In a second
type of analysis, compounds active for related targets were found to cluster selec-
tively using both BCUT-based descriptors or PCA-based ones. Additionally, dif-
ferent targets could be found to cluster actives selectively in a set of combinato-
rial libraries containing related structures.

With regard to MSI Cerius2 cell-based diversity tools, we have also been
able to find descriptors sets that cluster active molecules in PCA space. Many of
the same conclusions regarding BCUT descriptor–based analyses apply to these
as well. In particular, they function well as SAR indicators by clustering actives,
but they are not QSAR descriptors for these targets. In the case of a common core
set of libraries with different targets, selectivity was seen among the clusters, sug-
gesting different pharmacophores for these targets in the same chemotype.

Since the ultimate goal of diversity analysis tools is library design, the ideal
tools and descriptor sets would provide obvious, intuitive direction to a synthetic
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chemist. Whether this is a realistic expectation is another issue. Unfortunately,
neither of these sets of descriptors is sufficiently intuitive that a chemist can de-
cide on the basis of inspection which molecule to make next. The descriptors may,
however, be used to screen large virtual libraries for a variety of purposes. The
catch at this stage is that virtual molecules must be built and tested by the current
tools. Once built, they may be filtered for ADME properties and examined rela-
tive to the cell-based design space to determine their potential activity with regard
to multiple targets and even, in some cases, their selectivity/specificity. Structural
databases may be virtually screened to find potential leads with enhanced proba-
bility of activity. Follow-up libraries may be designed with potentially enhanced
activity using these descriptor spaces.
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I. INTRODUCTION TO STRUCTURE-BASED
COMBINATORIAL LIBRARY DESIGN

Recent advances in combinatorial chemistry have dramatically increased the num-
ber of new compounds that can be synthesized (1,2). While high throughput
robotic methods (3) have accelerated the process of screening large corporate
databases and combinatorial libraries, it is still not possible to experimentally
screen all available compounds. As a result, there is a critical need for new com-
putational methods for designing, constructing, and screening virtual libraries.
This includes methods for designing diverse libraries as well as those for design-
ing focused libraries for specific targets or for computationally screening diverse
libraries for binding to a specific target.

Most of the drugs currently on the market today have been found through
large-scale random screening of compounds for activity against a target, for which
no 3D structural information was available. Genome sequencing projects have
caused the number of known sequences to increase at a rapid rate (4). Many peo-
ple are, therefore, working on ways to try to predict the structure of a protein from



its one-dimensional amino acid sequence (5–7). There is also a worldwide effort
in functional genomics to determine as many 3D structures of proteins as possible
or to develop computational approaches to cluster sequences into families of re-
lated proteins and then select and solve the 3D structure of a representative se-
quence from each family (8). Thus, the numbers of homology models and known
structures for medically relevant targets are increasingly large. Structure-based
computational methods that utilize the information contained in the three-dimen-
sional structure of a macromolecular target can, therefore, increasingly be used to
focus a combinatorial library or screen a diverse virtual library. Hits from the vir-
tual library can then be screened experimentally or used to guide the design and
synthesis of a second-generation library that spans less of the available chemical
space and is more likely to contain compounds that will bind to the target in 
question.

As the first step in structure-based drug design (Fig. 1), the 3D structure of
the target macromolecule (protein or nucleic acid) is determined by X-ray crys-
tallography or NMR techniques. In a few instances a homology model (9) has
been used as the starting point. In general, the more accurate the structural infor-
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Figure 1 Overview of the structure-based drug design process. (From D. Joseph-Mc-
Carthy, Computational approaches to structure-based ligand design. Pharmacol. Ther.
1999; 84:179–191.)



mation, the more predictive the computational results will be. Once a lead com-
pound has been found by some means, an iterative process begins that involves
solving the 3D structure of the lead compound bound to the target, examining that
structure and characterizing the types of interaction the bound ligand makes, and
using computational methods to design improvements to the compound. This last
step—designing improvements to existing lead compounds—is the point at which
computational methods have played an important role in the drug discovery pro-
cess during the last 5–10 years. A small subset of the most promising proposed
compounds is then synthesized and tested. For compounds with improved activ-
ity, one determines their 3D structure bound to the target. One problem with us-
ing screening to find an initial lead compound is that the compound must already
exist.

In combinatorial chemistry, libraries or mixtures of compounds are simul-
taneously synthesized from all possible combinations of up to hundreds of
molecular fragments. Combinatorial computational methods that mirror this ex-
perimental approach can be used to design structure-based libraries that take into
account more of the available experimental information on the specific target.
These large virtual combinatorial libraries of compounds can be constructed on
the computer and screened computationally before one goes to the effort and ex-
pense of actually synthesizing and testing them. Fragment positioning methods,
such as the multiple copy simultaneous search (MCSS) method, optimally place
functional or chemical groups in the binding site of a macromolecular structure.
They can be used to place fragments likely to be monomers incorporated into
the synthesis of a ligand library or to position potential library scaffolds into the
binding site. In addition, functional group maps for a given target can be used
to search large databases and virtual libraries for compounds likely to bind to
that target.

On average it can take 15 years and $350–$500 million for a drug to
reach the market (10). The structure-based combinatorial computational meth-
ods described in this chapter are expected to accelerate and reduce the cost of
the drug discovery process. This computationally guided approach is now feasi-
ble owing to dramatic increases in computer power (11,12), developments in the
computational methodologies, and improvements in the accuracy of the empiri-
cal energy functions (13–17) used to model atomic interactions in large biolog-
ical systems.

The following areas of computational library design and screening are dis-
cussed: fragment positioning methods and their use in combinatorial library de-
sign, the specifics of the MCSS approach, the use of MCSS to design structure-
based peptide libraries, small organic compound libraries and large focused
libraries, and the use of MCSS-generated theoretical pharmacophores for database
and virtual library screening.
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II. FRAGMENT POSITIONING METHODS AND THEIR USE
IN LIBRARY DESIGN

There are three basic classes of computational methods for the de novo design of
structure-based ligands: fragment positioning methods, fragment methods cou-
pled to database searches, and molecule growth methods (18). In molecule growth
methods, a seed atom (or fragment) is first placed in the binding site of the target
structure. A ligand molecule is successively built by bonding another atom (or
fragment) to it. There are a number of molecule growth methods available in-
cluding SMoG (19,20), GrowMol (21,22), GenStar (23), GroupBuild (24), and
GROW (25). Of the fragment positioning methods, two well-known programs are
GRID (26) and MCSS (27,28). These methods determine energetically favorable
binding site positions for various functional group types or chemical fragments.
Methods that couple fragment positioning to database searching include HOOK
(29) and LUDI (30,31).

A. Fragment Positioning Methods

The program GRID calculates protein interaction energies for functional groups
represented as single-sphere probes on a grid surrounding the target structure.
The GRID nonbonded interaction energy includes an explicit hydrogen-bonding
term (32–34) in addition to electrostatic and van der Waals terms. The resulting
grid contour map for a given probe looks like electron density into which frag-
ments of that probe type can be built; therefore GRID should be fairly intuitive
for a crystallographer to use and is particularly useful for designing modifica-
tions to existing lead compounds. For example, GRID was used to suggest the
replacement of a single hydroxyl by an amino group in an existing inhibitor of
influenza virus sialidase (2-deoxy-2,3-didehydro-N-acetylneuraminic acid) that
led to an inhibitor (4-aminoNeu5Ac2en) with dramatically improved binding
affinity (two orders of magnitude improvement in Ki) (35). The newer versions
of GRID, offer the ability to create multisphere probes, but at least three atoms
in the multisphere probe must be capable of making hydrogen bonds and must
not be in a linear arrangement (so a multisphere phenol group, e.g., cannot be
created). In contrast, with the MCSS program, the probes are fully flexible and
individual atoms are represented using the CHARMM (36) potential energy
function. GRID, in its standard single-atom probe mode, is fast but gives much
less detailed information than MCSS. A detailed comparison of the two meth-
ods (37) has shown that the time required for a typical MCSS calculation for
methane, for example, is approximately 2.5 times that required for the corre-
sponding GRID calculation, although neither time is prohibitive and the results
are similar. For larger functional groups (such as phenol), the MCSS calculation
takes significantly longer than the corresponding GRID single-sphere probe cal-
culation (as for an aromatic hydroxyl), but the results are effective at indicating

506 Joseph-McCarthy



where in the binding site the group can be accommodated (Fig. 2). The result-
ing MCSS maps are more analogous to experimental mapping of a protein sur-
face by determining its 3D structure in various organic solvents (38–40). MCSS
has been used to suggest improvements to HIV-1 protease inhibitors (41) and
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Figure 2 Comparison of an MCSS functional group map for phenol and a GRID map for
the aromatic hydroxyl probe, both calculated for the poliovirus capsid protein. MCSS phe-
nol minima with E � �13 kcal/mol are shown in black with spheres indicating the hydroxyl
oxygens. GRID density contoured at E � �3.8 kcal/mol is in light gray. The natural ligand
for poliovirus (sphingosine) is also shown in dark gray and indicates the binding pocket.



thrombin inhibitors (42), and to design novel picornavirus capsid binding lig-
ands (43), as described later (Sect. V). Related methods include the fragment po-
sitioning mode of LUDI (30).

B. A Three-Step Design Process

Fragment positioning methods can be considered as the first step in a three-step
approach to de novo drug design. The second step in the process involves clus-
tering and connecting the optimally placed molecular fragments to form chemi-
cally sensible candidate ligands. The third step involves estimating how well the
proposed compounds should bind relative to one another and to existing drugs;
this third step can also be done experimentally by using combinatorial synthesis
to form molecules of all combinations of the computationally selected
monomers and then screening the library for binding to the target. Several dif-
ferent approaches can be employed for the second step, including MC mini-
mizations using a pseudo–potential energy function (41) and a link procedure in-
volving the optimization of linker carbon positions and their connectivity to
selected functional group minima (44). As another example, the newer program
OLIGO (E. Evensen and M. Karplus, unpublished) can also construct peptide
backbones by using a simulated annealing MC minimization procedure and a
pseudopotential. In this case, however, each MC move is the substitution of one
backbone monomer fragment (an N-methylacetamide minimum position) for an-
other in the chain. Allowed side chains (in their optimal positions in the binding
site) are then automatically and exhaustively added to these backbones. Two re-
lated dynamical approaches are DLD (dynamic ligand design) (45) and CON-
CERTS (creation of novel compounds by evaluation of residues at target sites)
(46). DLD saturates the target binding site with sp3 carbons, which can use a
pseudo-energy function to connect to each other or to functional group minima
(as determined by MCSS or a related method) to form molecules with the cor-
rect stereochemistry. This potential function depends on the Cartesian coordi-
nates of the atoms as well as their occupancies and types. In the present imple-
mentation, it is sampled and optimized using MC-simulated annealing.
CONCERTS saturates the binding site with multiple copies of various molecu-
lar fragments and does both the fragment positioning and connection by means
of molecular dynamics (MD) with the AMBER potential energy function. The
fragments are fully flexible during the minimization, and only connected frag-
ments interact with each other. Connections can occur along user-specified
bonds to hydrogen in each fragment; when an interfragment bond is formed, two
hydrogens (one belonging to each fragment) are deleted. During the optimiza-
tion procedure, bonds can break as well as form if the result lowers the overall
energy of the molecule or macrofragment. With both DLD and CONCERTS,
multiple molecules are simultaneously formed and scored.
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C. Fragment Methods Coupled to Database Searches

Fragment positioning methods can also be coupled to database searching tech-
niques, either to extract existing molecules from a database that can be docked into
the binding site with the desired fragments in their optimal positions or for de novo
design. HOOK (29) and LUDI (30,31) can be used either for de novo design or
database searching. For de novo design, LUDI uses either statistical data from
small-molecule crystal structures, geometric rules, or output from the program
GRID to identify interaction sites in the target binding site. Molecular fragments
(taken from a library of hundreds) are then placed in binding site positions such
that atoms of the appropriate type superimpose with up to four of these favorable
hydrogen-bonding or hydrophobic interaction sites. Smaller linker groups such as
CH2 can be used interactively to connect these larger, optimally placed fragments
into candidate ligands. LUDI’s empirical scoring function takes into account hy-
drogen bonds, ionic interactions, the lipophilic protein–ligand contact surface, and
the number of rotatable bonds in a ligand. It was calibrated by fitting to experi-
mental binding affinities for 45 protein–ligand complexes to obtain the individual
energy contributions for an ideal neutral hydrogen bond (�4.7 kJ/mol), an ideal
ionic hydrogen bond (�8.3 kJ/mol), a lipophilic contact (�0.17 kJ/mol), and one
rotatable bond in the ligand (�1.4 kJ/mol). Deviations from ideal geometry re-
duce these contributions, and the sum of all interactions gives an estimate of the
free energy of binding for a given protein–ligand complex. Since its scoring func-
tion is based solely on geometric considerations, LUDI is very fast and can be
used interactively to predict protein–ligand complex structures, but it may some-
times miss optimal positions that are due to more delocalized electrostatic and van
der Waals interactions. Instead of docking molecular fragments from a library,
LUDI can similarly be used to dock and score molecules from a large database or
virtual library.

In its de novo design mode, HOOK (29) first creates a database of 
molecular skeletons by stripping off all the functional groups on the data-
base molecules and then searches this database for those molecular skeletons 
that can be fit into the target binding site in such a way that two MCSS func-
tional group minima can be attached or hooked onto them. After the initial 
docking by geometrical superposition (of two designated hooks—methyl 
groups and attached atoms—in the skeletal molecule onto two functional 
group minima), the fit of the skeleton in the binding site is scored using a simpli-
fied, inverted Lennard-Jones type of contact potential. If the fit is acceptable, sec-
ondary searches are carried out to attach additional MCSS minima to the skeleton
possibly through an extra carbon. CAVEAT (47) is similar in that it searches a
database of 3D structures of small molecules (often cyclic molecules) to use as
molecular frameworks to connect fragments already optimally placed in the bind-
ing site.
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D. Virtual Library Construction and Screening

The de novo design methods just described can be used to construct large virtual
combinatorial libraries of compounds that can be screened computationally (Fig.
3). MCSS functional group maps, for example, have been used to design small di-
rected libraries of poliovirus capsid binding ligands (43) and large structure-based
libraries for class II major histocompatibility complex (MHC) molecules (48) as
described shortly. An automated method for generating combinatorial libraries by
iteratively and exhaustively connecting MCSS minima has also been developed
(49). Starting with the MCSS minimum with the lowest binding free energy, small
linker units (from 0 to 3 covalent bonds) are used to add additional fragment min-
ima. The calculation is fast because lists of mutually excluding (overlapping) frag-
ment pairs and of possible bonding fragments pairs are precomputed. Also, ligand
growth is stopped if the average value of the approximated binding free energy of
its fragments exceeds a specified cutoff. In addition, HOOK can be used with a
database of all allowed conformations of a scaffold or a set of scaffolds with only
positions that can be combinatorialized designated as hooks, or to search a virtual
library for molecules containing an MCSS-generated theoretical pharmacophore
for the target structure. The flexible docking program FLO99 (50) can also be used
to generate and score combinatorial libraries in an automated manner. Further-
more, the program DOCK can be used with MCSS-generated site points to screen
a conformationally expanded virtual library, as discussed in Section VII.
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Figure 3 Schematic of the use of combinatorial computational ligand design methods
for the construction and screening of virtual libraries.



III. THE MULTIPLE COPY SIMULTANEOUS SEARCH
APPROACH

The original MCSS method (27) has been completely reimplemented and im-
proved in several significant ways (28) (Fig. 4). The enhanced MCSS method
(48) is implemented as an Expect script and is more efficient in the initial dis-
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Figure 4 Flowchart of the MCSS method.



tribution of the group copies. In addition, it has the ability to generate box- as
well as sphere-shaped distributions and allows user specification of minimiza-
tion protocols, constraints, and replication selections. The latter feature allows a
cycle of minimization to stop once it has converged; it also permits parts of the
target structure to be flexible and target side chains to be replicated along with
the functional groups. The newer version of MCSS also runs standard
CHARMM (36), has greatly simplified the creation of new groups, and can use
either a polar hydrogen (51), an all-hydrogen (13), or a hybrid (polar for the
group and all-hydrogen for the target structure) representation for the calcula-
tions. The validity of the hybrid representation has been extensively tested (52).
All the features of this version (2.1) are now available in a C program version
(2.5) distributed by Harvard University and Molecular Simulations, Inc. The use
of protocols other than minimization is under development. Alternate protocols
involving Monte Carlo (MC) (37) or molecular dynamics (53) have also been
implemented for annealing the functional group positions in the binding site.
These other protocols are still being fully tested and refined. It has been shown
that when using molecular dynamics and allowing parts of the target structure to
move, every local energy minimum on the LES [locally enhanced sampling by
replicating a small subsystem of the overall system (54)] potential energy sur-
face is also a local minimum on the real potential surface, but the converse is
not true (55). MC sampling should enable the use of MCSS for the placement
of larger ligands in the binding site because it affords greater conformational
sampling of the ligand and MC dynamics avoids problems with disproportional
increases in the kinetic energy of the system when the target is also flexible. The
use of MCSS with a force field that includes an implicit solvation correction is
also being explored.

IV. DESIGN OF PEPTIDE LIBRARIES

Multiple copy simultaneous search methods can be used to design peptide li-
braries for specific macromolecular targets (Fig. 5). N-Methylacetamide (NMA)
minima can be used to construct peptide backbone chains in the target binding site,
and side chain minima can subsequently be added to the selected backbone chain.
Conversely, side chain minima can be used to partition the binding site into dis-
tinct “interaction sites” or clusters of functional group minima, and database
searches of existing peptide or protein structures can be carried out to identify
backbone structures capable of connecting selected side chain minima. In an ap-
plication of the first type, MC minimizations were performed using a pseudo–po-
tential energy function to connect NMA minima in the binding site of HIV-1 pro-
tease to form backbones for candidate peptide inhibitors (41). When two NMA
minima are connected, the acetyl carbon of one NMA and the N-methyl carbon of
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an adjacent NMA are superposed and the ideal distance between them ro is 0 (Fig.
5). Side chains were added to the backbone chains by using the same pseudo-en-
ergy function. Two alternate binding modes of a known peptide inhibitor were
predicted and subsequently confirmed experimentally, and modifications to im-
prove the inhibitor were proposed. Zeng and Treutlein used a related approach to
design potential peptide inhibitors for Ras that should block its interaction with
Raf (56). They first modeled the interaction of Ras with Raf based upon the X-ray
structure of the Ras-binding domain (RBD) of Raf with Rap, a protein highly ho-
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Figure 5 Two alternative schemes for designing peptide libraries.



mologous to Ras. A helix of the RBD modeled to interact with Ras was used as a
minimal template for potential inhibitors. NMA minima in the binding site were
clustered and randomly selected to form backbones capable of extending the he-
lix to a peptide predicted to bind to Ras with high affinity. The bound backbone
chains were subjected to conjugate gradient minimization. Maps of the binding
site were also calculated for functional groups representing side chains; minima
for all these groups were clustered, and representatives from each cluster were as-
sembled into a “computational combinatorial library” of monomers. Relatively
low energy minima for each side chain group type (~150 each) were selected and
attached to a given backbone chain, at each backbone position, whenever the dis-
tance to the specific backbone �-carbon was within a certain tolerance. The re-
sulting candidate sequences were aligned and the optimal peptide inhibitor was
chosen based on the amino acid preference at each peptide position. This approach
is similar to the experimental derivation of a consensus peptide from the effectors
of a target protein. The Ras computational results reproduced the known consen-
sus sequence of Ras effectors and predicted the sequences of new candidate pep-
tides of inhibitors of Ras. In contrast, Caflisch and coworkers have selected can-
didate peptides based on a scoring function or an estimated binding free energy.
This approximated binding free energy is the sum of an electrostatic solvation en-
ergy calculated by the numerical solution of the linearized Poisson–Boltzmann
equation and a nonpolar term that is proportional to the buried solvent-accessible
surface area (49).

An example of the second type of application involves the design of
candidate D-peptide inhibitors of hepatitis delta antigen (Dag) dimerization (57).
MCSS maps of the monomer structure of the dimerization region of Dag
were calculated for all side chain groups. Functional group minima were clustered
and used to identify six “critical interaction sites.” The Protein Data Bank (PDB)
was searched for backbone templates that could be used to connect side chain min-
ima at these various sites. The database search specified the sites to match, the pro-
tein side chains allowed at each site, and the allowed distance and length of the
chain between the sites; it did not specify the relative orientation of the sites.
Therefore about half the hits (segments of protein structures in the PDB) retrieved
would be expected to bind to the actual target and half to the mirror image of the
target. A 14-residue helix expected to bind to the D-isomer of the target structure
was selected as the template for the subsequent inhibitor design. Over 200,000
mutant sequences of this peptide were generated based on the MCSS results. A
secondary structure prediction algorithm (58,59) was used to screen all sequences,
and in general only those that were predicted to be highly helical were retained.
Approximately 100 of these 14-mers were built as D-peptides and docked with the
L-isomer of the target monomer. Each peptide was energy-minimized in the pres-
ence of the fixed target structure using the program CHARMM (36). Based on cal-
culated interaction energies, predicted helicity, and intrahelical salt bridge pat-
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terns, a small number of peptides were selected as the most promising candidates.
This computational strategy for the design of D-peptide ligands is the analog of ex-
perimental mirror-image phage display (60).

V. DESIGN OF SMALL FOCUSED ORGANIC COMPOUND
LIBRARIES

In one of its first applications to the design of nonpeptide compounds, MCSS was
used to design a series of capsid binding ligands for poliovirus and the related rhi-
novirus (44). In all picornaviruses, a ligand binding pocket exists in the �-barrel
of VP1, one of the viral capsid proteins (61–63). When a candidate drug, or high
affinity ligand, is bound in this pocket, it inhibits replication by stabilizing the
virus particle so that it cannot undergo conformational changes necessary later in
the viral life cycle. MCSS maps of the binding region were calculated for many
diverse groups. Functional group minima were clustered, and selected minima
were connected by linker CH2 groups; the connectivity and the position of the
linker carbons were optimized by energy minimization and molecular dynamics
in the presence of the fixed target protein. Normalized interaction energies (the in-
teraction energy of the ligand with the fixed target protein minus the internal en-
ergy of the ligand in a vacuum minimum energy conformation) for the candidate
ligands were compared to those for known ligands. Based on the results of this ini-
tial study, several small combinatorial libraries of on the order of 100 compounds
were designed and synthesized (43). Each library ligand consists of three linked
monomers. The functionalities allowed at each monomer position and the overall
architecture of the libraries was derived from the MCSS results. A novel mass
spectrometry assay as well as a functional immunoprecipitation assay were de-
veloped to screen the libraries. Several hits were identified and confirmed by X-
ray crystallography. In one case, correct prediction of the binding mode of the lig-
and was dependent on enabling conformational flexibility of a few side chains of
the protein.

VI. DESIGN OF LARGE COMBINATORIAL LIBRARIES

Recent advances in combinatorial chemistry and high throughput screening have
increased the demand for computational methods for designing, constructing, and
screening large virtual libraries. There are two types of large virtual library one
might want to construct. A large virtual library of several million compounds
could be designed for screening a wide range of biological targets. In this case, it
would ideally include “druglike” (64–66) molecules or computationally modeled
compounds that constitute a diverse set capable of representing many 3D phar-
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macophores. In the other case, an equally large “focused” library can be designed
that consists of compounds likely to fit a specific 3D pharmacophore. Often a li-
brary of this type is designed around a common scaffold or template with attached
R groups that are varied. For a virtual library that is significantly larger than what
can be examined experimentally in a high throughput screen, computational
screening could be done in two steps as described by Ghose et al. (67). A high
throughput virtual screen (e.g., using 1D- and 2D-QSAR techniques) can be fol-
lowed by a medium throughput virtual screen (e.g., a flexible pharmacophore
search, 3D-QSAR, molecular mechanics energy minimization of the protein–lig-
and complex) on the remaining compounds (67).

Ghose et al. developed a reaction-based combinatorial library design ap-
proach using a 3D pharmacophore hypothesis. Given the 3D structure of SHPTP2
phophotyrosine, MCSS maps were calculated to identify binding pockets and gen-
erate a pharmacophore hypothesis for the target SH2 domain (67). Starting with
this MCSS-generated 3D pharmacophore, a systematic approach for reaction and
reagent selection was employed that led to the design of a combinatorial library
satisfying the pharmacophore geometry. In general MCSS and other fragment po-
sitioning methods have proved useful in selecting scaffolds and corresponding
reagents. In this application, the MCSS interaction energy indicated that the phos-
phate binding pocket is probably the best binding region. The pharmacophore ob-
tained for this target is consistent with the known binding affinities for several
synthetic peptide ligands. Their library design approach involves identifying the
most important pharmacophoric feature, choosing one or two other nearby phar-
macophoric features for the initial reagent search (one of which must contain a
functionality that can be used to add the remaining pharmacophoric features to the
compound), and then using the pharmacophoric distance constraints to screen a
database for reagents; if there are too many hits from the reagent search, the
physicochemical properties of the ligands should be diversified while imposing
tighter pharmacophoric distance constraints.

In another application, MCSS was used in a more de novo manner to design
a structure-based combinatorial library for the class II MHC molecule HLA-DR4
(48). MCSS maps were calculated for a variety of different functional groups. The
scaffold and overall design of the library were determined by the functional group
map for propane. A library of six-monomer branched ligands was designed. Two
of the six monomers were anchor positions whose functionality was determined
by the specificity of the DR molecule. The functionalities allowed at the other four
monomer positions were chosen based on the MCSS results as well synthesis con-
siderations. The library, which was synthesized by a split-and-pool approach with
one compound per bead (or solid support resin), consists of approximately
250,000 unique compounds. An antibody-based assay was developed and used to
screen the library for compounds that bind specifically to HLA-DR4. One of the
consensus hits was modeled by superimposing the ligand “side chains” with se-
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lected functional group minima in the binding site and then using simulated an-
nealing to optimize its position. This individual ligand was subsequently synthe-
sized and tested, using another assay to show that it competes with the native pep-
tide ligand for binding to HLA-DR4 and therefore may bind in a similar mode as
predicted. Retrospectively, clustering and diversity techniques were developed to
analyze the composite of the MCSS results for systematic incorporation of the
data in library design. Since typically several thousand functional group minima
are determined for a given target, selection of minima can be difficult and time-
consuming; this type of analysis greatly reduces the number of individual minima
that need to be examined and therefore should aid in the design of future libraries.
The initial virtual screen of the target binding site using MCSS can be thought of
as analogous to the experimental screen of a large exploratory library to identify
the area of chemical space to be searched by a second-generation library.

VII. STRUCTURE-BASED COMPUTATIONAL SCREENING
OF VIRTUAL LIBRARIES AND SUBSEQUENT
SEARCHES OF EXISTING DATABASES FOR SIMILAR
COMPOUNDS

Fragment positioning methods can also be used to determine or combinatorially
generate possible structure-based pharmacophores. Traditionally, a pharma-
cophore is the set of features common to a series of active molecules. A 3D phar-
macophore specifies the spatial relationship between the groups or features, often
defining distances or distance ranges between groups, angles between groups or
planes, and exclusion spheres. Programs like Catalyst (68), ISIS (MDL Informa-
tion Systems Inc., 1997), and UNITY (Tripos Associates, 1995) can use a phar-
macophore to search a database for new molecules that possess the pharma-
cophore. The ability to rapidly and accurately dock large numbers of small
molecules into the binding site of a target macromolecule such that the com-
pounds are rank-ordered with respect to their goodness of fit is key to lead gener-
ation and virtual library screening in structure-based drug design (69). One of the
older and more widely used computational docking programs is DOCK (70–72).
DOCK systematically attempts to fit each compound from a database into the
binding site of the target structure such that three or more of the atoms in the
database molecule overlap with a set of predefined site points (or a clique) in the
target binding site.

A. MCSS to Generate Pharmacophoric Site Points

The default method for site point generation involves creating an inverse surface
of the binding site. This is defined by the set of all overlapping spheres that fill the
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binding site and are tangent to at least two protein atoms. The sphere centers are
used as site points. Crystallographic water molecules or experimental positions of
known ligand atoms are also often taken as site points. A site point can be “chem-
ically labeled” to indicate the type of atom that it is allowed to match, and it can
be required that at least one site point from a subset, or a critical cluster, be
matched. Chemically labeled site points can be generated in an automated fashion
using the script MCSS2SPTS (73). This script runs a series of MCSS calculations
on the macromolecular structure and extracts the chemically labeled site points
from the resulting functional group maps. The MCSS2SPTS script calculates
maps for acetic acid, methyl ammonium, N-methylacetamide, methanol, water,
cyclohexane, oxazole, and benzene and then clusters minima based on type, posi-
tion, and energy to generate a set of chemically labeled site points (see Fig. 6 for
an example).

B. DOCK to Score Library Ligands

A virtual ligand library can be generated in a format that is searchable by
DOCK. The 3D structures of compounds can be generated by the program
CONCORD (Tripos Associates, 1995) (74), which uses a combination of geom-
etry rules and optimization procedures to select the lowest energy conformer of
the molecule for inclusion in the database. Each match or docking of a molecule
is scored on a grid throughout the binding site of the macromolecular target us-
ing precalculated values for the protein part of the interaction energy. A number
of different energy functions can be employed: molecular mechanics force fields
such as Amber (15) or CHARMM (13,51), contact scoring functions, or Delphi
electrostatic potential maps (75–77). In customized versions of DOCK, a solva-
tion correction for the database compound can be added to the score (78).
DOCK has been used to generate lead compounds for a number of important bi-
ological targets including HIV-1 protease (79,80), dihydrofolate reductase (81),
B-form DNA (82), RNA (83), hemagglutinin (84), a malaria protease (85), and
thymidylate synthase (72).

C. Docking Conformationally Expanded Databases or
Libraries

In an attempt to account for ligand flexibility, DOCK databases have been con-
structed with multiple conformations for each molecule, or ensembles of super-
imposed conformations. In the first case each, conformation of a molecule is
docked separately. In the other case, either the largest rigid fragment of a molecule
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Figure 6 Set of approximately 100 site points generated with MCSS2SPTS for the
DHFR structure. Acceptor sites are labeled “1”, donor sites “2,” dual sites (which can
match both acceptors and donors) “3,” and ring centroids “5.” Spheres indicate site points
that overlay with similar features in MTX bound to DHFR. MTX is in stick representation,
molecular surface for DHFR is drawn with small dots, and the box used for the MCSS and
subsequent DOCK calculations is shown.

(86) or its largest three-dimensional pharmacophore (87) can be used to dock the
ensemble of conformations. The speedup with either ensemble method is that the
ensemble is docked instead of the individual conformers (orientation matrices are
determined simultaneously for all the associated conformers), and far fewer atoms
are used to match to the DOCK site points. With the pharmacophore-based en-
semble docking, only the pharmacophoric feature points of each ensemble are
used to match to the DOCK site points (not the individual atoms). In addition, with
this method chemical labeling is fully functional and is expected to further de-
crease the search time without sacrificing sampling (88). The latter should partic-



ularly be true when the DOCK site points have been derived from MCSS-gener-
ated theoretical pharmacophores.

D. Flexible Docking Methods

The newest version of the program, DOCK 4.0, can be run in a flexible ligand
mode (89), although the latter is still very CPU intensive. Other methods for
flexible ligand docking include FLO99 (50), AUTODOCK (90,91), GOLD (92),
and FlexX (93,94). The FLO99 algorithm involves Monte Carlo (MC) perturba-
tion (wide-angle torsional Metropolis perturbation as well as translation and ro-
tation of ligand atoms) followed by energy minimization in Cartesian space for
flexible ligand binding to a target structure; therefore, there is full flexibility for
cyclic and acyclic molecules. AUTODOCK (90,91) employs simulated anneal-
ing in torsion space and therefore is best suited for ligands with only a few ro-
tatable bonds. GOLD (92) also searches torsion space but uses a genetic algo-
rithm approach. FlexX (94) is more distinct from the other docking methods in
that it first decomposes the ligand into fragments by breaking all single acyclic
and nonterminal bonds. A hashing pattern recognition technique is then used to
dock a set of base fragments into the binding site. Base fragments are docked by
matching three ligand interaction centers to three interaction points on the re-
ceptor surface. The ligand is incrementally built up starting from the position of
a base fragment. The set of allowed interaction types or physicochemical prop-
erties and the empirical scoring function are defined as in the program LUDI
(see Sect. II-C for a more detailed description of this method) (95), with slight
modifications. This model of discrete conformational flexibility for the ligand,
with finite sets of allowed torsional angles for single acyclic bonds and pre-
computed conformations for ring systems, allows the docking to be fast. Flexi-
ble docking methods can reasonably be used to screen virtual libraries of on the
order of only a few thousand compounds.

E. Ligand Binding Scoring Functions

The success of docking molecules into a target site, designing ligands de novo, or
constructing and screening large virtual combinatorial libraries is ultimately de-
pendent on the accuracy of the scoring function that ranks the compounds or how
well the corresponding relative binding affinities can be predicted. Ligand bind-
ing is governed by kinetic and thermodynamic principles. Factors that contribute
to ligand binding include the hydrophobic effect, van der Waals and dispersion in-
teractions, hydrogen bonding, other electrostatic interactions, and solvation ef-
fects (96). If the change in free energy associated with complex formation is neg-
ative, the association will be favorable.
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In order of increasing complexity, the various approaches for estimating
binding affinities include scoring functions based on the statistical analysis of
known structures of protein–ligand complexes (97) and those based on physico-
chemical properties (98), molecular mechanics force field calculations, force field
calculations with added solvation corrections, and free energy perturbation calcu-
lations (99). The simplest physicochemical scoring functions include those that
count the number of receptor atom contacts within specified distances or, like
HOOK, scale these counts depending on the distance from the ligand. More com-
plicated ones include the LUDI energy function and similar empirical scoring
functions (100,101). Molecular mechanics force field calculations attempt to
model explicitly the atomic interactions in the system. The resulting interaction
energies represent the enthalpic contribution to the free energy. The simplest force
field calculations are performed with the ligand–target complex in vacuum using
truncation schemes for the nonbonded interactions. The calculated ligand–target
interaction energies include electrostatic and van der Waals interactions between
the ligand and target and often also include the internal energy (bond, angle, and
torsion terms) of the ligand or a ligand strain term (the internal energy of the lig-
and in its bound conformation minus a reference energy for the ligand in an un-
bound conformation). In a number of cases of sets of related compounds, a rea-
sonable correlation exists between the van der Waals interaction energy alone and
binding affinities (18,44,102–105).

A mean force field approximation or continuum representation for solvent
can be used to calculate an electrostatic term that is substituted for the molecular
mechanics Coulombic term to estimate the electrostatic contribution to the free
energy. This continuum treatment of long-range electrostatic interactions involves
first calculating the electrostatic potential for the final state and the individual ref-
erence states, using a finite difference approach to solve the linearized Pois-
son–Boltzmann equation as implemented in the University of Houston Brownian
Dynamics Program (106,107) or Delphi (75,77). Calculation of the electrostatic
energy from the electrostatic potential is trivial, and for ligand binding the differ-
ence in the electrostatic energy approximates the difference in the electrostatic
contribution to the free energy (i.e., for the binding of ligand L to protein P, �G-
elec � �U � UPL � UP � UL). To account further for solvation, the solvent-ac-
cessible surface area can be calculated for the ligand, the protein, and the lig-
and–protein complex. The surface area buried upon complex formation can be
related to the free energy of nonpolar solvation, or the hydrophobic effect associ-
ated with ligand binding (108,109). A number of groups have had some success
in using a weighted sum of a continuum electrostatic term and a buried surface
area term, sometimes with the addition of a ligand internal energy term, to predict
binding affinities (49,110–112). Another approach is to incorporate an implicit
solvation term directly into the molecular mechanics force field [e.g., an ex-
cluded-volume implicit solvation model (113)].
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VIII. SUMMATION AND FUTURE OUTLOOK

The first structure-based computational drug design methods came into existence
in the early 1980s, and the greatest successes to date are the various HIV-1 pro-
tease inhibitors (114). With the development of new computer-aided drug design
technologies and their use in connection with combinatorial chemistry, there
promise to be many more successes. Improved scoring functions, faster comput-
ers, and better database storage methods will facilitate progress. Expert systems
for organic synthesis, such as LHASA (115,116) or WODCA (117), may be used
to assess the ease of synthesis for a set of compounds. Even once a compound with
a high affinity for the target has been developed, factors such as toxicity, bioavail-
ability, and resistance often determine its fate. There is now a greater emphasis on
trying to account for some of these factors in the initial screening and optimiza-
tion process. The “druglike” character of monomers or functional groups can be
assessed before they are incorporated into the library design. Large virtual li-
braries will be constructed based on available chemistry or on a set of existing
combinatorial scaffolds, as well as on known drug properties. In the future, as
structural information become more readily available, the use of the target struc-
ture to design focused libraries as well as to screen virtual libraries will be in-
creasingly important in the drug discovery process.
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I. INTRODUCTION

Advances in molecular biology and functional genomics have made important
strides in the last few years, and new proteins are being identified at a much faster
pace than ever before. As a result, the number of proteins that will serve as im-
portant therapeutic targets is expected to dramatically increase in the near future.
Usually, however, the proof that these newly discovered proteins are causatively
linked to a pathology that is treatable by somehow interfering with the protein’s
function must await the discovery of potent, selective small molecules that inter-
fere with these events. This will mean that scientists involved in early lead dis-
covery will face a new challenge: to rapidly provide leads (ligands, antagonists,
inhibitors, etc.), that will be suitable for early proof-of-principle (POP) studies for
these newly discovered proteins and thus help prioritize newly discovered targets
for drug discovery programs. The leads thus generated will be optimized to iden-
tify development candidates and provide new therapeutically useful agents for
clinical trials and ultimately for commercialization.

The last decade witnessed a shift to a new paradigm in drug discovery via
the implementation of combinatorial/parallel synthesis of both oligomeric and



nonoligomeric (low molecular weight “druglike” compounds) libraries of diverse
compounds, and high throughput (HT) screening has provided a format for the
identification of new lead compounds for various molecular targets (1). This new
paradigm for the exploration of the chemical diversity space for rapid lead identi-
fication is very appealing, especially when one has very limited three-dimensional
(3D) structural information on the molecular target(s)—which is likely to be the
case for newly discovered targets. In any given template, however, the number of
possible compounds that can be synthesize in combinatorial or permutational (2)
libraries is enormous, often in the millions to billions of compounds (1,2). Under
these circumstances, computational tools are utilized to evaluate the molecular di-
versity contained in a given library prior to synthesis and finally to prepare a sub-
population that maximizes dissimilarity (3) among the selected members. The bi-
ological evaluation of this subpopulation, rather than the entire library, is a more
manageable task.

One of the important goals in building combinatorial libraries is to maxi-
mize diversity, which is based on dissimilarity among the library members,
whereas identification of compounds that are active versus a given molecular tar-
get (a property-dependent criteria) is based on similarity measures. It is important
to note that a nonactive molecule, by definition, is dissimilar to an active molecule
even though the two may or may not be (chemically) diverse. Therefore, diversity
in biological space does not automatically imply large dissimilarity in the chemi-
cal space (4). Therefore, to ensure a greater probability of finding “actives” (i.e.,
to enhance the likelihood of lead generation) for a given biological target (a prob-
lem-dependent scenario), adaptive learning algorithms such as genetic algorithms
are particularly suited.

Genetic algorithms have been successfully utilized to find solutions to prob-
lems involving a relatively large search space where traditional methods are not
feasible (5,6,7). In fact, genetic algorithms (GA) are distinguished for their pow-
erful optimization characteristics, enabling them to find a set of very good (but not
necessarily the best) solutions rapidly from among an astronomically larger num-
ber of potential possibilities (8,9). Like combinatorial libraries, genetic algo-
rithms, a machine learning technique originated by Holland (10) and referred to as
the computational analogs of Darwinian evolution, are based on a building-block
concept. The ability to find good solutions to the problem at hand by efficient
combination of a given set of building blocks is a key source of the GAs’ strength.
The basic ideas—selection, crossover, and mutations—are common to all GA ap-
plications; however, the “chromosome” representation and fitness function that
codes information are specific to the problem under investigation. GA involves
starting with a random population (coded by “genes”). A fitness value for each
member is determined, which becomes the basis for selection of the fit members
to produce the next generation, based on the natural process of selection, mating,
(crossover), and mutation. The definition of the fitness function is a large part of
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the GA search paradigm, which measures the extent to which the genome provides
a solution for the problem under evaluation. These terms are explained later in
greater detail.

This chapter describes some examples for use of GA-based lead generation.
These examples are subdivided into two main sections: fitness functions based on
experimentally determined value(s) and fitness functions based on computed
properties. Since the design principles for use of GA for structure-based problems
were covered in detail in the preceding chapter, our description is restricted and
focused to relate to lead generation.

II. GENETIC ALGORITHMS

This section briefly describes the basic ideas of the GA method, some issues in-
volved in its use as a tool for the selection and representation of chemical struc-
tures, some of the details and variations in its implementation, and finally our view
for its future applications and potential for lead optimization and development.

GA optimization methods are based on several strategies from Darwinian
theories of evolution, where “adaptivity” to the constantly changing environment
is a key for the survival of any given species. “Adaptivity” is what best distin-
guishes GA from other “stochastic” or “heuristic” algorithms. We will briefly
touch on how one may be able to take advantage of this uniqueness of GA in the
drug discovery realm. In the normal survival and evolution of the species, new ge-
netic variants constantly arise, and their survival and “dominance” is based on
their ability to find food, to reproduce, and to resist “assault” on their existence.
These would be classified in the language of genetic algorithms as the “objective”
function (or fitness function). The GA method seeks to quickly find “individuals”
that have very good scores on the fitness function, using the process modeled on
natural selection, or “survival of the fittest.” For example, for a living and evolv-
ing population made up of compounds instead of species of organisms, with the
evolutionary pressure being applied being their biological activity, one could en-
visage exactly the same process occurring. The GA utilized here is based on three
basic strategies (11): selection, crossover, and mutation (though the order and rel-
ative rate for crossover and mutation may vary).*

The first strategy—selection,—is the use of a breeding population in which
the individuals that are more “fit” in some sense (e.g., higher biological re-
sponse/activity) have a higher chance of producing offspring and passing on their
“genetic” information. The second strategy is the use of crossover (mating), in
which a child’s genetic material is a mixture of that of its parents. In the final strat-
egy, mutation, the genetic material is occasionally “changed or corrupted” to
maintain a certain level of spontaneous and random genetic mutation in the pop-
ulation. The solutions obtained will differ according to the relative rates of
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crossover and mutations. Generally, when the probability of crossover is much
larger than mutation, it is possible to tune GA toward simple optimization, since
information used in producing the next generation relies largely or wholly on in-
formation contained in the previous generation. This leads to very little explo-
ration of “fringe” possibilities and usually provides a “local optimum” solution to
the problem. When the reverse is the case, GA may be driven toward a more
purely stochastic exploration of search space (i.e., Monte Carlo–like diversity ex-
ploration). Generally some balance of these two (crossover and mutation) opera-
tors is sought in GA-driven searches.

One GA paradigm (see later, Sect. III.B), a modified version of the Genesis
GA (12 code) is outlined in Scheme 1.

One generally works with a population of individuals, which interact
through their genetic operators to carry out an optimization process. An individ-
ual is specified by a chromosome. The first step in using GA for analysis of chem-
ical space is to use a suitable coding strategy for the representation of chemical
structures—building blocks. The most common strategy is to use binary bit strings
(i.e., a sequence of 1’s and 0’s) to code building blocks. Each unique binary bit
string corresponds to only one building block; however, a building block may be
encoded by more then one unique binary bit string. An individual is completely
specified by a chromosome, a bit string in this case. Initially, a set of npop indi-
viduals is formed by choosing a set of Nb bit strings at random, and each member
is evaluated for fitness. In the case in which “individuals” are compounds and the
fitness is evaluated by, for example, biological activity in an assay, each com-
pound is synthesized and screened.

Let us assume that a hexapeptide is to be represented by a bit string of 30
bits (or digits). Each amino acid is represented by 5 bits, the first amino acid be-
ing coded into bits 1–5, the second being coded into 2–10, and so on. Each 5-bit
code can essentially code for 25 or 32 unique amino acids. Since there are only 20
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Scheme 1 Summary of variables used for genetic algorithms. Adopted with permission
from Ref. 13. Copyright [1996] American Chemical Society.



amino acids, this 5-bit codon can easily accommodate a unique pattern for each
amino acid (13). Therefore, the 30-bit string can be translated into a unique
hexapeptide. Organic compounds may be coded by alternate coding systems and
some of these are shown in Fig. 1 (14).

A fitness function, also called the objective function (see above), is used to
rank the individual chromosome. The optimization proceeds because a population
selects individuals that have increasingly higher fitness. Initially, members of a set
of Npop individuals, which have been synthesized (or generated), are evaluated for
fitness. The exact nature or origin of the fitness function is, in a sense, of no con-
sequence as long as it is reasonably consistent and objective, hence the name.
[Note: For the examples in Sec. III, the fitness functions are derived from experi-
mentally determined values, whereas for the examples in Sec. IV, the fitness func-
tions are computed corresponding to a given set of properties and are described
later.] A roulette wheel is conceptually created, and the “slice” on the wheel for
any given individual is proportional to the value of the fitness for that individual.
A compound with greater biological activity gets a larger slice on the wheel and
an inactive compound get a smaller slice. In the selection process, one may imag-
ine mating pairs to be selected by spinning this wheel. (All individuals have a
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Figure 1 Various encoding strategies used to represent a chemical structure’s “genome.”
A tripeptoid and various encoding systems to code for genome members for genetic algo-
rithms are shown. The building blocks are separated by alternate bold substructures and are
also designated in bold in the coding systems shown. (From Ref. 14.)



place on the wheel and therefore have a finite chance to be selected.) This pro-
duces a list of pairs for mating.

Subsequent generations are formed as follows. In one particular implemen-
tation of the process each member of the first generation (15) is ranked by fitness,
and the fittest individual is placed into the next generation with no change. Next,
pairs of individuals (from the selection step above) are crossed over to form the
next generation. The crossover step may be visualized as shown in Scheme 2 and
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Scheme 2 Overview of GA process: selection, crossover, and mutation. This example
is for a genome size of 10 individuals, replication of a single best member, crossover rate
of 60% with duplicates allowed, and a very low mutation rate. Point of crossover is shown
by ‘I’ and a bit selected for mutation is highlighted in bold and underlined.



described as follows: ARBITRARILY making a “cut” at a randomly chosen spot
in the genomes (represented by fixed-length bit strings) of two individuals se-
lected as parents and then recombining the first part of the first genome with the
second part of the second and vice versa, to generate two “new” offspring indi-
viduals with new genomic information (16). It is important to note that this is a
completely random process and may transect the “allele” or part of the bit string
used to code a particular pair. The process serves thus to change that particular
part it describes radically sometimes.

Normally, since a genome is composed of linearly disposed bit strings, one
may generally expect lower probability of crossover for building blocks near the
terminus. To address this issue, one can envision linking up the individual genome
to form a cyclic genome for each of the two members of a mating pair and then
ARBITRARILY making two “cuts” at randomly chosen spot in both the genomes,
to open the ring and generate two parts of the resulting string. Recombining the
first part of the first genome with the second part of the second and vice versa gen-
erates two “new” offspring individuals. These two scenarios are shown schemat-
ically in Fig. 2. The scenario in which the genome is cyclized to form a circular
genome and subsequently subjected to crossover process (Fig. 2b) offers a poten-
tial advantage-crossover takes place with the same probability for each bit (build-
ing block), whereas for linear bit strings the crossover may be lower near the ends
of the genome. This entire process is called the crossover step.

It is important to note that the total number of individuals Npop selected for
the subsequent generations (Geni�1) remain identical to the initial random popu-
lation (Geni), since each pair of parents produces exactly two offspring. It is worth
noting that the crossover process using a “circular genome” in essence allows one
to code the genome as a linear bit string and does not require the use of cyclic cod-
ing, as described in Fig. 1. The crossover rate corresponds to the percentage of in-
dividuals in Geni�1 that are formed by pure crossover of individuals in the Geni.
For example, in a population of 100 individuals, if 10 are copied over directly to
the next generation, the maximum crossover rate (assuming no mutations, etc.)
will be 90%. The rate of crossover varies, and is indicated in the examples (Sects.
III and IV). In several reported examples in the literature, 100% has been used for
the crossover rate.

After applying the selection and crossover steps as outlined above and
thus producing a population of “new” individuals for the next generation, one
applies the mutation operator. This simply consists in our case of “flipping” a
bit (from 0 to 1 or vice versa). The frequency of this mutation is usually preset
and held constant throughout the run. The choice of which individual to mutate
and which bit in that individuals’ genome to mutate is purely random (Scheme
2). One constraint that may be applied in the binary encoding process is know
as Bensen gray-scaling, which assures that no resulting mutated individual or
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Figure 2 Examples of (a) linear and (b) circular CROSSOVER.

mutated molecular compound differs significantly from the corresponding
molecule that underwent mutation. For example, in a peptide-based library, it
may be desirable to mutate the initial building block Ala to Leu, but not to Arg.
The gray-scaling method assures that point mutation does not significantly alter
the character of the encoded trait. A variation on this theme, called neighbor mu-
tation, is described briefly in Section IV.B. A number of variants have already
been discussed, and Scheme 2 captures the essence of the GA process for going
from Geni to Geni�1.

In addition, an elitist GA can be used, where a set number of best individu-
als from generation Geni are copied to Geni�1 without allowing these to undergo
crossover or mutation. (A variation referred to as the “best-third method” is de-
scribed in Sect. IV). Also, duplicate checking procedures may be used to ensure
that an identical parent is not present in any given population and subsequent gen-



erations. In these cases, mechanisms are provided to keep the population size
fixed (see Sect. III.B for an example).

III. EXAMPLES WITH EXPERIMENTALLY DERIVED
FITNESS FUNCTION

A. Identification of Thrombin Inhibitor

One of the earliest published reports for combining a combinatorial synthesis with
a genetic algorithm utilizing an experimentally derived fitness value was provided
by Weber et al. (17). A well-known Ugi reaction based combinatorial library with
10 � 40 � 10 � 10 building blocks representing a total of 160,000 possible com-
pounds was explored. An initial population size of 20, with a crossover probabil-
ity of 100% and a mutation rate of 1% in about 50 generations, was explored with
an elitist GA. The crude products from each generation were assayed in a throm-
bin chromogenic assay for inhibitory activity. In this GA experiment, no dupli-
cates were allowed. The data and the population members from run Gen1 and
Gen2 were stored in the same database, and the best 20 new compounds were se-
lected from this database for synthesis and biological evaluation. This process was
repeated, and after the production of 20 unique Ugi products in 20 generations, the
most active product was found in generation 18. This reaction was scaled up and
the products were purified, which revealed the intended racemic four-component
product 2 with Ki � 1.4 �M, along with a three-component by-product (3) with
Ki � 0.24 �M (Fig. 3). Thus the most active compound, 3, was not the one iden-
tified through GA optimization, it was product 2. For comparison, the best prod-
uct from the first generation was very weakly active, with Ki � ~300 �M. It is
worth noting that by synthesis and screening of merely 400 compounds from a
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Figure 3 GA-driven identification of thrombin inhibitors. (From Ref. 17.)



possible 160,000-member library, GA-derived lead generation identified a sub-
micromolar thrombin inhibitor.

B. Identification of Stromelysin Substrates

In an independent study, Singh et. al. (18) described a GA-based approach for
rapid exploration of protease substrate specificity and selectivity leading to the
identification of a unique substrate for stromelysin. The total diversity space for
this problem represented a 64-million-hexapeptide library, represented by
X1PX3X4X5X6, where each X represents all 20 natural amino acids, (except Cys,
which was replaced with S-Me-Cys, denoted U). An initial population size of 60
randomly formed hexapeptides was used. A constraint of X2 � P (proline) was in-
voked only for the initial population, since our previous work had shown that pro-
line at this site is preferred, and it was felt useful to start with all available knowl-
edge in a real-life example. All subsequent generations were free to choose
nonproline amino acids for position X2. The peptides were synthesized using con-
trolled-pore glass as a solid support (19). Each peptide was capped with a fluo-
rescent tag (coumarin propanoic acid, COP). A glass-bound peptide sample used
for biological assays (20) could be generically represented as COP-A-
X1X2X3X4X5X6-(Acp)5-�Ala-AMP-CPG. Automated biological assays were
performed on a small sample (typically, 4.0 � 0.3 mg) of the glass-bound pep-
tides, using the protease solution (stromelysin or collagenase) added using a
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Figure 4 Performance evaluation of GA-based lead identification. plot of average activ-
ity (fluorescence x 103) versus GA-based generation. Solid lines represent actual experi-
mental data, the dotted line shows a projected plot if one assumes that G10 represents a ter-
mination point, such that each individual of G10 is a good substrate with at least 20%
substrate processing. Adapted with permission from Ref. 13. Copyright [1996] American
Chemical Society.



Packard PROBE, in a 96-well format. The samples were mixed on a variable-
speed vortexer, the solution was allowed to settle by gravity, and a fixed amount
of the supernatant from each sample, containing the processed substrate carrying
the fluorescence tag (COP group), was transferred to the appropriate position of a
96-well plate. Fluorescence was then read by means of a fluorescence plate reader.
Thus, the amount of fluorescence for each sample was proportional to the extent
of the corresponding substrate processed by the protease (i.e., proportional to the
biological activity).

Samples from each generation were screened for substrate activity versus
stromelysin (mSl-t) and/or collagenase (mCl-t) (21). The negative value of the ob-
served fluorescence of given samples of generation Geni served as a measure of
the sample’s potency as a substrate, as input for optimization in the GA to provide
sequences for the subsequent generation, Geni�1. A plot of the average fluores-
cence (22) (activity) versus generation is shown in Fig. 4. Even in this relatively
small number of generations evaluated, one can clearly see the trend to greater ac-
tivity, as well as the variability, as the program automatically explores the space
it is optimizing over. Not only did the average activity per generation improve (as
highlighted in Fig. 4) but each generation also identified new sequences with
greater activity than displayed by the previous generations (see Fig. 5). The graph-
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Figure 5 The most active sequence from each generation. The site of processing by
stromelysin is indicated by a hyphen for these sequences listed. Relative activity is plotted
with best sequence for G1 � 1.0. Two samples are shown for G4. Even though the most ac-
tive sample for G4 and G3 had an identical sequence, the next most active sample for G4

represented a different sequence and distinct P2 and P1 residues than those observed for G2.
Adopted with permission from Ref. 13. Copyright [1996] American Chemical Society.



ical representation of the data in Fig. 4 provides evidence for GA’s capability to
explore diversity space. A single assay per sample was carried out and the ob-
served fluorescence, “raw data,” had been used as a fitness function to drive GA-
based optimization. This underscores the tolerability of this method of optimizing
even over a “noisy” fitness function. The Geni�1 sequences are directly derived
from the biological data obtained for the preceding generation, Geni.

It is also important to realize that, as part of the normal GA process, a given
sequence was identified several times and these multiples were accepted. (In this
regard, this GA differs from most of the other examples in the literature, both ex-
perimentally and computationally driven, where duplicates are excluded, and this
difference explains why a noisy fitness function was still acceptable.) As part of
the experimental design for this GA-driven study, a fundamental decision was
made to conduct biological evaluations for that sample equal to the number of
times the GA demanded it and to use the individual biological responses as fitness
function for the subsequent cycle. This decision was made to address the inherent
variance in any biological evaluation, and it was argued that this experimental de-
sign will over time (generations) take care of the noise inherent in the biological
screening. If a decision were reached to use, for example, chemical samples of less
than 100% purity (as often occurs with high throughput synthesis), this same strat-
egy could be extended to resynthesized samples. This was not necessary in this
case because the samples were virtually pure.

C. Identification of Trypsin Inhibitors (23)

A population of 24 randomly chosen hexapeptides was optimized: Ac-XXXXXX-
NH2, where X denotes one of the four building blocks [phenylalanine (F),
isoleucine (I), lysine (K), and theronine (T)] exhibiting increased inhibitory activ-
ity for trypsin. In this example, the strings coding the genome sequence were the
single-letter codes of the amino acids (building blocks). The initial, randomly cho-
sen 24 peptides (generation 1) were synthesized, and trypsin inhibitory activity for
each member was determined. For the selection step, all 24 peptides from the first
generation were ranked for trypsin inhibitory activity; the best 12 peptides
(1st–12th) were kept and the worst 12 (13th–24th) were discarded. For assigned
peptides 1–6, three copies were made (providing 18 peptides) and for peptides
7–12 a single copy of each was saved. The resulting 24 new peptide sequences
were randomly divided into 12 pairs, which were then subjected to the random,
single-point crossover process (i.e., a crossover rate of 100% was used), produc-
ing 24 new members. Finally these sequences were subjected to mutation, in
which any given amino acid (building block) can be replaced by any one of the
four possible building blocks with a 3% probability. Finally, the resulting 24 pep-
tide sequences, representing the second generation, were synthesized and assayed.
The process was repeated until a total of six generations, or 144 peptides, had been
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evaluated. The analysis revealed that the average inhibitory activity increased
from 16% for the initial randomly chosen population to 50% for the sixth genera-
tion. Also, 17 of the 22 discrete peptides from the sixth generation belonged to the
two predominant patterns, Ac-XXKIXX-NH2 and Ac-XKIXXX-NH2, whereas
only two peptides belonged to these patterns in the first generation. It is interest-
ing to note that the most active peptide, Ac-TIKIFT-NH2, with 89% inhibitory ac-
tivity, was identified in the sixth generation. This sequence had been identified
earlier by Eichler and Houghten (24), who started, with Ac-XXKIXX-NH2 pep-
tide libraries representing about 3.2 million peptides. Therefore, from the synthe-
sis of 144 (3%) of 4096 (46) possible sequences (from F, I, K, and T building
blocks), a peptide with 90% inhibitory activity was successfully identified by
means of a GA.

IV. EXAMPLES WITH COMPUTATIONALLY DERIVED
FITNESS FUNCTION

We know that when the number of possible compounds that may be synthe-
sized/generated in combinatorial or permutational libraries (2) is enormous, com-
putational tools can be utilized to identify subpopulations that meet a predefined
paradigm, for subsequent synthesis and biological screening. Some of these com-
putational tools include computer-based structure–activity relationship (SAR)
methods (dissimilarity or similarity measures) and generation of molecular struc-
ture with constraints (pharmacophore, active site modeling/fitting, especially when
a 3D model or a crystallographic or NMR-based 3D structure is known). The de-
mand for the judicious and timely use of proprietary corporate compound collec-
tions and the increasing availability of commercial compound collections also fuel
the development of heuristic algorithms for the selection of subpopulations with an
increased probability of generating leads in target-driven biological screening.
Whether these are the existing compound collections or the combinatorial virtual
libraries, an array of computational tools have been used for property-based com-
pound selections. Next we briefly describe some examples in which selected prop-
erties were computed and their match to optimal values used as a fitness function
for GA-guided lead generation. Rather than presenting an exhaustive listing, we
highlight diverse examples taken from published primary literature.

A. Virtual Library Screening: Peptoid-Based Lead
Generation

GA has been developed and described by Sheridan and Kearsley (25), to select
molecules (and identify a preferred set of building blocks) from a large virtual li-
brary. This GA utilized a measure of similarity to an active probe structure(s) as a
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measure of fitness. A virtual peptoid library representing over 20 billion members,
from a set of 1 � 2507 � 1 � 2507 � 3312 building blocks was constructed and
stored “in silico.” A population of 300 molecules was selected at random, and
each molecule was scored using a topological descriptor using atom pairs sepa-
rated by a specific number of bonds as a selection criteria of the chemical simi-
larity against a reference probe. A number of GA parameter strategies—“third-
best” method and stochastic search, with random or neighbor mutation (see
below)—were used. For all methods, duplicates were excluded.

The “third-best” method is briefly described as follows. Three hundred
molecules, selected at random (generation Geni), were scored, the best 100 were
saved, and the remaining 200 were deleted. Three copies of the best 100 were
made. The first copy was saved unchanged to the next generation, Geni�1. For
each individual of the second copy, a single residue was chosen at random and that
residue was mutated with another residue from the list of building blocks for that
position; the resulting 100 molecules were added to the generation Geni�1. The
third set of copies of 100 molecules was crossed over with another copy from this
set at a randomly chosen position, and the resulting molecules were added to the
generation Geni�1. The generation (Geni�1) was subsequently scored as above,
and the process was repeated.

In the stochastic method, 100 molecules from Geni were randomly selected
to survive unchanged, and these became part of Geni�1. The next 100 molecules
from Geni were randomly selected, and two parents were selected at random from
the remaining 100 molecules of Geni to produce 100 new molecule for Geni�1.
The relative probability for selection of any individual molecule “i” depended on

544 Singh and Treasurywala

Figure 6 A predetermined tripeptoid used as test case. (From Ref. 25.)



a linear function of its score. The rel probi � (score1 � minscore)/(maxscore �
minscore), where maxscore and minscore, respectively, refer to the maximum and
minimum score for Geni. The neighbor mutation, similar to the gray-scaling men-
tioned in Section II, assures that a molecule mutates to a closely related molecule.

Thus starting with a population size of 300 molecules, and utilizing the two
selection methods just described, GA was run for 25 generations. The “third-best”
method was found to be much better than the stochastic method at increasing the
average score more quickly with either of the two mutation choices. To study
these GAs’ optimization concept for this combinatorial problem, identification of
the predetermined tripeptoid 4 (Fig. 6) was chosen as the test case. Amazingly,
with the evaluation of just 3600 molecules (	0.00002%) from a virtual combina-
torial population of over 20 billion, this GA-driven method found the “right an-
swer” after 12 generations.

Another example explored in this work was the chemical similarity to the
cholecystokinin antagonist tetrapeptides. In this case the score of each molecule
for the GA run was taken as the similarity to the average value of the descriptors
for the two probes 5 and 6 (Fig. 7). Again, a GA using the “third-best” method
with neighbor mutation was run for 25 generations. In this case, peptoid-based
molecules with similarity score of 0.90–1.00 were observed between generations
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Figure 7 Two probes used in GA run. (From Ref. 25.)



15 and 23. Unfortunately, the biological data for these molecules were not 
reported.

B. Virtual Library Screening and Ligand Design for Lead
Generation

Genetic algorithms are among the most versatile and efficient means of solving a
given problem quickly. Their applications in the area of drug design have only be-
gun to be tapped. Frequently in the domain of high speed analoging one wishes to
produce libraries of compounds in chemical series to quickly and efficiently sam-
ple the SAR possibilities. The aim in such exercises is to produce a fraction of the
total member of combinatorial possibilities of analogs while at the same time cov-
ering maximally the diversity space they represent.

A virtual library of compounds derived from a core template with a number
of groups replaced can be constructed based on 3D grid properties, using a genetic
algorithm protocol. An example of this with the goal of achieving maximum
molecular diversity, for a benzodiazepine-based library, is described by DongXi-
ang et. al. (26). The core molecule is labeled with dummy atoms “Du” at sites where
substituents are to be attached. Only one putative atom on each fragment was al-
lowed to be involved in covalent bond formation with the core molecule. When ev-
ery “Du” atom on the core molecule had been replaced with a fragment chosen from
the fragment list, a molecule was generated in silico and saved in SYBYL MOL2
format. Molecular dynamics/mechanics techniques were used to optimized the
structures of the virtual compounds in SYBYL, the optimized structures were
aligned onto a template structure (“j”), and this orientation of the optimized struc-
ture was saved in the database containing the virtual library members. In this ex-
ample the size of the virtual library was set to 100 compounds. A C (sp3) atom with
�1 charge was used as a probe atom, and the interaction energy matrix [compara-
tive molecular field analysis (CoMFA) descriptors] obtained was subjected to
(principal component analysis) (PCA). The CoMFA matrix was analyzed with
SYBYI QSAR module (v. 6.1) to extract 28 principal components, which were
used as a measure of molecular dissimilarity MSij (i.e., a measure of molecular dis-
similarity to the template structure “j”; the bigger the MSij, the more different is
compound “i” from the reference compound “j”). Rather than using the dissimi-
larity to a reference compound, these authors considered the overall dissimilarity
of compound “i” to all other compounds in the library. If all compounds in the li-
brary are said to be “n,” then the overall diversity measure “MSi” is described by
the following formula.

MSi �

∑
n

j�1
MSij


n
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The value of MSi was maximized as a fitness function (i.e., Scorei � MSi) for this
GA-guided virtual library construction. An inheritance of 40% was used; that is,
the first 40 compounds (from Geni, with the highest fitness score, were saved un-
changed to Geni�1. Crossover and mutation were randomly selected according to
a Gaussian function that was driven by a computer’s random number generator. For
crossover, fragments linked onto the same randomly selected connection site on the
core molecule were exchanged between the two parents. For mutation, two alter-
nate protocols—”mutation-in” and “mutation-out” were chosen at random. For
“mutation-in,” the two fragments at two different sites on the same molecule were
swapped, whereas for “mutation-out” a randomly selected fragment on a molecule
is replaced with fragment chosen at random from the fragment list. In this GA-di-
rected study, duplicate compounds were disallowed. For the generation of this vir-
tual library, the same set of 72 diverse fragments for each of the three connection
sites, represented by R1, R2, and R3 in the generic structure (Fig. 8), were chosen.

A total of 20 generations were evaluated, and it was reported that the maxi-
mum score was reached by generation 10 [i.e., with evaluation of 1000 members
(0.26 %) out of the possible 373,248 members] and remained unchanged after that.
In addition, following the performance as the generations evolve, a list of fragments
was tracked, as well as their respective frequencies at each of the sites. This list pro-
vided useful information of the building blocks, which could then be used for the
synthesis of a targeted benzodiazepine library with maximum molecular diversity.
This analysis provided the number of diverse fragments with higher frequency at
sites: R1 (� 6), R2 (� 5), and R3 (� 12) with very little overlap among these frag-
ments. Only one fragment was identical for R1 and R3; two fragments were identi-
cal for R2 and R3. Unfortunately, the actual synthesis of benzodiazapine library
members derived from these preferred fragments was not reported.

Another interesting case that was considered in this report was the con-
struction of a virtual library of huperzine analogs (for the generic structure, see
Fig. 9). The important difference in this case was that coordinates of the (–)-hu-
perzine A in the complex of huperzine and acetylcholinesterase (AChE) (molec-
ular target) at 2.5 Å were used as the reference structure for library compound
overlap. The fitness function for this GA-driven study was the ratio of MSi with
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Figure 8 Three connection sites, R1, R2, and R3 in the generic structure.



MSir, where MSir refers to the molecular dissimilarity of the library compound “i”
to the reference compound:

Scorei � 

M
M

S
S

i

i

r



Thus the compounds with high dissimilarity to other library members and
similarity to the reference are given higher probability for being selected as par-
ents for the next generation. For the score for compound “i” to be higher on this
scoring system, the value of MSir must be smaller and the value of MSi larger. For
this virtual library generation, nine fragments (H, CH3, CH2CH3, CH2OH,
CH2CH2OH, OH, NH2, CH2NH2, and COOH) were selected. The GA run, using
the foregoing conditions, produced a total of 30 generations. The maximum score
at the equilibrium state was found to be 0.73. After ninth generation the maximum
score fluctuated between 0.73 and 1.0. Also, examinations of the molecular struc-
tures revealed that the (–)-huperzine was identified in the ninth generation and
was inherited in the subsequent generations. In addition, the virtual library mem-
bers were docked in the AChE receptor and their binding energies were also eval-
uated. It was observed that most of the library members had computed binding en-
ergies near that of the (–)-huperzine. In fact, one library member, compound 7 (see
below: Fig. 10), has been reported (27) to be biologically active (IC50 � 35 nM).
This experimental data point was claimed to provide indirect verification and sup-
port of this GA-driven study.

C. Genetically Evolved Receptor Model

The goal of this example, described here as reported by Walter et al. (28), was to
produce an atomic-level model of receptor (active) site based on a small set of
known structure–activity relationships. A number of explicit model atoms (40–60
atoms) were placed at points in space around a series of ligands, and intermolec-
ular interactions between the ligand and receptor model atoms were calculated. By
using, say, 60 atoms and changing the atom types from among eight possible atom
types, more than 1054 models could be produced. Since this large multidimen-
sional search space obviously could not be evaluated via an exhaustive, system-
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atic approach, a GA was employed. That is, by changing the atom types at various
positions, one would produce models that should optimally have high correlation
between the calculated binding energy and bioactivity, with the assumption that
the observed bioactivity is proportional to the ligand–receptor interaction energy.
This study involved 22 sweet-tasting compounds representing three structural
classes: (L)-aspartate derivatives, aryl ureas, and guanidine-aliphatic acids. Inter-
estingly, the bioactivity for these analogs spans 3.5 orders of magnitude. Using the
(L)-aspartic acid derivatives (Fig. 10) as an example, four sets of models were gen-
erated. Each set had six compounds, which were used as templates to calculate
bioactivity for eight analogs each. The (L)-aspartic acid derivatives were identi-
fied by compound numbers as follows:

Set 1: 8, 9, 10, 12, 13, 14
Set 2: 7, 9, 10, 11, 13, 14
Set 3: 7, 8, 10, 11, 12, 14
Set 4: 7, 8, 9, 11, 12, 13
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Figure 10 Structures and potencies of aspartic acid derivatives. Adopted with permis-
sion from Ref. 23. Copyright [1994] American Chemical Society.
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Figure 11 Fitness score for a model is calculated by first calculating an interaction en-
ergy with each ligand, then calculating the regression coefficient for 1/exp(energy) versus
log(bioactivity). Reprinted with permission from Ref. 23. Copyright [1994] American
Chemical Society.

Figure 12 Composite calculated values for all eight aspartic acid derivatives, each taken
from the set in which it was not part of the model-building process. Data points are calcu-
lated as average over the first 100 models in the population and the error bars indicate stan-
dard deviation. Adopted with permission from Ref. 23. Copyright [1994] American Chem-
ical Society.



Genetic Algorithm Directed Lead Generation 551

Figure 13 Calculated bioactivities for all 22 compounds. Filled circles indicate the 11
compounds used for evaluation of the model, and open triangles are calculated values for
the 11 compounds that were not included in the model generation. All values are averages
calculated for the first 100 models in the population. Adopted with permission from Ref.
23. Copyright [1994] American Chemical Society.

The “fitness function” score for each member was produced by first calcu-
lating the intermolecular van der Waals and electrostatic energies between the
model and each individual ligand, in the series of superimposed ligands; the cor-
relation coefficient for 1/exp-(energy) versus log(bioactivity) was used as the fit-
ness score (Fig. 11). The parameters used in the GA run include the following:
atoms/model; 60; population size, 2000; mutation rate, 1.0/generation; and num-
ber of generations, 10,000. A Poisson distribution is applied to the mutation rate,
so that with the overall mutation rate of 1.0/generation, the probability of having
0, 1, 3, 4, or 5 mutations in a given gene is 0.368, 0.368, 0.184, 0.062, 0.016, and
0.004, respectively. This GA-driven model-building procedure generated models
with excellent correlation (r � 0.98–0.99) between calculated energy and bioac-
tivity. The results are shown graphically in Fig. 12.

In an extension of this study, all 22 diverse sweet-tasting compounds were
used simultaneously. Only 11 of these were used for model building. This model
was then used to predict the activity of all 22 compounds. The results are shown
graphically in Fig. 13. As anticipated, larger errors were observed for compounds
not included for the model building, as is the case with other methods based on in-



terpolation of data. Moreover, such model building with limited SAR information
may provide useful constraints on the diversity space to be explored. The results
are expected to be useful for designing and evaluating virtual library members in
order to arrive at potentially active sets for targeted screening and lead generation.
The analogy between the use of these virtual active site models and the use of ac-
tive sites via X-ray crystallographic measurements of enzymes is obvious.

V. DISCUSSION

The examples described in this chapter were chosen to illustrate the versatility of
GA-driven processes for lead generation. In Section III, we focused on examples
of GA driven by experimentally determined fitness score values. These three ex-
amples provided significant variations for the principal GA operators: inheritance
(replication), crossover, and mutation rates (values). These examples also differed
in the level of input based on the existing data/information (a problem-dependent
variable) or “bias” for selection of the initial “random” generation.

All the examples in Section IV utilized computationally generated fitness
score values to drive GA-based lead generation. The examples were arranged to
illustrate fitness score evaluation in comparison to probe molecule/molecules uti-
lizing fitness scores based on dissimilarity measures (1) derived from a topologi-
cal descriptor using atom pairs separated by a specific number of bonds, (2) based
on 3D grid properties, and (3) utilizing the coordinates of a probe based on its
complex with its molecular target. Finally (4) an example was given of generation
of the 3D receptor model from a known SAR data set. In addition to the informa-
tion already discussed, we feel that a number of other points need to be addressed,
which are touched upon next.

For all the examples given in Section III, a single, simple fitness function
was used. In addition to the GA-derived optimization process for the stromelysin
(example in Sect. IIIB), the samples were screened for collagenase to obtain se-
lectivity information among these closely related matrix–metalloproteinase tar-
gets. Even though, a GA-derived utilization of this selectivity information was
presented, it is obvious that one may well use the biological data from screening
with collagenase for every sample as a penalty value for determining the final fit-
ness score, which will be a sum of the partial score versus stromelysin and partial
“penalty” score versus collagenase. Thus, such a GA could be easily utilized to
provide optimized and selective leads (solutions) for the target of choice. In gen-
eral the most complex and discontinuous fitness functions can be used with no in-
crease in the complexity of the GA approach.

One may choose to incorporate a number of interdependent parameters or
molecular properties as fitness functions, or one may employ penalty functions for
some variables as a part of the fitness function paradigm, as described earlier. For
example one may construct complex fitness functions incorporating the molecu-
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lar weight of each compound, its selectivity for the target enzyme over the related
enzymes, its degree of overall charge, solubility in water, and so on. The only re-
quirement of this overall fitness function is that a value for each member be de-
terminable. These values may be a combined aggregate of several experimental
and computed values as well.

Many optimization strategies require a continuous, mathematically defin-
able fitness function. Real-life SAR optimization problems rarely afford this situ-
ation. This is not the case with GA, which readily optimizes discontinuous fitness
functions by its very nature. The method also readily accommodates variability in
the fitness value (as exemplified in Sect. IIIB). This is an essential part of SAR
work and is also not readily accommodated by other methods of optimization. In
fact, it is stated that the GAs succeed best where the fitness functions are highly
complex, discontinuous and “noisy” (10). GAs could easily be used to optimize a
number of parameters simultaneously, since they are known to provide solutions
to the kinds of problem not suited to other methods. The combinatorial chemistry
based diversity assessment/solution is such a problem.

Screening formats are continually being changed (e.g., from the 96-well for-
mat all the way to microarray formats providing roughly half a million samples
per run) to generate larger amounts of screening data points per unit time. As a
consequence, meaningful data mining (informatics) is becoming rate limiting.
Therefore, emphasis is being placed on constructing smaller focused libraries rep-
resenting structurally diverse compounds rather than aiming for exhaustive chem-
ical sample pools. The fitness function in a GA run ranks individuals at the prod-
uct level (i.e., fully enumerated products as opposed to reagents or pathways).
Thus, one would expect generation of more diverse libraries. The work of Gillet
et al. (29) presents a very important analysis providing the upper and lower limits
on diversity for a given library. This work points out that the reactant-based se-
lection, which attempts to maximize diversity at the building-block level, results
in libraries noticeably less diverse than those obtained when the selection is at the
product level. Interestingly, their work also demonstrates that the GA-driven pro-
cess provides combinatorial libraries that are more diverse than those generated
by means of reagent-based selections.

An important aspect of lead generation for which GA has been increasingly
used is the virtual library screening and identification of a focused library, some
of whose members may then be synthesized and screened. An important empha-
sis for these studies has been to augment (amplify) the corporate or compound col-
lection library for screening against diverse biological targets. An important piece
generally missing from the published literature to date has been experimental val-
idation or support for these computationally designed libraries.

In most of the computational examples with GA, it is generally acceptable
to carry the run through a relatively large numbers of generations before reaching
convergence. However, for the cases involving chemical synthesis, it is essential
that the GA converge relatively quickly (in 	15 generations). It is worth noting
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that in well-designed GA runs, this was in fact the case regardless of whether the
fitness function was experimentally or computationally derived.

Increasingly, as even the limited SAR data are gathered for newly discov-
ered targets, the GA-based approaches are potentially a very powerful way to
quickly generate pharmacophore models, from limited data set. The work of Wal-
ters et al., described earlier, is an excellent example of this GA-derived approach.
Of course, a set of known sweet-tasting compounds was used to exemplify and
provide a critically needed validation. We hope that such studies will be carried
out much more frequently, to provide a large database of experience in this area.
A pharmacophore generated by a GA-derived process may be further utilized for
GA-derived ligand design as described by DongXiang et al. (27), as highlighted
earlier with the huperzine example.

Additionally, in any given hit identification process from HT screening, one
generally encounters issues related to the dynamic range of the biological data.
One has to choose optimum concentration range to ensure a hit rate from the sam-
ples at hand of less than 1%. Thus, the screening process is simply a hit identifi-
cation process, not necessarily lead generation. An important contrast to this is the
GA approach, where potentially one can deal with a large dynamic range of con-
centrations, from millimolar to nanomolar. This is because the fitness function in
reality has meaning for a given generation Geni under consideration, and this in-
formation (from Geni) is utilized only for the production of the very next genera-
tion, Geni�1. Thus, at the start of the GA, one may use a biological assay at high
concentration (say, 10–100 �M), such that differential activity is identified. Note:
that the best member of the Weber’s first generation had Ki � 300 �M, as men-
tioned in Section III.A. Even so, as the GA proceeds, one may easily modify the
biological assay (provided one is still optimizing the same property space) and run
the assay, say, to identify submicromolar to nanomolar range hits. This iterative
GA-driven process for finding good solutions thus allows accommodation of huge
dynamic ranges of values within one experiment. This is in contrast to the screen-
ing of huge combinatorial libraries, where one is restricted to a much narrower
range of biological data (e.g., inhibition or antagonism of screened compounds at
1 �M, followed by determination of IC50 or Ki values for the hit members only).

Genetic algorithms have recently been applied to a variety of applications
related to drug design. These examples are not discussed here, but a number of ex-
cellent papers in the published literature provide detailed discussions of the use of
genetic algorithms for de novo ligand and library design (30), flexible structure
docking (31), and molecular recognition (32).

VI. LEAD OPTIMIZATION

Finally, we emphasize that the entire process of iterative optimization of some
SARs has an inherent potential advantage over that of making large libraries be-
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fore screening them. That advantage is one of “data digestion.” In the drug dis-
covery process, as it is generally run in project team settings in the pharmaceuti-
cal industry, the project team has an opportunity to assess results from one gener-
ation of compounds and to “spin off” other avenues of investigation related to the
project goals. When GA is applied to the optimization process, it fits this natural
rhythm quite well. We have found this fit to offer a great advantage in our hands.
An example of such a “spinoff” bonus, identification of selective substrates—
”unique” hits,—was provided in our work described Section III.B, where samples
from Gen1 were utilized for determination not only of potency as a substrate of
stromelysin, but also of selectivity over collagenase.

The goal in the stromelysin project was to identify not only good but also
selective substrates. This substrate selectivity information would be subsequently
translated into a selective inhibitor. In view of this objective, we have also assayed
the initial set (generation 1) vs. collagenase (mCl-t). The results for the collage-
nase vs. stromelysin assays are shown in Fig. 14.

The site of processing, in the sequences highlighted, is indicated by a hy-
phen. However, translation of these substrates to a known class of matrix metal-
loprotease inhibitors (33) would only involve the P1� and P2� portion of the infor-
mation. It is known that the P1� residue imparts a greater selectivity among matrix
metalloproteases. Thus, a sequence GPST-YT, which is selectively processed by
stromelysin, as shown in Fig. 14, was identified. This processing between Thr and
Tyr represents a unique selectivity between these two metalloproteases. There-
fore, this stromelysin-selective substrate (34) was utilized, and a focused set of se-
quences that explores variations at the Y (Tyr) position was prepared in an inde-
pendent, “spinoff” study while the GA optimization proceeded on a parallel track.
A number of substituents were selected to evaluate a variety of electronic and
steric properties for their effects on the relative hydrolysis of the substrates and
thus their relative importance on the overall binding energy in the active site of
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Figure 14 Assay results for collagenase (mCl-t) and stromelysin (mSl-t) for G1 samples.
Adopted with permission from Ref. 13. Copyright [1996] American Chemical Society.



stromelysin. The outcome of this study also provides some additional SAR infor-
mation. The results of this study, summarized in Fig. 15, show a preference of
oxygen vs. sulfur [by comparison of Ser(Bn) vs. Cys(Bn)] and indicates �-branch-
ing to be deleterious [comparison of Ser(Bn) and Thr(Bn)]. In conjunction with a
3D model of stromelysin, we were able to rationalize the data based on the steric
and electronic effects and to suggest additional novel P1� groups.

This process, as already described, illustrates the flexibility of this GA-
based approach. However, it is important to emphasize that this activity must pro-
ceed independently of the GA optimization and must not be used to influence its
convergence. Thus one should not change the variables for the GA experiment on
the basis of the outcome of information from a given generation.

In summary we learned three lessons from this experience. First, it is usu-
ally better to start a GA runoff with as much of the current thinking about the prob-
lem as possible built into the first generation—but not required to be carried over
to subsequent generations unless it truly deserves to be. In this way one can cir-
cumvent several generations of the “first principles” type of learning as the run
evolves. Second, it is advisable—even desirable—sometimes to deal with noisy
data, provided the data point is remeasured each time it is called for in the GA run.
We firmly believe that this ability to deal with and accommodate raw, noisy data
in the context of the optimization is a unique feature of GA that has not been well
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Figure 15 Assay results of samples COP-AGPST;”X”T-(Acp)5-bAla-AMP-CPG. All
of the samples showed processing by stromelysin only, and the data is shown above. As-
terisks (*) represent that these samples were confirmed to show a single site of cleavage as
confirmed by Edman sequencing of the post-enzymology solid (glass-bound) sample and
by amino acid analysis and LC/MS of the supernatant [for details, see reference 24(b) as
cited in the Ref. 13 in this chapter]. Two columns are shaded differently to highlight the
groups that show activity greater than the reference: Tyr. Adopted with permission from
Ref. 13. Copyright [1996] American Chemical Society.



exploited to date. Finally, as the run progresses it is important not to interfere with
its progress by yielding to the normal human inclination of micromanaging the
course of the evolution. At the same time it is also profitable to monitor the pro-
gression from one generation to the next. It has been our experience that knowl-
edge gained by watching the progress of such GA optimizations can lead to in-
sights, and side projects that may have great value in their own rights and can be
independently exploited as the run progresses on a parallel path.

One of the goals of the recent efforts from virtual library generation and
GA-based screening is to derive important building-block information. For exam-
ple, in addition to looking for new molecules that meet the profile of desired
molecules (i.e., come close to the desired properties), one may determine the fre-
quency at a given site on the template of building blocks that lead to these desired
properties. This building-block information may then be used to construct “bi-
ased” libraries. This has been described in some detail by Sheridan and Kearsley
(25) in their work for GA-driven analysis of the “virtual” tripeptoid library de-
scribed earlier.

VII. SUMMARY

From the experimentally (or computationally) driven examples provided here, it
is clear that GA-based lead generation/optimization can proceed after synthesis
(or analysis) of a small fraction of the combinatorial population. This approach
provides an alternative strategy for the effective exploration of diversity space
without the construction and assay of large libraries to identify lead candidate(s).
These algorithms further facilitate the process of lead discovery/optimization by
reducing user bias and should provide a powerful tool to help focus drug
discovery.

VIII. FUTURE DIRECTIONS

These early examples of the demonstration of GA as an efficient tool to guide
chemical synthesis-based problems should provide an incentive for further explo-
ration of genetic algorithms for increasingly important problems based on chem-
ical diversity. The current information for experimentally driven GA-based lead
generation or optimization indicates that all the population members must be syn-
thesized and screened (i.e., scored). However, as computational tools become
more robust, and as members of a given generations are produced before one
moves on to the execution phase (chemical synthesis), it may become possible to
incorporate algorithms that rank the compounds in order of synthetic feasibility.
Such an “ease of synthesis” penalty function then could be fluidly built into the
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overall fitness function during GA optimization. Other such terms might include
bias against toxicophores or metabolic instability if those can be quantified and
objectively computed. The possibilities are limitless.

In addition, we are increasingly witnessing creative applications of high
throughout principles to the obtaining of physicochemical data: (aqueous solubil-
ity (35), log P determinations (36)), pharmacokinetic parameters via “N-in-1” cas-
sette dosing strategies (37), and even toxicity screening (38) from milligram
amount of samples in parallel. These experimentally determined values may be
used as “fitness functions” to permit the use of GA-based lead development. Inas-
much as any “drug” possesses a diverse set of optimal parameters, we believe it is
the discontinuous nature of these parameters that makes the GA-driven process
particularly appealing for the lead development phase of drug discovery, which
calls for the simultaneous optimization of several discontinuous functions.

In the last several decades, the pharmaceutical arena has witnessed the in-
creasing need for new and effective antibiotics to combat resistant strains of mi-
croorganisms; and the area of AIDS is plagued by rapidly evolving mutations in
the HIV protease in response to early inhibitors. Drug discovery must constantly
deal with and respond to evolving biological systems. It is intriguing that genetic
algorithms, based as they are on the principles of “genetics,” may be particularly
suited to finding solutions when the definition of “optimal” is constantly chang-
ing. We believe that this “adaptivity” of GA to respond to changes in the envi-
ronment may allow us to use this tool to find solutions to these problems. For ex-
ample, a GA-driven lead generation aimed at finding optimal solutions
(identifying inhibitors) not just to one but to a host of HIV proteases with differ-
ent mutations may be worth exploring. The area of receptor antagonists, has
evolved from selectivity among the various classes (5HT vs. dopaminergic vs. his-
taminergic) to the discovery of subtypes and pursuit of subtype-selective drugs.
This adaptation is trivial for an advanced GA optimizer. We are now poised per-
haps on an age of seeking particular profiles (5HT2/D2, etc.), where combination
of binding activity at a pluralities of receptor subtypes may be sought. Again, this
is a simple task for an advanced GA optimizer. This line of thought may well be
extended to finding an optimal solution for cancer therapy, where combinations of
drugs that are diverse in mechanism/mode of actions, may provide an optimal
outcome.
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I. INTRODUCTION

In the last decade, drug discovery has changed radically. This change has been
driven by technological advances in biological science, rapid follow-up activities
in chemistry, and powerful computer techniques. Of these, structure-based drug
design (SBDD) and combinatorial chemistry (CC) have proved to be successful
methodologies. Knowledge of the three-dimensional (3D) structure of a biologi-
cal target can help to identify a lead compound and subsequently guide its opti-
mization. Combinatorial chemistry, on the other hand, is a synthetic strategy
whereby molecular diversity can be rapidly reproduced in the laboratory with the
specific aim of targeting a biological system.

To accelerate the identification of hits suitable for lead development and
then lead optimization, the whole discovery process should be as fast as possible;
technologies with the necessary features are grouped under the term HTT (high
throughput technology). This approach involves the rapid design, synthesis, and
testing of large numbers of molecules in an iterative fashion. Critical to the whole
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process is the design step, which should be consistent in order to avoid waste of
time, money and human effort (Fig. 1).

The identification of leads take place in the “combinatorial section,” where
library design and chemistry optimization are geared to synthesis. The final step,
that of biological evaluation, is high throughput screening (HTS), and from here
the highest scoring compounds are promoted to the following cycle. The process
is iterative and tends toward convergence when the hits constitute a good lead for
optimization in the “medicinal chemistry section.” In this phase, the approach is
similar to that adopted previously, but on a smaller scale: a reduced number of
molecules is processed at a higher level of refinement, the compounds being stud-
ied sequentially, one by one, following classical precepts of design and chemistry.
Detailed computational methods and traditional medicinal synthetic chemistry are
applied.

The integration of combinatorial chemistry with the structure-based meth-
ods (1) is achieved by including the combinatorial synthetic approach in the struc-
ture-based drug design cycle. Studies from several groups suggest that structural
information can usefully impose constraints on the diversity available in combi-
natorial exploration, leading more rapidly to more potent inhibitors. In some
cases, the 3D structure of the biological target can be used as a guide to direct the
combinatorial strategy; in other cases, the 3D structure can be used as the final
template into which the best inhibitor can be fitted. In the latter case, the structural
basis for the molecular recognition of the compounds is taken into account and ac-
celerates library design. Rational library design provides focused molecular state
depiction, and only the highest scoring compounds are synthesized. This approach
is possible, provided the preliminary structural information on the addressed tar-
get is to hand. When this information is not available, the library design is based
on structure–activity relationship (SAR) analysis from previous work; the X-ray
structure is part of the final cycle and serves to explain the basis for inhibitor–tar-
get interaction and eventually to continue the process in an iterative fashion. In
both cases, the library design is the bridging point between the CC and SBDD.

II. COMBINATORIAL CHEMISTRY

Combinatorial chemistry is the most important recent advance in medicinal chem-
istry, in view of its great potential for speeding up the drug discovery process.
Combinatorial library methods have been successfully used in the past few years
not only to generate new leads for a specific target but also as a powerful tool for
the optimization of an already known lead.

The initial development of combinatorial chemistry derived from solid
phase synthetic techniques (2) and peptide synthesis (3). In moving from peptide
synthesis to the synthesis of small organic molecules, a wide range of chemistry
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could be adopted by applying retrosynthetic strategy principles, in which the de-
sired final structure is dissected via several steps suitable for in-parallel/serial
combinatorial synthesis, while the core structure (shared scaffold) is synthesized
off-line by traditional organic chemistry (4). The retrosynthetic combinatorial
analysis finds its software application in the program RECAP (5).

At first combinatorial chemistry involved the design and synthesis of a huge
number of molecules to cover the synthetic space available for a specific molecu-
lar scaffold set and to generate as much diversity as possible. However, the need
for a rational strategy in the development of the drug discovery process finally
arose: the approach turned out to be uneconomical owing to frequent redundancy
in molecular state description and the poor analytical control of the products. New
techniques for the design, synthesis, and purification of molecules continue to be
reported, and there are a number of excellent reviews providing background in-
formation on combinatorial chemistry (6–15).

Combinatorial library methods, applicable to a small-molecule library, in-
clude parallel solid-phase or solution phase synthetic library methods requiring
deconvolution, the one-bed/ one-compound library method, and synthetic library
methods using affinity chromatography selection.

Of these, the in-parallel synthesis of a library of spatially separated com-
pounds has the advantage that the chemical structure of each compound is prede-
termined. Each molecule, analog of a core structure, is in fact synthesized on a
solid support in a spatially addressable format. Synthesis and screening of the li-
braries are performed in parallel through binding assays or solution assay, de-
pending on whether the screening is performed on the final molecule still attached
to the solid support.

The techniques that allow for synthesis in parallel are multipin technology
(16), SPOTS membrane (17), light-directed peptide synthesis on chips (18), and
Diversomer technology (19). In view of the benefits of such synthetic techniques,
new combinatorial chemistry methods are generally oriented toward the in-paral-
lel synthesis of a restricted number of separate compounds, rather than a mixture
of thousands of molecules, with obvious screening limitations. The major limita-
tion of the in-parallel approach is that only a relatively small number of com-
pounds can be synthesized in parallel, resulting in a limited library. It is therefore
crucial to identify the optimum subset of a library for synthesis. However, even
though it is relatively easy, given a starting template, to design a large library by
simply combining all the sets of commercially available starting compounds, there
are practical reasons for not synthesizing every compound: it is wasteful of time
and money, and the information coming from a such library may not be propor-
tional to the size of the entire set.

Of the numerous methods developed to select the right subset of molecules
to synthesize, the integration of modeling and structure-based drug design with
combinatorial chemistry techniques has proved to be successful. Combinatorial
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chemistry methodology has in fact reached such a level of productivity that it is
increasingly incorporated into the iterative drug design and discovery cycle. Many
examples of combinatorial libraries applied to small molecules are known in the
literature and refer to benzodiazepines, diketopiperazines, isoquinolinones, 1,4-
dihydropyridines, pyrrolidines, hydantoins, imidazoles, triazines, acylpiperidines,
�-lactams, and many others (11).

Despite the availability of several excellent reviews providing a clear back-
ground to combinatorial chemistry and solid phase synthesis, however, only re-
cently has it been shown how the combinatorial and in-parallel synthesis of small
libraries can be positively combined with computational and molecular modeling
methods to assist in the discovery of new lead candidates. In the last couple of
years this approach was applied to various targets, as shown by the examples dis-
cussed in this chapter.

III. STRUCTURE-BASED DRUG DESIGN

Structure-based drug design takes advantage of the structural information
about a biological target to design drugs that can fit into the target. The struc-
tural information can derive from the experimental determination of an X-ray
crystal structure or an NMR structure, from a homology modeling approach, or
from a calculated structure. Many reviews have been published on this topic
(20–27). The technology that paved the way for structure-based methodology
was the development of recombinant DNA techniques, which made large
amount of proteins available for crystallographic studies. The number of avail-
able 3D structures of unbound and ligand binding proteins has since grown ex-
ponentially; nowadays, over 10,000 X-ray crystals are available in the Protein
Data Bank.

The reliable prediction of the energy of interaction between a ligand and its
biological target is the first, challenging step in the design of a new drug, and a
large number of variables need to be taken into account. One weak point is our
limited understanding of the basic principles of the molecular recognition process
that guides the dynamic reactions within the biological systems, and much re-
search in this area is currently underway (28).

Another issue is the accurate description of the conformational change that
occurs in the target macromolecule upon ligand binding. The computation of this
change is limited to the closest residues surrounding the ligand binding site, with
the rest of the protein kept rigid (29,30). This limitation is due to computational
restrictions that will be overcome in the future with more powerful algorithms and
computers. Increasingly complex biological systems are being computationally
studied to address the issue of protein–protein interface interactions and protein
surface–ligand interactions.
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Closely related to the conformational problem is the influence of solvation
effects on specific and nonspecific binding. In fact, the process of solvation and
desolvation upon ligand binding affects the exposed accessible surface area. This
aspect is very important and provides key elements for further drug development.
Moreover, thermodynamic description of the drug–protein interactions suggests
the relative importance of the energy terms contributing to binding affinity and
strongly supports the structural data (31,32).

The formation of protein–ligand interactions competes with the rupture of
interactions with water molecules. Both protein and ligand are solvated before
complex formation. They lose part of their solvation shell upon binding, a process
that involves enthalpic and entropic contributions. Hydrogen bonds are broken
and new ones are formed. Neither lipophilicity nor hydrogen bond network for-
mation, considered as separate contributions, can explain why a molecule displays
high affinity toward a target (32). A combination of both, plus other properties, ac-
counts for the overall result.

The modular approach to drug design is based on the supposition that
free binding energy can be considered to be the sum of the binding effects of
the fragments deriving from the dissection of the ligand. This principle has had
a strong impact on structure-based studies: for example, modeling programs
like LUDI are based on it (33). Also, substructure dissection on a lead and
subsequent combination with different fragments is a widely used me-
thod that has found rational application in library design and combinatorial
chemistry.

Two distinct approaches to structure-based drug design can be recognized:
the virtual screening of small-molecule databases and the refined detailed study of
the drug–target interactions. Virtual screening affords the rapid and automatic
analysis of the interaction of a large number of molecules of a database evaluated
through a scoring function that assigns a score (not a true energy value) to the
database components; this is important in order to accelerate the screening pro-
cess. The model of the selected target plays a critical role: a target in its bound
conformation is usually the best choice, but it leaves the subsites of the available
conformational space of the target only partly accessible. This means that the ex-
ploration of the inner available binding surface is not complete unless more con-
formations of the target are considered (multiple docking). This issue is very im-
portant when the structure-based approach is combined with the combinatorial
technique in the HTT process (34,35). Combinatorial libraries can be designed
and selected on a structural template, and the selection process is therefore highly
dependent on the available inner surface: compounds potentially capable of bind-
ing upon conformational change can be lost, in principle. Careful attention should
be paid to the selection criteria. When unpredictable information about the target
is lost, diverse approaches remain valid, since they offer the advantage of a wider
range of lead candidates.
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IV. LIBRARY DESIGN AS A BRIDGING POINT BETWEEN
CC AND SBDD

A combinatorial chemical library is as an ensemble of molecules whose prepara-
tion and screening determine the so-called hit rate, hence the success or failure of
the design (36). Preliminary information is required to develop the whole library
in a rational manner. Structure-related properties based on SAR analysis or on a
3D model of the biological target are necessary to constrain the huge number of
possible molecules (Fig. 2).

It is important to direct the construction of the library along the most acces-
sible and rapid synthetic pathway. The analysis of an ensemble of molecules
whose available synthetic space is very large (i.e., suitable for structural and func-
tional modulation at more than one site) is essential to the selection of the basic
scaffold. This scaffold must be referred to not as a true pharmacophore, but as a
structure that precedes pharmacophore generation.

Other considerations are crucial to library construction, such as the distri-
bution of the molecules within the library, which is a topological issue. Related to
this is the neighborhood concept, which serves to avoid redundancy and to keep
the number of molecules to a minimum (37). In principle, a library can be an en-
semble of all the molecules designed from a starting scaffold, with a harmonic
modulation of the different molecular states representing the bioactive ligand; a
huge number of molecules can therefore be candidates. A critical analysis of these
molecular states should be performed, with only some highly representative
molecules kept in the library. On this basis, it is possible to select a molecule from
among a large number of analogs because it is the best compound that samples a
particular molecular state. This leads back to the homogeneous distribution of the
molecules in the library: a molecule chosen to be part of a library must represent
a family of molecular, steric, and electronic states. If the molecule is well chosen,
it is not necessary to include analogs, thereby avoiding the unnecessary repetition
of similar compounds.

Molecular similarity/diversity concepts must be considered. There is a sub-
tle dividing line between similarity and diversity properties, which are strongly
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dependent on the particular context and cannot be defined outside it: two
molecules that one target considers diverse may be considered similar by another
target. The macromolecule, on the molecular recognition basis, “decides” which
molecules are similar and which are diverse. The ones that can bind with similar
binding energy and in the same binding site are supposed to be very similar. The
degeneracy of the binding energies (i.e., same target can bind two different
molecules with the same binding energy) is not in itself a sufficient criterion for
the similarity concept, and a topological description of the binding site is neces-
sary. An example of this issue is the structures of three thrombin inhibitors: their
crystallographically determined binding geometry has been superimposed, and it
is clear that they share a common binding orientation and molecular recognition
properties, despite having dissimilar structures and very different molecular de-
scriptors (34) (Fig. 3).

Why should we consider testing the same molecules for two different tar-
gets? Because of the screening concept on which the initial development of a drug
discovery project is based. At the outset, a whole, roughly selected database is
tested virtually, and databases of commercially available compounds are increas-
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Figure 3 The chemical structure of three thrombin inhibitors. Despite their differing
chemical structures and molecular properties, the molecules share a common mode of
molecular recognition.



ingly accessible to many users. Therefore, in principle, the same molecules can be
tested for different targets. This is interesting because the results of this “natural”
selection can demonstrate that a molecule is just a probe for the enzyme, and
specificity is a relative property of a molecule but an intrinsic property of a target
macromolecule (38).

It can be very complicated to design a library rationally, since all the fore-
going variables must be taken into account. Powerful programs and computer
technology combined afford a solution to this problem (1,39,40). Library design
is an iterative process within the drug discovery program, and the library dimen-
sion and the design methodology can change during the process, depending on the
knowledge acquired and the subsequent goal to be achieved (Fig. 4). The iteration
of library design is a common feature of each logical process aimed at the discov-
ery of a new drug. At the beginning of the drug discovery process, large numbers
of compounds are part of both a virtual and a practical library. The screening
methodologies are applied in this initial step, and, depending on the biological ac-
tivity results, only a few molecules can be promoted to the second step. This sec-
ond step requires a new library to be constructed, but with a lower, and more fo-
cused, number of compounds (41,42).

The final selection step relies on the strong relationship between the library
design based on 3D structure information and the molecular recognition princi-
ples (Fig. 5). We cannot refer to a particular bioactive electronic structure or con-
formation; rather, we must indicate a bioactive molecular state. The different lev-
els of complexity of the problem have been described (28). A receptor or an
enzyme does not recognize particular atoms or groups; instead, it interacts with
the (electrostatic- and orbital-based) electronic properties projected by a certain
geometric arrangement of these atoms. Bioisosterism affords an idea of how sim-
ilar two groups are in terms of their receptor binding properties.

Similarity/diversity measures are widely applied for rational set selection in
the analysis of a combinatorial library. Approaching the problem from the small-
molecule ligand viewpoint is relatively easy in terms of molecular properties, but
it does not give a complete picture. The macromolecular receptor must be de-
scribed through its available molecular states; despite continuing efforts to study
the behavior of the macromolecules in solution by means of computational mod-
els, such a description is at present problematic.

The aspect of the library design concerning the high affinity lead/drug like
molecule design deserves particular attention. Structure-based drug design has
proved to be extremely successful and, if it is applied in iterative fashion, tightly
bound ligands can be generated. Apart from potency and chemical novelty, addi-
tional factors usually requiring attention are the so-called ADME factors (absorp-
tion, distribution, metabolism, and excretion). Experience indicates that any sin-
gle feature of a molecule can be optimized, but this often requires the preparation
of many hundreds of potential candidates. ADME considerations are rarely used
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to design a combinatorial library. Discouraging results are often shown in the
pharmacokinetic properties of lead compounds. Such molecules are suitable for
defining molecular ligand–target interactions (maybe drugs for parenteral admin-
istration to treat acute, resolvable diseases if they are not toxic), but they are not
useful for many common purposes (1,43). Consequently, medicinal chemists’ ef-
forts are centered on discovering methods for the synthesis of libraries of more
druglike compounds.
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How can libraries be designed that are not only structurally diverse but also
contain molecules with good bioavailability and metabolism, and possess a suit-
able pharmacokinetic and toxicological profile? The difficulties surrounding this
question arise from our basic inability to understand clearly why a tightly binding
ligand is a drug, while a close analog is not. We still do not know the laws under-
lying this complex process, namely, the pharmacokinetic behavior of a molecule.
There are some well-recognized structures that look more like drugs, such as the
heterocyclic compounds. There are also certain ranges of physicochemical and
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other properties that are preferred in a lead. Many strategies, from the database fil-
tering of commercial chemical databases to complex algorithms based on selected
molecular descriptors, are being developed to resolve this problem (44).

V. EXAMPLES FROM THE LITERATURE

Several cases in which combinatorial library synthesis successfully complements
structure-based drug design techniques in drug discovery are presented and dis-
cussed in the subsections that follow.

A. Discovery of Potent Nonpeptide Inhibitors of 
Cathepsin D

To discover potent, nonpeptide inhibitors of the aspartyl protease cathepsin D, Ell-
man and collaborators at the University of California at Berkeley applied SBDD
in conjunction with combinatorial chemistry (41).

The aspartyl proteases are ubiquitous endopeptidases that use the aspartic
acid residues to catalyze the hydrolysis of amide bonds through tetrahedral inter-
mediates. They have been implicated in a number of pathologies and represent im-
portant therapeutic targets. Ellman and coworkers have been conducting detailed
studies on three aspartyl proteases: cathepsin D (Cat D), plasmepsin I (Plm I), and
plasmepsin II (Plm II). Mimetic isosteres of the tetrahedral intermediates of these
enzymes are statin, hydroxyethylamine, and hydroxyethylene (Fig. 6), and drug
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Figure 6 Isosteres that mimic the tetrahedral intermediate of the amide bond hydrolysis
catalyzed by aspartyl proteases.



discovery has been mainly directed at developing new nonpeptide inhibitors of the
enzymes.

More particularly, Cat D is a lysosomal aspartyl protease, with well-deter-
mined structural and chemical properties, but a less clearly defined biological role.
In stratified epithelia, the chronology of cathepsin D activation and degradation
can be connected with stages of cellular differentiation. Cat D is also believed to
be associated with proteolytic processes leading to local invasion and seeding of
tumor cells in breast cancer. Moreover, it has been reported that Cat D may be in-
volved in the proteolytic cleavage of amyloid precursor protein in the brains of in-
dividuals with Alzheimer’s disease (44–47).

In their work the authors started from the mimetic isostere of the transition
state analog, hydroxyethylamine, which has several positions capable of coupling
to many different chemical groups, allowing for the introduction of a large num-
ber of variations in the starting molecule (Fig. 6). They identified three specific
sites suitable for elaboration. Primary amines were used to introduce diversity at
one site, while carboxylic acid and sulfonyl chloride introduced various groups at
the second and third sites (Fig. 7). The combinations of all amine and acylating
agents commercially available would have generated a library of 10 billion
molecules, whose synthesis and subsequent evaluation would have involved con-
siderable cost and effort.

The authors opted for the design of two smaller libraries, using two differ-
ent approaches in the choice of building blocks. The first method generated a di-
verse library, since the building blocks necessary for synthesis were selected in
terms of maximum diversity. The second method referred to the available crystal
structure of Cat D–pepstatin to select building blocks for a directed library. For
the generation of both libraries, the authors used commercially available building
blocks (amines, carboxylic acid, sulfonyl chloride, and isocyanates, MW � 275
Da), selected from the Available Chemicals Directory (ACD). Others factors such
as cost and availability were taken into consideration. The building blocks were
also chosen for their reactivity, to ensure high yields of coupling at each position
in the library. The final list consisted of 2600 compounds that would have pro-
vided over a billion molecules, and the authors turned to computational methods
to reduce this number.

For the diverse library, the list of suitable building blocks was reduced by
clustering all the compounds on the basis of their similarity through the
Jarvis–Patrick algorithm, using the Daylight connectivity measure of similarity. In
the case of the directed library, the molecular modeling program CombiBuild was
used to run a conformational search. The scaffold was first oriented in the binding
site, assuming it could adopt a binding orientation similar to that adopted by pep-
statin in the X-ray complex with Cat D. An initial conformational search found
four possible families of orientation for the scaffold. CombiBuild performed a
conformational search on all possible components at each variable position on
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Figure 7 Discovery of potent inhibitors of cathepsin D through iterative structure-based
drug design and in-parallel synthesis. Comparison of the diverse and direct library design
approaches.



each family of orientation and scored the components according to their potential
interaction with Cat D. Based on their AMBER score, the 50 best components at
each position and for each family were selected and then merged for all three vari-
able positions.

The synthesis of each library was accomplished through solid phase, in-par-
allel synthesis of a total of 1000 compounds for each library. The scaffold was an-
chored to polystyrene beads and the libraries synthesized in a spatially separated
array using a 96-well filter apparatus. Each compound in the libraries was
screened for inhibitory activity against Cat D in high throughput fluorometric as-
say tests performed in the reaction vessels.

In the first round of synthesis the directed library yielded a higher number
of active compounds, the best of which had a Ki of 78 nM; the diverse library pro-
vided inhibitors four times less potent. The most potent compound from the di-
rected library was then rapidly optimized through the generation and the screen-
ing of a second library. This second effort led to compound 1 with a Ki of 9 nM
(Fig. 7).

In their project, Ellman et al. set out to address the problem of how to max-
imize the impact of chemical library design on the drug discovery process. In par-
ticular, their paper addresses the question of whether a library based on target
structure information can be comparable with a library based only on diversity cri-
teria. The directed structure-based combinatorial library allowed a larger area of
the inner target surface to be explored, producing an increased number of active
inhibitors with respect to the diverse library. The ability to combine structure-
based drug design with combinatorial chemistry overcomes many structure-based
design limitations, such as poor structural information and unpredictable confor-
mational change, and focuses the combinatorial synthesis process.

B. Inhibitors of Malarial Aspartyl Protease Plasmepsin II

After their study of the Cat D inhibitors, Ellman and coworkers reported the de-
velopment of a general method of using solid phase synthesis to incorporate di-
verse functionalities at all variable sites of the intermediate hydroxyethylamine
with a view to further optimization of the inhibitors for Cat D, Plm I, and Plm II.
The secondary alcohol represents the only invariant part of the inhibitor structure
and serves as the linkage to the resin (Fig. 6) (48).

The identification of novel inhibitors of Cat D with an optimized side chain
at the P1 pocket and the development of appropriate solid phase synthetic method-
ologies were the basis for a subsequent outstanding paper in which the coapplica-
tion of SBDD and combinatorial chemistry guided the discovery of selective plas-
mepsin II aspartyl protease (Plm II) inhibitors (30). The authors deal with the
discovery of potent, low molecular weight, nonpeptide inhibitors of malarial as-
partyl protease Plm II. Interest in inhibitors of plasmepsin aspartyl proteases of
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Plasmodium falciparum with potential chemotherapeutic activity has increased
because of the alarming increase in the resistance of the malaria parasite. Plm II
complexed with pepstatin A, a peptide mimetic inhibitor of the enzyme from P.
falciparum, was the starting crystal structure used in the modeling work.

Iterative library design was the central topic of the work. To constrain the
number of possible compounds in each library in a rational manner and also to ob-
tain molecules with optimized requisite properties, the authors focused on itera-
tive library design. They paid great attention to the improvement of binding affin-
ity and pharmacokinetic properties, taking into account the general rules on
bioavailability such as low molecular weight, good hydrophobicity range, and low
serum albumin binding. The paper is rigorous, and step-by-step control of the
modeling is achieved by using the available X-ray structure to address the itera-
tive library design. The library synthesis was run in solid phase fashion.

First of all, authors took advantage of the close homology of Plm II, for
which no inhibitor has so far been identified, with Cat D, for which a library of a
total of 1039 compounds had been synthesized (41). These libraries were screened
against Plm II and led to the identification of two leads: compounds 2 and 3 were
validated as submicromolar inhibitors as well as being potent inhibitors of Cat D
(Fig. 8). Their common structure represented the starting core suitable for opti-
mization through the library design of more active and selective Plm II inhibitors.
To reduce the size of the possible libraries, the authors chose three sites in the
starting scaffold, RA, RB, and RC, and derivatized one site at a time. The P1 site
was also included in a final step (Fig. 9).

Library RA was constructed by truncating the pepstatin A molecule and in-
troducing a benzyl moiety into the structure. Using AMBER, the scaffold thus
modeled was minimized in the Plm II active site and used for RA library genera-
tion. The selection of possible reagents for each library was carried out using
toolkits from a Web-based program, UC Select, and Daylight. A variety of acy-
lating agents for introduction into RA were chosen from the ACD on the basis of
their low molecular weight, chemical reactivity, and cost. The final lists consisted
of 4093 acylating agents. Cartesian coordinates were generated, and each build-
ing block was oriented in the active site by attaching it to the amide (RA side
chain) of the scaffold. The other radicals, RB and RC, were kept constant. A total
of 4086 different side chain compounds were generated by means of the “anchor
and grow” algorithm from DOCK 4.0. Each compound was then scored on the ba-
sis of inter- and intramolecular van der Waals and electrostatic terms. The highest
scoring compounds were chosen visually for their conformation and number of
hydrogen bonds with the enzyme, while the selected molecules were clustered ac-
cording to their metric similarity. The 74 compounds selected for synthesis were
screened through enzymatic assays. Compound 4 bearing a 4-(benzyloxy)-3.5-
dimethoxybenzoic acid side chain, was chosen as the highest scored compound
(Ki 100 �M). A second 12-member library (library 2) focusing on compound 4
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was prepared by synthesizing the neighborhood molecules, but no improvement
in the biological properties was obtained (Fig. 8).

The scaffolds for the RB and RC libraries were generated as for RA by trun-
cating pepstatin A. A hydroxyethylamine scaffold was then built, and leucine and
serine side chains were attached to RB and RC to give the starting scaffold for li-
braries RB and RC. Reagents for RB were chosen on the basis of their diversity:
473 primary amines were selected for incorporation in the RB site, while RC was
kept fixed as a 3-phthalimidoproprionic acid side chain. The docking and the clus-
tering procedures for side chains RB were similar to those in RA library design.
None of the synthesized compounds showed any increase in inhibitory activity
with respect to the starting RB side chain scaffold, and the 3,4-(methylene-
dioxy)phenethylamine group was kept in the following libraries.

Difficulties were encountered in trying to model side chains into the S1� and
S2� pockets (for the RB and the RC side chains, respectively) of Plm II in the pep-
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Figure 9 Structure-based design strategies in the development of Plm II inhibitors.
(From Ref. 30, fig. 9, p. 1437. Copyright November 30, 1999, American Chemical Soci-
ety.)



statin A–Plm II crystal structure. The X-ray structure of Plm II–pepstatin A is
conformationally unable to accommodate easily new chemical groups at the S1�
and S2� levels. The X-ray crystal structure of the Plm II–compound 4 binary com-
plex was obtained next, and it confirms the enzyme’s plasticity and ability to re-
lax and bind the whole molecule.

Library RC (library 4) consisted of 44 compounds, and, owing to the diffi-
culty in the modeling, only one diverse set was incorporated. Upon screening,
compound 5, which incorporated an N-acetyl-nipecotic acid side chain, displayed
a Ki of 4.8 nM, 20 times more potent than compound 4 (Fig. 8).

The latter two libraries were based on multiple site modifications of the ini-
tial scaffold. The first one, consisting of 80 compounds, varied RA and RC simul-
taneously and kept the overall molecular weight rigorously low. Elements of the
RA library and the RC library were combined to investigate cooperativity effects
between the two sites. Compound 6 was identified as a molecule slightly more po-
tent than 5 but with a significantly reduced molecular weight (650 Da vs. 752 Da).

A final, sixth library examined all three sites of the hydroxyethylamine scaf-
fold simultaneously. In addition, the benzyl P1 side chain was converted into an
isobutyl moiety. However, this modification did not improve affinity, since, with
respect to the starting benzyl P1 side chain, the isobutyl group lost three interac-
tions with residues F111, F120, and the �-C of S79. Of the several compounds
synthesized in the final, most focused, library, compound 7 was a highly potent
and selective Plm II inhibitor. Moreover, this and other analogs had low molecu-
lar weight and low human serum albumin binding affinities; in cultured parasite-
infected human erythrocytes, they proved to be poor micromolar inhibitors of par-
asite growth.

Upon applying an interesting iterative small-molecule library design with
synthesis and evaluation sequence, several nanomolar inhibitors of Plm II were
identified. Moreover, the approach applied allowed the identification of selective
and active molecules. The integration of SBDD with combinatorial in-parallel
chemistry was successful. Finally, we stress the importance of taking into account
previously synthesized libraries: if appropriate, they afford useful starting infor-
mation. In the present study, the application of SBDD methodologies in the design
of a druglike molecule, not only a more potent enzyme inhibitor, was successful.

C. Thrombin Inhibitors

Thrombin, a serine proteinase, is one of the most actively studied enzymes. The
interest in thrombin arises from its central role in blood coagulation: it catalyzes
the conversion of fibrinogen into fibrin and also converts factor XIII into factor
XIIIa, which crosses binding fibrin. It is known that thrombin inhibitors have an-
ticoagulant effects, which are important in the treatment of pathological states
such thrombosis and stroke. Although many potent peptidomimetic inhibitors of
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thrombin are known, members of this class of known molecules always present
poor pharmacokinetic properties such as problematic oral absorption and short
plasma half-life; the development of active thrombin inhibitors has consequently
remained a major goal for medicinal chemists.

Researchers at Merck have been working on the development of an orally
potent thrombin inhibitor. Brady et al., starting from two previously developed
peptidomimetic structures displaying poor oral absorption (Fig.  10, compounds 8
and 9) set out to discover new thrombin inhibitors with improved pharmacokinetic
properties (49). These authors based their studies on the analysis of the X-ray crys-
tal structure of compound 9, a 1-(N-methyl-D-phenylalanyl)-pyrrolidine-2-car-
boxylic acid trans(4-aminocyclohexyl)methyl amide derivative, bound to throm-
bin. The crystal structure showed how the aminocyclohexyl group is located in the
S1 subsite and the pyrrolidine in the S2 subsite, while the N-methyl-D-phenyl-
alanyl residues bind into a lipophilic pocket (S3) of the enzyme. The binding ori-
entation thus suggested the possibility of introducing molecular diversity at the P3

site of the starting compound through several hydrophobic groups that could be
accommodated in the S3 subsite, thereby increasing the binding affinity.

A brief SAR generated a more active compound, the diphenyl derivative of
compound 9 (compound 10, Fig. 10) on which molecular modeling studies were
also run. The results showed one phenyl ring, the one in common with compound
9, binding in the same position as compound 9, while the second phenyl was ori-
ented at the beginning of site S3, facing the solvent interface but close enough to
the side chains Ile174 and Glu217 for apolar interactions. However, the pharma-
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cokinetic properties of compound 10 were not desirable, since in the rat and dog
models it was impossible to register significant blood level.

To develop a more diverse library, the authors devised a solid phase ap-
proach where the starting template (Fig. 11) was linked to a polystyrene support
via an acid-labile carbamate and then coupled in parallel with 200 different
lipophilic carboxylic acids. This procedure allowed the rapid elaboration of a
small, rational library of derivatives of compound 9 wherein the N-Me-D-Phe (P3)
residue was replaced with 200 different moieties, chosen on the basis of diversity
and potential ability to interact with the S3 subsite.

In vitro determinations were carried out through fast-binding (reversible-
noncovalent) thrombin inhibitors. Among the synthesized compounds was the po-
tent fluorenyl derivative compound 11 (Ki 1.5 nM, Fig. 11), which displayed good
selectivity with respect to trypsin and no effects versus several other serine pro-
teases. Moreover, compound 11, tested in vivo, retained significant oral bioavail-
ability in the rat and dog models.

Molecular modeling studies suggested a possible binding orientation for
this molecule. The fluorenyl system partially overlaps the phenyl ring of com-
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pound 9 and takes advantage of hydrophobic interaction with residues Tyr60A
and Trp60D. Hydroxyl group hydrogen bonds with the carbonyl of Gly216. The
presence of the hydroxyl group is also important in the improvement of oral
bioavailability (Fig. 12).

The integration of structure-based design with the in-parallel synthetic elab-
oration of a 200-compound library led to a new, highly selective inhibitor of
thrombin. The access to a wide range of functionality and, consequently, of
physicochemical properties allowed the development of an orally available com-
pound. Crucial to the improved efficiency of the design cycle was also the avail-
ability of an enzyme assay that allowed for high throughput screening.

The validity of an approach in which structure-based design is combined
with a rapid synthetic elaboration was confirmed in a paper published shortly
thereafter by the same Merck research group, continuing their research into
thrombin inhibitors. The study, aimed at orally available thrombin inhibitors, was
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Figure 12 Superimposition of X-ray coordinates of the complex 9–thrombin and the
predicted orientation of 11 (fluorenyl derivative). (From Ref. 49, fig. 4, p. 404. Copyright
February 3, 2000, American Chemical Society.)



reported by Lumma et al. (50) starting from the visual analysis of a X-ray crystal
structure of the inhibitor, compound 10 (see the previous work by Brady, Figure
10) binding to thrombin. However, whereas Brady’s work focused on the P3 site
of the molecule, keeping the P1 and P2 sites constant, interest is now wholly con-
centrated on the P1 part of the molecule and, consequently, its counterpart on the
enzyme S1 site. The surface representation of the inhibitor–thrombin P1 pocket re-
vealed the presence of a lipophilic cavity. None of the known molecules binding
to the enzyme takes advantage of this hydrophobic hole buried on the P1 pocket.

The potential importance of the lipophilic cavity in terms of increasing the
binding affinity was investigated through the rapid solid phase synthesis of di-
verse benzylamide derivatives of the starting lead. To increase oral availability
and reduce the known side effects of basic thrombin inhibitors, the authors also
opted for the deletion of the basic P1 amino group and for the substitution of the
cyclohexyl ring with a phenyl ring (compound 12, Fig. 13). Eighteen derivatives
were then synthesized by means of solid phase, in-parallel synthesis.

Of the compounds thus synthesized, compound 13 (the 2,5-dichlorobenzy-
lamide derivative) was the most active; several others showed Ki between 10 and
50 nM. The SAR information provided by the analysis of this family of com-
pounds showed how the most active compounds were those carrying a meta-hy-
drophobic substituent. Docking studies with compound 13 suggested that the meta
substituent is oriented toward the lipophilic corner and takes advantage of it (Fig.
14).

As an illustration of the power of the spatial analysis of X-ray crystal struc-
ture to direct the solid phase synthesis of small focused libraries, the authors sug-
gest that an extension of this work may already have led to low-picomolar throm-
bin inhibitors (51).

Another example from the literature that deserves comment is the work on
thrombin inhibitors conducted at Hoffmann-La Roche. The authors report the
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Figure 13 Follow-up derivatives of compound 10. The introduction of lipophilic moiety
at the P1 site of the lead compound allows the exploration of an additional binding site (see
Fig. 10).



coapplications of a novel computational algorithm with synthesis in parallel for
the de novo design of nonpeptide thrombin inhibitors. The authors took into ac-
count the synthetic accessibility of the designed compound: they focused on
chemical reactions amenable to parallel or combinatorial synthesis (52).

The computer program LUDI was used to generate suitable positions for
functional groups in the thrombin binding site. The interactions with the enzyme
were evaluated in terms of possible hydrogen bond and hydrophobic interactions.
Three dimensional coordinates of fragments from the ACD, a total of 5300 pri-
mary amines, were docked into the thrombin binding site and chosen on the basis
of their ability to form at least one hydrogen bond with the side chain of Asp189,
located in the S1 thrombin site. The first round of calculus found that of the total
number of primary amines, the highest scoring compound was p-aminobenzami-
dine, a known inhibitor of thrombin (Ki 34 �M). The computer program CORINA
was used to connect the top-scoring amine with different benzaldehyde fragments
onto the amine group in the binding site, thus generating a virtual library of 98
hits. Only hits with a predicted Ki smaller then 1 mM were accepted for the sub-
sequent synthetic optimization step. Of the initial 98 hits, only 10 benzaldehydes,
based on their predicted score and their commercial availability, were selected and
bought for synthesis.
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Figure 14 Surface representation of the P1 pocket of thrombin binding compounds 10
(left) and 13 (right). The 2,5-dichlorophenyl group of 13 extends into the lipophilic cavity
of the S1 subsite, interacting with it. (From Ref. 50, Fig. 1, p. 1012. Copyright February 3,
2000, American Chemical Society.)



The 10 synthesized compounds showed an at least 10-fold increase in in-
hibitory activity toward thrombin. In particular, the most interesting compounds
were those carrying a lipophilic substituent in the para position, able to take ad-
vantage of the P3 pocket of thrombin. Moreover, synthetic optimization improved
selectivity toward thrombin with respect to trypsin (compound 14, Fig. 15).

In the approach followed by the authors, an important role was played by
molecular modeling studies. The design of a starting lead was carried out in a
straightforward way, allowing the authors, through the synthesis of a very small
subset of compounds, to discover a very active compound. Once the chemical
characteristics essential to the activity in a lead have been well determined, the
work of synthetic elaboration can be considerably reduced.

The crystal structure determination of compound 14 (Ki 95 nM) was subse-
quently solved. Small, unpredictable conformational changes occurred in the crys-
tal with respect to the modeled orientation: the S2 subsite of thrombin was
markedly reduced in its site, causing a shift in the orientation of the central part of
the molecule (52). However, most of the features predicted from the modeling
were confirmed (Fig. 16).

The results achieved were possible thanks to a few favorable factors: the
well-defined S1 pocket in the thrombin structure suitable for detailed modeling
(otherwise it would have been difficult to find a small molecule such as p-
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Figure 15 Combinatorial, de novo design and in-parallel synthesis of non-peptide
thrombin inhibitors.



aminobenzamidine with measurable binding affinity); the single-step reaction that
generated a potent inhibitor; and finally, a really sensitive biological assay used
for testing.

Nowadays, new methodology combining elements of structure-based drug
design and combinatorial chemistry are being increasingly developed, as in the
work just discussed (52).

The generation of virtual libraries will be discussed in greater detail else-
where, but the applications of new and sophisticated algorithms that have been de-
veloped deserve a brief comment (53–56). These programs generally start from a
synthetically accessible template, chemically complementary to the target active
site. A database of potential substituents for each derivatizable position of the
starting template is then sought. The substituents are selected on the basis of their
ability not only to interact with certain residues in the active site but also to cou-
ple with the template through known and accessible synthetic routes. This gener-
ated list of virtual and synthetizable ligands is then computationally screened
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Figure 16 Comparison of the X-ray (bold line) and the predicted (light line) binding ori-
entation for compound 14. (From Ref. 52, Fig. 2, p. 54; Copyright February 4, 2000,
Kluwer Academic Publishers.)



against the active site and ranked on the basis of the binding free energy calculated
for each of them.

D. Novel Inhibitors of Matrix Metalloproteinases

The report from Rockwell and coworkers at Dupont–Merck in 1996 may be the
first example of the complementarity of SBDD and combinatorial chemistry (29).
This work was directed toward the identification of novel inhibitors of matrix met-
alloproteinases (MMPs) human stromelysin (MMP-3), and human neutrophil col-
lagenase (MMP-8) with possible cartilage protection activity. MMPs are, in fact,
a family of zinc-dependent enzymes involved in the degradation and reconstruc-
tion of the extracellular matrix. These enzymes are thus targets in autoimmune
diseases, arthritis, and cardiovascular diseases.

The researchers at Dupont Merck started from N-carboxyalkyl peptides and
hydroxamic acids already known as MMP inhibitors and for which X-ray struc-
tures with the enzyme were known. The major problem with these molecules is
their peptidic structure, which is responsible for limited bioavailability and re-
duced plasma half-life. A starting template, consisting of 2-(1-carboxyethy-
lamino)-4-phenylbutyric acid (Fig. 17), was chosen as common scaffold based on
preliminary crystallographic and enzymatic results, which showed that the pres-
ence of the methyl and phenyl rings enhances inhibitory activity against MMP-3.
However to gain longer in vivo half-life, the authors attempted to replace the pep-
tidic part of the known inhibitors, responsible for molecular recognition with sub-
site S2� and S3�, with mimetic substituents.

The three-step synthetic elaboration was accomplished in solid phase by
attaching the starting template to a solid support and coupling it with several
amines (Fig. 17). All synthesized compounds were tested without previous
purification.
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Of the several molecules, compound 15, which carries a methyl group,
proved to be particularly interesting: at 100 �M it displayed a 33% inhibition vs.
MMP-3. For this molecule, a binding orientation was calculated suggesting that
the terminal methyl group could bind the S2� pocket of the enzyme. The authors
then introduced into the molecule a phenyl ring, known to be a good P2� sub-
stituent, thereby obtaining compound 16, which displayed 72% inhibition at 200
�M vs. MM-3 (Fig. 18).

Finally the benzhydrylamine group was introduced into the more active hy-
droxamic template to yield compound 17. Further modeling studies of compound
17 binding to the enzyme were carried out but failed to predicting the binding ori-
entation correctly. The rigid fit of compound 17 into the active site of a known X-
ray complex was unsatisfactory: no well-defined hydrophobic pocket for the ad-
ditional phenyl ring was shown.

The crystal structure of compound 17 solved at 1.8 Å resolution showed
how the loop made by residues 222–231 undergoes a conformational change al-
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Figure 18 Novel matrix metalloproteinase (MMP) inhibitors.



lowing the accommodation of the benzhydryl group. Such a conformational mod-
ification in the protein, necessary for a better stabilization of the enzyme–inhibitor
complex, was completely unexpected from the analysis of known MMP-3 struc-
tures. However, as predicted from the design, the pro-S-phenyl group is oriented
in the S2� side chain.

The analysis of this complex directed the design and the synthesis of a final
molecule with enhanced activity. Since the crystal suggested the introduction in the
phenyl ring of a hydrogen bond acceptor, compound 18 and its isomer 19, carrying
a pyridine instead of phenyl, were synthesized: the Ki vs. MMP-3 was 9 and 150
nM, for the two isomers, respectively, indicating stereospecific binding affinity.

In this work the integration of SBDD with combinatorial chemistry was cru-
cial to the discovery of a novel potent MMP inhibitor. The generation of a com-
binatorial library was important at the beginning of this work in that it suggested
as leads susceptible of further optimization molecules otherwise not supported by
modeling studies, which had always failed to predict conformational changes at
the MMP-3 binding site. When compound 17 and its complex with MMP-3 were
available, a synthetic optimization in an iterative fashion was possible. The data
derived from the crystallographic complex explained the binding affinity of com-
pound 17 by showing the conformational changes occurring at the binding site
upon accommodation of larger entities and successfully suggesting the modifica-
tion necessary to enhance binding.

It should be emphasized that structure-based ligand design can fail to pre-
dict alternative binding modes of new molecules as they are obtained through
combinatorial chemistry methods. Molecular diversity cannot fully complement
the enzyme active site, which is kept rigid, while deep and unpredicted confor-
mational change often occurs as a result of enzyme plasticity. In such cases the
availability of 3D coordinates of the target–inhibitor complexes is a crucial inte-
grating tool in the drug discovery process.

The crystal structure of peptidylhydroxamates bound to matrix metallopro-
teinases (MMPs) was the starting point of a study at Affimax, where rational de-
sign in conjunction with combinatorial techniques led to the discovery of dike-
topiperazine (DKP) inhibitors (57). Of the works reviewed here, this is the only
one in which the authors used split-and-mix synthetic methodologies rather than
in-parallel, spatially addressed synthesis. Thus deconvolution methodologies
were essential to identify the active compounds.

On the basis of known crystal structures of various MMPs binding suc-
cinylhydroxamate inhibitors, a pharmacophore model was generated that replaced
the peptidyl-succinate portion and incorporated the P1 and P2 side chains and the
zinc ligand. The 2,5-diketopiperazine scaffold was chosen as starting template: it
retained the appropriate spatial relationship between ligand and protein and had
the potential to interact through the H-bond with the protein. Moreover new in-
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teractions would have been possible with the introduction of new functionalities.
In the designed molecules, the thiol function of a cysteine served as a zinc ligand.

Pharmacophore model generation was based on X-ray crystal structure
analysis, but no precise details are given regarding the approach used to generate
the 2,5-diketopiperazine scaffold (DKP) and the iterative diverse libraries based
on its structural modifications. SAR analysis was largely responsible for guiding
the rational design development of the libraries.

Synthesis through split-and-mix methodology was accomplished in a com-
pletely automatic fashion, allowing the rapid generation of large combinatorial li-
braries. Two different DKP scaffolds, DKP-I and DKP-II, varying in the spatial
arrangement of the side chains relative to one another, were investigated: in the
first, cysteine was represented by the R1 group, in the second, by R3. Both L- and
D-cysteine were included (Fig. 19). Two 648-member libraries were constructed:
cysteine served as the zinc ligand, while diversity was introduced at two different
sites; in the first library, 19 different aldehydes were introduced at R2 and 18
amino acids at R3. In the second library, 19 amino acids were introduced at R1 and
18 aldehydes at R3.

A sensitive fluorogenic assay compatible with collagenase-1 (MMP-1),
gelatinase-B (MMP-9), stromelysin-1 (MMP-3), and matrilysin was developed.
From the DKP-I library, two compounds with low micromolar activity vs. colla-
genase-1 (compound 20, Fig. 19) were identified, while the DKP-II library pro-
vided submicromolar MMP inhibitors (vs. MMP-1 and MMP-9). The anisalde-
hyde pool was in fact deconvoluted and supported important SAR observations
for the development of a nanomolar inhibitor: first, a wider range of functionality
at R2 position was tolerated with respect to the R1 site, where small variations
were more critical for activity; second, hydrophobic substituents enhanced affin-
ity; third, the L-cysteine configuration is better for activity. Compound 21 (Fig.
19) was the most active isolated compound. Its activity toward MMP-1 is compa-
rable to that of succinylhydroxamate inhibitors, described previously. However, it
represents a novel class of inhibitors.

This novel class of MMP inhibitors was generated starting from a scaffold
rationally chosen from structural information and onto which diverse sets of build-
ing blocks were incorporated in a combinatorial fashion. SBDD was determinant
in design of the starting scaffold, while synthesis guided the introduction of di-
versity. Libraries incorporating rational design and diversity led rapidly to the
identification of nanomolar inhibitors.

E. Thymidylate Synthase Inhibitors

Thymidylate synthase (TS) catalyzes the final step on the biosynthetic pathway to
thymidylate; it is consequently a target for anticancer drugs in human cells and
also for antimicrobial chemotherapy. X-ray crystal structures of TS from several
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Figure 19 Design of MMP inhibitor scaffold and subsequent elaboration through com-
binatorial chemistry techniques.



species bound to numerous ligands has increased our understanding of the en-
zyme’s catalytic mechanism. The enzyme has also become a well-studied system
for the application of structure-based method to the design of antiproliferative
drugs.

In an effort to discover novel inhibitors that bind to the folate site of Lacto-
bacillus casei thymidylate synthase (LcTS) but do not structurally resemble the
cofactor and elaborate it rapidly, we combined structure-based screening with in-
parallel synthetic elaboration (42). First we used the molecular docking computer
program DOCK 3.5 to screen the Available Chemicals Database (ACD) for com-
pounds that complemented the three-dimensional structure of the active site of the
enzyme. The crystal structure of LcTS in ternary complex with the uridine
monophosphate dUMP and CB3717 (an N-10-propargylquinazoline derivative of
folate) determined to 2.5 Å resolution was used. Potential binding sites for ligand
atoms were defined by a set of 64 spheres corresponding to the atom coordinates
of the folate analog CB3717 and phenolphthalein, a known nonfolate analog in-
hibitor of LcTS. DOCK scored each molecule on the basis of the electrostatic and
van der Waals interaction energies, with the enzyme correcting for ligand solva-
tion. The 500 highest scoring compounds were saved.

On the basis of the DOCK score and the number of specific interactions with
the protein, five hits (IC50 between 300 �M and 2 mM) were tested for the ability
to inhibit LcTS. To allow for rapid elaboration, we also insisted that the DOCK
hits have chemical characteristics suitable for optimization through solid phase
techniques. Of the selected molecules dansylhydrazine (IC50 439 �M; Ki 176 �M)
seemed to offer a good point of departure for synthetic elaboration (Fig. 20).

Through further docking, liquid phase synthesis and enzymatic studies on
different dansyl derivatives we discovered dansyltyrosine: it was not only a better
inhibitor of LcTS (Ki 65 �M), but it was more suitable for solid phase synthetic
elaboration. The molecule contained in its structure both an anchor site and a di-
versity-derivatizable group (the carboxyl group and the amino group, respec-
tively). We introduced diversity on dansyltyrosine by synthesizing a series of
analogs carrying different substituents on the amino group (Fig. 21). To have as
much diversity as possible, we chose different building blocks, all commercially
available, and we obtained aliphatic, aromatic, and heterocyclic derivatives. The
carboxyl group served as anchor to the TentaGel Wang Resin-OH, which has the
ability to restore the free carboxyl functionality (in our case crucial to the activity)
after cleaving with trifluoroacetic acid (TFA). Thirty-three dansyl derivatives of
this lead were then synthesized in parallel on the automatic synthesizer Advanced
Chem Tech 357.

After synthesis, the compounds were tested against the enzyme LcTS. The
assays were performed spectrophotometrically, following the increasing ab-
sorbance at 340 nm due to the oxidation reaction of N5,N10-methylenetetrahydro-
folate to dihydrofolate. The most active compounds were also tested vs. chy-
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Figure 20 Docking flow in the de novo design of thymidylate synthase inhibitors.



motrypsin, dihydrofolate reductase (DHFR), and human TS, to investigate their
species-specificity and selectivity.

The best of the synthesized analogs, didansyltyrosine, had a Ki of 1.3 �M,
while several others had Ki values below 10 �M. These analogs are structurally
dissimilar to the substrate but bind competitively with it (Fig. 22). The tighter
binding inhibitor was also the most specific for LcTS vs. the related human TS and
bovine DHFR enzymes.

Further calculations were performed to understand the basis for DDT affin-
ity: 500 multiple conformations were generated by rotating all single, nontermi-
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Figure 21 In-parallel elaboration of dansyltyrosine leads to a 1.3 �M non-folate analog
competitive inhibitor. The R variable in the dansyltyrosine is represented from one of the
surrounding groups. Ki values are reported. Only part of the total library is represented.



nal bonds in increments of 120°. Each conformer was independently docked and
scored into the LcTS binding site. In the best scoring orientation shown (Fig. 22),
the anchor dansyl ring forms nonpolar interactions with the pyrimidine ring of
dUMP. The dansyl ring also makes nonpolar contacts with folate binding residues,
including Ile81 4.0, Å, Arg23, 4.0 Å, Ala315, 3.9 Å; and Leu195, 4.5 Å. As the
inhibitor extends out of the quinazoline-binding site of LcTS, the active site cleft
opens up, leaving room for more orientations of the flexible N-dansyltyrosine
group. In most orientations, the tyrosine ring interacts with hydrophobic residues
such as Phe228 and Leu224. In the orientation represented in Fig. 22, for instance,
the tyrosine ring atoms interact with Phe228 and with Leu224. In this orientation,
the tyrosine carboxylate maintains its interaction with Lys50 (O22—NZ of Lys50,
2.8 Å), while the sulfonamide groups interacts with the backbone of Ala312
(O14—N of Ala312, 3.2 Å). In other high-scoring orientations this interaction is
lost, and the carboxylate extends out toward the solvent.

It must be noted that while DOCK oriented the dansylsulfonate in the folate
binding site in most of the calculated orientations, the conformation of the second
dansyl group varied most in the docked orientations, since it was bound to the
most and least defined open parts of the TS site. The most energetically favorable
configuration is that which places this ring close to residues Ala309 (ligand C12—
C�, 3.5 Å, and ligand C6—C�, 3.7 Å) and Ile310 (ligand, C8—O, 3.4 Å) and with
Lys51 (ligand C17—N� 4.1, Å), at the mouth of the active site. The binding ori-
entation we calculated roughly supported the enzymatic finding: these molecules
bind into the active site of TS, preventing folate binding and therefore acting as
competitive inhibitors.

This work demonstrates that the integration of computational chemistry and
in-parallel synthesis in the quest for a novel lead really does accelerate the design
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of new inhibitors for a given target. In particular, by applying in-parallel synthe-
sis to compounds structurally correlated to an active scaffold discovered through
modeling studies, one is more likely to discover a new and more active compound.
Analysis of the structure–activity relationship is also accelerated thereby.

More information will be forthcoming from the resolution of the crystal
structure of compound DDT bound to LcTS, at present under study; it is expected
that the crystal structure will confirm the predicted orientation for didansyltyro-
sine. Moreover the X-ray structure will significantly integrate the iterative cycle
of design, synthesis, and enzymatic activity so far applied.

Didansyltyrosine was the starting point for a new project focusing on the de-
velopment of dansyl derivatives with exalted species-specificity vs. bacterial TSs.
It is expected that these molecules, which are able to discriminate between the sev-
eral TS species, will have antimicrobial activity (58).

Combining structure-based discovery with in-parallel synthetic techniques
allowed the rapid discovery of novel competitive inhibitors that have no obvious
similarity to the enzyme substrate.

The approach followed exploits the complementarity between the two tech-
niques. Structural data can constrain the diversity available in the combinatorial
elaboration of known lead compounds. The example drew on the ability of molec-
ular docking to discover a new scaffold and then used in-parallel techniques to
elaborate upon it rapidly.

VI. CONCLUSIONS

The design and synthesis of active and selective molecules is an important goal in
medicinal chemistry. Two powerful tools applicable successfully to drug discov-
ery are structure-based drug design and combinatorial chemistry. SBDD uses in-
formation from the 3D structure of a macromolecule to design new inhibitors;
combinatorial chemistry is used to rapidly synthesize libraries of related com-
pounds. A design protocol combining the two techniques can reduce the number
of compounds in a library and increase the production of active molecule against
specific targets.

Moreover the combination of SBDD and CC is used not only to improve lig-
and affinity for a target but more and more often applied for the optimization of
the pharmacokinetic properties of the leads when basic elements for a drug-like
action are considered.

To highlight this aspect, Table 1 summarizes the progress in terms of lig-
and affinity taken from the examples given earlier. The optimized ligand does
not always show a better binding affinity with respect to the starting lead; how-
ever the second-generation compound can have better pharmacokinetic proper-
ties with respect to the first-generation ligand, as in the cases reported by Brady
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(49), Lumma (50), Böhm (52), and Rockwell (29). This is mainly due to the se-
lection criteria applied along with the library design and to the taking into ac-
count of other features such as pharmacokinetic properties, in addition to the
binding affinity.

In this chapter we have collected a few representative examples of the com-
bination of the two technical aspects of drug discovery, highlighting the most im-
portant aspects of this new approach. The field has the opportunity to advance
rapidly owing to more efficient combinatorial chemistry techniques, reliable HTS
screening, and more accurate computational methods.
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Libraries That Mimic Biologic Motifs
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I. INTRODUCTION

Numerous bioactive peptides and their peptidomimetic analogs have been syn-
thesized, and some are used in the clinic (1). Linear peptides composed of the nat-
ural amino acids are limited in their therapeutic value because their high degree of
flexibility commonly leads to low binding affinity and a fast rate of degradation
by proteases. Strategies to overcome these problems have led to a variety of
molecules displaying very broad chemical diversity—ranging from constrained,
cyclic peptide analogs through molecules having various nonpeptide links be-
tween amino acids all the way to molecules with chemical scaffolds that bear no
resemblance to peptidic backbones (2). Yet success with protein-mimetic analogs
(analogs that can disrupt protein–protein interactions) has not followed. This may
be due, in part, to the limited conformation space that standard cyclization meth-
ods (disulfide, head-to-tail, or side chain-to-side chain) confer to the peptidic
backbone. Peptor’s backbone cyclization technology (3) enables the creation of
large ensembles of conformationally constrained peptidomimetic analogs by
bridging any two positions along their backbones through bridges of varying sizes
and chemical compositions. Peptor uses this technology to generate large ensem-
bles of structurally shaped compounds termed SCAPLs—small cyclic analogs of
protein loops—which have the potential to disrupt protein–protein interactions.
An example of a SCAPL is depicted in Fig. 1.

* Current affiliation: QBI Enterprises, Ltd., Nes Ziona, Israel



The uniqueness of this technology lies in its inherent ability to separate the
effects of chemical changes from those of structural changes. Using the backbone
cyclization technology, one can generate both conformational libraries in which
many diverse amino acid sequences share similar structures (thereby enabling the
optimization of a known three-dimensional biological motif) and libraries in
which a single sequence is entrapped in a large variety of conformations (thereby
identifying the active conformation of a biologically active sequence). This chap-
ter describes the design process of libraries of the former type, through an exam-
ple of the discovery of a lead protein-mimetic SCAPL that disrupts the interaction
of tumor necrosis factor (TNF) with its membrane-bound receptor.

The main idea behind conformational SCAPL libraries based on biological
motifs is to extract from its natural protein environment a structural motif that may
be responsible for binding or recognition and stabilize it in its bioactive confor-
mation. The stabilized structure can then serve as a scaffold on which a combina-
torial library can be built. The structural motif we aimed to mimic is a hypervari-
able loop of a neutralizing anti-TNF antibody. TNF is a cytokine implicated in
several normal physiological conditions and, when in excess, in pathological con-
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Figure 1 An example of a backbone cyclic peptide. The sequence Ala-Ala-Pro-(D)Ala-
(D)Ala was cyclized by a bridge connecting the backbone nitrogens of Ala(1) and
(D)Ala(4) through a lactam bond.



ditions such as rheumatoid arthritis, Chron’s disease, and multiple sclerosis (4).
Inhibition of the interaction of TNF with its membrane-bound receptor is expected
to be of considerable therapeutic value.

The immune system can be viewed as a protein engineering system de-
signed to generate an endless repertoire of molecular surfaces (antibodies) capa-
ble of recognizing any given molecular entity (antigen). Antigen recognition is
conferred to the antibody by a limited number of hypervariable surface loops, dif-
fering in sequence and in length between different antibodies and connected to a
conserved framework structure. Several reports in the literature have presented
both linear and cyclic peptides derived from a single hypervariable loop of an an-
tibody that can compete with the antibody for target binding (5). Döring et al. (6)
have demonstrated that a 19-residue linear peptide derived from the first hyper-
variable loop of the anti-TNF antibody light chain (termed CDR-L1) can prevent
TNF-induced cytotoxicity in vitro. Although the affinity of this peptide was very
low (and in fact in our assays undetectable), we aimed to design SCAPLs that
structurally resemble this loop and therefore stand a good chance of mimicking
the antibody.

Several cycles of design resulted in lead compounds with affinities ranging
between 30 and 50 �M. This chapter discusses the considerations involved in the
design process and demonstrates that based on simple one- and two-dimensional
molecular properties (descriptors) of our SCAPLs, one can construct a reliable
model that can be used to optimize these leads. Additionally, we show that the pre-
dictive ability of the model can be enhanced by individually calculating the de-
scriptors for each amino acid in the sequence rather than for the entire SCAPL and
further enhanced by augmenting this set of descriptors with a simple structural 
descriptor.

II. DESIGN OF INITIAL CONFORMATIONAL LIBRARY

During the early 1990s, the notion was raised that screening large enough num-
bers of molecules against targets of interest will ultimately result in lead discov-
ery. However, research has shown that sheer numbers are not enough to crack the
lead discovery problem. Consequently today more effort is being put into rational
design of combinatorial libraries (7).

Augmenting sequence information with structural information, we designed
an initial library based on the first hypervariable loop of a neutralizing anti-TNF
antibody light chain, in which all molecules stand a good chance of adopting the
conformation of the CDR-L1 hypervariable loop in the intact antibody. We started
by modeling the three-dimensional structure of the hypervariable loop, stabilized
its conformation in isolation (i.e., outside the antibody), and designed a combina-
torial library that is structurally focused around this conformation.
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Initially, a three-dimensional model of the CDR-L1 loop was constructed.
The antibody loop has 13 residues, and its conformation was constructed by ho-
mology to the sequentially closest CDR-L1 found in the Protein Data Bank (PDB)
(8), namely, 1mbl (PDB code). Figure 2 depicts the structure of the modeled CDR-
L1. The positions depicted in the solid boxes differ between the two antibodies,
yet point outward and do not affect the conformation of the loop. Therefore these
positions were modeled based on the most common rotamer found for these
residues when they are solvent-exposed, and in any case their exact positions did
not affect our design process. The positions depicted in the dashed boxes differ be-
tween the two sequences, and point inward, thus contributing to conformational
stabilization. However, since the changes in sequence in these two positions are
highly conserved (Ile-Val and Leu-Val), it was possible to optimize their positions
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Figure 2 The model of the anti-TNF CDR-L1 is depicted, along with a comparison of its
sequence to that of the closest crystallographically determined antibody. The positions in
which the two sequences differ are boxed in the single letter sequence representation be-
low: solid box - positions pointing outwards, and potentially involved in antigen binding;
dashed box - positions pointing inwards, involving conformational stabilization. Note that
the changes in the positions marked by a dashed box are highly conserved.



by a local minimization, thus achieving a degree of packing of the aliphatic
residues in the modeled loop similar to that observed in the crystal structure of
1mbl. The final model consists of 13 residues:

Cys-Thr-Ala-Ser-Gln-Ser-Val-Ser-Asn-Asp-Val-Val-Trp

in which positions Cys1, Ala3, Val7, Val11 and Trp13 interact, and can be viewed
as forming a “hydrophobic core” that stabilizes the conformation.

In the intact antibody, the structure depicted in Fig. 2 is stabilized by inter-
loop interactions, as well as by interactions between the loop and the antibody
framework and by intraloop interactions. To design libraries of loop mimetics, one
must stabilize the conformation of an isolated loop to compensate for the stabiliz-
ing interactions lost upon isolation. Additionally, synthetic considerations en-
couraged us to attempt to shorten the 13-residue loop with a minimal reduction on
the chance of finding active mimetics. A subsequence of 9 residues, beginning
with Ala3, was chosen, based on its solvent exposure, as a shorter candidate for
mimicking the 13-residues loop (the linear sequence described in the literature and
reported to mimic this antibody contains 19 residues) (6). A process of rational
core design was applied to stabilize the 9-mer sequence in its native conformation,
so that the stabilized, synthetically feasible structure could be subsequently used
as a scaffold for a combinatorial library.

The first step in the stabilization process was to identify appropriate bridg-
ing points and bridge lengths for the SCAPL scaffold. Peptor bridges have spe-
cific sizes and conformations, enumerated in a virtual library of approximately 104

bridges and conformations. For each bridge length, all conformations within a pre-
defined energy cutoff were enumerated and ranked by their relative energies.
Since not all sequence positions can be cyclized without severe distortions to the
backbone, we have developed a geometrical test that compares four geometrical
parameters for the peptide in its desired conformation and for all bridges in the vir-
tual bridge library (Fig. 3). Only bridges that match the sequence in all four pa-
rameters are used in the library design.

Based on this test we identified all sequence positions that can be bridged
and the appropriate bridge size for each. Five candidate bridges were chosen,
based on their energy ranking, for our initial library.

To further stabilize the bioactive conformation, we divided the sequence po-
sitions into two groups, the first primarily responsible for structure stabilization,
the other primarily responsible for binding/recognition. Our goal then was to find,
for the structure determining positions, a set of amino acids that, together with the
scaffold (the peptidic backbone and one of the above chosen bridges), would sta-
bilize the desired conformation. It would then be possible to choose a set of di-
verse or similar side chains—based on the knowledge accumulated in previous
optimization cycles on the importance of each position for binding and recogni-
tion—to adorn remaining positions.
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Visual inspection of the CDR-L1 conformation clearly demonstrates that
among the 9 residues constituting our scaffold Ala3, Val7, and Val11 point in-
ward (Fig. 2), and properly chosen side chains at these positions can potentially
stabilize the structure by forming a “hydrophobic core.” All the other positions
point outward and do not have a direct influence on the conformation of the
loop.

Stabilizing a given backbone conformation by selection of appropriate side
chains has become an important research topic in the last few years. One of the
state-of-the art methods in this field uses the dead end elimination (DEE) algo-

610 Senderowitz and Rosenfeld

Figure 3 Structural parameters of backbone structure and potential bridges compared by
the geometric test. The features compared are: distances: N(1)-N(2)sequence vs. N(1)-
N(2)bridge; bond angles: H(1)-N(1)-N(2)sequence vs. C(1)-N(1)-N(2)bridge and N(1)-N(2)-
H(2)sequence vs N(1)-N(2)-C(2)bridge; torsional angles: H(1)-N(1)-N(2)-H(2)sequence vs.
C(1)-N(1)-N(2)-C(2)bridge. Only bridges that match the sequence in all four parameters are
considered for cyclization.



rithm (9). This algorithm, given a defined backbone conformation, rapidly scans
all combinations of amino acids at each position and identifies the lowest energy
one (i.e., the combination of amino acids that should best stabilize the desired
backbone conformation). To be able to test the enormous number of possible com-
binations, the algorithm uses a virtual library of side chain rotamers (i.e., a discrete
representation of the conformational space available to each side chain). Yet this
discretization, while enabling a highly efficient search, sacrifices accuracy. Since
our stabilization process involves only three sequence positions, we could avoid
the usage of rotamer libraries and carry out a more elaborate procedure, albeit with
a compromise on the number of side chain combinations tested. To decide which
side chain combinations to test, we relied on chemical intuition.

Considering for each of the three structure-determining positions, a set of
eight hydrophobic amino acids (Ala, Phe, Leu, Ile, Met, Trp, Tyr, Val) in combi-
nation with a set of five different bridges results in more than 2500 combinations,
a number that is beyond our computational abilities. From inspection of the size
of the loop, however, it is clear that large residues can enable good side chain
packing. Thus by choosing only combinations in which at least two positions are
occupied by large amino acids, we reduced the number of combinations to several
hundred. For each such combination we performed a rigorous conformational
search using the Monte Carlo minimization algorithm of Li and Scheraga (10) and
the Merck molecular force field (MMFF) (11) [as implemented in the Macro-
model program (12)]. In each search we varied all side chains of the hydrophobic
core as well as the bridge, while keeping the rest of the sequence fixed in its na-
tive conformation. The stability of each combination of residues was evaluated by
the nonbonded energy of the entire system, since this term is closely related to the
degree of packing of each structure. To test our working assumption that at least
two large amino acids are necessary for stabilization, we included several combi-
nations with a larger number of small amino acids in the calculations. Not unex-
pectedly, we found that replacing a large amino acid with a small one in any of the
three positions always resulted in poorer packing (i.e., increased the nonbonded
energy). Figure 4 shows the best core for a 9-mer anti-TNF CDR-L1 mimetic,
clearly demonstrating its good packing.

A library of 107 9-residue CDR-L1 mimetics was designed around the
scaffolds chosen as best stabilizing the “hydrophobic core.” This core com-
pletely defines the identity of amino acids at positions 1, 5, and 9 (correspond-
ing to positions 3, 7, and 11 of the original CDR-L1). However, to account for
possible errors in our calculations, we introduced limited variability in these po-
sitions by including a small number of amino acids that displayed higher energy
core structures. By choosing very limited variability at these three positions, we
were able to introduce more variability in the remaining six. The amino acids in
these positions were chosen based on their similarity to the original antibody se-
quence.
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Choosing similar amino acids requires a definition of a multidimensional
space in which each amino acid is characterized by a set of molecular properties
(descriptors) and methods for selecting similar (or diverse) sets of amino acids
from this space. Yet this process is not trivial, since in this context “similar” im-
plies that small differences in amino acids translate into small differences in ac-
tivity—a requirement that depends on an atomic resolution understanding of the
factors that govern biological activity (13). Several sets of descriptors aimed at
meeting this requirement have been proposed, and in general these can be divided
into two groups: experimentally derived physicochemical properties (14) and
computational descriptors (15), usually involving intensive calculations that de-
pend on the three-dimensional conformations of the side chains. Because of the
large resources required for the measurement or calculations of these descriptors,
they have been determined for limited sets of amino acids. Since we use a database
of about 300 amino acids, we tested the ability of a set of easy-to-calculate one-
and two-dimensional descriptors to measure amino acid similarity. This set of de-
scriptors is listed in Table 1.

Following the synthesis of the designed library and its biological assay, a set
of active sequences emerged that was characterized by a subset of amino acids,
more focused than in the original design, at almost each sequence position.
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Figure 4 VdW surface for the amino acids combination that best stabilizes a 9-mer CDR-
L1 mimetic. The tight packing of the hydrophobic core comprising the amino acids at se-
quence positions 1, 5 and 9 and the selected bridge is clearly visible.



III. DESIGN OF FOCUSED LIBRARIES

The consensus obtained from the initial library was subjected to further focusing
by means of the position-by-position optimization method, in which a set of
analogs, each differing from the original consensus sequence in one position, is
synthesized. Similarity considerations, based on the descriptors listed in Table 1,
were used to replace each amino acid in the active consensus by a set of amino
acids similar to it. This method has the advantage of allowing the introduction of
rather large sets of amino acids at each position, thereby leading to a relatively ex-
haustive position-by-position optimization. For example, in a 96-well plate, each
position in a sequence of 9 amino acids can be represented by a set of 10 or 11 sim-
ilar amino acids.

Two consecutive position-by-position optimization cycles, each consisting
of the synthesis of a single 96-well plate, resulted in two potent TNF inhibitor
leads. To test the validity of our descriptors as measurements of similarity, we
chose 32 SCAPLs that were well characterized both biologically and analytically
(i.e., their biological activity was clear-cut—either active or inactive—and mass
spectrometric analysis demonstrated the existence of the desired product). Our 49
descriptors (Table 1) were reduced to a smaller set of principal components by
means of principal component analysis (PCA), and when the set of 32 SCAPLs
was viewed in the space of the first 3 PCs (corresponding to 93% of the variance

Libraries That Mimic Biologic Motifs 613

Table 1 The 49 One- and Two-Dimensional Descriptors Used in the Present Worka

Cerius2 name Description Number

Charge Sum of partial charges 1
Fcharge Sum of formal charges 1
Apol Sum of atomic polarizabilities 1
Information content 9
MW Molecular weight 1
Rotbonds Number of rotatable bonds 1
Hbond acceptor Number of H-bond acceptors 1
Hbond donor Number of H-bond donors 1
AlogP/AlogP98 Octanol/water partition coefficient 2
Fh2o Desolvation free energy for water 1
Foct Desolvation free energy for octanol 1
MolRef Molecular refractivity 1
Topological descriptors 28
Total 49

a All descriptors were calculated by the QSAR� module of Cerius2 (Molecular Simulations, Inc., San
Diego, CA, 1999).



in the original data set), an almost perfect separation between actives and inactives
was obtained along PC1 (Fig. 5). This demonstrates that simple one- and two-di-
mensional descriptors, when calculated on whole molecules, meet the stringent
“similarity” requirement and can be used to optimize our leads.

The position-by-position optimization method suffers from several draw-
backs, however. First the method completely disregards possible favorable inter-
actions between the different positions. Additionally, this optimization method
tends to provide a poor and biased coverage of property space (Fig. 6). Criticism
along these lines has also been brought up by Hellberg et al. (14a). Consequently
we looked for more global optimization models.

A more global optimization can be performed by designing a virtual library
(VL) focused in some sense around an active sequence and screening it against
computational models derived from the biological data in order to select appro-
priate candidates for synthesis. The VL can be designed based either on whole-
molecule or on fragment properties (16). Fragment-based design assumes that us-
ing similar fragments in a combinatorial synthesis will ultimately lead to similar
final compounds. The obvious risk of working with fragments is, as noted above,
that such designs disregard the interactions between the fragments in the final
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Figure 5 PCA of 32 CDR-L1 mimetics classified as inactive (17, circle) and active (15,
star). Shown are the first 3 PC’s corresponding to 93% of the variance in the original data
set. An almost perfect separation between inactives and actives is obtained along PC1.



molecule. A related study performed at Molecular Simulations Inc. (MSI) showed
that better coverage of property space (i.e., better diversity) is obtained when a di-
verse set of molecules is selected from a completely enumerated library than when
the molecules are assembled from a previously selected diverse set of fragments
(17). The whole-molecule approach, however, is limited by computer resources.
If each of the 9 positions in the foregoing active consensus were represented by a
set of 10 amino acids (as in the position-by-position approach), an enumerated li-
brary of all resulting combinations would contain 109 molecules. Clearly, enu-
meration of a library of this size, if at all possible, could use only the most primi-
tive descriptors and selection methods. It may therefore be more dangerous to
assume that the use of simplistic descriptors and selection procedure will lead to
effective libraries than it is to employ the fragment-based approach. Furthermore,
inclusion of the entire backbone in the properties calculation may disguise infor-
mation about the substituents (16).

Following these arguments we used the fragment-based approach and our
in-house database of about 300 amino acids to design several virtual libraries of
varying sizes (i.e., containing 1000, 10,000, 100,000 and 150,000 SCAPLs), each

Libraries That Mimic Biologic Motifs 615

Figure 6 A comparison of coverage of property space between three sets of SCAPLs: (1)
96 diverse SACPLs selected from the virtual library (�); (2) 96 SCAPLs designed in the
second position-by-position optimization cycle (�); (3) 96 SCAPLs similar to the best lead
from the first position-by-position optimization cycle (�). See text for discussion.



focused on the active sequences obtained from the position-by-position optimiza-
tion cycles. Figure 7 presents profiles of several molecular properties of interest
as calculated for each library. Clearly 10,000 SCAPLs suffice to produce stable,
convergent profiles for these properties, so we are confident that a VL of 150,000
SCAPLs accurately describes the property space around our leads. Such a VL was
screened in the PCA space defined earlier.

Figure 6 compares a set of 96 diverse SCAPLs selected from the VL, with
the 96 SCAPLs designed in the second position-by-position optimization cycle
and a set of 96 SCAPLs chosen according to their similarity to the most active
SCAPL obtained in the first optimization cycle (which served as a starting point
for the second optimization cycle). Two conclusions are obvious: (1) a diverse set
of SCAPLs obtained from a focused library provides a better coverage of the prop-
erty space than a set of SCAPLs obtained from a position-by-position optimiza-
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Figure 7 Property profiles for virtual libraries of 1000 (---), 10000 (—), 100000 (—) and
150000 (···) SCAPLs. Profiles are given for molecular weight (A), AlogP (B), number of
H-bond acceptor (C) and number of H-bond donors (D). Note the almost perfect overlap
for the three libraries of 10,000 and greater SCAPLs, indicating convergence in the mea-
sured properties.



tion procedure, and (2) replacing each amino acid of a target sequence by a set of
amino acids most similar to it does not necessarily lead to a set of sequences most
similar to the target sequence. Thus fragment-based similarity is inferior to whole-
molecule-based similarity, as was shown in the case of diversity in previous work
(17).

IV. STRUCTURE–ACTIVITY MODELS

Using standard peptide chemistry to synthesize SCAPL-based combinatorial li-
braries requires multiple steps, many more than are typically used in small-
molecule combinatorial library synthesis. Consequently synthesis products are
impure, and quantitative activity analysis is difficult during the initial optimiza-
tion cycles. Thus, library focusing should employ computational tools capable of
handling large amounts of qualitative high throughput screening (HTS) data
where biological activity is expressed, for example, as inactive, slightly active, or
active. We tested two such tools for their ability to provide reasonable computa-
tional models: a diversity model in the space of the first three principal compo-
nents and recursive partitioning (RP) via classification trees.

A. Diversity Model in PCA Space

Our entire set of tested compounds contained 296 SCAPLs classified as 230 inac-
tive (78%), 39 moderately active (13%), and 27 active (9%). Mapping this set onto
the PCA space (Fig. 8) resulted in a picture similar to that obtained for the previ-
ous set of 32 SCAPLs (Fig. 5) in the sense that regions of space characterized by
high density of actives and inactives could be observed. For the entire set, the first
three PCs covered 82% of the variance in the original data set. This result lends
further support to the conclusion that our set of descriptors provides a valid rep-
resentation of molecular properties responsible for the differentiation between ac-
tives and inactives for the current set of SCAPLs.

Thus a reasonable procedure for choosing candidates for synthesis is to pro-
ject the VL onto the PCA space and select a diverse set of SCAPLs from among
those that fall in the active region of the space. The major drawback of this model
lies in its nonintuitive nature—the principal components are not readily inter-
pretable in physical terms.

B. Recursive Partitioning (RP) Model

A more readily interpretable model can be constructed by using recursive parti-
tioning (18). This method enables fast derivation of classification models for the
prediction of activities or other properties. Given a set of molecules X whose
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members are characterized by a set of descriptors, RP constructs a binary tree by
repeated splits of subsets of X into two descendant subsets, beginning with X it-
self. In the simplest implementation, descriptors are tested one at a time and splits
are chosen so that each of the descendant subsets is “purer” than the data in the
parent subset. The method can rapidly provide accurate classifiers for the proper-
ties of interest, as well as intuitive insight into the factors underlying them, while
handling, simultaneously, very large sets of quantitative and qualitative (includ-
ing alphanumeric) data. The resulting tree can subsequently be used to predict the
activity of members of a virtual library.

RP models were built using the CART module of Cerius2 (MSI) (19). All
trees were constructed to a maximal depth of 5, and cross-validation was used for
evaluating the statistical parameters and predictive power of the resulting trees.
For this process the data points were divided into four groups; then four trees were
constructed, each leaving out one group, and tested using the group left out. The
final statistics are an average of performance for all four trees. The results were
assessed by means of three statistical parameters: enrichment (defined as fraction
of the actives in the active bin divided by their fraction in the original data set),
false negative rate, and false positive rate.
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Figure 8 PCA of 296 CDR-L1 mimetics classified as inactive (230, �), moderately ac-
tive (39, �) and active (27, �). Shown is the space defined by the first 3 PCs correspond-
ing to 82% of the variance in the original data set. Note the high concentration of inactives
in the large circle and of moderately active and actives in the ellipsoid.



The data set for the RP models consisted of our entire set of 296 compounds.
When the tree was constructed using the 49 descriptors of Table 1, calculated on
the entire SCAPLs, we obtained active enrichment of 3.3, a false negative rate of
19% and a false positive rate of 20%.

We then investigated the performance of a model developed by describing
each sequence by means of positional descriptors, (i.e., descriptors of the proper-
ties of the individual amino acid side chains). As noted earlier, several such sets
appear in the literature and are sometimes referred to as principal properties. Prin-
cipal properties were first derived for the 20 natural amino acids by applying prin-
cipal component analysis to a matrix of physicochemical observables (14a) and
later expanded to include a set of 87 natural and nonnatural amino acids (14b). Ad-
ditional sets have been developed and in general can be divided into experimen-
tally (14) and computationally (15) derived descriptors. Assuming a linear corre-
lation between differences in descriptor values and activities for a pair of
molecules, Matter, who performed a validation study of some of these descriptor
sets, concluded that experimentally derived descriptors are in general more ac-
ceptable than computationally derived ones (13).

Since both the experimental and computational characterization of our
amino acids database is demanding, we wanted to test the performance of easy-to-
calculate one- and two-dimensional descriptors. Characterizing each of the amino
acids comprising our SCAPLs by the initial set of 49 descriptors results in a set
of descriptors so large that if used for constructing an RP model, it would most
probably lead to data overfitting. Since the previous PCA demonstrated that the
original variables are highly correlated, we attempted to choose smaller sets of
variables displaying less correlation. Sets of minimally correlated descriptors
(comprising 4, 6, 8, 9, 10, 11, 12, 13, 14, and 16 descriptors) were obtained by ap-
plying multidimensional scaling (MDS) to the discriptor correlation matrix fol-
lowed by cluster analysis.

Figure 9 presents the RP results for the different descriptor sets. As the
number of descriptors increases, the enrichment improves until it levels off at
5.1–5.2 for sets of 10–14 descriptors and decreases to 4.8 as the number of posi-
tional descriptors reaches 16. While the false positive rate remains approximately
constant at 21–27%, the false negative rate covers a much larger range (26–45%,
where in general larger descriptor sets result in a smaller false negative rate). Since
for all models, the maximal tree depth was limited to 5, these results indicate that
the improvements in the model performance are not merely a consequence of in-
creasing the number of descriptors but result from a better description of the fac-
tors underlying the behavior of the system. Based on the results presented in Fig.
9, a model in which each amino acid is represented by a set of 12 positional de-
scriptors provides the best RP model.

Describing each amino acid by its first three principal components obtained
by the PCA of the original 49 descriptors as calculated for our entire database of
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about 300 amino acids gave a reasonably good RP model (enrichment, 4.9; false
negative rate, 26%; false positive rate, 24%). However, the ease of interpretation
of the results inherent in RP models is lost when the descriptors take on the com-
plicated form of principal components.

Next we wanted to test whether augmenting the foregoing descriptors with
structural ones could improve the predictive power of the model. Since the initial
design of the SCAPLs was based on the assumption that an appropriate choice of
side chains for the amino acids at sequence positions 1, 5, and 9 (the structural po-
sitions) will help to stabilize the CDR-L1-like conformation, we added four struc-
ture-related descriptors to the foregoing set: the volume of the side chain at each
of the core-stabilizing positions (V1, V5, and V9) and the sum of these volumes
(Vt). The resulting RP model provided an enrichment of 5.6, a false negative rate
of 26%, and a false positive rate of 24% (vs. 5.2, 26%, and 25% for the original
12 positional descriptors set) and comprises the best RP model we could obtain for
this data set (Fig. 10). In this tree, a split occurred on Vt, dividing the SCAPLs into
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Figure 9 Comparison of statistical parameters (enrichment (�), false negative rate (�),
false positive rate (�)) for RP models derived for different numbers of positional descrip-
tors for the entire data set of 296 SCAPLs. Representing each amino acid by 12 descriptors
yields the overall best results.



those with total volumes less than 305 Å3 (58 cases) and those with Vt above this
value (5 cases). The outcome of this split resulted in a node having 41 out of 58
(70%) inactive SCAPLs. This result points to the importance of the total core vol-
ume in differentiating between actives and inactives, rather than the volume of the
side chain at any one of these positions, and supports our initial assumption that
bioactive conformations can be stabilized by a tightly packed hydrophobic core.

To investigate our activity classification of SCAPLs, two new classifica-
tions were generated. Moderately active SCAPLs were allocated to the inactive
group in the first and to the active group in the second. RP models generated with
the set of 12 positional descriptors augmented with Vt gave enrichment of 4.8 and
2.4, false negative rate of 26 and 23, and false positive rate of 10 and 26% for the
first and second classification, respectively. These results lend credence to our
original classification (since alternative classifications produced overall poorer
models) and caution against oversimplified active/inactive schemes.

Finally, RP models were obtained for five randomized activity data sets, each
having the original fraction of inactive, moderately active, and active SCAPLs.
When the 12 positional descriptors � Vt were used, the results, reported as mean
� SD for the three parameters, were enrichment, 0.9 � 0.2; false negative rate; 72
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Figure 10 Classification tree obtained for the best RP model where each amino acid is
described by 12 positional descriptors augmented by structural (volume) parameters. Ter-
minal nodes are marked by activity: �-inactive, �-moderately active, 	-active.



� 14%; and false positive rate; 47 � 15%. These results clearly demonstrate that
a significant RP model could not be derived from random activity data.

V. CONCLUSIONS

In this work we presented a rational procedure for designing combinatorial li-
braries of small cyclic analogs of protein loops—SCAPLs—that mimic biological
motifs. The method consists of identifying a biological motif of interest, stabiliz-
ing its conformation in isolation by backbone cyclization and by the selection of
appropriate substituents for sequence positions identified as structure determin-
ing, and using the stabilized scaffold as a combinatorial library core. The result-
ing library was subjected to repeated optimization cycles, which led to potent TNF
inhibitor leads in only a few steps of position-by-position optimization cycles.
Sets of synthesis candidates obtained by a method of global optimization based on
the design of a virtual library focused on an active motif showed better coverage
of property space than did compounds obtained by position-by-position optimiza-
tion. High throughout screening data were shown to be sufficient for the deriva-
tion of computational models with reasonable differentiation between actives and
inactives using standard, easy-to-calculate one- and two-dimensional molecular
descriptors. For the PCA model, reasonable separation of actives from inactives
could be obtained in the space defined by the first three principal components. For
the RP model, larger enrichments were obtained when positional rather than
global descriptors were used and when a volume-related descriptor, specifically
derived for the molecular model in hand, was included. The predictive power of
this improved model is awaiting synthetic verification.
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