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Preface

This book is about resource modeling. It explains important issues; it describes geological and 
statistical tools used in resource modeling; and presents case studies for illustration. The main 
intent is to avoid strict theoretical presentations, and focus on practical adaptations that result 
in good resource estimation practice. An understanding of the intrinsic limitations and weak-
nesses of the techniques and resulting models used is critical to success in resource modeling.

This book fills a knowledge gap in the mining industry. There are many books available 
that describe geostatistical methods for resource estimation, but they tend to emphasize theory, 
and provide few or no guidelines for the necessary adaptations in practical applications. Those 
books generally dwell in geostatistical theory with more detail than this one does. On the other 
hand, there are a few “practical” resource modeling books, but they are either not compre-
hensive enough or do not contain enough theory to support or justify the methodology and 
procedures recommended. We attempt to balance both aspects.

Our target audience is geologists and engineers; either students in advanced undergradu-
ate or graduate studies, or professionals just starting out in resource estimation. These are the 
professionals that are most in need of learning from other people’s experience.

We have attempted to collect and reflect in this book good resource modeling practices; 
not only from our own experiences, but also from those that we have worked with through 
the years. In the global mining industry, this includes mentors and colleagues from different 
parts of the world. It is thus also a reflection of working relationships and friendships forged 
through the years.

We have a debt of gratitude with many colleagues, too many to be mentioned here. Spe-
cially, those with whom we have shared many hours over light tables, computer screens, and 
in healthy discussions about modeling and other things. But in particular we would like to ac-
knowledge BHP Billiton, and in particular Rick Preece, Global Practice Leader, Geology and 
Ore Reserves, BHP Billiton Base Metals Operations, for facilitating BHP’s financial support 
of this project, and constant encouragement.
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1Introduction

Abstract

The estimation of mineral resources is an important task for geoscientists and mining en-
gineers. The approaches to this challenge have evolved over the last 40 years. This book 
presents an overview of established current practice. The book is intended for advanced 
undergraduate students or professionals just starting out in resource estimation.

1.1  Objectives and Approach

Our objective is to explain important issues, describe com-
monly used geological and statistical tools for resource mod-
eling, present case studies that illustrate important concepts, 
and summarize good resource estimation practice. Wherever 
possible a common thread will be maintained through the sec-
tions including details of theory and references to appendices 
and other authors, relevant examples, software tools avail-
able, required documentation trail for better practice, exten-
sions to handling multiple variables, modeling of other less 
common variables such as metallurgical properties, and limi-
tations and weaknesses of the assumptions and models used.

There are a wide variety of minerals of interest including 
industrial minerals such as gravel and potash, base metals 
such as copper and nickel, and precious metals such as gold 
and platinum. There are other spatially distributed geologi-
cal variables such as coal, diamonds, and variables used to 
characterize petroleum reservoirs. Often, the constituent of 
interest has variable concentration within the subsurface. A 
resource is the tonnage and grade of the subsurface mate-
rial of interest. The resource is in-situ and may not be eco-
nomic to extract. A reserve is that fraction of a resource 
that is  demonstrated to be technically and economically 
recoverable. Estimation of resources and reserves requires 
the construction of long-term models (life of asset) for the 
entire deposit, which are updated every 1–3 years of opera-
tion. Medium-term models may be built for planning one 
to 6 months into the future. Short-term models are built for 
weekly or day-to-day decisions related to grade control or 
detailed planning.

Constructing numerical models for long, medium or 
short-term resource assessment includes four major areas of 
work:
1. Data collection and management;
2. Geologic interpretation and modeling;
3. Grades assignment; and,
4. Assessing and managing geologic and grade uncertainty.
Data collection and management involves a large number of 
steps and issues. There are books on drilling and sampling 
theory, such as Peters (1978) and Gy (1982). The richness 
and complexity of these subjects cannot be covered in detail; 
nevertheless, it is important that the resource estimator con-
sider subjects that affect the quality of the ultimate estimates. 
Some background information is provided.

Geologic interpretation and modeling requires that site 
specific geologic concepts and models are integrated with 
actual data to construct a three dimensional model of geo-
logical domains. This geologic model is a representation of 
those variables that control the mineralization the most and 
forms the basis for all subsequent estimation. Often, the geo-
logical model is the most important factor in the estimation 
of mineralized tonnage.

The concentrations of different elements or minerals 
(grades) are assigned within geological domains. The grades 
within the different domains may be reasonably  homogeneous; 
however, there is always some variability within the domains. 
The grades are predicted at a scale  relevant for the anticipat-
ed mining method. The recoverable resources are calculated 
considering a set of economic and technical criteria. There 
are a wide variety of methods available and many implemen-
tation aspects must be considered. The chosen method will 
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depend on the study objectives, the available data and the pro-
fessional time available to complete the study.

Resource estimates should be complemented with a mea-
sure of uncertainty. All numerical models have multiple 
 significant sources of uncertainty including the data, the 
geologic interpretation, and the grade modeling. A statement 
quantifying the uncertainty in the predicted variables is re-
quired for good and best practices.

These four main subjects are covered in 14 chapters. Each 
chapter concludes with an exercise that summarizes the key 
points and helps interested readers test their understanding 
of the material presented. No solutions to the exercises are 
provided.

1.2  Scope of Resource Modeling

The collection, gathering, and initial analysis of data are the 
first steps in mineral resource modeling. Sufficient qual-
ity controls and safeguards are required to achieve an ad-
equate degree of confidence in the data. The overall process 
of Quality Assurance and Quality Control (QA/QC) should 
encompass field practices, sampling, assaying, and data 
management. This is necessary to ensure confidence in the 
resource model.

The data are subset within different geological domains. 
These domains may be based on a variety of geological con-
trols such as structure, mineralogy, alteration and lithology. 
Categorical variable models are constructed to subdivide the 
data and focus analysis in different regions of the subsurface. 
Domains are commonly assigned to a gridded block model. 
The block model must have sufficient resolution to represent 
the geological variations and provide the required resolution 
for engineering design. Of course, the number of blocks must 
not be too large. At the time of writing this book, it is common 
to use 1 to 30 million blocks. Larger models are possible, but 
they require more computer resources and managing multiple 
realizations of many variables becomes time consuming.

Statistical analyses of the available data are required be-
fore decisions can be made about geological domains. Min-
eralization controls interact to control the spatial distribution 
of grades. Compositing the original data values is common 
practice. This is done partly to homogenize the support of 
the data used in estimation, but also to reduce the variability 
of the dataset. Further statistical analyses are performed to 
understand and visualize the data distributions and to define 
the most appropriate form of estimation.

After defining the block model geometry and geological 
domains, it is necessary to assign grades. The choice of an 
estimation method and the formulation of plans for grade in-
terpolation are described in later chapters. Special consider-
ations required for simulation are also discussed.

Each step in mineral resource estimation requires as-
sumptions and decisions that should be explicitly stated. 

Perceived limitations and risk areas should be documented. 
The process of model validation and reconciliation is itera-
tive. The calibration of a recoverable resource model against 
production, if available, is particularly important to ensure 
future predictions are as accurate as possible. Proper and de-
tailed documentation is required for each step. An audit trail 
must be created during the entire resource estimation process 
to allow a third party to review the modeling work. Transpar-
ency and the ability to allow for peer-reviews are essential 
components of the work.

1.3  Critical Aspects

The estimation of resources and reserves requires detailed 
consideration of a number of critical issues. Like a chain, 
they are linked such that the quality of the overall resource 
estimate will be equal to the quality of the weakest link; any 
one of them failing will result in an unacceptable resource 
estimate. Resource estimators must deal with these issues on 
a daily basis.

The quality of the mineral resource estimate depends 
firstly on the available data and the geological complexity of 
the deposit; however, the resource estimate is also strongly 
dependent on the overall technical skills and experience of 
the mine staff, how the problems encountered are solved, the 
level of attention to detail at every stage, the open disclosure 
of basic assumptions along with their justifications, and the 
quality of the documentation for each step.

The emphasis on documenting every aspect of the work is 
stressed throughout this book because it is the final and, pos-
sibly, the most important link in the chain. Justification and 
documentation of every important decision serves as quality 
control of the work, because it forces detailed internal re-
views. In addition, it also facilitates third-party reviews and 
audits, which are a common requirement in industry. Some 
basic issues to be dealt with in resource estimation are brief-
ly discussed next.

1.3.1  Data Assembly and Data Quality

The quality of the resource estimate is directly dependent on 
the quality of the data gathering and handling procedures. 
Many different technical issues affect the overall quality of 
the data. Some important ones are mentioned here.

The concept of data quality is used in a pragmatic way. 
The concept is that data (samples) from a certain volume 
will be collected and used to predict tonnages and grades of 
the elements of interest. Decisions are made based on geo-
logical knowledge and statistical analyses applied in con-
junction with other technical information. Therefore, the 
numerical basis for the analyses has to be of good quality to 
provide for sound decision-making. This is particularly im-
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portant because a very small fraction of the mineral deposit 
is sampled.

A second key concept is that the samples should be repre-
sentative of the volume (or material) being sampled, both in 
a spatial sense and at the location where the sample is being 
taken from. Representative means that the sampling and ana-
lyzing process used to obtain a sample results in a value that 
is statistically similar to any other that we could have taken 
from the same volume. Therefore, the sample values are con-
sidered to be a fair representation of the true value of the 
sampled volume of rock. Representation in a spatial sense 
implies that the samples have been taken in an approximately 
regular or quasi-regular sampling grid, such that each sample 
represents a similar volume or area within the orebody of in-
terest. This is often not the case and some correction will be 
required. If the samples are not representative, then an error 
will be introduced that will bias the final resource estimate.

In the context of data quality, the technical issues related 
to sample collection can be divided into those related to field 
work, and those related to processing of the information. 
Some of the most important issues in the field include (1) 
the location of drill holes, trenches, and pits; (2) the type of 
drill holes used such as open-hole percussion, reverse cir-
culation, or diamond drill holes; (3) the drilling equipment 
used; (4) the sampling conditions such as the presence of 
highly fractured rock or groundwater; and (5) sample collec-
tion procedures. Core recovery or the sample weight should 
be recorded. Geologic logging of the geologic characteristics 
of the samples should be performed. Sample preparation and 
assaying procedures are critical. The related quality assur-
ance and quality control program is a fundamental element 
in the process.

Deposit- and mineral-specific sample preparation and as-
saying protocols must be derived and adhered to throughout 
the sampling campaign. Heterogeneity tests (Pitard 1993; 
François-Bongarçon and Gy 2001) are necessary to under-
stand sampling variances and minimize errors.

The construction and maintenance of the sampling data-
base requires a continuous quality control program, includ-
ing periodic manual and automatic checks. These checks 
should be performed over all the variables in the database, 
including grades, geologic codes, collar location and sur-
veys, and density data. Relational databases offer the pos-
sibility of easier data handling and improved quality control. 
But they do not provide quality control by themselves, nor 
do they replace the need for periodic manual audits.

1.3.2  Geologic Model and Definition  
of Estimation Domains

Much geologic information is gathered during the investiga-
tions performed at different stages of a mining project. The 
information is used to understand the genesis of the mineral 

deposit, the distribution of mineralized rock, and to develop 
exploration criteria for increasing resources.

The level of detail in the geologic description of a deposit 
steadily increases as the project advances through its differ-
ent stages. Economic factors are the most important ones af-
fecting the decision of whether or not to proceed with further 
geologic investigations; therefore, most geologic work is ori-
entated towards finding more mineral resources, and to some 
extent to more detailed general exploration.

Not all geologic information is relevant to resource esti-
mation. Geologic investigations for resource development 
should concentrate on defining mineralization controls. Cer-
tain geologic details and descriptions are more useful for ex-
ploration in that they do not describe a specific mineralization 
control, but rather provide guidelines for mineral occurrences.

The process of defining estimation domains amounts to 
modeling the geological variables that represent mineraliza-
tion controls. The estimation domains are sometimes based 
on combinations of two or more geologic variables, for 
which a relationship with grade can be demonstrated. For 
example, in the case of an epithermal gold deposit, an esti-
mation domain can be defined as a combination of structural, 
oxidation, and alteration controls. In the case of a diamond-
iferous kimberlitic pipe, in addition to the geometry of the 
pipe (lithology), internal waste relics are common, such as 
granitic xenoliths. The frequency and volume of these within 
the pipe may condition the definition of estimation domains.

The determination of the estimation domains to use is 
based on geologic knowledge and should be supported by 
extensive statistical analysis (exploratory data analysis, or 
EDA), including variography. The procedure can take a sig-
nificant amount of time, particularly when all possible com-
binations of the available geologic variables are studied, but 
it is typically worth the effort. Estimates are improved when 
carefully constrained by geological variables.

The definition of estimation domains is referred to as 
the definition of stationary zones within the deposit. An 
 important part of stationarity is a decision of how to pool 
information within a specific zone within the deposit, within 
certain boundaries, or the deposit as a whole. Decisions are 
based on oxidation zones, lithologies, alterations, or structur-
al boundaries. The stationary domains cannot be too small; 
otherwise, there are too few data for reliable statistical de-
scription and inference. The stationary domains cannot be 
too big; otherwise, the data could likely be subset into more 
geologically homogeneous subdivisions.

Defining the estimation domains in resource evalua-
tion is often equivalent to defining the mineralized tonnage 
 available in the deposit. Some units will be mostly mineral-
ized (with the potential of becoming ore), while others will 
be mostly un-mineralized (almost certainly non-recoverable 
low-grade resources or waste). The mixing of different types 
of mineralization should be kept to a minimum to avoid 
smearing grades across geologic boundaries.
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Adequate definition of the estimation domains is an im-
portant task for resource evaluation. Mixing of populations 
within the deposit will generally produce a sub-standard re-
source estimate that underestimates or overestimates grades 
and tonnages. It is very rare that any geostatistical technique 
will compensate for a poor definition of stationarity. A good 
definition of estimation domains means that only relevant 
samples are used to estimate each location.

1.3.3  Quantifying Spatial Variability

The grade values observed within a mineral deposit are not 
independent from each other. Spatial dependency is a conse-
quence of the genesis of the deposit, that is, all of the geolog-
ical processes that contributed to its formation. The reader 
is referred to Isaaks and Srivastava (1989) for an accessible 
discussion on the subject, as well as David (1977), Journel 
and Huijbregts (1978), and Goovaerts (1997) for more de-
tails.

A clear description of the spatial variability (or continu-
ity) of the variables being modeled is desirable. Knowledge 
of the spatial correlation between different points in the de-
posit will lead to a better estimation of the mineral grade 
at an unknown location. The spatial variability is modeled 
using the variogram and related measures of spatial variabil-
ity/correlation.

A spatial variability model improves the estimation of 
each point or block in the deposit. Parameters of the model 
are important. Attention should be paid to the definition of 
the nugget effect (the amount of randomness); the number of 
structures; the behavior of the variogram model near the ori-
gin; and the specification of anisotropic features. Although 
the spatial variability model will change depending on the 
estimator and available data, it should be compatible with 
accepted geologic knowledge. For example, the modeled an-
isotropies should be consistent with the spatial distribution 
of known geologic controls, and the variances and ranges of 
the models should be consistent with the overall variability 
observed in the data.

Geologic variables have some degree of spatial correla-
tion. The challenges often encountered when quantifying the 
spatial correlation lie with the inadequacy of the data being 
used, inadequate definition of estimation domains, or use of 
estimators that are less robust with respect to skewed data. 
These challenges are discussed in detail in later chapters.

1.3.4  Geologic and Mining Dilution

In-situ and recoverable resources must be differentiated. The 
precise definition of recoverable varies in different parts of 
the world. In general, the term refers to mineralization that 

can be recovered and processed by mining. Any resource 
evaluation, in order for it to become the basis for an eco-
nomic evaluation, has to be recoverable, and therefore in-
clude some dilution and ore loss. After applying constraints 
derived from the ability to economically mine the deposit, 
as well as all relevant types of dilution, the resource may 
become a reserve.

Some resource estimators advocate the estimation of 
purely geological in-situ resources, that is, an estimate of 
the resources that are to be found if a snapshot of the de-
posit at the same scale and level of detail as provided by 
the drill hole data and other geologic information could be 
taken. Thus, it would be a description of its true geologic 
nature, as it occurs at our scale of observation. This point of 
view assigns to the mining engineer and economic evaluator 
the task of converting the purely geologic resource into a 
minable reserve. This is required to realistically describe the 
economic potential of the deposit. In general, however, the 
geologist and geostatistician (resource evaluators) are better 
equipped to incorporate geologic dilution; otherwise, it may 
go uncharacterized or poorly modeled.

Mining is a large scale industrial operation; selection of 
large volumes is taking place over short times. Some mix-
ing of waste with ore and ore with waste is inevitable. The 
failure to understand and properly estimate geologic dilu-
tion and lost ore explains most of the failures of resource 
estimates. Although some degree of error or uncertainty is 
expected, ignoring or mistreating knowledge of anticipated 
dilution is an invitation for disaster. An interesting discus-
sion in layman terms about this issue can be found in Noble 
(1993). In the context of using a block model to estimate 
resources, the basic types of dilution often encountered can 
be summarized as:
1. Internal dilution, related to the use of small size com-

posites to estimate large blocks, also called the volume-
variance effect. The more mixing of high and low grades 
within the block, the more important this effect will be, as 
is common for example with gold mineralization.

2. The geologic (or in-situ) contact dilution, related to the 
mixtures of different estimation domains within blocks. 
One reason for grade profile changes is the existence of 
different geologic and mineralization domains. Mixing of 
grades will occur when mining near to or at contacts.

3. The operational mining dilution that occurs at the time 
of mining. The blasting of the rock is an important fac-
tor, since material shifts position. The loading operation 
is also a source of dilution and ore loss since the loader is 
never able to precisely dig to the exact ore limits.

An understanding of the information effect is also required. 
The long-term block model is not used for final selection of 
ore and waste. Rather, a different model is used to select ore 
from waste that uses much more closely-spaced data avail-
able at the time of mining. In an open pit mine the mineral 
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boundaries and the quality are predicted using closely spaced 
data. The information at the time of resource estimation is 
quite different than at the time of mining, for which esti-
mates will be much better.

1.3.5  Recoverable Resources: Estimation

The importance of calculating recoverable resources and re-
serves was recognized early on in geostatistics (Matheron 
1962, 1963), but it was M. David’s early work (1977) that 
demonstrated the practical significance of estimating recov-
erable reserves, while Journel and Huijbregts (1978) pro-
vided the theoretical and practical foundations for the most 
common methods used to estimate at different volumes.

Block model resources estimated from exploration or de-
velopment drill holes (long-term models) and mine produc-
tion predictions (short-term models) may show significant 
discrepancies. The discrepancies are even larger when com-
pared to actual production figures which may or may not be 
reliable. It is desirable to minimize these discrepancies for 
evaluation and planning purposes. It has been shown that in-
correct accounting for the volume of prediction (the volume-
variance effect) is a major contributor to the discrepancies 
usually encountered.

The resource model contains blocks with dimensions 
that should relate to the spacing of the data, hopefully de-
termined based on the quantity of information available to 
predict grades. Block sizes may be larger than the selective 
mining unit (SMU) of the operation. The smoothing effect 
of kriging will generally result in a grade distribution that 
does not match the distribution of grade of the SMUs. In 
addition, in-pit selection is not perfect. The grade-tonnage 
predictions based on blast holes may need to be corrected 
for unplanned dilution and other errors of estimation in the 
short-term model.

An integrated approach to predicting reserves and mine 
performance is required for more accurate predictions. Spe-
cifically, the volume-variance relationship, the selectivity of 
the mining operation, planned dilution and ore loss must be 
accounted for. Additionally, incorporating an allowance for 
unplanned dilution at the time of mining is reasonable.

The traditional estimation techniques provide limited 
flexibility to account for these factors. The estimation of re-
coverable resources is based on limited information about 
the SMU distribution of grades. There are a number of meth-
ods and techniques that help estimate point distributions, 
but relatively little research has been done to develop robust 
methods for estimating block distributions. It is a difficult 
task, since little is known a-priori about the SMU distribu-
tion. An important option available is the use of conditional 
simulation models to resolve the issues related to recover-
able resources.

1.3.6  Recoverable Resources: Simulation

The traditional approach to block modeling is to estimate a 
single value in each block of the model, obtaining the best 
possible prediction in some statistical sense. This estima-
tion can be done using non-geostatistical methods, or more 
commonly, some form of kriging. Although there is a need 
for a single estimate in each block, there are some important 
shortcomings in attaching only the estimated value to each 
block.

An alternative approach to resource evaluation is the use 
of conditional simulation that provides a set of possible val-
ues for each block, which represent a measure of uncertainty. 
The idea is to obtain a number of simulated realizations that 
reproduce the histogram and the variogram of the original 
drill hole information. The realizations are built on a fine 
grid. Reproducing or honoring the histogram means that the 
realizations will correctly represent the proportion of high 
and low values, the spatial complexity of the orebody, the 
connectivity of high and low values, and the overall grade 
continuity in three dimensions. These characteristics of the 
mineralization are important aspects that play a signifi-
cant role in designing, planning, and scheduling a mining 
operation.

A number of issues have to be adequately resolved for the 
realizations to be representative of the grades of the deposit. 
These include, among others, choosing among several simu-
lation techniques available, such as Sequential Gaussian 
(Isaaks 1990), Sequential Indicator (Alabert 1987), or oth-
ers. Also, decisions about grid size, conditioning data, search 
neighborhoods, and treatment of high grade values must be 
made. It is a similar process to developing a kriging block 
model. Some discussions about practical implementations 
can be found in Deutsch and Journel (1997) and Goovaerts 
(1997), among others.

When a number of these realizations have been created 
and checked, then, for each node defined in the grid, there will 
be a corresponding number of different grades available. This 
set of multiple grades is a model of uncertainty for that node. 
These simulated points can be re-blocked to any block size 
desired such as the Selective Mining Unit SMU size of the 
operation. These results are used further by mining engineers.

Important parameters can be obtained from the distribu-
tions of local uncertainty such as the mean, median, and prob-
ability of exceeding of exceeding a specified cutoff grade. 
Therefore, the information provided by a simulation model 
is significantly more complete than the single estimate pro-
vided by an estimated block model. The simulation models 
can provide recoverable resources for any selectivity by re-
blocking the simulated grades to the chosen SMU block size. 
It is likely that, in due time, simulation models will replace 
estimated block models, since they not only provide a single 
estimate, but also a full range of possible values.
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1.3.7  Validation and Reconciliation

Checking resource models involves several steps and re-
quires a significant amount of time and effort. There are two 
basic types of checks to be done: graphical and statistical.

Graphical checks involve 3-D visualization and plotting 
the estimated values on sections and plans. Every estimated 
block grade should be explained by the data surrounding it and 
the modeling parameters and method used. Although these 
graphical checks can be performed on computer screens, it is 
often worthwhile to have a hardcopy set of maps because of 
the level of detail required and the important record-keeping 
and audit trails. Unfortunately, this practice is disappearing, 
as some operations do not take the time to produce sets of 
geological sections and plans views on paper.

Statistical checks are both global (large scale or depos-
it-wide) and local (block-wise or by smaller volumes, such 
as monthly production volumes). The checking, valida-
tion, and reconciliation procedures should ensure the in-
ternal consistency of the model, as well as reproduction 
of past production if available. Some of the more basic 
checks are:
• The global average of the model should match the aver-

age of the declustered data distribution. This check needs 
to be performed for each estimation domain.

• The smoothing of the distribution of the block model 
grades: the comparison with respect to the predicted 
(SMU) grade distributions should be reasonable. If the 
predicted SMU and block model grade-tonnage curves 
are very different, it is likely that the block model has 
incorporated too much or too little dilution.

• The spatial and statistical relationships between the 
modeled variables must correspond to the relationships 
observed in the original data set.

• A resource model should be constructed using an alter-
native method. The results and differences should be as 
expected, given the characteristics of each method.

• The estimates should be compared to previous estimates. 
This should be done cautiously and considering the dif-
ferences in data quantity and quality, as well as the meth-
odology used for the different resource estimate.

• The estimates should be compared to all available his-
torical production data. Ideally, resource models should 
 predict past production. This provides some indication 
that the block model may also predict future mining.

Reconciliation against past production should be done based 
on pre-defined volumes of interest and according to speci-
fied error acceptance criteria. Additionally, production can 
provide an initial indication of the expected uncertainty of 
the resource model. This expected uncertainty should be ex-
pressed in the classical form of within x% confidence limit 
p% of the time.

Production information should be used with great care. 
Oftentimes, tonnages and grades reported by the process-
ing plant do not adequately represent true mill feed (head) 
tonnages and grades, that is, the material delivered by the 
mine. Rather, they may be influenced by plant performance 
parameters, which will bias the comparisons with the head 
grades and tonnages reported by the mine. The implication 
is that reliable head tonnages and grade information are best 
obtained from direct sampling of the material delivered at 
the entrance of the plant. In some cases these comparisons 
may not be possible due to the characteristics of the opera-
tion such as extensive stockpiling or lack of reliable mill 
feed information. Often, only very general statements can be 
made about the quality of the reconciliation data.

1.3.8  Resource Classification

The purpose of classifying resources is to provide a global 
confidence assessment to the project’s stakeholders includ-
ing mining partners, stockholders, and financial institutions 
investing in the project. There are several resource and re-
serve classification systems used by different government 
agencies around the world. Most of them share in their main 
characteristics and objectives.

The assessment of confidence is critical for project de-
velopment since sufficient resources and reserves must be 
known with enough confidence to be considered assets. For 
operating mines, continued confidence in future long-term 
production is also important in providing shareholder value 
and supporting long-term planning.

The terminology used in most guidelines for classifica-
tion is purposefully vague. They must be applicable to many 
different types of deposits, locations and mining methods. 
The guidelines do not prescribe specific methodology for 
quantifying uncertainty or risk. Rather, there is increased 
reliance on the judgment of the resource estimator, formal-
ized through the concept of a competent or qualified per-
son. A common basis for comparison is therefore difficult 
to achieve, since the wording may have different meaning 
under different circumstances, and depends on the individu-
als involved. A possible solution is to attempt to describe 
confidence in traditional statistical terms, and as a function 
of production units. There is an industry trend towards using 
a statistical description of uncertainty to supplement tradi-
tional classification criteria.

The confidence assessment required by the sharehold-
ers of a mining project is generally global, and mostly con-
cerned with long-term performance. This is different from 
the shorter-term mining risk assessment that engineers need 
in the day-to-day operation of the mine. Unfortunately, a 
global confidence assessment is frequently also used as a 
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local measure of uncertainty, which often leads to unreason-
able expectations in the resource model. Current practice for 
resource classification includes different methods that have 
conceptual similarities. Some common ones are:
• Using the number of drill holes and samples near 

each block is geometric in nature and easy to explain, 
although it frequently tends to be simplistic in its imple-
mentation.

• The kriging variance provides an index of data configura-
tion (Chap. 8), that is, a measure of how well each block 
in the model is informed at the time of estimation.

• Using different search radii to estimate blocks in a step-
wise process, while keeping track of when the blocks 
get an estimated value. The more information is used to 
obtain an estimate, the more certain it will be.

• Deciding according to geologic criteria what drill hole 
grid spacing is required for the resource to belong to a cat-
egory (measured, indicated, or inferred), and then search-
ing throughout the deposit for that nominal grid spacing, 
thus classifying the different areas of the deposit.

Purely geometric criteria could be supplemented with con-
ventional statistical criteria, that is, defining the expected 
grade and a corresponding range of possible grades around 
it. For example, measured resources may be defined as those 
predicted to be known ± 15 %, 90 % of the time for a volume 
equivalent to 3 months production. The model (numerical or 
subjective) used to come up with such a statement is most 
important to the effectiveness of the classification scheme.

There are shortcomings and pitfalls in the practice of re-
source classification. Many of these can be resolved with 
a defendable model of uncertainty based on geostatistical 
simulation. Inevitably, the process of classifying resources 
depends on the circumstances and conditions of the mining 
project being assessed in addition to purely geologic con-
ditions and technical issues. Nevertheless, in all cases, the 
classification must be defendable by the professional that 
signs off on the resource model.

1.3.9  Optimal Drill Hole Spacing

Drill hole spacing should be optimal for a given cost-benefit 
analysis, which is dependent on the project development 
stage. New drill holes must reduce the uncertainty of the 
 resources to a tolerable, pre-defined level, as required for 
project advancement.

A cost-benefit analysis of potential new drill holes re-
quires assessing the benefit of decreasing the uncertainty 
of the resource model by a given amount. This amounts to 
quantifying the value of new information. If the consequenc-
es of errors in the resource estimates can be defined and 
quantified, then it is feasible to use simulated realizations to 

determine the economic consequences of uncertainty. This 
can be further refined by applying existing mine plans to 
the simulation models, such that, for a specific mine plan, 
an evaluation of the impact of new drilling on recovered re-
serves can be made.

In practice, this type of analysis is based on production 
volumes, such as metal sold in a month. If the parameters 
that describe metallurgical plant performance are known, 
then the uncertainty of the tonnages and grades fed to the 
mill can be directly linked to the risk of not achieving the 
expected production plan.

The typical question asked by the project development 
manager is “how many drill holes do I need?” The answer 
to this question requires a definition of the objectives of the 
new drilling in terms of uncertainty. Then, the applicable 
optimality criteria can be developed and the value of new 
drilling can be assessed. This could be expressed in dollar 
values, in terms of uncertainty and risk reduction, or in terms 
of reduction of cash flow and net present value (NPV) risk.

1.3.10  Medium- and Short-term Models

Medium- and short-term models are auxiliary models used 
to improve the local estimation of the long-term resources 
model. These are reserve models that are used in an operat-
ing mine for production purposes. Medium- and short-term 
models are used to improve the estimation of relatively small 
volumes of the deposit. This is useful because mine opera-
tions plan on smaller, shorter-term volumes. The definition 
of what is long-, medium-, and short-term varies from one 
operation to another; however, common use of the terms 
suggest that long-term refers to production periods of a year 
or longer, while medium-term refers to three to 6 months 
production, and short-term implying 1 month production or 
less. The periods chosen will be related to the budget and 
forecast cycles of the operation.

At most medium to large mining operations there is a 
yearly budget that updates the material movement and corre-
sponding expected cash flows of the original long-term mine 
plan. It provides a cash flow prediction for the following year. 
Additionally, this budget is itself updated by a short-term 
forecast, usually done on a semi-annual, quarterly, or monthly 
basis, depending on the characteristics of the operation.

The update of the existing long-term model is accom-
plished by incorporating infill drilling and production 
 information. Since this work is to be performed within a 
 production environment, the procedures and methods used 
in updating the resource model are constrained by time and 
human resources. The definition of the most appropriate and 
practical methodology to update the geological and grade 
models can become a significant challenge.
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1.3.11  Grade Control

Grade control is an important task performed at the mine on 
a daily basis. It is a basic, economic decision that selects the 
destination of each parcel of material mined. Mistakes at this 
stage are costly, irreversible, and can be measured in terms of 
cash flow losses and increased operational costs.

Grade control models are based on a large number of 
samples. In underground mines, production data is usually a 
series of tightly drilled holes, channel samples, or short holes 
to test production stopes. In an open pit environment, blast 
holes samples are obtained on closely spaced grids, accord-
ing to blasting requirements. Less frequently, grade control 
drilling is performed separate from blast hole drilling, for 
example using dedicated reverse circulation (RC) drilling. In 
some geologic settings, surface tranches and channel sam-
ples are used as well.

Production samples are used to select ore from waste, and 
are affected by several sampling issues. Often, blast hole 
samples are not as reliable as samples obtained from explo-
ration or RC drill holes. This is explained by a combination 
of drilling and field sampling methods. Sometimes, the large 
quantity of samples available will tend to minimize the im-
pact of the error of a single blast hole sample.

Geologic variables are mapped in the pit or stopes, but 
are not always used in production control. Procedures for 
extracting some benefit from the local geology mapped 
should be implemented. The goal is to find practical ways 
of mapping and quickly processing geological information. 
The typical turnaround time for a grade control model in an 
open pit is 24–48 h.

Conventional grade control methods include defining 
grade outlines and using inverse distance, polygonal estima-
tion, or more commonly kriging of blast hole grades. These 
methods do not account for the uncertainty in prediction. 
Alternatively, simulation of multiple realizations provides 
the basis for different optimization algorithms, such as the 
minimum-loss/maximum profit method.

In general, improvements from the simulation-based 
methods are evident in more erratic grade distributions and 
in more marginal mixed ore-type zones. More complicated 
grade control scenarios, such as those including multiple 
processing options and stockpiling, will also lend themselves 
to optimization through simulation based methods.

1.4  Historical Perspective

Hand-calculated sectional estimates continue to have a place 
in resource and reserve estimation. They have the advantages 
of directly accounting for expert geological interpretation and 
providing a first order approximation; however, they also tend 
to be optimistic with respect to continuity of the mineraliza-

tion and the grade that can be achieved. Inverse distance and 
nearest-neighbor methods became popular in the early days of 
computer-aided mapping. The computer was used to mimic 
what was done by hand calculations, but hopefully faster. The 
implementation aspects of these techniques evolved as more 
sophisticated computer tools became available.

Mineral resource modeling evolved further with ad-
vances in drilling and assaying techniques, and with greater 
awareness of the possible pitfalls related to sample prepara-
tion and analysis. Methods used for geologic interpretation 
and modeling also evolved, mostly through the section-by-
section interpretation and into three-dimensional modeling 
(wireframes and solids modeling for visualization). The oc-
casional use of three-dimensional hand-made models was 
made common with the availability of computers.

Grade estimation techniques have evolved through the 
years, beginning with early geostatistics (Sichel 1952; Krige 
1951; Matheron 1962, 1963) that attempt to predict single 
values into blocks. Advanced versions of these techniques 
are pervading industry practice and are the most commonly 
used methods.

The estimation of probability functions developed next, 
although using the same basic linear regression tools. As-
sumptions about statistical properties and variable transfor-
mations led to the development of probabilistic estimation of 
a distribution of possible values for any given block.

In more recent years the use of simulation for modeling 
uncertainty has become important. Geological processes 
have important patterns and structure, but also have uncer-
tainty due to the chaotic nature of the processes. Characteriz-
ing the natural heterogeneity and the uncertainty that results 
from incomplete sampling is an important goal of mineral 
resource estimation.
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2Statistical Tools and Concepts

Abstract

Mineral resource estimation requires extensive use of statistics. In our context, statistics are 
mathematical methods for collecting, organizing, and interpreting data, as well as drawing 
conclusions and making reasonable decisions based on such analysis. This chapter presents 
essential concepts and tools required throughout the book.

2.1  Basic Concepts

A conventional presentation of statistics includes the no-
tion of a population that is the virtually infinite collection 
of values that make up the mineral deposit. A sample is a 
representative subset selected from the population. A good 
sample must reflect the essential features of the population 
from which it is drawn. A random sample is a sample where 
each member of a population had an equal chance of being 
included in the sample. The sample space is the set of all 
possible outcomes of a chance experiment, for example a 
drilling campaign. The event of a sample space is a group of 
outcomes of the sample space whose members have some 
common characteristic. Statistically independent events are 
such that the occurrence of one event does not depend on the 
occurrence of other events. Sampling mineral deposits rarely 
fits nicely in the framework of representative samples from a 
statistical population; nevertheless, many concepts and tools 
from conventional statistics are used routinely.

Inductive statistics or statistical inference is attempted if 
the sample is considered representative. In this case, conclu-
sions about the population can often be inferred. Since such 
inference cannot be absolutely certain, the language of prob-
ability is used for stating conclusions. Descriptive statistics is 
a phase of statistics that describes or analyses a given sample 
without inference about the population. Although our goal in 
mineral resource estimation is almost always inference, we 
use many descriptive statistics for viewing, understanding, 
and evaluating data.

An essential concept in statistics is stationarity, that is, our 
choice of data to pool together for common analysis. Chap-
ter 6 describes stationarity more formally, but the concept 

is that data must be grouped together before any statistical 
calculations are attempted. Ideally, a decision of how to 
group the data can be made on the basis of clear geological 
controls, as discussed in Chap. 4. Some of the statistical tools 
presented in this chapter are useful to help make a choice of 
stationarity, but most assume that the decision has already 
been made and the data have been assembled into reasonable 
groups.

In most cases we consider continuous variables that are 
mass or volume fractions, that can take any value between 
a minimum (0 %) and maximum (100 %). We sometimes 
consider categorical or discrete variables that can take spe-
cific values from a closed set. A typical categorical variable 
would be lithology or mineralization type.

Statistical tools are used for several reasons, including 
(1) an improved understanding of the data and the mineral 
deposit, (2) to ensure data quality, (3) to condense infor-
mation, and (4) to make inferences and predictions. In gen-
eral, we are not interested in the statistics of the samples. 
Our goal is to go beyond the limited sample to predict the 
underlying population. Additionally, creative visualization 
of data is an important component of mineral resource es-
timation, partly because of its usefulness as a tool to un-
derstand data, but also to help validate spatially distributed 
models.

There are many good references on basic statistics. One 
accessible reference is Lapin (1983). This book uses a few 
notation conventions. Lowercase  letters  ( x, y, z,…) denote 
actual values such as a measured value or a specified thresh-
old. Uppercase letters ( X, Y, Z,…) denote a random variable 
(RV) that is unknown. We characterize the uncertainty in a 
random variable with a probability distribution. A random 

M. E. Rossi, C. V. Deutsch, Mineral Resource Estimation, DOI 10.1007/978-1-4020-5717-5_2,
© Springer Science+Business Media Dordrecht 2014
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variable could be the grade at an unsampled location denoted 
Z(u) where u represents a location coordinates vector. A set 
of random variables is called a random function (RF). The 
set of grades over a stationary geologic population A is a 
random function {Z(u), u∈A}.

2.2  Probability Distributions

Probabilities are closely associated to proportions. A prob-
ability of 0.8 or 80 % assigned to an event means that the 
proportion of times it will occur, in similar circumstances, 
is 0.8 or 8/10 or 80 %. The similar circumstances relates to 
our decision of stationarity. In some cases we calculate the 
probabilities directly through proportions. For example, the 
probability for a mineral grade within a particular geologic 
unit to be less than a particular threshold could be calculated 
by counting the number of samples below the threshold and 
dividing by the total number of data.

There are many cases, however, when probabilities can-
not be calculated from proportions. This is particularly true 
for conditional probabilities, that is, probability values given 
certain a set of data events. Consider the probability that a 
mineral grade be less than a particular threshold given one 
measurement 50 m away that is twice the threshold and an-
other measurement 75 m away that is just below the thresh-
old. In such cases, we do not have multiple replications to 
calculate an experimental proportion. We must rely on prob-
abilistic models and well established probability laws.

Probability distributions are characterized as parametric 
or non-parametric. A parametric distribution model has a 
closed analytical expression for the probability, and is com-
pletely determined by a finite number of parameters, as for 
example the Gaussian distribution model with parameters 
mean (m) and standard deviation (s) that control the center 
and spread of the distribution, respectively.

It is common to consider probability distributions that 
relate to one continuous or categorical variable at a time. 
Such distributions are called univariate distributions. Two 
examples: (1) the probability for a continuous variable to be 
less than a particular threshold, or (2) the probability for a 
particular lithology to prevail at a certain location. When we 
consider probability distributions of more than one variable 
at a time, then we call them multivariate distributions. The 
distribution of two variables is a bivariate distribution. For 
example, the probability of one grade being less than one 
threshold and a second grade being less than another thresh-
old is a bivariate probability.

There are a large number of references for probability 
and basic statistics. Some general statistical ones and also 
some related to spatial data include Borradaile (2003); Davis 
(1986); Koch and Link (1986); Ripley (1987); and Rohatgi 
and Ehsanes Saleh (2000).

2.2.1  Univariate Distributions

The cumulative distribution function (CDF) is the universal 
way to express a state of incomplete knowledge for a con-
tinuous variable. Consider an RV denoted by Z. The CDF 
F(z) is defined as:

The lowercase z denotes a threshold. Prob{ · } denotes a 
probability or proportion. An example CDF is shown on 
Fig. 2.1; the z-variable is between 2 and 35 and is most prob-
ably between 20 and 30.

A cumulative histogram is an experimental CDF based on 
the data. It is useful to see all of the data values on one plot 
and sometimes can be used to isolate statistical populations. 
Cumulative histograms do not depend on a bin width, and 
can be created at the resolution of the data.

An important challenge is to determine how representa-
tive each sample is of the actual mineralization. This issue 
is discussed in more detail in Chap. 5. It is also important to 
determine whether the distribution of all samples adequate-
ly represents the actual grade distribution in the deposit, or 
whether certain weighting should be applied.

The interval probability of Z occurring in an interval from 
a to b (where b > a) is the difference in the CDF values eval-
uated at values b and a:

The probability density function (PDF) is the derivative of 
the CDF, if it is differentiable. Applying the fundamental 
theorem of calculus, the CDF can be obtained by integrating 
the PDF:

( ) { } [0,1]F z Prob Z z= ≤ ∈
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Fig. 2.1  Cumulative distribution of 2,993 data values. The cumulative 
frequency or probability is the probability to be less than the threshold 
value

 



132.2  Probability Distributions

The most basic statistical tool used in the analysis of data is 
the histogram, see Fig. 2.2. Three decisions must be made: 
(1) arithmetic or logarithmic scaling—arithmetic is appro-
priate because grades average arithmetically, but logarithmic 
scaling more clearly reveals features of highly skewed data 
distributions; (2) the range of data values to show—the mini-
mum is often zero and the maximum is near the maximum 
in the data; and (3) the number of bins to show on the histo-
gram, which depends on the number of data. The number of 
bins must be reduced with sparse data and it can be increased 
when there are more data. The important tradeoff is reduced 
noise (less bins) while better showing features (more bins).

The mean or average value is sensitive to extreme values 
(or outliers), while the median is sensitive to gaps or missing 
data in the middle of a distribution. The distribution can be 
located and characterized by selected quantiles. The spread 
is measured by the variance or standard deviation. The coef-
ficient of variation (CV) is the standard deviation divided 
by the mean; it is a standardized, unit-less measure of vari-
ability, and can be used to compare very different types of 
distributions. When the CV is high, say greater than 2.5, the 
distribution must be combining high and low values together 
and most professionals would investigate whether the pool of 
data could be subset based on some clear geological criteria.

Sample histograms tend to be erratic with few data. Saw-
tooth-like fluctuations are usually not representative of the 
underlying population and they disappear as the sample size 
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increases. There are techniques available for smoothing the 
distribution, which not only removes such fluctuations, but 
also allows increasing the class resolution and extending the 
distributions beyond the sample minimum and maximum val-
ues. Smoothing is only a consideration when the original set 
of data is small, and artifacts in the histogram have been ob-
served or are suspected. In practice, sufficient data are pooled 
to permit reliable histogram determination from the available 
data.

The graph of a CDF is also called a probability plot. 
This is a plot of the cumulative probability (on the Y axis) 
to be less than the data value (on the X axis). A cumula-
tive probability plot is useful because all of the data values 
are shown on one plot. A common application of this plot 
is to look at changes in slope and interpret them as dif-
ferent statistical populations. This interpretation should be 
supported by the physics or geology of the variable being 
observed. It is common on a probability plot to distort the 
probability axis such that the CDF of normally distributed 
data would fall on a straight line. The extreme probabilities 
are exaggerated.

Probability plots can also be used to check distribution 
models: (1) a straight line on arithmetic scale suggests a nor-
mal distribution, and (2) a straight line on logarithmic scale 
suggests a lognormal distribution. The practical importance 
of this depends on whether the predictive methods to be ap-
plied are parametric (Fig. 2.3).

There are two common univariate distributions that are 
discussed in greater detail: the normal or Gaussian and the 
lognormal distributions. The normal distribution was first 
introduced by de Moivre in an article in 1733 (reprinted in 
the second edition of his The Doctrine of Chances, 1738) in 
the context of approximating certain binomial distributions 
for large n. His result was extended by Laplace in his book 

Fig. 2.2  Histogram of 2,993 data values. The common representa-
tion of the histogram has constant bin widths; the number of data in 
each bin is labeled on this histogram

 

Fig. 2.3  An example of a probability plot. Data is lead concentration, 
on 2 m composites, on a logarithmic scale
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Analytical Theory of Probabilities (1812), and is now called 
the Theorem of de Moivre-Laplace. Laplace used the normal 
distribution in the analysis of errors of experiments. The im-
portant method of least squares optimization was introduced 
by Legendre in 1806. Gauss, who claimed to have used the 
method since 1794, justified it rigorously in 1809 by assum-
ing a normal distribution of the errors.

The Gaussian distribution is fully characterized by its two 
parameters, the mean and the variance. The standard normal 
PDF has a mean of zero and a standard deviation of one. 
The CDF of the Gaussian distribution has no closed form 
analytical expression, but the standard normal CDF is well 
tabulated in literature. The Gaussian distribution has a char-
acteristic symmetric bell shaped curve about its mean; thus 
the mean and median are the same, see Fig. 2.4.

The lognormal distribution is important because of its 
history in spatial statistics and geostatistics. Many earth 
science variables are non-negative and positively skewed. 
The lognormal distribution is a simple distribution that 
can be used to model non-negative variables with positive 
skewness. A positive random variable is said to be log-
normally distributed if X = ln(Y) is normally distributed 
(Fig. 2.5). There are many grade distributions that are ap-
proximately lognormal. These distributions are also charac-
terized by two parameters, a mean and a variance, although 
three-parameter lognormal distributions have been used in 
mining, see for example Sichel (1952). Lognormal distribu-
tions can be characterized by either their arithmetic or their 
logarithmic parameters.

The Central Limit theorem (see for example Lapin 1983) 
states that the sum of a great number of independent equally 
distributed (not necessarily Gaussian) standardized random 
variables (RV) tends to be normally distributed, i.e. if n RV’s 
Zi have the same CDF and zero means, the RV tends toward 

a normal CDF, as n increases towards infinity. The corollary 
of this is that the product of a great number of independent, 
identically distributed RV′s tends to be normally distributed. 
The theoretical justification of the normal distribution is of 
little practical importance; however, we commonly observe 
that the distribution of grades becomes more symmetric 
and normal-like as the volume of investigation becomes 
large—the randomness of the grades is averaged and the re-
sults tend to a normal distribution.

2.2.2  Parametric and Non-parametric 
Distributions

A parametric distribution model has an analytical expression 
for either the PDF or the CDF, as for the Gaussian density 
function and the Lognormal distribution. Parametric distribu-
tions sometimes relate to an underlying theory, as does the nor-
mal distribution to the Central Limit Theorem. There are many 
parametric distributions that are used in different settings in-
cluding the lognormal, uniform, triangular, and exponential 
distributions. Modern geostatistics makes extensive use of the 
Gaussian distribution because of its mathematical tractability. 
The lognormal distribution is important as well, but mostly 
from an historical perspective. In general, however, modern 
geostatistics is not overly concerned with other parametric 
distributions because data from any distribution can be trans-
formed to any other distribution including the Gaussian one if 
needed. Adopting a parametric distribution for the data values 
may be the only option in presence of very sparse data; a non-
parametric distribution is used when there are sufficient data.

There is no general theory for earth science related vari-
ables that would predict the parametric form for probabil-
ity distributions. Nevertheless, certain distribution shapes 
are commonly observed. There are statistical tests to judge 
whether a set of data values follow a particular parametric 
distribution. But these tests are of little value in resource es-
timation because they require that the data values all be inde-
pendent one from another, which is not the case in practice.

 

Fig. 2.4  A sketch of a normal or Gaussian distribution

   

 Fig. 2.5  A sketch of a lognormal distribution
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Parametric distributions have three significant advantages: 
(1) they are amenable to mathematical calculations, (2) the 
PDF and CDF are analytically known for all z values, and 
(3) they are defined with a few parameters. The primary dis-
advantage of parametric distributions is that, in general, real 
data do not conveniently fit a parametric model. However, 
data transformation permits data following any distribution 
to be transformed to any other distribution, thus capitalizing 
on most of the benefits of parametric distributions.

Most data distributions are often not well represented by 
a parametric distribution model. Sometimes distributions 
are characterized as non-parametric, that is, all of the data 
are used to define the distribution with experimental pro-
portions; a parametric model for the CDF or PDF is not re-
quired. In this case, the CDF probability distribution may be 
inferred directly from the data, and therefore non-parametric 
distributions are more flexible. The CDF is inferred directly 
as the proportion of data less than or equal to the threshold 
value z. Thus, a proportion is associated to a probability.

A non-parametric cumulative distribution function is a 
series of step functions. Some form of interpolation may 
be used to provide a more continuous distribution F( z) that 
extends to arbitrary minimum zmin and maximum zmax val-
ues. Linear interpolation is often used. More complex inter-
polation models could be considered for highly skewed data 
distributions with limited data.

2.2.3  Quantiles

Quantiles are specific Z values that have a probabilistic 
meaning. The p-quantile of the distribution F( z) is the value 
zp for which: F (zp) = Prob{Z ≤ zp} = p . The 99 quantiles 
with probability values from 0.01 to 0.99 in increments of 
0.01 are known as percentiles. The nine quantiles at 0.1, 0.2, 
…, 0.9 are called deciles. The 3 quantiles with probability 
values of 0.25, 0.5 and 0.75 are known as quartiles. The 0.5 
quantile is also known as the median. The cumulative distri-
bution function provides the tool for extracting any quantile 
of interest. The mathematical inverse of the CDF function is 
known as the quantile function:

The interquartile Range (IR or IQR) is the difference between 
the upper and the lower quartiles: IR = q(0.75) − q(0.25) and 
is used as a robust measure of the spread of a distribution. 
The skewness sign is the sign of the difference between the 
mean and the median (m-M) that indicates positive skewness 
or negative skewness.

Quantiles are used for comparing distributions in various 
ways. They can be used to compare the original data distri-
bution to simulated values, compare two types of samples, or 

1( ) ( )pz F p q p−= =

compare assay results from two different laboratories. A good 
way to do this is with a plot of matching quantiles, that is, a 
quantile-quantile (Q-Q) plot (Fig. 2.6). To generate a Q-Q 
plot, we must first choose a series of probability values pk, 
k = 1, 2, …, K; then, we plot q1(pk) versus q2(pk), k = 1, 2, …, K.

If all the points fall along the 45° line, the two distribution 
are exactly the same; if the line is shifted from the 45°, but 
parallel to it, the two distribution have the same shape but 
different means; if the slope of the line is not 45°, the two 
distributions have different variances, but similar shapes; 
and if there is a nonlinear character to the relationship be-
tween the two distributions, they have different histogram 
shapes and parameters.

The P-P plot considers matching probabilities for a series 
of fixed Z values. The P-P plot will vary between 0 and 1 (or 
0 and 100 %), from minimum to maximum values in both 
distributions. In practice, Q-Q plots are more useful because 
they plot the values of interest (grades, thicknesses, perme-
abilities, etc.), and it is therefore easier to conclude how the 
two distributions compare based on sample values.

2.2.4  Expected Values

The expected value of a random variable is the probability 
weighted average of that random variable:

The expected value of a random variable is also known as 
the mean or the first moment. The expected value can also 
be considered as a statistical operator. It is a linear operator.
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Fig. 2.6  An example of a Q-Q plot. The data is total copper, corre-
sponding to two different lithologies
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The expected value of the squared difference from the 
mean is known as the variance (σ2). It is written:

The square root of the variance is the standard deviation (σ 
or s). The standard deviation is in the units of the variable. It 
is common to calculate a dimensionless coefficient of varia-
tion (CV), that is, the ratio of the standard deviation divided 
by the mean.

As an approximate guide, a CV less than 0.5 indicates a 
fairly well behaved set of data. A CV greater than 2.0 or 2.5 
indicates a distribution of data with significant variability, 
such that some predictive models may not be appropriate.

There are additional measures of central tendency aside 
from the mean. They include the median (50 % of the data 
smaller and 50 % larger), the mode (the most common obser-
vation), and the geometric mean.There are also measures of 
spread aside from the variance. They include the range (dif-
ference between the largest and smallest observation), the 
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interquartile range (described above), and the mean absolute 
deviation (MAD). These measures are not used extensively.

2.2.5  Extreme Values—Outliers

A small number of very low or very high values may strong-
ly affect summary statistics like the mean or variance of the 
data, the correlation coefficient, and measures of spatial con-
tinuity. If they are proven to be erroneous values, then they 
should be removed from the data. For extreme values that are 
valid samples, there are different ways to handle them: (1) 
classify the extreme values into a separate statistical popula-
tion for special processing, or (2) use robust statistics, which 
are less sensitive to extreme values. These options can be 
used at different times in mineral resource estimation. As 
a general principle, the data should not be modified unless 
they are known to be erroneous, although their influence in 
spatial predictive models may be restricted.

Many geostatistical methods require a transformation of the 
data that reduces the influence of extreme values. Probabil-
ity plots can sometimes be used to help identify and correct 
extreme values, see Fig. 2.7. The values in the upper tail of 
the distribution could be moved back in line with the trend 
determined from the other data. An alternative consists of cap-
ping whereby values higher than a defined outlier threshold are 
reset to the outlier threshold itself. The high values could be in-

Fig. 2.7  Probability plot with 
outliers identified
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terpreted as a separate population altogether (see for example 
Parker 1991). There are a number of methods to deal with out-
liers at the time of variography and resource estimation.

In general, outliers or extreme values are considered on 
a case-by-case basis with sensitivity studies and considering 
their impact on local and global resource estimates.

2.2.6  Multiple Variable Distributions

Mineral resource estimation commonly considers multiple 
variables. The multiple variables could be geometric attri-
butes of the deposit or grades such as thickness, gold, silver, 
or copper grades. They could be the same grade sampled at 
different locations. Bivariate and multivariate statistics are 
used in these cases. There are many references to multivari-
ate statistics, such as Dillon and Goldstein (1984).

The cumulative distribution function and probability den-
sity function can be extended to the bivariate case. Let X 
and Y be two different RVs. The bivariate cdf of X and Y, 
FXY(x, y) and the pdf of X and Y  fXY(x, y) are defined as

We could also define a bivariate histogram, that is, divide the 
range of the X and Y variables into bins and plot bivariate fre-
quencies. It is more common to simply plot a scatterplot of 
paired samples on arithmetic or logarithmic scale. Figure 2.8 
shows an example from the oil sands in Northern Alberta, 
Canada, after transformation to a Gaussian variable.

The means and variances of each variable are used as 
summary statistics. The covariance is used to characterize 
bivariate distributions:

The unit of the covariance is the product of the units of the 
two variables, for example, g/t Au multiplied by thickness in 
meters. Since these units are hard to understand or interpret, 
it is common for the covariance to be standardized.

The covariance describes whether the bivariate relation-
ship is dominated by a direct or an inverse relationship, 
see Fig. 2.9. The product of [X − mX][Y − mY] is positive in 
quadrants II and IV; it is negative in quadrants I and III. The 
expected value is the average of the product over all pairs. 
The example of Fig. 2.9 has a positive covariance, while the 
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example in Fig. 2.8 has a negative covariance because the 
relationship is dominated by an inverse relationship.

The correlation coefficient between random variables X 
and Y is defined as the covariance between X and Y divided 
by the standard deviations of the X and Y variables:

The correlation coefficient is a dimensionless measure 
between  − 1  (a  perfect  inverse  linear  relationship)  and  + 1 
(a perfect direct linear relationship). Independence between 
the two variables means that the correlation coefficient is 
zero, but the reverse is not necessarily true. A covariance or 
correlation coefficient of zero means there is no dominant di-
rect or inverse relationship, but the variables may be related 
in a nonlinear manner.

Second order moments like the variance and covariance 
are significantly affected by outlier data. Some outlier pairs 
can destroy an otherwise good correlation or enhance an oth-
erwise poor correlation, see Fig. 2.10. The sketch on the left 
illustrates a case where some outliers would make an oth-
erwise good correlation appear low; the sketch on the right 
shows a case where a few outliers make an otherwise poor 
correlation appear high.

The rank correlation is more robust with respect to outli-
ers, and is obtained by calculating the correlation coefficient 
on the rank order of the data. Each data variable is replaced 
by its rank position in the dataset, and then the correlation 
coefficient is calculated using the rank positions.

It is common for both correlation coefficients to be shown 
on experimental cross plots as in Fig. 2.8 where a direct 
comparison of the two correlation coefficients can be made. 
Their difference highlights whether there are data features, 

ρXY =
Cov{X, Y }

σXσY

Fig. 2.8  Scatterplot of Bitumen vs. Fines Gaussian variables

2.2  Probability Distributions
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such as outliers, that render the linear correlation measure 
less useful. Classical least-squares regression requires tradi-
tional covariances and not those calculated on a transform of 
the data. Therefore, rank correlations should only be used for 
data exploration.

As with the univariate case, scatterplot smoothing is pos-
sible and sometimes necessary if the amount of original in-
formation is insufficient to characterize the bivariate distri-
bution.

2.3  Spatial Data Analysis

This section describes a series of tools used to better under-
stand spatial distributions. There are several tools that can be 
used, and are applied in the process called Exploratory Data 
Analysis, see for example Isaaks and Srivastava (1989).

Posting the data on a variety of cross-sectional or pro-
jection views provides clues as to the collection of the data 
and potential clustering. Posting the values colored differ-
ently for values above and below different grade thresholds 

provides an assessment as to the continuity of high and low 
grade trends.

Contour maps are used for understanding trends. These 
can be made by hand or the computer and are used to help 
in the description of trends. Contouring is typically done on 
two-dimensional planes defined according to the grid coor-
dinates in plan, cross-sectional, and longitudinal views. It is 
common to rotate the locations to a local coordinate system 
prior to any spatial analysis, such that the main coordinate 
axes are approximately matched with the general orientation 
of the deposit.

Symbol maps may be more convenient than grade post-
ing maps. A symbol represents some significant aspect of the 
data, for example drill hole data obtained in different cam-
paigns, by different drilling methods, or at different points 
in time.

Indicator Maps are a particular form of a symbol map, 
where a binary variable is used to observe the presence or 
absence of certain characteristics such as data above and 
below certain thresholds or presence or absence of specific 
geologic variables.

Fig. 2.9  Schematic cross plot with the mean of X drawn as a vertical line, the mean of Y drawn as a horizontal line and the four quadrants num-
bered

    

Fig. 2.10  Two schematic 
scatterplots where outlier data 
damage a good correlation or 
enhance a poor correlation
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192.3  Spatial Data Analysis

2.3.1  Declustering

Data are rarely collected randomly. Drill holes are often 
drilled in areas of greatest interest, for example high grade 
areas that will be mined early in the production schedule. 
This practice of collecting more samples in areas of high 
grade should not be changed because it leads to the greatest 
number of data in portions of the study area that are the most 
important. There is a need, however, to adjust the histograms 
and summary statistics to be representative of the entire vol-
ume of interest.

Declustering techniques assign each datum a weight 
based on closeness to surrounding data wi, i = 1, …, n. These 
weights are greater than 0 and sum to 1. The experimental 
distribution and all summary statistics are calculated with the 
weights instead of a constant 1/n.

The polygonal declustering method (Fig. 2.11; Isaaks 
and Srivastava 1989) is perhaps the simplest, and assigns 
each weight proportional to the area or volume of interest of 
each sample. Studies have shown that this approach works 
well when the limits to the area of interest are well defined 
and the ratio of the largest to smallest weight is less than 
10 to 1.

The nearest-neighbor declustering technique is com-
monly used in resource estimation, and is like the polygonal 
method. The difference is that it is applied to a regular grid 
of blocks or grid nodes. The closest datum of the set being 
declustered is assigned to each block. Because it works on 
the same blocks that are used to estimate resources, it is more 
practical in resource estimation.

The technique of cell declustering is another commonly 
used declustering technique (Journel 1983; Deutsch 1989). 
Cell declustering works as follows:
1. Divide the volume of interest into a grid of cells l = 1, …, L.
2. Count the occupied cells Lo and the number of data in 

each occupied cell nlo, lo = 1, …, Lo.
3. Weight each data according to the number of data falling 

in the same cell, for example, for datum i falling in cell l, 
the cell declustering weight is:

The weights are greater than zero and sum to one. Each oc-
cupied cell is assigned the same weight. An unoccupied cell 
simply receives no weight.

Figure 2.12 illustrates the cell declustering procedure. 
The area of interest is divided into a grid of L = 36 cells, with 
Lo = 33 occupied cells. The number of data in each occupied 
cell is established by arbitrarily moving data on the grid 
boundaries to the right and down.

The weights depend on the cell size and the origin of the grid 
network. It is important to note that the cell size for declustering 
is not the cell size for geologic modeling; it simply defines an 
intermediate grid that allows assigning a declustering weight.

When the cell size is very small, each datum is in its own 
cell and receives an equal weight. When the cell size is very 
large, all data fall into one cell and are equally weighted. 
Choosing the optimal grid origin, cell shape, and size re-
quires some sensitivity studies. It is common to choose the 
cell size so that there is approximately one datum per cell in 
the sparsely sampled areas or, if available, to choose it ac-
cording to an underlying, quasi-homogeneous sampling grid.

The sensitivity of the results to small changes in the 
cell size should be checked. If the results change by a large 
amount, then most likely the declustering weights are chang-
ing for one or two anomalously high or low grades.

Since it is generally known whether over-sampling oc-
curs in high- or low-valued areas, the weights can be selected 
such that they give the minimum or maximum declustered 
mean of the data. The declustered mean versus a range of 
cell sizes should be plotted, and the size with the lowest 
(Fig. 2.13, data clustered in high-valued areas) or highest 
(data clustered in low-valued areas) chosen. Care should 
be taken not to over-fit the minimum. The correct cell size 
should be approximately the spacing of the data in sparsely 
sampled areas. This qualitative check can be used to ensure 
that a too-large or too-small cell size is not chosen.

The shape of the cells depends on the geometric configu-
ration of the data, as it is adjusted to conform to the major 
directions of preferential sampling. For example, if the sam-
ples are more closely spaced in the X direction than in the Y 
direction, the cell size in the X direction should be reduced.

wi =
1

nl · Lo

Fig. 2.11  An example of 122 samples with their polygonal areas of 
influence
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The origin of the cell declustering grid and the number of 
cells L must be chosen such that all data are included within 
the grid network. Fixing the cell size and changing the ori-
gin often leads to different declustering weights. To avoid 
this artifact, a number of different origin locations should be 
considered for the same cell size. The declustering weights 
are then averaged for each origin offset.

Declustering assumes that the entire range of the true 
distribution has been sampled. If this is not the case, then 
the data is biased and debiasing techniques may be required. 

These techniques include trend modeling for debiasing and 
debiasing using qualitative data, subjects that are not cov-
ered in this book.

2.3.2  Declustering with Multiple Variables

Declustering weights are determined on the basis of the geo-
metric configuration of the data; therefore, only one set of 
declustering weights is calculated in presence of multiple 
variables that have been equally sampled. However, different 
declustering weights will need to be calculated when there is 
unequal sampling. For example, there are sometimes different 
sets of Copper and Molybdenum samples in a Cu-Mo porphyry 
deposit, which would require two sets of declustering weights.

Declustering weights are primarily used to determine a 
representative histogram for each variable; however, we also 
require the correlation between multiple variables. The same 
set of declustering weights can weight each pair contributing 
to the correlation coefficient (Deutsch 2002).

2.3.3  Moving Windows and Proportional Effect

Moving windows are used to understand the local spatial 
behavior of the data, and how it may differ from global statis-
tics. The process is to lay over the volume of interest a grid of 
cells, which may or may not be partially overlapping, mov-
ing them over the entire domain or deposit, and obtaining sta-
tistics within them. Overlapping windows are typically used 
when there are few data within the window to provide reli-
able statistics (Goovaerts 1997; Isaaks and Srivastava 1989). 

Fig. 2.12  Illustration of the 
cell declustering method
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The most common statistics analyzed are the mean and stan-
dard deviations of the data within the windows.

A plot of the mean versus standard deviation calculated 
from moving windows of data can be used to assess changes 
in local variability, see Fig. 2.14 for an example. General-
ly, positively skewed distributions will show that windows 
with higher local mean usually exhibits higher local stan-
dard deviation. This is the proportional effect described by 
various authors, for example David (1977) and also Journel 
and Huijbregts (1978). The proportional effect is due to a 
skewed histogram, but it may also indicate spatial trends or 
a lack of spatial homogeneity. Proportional effect graphs are 
sometimes used to help determine homogeneous statistical 
populations within the deposit (see Chap. 4).

2.3.4  Trend Modeling

Trend modeling is applied when a trend has been detected 
and is assumed to be well understood. While some geosta-
tistical estimation methods are quite robust with respect to 
the presence of trends, such as Ordinary Kriging (Chap. 8; 
Journel and Rossi 1989), there are many others, most notably 
simulation (Chap. 10) that are quite sensitive to trends.

The trend is modeled as a deterministic component plus 
a residual component. The deterministic component is re-
moved and then the residual component is modeled either 
through estimation or simulation techniques. Finally, the de-
terministic trend is added back. In such a model, the mean 
of the residual and the correlation between the trend and the 
residual should be close to 0.

The drill hole data is typically the source for trend de-
tection. In some cases where the geological environment is 
well understood, trends can be expected and modeled with-
out the drill hole data, but this should only be attempted 
when there is no other option. Large scale spatial features 
can be detected during several stages of data analysis and 
modeling. Sometimes a simple cross-plot of the data against 
elevation may show a trend, as in the example of Fig. 2.15. 
In other cases, simple contour maps on cross-sections, lon-
gitudinal sections, or plan views are enough to identify and 
model trends. Moving window averages can also provide 
an indication of whether or not the local means and vari-
ances are stationary. If there are notable changes in the local 
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Fig. 2.15  Example of a 
molybdenum vertical trend
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mean and variance of reasonably large subdivisions within 
the domain, as in Fig. 2.14, then a spatial trend model may 
be required.

Although the identification of a trend is subjective, it is gen-
erally accepted that the trend is deterministic and should not 
have short scale variability. It should be identified from features 
that are significantly larger than the data spacing, i. e., domain-
wide. This sometimes can be evident from the experimental 
variogram that may show a trend in any one or more direc-
tions. The experimental variogram continues to increase above 
the variance of the data as the lag distance increases (Chap. 6; 
Journel and Huijbregts 1978). This usually indicates that the de-
cision of stationarity should be revisited, and consider whether 
the domain should be subdivided or a trend considered.

2.4  Gaussian Distribution and Data 
Transformations

Gaussian distributions are commonly used due to their con-
venient statistical properties. The Gaussian distribution is 
derived from the Central Limit Theorem, which is one of the 
most consequential theorems in statistics.

A univariate Gaussian distribution is fully characterized 
by its mean ( m) and standard deviation (σ). The probability 
density function is given by:

It is common to transform data to a Gaussian distribution. 
There are many instances where the prediction of uncertainty 
at un-sampled locations becomes much easier with a Gauss-
ian distribution.

The simplest method to transform any distribution into a 
Gaussian distribution is a direct quantile-to-quantile trans-
formation, whereby the CDF of each distribution is used to 
perform the transform. This is known as the Normal Scores 
(NS) transform, see Fig. 2.16. The NS transform is achieved 
by quantile transformation:

g(z) =
1

σ
√

2π
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(
z − m

σ
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The expected values should not be back transformed unless 
the distribution is symmetric.

A variable Z is non-standard Gaussian when the standard-
ized variable Y is standard Gaussian. A non-standard Gauss-
ian value is easily converted to/from a standard Gaussian 
value.

The normal score transform is rank preserving and revers-
ible. The disadvantages of performing such a transform are 
that the significance of the numbers themselves is less clear, 
more difficult to interpret, and also that the distribution 
parameters cannot be back transformed directly due to the 
nonlinearity of the process.

Spikes of constant values in the original distribution 
can cause problems. Gaussian values are continuous and 
ties (equal values) in the original distribution must be re-
solved prior to transforming the data. There are two differ-
ent methods commonly used to break the ties or despike. 
The simpler method is to add a small random component 
to each tie, which is the most common approach used in 
popular software packages, such as the GSLIB programs 
(Deutsch and Journel 1997). A better alternative is to add 
a random component based on local averages of the data 
(Verly 1984), which ranks the ties based on the local grades 
of nearby data. Although more onerous in terms of time and 
computer effort, it is justified when the proportion of origi-
nal data with the same values is significant. Typical drill 
hole data from Au epithermal deposits can show a signifi-
cant number of values at or below the laboratory’s detec-
tion limit, sometimes as much as 50 or 60 %, in which case 
despiking is better accomplished using the local averaging 
method. Of course, an alternative is to separate the barren or 
un-mineralized material into its own stationary population. 

1

1

( ( ))

which is back-transformed by ( ( ))

y G F z

z F G y

−

−

=

=

Z
Z Z

Z

z m
y z y mσ

σ
−

= = ⋅ +

Fig. 2.16 Data transformation 
using Cumulative Distribution 
Functions

   

2 Statistical Tools and Concepts



23

This is reasonable when the spatial arrangement of the bar-
ren material is predictable.

2.5  Data Integration and Inference

The prediction of spatial variables requires consideration 
of multivariate distributions of values at different loca-
tions. Inference requires the combination of sample data 
to estimate at an unknown location. The calculation of 
conditional distributions is accomplished by application of 
Bayes’ Law, one of the most important laws in statistical 
theory.

Bayes’ Law provides the probability that a certain event 
will occur given that (or conditional to) a different event has 
already occurred. The mathematical expression for Bayes’ 
Law can be written as:

with E1 and E2 being the events, and P representing prob-
abilities.

If E1 and E2 are independent events, then knowing that E1 
occurred does not give additional information about whether 
E2 will occur:

Direct inference of multivariate variables is often difficult, 
which leads us to use the multivariate Gaussian model, most-
ly because it is straightforward to extend to higher dimen-
sion. The bivariate Gaussian distribution is defined as:

The relationship between the two variables is defined by a 
single parameter, the correlation coefficient, and in the XY 
cross-plot the probability contours are elliptical. The condi-
tional expectation of Y given an event for X is a linear func-
tion of the conditioning event:

The conditional expectation follows the equation of a line, 
y = mx + b, where m is the slope (correlation coefficient) and 
b is the intercept (mean).
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The conditional variance is independent of the condition-
ing event(s). This is an important consideration that will in-
fluence some of the geostatistical methods to be described 
later, and is written as:

For a standard bivariate Gaussian distribution (that is, both 
variables, X and Y have a mean = 0 and variance = 1.0) the 
parameters are:

The extension to multivariate distributions is straightfor-
ward, and can be written as:

where d is the dimensionality of x. Note that µ is a (d × 1) 
vector and Σ is a (d × d) positive definite, symmetric vari-
ance-covariance matrix. The expression |Σ| is the determinant 
of Σ. µ is the mean of the distribution and Σ is the covariance 
matrix. The i-th element of µ expresses the expected value 
of the i-th component in the random vector x; similarly, the 
( i, j) component of Σ expresses the expected value of xi xj 
minus µi µj. The diagonal elements of Σ are the variances of 
the corresponding component of x.

The multivariate (N-variate) Gaussian distribution possess-
es some extraordinary properties (Anderson 1958; Abramov-
itz and Stegun 1964):
1. All lower order N-k marginal and conditional distribu-

tions are Gaussian.
2. All conditional expectations are linear functions of the 

conditioning data:

3. All  conditional  variances  are  homoscedastic (data-values-
independent):
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Conditional expectations are linear functions of the data. All 
linear combinations of Gaussian variables are also Gaussian, 
and in particular, averages are Gaussian. Also, conditional 
variances are data-values-independent, a property called ho-
moscedasticity.

In geostatistics, it is common to assume that the normal 
scores of grade variables are multivariate Gaussian within 
geologically defined domains. This is done for convenience 
since the simple (co)kriging method provides exactly the 
mean and variance of all conditional distributions, as de-
scribed in Chaps. 8–10.

Performing a univariate normal score transformation 
guarantees a univariate Gaussian distribution, but there is no 
guarantee of a multivariate Gaussian distribution. The trans-
formation does not remove nonlinearity or other constraints. 
The proportional effect and heteroscedasticity is largely re-
moved by the transformation, but then it is reintroduced by 
the back transformation. Transforming a multivariate distri-
bution is rarely done in mineral resource estimation because 
of the complexity and requirement for many data.

Categorical Variables The probability distribution of a dis-
crete or categorical variable is defined by the probability or 
proportion of each category, that is, pk, k = 1, …, K, where 
there are K categories. The probabilities must be non-negative 
and sum to 1.0. A table of the pk values completely describes 
the data distribution. Sometimes, however, it is convenient 
to consider a histogram and cumulative histogram as shown 
below (Fig. 2.17):

The cumulative histogram is a series of step functions 
for an arbitrary ordering of the discrete categories. Such a 
cumulative histogram is not useful for descriptive purposes 
but is needed for Monte Carlo simulation and data transfor-
mation. In general, but not always, the ordering does not 
matter. The cases where the ordering affects the results will 
be discussed later in the book.

Consider K mutually exclusive categories sk, k = 1, …, K. 
This list is also exhaustive; that is, any location u belongs 
to one and only one of these K categories. Let i(u; sk) be the 
indicator variable corresponding to category sk, set to 1 if 
location u in sk, zero otherwise, that is:

Fig. 2.17  PDFs and CDFs for 
categorical variables
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Mutual exclusion and exhaustivity entails the following rela-
tions:

The mean indicator for each category sk , k = 1, …, K is the 
proportion of data in that category:

The variance of the indicator for each category sk , k = 1, …, 
K is a simple function of the mean indicator (Journel 1983; 
Deutsch 2002):

The variance would be used to standardize variograms for 
quicker interpretation and comparison across different cat-
egories.

2.6  Exercises

The objective of this exercise is to review some mathemati-
cal principles, become familiar with some notation, work 
with some common probability distribution models and 
gain some experience with declustering. Some specific 
(geo)statistical software may be required. The functional-
ity may be available in different public domain or com-
mercial software. Please acquire the required software be-
fore beginning the exercise. The data files are available for 
download from the author’s website—a search engine will 
reveal the location.

 2.6.1 Part One: Calculus and Algebra

Question 1:   Consider  the  following  function  ( aX + bY)
( X + Y). Calculate the derivative of this func-
tion with respect to X and Y.

Question 2: Calculate the integral for the function below:
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Question 3: Consider the three matrices below:

What is the result of AB, ACT, and (AB)C?

 2.6.2 Part Two: Gaussian Distribution

Consider the standard Gaussian or normal distribution that 
is of extraordinary importance in statistics and geostatistics 
because it is the limit distribution of the central limit theorem 
and is mathematically tractable.
Question 1:   Verify that the sum of independent random 

variables tends toward a normal distribution. 
Consider (1) setting up a grid of 100 rows by 
10 columns in Excel with uniform random 
numbers between 0 and 1, (2) create an 11th 
column with the sum of the 10 first columns, 
(3) plot a histogram of the 11th column, and 
(4) comment.

Question 2:   What is the mean and variance of a probabil-
ity distribution that is uniform between 0 and 
1? The central limit theorem tells us that the 
mean of 10 values added together should be 
this mean multiplied by 10—check against 
Question 1 and comment. The central limit 
theorem would also tell us that the variance is 
multiplied by 10—check against Question 1 
and comment.

Question 3:   Create a 12th column in your spreadsheet with 
the sum (the 11th column) minus the mean 
divided by the standard deviation, that is, 
y12 = (y11 − m)/σ. Plot a histogram and calcu-
late the statistics of this standardized deviate. 
Comment on the results.

 2.6.3 Part Three: Uniform Distribution

Consider the uniform distribution specified below:

Question 1:   Write the definition and equation for the 
cumulative distribution function (cdf) of 
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2 3

2 3 4
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the uniform distribution above. Draw the 
corresponding cdf to the probability density 
function (pdf) above.

Question 2:   What is the value of c that makes f(z) a licit 
probability distribution? Write your answer in 
terms of a and b.

Question 3:   What is the expected value (or mean) of the 
variable Z in terms of a, b, and c? Solve the 
integral.

Question 4:   What is the variance of the variable Z in 
terms a, b, and c? Solve for the expected 
value of Z2 and solve for the variance using 
σ2 = E{Z2} − [E{Z}]2.

Question 5:   What is the 90 % probability interval? Write 
out the function corresponding to the cdf and 
solve for the 5th and 95th quantiles.

The objective of this exercise is to become familiar with the 
different ways to use declustering to infer a representative 
probability distribution. Declustering software and the speci-
fied datasets are required.

 2.6.4 Part Four: Small Declustering

Consider the 2-D data in red.dat (see right). The 67 drill 
hole intersections have a hole ID, location, thickness, four grade 
values, and a rock type. The area is from 20,100 to 20,400 in 
the northing direction and –600 to 0 in elevation. The rock type 
is simply a flag that specifies below or above –300 m. There 
is a difference below that elevation that warrants our attention.
Question 1:   Plot a location map of the thickness and the 

gold grade. Plot a histogram of all the gold 
grades without any declustering weight.

Question 2:   Setup and run polygonal declustering to get a 
map that looks like the one to the right. Plot a 
declustered histogram of the gold grades.

Question 3:   Cell declustering is widely used because it 
is robust in 3-D and is less sensitive to edge 
effects. Run cell declustering for a range of 
cell sizes—explain your choice of param-
eters. Plot the declustered mean versus cell 
size, choose a cell size, and justify your 
choice. Compare results to those obtained 
above.

 2.6.5 Part Five: Large Declustering

Consider the 3-D Au/Cu data in largedata.dat. This 
data will be used in some subsequent exercises. We need de-
clustered distributions for the two variables in all rock types.
Question 1:   Consider cell declustering on a by-rock type 

basis and considering all of the data together. 
Compare the results and comment on the pre-
ferred approach. Prepare a reasonable set of 
plots to support your conclusions including 
the declustered mean versus cell size plot(s) 
and tables of declustered mean and standard 
deviation values.

Question 2:   Assemble the reference distributions for 
subsequent modeling (based on your chosen 
method).
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3Geological Controls and Block 
Modeling

Abstract

Mineral deposition is governed by complex processes. The structure of mineral deposits 
is partly deterministic and partly stochastic. Large scale deterministic geological control 
must be accounted for explicitly. Block models are commonly used to discretize a deposit 
because they provide a spatial representation of geologic variables and a useful format to 
store other important attributes, including the estimated grades. 

3.1  Geological and Mineralization Controls

The geology used to support resource estimation is under-
stood from the analysis of the recorded information gathered 
through detailed exploration work, including drill holes. 
Surface mapping, underground mapping and sampling, and 
geochemical and geophysical investigations may also con-
tribute, particularly in the early stages of project develop-
ment (Peters 1978). This chapter assumes that mapped drill 
hole information is the basis for geologic modeling, while 
acknowledging that all geological interpretations are the re-
sult of a pool of quantitative and qualitative information.

Figure 3.1 shows an example of a geologic log of the 
Spence copper Project in Northern Chile. The log sheet 
shows the from—to interval; mapped lithology (in charac-
ter and graphical codes); mineralization type; structures; de-
scription and percentages of the minerals found; alteration; 
gangue minerals; and presence and type of veinlets. The spe-
cific information collected will vary from one deposit to the 
next.

The ultimate goal of mineral resource estimation is a nu-
merical model that will accurately predict the tonnages and 
grades that will be extracted from a mining operation. The 
geologic variables that controlled the mineral deposition are 
modeled to help with this. Certain geologic variables are of 
greater interest to resource estimation, that is, the ones that 
have a stronger or more direct relationship with the miner-
alization. One example is the fracturing and permeability of 
certain rocks in strata-bound or sedimentary-type deposits 
(for example uranium, gold, or copper in sandstones and/or 
breccias); the fluids carrying the ore minerals would move 

preferentially through the fractured permeable rock. Other 
examples include the geochemical stability of certain miner-
als and the fracture density in low-grade bulk precious met-
als deposits. These specific geologic variables should be the 
focus of geologic investigation and modeling for improved 
resource estimation.

The information shown in Fig. 3.1 and other site-specific 
information is the basis for analyzing the relationships be-
tween the geologic variables and the grade distribution. 
Not all mapped geologic information will be a significant 
mineralization control, and thus it may not aid in estimat-
ing grades. The geologic description shown in Fig. 3.1 is too 
detailed for practical use in defining mineralization controls. 
An important challenge is to identify the important geologic 
variables that need to be interpreted, modeled, and carried 
into the block model. These may include variables needed 
to build metallurgical and geotechnical models, such as con-
centrations of certain types of clays, rock hardness indices, 
metallurgical recoveries, and fracture densities.

The level of geologic detail that can be considered in a 
block model is limited. It depends on the size of the deposit 
and the amount of drill hole information available. There is 
a compromise between the level of detail achieved and the 
robustness of the statistical analysis within each geologic 
population defined. A resource model with no geologic sup-
port is inadequate because geologic factors highly constrain 
the distribution of grades. But too much detail is undesirable, 
since it creates estimation domains with too few data for reli-
able statistical inference.

Although there are no hard rules that can be used to deter-
mine the amount of data required, the general guideline is to 
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obtain a reliable model of spatial continuity for each domain, as 
well as sufficient drill hole data to obtain a robust grade estimate.

Specifying too many geological factors/domains does 
not help with estimation. One such case was the Chuqui-
camata copper mine. During the mid-1990s there were 64 
estimation domains defined in the sulphide zone in support 
of the resource model. Many of these units, although clearly 
distinguishable and properly characterized from a geologic 
standpoint, were only weak mineralization controls and in 
some cases did not have sufficient data support to allow for 
robust inference. Thus, they were poorly estimated. In the 
late 1990s, after a review of the production data against the 
predicted data, the estimation domains used in the resource 
model were reduced to less than 30. There were other im-
provements to the overall resource modeling process; how-
ever, it was recognized that reducing the number of estima-
tion domains resulted in an improved resource model.

As the project moves from early exploration into resource 
definition and pre-feasibility, the gathering of geologic in-
formation for exploration and resource delineation requires 
more planning and control (Hartman 1992, p. 30). Some as-
pects to be considered include:
a. Development of detailed written protocols for data collec-

tion and geologic work. While they need to be constantly 
updated, they are to be used throughout the project. The 
protocols should describe the procedures used by the field 
geologist to control drilling; the sampling protocol and 
equipment to be used at the drill rig; the corresponding 

mapping and logging protocols; procedures for using and 
maintaining hand-held logging devices used (if avail-
able); quality control and quality assurance (QA/QC) 
programs for laboratory assay controls; and proper chain 
of custody for all samples. The consistent use of protocols 
and procedures will help create more reliable databases.

b. Active supervision and continued training of all personnel 
involved, ensuring correct and consistent application of 
procedures and protocols. Protocols are of little value if 
there is no training and supervision.

c. Correct management of logged and mapped geologic in-
formation including handling, storage, electronic input, 
and interpretation/evaluation. This may include a descrip-
tion of drill hole information according to prescribed 
conventions; adequate documentation of the work done; 
adequate storage of the same documentation, and specific 
descriptions as a documentation trail for future audits.

d. Working sections with (hand) drawn interpretations allow 
for a dynamic understanding of geologic controls, and 
better management of future data gathering campaigns.

e. It is critical to properly store and retain half cores, field 
sample rejects, coarse and pulp rejects from the sample 
preparation and assaying processes. Sufficient and proper 
storage of the excess sample material from drilling should 
be planned for early in the project’s life. Storage areas 
should be covered, clean, and well organized.

f. Information loss because of bad quality control or lack 
of quality assurance procedures is serious. One often-

Fig. 3.1  Geologic Log used by BHP Billiton at their Spence deposit, northern Chile. Courtesy of BHP Billiton
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encountered problem is that information related to a drill 
hole (geologic mapping; topographic survey of the drill 
hole collars; down the hole survey of the drill hole incli-
nations; laboratory assay certificates, etc.) is disorganized 
and misplaced. It may be located in different file cabinets, 
different offices, or in different parts of the world. This 
results in a high probability of losing costly information. 
The recommended solution is to keep individual binders 
(one per drill hole) with all its relevant information, and 
a backup in a different location. Another common over-
sight is improper backup procedures for computerized in-
formation.

g. Determination and modeling of the mineralization con-
trols. Lithology, alteration, mineralization, structural, 
and other relevant information must be analyzed and in-
terpreted. This data must be maintained even if not all 
these variables result in interpretable mineralization con-
trols. This process should utilize a combination of field 
observations, plausible genetic theories, and should make 
extensive use of statistical tools (see Chaps. 2 and 4) to 
identify geologic controls. The process is iterative and 
should be started as soon as there is enough information 
to statistically describe relationships between grades and 
geology.

h. Development of a geologic model that adequately cap-
tures the mineralization controls for estimation domains 
and grade estimation. This is in addition to the working 
geologic model used for exploration.

i. Effective presentation and communication of the model 
should be considered an essential part of the work itself 
(Peters 1978). The use of visualization tools such as 
three-dimensional models, two-dimensional cross sec-
tions and plan views are essential. Appropriate scales 
typically range from 1:200 to 1:1,000. Plots should show 
color-coded drill hole information (geology and assay), 
working or final polygons representing the interpreted 
geologic variables, and topographic and/or bedrock sur-
faces. All drill holes should be properly identified. A 
plan view at the top of the plot showing the drill hole 

trace is also convenient if showing a cross or longitudi-
nal section. Three-dimensional visualization tools should 
be routinely used both for validation and presentation 
purposes.

Tables 3.1, 3.2, and 3.3 show an example taken from the Es-
condida mine in northern Chile operated by BHP Billiton for 
lithology, alteration and mineralization type variables. The 
tables show the variables mapped, logged, and then modeled 
as of 2001.

There can be several reasons why a given unit is not mod-
eled. For example, Dacites, Diorites, Pebble Dykes, and 
Tuffs are absorbed into the major unit that surrounds them 
at the time of modeling, because their spatial extent is not 
significant compared to the scale of mining (Table 3.1). 
Undifferentiated Porphyry is either a transition between an 
Andesitic-type rock and the feldspar porphyry, or it is logged 
as such because the sample is too altered or broken up to 
be properly recognized. In either case, Undifferentiated Por-
phyry is usually located along the Andesite—Escondida Por-
phyry contact; therefore, it is assimilated to one or the other 
according to which one is closest.

The mineralization types (Table 3.2) are considered the 
most important mineralization controls. More of the mapped 
and logged units are actually modeled. Also, different min-
eralization types are routed to different processing plants. 
Oxide mineralization is recovered using an acid leaching 
process with a solvent extraction and electro-winning (SX-
EW) recovery plant, while sulphide mineralization (high 
enrichment, low enrichment, and primary mineralization) 
is processed in a floatation plant. The units with cuprite are 
modeled together because they are quite small.

More grouping is done for alteration zones because they 
are more difficult to accurately map. There are a number of 
transitional units with mixtures of different alteration events, 
which complicate their mapping and modeling. Therefore, 
the tendency of geologists is to model only the major units, 
see Table 3.3.

This example shows that some variables are mapped and 
logged, but not necessarily modeled. This example is spe-

Table 3.1  Lithology mapped, logged, and modeled, October 2001 Resource Model (used with permission from BHP Billiton)

LITHOLOGY Mapped/Logged codes Modeled (Oct 2001 Model)
Feldspar Porphyry (Escondida Porphyry) PF Modeled as such
Rhyolite PC Modeled as such
Undifferentiated Porphyry PU Modeled either as PF or AN depending on its spatial location
Andesites AN Modeled as such
Igneous Breccias BI Modeled as Breccias (single unit)
Hydrothermal Breccias BH Modeled as Breccias (single unit)
Tectonic Breccias BT Modeled as Breccias (single unit)
Gravel GR Modeled as such
Late Dacites DT Absorbed by the major unit that contains it
Diorites DR Absorbed by the major unit that contains it
Tuffs TB Absorbed by the major unit that contains it
Pebble Dykes PD Absorbed by the major unit that contains it
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Table 3.3  Alteration mapped, logged, and modeled, October 2001 Resource Model (used with permission from BHP Billiton)

Alteration zones Mapped/Logged abrev. codes Modeled (Oct 2001 Model)
Unaltered F Not modeled
Propilitic P Not explicitly modeled
Chlorite-Sericite-Clay SCC Modeled as such
Quartz-Sericite S Modeled as QSC
Potassic K Modeled as K-B
Biotitic B Modeled as K-B
Advanced Argillic AA Modeled as QSC
Clays AS Modeled as QSC
Silicified Q Modeled as QSC
Potassic-Sericite Transition in Porphyry QSC Modeled as QSC
Silicified Sericite-Chlorite-Clay in Andesites SSCC Modeled as SCC
Silicified Quartz-Sericite-Clay in Porphyry SQSC Modeled as QSC

3 Geological Controls and Block Modeling

cific for a porphyry-copper type orebody, but the process of 
mapping, logging, and modeling geologic variables is gen-
eral and applies to other types of mineral deposits.

Figures 3.2 and 3.3 show a plan view and a cross sec-
tion of the resulting interpretation of lithology. Cross sec-
tions used to model lithology in this deposit are located 50 m 
apart, while benches are 15 m high. Only the abundant high-
volume units can be represented. Both figures use the same 
color codes, with Fig. 3.2 showing the correspondence be-
tween the unit names and the colors.

3.2  Geologic Interpretation and Modeling

A traditional approach to create a geologic model is to in-
terpret the geologic variables on cross sections and plan 
maps, then, extend the interpretations to three-dimensional 
volumes. This is sometimes called deterministic geologic 

modeling, since it does not carry a measure of uncertainty. 
The interpreted models are assumed to be exact and accurate.

Geologic interpretation and modeling uses the data and 
general geologic knowledge gained from other studies in 
context of the type of deposit. This outside information may 
include geological knowledge, a plausible theory about the 
genesis of the deposit, and past experience with similar de-
posits. Deterministic interpretations are preferred because 
they are unique and easy to manage, although sometimes 
difficult and time-consuming to build.

Some basic guidelines for creating good sectional or plan 
views are worth noting. First, features of interest must be 
properly drawn and clearly labelled. These features include 
coordinate axes and a reference datum. The map should also 
include a title block which includes the title of the drawing, 
who it was drawn by, and the date it was drawn. Any third 
party should be able to easily figure out what they are look-
ing at and from what view angle.

Table 3.2  Mineralization mapped, logged, and modeled, October 2001 Resource Model (used with permission from BHP Billiton)

Mineralization types Mapped/Logged abrev. codes Modeled (Oct 2001 Model)
Leach LX Modeled as such
Green Copper Oxides OX Modeled as such
Cuprite CP Modeled as Cuprite
Cuprita + Copper Oxides CPOX Modeled as Cuprite
Cuprite + Mixed CPMX Modeled as Cuprite
Cuprite + Chalcocite + Pyrite CPCCPY Modeled as Cuprite
Partial Leach PL Modeled as such
Mixed Copper Oxides + Sulfides MX Modeled as such
Chacolcite + Pyrite HE1 Modeled as High Enrichment
Chacolcite + Covelite + Pyrite HE2 Modeled as High Enrichment
Covelite + Pyrite HE3 Modeled as High Enrichment
Chalcocite + Chalcopyrite + Pyrite LE1 Modeled as Low Enrichment
Chacolcite + Covelite + Chalcopyrite + Pyrite LE2 Modeled as Low Enrichment
Covelite + Chalcopyrite + Pyrite LE3 Modeled as Low Enrichment
Pyrite PR1 Modeled as Primary Mineralization
Chalcopyrite + Pyrite PR2 Modeled as Primary Mineralization
Bornite + Chalcopyrite + Pyrite PR3 Modeled as such
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The drawn geological shapes should be based on a suf-
ficient amount of drill hole information and other geologic 
knowledge that could include a model for ore deposition, 
surface mapping, and structural and radiometric informa-
tion. Surfaces are sometimes referred to as Digital Terrain 
Models (DTM), while wireframes are used to define three-
dimensional volumes corresponding to a geologic variable. 
An alternative to wireframes is to simply extrude or extend 
the two-dimensional polygonal shapes a fixed distance to ei-
ther side of the plan of interpretation. Although simpler and 
quicker, this option often results in an overly simplistic and 
sometimes inconsistent model.

The shapes should be drawn with a degree of confidence 
related to the data density. If continuity cannot be established 
between sections, then the confidence in the interpretation 
will be poor. The required drill hole spacing for adequate in-
terpretation is related to the mineralization type. A small vein 
type deposit may have drill hole information spaced 20 m or 
less, while a massive bulk tonnage deposit may have drill 
holes spaced 50, 70, or more meters apart. In either case, the 
geological variable being modeled should be continuous for 
two or three sections of drill hole spacing units, implying a 
reasonable degree of confidence in continuity. However, al-

though it should never become part of the published, official 
resources, it is sometimes necessary to allow for extrapola-
tion of geologic features to aid in future exploration.

Rules about extrapolating at depth or laterally past the last 
points of information should be clearly stated. A safe option 
is to avoid excessive extrapolation by creating an outer enve-
lope around the drill hole information to constrain interpreta-
tion and modeling.

Drill hole data and a plan view of drill hole locations pro-
vide a starting point for geological interpretation. Sections 
are chosen based on the drill hole distribution. Multiple sec-
tions are combined to form a 3-D model that is consistent 
with information from all sections.

The simplest methods used to obtain models of geologic 
attributes are based on two-dimensional interpretation, gen-
erally done on cross sections. Then, the resulting polygons 
representing the interpreted shapes are refined on a second 
set of longitudinal sections. Finally, the model can be refined 
on plan views. This was done for the lithology model shown 
in Figs. 3.2 and 3.3.

The order of two-dimensional interpretation depends on 
the geometry of the deposit. For open-pit, disseminated-type 
deposits, the final stage should be plan views, because the 

Fig. 3.2  Plan view of the Escondida Lithology model, October 2001, Bench 2800. Note the position of Section N104800, shown in Fig. 3.3
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Fig. 3.4  Steps used in developing the Escondida Norte geologic 
model. Courtesy of Minera Escondida Ltda. a) Topography and the 
interpretation of the Top of Dominant Sulfides (TDS) using prior min-
eralization models, an alteration model, and structural interpretations. 
b) The Top of Dominant Chalcopyrite (TDCpy) is interpreted next. c) 
The Lateral Limits of the TDCpy establish the inner limit of the outer 

Pyrite shell. d) The Top of Primary Mineralization (TPr) is interpreted 
next. Three main sulphide volumes are thus generated e) The Top of 
Bornite (TBn) is interpreted next. f) Additional “patches” are added 
on, including above-TDS mineralization, Leached and Oxide remnants 
within the enrichment blanket, and other isolated volumes
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mining engineers will usually plan the operation based on 
benches. For vein-type deposits, it is likely that the most 
important view will be cross sectional, although sometimes 
along longitudinal views. A simplified interpretation would 
skip one of the two sectional views, for example, the longitu-
dinal section. This may be acceptable for deposits in an early 
stage of exploration.

An example of surface and volume modeling as done 
for the Escondida Norte deposit is reproduced here with 
permission from Minera Escondida Ltda and BHP Billiton. 
Figure 3.4a–f shows the sequence of steps involved in pro-
ducing the mineralization model. A combination of surfaces 

and three-dimensional shapes are used to define the different 
volumes representing mineralization zones, including patch-
es and remnants of one type of mineralization within other. 
Although only one set of sections is shown, this process is 
repeated for orthogonal sections.

The minerals shown in these figures are OxCu (Copper 
Oxides), Cup (Cuprite), OxFe (Iron Oxides), Chalcosite 
(Cc), Covelite (Cv), Chalcopyrite (Cpy), Pyrite (Py), and 
Bornite (Bn). The surfaces shown are Topography; TDS (Top 
of Dominant Sulfides); TDCpy (Top of Dominant Chalcopy-
rite), TPr (Top of Primary Mineralization); and TBn (Top of 
Bornite).

Fig. 3.3  Cross Section of the Escondida Lithology model, October 2001, N108400, looking north. Corresponds to the section line shown in Fig. 3.2
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The surfaces were interpreted individually from the top 
down. In the case of the units above TDS, they were interpo-
lated probabilistically using indicator kriging (see details in 
Sect. 14.3). Care must be taken to ensure that the surfaces do 
not cross each other as the interpretation progresses from one 
section to the next. The proto-ore limit TDCpy shown above 
the topographic surface (Fig. 3.4c) is only an interpretational 
technique to produce a fully enclosed volume.

There are different manual and semi-automatic tech-
niques that can be used to produce an interpretation such as 
this. The specific procedure depends in part on the software 
available to do the work. Regardless of the details, thorough 
checking and validation is necessary to ensure that the mod-
eling process occurred as intended.

3.2.1  Distance Functions and Tonnage 
Uncertainty

Geologic modeling with extensive interpretation and digiti-
zation is recommended; trained professionals can understand 
a great deal about the geometry of the deposit. Stochastic geo-
statistical techniques such as indicator simulation, truncated 
(pluri)Gaussian or other techniques often create models that 
are very random. A relatively recent approach to geologic 
modeling is to use a signed distance function (DF) that maps 
the location of boundaries and at the same time allows for an 
assessment of the uncertainty. This uncertainty is represent-
ed spatially by a zone (or bandwidth) that is quantifiable and 
needs to be calibrated. The DF is calculated directly from in-
dividual drillhole samples coded with a distance, rather than 
a wireframe model. This approach is currently applicable to 
binary geologic systems, with only two geologic domains, as 
in for example vein-type deposits, although further develop-
ment into multivariate systems is ongoing.

Changing the DF impacts the size and shape of the zone 
of uncertainty. Two parameters, the distance function uncer-
tainty component, C, and the distance function fairness com-
ponent beta, β, are used to modify the DF. The C parameter 
controls the bandwidth and therefore the uncertainty. The β 
parameter controls the position of bandwidth. With proper 
calibration, values of C and β can result in models that are 
both accurate and precise.

The DF is the Euclidean distance between different types 
of samples. The distance is the shortest distance to a sample 
with a different rock type (vein or non-vein). The distance is 
given a positive sign in one rock type and a negative sign in 
another. The contact between samples has a distance func-
tion of zero. An isoline connecting successive ‘zero’ points 
defines the iso-zero surface or shell.

The vein geometry (and tonnage) uncertainty cannot be 
calculated directly using an Euclidean distance because it 

produces a single boundary. This is much like doing a tradi-
tional interpretation and wireframing. However, a modified 
distance function, DFmod can consider the uncertainty using 
parameters C and β, creating a range of probable boundaries. 
The vein geometry and corresponding tonnage uncertainty 
can be calculated using these different vein boundaries.

To calculate the distance function, assume that a first 
sample is non-vein and has an indicator of 0, VI = 0. The 
distance function is the distance to the nearest sample with 
indicator of 1, VI = 1. This sample could exist next to the 
original sample if located at the contact between vein and 
non-vein or in a nearby drillhole if located at some distance 
from the vein, see Fig. 3.5. The actual distance is then modi-
fied depending on the value of the indicator VI. Consider 
the DF:

where, 2 2 2dx dy dz+ +  is the Euclidean distance between 
the current point and the closest point with a different VI, C 
is the uncertainty parameter. When the indicator VI is 0, or 
non-vein, the DF returns a positive value equal to the dis-
tance plus the uncertainty parameter C. If the indicator IV is 
1 signalling the presence of vein, the DF returns a negative 
value equal to the distance plus the uncertainty parameter C. 
The distance  from − C to + C is defined as the uncertainty 
bandwidth.

3.2.1.1  Uncertainty Parameter C
The parameter C must be calibrated so that the width of un-
certainty is neither too large nor too small. Consider two drill 
holes (Fig. 3.6), one with a vein intercept, the other without, 
separated by a distance ds that represents the typical drill 
hole spacing. The true vein boundary, or iso-zero bound-
ary of the vein must exist at some location between the two 
drillholes. The drill hole distance, ds, is the maximum geo-
logically reasonable distance that can be assigned to C and 
is equal to the drill hole spacing. For example, in Fig. 3.6, 
the mid-point between the holes could be a likely position of 
the contact, the iso-zero boundaries. However, the vein could 
extend to almost any point in between, with higher or lower 
probability depending on the local geology.

The uncertainty parameter C is not designed to define 
the location of the iso-zero boundaries but rather to define a 
reasonable bandwidth of uncertainty associated with it. The 
uncertainty bandwidth cannot be greater than the drill hole 
spacing.

Widely spaced drill holes would suggest a large band-
width, which would produce large vein boundary and ton-

( )
( )

2 2 2

2 2 2
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-1  VI = 1

dx dy dz C
DF

dx dy dz C

 + + + ∀= 
+ + + ⋅ ∀
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nage uncertainty. The contrary would be true for closely 
spaced drill holes. A symmetric variation on a constant C 
(a traditional “plus or minus”) could possibly lead to biases, 
since it does not incorporate geologic knowledge. A second 
parameter is defined to center the uncertainty width, beta 
( β), providing more flexibility in the modeling of the vein 
geometry.

3.2.1.2  Modified Distance Function (DFmod)
The DF is modified in a second step by applying a bias pa-
rameter, β, used to center the distribution of estimates. The 
bias parameter is applied to the original DF:

The fairness parameter β divides or multiples the original DF 
depending whether VI indicates non-vein or vein, respec-
tively. A value of β = 1 returns the original DF value.

The iso-zero surface is the contact between vein and non-
vein. This zero point is known and honoured by the data. But 
at locations away from sampled locations, however, there will 
be uncertainty as to where the actual position of the contact 
surface is located. The shape and size of the iso-zero surface 
is controlled by β; it has the effect of dilating it for the larger 
values of β (outer dashed ellipse in Fig. 3.7), or eroding it for 
decreasing values of β (corresponding inner dotted line).

The β parameter is a number typically between 0.1 and 
2 and is dependent on drill hole spacing. For example, if 
the drill hole spacing tends to inflate the vein geometry and 
overestimate tonnage, then β values greater than 1 are used 
to decrease it. The parameter β imposes a control on the final 
surface and makes it possible to adjust the iso-zero surface 
so that fair and unbiased estimates can be obtained. The cali-
bration of β needs careful consideration.

mod

( ) /  VI = 0

( )  VI = 1

dist C
DF

dist C

β
β

+ ∀
=  + ⋅ ∀

Fig. 3.6  Schematic of the uncertainty bandwidth defined by C, from 
Munroe (2012)

 

Fig. 3.5  Schematic of distance 
function. Numbers indicate the 
distance assigned by the DF. 
(Taken from Munroe 2012)
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3.2.1.3  Distance Function Thresholds
Tonnages can be calculated from the uncertainty bandwidth, 
the size of which is determined by the uncertainty constant 
C and the minimum and maximum limits of the bandwidth 
determined from both C and β. The inner limit of the uncer-
tainty band, DFmin is calculated as;

where DS is the drill spacing and is the lower limit defined as 
one half the distance function of the portion inside the vein 
structure.

The outer limit of the uncertainty band, DFmax is calcu-
lated as:

and is the maximum limit defined as one half the distance 
function of the portion outside the vein structure (Fig. 3.8).

The probability thresholds within the bandwidth are de-
fined as a p—probability value. The bandwidth interval is 
rescaled to [0,1] so that DFmin = 0 and DFmax = 1. The dashed 
line is the p50 and has a p value of 0.5.

The p values are used to define the possible vein geom-
etries and extract tonnages for defined probability intervals 
by converting individual model cell values into p values. The 
p value is calculated as:

min

1

2
DF C DS β= − ⋅ ⋅

max

1

2

C DS
DF

β
⋅

=

min

max min

z DF
p

DF DF

−
=

−

where z is the estimated DF value. The total tonnage for a 
particular probability interval pi, is the total number of cells 
where p ≤ pi. Recall the zone of uncertainty is located be-
tween DFmin and DFmax. If z < DFmin then z is certainly lo-
cated within the vein structure. If z > DFmax then z is most 
certainly located outside the vein structure. By dividing the 
space between DFmin and DFmax into a [0,1] interval, we can 
readily extract tonnages from a mapped distance function for 
any probability interval.

In order to define those probabilities and vein geometries, 
the DF is mapped using Simple Kriging on a regular 3D grid. 
Although other options are available, simple kriging is the 
preffered option because it allows more control over areas 
with less or uneven drilling.

Fig. 3.7  Effect of β on the iso-
zero surface. With increasing 
β, the surface expands; with 
decreasing β the surface 
contracts. (Munroe 2012)

 

Fig. 3.8  Schematic of uncertainty bandwidth between drillholes. 
(Munroe 2012)
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Fig. 3.9  View of Olympic Dam’s Au resources with respect to surface 
infrastructure and showing four different Mining Phases (pits). Cour-
tesy of BHP Billiton
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3.2.2  Geostatistical Geologic Modeling

A geologic model can also be obtained by using a polygonal 
(or nearest-neighbor) method, or a geostatistical algorithm. 
These techniques can sometimes be used if the data is too 
sparse to confidently draw the interpreted shapes and extend 
them between sections. One of two basic approaches could 
be used: (a) a deterministic model that estimates the geologi-
cal category at each location, or (b) a model that provides a 
probability of each category at each location.

The polygonal (or nearest-neighbor) technique assigns the 
geologic attribute to points or blocks in the three-dimension-
al space according to a fixed rule; for example, each block is 
assigned the geologic attribute from the drill hole data that 
is closest to its centroid (Stone and Dunn 1996). It is simi-
lar to a geologist drawing the interpreted shapes, except that 
the computer will not use additional geologic knowledge or 
judgement to guide the assignment of geology in the three-
dimensional space. Often, nearest-neighbor models are used 
to check the global volumes of interpreted models.

Indicator-based techniques describe the discrete distribu-
tion by assigning an indicator to each geologic attribute. The 
indicators can be kriged simultaneously (Multiple Indicator 
Kriging) or sequentially one at a time. In either case indica-
tor kriging provides a probability of the geologic variable 
being present. An example of the use of indicator kriging 
to sequentially estimate mineralogical zones is presented in 
Sect. 14.3. The preferred MIK technique has been used with 
success at multiple sites as well.

More advanced geostatistical techniques include con-
ditional simulation which provide a probabilistic model of 
the geologic variables. There are three common techniques: 
(1) sequential indicator simulation, (2) truncated Gaussian 
simulation, and (3) object-based modeling. These are dis-
cussed in Chap. 10.

The basic idea of indicator-based techniques is to calcu-
late the probability of each geologic code at an un-sampled 
location using all nearby data (Journel 1983). A specific real-
ization is drawn by Monte Carlo simulation and added to the 
set of conditioning data. All un-sampled locations are visited 
sequentially. Multiple realizations of the geologic codes are 
calculated by repeating the procedure with a different ran-
dom number seed.

Truncated Gaussian simulation requires the geological 
codes to be assigned to a range of the Gaussian distribu-
tion (Delfiner and Chilès 1999). The Gaussian variable is 
simulated with a geostatistical procedure such as sequential 
Gaussian simulation (SGS, see Sect. 10.3) and then truncat-
ed to get back to geological codes. This approach enforces a 
particular ordering in the geological codes.

Object-based modeling stochastically positions objects 
of arbitrary shape and size within a matrix geological code 
(Deutsch 2002). This approach is applicable when the geo-

logical codes are organized in physical shapes that can be 
parameterized or digitized. Object-based models have been 
used extensively for siliciclastic sedimentary facies models, 
for example.

3.3  Visualization

The visualization of geologic and block models is an impor-
tant part of resource modeling. Visualization of three-dimen-
sional bodies and their relative positions and interactions in 
space can be used to better understand the proposed geologic 
and resource model, oftentimes in relation to a planned open 
pit or underground operation.

Visualization provides qualitative evidence of anisotropic 
behavior of the attributes as well as an easier grasp of the 
scales of variability. Geologic variables and grades distribu-
tions can be visualized in conjunction with some of the tools 
described in Sect. 3.3.2. This allows a better understanding 
of the continuity of the mineralization.

Figure 3.9 shows the Olympic Dam Au resource model 
model in relation to surface infrastructure and Mining Phases 
(pits), looking to the North-Northwest. The blocks have been 
made into a solids model using a grade indicator. Note that 
some of the resources are left out of all the pits shown.

Another example is shown in Fig. 3.10 where a set of 
tourmaline veins are shown with topography, the location of 
the cross sections used to interpret the geometry of the veins, 
and several existing underground workings and accesses. 
The view is from underneath. If the visualization is devel-
oped within an interactive three-dimensional environment, 
the relation of the underground workings and the interpreted 
veins can be used to design future stopes and accesses.
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Visualization of geologic models in relation to mine phas-
es or stopes, and in relation to production can also be used 
as validation. Figure 3.11 shows a detailed view of an area 
in Mine Area A of the Olympic Dam Underground mine as 
of March 2006.

Another example is shown in Fig. 3.12, where a con-
ceptual exploration program is described. The geology cor-
responds to the Lince-Estefanía mine (owned by Minera 
Michilla S.A., a subsidiary of Antofagasta Minerals, S.A., 
Chile) and the exploration target is the Susana area where 
manto-type Oxide Cu mineralization is present. Figure 3.12 

shows the Lince pit (as of early 2002) and some  important 
underground workings corresponding to the  Estefanía 
mine.

Another purpose for visualization is to transfer an under-
standing of geologic knowledge to individuals less familiar 
with the deposit as well as highlighting mining and engineer-
ing details that are relevant to the overall work. Figure 3.13 
shows the ultimate pit of Escondida Norte according to its 
final Feasibility study, looking NW, and showing main haul 
ore and waste roads.

It should be noted that for all the examples shown, the 
images are a static version of a three-dimensional rendering 
of block models, geology, topography, or infrastructure. In 
practice, geologists and engineers have the ability to move, 
rotate, and incorporate different information into their visu-
alization exercise, according to the objectives.

There is often a distinction between visualization tools for 
presentations and visualization tools of actual models. In all 
cases, there must be some kind of model built to produce the 
spatial information for the display. Mathematical tools are 
commonly used to smooth surfaces and volumes to produce 
more pleasant views; however, these views do not necessar-
ily represent the most accurate model, just as contour lines 
are generally overly smoothed and do not provide the most 
accurate estimate of the variable of interest.

The main difference between geologic and engineering 
plots and model presentation tools is the level of technical 
work that is based on them. Visualization tools often allow 

Fig. 3.10  Tourmaline Veins in Red and Yellow, with interpretative 
cross sections in green, and underground workings and accesses. View 
is from underneath, courtesy of HRK International

 

Fig. 3.11  Mined out stopes (in white) and planned stopes, Olympic 
Dam Underground Mine, as of mid-2007. Planned stopes are color-
coded by Mine Area, and generally are 30 × 30 × 100 m, and up to 

40 × 40 × 200 m, and can be used for scale. Mine workings are also 
shown. Courtesy of BHP Billiton/Olympic Dam
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Fig. 3.13  Ultimate Pit for 
Escondida Norte (Final 
Feasibility Study), looking NW. 
Waste Haul Roads are shown 
in yellow, while Ore Haul roads 
are shown in green. Courtesy of 
Minera Escondida Ltda
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Fig. 3.12  View of the Lince-Estefanía Mine and Mineralization, with Susana Mantos as an Exploration Target area. Topography, the Lince Open 
Pit and some of the Estefanía Underground workings are shown in light brown. Courtesy of Minera Michilla S.A.
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little interaction. Most major mining software packages 
allow for interactive geological and engineering work in 
three dimensions, and also visualization and presentation of 
the results. The required basic elements of geologic and en-
gineering plots vary with the objective of the work, but some 
elements are essential and common to most of them.

3.3.1  Scale

Showing data at appropriate scales is a fundamental attribute 
of any plot. Accurate information on locations, distances, 
and volumes should reflect the level of detail and accura-
cy desired. Scales of 1:2.5 million may be appropriate for 
metallogenic maps of entire continents, but will not show 
individual deposits. Regional geologic maps at 1:500,000 
up to 1:100,000 are typically used in mineral reconnaissance 
work. Large, open pit mines may use scales of 1:1,000 to 
1:500 for the geologic cross sections and plan views used 
for interpretation. Smaller underground mines will generally 
require larger scales, and may work on 1:200 or 1:100 scales 
for better definition of smaller orebodies and mine stopes. 
There are no fixed rules about the appropriate scale to use 
in each circumstance, but the scale should allow for the best 
accuracy that is practical.

3.3.2  Data

Virtually all work involved in developing geologic models 
and mineral resource estimations require geologic and assay 
data from drill hole data, surface trenching or underground 
stope sampling. It is necessary to plot all relevant informa-
tion for analysis, interpretation, and checking. Drill hole 
names and traces (in three dimensions or represented in a 
two-dimensional section), down-the-hole geologic codes 
and assays, topography, underground workings, and other 
relevant surfaces and volumes should be included in plots 
used for model development and engineering. These may be 
cross sections, longitudinal sections, or plan maps.

In the case of model-checking, the data presented needs 
to be relevant, legible, and accurate, and, in the case of block 
models, for example, should include estimated grades, as-
signed rock types, assigned resource classification codes, 
and metallurgical properties. Additional specifics related to 
model-checking are described in Chap. 11.

Color-coding is used as an aid to visualization, interpre-
tation and engineering work. Suggestions for color-coding 
include: (a) standardization to common practice, whereby 
warm colors (yellow, orange, red, magenta) indicate high 
values, and colder colors (grey, blue, green) indicate lower 
values; (b) consistency in the definition of the set of color 
codes (legends) to be used for the different attributes, always 
applying the same codes to the same attributes and data 

types; and (c) considerations about legibility; for example, it 
is very difficult to read numbers plotted using yellow; shades 
of brown can be used for different surfaces, but they should 
plot in a distinct way; the point size of the numbers and let-
ters chosen should be such that they do not overprint or abut 
against each other.

Although it may seem that some of these details are obvi-
ous and common-sense, a well-thought out plotting scheme 
can save significant time and effort, lead to better modeling 
and validating practices, and should be considered an impor-
tant part of the work plan.

3.4  Block Model Setup and Geometry

3.4.1  Coordinate Systems

Spatial data, block models and other mineral resource es-
timation data require the use of coordinate systems to lo-
cate relevant attributes. Appropriate coordinates have to be 
defined based on the available sources of information. The 
largest scales of work for mapping and map projections are 
dealt within the field of cartography, and are outside the 
scope of this book. Geographic coordinates are measured in 
terms of longitude and latitude. Longitudes are referenced to 
meridians defined by a line joining the North and South Pole 
and latitude are parallels that result from planes that intercept 
the idealized spherical earth. Latitude measures the angle be-
tween any point in the earth’s surface and the Equator. Longi-
tude measures the corresponding angle between the meridian 
that passes through that same point and the central meridian, 
arbitrarily defined as that which passes through Greenwich, 
England. For further discussion on the subject, see Maling 
(1992); Snyder (1987); and Bonham-Carter (1994).

Geographic coordinates (latitudes and longitudes) are con-
verted for use at smaller scales into planar coordinates, based 
on projection transformations from a quasi-spherical globe 
(the earth) onto a plane. These projections introduce some 
geometric distortion. The type of distortion is used to classify 
the projections into equal angle, equal area, or equal distance, 
depending upon whether the projection preserves angular, 
area, or distance relationships between features of interest.

The most commonly used system is the Universal Trans-
verse Mercator (UTM) system that is an equal angle system 
established in 1936 by the International Union of Geodesy 
and Geophysics (Snyder 1987). The UTM system is widely 
used by national geographic surveys and offices of countries 
around the world as well as mining companies. The popu-
larity of the UTM system is mostly because regional-scale 
maps available from geological surveys and governmental 
offices around the world are UTM-based, generally at a 
1:250,000 scale or larger. The world is divided into 60 UTM 
zones, numbered from west to east and starting with 1º at 
180º west.
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The UTM projection is such that at scales smaller than 
1:250,000 significant distorsions can occur. Also, if the zone 
of interest straddles two UTM zones, then the conversion from 
one zone to the next is not straightforward. This is significant 
because, occasionally, a local triangulation (survey) point may 
be assigned a UTM coordinate that has not been corrected for 
geometric distortion. Mining companies will generally define 
local grids based on truncated UTM coordinates, which, al-
though sometimes suffering from geometric distorsion, have 
little impact on relative positions at the mining project scale.

Another common practice in geology and mining is to 
use local, arbitrary “mine” grids to more easily character-
ize the geometry of the ore deposit. Many ore deposits have 
principal features aligned in directions other than the Easting 
and Northing of the UTM coordinates. Common examples 
of this include vein-type deposits, and deposits where the 
mineralization is structurally or shear-hosted, or otherwise 
controlled by elongated features. One specific case study can 
be found in Barnes (1982).

The drill hole information and the corresponding geologi-
cal cross sections used to model the deposit should be per-
pendicular to the main directions of mineralization (strike 
and dip). The more anisotropic the geometry of the deposit, 
the more important this aspect becomes. In these situations 
it is common to rotate the coordinates to align the mine grid 
north with the main strike or dip direction. Additionally, the 
conversion often includes a translation to an arbitrary origin, 
selected such that (a) the Easting, Northing, and Elevation 
coordinates have different number of digits to avoid confu-
sion and (b) there are no negative coordinates in the new, 
rotated grid.

The rotations can be done using any convention desired. 
For example, and using the GSLIB convention (Deutsch and 
Journel 1997), the first initial clockwise rotation of the origi-

The third rotation of the (x2; y2; z2) coordinates of a plunge 
angle φ is counter-clockwise on the X’-Z’ plane around the 
Y’ axis:

The three-step rotation described can be summarized in a 
single step:

At any stage of the rotation, a translation may be applied, as 
needed. For example, translating the (X, Y) coordinates of 
the origin of the model can be represented according to the 
equations shown below and Fig. 3.15:

3.4.2  Stratigraphic Coordinates

Specific non-linear transformations are sometimes used 
to better model certain types of deposits. The use of 
stratigraphic coordinates is convenient in the cases of sedi-
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nal (x0; y0; z0) coordinates by an azimuth angle α can be writ-
ten as, see Fig. 3.14:

Following the GSLIB convention, the new (x1; y1; z1) can 
then be rotated a dip angle β counter-clockwise on the Y’-Z 
plane around the X’ axis:
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mentary strata-bound deposits where the mineralization 
has continuity along the stratigraphic unit of interest. The 
strata may be folded (plastic) or fractured with little lat-
eral displacements of the units, such that it appears to be 
continuous. Then, the original Cartesian coordinates X, Y, Z 
are transformed into a Stratigraphic or Unfolded Coordinate 
Systems (SCS or UCS). All calculations being carried out in 
the SCS and then back-transformed to real-world Cartesian 
coordinates. Examples and details of this type of transforma-
tion are shown in David (1988); Dagbert et al. (1984); Sides 
(1987), or Deutsch (2005).

Modeling 2-D stratigraphic or multiple layered deposits 
often requires the vertical coordinate to be transformed to a 
stratigraphic coordinate. Figure 3.16 shows schematic illus-
trations of different basic correlation types for stratigraphic 
layers. Each layer is modeled independently with a relative 
stratigraphic coordinate zrel derived from four surface grids:

where the cb refers to the correlation base and ct refers to 
the correlation top. The T parameter is the average thickness 
of the layer under consideration. The relative stratigraphic 
coordinate is 0° at the base and T at the top.

This transform may be reversed by

cb
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Converting all depth measurements to zrel permits modeling 
of each stratigraphic layer in regular Cartesian X, Y, Zrel co-
ordinates. The locations of all data (geologic variables and 
grades) are converted back to real Z coordinates before visu-
alization, volumetric calculations, or planning calculations. 
There will be no back-transformed z values outside the exist-
ing interval z ∉ (zet , zeb) because these locations are known 
ahead of time and excluded from modeling.

Another transformation could be considered in cases 
where there is large scale undulation or curvature. There are 
many variants used of this type of transformation commonly 
called unfolding. One procedure is to transform the X coor-
dinate to be the distance from an arbitrary center line Y co-
ordinate, which is along the primary direction of continuity 
and is left unchanged, see Fig. 3.17:

where f c(y) is the deviation of the undulating centerline from 
a straight constant X reference line.

Straightforward normal faults can be handled by correla-
tion grids and stratigraphic coordinate transformation. Re-
verse faults cause problems because there are multiple sur-
face values at same x, y locations, see Figs. 3.18a and b. The 
grid can be expanded to avoid overlap. Specialized software 
is used for more complex gridding schemes.
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Fig. 3.16  Examples of different correlation styles. (Deutsch 2002)
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a

b

Fig. 3.18  a Normal fault transform b Reverse fault transform leads to 
multiple Z values at some locations
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3.4.3  Block Models

Block models describe the three-dimensional volumes with 
(relatively) small-sized parallelepipeds. Block models are 
convenient tools for mine evaluation, resource estimation 
and mine planning, including pit or stope optimization, and 
mine scheduling. The vast majority of mineral resource es-
timates are obtained using block models. There are excep-
tions, particularly in early exploration stages and where no 
computerized modeling techniques are used. Preliminary 
estimates can be obtained by manual calculations, typically 
on cross sections, where areas of influence are drawn on 
paper, and then projected in between sections. For each of 
these areas, an estimated grade is obtained by a weighted 
arithmetic average which, along with the dimensions of the 
area and an assumed specific gravity, can be used to esti-
mate the tonnage and grade of each section (Stone and Dunn 
1995; Sinclair and Blackwell 2002).

The geometry of the block model depends on the charac-
teristics of the deposit, the geological features being mod-
eled, and mine planning requirements, such as equipment 
size and type to be used by the operation. Block size and 
geometry is an important decision in resource modeling.

Two-dimensional models may be appropriate for strati-
graphically controlled sedimentary or evaporitic deposits 
including coal, heavy sands deposits, oil sands, some ura-
nium deposits, and some industrial minerals, such as nitrates, 
iodine, and boron mineral deposits. Typical applications of 
two-dimensional models relate to modeling surfaces such as 
topography and surfaces that define different geologic char-
acteristics. Sometimes block models are defined as a stacked 
set of two-dimensional models in the presence of sequences 
of mineralized strata.

Three-dimensional grids are used to model massive de-
posits such as porphyry copper deposits, massive sulphide 
deposits, skarn, vein-types, and other types of tabular and 

sedimentary or pseudo-sedimentary deposits with significant 
development in the third dimension.

3.4.4  Block Size

The block size should be decided based on the drill hole data 
spacing and other engineering considerations. Larger blocks 
are easier to estimate than smaller blocks in the sense that 
the predicted grades are more likely to be close to the actual 
grade of the block. On the other hand, too large a block size 
is not useful for pit optimization and mine planning. Typical 

Fig. 3.17  Straightening function
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mine planning packages work on smaller blocks that dis-
cretize to the time interval on which the mine plan is based. 
For example, for long-term planning, incremental monthly 
planning units are frequently used. The block size should 
represent a suitable incremental tonnage. Mining engineers 
will sometimes sub-divide large panels into smaller units 
if necessary; the easiest choice is to assign the same panel 
grade to all smaller units. This was, for example, the sched-
uling practice at AngloGold’s Cerro Vanguardia gold mine 
in the Argentinean Patagonia in 2002. The practice resulted 
in erroneous predictions of monthly tonnages and grades to 
the mill, because the reserve model forecasted smooth varia-
tions in grade.

The block size should be less than the data spacing. Journel 
and Huijbregts (1978, Sect. 5) propose a block size from 1/3 
to 1/2 of the drill hole data spacing as an approximate guide-
line. The logic behind this recommendation is that smaller 
block sizes will produce artificial smoothing of the model. 
Adjacent small blocks will receive about the same grade if 
the same drill hole data are used to estimate them. Too large 
a block size with respect to the drill hole data grid will not 
fully utilize the resolution available from the drill hole data. 
In the context of geostatistical simulation, the grid node spac-
ing and final block size do not depend on data spacing.

Another important aspect that could impact the decision 
on block size is related to recoverable resource estimation. 
This involves the concepts of mine selectivity and the Selec-
tive Mining Unit (SMU). This is a particularly useful concept 
in open pit mines, although also applicable to underground 
stopes as well.

An SMU is defined as the smallest volume of material 
that can be selectively extracted as ore or waste. In practice, 
mining selectivity along boundaries is better (smaller) than 
the chosen SMU size. Moreover, it is rare that an isolated 
pod of marginal ore or mineralized waste the size of an 
SMU would be selectively mined. The SMU size is partial-
ly subjective, and is based on mining experience, calibra-
tion to production, and other characteristics of the opera-
tion itself, such as equipment size, anticipated grade con-
trol practices and the data available for the final decision. 
For example, the height of the block is typically related to 
the mining method: it coincides with the bench height in 
open pit mines, or with mining lifts in the case of the more 
common underground methods (cut-and-fill, open stope, 
and sub-level stoping).

3.4.5  Block Model Geometry

The block geometry should be adapted to the geometry of 
the deposit, which in turn dictates the geometry of the min-
ing operation. Tabular or vein-type deposits will generally be 

estimated as two-dimensional deposits, considering that one 
of its dimensions may be an order-of-magnitude smaller than 
the other two. There is little opportunity to select material 
types from within the vein. Massive deposits will commonly 
be represented by a three-dimensional block network, which 
can be single- or variable-sized blocks.

For deposits with simple geometry, and in cases where 
there is limited amount of geologic and drill hole informa-
tion (early exploration or pre-feasibility level), regular sin-
gle-size blocks are generally used. The attributes of interest 
and estimated grades are generally assigned on a whole-
block basis.

The blocks are locally subdivided when the deposit has 
a more complex geometry, or with multiple estimation do-
mains that have large and multiple contact areas between 
them. The idea is to gain resolution in representing the in-
terpreted geologic contacts into the block model. This is rea-
sonable only when the data density warrants the refinement. 
Geologic contact modeling is important for incorporating 
contact dilution in the block model (see Chap. 7).

Care must be taken in defining the sub-blocks (or sub-
cells) along contacts, since some commercial software allow 
for unrealistically small sub-block sizes to be used. This 
introduces increased computational cost and creates a false 
sense of resolution. Figure 3.19 shows an example of a block 
model section with sub-blocks and full size blocks. The full 
block size is 25 × 25 × 15 m, with sub-blocks defined at a 
minimum of 5 × 5  × 5 m. Note that in this case the software 
will automatically define full-size blocks if there are no con-
tacts within the block, and will re-combine the sub-blocks 
into larger sub-blocks whenever possible to optimize the 
block model. The grades should be estimated into the main 
blocks and assigned to the sub-blocks; i.e., grade estimation 
should be based on the parent block.

An alternative to using sub-blocks in the model is to define 
a single-size block model, but adding the capability of cal-
culating percentages of geologic and other attributes in each 
block. Most commercial mining software has the capability 
of calculating the percentages of material in each block from 
the interpreted solids or wireframes of geologic attributes.

The grades of the attributes of interest are then estimated 
for each geologic unit defined in the block, and the final (di-
luted) block grade is obtained as a weighted averaged of the 
grade of all the units present in the block. In this case, there 
are less blocks defined, but with more variables defined 
within each block.

3.4.6  Block Model Volume and Variables

Block models should cover the entire volume of interest. 
The units used to define the grid must be consistent with the 
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drill hole database. Open pit mine planning requires that the 
block model include the ultimate pit that is often larger than 
the mineralized zones.

The variables defined within a block model should be all 
of those necessary for mine planning including grades and 
in situ bulk density of the different geologic units. It may 
commonly involve percentages, indicators, or other auxiliary 
variables, such as percentage of air in the block (due to the 
block being near surface or underground workings) and con-
tacts with certain geologic units that could be either waste or 
contaminants.

Variables that may be included in the block model, in 
addition to grid indexes and block coordinates and block 
sizes (if variable) are geologic attributes such as codes for 
lithology, mineralization type, degree of oxidation, altera-
tion, structural information, and estimation domains. The 
estimated grades for all constituents of interest (ore and 
contaminants) will be in the block model. Other variables 
include the presence of clays and other consequential units, 
rock hardness, bond mill indexes, crushing plant throughput 
prediction, and metallurgical recoveries.

All these variables require storage. The storage require-
ments can be large for many variables in large block mod-
els. Given current computer hardware capabilities the block 
model size generally is kept to a few million blocks. Clearly 
this number will continue increasing.

Appropriate procedures should be in place to ensure the 
quality of all the information developed and contained in the 

block model, since it forms the basis of the subsequent mine 
planning and economic decisions. This subject is developed 
in more detail in Chap. 11.

3.5  Summary of Minimum, Good and Best 
Practices

Minimum practice related to geologic mapping, logging, and 
interpretation include the following aspects:
a. A series of written protocols and procedures should be 

developed, clearly specifying the mappable geologic 
attributes and the quality control procedures. The proto-
cols should specify the units that need to be mapped and 
the general description for each unit. A physical example 
(a rock chip) should be retained as a reference specimen 
for the particular characteristics. In some instances, color 
photographs are appropriate. The purpose is to limit the 
inconsistencies that occur when different geologists map 
the same rock. The protocols and procedures should be 
updated on a yearly basis, based on the experience gained 
in prior campaigns.

b. There should be clearly specified procedures for logging 
the mapped information and entering this information 
into the computerized database. At a minimum, the spe-
cifics of the procedure, supervisors involved, and timing 
of the process should be included. Quality control pro-
cedures such as double-entry (if manually entering the 

Fig. 3.19  A section of a Block Model showing full size blocks and sub-blocks. Colors represent different mineralization types and full block size 
is 25 × 25 × 15 m for scale
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data) or external reviews of the information should be 
specified.

c. All original drill hole information should be properly 
stored for possible future use: laboratory checking, re-
mapping, or for other types of reviews. The information 
should be electronically stored in no less than two dif-
ferent locations, one of them away from the project or 
operation site. In addition, all information relating to each 
drill hole, including topography, drill hole deviation mea-
surements, mapped geologic attributes, and a copy of the 
assays returned should be available in hardcopy with a 
single folder for each drill hole.

d. Explicit definition and modeling of at least the most im-
portant mineralization controls is required. In the case 
where no strong geologic controls are evident, the geom-
etry of the deposit and the data extents should be used 
to limit the resource model. If the deposit has no natural 
limits, then some form of grade outline may be required 
to constrain grade interpolation.

e. The geologic interpretation should be completed on two 
orthogonal planes (cross sections and plans, for example), 
or, if modeling a vein or tabular deposit, a single cross 
sectional set of views, orthogonal to the mineralization 
strike, should be used. Plan or longitudinal views should 
be used for proper control of the main features.

f. The geologic interpretation should be used to code the 
block model. The interpreted geology can be converted 
into solids using simple techniques such as extrusion ad-
jacent sections to or with areas of influence. At the earli-
est stages of exploration, a computerized geologic mod-
eling (using a nearest-neighbor technique, for example) 
could be used to assign geologic codes to blocks, instead 
of explicitly interpreting geology.

g. Simple visual checks should be made to ensure that the 
blocks have been correctly flagged with the geologic at-
tributes. These checks may include plotting sections and 
plans of drill hole information against assigned codes for 
all geologic variables modeled in different geologic units.

h. The block model should consider the deposit geometry 
and the characteristics of the (potential) mining opera-
tion. The geometric considerations should include vol-
ume, shape of the blocks, the block sizes adequate for the 
drill hole density, the use or not of sub-blocks for better 
geologic contact definition, and the mining selectivity en-
visioned.

In addition to the above, good practice should include the 
following:
a. Periodic internal checks should be made on all aspects of 

the database, including the database geology against the 
original log sheets. This review should include at least 
20 % of the incremental drill holes, and should be done 
after each major drilling campaign. Most mining explora-

tion projects and operations work with a yearly budget 
that defines the periodicity of the drilling campaigns.

b. Detailed definition of demonstrable geologic controls 
should be available, with properly documented geologic 
and statistical supporting evidence. This should include 
reports or memoranda describing the different con-
trols, and which geologic variables should be explicitly 
modeled. Scatterplots and Q-Q plots (Chap. 2) should 
be used to describe the relationships between grades and 
each geologic variable.

c. Whenever possible, two-dimensional surfaces should be 
used to interpret planar geologic features, and three-di-
mensional solids should be created to represent volumes, 
including vein and tabular deposits of significant width.

d. A clear audit trail and documentation should be left to 
facilitate third party reviews of the work. This includes 
working and final sections and plans in paper (typically at 
a 1:500 scale), as well as procedures, reports and memo-
randa documenting the internal checks, and the step-by-
step process followed.

e. The geologic model should be checked for volumetric 
biases. The declustered drill hole database represents 
the proportions or relative volumes among the different 
modeled geologic attributes. These relationships should 
be maintained in the model. Statistics and proportions 
of each geologic variable (code) in the database and in 
the resulting block model should be compared. If the ob-
served differences are larger than 10 %, then a clear justi-
fication should be made for accepting such a difference.

f. The block model should characterize the contact between 
the different geologic attributes to the level of detail war-
ranted by the data. This can be done through the use of 
partial blocks or sub-blocks. The re-blocked model should 
preserve the information obtained at the better resolution.

Additionally, best practice includes the following:
a. Multiple procedures and checks should be in place to ensure 

constant quality of the geologic database. Automatic map-
ping, logging and input into the computer database in the 
field is recommended through the use of computerized log-
ging. The database where the information is stored should be 
relational and a sufficient number of automatic basic checks 
should be in place to facilitate database maintenance.

b. Exhaustive and detailed work on the definition of geo-
logic controls, including a ranking of importance, if ap-
propriate, should be done and available as part of the 
audit trail. The geologic descriptions and the statistical 
methods used should be detailed, including analysis such 
as Classification and Regression Trees (CART), possibly 
varying from one sector of the deposit to another.

c. The geology should be interpreted on all three orthogo-
nal planes (cross sections, longitudinal section, and plan 
views). The geological controls and limits should be mod-
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eled in true 3-D avoiding projecting to the plane of inter-
pretation. Thorough manual and visual checks should be 
performed on each set including plotting at an appropriate 
scale the working and final sections and plans.

d. The full set of working and final sections should be avail-
able for auditing. These should be stored as historical doc-
umentation with the full drilling program report. The mod-
eling procedures and criteria, reports of internal checks and 
external audits, and production reconciliation information 
(if available) should be archived in the same place.

e. Wireframes should be used to build solids (as opposed to 
volumes obtained from sectional extrusions), and a full 
set of visualization tools should be used in the presenta-
tion of the modeled geology.

f. The interpreted geology should be dynamically updated 
as new drill hole information becomes available. This is 
particularly important for operating mines where infill 
drilling is done on a regular basis and production data also 
becomes available on a regular basis.

g. The geologic model should be checked against geologic 
flagging obtained through nearest-neighbor estimation. 
Volumetric differences and biases should be explained or 
resolved, as appropriate.

3.6  Exercises

The objective of this exercise is to perform some basic geo-
metric modeling and work with conventional Cartesian coor-
dinate systems. Some specific (geo)statistical software may 
be required. The functionality may be available in different 
public domain or commercial software. Please acquire the 
required software before beginning the exercise. The data 
files are available for download from the author’s website—
a search engine will reveal the location.

3.6.1 Part One: Vein Type Modeling

Consider 15 drill holes—3 drill holes from each of 5 drill 
stations (labeled as A, B, C, D, and E) to delineate a deposit 
with two mineralized zones. Drill stations are aligned N-S 
and spaced 100 m, see Figure below.

The deposit is in the shape of two steeply dipping en 
echelon ore lenses where the strike direction of the lenses is 
approximately northwest. The lower limb is not always min-
eralized. An estimate of the total volume of mineralized re-
source is required. The exercise is to develop sectional draw-

Easting Easting

Northing Elevation

Plan view of the deposit Sectional view (looking north)

10400

10300

10200

10100

10050
7000 7100 7200 7300 7400
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ings from drillhole data, derive level maps from the sectional 
drawings, and generate volumetric estimates.
Question 1: Using the drill hole information given below, 

generate cross sectional views (easting-
elevation) for 10100N, 10200N, 10300NE, 
10400N and 10500N looking north. Label 
each drawing appropriately including the 
location of the drill station, the trace of the 
drill holes, an interpreted outline of the ore 
body, and other labels and notes. Your inter-
pretation of the ore body limits should con-
sider the drillhole data, the conceptual model 
briefly  described  above,  and  realistic  limits 
for extrapolation.

Question 2:  To  check  the  consistency  of  the  five  cross 
sections, generate two N-S sections at 7200E 
and 7400E, and two level maps at elevations 
700 and 500 m. On each drawing, include 
the location of the drill stations, the trace 
of the drill holes, your interpreted outline 
of the ore body, and appropriate labels and 
notes. Revise your interpretation if there are 
abrupt discontinuities in the sectional or level 
drawings.

Question 3:  Using the five cross sections from Question 1, 
estimate the volume of ore contained within 
the deposit. Critically evaluate your results. 
In particular, consider the potential for error, 
how to minimize such error, and how you 
would assess uncertainty.

Drill Data:

3.6.2 Part Two: Coordinate Systems

Consider a tabular deposit with a strike direction at an azi-
muth of 70° (East of North). The dip is at − 35° (downward) 
to the Northwest. The original X, Y, and Z coordinate system 
is aligned toward the East, North and Elevation, respectively.
Question 1: Write the matrix equation to rotate the x, y 

system to the x', y' system (so that x' is in the 
dip direction and y' in the strike direction). 
Write the matrix equation to rotate the x', z 
system to the x", z' system (so that x' is down 
the dip direction). Show the matrix equations 
in terms of an azimuth angle (α) and dip angle 
(β) and in numeric form. Define all your terms 
and comment on your results.

Drill Station Data
Station A Collar: 10100N 7000E Elevation: 1000m
Hole # From To Dip Azimuth Rock Type
DH1 0 595 -33 90 waste
DH2 0 725 -51 90 waste
DH3 0 800 -66 90 waste

Station B Collar: 10200N 7000E Elevation: 1000m
Hole # From To Dip Azimuth Rock Type
DH4 0 331 -29 90 waste

331 390 -29 90 ore
390 474 -29 90 waste
474 609 -29 90 ore
609 701 -29 90 waste

DH5 0 302 -44 90 waste
302 407 -44 90 ore
407 462 -44 90 waste
462 634 -44 90 ore
634 725 -44 90 waste

DH6 0 320 -60 90 waste
320 408 -60 90 ore
408 512 -60 90 waste
512 629 -60 90 ore
629 712 -60 90 waste

Station C Collar: 10300 N 7000E Elevation: 1000m
Hole # From To Dip Azimuth Rock Type
DH7 0 323 -30 90 waste

323 407 -30 90 ore
407 491 -30 90 waste
491 617 -30 90 ore
617 659 -30 90 waste

DH8 0 310 -47 90 waste
310 420 -47 90 ore
420 487 -47 90 waste
487 646 -47 90 ore
646 682 -47 90 waste

DH9 0 344 -61 90 waste
344 445 -61 90 ore
445 512 -61 90 waste
512 604 -61 90 ore
604 701 -61 90 waste

Station D Collar: 10400N 7000E Elevation: 1000m
Hole # From To Dip Azimuth Rock Type
DH10 0 487 -28 90 waste

487 601 -28 90 ore
601 623 -28 90 waste

DH11 0 302 -46 90 waste
302 390 -46 90 ore
390 466 -46 90 waste
466 604 -46 90 ore
604 688 -46 90 waste

DH12 0 327 -59 90 waste
327 373 -59 90 ore
373 470 -59 90 waste
470 621 -59 90 ore
621 645 -59 90 waste

Station E Collar: 10500N 7000E Elevation: 1000m
Hole # From To Dip Azimuth Rock Type
DH13 0 445 -33 90 waste

445 562 -33 90 ore
562 593 -33 90 waste

DH14 0 470 -47 90 waste
470 588 -47 90 ore
588 632 -47 90 waste

DH15 0 478 -58 90 waste
478 600 -58 90 ore
600 658 -58 90 waste
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Question 2: Write the single matrix equation to perform 
the complete data transformation from x, y, 
z to x", y', z'. Show the matrix equation in 
terms of an azimuth angle (α) and dip angle 
(β)  and  in numeric  form. Define your  terms 
and comment.

Question 3: A vertical drillhole intersects an apparent 
thickness of 11.5 m. What is the true thick-
ness measured perpendicular to the deposit? 
Describe your methodology and comment.
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4Definition of Estimation Domains

Abstract

Estimation of grades proceeds within domains defined on the basis of geological and sta-
tistical considerations. The definition and modeling of these domains is an important step 
in mineral resource estimation. This Chapter presents practical aspects of the development 
of estimation domains, the limitations faced when defining these domains, details of the 
modeling of estimation domains, and the most commonly used methods to assign estima-
tion domains to a resource block model.

4.1  Estimation Domains

Estimation domains are the geological equivalent to geosta-
tistical stationary zones and are defined as a volume of rock 
with mineralization controls that result in approximately ho-
mogeneous distributions of mineralization. The spatial dis-
tributions of grade exhibit consistent statistical properties. 
This does not mean that the grades are constant within the 
domains; however, the geological and statistical properties 
of the grades facilitate its prediction.

The concept of statistically homogeneous populations is 
termed stationarity. Stationarity is a two-fold decision. First, 
there is a choice of the data to pool together for common 
analysis. Second, there is a choice of how statistics such 
as the mean vary by location within the domain. Stationar-
ity is a property of the random function model (Isaaks and 
Srivastava 1989) and is not an intrinsic characteristic of the 
variable. It is a decision made by the resource estimator and 
is necessary to make inferences. Stationarity was formally 
defined by Matheron (1962–1963) in the context of geosta-
tistics and is also discussed in Chap. 6.

Exploratory data analysis (EDA) may indicate the ex-
istence of several populations with significantly different 
summary statistics. The understanding of the statistical 
characteristics of the data, coupled with geologic knowl-
edge, leads to subdividing the deposit into domains for esti-
mation. This is considered more reasonable than taking the 
entire deposit at one time. Domain definition depends on 
the availability of enough data to reliably infer statistical pa-
rameters within each domain. Moreover, the domains must 

have some spatial predictability and not be overly mixed 
with other  domains.

A good definition of estimation domains is very impor-
tant. The consequences of defining inadequate estimation 
domains are rarely evaluated. It is common to confuse the 
concepts of geologic and estimation domains. Geologic do-
mains are commonly described by a single geologic variable. 
Estimation domains are defined by a set of mineralization 
controls and may contain more than one geological domain.

In multi-element deposits it is common to assume that the 
estimation domains defined for the main element/mineral of 
interest applies to all secondary elements that may be pres-
ent. In practice, different grades are controlled by different 
geologic variables, and thus they may be predicted using dif-
ferent estimation domains.

For example, porphyry deposits with copper and gold 
mineralization may exhibit an inverse spatial relationship, 
that is, gold may not leach through weathering as copper 
does. Gold may form a cap on the upper part of the deposit. 
In such cases, copper and gold should be modeled using 
 different estimation domains. In epithermal deposits, gold 
and silver mineralization may exhibit little correlation since 
they are deposited differently. Estimating gold and silver 
using the same estimation domains would lead to suboptimal 
results.

Estimation domains must make spatial and geologic 
sense (Coombes 2008). The combination of geologic vari-
ables used to define the domains must have spatial and geo-
logic characteristics that are recognizable in drilling and/or 
production data. The estimation domain must be sufficiently 
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represented in the database and in the deposit. These condi-
tions provide constraints on what can realistically be mod-
eled in practice.

4.2  Defining the Estimation Domains

A thorough stepwise approach is suggested here. It is based 
on a combination of geological and statistical analyses. This 
approach is more detailed and time-consuming, but it pro-
vides better support for estimation. The concept is based on 
decomposing the problem by describing and modeling the 
relationships between each geologic variable. The combina-
tion of variables results in a matrix that ranks the most criti-
cal grade controls as identified by the data. These should be 
explained in terms of plausible natural processes, to ensure 
that the controls derived from the data are consistent with 
known geology.

Development of the grade domains begins and ends with 
geologic knowledge. The first step is to define the geologic 
variables that are used as the building blocks for the estima-
tion domains definition. Typical variables mapped from drill 
hole data include lithology, alteration, mineralogy, weather-
ing (oxide/sulfide, for example), and structures or structural 
domains. Not all these variables are always mapped; some 
may not be relevant for a particular deposit type.

The second step is to decide the specific geologic vari-
ables that are the most important. This is based on geologic 
considerations, overall abundance within the deposit, and 
drill hole information.

Third, estimation domains based on all reasonable com-
binations of the geologic attributes are defined. Consider, for 
example, 3 geologic attributes each with 4 variables, and thus 
a total of 64 theoretically possible estimation domains. For 
example, porphyry, andesites, breccias, and dacites could be 
the 4 variables of lithology in a porphyry copper-type de-
posit. Data abundance will filter out a number of these. Con-
sideration of practical aspects will further reduce the number 
of theoretical domains, such as existing or planned mineral 
processing facilities. In copper, gold, and many other pre-
cious and base metal deposits, for example, it is not advis-
able to mix oxide and sulfide mineralization, since they are 
frequently treated at separate processing plants, or, if one of 
the two metallurgical types is small in volume or low grade, 
it may be simply stockpiled. Another criterion often used is 
proximity: certain units may be at the periphery of the de-
posit, and therefore should not be mixed with units at the 
central portion of the deposit.

The fourth step involves a statistical description of the 
initial domains. The main purpose is to remove or group do-
mains according to geologic considerations. Variables that 
have little representation in the database should be removed, 

regardless of whether they represent a strong mineralization 
control or not. A rule of thumb threshold is 1 % of the total 
number of intervals in the database, although this is depen-
dent on the total size of database.

Next, statistical comparisons between the initial domains 
accepted will often lead to grouping. Statistical tools such 
as histograms, probability plots, box plots, scatterplots, 
quantile-quantile (Q-Q) plots, proportional effect plots, and 
variograms are used. They allow comparisons of grade dis-
tributions within each of the domains proposed. Analysis of 
the statistics requires a degree of subjectivity, since an ac-
ceptable degree of similarity needs to be defined. Once two 
variables are shown to provide a similar degree of mineral-
ization control, and assuming it makes geologic sense, they 
are grouped, and the statistical analysis repeated.

This iterative process can be labor-intensive, and is 
usually repeated until a group of geologic variables and 
elements have been defined that clearly separates differ-
ent types of mineralization. Some of the variables will be 
grouped even though there are clear differences in the spa-
tial characteristics of the mineralization. This is often done 
because of practical limitations, including data quantity, 
metallurgical considerations, and other economic and tech-
nical factors.

 Alternative Statistical Techniques Other multivariate sta-
tistical techniques could be used to describe the relationships 
between geology and grade. For example, some practitioners 
have proposed the use of Classification and Regression Tree 
analysis (CART, Breiman et al. 1984) to determine and cat-
egorize relationships between geology and grade distribu-
tions. Techniques such as Principal Component Analysis and 
Cluster Analysis have also been proposed. A common prob-
lem, however, is that these techniques are often used to clas-
sify the relationships based on statistical parameters without 
geological consideration.

The proportional effect may also be used to define do-
mains. The proportional effect appears in the presence of 
positively skewed distributions. It indicates that, as the aver-
age of the variable increases, so does its variability. These 
plots, when comparing means and standard deviations of 
groups of data defined according to geologic variables, may 
show clusters of data. The assumption is that data within 
each cluster belong to a quasi-stationary population, thus 
defining estimation domains. These data clusters should be 
correlated to specific geologic controls.

The iterative process using simple statistics described 
is recommended. An important by-product is that the more 
labor-intensive process leads to a more thorough understand-
ing of the geology. It ensures that the estimation domains are 
a group of quasi-stationary domains that make spatial and 
geologic sense, as opposed to only statistical groupings.
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4.3  Case Study: Estimation Domains 
Definition for the Escondida Mine

The process of defining estimation domains is best illustrat-
ed with an example. The following has been taken from a 
definition of Total Copper (TCu) estimation domains at BHP 
Billiton’s Escondida copper deposit. It is reproduced here 
courtesy of BHP Billiton, Base Metals Division.

Not all the aspects of a given geologic variable are valid 
or useful at the time of defining estimation domains. The 
first step in the process is to define those aspects that will 
be considered. This initial selection of important geologic 
attributes should be decided by the geologists who know the 
deposit well. An understanding of how geologic variables 
may impact resource estimation is also required.

The definition of estimation domains at Escondida was 
greatly assisted by the operating mine. The open pit afforded 
the opportunity for confirmation by direct observation of the 
assumed relationships described by the drill hole data. At Es-
condida, the geologic variables considered were mineraliza-
tion type, alteration, lithology, and structural domains.

In the case of mineralization types, all high enrichment 
mineralization (HE1, HE2, and HE3) would be modeled as 
below Top of Sulfides (TDS) and above Top of Chalcopy-
rite (TDCpy). It was shown through statistical and additional 
chemical analyses that the Covelite-Pyrite (Cv + Py) unit has 
the statistical and spatial characteristics of low enrichment 
mineralization. Also the Chalcocite-Chalcopyrite-Pyrite 
(Cc + Cpy + Py) unit has characteristics of high enrichment 
mineralization, particularly for higher benches where the 
proportion of Cc in this unit is more significant. This is to 
be expected, since these mineral assemblages are transitions 
from higher to lower enrichment mineralization.

Following similar reasoning for all alteration, lithology 
and structure categories, the original codes in the database 
were translated into a simplified version, and are shown in 
Table 4.1. The most important characteristics of the resulting 
mineralization codes are the following:
•  All  mineralization  with  some  cuprite  described  was 

grouped into a single code (Cuprite, Cuprite + Ox, 
Cuprite + Mx, and Cuprite + Cc + Py into Cuprite). This is 
because Cu cannot be recovered from cuprite using the 
existing processing facilities, and is detrimental to the 
overall Cu recovery in a flotation plant.

•  High Enrichment is defined as of Cc + Py and Cc + Cv + Py.
•  Low  Enrichment  groups  the  units  Cc + Cpy + Py, 

Cc + Cv + Cpy + Py, Cv + Cpy + Py, and Cv + Py.
•  All primary mineralization  is  lumped  into one category 

(Py, Cpy + Py, and Bn + Cpy + Py), because, at the time of 
the study, the bulk of the processed ore will come from 
enriched mineralization units.

•  All  other  elements  used  are  the  original  codes:  Leach 
(code 0), green Oxides (code 1), Partial Leach (code 4), 
and Mixed (code 5).

A similar process of developing new variables for lithol-
ogy and alteration was completed. The grouping of initial 
mapped elements resulted in three alteration codes, QSA, 
SCC, and K-B (white, green and potassic-biotite alteration, 
respectively), and three lithologies: porphyry, andesite, and 
rhyolite.

With respect to lithology, the following characteristics are 
noted:
•  Tuffs were grouped with Rhyolite, (PC).
•  The following codes were ignored due to lack of spatial 

representation: Dacites, Gravels, Tectonic Breccias, Undif-
ferentiated Porphyry (9), Diorites, and Pebble Dykes.

•  Hydrothermal  Breccias  and  Igneous  Breccias  were 
grouped with the main Escondida Porphyry unit.

With respect to alteration, the following groupings were made:
•  A new code QSA was formed grouping all Quartz, Seric-

ite, and Clays (Sericite, Clays, Silicified, and Advanced 
Argillic). This also known as white alteration.

•  Similarly, a new SCC code was formed by grouping Pro-
pilitic, Sericite-Chlorite-Clays, K-S Transition in Por-
phyry, Silicified in Andesites, and Silicified in Porphyry. 
This is sometimes referred to as “green alteration” because 
of the presence of chlorite. Propilitic alteration is very dif-
ferent from the other components of this SCC grouping 
described. However, it is deemed pertinent here because 
there are very few intervals coded as propilitic alteration. 
Normally, in other porphyry deposits, propilitic alteration 
is observed as a halo on the outskirts of the deposit, and 
would be advisable to model it separately.

•  A third alteration K-B was formed by grouping Potassic 
(K) and Biotite alterations (B).

•  The  fresh, unaltered  rock  is volumetrically unimportant 
and was ignored.

With the simplification of the original codes, completed by 
Escondida geologists, the basic elements of the geological 
model have been defined, and combinations of these ele-
ments define the initial set of estimation domains.

Five structural domains were identified based on observa-
tions in the pit and drill hole data. At Escondida, like most 
mineral deposits, structures control the spatial distribution 
of TCu grades in different areas of the deposit. Figure 4.1 
shows the domains and the current pit projection as modeled 
by structural geologists. Domain 5 (to the West of the depos-
it-bounding Ferrocarril fault, in brown) was not considered, 
since there is no evidence of mineralization. The basic build-
ing blocks for defining the estimation domains were defined 
with the remaining four structural domains.

4.3.1  Exploratory Data Analysis of the Initial 
Database

The database consisted of 2,140 drill holes with 215,681 as-
says, lithology, mineralization, and alteration records. Histo-
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Fig. 4.1  Diagram showing the 
four structural domains. Domain 
5 (in brown, west of the Ferrocar-
ril fault) is non-mineralized, and 
outside the area of interest. For 
scale, the projection of the 2001 
pit to the surface has an approxi-
mate dimension of 3 × 3 km, and 
no vertical exaggeration

 

LLIITTHHOOLLOOGGYY  GGRROOUUPPIINNGG  AAllpphhaa  CCOODDEESS  NNuummeerriicc  CCooddeess  
K-Porphyry OK PF 1 

Quartz-Porphyry Grouped with Tuffs PC 2 
Undifferentiated Porphyry Ignore PU -99 

Andesite OK AN 3 
Igneous Breccias Grouped with PF BI 4 (1) 

Hydrothermal Breccias Grouped with other PF BH 7 (1) 
Tectonic Breccias Ignore BT -99 

Gravel and Pebble Dykes Ignore GR/PD -99 
Late Dacite Ignore DT -99 

Diorite Ignore DR -99 
Tuff Grouped with PC TB 2 

MMIINNEERRAALLIIZZAATTIIOONN  TTYYPPEESS  GGRROOUUPPIINNGG  AAllpphhaa  CCooddeess  NNuummeerriicc  CCooddeess  
Leach OK LX 0 

Green Cu Oxides OK OX 1 
Cuprite Grouped with other Cuprite CP 2 

Cuprite + Ox Cu Grouped with other Cuprite CPOX 2 
Cuprite + Mixto Grouped with other Cuprite CPMX 2 

Cuprite + Cc + Py Grouped with other Cuprite CPCCPY 2 
Partial Leach OK PL 4 

Mixed Oxide and Sulfides OK MX 5 
Chalcocite/Pyrite Grouped with HE2 HE1 6 

Chalcocite/Covelite/ Pyrite Grouped with HE1 HE2 6 
Covelite/Pyrite Grouped with LE HE3 7 

Chalcocite/Chalcopyrite/ 
Pyrite 

Grouped with LE LE1 7 

Chalcocite/Covelite/ 
Chalcopyrite/Pyrite 

Grouped with LE LE2 7 

Covelite/Chalcopyrite/ 
Pyrite 

Grouped with LE LE3 7 

Pyrite Grouped with other Primary PR1 8 
Chalcopyrite/Pyrite Grouped with other Primary PR2 8 

Bornite/Chalcopyrite/ 
Pyrite 

Grouped with other Primary PR3 8 

AALLTTEERRAATTIIOONN  GGRROOUUPPIINNGG  AAllpphhaa  CCooddeess  NNuummeerriicc  CCooddeess  
Fresh rock Ignore F -99 
Propilitic  Grouped with SCC P 2 

Clorite-Sericite-Clay OK SCC 2 
Quartz-Sericite OK S 1 

Potassic OK K 3 
Biotitic Grouped with K B 3 

Advanced Argilic Grouped with S AA 1 
Clay Grouped with S AS 1 

Silicified Grouped with S Q 1 
K-S Transition in Porphyry Grouped with SCC QSC 2 
SCC Silicified in Andesite Grouped with SCC SCC-An 2 
QSC Silicified in Porphyry Grouped with SCC SCC-Pf 2 

Table 4.1  Original and simpli-
fied geologic codes, Escondida 
database
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grams were used to provide a global description of the vari-
able, along with summary statistics. Figure 4.2 shows the 
histogram and summary statistics for TCu, all assays logged 
as chalcocite plus pyrite (Cc + Py, HE1 in Table 4.1). The 
histogram shows a positively-skewed distribution with an 
average grade of 1.74 % TCu and a coefficient of variation 
of 0.88, which is considered low for assay data.

The cumulative frequency plot is often used to describe 
important characteristics of the distribution, such as look-
ing for breaks along an expected continuous line. Figure 4.3 
shows the probability plot corresponding to the data in 
Fig. 4.2 (TCu, Cc + Py). Note how the curve has inflec-
tion points, one at approximately 2 % TCu, and the other at 
about 6 % TCu, suggesting a mixture of populations in the 
domain.

Two distributions can be compared using quantile-
quantile (Q-Q) plots. Figure 4.4 shows a Q-Q plot compar-
ing Cc + Py and Cc + Cv + Py mineralization, while Fig. 4.5  
shows the comparison for Cc + Cpy + Py and Cv + Py. These 
and other similar figures illustrate the similarity of the grade 
distributions based on mineralization types alone.

4.3.2  Initial Definition of Estimation Domains

The definition of preliminary estimation domains was done 
by analyzing all geologically feasible combinations of the 
four variables: mineralization, lithology, alteration, and 
structural domains.
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Table 4.2 shows the 20 initial estimation domains defined. 
The initial six estimation domains are defined based on min-
eralization alone, and is due to two factors: as these are all 
non-sulfide units (with the exception of Partial Leach), their 
economic importance is minor if compared to the supergene 
sulfide mineralization. Also, the spatial distribution of these 
mineralization units, with the exception of the leached cap, 
is complex and difficult to model. Typical sizes of oxide and 

mixed bodies are at best approximately equal to the better 
drilling spacing available (50–70 m of lateral extension). 
Subdividing these small domains even further is likely to re-
sult in poor grade estimates.

It was found that within the supergene enrichment zone the 
lithological control is redundant with alteration. Lithology is an 
important control for mineralization types, but in the supergene 
areas alteration overprints and obliterates the Lithologic control.

Estimatoin 
Domain 

Mineralization Lithology Alteration Structural 
Domain 

Comments 

0 Leach ALL ALL ALL Mostly barren. 
1 Oxides ALL ALL ALL Defined by 

Interpreted Oxide 
Envelope 

2 Cuprite ALL ALL ALL Cannot be 
processed, mined as 
waste regardless of 

grade  
3 Partial Leach ALL ALL ALL Small bodies, 

difficult to model 
4 Mixed ALL ALL ALL Small bodies, 

difficult to model 
5 ALL Rhyolites ALL ALL Eastern edge of the 

deposit, low grade, 
little development in 

the near future. 
6 Cc+Py; Cc+Cv+Py ALL QSA 1+4 High 

Enrichment 
7 Cc+Py; Cc+Cv+Py ALL SCC 1+4 High 

Enrichment 
8 Cc+Py; Cc+Cv+Py ALL QSA 3 High 

Enrichment 
9 Cc+Py; Cc+Cv+Py ALL SCC 3 High 

Enrichment 
10 Cc+Cpy+Py; Cv+Py 

Cc+Cv+Cpy+Py; 
Cv+Cpy+Py 

ALL QSA 1+4 Low 
Enrichment 

11 Cc+Cpy+Py; Cv+Py 
Cc+Cv+Cpy+Py; 

Cv+Cpy+Py 

ALL SCC 1+4 Low 
Enrichment 

12 Cc+Cpy+Py; Cv+Py 
Cc+Cv+Cpy+Py; 

Cv+Cpy+Py) 

ALL QSA 3 Low 
Enrichment 

13 Cc+Cpy+Py; Cv+Py 
Cc+Cv+Cpy+Py; 

Cv+Cpy+Py 

ALL SCC 3 Low 
Enrichment 

14 Cpy+Py; Py; 
Bn+Cpy+Py 

Porphyries 
+ Breccias 

K+B 1+4+2 Primary 

15 Cpy+Py; Py; 
Bn+Cpy+Py 

Andesites K+B 1+4+2 Primary 

16 Cpy+Py; Py; 
Bn+Cpy+Py 

Porphyries 
+ Breccias 

K+B 3 Primary 

17 Cpy+Py; Py; 
Bn+Cpy+Py 

Andesites K+B 3 Primary 

18 Cc+Py; Cc+Cv+Py ALL ALL 2 High 
Enrichment 

19 Cc+Cpy+Py; Cv+Py 
Cc+Cv+Cpy+Py; 

Cv+Cpy+Py 

ALL ALL 2 Low 
Enrichment 

Table 4.2  Initial estimation domains 
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Figures 4.6 and 4.7 show the Q-Q plots of all Escondida 
Porphyry vs. andesite lithologies, conditioned to the two 
main alterations, QSA and SCC, respectively. Note how the 
plots are close to the 45° line, which implies similar sta-
tistical distributions. Therefore, TCu grades do not change 
much in andesite or Escondida porphyries, as long as the 
alteration remains the same. Lesser grades can be expected 
if the alteration is SCC, regardless of whether lithology is 
andesite or Porphyry. Approximately 18 % of the total assay 
intervals are andesite with QSA alteration, while there are 
approximately 4 % of Escondida porphyry assays with SCC 
alteration.

This is not the case for primary mineralization where there 
are significant differences in the statistical characteristics of 
TCu grades when comparing andesites with the Escondida 

porphyry. Figure 4.8 shows the Q-Q plot of both lithologies 
for alteration K + B; note how the distributions are quite dif-
ferent. The number of assays available in primary mineral-
ization with potassic and biotite alterations is relatively small 
since drilling targets the supergene enriched mineralization. 
This is why they were grouped. Primary mineralization is 
not as important economically as the upper part of the de-
posit, so it appears reasonable, mostly for pragmatic reasons, 
to group the primary mineralization units.

Structural domains 1 and 4 present a clear difference 
in terms of TCu grades, compared to structural domains 2 
and 3. Domain 3, in particular, is the most different. This is 
evident both from descriptive statistics and TCu correlogram 
models for the different domains.

Figures 4.9, 4.10, 4.11, and 4.12 show the Q-Q plots of 
HE versus LE mineralization (Cc + Py vs. Cc + Cpy + Py) for 
Domains 1 through 4, respectively.

Figure 4.9 (structural domain 1) shows that the global 
Cc + Py distribution has significantly more grade for the 
1–4 % TCu range. The quantile values for higher grades tend 
to be similar, which implies that both distributions have a 
significant high grade tail.

Figure 4.10 (structural domain 2) shows that the low en-
richment material (Cc + Cpy + Py) has a higher-grade distri-
bution. This is an indication that there is less chalcopyrite in 
structural Domain 2, probably due to a deepening of the en-
richment process in a down-thrown structural block. There-
fore, it would be reasonable to combine HE and LE into a 
single group. Structural domain 2 is the smallest in volume 
of the four domains considered.

The grade distributions in structural Domain 3 (Fig. 4.11) 
behave as expected, with the HE distribution consistently 
showing higher grade, while the grade distributions for 
structural domain 4 (Fig. 4.12) are very similar, again prob-
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ably due to the relative abundance of chalcocite vs. chalco-
pyrite in the LE unit. The analysis of the relative movements 
of each structural block explains this observation, since the 
enrichment process also reached deeper levels for structural 
Domain 4.

In conclusion, the TCu grade distribution shows differ-
ent statistical characteristics in each structural domain. The 
structural control on mineralization explains the relationship 
between high enrichment and low enrichment mineralization 
for different parts of the deposit.

In developing Table 4.2 it was assumed that supergene en-
richment mineralization (HE and LE) do not show potassic 
or biotite alteration. This is based on a geologic assumption. 
Assay intervals logged as HE or LE with K-B alteration were 
dismissed as incorrectly logged intervals.

4.3.3  Tcu Grade Correlogram Models  
by Structural Domains

Another perspective of the differences between domains 
can be gained by analyzing the spatial continuity of the TCu 
grade distribution, considering again HE mineralization 
(Cc + Py) as an example. Correlograms (Chap. 6) were run 
and modeled for all main geologic variables and for each 
structural domain.

There are practical aspects that need to be considered 
when analyzing correlogram models within the scope of es-
timation domain definition. Correlograms and other spatial 
continuity models are affected by the amount of data avail-
able. At Escondida, this implies that the models for structural 
domain 2, primary mineralization, and some of the low en-
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richment mineralization units are less reliable compared to 
the more populated units.

The correlogram models developed showed the following:
•  The prevalent  anisotropy directions  are NE and NW as 

expected, but not in the horizontal plane. The main axes 
of continuity are dipping 20–50° towards the center of the 
deposit, depending on the mineralization unit and domain. 
This is not a simple, layered deposit that it is sometimes 
envisioned when dealing with porphyry type deposits.

•  Structural Domain 3 consistently presents a much higher 
nugget effect than the other domains. The grade distri-
bution is more erratic and discontinuous. More dilu-
tion can be expected at the time of mining, relative to 
other domains, which indeed has been the operation’s 
experience.

•  Correlograms  from  structural  Domains  2  and  4  show 
evidence of a deeper enrichment process, consistent 
with field observations. A NW trending zone of deeper 
enrichment results in better mineralization as observed 
in the pit. Correlograms from structural Domain 1 tend 
to plunge towards the W-SW, while correlograms from 
Domains 3 and 4 tend to plunge towards the S-SE.

•  Structural Domains 1 and 4 show a stronger NE anisot-
ropy, with less emphasis on the NW or SW dipping struc-
tures. Structural Domain 2 shows also significant (long-
range) NE anisotropy overprinting the expected NW short 
range anisotropy. The longer-range N-NE anisotropies 
observed correspond to the general orientation of the two 
main intrusive bodies that are thought to be the mineral-
ization source.

4.3.4  Final Estimation Domains

Several simplifications were made to the original proposed 
estimation domains since additional constraints need to be 
considered to obtain the final estimation domains. First, 
both enrichment mineralization units in structural Domain 2 
(18 and 19) were joined into a single estimation domain, 
partly because of the similarity of the grade distribution, and 
partly because of lack of data. Estimation Domains 7 and 11 
were merged into a single domain (HE and LE, with SCC 
alteration, for Domains 1 + 4), again because of statistical 
similarity and lack of data. All primary mineralization was 
combined into a single domain because of lack of data; low 
TCu grades, and also because production of Cu from pri-
mary mineralization will not happen until much later in the 
mine life.

The final estimation domains are shown in Table 4.3. De-
scriptive statistics, clustering analysis, contact analysis, and 
variography are used to confirm the statistical characteristics 
of TCu within each domain. The results of the domain defi-
nition study can be summarized as follows:

1. Fourteen estimation domains (GUs) were defined for 
TCu. These include the GUs defined for the upper portion 
of the deposit.

2. Two unexpected features at the time were the use of struc-
tural domains and the lesser role that lithology plays as 
mineralization control in the supergene enrichment zone.

3. The correlogram models obtained for the different data-
sets and conditioned to different geologic attributes and 
the GUs show a pattern of anisotropies consistent with 
geologic knowledge and observations in the pit.

4. There are important details in terms of correlogram mod-
els that result from the addition of the structural domains. 
The most important one is that in Domain 3 the relative 
nugget effect is significantly higher than for the other do-
mains. This is a result of a local mixture of phyllic (QSA) 
and SCC alterations, with a corresponding increase in 
grade variability.

5. The anisotropies detected confirm that the shorter-range, 
higher-grade mineralization trends mostly NW, but with 
significant N-NE long-range anisotropies. Also, for units 
to the south and west of the deposit, the dips and plunges 
of the ellipsoids of continuity generally will dip to the 
SW and plunge towards the NE; for units to the north and 
North East of the deposit, the dip may still be SW, but the 
plunge is more commonly to the SE.

4.4  Boundaries and Trends

The geological interpretations and modeling of estimation 
domains produce boundaries that often carry significant un-
certainty. The treatment and definition of boundaries have 
implications on resource estimation such as dilution, lost 
ore or a mixture of geological populations. The treatment 
of boundaries at the time of grade estimation is of practi-
cal importance. The terms hard and soft boundaries are used 
to describe whether the change in grade distribution across 
the contact is abrupt or not, respectively. Conventional grade 
estimation usually treats the boundaries between geological 
units as hard boundaries, whereby no mixing occurs across 
the boundary. Soft boundaries allow grades from neighbor-
ing domains to be used. Sometimes, soft and hard boundaries 
can be predicted or expected from geological knowledge, but 
should always be confirmed with statistical contact analysis 
(Ortiz and Emery 2006; Larrondo and Deutsch 2005).

Contact analysis helps determine whether the grade esti-
mation for any given unit should incorporate characteristics 
of a neighboring unit. It is a practical tool to describe grade 
trends and behavior near contacts and define the data to be 
used in the estimation of each unit.

The behavior of grades across contacts can be analyzed 
by finding pairs of data in the two estimation domains of 
interest at pre-defined distances. There are different methods 
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to define the pairs, but a true three-dimensional method is 
preferred to avoid directional biases. In this method, pairs 
within pre-specified distances are found through a three-
dimensional search of nearby assay intervals belonging to a 
different unit.

Figure 4.13 shows the grade averages at either side of 
the contact between the Cc + Py and the Cc + Cpy + Py units 
from the Escondida case study. Each point in the figure cor-
responds to the TCu average grouped at 2 m distance classes 
from the contact. Despite the high variability in the averag-
es, the grade transition is smooth, from higher grades in the 
Cc + Py unit to lower grades in the Cc + Cpy + Py unit, and as 
would be expected from units that are defined as transitional 
mineralogical assemblages. A trend could be modeled as a 
function of distance from the contact.

Another example (Fig. 4.14) shows that the profile of av-
erage TCu grades at the contact between the final estimation 
Domains 6 and 7 at Escondida (see Table 4.3) is hard. In this 
case, the TCu grades change significantly crossing from one 
unit to the other in a very short distance. Therefore, it is not 
advisable to use composites from estimation Domain 7 to 
estimate TCu grade in estimation Domain 6.

Considering stationary domains in the presence of soft 
boundaries is often inappropriate. In general, soft boundaries 
as the one shown in Fig. 4.13 are characterized by a non-
stationary behavior near the contact. The mean, variance or 
covariance are not constant within a zone of influence of one 
rock type into the other and their values depend on the loca-
tion relative to the boundary, as illustrated by Fig. 4.15.

The correct reproduction of soft boundaries in resource 
models improves dilution and mineral resource estimates. 
The areas close to contacts are usually areas of higher uncer-
tainty, as shown by the abundance of red colors in Fig. 4.16.

In the presence of complex contacts and multiple bound-
aries, it may be appropriate to model the non-stationary fea-
tures present in the local neighborhood. The non-stationary 
features of the mean, variance, and covariance can be param-
etrized into a local model of coregionalization (Larrondo and 
Deutsch 2005). Estimation of the grades can be performed 
using a form of non-stationary cokriging (Chap. 8).

Trends within estimation domains are also common. In 
certain circumstances, trends need to be explicitly modeled 
or taken into account, particularly when simulating grade 
distributions (Chap. 10). In other instances, such as grade es-

Estimation 
Domain 

Mineralization Lithology Alteration Structural 
Domain 

0 LIX (0) ALL ALL ALL 
1 OXIDE (1) ALL ALL ALL 
2 CUPRITE ALL ALL ALL 
3 PARTIAL LEACH ALL ALL ALL 
4 MIX ALL ALL ALL 
5 ALL PC+TB 

(Rhyolite+Tuffs) 
ALL ALL 

6 6+9  
(Cc+Py; Cc+Cv+Py) 

ALL QSA (1) 1+4 

7 6+9+7+10+13+14 
(Cc+Py; Cc+Cv+Py; Cc+Cpy+Py;  

Cv+Py; Cc+Cv+Cpy+Py;  
Cv+Cpy+Py) 

ALL SCC (2) 1+4 

8 6+9  
(Cc+Py; Cc+Cv+Py) 

ALL QSA (1) 3 

9 6+9  
(Cc+Py; Cc+Cv+Py) 

ALL SCC (2) 3 

10 7+10+13+14 
(Cc+Cpy+Py; Cv+Py 

Cc+Cv+Cpy+Py; Cv+Cpy+Py) 

ALL QSA (1) 1+4 

11 7+10+13+14 
(Cc+Cpy+Py; Cv+Py 

Cc+Cv+Cpy+Py; Cv+Cpy+Py) 

ALL QSA (1) 3 

12 7+10+13+14 
 (Cc+Cpy+Py; Cv+Py 

Cc+Cv+Cpy+Py; Cv+Cpy+Py) 

ALL SCC (2) 3 

13 8+10+12 
(Cpy+Py; Py; Bn+Cpy+Py)  

ALL K+B (3) ALL 

14 6+9+7+10+13+14  
(Cc+Py; Cc+Cv+Py; Cc+Cpy+Py;  

Cv+Py;Cc+Cv+Cpy+Py;  
Cv+Cpy+Py) 

ALL ALL 2 

Table 4.3  Estimation domains for total copper, Escondida 2001 resource model 

4 Definition of Estimation Domains



614.4  Boundaries and Trends

Fig. 4.13  TCu grade transition at the contact between mineralization units Cc + Py and Cc + Cpy + Py, 2 m assays
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timation using ordinary kriging and limited search neighbor-
hoods, trends are accounted for by the implicit re-estimation 
of the mean within the search neighborhood (see Chap. 8 and 
Journel and Rossi 1989).

Some trends can be inferred from geological knowledge. 
For example, the distribution of nitrate, borate, and iodine 
in evaporitic-type deposits is predictable. More common-
ly, trends are detected and modeled directly from the data. 
Trends can be described using plots of grade versus distance 
along a relevant coordinate direction. Figure 4.17 shows the 
gold grade trend in the vertical direction in a low-grade por-
phyry Au deposit. The data show that the Au grade declines 
for lower elevations at an approximate rate of about 0.1 g/t 

per 100 m. This trend may persist even after defining the 
final estimation domains. If not taken into account, the trend 
may result in overestimation of the Au resource for the lower 
benches.

If trends must be accounted for explicitly, then the fol-
lowing approach is commonly applied in presence of a trend:
• Develop a deterministic trend model and remove it from 

the data;
• Model the residual component; and
• Add the deterministic trend to obtain the final model.
There are some common deterministic methods for building 
a trend model. They include hand or computerized contour-
ing, and fitting simple polynomial models. In practice, we 

Fig. 4.17  Example of Au grade 
trend based on bench composites
 

Fig. 4.16  An example of higher uncertainty (and higher grade) near contacts
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might consider 1-D vertical trends and 2-D areal trends that 
are then merged into a 3-D trend model. There is no unique 
way to merge 1-D and 2-D trends into a 3-D trend model, 
but a simple approach is to merge these trends by assuming 
conditional independence of vertical and areal trends:

Where mz(z) = mean from vertical trend, mx, y(x, y) = mean 
from areal trend, mglobal = global mean from histogram, and 
m(x,y,z) = mean at location (x,y,z). This equation effectively 
rescales the vertical trend curve by the areal trend. Other 
probability combination schemes such as permanence of ra-
tios could be used in situations where assuming conditional 
independence leads to extreme mean values too close to zero 
or too high.

4.5  Uncertainties Related to Estimation 
Domain Definition

The definition of estimation domains is an important prereq-
uisite in the application of most geostatistical tools used in 
resource modeling. The domains determine the mineralized 
volume available, and thus is a major factor in the estimated 
tonnage above economic cutoffs.

The definition of estimation domains is subjective and 
limited by data and practical considerations. There are many 
sources of uncertainty contributing to the uncertainty in the 
definitions of contacts and volumes.

Some of the more typical sources of uncertainty include 
geologic data: errors, omissions, or imprecise mapping and 
logging are common. For example, in highly altered rock, 
the precise description of lithology types can be difficult, 
more so if diamond drilling is not used. Porphyries of dif-
ferent kinds are difficult to differentiate and different litholo-
gies may not be easy to distinguish. Human perceptions and 
errors are important since many geologic attributes are sub-
ject to visual estimations and interpretations in the field. For 
example, the alteration intensity or the percentage of sulfides 
may have to be estimated by the geologist.

Limited data also may be a significant source of uncer-
tainty. It is common that two domains with clearly different 
mineralization controls have to be combined into one do-
main because one of them does not have enough drill hole 
information. This results in a mixture of populations that 
cannot be resolved until more data are collected. The domain 
with more data will influence the statistics, the variogram 
models, and the kriging plans applied to estimate the grades 
of the combined units.

( ) ( ) ( ), ,
, , z x y
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m z m x y
m x y z
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There is also the uncertainty carried over from the geo-
logic interpretation and modeling which is more significant 
in sparsely drilled areas. The geologic model can be another 
important source of uncertainty that, when combined into es-
timation domains, can result in serious flaws in the resource 
model.

All these sources of uncertainty combine with the fact 
that mineralization will be naturally varying from one loca-
tion to another. This natural variability within the estimation 
domains exists at different scales and should be considered 
at the time of estimation.

4.6  Summary of Minimum, Good and Best 
Practices

At a minimum, the methodology used to define estimation 
domains should consider the most evident mineralization 
controls, and include the basic tools needed to demonstrate 
the relationships between geologic attributes and grade. The 
main mineralization controls can often be described through 
mapped geology and a working hypothesis of the genesis 
of the deposit. Basic exploratory data analyses characterize 
mineralization controls.

Good practice considers all available geologic informa-
tion and the relationship between grades and each geologic 
variable. This process involves a first phase, in which the in-
dividual mapped geology, such as mineralization, lithology, 
alteration, or others, is grouped in part by applying geologic 
knowledge and common sense, in part applying numeric and 
statistical constraints.

A new set of descriptive statistics is then developed in a 
second phase of the study, from which an initial set of esti-
mation domains may be proposed. An iterative process that 
includes further statistical analysis supported by geologic 
knowledge results in the final definition of the estimation 
domains.

The definition of estimation domains is an imperfect pro-
cess, characterized by compromises between the estimation 
domains that should be defined (according to geology and 
statistical analysis) and the amount of data available to de-
fine them. Sometimes, limitations in the coding of the origi-
nal database may also affect the definition of the estimation 
domains.

Best practice is to define the estimation domains and 
accompany it by an assessment of its uncertainty and the 
limitations and assumptions used to define it. The defini-
tion should include limitations related to data quality and 
quantity, geologic information used, and the type of statisti-
cal analysis used to assess whether the domains contacts are 
hard or soft. The better tool to assess geologic uncertainty is 
simulation.
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4.7  Exercises

The objective of this exercise is to construct trend models 
for a 2-D example and a larger 3-D example. Some specific 
(geo)statistical software may be required. The functionality 
may be available in different public domain or commercial 
software. Please acquire the required software before begin-
ning the exercise. The data files are available for download 
from the author’s website—a search engine will reveal the 
location.

4.7.1 Part One: Basic Statistics

Consider the 2-D data in red.dat. A small exploratory 
data analysis is required for the five different variables in 
this dataset: thickness, gold grade, silver grade, copper grade 
and zinc grade.
Question 1: Tabulate the key statistics for each variable: 

number of data, minimum, maximum, mean 
and variance. Plot histograms of the different 
variables and comment on the results.

Question 2: Plot probability plots of the variables on arith-
metic or logarithmic scaling as appropriate. 
Comment on outliers, inflection points or any 
other interesting features.

Question 3: Plot scatterplots between all pairs of variables 
and create a matrix of correlation coefficients 
to summarize how the variables relate to one 
another.

Question 4: Repeat the previous question with normal 
scores of all the variables.

4.7.2 Part Two: 2-D Trend Modeling

Consider the 2-D data in red.dat. There is a significant 
trend with lower thickness at depth (below about − 250 m) to 
the North and South.
Question 1: Create a contour map that represents the 

trend. Take care that the contours do not too 
closely match short scale variations. The gen-
eral rule is to match large scale variations at 
a scale of greater than 2–3 times the drillhole 
spacing.

 Kriging or inverse distance (or some other 
gridding algorithm) can be used as well; how-
ever, hand contouring is robust and gives an 
improved understanding of the data. Post the 
thickness data with the thicknesses posted 
on the map. Hand contour the map. Choose 
your own contour intervals; however, you 
could take 0.5, 1.0, 2.0, 5.0, or 10.0 if you are 
unsure.

Question 2: There are a number of programs to get the 
contour lines in a “point-data” format for 
gridding algorithms. Create a gridded model 
of your contour map. Ensure that the map is 
smooth with no artifacts from your chosen 
gridding algorithm.

Question 3: Calculate residuals as res = thickness-thick-
nesstrend. Plot a histogram of the residuals. 
Plot a cross plot of the residuals versus the 
thicknesstrend values. Comment on any fea-
tures that would make it awkward to simulate 
the thickness residuals independently of the 
thickness trend.

4.7.3 Part Three: 3-D Trend Modeling

Consider the 3-D data in largedata.dat for 3-D trend 
modeling. Build a trend model for the copper grade.
Question 1: Build a smooth vertical average of the grades 

by averaging the grades in vertical slices. 
The 1-D averaging program can be used for 

4 Definition of Estimation Domains
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this purpose. Consider a number of sensitiv-
ity runs with different slice thicknesses and 
other parameters. Plot the results. Comment 
on the presence of a vertical trend and the 
importance of considering it in the simula-
tion model.  Present  the  final  result  that  you 
choose.

Question 2: Calculate the vertical average of the drillhole 
data, make a map of the vertical averages, and 
comment on the need for modeling the areal 
trend.

  Generate a smooth areal trend using kriging, 
inverse distance, or the contouring approach 
used in Part One.

Question 3: Construct a 3-D trend model by combining 
the 1-D vertical trend and the 2-D areal trend. 
Comment on the practical implications of the 
conditional independence assumption implicit 
to the combination approach commonly used. 
Also comment on the alternatives to construct 
a 3-D trend.

Question 4: Calculate residuals as res = grade   − grade 
trend. Plot a histogram of the residuals. Plot 
a cross plot of the residuals versus the grade 

trend values. Comment on any features that 
would make it awkward to simulate the grade 
residuals independently of the grade trend.
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5Data Collection and Handling

Abstract

Estimates of mineral resources are dependent on the available data. This Chapter reviews 
the main challenges related to data collection and handling. Special attention is given to 
data representativity, extreme high grades, and compositing the data to practical and con-
sistent lengths. A summary of sampling theory is also presented.

5.1  Data

The mining industry collects more data than other natural-
resource industries. This provides an opportunity to better 
understand local variations and obtain robust local estimates. 
The abundance of data play a major role in defining the mod-
eling techniques used and their implementation, and has his-
torically influenced the development of geostatistical tech-
niques. This is in contrast with, for example, some petroleum 
and environmental modeling applications, where the amount 
of data collected is limited, and the final results are more 
model-dependent.

The quality of the mineral resource estimate is dependent 
on the quality of the data collection and handling procedures 
used (Erickson and Padgett 2011; Magri 1987). A number of 
technical issues affect the overall quality of the data, but only 
the most important ones are discussed here. The concept of 
data quality is used in a pragmatic way, that is, with a view 
to how the data affect the tonnage and grade estimates in the 
resource model.

Sample data will be used to predict tonnages and grades. 
Statistical analyses will be used with geological and other 
technical information to make inference decisions. The sam-
ple database has to provide for sound and robust decision-
making. Although there may be many data, only a small por-
tion of the deposit is actually sampled; often less than one 
billionth of the mass of a deposit is drilled.

The samples should be representative of the material in-
tended for sampling which means that the sample obtained 
should result in a value that is similar to any other sample that 
could have been obtained for the same volume or material.

The samples should also be representative in a spatial 
sense, which means that the spatial coverage of the deposit 
is adequate. For example, the samples may have been taken 
in an approximately regular or quasi-regular sampling grid, 
such that each sample represents a similar volume or area 
within the orebody of interest. In practice, this is rarely the 
case and some declustering may be requried.

To ensure sample representativity, strict quality assurance 
and quality control programs should be put in place. If the 
samples are not representative, then there may be sample 
bias that will directly affect the final resource estimate. A 
number of issues need to be considered in relation to sample 
collection, handling, preparation, and analysis.

5.1.1  Location of Drill Holes, Trenches, and Pits

The geostatistical tools used to predict the tonnages and 
grade of ore material are based on knowledge of the loca-
tion of the samples. An exception is Random Kriging that is 
designed for those cases where only imprecise sample loca-
tions within a defined domain are available, see Journel and 
Huijbregts (1978, pp. 352–355) and Rossi and Posa (1990) 
for a case study. The location of each sample is expressed as 
a two or three dimensional coordinates (X, Y, and Z) and is 
obtained by surveying its position in space. There are several 
surveying methods that can be used. The location of the drill 
hole collar as well as the deviations down the hole are sur-
veyed. The location information can be handled using differ-
ent coordinate systems, see Chap. 3, but one system should 
be used for the project to avoid errors.

M. E. Rossi, C. V. Deutsch, Mineral Resource Estimation, DOI 10.1007/978-1-4020-5717-5_5,
© Springer Science+Business Media Dordrecht 2014
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The location of the drill hole collars is typically surveyed 
with total stations tied to a local triangulation point. High-
precision GPS systems are increasingly common. It is also 
common to develop a local topographic map from a topo-
graphic satellite or fly-over (aerial) image.

All surveys should be checked against other informa-
tion such as the general topography map of the area. The 
elevation of the drill holes should coincide with the avail-
able topographic surface within an acceptable tolerance. A 
discrepancy of more than half a bench or stope height is con-
sidered a problem. Two meters maximum error in elevation 
is generally acceptable.

Down-the-hole surveys measure drill hole deviations 
after the drill hole is completed. Commonly used measur-
ing devices are based on photographs of a bubble ring and 
related to an original orientation, such as single or multi-
shot photos, a magnetic compass, or small gyroscopes, from 
which azimuth and dip measurements are taken. For addi-
tonal details of measuring devices see for example Skinner 
and Callas (1981) and Peters (1978).

The device is lowered into the hole, taking azimuth and 
dip measurements at pre-specified intervals, typically every 
20 to 50 m down the hole. The measurements are later used 
to determine the X, Y, Z location of each sample. The mea-
sured azimuths and dips are particularly important for long, 
inclined holes. The deviation of a drill hole is a function of 
the rock it traverses, the drilling technique used, and the 
depth and initial inclination of the hole. If the hole is drilled 
close to the schistosity or the natural fabric of the rock, it will 
tend to follow the weaker planes in the rock. If the drill hole 
is drilled at a higher angle, it will tend to deviate normal to 
planes of weakness.

If the hole is expected to deviate significantly, then more 
frequent measurements should be taken. The composition 
of the rock being drilled through is another consideration, 
since some of the instruments used are affected by natural 
magnetism, such as the reflex system and single-shot de-
vices. The presence of magnetic iron ore minerals, such as 
magnetite, phyrrotite and quartz-magnetite alterations may 
affect the readings. Other factors that increase the likeli-
hood of down-the-hole deviations are sudden and periodic 
changes in rock hardness. Finally, the measured azimuths 
should be corrected for magnetic declination, particularly 
in high latitudes.

5.1.2  Sampling Methods and Drilling 
Equipment Used

In addition to drilling, samples can be obtained directly on 
the surface or from underground workings through trench-
ing, channel samples, or chip samples. Samples chipped 
from a rock exposure are generally not used in resource esti-

mation. Although a properly done channel sample provides 
good information, in practice, it is very difficult to obtain 
consistently representative samples.

Representative channel samples will correspond to lim-
ited spatial coverage along exploration adits or underground 
workings. In underground mines, where channel samples are 
routinely gathered for grade control, the spatial coverage is 
more significant, but the sample quality tends to be poorer, 
because of the shorter times allowed for the sampling and as-
saying cycle. Most channel samples in this case become chip 
samples, where only a small amount of rock is taken from 
the face, with a high probability of being biased.

Drilling is the most common and important method for 
obtaining representative samples. Drilling allows sampling 
an unexposed orebody. The most common types of drill 
holes include conventional rotary (percussion), reverse cir-
culation, and diamond drill holes (see Fig. 5.1). Each drilling 
method has its own characteristics and variants that affect 
the quality of the samples collected. Although other methods 
exist, they are either for special applications, or have been 
replaced because they are slower and more expensive. W.C. 
Peters provides a clear discussion on different drilling and 
sampling methods (Exploration and Mining Geology 1978, 
pp. 435–443).

Fig. 5.1  Boart Longyear’s LF-140–2 Core Drill Rig (diamond drilling)
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5.1.3  Relative Quality of Each Drill Hole 
or Sample Type

It may not be appropriate to use samples from a percussion 
rig and from a diamond drill hole simultaneously to obtain 
a resource estimate. One set of samples may be biased with 
respect to the other. When more than one sample type is 
available, it is necessary to make comparisons of each set of 
samples and their statistical properties. Ideally, it is better to 
compare sets of twins or duplicate samples, but they are not 
always available. It is common that channel or chip samples 
will also show significant differences with nearby drill hole 
data. Data from biased drill hole or channel samples should 
be discarded or used cautiously solely for the construction of 
a geological model. In some cases secondary poorer quality 
data could be used in some form of cokriging (Journel and 
Huijbregts 1978).

Samples from percussion drilling commonly suffer from 
significant loss of material and little control during the drill-
ing operation; high or low grades may be preferentially lost. 
Also, significant mixing of material occurs as the samples 
come up the hole; thus the exact location of the sample is 
uncertain. In most cases, data from percussion drilling is not 
acceptable for resource estimation.

Reverse circulation drilling is cheaper than diamond 
drilling, and so, for a given budget, may provide more in-
formation. If done carefully and under good sampling con-
ditions, it can provide good samples. Often, reverse circula-
tion drill holes are of larger diameter than common diamond 
drill holes. It may be difficult to obtain good geological de-
scriptions, since the material is recovered as broken rock 
chips.

Diamond drilling is more expensive, although if core re-
covery is good, it has the advantage of bringing intact rock 
to the surface. This allows for better geologic mapping, and, 
after splitting the core in half, provides a representative sam-
ple for preparation and assaying. The down-the-hole loca-
tion is better known than other types of drilling. Diamond 
drilling is generally considered to provide the best sample 
quality. Figure 5.2 shows a partial view of the very large core 
farm for BHP-Billiton’s Olympic Dam multimetal deposit in 
South Australia.

5.1.4  Sampling Conditions

The quality of samples also depends on the material being 
sampled and the conditions under which the samples are 
taken. For example, the presence of underground water or 
very fractured rock requires careful and sometimes much 
slower and expensive sampling methods to minimize pos-
sible biases.

Reverse circulation drilling and sampling could be par-
ticularly difficult below the water table or in the presence of 
significant amounts of water. Down-the-hole contamination, 
washing, and cave-ins are concerns, as well as loss of min-
eralization in the slimes produced. In these situations, and to 
avoid losing fines, the output water from the hole can be re-
directed to a large decantation barrel before final discharge. 
The fine material that decants in the barrel can be collected 
and analyzed, providing an indication of whether the loss of 
fines results in a mineral grade bias. In practice, the amount 
of material that can be decanted is limited and it is difficult 
to assign an exact down-the-hole location to the analyzed 
fines.

Diamond drill holes can also have problems with ex-
cess water during drilling. For example when the mineral is 
lodged in veinlets that can be washed away before the core 
is recovered. A multiple-tubing system is sometimes used to 
achieve better core recoveries in weak, fractured rock. Core 
cutting is sometimes a source of concern, particularly when 
a diamond-blade saw cutter is used in the presence of schis-
tose or friable material; a hydraulic press may be preferable 
in these cases.

5.1.5  Core and Weight Sample Recoveries

For drill types where the samples are taken from drill cut-
tings, it is useful to record the total weight of the material 
extracted from the hole for the given sampling interval. This 
total weight should be compared to the theoretical weight of 
the sample:

2Sample Weight = d lengthπ δ∗ ∗ ∗

Fig. 5.2  Partial view of the core farm for Olympic Dam’s mine and 
expansion project, courtesy of BHP Billiton, Roxby Downs, South 
Australia
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where d is the hole radius, length is the sample interval 
length, and δ is the density of the material. This slows down 
the drilling process and may be difficult or cumbersome; 
however, it is a recommended quality control step.

The actual weight of the sample should be reasonably 
close (within 10–15 %) of its theoretical weight. There may 
have been sample loss or additions (from cave-ins or down 
the hole contamination) that may affect the final sample 
weights. In the case of diamond drill core, measuring the 
length of the piece(s) recovered allows a % recovery value 
to be assigned to each sample. Systematically low recoveries 
are generally a cause for concern. It is important to analyze 
the relationship between core recovery and grades since bet-
ter grades may occur in intervals with less recovery, such as 
fractured rock.

5.1.6  Sample Collection and Preparation 
Procedures

Sample collection methods depend on the drill rig used. 
Generally, automatic samplers such as the one shown in 
Fig. 5.3 are preferred for cuttings since they allow for a more 
systematic splitting of the material recovered from the drill 
hole. Particular attention should be paid to the potential loss 
of fines since they often are high grade material.

A portion of the sampled material should be kept for his-
toric records and future re-checking. Diamond drill cores are 
usually split in half with one half being used for preparation 
and assaying and the other half stored as a historic record of 
the drill hole. The preparation of the sample prior to assay-
ing is a series of size reduction and splitting steps until a fine 
powder is obtained for assaying.

5.1.7  Geologic Mapping and Logging 
Procedures

It is important to describe the geologic characteristics of 
the rocks at different scales. This is done by geologists in 
the field or in the core shack and requires knowledge of the 
rock formations, mineralization and alteration types of the 
deposit. These observations are made visually with the help 
of a hand-lens. There is always a degree of subjectivity in 
the geologic descriptions depending on the experience of 
the geologists and knowledge of the local geology. A ma-
ture deposit with a large number of drill holes will probably 
have well-established procedures for identifying geologic 
attributes.

Figure 5.4 shows an example of a logging sheet taken 
from one of the early exploration holes of the Escondida 
Cu porphyry project, owned at the time by Minera Utah de 
Chile, Inc. For each mapped interval, information such as 

lithology, alteration type and intensity, presence of fractures, 
identified minerals, and other relevant comments are regis-
tered, and eventually entered into a computer database.

The geologic information is used to better understand and 
predict the mineralization of interest. There are several refer-
ences that describe procedures to map geologic information, 
such as the already mentioned Peters (1978). The geologic 
information gathered from drill hole is as important as the 
sample grades obtained.

5.1.8  Sample Preparation and Assaying 
Procedures

Sampling heterogeneous materials will incur some error, re-
gardless of the care and technique used to obtain the sample. 
It is important to understand the possible impact of these 
sampling errors on a resource estimate. Sampling errors are 
also related to the distribution of the variable being sampled, 
which in some cases is particularly difficult, see Rombouts 

Fig. 5.3  AusDrill Blast Hole Sampling System. Courtesy of AusDrill 
Ltd
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Fig. 5.4  Historic Geologic Logging Sheet, courtesy of BHP Billiton
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(1995). The sampling theory and practice with application to 
the mineral industry was developed by P. Gy, ( Sampling of 
Particulate Materials, Theory and Practice 1982), with later 
significant additions by F. Pitard (1993) and D. F. Bongarçon 
(1998a, b), among others. A summary of sampling theory is 
presented below in Sect. 5.2. The application of sampling 
theory is to develop deposit-specific sampling protocols to 
minimize sampling variances.

The analytical procedures used to analyze samples are 
generally well known and controlled, but may still be a 
source of error. It is necessary to develop a strict, compre-
hensive, and enforceable quality assurance and quality con-
trol (QA/QC) program. This should be independent of the 
laboratory and should include analyzing duplicate samples 
of pulp and coarse material, blanks, and known standards. A 
good QA/QC program should reduce the laboratory errors to 
2–5 % relative error, which is small relative to other errors in 
resource estimation.

5.1.9  Sampling Database Construction

A computerized database is required for resource estima-
tion and presents another potential source of errors. There 
may be transcription errors (more so if done manually) and 
sometimes a lack of record-keeping. Inconsistencies in the 
geologic database compared to the information originally 
mapped can be consequential. They may be due to errors or 
a decision to re-code certain drill hole intervals.

A quality control program on data input should be im-
plemented and should also include procedures to provide 
an estimate of error rates in the database. There should be 
safeguards in place against gross errors, such as in a per-
centage of grade in rock not allowed to be less than 0 % or 
greater than 100 %, or greater than the maximum percentage 
that can exist in the rock according to its mineralogy. Other 
checks include the consistency of the sampled intervals 
and the location of the drill holes within the project area. 
Manual checks of original assay certificates, geologic logs, 
and other information should be done on a routine basis and 
as part of the quality control of the database. These checks 
should include all relevant information, such as grades, 
down-the-hole surveys and the surveyed drill hole collar 
locations.

Databases, when audited either externally or internally, 
are checked against the original information available, in-
cluding laboratory assay certificates; checked and signed 
off geologic logs; and down the hole deviations and collar 
information properly checked and signed off as well. It is 
customary for auditors to check line by line and manually 
verify about 10 % of the total information available in the 
database; although actual practice varies, generally a 1 % 

error rate or less on the checked information is considered 
acceptable. More than a 2 or 3 % error rate generally triggers 
a line-by-line check of the entire database.

5.2  Basics of Sampling Theory

The discussion presented here has been based on the 
Centre for Compuational Geostatistics (CCG) Guidebook 2 
(Neufeld 2005). Perfect measurements are not possible. The 
relatively large mass of a sample must be reduced to a small 
subsample of a few grams for the final chemical analysis. 
There will always be a discrepancy between the content of 
the lot, the original sample, and the assay sample. This dis-
crepancy is termed the sample error.

In sampling there are two forms of error: one that is 
present due to the intrinsic properties of the material being 
sampled and one that arises from improper sampling pro-
cedures and preparation. This section presents a brief re-
view of the concepts and guidelines that are used to design 
sampling protocols that will minimize the errors introduced 
through improper procedures. The goal is to estimate and 
use the “fundamental error” that is always present. The 
reader interested in this topic should refer to more detailed 
discussions of P. Gy’s Sampling Theory, for example in 
Pitard (1993).

5.2.1  Definitions and Basic Concepts

The Fragment Size, dα(cm), is the actual size of the frag-
ment, or average size of the fragments, in the increment 
α. The Nominal Fragment Size, d (cm), is defined as the 
square mesh size that retains no more than 5 % of the over-
size material.

The Lot, L, is the amount of material from which 
increments and samples are selected. A lot of material should 
have well-defined boundaries: the content of a bag, truck, 
railroad car, ship, etc. A lot is also referred to as a batch of 
material. An Increment, I, is a group of fragments extracted 
from a lot in a single operation of the sampling device.

The Sample is a part of a lot obtained by the reunion 
of several increments and meant to represent the lot in fur-
ther calculations or operations. A sample must respect cer-
tain guidelines that Sampling Theory lays out. Sampling is 
often carried out by progressive stages: a primary sample is 
extracted from the lot, and then a secondary sample is ex-
tracted from the primary sample, and so on.

The Component is the constituent of the lot that can 
be quantified by analysis. It may be a chemical or physical 
component such as: a mineral content, water content, percent 
fines, sulphur content, hardness, etc.

5 Data Collection and Handling
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The Critical Content, a, is the proportion of a critical 
component that is to be estimated. The critical component 
of a lot L is denoted aL, the critical content of a sample S is 
denoted aS, etc.

Heterogeneity is the condition of a lot where not all ele-
ments are identical. There are two types of heterogeneity that 
we are concerned with: a) the constitution heterogeneity and 
b) the distribution heterogeneity.

The Constitution Heterogeneity, CH, represents the dif-
ferences between the composition of each fragment within 
the lot. Contributing factors are the fragment shape, size, 
density, chemical composition, mineralogical composition, 
etc. Constitution heterogeneity generates the fundamental 
sampling error.

The Distribution Heterogeneity, DH, represents the dif-
ferences from one group to another within the lot. Contribut-
ing factors are the constitution heterogeneity, spatial distri-
bution, shape of the lot due to gravity, etc.

The Sampling Protocol is a set of steps for sample 
taking and preparation meant to minimize errors and to 
provide a representative sample that is within acceptable 
standards.

5.2.2  Error Basics and Their Effects 
on Sample Results

Errors may be introduced during the stages required for sam-
pling and sample preparation. They can be random with a 
mean of zero, random with a non-zero mean, or accidental 
(ocassional or non-systematic).

The “fundamental error (FE)” is the only error that can-
not be eliminated using proper sampling procedures. It will 
be present even if the sampling operation is perfect. Funda-
mental error is a function of the constitution heterogeneity 
of the material being sampled and it can be quantified before 
sampling. The errors it generates are random with a mean 
of zero.

The “increment delimitation error (DE)” and “increment 
extraction error (EE)” are random errors but their mean is 
typically non-zero. Unlike the fundamental error delimita-
tion and extraction error can be eliminated through proper 
sampling procedures.

Delimitation error occurs when the shape of the volume 
for the increment extracted is not correct; for example not 
taking the entire cross section of a conveyor belt. Extrac-
tion error occurs when all of the fragments that belong in 
the correctly delimited volume for the increment do not end 
up in that volume. The mean of these errors is typically 

L

Weight of a critical component in the lot L
Critical content a

Weight all components in the lot L
=

non-zero, so bias can be introduced to the sampling pro-
cedure.

Accidental errors that occur during sampling or prepara-
tion cannot be analysed using statistical methods as they are 
non-random events. Prevention of accidental errors is crucial 
for reliable sampling, and have little to do with Sampling 
Theory, more to do with good sampling practices.

Since the errors are random variables and are independent 
the following relationships are true:

•  Total sampling error:

•  Average error:

• Total error variance:

Thus, individual errors do not cancel out, but are compound-
ed. This compounding effect emphasises the care and atten-
tion that sampling requires.

When the mean of the sampling error, E{SE}, approaches 
zero the sample is accurate, or non-biased. A sampling selec-
tion is said to be precise when the variance of the sampling 
error, σ2(SE), is less than the standard required for a given 
purpose. It is not related to the sample average or accuracy 
of the sample. Accuracy and precision, the two measures of 
sample quality, can be combined, leading to the notion of 
representativeness:

When the mean square of the sampling error, r2(SE), is less 
than a standard threshold, 2

or ,  the sample is considered 
representative.

5.2.3  Heterogeneity and the Fundamental Error

Sampling theory differentiates between two types of hetero-
geneity: (1) the distribution heterogeneity and (2) the consti-
tution heterogeneity.

The constitution heterogeneity could be considered in 
two different ways: the heterogeneity between the fragments 
making up a sample, or the heterogeneity within the frag-
ments of the sample. For our purposes, and sampling in gen-
eral, the heterogeneity between the fragments is more con-
sequential.

The constitution heterogeneity is defined based on the 
number of fragments within the lot and still requiring the 

TE FE DE EE= + + +…

{TE} {FE} {DE} {EE}Ε = Ε + Ε + Ε +…

2 2 2 2{TE} {FE} {DE} {EE}σ σ σ σ= + + +…

2 2 2 2
0r {SE} m {SE} {SE} r= + s £



74

characteristics of the material within the lot. But in practice 
this is difficult, and thus the constitution heterogeneity is 
multiplied by the average fragment mass. Doing this simplif-
cation defines the constant factor of constitution heterogene-
ity, also called the intrinsic heterogeneity, IHL, which can be 
expressed and estimated using simple factors. The required 
factors to define the intrinsic heterogeneity are:
•  d: the nominal fragment size; d has units in centimetres.
•  f: the shape factor accounts for the shape of the frag-

ments and is a measure of the fragment shape deviation 
from a cubic shape. It is a dimensionless number, used to 
estimate the volume of the fragment. Since the fragment 
volume is equal to the product of the shape factor and the 
cubed fragment size, fαdα3, the shape factor is a correction 
factor to determine its volume.

 If the fragments are perfect cubes, fα = 1. If the fragments 
are perfect unit spheres with r = 1, the volume of the 
sphere would be 4/3 πr3 = 0.523, therefore with shape fac-
tor f = 0.523.

 It is dimensionless and is experimentally determined 
with most minerals having a shape factor approximately 
equal to 0.5: coal = 0.446; iron ore = 0.495 to 0.514; pure 
pyrite = 0.470; quartz = 0.474; etc. Flaky materials, such as 
mica, have a shape factor around 0.1; soft solids submitted 
to mechanical stresses, such as gold nuggets, have a shape 
factor around 0.2; and acicular minerals, such as asbestos, 
have a shape factor greater than 1 and may be as large as 10.

•  g: the granulometric factor accounts for the size differ-
ences between the fragments, also a dimensionless num-
ber. Using the granulometric factor, g, and the nominal 
fragment size, d, the fragment size distribution can be 
accounted for. The granulometric factor is a measure of 
the range in fragment sizes in the sample:
− Noncalibrated material, crusher product, it is around 

0.25.
− Calibrated material, between two screens, it is around 

0.55.
− Naturally calibrated material, cereals or beans, it is 

around 0.75.
•  c: the mineralogical factor accounts for the maximum 

heterogeneity condition that can be present in the sample; 
units is in grams per centimetre cubed or specific gravity.

•  ℓ: the liberation factor accounts for the degree of liberation 
in the sample; it is a dimensionless number. When the mate-
rial is perfectly homogenous ℓ = 0 and when the mineral is 
completely liberated ℓ = 1. Most materials can be classi-
fied according to their degree of heterogeneity. The libera-
tion factor varies considerably and it is difficult to assign 
an accurate average to it. The calculation of the liberation 
factor has evolved over time, and has changed since the 
second edition of Pierre Gy’s Sampling Theory and Sam-
pling Practice by F. Pitard (1993) was published. François-

Bongarçon and Gy wrote a paper (2001) presenting an 
improved method for estimating the liberation factor. This 
method corrected some of the problems associated with the 
previous calculation and use of the liberation factor.

The constant factor of constitution or intrinsic heterogeneity 
has units of mass (grams), and is used to relate the funda-
mental error to the mass of the sample:

5.3  Liberation Size Method

5.3.1  Fundamental Sample Error, FE

The fundamental sampling error, FE, is defined as the error 
that occurs when the selection of the increments composing 
the sample is correct. This error is generated entirely by the 
constitution heterogeneity. Gy has demonstrated that the 
mean, m(FE), of the fundamental error is negligible and that 
the variance, 2

FE ,σ  can be expressed as:

where P is the probability of selection for any one fragment 
within the lot and:

Substituting this into the variance equation gives us:

and when ML > > MS:

These are very practical and useful formulae for designing 
and optimizing sampling protocols.

5.3.2  The Nomograph

To make use of the constitution heterogeneity and quantify/
show its effects on the sampling process we have to relate 
the state that the sample is in, fragment size and mass, to the 
state that we want the sample to be in, that is, with a smaller 
mass and a smaller fragment size. The error produced during 
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Plotting changes to the sample using this method allows easy 
visualization of changes made to the sample. These changes 
are actual steps in the sample preparation and can be either 
a reduction in fragment size through comminution, crush-
ing or grinding, or a reduction in the sample mass through 
splitting.

When the sample is split there is no change in the nominal 
fragment size so all of the terms in the sample variance equa-
tion are constant and the variance becomes directly propor-
tional to − log(MS). Changes to the mass of the sample, and 
the variance of the sample, by splitting will follow a line on 
the nomograph with a negative one slope. This allows lines 
representing the different nominal fragment sizes during the 
sample preparation to be plotted on the nomograph. During 
comminution the mass of the sample stays constant and the 
other terms of the equation will change. Comminution re-
sults in a reduction of the sample variance due to the reduced 
fragment size, and on the nomograph this will be a vertical 
line from the larger nominal fragment size line straight down 
vertically to the lower nominal fragment size line.

Figure 5.5 shows the size lines for six different nomi-
nal fragment sizes, a sample mass reduction step, and a 

the stages to get a smaller sample are measured and mini-
mized using the constitution heterogeneity of the material 
being sampled and the nomograph.

5.3.3  Nomograph Construction

A nomograph is a base 10 log-log plot with the sample vari-
ance on the ordinate axis and the sample mass on the abscis-
sa axis. To plot the variances versus sample size the formula 
must be converted to logarithmic space:
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Fig. 5.5  Example nomograph showing the nominal size lines, a sample splitting cycle, and a comminution step. (Hartmann 1992)
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comminution step. The size lines, for the nominal fragment 
sizes d1 decreasing to d6, are shown as the thin lines that 
extend beyond the upper and left edges of the nomograph 
boundary. When the sample was split the nominal size stayed 
the same but the mass decreased resulting in an increase in the 
sample variance. This is shown as the thick line from point A 
to point B. During the comminution phase the sample mass 
stayed the same and the nominal fragment size decreased 
resulting in the sample variance dropping from its position 
on the larger size line down to a point on a lower size line 
corresponding to the nominal fragment size produced from 
the comminution cycle. This is shown as the thick line from 
point B to point C.

5.3.4  Sampling Fundamental Error

The fundamental error that occurs during the sampling pro-
tocol is:

This error occurs when the sample is split from a large mass, 
MS1, to a smaller mass, MS2. There is no error introduced 
during comminuition—the mass of the sample stays the 
same and only the particle size is reduced. Over several sam-
ple preparation stages the fundamental error is the sum of the 
error variances during the individual stages:

This is a simple method for calculating the fundamental error 
introduced during sample preparation. The nomograph can 
thus be used for sampling protocol optimization.

5.3.5  Segregation or Distribution 
Heterogeneity

Segregation is the heterogeneity between groups of frag-
ments within the sample lot. Segregation can occur during 
handling of the material once it has been mined or sampled. 
This segregation of material in a lot is due to differences in 
the fragment size, shape, density, mass, angle of repose, etc. 
Figure 5.6 shows an example of segregation and how the ma-
terial properties contribute to the segregation. The sampling 
protocol must be designed to remove any influence that the 
segregation may have.
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5.3.6  Delimitation and Extraction Errors

These two errors are related in that if one is present, prob-
ably the other one will also occur. Delimitation error is in-
troduced when the shape of the increment selected from the 
lot is not appropriate for the type of lot being sampled. It 
can be eliminated through proper practices, although how 
controlable it is depends on whether the lot is three-, two-, or 
one-dimensional. The ideal samples being a uniform sphere, 
a cylinder, or two parallel planes, respectively.

Extraction error is introduced when the method used to 
obtain the sample is incorrect. Along with the Delimitation 
Error, it can be very detrimental to correct sampling.

The errors produced generally have non-zero means and 
introduce a bias to the results. After the correct shape of the 
increment has been determined its extraction must follow the 
centre of gravity rule. This rule states that all fragments with 
their centre of gravity inside the increment belong in that in-
crement and all of the fragments with their centre of gravity 
outside the increment do not belong.

5.3.7  Preparation Error

As soon as the insitu material is disturbed to the moment 
that it is assayed it is possible to introduce a wide range of 
possible preparation errors. Due to the non-random nature 
of these errors and the long time frame over which they can 
occur, it is important to have a good sampling protocol that 
outlines handling and preparation of the sample material 
so that the samples are representative. The errors can come 
from contamination, losses, changes in the chemical compo-
sition, unintentional mistakes, and fraud or sabotage.

Fig. 5.6  Segregation due to differences in the fragment size (coarse 
fragments roll down the pile concentrating themselves at the edge of the 
pile while the fine fragments remain near the centre) (Hartmann 1992)
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Contamination of the sample can be in the form of dust 
falling on the sample, material left over in the sampling 
circuit, abrasion on the sampling equipment, or corrosion. 
These errors can either increase or decrease the critical con-
tent for the component of interest and once the sample has 
been contaminated there is nothing that can be done remove 
the contamination.

Losses may occur as fines in dust, material left in the sam-
pling circuit, or smearing of the critical component. Usually 
the component being sampled is a minor portion of the over-
all material and it is significantly different in composition 
from the gangue material. This means that losing a specific 
fraction of the sample, the fine or coarse fraction, will result 
in the sample no longer being representative.

Changes in the chemical composition of the sample must 
be avoided. Some potential changes are oxidation, or fixa-
tion of water or carbon dioxide. Alterations in the chemical 
nature of the material will impact the assay results and the 
expected recovery of the material as it is processed.

One time human errors have the potential to be signifi-
cant and it is very hard to determine the source of the error. 
Dropping the samples, mixing of samples, improper label-
ling, poor maintenance of the equipment, contamination, etc, 
are mistakes that may introduce error. Care and attention to 
detail as well as following the sampling protocol will ensure 
that errors of this type are minimal.

Fraud and sabotage are the intentional alteration of the 
samples used to increase, or decrease, the value of a sample 
for personal or corporate gain. Inflation of the mineral con-
tent in the deposit to increase share value has occurred in the 
past and as a result the requirements for sampling quality 
and documentation of the sampling undertaken have become 
more stringent.

5.4  Sampling Quality Assurance and Quality 
Control

The process of mineral resource estimation requires a strict 
program of quality assurance and quality control (QA/QC) 
to provide confidence about the precision and accuracy of 
the drill hole data used for estimation. The QA/QC program 
implemented may have somewhat different characteristics if 
implemented for mine operations (production sampling), but 
it will have the same general objective.

A QA/QC program of an appropriate standard is re-
quired by most international resource reporting standards. 
Published resource estimates should be accompanied by a 
description and statement of the data quality. This is also a 
basic item in any third-party review of resource models, and 
may have a significant impact on the overall perception of 
the model quality.

There are no universally accepted procedures for QA/QC, 
although certain basic steps are always recommended. An 
outline of a recommended set of procedures, derived mostly 
for gold sampling, will be presented. Good general referenc-
es are Long (1999) and Roden and Smith (2001).

5.4.1  General Principles

The main objective of the QA/QC program is to minimize 
errors introduced due to sampling, sample preparation, and 
sample assaying procedures. The QA/QC program is a con-
tinuous process providing information necessary to correct 
defects in the shortest amount of time possible.

Accuracy and precision are two terms used to evaluate 
the quality of the information provided by analytical labo-
ratories. Accuracy is a measure of the degree of agreement 
of the assayed sample value to the true unknown value of 
that sample. An indication of accuracy can only be obtained 
through re-assaying samples of known values such as stan-
dards or reference materials.

Precision is a measure of the reproducibility of the sample 
value, which can be estimated by re-assaying the same sam-
ple a number of times. Precision and accuracy are different 
concepts. A laboratory could have any combination of good 
or bad precision and accuracy.

Figure 5.7 illustrates the concepts of accuracy and preci-
sion using the common analogy of the shooter’s bullseye. 
The left image shows a precisely inaccurate set of three 
shots; the center figure shows an accurate but imprecise se-
ries, while the right image shows the case where the shooter 
has been both accurate and precise.

All QA/QC check samples sent for analysis to the labora-
tories should be blind, meaning that the laboratory should not 
be able to differentiate a check sample from a regular sub-
mission. The internal checks that analytical laboratories often 
implement are performed with the technicians being aware of 
the fact that they are assaying duplicate samples. These in-
ternal checks, often reported by the laboratories as measures 
of their sampling precision and accuracy, should never be 
considered as part of a formal QA/QC program. This applies 
both to company-owned and external laboratories.

The minimum control unit should be the batch of samples 
sent originally to the laboratory. The batch concept derives 
from the fact that gold fire assays are done by oven batches. 
Typically a set of 40 samples is introduced into the oven. It 
is a useful concept that has been extended to other types of 
assaying in the context of QA/QC.

Any check sample that fails implies that the complete 
batch to which the control sample was incorporated should 
be re-assayed. This applies to drill hole samples, but not 
necessarily for production samples, since there is no time to 
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re-assay them. In this case, failed check samples trigger cor-
rective measures for future assaying.

The sampling QA/QC program should cover (a) sampling 
conditions in the field; (b) sample preparation; (c) analytical 
accuracy and precision; and (d) correctness of the laboratory 
reports and transfer of the information to the database(s).

The materials to be used in the QA/QC program include (a) 
standards, or reference material; (b) blanks, which are samples 
with no grade; (c) field duplicates, taken at the drill hole site or 
core box; (d) coarse duplicates, taken as the first reject at the 
sample preparation stage, typically −10 mesh in size; and (e) 
pulp duplicates, which are taken from the last size-reduction 
and splitting at the end of the sample preparation process.

There are generally two or more laboratories involved that 
would include a primary or principal laboratory for routine 
work, and a secondary or check laboratory. Occasionally, a 
referee laboratory is needed when discrepancies between the 
primary and secondary laboratories cannot to be resolved.

Sampling and assaying protocols are established prior to 
processing the samples from the field. These protocols should 
cover all aspects of sample processing and handling including 
chain of custody. The sampling theory originally developed 
by P. Gy (1982) can be used to determine optimum sample 
preparation protocol, such that errors introduced in the prepa-
ration and assaying procedures are minimized (see above).

The sample preparation and assaying protocols should 
be identical for the primary and secondary laboratory. The 
mining company should have a staff person in charge of the 
overall QA/QC program whose duties include ensuring that 
the protocols used at the different labs are consistent. That 
person should inspect the facilities on a regular basis.

5.4.2  Elements of a QA/QC Program

5.4.2.1  Blanks
Blanks are samples with no grade of interest whose purpose 
is to check laboratory contamination and to verify correct 

handling of the samples. There should be both pulp and 
coarse blanks prepared and inserted into the sample prepara-
tion stream. In the case of core samples, the coarse blank 
is introduced after the first crushing stage, while the pulp 
blank should be inserted as a separate envelope in the sample 
batch.

It is advisable that the blank have the same matrix (min-
eralogy) and result in a pulp with the same characteristics 
as the main samples so it is not obvious to the laboratory 
that the sample is different in any way. This is sometimes 
difficult to achieve, although at least the main characteris-
tics such as color should be as similar as possible. Very low 
grade samples should not be used as proxies for blanks.

5.4.2.2  Standards
Standards are samples for which its grade is known within a 
certain precision. They are used to check the accuracy of the 
analytical laboratories, by comparison of the re-assays to the 
reference value.

There are commercial standards that can be purchased. 
They provide samples with known grades for some types of 
ore deposits. This material can be purchased from labora-
tories and institutions around the world. The standards are 
delivered with certificates stating the accepted value and its 
precision, in addition to a full description of the procedures 
used to analyze them.

Alternatively, the mining company has the option of 
developing its own standards. The material used to obtain 
the standard is typically from the same deposit as the main 
sample stream, which ensures that differences in the sample 
matrices will be minimal. The certification of standards re-
quires major analytical work, which can be done through a 
round robin analysis using no less than 6 laboratories, and 
more commonly 8. This work can be managed by the mining 
company or outsourced to an external analytical laboratory, 
which would also be part of the round robin laboratories, 
and would provide the final certification for the samples and 
their corresponding tolerance limits.

Fig. 5.7  Accuracy and precision. Left is precise but inaccurate; center is accurate but imprecise; and right is both precise and accurate
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If the standards are done using a commercial laboratory, 
it should be involved in the assaying of the project samples. 
The most probable value for the standard should be reported 
with the ± 2σ (2 standard deviations of the distribution of all 
assayed values). These or alternative upper and lower lim-
its should be used as acceptance criteria for the re-assayed 
standard.

5.4.2.3  Coarse and Field Duplicates
The purpose of the coarse duplicates is to quantify the vari-
ances introduced into the assayed grade by errors at different 
sample preparation stages. They provide a measure of the 
sample precision. There will commonly be more than one 
size reduction and splitting steps in the preparation stage. 
These coarse duplicates should be inserted into the primary 
laboratory stream, providing an estimate of the sum of the 
assay variance plus the sample preparation variance, up to 
the first crushing stage.

An alternative is to obtain a field duplicate. In the case of 
diamond drilling, a duplicate from the core box (i.e., a quarter 
core or the other half core) is sent to the laboratory, most com-
monly with the intention of replacing the coarse duplicate. 
The advantage is that the variance observed in field duplicates 
includes the actual sampling and the first size reduction step. 
The price of leaving the interval without core may be too high. 
Also, a quarter core may be too small a volume for the du-
plicate to be representative. In the case of reverse circulation 
drilling, it is more likely that field duplicates do not exhaust 
the sample as generally there are abundant chips available.

In the case of blast hole sampling, it is also possible to 
take a duplicate sample in the field from the cuttings pile or 
the reject from the hydrocyclone if an automatic sampler is 
used. These field duplicates can be used to check the first 
stage crushing and sampling process.

5.4.2.4  Pulp Duplicates
Pulp duplicates provide a measure of precision of the an-
alytical procedures used. They are taken at the final stage 
of sample preparation, and generally are a second enve-
lope with the 100 or 200 g final sample sent for assaying, 
inserted blindly into the sample batch. Pulp duplicates sent 
to the same primary laboratory provide an estimate of the  
analytical variance of that laboratory. When sent to the 
second, check laboratory, the pulp duplicates quantify the 
precision (analytical variance) between the two laboratories.

5.4.3  Insertion Procedures and Handling  
of Check Material

The basic unit is a batch. This can be defined for drill hole 
samples, blast hole samples, or any other type of production 

samples. A batch should contain sufficient samples to allow 
the insertion of control samples. At the same time it cannot 
be too large to become too difficult to manage, evaluate, or 
re-assay. For drill hole samples, it is generally recommend-
ed that a batch be no less than 20 samples, and preferably 
40 samples. For blast holes and crusher samples, the batch 
is generally larger and composed of samples from a fixed 
timeframe (work shift or day).

For each 40-sample batch, and assuming that the mining 
company has full control of the sample preparation stages, 
the following are the suggested control samples to be sent to 
the primary laboratory:
1. For drill hole samples:

a. Two blanks (5 % of total number of samples). Of these, 
insert one coarse blank for every 4th blank inserted 
(25 % of the total number of blanks inserted).

b. Two pulp duplicates (5 % of total number of samples).
c. Two coarse duplicates (5 % of total number of sam-

ples).
d. Two standards appropriate to the expected grade of the 

batch samples (5 % of total).
2. For blast hole and crusher samples:

a. One blank (2.5 % of total number of samples).
b. One pulp duplicate (2.5 % of total number of samples).
c. One coarse duplicate (2.5 % of total number of sam-

ples).
d. One standard appropriate to the expected grade of the  

batch samples (2.5 % of total).
This implies that there will be 20 % check samples for ex-
ploration data, and 10 % additional control samples for pro-
duction data. A second check laboratory should be used for 
the drill hole samples, but it is not necessary for production 
samples. Since production samples are normally processed 
in-house, an additional 2.5 % of pulp control samples should 
be sent out for re-assaying at a different laboratory as routine 
check.

For drill hole samples, the control samples sent to the sec-
ond (check) laboratory should be from pulp duplicates in all 
cases and should include one blank, two sample pulps, and 
one standard for every 40-sample batch. This implies an ad-
ditional 10 % sent to a second laboratory.

There are cases where the mining company or project de-
velopment team does not have a sample preparation facility, 
and is not able to control the sample preparation process. For 
these cases when the sample preparation is done by the labo-
ratory itself, coarse duplicates should be sent for preparation 
and assaying by the second laboratory.

All control samples should have a pre-defined logical se-
quence of numbers, such that the flow of samples is easy to 
control, and the control samples are inserted into the stream 
in a disguised fashion.



80

5.4.4  Evaluation Procedures and Acceptance 
Criteria

The unit of acceptance/rejection should be a complete batch. 
Individual samples should not be sent out for re-assaying. 
The numbers of samples in a batch is variable, but 40 is 
commonly used. Laboratories tend to process samples by 
batches so whatever problem caused the check sample to 
fail is likely to have affected the remaining samples in the 
batch.

All acceptance/rejection criteria should be enforceable as 
part of the agreements with the laboratories, including re-
assaying if the batch is not compliant. The exploration or 
mining company should perform, as part of its QA/QC pro-
gram, the acceptance/rejection tests consistently using the 
same procedures. Transparency and good relations with the 
laboratory are always necessary to ensure a successful QA/
QC program.

The exploration or mining company should not shortcut 
the QA/QC program, and should allow sufficient time, bud-
get, and contractual arrangements for a significant number 
of re-assays. The program should be implemented on an on-
going basis and not at the end of drilling campaigns or pre-
determined time periods.

The expected accuracy and precision depend on the type 
of mineralization being sampled. Sampling gold is particu-
larly difficult especially if there are coarse particles. Certain 
base metal deposits may be easier to sample. The acceptance 
criteria will change according to the type of mineralization 
being sampled. In the case of gold, commonly accepted cri-
teria include:
1. Coarse blanks: 80 % or more of these samples should 

return with a value less than or equal to three times the 
detection limit. Thus, at least four control samples are 
required to make a decision, which implies 8 batches 
(one coarse blank in every other batch). Another way to 
express it, is to say that 1 in every 5th blank may fail the 
criterion.

2. Pulp blanks: 90 % or more of these samples should return 
with a value less than or equal to three times the detection 
limit. Therefore, 1 in every 10 can be above the accepted 
limit.

3. Standards: In all cases, standards have to fall within the 
accepted tolerace limits of the certified reference value. 
This can be 2 or 3 times the standard deviation or some 
intermediate value, depending on the round robin results.

In the case of duplicates, the suggested criteria for pairs of 
samples (original-duplicate) with averages equal or to great-
er than 5 times the laboratory’s detection limit (DL), the fol-
lowing formulas are suggested:
4. Pulp duplicates: 90 % of the pairs’ absolute relative dif-

ferences equal to or smaller than 10 %. The absolute rela-
tive difference for each pair is defined as:

 
(5.1)

1. Coarse duplicates: Using the same Eq. 5.1, 90 % of the 
pairs’ absolute relative differences equal to or smaller 
than 20 %.

2. Field duplicates: Using the same Eq. 5.1, 90 % of the 
pairs’ absolute relative differences equal to or smaller 
than 25 %.

3. Additionally, for pulp duplicates, if the absolute value of 
the difference [Original-Duplicate] (numerator in Eq. 5.1) 
is equal to or less than two times the detection limit (DL), 
the pair is accepted.

4. For coarse duplicates, if the absolute value of the differ-
ence [Original-Duplicate] (numerator in Eq. 5.1) is equal 
to or less than three times the detection limit (DL), the 
pair is accepted.

The standards should be plotted to verify the laboratory’s 
performance over time. The graph typically shows the ex-
pected value, the upper and lower acceptance limits, and the 
assay results for each control sample inserted. This allows 
for trends to be detected. For example, if the control samples 
are consistently above the expected values (but still within 
the acceptance limit), there may be a small persistent bias 
that the laboratory should be notified of and correct.

In performing these tests, the practical detection limit 
(DL) should be considered. The practical DL may be dif-
ferent (and generally higher) than the nominal or theoretical 
DL as stated by the laboratory, because it takes into account 
the lower precision of analytical methods when working at 
or near their nominal DL. A higher DL should not cause a 
problem as long as it is much lower than the mineralized or 
economic cutoffs.

The sample preparation and the analytical laboratories 
should be supervised constantly. Ideally, the responsible 
person should make surprise visits to each laboratory on a 
regular basis. These informal inspections should result in a 
brief report describing the laboratories operating conditions, 
cleanliness, orderliness, sample handling procedures, and, 
most importantly, the extent to which they are correctly im-
plementing the prescribed sample preparation and analytical 
protocols. Photographs should be used to record and docu-
ment each visit.

5.4.5  Statistical and Graphical Control Tools

There are several tools that can be used in analyzing and 
describing QA/QC information. Among the alternatives, the 
suggested basic tools are:
• Error histograms and basic statistics: these should include 

the relative errors defined in the equations above for 

Re . 0.10
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pulp and coarse duplicates; the differences between the 
expected values of the standard and the control samples; 
histograms and basic statistics of the percentages of devi-
ation of pulp and coarse duplicates; etc., see, for example, 
Fig. 5.8.

• A scatterplot of the original versus duplicate samples 
(pulp and coarse) along with correlation statistics. This 
plot provides a visual and numerical analysis of the cor-
relation of the two variables, see Fig. 5.9.

• Control graphs for standards versus time including lines 
representing the expected value of the standard and the 
upper and lower limits. These graphs are also useful for 
duplicate samples because it may help identify periods 
when the quality of the laboratory work is poor. It is often 

seen that the laboratory work performed immediately 
after holidays or long weekends is of lower quality. The 
quality may also be poor when the laboratory is working 
at capacity or overloaded.

• Another time-dependent control chart, for both standards 
and duplicates, is to plot a moving average of results 
that would include 20 to 40 control samples at a time, 
i.e., several batches. This control chart would be useful 
to detect longer-term trends, which are sometimes dis-
guised or difficult to detect when looking at individual 
batches.

• Another useful graph is the cumulative frequency of the 
absolute value of Eq. 5.1, see Fig. 5.10. It shows if the 
control samples comply with the prescribed 90 % of the 

Fig. 5.8  Histogram of the 
absolute differences of duplicate 
sample pairs

 

Fig. 5.9  Scatter plot of the 
original vs. the duplicate samples
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samples below 10 % relative difference (for pulps) and 
90 % of the pairs below 20 % for coarse duplicates. Pairs 
where both values are less than 5 times the DL should not 
be included.

5.5  Variables and Data Types

Many different types of raw, derived or transformed vari-
ables are considered in resource estimation. The following 
is a summary of the most commonly modeled variables in 
the minerals industry including grade variables, transformed 
variables (such as Gaussian and indicators variables); geo-
logical properties; fracture densities; texture variables; dry 
and wet densities; and variables related to metallurgical per-
formance, such as bond index; SemiAutogenous Grinding 
(SAG) power index; hardness; plant throughput; mill recov-
eries; and mineralogical species.

5.5.1  Raw and Transformed Variables

The most common variables are grade variables (mass frac-
tions) since they directly measure the resource being esti-
mated. Different types of grade variables will lead to differ-
ent modeling techniques. Typical examples include precious 
metals, such as gold, silver, platinum, and palladium.; base 
metals, such as Cu, Pb, Zn, Fe, and Ni; iron ores such as 
magnetite and hematite; coal, uranium, potash, and nitrates. 
Most metal variables will be positively skewed, although 
there are noteable exceptions such as Fe.

Experience has shown that certain modeling techniques 
are more suited for certain types of deposits. This is based on 
the degree of variability commonly associated with certain 
grades and the deposit geometry. There are tabular vein-type 
or sedimentary deposits and more massive disseminated or 
porphyry-type deposits.

Precious metals tend to have grade distributions that are 
more skewed and exhibit higher spatial variability. The im-
pact of outlier values is more significant and thus it is ap-
propriate to consider modeling techniques better suited to 
control erratic distributions.

An important aspect of grade variables is that they upscale 
linearly, that is, the grades of larger volumes is the arithmetic 
average of the constituent smaller volumes. This simplifies 
the practice of block kriging (Chap. 8) and the application of 
conditional simulations (Chap. 10). Change of support meth-
ods (Chap. 7) are based on the linear averaging of variables.

In-situ bulk density (dry and wet) is a critical component 
in resource modeling. The resource estimates should nor-
mally be reported using dry density values, since all grade 
assays are normally done on a dry basis; however, estimates 
of moisture content (or wet densities) is necessary for mine 
planning, since it provides a more realistic estimate of true 
tonnage that will be mined, and therefore is an important 
component in the scheduling of trucks and other equipment. 
This is particularly important in tropical or wet environ-
ments. For example, the moisture content in Nickel laterite 
deposits can be greater than 15 % of total weight.

Bulk density and moisture values can be modeled through 
arithmetic averages by rock types or other geologic variable 
types or estimated through kriging or inverse distance meth-
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ods. Bulk density is sometimes forgotten and few good sam-
ples are available. Parrish (1993) has a good discussion on 
bulk densities and their importance to resource estimation.

Another group of raw variables that are commonly mod-
eled are auxiliary variables. Some examples include thick-
nesses of formations, typical of sedimentary deposits; eleva-
tions of the top or bottom of particular surfaces of interest, 
such as bedrock contact; the geometry of diamondiferous 
pipes; top of sulfides enrichment; footwall and/or hanging 
wall positions in tabular deposits. Sometimes, variables 
such as grade multiplied by thickness (proportional to metal 
content) is used in tabular deposits. This grade times thick-
ness variable transforms a 3-D modeling problem into a 2-D 
exercise, because the third spatial dimension, usually much 
smaller than the other two, is incorporated into the variable 
being estimated.

Another important group of variables are metallurgical 
performance variables. Resource and reserve models should 
include predictions of rock characteristics, crushing/grind-
ing throughputs, final product recoveries, and other variables 
as a more realistic basis for cash flow predictions. There is 
a trend in the industry to model geometallurgical variables 
and include them in resource models. They can be ore and 
gangue mineralogical variables, useful for better predicting 
plant performance, concentrate grade, and heap or vat leach 
performances. Some of these variables do not average lin-
early, and thus require special consideration.

Resource models must consider a breadth of issues that 
were simplified in the past including all types of dilution 
(Chap. 7) and geologic variables that affect mine and plant 
performance including geo-mechanical and geo-metallurgi-
cal variables. A resource model is much more than a geologi-
cal in-situ model.

5.5.2  Soft Data

Soft data is a term used in reference to information that pro-
vides imprecise or indirect measurements of the variables of 
interest. Some specific examples include geophysical read-
ings such as magnetic anomalies associated with an iron 
(magnetite) deposit. Another example is the use of radiomet-
ric readings (a gamma probe) to obtain the ratio of parent-to-
daughter products of Uranium238 (U238) decay chain, from 
which, and after proper calibration, the U238 grade may be 
estimated.

Soft data does not have the same quality of information as 
compared to hard data, which is typically the assayed miner-
al grade. Depending on the specifics of the indirect measure-
ments, there are two general characteristics that determine 
the methodology used to analyze and apply the soft data.

First, the quantity of soft data may be significantly larger 
than the hard data, but of poorer quality. The data may be 

close-spaced while the hard data will tend to be located at 
a much larger spacing. This is characteristic of geophysical 
data, where a dense grid of data is available.

Second, the soft variable may be a simple condition, such 
as “within this rock type, the Au grade will be no larger the 
1.0 g/t”. The soft information is qualitative in nature and 
somehow must be expressed in a numeric format before it 
can be used explicitly in the modeling process to any ad-
vantage.

A common procedure is to turn the soft information into 
an indicator or a series of indicators that allows merging it 
with the hard data. The details of the modeling techniques 
are discussed in Chap. 9.

5.5.3  Compositional Data

The following discussion is a summary of CCG (Centre for 
Computational Geostatistics) Guidebook 7 (Manchuk 2008). 
Compositional data are multivariate data where the variables 
or components represent some part of a whole (Pawlowsky, 
1989; Pawlowsky et.al., 1995). All variables from a compo-
sition are measured on the same scale and unit system and 
are constrained by a constant sum property. The sum de-
pends on the measurement scale. Some common ones are 1 
for fractional data, 100 for percentages, and 106 for parts per 
million or ppm. A set of variables summing to a constant is 
also referred to as a closed array (Chayes 1962). The concept 
of a compositional data set X with D components and N ob-
servations can be written as:

Note that 1D is a column vector of ones of size D and 1N of 
size N.

Two issues for statistical analysis are raised by this equa-
tion: (1) variables are not free to range in (− ∞, + ∞), thus the 
relationships are not free to vary independently, and (2) the 
constant sum constraint must force at least one covariance or 
correlation to be negative; when one component gets large, 
the others must necessarily decrease. Correlations are not 
free to range in [−1,1] causing spurious correlations (Aitchi-
son 1986).

5.5.3.1  Compositions in Natural Resources
In a natural resources context, compositions are geochemi-
cal, geophysical, or lithological. Whole rock geochemistry is 
an example, and may come in various forms depending on 
the depositional environment and target resource. Consider 
mining to extract metal products, such as copper suplhides. 
Several mineralogical species may be responsible for all the 
Cu in a sample, such as chalcopyrite, chacolsite, covelite, 

1 1{ ,..., : ,..., ; }D D N
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and bornite. In addition, several other minerals may have 
smaller amounts of Cu.

Lithological data comes in two forms: continuous like 
geochemical data or categorical. The continuous component, 
which can be considered on a microscopic scale, is concerned 
with proportions of elements that define a particular type of 
lithology, for example the percentages of sand, silt and clay 
that are indicative of a sediment specimen. The macroscopic 
or categorical component deals with actual lithology or fa-
cies types. Natural resources are characterized by a set of 
facies types, which can be considered as compositional data 
on a larger scale.

5.5.3.2  Compositional Scale
Compositional data can be defined at various scales. Geo-
chemical data for example exist at the atomic scale for spe-
cific elements, the microscopic scale for compounds of those 
elements, the mesoscopic scale where different combina-
tions of compounds and elements define different minerals, 
and the macroscopic scale defining facies types and lithol-
ogy zones.

An example showing the various scales is a nickel laterite 
deposit. This type of deposit is typically characterized by a 
very high grade of limonite clay containing 1–2 % nickel, 
high iron concentrations, and trace cobalt. Other constitu-
ents are present including silica, magnesium and aluminum. 
Starting with element contents, Fig. 5.11 shows the hierarchy 
of clustering into compositions with increasing scale.

The nickel laterite data set consists of just over 30,000 
samples with 9 variables: 2 indicator type variables and 7 

continuous. All continuous variables are measured in per-
cent and are: nickel ( Ni), iron ( Fe), silica ( SiO2), magnesium 
oxide  ( MgO),  cobalt  ( Co),  aluminum  oxide  ( Al2O3) and 
chromium  oxide  ( Cr2O3). Indicator variables are ore-type 
and rock-type. Ore has been classified into seven different 
types and rock into two different types.

A unit mass of material from this deposit contains some 
proportion of the compounds and elements mentioned above 
as well as other media, which will be denoted as Z. This 
forms the full composition of the deposit with the other 
media being a filler variable to achieve 100 % of a unit mass:

5.5.3.3  Ternary Diagrams
Due to the high dimensionality of the nickel laterite data 
set, only subcompositions can be visualized. Subcomposi-
tions of size 3 plotted in a ternary diagram must undergo a 
transformation to add up to 100 %. Figure 5.12 shows the ter-
nary diagrams (called also simplexes in the literature) for Ni-
Fe-SiO2 and Ni-MgO-Co colored by ore-type. Notice that 
the data are poorly distributed in the simplex. This is a com-
mon issue when one element of the composition is typically 
high valued or low valued with little variability. A method 
called data centering is used to redistribute data more ap-
propriately.
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Fig. 5.11  Various scales of components of a nickel laterite deposit
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5.5.3.4  Operations
Two common operations for manipulating data and for dis-
playing various geometric images within the ternary diagram 
are powering and perturbation (Aitchison 1986; Pawlowsky-
Glahn and Olea 2004; Pawlowsky-Glahn and Egozcue 
2006). Pertinent geometric images may be zones discrimi-
nating compositional observations into classes and ellipses 
denoting confidence intervals of distributions.

A particular form of perturbation called data centering is 
used when data are compressed to a small region of the ter-
nary diagram (simplex) offering poor visual analysis of the 
data. The perturbing vector is set as the inverse geometric 
mean of the compositional data and such that it obeys the 
unit sum property.

Centered data for subcompositions Ni-Fe-SiO2 and Ni-MgO-
Co (Fig. 5.13) give a much better picture of the data distribu-
tion. The segregation of ore type classes (color coded points) 
is more visible in both plots. An important problem to note 
here is the occurrence of zeros and missing values in the sam-
ple data. Because the geometric mean is used, these values 
must be handled with care. For the purposes of centering in the 
nickel laterite example, missing values were ignored and zeros 
were set to 1 such that the products did not resolve to zero.
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Fig. 5.12  Ni-Fe-SiO2 and Ni-MgO-Co ternary diagrams

 

Fig. 5.13  Centered Ni-Fe-SiO2 and Ni-MgO-Co simplexes
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5.5.3.5  Transformations
The majority of analyses concerned with compositions apply 
logratio transformations to the data prior to any exploratory 
analysis. Aitchison et al. (2002) argue that compositions 
provide data on a relative level, rather than on an absolute 
level and logarithms of relative values expressed as ratios are 
easier to statistically analyze than ratios themselves. Also, 
logratio transformations do not affect the information con-
tent of the data. The reason one must work with ratios rather 
than raw variables as in the ternry diagrams shown above is 
those variables are not scale invariant: the subcompositions 
shown are not coherent with the full composition.

The more common transforms are the additive logratio 
(alr), the centered logratio (clr), the multiplicative logra-
tio (mlr, Aitchison 1986), and the isometric logratio (ilr, 
Egozcue et al. 2003). Choice of transformation depends on 
the problem being considered and the targeted properties of 
results. The outcome of these transformations is a set of vec-
tors that exist in real space not constrained to the simplex. 
Each component of the vectors refers to a coordinate. These 
transforms are also one-to-one in that they map distinct val-
ues from one sample space to distinct values in the trans-
formed sample space.

5.5.3.6  Additive Logratio Transform
Forward and inverse alr transformations are expressed re-
spectively by the following equations:
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The denominator xD can be any one of the components of x, 
but it must remain consistent when applying this transform to 
a complete set of compositions, and x must be greater than 0. 
The advantage is a new space free of constraints where clas-
sical multivariate analysis methods can be applied; however, 
the space is not isometric. Coordinate axes are not orthogo-
nal, but are separated by 60 degrees (Pawlowsky-Glahn and 
Egozcue 2006).

This transformation is applied to the nickel laterite data 
by dividing all components by the filler component Z of the 
compositions, resulting in 7 variables. For visualization pur-
poses, the transformation was applied to the Ni-Fe-SiO2 sub-
composition with silica as the divisor. A crossplot of the re-
sulting variables, log(Ni/SiO2) and log(Fe/SiO2) is shown on 
the right in Fig. 5.14. This can be compared with scatterplots 
of the original variables Ni and Fe on the left. Prior to trans-
formation the data were constrained to positive real space 
since they are expressed as percentages. Post-transformation 
shows the data are unconstrained and that division by SiO2 
imposes a relationship.

5.5.3.7  Centered Logratio Transform
Unlike the alr transformation, clr results in orthogonal 
axes which simplifies further multivariate computations. 
The nature of this transformation results in vectors with 
a zero sum meaning the subspace is actually a plane. This 
zero sum property results in singular covariance matri-
ces (Pawlowsky-Glahn and Egozcue 2006), but there are 
methods to overcome this limitation (Quintana and West 
1988). The forward clr transform with g(x) the geometric 
mean of x is:
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Fig. 5.14  Crossplots of Ni-Fe and Ni/SiO2-Fe/SiO2
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Figure 5.15 shows the original and transformed scatterplots. 
Compared to the alr transform, the data is now centered by 
the geometric mean. This is better shown with a simplifica-
tion of the transformation on the Ni-Fe-SiO2 subcomposition.

5.5.3.8  Multiplicative Logratio Transform
This transformation is similar to the alr method except that 
the divisor cannot be any one of the elements in the com-
position. Rather it is the filler required for a composition to 
meet the unit sum constraint similarly to how Z was used 
in the nickel laterite data. This transformation is appropri-
ate for exploring relationships between single divisions of 
a composition (Aitchison 1986). For example, analyzing 
how the elements of Ni-Fe-SiO2 relate to MgO-Co-Al2O3-
Cr2O3. The forward and inverse transformations are shown 
below, with Fig. 5.16 showing graphically this transforma-
tion to the Ni-Fe-SiO2 subcomposition.
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5.5.3.9  Isometric Logratio Transform
The isometric transform relies on orthonormal bases to trans-
form from the simplex to real coordinates and has the prop-
erty of conserving the metric properties in both spaces. Geo-
metric notions such as angles and distances in the simplex 
are associated with angles and distances in the real space of 
transformed data. Applying this transformation requires that 
an orthonormal basis be defined in the Aitchison metric 
(Egozcue et al. 2003; Tolosana-Delgado et al. 2005). The 
Aitchison metric is the simplex sample space and geometry. 
The orthonormal basis is defined by a set of vectors e1,…,ed 
and the interested reader is directed to Egozcue et al. (2003) 
for a complete derivation. The ilr transform is defined given 
these vectors, where ,

a
⋅ ⋅ defines the Aitchison inner product.

The Aitchison inner product is the Euclidean inner product (dot 
product) applied to alr or clr transformed data. Transformation 
using ilr calculates inner products of clr transformed data.

Despite the increased complexity of this transformation, 
it has the advantage of generating vectors in unconstrained 
orthogonal space (Fig. 5.17). Any multivariate analysis tech-
nique can be applied to the result.

5.5.4  Service Variables

The use of accumulation (or service) variables in geosta-
tistics is fairly common in industry when developing block 
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Fig. 5.15  Crossplots of Ni-Fe and clr(Ni)-clr(Fe)
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grade models and geologic resource estimates (David 1977; 
Glacken and Snowden 2001). This is particularly true in the 
case of sedimentary and stratabound-type deposits.

Estimating accumulation (grade-thickness (GT) and 
thickness (T) variables) came about early in the history of 
resource estimation. It has been applied mostly to narrow 
orebodies, and initially as an adaptation of the polygonal 
approach. Grade multiplied by thickness is proportional to 
metal content, which is estimated independently from thick-
ness. The final grade is obtained at each point or block by 
dividing the accumulation by the thickness.

The accumulation approach works well when there is 
little or no correlation between grade and thickness. Also, 
thickness should be true thickness, that is, the samples need 
to be considered as true (normal to dip) mineralized thick-
nesses. It is worth noting that the accumulation and thickness 
variables can be estimated using any technique, including 
geostatistical methods.

The motivation for using accumulations is generally that, 
for thin tabular or vein-type deposits, the mineralized inter-
cepts are of irregular length; there are very few intercepts (or 
just one) per drill hole; and that grade variability is high, with 
somtimes the thinner intercept having the highest grades. In 

Fig. 5.17  Crossplots of Ni-Fe and ilr(Ni)-ilr(Fe)

 

Fig. 5.16  Crossplots of Ni-Fe and mlr(Ni)-mlr(Fe)
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these situations, multiplying the grade with the thickness 
will result in a variable with lower coefficient of variation 
(variability), and thus easier to estimate without having to 
risk over-spreading grade. Thickness, while sometimes vari-
able, will generally be a smoothly varying attribute in space, 
and thus even easier to estimate.

Deposits in which grade-thickness variables have been 
used include tabular and vein-type gold, platinum reefs, ul-
tramafic deposits (chromite, for example), some nickel later-
ites, and uranium roll-front type deposits.

5.6  Compositing and Outliers

5.6.1  Drill Hole Composites

The original grade values (assays) in the database are usually 
averaged to pre-specified lengths: a procedure referred to as 
compositing. This is not strictly a requirement for resource 
estimation; however, the homogenization of the data scale 
or support and correction for incompletely sampled intervals 
motivates compositing in almost all cases. Most resource es-
timation software assumes the data are at a constant support.

Compositing also incorporates a certain amount of dilu-
tion into the raw data prior to estimation or simulation. The 
mining operation is expected to work at a certain level of 
selectivity that is larger than the scale of the raw assays. In 
the case of open pits, selectivity in the vertical dimension 
is generally fixed by the bench height. In the case of under-
ground mines, selectivity is a function of the mining meth-
od. The height of the lift or slice in a cut-and-fill or similar 
method determines the selectivity in the vertical direction. 
The composite length may be made equal to the bench or lift 
height to put data at the same vertical support as the mine 
selectivity.

The composite is typically calculated by a length-weight-
ed average and may also be weighted by specific gravity 
and core recovery. Compositing can be done to obtain a 
representative value for ore body intersections, lithological 
or metallurgical composites, regular length down-the-hole 
composites, bench composites or section composites, high 
grade composites, or minimum length and grade composites.

Each of these types of composites are produced for dif-
ferent purposes and in different situations. Regular length or 
bench composites are most common in resource estimation. 
There are geostatistcal models that can provide for mixtures 
of support sizes in the original data, but estimation software 
almost always assumes the data are of constant support.

Drill holes of different diameters are commonly used in 
the same deposit. There will also be partial composites at the 
end of drill holes or at hard geologic contacts. In practice, 
slight differences in support size will have little effect on the 
final resource estimate.

Consider an operation that has both reverse circulation 
(RC) and diamond drill holes (DDH) in its resource data-
base. For a 1 m interval, a typical RC drill hole sample will 
represent close to 50 kg, considering that a 5.25 inch diam-
eter hole is drilled. The corresponding HQ-size DDH, for the 
same 1 m length, will represent close to 28 kg. Although the 
two sample weights are quite different, the difference and its 
impact is negligible. This is because the sample is (a) usually 
composited, and (b) multiple composites are used to estimate 
blocks. The blocks may be as small as 5 × 5 × 5 m (for small-
er, selective deposits), equivalent perhaps to 350 metric tons, 
and up to 25 × 25 × 15 m or larger blocks for massive depos-
its, equivalent to almost 25,000 tons considering an in-situ 
bulk density of 2.65 t/m3. This will depend on the specific 
resource modeling case.

Further justification for compositing is that small scale 
assays may be highly variable, which can be mitigated by 
compositing. Compositing to an appropriate length will 
show less variability making the corresponding geostatisti-
cal analysis, including variography, more robust.

In particular, compositing has a dramatic affect on the 
nugget effect, that is, the completely random portion of the 
variability. The decrease in the nugget variance will be in-
versely proportional to the degree of compositing.

The composited dataset is important to the overall qual-
ity of the resource model. Several decisions must be made 
in practice, including whether or not to use composites; 
the most appropriate length; the compositing method used; 
whether to truncate the composites at geologic boundaries; 
how to handle missing intervals within the composite (with 
no assay information); and the minimum acceptable com-
posite length.

5.6.2  Composite Lengths and Methods

The composite length chosen is commonly a function of 
the anticipated mine selectivity. Shorter composite lengths 
can be used to increase the statistical population available 
for variography and estimation; however, the final vario-
grams should be based on the composites that are going into 
estimation. Shorter composites permit more accurate repre-
sentation of geological contacts.

Compositing can be done using two basic methods: down-
the-hole, or by bench. Bench composites are common in 
open pit mines with nearly vertical drilling. The method in-
volves defining the top and bottom elevations of each bench 
and then compositing all sample intervals that fall within 
those elevations. The mid-bench elevation is assigned as the 
centroid of the composite which is assumed to be vertical.

Although convenient, the bench compositing method 
commonly used in open pits has some shortcomings. If the 
drill hole is inclined, the actual composited length will be 
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different than the bench height. For example, for a drill hole 
with a 45° inclination, a 10 m bench composite will incorpo-
rate over 14 m of sample. Bench compositing should be re-
stricted to cases where all drill holes have no more than a 70° 
inclination, although this choice is subjective. This method 
should not be used when there is a significant mixture of 
vertical, subvertical, and inclined drill holes.

Down-the-hole compositing usually begins at the top of 
the hole, although most mining software packages will allow 
for other options such as truncating at important geological 
contacts. The length of material composited is always the 
same, with the exceptions noted below. The inclination of 
the drill hole is no longer a factor. The centroid of the com-
posite corresponds to the exact location in space of the com-
bined samples.

An important decision is whether to truncate the compos-
ite at geologic boundaries or not. The decision amounts to 
incorporate some contact dilution (mixtures of grades from 
either side of the contact) or to avoid such mixing. If the 
composites are truncated at the boundaries, the estimation 
domains will be more sharply defined and contact dilution 
better controlled. The cost is a larger number of composites 
of a shorter length. The most appropriate decision will de-
pend on the characteristics of the deposit and the amount of 
information available.

Missing sample intervals within a composite may be 
problematic if the voids are significant because there will 
be a significant difference between the nominal length of the 
composite versus the actual length of sample intervals com-
posited. Simple statistics can be length-weighted, using the 
actual length of material composited, which is often record-
ed by most mining software packages. A maximum length 
of voids within any composite is tolerated before discarding 
the composite altogether. The weighting of mass fractions 
should be by mass, that is, specific gravity should be consid-
ered as well as length.

The decision related to the acceptable minimum length 
of a composite depends on the representativity and support 
of the actual composite. This issue is more relevant if com-
posites are truncated at geologic boundaries, because there 
can be a large proportion of the total number of composites 
that are shorter than the nominal length. If no boundary trun-
cation is applied, then the only composites shorter than the 
nominal length will be at the end of the drill holes.

A common choice in industry is to use 50 % of the nomi-
nal length as the cutoff for acceptable composite lengths. 
Discarding all composites less than 50 % of the nominal 
length is arbitrary. Since the main concern is representativ-
ity, a correlation study between composite length and grades 
can be used to support the choice of minimum acceptable 
composite length. A much shorter minimum composite 
length may be acceptable where there is no detectable corre-
lation between composite length and grade. The relationship 

between grade and composite length will likely be small in 
base metal and massive deposits, with good core recovery. 
The opposite is generally true for massive sulfide deposits, 
some precious metals deposits, and in cases where core re-
coveries are poor.

5.6.3  Outliers

The term outliers is used to describe extreme high values 
since many grade distributions are positively skewed. Some 
distributions have low grade outliers, but this situation is less 
common. These grades deviate from the general tendency of 
most other grades and can be spatially and statistically isolat-
ed. In the discussion that follows, outliers are valid assayed 
samples, not a consequence of spurious or erroneous data 
collection. It is assumed that all potential database or ana-
lytical errors have been checked for and all possible errors 
discarded or corrected in the database. Outliers are defined 
in terms of geological and statistical populations.

Extreme grades are consequential in precious metal de-
posits, but not as much in base metal deposits. A statistical 
analysis is always warranted to quantify how much impact 
the outliers have on the final resource estimate.

The importance of outliers is often described in terms of 
their contribution to the overall metal content of the deposit. 
This is because not handling them appropriately can lead 
to overestimation of the recoverable resource. Two aspects 
must be resolved: (a) what assays should be considered out-
lier values, and (b) how to deal with them at the time of es-
timating the resources. In all cases, the analysis should be 
done on the original, assayed samples. If performed on the 
composited data, the outlier values may already be smoothed 
depending on the type and length of the composites.

The presence of extreme grades is particularly problem-
atic if they have little spatial connectivity, that is, they are 
located within a small spatially restricted volume. The more 
skewed the grade distribution, the larger the potential impact 
of outliers on the resource estimation process.

The determination of what values are considered outli-
ers is subjective. Outlier values are commonly examined on 
a log-normal cumulative frequency plot. Breaks at the high 
end of the distribution may represent outlier populations. For 
example, Fig. 5.18 shows the log-normal probability plot of 
Au grade in a copper-gold porphyry deposit. Note how, for 
grades higher than 5.0 g/t, the distribution appears to break 
up and exhibits a sudden slope change, represented by less 
than 0.1 % of the total samples. Outliers are also sometimes 
defined as those values that are outside a specific interval, 
such as plus or minus 2 or 3 standard deviations ( ± 2σ or 
± 3σ) with respect to the mean or median of the distribution. 
There will always be outliers according to this definition; 
professional judgement is required.

5 Data Collection and Handling



915.7  Density Determinations

It is preferable to define a range of possible cutoff val-
ues for studying outliers. An example, taken from the Chang 
Shan Hao Au deposit in Inner Mongolia, China, is shown in 
Table 5.1. The impact in terms of quantity of metal (QM) of 
samples above a series of grade cutoffs is presented. Note 
that, for example at the 4.0 g/t Au cutoff, just over 40 m of 
samples, representing about 0.49 % of the total meterage in 
the database, is responsible for over 5.7 % of the total quan-
tity of metal. Although this is not a very extreme case if 
compared to other Au deposits, it indicates that outliers must 
be considered to avoid overestimation when estimating the 
resources for this deposit.

Statistical methods can also be used to determine the 
impact and modeling of outlier grades. One such method, 
proposed originally by Parker (1991), is based on assuming 
specific distributions for the upper tail of the grade distribu-
tion including a log-normal distribution.

Another method, also proposed originally by Parker (per-
sonal communication), is to assume that, above a certain grade 
threshold, the grade values are uncorrelated and independent 
of each other. In this case, a Monte Carlo method is used, 
whereby the high grade distribution is simulated. The amount 
of metal that must be removed from the database is estimated 
based on the simulated high grade distribution and for a speci-
fied condition. The condition is generally that the predicted 
metal production on a yearly basis (for example) can be as-
sured with a given confidence level. This concept of analyzing 
the problem from the perspective of mining risk is appealing, 
but it has the caveat of the data independence related to the 
Monte Carlo simulation, which is not always applicable. Also, 
the distribution of outlier grades must be fairly homogeneous 
for the metal to be accurately predicted by mining period.

To limit the influence of the outlier data, the most com-
mon procedure is to define a cutting or capping grade where-
by all samples above the specified grade cutoff are either 

ignored (not used) or reset to the top value defined, respec-
tively. Ignoring the outlier values altogether is not recom-
mended, since it tends to be overly conservative. More com-
monly, practitioners will reset all assays above the specified 
cutoff to that value.

For some estimation and simulation methods, the treat-
ment of outlier values is accomplished within the method 
itself. For example, if using multiple indicator kriging, the 
impact of high values may be dealt through the definition 
of a more conservative value for the upper class mean, see 
Chap. 9.

For most cases, it is preferable to restrict the spatial influ-
ence of the outlier values at the time of estimation or simula-
tion. This is implemented in some software packages. The 
assumption is that extreme values are valid and should be 
used to estimate resources, but their spatial influence should 
be limited. The high grade may be constrained to small-
size veinlets, or represent a nugget with little or no spatial 
extension.

Capping the grades removes metal from the distribution 
and limits the influence of the outliers. There may still be a 
region of high estimates around the outliers, yet there may 
be isolated high grade. The local estimates are checked on a 
case-by-case basis.

5.7  Density Determinations

In-situ density must be modeled at the time of resource esti-
mation. The predicted tonnage of the ore deposit is directly 
dependent on the tonnage factor or density applied to the 
modeled volumes.

A geologic model is used to predict the mineralized vol-
ume, and this volume in turn is multiplied by its in-situ den-
sity to obtain an estimated tonnage for the deposit. Any error 
made in density determination and estimation is directly in-
corporated into tonnage estimates. A good discussion on this 
issue can be found in Parrish (1993).

Several factors affect bulk density determinations such as 
heterogeneity of the materials being sampled, the method of 
determination, the practice of determining dry or wet densities, 
rocks with voids in them (“vuggy” breccias, for example), the 
material consolidation, relationships between ore grade and 
densities, such as in massive sulfide deposits, and so on.

Immersion methods are commonly used to determine the 
density of rock samples. The sample is weighed in air and 
then in water. Density is then determined as:

 (5.2)

where Wair is the dry weight of the sample, and Wwater is 
the weight of the submerged sample. In practice, since it is 

air

air water

W
Density

W W

 
=  − 

C
um

ul
at

iv
e 

P
ro

ba
bi

lit
y

AU

Au, Min. Prorphyry, Assays

0.01

0.1
0.2

1
2
5

10
20
30
40
50
60
70
80
90
95
98
99

99.8
99.9

99.99

0.010 0.10 1.0 10.

Fig. 5.18  Probability plot, Au grade in a porphyry copper deposit
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advisable to obtain dry density measurements, a commonly 
used procedure involves:
1. Carefully weigh the sample as it was received from the 

field.
2. Completely dry the sample on a conventional oven at 

(typically) 105 °C, and weigh again. The difference be-
tween the two weights provides an estimate of moisture 
content in the rock.

3. Submerge the sample in water (density 1.0 g/cm3) and re-
cord its weight.

4. Apply Eq. 5.2 above to determine the rock density.
The impact of water absorption by the sample is a function 
of how porous the rock is, but it will always increase the 
density value, since water is replacing air within the speci-
men. To avoid measurement errors derived from the water 
absorbed by the rock during immersion, a more robust alter-
native for density measurements is to coat the sample with a 
wax of known density to seal the internal voids in the rock. 
Figure 5.19 shows a photograph of the waxing step, bulk 
density determination using the wax-coating method.

The density determination now is a function of the dry 
and wet coated weights, dry uncoated weight, and the known 
wax density:

 

where Wair is the dry weight in air, prior to wax coating; 
WCair is the dry weight of the coated sample; WCwater is the 
weight of the coated sample in water, and δwax is the known 
density of the wax.

The spatial distribution of density measurements is also 
an important consideration. The density samples obtained 
must be representative in a spatial and geologic sense.

Sample density may be correlated to sample grade. This is 
because most metals have a higher specific gravity than the 
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host rock. If there is a sufficiently high concentration of met-
als (grade), then the density of the rock will be influenced by 
its metal content. Typical examples of deposits where there 
is usually a clear correlation between grade and density are 
uranium deposits, massive sulfides, iron deposits, and some 
high grade gold deposits.

Certain geologic factors will also have an impact on the 
expected density. For example, in an open pit mine, barren 
material that must be removed to access the deposit may 
be lighter than consolidated rock (bedrock), since it may 
consist of gravels or loose highly weathered material. Cer-
tain types of host rocks are porous such as breccias with 
significant voids, which despite being favorable hosts for 
mineralization and having generally good grade, will tend 
to be lighter. The type and intensity of alteration will also 
affect the in situ density values. Highly altered rock is fri-
able, powdery in extreme cases, and generally lighter than 
unaltered rock.

It is usually convenient to define density domains based 
on a combination of lithology, alteration, mineralogy, and 
average grades of the rock. There should be an adequate 

Fig. 5.19  Wax-coating density determination method, waxing step. 
Courtesy of BHP Billiton, Chile

 

Table 5.1  Example of the 
impact extreme assay values in 
terms of quantity of metal (QM) 
for a gold deposit
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amount of density samples available to model density, which 
may be from 100 to 1000 per domain, depending on the size 
and type of the deposit.

5.8  Geometallurgical Data

Geometallurgy is a relatively new field in Mining that tries 
to understand and model variables that are related to met-
allurgical performance. These may include variables that 
directly or indirectly measures throughput (hardness, grind-
ability), recovery (liberation, mineral shape/texture, etc) and 
concentrate quality. The importance of geometallurgy has 
been understood for quite some time in some deposits, such 
as limestone, iron, lateritic nickel, bauxite, manganese and 
coal. In recent years it is increasingly becoming a key com-
ponent in resource models for all base and precious metal 
deposits.

Geometallurgical variables can pose challenges. There are 
at least two aspects that need to be considered: (a) the mea-
sured variables are usually indirect measures, or proxies, of 
the metallurgical performance of interest; in some cases they 
do not average linearly; and (b) many aspects of metallurgi-
cal performance are non-linearly dependent on the measured 
variables. The issue of non-linearity is relevant because the 
predictions are required at a very different volume (support) 
than the original measurement is taken, as will be discussed 
in Chap. 7. When a variable is non-linear, simply taking the 
average or the tonnage-weighted average of the variable is 
not correct. Another aspect that may be significant is that in 
this type of predictions that extreme values are more relevant 
than large-volume averages.

The more typical grade estimates can play a part in the 
material characterization that is sought when predicting 
metallurgical performance. For specific performance mea-
surements, additional variables may be considered; for ex-
ample, for hardness and grindability, Drop Weight Index 
(DWi); Bond Work Index (BWi); in-situ density; and P80, 
which characterizes the size of the throughput material, 
may be combined in a linear or non-linear equation to pre-
dict tonnage per hours processed; alternatively, SPI (SAG 
Power Index) may be relevant, depending on the modeling 
approach taken. Sometimes geotechnical variables, such as 
RQD (Rock Quality Designation), UCS (uniaxial compres-
sive test), PLT (point load test), etc may be used as proxies 
to estimate throughput.

Other variables may include grades for payable ele-
ments, as well as deleterious elements that may result in 
penalties for concentrates sold, as well as those impacting 
on metallurgical recovery. May also include mineral species 
present, mineral liberation, texture, grain sizes and size dis-
tribution curves (p80), etc. Commonly, direct tests of metal-
lurgical recovery are available, which in turn may lead to 

modeling relationships between grades, mineral species, and 
metallurgical recoveries.

Challenges that may be posed by these variables at the 
time of estimation will be discussed in Chaps. 8–10.

5.9  Summary of Minimum, Good and Best 
Practices

At a minimum, the data must have a demonstrable level of 
quality such that it adequately supports the resource mod-
eling objectives. Quality requirements will thus increase 
from low to high as the level of detail of the resource model 
increases, from initial deposit modeling, pre-feasibility, 
and feasibility studies, mine planning and mine operations 
support. Database quality, measured in terms of error rate, 
should be better than 5 % for geologic codes and assay val-
ues. Specific issues to consider include:
a. Written procedures for data collection and handling 

should be available. They should include procedures and 
protocols for field work, geologic mapping and logging, 
quality assurance and quality control, database construc-
tion, sample chain of custody, and documentation trail. 
The procedures should include a QA/QC program for the 
analytical work, including acceptance/rejection criteria 
for batches of samples.

b. A detailed review of field practices and sample collection 
procedures should be performed on a regular basis, to en-
sure that the correct procedures and protocols are being 
followed.

c. Similarly, review of laboratory work should be an on-go-
ing process, including occasional visits to the laboratories 
involved.

d. A QA/QC program should be implemented, and should 
include at least pulp duplicates, standards, and blanks, as 
discussed above. Samples should be controlled on a batch-
by-batch basis, and rejection criteria should be enforced.

e. Information about core recovery and sample weights for 
RC drilling should be compiled and analyzed as drilling 
progresses.

f. Sufficient density information should be available to char-
acterize the main geologic units. No less than 30 samples 
per unit is a suggested minimum.

g. The compositing method should be adapted to the char-
acteristics of the (future) operation, and described and 
justified in detail. Similarly, a description and analysis of 
outliers is necessary.

In addition to the above, good practice requires that:
a. Every drill hole campaign should have a quantified degree 

of uncertainty. This includes discussions and reports of 
the quality and potential problems of sample collection 
procedures, data handling, and the overall quality of the 
computerized database.
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b. The QA/QC program should be extended to include not 
only sample preparation and assaying, but also of the 
sample collection process, drill hole collar and sample 
locations, including drill hole deviations, drill hole spa-
tial coverage, geologic mapping and logging, and a clear 
definition of the variables to be used and their purpose.

c. Issues such as the combined use of soft and hard data 
should be properly dealt with and justified.

d. Density determinations should be sufficient to adequately 
provide spatial coverage, and also should be subject to 
quality control procedures.

e. Detailed, written QA/QC reports should exist for every 
step of the sampling and data handling process. These 
procedures should include corrective measures as re-
quired.

f. Overall database errors rates, for all elements stored, 
should be below 2 %.

Best practice additionally includes:
a. The use of all possible (and relevant) geologic, grade, 

and other data to obtain a resource model. The process 
of defining the variables and their characteristics should 
be well documented. If metallurgical information is avail-
able, a complete description of the relationships between 
geology, grade, and metallurgical performance should be 
available, such as grade-recovery curves, hardness-plant 
throughput curves, etc.

b. There should be detailed reports on the QA/QC proce-
dures implemented available, including its results and 
relevant discussions, both for current and historic cam-
paigns. Also, records of internal checks and audits per-
formed for each step of the process should be compiled 
and archived.

c. A summary of qualitative or quantitative data uncertainty 
should be available for each data component. These can 
be derived from the database error rates (for qualitative or 
categorical variables), from sampling variance studies for 
sample preparation and analysis protocols, or from other 
statistical analysis.

d. Database error rates should be below 1 % for all variables 
being used.

5.10  Exercises

The objective of this exercise is to review some sampling 
theory and gain some experience with sampling nomographs. 
Some specific (geo)statistical software may be required. The 
functionality may be available in different public domain or 
commercial software. Please acquire the required software 
before beginning the exercise. The data files are available for 
download from the author’s website—a search engine will 
reveal the location.

The primary metal in the hypothetical deposit of this ex-
ercise is copper. The copper mineral is chalcocite (Cu2S). 
Chalcocite has a density, λm, of 5.5. The average copper 
grade is 2.0 % (note that this is not the average chalcocite 
grade). The host rock is a granite with a density, λg, of 2.3. 
The Liberation size, d, of the chalcocite is 50 µm. The shape 
factor, f, for chalcocite is 0.47. The granulometric factor, g, 
is 0.25.

Samples are taken using diamond core drilling. The core 
has a diameter of 52.0 mm. Half of the core will be sent for 
assay and the other half will be retained. The nominal sample 
length is 2.5 m.

The fundamental sample error is defined as:

where 2
FEσ  is the sampling error introduced when splitting 

the sample from MS1 to MS2, d is the particle size when the 
sample is being split, c is the mineralogical factor, and l is the 
liberation factor. The mineralogical and liberation factors are 
calculated in part one of this exercise.

5.10.1  Part One: Prerequisites for  
the Sampling Nomograph

Question 1: Calculate the amount of material from 1/2 of 
the drill core for a 2.5 m sample length. This 
is the starting mass for the sampling protocol.

Question 2: Calculate the chalcocite content, aL, in the 
sample. The calculation needs to be done 
using fractions, not a percentage or ppm. Use 
the average copper grade for this calculation. 
The molecular weight for chalcocite is 
159.17, for copper it is 63.55, and for sulfur it 
is 32.70.

Question 3: Calculate the mineralogical factor, c, for chal-
cocite. The result from question 2 is required 
for this step.

Question 4: The next step is to calculate the location of 
the size lines for the nomograph plot. This 
requires  some  iteration.  The  first  step  is  to 
choose some nominal particle sizes. The 
second step is to assume a sample mass for 
each particle size. This mass is not related to 
the actual sample. The mass is used for plot-
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ting lines on the nomograph. Calculate the 
error for the size and mass pairs using the 
formulae below. If any of the points do not 
lie within the nomograph window, modify 
the size of the sample so that the point is 
within the window. Use a value of 1 for b 
in the calculation of l. This is a conservative 
value for b. Note that the liberation factor 
cannot go above 1.0.

Alternatively, you may use the following table if needed.

5.10.2  Part Two: Nomograph Construction and 
Fundamental Error

Question 1: Plot the size lines calculated above onto a 
blank nomograph. The size lines are at a 45° 
angle that increases to the left.

Question 2: Recall the starting sample mass from part 1. 
Propose a sampling protocol, including crush-
ing and splitting, such that the total sampling 
error, σFE, is less than 7.5 %. A useful con-
straint is to not introducing more than 5 % 
error in a single step. An example is:

3
2

b

l
FE

S

dclfgd
l

M d
σ  = =   

Question 3: Generate a sampling nomograph and check 
your results.
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6Spatial Variability

Abstract

An essential aspect of geostatistical modeling is to establish quantitative measures of spatial 
variability or continuity to be used for subsequent estimation and simulation. The model-
ing of the spatial variability has become a standard tool of mineral resource analysts. In the 
last 20 years or so, the traditional experimental variogram has given way to more robust 
measures of variability. Details of how to calculate, interpret and model variograms or their 
more robust alternatives are contained in this chapter.

6.1  Concepts

Mineral grades are generated through a succession of geo-
logical processes not always completely known or under-
stood. Necessary conditions for mineral deposition include 
mineralization sources, pathways, and favorable geological 
conditions for deposition. The right physical and chemical 
processes can lead to significant mineral concentrations. The 
characteristics of mineral deposition invariably impart pat-
terns of spatial correlation that are important for resource 
evaluation and mine planning.

The description and modeling of these correlation pat-
terns allows better understanding of the depositional pro-
cesses and improves on the prediction of mineralization and 
mineral grades at unsampled locations. Statistical tools can 
be used to describe those correlations within an appropriate 
theoretical framework.

The material in this section summarizes other geosta-
tistical texts such as Geostatistical Ore Reserve Estimation 
(David 1977), Mining Geostatistics (Journel and Huijbregts 
1978), An Introduction to Applied Geostatistics (Isaaks and 
Srivastava 1989), or Geostatistics for Natural Resources 
Evaluation (Goovaerts 1997).

 Random Function Concept The uncertainty about an 
unsampled value z is modeled through the probability dis-
tribution of a random variable (RV) Z. The probability dis-
tribution of Z after data conditioning is usually location 

dependent; hence, the notation Z(u), with u being the coor-
dinate location vector.

A random function (RF) is a set of RVs defined over some 
field of interest, for example, {Z(u), u is an element of study 
area A} also denoted simply as Z(u). Usually the RF defini-
tion is restricted to RVs related to the same attribute, hence, 
another RF would be defined to model the spatial variability 
of a second attribute, say {Y(u), u is an element of the study 
area A}.

The use of Random Functions implies that the variables 
are within a subset of the deposit or an area that is considered 
stationary. The ability to apply the RF concept is based on 
the belief that the locations u in A and variable Z belong to 
the same statistical population. The purpose for conceptual-
izing a RF as {Z(u), u is an element of study area A} is never 
to study the case where the variable Z is completely known. 
If all the z(u)’s were known for all u in the study area A, 
there would be neither any problem left nor any need for 
the concept of a random function. The ultimate goal of a RF 
model is to make some predictive statement about locations 
u where the true outcome z(u) is unknown.

Just as a RV Z(u) is characterized by its cumulative distri-
bution function (cdf), a RF Z(u) is characterized by the set of 
all its N-variate cdfs for any number N and any choice of the 
N locations ui, i = 1,…, N within the study area A:

1 1 1 1( , , ; , , ) { ( ) , , ( ) }N N N NF z z Prob Z z Z z… … = ≤ … ≤u u u u
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The univariate cdf of the RV Z(u) is used to characterize 
uncertainty about the value z(u), and the multivariate cdf 
is used to characterize joint uncertainty about the N values 
z(u1),…, z(uN).

The bivariate (N = 2) cdf of any two RVs Z(u1), Z(u2), or 
more generally Z(u1), Y(u2), is particularly important since 
conventional geostatistical procedures are restricted to uni-
variate (F(u;z)) and bivariate distributions:

One important statistic of the bivariate cdf F(u1, u2; z1, z2) is 
the covariance function defined as:

The covariance is a summary statistic that is positive when 
Z(u1) and Z(u2) are directly related and negative when they 
are inversely related. The magnitude of the covariance sum-
marizes the strength of the relationship. It is a single num-
ber that summarizes the bivariate distribution. When a more 
complete summary is needed, the bivariate cdf F(u1, u2; z1, 
z2) can be described by considering binary indicator trans-
forms for thresholds of the Z variable. Then, the previous 
bivariate cdf at various thresholds z1 and z2 appears as the 
non-centered covariance of the indicator variables:

This relation is important for the interpretation of the indi-
cator geostatistics formalism; it shows that the inference of 
bivariate cdfs can be done through sample indicator covari-
ances.

The probability density (or mass) function (pdf) represen-
tation is more relevant for categorical variables. Recall that 
a categorical variable Z(u) may take one of K outcome val-
ues k = 1,…,K, arising from a naturally occurring categori-
cal variable or from a continuous variable discretized into 
K classes.

Inference of any statistic requires some repetitive sam-
pling. For example, repetitive sampling of the variable z(u) 
is needed to evaluate the cdf through experimental propor-
tions:

However, in almost all applications at most one sample 
is available at any single location u in which case z(u) is 
known (ignoring sampling errors), and the need to consider 
the RV model Z(u) vanishes. The need remains to infer the 

1 2 1 2 1 1 2 2( , ; , ) { ( ) , ( ) }F z z Prob Z z Z z= ≤ ≤u u u u

1 2 1 2 1 2( , ) { ( ) ( )}  { ( )} { ( )}C E Z Z E Z E Z= −u u u u u u

1 2 1 2 1 1 2 2( , ; , ) { ( , ) ( , )}F z z E I z I z=u u u u

( ; ) { ( )  } { ( ) }F z Prob Z z Proportion z z= ≤ = ≤u u u

statistical parameters at unsampled locations. The paradigm 
underlying geostatistical inference is to trade the unavail-
able replication at location u for another replication avail-
able somewhere else in space and/or time. For example, the 
cdf F(u;z) may be inferred from the sampling distribution 
of z-samples collected at other locations within the same 
field.

This trade of replication corresponds to the decision of 
stationarity. Stationarity is a property of the RF model, not of 
the underlying physical spatial distribution. Thus, it cannot 
be checked from data. The decision to pool data into statis-
tics across geologic units is not refutable a priori from data; 
however, it can be shown inappropriate a posteriori if differ-
entiation of a domain significantly improves the inferences 
and estimations obtained.

The RF {Z(u), u in A} is said to be stationary within the 
field A if its multivariate cdf is invariant under any transla-
tion of the N coordinate vectors uk, that is:

Invariance of the multivariate cdf entails invariance of any 
lower order cdf, including the univariate and bivariate cdfs, 
and invariance of all their moments. The decision of station-
arity allows inference. For example, the unique stationary 
cdf

can be inferred from the cumulative sample histogram of the 
z-data values available at various locations within A. The 
stationary mean and variance can then be calculated from 
that  stationary cdf F( z), and also the stationary covariance 
can be inferred.

Stationarity is critical for the appropriateness and reliabil-
ity of geostatistical methods. Pooling data across geological 
boundaries may mask important grade differences; on the 
other hand, splitting the data into too many small stationary 
subsets may lead to unreliable statistics based on too few 
data per subset. The rule in statistical inference is to pool the 
largest amount of relevant information to formulate predic-
tive statements (Chap. 4).

Since stationarity is a property of the RF model, the de-
cision of stationarity may change if the scale of the study 
changes or if more data becomes available. If the goal of the 
study is global, then local details may be less important; con-
versely, the more data available approaching final decisions 
such as grade control or final mine design, the more statisti-
cally significant differentiation becomes possible.

Consider a stationary random function Z with known 
mean m and variance σ2. The mean and variance are inde-
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pendent of location, that is, m(u) = m  and σ2(u) = σ2 for all 
locations u in the study area. The variogram is defined as:

 (6.1)
In words, the variogram is the expected squared difference 
between two data values separated by a distance vector h. 
The semivariogram γ(h) is one half of the variogram 2γ(h). 
To avoid excessive jargon we simply refer to the variogram, 
except where mathematical rigor requires a precise defini-
tion. As with the mean and the variance, the variogram does 
not depend on location; it applies for a separation vector that 
is translated or scanned over all locations in the chosen area 
of interest. The variogram is a measure of variability; it in-
creases as samples become more dissimilar. The covariance 
is a statistical measure that is used to measure correlation or 
similarity:

 (6.2)

The covariance C(h) is 0.0 when the values h-apart are not 
linearly correlated. At h = 0 the stationary covariance C(0) 
equals the stationary variance σ2, that is,

In certain situations the standardized covariance, the correla-
tion coefficient, is preferred:

By further expanding Eq. 6.1, the following relation between 
the semi-variogram and covariance is established for a sta-
tionary RF:

 (6.3)

This relation depends on the model decision that the mean 
and variance are constant and independent of location. These 
relations are important in variogram interpretation and in 
providing covariances to kriging equations.

The principal features of the variogram are the sill, range, 
and nugget effect. Figure 6.1 shows a variogram with these 
three important parameters:
1. The “sill” of the variogram is the equal weighted vari-

ance of the data going into variogram calculation, which 
is the variogram value that corresponds to zero linear cor-
relation. The variogram may flatten off at an apparent sill 
below or above the sill variance.
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2. The “range” is the distance at which this zero correla-
tion is reached. If the variogram reaches the sill multiple 
times, it is common to consider the range as the first oc-
currence.

3. The “nugget effect” is the variogram value at a distance 
just larger than the sample size, which characterizes the 
very short scale variability. It is common also to use the 
term short-scale variability when referring to variogram 
distances less than the smallest spacing between sample 
points.

The correlation between Z(u) and Z(u + h) is positive when 
the variogram value is less than the sill, and the correlation 
is negative when the variogram exceeds the sill. Figure 6.2 
shows three h-scatterplots corresponding to three lags on 
a typical semivariogram. Geostatistical modeling gener-
ally uses the variogram instead of the covariance for mainly 
historical reasons, that is, it was considered more robust to 
cases where the mean changes locally. In practice, second 
order stationarity is almost always assumed and this advan-
tage is not practically important.

6.2  Experimental Variograms  
and Exploratory Analysis

A single variogram value γ(h) for a particular distance and di-
rection vector h is straightforward to interpret and understand. 
Practical difficulties arise from the fact that we must calculate 
reliable values and simultaneously consider many lag vectors 
h. The variogram is a measure of geologic variability versus 
distance. This variability can be different in different direc-
tions; for example, in sedimentary formations there is typi-
cally much greater spatial correlation in the horizontal plane. 
The pattern of spatial continuity is anisotropic when the vari-
able is more continuous in one direction than another.

Some important steps have to be completed before calcu-
lating experimental variograms: (1) the data must be visual-
ized and understood from a geological perspective, (2) an 
appropriate coordinate system must be established, and (3) 

Sillγ

h
Nugget
Effect

Range

Fig. 6.1  Features of a variogram
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outliers and data transformations should be considered. In 
general, the variogram is computed in the coordinate sys-
tem and in the units that will be used for modeling, that is, 
composite grades are considered and normal scores are con-
sidered if Gaussian uncertainty or simulation techniques are 
being considered.

The first prerequisite is to understand the data. Although 
experimental variograms may help understand the geol-
ogy and spatial variability of a particular variable, misun-
derstanding and errors could be propagated by calculating 
variograms without a reasonable understanding of the data, 
trends, and data configuration. The histogram and univariate 
statistics of the data should be investigated. Odd data and ex-
tremely high and low data values should be questioned. The 

data should be visualized in many different ways. The com-
plexity of the geologic continuity should be understood rela-
tive to the data spacing. The choice of estimation domains 
and variables should seem reasonable.

A second prerequisite is to perform variogram calcula-
tions in an appropriate coordinate system. Standard X/Y/Z 
coordinates based on elevation and a UTM or a local mine 
system may be reasonable for a disseminated deposit. Tabu-
lar or stratigraphic type orebodies may require the calcula-
tion and usage of stratigraphic coordinates (see Sect. 3.4). 
Weathered deposits may require the use of depth below topo-
graphic surface as the vertical Z coordinate.

The variogram is a two-point statistic; curvilinear con-
tinuity cannot be represented by a two-point statistic. The 

Fig. 6.2  Variogram values 
from a normal score 
transformed variable. The 
data points going into the 
calculation of three lags are 
shown as h-scatterplots
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study area may need to be subdivided if the direction of con-
tinuity changes systematically over the study area; but there 
will be a trade-off between preserving local precision and 
maintaining sufficient data for reliable calculations. Some 
newer tools for locally varying anisotropy are becoming 
available, but are not commonly used.

Variogram calculation is preceded by selection of the Z 
variable to use in variogram calculation. The variable should 
not be transformed for obtaining experimental variograms 
for conventional kriging applications. The use of Gaussian 
techniques requires a prior normal score transform of the 
data and the variogram of those transformed data. Indicator 
techniques require an indicator coding of the data prior to 
variogram calculation.

Another aspect of choosing the correct variable is outlier 
detection and removal. Extreme high and low data values can 
have a large influence on the variogram value since each pair 
is squared in the calculation. While erroneous data should be 
removed, legitimate high values may also mask the spatial 
structure of the majority of the data. The increased variability 
of high values combined with preferential sampling in high 
valued areas can lead to experimental variograms that are 
noisy and difficult to interpret. Logarithmic or normal score 
transformation mitigates the effect of outliers, but an appro-
priate back transform is being considered in later calculations.

The correct variable also depends on how trends are 
going to be handled in subsequent model building. Some-
times, clear areal or vertical trends are removed prior to geo-
statistical modeling and then added to geostatistical models 
of the residual (original value minus trend). If this two-step 
modeling procedure is being considered, then the variogram 
of the residual data is required. There is a risk, however, of 
introducing artifact structures in the definition of the trend 
and residual data.

The variogram is calculated for distance/direction lags 
where there are a sufficient number of paired data. The var-
iogram is the average of squared differences from data pairs:

 
(6.4)

It is rare to find data pairs exactly the same distance apart. 
This requires that the N(h) pairs be assembled using reason-
able distance and direction tolerances (Fig. 6.3). Variogram 
calculation programs scan over all pairs and assemble the 
ones that fall into approximate distance/direction h lags after 
applying the specified tolerances. These tolerances define 
sectors within which separation vectors are defined.

A simple 2-D example of this is shown in Fig. 6.4. The 
experimental variogram is the average squared difference 
between the 16 pairs. Notice how some data are not used, 
some are used once, some twice, and one data is used three 
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times. This depends on the data configuration and the toler-
ance parameters.

Establishing the variogram tolerance parameters is trial 
and error. If tolerances are too small, then the variogram will 
be noisy. If tolerances are too large, then the spatial continu-
ity will be averaged out and imprecise. In general, lag and 
angle tolerances should be set as small as possible to ensure 
good definition of directional continuity while still obtaining 
a stable variogram.

The maximum number of lags should be so that the maxi-
mum lag distance is less than one half of the domain size. 
The variogram is only valid for a distance of one half of the 
field size since for larger distances the variogram begins to 
leave data out of the calculations. The lag tolerance is usu-
ally one half the lag separation distance. In cases of erratic 
variograms or few data, the lag tolerance can be greater than 
one half the lag separation to add additional pairs to the var-
iogram calculation and to smooth between lags.

The choice of directions for variogram calculation de-
pends on the anticipated anisotropy of the geological vari-
able, the number of samples available and the software used. 
The geologic characteristics of the deposit can be understood 
by looking at sections and plan views to define potential 
directions of anisotropy. The orientation of the drill holes 
should also be considered. If there are enough samples, mul-
tiple directions are reviewed before choosing a set of three 
perpendicular directions. These three directions then become 
the three main axes of the ellipsoid that represents the an-
isotropy.

An omnidirectional variogram considers all possible di-
rections simultaneously by opening the angle tolerance to 
90°; they often yield the best-behaved variograms, but all 
directional characteristics are lost. A down-the-hole vario-
gram will provide a good estimate of the nugget effect, as 
well as the short scale continuity, since it is calculated from 
adjacent data along the drill holes paths, without considering 
their orientation.

Fig. 6.3  Example tolerance for variogram calculation. The bold arrow 
between the two colored dots represents the vector of interest. Any vec-
tor from the right hand side dot to any location in the shaded area will 
be accepted
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In some cases there may be enough data to calculate the 
variogram values for many different distances and directions 
and plot a two- or three-dimensional map of variogram val-
ues. This is true for both gridded data and dense irregular 
data. These maps are useful for detecting directions of an-
isotropy, and to avoid imposing pre-conceived ideas on the 
variogram.

6.2.1  Other Continuity Estimators

The experimental variogram is often calculated as in Eq. 6.4; 
this is the traditional tool used to assess variability. However, 
the presence of a small number of extreme data values can 
cause the variogram to become very noisy. Normal scores, 
indicator data, or log-normal transformations often make the 
variogram more robust, but the nature of the variability is 
changed. Several other continuity estimators have been pro-
posed to make the variogram function more robust (Journel 
1988; Isaaks and Srivastava 1988).

The general relative and the pairwise relative variograms 
were popularized by M. David (1977). The general relative 
variogram standardizes the traditional variogram using the 
squared average of the data points for each lag:

with the average of data for each lag being

The pairwise relative variogram often produces a more clear 
spatial continuity function than the general relative vario-
gram. The difference is that the adjustment is done sepa-

2( ) / () )(GR mγ γ=h h h

( )
2

m m
m  −+

= h hh

rately for each pair of values, using the average of the two 
values:

The variable used should be strictly positive because of the 
denominators in both relative variogram’s definition. Rela-
tive variograms were originally proposed to remove the 
proportional effect commonly found in positively-skewed 
mineral grade distributions. The standard deviation of the 
samples within sub-zones of our “stationary” domain is like-
ly proportional to their mean grade. Experience has shown 
that the relative variograms, and in particular the pairwise 
relative variogram, are significantly more structured and 
easier to model than the traditional variogram. This makes 
it a suitable experimental variogram estimator in presence 
of sparse, clustered and erratic data. A concern is that the 
sill is not clearly defined—it depends on the shape of the 
histogram and the coefficient of variation. One useful imple-
mentation approach is to transform the data to a lognormal 
distribution with a mean of 1 and a variance of 1, then the 
sill of the pairwise relative variogram is 0.44 (Babakhani 
and Deutsch 2012).

The covariance defined Eq. 6.2 assumes that the domain 
is stationary, and thus the mean of the data is the same at both 
ends of the separation vector. A more general spatial cova-
riance definition is the non-ergodic covariance (Srivastava 
1987) that does not assume that the averages of the tail and 
head of the separation vector are the same:
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Fig. 6.4  Twenty-three data 
and 16 pairs that meet the 
tolerance sketched in the 
lower left of the figure. There 
are some gaps where the data 
are too close
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The corresponding non-ergodic correlogram (Srivastava and 
Parker 1988) is commonly used as a robust alternative to the 
traditional variogram. The sample correlogram is calculated 
with:

where C(h) is defined above and:

This measure is robust because of the use of lag-specific 
mean and variance values. In practice, it has become the 
most popular option when dealing with untransformed vari-
ables.

6.2.2  Inference and Interpretation  
of Variograms

The single biggest problem in variogram interpretation is a 
lack of data to calculate a reliable variogram. Too few data 
for reliable variogram interpretation does not mean there is 
no variogram; it is just hidden or masked by data paucity. 
Geological analogues or expert judgment may be required.

In general, inference is affected by data density; the use of 
different data types (drill holes, blast holes, trench samples, 
etc.); influence of outliers; and trends. Also, a high relative 
variability of the samples as measured, for example, by the 
coefficient of variation (CV), is an indication that robust 
measures of continuity are necessary.

Inference is an iterative process and exploratory in nature. 
Inference generally starts with the initial sample collection, 
which results in early geologic interpretation and estimation 
domain definition.

Spatial clustering is common in regions of high grades 
that will likely be mined sooner. Geologists would naturally 
seek to confirm and carefully delineate such areas. These 
clustered data, however, can cause the variogram at short 
lags to be too high or too low, which could lead to a misin-
terpretation of the variogram structure. The most common 
misinterpretations would be a too-high a nugget effect or 
short-scale structure. There can also appear to be a short-
scale cyclic characteristic. The clustered data could provide 
an improved representation of the higher grades (and higher 
variance if a proportional effect exists) sub-zone within the 
stationary domain. Different patterns of anisotropy may 
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emerge from short-scale data, compared to the larger, do-
main-wide scale.

Decisions as to whether clustering is truly imparting an 
artifact to the variogram model should be made considering 
geologic information. A few possible solutions may be to (1) 
remove the clustered data, leaving an underlying grid; (2) 
discredit unusually high variogram points for the short dis-
tances; or (3) using more robust measures such as the sample 
correlogram or pairwise relative variogram rather than the 
traditional variogram.

The interpretation of the variogram consists of explaining 
the variability over different distance scales as a function of 
known geological and mineralogical factors. Experimental 
variograms should always be reconciled with known geol-
ogy. Potential artifacts introduced by data configurations 
and sampling practices should be discussed with geologists 
familiar with the deposit. The degree of continuity observed, 
the anisotropies observed, and the relative variances of 
each structure should be discussed. The variogram function 
should be representative of the expected geologic variability.

Discrepancies that may arise between perceived geologic 
knowledge and interpretations and inferences from the ex-
perimental variograms should be resolved before proceeding 
with the resource evaluation process.

There are four common cases in variogram interpretation: 
trends, cyclicity, zonal (or areal) anisotropy, and geometric 
anisotropy (Fig. 6.5). Trends are common in mineral deposits, 
and often question the definition of stationarity chosen. For 
example, Cu grades tend to decrease towards the periphery 
of a typical Porphyry Cu deposit, while the grades in some 
base metal mines are a function of the porosity of the host 
rock; if it is sedimentary or pseudo-sedimentary, a clear trend 
across the direction of deposition will be found. These trends 
cause the variogram to increase above its sill variance σ2, or 
stationary variance, and show a negative correlation at large 
distances.

Cyclicity can be a result of the mineral depositional 
phenomena occurring repeatedly over geologic time and 
leading to repetitive en echelon variations in the resulting 
mineral grades. Cyclical behaviors are more common, but 
not exclusive to, sedimentary or strata-bound deposits. This 
behavior is observed in the variogram as cycles of positive 
and negative correlation at the length scale of the geologic 
cycles. These cyclic variations often dampen out over large 
distances as the size or length scale of the geologic cycles 
is not perfectly regular. These cycles are usually modeled 
with sinusoidal functions, often referred to as a hole effect. In 
early mining geostatistics, cyclicity was observed in “down-
hole” variograms; hence the name hole effect.

Anisotropic variograms are extremely common in mining 
and other geostatistical applications. Occasionally the pat-
tern of continuity will be similar in all directions, and thus 
the variogram is said to be isotropic. But by far the most 
common occurrence is for variograms to be anisotropic. 
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Geometric anisotropy is when the variance (sill) is reached 
at different distances (lags) for different directions. Zonal 
anisotropy is when for any distance considered in the vario-
gram calculation the variogram never reaches the expected 
sill variance. Zonal anisotropies can also be considered geo-
metric anisotropies if it assumed that the same sill variance 
is reached at distances much larger than used to calculate the 
variogram.

6.3  Modeling 3-D Variograms

The experimental variogram points are not used directly in 
subsequent calculations; rather, a parametric function is ad-
justed to those points to obtain a three-dimensional model 
(Armstrong 1984). The two most important reasons for mod-
eling variograms are:
1. Most subsequent geostatistical calculations, including 

estimation and simulation methods, require a variogram 
or covariance value for all possible distances and direc-
tions. Since only specific distances and directions are 

used to obtain the variogram points, these need to be 
interpreted  and  interpolated  into  a  γ(h) function for all 
h values. The modeled γ(h) function should carry all the 
geological information derived from the experimental 
model, including anisotropies, trends, nugget effects, etc. 
A smooth interpreted function also allows filtering arti-
facts of data spacing, location, and sampling practices.

2. The covariance values C(h)  derived  from  γ(h) using 
Eq. (6.3) must have a mathematical property called posi-
tive definiteness. A positive definite model ensures that 
the kriging equations used can be solved, that this solu-
tion is unique, and that the kriging variance is positive. A 
positive definite function is a valid measure of distance.

The positive definite condition is required because the krig-
ing estimates are weighted linear combinations of samples:

The variance of the estimates Z*(u) must, by definition, be 
positive. It can be shown (Journel and Huijbregts 1978) that 
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Fig. 6.5  Common variogram shapes (variograms are standardized, but with no specific distance scale). The figures illustrate trends ( top left), 
cyclicity ( top right), geometric anisotropy ( bottom left), and zonal anisotropy ( bottom right)
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the variance of a linear combination can be written in terms 
of the variogram (or covariance) values as:

The variance must be non-negative for any choice of loca-
tions (u) and weights ( λ) within the domain. The variogram 
functions that yield non-negative variance are called semi 
positive definite. If a covariance is used, then the condition 
is restricted to positive variance only.

The positive definite condition implies that practitioners 
typically use specific known positive definite functions; the 
more commonly used are spherical and exponential, among 
others described below (Journel and Huijbregts 1978; Cressie 
1991; Christakos 1984). Other arbitrary functions can be 
used, but they must first be proven positive definite (Myers 
1991), for which Bochner’s theorem (Reed and Simon 1975), 
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based on Fourier transforms, could be used. The additional 
work and complications arising from attempting to use other 
functions is rarely worthwhile: traditional parametric models 
allow achieving a good fit in practice and also allow consid-
eration for the geological information commonly available; 
and it also allows for a straightforward transfer into existing 
estimation and simulation codes (Deutsch and Journel 1997).

6.3.1  Commonly Used Variogram Models

Figure 6.6 shows the most common variogram shapes used 
in mining. These shapes are all parameterized by a scalar 
vector h and a range parameter. The use of anisotropy with 
these variogram model shapes is discussed below. The first 
is the spherical model, for which the spherical covariance, 
1—Sph(h), is the volume of two intersecting spheres.

31.5( / ) 0.5( / ) ,
( )

1, otherwise

h a h a h a
Sph h






− ≤=

Fig. 6.6  Spherical model ( top left); exponential model ( top right); Gaussian model ( bottom left); and power-law models ( bottom right)
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The exponential model is also common, and is similar to 
the spherical, except that it rises more steeply and reaches 
the sill asymptotically. The practical range is where the 
variogram value is 95 % of the sill. Some old definitions 
of this variogram do not include the “3” and use a range 
parameter 1/3 of the practical range; modern practice is to 
consider the practical range:

The Gaussian model exhibits a parabolic rather than linear 
behavior at the origin, which implies more short scale con-
tinuity. It is suitable for slowly-varying variables, since the 
increase in variance is very gradual with distance; examples 
of such variables are elevations, water-table measurements 
in hydrogeology, or thicknesses. The practical range is where 
γ(h) is 95 % of the sill:

The power law model is associated to self affine random 
fractals. The parameter ω of a power model is related to the 
fractal dimension D. The variogram model is defined by a 
power 0 < ω < 2 and a positive slope, c.

Other important models, although not frequently used, are 
the hole effect models: (a) sin

( ) 1
r

h
r

γ = −  and (b) 

( ) 1 cosh h.γ = −  The sinusoidal model (a) is valid in three 
dimensions, with r specified in radians, while model (b) is 
only valid in one dimension, particularly useful when a 
strong hole-effect needs to be modeled in a particular 
direction.

An important notion in variogram modeling is the use of 
nested structures. The variogram can be fit with a positive 
sum of valid variogram models—called nested structures. 
So, for example, the final variogram could be a sum of a 
spherical variogram explaining part of the variance and an 
exponential variogram explaining the remaining variance. 
Both structures should typically have different ranges.

6.3.2  Basic Variogram Modeling Guidelines

Virtually all experimental variograms can be modeled using 
these various types of models. The specific steps and the 
order in which they are completed may vary with the soft-
ware tool used, variogram modeling entails making some-
times subjective decisions on several issues:

( ) 1 exp( 3 / )Exp h h a= − −

( )2( ) 1 exp 3( / )Gaus h h a= − −

( )h c hωγ = i

Decide on the variable to be modeled. Conventional mineral 
resource estimation requires that grade variables be mod-
eled. There are estimation methods that also require trans-
formation, including the log-normal (not in common usage), 
and Gaussian or Indicator-based methods. Most simulation 
methods require that either the Gaussian or Indicator trans-
forms is used. The transformed variables are generally easier 
to model, but the characteristics of the continuity models are 
generally different than the original variables.

Non-transformed variables may require more exploratory 
analysis and clean-up work using h-scatterplots to obtain 
reasonable models; but the practice of modeling a trans-
formed variable to obtain a variogram model and then back-
transforming the variogram mode to obtain a model for the 
original variable is discouraged. This idea has been applied 
using Gaussian and logarithm transformations. For a given 
dataset, it can be shown that the variogram models obtained 
from the original data often have significant differences with 
the back-transformed models derived from using the Gauss-
ian or log transforms.

Find a good estimate of the nugget effect. The nugget effect 
is a variance that results from measurement errors and geo-
logical short-scale variance. It can sometimes be obtained 
from repeat assays of the same sample, subdivided several 
times. This is done as part of the general quality assurance 
and quality control (QA/QC) of the sample database, but 
the number of repeat samples and its spatial distribution 
is generally insufficient to estimate a nugget effect for the 
variogram model. More common is to use a direction where 
there is large amount of data at short spacing, as for example 
in the down the hole direction of the drill hole. Typically, 
there is an order of magnitude difference between the lat-
eral drill hole spacing and the sampling frequency down the 
hole. Since by definition the nugget is the variance at dis-
tance zero, then it has to be isotropic, that is, the same in 
all directions. Therefore, it is licit to estimate it from data 
in any direction; and closely spaced data will provide the 
better estimates. The nugget effect obtained from down the 
hole variograms should always be compared to the sampling 
variance resulting from the QA/QC program available and 
heterogeneity or other sampling studies. This comparison 
should be made always mindful of the stationary domains 
used in variogram modeling.

Determine the best anisotropy directions. The anisotropy 
is found by looking at the variogram in multiple directions. 
These directions can be pre-determined based on geologic 
knowledge, fixing the directions that may be reasonable can-
didates for best representing the anisotropy. Sometimes, the 
software tool used allows specifying multiple directions, with 
no pre-conceived anisotropy model. If more data is available, 
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a larger number of directions can be run, using tighter toler-
ances, such that a more precise definition of the anisotropy is 
possible. But even if the data is sparse such that wide angle 
and lag tolerances must be used, the anisotropic model is 
probably more realistic than an isotropic one. Although rare, 
occasionally geologic phenomena can result in a 3-D isotro-
pic variogram over a relatively small distance scale.

The most common type of anisotropy is geometric an-
isotropy. This is the case when the directional variograms 
present the same level of variance (sill) in all directions, but 
the ranges are different. The variogram model is an ellipsoid 
characterized by the three principal directions (axes) with 
three different ranges. All other directional variograms can 
be derived from this ellipsoid. A linear transformation of the 
coordinates is sufficient to obtain an effective lag distance h. 
This transformation involves a rotation to make the ellipsoid 
axes coincident with the main coordinate axes; and a transla-
tion, specified as an affinity matrix, to obtain the equivalent 
effective ranges. This transformation allows inferring the 
variogram value for any direction and any distance:

This would be applied for each structure separately. The 
range of each structure would be one. Common geostatisti-
cal software requires the user to specify the orientation of the 
ellipsoid (three angles) and the three ranges; there is no need 
to explicitly calculate the scaled h distances.

Zonal anisotropy cannot generally be modeled using a 
simple coordinate transformation; in this case, one option is 
to add an additional structure in the specific direction where 
the zonal component appears. But it is more common to con-
sider it a special case of geometric anisotropy, where the sill 
is reached asymptotically at large distances. The zonal an-
isotropy thus appears as a very large range parameter in one 
or more of the principal directions.

Define the sill at which the variogram reaches the zero cor-
relation distance. There is often confusion about the correct 
variance to use for variogram interpretation. It is important to 
have the variance σ2 to correctly interpret positive and nega-
tive correlation, as well as confirm trends in the data. Some 
authors have discussed the issue about which is the correct 
variance to use as sill variance for variogram interpretation 
(Gringarten and Deutsch 1999; Journel and Huijbregts 1978, 
p. 67; and Barnes 1991).

There are three issues that may affect the decision about 
which is the correct variance to use: (1) the dispersion vari-
ance, which accounts for the difference between our finite 
domain and the infinite stationary variance; (2) declustering 
weights, which account for the fact that our summary 

22 2

yx z

x y z

hh h
h

a a a

    
= + +         

statistics are not representative of the entire domain, and (3) 
outlier values, which can cause eratic and unstable estimates 
of the variance. The main point being made by Journel and 
Huijbregts (1978), and also Barnes (1991), is that the sample 
variance 2σ̂  is not an estimator of the stationary variance σ2; 
rather, it is an estimate of the dispersion variance of samples 
of point support within the stationary domain A  ( D2(•,A)). 
Only when the domain A approaches an infinite domain does 
the sample variance 2σ̂  approach the stationary variance σ2. 
However, the data used to estimate the variogram represent 
the area of interest A and not an infinite domain. Thus, the 
point where Y(u) and Y(u + h) are uncorrelated is the disper-
sion variance D2(•,A). Thus, the sample variance should be 
used as the sill of the sample semivariogram understanding 
that it is, in fact, a dispersion variance.

The second issue relates to the use of the naïve sample 
variance or the sample variance accounting for decluster-
ing weights. The use of declustering weights is important, 
but they are not used in the calculation of the variogram. 
There are more pairs in areas of greater sampling density, 
and therefore the variogram at shorter distances will reflect 
more the local variance of the clustered data. Also, the sill is 
reached at the naïve sample variance. Omre (1984) proposed 
incroporating declustering weights into the variogram cal-
culation; however, they provide no better variogram and are 
difficult to implement in practice. As a result, declustering 
weights are not used in variogram calculation, interpretation, 
and modeling. The sill should be taken as the naive equally 
weighted variance.

The third issue that must be addressed is the influence 
of outlier sample values. It is well known that the variance, 
being a squared statistic, is sensitive to outlier values. For 
this reason, the sample variance may be unreliable. This is 
not a problem with correlograms, or transformed data: the 
Gaussian and indicator transforms remove the sensitivity to 
outlier data values. While some outliers may be removed (or 
capped) in traditional variogram modeling, the correct vari-
ance for variogram interpretation is the naïve equal-weight-
ed variance. Outliers influence more than just the variogram 
sill: as shown by Rossi and Parker (1993), the nugget effect 
and short scale continuity modeled are also affected, and can 
have a significant impact on the final variogram model. The 
higher the variability, the more significant the impact of out-
liers is. Although we still recommend keeping all the data for 
variogram modeling, there may be cases where the outliers 
are so extreme and with little or no spatial influence that it 
may be better to remove or reduce (cap) its value.

Define how to deal with the trends.  If the variable being 
modeled shows a systematic trend, that is, the data is non-
stationary over the study domain, it is generally better to 
remove it before further geostatistical analysis. Trends in 
the data can be identified from the experimental variogram, 
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which keeps increasing above the theoretical sill. A “power” 
or “fractal” variogram model could be fit to the experimental 
variogram; however, these models do not have a sill value 
(it is infinite), and thus they have no covariance counterpart, 
which is a problem for most geostatistical applications.

If the trend is removed, variogram analysis and all sub-
sequent estimations or simulations are performed on the re-
siduals. The trend is added back to estimated or simulated 
values at the end of the study. Although there are difficulties 
in defining a robust trend model and removing the its deter-
ministic portion from the data, the only practical option is to 
model trends deterministically. Removing a trend by estima-
tion from the data themselves can introduce a bias; however, 
this bias may be less significant than the errors introduced 
by leaving the trend alone. It is often suggested (Journel 
and Huijbregts 1978 and others) that the variogram should 
be computed in directions and/or areas where the trend does 
not appear as significant. Directly considering the residuals 
in variogram calculation can lead to erroneously high vari-
ability.

Fit the variogram models, and decide on the number and 
type of nested structures. Experimental variograms show 
different behavior at different distances h. Other than the 
discontinuity at the origin (the nugget effect), the variogram 
may also present a long range structure superimposed on a 
short distance structure. These different spatial continuity 
structures are a reflection of different geologic controls; for 
example, it is common for more than one geologic factor to 
influence mineral deposition. Normally, in precious and base 
metal deposits the higher grade mineralization is controlled 
by fractures or veins, which tend to have a clear preferential 
orientation, with a strong anisotropy and short range. These 
will evidence themselves as a distinct the short-scale conti-

nuity and anisotropy, considering also that most of the clus-
tered samples in these types of deposits sample the higher 
grade mineralization. A larger intrusive body or the geom-
etry of the host rock may be responsible for a larger-scale 
anisotropic feature.

The use of nested structures provides enough flexibility 
to model most combinations of geologic controls. However, 
there is no gain in over-modeling and over-fitting. It is ex-
tremely rare that more than three nested structures would be 
necessary; only in those cases where, for example, a zonal 
anisotropy or a hole-effect are modeled as an additional 
structure in a specific direction.

In summary, good practice is to pick a single isotropic 
nugget effect, choosing the same number of variogram struc-
tures for all directions based on the most complex direction; 
zonal anisotropies are modeled as geometric anisotropies, 
with one direction having a very long, unrealistic range to 
account for the lower variance; the same sill parameter is 
used for all variogram structures in all directions, and allow-
ing a different range parameter in each direction. An interest-
ing possibility afforded by at least one semi-automatic fitting 
program is that different nested structures may present dif-
ferent anisotropies. While care must be taken not to over-
fit the models, these can lead to reasonable and defensible 
models, particularly if there is sufficient data and geologic 
knowledge to back them up.

Figure 6.7 show as an example of an experimental corre-
logram and its model for three main directions of anisotropy. 
The correlograms are of Arsenic values, and the graph shows 
the fit, the number of pairs used to calculate each variogram 
point, and the model fitted, with the ranges corresponding to 
each direction. Two exponential structures were used to fit 
the models, with significant anisotropy in SE vs. NE direc-
tions, as well as in the vertical direction.

Fig. 6.7  Example of three 
directions, experimental 
correlograms with their fit, 
Arsenic data
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Figure 6.8 shows vertical and horizontal standardized 
variograms of the mass fraction of bitumen from an oil sands 
depsit in Northern Alberta. The area of interest is approxi-
mately 5 × 5 km, and about 100 m thick. The vertical vario-
gram at the top of the figure shows a relatively short vario-
gram range of 25 m, a trend above the sill and then a drop 
below the sill. The trend/cyclic behavior is a result of the 
bitumen grade being lower at the top and the bottom of the 
formation. The horizontal variograms are nearly isotropic; 
however, the North East directional variogram shows greater 
continuity at large scale than the North West directional var-
iogram. The variogram model parameters are shown on the 
vertical variogram plot. No nugget effect and three spherical 
structures were used to fi the variogram. The structures ex-
plain 20, 30 and 50 % of the variance, respectively. The verti-
cal range for all structures was fixed at 25 m. The horizontal 
ranges are isotropic at 150 m and 1,500 m for the first two 
structures and anisotropic at 7,500 and 4,500 for the North 
East and North West directions for the last structure. The fit 
to the points is considered good despite the fact that the verti-
cal trend is not fully represented in the vertical variogram.

Figure 6.9 shows another example of a Cu correlogram, 
taken from the El Pachón Project, in the Argentinean Central 
Andes, currently owned by Xstrata Copper. It shows three 
main directions of anisotropy, a variogram map showing 
in plan view the NW-SE main directions, and the summary 
model below. The experimental correlograms were fitted 
with three spherical structures, with the model been almost 
twice as continuous in the main direction of continuity com-
pared to the other two.

Regardless of its final form, the model should always be 
checked by viewing directional variograms in several inter-
mediate directions; that is, the 3-D model obtained based on 
a few directions should represent accurately all possible di-
rections.

6.3.3  Goodness of Variogram Fit and Cross 
Validation

A good deal of research has been dedicated to fitting the var-
iogram models and measuring their quality. Different mod-
els can fit the same experimental data, so it is natural to ask 
which model is better. The tendency is to search for objective 
(statistical) measures of goodness to judge a model that is to 
a large extent subjective.

One common statistical measure is weighted least-
squares, whereby the distance from each modeled point to 
the corresponding experimental variogram value is measured 
and minimized. This is commonly used in software that pro-
vides an automatic or semi-automatic fit. The weights can be 
proportional to the number of pairs for each lag, the number 
of informed values for each direction, or a scheme that as-
signs more weight to the first few lags of the model (Cressie 
1985; Isaaks 1999).

While it may be useful to have a measure of closeness be-
tween the model and the experimental data, there is no guar-
antee that the lowest sum of squared differences would yield 
a better model. A good fit of important features of variogram 
models such as the nugget effect, anisotropy, and short-scale 
structure may not, in fact, lead to minimum squared differ-
ence. A good practice is to fit the nugget effect with a down 
the hole variogram, then impose that nugget effect on the 
variogram model in other directions. This will generally 
make the least-squares measure worse, not better.

Cross validation is sometimes performed to compare al-
ternative variogram models. The comparison is done based 
on the results of the final objective, which most often is 
some kind of estimation. The exercise consists of estimat-
ing locations with known sample values, and comparing the 
estimated and the sampled value; the alternative variogram 
models would result in different sets of estimates; the bet-
ter variogram model would be the one that yields a lower 
average error. The are two ways that this exercise can be 

Fig. 6.8  Example directional variograms and fitted models from a 
Northern Alberta Oil Sands mine

 



110

performed: (1) a spatial, but otherwise classical, leave-one-
out re-estimation, whereby one sample at a time is removed 
from the data set and re-estimated from the remaining data; 
to avoid undue influence of the nearest datum in a drill hole, 
one or more of the closest samples are typically not used in 
the re-estimation; and (2) a subset of the data (say, 40 or 50 % 
of the total) is removed completely from the data set, and re-
estimated using the remaining data.

There have been a number of objections to the leave-one-out 
cross validation option (Clark 1986; Davis 1987; Journel 1987; 
Isaaks and Srivastava 1989; Solow 1990; Goovaerts 1997):

• The method is generally not sensitive enough to detect 
minor differences from one variogram model to the next. 
Other kriging parameters such as search strategy, number 
of data used in the re-estimation, the use or not of octant 
or quadrant searches, and so on, are generally more con-
sequential than the variogram models themselves.

• The analysis is performed on samples or composites, 
when in fact we are interested in a different volume sup-
port (blocks). This does not allow for any definite conclu-
sion about the final run, since the samples may not be rep-
resentative of the domain. Even if the variogram model 

Fig. 6.9  Cu correlogram for a domain, El Pachón Project, Argentina. Courtesy of Xstrata Copper
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performs poorly in the re-estimation, it will not necessar-
ily perform poorly in the final estimation run.

• The sill of the variogram cannot be cross-validated from 
the re-estimation.

• Variogram values smaller than the minimum distance 
between samples cannot be validated, such as the nugget 
effect and the behavior of the model near the origin.

The second option also shares some of the drawbacks men-
tioned, including the fact that we are re-estimating samples; 
in addition, there has to be a good number of samples within 
the domain to be able to split the data in test and a “ground-
truth” subsets and carry out the exercise.

It is difficult to define a useful goodness of fit test for a 
variogram model. The user’s experience, subjective geologic 
information, and consideration of the objectives of the study 
must be considered to result in a robust variogram model. 
All subjective decisions must be clearly documented, and is 
generally preferable to skirting responsibility by relying on 
blind tests or automatic variogram model fitting software.

6.4  Multivariate Case

Most deposits have more than one variable of interest, and 
the inference and prediction of one variable can be improved 
using information from a second, or secondary, variable. 
Moreover, it is important to respect the relationships be-
tween the variables when creating models of more than one 
variable. The different variables may be of economic value, 
contaminants, density, or processing characteristics such 
as hardness. Consider an expanded notation to deal with 
k = 1,…,K variables.

Quantifying the spatial structure of all K variables requires 
developing the direct variogram models as discussed above, 

, in A,{ ( }1,) ,kZ k K= …u u

and also the cross-variograms that describes the correlation 
of one variable to the other. The schematic illustration in 
Fig. 6.10 below shows the K by K matrix of bivariate rela-
tions that must be inferred. There are K direct relationships—
one for each variable—and K(K − 1) cross relationships. The 
cross relationships are almost always taken to be symmetric, 
that is, the relationship between i and j is the same as j and i. 
There are some interesting circumstances (referred to as the 
lag effect in some literature) when this is not true.

While calculating the number of variograms is not a major 
computational effort, the problem lies in the fact that the var-
iograms cannot be modeled independently from each other.

Similar to the case of a single variable, there are a num-
ber of permissible models that can be used to model cross 
correlations (Journel and Huijbregts 1978; Goovaerts 1997). 
The requirement that must be met is that the variance of 
each variable is non-negative, and that the matrix of var-
iogram models must be mathematically valid. The linear 
model of co-regionalization (LMC) is the result of a spe-
cific set of correlated variables, and was first proposed by 
Journel and Huijbregts (1978, p. 172). Other types of co-
regionalizations can be assumed, see for example Zhu and 
Journel (1993), or the Markov models mentioned elsewhere 
in this book.

The direct and cross variograms between variables k and 
k’ where k, k’ = 1,…,K are defined as follows:

The calculation principles explained above can be applied to 
the full set of K(K + 1)/2 direct and cross variograms; how-
ever, note that the data must be equally sampled, that is, data 
for variable k and k’ must be available at the same data loca-
tions. In presence of unequally sampled data, it is necessary 
to directly compute cross covariances and convert them to 
variograms for fitting. The covariance would be calculated 
directly as

The relationship between direct variograms and direct co-
variances was given above. In case of cross variograms and 
covariances, the collocated covariance is required to convert 
the two:

The collocated covariance between a variable and itself is 
the variance of that variable: 2

k, k kC (0) .σ=  The collocated 
cross covariances can be calculated directly when the data 
are equally sampled. They must be estimated when the data 
are not equally sampled.
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Fig. 6.10  Schematic illustration of a Multivariate Covariance Matrix. 
The diagonal terms are direct covariances, and the cross-covariances 
populating the rest of the matrix
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The interpretation of cross variograms is similar to that of 
direct variograms; however, the sill of a cross variogram is 
the collocated covariance Ck, k’(0), which could be negative. 
Thus, cross variograms may be both positive and negative; 
they are the product of differences and not squared differ-
ences. The example shown below is for the case of negative-
ly correlated variables; thus when the spatial covariance Ck, 

k’(h) becomes zero, the cross variogram is at the collocated 
covariance Ck, k’(0), which is negative.

In presence of multiple variables, the set of K( K + 1)/2 
direct and cross variograms must be calculated, interpreted, 
checked for geological reasonableness, then fitted by the 
linear model of coregionalization (LMC). The LMC implic-
itly assumes that each variable is a linear combination of 
common underlying random variables with zero mean. This 
leads us to model all direct and cross variograms from the 
same pool of j = 0,…,nst nested structures denoted with an 
upper case Гi(h), where, by convention, i = 0 corresponds to 
the nugget effect:

The b coefficients are adjusted to fit the experimental 
variograms just like the variance contribution parameters 
are adjusted to fit the variograms of single variables. The 
anisotropy and range parameters are also adjusted in the 
specification of each constituent nested structure: Гi(h). It 
will be necessary to use negative b coefficients for cross 
variograms between variables that are negatively corre-
lated. The b coefficients can be adjusted as necessary to 
achieve a good fit, but the resulting set of K( K + 1)/2 di-
rect and cross variograms must be jointly positive definite. 
This is achieved by ensuring that each of the i = 0,…,nst K 
by K matrices of b coefficients is positive definite. There 
are a number of software programs to ensure this including 
spreadsheet plugins.

The following oil sands example illustrates a simple ap-
plication of a cross-variogram. Bitumen content and fines 
content are two critical factors affecting recovery in the oil 
sands. Evaluating their spatial variability is of some impor-
tance for process control in the extraction plant. Consider 
the normal score transforms of the two variables, shown in 
Fig. 6.11:

A model of co-regionalization can be derived to account 
for the cross correlation. Figure 6.12 shows the cross fines/
bitumen variogram.

The first step in fitting is to choose the pool of nested 
structures Гi,i = 1,…,nst. Each nested structure is defined by 
its type and ranges. It is chosen so that all of the deemed 
significant features on the experimental variograms can be 
modeled. The variograms may have different precision in 
different directions, but it is important to look at all direct 
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i i
k k k k

i

b k k Kγ
=

= Γ =∑h hi

and cross variograms together. A structure can exist in the di-
rect variogram and not exist in the cross variogram, but any 
structure that occurs in the cross variogram must be in the di-
rect variograms. The variograms for normal score transforms 
of % bitumen (Z) and % fines (Y) are shown:

where Г 1(h) is spherical with range 200 m, Г 2(h) is spheri-
cal with range 1,000 m and Г 3(h) is spherical with range 
5,000 m. This is a licit model of co-regionalization since

The LMC can be applied to any number of variables, and 
in all cases each matrix of Г coefficients should be positive 
definite. For practical reasons, normally no more than 3 or 
4 variables are considered simultaneously; otherwise, fewer 
variables are considered or principal components of the orig-
inal variables are modeled instead.

6.5  Summary of Minimum, Good and Best 
Practice

At a minimum, the variogram analysis performed should 
include models for each variable within each estimation do-
main defined, an assessment of nugget effects and anisotro-
pies encountered in each case, and a detailed discussion on 
their geological background. The documentation of the work 
should be detailed, highlighting the approximations used, the 
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Fig. 6.11  Scatterplot of Gaussian bitumen and fines variables
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data limitations encountered, and the possible artifacts that 
result from the data. The process of definition of the model 
should also be explained in detail.

In addition, good practice requires a more detailed explor-
atory variogram analysis upfront. All relevant data in each 
estimation domain should be analyzed and used if possible. 
The definition of relative nugget effects, the models chosen, 
the anisotropies encountered and how they were modeled, as 
well as a discussion on the alternatives should be made. In 
addition, it requires detailed understanding of the uncertainty 
sources for the resulting models. Alternative models should 
be tried for the most important estimation domain, and suf-
ficient checks made to have a high degree of confidence on 
the final model. The description of the variogram models in 
terms of its geologic significance should be detailed and un-
ambiguous, and all aspects of the model should be demon-
strated in terms of geologic factors, and not data artifacts. All 
the work should be well documented and presented, detail-
ing the quality control procedures in place.

Best practice includes, in addition to the aspects discussed 
above, the use of all possible geologic, grade, and other an-
cillary data to obtain the variogram models. Exhaustive ex-
ploratory variogram analysis should be done, leaving no pa-
rameter or aspect of the model without analysis and justifica-
tion, and different issues such as data qualities and different 
data supports analyzed and justified accordingly. All poten-
tial sources of variogram model uncertainty should be quan-
tified, and discussions on possible and relevant cross valida-
tion and re-sampling should be presented. The models should 
be presented both mathematically as well as graphically.

6.6  Exercises

The objective of this exercise is to calculate, interpret, and 
model variograms. Some specific (geo)statistical software 
may be required. The functionality may be available in dif-
ferent public domain or commercial software. Please acquire 

Fig. 6.12  Example direct and cross variograms for an oil sands deposit in the most continuous direction. The direct variograms are shown at the 
top and the cross variogram is shown below
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the required software before beginning the exercise. The data 
files are available for download from the author’s website—
a search engine will reveal the location.

6.6.1 Part One: Hand Calculations

The following data set is taken from Practical Geostatistics 
2000 (Clark and Harper). You are being asked to review this 
data and calculate some variograms. The empty boxes have 
no data. Consider the data to be spaced on a square grid of 
side a. Consider the horizontal direction (across the page) 
to be the X direction. Consider the vertical direction (up the 
page) to be the Y direction.

Question 1: Contour the data, show some basic statistics 
and comment.

Question 2: Calculate the semivariogram for distances of 
a and 2a in the X direction, distances of a and 
2a in the Y direction, distances of √2a  and 
2√2a  in the 45° direction and distances of √2a 
and 2√2a in the − 45° direction. Tabulate and 
plot your results. Comment.

6.6.2 Part Two: Small Set of Data

Question 1: Consider the thickness in the data file red.
dat. Normal score transform the thick-
ness and perform calculations with the nor-
mal score transform of thickness. Assem-
ble all of the data pairs in Excel (there 
should be 67 × 67 = 4,489 pairs, but only 
(4489 – 67)/2 = 2211 unique pairings). The 
columns of interest are the distance between 
the pairs, the values of thickness for both 
points and the squared difference between the 
values. Sort the data by the distance. Remove 

the first 67 rows because the distance and the 
squared difference should be zero.

HINT: There is no easting to calculate the distance 
between points, just elevation and northing.

Question 2: Group the values into sets (these sets could 
also be considered lags or bins) of, say, 200 
pairs. Calculate the average distance, covari-
ance between the pairs of values, correlation 
coefficient, and variogram for each bin. Plot 
the results.

Question 3: Perform reasonable sensitivity studies with 
different number of lags. Comment on the 
spatial continuity of the normal scores of 
thickness.

6.6.3 Part Three: Large Set of Data

Consider the normal scores of Cu data in the largedata.
dat data file. In practice, the data would be separated by 
rock type, but consider all data for this exercise.
Question 1: Choose an areal and vertical grid size for 

variogram map calculation. Note that this 
grid size has nothing to do with the ulti-
mate grid size in geostatistical modeling. It 
should be about the same as the spacing of 
the data. The number of grid cells to specify 
for variogram map calculation should be 
such that the total distance is about one half 
of the domain size.
Calculate the variogram map (variogram 
volume in 3-D). Plot the horizontal slice 
through the center of the volume (the 
example above came from a vein-type gold 
deposit with 140 intersections). Try a smaller 
cell size and a larger cell size to ensure that 
the results are stable with respect to the grid 
size. Comment on any areal anisotropy and 
the azimuth directions for subsequent direc-
tional variogram calculations. Plot XZ and 
YZ sections through the variogram map. The 
only sections through a variogram map that 
make sense are those through the origin.

Question 2: Given the data spacing in the largedata.
dat dataset and your work with variogram 
maps in Question 1, discuss the selection 
of variogram parameters such as the angle 
tolerances, lag spacing, and lag tolerance. 
Establish three directional directional vario-
grams. Experiment with different parameters 
and establish the stability of your calculated 
experimental variograms.

6 Spatial Variability
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Question 3: Fit the directional variograms with a licit var-
iogram model and comment on your results. 
Comment on aspects of the variogram that are 
uncertain.

6.6.4 Part Four: Cross Variograms

Question 1: Extend Part Three to direct and cross vario-
grams of the normal scores of Cu and Mo, 
three directional variograms of the normal 
scores of Mo, and three directional cross var-
iograms between the normal scores transforms 
of Cu and Mu. Plot the correct sill on the cross 
variograms and comment on the results.

Question 2:	 The	 most	 difficult	 aspect	 of	 using	 multiple	
variables	 and	 cross	 variograms	 is	 fitting	 a	
model of coregionalization. The only practi-
cal model of coregionalization is the linear 
model of coregionalization (LMC). Recall the 
LMC and the constraints that it imposes on 
variogram modeling.

Question 3: Fit an LMC to the variograms you calculated 
in Question One. Document the procedure 
you	followed	and	show	the	final	nine	experi-
mental	variograms	with	the	fitted	model.

6.6.5  Part Five: Indicator Variograms  
for Continuous Data

Consider the same 3-D data as in the previous two parts for 
indicator variograms.
Question 1: Find or recalculate/remodel the normal scores 

variogram of Cu. Consider directional vario-
grams.

Question 2: Use the bigaus program from GSLIB to 
calculate the 0.1, 0.25 and 0.9 quantile indi-
cator variograms using the normal scores var-
iogram model. The 0.1 and 0.9 quantile var-
iograms will be identical since the Gaussian 
distribution is symmetric.

Question 3: Calculate the experimental indicator vario-
grams corresponding to the 0.1, 0.25 and 0.9 
quantiles and plot with the results of Question 
2. Comment on any differences. Pay particu-
lar attention to the 0.1 and 0.9 quantile indi-
cator variograms and any asymmetry in the 
experimental variograms.

Question 4: Three indicator variograms are suitable for 
checking bivariate Gaussianity; however, 
nine indicator variograms are more reason-
able to discretize the range of variability 

found in typical continuous variable distribu-
tions. Calculate the nine indicator variograms 
corresponding to the deciles of the Au grade 
distribution.	These	 variograms	 should	 be	 fit	
with smoothly varying parameters. Fit the 
variograms with, say, two spherical vario-
gram structures and plot the parameters as a 
function of threshold.
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7Mining Dilution

Abstract

Dilution is a critical issue that affects many aspects in mining. It is generally due to the geo-
metric characteristics of the ore body, the mining operation, the characteristics of geologic 
contacts, and the limitations of the mining equipment to recover material to the desired 
boundaries or contacts. There are three types of dilution that need to be considered at the 
time of mineral resource estimation. The dilution due to geologic contacts and the dilution 
due to the mixing of material types within a block are best tackled by geologists and re-
source estimators at the time of modeling. Operational dilution is generally planned for by 
the mining engineer at the time of developing a mine plan, but it also occurs unexpectedly, 
and is called unplanned dilution.

7.1  Recoverable Versus In-Situ Resources

The objective of the resource model is to predict the ton-
nage and grade that the beneficiation plant will receive at 
specified time intervals. This is true at all times in a min-
ing operation: at the initial evaluation of the project, as part 
of pre-feasibility and feasibility studies, and in the context 
of long-term and short-term resource models in operating 
mines. The procedures for estimating and managing dilution 
need to be updated regularly to capture all the new informa-
tion and experience collected as the deposit is being mined. 
A model that attempts to satisfy this requirement is called a 
“recoverable model” (David 1977; Journel and Huijbregts 
1978; Rossi and Parker 1993).

A recoverable resource model is an estimate of the tonnage 
and grade of economic material above certain cutoffs, but 
can also include other geo-metallurgical and geo-mechanical 
characteristics that affect mill performance. Revenue is a 
function of grades, product prices, metallurgical recoveries, 
and operating costs such as mining, metallurgical, and gen-
eral and administration (G&A) costs:

 

(7.1)

The grade for which revenue is nil is called the break even 
(or economic) cutoff grade. Depending on which costs are 

Revenue Price*Recovery*Grade(s) (Mining Cost

Metallurgical Costs G & A Costs)

= −
+ +

considered, different types of cutoffs are used. At the break-
even point, Revenue in Eq. 7.1 is zero, and the correspond-
ing economic cutoff grade is:

 

(7.2)

Costs are usually expressed on a per unit basis, such as dol-
lars per ton. The units used in the calculation have to be con-
sistent, which often requires conversion factors.

Another important cutoff in an open pit mining operation 
is the marginal cutoff, similar to the economic cutoff, except 
that the mining cost is not considered. This is to fairly valu-
ate the rock when mining is progressing and the material has 
to be mined. The only decision is where to send it, the mill, a 
stockpile, or the waste dump. The mining cost must be spent 
and is considered a sunk cost. The marginal cutoff is used for 
example in grade control, as discussed in Chap. 13.

Cutoff calculations become complex if there are several 
metals to consider, each with different metallurgical recover-
ies and costs. Also, there may be different mining costs as-
sociated with sending material to the mill, as opposed to the 
waste dumps or stockpiles. In the case of stockpiles, re-han-
dling costs should also be considered. Finally, G&A costs are 
a mixture of costs, not all of them directly related to the op-
eration. Mining companies have different policies for which 

Economic Cutof Grade

Mining Metallurgical G &A Costs

Price * Recovery

+ +
=

M. E. Rossi, C. V. Deutsch, Mineral Resource Estimation, DOI 10.1007/978-1-4020-5717-5_7,
© Springer Science+Business Media Dordrecht 2014



118

Fig. 7.1  Bucyrus SME 60 Shovel used at the large tonnage Escondida 
Cu Mine, Northern Chile (photo courtesy of BHP Billiton). Benches 
are 15 m high

 

7 Mining Dilution

costs to include in these calculations on a project by project 
basis. For example, the company’s headquarters corporate 
overhead may or may not be included. Each block must be 
valued separately considering all of the revenues and costs, 
and then blocks with positive total revenue are considered ore.

In what follows “cutoff” implies the economic cutoff de-
scribed by Eq. 7.1 above, unless otherwise defined.

At a very early stage of the project the main concern is 
to determine if the deposit contains enough mineralization 
to warrant further study and investment, that is, very little 
may be known about the potential of the deposit to become 
an operating mine. Technical details and specifications for 
mine planning and metallurgy are required to estimate ton-
nages and grades delivered to the mill. In this case, since the 
proportion of the mineralization that would be recovered is 
unknown, it is preferable to estimate “in-situ” resources.

Accounting for mine and mill considerations at the time 
of estimating resources is not yet universally accepted. The 
sources of dilution and ore loss are well known, but not 
easily quantifiable. Some practitioners prefer to calculate 
a model of mineralization without engineering constraints. 
Dilution then has to be added to the block model by the mine 
planning engineer, usually using global factors. In general, 
all resource models should be recoverable.

The differentiation between a recoverable resource model 
and a reserve model is based on the wording of the differ-
ent Resource Classification Systems currently in use (see 
Sect. 12.3). The term “reserves” is used for material that 
has been reasonably proven to be minable with an econom-
ic benefit. This implies that a well-defined mine plan is in 
place, that metallurgical studies have proven that the ore is 
amenable to beneficiation, that there is a viable market for 
the product, and that there are no legal or environmental 
impediments for mine development. In addition, a reserve 
model may include some additional operational dilution not 
explicitly included in the recoverable resource model.

The available drill hole information has a much smaller 
volume and scale than mine planning volumes and ore/waste 
selection. Drill holes are a few centimeters in diameter, and 
each sample typically represents between 10 and 50 kg of ma-
terial. In contrast, a very selective open pit mine would con-
sider mining units of 5 × 5 × 5 m (approximately 325 metric 
tons assuming a 2.65 t/m3 density), while the larger, massive 
deposits plan on units that are as large as 25 × 25 × 15 m (ap-
proximately 25,000 metric tons). Some underground mines 
can be more selective, but the volume of the planning unit is 
still orders of magnitude larger than the drill hole.

The volume of extraction is represented with a “Selective 
Mining Unit”, or SMU. The SMU is defined as the small-
est volume that the operation can recover, and depends on 
the mining method, the equipment size, the data available at 
the time of selection and the selectivity characteristics of the 

operation. For convenience, it is generally represented as a 
rectangular block, even though mines never extract ore and 
waste as perfect parallelepipeds.

For open pit mines, the vertical dimension of the SMU is 
the bench height, although occasionally some mines operate on 
double- or half-bench heights. The lateral dimensions represent 
the minimum width of the extraction equipment, with consider-
ation to digging depth, the material’s angle of repose, the equip-
ment’s maneuverability, and the available information to sup-
port estimates of the grade at short distances. If it is a massive 
electric shovel, see Fig. 7.1, with a nominal loading capacity 
of 90,000 tons of material per day, the minimum width will be 
about 18–20 m. For such a large operation, the bench height is 
usually 15 m, and thus the SMU would be 20 × 20 × 15 m.

If the equipment considered is a front-end loader (such 
as the one shown in Fig. 7.2), the width of the bucket var-
ies between 5.6 and 6.2 m (depending on the model), so it 
is generally accepted that the minimum width for selectiv-
ity will be about 8–10 m. Typical bench height is 10 m, so 
that a common SMU size for this type of operation could be 
10 × 10 × 10 m.

These two examples assume that there would be sufficient 
grade control sampling and adequate grade control practices 
to estimate reliable values at the SMU scale mentioned. The 
SMU size could be bigger with difficult deposits and poor 
grade control sampling. The ore and waste may be defined 
by a sharp visual contact. In such cases, the equipment may 
be able to mine to contacts with only 2 or 3 m of dilution/
lost ore.

Underground mining methods vary widely in selectiv-
ity. They are often more selective than open pits, but there 
are significant exceptions, such as mines that use block or 
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sublevel caving methods. In a traditional cut-and-fill opera-
tion, with 5 m lifts, the SMU depends on the geometry of the 
orebody, but usually is 5 × 5 × 5 m, assuming that the mine 
can separate ore and waste from the stope.

The definition of an SMU is convenient for block mod-
eling, but does not realistically represent the extraction 
process: shovels and loaders do not load cubes! Moreover, 
individual SMUs cannot be selected independently although 
the concept of an SMU assumes free selection. The actual 
practice of ore and waste selection shows that the SMU con-
cept is a convenient approximation. Mining along boundar-
ies is generally more selective than the nominal SMU size 
for the mine, and typically an isolated SMU-size pod of 
waste or mineral will not be mined.

7.2  Types of Dilution and Ore Loss

There are several sources of dilution and ore loss. Dilution 
and ore loss are always closely linked, and references to dilu-
tion include both cases. The main sources of dilution may be 
classified into three different categories (Rossi 2002):

Internal Dilution or Change of Support is a consequence 
of predicting resources at a different volume than the original 
data (Parker 1980). The resource estimate requires a degree of 
averaging within blocks and is generally modeled using the 
volume-variance or change of support correction, as discussed 
in detail in the next section. This mixture of material necessar-
ily includes high and low grade mineralization, which will be 
more significant if the mineralization is less continuous. Also, 
the larger the block size considered, the larger the amount of 
mixing of mineralization or internal dilution.

The photo in Fig. 7.3 is a hand specimen of typical Porphyry 
Cu mineralization, where, within the solid rock mass, high-
grade veinlets of Chrysocolla (Cu mineralization) are seen. If 
this mineralization was to be sampled on a very fine scale, the 
dispersion of the Cu grades resulting from the laboratory as-
says could be represented by a distribution like the one shown 
in Fig. 7.4, top. If the sample volume taken were to be larger, 
then there would be more mixing of material in any given 
sample, thus the higher-grade veinlets being mixed with the 
lower grade material surrounding them. In this case, a distribu-
tion like the one shown in Fig. 7.4 (bottom) may be obtained.

Note that the means of the distributions are the same 
(grades are mass fractions and they scale up linearly, so that 
the overall average is maintained), but the standard devia-
tion and coefficient of variation is smaller for the larger vol-
ume distribution. Also, the minimum and the maximum of 
the distribution are closer to the overall mean. There is also 
a general tendency for the larger-volume distribution to be 
more symmetric than the original distribution.

Since mineralization is not homogeneous, mixing of dif-
ferent grade material always occurs. This is true for all types 
of mineralization, and depends on the nature of the geologic 
events that produced the mineralization. The presence of 
mineralized veinlets, highly fractured zones or units, and 
more or less permeable lithologies impact the amount of in-
ternal dilution to be expected.

Geologic Contact Dilution is defined as the dilution and 
ore loss resulting from the extraction of material of different 
geologic characteristics. This type of dilution can often be 
accounted for when using sub-cells or partial blocks in the 
definition of the resource block model (Chap. 3): the grades 
and other characteristics of each geologic unit that comes 

Fig. 7.3  A hand-specimen approximately 3 inches in size showing 
typical Porphyry Cu mineralization (Chrysocolla in Type-D veinlet, 
courtesy of BHP Billiton)

 

Fig. 7.2  Caterpillar 992 front-end loader used at Cerro Vanguardia’s 
Osvaldo Diez vein. Cerro Vanguardia is a Gold-Silver deposit located 
in the Patagonia Region of Southern Argentina (photo courtesy of Cerro 
Vanguardia S.A.). Benches are 5 m high
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into contact within each block can be averaged according 
to the proportions of each within the mining blocks of the 
model.

The impact and relative importance of this type of dilu-
tion depends on the geometry of the boundaries between 
geological units and the differences in grade between units. 
In high tonnage, massive base metals deposits the impact of 
geologic contact dilution will be small if compared to depos-

its with complicated geometries, such as vein type or skarn 
deposits, or a stratigraphically controlled deposit with sig-
nificant folding and faulting. For a fixed block size, say an 
SMU, contact dilution can be characterized for individual 
geologic zones or estimation domains by the ratio of surface 
contact volume (SCV) to the overall extraction volume (V), 
SCV/V, as measured by the volume represented by blocks 
with geologic contacts to the overall volume of the unit. 

Fig. 7.4  The point distribution 
above is corrected to a block 
(SMU) distribution below
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This unit-less factor provides an indication of how important 
contact dilution may be. A ratio of 0.05 or higher generally 
indicates high contact dilution, and is characteristic of vein-
type, skarns, or thin, tabular deposits, while values less than 
0.01 correspond to bulk tonnage, massive, or porphyry type 
deposits.

For massive deposits, contact dilution is generally a 
local issue, since the bulk of the tonnage will be mined 
away from contacts, and therefore its importance from a 
global resource model may be limited. Still, it can impact 
the positioning of a final pit wall or stope, as well as the 
corresponding volume of waste that needs to be removed 
to access the ore (mining strip ratios). It is a very different 
case for skarn-type and small, narrow tabular or vein-type 
deposits, where contact dilution may be the most conse-
quential type of dilution.

Figure 7.5 shows a cross section of a lithology model 
for the Lince-Estefanía Cu deposit, with the corresponding 
block model with sub-cells overlaid on the view. Notice how 
the general stratigraphy is crosscut by intrusive dykes. Also 
notice that, by virtue of the relative high contact surface area 
to volume ratio, the impact of geologic contact dilution is 
likely to be significant. The contact dilution can be incorpo-
rated into the block model using two alternative but concep-
tually similar techniques:
1. The sub-cell method, as shown in Fig. 7.5, provides a 

better definition of the geologic contacts. As discussed in 
Chap. 3, these sub-cells are then re-blocked to the parent 
block size of the model to provide the diluted grades and 
maintaining the proportions of each geologic unit within 
each block.

2. A direct calculation of the proportion (percentage) of each 
unit within each block, storing the percentage of each unit 
within the block.

The average grade of the block is expressed as the proportion-
weighted average of the grades of each individual geologic 
unit within the block:

 (7.3)

where zv represents the block grade average, pi, i = 1,…,n, 
represent the percentage of total mass for each of the n geo-
logic units that may be present in the block, and zi represent 
the grade of each individual unit within the block.

Another, less desirable option, is to empirically intro-
duce into the block model factors that penalize the grades of 
blocks at or near contacts, according to pre-specified criteria. 
This was done, for example, for one of the Escondida Mine’s 
resource models. In this method, if a contact between a high 
grade and waste geologic zones passes through any given 
block, the grade of that block is downgraded arbitrarily. The 
limitations of this procedure are significant, since the factors 
applied are empirical and global, as opposed to diluting ac-
cording to the locally estimated grades.

Another method that can be used to estimate dilution and 
ore loss due to geologic contacts is to draw ore envelopes 
around the mineralized zones, and then estimate an over-
break, or additional volume for mining. This can be done 
on sections or benches, and provides an estimate of the total 
grade and tonnage of material that will be recovered. A simi-
lar method is also used by mining engineers to estimate op-
erational dilution. The method is best suited for deposits with 
well-defined ore zones with hard boundaries, such as vein 
type or epithermal Au deposits.

Geologic contact dilution is quantified from the geologic 
model. Thus, the local accuracy of the contact dilution esti-
mate depends on the quality of the geologic model.

Z∗
V =

n∑

i=1

pi · z∗
i

Fig. 7.5  Sectional view of a de-
posit with a pseudo-stratigraphic 
control. The lithology units are 
represented by red (volcanic brec-
cias) and blue (andesites), with 
cross cutting dykes (in purple). 
Blocks are 5 × 5 m and can be 
used for scale; the vertical exten-
sion shown is about 800 m. The 
block model (with sub-cells) is 
overlaid on the geologic model; 
supporting drill holes are not 
shown. Courtesy of Minera Mich-
illa S.A., Chile

 



122 7 Mining Dilution

Operational Mining Dilution includes dilution and ore 
loss that occurs at the time of mining. Mining equipment un-
avoidably mixes material, because the precision with which 
the equipment can follow a dig line is limited, even with 
Global Positioning Systems (GPS). If the ore/waste con-
tacts correspond with the geologic contacts, operational and 
contact dilution is the same. More commonly, however, the 
contacts of ore and waste that occur at the time of mining are 
defined in economic terms, and they do not necessarily fol-
low geologic contact zones.

One possible estimate of this type of dilution can be ob-
tained by simple geometric calculations. Figure 7.6 illus-
trates the case of an open pit mine, where the dilution and 
ore loss is incorporated into the resources considering a spe-
cific bench height and assuming an angle of repose for the 
material. The total metal lost depends on the characteristics 
of the contact, including the grade of ore lost and the grade 
of the diluting material. A good reference for quantification 
of dilution for underground deposits from a mine planning 
perspective can be found in Pakalnis et al. (1995).

Another source of dilution and ore loss is blast heave and 
movement that shifts the position of the material to be mined 
and complicates the modeled dig-lines. Significant research 
has been done in this area (Yang and Kavetsky 1990; Harris 
1997; and Zhang 1994), but to date there are few operations 
that attempt to accurately quantify and account for blast 
heave.

Ore loss and dilution also occurs when the extracted ma-
terial is transported to the wrong destination: waste sent to 
the mill, or ore sent to the dumps. Control equipment such as 
GPS and Truck Dispatch systems has reduced the frequency 
of this error, but the destination control problem persists and 
can be significant.

Sometimes it is important to distinguish between planned 
and unplanned dilution; there may be some unexpected 

operational practices in the mine that are increasing dilution. 
In some, ore losses and dilution are accounted for using fac-
tors obtained from some degree of production reconciliation, 
and applied to the resource model globally.

A well-planned geostatistical conditional simulation 
study, as discussed in detail in Chap. 10 can be used to help 
understand dilution and ore loss (Guardiano et al. 1995; 
GeoSystems International 1999). Such a conditional simula-
tion study can address all three types of dilution.

7.3  Volume-Variance Correction

Internal dilution is sometimes modeled using geostatistical 
tools for volume-variance correction. The most common 
distribution shape change methods for volume-variance cor-
rection are the Affine Correction, the Indirect Lognormal, 
and the Discrete Gaussian methods. These methods correct a 
distribution of a grade attribute sampled at an initial support 
(often called the point scale distribution) into an SMU block 
distribution. These analytical methods are fast and gener-
ally applicable to small scale changes. Classical references 
on these methods include Journel and Huijbregts (1978) and 
Isaaks and Srivastava (1989).

The relationship between volume and variance is shown 
in Fig. 7.7. The variance decreases as the volume increases 
due to the averaging out of high and low values. The aver-
aging is affected by the size and shape of the volume, the 
continuity of the variable, and the averaging process. For 
most variables in mining, since they average arithmetically, 
the mean does not change as the volume increases and the 
variance of the distribution decreases. There are exceptions, 
however, mostly when considering some geotechnical and 
metallurgical performance variables.

The point distribution of an attribute will have a larger 
variance than the block distribution of the same attribute. 
The corrections described in this section apply to the distri-
bution of samples within a chosen estimation domain. The 
goal is to take the representative distribution of point scale 
data and infer a global block or SMU distribution.

The traditional variance defined in Chap. 2 is the squared 
difference of the samples with respect to the overall mean 
implicitly states the support size (samples). A more general 
Dispersion Variance is defined as:

 (7.4)

where v represents a smaller support such as the sample size, 
and V represents a larger block support mean value, such as 
the stationary population or the SMU-sized block distribution.

The dispersion variance quantifies the reduction in 
variance for specific increases in volume. The dispersion 
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Fig. 7.6  Schematic of operational mining dilution and ore loss. Dilu-
tion and ore loss are represented for a bench height of 10 m and an angle 
of repose of broken ore of 45°. The overall volume of each is 125 m3 if 
a 10 × 10 × 10 m SMU is assumed
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variance is the same expected squared difference as the vari-
ance defined before, except that it is related to specific sup-
port sizes for the data and the mean.

The dispersion variance can be expressed as a function of 
average covariances or variograms, see Isaaks and Srivas-
tava (1989) or Journel and Huijbregts (1978):

 (7.5)

where C(v, v) and C(V , V ) are the average covariance val-
ues for the samples at smaller sample support v and the SMU 
support respectively, as defined in Chap. 2. Note that these 
are spatial averages, and therefore are location-independent.

The additive property of variances leads to the following 
expression:

 (7.6)

where v, V, and G represent increasingly larger volumes.
Equation 7.6 states that the variance of samples within a 

deposit can be found as the sum of the variance of samples 
within blocks of a certain size plus the variance of those 
blocks within the deposit. This relationship was found ex-
perimentally by D. Krige in the 1950’s, and is thus often 
called Krige’s relation.

In Eq. 7.6 two terms are usually known: (1) the variance 
of the data D2(v, G) = σ 2 and (2) the variance within 
blocks D2(v, V ), which can be estimated from the covari-
ance or variogram model (Eq. 7.1). The variance between 
blocks (for example, the SMU variance within the Depos-
it, D2(V , G) ) can be obtained.

The variance within blocks (D2(v, V )) is obtained from 
discretizing the SMU block V using nv sample points, and 
calculating the average covariance (C(V , V )) or variogram 

2 ( , ) ( , ) ( , )D v V C v v C V V= −

2 2 2( , ) ( , ) ( , ),   D v G D v V D V G  v  V G= + ∀ ⊂ ⊂

value for all possible pairs within the block. The number of 
discretization points used to estimate D2(v, V ) affects some-
what its final value. As a rule of thumb, it is generally ac-
cepted that a 5 × 5 × 5 grid of points within the SMU block is 
sufficient to obtain a robust estimate of D2(v, V ). Consider-
ing too many discretization points could lead to numerical 
precision problems. One option is to obtain the dispersion 
variance for several discretization grids. Figure 7.8 shows 
the resulting dispersion variance for a given variogram 
model and SMU size for several discretizing grids. Note how 
the dispersion variance stabilizes after a reasonable number 
of discretization points have been used.

The dispersion variance is a key parameter needed to 
predict recoverable resources (recall Sect. 7.1). The volume-
variance correction is often characterized by a single param-
eter, known as the Variance Correction Factor (VCF). The 
VCF (or more simply, f ) is defined as the ratio of the SMU 
block variance to the original sample variance:

 

(7.7)

The factor f is a measure of how much the variance of a sam-
ple distribution will change, therefore giving an idea of the 
importance of the volume-variance correction in the estima-
tion of recoverable resources. An f value close to one implies 
that the variances of samples within the deposit (D2(v, G))  
and of SMU blocks (D2(v, G)) within the deposit are fairly 
similar. This is either because the SMUs are small (small 
volume, highly selective mine), or the spatial distribution is 
fairly continuous, that is, there is relatively little mixing of 
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Fig. 7.7  Schematic showing vol-
ume-variance relations for origi-
nal data, SMU-sized distribution, 
and a larger panel distribution
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high and low grades within an SMU. The opposite is true for 
low f values.

As volume increases from the data support to an SMU 
support, the mean stays the same and the variance changes 
by a predictable amount (summarized in the f factor). The 
shape of the distribution also changes. The influence of the 
central limit theorem is felt to some extent, since the average 
of identically distributed values tends to a normal distribu-
tion. The grades inside an SMU in fact are not independent; 
therefore, the distribution of SMU grades does not always 
approach a normal distribution.

7.3.1  Affine Correction

The affine correction is the simplest method for volume-
variance correction. It is based on the concept that the 
distribution does not change its shape while the variance 
is reduced, therefore assuming that there is no increase in 
symmetry of the resulting distribution. Although there is no 
additional explicit assumption about the point and SMU dis-
tributions, the permanence of shape assumption is limiting, 
since it is known that the distribution shape will change as 
the variable is averaged within larger volumes. Therefore, in 
practice, the range of application of this method is limited to 
small changes in variances, for which changes in distribution 
shape are small.

The affine correction works by transforming each value 
of the sample distribution into a different value of the SMU 
distribution, according to the following relationship:

 (7.8)' ( )z f z m m= − +�

where z is any value of the original distribution, z′ is the cor-
responding value of the SMU distribution, f is the variance 
correction factor, and m is the mean of both sample and 
SMU distributions.

According to Journel and Huijbregts (1978, p. 471), the 
affine correction can be applied up to about a correction 
factor of 30 % ( f   > 0.7), although in the experience of these 
authors this is optimistic. Even for volume-variance correc-
tions much smaller than 30 % the affine correction seems to 
provide the wrong prediction, see Rossi and Parker (1993) 
and the example below.

7.3.2  Indirect Log-normal Correction

The indirect log-normal correction (ILC) is based on 
the idea that the change of support is described by two 
Log-normal distributions that have the same mean, but 
different variances. This is considered true regardless of 
the characteristics of the two original distributions (point 
and SMU support), except that they need be positively 
skewed.

The quantiles of the original distribution are transformed 
into the SMU distribution following an exponential equation:

 (7.9)

with the coefficients a and exponent b given by:

q
′ = aqb

a =
m

√
f · CV 2 + 1

[√
CV 2 + 1

m

]b

Fig. 7.8  An example of block dis-
persion variances resulting from 
different discretization grids. The 
variogram model and the block 
size are fixed. The discretization 
in Z is always 1 because bench 
height and composite length are 
the same in this example. Note 
that a 3 × 3 × 1 grid in this case 
is sufficient to approximate the 
block dispersion variance
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and

where m is the mean, CV is the coefficient of variation of 
the point distribution, and f is the variance correction factor 
(VCF) previously defined.

However, since the distributions will not in general be 
exactly lognormal, then the transformation of Eq. 7.9 will 
not result in the same mean for the transformed and untrans-
formed distributions. So, a final step is required to ensure 
that the original mean is obtained:

 (7.10)

After applying Eq. 7.10, the quantiles of the SMU distribu-
tion have been rescaled to the correct mean. Interestingly, 
the differences between the first transformed mean and the 
rescaled mean can be used as a measure of the dissimilar-
ity between the original distribution and a Log-normal dis-
tribution. The final correction may cause the variance to be 
slightly different than the target variance.

7.3.3  Other Permanence of Distribution Models

As a generalization of the previous methods, the same prin-
ciple can be applied to other distributions, most practically 
to those that are characterized by two parameters, such as the 
Gaussian, Lognormal, and even Gamma distributions.

Under the assumption that a sample distribution can be ap-
proximated by a multivariate Gaussian distribution, then the 
resulting block distribution will also be multi-Gaussian, with 
the same mean and corrected variance, as described before.

Similarly, the sample distribution can be assumed to be 
multi-Lognormal, in which case the resulting SMU distribu-
tion is also assumed to be multi-Lognormal (although, as in 
the case of the affine correction, this is an assumption known 
to be incorrect), with the same mean and corrected variance.

As these methods have had little use in practice, the read-
er is referred to Journel and Huijbregts (1978, pp. 468–469) 
for the specific formulae and further details on the limita-
tions of these methods.

7.3.4  Discrete Gaussian Method

The permanence of distribution assumption is a limitation 
because most real-life mining distributions cannot be easily 
fitted with a two-parameter distribution (Gaussian or Log-
normal). They have multiple modes and mixtures of popu-
lations that can only be overcome by using a method that 

b =

√
ln(f · CV 2 + 1)

ln(CV 2 + 1)

q
′′ =

m

m
′ · q

′

makes no such assumption. The discrete Gaussian model 
(DGM) has been proposed as a more robust method to obtain 
the volume-variance correction.

The key idea of the DGM is that the distributions for 
different supports will be Gaussian after transformation 
to Gaussian units. The transformation to Gaussian units is 
achieved in two steps: (1) a normal scores transformation 
like that described in Chap. 2, then (2) fitting the relationship 
between the original grades and the normal scores transform 
with a series of Hermite polynomials. These polynomials are 
orthogonal, which is important because the variance of the 
original grades is then a simple summation of the squares of 
the coefficients. A change to the variance is achieved by scal-
ing the coefficients of the Hermite polynomials by a change 
of support coefficient related to the factor f. As expected, the 
corrected distribution gradually becomes more Gaussian in 
shape as the scale increases.

The fitting of Hermite polynomials and the details of the 
mathematics are embedded in widely used computer pro-
grams and documented in references such as Armstrong 
and Matheron (1986); Rivoirard (1994) or Machuca-Mory 
et al. (2007). An overview will be presented here. An ana-
morphosis function needs to be fit to the sample data. The 
anamorphosis function is defined by a Hermite polynomial 
expansion fit to the data. Hermite polynomials are related 
to the Gaussian distribution and are defined by Rodrigues’ 
formula (Abramovitz and Stegun 1964, p. 773). The anamor-
phosis function is equivalent to the normal score transforma-
tion in that it provides a mapping of the point variable Z to 
the Gaussian variable Y and vice-versa:

where�p is the coefficient of each polynomial term, 
and Hp(y(u))  is the Hermite polynomial value. This fitting 
can be thought of as a polynomial fit to the Q-Q plot between 
the original grades and the normal scores.

The anamorphosis function is fit by calculating the value 
of the Φ coefficients of the Hermite polynomials. The first 
coefficient is simply the mean of the Z samples:

Higher order coefficients are found with the following ap-
proximation:
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where ( ( ))g y αu  is the probability value y corresponding to a 
standard Gaussian distribution. Since the polynomials are 
orthogonal and thus there is no correlation between them, the 
variance of the Z samples can be identified to:

The modeled anamorphosis function can be checked against 
the original data by comparing the distributions resulting 
from the samples to the distribution from the anamorphosis. 
The distributions should be identical, although in practice 
extreme values can be difficult to model.

Then, the sample histogram at the SMU block support is 
obtained using the bi-Gaussian assumption. To correct the 
sample distribution to a predicted-SMU distribution the ana-
morphosis function is modified by adding a change of sup-
port coefficient r:

The calculation of r requires the dispersion variance of the 
SMU-sized blocks, in obtained from the variogram model de-
rived from samples values (Chap. 7). The anamorphosis func-
tion corresponding to the SMU support v assumes that the 
distribution of [ ( ), ( )]Y Yu v  is bi-Gaussian, and is found with:

from which the r coefficient can be obtained. The distribu-
tion of grades representing SMU volumes is easily deter-
mined with the obtained r coefficient, the fitted coefficients 
and the Hermite polynomials. Although apparently complex, 
the procedure is automated and widely available in different 
programs.

The DGM is deemed to be more robust than the affine 
or indirect lognormal correction because the normal scores 
transform is general, and no additional assumptions are nec-
essary for the original or the SMU distributions.

7.3.5  Non-Traditional Volume-Variance 
Correction Methods

There are other methods used for volume-variance correc-
tion, some of them empirical. These range from adjusting the 
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kriging plan used to estimate the blocks to get the predicted 
dispersion variance, to the use of probabilistic estimation 
techniques (Chap. 9), to the application of conditional simu-
lations (Chap. 10).

7.3.6  Restricting the Kriging Plan

The concept is based on tuning the kriging plans to control 
smoothing to match the resulting block distribution to the 
expected SMU distribution as closely as possible.

This method was proposed originally by Parker and is 
discussed in Rossi and Parker (1993) and Rossi et al. (1993). 
It utilizes the notion that the smoothing property of kriging 
(see Chap. 8, and Journel and Huijbregts 1978, pp. 450–452) 
can be controlled to obtain an estimated block distribution 
that closely matches the predicted SMU distribution. Certain 
parameters of the kriging plan, such as search neighbor-
hoods, minimum and maximum number of samples and drill 
holes, the use or not of octant searches, etc. can impact the 
degree of smoothing of the resulting block distribution.

Restricting the kriging plan has the advantage of being 
simple, although rarely the kriged block distribution 
will match exactly the desired SMU distribution. More 
commonly, the matching is achieved for certain cutoffs of 
interest along the grade-tonnage curve. It is local in the sense 
that the method is estimating individual block grades, which 
combine to form a distribution similar to the desired SMU 
distribution.

One of the disadvantages of the method, as pointed out 
by Journel and Kyriakidis (2004), is that it is specific to each 
mineral deposit, and cannot be formulated in general terms. 
Also, the increased restrictions on the Kriging plans result in 
higher variance of the resulting block distribution, typically 
at the expense of higher conditional bias. The spatial distri-
bution of estimates is still smooth, that is, the variogram of 
the estimates will show a significantly lower nugget effect 
and continuous behavior at the nugget effect.

It is important to note that the requirement of conditional 
unbiasedness of the kriged block model is incompatible with 
the requirement of predicting tons and grade received at a fu-
ture date by the processing plant, see for example Isaaks and 
Davis (1999) and Isaaks (2004). This has been empirically 
verified in practice. Still, too much conditional bias in the 
output kriged model can lead to significant prediction biases 
that should be avoided.

The SMU estimates at this time are interim estimates 
awaiting much more data from blast hole sampling or in-
fill drilling. At the time of final estimation for grade control, 
care should be taken to avoid conditional bias. It is often 
more important at the prefeasibility and feasibility stage of 
resource estimation to get predictions that reasonably reflect 
the recoverable resource that will ultimately be obtained.
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7.3.7  Probabilistic Estimation Methods

Several probabilistic estimation methods, described in detail 
in Chap. 9, can be used to incorporate the volume-variance 
effect into the resource estimation process.

One option is to modify the point probability distribu-
tions resulting from the multiple indicator kriging (MIK) 
technique into block probability distributions using either an 
affine, ILC, or DGM correction. A variant of is the procedure 
has been used by Newmont Gold at its Gold Quarry mine in 
Nevada (Hoerger 1992), which, appears to work reasonably 
well when there is sufficient production data for a correct 
calibration.

A different option within the application of MIK is to 
apply the volume-variance correction to a cumulative prob-
ability distribution, at the composite scale, resulting from 
MIK. The compositing refers here to simply averaging the 
MIK probability distribution values to larger panels. A dis-
cussion of this method can be found in Chap. 9 and in Jour-
nel and Kyriakidis (2004).

Methods used to estimate distributions that are based on 
the Gaussian or Lognormal assumptions are also applied to 
incorporate the volume-variance effect into the resource esti-
mation model. The available options include Multi-Gaussian 
Kriging (Verly 1984), Disjunctive Kriging (Matheron 1976) 
and its derivative, Uniform Conditioning (Roth and Deraisme 
2000), and the Lognormal Shortcut methods (David 1977). 
The change of support models afforded by these methods 
is generally robust, as long as the corresponding underlying 
Gaussian or Log-normal assumptions are reasonable.

The volume-variance correction methods described share 
in the same limitations: they do not account for other types of 
dilution and the information effect. They assume that every 
block can be selected individually and independently from 
any other (free selection), and that the selection itself is made 
based on a known true grade (perfect selection).

7.3.8  Common Applications of Volume-Variance 
Correction Methods

The methods for volume-variance correction described are 
applied to ore resource modeling in several manners. The 
traditional application has been the correction of the global 
resource model to match the predicted grade-tonnage curve 
according to the volume-variance effect predicted (David 
1977; Journel and Huijbregts 1978). This application is now 
less common for multiple reasons:
a. The volume-variance correction performed in such a way 

is a global correction, and therefore of little practical use, 
except for the overall assessment of resources from a 
deposit; the mineralization’s internal dilution should be 
somehow incorporated into the resource block model 

based on more local corrections, so that downstream 
work, such as mine planning, takes its effect into account.

b. Forcing the overall resources to match the volume-vari-
ance corrected distribution implies ignoring all other di-
lution sources described above. Therefore, the reported 
overall resources are known to be wrong, since they are 
based on the incorporation of a single source of dilution. 
The resource model should incorporate more dilution than 
predicted by volume-variance correction to include geo-
logic contact dilution, the information effect, and planned 
operational dilution.

Another application is correcting the drill hole data such 
that an estimate of the expected SMU distribution is ob-
tained prior to estimating the resources. This provides a tar-
get distribution against which the resource model can be 
compared.

The example shown in Fig. 7.9 corresponds to the Cerro 
Vanguardia operation, which mines gold and silver vein de-
posits in the Patagonia Region in Southern Argentina. Fig-
ure 7.9 shows the distributions of the 2 m composites used 
for estimation, as well as the DG-predicted and the Affine-
predicted SMU distributions. Note that in this case, the SMU 
is a 5 × 10 × 5 m cube, to account for the open pit mining 
method currently used. The example shown is from the Os-
valdo Diez vein, one of more than 40 Au-Ag bearing veins 
identified in the district, and the source of most of the mine’s 
production through the late 1990’s and early 2000’s. It is in-
structive to note several points:
•  The graph in Fig. 7.9 shows the Au cutoff grades applied 

to the distribution on the X axis, the left Y-axis shows the 
predicted proportion of tonnage above the corresponding 
cutoff, while the right Y-axis shows the corresponding 
grade above cutoff.

•  The  grade-tonnage  curves  allow  an  immediate  analy-
sis for the cutoffs of interest, and how the distributions 
change for different grade ranges.

•  The  volume-variance  correction  factor  is  estimated  at 
28 %, implying that there is a very significant change 
in variance from the original 2 m composite to the 
5 × 10 × 5 m SMU distributions.

•  The Affine correction is not the appropriate method to use 
in this case. It is presented here to highlight the differ-
ences in the resulting distributions. Among other reasons, 
the artificial minimum generated by the Affine correc-
tion is quite high, and, although not shown here, the DG 
model was proven by production data to be more robust.

•  The difference between  the  tonnage and grades  for  any 
given cutoff between the SMU distributions and the com-
posites distribution is an indication of the how severe the 
predicted volume-variance correction is.

In the literature there are several other detailed examples and 
comparisons of the different volume-variance corrections, 
see for example Verly (2000) and Rossi and Parker (1993).
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The volume-variance correction of drill hole information 
for each estimation domain can also provide a target global 
distribution of blocks (SMUs), grade-tonnage curves that can 
be used to calibrate and/or check the grade-tonnage curves 
resulting from the resource block model, and in particular for 
specific cutoffs. The comparison between the actual versus 
target distributions can also be done through distribution pa-
rameters, such as the Coefficient of Variation (CV), a robust 
measure of variability.

Figure 7.10 shows a comparison of the grade-tonnage 
curves of the DGM-predicted SMU and the estimated block 
model grades for the high enrichment units of the Escondida 
Norte Porphyry Copper deposit. Note that for most cutoff 
grades the estimated grades of the block model are slightly 
smoother than the corresponding DG-predicted SMU distri-
bution. The conclusion from Fig. 7.10 is that the estimated 
resource model is incorporating additional dilution, besides 
the internal dilution represented by the DG model. In this 
case, the SMU size is 20 × 20 × 15 m, 15 m composites were 
used to estimate the block model, and the cutoffs of interest 
are in the range of 0.3 to 0.7 % Cu.

Another application of the volume-variance correction is 
to help define the selectivity of the mine. This can be ap-
proximated by quantifying the impact that different mining 
equipment used in the operation has on dilution, and based 
on changes in the volume of the SMU. Most commonly, 
operations study the impact of changes in bench heights. 

However, there are limitations to the use of volume-variance 
methods to predict optimal bench heights, because of the 
free and perfect selection assumptions.

7.4  Information Effect

The Information Effect describes the fact that, at the time of 
mining, the information used to decide which portion of the 
deposit is ore and which is waste is based on more informa-
tion than that available when obtaining a resource model.

Ore/waste selection is described in more detail in Chap. 13. 
Although more data is available, the ore/waste selection is 
always made with an estimate and not the true grades. This 
is imperfect selection in the sense that an estimation error 
is always present. Additionally, the selection process is not 
free, meaning that each SMU is not selected as ore or waste 
independently of other SMUs in the vicinity. There may be 
other geometrical and mining constrains that restrict the ac-
cessibility of each SMU. All these approximations and sourc-
es of error are implicit in the Information Effect.

The problem of selection can be mathematically described 
by the following recovery equations:
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Fig. 7.9  Grade-Tonnage Curves for the Osvaldo Diez Vein, Cerro Van-
guardia Mine, Argentina. There is a high volume-variance effect. The 

2 m composites distribution is shown along with the DG-predicted and 
affine-predicted SMU distributions
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where iv(u; zc) represents an indicator of perfect selection 
for the SMU v and zc is the cutoff grade. If the value of the 
SMU zv is higher than the cutoff, then the SMU is recovered (
i
p
v (u; zc) = 1

)
.. The total tonnage, quantity of metal, and 

grade thus recovered for any panel or region V is

 
(7.11)

 

(7.12)

 
(7.13)

For simplicity, the density (tonnage factor) in the above equa-
tions is assumed to be 1.0. Equations 7.11–7.13 assume perfect 
selection, that is, knowledge of the true SMU value. However, 
in reality, only an estimate of that true value is available.

Graphically, the ore/waste selection problem can be 
represented by a scatter plot of the unknown true SMU 
values vs. the estimated SMU values shown in Fig. 7.11. 

tv(zc) =
N∑

j=1

iv(uj ; zc), v ∈ [1, N ]; xj ∈ V

qv(zc) =
N∑

j=1

iv(uj ; zc) · zv(u),v ∈ [1, N ]; uj ∈ V

mv(zc) =
qv(zc)

tv(zc)

Consider, for example, a zc = 2.0 cutoff; there are four pos-
sible outcomes:
a. The SMU is estimated to be ore and is recovered as such; in 

this case, no error (or misclassification) is made (Quadrant I).
b. The SMU is estimated to be waste, and is recovered as 

such; as before, no error (or misclassification) is made 
(Quadrant IV).

c. The SMU is estimated to be ore, and is in fact waste; in 
this case, dilution is sent to the processing plant (Quad-
rant II).

d. The SMU is estimated to be waste, and is in fact ore 
(Quadrant III); in this case, ore loss occurs as economic 
material is being discarded.

The imperfect selection described is a major component of 
the information effect. The economic performance of any 
operating mine is impacted by this unavoidable selection 
error. Commonly, little attention is paid to optimizing that 
selection, relative to its economic impact.

The simple scenario shown in Fig. 7.11 becomes more 
complicated if there are several destinations for the ore, such 
as crushed ore to the mill, crushed ore to the leach pad, and 
Run-of-Mine ore to a different leach pad. In this case, there 
are four possible destinations including waste. Optimal pro-
cedures for ore/waste selection are discussed in Chap. 13.

Fig. 7.10  Grade-Tonnage curves of the high secondary enrichment units of the Escondida Norte Porphyry Cu deposit
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Imperfect selection and other components of the informa-
tion effect are difficult to understand and predict with the 
often-used empirical models. The better alternative is to use 
geostatistical conditional simulations (Chap. 10), which al-
lows the reproduction, based on simulated data, of the entire 
process of blast hole sampling and ore/waste selection, as 
discussed in Chaps. 10 and 13, and exemplified in Chap. 14. 
This approach has been used successfully in recent years in 
practice (Guardiano et al. 1995; Badenhorst and Rossi 2012) 
and Journel and Kyriakidis (2004).

Variants of the probabilistic estimation methods dis-
cussed above in the context of volume-variance correc-
tion (based on Gaussian or Log-normal assumptions) can 
be modified to incorporate the information effect. One 
such method is advocated by Roth and Deraisme (2000), 
and is based on a Bi-Gaussian assumption between the 
true, unknown SMU value, and its estimate. The Uniform 
Conditioning method (as well as others) can be applied to 
incorporate a correction to the predicted SMU grades and 
tonnages above cutoff.

Besides the more complete and complex conditional 
simulation approach, there are several ad-hoc methods that 
deal with the information effect. One such method, com-
monly used, is to conservatively bias the ore resource model 
(similar to what is shown in Fig. 7.10) to compensate for the 
information effect and future losses. This entails purpose-
fully introducing a certain degree of dilution in the resource 
model. As all empirical methods, it can only be successfully 
applied if there is sufficient knowledge about the deposit and 
valid production data to adequately calibrate the amount of 
additional dilution incorporated into the model.

A conceptually similar method consists in defining an 
SMU larger than the SMU that the operation can realistical-

ly mine, and assume perfect selection on it. This procedure 
compensates for the information effect and the fact that the 
theoretical SMU can never be selected (extracted) perfect-
ly, without any further ore loss and dilution. The impact of 
assuming a larger-than-expected SMU can be quantified in 
terms of additional dilution incorporated into the model.

These empirical methods are subjective, and rely heavily 
on assumptions that cannot be easily verified or quantified. As 
such, they should be considered only approximations to the in-
corporation of the information effect into the resource model.

The amount of additional data available at the time of ore/
waste selection is significantly more than that available at the 
time of developing a resource model for a feasibility study. 
Therefore, predictions about mineable tonnage and grades 
for economic cutoffs can be much different and improved at 
the time of selection, if only because of the massive amount 
of information available.

7.5  Summary of Minimum, Good and Best 
Practices

The minimum practice in modeling resources requires the 
following:
a. All models should have an assessment of the global 

internal dilution by estimation domains. This assessment 
should be used to quantify the impact of internal dilution, 
and compare it with the dilution introduced into the block 
model due to the smoothing property of Kriging.

b. The geologic contact dilution should also be included 
through geometric considerations if deemed important 
enough, or discussed in the documentation of the model 
if considered negligible. The methods used could include 

Fig. 7.11  Scatter Plot of Hy-
pothetical True vs. Estimated 
SMU values. The Zc = 0.3 cut-
off value defines 4 quadrants 
in the graph, two if which cor-
respond to misclassification. 
(SMUs represented by dots)
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the use of factors to penalize block values along contacts. 
A more direct approach is preferred, estimating the grade 
of each geologic unit within the block and then obtaining 
the average block grade using Eq. 7.1.

c. The information effect is usually handled with factors, 
sometimes calibrated to production figures, and often ap-
plied by mining engineers to the ore resource model at the 
time of developing the mine plan. In any case, the block 
model documentation should clearly state its limitations 
in terms of dilution, and to what extent it can be consid-
ered “recoverable”.

d. If an indirect or empirical method has been used to incor-
porate additional dilution into the model to compensate 
for planned and unplanned operational dilution, such as 
using a larger SMU size, this should be clearly stated in 
the documentation.

In addition to the above, good practice requires:
a. A more specific method to include internal dilution into 

the resource model. This can be done through any of the 
methods mentioned in Sect. 7.3, and in all cases should 
include a fair assessment of the uncertainties and trad-
eoffs involved.

b. Geologic contact dilution should be explicitly incorporat-
ed into the block model, and a statement about the uncer-
tainty of the position of the contacts should be included. 
The information effect should be dealt with using at least 
a reasonable empirical approximation, or a modification 
of the estimation method.

c. All the work should be well documented and clearly pre-
sented, detailing the checks performed and the quality 
control procedures in place.

Best practice consists of using uncertainty models to deal 
with all three types of dilution described: block averaging, 
geologic model uncertainty, and operational dilution. The 
full conditional simulation study would:
1. Incorporate the uncertainty of the geologic model, thus 

implicitly considering geologic dilution.
2. The internal dilution is more accurately incorporated by 

direct block simulation or simply by averaging the simu-
lated values into the SMU size.

3. The simulation model should also incorporate operational 
dilution and the information effect by simulating the com-
plete mining process.

Thus, most of the possible sources of dilution and ore loss 
are modeled simultaneously. In such case, it is not necessary 
to apply any of the volume-variance correction methods, un-
less it is done as checks on simulation models, for example. 
The work is only completed when, as always, a very thor-
ough validation and checking of the models is completed and 
documented. Preferably, the simulations models should be 
validated against production, or at least alternative models, 
and through thorough statistical and graphical checking, see 
Chap 11.

7.6  Exercises

The objective of this exercise is to review change of support 
calculations. Some specific (geo)statistical software may 
be required. The functionality may be available in different 
public domain or commercial software. Please acquire the 
required software before beginning the exercise. The data 
files are available for download from the author’s website—
a search engine will reveal the location.

7.6.1  Part One: Assemble Variograms  
and Review Theory

You will use the Cu variable from the largedata.dat 
dataset. The key parameter in all scaling is the variogram; 
however, the normal scores transforms of grades do not av-
erage linearly and we cannot use the normal scores vario-
grams for scaling. The variograms of the Cu grades directly 
are required. Of course, the direct grade variogram should be 
similar to the normal scores variogram.
Question 1:  Compute  and  fit  a  3-D  Cu  variogram  (like 

that modeled in Chap. 6). Comment on the 
“stationarity” of the variogram model, that is, 
does it flatten off at the variance of Cu grades?

Question 2: Write a short review of the key theoretical 
results needed for variogram scaling: (1) the 
definition of  the average variogram/ average 
covariance,  (2)  the  definition  of  the  disper-
sion variance and the link to the average var-
iogram, (3) krige’s relation or the additivity of 
variance, and (4) the scaling of variogram sill 
parameters.

Question 3: Derive the volume scaling law of the nugget 
effect, that is, demonstrate that the following 
relation is exact: CV = |v|/|V| Cv. Where CV 
and Cv are the nugget effects at scales V and 
v, respectively.

7.6.2 Part Two: Average Variogram Calculation

Average variogram or “gammabar” values tell us the vari-
ance at any scale. The discretization required for stable nu-
merical integration is a consideration. Average variogram 
values can be calculated between two disjoint volumes V 
and v′; however, classic histogram and variogram scaling re-
quires the average variogram to be calculated for V = v′, that 
is, for the same volume and itself. This brings up the zero 
effect as another complicating factor.
Question 1: Consider your reference Cu variogram model 

and a 10 m cubed block size for a num-
ber of sensitivity studies. Create a plot with 
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the average variogram versus discretiza-
tion level (starting with 1 × 1 × 1 and going 
to 20 × 20 × 20). Plot two lines—one with 
the zero values for coincident discretization 
points and another for this corrected.

Question 2: Calculate the average variogram for regular 
cubic block sizes from 1 through 20 m with 
the zero effect correctly handled. Comment 
on your choice of discretization level. Plot 
and tabulate (1) the average variogram versus 
block size, and (2) the block variance versus 
block size.

7.6.3 Part Three: Change of Shape Models

The global mean does not change with scale. The variance 
changes in a predictable manner; however, the shape change 
is not precisely known.
Question 1: Consider cubic block sizes of 5, 10, and 20  m. 

Calculate the scaled distributions using the 
(1) affine, (2) indirect lognormal, and (3) dis-
crete Gaussian models. Plot the original Cu 
histogram and all of the scaled histograms. 
Comment on the results.

Question 2: Attempt to quantify the importance of the 
shape change by plotting grade tonnage 
curves at the 10 m scale. Discuss the differ-
ent models and explain where you require 
such a model.
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8Recoverable Resources: Estimation

Abstract

The prediction of the tonnages and grade of ore recoverable with a particular mining plan is 
a central problem in mineral resource estimation. The conventional approach to this prob-
lem is to estimate the mineral grade for volumes relevant to the mining plan and base the 
recoverable resource calculations on those estimates. Details of that approach are presented 
in this Chapter.

8.1 Goals and Purpose of Estimation

In general, less than one billionth of the volume of a deposit 
is sampled. The grades and other attributes must be estimat-
ed in the unsampled region. Geological variability makes 
this estimation difficult. There are a number of estimation 
schemes designed for different goals. One goal could be sim-
plicity and reproducibility—polygonal areas of influence or 
inverse distance may be suitable. Another goal could be to 
reveal large-scale geologic trends—block kriging, splines or 
inverse distance could be appropriate. Avoiding preventable 
errors is critical (Dominy et al. 2002).

The most important goal, however, is to predict future 
grade and tonnage of material that may be mined. There are 
two situations of importance to us: (1) interim estimation 
with widely spaced data when additional information will 
be available before final decision making, for example, long 
term estimates in an open pit context before grade-control 
samples, and (2) final estimation for the purposes of select-
ing ore and waste. For example, at the time of grade control 
in an open pit or when estimating stope grades in an under-
ground mine with limited future flexibility. The local preci-
sion of estimates in the first case is not the top priority; the 
emphasis is on the accuracy of the estimated global recover-
able reserves. The global results are not the emphasis in the 
second case; local precision and exactitude matters.

The goal in the first situation of interim estimation is to 
have the tonnages and grade of ore predicted accurately over 
a reasonably large production area or time period. The other 
important factor is that additional information will become 
available in the future. The goal of final estimation is to cal-

culate estimates that are correct in expected value, that is, 
the true value recovered will be equal to the estimates in ex-
pected value. There may be additional goals such as correct 
classification (see Chap. 13).

The recommended approach to estimation is different for 
interim and final estimates. The rationale behind the differ-
ence is partially explained with the concept of conditional 
bias.

8.1.1 Conditional Bias

Conditional bias occurs when the expected value of the true 
grade ( ZV) conditional on the estimated grade ( Z*

V = z) is not 
equal to the estimated grade (McLennan and Deutsch 2004):

where the V is symbolic of some volume of estimation, for 
example, a selective mining unit (SMU).

Conditional bias is almost always present due to the 
smoothing effect of all linear estimation procedures, including 
kriging, in the presence of sample data that are widely spaced. 
The true grade is typically less than the estimated grade when 
the estimated grade is high and the true grade is typically 
greater than the estimated grade when the estimated grade is 
low. It is interesting to note that simple kriging creates smooth 
estimates and has no conditional bias. Common practice, 
however, is to use ordinary kriging and consider limiting the 
search to adapt to local departures from stationarity; ordinary 
kriging will always have some conditional bias.

*
 {  }|  V VE Z Z z z= ≠
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Figure 8.1 shows a small example of conditional bias. 
Consider mineralization with a lognormal histogram with a 
mean of 1.0 and a variance of 4.0. The variogram has a rela-
tive nugget effect of 20 % and an isotropic range of 40 m. 
Consider four samples on a regular 20 m grid to estimate a 
central 10 m square block in a high and low-grade case. This 
is a favorable estimation scheme since the nugget effect is 
relatively low and the range is large relative to the sample 
spacing. Nevertheless, there is conditional bias, that is, the 
kriged grade is too high in the high-grade case and too low 
in the low-grade case.

Conditional bias is largely (but not completely) removed 
by using many samples in the estimation. This may be a 
good idea when making final estimates, because it would not 
be reasonable to accept estimates that are known to be wrong 
in expected value. Large search routines retaining many data 
are implemented to minimize conditional bias and provide 
the best estimate. However, in mining, final estimates are 
obtained using closely spaced data, which means that there 
is seldom a good application for large searches and many 
samples. Typical blast hole spacing in an open pit can vary 
from 5 × 5 to 10 × 10 m patterns. The price of large searches 

Fig. 8.1  The sketches to the left show the data configuration and a 
central block being estimated (10 m on a side) in a high and low-grade 
case. The histograms show the distributions of true grades conditional 

to the 20 m spaced sample data. The heavy vertical line is the kriged 
grade and the light vertical line is the mean true grade. The kriged grade 
is too high in the high-grade case and too low in the low-grade case
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and many samples is that block estimates are very smooth; 
the farther apart the drill holes, the greater the smoothing. 
In some special circumstances, the price to pay for smooth-
ing may be unavoidable if making final estimates, but it will 
generally be unacceptable for interim estimates.

One approach for interim estimates is to modify the es-
timation procedure to match the smoothing to the ultimate 
block distribution. The block distribution is predicted ana-
lytically, see Chap. 7. The search in estimation is reduced 
in size to increase the variability of the estimates, using an 
iterative approach until the adequate amount of smoothing 
is achieved. These estimates will have conditional bias, but 
that is not a concern since decisions are being made on the 
accuracy of the overall grade distribution, and not on block 
by block estimates.

Although there are many papers on conditional bias, the 
subject continues to be poorly understood and controversial 
in the geostatistical community. Authors like Krige (1994, 
1996, 1999) claim that resource estimates should have no 
conditional bias at all. Sinclair and Blackwell (2002) argue 
that conditional bias contributes to the discrepancies be-
tween resource models and production. Guertin (1984) and 
Pan (1998) proposed different types of corrections for con-
ditional bias. Isaaks (2004) argues that a conditionally unbi-
ased estimate that is also an accurate recoverable resource 
predictor, except for one theoretical case that in practice is 
never found, is an oxymoron.

These authors have found that smoothing in mineral re-
source (interim) estimates in long term open pit mine plan-
ning is less acceptable than conditional bias, and in fact that 
some conditional bias is necessary for the resource estimates 
to better predict the mined tonnages and grades. These au-
thors have also found that for final estimates using tightly 
spaced data, large search radii and many samples do not im-
prove the estimates. The practitioner should understand the 
purpose of the estimates and strive to manage and understand 
the consequences of smoothing and/or conditional bias.

There are alternate methods to avoid smoothing. Chap-
ter 9 presents methods based on probabilistic estimation 
that avoids considering a single kriged estimate as the block 
grade that will be encountered. Chapter 10 presents methods 
based on simulation, which by construction do not smooth. 
In Chap. 13 it will be argued that, for ore/waste selection 
and grade control, simulation-based methods are preferable 
to any form of kriging.

8.1.2 Volume Support of Estimation

In some cases we are interested in point estimation, that is, 
estimation at the scale of the data. The smoothing of most 
estimation from widely spaced drill holes implies that the 
variability of the estimates is not the same as the variability 

of the data. However, in mining, the overriding interest is in 
estimating a certain selective mining unit (SMU), a volume 
of material of a specific size that characterizes mining se-
lectivity. The definition of the selective mining unit (SMU) 
volume size is the minimum volume of material on which ore 
and waste can be separated, which is a function of mining 
method and selectivity. This size is related to the ability of 
the equipment to select material; but it is also based on the 
data available for ore/waste classification (blast holes and/
or dedicated grade control drilling), the procedures used to 
translate that data to mineable dig limits, and the efficiency 
with which the mining equipment excavates those dig limits.

Several sources of dilution must be accounted for, includ-
ing internal dilution due to grade variability within the SMU, 
external dilution resulting from geological and geometric 
contacts, and planned and unplanned operational dilution. 
Dilution and estimation domains definition (Chap. 4) are the 
two most important factors for accurately estimating recov-
erable resources.

Recoverable resources imply that we are interested in 
evaluating a truncated statistic of the overall grade distri-
bution. The classical formulae are found after defining an 
economic cutoff for any set of SMU estimates (Journel and 
Huijbregts 1978, p. 480). The tonnage is simply the sum of 
all unit tonnages (or area of the histogram) that are above 
that threshold:

where T0 is the total in-situ tonnage at cutoff 0 and zc is the 
grade cutoff applied.

The quantity of metal is calculated as the summation of 
the quantity of metal of each individual unit:

where z is the grade of the unit. Finally, the average grade of 
the recovered material is:

8.1.3 Global and Local Estimation

The estimation methods mentioned here yield local esti-
mates, in the sense that the estimated values are specific to a 
location within the deposit, and are derived from nearby sam-
ples. A global estimate is an estimate for an entire domain or 
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deposit, such as those discussed in Chap. 2, where methods 
were proposed to remove bias resulting from clustering.

8.1.4 Weighted Linear Estimation

Estimates are often made as weighted linear estimators. A 
common approach is to estimate the values as deviations 
from a mean or trend surface, see Fig. 8.2. The estimate 
reverts to the mean some distance away from the data, see 
the far right edge. The deviations from the mean surface 
are estimated at unsampled locations with some method of 
interpolation. The most common interpolation scheme is a 
weighted linear estimate:

where the * denotes an estimate, u0 denotes the unsampled 
location being estimated, z(·) denotes the variables value, 
m(∙) denotes  the mean or  trend value and  i = 1,…, n is the 
index of data values.

Estimation then becomes an exercise in determining the 
weights λi using certain criteria. Factors considered when as-
signing weights may include the closeness to the location 
being estimated; the redundancy between data values; the 
anisotropic continuity (preferential direction); and the mag-
nitude of continuity/variability.

8.1.5 Traditional Estimation Methods

Simple (traditional) estimation techniques can be used to 
assign values to blocks. Polygonal methods and Inverse 
Distance (ID) methods are often applied at early stages of a 
mining project or for checking. These methods are not par-
ticularly accurate, but can provide an order-of-magnitude re-
source estimate. They can also be used to check the results of 
more sophisticated geostatistical estimation methods.

According to Popoff (1966) polygonal methods have 
been used since the early 1900s. Variants of the polygo-
nal method include the sectional estimation method (Stone 
and Dunn 1996), the classic polygonal method, and the 

*
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n

i i i
i

z m z mλ
=

− = −∑u u u u·

computerized nearest-neighbor (NN) method (Sinclair and 
Blackwell 2002).

8.1.6 Classic Polygonal Method

The polygonal estimate is also based on assigning areas of 
influence around drill hole intercepts. The drawing of poly-
gons around drill hole data is based on the perpendicular bi-
sectors between a sample and all its neighbors, see Fig. 8.3. 
The perpendicular bisector of a line segment is a line for 
which points are at the same distance from either side of the 
line segment. This concept can be extended to three-dimen-
sions, although polygons are typically drawn in two-dimen-
sions and the volume of influence is defined perpendicular 
to the polygonal plane.

The polygon of influence is such that each point within 
the polygon is closest to the central sample than any other 
sample. Special care must be taken with samples on the 
outer edges. These samples are not completely surrounded 
by other samples, so bounding the polygon is important. 
There are several alternatives, including the use of geologic 
boundary (if available), or, more commonly, a fixed maxi-
mum distance from the sample. In any event, the closing of 
the polygons on the outer edges may be arbitrary and can 
have a significant impact on the final results.

The polygonal method corresponds with the intuitive idea 
that the amount of information provided by each sample 
is proportional to its area (or volume) of influence. In this 
sense, the method has found modern application as a spatial 
declustering tool, calculating weights to avoid biased statis-
tics based on spatial drill hole data aggregation (Chap. 2). 
One example is that it can be used to provide a deposit-wide 
estimate of the average grade (Isaaks and Srivastava 1989).

8.1.7 Nearest-Neighbor Method

This is a variant of the polygonal method, but in this case the 
grades or attributes are assigned directly to a block model. 
This is the most common computerized polygonal estima-
tion method and it has evolved into two common uses.

The first and more traditional use is the calculation of 
mineral resources. A grid of blocks is assigned grades by the 
closest drill hole data sample or composite. The method does 
not average values from different samples. The original vari-
ance of the data is maintained. There is no smoothing and 
grades from one block to the next change abruptly producing 
artificial discontinuities.

The nearest-neighbor method is not as good as Inverse 
Distance methods and Kriging at estimating grades. From 
theory and practice (see for example Knudsen et al. 1978; 
Baafi and Kim 1982; Readdy et al. 1982; Knudsen 1990), 

Fig. 8.2  A sketch showing estimation in one dimension
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it is known that the errors are larger than for other meth-
ods. For many deposits with positively skewed distributions, 
large errors in individual blocks lead to a tendency to over-
estimate the average grade and underestimate tonnage of the 
resources above cutoff. The NN method is mostly used as a 
checking tool (Chap. 11).

The second application is to decluster grades, assuming 
that the block grade distribution is a fair representation of the 
declustered drill hole data. While it is in concept equivalent 
to a polygonal declustering technique, it is much easier to im-
plement, since most geologic and mining software packages 
incorporate the algorithm. It can also be implemented as an 
Inverse Distance method with specific parameters, see below.

8.1.8 Inverse Distance Weighting

Inverse Distance methods are a family of weighted average 
methods. They result in estimates that are smoothed versions 
of the original data. Inverse distance methods are based on 
calculating weights for the samples based on the distrance 
from the samples to the point or block of interest. The linear 
estimator is written as:

where wi are the weights assigned to each composite data and 
zi is the corresponding composite value, for all composites 
( i = 1,…, N) used in the estimation, and z* is the estimated value.

z∗ =

N∑
i=1

wi · zi

N∑
i=1

wi

The calculation of the weights wi is based on inverse of 
the distance between the composite and the point being esti-
mated. This is written as:

where di is the distance between the composite and the point 
being  estimated,  ω  is  the  exponent  and  c  is  a  constant  to 
avoid over weighting very close data. The weights are stan-
dardized to sum to 1 to ensure a globally unbiased estimate.

Two generalizations are possible. One is to modify the ex-
ponent in Eq. 3.10. The most common exponents used are 
ω = 2 (Inverse Distance Squared, IDS,) and ω = 3 (Inverse 
Distance Cubed, IDC,). IDS is used with smoothly varying 
attributes, such as topographic surfaces, thickness of geo-
logic units including coal beds, some stratabound deposits, 
and interpolation of in-situ bulk density values. Larger expo-
nents, such as ω = 3 (IDC), are used when large weights are 
desired for the closest composites. This is applicable when 
the variable being estimated is more erratic and the current 
data spacing is large relative to the data that will ultimately 
be available for decision making, as for example with open 
pit gold grade distributions. The extreme case is to increase 
the exponent so that only the closest composite receives 
any weight at all, which is equivalent to a nearest neighbor 
estimation.

The opposite extreme is when the exponent is 0, which 
amounts to an equally weighted moving average, as described 
in Chap. 2. Isaaks and Srivastava (1989, pp. 257–259) dem-
onstrate the impact of the exponent on the weights assigned 
to each composite.

wi =
1

c + dω
i

Fig. 8.3  Two schematic ex-
amples of the polygons of influ-
ence method; no distance units 
are given
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The second generalization is based on using distances 
calculated with anisotropy, that is, preferred directions of 
continuity. The anisotropy can be introduced by re-scaling 
the directional distances appropriately, as has been used by 
some major gold companies, also observed in the Western 
Australia goldfields. Overall, the application of ID method 
has been steadily decreasing through the years in favor of 
geostatistical methods.

Kriging is a method that allows calculating weights that 
are optimal according to the least-squares, or minimum ex-
pected error variance, criteria. Although estimation schemes 
sometimes provide a measure of how good the estimates 
are, there is no good measure of uncertainty attached to the 
estimates. Probabilistic estimation (Chap. 9) or simulation 
(Chap. 10) is needed for this purpose.

8.2 Kriging Estimators

The basis for the kriging framework is to calculate the 
weights that minimize an expected error variance. There are 
many flavors of kriging, but the basic forms differ mostly on 
the assumptions they make regarding the local or stationary 
domain mean. This is expressed as conditions on the set of 
weights. Linear kriging has been presented in several clas-
sic references, such as Journel and Huijbregts (1978); Isaaks 
and Srivastava (1989); Deustch and Journel (1997); and 
Chilès and Delfiner (2011).

The more common types of kriging are:
•  Simple kriging (SK): minimizes  the error variance with 

no constraints on the weights. The mean is a known con-
stant (inferred from the available samples) for the entire 
domain.

•  Ordinary kriging  (OK):  the  local mean  is  implicitly  re-
estimated as a constant within each search neighborhood. 
OK is a common technique used to obtain interim esti-
mates.

•  Kriging with a  trend model or universal kriging (KT or 
UK): this method estimates residuals from a specified 
location-dependent mean m(u). The location-dependent 
mean could be a specified constant (local-varying mean), 
or a deterministic trend typically specified as a function 
of the coordinates. This method is also called non-station-
ary kriging because of the location-dependent mean.

•  Kriging with  an external drift:  in  this variant,  the  trend 
model is scaled from a secondary variable.

•  Factorial kriging: the RF model Z(u) is split into indepen-
dent components (factors), which are then independently 
estimated.

•  Non-linear  kriging,  including  Gaussian-based  (disjunc-
tive kriging, uniform conditioning, multi-Gaussian), 
indicator kriging (median, multiple, probability), and log-
normal kriging. These are discussed in Chap. 9.

The choice of method depends on the geologic setting, the 
amount of information available, and the characteristics of 
the RF model envisioned. The most common estimation 
method is OK, although the different variants that model 
trends have become more popular in more recent years.

8.2.1 Simple Kriging

The purpose of kriging is to determine a set of optimal 
weights that minimize the expected error variance. Consider 
a linear estimator:

where z(ui) are the data values and Z*(u) is the estimate. The 
constant mean m is assumed known and stationary (location-
independent). In this case, the SK estimator is unbiased by 
definition, and the estimation is performed in effect on the 
residuals data values. The known mean m is subtracted from 
the data values and then added back after the residuals have 
been estimated. The estimation error is then expressed as a 
linear combination of the residuals * ( ) ( )SKY Y−u u .

The error variance is defined as

and can be expressed as a linear combination of covariance 
values of the residuals:

It can be seen that the error variance is written in terms of the 
(1) weights used for the estimate (the  values), (2) the vari-
ance  ( C(0)), (3) the covariance between the data locations 
and the location, ( ( , ))iC u u  and (4) the covariance between 
all pairs of data ( ( , ))i jC u u . The covariance is required be-
cause the estimate is linear and the estimation variance is a 
quadratic form. The required covariance values are calculat-
ed from the variogram model.

The optimal weights λi, i = 1,…, n are determined by tak-
ing partial derivatives of the error variance with respect to 
the weights and setting them to zero:
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which results in a system of n equations with n unknown 
weights, known as the simple kriging (SK) or normal equa-
tions system (Luenberger 1969):

The minimized estimation variance also known as the krig-
ing variance is:

A more general form of the simple kriging estimator that ac-
counts for the support or volume of the location being esti-
mated and the samples used in the estimation, recall Chap. 7, 
is written below. In the more general case, an estimate of a 
particular block size; that is, an estimate of ZV(u) with zv(ui), 
i = 1, …, n is being made:

with

The solution exists and is unique if the matrix ( , )i jC v v   is 
positive definite (Chap. 6). Also note that the existence of 
duplicate points will result in a singular covariance matrix, 
since the distance will be zero. Some basic properties of the 
simple kriging estimator are:
•  SK  is unbiased by definition,  since  the  stationary mean 

is assumed known. In practice, it is inferred from the 
average value of the samples within the stationary 
domain. Because stationary domains are seldom found in 
mining applications, the SK method is used little in min-
eral resource estimation. It is commonly used, however, 
to obtain conditional simulations (Chap. 10).

•  Kriging  in all  its  forms  is, by construction,  a minimum 
error variance estimator. No other set of weights will 
provide a lower estimation variance than kriging. While 
least-squares optimization is generally thought of as a 
valuable property of kriging, there are cases where mini-
mum variance may be the wrong optimization criteria to 
use (Srivastava 1987).
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•  Kriging  is  also  an  exact  interpolator,  meaning  that,  at 
known locations, the estimate is the sampled value. If the 
location u to be estimated coincides with a datum loca-
tion u0, the normal system returns the datum value for the 
estimate. Kriging honors the (hard) data values at their 
locations.

•  The kriging variance depends only on the covariance val-
ues, not on the actual sample values. The kriging variance 
can be known before any estimation is performed.

•  The  kriging  weights  are,  like  the  variance,  non-data 
dependent. Therefore, the same covariance values and 
data configuration will result in the same kriging weights, 
regardless of the values of the individual samples used to 
estimate the unknown location u.

•  Kriging  takes  into  account  the  geometry of  the  volume 
being estimated through the consideration of the volumes 
V. It is well understood in practice that estimating a larger 
volume V is easier, that is, the estimation variance will be 
smaller.

•  The distance of the information to the location being esti-
mated is taken into account as a structural distance; in 
the case of Inverse Distance methods, the distance used is 
Euclidean, always the same regardless of geology, depo-
sitional environment, or variable being estimated. Krig-
ing is an improvement because it considers a distance that 
is specific to the geologic environment. The structural 
continuity of the variable being considered is modeled, 
including its anisotropy and other features that result from 
measuring data spatial correlation.

•  The  configuration  of  the  data  is  quantified  through  the 
term ( , )i jC v v   , which accounts for redundancy and thus 
data clustering.

•  The smoothing effect of kriging can be forecast. Since the 
estimation variance, the covariance values among data, 
and the covariance values between the samples and the 
volume V being estimated can be pre-calculated, it is pos-
sible to obtain theoretical distributions for different vol-
ume supports (SMU, Chap. 7).

8.2.2 Ordinary Kriging

Ordinary kriging is based on the same minimum error vari-
ance linear estimate at a location where the true value is un-
known. But contrary to SK, OK does not make any prior 
assumptions about the mean. By requiring global unbi-
asedness, Ordinary kriging (OK) constrains the sum of the 
weights to be 1.0, and as a result the mean does not need to 
be known. We assume the unknown mean for the volume 
being estimated constant:
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The condition 
1

1
n

i
i

λ
=

=∑  is the unbiasedness condition when 

the mean m is not known. This is the essence of ordinary 
kriging: the estimation variance is minimized under the con-
dition that the sum of the weights is 1.0. It can be shown that 
ordinary kriging amounts to re-estimating, at each new loca-
tion u, the mean m as used in the SK expression. Since OK is 
most often applied within moving search neighborhoods, 
i.e., using different data sets for different locations u, the im-
plicit re-estimated mean denoted m*(u) depends on the loca-
tion u. Thus the OK estimator is a type of SK, where the 
constant mean value m is replaced by a location-dependent 
estimate m*(u).

Ordinary kriging is a non-stationary algorithm. It cor-
responds to a non-stationary RF model with varying mean 
but stationary covariance. This ability to rescale locally the 
RF model Z(u) to a different mean value m*(u) explains the 
robustness of the OK algorithm. Ordinary kriging has been 
and is likely to remain the anchor algorithm of geostatistics.

The OK system is also a system of normal equations, but 
with an additional constraint: the sum of weights equal to 
1. The Lagrange formalism is again used to obtain the opti-
mal weights and derive the OK system of equations. Using 
the more general notation to take into account the different 
support of the samples and the blocks being estimated, the 
derivation of the OK system is

Taking the partial derivative with respect to the weights and 
the Lagrange multiplier,

with μ being the Lagrange parameter introduced due to the 
constraint that the weights sum up to 1. The resulting OK 
system and the corresponding OK variance are
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8.2.3 Kriging with a Trend

The term universal kriging has been traditionally used to de-
note what is, in fact, kriging with a prior trend model. The 
terminology, kriging with a trend model (KT) is more appro-
priate since the underlying RF model is considered to be the 
sum of a trend component plus a residual:

The trend component defined as m(u) = E{Z(u)}, is usually 
modeled as a smoothly varying deterministic function of the 
coordinates vector u whose unknown parameters are fitted 
from the data:

where m(u) is the local mean, al, l = 0…L are unknown coef-
ficients of the trend model, and fl(u) are low order monomi-
als of the coordinates. The trend value m(u) is itself unknown 
since the parameters al are unknown.

The residual component R(u) is usually modeled as a sta-
tionary RF with zero mean and covariance CR(h).

The Kriging with the trend model (KT) system is also a 
system of constrained normal equations. The KT estimator 
is written as

and the KT system is

where the ( ) ( )KT
jλ u ’s are the KT weights and the ( )kµ u ’s are 

the (K + 1) Lagrange parameters associated with the (K + 1) 
constraints on the weights.

Ideally, the functions fk(u) that define the trend should be 
specified by the physics of the problem. For example, if a 
periodic component is known to contribute to the spatial or 
temporal variability of z(u), a sine function fk(u) with specif-
ic period and phase could be considered; the amplitude of the 
periodic component, i.e., the parameter ak, would then im-
plicitly be estimated from the z data through the KT system.

In the absence of any information about the shape of the 
trend, the split of the z data into trend and residual compo-
nents is somewhat arbitrary. What is regarded as stochastic 
fluctuations R(u) at large scale may later be modeled as a 
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trend if additional data allow focusing on the smaller-scale 
variability. In the absence of physical interpretations, the 
trend is usually modeled as a low-order (≤ 2) polynomial of 
the coordinates u, e.g., with u = (x, y):
•  a linear trend in 1D: m(u) = a0 + a1x
•  a  linear  trend  in  2D  limited  to  the  45°  direction: 

m(u) = a0 + a1 (x + y)
•  a quadratic  trend  in 2D: m(u) = a0 + a1 x + a2 y + a3x2 + a4 

y2 + a5 x y
By convention, f0(u) = 1, for all u. Hence the case K = 0 cor-
responds to ordinary kriging with a constant but unknown 
mean: m(u) = a0.

Trend models using higher-order polynomials (n > 2) 
or arbitrary non-monotonic functions of the coordinates u 
are better replaced by a random function component with a 
large-range variogram.

When only z data are available, the residual covariance 
CR(h) is inferred from linear combinations of z data that fil-
ter the trend m(u), as proposed by Delfiner (1976). For ex-
ample, differences of order 1 such as [z(u + h) − z(u)] would 
filter any trend of order zero m(u) = a0; differences of order 
2 such as [z(u + 2h) − 2 z(u + h) + z(u)] would filter any trend 
of order 1 such as m(u) = a0 + a1 u.

However, in most practical situations it is possible to lo-
cate subareas or directions along which the trend can be ig-
nored, in which case Z(u) ≈ R(u), and the residual covariance 
can be directly inferred from the local z data.

When the trend functions fk(u) are not based on physical 
considerations, as is often the case in practice, and in inter-
polation conditions, it can be shown that the choice of the 
specific functions fk(u) does not change the estimated values 
zKT*(u) or mKT*(u). When working with moving neighbor-

hoods the important aspect is the residual covariance CR(h), 
not the choice of the trend model.

The traditional notation for the trend does not reflect the 
general practice of kriging with moving data neighborhoods. 
Because the data used for estimation change from one loca-
tion u to another, the resulting implicit estimates of the pa-
rameters a1’s are different. Hence the following notation for 
the trend is more appropriate:

The trend model, however, is important in extrapolation 
conditions, i.e., when the data locations uα do not surround 
within the covariance range the location u being estimated. 
Extrapolating a constant yields significantly different results 
for either zKT*(u) or mKT*(u) than extrapolating either a line 
or a parabola (non-constant trend), see Fig. 8.4. However, 
estimates based on extrapolation in mineral resource es-
timates are generally not acceptable per current Reporting 
Standards (Chap  12). At most, a limited portion of resources 
estimated in extrapolation conditions would be inferred, 
which are deemed unreliable and not adequately known to 
use in engineering studies and economic evaluations.

The practitioner is warned against overzealous modeling 
of the trend and the unnecessary usage of universal kriging 
(KT) or intrinsic random functions of order k (IRF-k, Math-
eron 1973). In most interpolation situations the simpler and 
well-proven OK algorithm within moving search neighbor-
hoods will suffice (Journel and Rossi 1989). In extrapolation 
situations, almost by definition, the sample z data alone can-
not justify the trend model chosen (Deutsch 2002).

0

( ) ( ) ( )
K

k k
k

m a f
=

= ∑u u u

Fig. 8.4  Sketch illustrating the differences between linear and constant trend extrapolations. Differences are quickly amplified for locations away 
from actual data

8.2 Kriging Estimators
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There are several variants of kriging with a trend model, 
including random trend model, kriging the actual trend, 
using a secondary variable to impose a trend on the primary 
variable, and others. Most of these are found in non-mining 
applications since they are more difficult to justify given the 
amount of data normally encountered in mining.

8.2.4 Local Varying Mean

Kriging with a locally varying mean (LVM) is a variant of 
SK that works with the residuals, but is different in that the 
mean is not constant everywhere. In this sense, it is similar 
to OK, particularly if the mean is constant within certain re-
gions.

The general approach is to model the trend so that at every 
location the value m(u) is known and possibly different. As 
before, a covariance model for the residuals is needed. The 
influence of the local mean depends on the amount of pri-
mary data available in the neighborhood. If there are a large 
number of nearby samples, then the influence of the mean 
is mitigated; in areas where the primary data is scarce, the 
mean has a large influence. LVM is appropriate for modeling 
geological trends and smooth secondary data, and is more 
commonly applied in simulations (Chap. 10).

8.2.5 Random Trend Model

A similar model to KT results from interpreting the trend as a 
random component. The random trend is denoted M(u), and 
is added to a residual R(u) independent from it:

Prior data that allows describing the trend are assumed avail-
able. For example, they can be prior information m(u) about 
the local z data. These trend data allows inference of the M-
covariance CM(h), and the corresponding residual data can 
be used to infer the covariance of the residuals R(u). Based 
on the independence assumption, the z data covariance is 
then

Kriging is then performed using the z data and the covari-
ance model CZ(h). The resulting kriging estimates and vari-
ances depending on the E{M(u)} and CM(h). The variance 
of M(u) can be made non-stationary and used to measure 
the reliability of the prior guess m(u). However, in this case 
the M-covariance is not anymore stationary and its inference 
may become problematic.

{ } { }Z( )  M( )  R( ),  with E Z( )   E M( )  = + =u u u u u

( ) ( ) ( )Z M RC C C= +h h h

The random trend model is equivalent to the Bayesian 
kriging model, but is simpler to implement. The weakness 
of both models lies in the inference of the statistics of M(u), 
whether interpreted as a random trend or as prior guess on z 
data, and on the key hypothesis of independence of the M(u) 
and R(u) values. As usual, the only physical reality is z, not 
M or R.

8.2.6 Kriging the Trend and Filtering

Rather than estimating the sum Z(u) = m(u) + R(u) one could 
estimate only the trend component m(u). Starting directly 
from the original z data the KT system shown above is easily 
modified to yield a KT estimate for m(u):

and the KT system:

where the ( )m
jλ ’s are the KT weights and the m

kµ ’s are La-
grange parameters. Note that this system differs from the KT 
system of the variable Z(u).

This algorithm identifies the least-squares fit of the trend 
model when the residual model R(u) is assumed to have no 
correlation: CR(h) = 0 for all h ≠ 0.

The direct KT estimation of the trend component can 
also be interpreted as a low-pass filter that removes the ran-
dom (high-frequency) component R(u). The same principle 
underlies the algorithm of factorial kriging and that of the 
Wiener-Kalman filter (Kalman 1960).

Factorial kriging is a technique that aims to either extract 
features for separate analysis or filter features from spatial 
data. The technique was originally proposed by Matheron 
in the early days of geostatistics (1971), and takes its name 
in relation to factor analysis (Journel and Huijbregts 1978; 
Goovaerts 1997). Factorial kriging is of greatest interest to 
geophysicists and those concerned with image analysis.

8.2.7 Kriging with an External Drift

Kriging with an external drift is a particular case of KT 
above. It considers a single trend function fl(u) defined at 
each location from some external, secondary variable.

The trend model is limited to two terms m(u) = a0 + a1 
f1(u), with the term f1(u) set equal to the secondary variable.
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Let y(u) be the secondary variable; the trend model is 
then:

y(u) is assumed to reflect the spatial trends of the z variabil-
ity up to a linear rescaling of units, corresponding to the two 
parameters a0 and a1.

The estimate of the z variable and the corresponding sys-
tem of equations are identical to the KT estimate and system 
with K = 1, and f1(u) = y(u), i.e.:

where the ( )KT
βλ ’s are the kriging (KT) weights and the µ’s 

are Lagrange parameters.
Kriging with an external drift is an efficient algorithm 

to incorporate a secondary variable in the estimation of the 
primary variable z(u), and is appropriate for linearly related 
secondary data. The fundamental relation between the two 
variables must make physical sense.

In mining, there are few cases where this technique has 
been applied. There are two reasons for this: (1) primary z(u) 
data sets in mining tend to be large, and the addition of a 
linearly-related trend from a secondary variable is difficult 
to justify; and (2) there are few variables where this linear 
relationship can be safely assumed. Kriging with an external 
drift is more common in other applications. For example, if 
the secondary variable y(u) represents the travel time to a 
seismic reflective horizon, assuming a constant velocity, the 
depth z(u) of that horizon should be proportional to the travel 
time y(u). Hence a relation of this type makes sense.

Two conditions must be met before applying the external 
drift algorithm: (1) The external variable must vary smoothly 
in space, otherwise the resulting KT system may be unstable; 
and (2) the external variable must be known at all locations u0 
of the primary data values and at all locations u to be estimated.

Note that the residual covariance rather than the covari-
ance of the original variable Z(u) must be used in the KT 
system. Both covariances are equal in areas or along direc-
tions where the trend m(u) is deemed non-existent. Note also 
that the cross covariance between variables Z(u) and Y(u) 
plays no role in this system; this is different from cokriging. 
In a sense, the Z(u) variable borrows the trend from the Y(u) 
variable. Therefore, the Z*(u) estimates reflect the trends of 
the Y(u) variability, not necessarily the z variability.
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8.3 Cokriging

The term kriging is reserved for estimation using data from 
the same attribute as that being estimated. For example, an 
unsampled gold grade value z(u) is estimated from neighbor-
ing gold grade values.

Cokriging is a similar estimate that uses data defined on 
different attributes. For example, the gold grade z(u) may be 
estimated from a combination of gold and copper samples 
values. There must be a spatial correlation between the pri-
mary and secondary variables that can be inferred from avail-
able information. As is the case when considering a single 
variable, there are three basic variants of cokriging: simple 
cokriging (SCK), ordinary cokriging (OCK), and cokriging 
with a trend model (CKT). Conceptually these cokriging 
methods are the same as the ones explained above; however, 
there is the additional complication of dealing with at least 
two variables, which is reflected in the heavier notation.

8.3.1 Simple Cokriging

Consider a linear combination of primary and secondary data 
values:

The estimation variance may be written as

Minimizing this estimation variance results in the simple 
cokriging system of equations:

The cokriging estimator and the resulting estimation vari-
ance are
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The equations for simple cokriging are essentially the same 
as for simple kriging, but taking into account the direct and 
cross covariances. As before, the system of equations must 
lead to a valid result and the cokriging variance has to be 
positive, which means that the covariance matrix is positive 
definite. The condition is satisfied when using permissible 
coregionalization model and no two data values (of the same 
variable) are collocated.

We often avoid full cokriging because it is tedious to cal-
culate, interpret, and fit the necessary variograms. The linear 
model of coregionalization (Chap. 6) is restrictive, and there 
is no real benefit in cases where the same amount of data 
is present for both primary and secondary variables. We are 
motivated to consider cokriging when there are many more 
secondary data than primary data and when a simple trend/
local mean model is considered inadequate.

8.3.2 Ordinary Cokriging

In the case of a single secondary variable (Y), the ordinary 
cokriging estimator of Z(u) is written as

where the 
1αλ ’s are the weights applied to the n1 z samples 

and the 
2

'αλ ’s are the weights applied to the n2 y samples.
Cokriging requires a joint model for the matrix 

of covariance functions including the Z covariance  
CZ(h), the Y covariance CY(h), the cross Z-Y covariance 
CZY(h) = Cov{Z(u),Y(u + h)}, and the cross Y - Z cova-
riance CYZ(h).

More generally, the covariance matrix requires K2 covari-
ance functions when K different variables are considered in 
a cokriging exercise. The inference becomes extremely de-
manding in terms of data and the subsequent joint modeling 
is particularly tedious. Algorithms such as kriging with an 
external drift and collocated cokriging have been developed 
to shortcut the tedious inference and modeling process re-
quired by cokriging.
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Another reason that cokriging is not used extensively in 
practice is the screen effect of the better correlated data (usu-
ally the z samples) over the data less correlated with the z 
unknown (the y samples). Unless the primary variable, that 
which is being estimated, is under-sampled with respect to 
the secondary variable, the weights given to the secondary 
data tend to be small, and the reduction in estimation vari-
ance brought by cokriging is not worth the additional infer-
ence and modeling effort.

Other than tedious inference and matrix notations, cokrig-
ing is the same as kriging. Cokriging with trend models and a 
cokriging that filters specific components of the spatial vari-
ability of either Z or Y could be developed. These notation-
heavy developments will not be given here, but can be found 
in Journel and Huijbregts (1978) and Goovaerts (1997).

The three most commonly applied types of cokriging are 
as follows:
1. Traditional ordinary cokriging: the sum of the weights 

applied to the primary variable is set to one, and the sum 
of the weights applied to any other variable is set to zero. 
In the case of two variables, these two conditions are

The problem with this traditional formalism is that the sec-
ond condition tends to limit severely the influence of the sec-
ondary variable(s).
2. Standardized ordinary cokriging: often, a better 

approach consists of creating new secondary variables 
with the same mean as the primary variable. Then all the 
weights are constrained to sum to one.

In this case the expression could be rewritten as

with the single condition 1 2

1 21 21 1
( ) ' ( ) 1

n n

α αα α
λ λ

= =
+ =∑ ∑u u , 

where mZ = E{Z(u)} and mY = E{Y(u)} are the stationary means 
of Z and Y respectively.
3. Simple cokriging: there is no constraint on the weights. 

Just like simple kriging, this version of cokriging requires 
working on data residuals or, equivalently, on variables 
whose means have all been standardized to zero. This is 
the case, for example, when applying simple cokriging in 
a Gaussian method, such as MG or UC, because the nor-
mal score transforms of each variable have a stationary 
mean of zero.

Except when using traditional ordinary cokriging, covari-
ance measures should be inferred, modeled, and used in the 
cokriging system rather than variograms or cross variograms.
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8.3.3 Collocated Cokriging

Collocated cokriging makes two simplifications (Zhu 1991). 
The first is that only one secondary variable is considered; 
the second is that the cross covariance is assumed to be a lin-
ear scaling of the variance. The reasoning behind this is that 
the collocated y value is surely more important than the other 
y values available in the neighborhood and likely screens the 
influence of multiple secondary data. Under this assumption, 
the cross variogram is no longer needed, and the ordinary 
cokriging estimator is re-written as

The corresponding cokriging system requires knowledge of 
only the Z covariance CZ(h) and the Z-Y cross covariance 
CZY(h). A further approximation through the Markov model 
allows simplifying the latter:

where Z Y
(0)

(0) ;   and C(0) (0)
(0)

Z
ZY

Y

C
CB

C
ρ= ·  are the vari-

ances of Z and Y, and ρZY(0) is the linear coefficient of cor-
relation of collocated z-y data.

If the secondary variable y(u) is densely sampled but not 
available at all locations being estimated, it may be estimat-
ed at those missing locations conditional to the y data. Under 
the collocated model and since the y values are only second-
ary data, the estimation of the missing y values should not 
impact the final estimate of the Z variable.

The Markov model is becoming widely used due to its 
simplicity. It can only be used when collocated secondary data 
will be used. If the secondary data are smooth then consider-
ing y values beyond the collocated values should not help.

Retaining only the collocated secondary datum does 
not affect the estimate (close-by secondary data are typi-
cally very similar in values), but it may affect the resulting 
cokriging estimation variance: that variance is overestimat-
ed, sometimes significantly. In an estimation context this is 
generally not a problem, because kriging variances are rarely 
used. In a simulation context where the kriging variance de-
fines the spread of the conditional distribution from which 
simulated values are drawn, this may be a problem.

8.3.4  Collocated Cokriging Using Bayesian 
Updating

Bayesian updating is a technique closely related to collocat-
ed cokriging, but is designed for many secondary variables 
that are available to predict the primary data. The method 
can be subdivided into the following steps:
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1. Calculate a prior distribution of uncertainty based on spa-
tial information of the same type.

2. Calculate a likelihood distribution of uncertainty based 
on multivariate information at the location we are pre-
dicting.

3. Merge the prior and likelihood distributions into an up-
dated (posterior) distribution.

4. Perform post processing with the updated distribution.
The prior distribution in (1) is calculated as the conditional 
distribution of each variable at each unsampled location con-
ditional to the surrounding data of the same type. This is 
kriging from the surrounding data.

The likelihood distribution in (2) is calculated as the con-
ditional distribution of each variable at each unsampled lo-
cation conditional to other data types at the same location. 
This is accomplished using cokriging or perhaps some form 
multivariate linear regression.

The updated distribution (3) is created by merging the 
prior with the likelihood distribution. The arithmetic is ex-
actly the same as collocated cokriging. The separate con-
tributions of the secondary data and the data or the same 
variable are more easily understood compared to collocated 
cokriging.

Bayesian updating is appealing because it is simple. In 
cases where multiple secondary variables are available, there 
are few approaches that can be used with comparable ease. 
Still, the major steps in Bayesian updating are involved, and 
include: (1) data assembly and calculation of correlation; 
(2) calculation of likelihoods using secondary data; (3) cal-
culation of prior probabilities of all variables, combining 
likelihoods and prior distributions into posterior distribution; 
(4) cross validation and checking; and (5) summarizing un-
certainty and displaying results. The resulting distributions 
of uncertainty can be used for a qualitative assessment of 
local uncertainty.

The results of Bayesian updating should be used to com-
plement conventional analysis. They provide a quantification 
of how the secondary data merge together to predict the 
primary variable(s). Bayesian updating, as do all other 
estimation techniques, is as good as and does not go beyond 
the data that have been input to the algorithm.

8.3.5 Compositional Data Interpolation

Interpolation of compositional data is a multivariate prob-
lem. From a geostatistical perspective, cokriging is the typi-
cal method. It is an exact linear estimator and under certain 
conditions is unbiased and provides a minimum estimation 
variance estimate.

Conditions that ensure these properties are true include: 
(1) the domain of interpolation, ,Dℜ  is unconstrained; (2) 
the variables are distributed according to a model that per-
mits valid interpretation of results, for example normal or 

8.3 Cokriging
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lognormal distributions; (3) data are second order stationary. 
The second condition is important when the data distribution 
is not unconstrained in ,Dℜ and a transformation is required 
to do so. For Lognormally distributed data for example are 
restricted to positive real space and are transformed to fol-
low a normal distribution via natural logarithms. Valid in-
terpretation of results requires a back-transformation pro-
cess for the expected value and variance of the estimates in 
transformed space. It must also be true that estimates in both 
spaces are exact, minimum estimation variance best and un-
biased.

For compositional data, cokriging is not as well devel-
oped. Most available work applies cokriging to alr trans-
formed compositions (Pawlowsky 1989; Pawlowsky et al. 
1995; Martin-Fernandez et al. 2001). Direct cokriging of 
compositions has also been formulated (Walvoort and de 
Gruijter 2001), although direct statistical analysis of compo-
sitions is not advocated by Aitchison (1986) or Pawlowsky-
Glahn and Olea (2004).

The kriging method explained by Walvoort and de Gru-
ijter (2001) is a reformulation of cokriging as a constrained 
optimization problem. The objective is to minimize the 
estimation variance while adhering to the following con-
straints:
•  Components of the compositions are positive:  0( )∗ ≥x u 0
•  The constant sum property of compositions:  0( )T c∗ =1 x u
•  Ordinary kriging formulation: k =∑ I�

It is difficult to state if this method provides the best or cor-
rect solution; however it is an alternative and has some ad-
vantages such as the ability to handle zeros in the data.

8.3.5.1 Additive Logratio Cokriging
This method was derived for alr transformed compositions. 
It can be applied to compositions following normal, lognor-
mal or additive logistic distributions. The disadvantage of 
the technique is a lack of an analytical back-transformation 
of cokriging results, limiting its use to basic interpolation 
and mapping. Recall the alr transform and its inverse (alr-1) 
where c is the constant sum constraint of the compositions, 
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If X follows an additive logistic normal distribution, then 
Y = alr(X) follows a multivariate normal distribution, then 
the properties of Y being minimum estimation variance and 
unbiased are achieved. However, there is no interpretation 
for the expected value and variance of estimates of the origi-
nal compositions. No analytical back-transformation process 
exists to calculate E{x(u0)} from E{y(u0)} and Var{x(u0)} 
from Var{y(u)} (Pawlowsky-Glahn and Olea 2004). Ap-
proximations are available, but Pawlowsky-Glahn and Olea 
(2004) identify that it is unverified if optimality conditions 
hold for back-transformed values in D℘ since the Euclidean 
metric does not apply in simplex space. The alr cokriging 
estimator is

Application of the previous equation will result in an exact 
interpolation of compositions. The smoothing effect occurs 
as with kriging applied to unconstrained data. No other as-
sertions can safely be made about results in the space of in-
terpolated compositions.

8.3.6 Grade-Thickness Interpolation

When using service variables, the interpolation of the two 
variables involved, grade*thickness and thickness, are es-
timated independently, as long as the thickness and grade 
variables are not correlated. If they are, then some form of 
co-estimation (cokriging) is required. These variables can be 
estimated with any technique, geostatistical or not, but the 
most commonly used is Ordinary Kriging.

The final estimated grade is then obtained by dividing the 
two estimated variables:

where Acc*(x) is the estimate accumulation variable 
(grade*thickness), T*(x) is the estimated thickness, and G*(x) 
is the final estimated grade. This is uncomplicated.

However, if we are interested in obtaining the estimation 
variance of G*(x), then we need to calculate the estimation 
variance of a quotient. This is less trivial, and the detailed 
development can be found in Journel and Huijbregts (1978, 
pp. 424–428). The final calculation will depend on whether 
grade and thickness are intrinsically coregionalized, and also 
whether we are calculating the estimation variance block by 
block, or globally for entire domains.
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8.4 Block Kriging

Most variables estimated or simulated in mining average 
linearly. This allows to use the linear kriging estimator to 
obtain directly linear averages of the variable z(u). Some of 
the most common examples are kriged block estimates of 
grades. Section 8.2 above already discussed estimated values 
on a different support than the original samples.

Consider the estimation of a block average, defined as:

where V(u) represent the block or panel centered at u, and 
the '

ju ’s are the N points used to discretize the volume V.
Block kriging then amounts to estimating the individual 

discretization points z(uj') and then average them to obtain 
the block value zv(u). The “block kriging” system applies a 
different set of covariance values: the right-hand-side point-
to-point covariance values are replaced by averages (point-
to-block) covariance values of the form:

Two major mistakes are sometimes made with respect to 
block kriging. The first is to estimate using block kriging 
variables that do not average linearly. Most of these are ei-
ther geometallurgical or geotechnical variables (Chap. 5), for 
which a different estimation strategy is needed.

The second is to incorrectly apply non-linear transforms. 
One common example is log-normal kriging: the average of 
log-transforms is not the log-transform of the average of the 
z(u')’s. Thus, the anti-log of a block estimate is not a kriged 
estimate, and is a biased estimate of the block value zv(u). 
Another example is indicator kriging (Chap 9).

8.5 Kriging Plans

The kriging plan mostly determines the quality of the grade 
estimate. The strategy used in the estimation of the variables 
has a very significant impact on the final estimates. Often 
is more significant than the actual kriging method chosen, 
which is the case for those kriging variants that use neigh-
borhoods for local estimation (Boyle 2010; Rivoirard 1987; 
Vann et al. 2003).

There are several variables and parameters that constitute 
the kriging plan. The kriging neighborhood itself is chosen 
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based on practical considerations, and will be different for 
different geologic and estimation domains.

Some of the factors that influence the decision on neigh-
borhood size and geometry include: (1) The influence of far 
away data is screened or diminished by the closer data; (2) 
the variogram values at long distances are derived from the 
model γ(h), not from the data; (3) if the number of data n 
chosen is large, the covariance matrices used to obtain the 
kriging weights are very large, and the weights themselves 
will be small and very similar for most data values; and (4) 
there are some cases when solving the kriging system may 
pose computational problems. This may be the case if clus-
tering is present, the variogram model is very continuous, 
and the nugget effect is very small or 0; or when kriging on 
a string (Deutsch 1994, 1996).

The maximum search radii should be the limit of reli-
ability and effectiveness of the variogram model, not just 
its range; recall that zonal anisotropy models can have very 
long ranges. It should also be related to data density. The 
distance may be anisotropic, following the anisotropy ob-
served in the variogram model. If each nested structure of the 
variogram model is allowed to have different anisotropies, 
then search neighborhoods can be customized for different 
kriging passes.

Often the neighborhood is split into sectors (quadrants 
or octants), with only the nearest data being retained within 
each sector. This reduces the effect of clustered data, aiding 
the effect obtained from the term ( , )i jC v v    in the covari-
ance matrix.

Another important decision is the minimum and maxi-
mum number of samples to be used in the estimation. Also, 
the related decisions regarding the minimum of drill holes 
and the number of samples per quadrant or octant to use. 
There is a direct relation between the number of samples 
used and the conditional bias vs. recoverable resource ac-
curacy debate.

Other implementation decisions include the use of hard 
and soft boundaries among estimation domains, the use of 
multiple kriging passes or not, the number of discretization 
nodes if doing block kriging, and the use of different data 
sources, including secondary data.

All these parameters can be modified to a certain extent to 
obtain a resource model that achieves specific goals. Ideally, 
the process of setting up the kriging plans becomes iterative 
because some kind of calibration procedure is being used. 
The type of calibration that can be used depends on whether 
the mineral deposit being estimated is in production or not.

Comparisons with prior production are best, assuming 
that the data that reflects production is indeed reliable. These 
may be blast hole data in open pits; stope definition or grade 
control data in underground mines; or grades and tonnages 
fed to the mill. But in all cases, the reliability of production 
data should be demonstrable, since the resource estimation 
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would be tuned to match production data. Care should be 
taken when considering the amount and location of the pro-
duction data, ensuring that it is relevant to the future mining 
predicted by the resource model.

If no production data is available, then validations and 
some subjective criteria need to be used to define the kriging 
plans. The process is still iterative, but issues like reproduc-
tion of global declustered means; smoothing and dilution; 
behavior of alternative models; past resource models; grade 
profiles across contacts; and so on. These are all part of the 
resource model validation process discussed in Chap. 11.

8.6  Summary of Minimum, Good and Best 
Practices

In addition to some general comments on presentation and 
block model reporting, this section presents the details of 
what is considered minimum, good, and best practices in ob-
taining and handling ore resource models.

The estimated values obtained should be thoroughly 
checked and validated, as detailed in Chap. 11, where a sum-
mary of minimum, good, and best practices for model check-
ing and validation is also presented. These checks should re-
sult in, among other comments, a statement about whether 
the model can be considered “recoverable” or fully diluted. 
Assuming that all checks have shown that the model is ac-
ceptable, other aspects need to be considered.

One important consideration is the reporting and trans-
mittal of the resource model to mine planning. It is important 
to communicate the technical characteristics of the model, 
the sources and amount of dilution included, and the model-
ing methodology for all variables.

The minimum practice consists of documented param-
eters within each estimation domain, including specific krig-
ing plans and using specific variogram models, according 
to the each domain’s geologic and statistical characteristics. 
Clear documentation and justification of the kriging method 
chosen should be presented, as well as basic checks, see cor-
responding section in Chap. 11. The reporting of the model 
should clearly state the ore resource estimates, globally, by 
mining phases, benches, or whichever other volume may 
be appropriate. Grade-tonnage curves should be clear, and 
should include all relevant economic cutoffs and estimated 
variables. Subjective expressions of uncertainty are appro-
priate, as part of the limitations of the model. A report doc-
umenting in detail all relevant aspects should be prepared, 
including recommendations for improvements.

In addition to the above, good practice requires a more 
detailed justification of the estimates. Typically a degree of 
calibration is also required, if possible according to past pro-
duction. At a minimum, the resource model should be able to 
reproduce past production to within a reasonable tolerance. 

The rationale for the kriging plan adopted should be clearly 
stated, as well as the “history” of the different estimation 
runs and iterations possibly performed. The model should be 
thoroughly checked for all variables involved, and according 
to the details described in Chap. 11. Comparisons with prior 
models and alternative models should also be made, and all 
differences explained, whether due to incremental data, or 
methodological differences. Potential risk areas and global 
uncertainty measures should be included, in addition to the 
standard resource classification scheme. The documentation 
trail should be complete and thorough, with assumptions and 
perceived limitations of the model clearly stated. Recom-
mendations for future work, presented as part of a suggested 
risk mitigation plan, should be included.

Best practice includes the use of alternate models to 
check the results of the intended final resource model. All 
issues relating to the choice of estimation method, the pa-
rameters used, and the data selection adopted should be 
clearly stated and justified. All possible production and cal-
ibration data should be used to indicate whether the model 
is performing as expected, possibly including simulation 
models to calibrate the recoverable resource model. The 
validation of the estimates should include a validation of 
the calibration data. The model should be fully diluted, and 
should quantitatively describe the amount of the different 
types of dilution included. Checking and validation, as de-
tailed in Chap. 11, should be fully implemented and docu-
mented. Model reporting should be complete, including all 
zones, domains, variables, and aspects of the model that 
are considered relevant. The documentation of the model 
should also be complete, and should include the best avail-
able visualization tools for the benefit of the uninitiated. All 
risk issues should be dealt with in detail, and if possible, 
quantified. This will generally require performing one or 
more simulation studies.

8.7 Exercises

The objective of this exercise is to review the theory and 
practice of kriging. Some specific (geo)statistical software 
may be required. The functionality may be available in 
different public domain or commercial software. Please ac-
quire the required software before beginning the exercise. 
The data files are available for download from the author’s 
website—a search engine will reveal the location.

 8.7.1 Part One: Kriging Theory

Question 1: Derive the estimation variance in terms of the 
covariance. Explain where the assumption of 
stationarity comes into the derivation.
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Question 2: Derive the simple kriging equations by taking 
the derivative of the estimation variance with 
respect to the weights. Explain why the krig-
ing weights do not depend on the data values 
and why this is important. Explain why krig-
ing is unbiased and exact.

Question 3: The covariance between the simple kriging 
estimate at an unsampled location and the 
data values used in kriging is correct, that is, 
the covariance model used in kriging. Dem-
onstrate this result. Demonstrate that this 
result is not true for ordinary or universal 
kriging. Would the covariance be too high or 
too low with ordinary kriging.

Question 4: Derive the variance of the kriging estimate 
Var{Y*(u)} and express the result in terms of 
the kriging variance. Comment on the impor-
tance of this result relative to the smoothness 
of kriging.

8.7.2 Part Two: Kriging by Hand Question

Consider the configuration to the right. The global mean is 
1.3 and the variance is 0.2. Calculate the simple kriging esti-
mate at the unsampled location given that the isotropic cova-
riance function C(h) = exp( − 3h/275). Show all steps clearly.

8.7.3 Part Three: Conditional Bias

A serious problem with kriging is conditional bias. Use the 
largedata.dat data to experiment with conditional bias 
in cross validation mode.
Question 1: Set up to cross validate the largedata.

dat data. Consider ordinary kriging with a 
search radius equal to the variogram range. 
Vary the number of data between 2 and 40 
(consider 2, 4, 8, 16, and 40), plot the cross 
plots of true versus estimate, fit linear regres-
sion lines, and plot the slope of the regression 
line versus the number of data used for krig-
ing. Comment on the results.

Question 2: Plot grade tonnage curves for the distribu-
tions of question 1 and see which one most 
closely matches the grade tonnage curve 
from volume variance (if those results are 
available). Comment on the application of 
this procedure in practice.

8.7.4 Part Four: Kriging a Grid

Question 1: Set up to estimate a reasonable grid using 
largedata.dat. Create a 3-D model with 
stationary simple kriging with a discretiza-
tion of 1 × 1 ×1 (this most closely approxi-
mates what will happen in simulation).

Question 2: Evaluate the results of your kriging: (1) plot 
some sections or visualize in 3-D checking 
that the map looks reasonable and that the 
original data are reproduced at their loca-
tions, (2) compare the histogram of the esti-
mates to the original data, and (3) compare 
the variogram of the estimates to the original 
data. Many of these evaluations will have to 
be done on a by-rock-type basis. Comment 
on the results.

Question 3: Create a model with ordinary kriging and 
compare the results to the initial simple 
kriged model. Investigate how the variability 
of the block estimates depends on the number 
of data used (particularly for a small number, 
say, 4).

Question 4: Create a model with block kriging by dis-
cretizing the cells by at least 9 points. Keep 
all other parameters comparable to a run 
that you have constructed. Comment on the 
results.
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9Recoverable Resources: Probabilistic 
Estimation

Abstract

The block estimates made by conventional inverse distance or kriging techniques have no 
reliable measure of uncertainty attached to them. The approach presented in this chapter 
consists of directly predicting the variability/uncertainty in the mining block grades based 
on a probability distribution model. The limitations and assumptions supporting these mod-
els are summarized, as well as some of the most important issues regarding the estimation 
of point and block distributions.

9.1  Conditional Distributions

Conditional probability functions are alternatives to the esti-
mation of a single point or block grade. The original data are 
interpreted to provide a conditional distribution function that 
is updated locally to obtain posterior probability distribution 
functions at each unsampled point/block location. This func-
tion is represented as a cumulative conditional distribution 
function, or ccdf, and describes the range of possible values 
that the estimate can take. The ccdf is written as

where “|( n)” means conditional to the nearby information 
used to derive the ccdf. This function contains all informa-
tion that may be available about the unknown location. Basic 
distribution parameters that can be extracted are: E-type or 
average estimates; probabilities of the grade exceeding criti-
cal thresholds; probabilities of the grade being within certain 
thresholds; and so on.

 Nonlinear Transforms The first step to understand the 
methods used to estimate probability functions is to under-
stand nonlinear geostatistics. All nonlinear kriging algo-
rithms are actually linear kriging (SK or OK) applied to 
specific nonlinear transforms of the original data. The nonlin-
ear transform used specifies the nonlinear kriging algorithm 
considered. The transforms lead to methods that are classified 
as parametric or non parametric.

{ }( , | ( )) ( ) | ( )F z n Prob Z z n= ≤u u

The parametric approach to building probabilistic models 
was developed early in geostatistics (Matheron 1971, 1973; 
Marcotte and David 1985). The methods are based on as-
suming a multivariate or bivariate distribution for the RF 
model {Z(u), u ∈ A}. This assumption entails that all ccdfs 
are fully specified by a limited number of parameters.

The most common parametric approach is the Gaussian-
based methods, of which the log-normal transformation can 
be considered a special case. Since Gaussian distributions 
are uniquely characterized by its mean and variance, the 
problem of determining the ccdf model { }( ) | ( )Prob Z z n≤u  
becomes one of estimating the two parameters of the model. 
Specific examples are multi-Gaussian kriging; Disjunctive 
Kriging; Uniform Conditioning; and Lognormal kriging. 
The limitation of the parametric approach lies as much in 
establishing the appropriateness of the model, as in estimat-
ing its parameters.

Non-parametric transformations derive in methods that 
do not make strong univariate assumptions about the distri-
bution; rather, they directly estimate a number of probabili-
ties of the { }( ) | ( )Prob Z z n≤u  function, and then interpo-
late these to obtain the full ccdf. All variants of indicator 
kriging fall into this category, including probability kriging.

The non-parametric methods rely heavily on the quantity 
and quality of data available. The modeling process is more 
time consuming because it requires inference of more spa-
tial continuity models. There must be sufficient information 
within the stationary domain to implement a robust and reli-
able non-parametric estimation.

M. E. Rossi, C. V. Deutsch, Mineral Resource Estimation, DOI 10.1007/978-1-4020-5717-5_9,
© Springer Science+Business Media Dordrecht 2014
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9.2  Gaussian-Based Kriging Methods

The popularity of Gaussian methods comes from their sim-
plicity, the properties of the multivariate Gaussian distribu-
tion, and also from the fact that they can produce acceptable 
estimates. While some characteristics of the Gaussian distri-
bution imply significant drawbacks, its simplicity and ease 
of use make Gaussian-based probabilistic estimation and 
simulation highly popular. Some of the convenient properties 
of the multivariate Gaussian RF were discussed in Chap. 2.

Gaussian methods are maximum entropy methods in the 
sense that, for a given mean and variance, the distribution 
will tend to produce estimates that are as disorganized as pos-
sible. The implication is that in cases where the connectivity 
of extreme values is high (low entropy), Gaussian methods 
will not reproduce that connectivity. The geology of most 
deposits is characterized by structuring, and this is reflected 
in typical geologist’s interpretations, geologic models, and 
the theories about the genesis of deposits.

The maximum entropy or destructuring effect of the multi-
Gaussian RF can be better understood analyzing their indicator 
variograms (Journel and Posa 1990). It can be shown that for 
yp → 0 or yp → 1, y2

p → ∞  and the two-point cdf tends to 
be independent. Therefore, the indicator variogram tends to its 
theoretical sill, σ 2= p · (1 − p) where p is the CDF value for 
the indicator transform.

Another important property of Gaussian methods is ho-
moscedasticity, which means that the conditional variance 
σ 2

K (u) does not depend on the actual data values. This is an 
unusual property in the statistical world, since no other RF 
has it. In practice, it is known that many variables are het-
eroscedastic, evidencing the proportional effect discussed 
before. The dependency of the variance to the data values is 
removed when transforming the data to the Gaussian distri-
bution.

If developing conditional simulations (Chap. 10), the 
back-transformation is delayed until the simulation is com-
plete. However, the back-transformation is necessary when 
estimating a conditional distribution for Z(u) (Verly 1984; 
Journel 1980); the proportional effect and other characteristics 
may not be reproduced adequately in the estimates. The back-
transform is quite sensitive to the variance of the conditional 
distribution in Gaussian units, σ 2

y (u) , making the Z-estimate 
potentially unstable. There are procedures that can be applied 
to dampen this effect (Journel 1980; Parker et al. 1979), but 
they have limitations.

9.2.1  Multi-Gaussian Kriging

The multivariate Gaussian RF model is the most widely used 
of the parametric models. Multi-Gaussian kriging is straight-

forward. If the multivariate Gaussian assumption is made, 
the simple kriging estimate y∗

SK (u) and simple kriging vari-
ance σ 2

SK (u)  of the normal score data are the parameters of 
the conditional Gaussian distribution frequency (Journel and 
Huijbregts 1978, p. 566).

The covariance modeled from the sample normal score 
covariance must be used in the MG kriging system, but oth-
erwise is the same system of equations described in Chap. 8. 
With both parameters estimated, the full ccdf is then mod-
eled using:

The MG SK estimate requires strict stationarity, that is, a 
known mean at each location over the entire domain and all 
possible sub-domains.

MG can also be implemented using OK and KT as op-
tions for quasi or non-stationary domains. This is done by 
simply using the OK or KT algorithms (in any of its variants) 
on the normal score data. However, the kriging variances of 
the OK or KT systems are no longer the correct variances for 
the estimated Gaussian distribution. Only the SK variance 
is theoretically correct (Journel 1980). All other variances, 
because they result from constrained systems, will tend to 
inflate the variance of the estimated Gaussian distribution. 
This inflated variance could induce a bias in the back trans-
formed estimates. Therefore, the OK and KT variances must 
be corrected to account for this difference.

An alternative for KT is to de-trend the original z data 
first, and then normal score transform the residuals. The re-
siduals are assumed strictly stationary, with a mean of 0, and 
therefore MG with SK can be more robustly applied. How-
ever, the MG estimated distribution is still dependent on the 
effectiveness of the de-trending process.

9.2.2  Uniform Conditioning

Uniform Conditioning (UC) is a Gaussian method used to 
estimate the recoverable resources of a mining (SMU) panel. 
The method requires a panel estimate and a change of sup-
port model. The panel grade is assumed to be known, then 
the distribution of SMUs within that panel can be established 
from a bivariate Gaussian model. The name uniform condi-
tioning arises because of the assumption that the estimates of 
the recoverable resources are conditioned to the same data 
configuration for every panel grade.

The idea is to estimate a panel much larger than the SMUs. 
The size of the panel is based on fitting a reasonable num-
ber of SMUs within it, and is generally irrespective of drill 
hole spacing; however, often the actual drill hole spacing or 

[G(u; y|(n))]∗SK = G

(
y − y∗

SK (u)

σSK (u)

)
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slightly larger is used. The panel grades should be estimated 
with little uncertainty. Figure 9.1 shows a schematic of the 
scales that uniform conditioning considers.

The earliest reference to UC is Matheron (1974). Some 
further references for UC are Remacre (1987), Guibal and 
Remacre (1984), Rivoirard (1994), Vann and Guibal (1998), 
Chilès and Delfiner (2011), and Roth and Deraisme (2000). 
In general, there are few published detailed references on 
the theory and practice of UC. The method has gained some 
popularity due to its simplicity and availability in commer-
cial software. The following description is based on the more 
recent compilation by Neufeld (2005).

There are 6 basic steps required to complete UC: (1) esti-
mate the panel grades; (2) fit the Discrete Gaussian Model 
(DGM) to the data; (3) determine the change of support coef-

ficients for the SMU and panel sized blocks; (4) transform 
the Z∗(V ) panel estimates to the Gaussian variable Y ∗(V ) 
using the panel anamorphosis function; (5) transform the 
Zc(v)  cutoff grades to Yc(v)  using the SMU anamorphosis 
function; and (6) calculate the proportion and quantity of 
metal above each cutoff.

The first step in UC is to estimate the panel grades, most 
commonly using ordinary kriging. Uniform conditioning re-
lies on a robust estimate of the panel grade. Also, the panel 
grade estimates have to be uniformly robust, that is, with 
nearly the same amount of data. Large panels are used be-
cause the block kriged panel grades are more robust for larg-
er panels. Also, in UC the SMUs are seen as discretizing the 
larger panel, and there should be a sufficient number of them. 
Ordinary kriging in the original grades units is the most pop-
ular option used, although the panel grade can also be esti-
mated directly in Gaussian units, see, for example, Guibal 
(1987). The size of the panel and the SMUs must first be 
chosen to complete the OK of the panel. Also, the grade di-
rectional variograms and corresponding models ( )zγ h  must 
be obtained. Although not required, it is common practice to 
set the discretization of the block (panel) kriging to the SMU 
resolution within the panel.

The second step is to fit a DGM model to the point scale 
data, which is used to perform the change of support from 
sample support to the larger panels and also to the SMU-size 
blocks. The DGM model was described in Chap. 7, and can 
also be found in several references, for example Journel and 
Huijbregts (1978, p 472). Figure 9.2 shows a graphical rep-
resentation of Gaussian anamorphosis.

The DGM model is applied to get the anamorphosis func-
tion for the SMU sized blocks. The same procedure is re-
peated to calculate the change of support for the panel sized 
blocks, using the r' coefficient corresponding to the larger 
panel size V. The dispersion variance calculated from the 
variogram models for the panels provides the theoretical 
variance to be used to obtain r'.

The panel variance is found as before solving for r' in the 
following equality:

It can be shown that the correlation coefficient of the bi-
Gaussian distribution [ ]( ), ( )Y Yv V  is:

Figure 9.3 shows the anamorphosis transformation for both 
the panel and the SMU grades.
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Fig. 9.2  Graphical representation of anamorphosis and the transforma-
tion of grades

 

Fig. 9.1  Schematic showing the setting for UC. Notice that there are 
three support sizes of interest: the data, the SMUs and the panels
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Step 4 is to transform the estimated panel grades to Gauss-
ian units using the panel anamorphosis equation.

Step 5 is to transform the cutoff grades to Gaussian values 
using the modeled SMU anamorphosis. Under the bivariate 
normal assumption, knowing the Gaussian panel grade al-
lows us to calculate the mean and variance of the conditional 
SMU distribution. For this transformation the SMU anamor-
phosis is used.

Finally, the proportion and the grade above cutoff for the 
conditional SMU distribution can be calculated. Given that 

the panel grade is known, the distribution of the SMUs within 
that panel can be calculated. The average of the SMUs is the 
estimated panel grade; the variance in Gaussian units is based 
on the change of support coefficients. For a panel grade, y( V), 
the SMUs within that panel will have a mean and variance of

The recoverable resources are easily calculated using the bi-
variate Gaussian assumption and the anamorphosis function. 
Consider Fig. 9.4, where a panel estimate and SMU distribu-
tion are shown. The recoverable resources are evaluated as a 
truncated statistic, the SMU cutoff Yc( v).

The tonnage (or proportion) above cutoff can be calcu-
lated as:

The quantity of metal and the mean grade can be calculated 
in two different ways, which give very similar results: (1) by 
integrating the conditional distribution above cutoff (Rivoi-
rard 1994):
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Fig. 9.4  Transformation of the panel grades ( left) and the SMU grades 
( right) to Gaussian units. This figure is adapted from the Isatis User’s 
Manual

 

Fig. 9.3  Transformation of the panel grades ( left) and the SMU grades ( right) to Gaussian units
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or (2) by using the fitted Hermite polynomials, see Remacre 
1987.

The final grade above cutoff is simply M(zc) = Q(zc)
P (zc). In 

practice, and to avoid spurious results, P (zc) is only consid-
ered when it is greater than 1 %.

UC is based on a couple of important assumptions: (1) 
that the Gaussian transformed point data, SMU and panels 
are all bivariate normal; and (2) that the change of support 
model for the SMUs can be extended to the panels, an as-
sumption common to other change of support models.

UC has at least two important limitations. First, it does 
not provide any information regarding where the high or 
low grade SMUs are within the panel, which is convenient 
for most mine planning. This is not a theoretical limita-
tion, since it is part of the underlying premise of UC: panel 
grades can be predicted reliably, but SMU grades cannot. 
But it is a major practical limitation, since mine planners 
require the location of the SMUs in order to calculate re-
coverable reserves. This is the most significant unresolved 
practical issue.

The second significant limitation is that panels with the 
same estimate will have the same grade and proportion curves 
irrespective of the surrounding data. Surrounding drill hole 
samples are used to estimate the panel grade, but they are not 
used for determining the SMU distribution. For example, con-
sider two panel estimates: one panel is in a homogenous zone 
where the surrounding samples have all the same values, and 
the other where the surrounding samples result in the same es-
timated panel average but are highly variable. When the panel 
estimates are the same the estimated recoverable reserves are 
the same. This limitation implies that UC is more sensitive to 
departures from stationarity compared to other methods, de-
spite using OK to estimate panel grades.

Therefore, UC is only recommended at an early stage of 
project development. UC is useful when data are uniformly 
sparse and the SMU blocks cannot be reliably estimated. 
Other estimation methods that directly estimate smaller 
blocks would not be considered reliable with widely spaced 
exploration drilling. When there is sufficient infill drilling or 
for an operational mine, it is likely that other methods will 
result in better local estimates.

9.2.3  Disjunctive Kriging

Disjunctive kriging (DK) was introduced by Matheron (1974, 
1976). It is a method that also relies on a bi-Gaussian assump-
tion and uses Hermite polynomials to transform the original 
data into additive functions. The purpose is to estimate recov-
erable grades and tonnages above cutoffs for any size block.

The method is based in decomposing the variable into a 
sum of uncorrelated orthogonal factors, for which the op-

timal solution is found with a simple kriging (SK) of each 
component.

It is a mathematically involved method that will not 
be described here in detail. Some additional references 
are Armstrong and Matheron (1986), Chilès and Delfiner 
(2011), and Rivoirard (1994). Also, a readable summary is 
presented in Kumar (2010). There have been only a few 
applications in the mining industry, the most significant 
drawback being its theoretical complexity. Also, since DK 
depends heavily on stationarity because it requires the the-
oretically correct SK, the estimates are very sensitive to 
the stationarity assumption. Experience has shown that the 
estimated values tend to be extremely smooth, with little 
variability around the mean.

9.2.4  Checking the Multivariate Gaussian 
Assumption

The normal score transform (or its equivalent anamorphosis) 
ensures that the one-point distribution is Gaussian. This is 
a necessary but not sufficient condition to prove that a RF 
model is multivariate Gaussian. Theoretically, the normality 
of the two-point, three-point, and in general n-point distribu-
tions should be checked (Verly 1984).

While two-point statistics can be inferred from the data, 
three-point and higher order statistics are much more difficult 
to obtain. The corresponding analytical expressions exist, 
but sparse data and irregular grids do not allow inference 
from sampled values. Also, the practical significance of the 
multivariate Gaussian assumption is limited, since the vast 
majority of the MG applications are bivariate. In practice 
only the two-point distribution is checked for bi-normality: 
if the bi-Gaussian assumption holds, then the multi-Gaussian 
formalism is adopted.

Checking the Gaussianity of two-point distributions im-
plies checking that the experimental cdf values of any set of 
sample pairs separated by any vector h match the theoretical 
Gaussian distribution. In practice, the comparison is made 
for corresponding p-quantile values, yp = yp', such that the 
two-point Gaussian distribution becomes:

 

(9.1)

The steps required to complete the actual checking process 
are:
1. The variogram γY(h) of the normal score data is computed 

and modeled, and from this the covariance model CY(h) is 
obtained.
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2. Recall that the two-point Gaussian cdf G(h; yp) is the 
non-centered indicator covariance for the threshold yp 
(Chap. 6). Then, if expression 9.1 is evaluated for a series 
of p-quantile values yp, the corresponding indicator vario-
gram is derived with:

 In this case, the indicator function is defined as I (u; yp) = 1  
if Y (u) ≤ yp, 0 otherwise.

3. The experimental indicator variograms of the normal score 
data γ̂I (h; yp)  are obtained for the same p-quantiles.

4. The indicator variograms obtained experimentally 
ˆ ( ; )I pyγ h  and the theoretical Gaussian-deduced γI (h; yp) 

are compared graphically. Based on the quality of the 
comparison, the bi-Gaussian assumption may be rejected 
or accepted.

An additional check is to verify that the pattern of indicator 
spatial correlation is symmetric with respect to the p-quantiles, 
that is ( ; ) ( ; )I p I p

y yγ γ=h h ¢ , where 1p p= −¢ . The experi-
mental indicator variograms of the normal score data for p and 
p' should match well. This checking is not common because it 
is difficult to assess if the differences are significant.

9.3  Lognormal Kriging

A particular case is found if the stationary multivariate RF is 
assumed lognormal. In this case, the RF ( ) ln ( )Y Z=u u  has 
a multivariate Gaussian distribution with mean m′, covari-
ance C′(h), and variance σ′2 = C′( 0). The relationship be-
tween the arithmetic and logarithmic moments is (Journel 
and Huijbregts 1978, p. 570):

and

In the method implementation the original data is log trans-
formed: y(u) = ln z(u). The z(u) variable has to be strictly 
positive. Simple or ordinary kriging of the log data yields an 
estimate y*(u) for ln z(u). Unfortunately, a good estimate of 
ln z(u) is not necessarily a good estimate of z(u); in particular 
the antilog back-transform ey∗(u) is a biased estimator of Z(u) 
as can be derived from the relationships above. The unbiased 
back-transform of the simple lognormal kriging estimate 
y*(u) is actually:

where σSK
2(u) is the simple lognormal kriging variance. In 

practice, the theoretically non-biased estimate z*(u) often 

( ; ) ( ; )I p py p G yγ = −h h

2 /2mm e σ+=
¢ ¢

' 22 ( ) 2 2( ) 1 1C hC h m e m eσσ   = − ⇒ = −    

z∗(u) = e[y∗(u)+σ 2
SK (u)/2]

differs from the expected value m. This is due to the expo-
nentiation involved in that back-transform. It is particularly 
problematic since it significantly amplifies any error in the 
estimation of the lognormal estimate y*(u) or its SK variance 
σSK

2(u).
Another problem commonly encountered is that the es-

timated values increase as the kriging variance increases. 
This is a serious issue because higher kriging variances cor-
respond to sparsely populated areas, and thus it can result 
in overestimation of the estimated values. Among others, 
this problem was critical for several gold mines in northern 
Nevada (USA) in the 1980s, because the predicted grades 
increased away from the main mineralized zones. A simi-
lar artificial grade trend can be produced by this method in 
many other types of deposits, such as porphyry copper de-
posits.

This extreme sensitivity to the back-transform explains 
why lognormal kriging is not used any more. The method 
has been largely replaced by other Gaussian approaches or 
the indicator kriging approach. While there are exceptions, 
the use of lognormal kriging is mostly confined to South 
Africa, where the method was originally developed (Sichel 
1952, 1966; Krige 1951).

9.4  Indicator Kriging

The indicator kriging-based estimation methods are non-
parametric in the sense that they do not make any prior as-
sumption about the distribution being estimated. The ob-
jective of the method is not to estimate parameters of an 
assumed distribution, but directly estimate the distribution 
itself (Journel 1983).

Consider the binary transform of the original Z(u) vari-
able defined as:

 (9.2)

The indicator formalism consists of discretizing the con-
tinuous variable z with a series of K threshold values zk, 
k = 1,…, K. The experimental cdf of the n samples within 
the stationary domain are considered a prior distribution, 
which can be obtained through an equal-weighted aver-
age:

This is the proportion of the samples z(uα)  below the cutoff 
zk. In this prior cumulative distribution frequency, the sam-
ples could be weighted to account for spatial clustering. The 
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indicator RV I(u;zk) has only two possible outcomes, 1 or 0. 
Thus, by definition of the expected value:

These relations still hold for conditional expectations, such 
that:

The practical consequence is that a conditional cdf can be 
built by assembling K indicator kriging estimates. This ccdf 
represents a probabilistic model for the uncertainty about the 
unsampled value z(u).

which can be obtained with a weighted linear average. The opti-
mal weights are given by a kriging system on the indicator data:

Since several thresholds k are used, this is usually called 
multiple indicator kriging (MIK). The weights and the ccdf 
F (u; zk)  are dependent on both the location and a number of 
thresholds zk, k = 1,…, K. Thus, there is one indicator vario-
gram γI (u; zk) and one kriging system per threshold. While 
the inference is more time-consuming, the flexibility is 
greater, and no prior assumption of any type of distribution is 
made.

Another advantage of indicator methods is that no back-
transformation is required, since working with indicator 
variables directly yields a ccdf model for the RV Z(u). An-
other important aspect of the IK method is that it can be ap-
plied equally to continuous or categorical variables. In what 
follows, references made to continuous variables also apply 
to categorical ones.

There are challenges with IK including (1) inference of 
the distribution details, particularly above the highest thresh-
old used in the kriging, (2) the greater effort required to infer 
all of the required parameters such as the variograms, (3) the 
inevitable multivariate Gaussian flavor in high order distri-
butions (> 2) because of averaging and (4) the practical use 
of either probabilities or a smooth estimator.

9.4.1  Data Integration

The indicator formalism allows for a more straightforward 
integration of different data types. There are four types of 
data that can be used in indicator coding. The first is local 
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hard indicator data i(uα;z) originating from local hard data 
z(uα), as in Eq. 9.2.

The second type is a local hard indicator data j(uα;z) origi-
nating from ancillary information that provides hard inequali-
ty constraints on the local value z(uα). If z(uα) ∈ [aα , bα] then:

A third type is the coding of soft indicator data y(uα;z) origi-
nating from ancillary information providing prior probabili-
ties about the value z(uα):

The fourth type of coding is the global prior information 
common to all locations u within the stationary area:

This global prior is different than the local prior histogram 
of samples used in the indicator kriging system. Figure 9.5 
shows a graphical representation of all four.

9.4.2  Simple and Ordinary IK with Prior Means

In Simple Indicator Kriging, the expected value of the in-
dicator transform for each category is assumed known and 
constant throughout the study area. The linear estimate is 
then a linear combination of the n nearby indicator RVs and 
the CDF value.

The SIK system of equations is then:

where CI(h;zk) = Cov{I(u;zk), I(u + h;zk)} is the indicator co-
variance at cutoff z.

If K cutoff values are retained, simple IK requires K indi-
cator covariances in addition to the K cdf values.

There are cases when the prior means can be considered 
non-stationary and can be inferred from a secondary vari-
able. In such cases one can use the general non-stationary 
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expression of simple kriging. For example, if I(u;sk) repre-
sents the indicator of presence/absence of category k at loca-
tion u, and p(u;sk) is a prior probability of presence of cat-
egory k at u, the updated probability is given by simple IK:

where p(u;sk) is the prior indicator mean at location u. The 
SK system remains as above assuming a stationary residual 
indicator covariance model (Goovaerts 1997; Deutsch 2002).

For ordinary indicator kriging, the expected value of the 
indicator transform for each category is assumed unknown 
but constant within a local neighborhood.

subject to 
n∑

α=1
λα = 1. The resulting Ordinary IK system of 

equations is

Ordinary indicator kriging is common because it is more ro-
bust with respect to departures from stationarity and, unlike 
multi-Gaussian kriging, there is no theoretical requirement 
that simple kriging be used.

9.4.3  Median Indicator Kriging

One of the considerations used in indicator kriging to choose 
the K cutoff values zk is that the corresponding indicator co-
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variances CI(h;zk) could be significantly different from one an-
other. Occasionally, however, sample indicator variograms ap-
pear proportional or are similar to each other. The correspond-
ing continuous RF model Z(u) is the so-called mosaic model:

where ρZ(h)  and ρI (h; zk; zk′ ) are the correlograms and in-
dicator cross correlograms of the continuous RF Z(u).

The single correlogram function is better estimated either 
directly from the sample z correlogram or from the sample indi-
cator correlogram at the median cutoff zk = M, i.e., F( M) = 0.5. 
Indeed, at the median cutoff, the indicator data are evenly dis-
tributed as 0 and 1 values with, by definition, no outlier values.

Indicator kriging under the mosaic model is called me-
dian indicator kriging. It is a particularly simple and fast 
procedure since it calls for a single easy-to-infer median in-
dicator variogram that is used for all K cutoffs. Moreover, if 
the indicator data configuration is the same for all cutoffs, 
one single IK system needs to be solved with the resulting 
weights being used for all cutoffs. For example, in the case 
of simple IK,

where the λα(u)’s are the SK weights common to all cutoffs 
zk and are given by the single SK system:

The covariance C(h) is modeled from either the z sample 
covariance or, better, the sample median indicator covari-
ance. Note that the weights λα(u) are also the SK weights of 
the simple kriging estimate of z(u) using the z(uα) data.
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Fig. 9.5  Data types used in indicator coding
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9.4.4  Using Inequality Data

Normally the indicator data i(uα;z) originate from data z(uα) 
that are deemed perfectly known; thus the indicator data 
i(uα;z) are hard in the sense that they are valued either 0 or 1 
and are available at any cutoff value z.

There are applications where some of the z information 
takes the form of inequalities such as:

or z(uα)  ≤  bα equivalent to z(uα) ∈ ( − ∞, bα), or z(uα) > aα 
equivalent to z(uα) ∈ (aα , +∞). The indicator data corre-
sponding to the constraint interval are available only outside 
that interval:

The use of inequality data does not pose any complication. The 
undefined or missing indicator data in the interval ( aα, bα] are 
ignored, and the IK algorithm applies identically. The constraint 
interval information is honored by the resulting ccdf.

The IK solution is particularly fast if median IK is used. 
However, the data configuration may change if constraint in-
tervals of type are considered; in such case, one may have to 
solve a different IK system for each cutoff.

9.4.5  Using Soft Data

Hard indicator data and inequality data are treated similarly—
except for missing values at some thresholds. Soft indicator 
data, however, are truly different data types and a form of 
cokriging should be adopted to combine them in the esti-
mate. The Markov-Bayes formalism is commonly consid-
ered (Zhu 1991; Zhu and Journel 1992).

9.4.6  Exactitude Property of IK

Assume the location u to be estimated coincides with a 
datum location uα, whether a hard datum or a constraint in-
terval of type. Then, the exactitude of kriging (simple, ordi-
nary, or median IK) entails that the ccdf returned is either a 
zero variance cdf identifying the class which the datum value 
z(uα) belongs to; or a ccdf honoring the constraint interval up 
to the cutoff interval amplitude:
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Because the ccdf returned by IK honors both hard z data and 
constraint intervals, the corresponding expected value-type 
(E-type) estimate also honors that information. More pre-
cisely, at a datum location uα, [z(uα)]E

*  = z(uα), if the z datum 

is hard; and ( ) *
 ( ,  ]k E
z a bα α α  ∈ u  if the information avail-

able at uα is the constraint interval zk(uα) ∈ (aα , bα]. In 
practice, the exactitude of the E-type estimate is limited by 
the finite discretization into K cutoff values zk. For example, 
in the case of a hard z datum, the estimate is: 

( ) *
1 ( ,  ]k kE

z z zα −  ∈ u  with zk being the upper bound of the 
interval containing the datum value z(uα).

9.4.7  Change of Support with IK

The indicator variable I(u;z) results from a non-linear trans-
form of the original z(u) samples; therefore, the block in-
dicator variable IV (u; z) is not a linear average of point in-
dicators I(u;z). Thus, the averaging of discretization points 
within a block, as done for linear variables, does not result in 
the estimated block indicator:

Or, equivalently:

The ccdf that results from averaging the proportions of point 
values within the block V(u) is called a “composite” ccdf, 
[FN (u; z|(n))]∗ (Goovaerts 1997), and is an estimate of the 
proportion of point values within V(u) that do not exceed the 
threshold z. This is quite different than what a true block ccdf 
would give, which is by definition the probability that the 
average value is no greater than the threshold z.

Practitioners have attempted to correct the IK-derived 
point ccdf within the block using a change of support meth-
od, the most common being the affine correction discussed 
in Chap. 7. The process is simply to correct the IK-estimated 
point ccdf to represent a “block” ccdf. All zk thresholds are 
corrected without changing any of the estimated indicator 
values i(u; zk):

where f is the classical variance reduction factor (Isaaks and 
Srivastava 1989). The dispersion variance is derived from 
the z value variogram models.

In one published case (Hoerger 1992), the affine correc-
tion is applied in the log-space under the permanence of 
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distribution assumption. This change of support model is 
difficult to validate. The method is more useful if there is 
production or closely spaced data that can be used to validate 
the results.

Often IK is not used to provide the entire block ccdf 
[FV (u; z|(n))]∗, but simply the e-type average of the block. 
This is calculated from the point e-type averages within the 
block. In this case, the process is similar to linear kriging, 
and the practitioner must decide whether the extra work re-
quired in defining and solving the k-indicator kriging sys-
tems is worthwhile.

The results from an e-type ordinary IK can be quite dif-
ferent from a linear ordinary kriging. The geology of the 
deposit and the characteristics of the spatial distribution of 
the z-variable typically explain the differences. The criteria 
used to decide whether an e-type IK estimate is worthwhile 
are: (1) there is sufficient number of samples available for all 
grade ranges defined by the k-thresholds; (2) the z-variable 
shows a highly variable distribution, typically characterized 
by a coefficient of variation above 1.0 and often above 2.0; 
and (3) the indicator variogram models and other statistics 
suggest overprinting of mineralization styles. A good refer-
ence on the application of Indicator Kriging is Zhang (1994).

9.5  The Practice of Indicator Kriging

There are several steps required to complete an indicator 
kriging estimate as described in the literature (Journel 1983; 
Deustch and Lewis 1992), whether the final objective is a point 
ccdf, an e-type point or block estimate, or a composite ccdf.

Step 1: Obtaining an unbiased (declustered) global histo-
gram The available samples over the domain A may not be 
representative of the domain due to spatial clustering. The idea 
of IK can be seen as a modification of the prior cdf derived 
from the sample for the entire domain to a posterior ccdf spe-
cific to each location. The more representative prior cdf used 
should result in a better, more representative local ccdf.

Step 2: Choosing the K threshold values Indicator kriging 
begins with establishing a series of thresholds. The number 
of thresholds chosen is a trade-off between the amount of 
data available, and the resolution sought in the ccdf model 
F (u; zk). Also, the indicator variograms should be suffi-
ciently different in spatial structure.

While there should be a sufficient number of thresholds 
to obtain good resolution, too many cutoffs induce more 
order relation problems. Criteria used to define the thresh-
olds include: (1) the classes should define approximately 
equal-quantity of metal, and not equal amplitude; (2) addi-
tional thresholds are usually placed around z-values that are 
consequential to the project, such as economic cutoff grades; 

however, the economic cutoff grades themselves need not 
used; (3) each class should have a sufficient number of data 
for robust interpolation. It is common to use between 8 and 
15 thresholds, although there are exceptions.

Step 3: Modeling the indicator variograms There are K 
indicator variograms to be modeled, one for each threshold 
used. These variograms tend to have reasonably well-defined 
structures and are easy to interpret, since there are no outli-
ers. There should not be any proportionality between them; 
if there is, the proportional variogram models will result in 
the same kriging weights, and thus one of the thresholds can 
be dropped.

Indicator variograms standardize all points and models to 
a unit variance of p · (1 − p), where p is the proportion or 
average value at that threshold. It is common practice to 
work on standardized indicator variograms, where the sill of 
each variogram is divided by their respective variance 
pk · (1 − pk). In this case, the model is interpreted to the 

theoretical sill of 1.0, making the joint modeling of the indi-
cator variograms easier and more consistent.

It is advisable also to use the same type of structure for 
the models, since they all relate to the same RF. They can be 
spherical, exponential, or any other licit model; however, the 
contribution of each structure will vary from one threshold to 
the next, usually modeled as a smooth transition.

The changes in terms of variance contribution and anisot-
ropy ranges and directions should be smooth from one indica-
tor to the next. It is good practice to plot the relative nugget ef-
fects, short scale ranges, and the anisotropy parameters for all 
thresholds to check the transitions from one model to the next.

For positively skewed distributions, higher thresholds 
will show less continuity, so a de-structuring effect is ex-
pected and can be quantified.

While smooth transitions from one model to the next are 
desirable because they minimize order relation problems, 
different patterns of anisotropy can and should be expected. 
This is particularly true if multiple populations co-exist, or 
an explainable change in geologic control is evident. For ex-
ample, low values in many mineral deposits tend to be more 
disseminated into the host rock; while higher grade miner-
alization tends to be more spatially restricted and located in 
favorable structures, veins, or higher porosity areas of the 
host rock. In such a case, the thresholds for lower grades will 
be more isotropic, while the anisotropy ratios will increase 
for higher grade thresholds.

Step 4: Kriging plans The strategy for implementing the 
estimation follows the same general criteria discussed in 
Chap. 8. However, there are specific recommendations for 
implementing IK.

The same search neighborhood and the same number of 
data should be used for all K thresholds. Even if the indicator 
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variograms show different anisotropies due to the mixing of 
geologic controls, the search neighborhood should be the 
same. If quadrant or octant searches are used, the condi-
tions applied to those also must be the same for all thresh-
olds. Changing the search neighborhood between thresholds 
changes the data used and causes the estimated probabili-
ties to vary significantly in a non-physical manner; there are 
more order relation deviations, see below.

It is reasonable to orientate the samples search according 
to the interpreted anisotropy model. However, this should 
only be done if no significant changes in anisotropy direc-
tion is observed for all K variogram models; and in any case, 
the search neighborhood should be made more isotropic than 
what the variogram models suggest. This is to ensure that all 
directions away from the point being estimated are repre-
sented in the sample pool.

Step 5: Correcting for order relation deviations It is nec-
essary to ensure that the IK-estimated ccdf at each location u 
respects the axioms of a cdf:

and

Since the K thresholds are estimated independently of each 
other, the estimated ccdf values may not satisfy these order 
relations. While the number of deviations may be large, per-
haps ½ of the total ccdfs, the absolute value of those devia-
tions should not be large. Journel (1987) recommends check-
ing the implementation of IK if the deviations are greater 
than 0.01; in practice a limit of 0.05 is more reasonable.

There are several sources of order relation problems. Most 
commonly, they are due to inconsistent variogram models and 
the kriging implementation strategy. Also, negative indicator 
kriging weights and lack of data in some classes increase order 
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relation violations. Although the order relation problems can 
be minimized, they cannot be completely avoided.

Correcting for order relations in the case of categori-
cal variables is simpler compared to continuous variables. 
If the estimated probability of a category sk is outside the 
licit bounds, then the solution is to reset the estimated value 
F*(u;sk|( n)) to the nearest bound, 0 or 1. This resetting cor-
responds exactly to the solution provided by quadratic pro-
gramming.

The other constraint is more difficult to resolve because it 
involves K separate krigings. One solution consists of krig-
ing only ( K − 1) probabilities leaving aside one category sko, 
chosen with a large enough prior probability pko, so that:

Another solution, which should be applied after the estimat-
ed distribution is corrected (if necessary) to the interval [0,1], 
is to re-standardize each estimated probability F*(u;sk|( n)) 
by the sum *( ; | ( )) 1kk

F s n <∑ u .
Correcting for order relations of continuous variable 

ccdfs is more delicate because of the ordering of the cumu-
lative indicators. Figure 9.6 shows an example with order 
relation problems.

The following correction algorithm implemented in 
GSLib (Deutsch and Journel 1997) considers the average of 
an upward and downward correction:
1. Upward correction resulting in the upper line in Fig. 9.6 

showing order relations problems:
•  Start with the lowest cutoff z1.
•  If the IK-returned ccdf value F(u; z1|(n)) is not within 

[0,1], reset it to the closest bound.
•  Proceed to the next cutoff z2. If the IK-returned ccdf 

value F(u; z2|(n)) is not within [F(u; z1|(n)),1], reset it 
to the closest bound.

•  Loop through all remaining cutoffs zk, k = 3, …, K.
2. Downward correction resulting in the lower line in 

Fig. 9.6 showing order relations problems:
•  Start with the largest cutoff zK.
•  If the IK-returned ccdf value F(uα; zK|(n)) is not within 

[0,1], reset it to the closest bound.
•  Proceed  to  the  next  lower  cutoff  zk  −1. If the IK-

returned ccdf value F(uα; zk −1|(n)) is not within [F(uα; 
zK|(n)),1], reset it to the closest bound.

•  Loop  downward  through  all  remaining  cutoffs  zk, 
k = K − 2, …, 1.

3. Average the two sets of corrected ccdfs resulting in the 
thick middle line in Fig. 9.6.

Practice has shown that the majority of order relation prob-
lems are due to a lack of data; more precisely, to cases when 
IK is attempted at a cutoff zk which is the upper bound of 

0
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o
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Fig. 9.6  Order relation problems and their correction. The dots are the 
ccdf values returned by IK. The corrected ccdf is obtained by averaging 
the forward and downward corrections
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a class [zk −1, zk] that contains no z data. In such case the 
indicator data set is the same for both cutoffs zk −1 and zk 
and yet the corresponding indicator variogram models are 
different; consequently, the resulting ccdf values will likely 
be different with a good chance for order relation problems.

A solution would be to retain only those prior cutoff val-
ues zk such that the class (zk −1, zk] has at least one datum as 
in Fig. 9.7:

Order relation problems represent the most severe draw-
back of the indicator approach. They are the price to pay for 
trying to reproduce (even approximately) more than a single 
sample covariance.

Step 6: Interpolation between the K values of the 
ccdf Once the K ccdf values have been corrected, it is neces-
sary to interpolate values between thresholds and extrapolate 
beyond the first and last threshold to obtain a complete dis-
tribution. A more complete description of the models com-
monly implemented can be found in Deustch and Journel 
(1997).

Some implementations of IK assumes a particular distri-
bution model for the interval between two consecutive thresh-
olds such as the linear model, which assumes a uniform dis-
tribution and is generally accepted between thresholds; the 
power model is commonly used for extrapolating the lower 
tail, between 0 and threshold z1, and sometimes the upper tail, 
between threshold zk and 1; and the hyperbolic model, which 
is most used to control the extrapolation of the upper tail. In 
practice, it is better to use the non-parametric global distribu-
tion shape adapted to the IK-estimated ccdf values.

Step 7: Using the IK model and calculating recoverable 
resources The ccdf distribution can be used to provide any 
statistic of interest at location u. The ccdf is a measure of 
uncertainty, from which probability intervals can be derived. 

A special case is the probability of exceeding certain thresh-
olds, such as the economic cutoffs. Naturally, the e-type 
mean and other truncated statistics can also be obtained.

In mining and other earth science applications it is criti-
cal to know the probability of the block grade exceeding a 
cutoff grade:

which results in the probability of the estimated block grade 
being recoverable.

The uncertainty about any value z(u) can be derived from 
probability intervals, such as:

where a and b are the thresholds that define the interval of 
interest. For example, there is frequently more than one eco-
nomic cutoff. Aside from the higher grade mill cutoff, there 
may be a lower grade cutoff used to determine the mate-
rial that is to be processed using a lower cost option, such a 
leaching, or that may be simply stockpiled for later process-
ing. To adequately engineer the stockpile or heap leach it is 
important to know the probability of the block falling within 
the two economic cutoffs.

Probably the most common application of IK, however, is 
an e-type estimate. The e-type estimate can be written:

where i(u; zk) is the kriged indicator value for threshold k, 
i(u; z0) = 0, i(u; zK+1) = 1, and mk is the (declustered) 
class mean, that is, the mean of the data falling in the interval 
[zk −1, zk]. Note that if only the e-type is required, then no 
correction for change of support is necessary, since 
mV (u)∗ = m(u)∗  for variables that upscale linearly.

9.6  Indicator Cokriging

The IK estimators discussed above independently krige each 
threshold and thus they do not make full use of the informa-
tion contained in the series of indicators. The full informa-
tion contained in the cross indicators can be accounted for 
by using a co-kriging estimator across defined thresholds. 
Note that this co-IK is not between multiple data types, but 
between the same data type considering all possible thresh-
olds.

The co-indicator kriging (co-IK) estimate is then defined as:
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Fig. 9.7  Order relation problems and their correction ignoring the class 
(z6, z7] that did not contain any z data. The ccdf value F(uα; z7|( n)) is 
ignored and the correction is applied to the remaining cutoff values
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The corresponding co-kriging system would call for a matrix 
of K2 direct and cross indicator covariances of the type:

The direct inference and joint modeling of the K2 covari-
ances is not practical for large K. The shape of the cross 
variograms is quite smooth relative to the direct indicator 
variograms making it impossible to fit the set of covari-
ances/variograms with the linear model of coregionaliza-
tion. Also, the kriging matrices that need to be inverted 
would be significantly larger. There has been however 
some solutions proposed. Suro-Pérez and Journel (1991) 
proposed to reduce the co-IK system by working on lin-
ear transforms of the indicator variables, which are less 
cross-correlated, such as indicator principal components. 
Another solution calls for a prior bivariate distribution 
model.

A prior bivariate distribution model amounts to forfeit-
ing actual data-based inference of some or all of the in-
dicator (cross-) covariances. Most commonly, the bivari-
ate Gaussian model after normal scores transform of the 
original variable is adopted: Z(u)→Y(u)=( Z(u)). A slight 
generalization of the bivariate Gaussian model is offered 
by the (bivariate) isofactorial models used in disjunctive 
kriging (DK). The generalization is obtained by a nonlinear 
rescaling of the original variable Z(u) by transforms (·) 
different from the normal score transform (·). In either 
case, all indicator (cross-) covariances are then determined 
from the Gaussian Y covariance. At this point, it makes 
more practical sense to simply rely on the complete multi-
variate Gaussian model.

More importantly, general experience indicates that 
co-IK improves little from IK (Goovaerts 1994). Such is 
the case if primary and secondary variables are equally 
sampled, as happens with indicator data defined at various 
cutoff values. In addition, when working with continuous 
variables, the corresponding cumulative indicator data do 
carry substantial information from one cutoff to the next 
one; in which case, the loss of information associated with 
using IK instead of co-IK is not as large as it appears. Fi-
nally, co-IK will generally create more order relation prob-
lems, which require additional manipulation of the esti-
mated cdf.

9.7  Probability Kriging

An alternative to indicator co-kriging is to use not only the 
transformed indicators, but also their standardized rank 
transforms, which are distributed in [0,1]. The idea is that 
greater resolution could be achieved near data locations.

' '( ; , ) { ( ; ), ( ; )}I k k k kC z z Cov I z I z= +h u u h

The so-called probability kriging (PK) estimate (Sullivan 
1984), actually a ccdf estimate for Z(u), is written in its sim-
ple kriging form:

where ( ) ( )( ) [ ]    0,1p u F z uα α= ∈  is the uniform (cdf) 
transform of the datum value z(uα), the expected value of which 
is 0.5; ( ) ( ){ }   F z Prob Z u z= ≤  is the stationary cdf of Z(u). 
The co-kriging weights ( ; )kzαλ u  and ( ; )kv zα u  correspond to 
the indicator and the uniform data, respectively.

The corresponding simple PK system requires the infer-
ence and modeling of (2K + 1) (cross-) covariances: K in-
dicator covariances, K indicator-uniform cross covariances, 
and the single uniform transform covariance. That modeling 
is still demanding and represents a drawback in practice. For 
this reason, there have been few practical applications of PK.

9.8  Summary of Minimum, Good and Best 
Practices

This section presents the details of what is considered mini-
mum, good, and best practices in probabilistic estimation, as 
well as discussing specific presentation and reporting issues. 
The block model obtained should be thoroughly checked and 
validated, as detailed in Chap. 11, according to the criteria 
suggested for minimum, good, and best practices. As before, 
these validations should result in, among other comments, a 
statement about whether the model can be considered “re-
coverable” or fully diluted.

In the case of having an estimated distribution of possible 
values for each block, it is even more important to consider 
the reporting and transmittal of the resource model to down-
stream clients. One possibility is to obtain the e-type average 
for the block, and present it; however, having developed a 
range of possible values, other information, such as probabil-
ities of exceeding important cutoffs, should be provided. In 
this sense, it is important to consider that probabilities can be 
seen as proportions of blocks, a concept that may make the 
understanding and manipulation of this information easier 
for downstream clients.

The minimum practice in estimating distributions should 
include making the estimation implementation specific to 
each estimation domain. All other criteria given in Sect. 8.4 
should apply here, including documentation and justification 
of the Kriging method chosen, the reporting of the ore re-
sources, which should be based on E-type estimates, the use 
of grade-tonnage curves, and the full documentation of the 
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more relevant aspects. Subjective expressions of uncertainty, 
assumptions and limitations, and recommendations for im-
provements should be included.

In addition, good practice requires a more detailed justi-
fication of the model. The main differentiation includes the 
use of calibrations, and comparisons with alternative and 
prior models. A comparison with past production should be 
done, if available, and the model should be fully diluted. As 
before, significant emphasis in describing uncertainty and 
potential risk areas of the model should be discussed in de-
tail, and a risk mitigation plan should be suggested.

Best practice consists of using alternate models to check 
the results of the intended final ore resource model. All rel-
evant production and calibration data should be used to indi-
cate whether the model is performing as expected, possibly 
including simulation models to calibrate the recoverable re-
source model. The model should quantitatively describe the 
amount of the different types of dilution included. All other 
tasks related to checking and validation, model presenta-
tion, reporting, and visualization should also be completed. 
Again, all risk issues should be dealt with in detail, and if 
possible, quantified, which requires complementing the esti-
mation process with specific simulation studies.

9.9  Exercises

The objective of this exercise is to review indicator kriging 
(IK) and multivariate Gaussian kriging (MG) for uncertainty 
assessment. Some specific (geo)statistical software may be 
required. The functionality may be available in different 
public domain or commercial software. Please acquire the 
required software before beginning the exercise. The data 
files are available for download from the author’s website—
a search engine will reveal the location.

9.9.1 Part One: Indicator Kriging

Question 1: Consider the indicator variograms from Part 5 
of Chap 6 using the largedata.dat data 
file. Setup indicator kriging to estimate with 
the nine deciles as threshold values. You may 
want to choose a smaller area near the centre 
of the dataset. Run indicator kriging and create 
a map at the median threshold for checking.

Question 2: Post process the indicator kriging results to 
calculate the local average (etype estimate) and 
the local conditional variance. Map the results. 
The local average should look like a kriged 
map. The conditional variance should account 
for the proportional effect, that is, higher grade 
areas should have higher conditional variance 
when the drillhole spacing is uniform.

9.9.2 Part Two: MG Kriging for Uncertainty

The objective of this exercise is to become familiar with how 
kriging can be used to get uncertainty without resorting to 
simulation.

Copper grades in a particular domain were found to fit an 
exponential distribution with a mean m of 1 %. Consider a 
particular location u informed by two nearby samples at lo-
cations u1 and u2 such that |u-u1| = 20 m, |u-u2| = 37 m, and 
|u1-u2| = 38 m. We are interested in the uncertainty in the cop-
per grade at the location u and in the uncertainty in the copper 
grade of a 10 m cubed block centered at u. The copper grade 
at u1 is 2.5 % and the grade at u2 is the mean value of 1 %.
Question 1: Provide a detailed description of how you 

would go about characterizing the uncertainty 
about the unsampled value z(u) and calculat-
ing a best estimate and 90 % probability inter-
val. You are to adopt a multivariate Gaussian 
model. State all the steps and approximations, 
comment extensively, and use figures/sketches 
where appropriate.

The multivariate distribution of the stationary copper grade 
random function is assumed multinormal after appropriate 
normal score transform. Variogram analysis was performed 
on the standard normal transform of the copper grades. This 
resulted in an isotropic spherical model with a nugget effect 
of 10 % and a range of 100 m.
Question 2: Write the equations for the transform to and 

from Gaussian units. In general, the relation-
ship must be fit, but it is possible to write equa-
tions in this case. Transform the data values to 
Gaussian units. You can do this question on a 
piece of paper with the help of a calculator.

Question 3: Establish the parameters of the analytical con-
ditional distribution in Gaussian space. This 
requires the solution of two equations with 
two unknowns. Once again, this can be done 
on paper with the help of a calculator.

Question 4: Back transform 99 evenly spaced percentiles 
to establish the conditional distribution in the 
units of copper grade. You will probably want 
to use Excel or a short program for this ques-
tion. Calculate the mean grade and the 90 % 
probability interval.
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Question 5: Correct the conditional distribution of copper 
grades to represent a 10 m cubed block grade. 
Assume that the stationary Z-copper grade var-
iogram is the same shape as the normal scores 
variogram. Calculate the mean grade and the 
90 % probability interval.
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Abstract

Local uncertainty estimates do not account for the variability from one location to another. 
The idea of simulation is to assess the joint uncertainty between multiple realizations allow-
ing a more complete representation of block uncertainty and the uncertainty between mul-
tiple block locations. The tools described in this Chapter allow transferring uncertainty of 
the resource estimates into risk in downstream studies. These studies are mine design, mine 
planning, or operational optimization studies; the risk assessment is achieved after applying 
transfer functions to the conditional simulation models.

10.1  Simulation versus Estimation

Simulated models provide the same information that an es-
timated block model does, but, in addition, it also provides 
a joint model of uncertainty. A “complete” resource model 
should not only include an estimated grade, or even an es-
timated distribution, but also a more detailed assessment of 
uncertainty and the consequences of that uncertainty (Dimi-
trakopoulos 1997).

Estimation provides a value that is, on average, as close 
as possible to the actual (unknown) value, based on some 
definition of goodness or quality. It is unbiased, has mini-
mal quadratic error, uses linear combinations of the available 
data, and has an unavoidable smoothing effect. Simulations 
reproduce the original variability observed in the data and 
allow an assessment of uncertainty. This implies that the ex-
treme values of the original distribution are preserved, see 
Fig. 10.1. The uncertainty model also provide the tools for 
risk analysis when applying to it a transfer function

Estimation honors local data, is locally more accurate, and 
has a smoothing effect appropriate for visualizing trends, but is 
inappropriate for simulating extreme values and provides no as-
sessment of local uncertainty. Simulation also honors the local 
data, but additionally reproduces the histogram, honors spatial 
variability, and is able to provide an assessment of uncertainty.

Geostatistical conditional simulations have become popu-
lar as tools that provide models of uncertainty at different 
stages of a mining project. They have been used as grade 

control tools in daily operations (Rossi 1999), to analyze 
risk related to resource classifications (Rossi and Camacho 
2001), to assess the uncertainty of minable reserves at the 
project’s feasibility stage (Guardiano et al. 1995; Glacken 
1996; Van Brunt and Rossi 1999; Journel and Kyriakidis 
2004; Leuangthong et al. 2006; Badenhorst and Rossi 2012), 
and to assess mineralization potential in certain settings. 
Other applications include assessment of recoverable re-
serves and drill hole spacing optimization studies.

Geostatistical conditional simulations are used to build 
models that reproduce the full histogram and modeled mea-
sures of spatial continuity of the original, conditioning data. 
They honor the characteristics of the spatial variable of inter-
est as represented by the conditioning data.

The simulation model should correctly represent the pro-
portion of high and low values, the mean, the variance, and 
other univariate statistical characteristics of the data, as repre-
sented by the histogram. It should also correctly reproduce the 
spatial continuity of the variable, including the connectivity of 
low and high contaminant zones, anisotropies,  relative nugget 
effect, and other characteristics of the variogram model.

Conditional simulations are built on fine grids, fine 
enough to provide a sufficient number of nodes within the 
block size of interest. The vertical resolution of the grid 
should be a function of the support data, for example the size 
of the mining bench, if modeling a variable mined by open 
pit. Larger grid sizes may be used sometimes because of the 
amount of computer time and hard disk space involved.

M. E. Rossi, C. V. Deutsch, Mineral Resource Estimation, DOI 10.1007/978-1-4020-5717-5_10,
© Springer Science+Business Media Dordrecht 2014
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In building a conditional simulation model, many of the 
conditions and requirements of linear and non-linear estima-
tions apply, most importantly regarding stationarity deci-
sions. Shifts in geologic settings require the separation of 
the data into different populations. Detailed knowledge of 
the behavior of extreme and outlier values in the sampled 
population is required. Issues such as limiting the maximum 
simulated grade should be carefully considered.

The simulation method itself should be decided based on 
the type of deposit, the Random Function model chosen, the 
quantity and quality of available samples, the possibility of 
using “soft” or fuzzy information, and the desired output. 
All these are subjective decisions. These and other imple-
mentation parameters, along with the chosen algorithm and 
simulated domain, have a bearing on the output simulations 
and the uncertainty model.

Conditional simulation methods can be grouped in simi-
lar manner as estimation methods were in Chaps. 8 and 9. 
There are simulation methods for continuous and discrete, 
or categorical, variables; there are Gaussian and indicator-
based approaches, such as Sequential Gaussian (Isaaks 
1990) and Sequential Indicator (Alabert 1987a). The latter is 
more complicated, based on multiple indicator kriging tech-
niques, and requires definition of several indicator cutoffs. 
The former is simpler and quicker, although more restrictive 
in its basic assumptions. As with any estimation exercise, 
variogram models are necessary.

There are other types of simulations, including object-
based simulation methods, and sequential annealing, a par-
ticular case of optimization. Also, there are several types of 
multivariate simulations.

A conditional simulation model results in a set of 
grades or realizations for each node. These realizations, all 
 equiprobable by construction, describe the model of uncer-
tainty for each block, i.e., provide the cumulative conditional 
distribution function (ccdf) for that node. Preferably, a large 
number of simulations are needed to describe the ccdf better. 
However, a smaller number is generally used due to prac-
tical limitations. It has been these authors’ experience that 
 between 20 and 50 simulations are generally sufficient to 
characterize the range of possible values for the simulated 
values

Uncertainty is not a property of the physical attribute 
being modeled, but rather of the Random Function (RF) 
model developed. The RF model includes the stationarity de-
cisions made; the simulation algorithms chosen; and the im-
plementation parameters used. Therefore, (a) the uncertainty 
model that can be derived from conditional simulations is 
subjective and only relevant to the underlying RF model; and 
(b) applications or risk assessments that can be derived from 
that uncertainty model are only useful and “realistic” if they 
are relevant to the problem of interest.

A common example is the assessment of uncertainty of 
a block model, used to define resources and reserves of a 

deposit. The conditional simulation should be constructed 
using the same underlying RF model used in the construc-
tion of the block model, if it is to describe resource uncer-
tainty. Likewise, the same geologic model and estimation 
domains used to constrain the block model have to be used to 
constrain the simulation model. Otherwise, the uncertainty 
model will not fully relate to the resource model.

10.2  Continuous Variables: Gaussian-Based 
Simulation

Gaussian simulations are most common in mining. Among 
these, sequential Gaussian simulation (SGS) is the most fre-
quently used method, although there are several others that 
are been used as well.

Gaussian methods are maximum entropy methods, in the 
sense that for a specific covariance model, they provide the 
most “disorganized” spatial arrangement possible. While 
the covariance model controls the degree of mixing of high 
and lows, there are some highly structured spatial distribu-
tions that may be more difficult to reproduce with a Gaussian 
simulation (Fig. 10.2). This results in a model that poten-
tially understates the continuity of the distribution’s extreme 
values. In practice, however, this effect can be controlled 
through the definition of stationary geologic domains and 
to some extent the covariance model. Gaussian simulations 
are most popular because of their convenient properties and 
easier implementation; but also because they result, for most 
cases, in reasonable representations of spatial distributions.

The Turning Bands (TB) method was the first simula-
tion algorithm developed (Matheron 1973; Journel 1974), as 
the simulation of a general trend plus a random error. It was 
the only method available for several years, although never 
 applied in industry on a large scale. New methods, including 
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same spatial variability as
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extreme values

Good for modelling
extreme values

Fig. 10.1  Comparison of estimated and simulated models
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indicator-based simulations, were developed during the sec-
ond half of the 1980’s. These methods were tested in several 
mining scenarios and applications, but because of hardware 
limitations and other practical reasons not fully implemented 
within industry.

It was not until 1991 that the first, full scale  implementation 
and application was completed within the mining industry. 
Two sequential Gaussian simulations (SGS) were developed 
by H.M. Parker and E.H. Isaaks (personal communications). 
The conditional simulation study was developed to support a 
Feasibility Study for the Lihir Au project in Papua New Guin-
ea, at the time owned by Kennecott Mining Corporation. Soon 
after that, the first conditional simulation-based grade control 
method was implemented by N. Schofield (at the time with 
FSS International Consultants) for the Marvel Loch mine in 
Western Australia, and followed a few months later with the 
implementation of a similar grade control method at the San 
Cristóbal mine in Northern Chile (Aguilar and Rossi 1996).

As computer hardware capabilities improved drastically 
throughout the 1990’s, more and more simulation studies 
were tested and published, although full, industry-scale im-
plementation remained relatively scarce. Gradually the num-
ber of implementations grew, and by the second half of the 
following decade, several mining companies began to use 
conditional simulations routinely, with large companies like 
BHP-Billiton adding these methods to their internal good 
practices guidelines for project evaluation.

10.2.1  Sequential Gaussian Simulation

The sequential Gaussian simulation algorithm (Isaaks 1990) 
is based on a multiGaussian RF model assumption. It is the 
simulation version of the MG algorithm, and it benefits from 
all the convenient properties that the multi-Gaussian RF 
 offers: all conditional distributions are Gaussian, and simple 
kriging is the only method that yields (exactly) the estimated 
Gaussian mean and variance.

The sequential Gaussian simulation entails the following 
steps:
 1. Complete a full exploratory data analysis of the original 

data, including variography and domain definition.
 2. After defining the domains, analyze whether the data 

needs to be de-trended, that is, whether the simulation 
should be done on the residuals.

 3. Apply the normal scores transformation to the original 
data to obtain the corresponding Gaussian distribution.

 4. Obtain the Gaussian variogram models for the trans-
formed variable.

 5. Define a random path through each domain to be simu-
lated. The path for the simulation is defined randomly 
to avoid artifacts.

 6. Estimate through simple kriging the conditional distri-
bution for each node to be simulated in the Gaussian 
space. The estimated simple kriging value Y*(u) is the 
mean of the conditional distribution, and its variance 
the simple kriging variance, σsk(u). If the simulation is 
done on residuals after de-trending, then the Gaussian 
mean of the conditional distribution is 0.

 7. Draw randomly from the conditional distribution to ob-
tain a simulated value for the node, Ys(u).

 8. Incorporate the simulated value Ys(u) as conditioning 
data for nodes simulated later. This is necessary to en-
sure variogram reproduction.

 9. Repeat and continue the process until all nodes and all 
domains have been simulated.

10.  Verify that the univariate distribution (histogram) of the 
simulated values is Gaussian; also check that the sim-
ulated values reproduce well the Gaussian variogram 
model used in the simulation.

11.  Back-transform the Gaussian simulated values to the 
original variable space.

12.  Add back the trend if the simulation was performed on 
residuals.

13.  Verify that the histogram of the back-transformed data 
is similar to the original distribution; also verify that the 

Fig. 10.2  Comparison of high 
( left) and low ( right) spatial 
 entropy distributions
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variogram obtained from the simulated values is similar 
to the variogram of the original values.

14.  Verify that the model presents a reasonable spatial dis-
tribution and that no other errors or omissions have 
been made in simulating each stationary domain.

The price to pay for using SGS is that the values will show 
less connectivity than the original data. This is due to the 
maximum entropy property of the Gaussian distribution. The 
significance of this issue is generally small, depending on 
the overall spatial distribution and the definition of station-
ary domains used. Conditional simulations are much more 
sensitive to departures from strict stationarity compared to 
estimation methods, and so domain definition is key to ob-
taining representative simulation models.

A Monte Carlo simulation (MCS) technique is used to 
draw a simulated value from the estimated conditional dis-
tribution at each node, see Step 7 above. A random number 
between 0 and 1 is generated, and the simulated value is ob-
tained by reading the associated quantile from the estimated 
cumulative distribution. Figure 10.3 illustrates this with an 
example for a Cu grade distribution.

10.2.1.1  Practical Considerations in the 
Implementation of SGS

The transformation of the data to a standard normal distribu-
tion using the normal scores (NS) transform is a graphical 
one-to-one (rank preserving) transform and was discussed 
in Chap. 2.

Declustering weights are recommended for performing 
the transformation. Another potentially significant issue is 
despiking. Despiking is the term used to describe the process 
of removing the ties that the original variable may  present, 
and may be significant since the NS transform does not 
allow for ties. The method chosen for resolving the ties can 
be consequential, particularly for distributions that have a 
very significant percentage of ties. This is common, for ex-
ample, in data from epithermal Au deposits, where usually 
most sampled values are below detection limit, perhaps up to 

70 or 80 %. In these types of distributions, a few high values 
contain most of the metal in the drill hole database. Random 
despiking is fast and usually does not create artifacts in the 
later back-transformed distribution. A general rule-of-thumb 
is that, for distributions with more than 50 % percent of tied 
values, the local-average despiking method (Verly 1984) 
may be safer and worth the extra effort it requires. In areas 
where there may be too few data, a global transformation 
table can be used.

The search path needs to be random to avoid artifacts in 
the simulated model. It is also important to ensure that each 
cell is visited once and only once. Nodes that already have a 
value are skipped, and the original preserved in the simula-
tion.

The data can be assigned to grid nodes, which signifi-
cantly speeds up the simulation. This is because searching 
for previously simulated nodes and original data is accom-
plished in one step and based on a regular grid. However, 
there is a price to pay, since assigning the closest of several 
possible data to a node will lose some information. This loss 
of information is dependent on the data density and the node 
spacing. The node spacing in the vertical direction should be 
the same as the original composite length, which ensures that 
most of the drill hole data would be used, the possible excep-
tion being inclined or sub-horizontal drill holes, as well as 
twinned, or closely drilled holes.

The number of data to be used in the simulation (original 
composites and previously simulated nodes) can be a conse-
quential decision. More data gives a more accurate estimate 
of the conditional mean and variance and results in better 
reproduction of the variogram model, but will take longer to 
run. Also, fewer data can provide a more robust model with 
respect to departures from strict stationarity, better reproduc-
ing the local variability.

Simple kriging should be used to estimate the Gaussian 
mean and variance. In certain circumstances, practitioners 
use ordinary kriging instead, generally with the intention of 
avoiding the consequences of departures from stationarity. 
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Fig. 10.3  Schematic of a point 
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Simulation
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The price to pay for this choice is that the variance of the 
Gaussian simulated values is inflated, and that the OK esti-
mator does no longer provide the exact Gaussian mean, only 
an approximation. While these authors generally discour-
age simulating using OK, if there is a significant number of 
original data, such as blast holes, the variance inflation issue 
may be less significant.

As with all other simulation techniques, the most critical 
and often time-consuming step is to check the results. Hon-
oring the declustered histograms of the Gaussian values and 
of the original distribution is a first check. The reproduction 
of the variogram model for both the Gaussian and the origi-
nal data should be checked as well. The simulated spatial 
distribution should show the characteristics and trends of the 
original data, adequately reproducing trends and local means 
and variances.

If there is reliable production information, the grade-
tonnage curves derived from the simulated models should 
reproduce well the actual values from production. Likewise, 
if grade control data exists and is not used in the simulation, 
it can be used to validate the conditional simulation models.

It is good practice to implement the simulation initially 
on a small area, fine-tuning the simulation parameters that 
result in a better reproduction of histograms and variogram 
models, as well as production data if available. After the 
implementation details are defined, then the full, multiple 
simulation runs are completed.

10.2.2  Turning Bands

The Turning Bands (TB) method was the first 3-D geosta-
tistical simulation method, originated by Matheron (1973) 
and developed by Journel (1974). Although the sequential 
simulation method has been popular for many years, turn-
ing bands simulation is still used. The turning bands method 
generates a 3-D simulation results from several independent 
1-D simulations along lines that can be rotated in 3-D space. 
This unique way of simulating provides 3-D unconditional 
realizations.

After transforming the original data to Gaussian values, 
TB consists of two main steps: (1) develop an unconditional 
simulation in Gaussian units, with the experimental histo-
gram reproduced by transformation and the covariance or 
variogram from the data being also reproduced; and (2) con-
dition the turning bands simulation through a post-processing 
using kriging (Journel and Huijbregts 1978). This method 
exactly honors the conditioning data and also preserves the 
variability of the unconditional simulation realizations. This 
method has been adapted to conditioning multiple-points 
structures (Ren et al. 2004; Ren 2005).

The initial step in Turning Bands is to obtain an uncon-
ditional simulation based on the covariance models derived 

from the existing data. Initially, N lines are defined in the 
three-dimensional space: Di, i = 1, N. On each line, a one-
dimensional RF Y(uDi), i = 1, N is defined; these N RFs are 
independent from each other. For each line, there is also a 
3-D Random Function: Zi(u), i = 1,… N.

At first, the line Di is simulated at each point uDi on the 
line. Moving averages is typically used for the initial 1-D 
simulation. Second, the simulated value y(uDi) at uDi is as-
signed to all the points inside the slice or band perpendicular 
to line Di at uDi:

Then, at each point u in the 3-D space, sum all the values from 
the N slices or bands to obtain a realization for this point:

The unconditional simulation is generated after obtaining the 
values for all the points in the 3-D model.

Data conditioning of the TB simulations is done by devel-
oping two kriging runs: first, the conditioning data is kriged 
to obtain ykc(u), which reproduces data trends. The second 
step is to krige with the unconditional simulated values at 
these conditioning data locations to obtain yku(u). Then, the 
conditional simulation values ycs(u) are calculated as the 
unconditionally simulated values adjusted by the difference 
between both kriged values:

The simulation is performed in the Gaussian space to ensure 
histogram reproduction, while covariance reproduction is 
ensured by the use of the unconditional simulation.

The conditional simulation procedure can be understood 
using a 1-D example, see Fig. 10.4. At each real data loca-
tion, the unconditional simulated value is taken out, and the 
conditioning datum is put in. Near the data location, the krig-
ing estimator smoothes the change between the sample data 
and the unconditional simulated values outside the range of 
kriged values. Therefore, the conditional simulated values at 
these N data locations will be the data values. Beyond the 
range of correlation, the conditional simulated values will be 
the unconditional simulated values.

There are some inherent limitations of the turning bands 
algorithm: (1) the post processing for conditioning is cum-
bersome; (2) the 1-D covariances must be worked out sepa-
rately for each nested structure and covariance shape because 
they are different in 2-D and 3-D; and (3) only isotropic co-
variances can be used; anisotropy is introduced by geometric 
transformation.
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In earlier implementations of TB and because of hardware 
limitations, the position of the original N lines was evident in 
the resulting simulated image. The solution to avoid artifacts 
is to use a very large number N of lines, which is currently 
more practical than in years past. Artifacts, particularly if the 
method is poorly implemented, can be a significant disad-
vantage.

10.2.3  LU Decomposition

When the total number of conditioning data plus the number 
of nodes to be simulated is small (fewer than a few hundred) 
and a large number of realizations is requested, simulation 
through LU decomposition of the covariance matrix pro-
vides the fastest solution (Luster 1985; Alabert 1987b).

Let Y(u) be the stationary Gaussian RF model with co-
variance CY(u). Let uα, α = 1, …, n, be the locations of the 

conditioning data and ui, i = 1, …, N, be the N nodes to be 
simulated. The large covariance matrix (n + N)·(n + N) is par-
titioned into the data-to-data covariance matrix, the node-to-
node covariance matrix, and the two node-to-data covariance 
matrices:

The large matrix C is decomposed into the product of a 
lower and an upper triangular matrix, C = L.U. A conditional 
realization {y(l)(ui), i = 1, …, N} is obtained by multiplica-
tion of L by a column matrix ω(N+n) ִ1(l) of normal deviates:
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where [y(uα)]nִ1 is the column matrix of the n normal score 
conditioning data and [y(l)(ui)]N ִ1 is the column matrix of the 
N conditionally simulated y values.

Identification of the conditioning data is written as 
L11 ω1 = [y(uα)]; thus matrix ω1 is set at:

The column vector ω2
(l) = [ω2

(l)]N ִ1 is a vector of N indepen-
dent standard normal deviates.

Additional realizations, l = 1, …, L, are obtained at very 
little additional cost by drawing a new set of normal deviates 
ω2

(l), then by applying the matrix multiplication. The major 
cost and memory requirement is in the upfront LU decom-
position of the large matrix C and in the identification of the 
weight matrix ω1.

The LU decomposition algorithm requires that all nodes 
and data locations be considered simultaneously in a single 
covariance matrix C. The current practical limit of the num-
ber (n + N) is no greater than a few hundred.

Implementation variants have been considered, attempt-
ing to relax the previous size limitation by considering over-
lapping neighborhoods of data locations. Unfortunately, 
artifact discontinuities appear if the correlation between all 
simulated nodes is not fully accounted for.

The LU decomposition algorithm is particularly appropri-
ate when a large number of realizations is needed over a 
small volume or block (n + N is small). A typical application 
is the evaluation of block ccdf’s. Any block V can be dis-
cretized into N points. The normal score values at these N 
points are simulated L times ( l = 1,…, L) through the LU de-
composition algorithm and back-transformed into simulated 
point z values: {z(l)(u′i), i = 1,…, N;u′i inV A∈ }, l = 1,…, L. 
Each set of N simulated point values can then be averaged to 
yield a simulated block value. The distribution of the L simu-
lated block values zv

(l), l = 1,…,L, provides a numerical ap-
proximation of the probability distribution (ccdf) of the 
block average, conditional to the data retained.

10.2.4  Direct Sequential Simulation

Direct Sequential Simulation (DSS, Soares 2001) is based 
on the idea that a non-Gaussian distribution could be con-
sidered in the sequential path, as long as this distribution 
has the same mean and variance of the Gaussian distribu-
tion it replaces, and therefore it is seen as an extension of 
the more established Gaussian simulation paradigm (Journel 
1994). In essence, direct sequential simulation is the same as 
sequential Gaussian simulation, but without the normal score 
transform step.

The reasons to be interested in DSS include: (a) the repro-
duction of the variogram in original units; (b) dealing with 
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variables that do not average linearly after the normal score 
transform; in this case, Gaussian techniques are inappropri-
ate for data at different scales; and (c) the maximum entropy 
characteristic of the Gaussian distribution.

Consider simple kriging at node u = ul with N data values 
z(ua), a = 1,…, N

A random variable zs(u) is drawn from the univariate prob-
ability distribution function (pdf) f(u, z|(N))

With the residuals Rs(u) drawn from a pdf fl(r), with mean 0 
and variance σ2

SK(u). The critical point is the independence 
of Z*(u) and RS(u), linked to the homoscedastic property of 
the Gaussian variance σ2

SK(u).
Now consider the next node u = ul + 1. Simple Kriging 

using N + l data, including the previously simulated value 
zs(u), is written as:

A simulated value can then be drawn from this distribution:

The two kriged values clearly depend on one another and 
the kriged value at the second location depends on the first 
random value.

It can be shown that the covariance between the two val-
ues is correct. This is the well-established theory of sequen-
tial simulation: it is unbiased, the variance is correct, and the 
covariance between all simulated values is correct. However, 
there are concerns with DSS: (a) it simply cannot avoid the 
influence of Gaussianity; (b) the shape of the R-values dis-
tribution required to preserve the original histogram; (c) the 
proportional effect or heteroscedasticity of kriging varianc-
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es, and (d) the multi-scale multivariate data. The shape of the 
resulting histogram is difficult to control, and multivariate 
spatial features are typically very similar to SGS (Deutsch 
2002).

While any shape distribution can be used and can be 
changed locally, the resulting histogram will be subject to 
three influences: the histogram of original data, the chosen 
shape of the random distributions, and the Gaussian distribu-
tion that results from the averaging of random components, 
i.e., the Central Limit Theorem.

Correction schemes proposed to obtain the correct local 
histograms include post-processing of realizations (Journel 
and Xu 1994; Caers 2000); selective sampling; and estab-
lishing a consistent set of distributions (Oz et al. 2003). The 
latter is based on using the link between Gaussian and real 
data units to build the shape of the conditional distributions, 
and is the recommended option to solve DSS’s issues with 
histogram reproduction. This is because, while the link to the 
Gaussian model gives the ccdf its expected shape, the results 
are not Gaussian. Also, there is no post-processing or ad-hoc 
correction, and the block data are reproduced exactly.

Another significant issue is that of proportional effect. 
For most variables, the mean and its variance are correlat-
ed. Simulations that use a transformation, such as indicator 
simulations and Gaussian techniques are insensitive to the 
proportional effect. This is because the transform effective-
ly removes the proportional effect, although the data in the 
original space do show a proportional effect.

In DSS, the kriging variance provides the variance of the 
local ccdf. This variance depends only on the data configura-
tion and is independent of the data values, which is incorrect 
most of the times when dealing with data in original units. The 
kriging variance is not a measure of local variability; it only 
works well after a Gaussian transformation. However, the 
central idea of DSS is to avoid that Gaussian transformation.

The best approach if using DDS is to: (a) use a standardized 
variogram; (b) calculate the standardized kriging variance; 
and (c) rescale that variance to a local measure of  variability. 
This requires two additional steps: fitting the proportional ef-
fect and calculating the local mean at each location.

10.2.5  Direct Block Simulation

Direct block simulation is another simulation option that at-
tempts to simplify the simulation process by directly working 
at a support other than the original nodes or composites. Jour-
nel and Huijbregts (1978) originally proposed a direct block 
simulation based on separate simulation and conditioning 
steps. The method is based on using a global change of sup-
port (Chap. 7), which is based on a permanence of distribution 
technique, to correct the point support data to block support. 
Then the conditioning happens at the block support level.

A different approach has been proposed by Gómez-
Hernández (1992) in the context of simulating hydraulic 
conductivity fields. The idea is that, if the block statistics 
are known and the point and block distributions are assumed 
jointly Gaussian, then a joint sequential Gaussian simula-
tion provides direct block simulated values conditioned to 
the original point support data. The inference of the block 
covariances can be done using a global change of support 
using a permanence of distribution assumption, or, as devel-
oped by Gómez-Hernández, from a training image and the 
assumption of a point and block univariate lognormal distri-
bution, that is, the sequential Gaussian simulation performed 
on the log of the original data.

Marcotte (1993) provided another alternative, based on 
using Disjunctive Kriging (DK) to obtain the local block 
cumulative distribution frequencies. The simulated values 
are drawn from this local block cdf. This method has the 
substantial disadvantage of using DK, a cumbersome and 
theoretically difficult method to implement, which requires 
also a strong prior assumption about the distribution of block 
grades, but at the same time offers the flexibility of integrat-
ing data types with different support, including drill hole 
data, bulk samples, and mined out stopes or areas.

Godoy (2002) developed an alternative version, the Di-
rect Block Simulation (DBSim) algorithm. The DBSim algo-
rithm is an adaption of the “classical” SGS method.

The main difference between a traditional SGS and the 
DBSim methods is that the DBSim simulation is done origi-
nally on nodes, then immediately re-blocked to the specified 
block (SMU) size, and the block data (through its discreti-
zation points) is used to condition further nodes and blocks 
in the sequential random path used. DBSim works on block 
centroids, retaining in memory only the previously simulated 
block values, while SGS first obtains the full set of nodes on 
the random path. In the case of SGS, re-blocking from node 
support to the SMU block size is a separate, independent step.

The implementation of direct block simulations has, as 
with direct sequential simulation, pitfalls that must be avoid-
ed. But in cases where the size of the simulated model is 
significant, or even impractical if performed at a node scale, 
it may be an alternative worth investigating.

10.2.6  Probability Field Simulation

The key idea of probability field (P-field) simulation is to 
perform the simulation in two separate steps (Froidevaux 
1992). In the first step the local distributions of uncertainty 
are constructed. This is done using only the original data so 
that it can be done only once instead of repeatedly for each 
realization. The second step is to draw from those distribu-
tions using correlated probability values instead of the ran-
dom numbers used in traditional Monte Carlo simulation.

10 Recoverable Resources: Simulation



175

The typical sequential simulation approach is based on 
drawing from the local conditional distributions random 
probabilities and then adding each simulated value to the 
pool of conditioning data. P-field, by dissociating the two 
steps, starts with the premise that the local cdf’s are known, 
and they become input parameters. Probability values are 
used to draw from the local cdf’s, constituting a probability 
field, and which are interpreted as outcomes of a RF with 
uniform distribution and a known covariance function.

Assume that a simulated value has been obtained for each 
location u within the area of interest. The simulated value zs(u) 
corresponds to a specific p(u) probability of the local cdf:

The local probabilities p(u) are interpreted as outcomes of 
the RF P(u). If the local cdf’s are available and the univari-
ate and bivariate statistics of P(u) can be inferred, then the 
P-field simulation can be completed in a straightforward 
manner.

The local cdf’s can be derived using hard data, soft, ex-
haustive data, or empirically using a geologist’s subjective 
opinion as to likely range of values for the local cdf’s. Per-
haps more importantly, the inference of the probability field 
parameters presents bigger challenges. Froidevaux (1992) 

( , ( )) ( )sF u z u p u=

recommends starting with two intuitive basic assumptions: 
(a) the probability field P(u) follows a Uniform Distribution, 
as one would expect; and (b) the covariance of the prob-
ability field P(u) and the uniform transform of the variable 
U(Z(u)) are the same, such that:

In essence, it is assumed that the two-point continuity of the 
uniform transform of the original variable is similar to that of 
the probability field. These features include relative nugget 
effect, anisotropy ratios, and direction and range of maxi-
mum continuity. This is a rather strong assumption, and dif-
ficult to verify. Typically, the more hard data exists, the less 
similar would ( )PC h  and ( )UC h be.

The implementation of P-field follows these basic steps, 
see Fig. 10.5 for a schematic explanation:
1. After defining the grid spacing and nodes to be simulated, 

the local cdf’s of the variable being simulated must be 
obtained. These cdf’s can be derived from hard, local data 
through a non-linear estimation method (Chap. 9), with or 
without secondary information, and can even be defined 
empirically. The local cdf’s are independent of the simu-
lation processes.

( ) ( ), with ( ) ( ( ))P UC h C h U u F Z u= =

Fig. 10.5  Step required obtaining a P-field simulation
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2. Calculate and model the variogram of the uniform trans-
form of the original variable, U(Z(u). Assume that the 
probability field P(u) follows a uniform distribution, and 
that ( ) ( )P UC h C h≈ .

3. Generate a non-conditional simulation of P(u) honoring 
the uniform distribution and the covariance ( )PC h .

4. At each node, draw a simulated value zs(u) from the 
local cdf F(u, z) using the probability value p(u): 

1( ) ( , ( ))sz u F u p u−=
5. Repeat the above two steps until a sufficient number of 

realizations have been obtained.

The main advantage of P-field simulation is its speed, and 
that the distributions of uncertainty can be constructed to 
honor all data and checked before any realizations are drawn. 
Also, the simulations are consistent with the distributions of 
uncertainty. Another interesting aspect of P-field is that is 
fairly easy to integrate secondary data into the simulation, 
without increasing significantly the time and effort it takes 
to obtain a realization. Some of the potential disadvantages 
of the method are that the local conditioning data have a 
tendency to be reproduced as a local discontinuity and the 
spatial correlation may be unrealistically increased. Also, the 
spatial continuity features of the uniform transform of the 
data and the probability field may not be similar.

10.3  Continuous Variables: Indicator-Based 
Simulation

Sequential Indicator Simulation (SIS) is in essence the same 
as the sequential Gaussian simulation, except that instead of 
simulating a Gaussian variable, the indicator transform of 
the original variable is simulated. Aside from providing a 
method that is not dependent on Gaussian assumptions, SIS 
does not require any back-transformation, drawing directly 
the simulated value in the original space from the local indi-
cator kriging-derived conditional distributions. Details of the 
indicator formalism were presented in Chap. 9.

Recall that the average of the indicator transform is the 
global proportion of the stationary domain. The variogram 
of an indicator variable measures spatial correlation, as op-
posed to variability:

Inference of cumulative indicator variograms is easier than 
class indicators because more conditioning data is always used, 
and cumulative indicators carry information across cutoffs.

The ccdf is calculated using a linear combination of the 
nearby indicator data:

21
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The weights  (λα(u),  α = 1,…,n) are determined by kriging. 
Simple kriging is the exact solution to the least-squares op-
timal estimate. If local departure from stationarity is a con-
cern, an estimate of the local mean can be used, but usually 
with an inflated variance as cost.

As before, a random number is drawn to determine which 
class k to assign to the node. Since the conditional probabili-
ties were estimated by kriging with a given variogram, the 
original histogram and variograms of the data will be repro-
duced by the simulated values.

The steps in SIS are identical to those used for SGS. All 
the relevant decisions regarding implementation are the same, 
and the processes used to check the models are also the same. 
However, in practice, SIS of a continuous variable has proven 
to be difficult to calibrate. Variance inflation is common, as 
is the difficulties in controlling the tails of the distribution, 
particularly the highs on a positively skewed distribution.

SIS is mostly used with variables that exhibit high vari-
ability, as for example epithermal gold grades. Dealing with 
variables characterized by a high coefficient of variation is 
always difficult, and in these cases SIS can present signifi-
cant challenges.

While the indicator variograms are reproduced as ex-
pected (up to ergodic fluctuations), the reproduction of the 
original z variogram is not assured. For this, a full indicator 
co-kriging should be performed, which in practice is never 
done. It can be shown that the SIS simulation reproduces 
the madogram, { }2 ( ) ( ) ( )M h E Z u Z u hγ = − + , since this 
function is the integral of all indicator variograms (Alabert 
1987a; Goovaerts 1997). But the practical consequence of 
this is minor, since there is no particular reason to prefer the 
z variogram to the z madogram reproduction.

The reward for those who take on the challenges of using 
SIS on continuous variable is a simulation model that does not 
rely on Gaussian assumption, and thus do not have that under-
lying maximum entropy property. SIS of a continuous vari-
able when it is necessary to reproduce well the connectivity of 
extreme values, and thus Gaussian features may be a concern.

10.4  Simulated Annealing

Simulated annealing is a minimization/maximization tech-
nique that has attracted significant attention in recent years. 
It is based on a thermodynamics analogy, specifically with 
the way liquids freeze and crystallize, or metals cool and an-
neal. The basic principles are that: (a) molecules move freely 
at high temperature; (b) thermal mobility is lost if cooled 
slowly; (c) atoms can often line up over a distance billions 
their size in all directions; and (d) such crystal structures are 
minimum energy states. This state can always be found if 
cooled slowly to allow time for redistribution of the atoms.

The annealing method mimicks nature’s minimization al-
gorithm. It is different than conventional minimization algo-
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rithms, because these go for nearby, perhaps short-term solu-
tions, and stop. That is, they go immediately downhill as far 
as possible in any step. Annealing may not go immediately 
downhill (Fig. 10.6).

The Boltzmann probability distribution expresses the idea 
that a system in thermal equilibrium has its energy probabi-
listically distributed among all different energy states: even 
at low temperature (T), there is a small chance of being in a 
high energy (E) state:

Therefore, there is a chance to get out of a local energy 
minimum in favor of finding a better, more global, one. 
Boltzmann’s constant (k) is a constant of nature that relates 
temperature to energy.

In 1953, Metropolis and coworkers first incorporated 
these principles into numerical calculations. The idea was to 
provide a succession of options; a simulated thermodynamic 
system will change configuration from energy E1 to energy 
E2 with a probability given by (Fig. 10.7):

This general scheme of always taking a downhill step and 
sometimes taking an uphill step has come to be known as the 
Metropolis algorithm.

In order to implement this idea, a few key elements are 
needed: (a) The possible system configurations should be 
described; (b) A random generator of changes is required to 
present options to the system; (c) An objective function O 
(analogous to thermodynamic energy) is defined; the goal 
of the procedure is to minimize this function; (d) A control 
parameter T (analog of temperature) and (e) an annealing 
schedule which tells how T is lowered from high to low 
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values. For example, the schedule defines how many ran-
dom changes are necessary before is a downward step in T is 
taken, and how large is that step.

Consider the traveling salesman problem. The salesman 
visit N cities with given positions (xi,yi) returning finally to 
city of origin. The objective is to visit each city only once 
and to make the route as short as possible.

This problem is known as an NP-complete problem, 
whose computation time for an exact solution increases with 
N as ( * )c Ne . Thankfully, the simulated annealing method lim-
its calculations to a small power of N. To solve this problem, 
the annealing procedure is implemented as follows:
1. By numbering the cities from i = 1,…,N, the initial con-

figuration is defined. Any other configuration is the per-
mutation of the numbers 1,…,N.

2. A rearrangement is the swapping of the order of two cit-
ies. There are more and less efficient procedures to rear-
range the order of the cities.

3. The Objective Function is defined as total distance traveled:

 with the last city point N + 1 identified to the first city, i.e., 
back to the original starting place.

2 2
1 11

( ) ( )
N

i i i ii
E x x y y+ +=
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Fig. 10.7  Probability function of a change in energy state according to 
Metropolis’ algorithm

 

Fig. 10.6  Annealing in a physical 
process: grains of brass tend to 
re-organize as the metal cools
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4. The annealing schedule is defined by choosing a starting 
value  of T  larger  than  the  largest  change  in  energy ΔE 
normally encountered. The procedure is complete when 
nothing is happening, i.e., there is no improvement on the 
Objective Function value (Fig. 10.8).

Consider a N = 100 city problem within a 1,200 by 
1,200 miles area:

Initially, choose randomly multiple configurations 
(Fig. 10.9) to assess what the non-optimal results would be. 
A histogram of the total distance traveled of those multiple 
configurations, 1,000 random paths in this case, is shown in 
Fig. 10.10.

The problem is solved with a near-optimal solution 
(Fig. 10.11) that results in 8,136 miles total distance traveled. 

It generally takes only a few minutes on a capable computer, 
and the coding is straightforward.

Other characteristics of the sequential annealing solution 
is that it is straightforward to add components to objective 
function; it often requires some trial-and-error to get the an-
nealing schedule right; but in the end, provides a solution to 
an otherwise intractable problem.

The extension to geostatistical mining problems is 
straightforward. First, an objective function must be formu-
lated which may include with many different components. 
For example, local drill hole data with geologic information 
and assays; variogram or other two-point spatial correlation 
measures; multiple-point spatial connectivity, if available; 
vertical and areal trends; correlation (collocated or spatial) 
with secondary data; and historical data.

The objective function generally takes the form of a 
weighted sum of multiple components. The basic approach 
is the same:
1. Establish an initial guess;
2. Calculate the initial objective function;
3. Propose a change;
4. Update the objective function;
5. Decide whether to keep the change or not; this is the SA 

decision rule;
6. Go back and propose a new change;
7. Stop when objective function is low enough. Generally, 

this means that the original data is matched within accept-
able tolerances.

Simulated annealing provides a flexible optimization proce-
dure that has multiple applications and has not been fully 
exploited within the mining industry. Partly this may be be-
cause the parameters need to be set up carefully to avoid 
artifacts, such as the points where conditioning data exist, 
and edge effects.

The annealing schedule may be difficult to establish, and 
it generally requires some experience with the method to 
avoid either lowering the temperature too slowly, with slow 

Fig. 10.9  Two initial 
configurations chosen randomly
 

Fig. 10.8  The traveling salesman needs to visit 100 cities within a 
1,200 by 1,200 miles area
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solution times, or too fast, with perhaps the algorithm find-
ing only a suboptimal solution. Rigorous mathematically 
based schedules that guarantee convergence are possible 
(Aarts and Korst 1989; Geman and Geman 1984); but they 
are impractical due to their slow speed.

10.5  Simulating Categorical Variables

Simulating categorical variables aims at providing spatial 
models for discrete classes. Geologic models provide classic 
examples of such classes. Consider K mutually exclusive 
categories sk, k = 1,…, K within a stationary domain. These 
classes are exhaustive, that is, any location u has one and 
only one of these K categories assigned to it.

10.5.1  SIS For Discrete Variables

If  an  indicator  for  the  presence  ( i(u; sk) = 1) or absence 
( i(u; sk) = 0) of any class k is defined for each location u, 
then the simple kriging estimate of the indicators provides a 
probability of sk occurring at that location:

where kp  is the expected value of class k, inferred for ex-
ample from the declustered data for the entire domain. The 
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weights αλ  are solved using the indicator covariance for sk 
in a simple kriging system. It may be wise to choose using 
local averages, instead of the global mean for the entire 
domain, to obtain a proportion more representative of the 
neighborhood of location u.

Fig. 10.10  Histogram of 
1000 total distances traveled 
corresponding to random paths. 
The average is 52,253 total miles 
traveled
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Fig. 10.11  Near optimal solution to the traveling salesman problem. In 
this example, travel has been reduced to a total of 8,136 miles
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The sequential indicator simulation (SIS) algorithm is iden-
tical for continuous or categorical variables. The key differ-
ence is, in the latter case, that the K categories can be defined 
in any order; the local ccdf obtained from indicator kriging 
provides a cdf-type ordered set of the probability interval [0,1] 
discretized in K intervals. The simulated category at location u 
is defined by the interval in which the random number p falls, 
which is drawn from the uniform distribution [0,1].

Note that the ordering of the K categories is arbitrary and 
does not affect the simulated model. The ordering does not 
affect which category is drawn at location u or the spatial 
distribution of categories (Alabert 1987a) because the ran-
dom number p has a uniform distribution.

10.5.2  Truncated Gaussian

The truncated Gaussian technique simulates a continu-
ous standard Gaussian field and truncates it at a series of 
thresholds to get a categorical variable realization. Only one 
(Gaussian) variogram model can be specified in this tech-
nique. Continuous Gaussian realizations are generated and 
truncated with the proportions of the different rock types. 
The conditioning data are coded as the normal score value 
at the centroids of each category (or rock type) (Fig. 10.12).

An important feature of truncated Gaussian simulation is 
the ordering of the resultant probability density function (pdf) 
models. The codes used to characterize the individual classes 
are generated from an underlying continuous variable. There-
fore, normally class 2 will occur between classes 1 and 3. 
Only rarely would code 1 be next to code 3 (Fig. 10.13). There 
are specific applications where this could be an advantage, 
such as in simulating a sedimentary sequence. However, the 
most common applications in mining are the simulation of 
lithology; mineralization type; and alteration. In these cases, 
rarely ordering is part of the natural process being simulated.

10.5.3  Truncated PluriGaussian

A variant of truncated Gaussian is the truncated pluri-Gauss-
ian method. This method uses multiple Gaussian variables, 
which allow for using different variograms, each with its 
own spatial variability model, including different relative 
nugget effects, anisotropies, ranges, and other variogram pa-
rameters.

For practical reasons, the number of Gaussian functions 
is usually kept to 2, one category being the complement of 
the other. A non-conditional simulation of the indicator vari-
able i(u) can be obtained by truncating a simulation of the 
standard Gaussian RF Y(u):

with 1( )py G p−= being the standard normal p quantile, 
and at the same time the desired proportion of indicators, 

{ }( )E I u p= .
The Gaussian RF model is fully characterized by its cova-

riance CY(h), and there is direct relationship between CY(h) 
and the indicator covariance after truncation at the p quantile. 
Thus, by inversion of the indicator variograms, the Gaussian 
variograms are obtained (Fig. 10.14).

Multiple truncations of the same Gaussian realization 
at different thresholds would result in multiple categorical 
indicators each with the right proportions (marginal proba-
bilities). But the indicator covariances of the additional cat-
egories would be controlled by the Gaussian RF, because 
the covariance CY(h) is the single parameter that defines the 
Gaussian RF, and thus can only be used to define one in-
dicator covariance. There is a significant drawback if more 

( ) ( )( ) 1,  if y ( )

0, otherwise
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pi u u y= = ≤

=

Fig. 10.13  Consequence of ordering, implicit in the truncated Gauss-
ian technique

 

Fig. 10.12  Truncated Gaussian simulation
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Fig. 10.14  Schematic illustration of the 
implementation of the truncated pluri-
Gaussian method

 



182

than two categories are defined, because the additional in-
dicator covariances would not reproduce the correct spatial 
continuity.

As with the truncated Gaussian method, the order and 
spatial sequence of the categories is fixed. While this may be 
reasonable in sedimentary stratigraphic environments, may 
be unreasonable in a more general setting. 

10.6  Co-Simulation: Using Secondary 
Information and Joint Conditional 
Simulations

There are two distinct ways in which multiple variables can 
be accounted for. The first is considering secondary informa-
tion by conditioning the primary variable to both primary 
and secondary information. Secondary information can refer 
to the same primary variable, but presented in a different 
format, or more generally any other variable to which the 
primary variable is correlated. This is different than jointly 
simulating the primary and secondary information, which 
will be discussed later.

Gaussian techniques (Wackernagel 2003) are commonly 
used due to their simplicity, but often indicator-based meth-
ods may be preferable because of how easily the secondary 
information can be incorporated into the process.

10.6.1  Indicator-Based Approach

A major advantage of the indicator kriging approach to gen-
erating posterior conditional distributions (ccdf’s) is its abil-
ity to account for secondary or soft data. As long as the soft 
data can be coded into prior local probability values, indica-
tor kriging can be used to integrate that information into a 
posterior probability value.

The prior secondary information can take one of the fol-
lowing forms:

•  Local hard  indicator data  i(uα; z) originating from local 
hard data z(uα):

•  Local hard indicator data j(uα; z) originating from ancil-
lary information that provides hard inequality constraints 
on the local value z(uα). For example, if z(uα) can only 
take values within the interval (aα, bα], then:
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•  Local soft indicator data y(uα; z) originating from ancil-
lary information providing prior probabilities about the 
value z(uα):

•  Global prior information common to all locations u within 
the stationary area A:

At any location u in A, prior information about the value 
z(u) is characterized by any one of the four previous types 
of prior information. The process of building the ccdf with 
indicator kriging consists of a Bayesian updating of the local 
prior into a posterior cdf:

The λα(u; z)s are the weights attached to the n neighboring 
hard indicator data, the να(u; z)s are the weights attached 
to the n neighboring soft indicator data, and λ0 is the weight 
attributed to the global prior cdf. To ensure unbiasedness, λ0 
is usually set to:

The ccdf model is thus an indicator co-kriging that pools in-
formation of different types: the hard i and j indicator data 
and the soft y prior probabilities. When the soft information 
is not present or is ignored (n = 0), the expression reverts to 
the known IK expression.

If the spatial distribution of the soft y data is modeled by 
the covariance CI(h; z) of the hard indicator data, then there 
is no updating of the prior probability values y(uα; z) at their 
locations uα, i.e.,

Most often, the soft z data originate from information related 
to, but different from, the hard data z(uα). In this case, the 
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soft y indicator spatial distribution is likely different from 
that of the hard i indicator data:

Then the indicator cokriging amounts to a full updating of all 
prior cdf’s that are not already hard.

At the location of a constraint interval j(uα; z), indicator 
kriging or cokriging amounts to in-filling the interval (aα, bα] 
with spatially interpolated ccdf values. Thus if simulation 
is performed at that location, a z attribute value would be 
drawn necessarily from within the interval.

10.6.2  Markov-Bayes Model

With enough data one could infer directly and model the 
matrix of covariance functions (one for each cutoff z): 
[CY(h;  z) ≠ CIY(h;  z) ≠ CI(h; z)]. An alternative to this te-
dious exercise is provided by the Markov-Bayes model, 
whereby:

The coefficients B(z) are obtained from calibration of the 
soft y data to the hard z data:

with:
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Consider a calibration data set {y(uα; z), i(uα; z), α = 1,…,n} 
where the soft probabilities y(uα; z) valued in [0,1] are com-
pared to the actual hard values i(uα; z) valued 0 or 1. m(1)(z) 
is the mean of the y values corresponding to i = 1; the best 
situation is when m(1)(z) = 1, that is, when all y values exactly 
predict the outcome i = 1. Similarly, m(0)(z) is the mean of the 
y values corresponding to i = 0, best being when m(0)(z) = 0.

The parameter B(z) measures how well the soft y data 
separate the two actual cases i = 1 and i = 0. The best case is 
when B(z) = ± 1, and the worst case is when B(z) = 0; that is, 
m(1)(z) = m(0)(z).

The case B(z) = − 1 corresponds  to  soft data predictably 
wrong and is best handled by correcting the wrong probabili-
ties y(uα; z) into 1 − y(uα; z).

When B(z) = 1, the soft prior probability data y(uα; z) are 
treated as hard indicator data and are not updated. Converse-
ly, when B(z) = 0, the soft data y(uα; z) are ignored; i.e., their 
weights become zero.

Since the Y covariance model generally presents a 
strong nugget effect, the Markov model implies that the 
y data have little redundancy with one another. The un-
desired effect of this is that too much weight is given to 
clustered, mutually redundant y data. In practice, only the 
closest y datum is retained, which leads to using the col-
located correlation, i.e., the soft autocovariance at distance 
0, CY(h = 0; z).

10.6.3  Soft Data Calibration

Consider the case of a primary continuous variable z(u) in-
formed by a related secondary variable v(u). The series of 
hard indicator data valued 0 or 1, i(uα; zk), k = 1,…,K, are 
derived from each hard datum value z(uα).

The soft indicator data, y(uα,zk) in [0,1], k = 1,…,K, cor-
responding to the secondary variable value v(uα), can be 

10.6  Co-Simulation: Using Secondary Information and Joint Conditional Simulations

Fig. 10.15  Inference of the 
soft prior probabilities from a 
 calibration scattergram. The prior 
z probability pdf at a  location u′α 
where the  secondary variable is 
v(u′α) in (vl−1, vl] is identified to 
the  calibration conditional pdf, 
shown in the right of the figure
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obtained from a calibration scattergram of z values versus 
collocated v values (Fig. 10.15):

The range of v values is discretized into L classes (vl−1, 
vl], l = 1,…,L. For class (vl−1, vl], the y prior probability 
cdf can be modeled from the cumulative histogram of 
primary data values z(uα) such that the collocated sec-
ondary data values v(uα) fall into class (vl−1, vl]:

10.15

Note that the secondary variable v(u) need not be con-
tinuous. The classes can be in fact categories of v values; for 
example, if the information v relates to different lithologies 
or mineralization types.

The calibration scattergram that provides the prior y prob-
ability values may be borrowed from a different and better 
sampled field. That calibration scattergram may be based 
on data other than those used to calibrate the covariance 
parameters B(z).

10.6.4  Gaussian Cosimulation

If a Gaussian method is used, the data must be transformed 
to a standard normal distribution. If two variables are con-
sidered, the cross correlation between Yi and Yj should show 
a bivariate normal distribution, i.e., an elliptical probability 
contours along a line through the origin. For third and higher 
orders, a distribution of k Gaussian variables should show 
probability contours following a hyper-ellipsoid in k-dimen-
sions.

The first possible approach is a direct co-simulation, as 
proposed by Verly (1993), and is similar to that for conven-
tional simulation, see Fig. 10.16. It begins with establishing a 
random path through all the grid nodes. At each grid node the 
nearby data and previously simulated grid nodes are found, 
a conditional distribution is constructed by cokriging, and a 
simulated value is drawn from this distribution. The simulat-
ed value is added to the conditioning data, and the process is 
repeated until all nodes are simulated. The final steps are to 
back-transform the simulated values and to check the results.

The next approach for a joint simulation is to define a hi-
erarchy of variables. In this case, the variables are not simu-
lated simultaneously, but in order according to a pre-defined 
hierarchy and conditionally to the previously simulated 
variables (Almeida and Journel 1994). This idea allows for 
the implementation of a full cokriging, a collocated cokrig-
ing approximation, or a further approximation based on the 
Markov-Bayes model.

The third approach is to apply a transformation that would 
make the correlated variables independent (Luster 1985). To 
obtain the non-correlated variables, there are several options. 

1( ; ) Pr { ( ) ( ) ( , ]}l ly z ob Z z v v vα α −= ≤ ∈u u u¢ ¢ ¢

One is to decompose the original variables Zi(u) into orthog-
onal factors, that is, obtain the principal components of the 
original Z-variable correlation matrix at |h| = 0 (Luster 1985). 
The significant assumption here is that the orthogonality of 
the principal components at lag 0 extends to all possible lags.

Alternative options is to use either the super-secondary 
variable (Babak and Deutsch 2009), or a stepwise condi-
tional transformation (Leuangthong and Deutsch 2003). The 
choice between these two transformations depends on the 
shape of the cross plot between the two variables. If there is a 
non-linear or constrained relationship between the variables, 
stepwise conditioning provides a more flexible, albeit data-
hungry, method; if the cross plots show mostly a relationship 
correctly and fully characterized by its linear correlation co-
efficient, then a simpler super-secondary variable approach 
may be preferred (Fig. 10.17).

10.6.5  Stepwise Conditional Transform

The stepwise conditional transform (SCT) was introduced by 
M. Rosenblatt in 1952 and was re-introduced by Leuangth-
ong and Deutsch in 2003 for use in geostatistics. The moti-
vation for it is that it produced independent model variables, 
thereby avoiding cosimulation.

In a bivariate case, the normal transform of the second 
variable is conditional to the probability class of the first 
or primary variable. Extending to a k-variate case, the kth 
variable  is  conditionally  transformed  based  on  (k − 1)  first 
variables.

The following is an example of a bivariate case where 
Zn is the primary variable and Pb is the secondary. Zn is 
transformed to a Gaussian distribution using the Normal 
Scores procedure as before. Pb is transformed as shown in 
Fig. 10.18. The stepwise conditional transform results in a 
non-correlated variable at h = 0, which indicates that Cosim-
ulation is not required.

The major incentive to use SCT in practice is that it is ro-
bust when dealing with complex multivariate distributions. 
This means that SCT is able to solve issues of  non-conformity 
to multi-Gaussian assumptions, as well as significantly sim-
plify the joint simulation of multiple variables. The major 
disadvantage is that it is data-intensive, while care must 
be used not to define classes with less than 50 data values 
(Leuangthong and Deutsch 2003), which could make the re-
sulting conditional distributions not representative. Another 
possible limitation is that SCT may produce artifacts in the 
transformation of secondary variables. This should thor-
oughly checked for before proceeding with any subsequent 
simulation.

The more important implementation aspects of SCT are:
1. The number of classes; it is recommended than no less 

than 10 are used. More classes result in a correlation that 
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approaches zero, but care should be taken not to produce 
classes with few data in the transformed secondary condi-
tional distributions.

2. Another aspect to consider is that SCT is sensitive to out-
liers. Extensive exploratory data analysis is recommend-
ed, and data cleaning or capping may be necessary.

3. The order in which the transform is performed is conse-
quential. The choice of primary variable should be made 

based on which one has the most data; if both variables 
have similar number of samples then choose as primary 
the most continuous variable.

The stepwise conditional transformation ensures that the 
transformed variables, taken together, are multivariate 
Gaussian with zero correlation. Thus, conventional Gaussian 
simulation techniques can be applied with no requirement for 
cokriging or to fit a model of coregionalization. The correla-

Fig. 10.16  Co-simulation using Gaussian variables
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tion between the variables is accounted for in the forward 
and back transformations.

10.6.6  Super-Secondary Variables

Under a multivariate Gaussian model, it can be shown that 
multiple secondary data can be co-simulated by merging it 
into a single secondary variable, such that a standard co-
simulation procedure can be applied (Babak and Deutsch 
2009). The setting that is most practical is when collocated 
co-simulation is deemed appropriate.

All secondary data can be merged as a linear combination 
into a single secondary variable that can be used in the con-
ventional collocated cokriging.

The ci weights are calculated from the well known cokriging 
equations:

The left hand side ρi,j values represent the redundancy be-
tween the secondary data. The right hand side ρi,0 values rep-
resent the relationship between each secondary data and the 
primary variable being predicted. The correlation coefficient 
of the super secondary value with the primary variable being 
estimated is based on the cokriging variance:

The expression inside the square root is one minus the estima-
tion variance, which would is precisely the correlation coef-
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Fig. 10.17  Non-linear, constraint, and hetersoscedastic features

 

Fig. 10.18  Stepwise conditional transform of Pb using Zn as a primary 
variable
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ficient if one data is being used. Recall that 2
,0 ,01k i iσ ρ ρ= − ⋅  

in presence of one data, thus 2
,0 1i kρ σ= −  given that the 

estimation variance is known, as is the case here.
The single super secondary variable is used with the pri-

mary data in the well known collocated cokriging equations:

10.6.7  Simulation Using Compositional Kriging

Compositional kriging is done without any transform of 
compositions from the simplex to real space. Solving the 
compositional kriging system of equations gives a vector 
that adheres to the constraints of compositions. These do not 
necessarily form the vector of expected values m* and we 
are not working with multivariate normal data or distribu-
tions. A covariance matrix can be calculated. Unfortunately, 
the space of compositions is the simplex and there is no 
definition of covariance and cross-covariance in that space 
(Pawlowsky-Glahn and Olea 2004).

Defining the multivariate distribution from which a 
composition is simulated using this method is an outstand-
ing problem. We know two constraints on the distribu-
tion: 0; ii

x c≥ =∑x , but the shape of multivariate condi-
tional distributions is also needed. It is also not clear if m* 
(the estimated averages) and S* (the estimation variance) are 
correctly parameterizing these distributions.

Simulation using alr Cokriging Under certain assump-
tions, simulation using alr cokriging can be accomplished. If 
the distribution of compositions is assumed additive logistic 
normal, then the alr transformed data is multivariate normal 
distributed. At location uM+1, kriging gives a multivariate 
conditional distribution with mean and covariance param-
eters given by:

Despite there being no analytical back transform of m* and 
S*, a vector, ys(uM+1), can still be simulated from the mul-
tivariate conditional distribution. The inverse alr transform 
can be applied to recover a simulated composition xs(uM+1).
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while a simulated model can be obtained, there are a number 
of unresolved and unknown issues of this method. To begin 
with, kriging of alr transformed data does not  necessarily 
result in an optimal solution of the original compositional 
data in the simplex (Chap. 8). Also, the covariance between 
known compositions and simulated compositions is not 
necessarily correct, and the covariance between two simu-
lated compositions is not necessarily correct. And it is not 
known whether the global statistics such as the variogram, 
mean, variance and other moments are reproduced in the 
simplex.

10.7  Post Processing Simulated Realizations

Conditional simulation generates many possible outcomes, 
all with the correct variability. Dealing with the multiple 
realizations has proven a difficult practical issue, typically 
underestimated by geostatistical researchers.

Simulation corrects for the smoothness of kriging and is 
theoretically free of conditional bias. Multiple realizations 
allow for uncertainty assessment, so conditional simulation 
techniques are required to assess joint uncertainty. Uncer-
tainty visualization is one aspect that needs to be considered 
(Caers 2011).

The following discusses in general terms some of the 
most common CS applications in mining, including assess-
ment of point scale uncertainty, change of support, uncer-
tainty around existing mine plans and schedules, optimiza-
tion studies of various types, and recoverable reserves cal-
culation (Dimitrakopoulos and Ramazan 2008; Dowd 1994).

The multiple realizations represent at each location the 
most information that can be gathered. The full range of pos-
sible values, described as a conditional cumulative distribu-
tion frequency (ccdf) is a model of local uncertainty.

Simulation allows for a better understanding of the vol-
ume variance relations. The basic idea is to simply simulate 
values at a tight grid spacing, and then average up to the 
relevant block size. This “brute force” approach is best to 
observe volume-variance relations, since all other change 
of support methods require assumptions that are difficult to 
verify, or may be theoretical approximations.

More importantly, CS allows mimicking the mining pro-
cess itself, either through blast hole drilling and sampling, or 
through production drilling in underground mines. Mining 
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is done to irregular polygonal boundaries. Isolated blocks 
cannot be freely extracted and thus assuming free selection 
is optimistic. The simulation of the grade control process, 
feasible if using CS models from a pre-feasibility stage on-
wards, allows for an early understanding of the information 
effect, selectivity, dilution and ore loss.

Another useful application of simulation is forecasting 
metal recovery and other related metallurgical performance 
variables. This is done by visiting each location over one re-
alization for all variables and applying a transfer function 
that accounts for the known metallurgical processes and 
translates grades for multiple metals into a recovery at that 
location. This is repeated for all realizations to create mul-
tiple recovery models. These recovery models can be used to 
produce distributions of uncertainty for both local and global 
recovery. This process requires a clear understanding of the 
metallurgical processes, including the non-linearity of some 
of the geometallurgical properties involved.

The production of probability maps is easily achievable 
using the results of simulation. This is done by visiting each 
location over multiple realizations to determine local dis-
tributions of uncertainty. We then calculate the probability 
to exceed a cutoff grade from this local distribution. This 
is done at all locations. A map of probabilities can then be 
plotted. Specific quantiles of interest can be analyzed, such 
as 10, 50, or 90 %. Any areas that are high on the p10 map 
will surely be high grade. Any areas that are low on the p90 
map will surely be low. The same technique can also be used 
for classification of resources; for example, yearly volumes 
within X% of predicted value Y% of the time can be called 
proven.

Simulation models can also be used to simulate stockpiles 
(see Boucher et al. 2005, among others). A large volume con-
sistent with blast patterns is selected. This volume is applied 
to a simulated realization to determine the average grade for 
the stockpile. This is repeated for all realizations to get aver-
age grades from each. This information can be used to de-
termine the probability that the volume will satisfy blending 
criteria or economic cutoff.

The results of simulation are also able to determine global 
reserves and their uncertainty. The global reserves are calcu-
lated using all the relevant metal grades, recovery models, 
and the economic cutoff. This is done for each realization. 
The uncertainty in the reserves can now be found.

Another post-processing application of a simulation-
generated model is assessing the link between equipment 
size and mine selectivity, and thus to determine the value/
cost of selective mining. This is applicable to both open pit 
and underground settings; however, stope design and extrac-
tion methods are less flexible than the open pit counterpart, 
and thus this study should be done well in advance of mine 
development. In open pit, CS models are used to evaluate 
equipment selectivity in relation to the available sampling, 

bench height, ore/waste boundary definitions, blast hole 
spacing, blast heave, and so on. The process always involves 
one or more transfer functions that allow incorporating rel-
evant economic assessments and cost/benefit curves.

Reporting the results of studies from CS models is usu-
ally done by zone (time period, bench, stope, and so on) and 
reporting common quantiles (P10; P50; P90) or (P5; P50; P95).

The uncertainty in NPV/ROI type statistics can be shown 
as error bounds derived from the multiple realizations. In the 
example in Fig. 10.19, P90 is exceeded 10 % of the time, 
while the value of interest falls below P10 10 % of the time.

Usually there is a need to rank the simulated values. By 
definition, all realizations are equi-probable, but have differ-
ent impact to the problem being studied. Often, ranking is 
necessary to limit the number of realizations used in the ap-
plications, since considering the entire model of uncertainty 
may be impractical.

An increasingly popular post processing of uncertainty 
from uniform conditioning, indicator kriging and simula-
tion is localization (Abzalov 2006; Hardtke et al. 2011). One 
value is chosen per block in a manner that reproduces the 
block distribution within larger panels.

The most common criterion used for ranking is total 
metal content; for example, in pit or stope optimization what 
matters is the total dollar value of the block, which is in turn 
a function of the metal content in the block. Occasionally, 
ranking by total variability (by stationary domain) may be an 
option, especially if overall local uncertainty measures are 
desired. The chosen realizations should fairly represent the 
full space of uncertainty for the variable that is deemed of 
highest consequence.

10.8  Summary of Minimum, Good and Best 
Practices

Minimum practice is to thoroughly check and validated the 
realizations obtained. The details of the validation procedure 
are given in Chap. 11, but it is a more involved and demand-
ing process than for any estimated block models.

Realizations are more difficult to report and to communi-
cate than any other model, because they contain much more 

Fig. 10.19  Example of error bounds for a time period
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information, and in a format that non-specialists and industry 
professionals are less familiar with. Visualization tools are 
useful for qualitative demonstrations of the models, but typi-
cally the reporting of the simulation models depends on their 
objective, and the risk assessment they provide.

The description of joint uncertainty is also a key element 
that should be considered. Examples are shown of what is 
meant by joint uncertainty, and its possible applications and 
consequences on downstream work.

Another aspect that requires some detailed discussion is 
the issue of ranking the individual simulations. The discus-
sion includes criteria for deciding if there is a need for rank-
ing, the methods that can be used to rank individual simula-
tions¸ and the tradeoffs that typically are made.

Minimum practice includes simulating specific domains, 
typically the same estimation (simulation) domains defined 
through the combination of geology and statistical analyses. 
A clear statement of objectives, the justification of the simu-
lation method chosen, the related risk assessment of inter-
est, and the implementation-specific parameters should be 
clearly stated and demonstrated when appropriate. Some of 
the simulations should be carefully validated to the extent 
described in detail in Chap. 11, while the overall resulting 
uncertainty model should be checked against other models, 
including estimated grade models and known production 
values, if available. The reporting and visualization of the 
simulation models are critical, and they should be related al-
ways to the original objective of the conditional simulation 
study. Commonly, only a subset of the simulations obtained 
is used in the risk assessment study, and so all decisions re-
lated to individual simulation ranking should be presented 
and justified. The simulation work should be documented 
with some detail, particularly with respect to validation, ap-
plications, and perceived model limitations.

Good practice requires, in addition to the above, a more 
detailed justification of the simulation model. Calibrations 
on a smaller subset of the overall volume, significantly more 
iterations and comparisons before an individual simulation is 
considered acceptable, and much more validation and check-
ing of the resulting uncertainty model than before. Also, the 
assessment on the geologic model should be done (simula-
tion of categorical variables) and introduced into the over-
all resource simulation. Comparison with past production 
should be done in detail whenever possible. The full report-
ing of all relevant aspects of the models and the correspond-
ing risk assessment is required, as well as full and detailed 
documentation. It is important to emphasize the correct use 
of the simulation models, their limitations, and possible fu-
ture improvements to the work.

Best practice consists of full implementation of the 
techniques available, and the use of alternative models to 
verify their relevancy. All potential sources of uncertainty 
in an ore resource model should be investigated, including 
the uncertainty of the original drill hole or blast hole data 

used, the uncertainty of the geologic model and the estima-
tion ( simulation) domains defined, etc. The consequences 
of using alternative implementation parameters should be 
fully explored and documented. All relevant production and 
calibration data should be used to indicate whether the simu-
lation model is performing as expected. All possible uncer-
tainty measures in relation to an ore resource model should 
be quantitatively described and discussed, whether global or 
local, including internal and geologic contact dilution, the 
impact of the information effect, etc. Checking and valida-
tion should be exhaustive, as well as the model presentation, 
reporting, and visualization. The full set of individual simu-
lations should be used in the risk assessment study, and it in 
turn fully described, validated, and documented.

10.9  Exercises

The objective of this exercise is to review a variety of simula-
tion techniques and post processing methods. Some specific 
(geo)statistical software may be required. The functionality 
may be available in different public domain or commercial 
software. Please acquire the required software before begin-
ning the exercise. The data files are available for download 
from the author’s website—a search engine will reveal the 
location.

10.9.1  Part One: Sequential Indicator 
Simulation

The objective of this exercise is to construct SIS realizations 
of a categorical variable. It is common in mining applica-
tions to have a deterministic rock type model; however, the 
boundaries between the rock types are not hard boundaries. 
We often want to consider fuzzy or soft boundaries. Some 
topographic data is used for this exercise, but it is adequate 
to communicate the principles and methodology.

Consider the 2-D SIC.dat data that has been provided 
for your analysis. You will have to perform a cursory data 
analysis to determine the X/Y limits and the variables 
present. Choose a reasonable grid size relative to the data 
spacing. This data was used for an international spatial inter-
polation contest in 1997. The categorical variable in the data 
file is of interest here.
Question 1: Plot a 2-D map of the indicator and note the 

direction of continuity. Calculate, plot and fit 
indicator variograms in the principal direc-
tions.

Question 2:  Print the SIS parameter file and comment on 
the appropriate settings for this exercise. Cre-
ate two SIS realizations and plot the results. 
Perform reasonable sensitivity studies on the 
parameters that you are uncertain of.
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Question 3: Create 100 realizations and plot a map of the 
probability of each category. This map should 
look like a kriged model.

10.9.2  Part Two: Sequential Gaussian 
Simulation

Sequential simulation is common because simulation and 
conditioning to local data is accomplished in one step. His-
torically, conditional simulation was divided into two steps: 
unconditional simulation and kriging for conditioning. Ma-
trix methods and moving average methods were used for un-
conditional simulation, but they were really only applicable 
for small grids. Turning bands was (and still is) used for un-
conditional simulation on larger 3-D grids.

A small 2-D example will be considered for testing some 
alternative Gaussian simulation methods.

Consider a grid of 50 by 50 grid cells each 1 unit square. 
There are four regularly spaced data (see the picture below). 
Two data are at the mean, one is a high value and one is low. 
The variogram is omnidirectional spherical with a range of 
10 grid units.
Consider unconditional and conditional simulation of a 50 
by 50 domain. Such a small grid permits fast calculations 
and testing of methods such as LU simulation that requires 
a small grid size.

Sequential Gaussian simulation (SGS) is popular because 
of its simplicity and flexibility. SGS draws realizations from 
the multivariate Gaussian distribution by recursive applica-
tion of Bayes Law. This part focuses on the application and 
limitations of SGS.

Question 1: Setup a 2-D Gaussian simulation with the 
conditioning data described above. Run the 

simulation with a search radius of 10 grid 
units and 16 previously simulated grid nodes. 
Use the reference variogram given above. 
Note the CPU time for 100 realizations. Cre-
ate four realizations for checking. Plot maps 
of four realizations. Plot the histogram of the 
simulated values and compare to the refer-
ence distribution. Calculate and plot the var-
iogram with the input reference variogram 
model.

Question 2: The distinguishing characteristic of sequential 
simulation is the Markov screening assump-
tion; however, it can cause poor variogram 
reproduction. Create four realizations with 
4, 8, 16, and 32 previously simulated grid 
nodes and the multiple grid search turned off. 
Add coordinates and calculate the omnidi-
rectional variogram. Comment on variogram 
reproduction. Run the “4” and “8” cases with 
a multiple grid and comment on variogram 
reproduction.

Simulation is at the scale of the data, that is, composite data 
of some specified length. The grid specification in simulation 
programs is not a block size, it is the spacing of point scale 
simulated values. For this reason, we simulate at least 10 point 
values within the smallest selective mining unit (SMU) size 
ultimately desired. Geostatistical simulation involves many 
locations simultaneously. This involved excessive CPU time 
and storage requirements in the early days of simulation. Fast 
unconditional simulation techniques were devised and krig-
ing was used as a post processor for conditioning.
Question 3: Give the equation for conditioning uncon-

ditional realizations to local data. Clearly 
explain how this could be implemented in 
practice.

Question 4: Use turning bands to simulate 4 unconditional 
realizations of a 50 by 50 by 5 (because the 
turning bands algorithm is dimension depen-
dent—the tb3d program is for 3-D only) 
domain (spacing set to 1 in all directions) 
using the reference variogram given above. 
Plot the central 2-D slice of the realizations. 
Check histogram and variogram reproduction 
of the realizations.

Question 5: Use LU simulation to simulate 4 uncondi-
tional realizations of a 50 by 50 by 1 domain 
(spacing set to 1 in all directions) using the 
reference variogram given above. Plot the 
realizations. Check histogram and variogram 
reproduction.

Question 6: Condition these realizations to the four 
Gaussian data values given above.

10 Recoverable Resources: Simulation
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10.9.3 Part Three: Simulation with 3D Data

Theoretically, simulation requires an incremental effort to 
estimation kriging. In practice, however, the generation of 
multiple realizations through simulation can amount to a 
significant increase to computation and time requirements. 
Consider the 3D data from largedata.dat. You may 
wish to recall your work/results of previous exercises where 
you created a model of kriged estimates using parameters 
that were refined after cross validation.
Question 1:  Using  the  same  grid  definition  and  similar 

parameters from kriging (as you determined 
in Exercise 5), generate 10 realizations of 
Au. For four realizations (it should not mat-
ter which you select), plot the middle slice of 
the model and compare this to the same slice 
from the kriged model. Comment on any dif-
ferences/similarities between (a) the kriged 
model and a simulated realization, and (b) 
one realization to another realization.

Question 2: Create a map of local averages (also referred to 
as the E-Type estimate). For this E-type model, 
plot the middle slice and compare it to the 
same slice from the kriged model. Comment 
on any similarities/differences that you note.

Question 3: Calculate probability maps at 10 % and 90 % 
probability. What can you say about the 
information conveyed in the 10 % probability 
map?

Question 4:  Check  the  proportional  effect  of  the  final 
results.

Question 5: Consider one realization, and scale this real-
ization to an arbitrary volume that consists of 
3 × 3 grid points (that is average a total of 9 
simulated values together to obtain a block 
value).

Question 6: Recalculate measures of uncertainty (etype, 
local variance, and probability maps) as 
above.

10.9.4 Part Four: Special Topics in Simulation

The objective of this exercise is experiment with multivariate 
simulation approaches. Most geostatisticians do not go to the 
trouble to calculate and fit a full model of coregionalization. 
It is common to adopt the collocated cokriging shortcut or 
to adopt a multivariate transformation such as the stepwise 
transformation. Fitting an LMC is a challenge. Moreover, 
many software do not permit the full model of coregionaliza-
tion to be used in cosimulation. Cokriging is more straightfor-
ward. The Markov model is used extensively in simulation.

Question 1: Recall the Markov model and the implicit 
cross variogram that is used if this model is 
adopted for cosimulation.

Question 2: Consider the Markov assumption with (a) 
bitumen as the primary variable, and (b) fines 
as the primary variable. Plot the implicit cross 
variogram from the Markov model with the 
experimental cross variograms. Comment on 
any mismatch.

Question 3: Perform sequential Gaussian simulation for 
bitumen and cosimulation of fines collocated 
to bitumen. Simulate one realization and 
check the crossplot of simulated values. If 
you have time, run ten realizations and record 
the  correlation  coefficient  from  each  set  of 
realizations, and plot a histogram of correla-
tion coefficients. Comment on how this com-
pares to the expected correlation coefficient.

The stepwise conditional transformation is becoming more 
commonly used to avoid the requirement for cross vario-
grams.
Question 4: Explain the stepwise conditional transforma-

tion and perform the transformation twice 
with the oilsands-3D.dat:  (a)  fines 
conditional to bitumen, and (b) bitumen 
 conditional  to  fines.  Cross  plot  the  trans-
formed  values  and  confirm  that  there  is  no 
cross correlation.

Question 5: For both cases, calculate the cross variogram 
between the transformed values in all three 
directions. Comment on any non-zero corre-
lations that appear.

Question 6: Perform sequential Gaussian simulation for 
bitumen  and  fines.  Simulate  one  realization 
and check the crossplot of simulated values 
(after back transformation). Comment on how 
this compares to the original data crossplot. 
As above, if you have time run ten realiza-
tions, record the correlation coefficient from 
each set of realizations, and plot a histogram 
of correlation coefficients. Comment on how 
this compares to (1) the expected correlation 
coefficient, and (2) the correlation coefficient 
distribution from Part One.
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11Resource Model Validations  
and Reconciliations

Abstract

Mineral resource estimates are based on many interdependent and subjective decisions. 
There is a need to check the fidelity of the models with the available data, ensure that the 
models are internally consistent, and validate the models with production data if such data 
is available. This Chapter discusses some commonly used techniques for model validation.

11.1  The Need for Checking and Validating 
the Resource Model

There are many important reasons that mandate the need for 
checking and validating resource models. The validation of 
the resource model has two basic objectives: (a) to ensure 
the internal consistency of the models, and (b) to provide, if 
at all possible, an estimate of the accuracy of the model with 
respect to the predicted variables.

Internal consistency means that all processes that result in 
a resource model have been executed as intended, and that 
there are no inconsistencies, explicit errors, omissions or 
other factors that cause the model to deviate from what was 
intended. The model should be a fair representation of the 
available data. To ensure this, checks must be completed at 
every step of the modeling process, including the assay and 
composite database, topography, drill hole locations, down-
the-hole surveys, geologic coding, geologic interpretation, 
block model development, grade estimation and resource 
categorization.

An accurate model is one that reproduces well the ac-
tual tonnages and grades mined. This check can only be 
performed if the mine is operating. Production data may 
be used to calibrate and improve future updates of the re-
source model. However, the process is far from simple, as 
there are multiple complications and potential pitfalls that 
are discussed later in this chapter.

The motivations for validating the resource model stem 
from different sources. In all cases, a minimum number of 
checks should be performed to ensure that the model is ad-
equate and performing as expected, regardless of the purpose 

of the model. In addition, there may be internal or external 
factors that contribute and determine the need for additional 
checking and validation of a resource model, including the 
participation in this process of independent auditors. Al-
though the motivations may be different, the validation and/
or due diligence process is similar in all cases. Increasingly, 
the mining industry prudently requires and emphasizes vali-
dation and due diligence work on resource models (François-
Bongarçon 1998; Vaughan 1997).

An internal or external due diligence is sometimes re-
quired by the project owner(s) because there is a need to en-
sure that the model is reliable and provides enough details 
to make key investment decisions, such as acquisitions or 
development decisions. An external due diligence or audit 
is triggered when external financing is sought to develop or 
acquire new mining assets.

The level of detail required to adequately validate the 
model is also related to the level of detail of the resource 
modeling itself and its objective. Determinant factors may 
include the development stage of the project and the possible 
due diligence or audit requirements.

11.2  Resource Model Integrity

When discussing the integrity of the resource model, it 
should be kept in mind that there are a large number of steps 
and processes that contribute to a resource model; every one 
of them should be checked to ensure that the final product is 
reasonable.

M. E. Rossi, C. V. Deutsch, Mineral Resource Estimation, DOI 10.1007/978-1-4020-5717-5_11,
© Springer Science+Business Media Dordrecht 2014
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11.2.1  Field Procedures

The checks and validation should begin in the field, 
and should include checks related to sampling, collar loca-
tions, topographic and down-the-hole surveys, drilling meth-
ods, sample collection and preparation, assaying, and sample 
quality control and quality assurance programs.

The topographic surface should be checked against the 
drill hole collars to ensure that there is a reasonable match. 
As a general guideline for open pit mines, while a differ-
ence greater than half the proposed or actual bench height 
is considered a serious error, many practitioners would only 
accept vertical differences of 2 m or less. It is best to relate 
the acceptable error to the level of project development and 
the detail required by the design engineering. At a feasibil-
ity-level stage, accurate estimates of ground or soil move-
ment and infrastructure location would require smaller than 
2 m differences; projects at an earlier stage of development 
can tolerate larger errors. In underground mines, topographic 
precision is much more critical.

Sometimes topography is derived from widely-spaced 
survey points or a smoothed version of an aerial photograph 
with few ground control points. If there is sufficient confi-
dence on the elevation of the drill hole collar as provided by 
an independent survey, it may be advisable to re-interpolate 
the topographic surface including the drill hole collar eleva-
tions to better reflect local variations in topography.

Another important aspect is the definition of the coor-
dinate system (projection system) used, and the tie point to 
the local grids. Sometimes the “official” coordinates of the 
critical tie-in points as provided by government agencies 
change, as re-surveys using modern techniques are used. 
The history of the base points used in the survey should 
be well understood. If there are changes in the coordi-
nates of the base tie-in points, a general project coordinate 
transformation (translation and/or rotation) may be suffi-
cient to fix the problem.

Drill hole collar locations should be checked for accuracy. 
Down-the-hole surveys, which measure hole deviation, can 
also be a source of significant errors. The expected deviation 
of a hole will depend on the drilling method and the driller’s 
experience, the type of rocks traversed, and whether they are 
inclined or vertical holes. All drill holes should be surveyed 
for deviations, and all measurements should be checked for 
consistency and inaccuracies. Issues to be considered include 
the measuring device used; whether it is affected by mag-
netic minerals present in the rock; whether the measurements 
have been corrected for declination, if it is significant for the 
project’s latitude and time period; whether the azimuth and 
dip measurements have been taken at sufficiently close spac-
ing; and whether the information has been properly inter-
preted, analyzed, and incorporated into the database. These 
issues were discussed in Chap. 5.

The drilling methods used should be documented, record-
ing core or hole diameters, the presence or not of groundwa-
ter, and the drilling rate in meters per hour. Comparisons and 
statistical evaluations of data obtained from different meth-
ods and sometimes hole diameters should be part of the data 
validation work. If significant discrepancies are observed, a 
detailed study attempting to resolve the issue should be com-
pleted. Core or chip recoveries (as percentage or recovered 
weights, respectively) from the drill holes should be incorpo-
rated into the database and statistically evaluated. Relation-
ships between grades and recoveries or sample weights, if 
any, should be understood and described.

Sample collection, preparation and splitting procedures 
should be well documented, whether completed in the field 
next to the drill rig or in the preparation laboratory. The sample 
chain of custody should also be well documented, and checks 
performed while the drilling is on-going, if at all possible.

It is important to observe and document if loss of fines 
occurs, if there is excessive water being used at the time of 
drilling, and all other issues that may impact sample quality. 
It is often necessary to recover some of the fines produced at 
the time of drilling and analyze them to verify whether it has 
significant mineralization or not.

11.2.2  Data Handling and Processing

Any transformation of the coordinate system used should be 
checked, also considering the different levels and types of 
surveying that may have occurred along the life of the proj-
ect. Additionally, coordinate transformations performed to 
facilitate or improve the modeling, such as unfolding, should 
also be checked.

The computerized sampling database is sometimes taken 
for granted and not thoroughly checked. At best, both the 
geologic codes and the assayed grade values are electroni-
cally recorded at the time of capturing the data. Digital entry 
reduces the risk of introducing mistakes. In practice, manual 
entry is still often encountered, and if so it should always in-
clude a double-entry procedure to minimize data entry errors.

Minimum checks to be automatically performed within 
the database should include from-to checks (the “to” value 
is always greater or equal than the “from” value); out-of-
boundary checks for collar coordinates (ensures that no digits 
are lost or added to coordinate values); stoichiometric checks 
if applicable (whereby the addition of grades are no greater 
than a pre-specified value); values-within-range checks (such 
as all Cu assays between 0 and 100 %); presence of duplicate 
sample coordinates (to avoid batches of data being entered 
twice); and others as deemed appropriate. It is important to 
consider, however, that these checks are a first line of defense 
against potential errors, but are not sufficient by themselves 
to ensure database integrity, and thus do not preclude the 
need for periodic reviews and additional checks.
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There should be established procedures for safe keep-
ing and updating the database such that no errors are in-
troduced. All these procedures should be documented in a 
manual always available as part of the audit trail for future 
reference. In addition, the protocols and procedures that 
have been formally established should be periodically re-
viewed and audited to ensure that they are applied as in-
tended. Record-keeping of these internal reviews provide 
a very useful log of the evolution of the stored informa-
tion. Much like an owner’s maintenance log of a car, it will 
increase the value of the project and the reliability of the 
resource model.

Backups of the electronic database should be preserved in 
different locations. The database itself should be relational, 
and preferably not require specialists for custody and main-
tenance.

Checks against original information should be done by 
comparing the original assay certificates, as issued by the 
laboratory and properly signed by a laboratory representa-
tive, against the values stored in the database. This check 
should also be done against the original geologic logs, the 
original down-the-hole information (certificates or photos, 
depending on the method used), and the original signed sur-
veyors report for drill hole collar locations. The expected 
error rates commonly accepted is 1 % or less of all records 
when comparing the original information and the comput-
erized database. Although practitioners take different ap-
proaches, it is common to differentiate consequential and 
non-consequential errors. More tolerance is applicable when 
dealing with errors that have little impact.

Bulk density data is often forgotten in the validation pro-
cess. Chapter 5 discusses in more detail the importance of 
density data, but in all cases, there should be sufficient num-
ber of measurements for each rock type or geologic domain; 
their location should be well-documented; and the measure-
ment should be of in-situ density. Measurements on crushed 
material (such as the ones performed by metallurgical labo-
ratories) are not adequate for resource estimation. Voids 
that may be present in the rock are one of the most common 
sources of error, and thus the measurement should be taken 
using a wax-coated method. For some types of deposits, such 
as massive sulfides or deposits in lateritic or tropical envi-
ronments with high humidity, bulk density is a key variable 
that may be a significant source of error.

Details of suggested sample quality assurance and qual-
ity control programs were discussed in Chap. 5. The avail-
able information should be analyzed well in advance of the 
completion of the resource model, and while drilling is on-
going. This allows corrective measures, such as re-assaying, 
to be completed before the modeling process begins. This 
information should be stored as part of the overall project 
database.

11.3 Resampling

Cross-validation and jackknife techniques are sometimes 
used in an attempt to determine the “best” variogram model 
to use in the grade estimation process. Also, kriging plans are 
sometimes optimized based on cross validation exercises.

There are several flavors of these methods, the most com-
monly used requiring that a sample be extracted from the 
database and its value re-estimated using the remaining sam-
ples and the variogram models being tested. If multiple var-
iogram models and estimation strategies are tested, then the 
one that produces the smallest error statistics can be chosen. 
As tempting as it sounds, this cross validation method should 
not be abused, as discussed below.

A more acceptable alternative, but used little in practice, 
is to discard from the dataset a sub-group of data, and re-es-
timate or simulate it using the remaining information and the 
variogram models being tested. This method requires using 
a well established stationary domain with a good number of 
samples, such that about 50 % of them can be taken out and 
still the variogram model and other statistical properties are 
maintained.

11.3.1  Cross-Validation

This technique, sometimes also called jackknifing, has been 
used to validate alternative variogram models. The idea is 
to re-estimate each drill hole sample interval z(xα) (α = 1,…, 
n) ignoring the sample at that location, and using the other 
(n − 1) samples in the re-estimation. After repeating this pro-
cess for each sample throughout the domain of interest, a set 
of n errors [z*(xα) − z(xα)] is available, where z*(xα) are the 
re-estimated values at each location, for which the known as-
sayed value z(xα) is available. Statistics performed on these 
errors give an indication of the goodness of the variogram 
model and kriging plan used in the re-estimation. Typical-
ly this method is used to compare two or more alternative 
variogram models, or alternative types of kriging (ordinary 
kriging, universal kriging, etc.), or different kriging plans.

 The validity and usefulness of this type of cross-
validation techniques have been rightly questioned, mainly 
because the method is not sensitive enough to detect minor 
advantages of, say, one variogram model over another (Clark 
1986; Davis 1987). In addition, the analysis is performed 
using the set of samples, which does not allow for any defi-
nite conclusion about the final block estimates. A ranking of 
alternative variogram models according to their performance 
in re-estimating samples will not necessarily correspond to 
the ranking when performing the final estimation run.

Another potential issue when using this technique is 
whether the closest samples to the one being re-estimated 
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should be ignored in the jackknifing process. Since the var-
iogram models are not very sensitive to small changes (see 
comments regarding the robustness of kriging with respect to 
variogram models, Chaps. 6 and 8), the error statistics may 
be misleading or too similar to provide effective guidance.

Still, the technique may be useful as an indication of 
how appropriate the variogram models are, in particular 
when comparing two very different variogram models. 
Also, the statistics generated are an aid in understanding 
the results of a geostatistical analysis, and hence it should 
be seen as another exploratory data analysis tool. It may 
also detect serious modeling errors and flag numerical or 
computational problems encountered when solving the 
kriging equations. 

The cross validation method based on splitting the data-
base in two subsets of the drill hole data is a more interesting 
alternative as long as the domain is stationarity and there is 
sufficient data to obtain a statistically meaningful set of errors. 
This cross validation method has the same purpose explained 
above. Journel and Rossi (1989) describe a case where this 
cross validation was used to evaluate the differences between 
ordinary and universal kriging. If a “true” dataset is available, 
then the results can be compared in terms of distribution of 

errors, as shown in Fig. 11.1. These comparisons can be show 
as distribution of the errors (PDF and CDFs) and a cross plot 
of true vs. estimated values. Also it is useful to look at the 
relationship between errors and true values.

The magnitude of the errors may be correlated to location, 
and thus is it useful to obtain a location map of errors, as 
shown in Fig. 11.2. Cross-validation can thus be considered 
a rehearsal before the production run.

11.4  Resource Model Validation

The mineral resource model should be validated using statis-
tical and graphical tools (Leuangthong et al. 2004). The sug-
gested checks are useful to ensure the internal consistency 
of the model, which implies that the model has the expected 
characteristics; also, that there are no gross or spurious er-
rors, and that all processes were implemented correctly. The 
resource model validation in fact should cover the data and 
the geological model used, the estimation domains defined, 
and the geostatistical model applied.

It is good practice to allow for model iterations in the 
model building schedule and budget. By changing estimation 
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parameters it is possible to better control the estimated 
grades, including smoothing, contact grade profile reproduc-
tion, and global unbiasedness.

11.4.1  Geological Model Validation

The validation of the geologic model should be both statis-
tical and graphical. A discussion on graphical validation is 
presented later in this chapter.

The geologic model is key in determining the tonnages 
above cutoff of the resource model. This is because the 
estimation domains generally define high, medium, low 
grade, and barren zones. Those volumes with grades mostly 
higher than the economic cutoff will be sent to the process-
ing plant. If the volumes of these zones have been over or 
under-estimated, that error will directly translate into errors 
in the corresponding tonnages above cutoff. In those circum-
stances, there is very little that geostatistics can do to correct 
the volumetric bias.

The most common numerical check is by looking at the 
proportions of each geologic unit in the database compared 
to the proportions (volumes) of the modeled three-dimen-
sional solids. This is normally done by back-tagging the 
composites used for resource estimation with the codes from 
the modeled geologic units. Then, the statistics of each mod-
eled units can be compared to the original, logged intervals 
that were used to create the model. Some discrepancies are 
acceptable, as there may be some units too small or too com-
plicated to model, and some intercepts in the drill hole data-
base that are too narrow to be considered. A possible target is 
to have a better than 90 % coincidence for each geologic unit 
between the logged intervals and the back-tagged compos-
ites, but this percentage will vary depending on how com-
plex the geology is.

Another check that can be performed, similar in concept, 
is to assign geologic codes to blocks using the Nearest Neigh-
bor (NN) technique. The assumption is that the declustered 
data (through NN) correctly represent the proportion of each 
mineralization type and lithology within the deposit. Then it 
is expected that the corresponding modeled volumes repre-
sent similar proportions for each minzone and lithologic unit.

There are a few caveats to this check. First, the assump-
tion is that the mapped and logged meters in the drill hole 
database are representative. Spatial clustering or spatially 
non-representative data is one possible source of error. 
Additional possible discrepancies occurs if changes to the 
originally mapped drill hole information are made as inter-
pretation progresses, and they are not incorporated into an 
updated database. Sometimes the decisions are made at the 
time of interpreting the units, and do not prompt a full-scale 
re-logging or any changes in the database.

Also, the interpreted volumes may not be representative be-
cause some of the units are “border” units in the model. Thus, 
they may be extended beyond what would be reasonable for 
other units, as is the case with wall or host rock in Lithology 
models. The check is applicable for the units that are well de-
limited within the model and enclosed by the outlying units.

11.4.2  Statistical Validation

The basic statistical analysis compares means and variances 
of the data and the model, including the spatial correlation 
models in the case of simulations. In all cases, the drill hole 
data used in these checks should be the same as the data used 
to estimate the model, generally composites. This should be 
done per estimation domain used to condition the estima-
tion or the simulation and using representative (declustered) 
drill hole statistics for each domain. Figure 11.3 shows an 
example of histogram of estimated Au values.
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The histograms and basic statistics may be compared to 
the original, declustered drill hole data used to estimate the 
grades for each domain. This is to check, among other as-
pects, that the overall means (without applying a cutoff) are 
very similar, since the estimated grades should be unbiased. 
Also, the shape of the histogram can provide clues as to the 
quality of the estimation, in particular if the domain con-
sidered is not strictly stationary, with discontinuities in the 
grade population. Sometimes, a peculiar composite selection 
method at the time of estimation may cause artifacts on the 
shape of the histogram of estimated grades, such as creating 
artificial boundaries. Because of this, it is convenient to al-
ways look at the frequency distribution of estimated grades, 
not just a box plot or a table of main statistics.

It is also important to check the grade trends as observed 
in the data compared to the model. This can be accomplished 
by plotting declustered drill hole grades vs. block model aver-
ages based on the three main Cartesian coordinates, and con-
sidering significantly large volumes at a time. Slices or swaths 
are usually defined for each main direction. The swath width 
should be large enough to provide reasonable estimates of the 
average declustered grade for the slice, which is approximated 
usually with a NN estimate. Figure 11.4 shows an example.

Another important aspect that the resource model should 
adequately reproduce is the behavior of grades near contact 
zones. The model should be checked to ensure that the grade 
profiles near contacts are reproduced, based on the conditions 
imposed at the time of estimating. This involves producing 
contact profiles from the resource model. One such compari-
son is shown in Fig. 11.5. Note that the block model grades 
are somewhat smoothed near the contact, and tend to margin-
ally over-predict the grades of Unit 5 while under-predicting 

the grades of Unit 6. This type of comparison should not be 
analyzed in isolation, rather as one more piece of the puzzle 
before deciding to either iterate the grade estimation process 
changing some parameters, or accepting the model as is.

One of the most important issues to be assessed is an 
evaluation of the degree of smoothing and conditional bias 
in the block model, and how it compares to the expected or 
theoretical smoothing of the actual or planned operation. 
Excessive smoothing of the model grades amounts to too 
much internal dilution being added to the model. By using 
geostatistcal models to predict the expected internal dilution 
(volume-variance effect), the amount of internal dilution ex-
pected for a given Selective Mining Unit (SMU) can be pre-
dicted. Therefore, a target or reference grade-tonnage curve 
can be developed to validate the resource model.

Table 11.1 shows the comparison of the predicted SMU 
distribution vs. the grade model in terms of means and 
coefficient of variations, while Fig. 11.6 shows a grade-
tonnage curve where both the predicted SMU and the es-
timated grade model are compared. Notice that, for most 
cutoffs, the grade model appears to predict slightly higher 
tonnage and lower grade than predicted for the SMU dis-
tribution. In most cases, small differences such as the ones 
shown are acceptable since the resource model should in-
corporate other types of dilution, not just within-block, or 
internal, dilution.

11.4.3  Graphical Validation

It is always good practice to visualize graphically the model 
obtained using an appropriate scale to observe both the data 

 

Fig. 11.4  North-South trend 
of Au grades (%), 50 m slices
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and the geologic codes applied. This should be done both on 
the computer screen, using the visualization capabilities of 
the mining software used, and on as large a sheet of paper as 
practical, paper size E being the most common.

Typically, cross sections and plan views of the geologic 
model and of the block model grade and the composited 
drill hole data are plotted out. Figure 11.7 shows a detail of a 
cross section comparing two models of mineralization units 
for BHP Billiton’s Cerro Colorado mine. The two models 
are compared with different shades for the outlines of the 
units. The old model is represented in white outline while 
solid colored outlines represent the updated model: green is 
oxides, red are enriched supergene sulfides, and yellow is 
a transitional supergene-hypogene unit. Brown is the leach 
cap unit, and purple is the hypogene unit, for which the in-
terpreted outlines are not shown here.

This comparison is appropriate when a new, updated 
model has been interpreted based on additional drill hole 

data, and it is necessary assess the impact of the new drilling 
on the old interpretation. Notice that a new drill hole (second 
from right in the Fig. 11.7) has truncated the upper oxide 
body (in green) and has created a small isolated supergene 
sulfide body (in red). The outlines of the previous and up-
dated model are visible.

Figure 11.8 shows an example of a cross sectional view 
with color-coded block grades, as well as drill hole composite 
grades. Several surfaces are also shown, including current 
topography (in green) planned final pit outline (in magenta), 
and the mineralized envelope that defines the volume filled 
with blocks. Good practice is to use warmer colors for higher 
grades, and the same color scheme for both blocks and com-
posite grades.

Detailed review and examination of these plots provides 
assurance that the estimation or simulation procedure did not 
produce unexpected erroneous results. It also provides a set 
of ready plots for future reviews and audits, internal or exter-

Fig. 11.5  North-South trend 
of TCu grades (%), 50 m 
slices

Estimation 
Domain

Kriged  Mean 
Grade

Predicted 
Mean Grade 
of the SMU

Coef. of 
Variation of 

Block 
Estimates

Predicted 
Coef. of 

Variation of 
the SMU

1 0.805% 0.882% 0.745 0.698 

2 1.553 % 1.673% 0.504 0.470 

3 0.231% 0.333% 0.735 0.805 

4  1.294% 1.648% 0.579 0.599 

5 0.691% 0.823% 0.639 0.649 

6 0.509% 0.611% 0.563 0.596 

7 0.927% 1.058% 0.607 0.627 

Table 11.1  Example of target 
vs. achieved basic statistics by 
estimation domains
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Fig. 11.7  Detail of cross 
section 82230N of the Cerro 
Colorado Cu deposit in 
Northern Chile, showing color 
coded geologic units for two 
models being compared and 
drill hole with the mapped 
units. Courtesy of BHP Bil-
liton
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Fig. 11.6  Example of grade-tonnage curves comparison between the discrete Gaussian-predicted model for the SMU, and actual resource model 
grades
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nal, and should be considered part of the final documentation 
regarding the resource model.

11.5  Comparisons with Prior and Alternate 
Models

It is always necessary to compare updates with prior models, 
a visual example of which was shown in Fig. 11.7. The com-
parison is useful for both operating mines and development 
projects, since the resources and reserves of any deposit 
evolve over time because new drilling changes the informa-
tion available and the quality of the models, and also because 
the operation is mining out portions of the deposit.

The comparison between models must be done ensuring 
that the portions of models compared are relevant to each 
other. For example, care must be taken if the definition of 
the estimation domains has changed from one model to the 
next; if the selectivity of the mine or dilution conditions 
have changed; or if the economic cutoff of the operation has 
changed with time. These aspects will impact not only the 
methodology used to estimate the updated resource model, 
but also its reporting and documentation.

Figure 11.9 shows the histogram of the differences in gold 
grades (in g/t) between two blocks models, prior and updat-
ed, on a block basis. A negative difference means that the up-
dated model has lower grades. In this case, there is little dif-
ference between the two. Notice how the histogram quickly 
highlights the blocks where the differences in grade are most 
extreme (the maximum and minimum, and the 25th and the 
75th percentiles). These blocks can be identified in space and 
the reasons for the significant differences fully understood.

Another numerical example is shown in Fig. 11.10, where 
the Q-Q plot of two models for the Escondida mine (charac-
terized by their development date) is shown. Note that this 
and most other numerical comparisons are most useful when 
comparing corresponding estimation domains. In the case of 

Fig. 11.8  Detail of a cross 
sectional view showing color 
coded model on 5 × 5 × 5 m, 
5 m composites grades, and 
mineralized zones. Also the 
surfaces corresponding to 
topography at the time of 
modeling, and predicted final 
pit are shown
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Fig. 11.10, the supergene enriched unit is being compared. 
Note how the December model is less smoothed (more high 
and low grades) than the February model. Indeed, one of the 
objectives of the update was to better control smoothing.

Whenever possible, a detailed decomposition of the main 
factors that are thought to affect the comparison must be 
made. All differences must be explained in terms of data den-
sity and values, geologic modeling, or other relevant factors.

Another option is to obtain alternative block models for 
comparison, using a different estimation or simulation tech-
nique. Simple models such as a Nearest Neighbor model can 
be used to check the resource model. Although the models 
are not comparable block by block because of the different 
methodology used to obtain the grades, they may provide a 
general indication that the resource model is reasonable.

Care must be taken to understand and state, where ap-
propriate, the characteristics of each model obtained, and 
the differences expected to be encountered due to their 
respective properties. Additionally, a clear definition of an 
acceptable match is required.

11.6  Reconciliations

Reconciliation of production information with the predictive 
models used is critical to evaluating their effectiveness and 
may allow for optimization of the resource modeling process 
(Rossi and Camacho 1999; Schofield 2001; Parker 2012). 
Whether mining open pit or underground, mine-to-mill rec-
onciliations can be one of management’s better tools to per-
form proper accounting and evaluate models.

Any reconciliation program should be based on a clear set 
of criteria and objectives. It should also be executed through 
a stepwise, logical approach. There are a number of assump-
tions and key requisites for reconciliations to be effective, 
and they are not without pitfalls. There are benefits and costs 
associated with the up-keeping of the information and safe-
guards should be used to avoid collecting and using mislead-
ing information.

Reconciliation procedures must be simple, robust, and 
specifically adapted to the operation. The reconciliation 
data should be reliable, and the procedures should include if 
possible the full production stream (model, mine, process-
ing facilities, and final product comparisons); therefore, the 
process may involve several predictive models (long-term 
and short-term block models), different open pit and under-
ground mines, stockpiling, and multiple processing streams.

11.6.1  Reconciling against Past Production

Production reconciliation can be considered an optimiza-
tion tool (Rossi and Camacho 1999; Schofield 2001). This 

concept goes beyond common industry practice because 
reconciliation is typically seen as a material movement and 
material balances accounting tool. If used as an optimization 
tool, the basic data used to analyze the performance of the 
predictive has to be sufficiently accurate and precise.

The main purpose of any reconciliation program in a pro-
ducing mine is to properly account for all material mined, both 
ore and waste. But it can also be used to assess the accuracy 
of the resource and reserves models, therefore allowing for a 
more accurate valuation of the mining property at all times.

These objectives are interrelated, and they all share some 
basic requirements if the results are to be meaningful. The 
most important requirement is, naturally, reliable data. This 
is not trivial, since many operations do not sample mill head 
grades and tonnages adequately. Automatic sampling de-
vices placed on the input stream to the processing facility 
may be expensive, but are invariably well worth the expense. 
Unfortunately, this is often not realized until well into the 
operation’s life, if at all.

Sometimes there are other issues associated with sam-
pling some of the processing streams. For example, run-of-
mine (ROM) material cannot be sampled because the rocks, 
as blasted, are loaded directly into leach pads. Without fur-
ther size reduction, sampling of ROM material is impracti-
cal. In general, leach operations that stack coarse material 
do not lend themselves to reliable sampling of head grades, 
and they must rely on blast hole information (pre-blast) to 
provide an estimate of grade loaded to heaps. Reliable head 
tonnages may not be available also, unless a careful program 
of truck weighing is implemented or each truck is equipped 
with a weightometer. The weightometer should be calibrat-
ed on a regular basis. Some operations, for simplicity, use 
truck factors, derived from long-term averages of material 
delivered to the mill. The use of truck factors is unreliable 
and non-specific to the area or period being mined, and thus 
should be avoided.

At some operations blast hole data may not be reliable; 
the operation may not sample blast holes; or may not sample 
all the blast holes available. In underground mines, sampling 
grades from production stopes is difficult at best, often relying 
on grab or muck samples to inform stope grades. Bulk ton-
nage mining methods, such as sub-level or block caving, may 
sample sufficient tonnage of ore at the stopes’ draw points, but 
this is not always done. These problems should be assessed 
to evaluate whether implementing a detailed reconciliation 
program would result in reliable information, suitable for 
long- and short-term model calibration. If certain changes or 
additions are required, such as a new sampler for head grades, 
it is generally feasible to perform a cost-benefit analysis that 
would allow management to make informed decisions.

In addition to having reliable raw data, it is necessary that 
the operation’s top management be committed and involved 
to facilitate the necessary coordination among the geology, 

11 Resource Model Validations and Reconciliations
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mining, and metallurgy departments, which includes a clear 
delineation of responsibilities, thus ensuring proper informa-
tion gathering and processing.

The first requirement is essential because production rec-
onciliation can quickly become a bone of contention among 
the groups involved. Reconciliation can be a minefield be-
cause of inevitable organizational politics. As readers that 
are or have been involved in operations would all too easily 
recognize, metallurgists will tend to blame production rec-
onciliation discrepancies on the mine for lower head grades, 
while the mining department in turn will tend to blame the 
geology department for poor predictive models; and the ge-
ology department will eventually propose that more in-fill 
drilling is required to solve the mine to mill reconciliation 
discrepancies. Therefore, the best way to ensure a good faith 
effort from all involved is for an Operations Manager to rec-
ognize the importance of the issue, and to adequately dis-
tribute responsibilities and prioritize the tasks involved in a 
reconciliation program.

Finally, the procedures and data sources should be main-
tained constant through time, as much as possible, to allow 
for relevant comparisons regarding model, mine, and plant 
performances. There are multiple options for establishing a 
reconciliation program, but in all cases it should be devel-
oped from basic principles as discussed. Figure 11.11 shows 
an example of monthly reconciliations based on raw, non-ad-
justed data, and thus more likely better reflecting operations 

performance. In this case, note how reconciliations improve 
at a certain point in time after introducing corrective mea-
sures in the modeling process.

11.6.2  Suggested Reconciliation Procedures

A simple but systematic reconciliation approach is proposed 
to compare Long-term block models to Short-term models, 
grade control models, mine reported, and mill feed informa-
tion, if available.

The reconciliation procedure is common in industry. 
Most operations that reconcile production against predictive 
models do so utilizing some variant of comparison factors, 
sometimes known as Mine Call factors. The presentation 
here is based on an expanded scheme from that proposed by 
Parker (2012).

The performance factors proposed here are intended to 
separately evaluate the performance of long-term models 
(resource and reserve block models), short-term models 
(quarterly or monthly, see Chap. 13), daily grade control 
models, and dilution and ore losses resulting from mining 
(operational dilution). These comparisons ideally are an-
chored in reliable head grades and tonnages to the process-
ing facilities. The information should be compared based on 
a reasonable production period, most commonly on a month-
ly basis, although there can be exceptions to this.

Fig. 11.11  Example of long-term versus mine reported reconciliations. Observe that after 05/1997 the reconciliation changes. The factors have 
not been adjusted to overall metal production
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Comparisons based on longer periods (quarterly, semi-an-
nually, or even yearly) may be necessary and the only avail-
able option if the quality of the information is relatively poor, 
or if the operation operates on a very small scale. Estimating 
average values of larger volumes of data (periods) is easier 
than for smaller periods. Also, longer periods may be neces-
sary if the operation handles a significant number of stock-
piles, since accurately measuring tonnage and grades drawn 
from and put into stockpiles is difficult. The suggested meth-
od does not include internal reconciliation of the processing 
facilities (mill balances), which should be an integral part of 
the reconciliation process, but outside the scope of this book.

The basic information to be compiled includes:
•  Tonnage, grades, and metal content of the long-term 

resource model for the period. This implies obtaining the 
mine advance positions for the period, and to superim-
pose them on the block model.

•  Similarly, tonnages, grades, and metal content should be 
obtained from short-term models for the same periods, if 
they exist.

•  Tonnage, grades, and metal content should be obtained 
from the daily production model (grade control model). 
This information should be gathered daily, but compiled 
into the proper reconciliation period (monthly). In open 
pit mines, the grade control model for the same periods, 
with all its potential problems and pitfalls, including 
sample quality and sometimes inadequate modeling tech-
niques, represents the best possible “in-situ” information 
available, given the typical density of information. Some-
times this is also true for underground mines, but more 
commonly, the only reliable information is the short-term 
model from which the final stope designs are made.

•  Tonnage, grades, and metal content as reported by the 
mine should also be compiled. The grade usually cor-
responds to the grade assigned to the extracted panel or 
stope by the grade control model. This may include some 
downgrading to consider operational dilution and ore 
loss, as well as blast movement. Reported tonnage may 
be from truck weights (preferably avoiding truck factors), 
or by direct topographic measurement of the extracted 
volumes. Sometimes the only tonnage available is the one 
reported by the grade control model.

•  Tonnage, grades, and metal content informed as head 
grades and tons. This should be based on direct sampling, 
as opposed to back-calculated from tailings grades and 
adjusted recoveries. Back-calculated head tonnage and 
grades should not be used for model optimization.

There may be stockpiles to be considered in between the 
mine and the mill. Also, material within the metallurgical 
stream itself should be accounted for. However, some or all 
of these stockpiles may not be relevant to the reconciliation 
program if they are completely “turned over” or replaced 
within the reporting period. In that case, they can simply be 
ignored for production reconciliation.

With the information described above, several dimen-
sionless factors can be calculated:
1. F1 factor, defined for tonnage, grade, and metal content 

(F1t, F1g, F1m). It is calculated from the corresponding ton-
nage, grade, and metal of the long-term and short-term 
models as:

2. F2 tonnage, grade, and metal content factors (F2t, F2g, 
F2g). These compare the grade control (production) model 
versus the short-term model (if it exists), and are calcu-
lated as:

3. F3 factors (F3t, F3g, F3m) may be defined based on the ton-
nages, grades, and contained metal of the monthly mine 
report versus the grade control model. Sometimes mine 
reports for tonnage and grades are simply taken from the 
grade control model, and are informed as material sent 
to the mill. In other instances the mine reports the grade 
provided by the grade control model (in open pits gener-
ally there is no other option, although for underground 
operations may be based on additional sampling), but the 
reported tonnage is based on truck weights, counts, or 
volumetric measurements of the advances. If applicable, 
the F3 factors are calculated as:

4. F4 factors (F4t, F4l, F4f) based on tonnages, grades, and 
metal content of the “received-at-mill” material versus 
the mine reported material. The F4 factors may be calcu-
lated as:

Not all these factors need to be defined, as for example 
when no short-term model exists. Note that, as defined, a 
factor greater than 1.0 implies underestimation, while a fac-
tor smaller than 1.0 implies overestimation. From these fac-
tors, several performance measures can be readily obtained. 
For example, to quantify, the performance of the long-term 
model in terms of tonnage and grade of ore delivered to the 
mill, the FLTM factor is obtained as:

F1 =
Short-term

Long-term

F2 =
Grade-control

Short-term

F3 =
Mine-reported

Grade-control

F4 =
Received-at-mill

Mine-reported

FLT M =
Received-at-mill

Long-term
= F1 × F2 × F3 × F4

11 Resource Model Validations and Reconciliations
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FLTM measures how well the resource block model predicts 
material delivered to the mill, which is the basis for the pre-
diction of future cash flows from the operation. Similarly, 
an FSTM can be defined to quantify the benefits achieved by 
in-fill drilling, assuming an intermediate short-term model 
is developed:

To compare the performance of the grade control model ver-
sus the material received at the mill, that is, to evaluate mine 
operating performance and unplanned dilution and ore loss, 
FGCM can be calculated as:

Finally, note that the F4 factor measures directly the opera-
tional ore loss and dilution. This is, naturally, assuming that 
the sampling points at the mill are deemed reliable for both 
feed tonnage and grades.

2 3 4

Received-at-mill
Short-termSTMF F F F= = × ×

FGCM =
Received-at-mill

Grade-control
= F3 × F4

It is important to consider an appropriate time scale for 
these comparisons. For example, it is not likely that com-
paring the resource model and the material delivered at 
the mill on a weekly or bi-weekly basis is relevant. The 
purpose of the resource (long-term) model is to support 
long-term mine planning and scheduling, which is gener-
ally based on time-units of monthly, bi-annually, yearly, or 
greater. Therefore it is not appropriate to compare them at 
a smaller time unit, since the long-term model should not 
generally be used for small-scale estimation. Similarly, and 
depending whether stockpiles exist and how large they are, 
the F4 factor can be compared on a daily basis, since it mea-
sures the mine reported material versus the received at mill 
material.

Figure 11.12 shows an example of the results of monthly 
reconciliation for a heap-leach Au operation between the 
Long-term resource model and the “received at mill” val-
ues. Note that monthly factors can vary significantly from 
one month to the next, which may be mostly a function of 
production tonnage (smaller mines tend to have larger rela-
tive deviations) and geologic complexity. If deemed reliable, 
graphs like the one shown in Fig. 11.12 should be used to as-
sess the predictive capabilities of the models and to improve 
future models.

Fig. 11.12  Long-term resource model vs. received at mill reconciliation
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The common expectation is that the resource models 
generally match past production. This is based on the as-
sumption that if the model does not estimate well the grades 
and tonnages of past production areas it is valid to question 
its predictive capabilities. However, there are other aspects 
that may have to be considered. These are related to the 
quality and reliability of the production information and to 
possible systematic biases in the data used. For example, 
a drill hole database that is systematically biased low in 
grade will always produce resource models that underesti-
mate production. There have been several cases in industry, 
such as many of the copper mines in Northern Chile (Los 
Pelambres, Escondida, Radomiro Tomic, the Gabriela Mis-
tral project, and others), where the Cu grade from samples 
obtained within the supergene enrichment horizons under-
estimate the in situ grade. Mineralization is sometimes lost 
as very fine dust, the most obvious evidence being signifi-
cant dust plumes light blue or green in color observed when 
drilling the supergene blanket!

Other examples include the presence of coarse gold, 
which implies a high nugget effect deposit. Drill holes will 
generally not sample all the gold in situ, because the coarse 
gold particles may not be picked up by the core or cuttings, 
and unless very large diameter or bulk samples are taken, 
the true grade of the deposit is only known after processing 
the ore. All these factors may contribute to a poor compari-
son between the resource model and production informa-
tion.

Another important issue is to what extent past produc-
tion can be used to “calibrate” current resource model. The 
answer depends on the geology of the deposit and the char-
acteristics of the mine operation. It is possible to implement 
estimation strategies that are intended to reproduce recent 
production (for example, for the past two years), based on 
monthly volumes and for each estimation domains defined. 
The assumption is that the methodology used in successfully 
re-estimating recent past production should work equally as 
well in the near future.

When reconciliation data is considered reliable, past 
production can be used to produce error estimates, i.e., an 
uncertainty model, for specific volumes and estimation do-
mains. These Mine Call Factors, essentially FLTM above, 
would be applied to individual estimation domains.

The authors caution against applying MCFs to resource 
models because they tend to be global, even if developed 
for each estimation domain. It is preferable to use the Fac-
tors to calibrate the resource model, as opposed to using 
them as correction factors. The main issue is again whether 
matching past production is relevant to predicting future 
resources. At least, past production should be used to pro-
vide a “reality check” on the models developed, both for 
resource estimation and simulation and risk analysis.

11.7  Summary of Minimum, Good and Best 
Practices

Minimum practice for checking and validating a resource 
model includes thorough use of statistical and graphical 
tools available to assess the degree of internal consistency of 
the model. Checking for potential biases is important, both 
in the geologic model (which may translate into mineralized 
tonnage bias) and in the grade model. Biases regarding the 
data used should be assessed, and considering all potential 
sources. The most important issues include:
a. Sampling and analysis, including the QA/QC program in 

place, the results, and a discussion of the potential conse-
quences of the observed deviations.

b. The quality of the database, including error rates.
c. Topographical and hole locations errors, including drill 

hole deviations and its impact on both the interpreted ge-
ology and the grade model.

d. Density determinations and issues such as the number 
and quality of the available samples, the validity of their 
spatial representation for all estimation domains, and pos-
sible errors in the assignment of block density values.

e. The definition of estimation domains as a source of po-
tential bias, including non-stationary domains.

f. The implementation of the Kriging plans, smoothing and 
conditional biases.

g. Resource accounting, the use of appropriate economic 
cutoffs, etc.

Also, consideration should be given to the resource classifi-
cation scheme, and its implication in resource declarations. 
At a minimum, comparisons should be made between past 
production (if available) and the resource model, and possible 
discrepancies explained in detail. There should always be a 
full documentation and disclosure document, including a full 
set of sections and plan views at an appropriate scale, showing 
the geologic model, the data used for interpretation and mod-
eling, the composite dataset used for estimation or simulation, 
and the block model itself, showing all important variables.

Good practice requires, in addition to the above, a more 
thorough validation using additional tools. Checks and as-
sessments of accuracy of the predictions are also required. 
The resource model should be checked using alternate mod-
els, comparing to prior models, and detailed production 
reconciliations, if available. The resource model should be 
calibrated using a known “truth”, for example production 
data. And a detailed description of the process should be 
provided as an integral part of model validation.

Best practice consists of, in addition to the above, full 
use of alternative models available to characterize the qual-
ity of the resource model presented. Conditional simulations 
should be used to provide global and local uncertainty mea-
sures, as described before, interpreted here as further valida-
tion of the resource model.

11 Resource Model Validations and Reconciliations
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In all cases, a detailed audit trail should be documented, 
corresponding to the level of detail of the resource model 
and the development stage of the mining project or mine.

11.8  Exercises

The objective of this exercise is to review cross valida-
tion and to experiment with ways of checking uncertainty. 
Some specific (geo)statistical software may be required. The 
functionality may be available in different public domain or 
commercial software. Please acquire the required software 
before beginning the exercise. The data files are available for 
download from the author’s website—a search engine will 
reveal the location.

11.8.1 Part One: Cross Validation

Provided with enough data, cross validation is a useful ex-
ercise. The drillholes are left out one at a time and re-esti-
mated from surrounding drillholes. Blunders in the data or 
estimation may be detected, as well as obtaining an initial 
appreciation for the expected degree of uncertainty.
Question 1: Setup to perform cross validation with the 

largedata.dat used in previous exer-
cises. Plot a scatterplot of the estimate versus 
the true value and a histogram of the errors. 
Look for data/drillholes where unusually 
large over- or under-estimates have occurred. 
Comment on the results.

Question 2: Perform between 2 and 4 reasonable sensi-
tivity runs and document. You could vary the 
search, the number of data or the variogram 
model. Comment on the results.

11.8.2 Part Two: Checking Simulation

The goal of simulation is to reproduce the input histogram 
and variogram. Use the same set of realizations constructed 
in previous exercises. You may have to recreate some SGS 
realizations.

Question 1:  Plot the histogram over 10 realizations and 
compare the mean and variance to from the 
realizations to the original declustered data 
used in the simulation. Comment on the 
results.

Question 2: Plot the variogram from 10 realizations (in 
one principal direction) and compare to input 
model. Comment on the results.

Uncertainty has a very precise meaning—80 % probability 
means that a proportion of 0.8 of the values should fall with-
in the 80 % probability interval. For the data in red.dat:
Question 3: Construct distributions of uncertainty of the 

normal scores transform of grade in cross 
validation mode.

Question 4: Calculate the proportions of true values within 
fixed  intervals  of  the Gaussian  distributions 
of uncertainty and plot an accuracy plot.

References

Clark I (1986) The art of cross-validation in geostatistical applications. 
Proceedings 19th APCOM, pp 211–220

Davis BM (1987) Uses and abuses of cross-validation in geostatistics. 
Math Geol 17:563–586

François-Bongarçon DM (1998c) Due-diligence studies and mod-
ern trends in mining. Unpublished internal paper, Mineral 
resources development, Inc

Journel AG, Rossi ME (1989) When do we need a trend model? Math 
Geol 22(8):715–738

Leuangthong O, McLennan JA, Deutsch CV (2004) Minimum 
acceptance criteria for geostatistical realizations. Nat Resour Res 
13(3):131–141

Parker HM (2012) Reconciliation principles for the mining industry. 
The Australasian Institute of mining and metallurgy. Mining Tech 
121(3):160–176

Rossi ME, Camacho VJ (1999) Using meaningful reconciliation infor-
mation to evaluate predictive models, Preprint, SME Annual meet-
ing, March 1–3, Denver

Schofield NA (2001) The myth of mine reconciliation. In: Edwards 
AC (ed) Mineral resource and ore reserve estimation—the AusIMM 
guide to good practice. Vic., AusIMM, Melbourne, pp 601–610

Vaughan WS (1997) (July) Due diligence issues for mining investors 
post Bre-X. Randol conference on sampling and assaying of gold 
and silver, Vancouver



209

12Uncertainty and Risk

Abstract

This chapter shows how multiple realizations can be used to support the assessment of 
uncertainty and risk.

12.1  Models of Uncertainty

All estimates have some error or uncertainty. Predictions are 
always inaccurate, with errors stemming from widely spaced 
data, geological variability, lack of knowledge to determine 
the best parameters for estimation, approximations made in 
the estimation procedure, and limitations of the models used.

Although the error will never be known except at 
locations where data are collected in the future, traditional 
statistics and geostatistics provide models of uncertainty. 
Chapters 8–10 discussed estimation, estimation variances, 
and methods to obtain a conditional distribution of uncer-
tainty for a random variable:

 (12.1)

Equation 12.1 is a complete description of uncertainty in the 
variable z based on our random function model. Obtaining 
reliable models for the conditional distributions denoted in 
Eq. 12.1 has proven difficult, particularly for small volumes 
(one block at a time), as opposed to large deposit-scale vol-
umes.

Early attempts in geostatistics to characterize uncer-
tainty relied on the kriging variance, typically in the form 
of confidence intervals attached to each estimated block 
grade:

 (12.2)

where d is the difference from the average value that defines 
the confidence level. For example, d = 2*σ (twice the standard 
deviation of the random variable) represents the 95 % confi-
dence level if the distribution has a Gaussian shape (Chap. 2).

( ; | ( )) Pr { ( ) | ( )}F z u n ob Z u z n= ≤

(µx|(n) − d) ≤ µx|(n) ≤ (µx|(n) + d)

The minimized estimation variance or kriging variance 
can only be equated to a local estimation error if the error dis-
tribution is Gaussian and the estimation error does not depend 
on the actual sample values, a property called homoscedastic-
ity, discussed in Chap. 8. In this case, the estimation variance 
could be associated to the variance of the error distribution. 
This is seldom found in practice because most grade distri-
butions are positively skewed and the local uncertainty will 
depend on the local grades; more uncertainty will be expected 
in high grade areas. The estimation variance does not provide 
a reliable uncertainty model for small blocks.

The kriging variance may be used in instances where the 
distribution is likely to be Gaussian. This may apply if very 
large volumes of material are considered, since most spatial 
distributions will tend to become more symmetric, and there-
fore become more Gaussian-like as more small scale values 
are averaged together. The reasonable limits of application 
are not known ahead of time, see Davis (1997) among others.

Other, more recently developed techniques, have attempt-
ed to introduce local measures of uncertainty by making the 
kriging estimation variance data dependent. Most of these 
techniques have been applied in the context of resource clas-
sification (for example, Arik 1999).

Non-linear geoestatistical techniques rely on data trans-
formation to obtain a probabilistic estimate that carries 
uncertainty (Chap. 9). Except for the case of the indicator 
transform, the uncertainty model is developed in the trans-
formed space, most commonly Gaussian.

Conditional simulation provides a model of uncertainty at 
each location by a set of simulated realizations. The uncer-
tainty is better described when a large number of realizations 
are available, but a relatively small number (say 100) is suf-
ficient to provide a reasonable approximation.

M. E. Rossi, C. V. Deutsch, Mineral Resource Estimation, DOI 10.1007/978-1-4020-5717-5_12,
© Springer Science+Business Media Dordrecht 2014
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Simulation techniques and the resulting models of un-
certainty rely heavily on stationarity; trends and departures 
from stationarity significantly affect the model of uncer-
tainty and its quality and usefulness. A model of uncertainty 
based on simulation depends on the Random Function model 
used. In certain deposits, a Gaussian-based model may be 
appropriate, while for others a non-parametric technique 
such as indicator simulations may be preferable. The model 
of uncertainty will also depend on the number and statistical 
characteristics of the conditioning data. Therefore, the model 
of uncertainty is not unique, nor is there an objective or true 
model of uncertainty: uncertainty is model-dependent. This 
has been discussed in Journel and Kyriakidis (2004) and 
Goovaerts (1997) among others.

Typically, simulations models cannot capture all possible 
sources of uncertainty that exist in a resource model. In this 
sense, they are incomplete descriptions of the space of un-
certainty, and thus it is relevant to discuss how appropriate 
the conditional simulation model is with respect to the prob-
lem at hand. 

A practical consequence of the dependence on a model 
is that the simulation method should be simulated from the 
same RF model used to obtain the resource model. It is im-
portant that they both share the same basic assumptions and 
implementation parameters; otherwise, the base case re-
sources could be different and the models incompatible.

 Sources of Uncertainty Resource models will include 
uncertainty from many sources. There are several factors that 
contribute to the overall uncertainty, and they do not necessar-
ily cancel each other out. The sample values themselves have a 
degree of uncertainty, partly coming from the intrinsic hetero-
geneity of the material being sampled; however, most sampling 
errors are due to the sampling process itself. Sampling theory 
deals with the development of procedures for minimizing sam-
pling variances, although there will always be an error that can-
not be fully eliminated. Sample collection, sample preparation, 
the chemical analysis itself, and the overall data handling are 
all sources of uncertainty.

The amount of drill hole information available depends 
on the geology and the project’s development stage. Typi-
cally, when additional data is included in the model, the un-
certainty will tend to decrease. Geologic models are also a 
major source of uncertainty. Based on sparse drilling, they 
are representations of mineralization controls but still car-
rying a degree of uncertainty stemming from mapping and 
logging; data handling; the interpretative process itself; and 
the development of the computerized model. Often, the geo-
logic model’s uncertainty has the most important impact on 
the resource model since it heavily conditions the estimated 
tonnages above cutoff (Fig. 12.1).

There is uncertainty related to the process of grade inter-
polation including data spacing, kriging method chosen, var-

iogram model and kriging plan. In addition, a correct amount 
of dilution must be included in order to predict tonnages 
and grades available at the time of mining. The prediction 
of recoverable resources and reserves is another significant 
source of uncertainty for resource models.

The model of uncertainty can also change when differ-
ent implementation parameters of the geostatistical models 
are used, as discussed in Chap. 11 and also Rossi (2003), 
among others. Seemingly minor decisions, such as whether a 
random path or a multiple grid search for simulating values 
is used, can impact the resulting uncertainty model. Other 
parameters typically considered are search radii, number 
of original data used, number of previously simulated data 
used, the number of simulations to be run, and the kriging 
method to be used, among others. One alternative is to assess 
the uncertainty related to implementation criteria by choos-
ing bounds or “best” and “worst” cases, although the process 
is subjective and difficult to justify.

There is limited information with large, unsampled areas 
between data points. There is uncertainty in the statistical 
parameters such as the overall mean of the deposit. A model 
of parameter uncertainty is also subjective, but may lead 
to a more realistic assessment. Some possible approaches 
to quantify parameter uncertainty include using an analyti-
cal model, the conventional bootstrap method or the spatial 
bootstrap method.

Bootstrapping is a name generically applied to statistical 
resampling schemes that allow uncertainty in data statistical 
parameter to be assessed from the data used to calculate the 
same parameter in the first place. The basic procedure is to 
draw n values from the original data with replacement, cal-
culate the statistic from the bootstrapped sample, and repeat 
a number of times to build up a distribution of uncertainty. 
It is assumed that the input distribution is representative of 
the overall distribution. If the drawing is done using Monte-
Carlo simulation (MCS), then there is an additional assump-
tion that the data are independent.

Assuming that the sample data are independent is not 
realistic when they are known to be correlated. The spatial 
bootstrap simulates at the data locations. The uncertainty 
generally decreases as  the number of drawn values  ( n) in-
creases. The spatial bootstrap requires a variogram for the 
data set, simulation, and then computation of the mean for 
each simulated set of data.

12.2  Assessment of Risk

An uncertainty model can be used to characterize risk. It is 
important to distinguish uncertainty and risk, since large un-
certainties, in some cases, may not lead to significant risks. 
In other situations, small uncertainties may correspond to 
unacceptable risk.
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Risk considers the impact of uncertainty on the applica-
tion being assessed. The concept is summarized as a “Trans-
fer Function” (TF, Matheron 1976), which conceptualizes all 
processes required to obtain the final product. For example, 

the TF can represent a pit or a stope optimizer and a produc-
tion or mine scheduler, used to define mineable reserves. If 
the uncertainty model is carried through the TF, then the risk 
of not delivering to the mill the expected number of tons 

Fig. 12.1  Multiple 
realizations represent a model 
of uncertainty of the original 
variable, while an estimated 
map does not have an attached 
uncertainty model
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at the appropriate grades can be assessed. From this assess-
ment, risk mitigation measures can be developed. The con-
cept is illustrated in Fig. 12.2.

Sensitivity analyses are commonly carried out by mining 
engineers. The impact of the commodity price or change in 
the estimated grades is assessed. If the different commodity 
price or grades result in significant changes in the designed 
pit walls, for example, then the material in question may be 
marginal. It is also important to identify areas of the pit that 
are extracted to contain few erratic or highly uncertain zones 
of mineralization. Engineers developing mine plans will usu-
ally consider simple sensitivity analyses, for example by ad-
justing the block model grades + 10 % and − 10 %. A similar 
approach is used to analyze the sensitivity of the project to 
metal prices, operating costs, and other relevant variables. 
But there are no standard procedures for this purpose.

A full risk assessment requires that the complete un-
certainty model (all realizations) be processed through the 
transfer function; this may involve a full mine planning ex-
ercise, including scheduling of ore through the mill for cer-
tain periods of the mine life (Jewbali and Dimitrakopoulos 
2009). In practice, certain shortcuts are possible, such as 
processing only the best, worst, and most likely scenarios. 
These shortcuts have their own pitfalls, including the criteria 
to rank the realizations.

Producing a detailed mine design from an optimized pit 
outline involves smoothing the outlines to provide minable 
shapes, while deviating as little as possible from the optimal 
outline. This process is manual, and the decisions made re-
garding the location and width of accesses, ramps, berms, and 
other geometric parameters required to make the mining op-
erational can be significant. Probability maps by bench and 
by phases can be used as guides during the final smoothing 
and design of the pit and definition of the ramp positions. 
Figure 12.3 (taken from Van Brunt and Rossi 1999) shows a 
bench map of the probability of each block being mined ac-
cording to the mine plan developed from the resource model. 
Developing conditional probability maps such as the one in 
Fig. 12.3 gives the mine planning engineer an advantage over 
conventional planning. Risks resulting from highly variable 
mineralization can be mitigated through the addition of inter-
mediate phases and modifying the position of the pit walls. 
Also, these maps can be used to target additional infill drilling.

Grade control is an application where risk analysis is used 
directly to make an economic decision. In this case, the con-
sequences of grade uncertainty are directly evaluated and 
the optimal choice is made based on the maximum profit or 
minimum loss choice.

The decision to recover and send to the mill or not a 
certain panel in the open pit is typically based directly or 
indirectly on grade estimates, z*(x). The loss function L(e) 
(Journel 1988; Isaaks 1990; Rossi 1999) is a mathematical 
expression that attaches an economical value (impact or loss) 
to each possible error, measured in, for example, dollars. 
By applying a loss function to the conditional probability 

Fig. 12.3  Bench mining probability map. Blocks are coded by prob-
ability of being mined. Magenta, blue, and maroon colors indicate the 
position of the intermediate and final mining walls. (From Van Brunt 
and Rossi 1999)
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Fig. 12.2  The Transfer Function for estimated and simulated models
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distribution (Eq. 12.1) derived from the realizations, the ex-
pected loss can be found by:

 

(12.2)

where Nreal is the number of realizations and z* is the re-
tained estimate.

The minimum expected loss can then be found by sim-
ply calculating the conditional expected loss for all possible 
values of the estimates z*, and retaining the estimate that 
minimizes the expected loss. As explained in Isaaks (1990), 
the expected conditional loss is a step function whose value 
depends on the assumed costs of each bad decision, and the 
relative costs of misclassification. This implies that the ex-
pected conditional loss depends only on the classification of 
the estimate z*(u), not on the estimated value itself, as long 
as all benefits and costs are constant with respect to grade.

The Loss Function thus quantifies the consequences of 
false positives and false negatives, weighs the probability 
and relative impact of each, and then provides the minimum 
cost solution under the loss model used. For example, the 
loss incurred when an ore grade panel is sent to the waste 
dump is a type of lost opportunity cost, measured by the 
profit that should have been realized. If the same panel is 
waste, but is sent to the mill, the loss is a combination of the 
loss incurred in processing material that does not produce the 
metal to pay for itself, plus the loss derived from the oppor-
tunity lost in processing payable material, if any.

Loss functions are in general asymmetrical, since the con-
sequences of under- or overestimation have different costs. 
In metal mining, where small volumes of ore may have high 
value, it is typically costlier to send ore to the waste dump 
than to process waste. Precious and most base metals mines 
have this characteristic, which is more notable if high eco-
nomic cutoffs are used. There are other cases where the op-
posite is true, such as high volume, direct-shipping iron ore 
mines, who prefer to avoid dilution in the shipment.

Optimal estimates can be derived for a Loss Function if 
the conditional distribution of the random variable is avail-
able. The uncertainty model as described by the realizations 
provides all the information required to optimize decision-
making under uncertainty.

When assessing uncertainty and risk it is also important 
to consider the scale of interest, i.e., the volume of mate-
rial being assessed. There are differences between a global, 
deposit-wide geologic confidence assessment and a more 
local, mine production-oriented risk assessment. A global 
confidence measure cannot be used for local, block-by-
block risk assessments. A typical example is the resource 
classification scheme, often used by mining engineers as a 
measure of confidence on mine schedules, for example on a 
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monthly basis. Resource classification, as discussed below, 
is generally meant to be a global guideline of confidence, 
meant mostly for the benefit of shareholders and investors, 
and should not be used as an uncertainty model to provide a 
detailed risk assessment of the mine schedule.

Figures 12.4 and 12.5 illustrate how risk may change as 
a function of the volumes considered. Figure 12.4 shows the 
monthly probability intervals of Cu grades for an operating 
copper mine. The graph shows the two values that corre-
spond to the P90 (90th percentile) and P10 (10th percentile) 
of the conditional distribution derived from the conditional 
simulations. It also shows the resource model grade for the 
same period, as well as the Mine Plan grade, which is gen-
erally a lower value than the resource model grade. This 
is because the mine planner sometimes adds dilution and a 
safety factor to the grade predicted by the resource model, 
typically on a monthly basis, not block by block. Mine plan-
ners may consider the monthly average grade provided by 
the resource model as risky, thus penalizing in some fashion 
the estimate. But the practice is variable and no standard 
methodology exists. It is dependent on the experience and 
prejudices of the engineer that defines the budgeted grade.

Figure 12.5 shows a similar graph for yearly periods of a 
5-Year Mine Plan. Note that Year 1 in Fig. 12.5 is obtained 
by simply averaging the grades of the 12 months shown in 
Fig. 12.4.

Note how Fig. 12.4 shows much more variability than 
Fig. 12.5. As expected, the smaller volumes represented by 
the 12 months in Fig. 12.4 are more variable than grades 
averaged over a yearly volume (Year 1, Fig. 12.5). Also, it is 
interesting to note that the grades predicted by the resource 
model and the mine plan do no necessarily fall within the in-
terval defined by the P90 and P10 limits. This occurs both for 
monthly and yearly volumes, and more so when considering 
periods further away in time. This is to be expected, since 
periods further away in time are likely to have less drilling 
and thus be more uncertain.

The risk of not achieving the predicted production for 
each period can be mitigated through further infill drilling. 
The infill drilling can be directed to those areas with higher 
uncertainty. A global confidence measure as used on most 
resource classification schemes would not allow optimiza-
tion of the infill drilling to that level of detail.

12.3  Resource Classification and Reporting 
Standards

Public disclosure of estimated resources requires that re-
source estimates be classified according to degrees of con-
fidence and allocated as measured, indicated and inferred. 
Reserves must be classified as either proven or probable re-
serves, derived under certain rules from resource categories. 
Different resource classification standards are used in differ-
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ent countries; while fairly similar in intent and form, each has 
its own particularities. The resource classification schemes 
are mostly intended to provide protection to the investor, and 

so are typically enforced by Securities Commissions or other 
appropriate government agency in each country.

Resource classification guidelines have been developed 
mostly as a response to the need for transparency in the 
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disclosure of mineral resources. As such, resource classifi-
cation is not necessarily a technical issue, but rather a self-
regulated response of the mining industry for conveying 
investment risk, and also as a response to some notorious 
fraud cases. The codes have been developed according to 
specific needs for each jurisdiction, although all have a gen-
eral common thread that makes them similar in spirit and in 
the application of its main concepts. Given the global nature 
of the mining industry, this commonality has led for a long-
standing effort towards internationalization of the codes, 
unifying some of the details of application, to define a set of 
worldwide accepted set of definitions, namely the Interna-
tional Standards (Miskelly 2003).

Although the most commonly used codes have attached 
guidelines to them, they are non-prescriptive in all that re-
lates to technical issues. Thus, the responsibility for the 
appropriateness of the disclosure is left to the technical 
competency of the individual(s) signing off on the resource 
calculations and classification, defined as the Competent or 
Qualified Person (CP or QP). In this context, the published 
Guidelines that accompany the different Codes are used to 
set minimum standards for practice, and are not intended to 
be used as enforcement tools.

The most widely used codes are the Joint Ore Reserves 
Committee (JORC, www.jorc.org); the CIM guidelines used 
in National Instrument 43-101: Standards of Disclosure for 
Mineral Projects (NI43-101) in Canada (www.cim.org); 
the Securities and Exchange Commision’s Industry Guide 
7 in the United States (www.sec.gov/about/forms/indus-
tryguides.pdf); the SAMREC code in South Africa (www.
saimm.co.za/samrec.asp); and the Pan-European Union 
and United Kingdom’s Reporting Code (www.crirsco.com/
PERC_REPORTING_CODE_jan2009.pdf).

The JORC code has received broad international accep-
tance. In Canada, most Provincial Securities Commissions 
and the Toronto Stock Exchange (TSE) have adopted NI 
43-101, which applies to all oral statements and written dis-
closure of scientific or technical information, including dis-
closure of a mineral resource or mineral reserve. NI 43-101 
defers to the Canadian Institute of Mining, Metallurgy and 
Petroleum (CIM) for definitions and guidelines. The Coun-
cil of Mining and Metallurgical Institutes (CMMI), of which 
CIM is a member, have developed a Resource/Reserve clas-
sification, definition and reporting system that is also widely 
accepted.

In recent years there has been an increased emphasis on 
the concept of a qualified (QP) or competent (CP) person. 
The professionals preparing resource models and statements 
are required to be experts in the field and also in the type 
of deposit being modeled. Typical requirements are that the 
individual(s) be members in good standing of recognized 
professional associations, which includes having approved 
a State or Provincial-sponsored professional exam, and have 

no less than 5 years experience modeling the same type of 
mineral deposits.

As an example, the 2010 CIM guidelines adopted in the 
National Instrument 43-101 of Canada allows classifying 
mineralization or other natural material of economic inter-
est as a Measured Mineral Resource by the Qualified Person 
when the nature, quality, quantity and distribution of data are 
such that the tonnage and grade of the mineralization can be 
estimated to within close limits and that variation from the 
estimate would not significantly affect potential economic 
viability. This category requires a high level of confidence 
in, and understanding of, the geology and controls of the 
mineral deposit.

Mineralization may be classified as an Indicated Mineral 
Resource by the Qualified Person when the nature, quality, 
quantity and distribution of data are such as to allow confi-
dent interpretation of the geological framework and to rea-
sonably assume the continuity of mineralization. The Quali-
fied Person must recognize the importance of the Indicated 
Mineral Resource category to the advancement of the feasi-
bility of the project. An Indicated Mineral Resource estimate 
is of sufficient quality to support a Preliminary Feasibility 
Study which can serve as the basis for major development 
decisions.

Mineralization is classified as Inferred Mineral Resource 
if the quantity and grade or quality can be reasonably as-
sumed, but not necessarily verified. Due to the uncertainty 
that may be attached to Inferred Mineral Resources, it cannot 
be assumed that all or any part of an Inferred Mineral Re-
source will be upgraded to an Indicated or Measured Mineral 
Resource as a result of continued exploration. Confidence in 
the estimate is insufficient to allow the meaningful applica-
tion of technical and economic parameters or to enable an 
evaluation of economic viability worthy of public disclosure. 
Inferred Mineral Resources must be excluded from estimates 
forming the basis of feasibility or other economic studies.

A Mineral Reserve is the economically mineable part of 
a Measured or Indicated Mineral Resource demonstrated 
by at least a Preliminary Feasibility Study. This Study must 
include adequate information on mining, processing, metal-
lurgical, economic and other relevant factors that demon-
strate, at the time of reporting, that economic extraction can 
be justified. A Mineral Reserve includes diluting materials 
and allowances for losses that may occur when the material 
is mined.

A Proven Mineral Reserve is the economically mineable 
part of a Measured Mineral Resource demonstrated by at 
least a Preliminary Feasibility Study. This Study must in-
clude adequate information on mining, processing, metallur-
gical, economic, and other relevant factors that demonstrate, 
at the time of reporting, that economic extraction is justified.

A Probable Mineral Reserve is the economically mine-
able part of an Indicated, and in some circumstances a Mea-
sured Mineral Resource demonstrated by at least a Prelimi-
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nary Feasibility Study. This Study must include adequate 
information on mining, processing, metallurgical, economic, 
and other relevant factors that demonstrate, at the time of 
reporting, that economic extraction can be justified.

Reporting Codes and corresponding Guidelines use 
vague language in its definitions, as it is difficult to provide a 
general Guideline applicable to all different types of mineral 
deposits and resource estimation practices. There is a gen-
eral tendency to suggest the use of some form of statistical 
description of uncertainty, if only as an accompanying tool 
that would clarify the degree of uncertainty.

All guidelines discuss geologic and grade continuity as 
key components of the classification criteria, sometimes add-
ing modifying factors to adjust to local conditions. It is the 
QP’s decision as to what an acceptable evidence of that con-
tinuity is, which may be partly dependent on the QP’s prior 
experience with that type of deposits. In practice, resource 
classification is often reduced to deciding the criteria to be 
applied, including continuity, and then finding a method to 
classify the resources that best captures that basic criteria. A 
common misconception is that resource classification meth-
ods provide an objective assessment of confidence; in fact, 
the classification is an expression of a QP’s opinion.

A common practice is to use some form of distance of 
drill holes to the estimated blocks. The choice of geometric 
criteria should be based on common practice for the deposit 
type, site-specific considerations and an expert judgment of 
other factors. The benefits of using simple distance measures 
are that the criteria can be simply stated, it is a transparent 
and easy-to-understand process, and leaves little room for 
mischief. Also, it does not depend on the estimation method 
chosen. Some of the most common concerns stated against 
these types of methods are that they are overly simplistic, as 
they fail to fully capture geologic confidence.

Geometric methods for classification generally do not 
give an actual measure of uncertainty, and if so, only for very 
large volumes, as with the kriging variance. There is an in-
creasing interest in quantifying uncertainty at different vol-
umes (block by block, if possible), which leads to relevant 
risk assessments.

Other alternatives encountered in practice include krig-
ing variances, commonly applied early on in geostatistical 
resource estimation (Blackwell 1998; Diehl and David 1982; 
Froidevaux 1982; Royle 1977); a combination of distances 
to drill holes (in a certain pattern); the number of drill holes 
used to estimate each block; multiple-pass kriging estima-
tion plans to account for density of information and other 
geologic factors; and possible combinations of these, as well 
as hand-contouring and smoothing, usually as a post-pro-
cessing step to any of the above.

There has been a move toward systematic and standard 
methods to evaluate and present uncertainty (Dohm 2005). 
Common aspects of uncertainty reporting include specifica-
tion of the population or sample being considered, measure 

of the “ + /-” uncertainty, probability to be withing the “ + /-” 
measure of uncertainty, and a list of assumptions and com-
ponents of uncertainty. There are three aspects to consider in 
resource classification. They are volume, measure of “ + /-” 
uncertainty, and probability to be within the “ + /-” measure 
of uncertainty. The format for uncertainty reporting is clear 
and understandable. For example, H.M. Parker (personal 
comminucation) proposes to classify as measured resources 
those monthly production volumes for which the true grade 
is predicted to be within 15 % of the estimated grade 90 % of 
the time. Quarterly production volumes where the true grade 
will be within 15 % of the predicted grade 90 % of the time 
are defined as indicated. There are no established rules or 
guidelines to decide on these three parameters; this remains 
in the hands of the qualified person.

Figure 12.6 highlights the three parameters often used in 
probabilistic classification schemes: (1) volume related to 
a production period, typically a month or a quarter, (2) the 
required precision, and (3) the probability to be within the 
specified precision. The volume need not be a contiguous 
block, but for simplicity it is often chosen as a simple vol-
ume. This can be a significant limitation, because production 
for any given period will generally come from different areas 
of the mine, areas that will likely present different geological 
characteristics, and have been estimated with uneven uncer-
tainty. The second two parameters summarize uncertainty, 
which can be understood as proportions over a defined 
population. The probabilistic statement that there is a 90 % 
probability that the grade of a monthly production volume 
be within 15 % of the estimated grade means that 90 out of 
100 true grades of similarly classified monthly production 
volumes will be within their estimate plus or minus 15 %.

Another alternative is to fix the volume of interest, for ex-
ample a quarter’s production, and then decrease the number 
of times the true value is expected to fall within the intervals, 
as shown in the schematic of Fig. 12.7. In this figure measured 

Fig. 12.6  Schematic illustration of the three parameters often used in 
probabilistic classification schemes: (1) volume related to a produc-
tion period, (2) precision, and (3) probability to be within the specified 
precision
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resources are those for which the expected monthly produc-
tion is within   ± 15 % of the true value 95 % of the time. Indi-
cated resources are those for which the condition is relaxed to 
80 % of the time, while Inferred only requires that 50 % of the 
time (or production months) the true value be within ± 15 %.

Uncertainty predictions can be from geostatistical or more 
traditional methods. If geostatistical procedures are used to 
construct probability distributions of uncertainty the param-
eters vary locally and within domains. There are a number of 
techniques that can be used, but conditional simulation is the 
best option, since the uncertainty of any parameter of interest 
can be predicted at different scales by simply averaging up 
the simulated values.

The uncertainty model can be checked by predicting the 
uncertainty at locations where there is information from 
drillholes or past production data. The probability intervals 
are constructed, counting the number of times that the true 
values fall within those intervals, thus determining if the pre-
dicted percentage is verified.

In any resource estimation work, the purpose of classify-
ing the estimated resources should be clearly stated, and also 
a clear distinction between geologic confidence (i.e., resource 
classification) and mining risk assessment should be made. It 
is tempting to use resource categories as a means to obtain a 
mine production risk assessment, although they are intended 
for geologic confidence assessment in a very global sense.

There is no consistent scheme for resource classification 
for all deposits, although certain common practices can be 
identified.

12.3.1  Resource Classification based on Drill 
Hole Distances

Multiple variants of this concept have been used, but in its 
most simple form the resource is classified based on the dis-
tance from the centroid of the estimated block to be to the 
nearest sample used in the interpolation. Estimated blocks 
that have close samples nearby will have a higher confidence 
assigned to them. This is considered a very simplistic method.

Another alternative is to otain the average weighted dis-
tance of all samples used to estimate the block. This dis-
tance could be anisotropic, following the variogram model 
ellipsoid and/or the shape of the search neighborhood. It may 
appear as a reasonable option since all samples used in the 
estimation are considered. This could potentially avoid arti-
facts related to assigning high confidence to a block estimat-
ed with one very close sample and many others much fur-
ther away. But there are drawbacks with this system, again 
related to the lack of uncertainty measures and the simple 
criteria used.

The actual classification of the resources should depend 
on the distances chosen to characterize confidence, which in 
turn should be based on geology, drilling density and vario-
gram ranges. Commonly, different estimation domains will 
have different classification parameters applied to them. 
Also, a minimum number of samples and drilling density 
measures are sometimes used, as well as differences in the 
geologic characteristics in different areas of the deposit.

12.3.2  Resource Classification Based on Kriging 
Variances

The kriging variance is an index of data configuration. As 
such, it can be used to rank the resource model blocks based 
on how much information is used to estimate each block. It 
can be standardized, for example, to a local mean, such that 
the resulting relative kriging variance can be used across dif-
ferent grade mineralization zones.

The values for kriging variances that define resource cat-
egories are usually related to a pre-specified drill hole con-
figuration, as exemplified in Fig. 12.8. This is an example 
taken from a porphyry copper deposit in northern Chile. After 
obtaining a variogram model for each of the three main cop-
per mineralization types present in the deposit, two standard 
drill hole configurations were used as references to deter-
mine resource categories. The kriging variance values for the 
5-composite configuration (Case B) defines the limit between 
measured and indicated for each mineralization type, while 
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Fig. 12.7  Probability intervals 
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the corresponding kriging variances for the 4-composite con-
figuration (Case A) define the limit between the indicated and 
the inferred categories. Note that the kriging variances are al-
ways used as relative thresholds, since the values themselves 
do not have any physical or geological meaning.

Other alternatives for defining resource categories can in-
clude visual inspection of the kriging variances, although rare-
ly there will be a clear break or indication of kriging variances 
that can be related to resource classes. Therefore, it is highly 
dependent on the subjective criteria to define the thresholds 
for each category. Because of this, the method can be consid-
ered equivalent to the distance to the drill hole-based methods, 
just developed with in a more formal geostatistical framework.

12.3.3  Resource Classification Based  
on Multiple-Pass Kriging Plans

Another option is to derive the resource classification from 
multiple kriging passes. Several kriging iterations are done 
to estimate the model grades using different levels of restric-
tions, that is, from a more to a less constrained kriging.

The constraints are defined in terms of requisites for an 
estimate to occur; in the more constrained case, a higher min-
imum number of samples combined with a larger minimum 
number of drill holes, and shorter search radii may be used. A 
smaller number of blocks will be estimated in the more con-
strained pass, but they will be better informed than blocks 
estimated in later estimation passes. If the estimation passes 
are set based on geologic and geostatistical criteria, a flag for 
each block indicating in which pass it was estimated could be 
used as an initial indicator for resource classification.

12.3.4  Resource Classification Based  
on Uncertainty Models

Conditional simulation provides realizations that provide 
models of uncertainty in a global as well as local sense. These 
realizations are applicable to both resource classification and 

mine production risk analysis; however, the use of realiza-
tions from which probability intervals can be obtained and 
used for resource classification is not yet widespread. The 
resource classification codes, beginning with the JORC code, 
encourage quantification of uncertainty whenever possible, 
but they do not mandate it, nor do the corresponding Guide-
lines suggest specific methodology for such quantification.

Deutsch et al. (2006) argue that the uncertainty models 
derived from conditional simulations should only be used as 
a backup to other more simple, geometric methods, such as 
drill hole distance. Several reasons are given in the paper for 
this recommendation mostly because the probability inter-
vals are shown to be sensitive to the definition of some of 
the parameters used to obtain them, as well as the overall 
model dependency. The uncertainty model is dependent on 
the specifics of the implementation parameters used in the 
simulations (Rossi 2003).

Probabilities can be checked using actual proportions, 
and, whenever possible, this check should be made. Operat-
ing mines will generally maintain sufficiently good produc-
tion records to be able to check actual production tonnages 
and grades. If the modeled uncertainty can be verified by 
actual production, then there are several good reasons to rely 
on the uncertainty model for resource classification: (1) the 
magnitude of the grades and the local configuration of data 
are accounted for, (2) the mining volume is explicitly ac-
counted for, and (3) uncertainty is perceived as more objec-
tive and transportable to different deposits.

The probability used to define measured, indicated, and 
inferred resources depends on the mining company’s prac-
tice. Many will simplistically translate the kind of precision 
required of other engineering studies and cost estimates 
during pre-feasibility or feasibility studies into resource 
classification. Typically, a measured resource would be a 
quarter known within ± 15 %, 90 % of the time; an indicat-
ed resource, within ± 30 %, 90 % of the time; and inferred, 
within ± 30 % and ± 100 %, 90 % of the time. Material known 
within more than ± 100 % will not qualify as resource, and 
may be flagged (but not publicly reported) as blue sky or 
potential mineralization.

Fig. 12.8  Schematic example  
of resource classification through 
kriging variances for reference 
drill hole configurations
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12.3.5  Smoothing and Manual Interpretation  
of Resource Classes

Since resource classification is usually performed on a block 
by block basis, most of the non-probabilisitic methods men-
tioned above will generally require a posterior smoothing of 
the resulting volumes, mostly because of the common accepted 
idea that the classified material should be fairly homogeneous, 
without intermixing of resource classes over short distances.

This is mostly an aesthetic issue, since classification 
schemes are meant to provide global indicators of confi-
dence, and not necessarily smooth block-to-block images. 
Any of the methods described above will likely produce vol-
umes for each resource class that are consistent with the cri-
teria used to specify them. It is common to see in areas with 
heterogeneous drill hole spacings, variable geologic charac-
teristics and abrupt transitions between the resource classes.

If smooth and contiguous volumes are desired, then 
manually interpreting the zones, based on the initial definition, 
is probably one of the most practical means to achieving this. 
Alternatives could include running a smoothing algorithm 
that would transform, based on windows of certain sizes, 
the resource classification of the blocks within to produce 
more homogeneous volumes. In any case, this should be 
done with care, not to bias or significantly alter the global 
volumes defined by the criteria established. There should 
only be minor corrections for consistency and what may be 
deemed inconsistent classification classes based on geologic 
or geostatistical knowledge. It is good practice to check the 
overall grade-tonnage curves by resource class before and 
after the smoothing process, to understand the degree of 
changes introduced.

Figure 12.9 shows an example of smoothing through 
hand-contouring done at Cerro Colorado, BHP Billiton’s 
porphyry copper operation in Northern Chile. The smooth-
ing was done by interpretating on benches and smoothing 
out the edges and, in some cases, the intermixing of resource 
classes. The red outline defines the measured volume, the 
bright green outline the indicated volume, and the remaining 
material is classified as inferred. Note how some of the mate-
rial originally classified as indicated is inside the red outline 
(central-East portion of the bench), and thus finally classi-
fied as measured. Also, there is a small area in this bench to 
the Northeast of the picture where measured runs directly 
into inferred, due to a change in the geologic environment.

12.4  Summary of Minimum, Good and Best 
Practices

Minimum practice for the development of uncertainty mod-
els requires the application of simple and more traditional 
statistical techniques. The scope of application of these 
models is relatively small, and can only be attached to large 
volumes. The two most common examples include Resource 
Classification (for all the methods described, with the excep-
tion of conditional simulations), and global confidence inter-
vals derived from the variance of averages for large volumes. 
Risk assessments are thus limited, and normally qualitative.

Good practice requires, in addition to the above, the de-
velopment of conditional simulation to obtain realizations 
of an uncertainty model. This model should be reasonably 
comprehensive, in the sense of including as many sources of 
uncertainty as possible, but principally geologic and grade 

Fig. 12.9  Resource classification 
contours, Bench 2440m, Cerro 
Colorado 2003 Resource Model, 
Northern Chile. Red encloses 
measured material, green outline 
encloses indicated material. 
Courtesy of BHP Billiton
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estimation uncertainties. Within these, issues related to di-
lution should be emphasized, as well as an assessment of 
the information effect. The resulting model of uncertainty 
should be checked against actual production, if available, or 
against some resource model taken as reference or base case. 
Risk assessments should be fully developed, validated, and 
documented, with clearly stated objectives.

Best practice consists of, in addition to the above, full 
modeling of all recognized and quantifiable uncertainties, in-
cluding those attached to the data, to the sampling and assay-
ing procedures, to the geologic model and simulation domain 
definition (as above), and the modeling of grade. Conditional 
simulations should thus be used to provide both global and 
local uncertainty measures, and a full description of the re-
source model. However, the exclusive use of probabilities 
for resource classification is not recommended. An arbitrary 
choice of probabilistic criteria will often lead to unreason-
ably large or small volumes in each category. It is however 
advisable to apply geometric criteria for resource classifica-
tion, with or without smoothing out the zones with mixing 
of resource classes, and provide further support through a 
probabilistic analysis. The probabilistic analysis may cause 
the competent person to reconsider their geometric criteria, 
but the geometric criteria are used for disclosure.

If, however, the possibility exists of reliably validating 
the uncertainty model obtained from the conditional simula-
tions through mine production, then it is reasonable to use 
the probabilistic intervals as basic definition for resource 
classification.

12.5  Exercises

The objective of this exercise is to review aspects of uncer-
tainty and risk assessment together with loss functions and 
decision making. Some specific (geo)statistical software 
may be required. The functionality may be available in dif-
ferent public domain or commercial software. Please acquire 
the required software before beginning the exercise. The data 
files are available for download from the author’s website—
a search engine will reveal the location.

12.5.1 Part One: Sampling Uncertainty

The objective of this exercise is to experiment with different 
uncertainty sampling and sensitivity assessment approaches. 
Available methods for these two purposes can vary great-
ly depending on whether one is interested in sampling ef-
ficiency and/or realistic uncertainty assessment accounting 
for dependency structures. The set of tools we will explore 
in this exercise applies different methods that satisfy these 

two features in varying degrees. Consider a simple calcula-
tion of oil in place (OIP) that depends only on a few input 
parameters:

where GRV is the gross rock volume, φ is the porosity, Sw is 
the water saturation, and FVF is the formation volume factor. 
The constant 6.2898 is a metric conversion factor to relate 
cubic metres to stock tank barrels. Suppose that each of the 
input variables can be described as a random variable: All 
variables are normally distributed with the following mean 
and variance values:

Variable Mean Variance

GRV 79 million cubic meters 5 million cubic meters
φ 17 % 5 %2

SW 11 % 9 %2

FVF 1.3 0.2

Question 1: Using Monte Carlo simulation, draw 100 real-
izations for each input parameter and then 
calculate the corresponding OIP for each real-
ization. Plot the distribution of uncertainty 
about OIP.

Question 2: Consider now partitioning each of the input 
distributions into ten different partitions (you 
can set the thresholds at the deciles). Apply 
latin hypercube sampling (LHS) and calculate 
OIP (you should only need to draw 10 realiza-
tions for each input and ensure that you only 
draw from each partition once). Plot and com-
ment on this distribution of OIP.

Question 3: Suppose now that there is a relationship 
between  φ  and  Sw,  which  can  be  described 
as bivariate Gaussian with correlation of 0.5. 
Given that there is no longer independence 
between all the input variables, describe 
how you would implement a Monte Carlo 
approach (similar to Question 1) to account 
for the impact this relationship has on uncer-
tainty in OIP. If you have time, you may wish 
to implement this and compare against the 
distribution in Question 1.

Question 4: Perhaps the most common approach to sen-
sitivity analysis is the vary one at a time 
approach. This requires keeping all the input 
variables at the base case value (usually the 
mean), and then for one input variable, choose 
say the p10 and p90 of that input variable and 

OIP 6.2898 GRV (1* Sw) / FVF* *= −ϕ
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evaluate the impact on OIP. Plot this impact as 
a tornado chart by ordering the input variables 
in descending order of impact.

Question 5: Consider now varying each input variable 
(keep all other variables at the base case) by 
changing its value by ± 5 % increments from 
the base case value until say ± 20 %. For each 
case evaluate the change in OIP, and plot this 
as a spidergram.

Question 6: Rather than changing each input variable by 
a percentage difference from the base case, 
change each input by a set of percentages. 
For this, consider evaluating OIP as you 
change an input variable based on its deciles. 
Now plot this result in a similar format to a 
spidergram, and comment on any differences 
you notice from the spidergram in the previ-
ous question.

12.5.2 Part Two: Loss Functions

The consequences of over and under estimation are often 
not the same. The two common loss functions, however, are 
symmetric.
Question 1: Prove that the mean of a distribution always 

minimizes the mean squared error loss func-
tion, that is, a loss function where the loss 
increases as a square of the error for both over 
and under estimation.

Question 2: Prove that the median of a distribution always 
minimizes the mean absolute error loss func-
tion, that is, a loss function where the loss 
increases as the absolute value of the error for 
both over and under estimation.

Question 3:  The L-optimal value is a specific quantile of 
the distribution of the penalty for over and 
under estimation is both linear with different 
slopes. The 0.5 quantile or median is optimal 
if the slopes are the same. What is the quan-
tile for arbitrary (different) slopes for over and 
under estimation?
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Abstract

Most mineral resource estimates are not final. They are interim estimates modified by more 
information as it becomes available. At the time of actual mining, or just before mining, the 
nature and requirements of estimation is different. Results that are accurate over a longer 
time scale are no longer sufficient. This Chapter explains considerations for short and me-
dium term mine plan models.

13.1  Limitations of Long-term Models  
for Short-term Planning

Resource models are said to be long-term when they are used 
for long term mine planning, such as Life of Mine (LOM) 
plans. When a feasibility study is prepared for a new mining 
project, a mining schedule needs to be prepared to estimate 
future cash flows from the operation. The LOM plan is based 
on a reserve model, in turn converted from the resource 
model. It provides estimates of tonnage and grade for each 
period involved through to the end of the life of the mine. 
Often, the LOM plan is scheduled according to variable units 
of time. For example, it may be that for the first two years 
of the operation, the schedule is monthly; the following two 
years it may be based on semi-annual volumes; and from the 
fifth year until the end of the mine life it may be yearly.

Long-term models are based on widely-spaced drilling, 
which is gradually filled in as the project advances. The long-
term models are usually updated on a yearly basis with infor-
mation gathered from new drill holes. More accurate fore-
casts in the short term are often needed as well. It is tempting 
to use the existing long-term resource model for shorter term 
predictions. However, because of the dynamics of the opera-
tion, the long-term model quickly becomes outdated.

Long-term models are by construction designed to 
 provide global estimates with acceptable accuracy. Global 
estimates are understood to correspond to volumes equiv-
alent to a year or longer. Therefore, it cannot be expected 
to perform as well on a block by block basis, or even for a 
small volume. Sometimes reasonable accuracy is obtained 
from long-term models for volumes smaller than a year, par-

ticularly for disseminated-type deposits, deposits with very 
simple geology, and grade variables that do not exhibit high 
spatial variability. In the case of a new operation, the long-
term model will generally be based on relatively tight drill 
hole spacing (infill) covering the initial years of operation, 
designed to accurately estimate the payback period.

Updating the long-term model is required virtually in all 
mine operations for several reasons. The most important 
reason is the need to improve accuracy for Medium- and 
Short-term mine plans. These plans would correspond, for 
example, to yearly budgets and quarterly forecasts of mine 
production and corresponding cash flows.

For month to month mine planning, the model’s reliabil-
ity is increased through infill drilling. The additional drilling 
will result in improved accuracy of the resource model for 
the near-term mine operation. Updating the long-term model 
with the new data and subsequently updating the correspond-
ing mine plans results in less uncertainty about the opera-
tion’s short-term cash flow.

The definition of “medium” and “short” term models 
varies widely from one mining company to the next, and 
also from one geographic area to the next. In many cases, 
a “short-term” model is in fact a grade control model, the 
daily ore/waste selection process. In this book, a medium-
term model will be any model that is meant to provide esti-
mates on much smaller volumes than the long-term resource 
model, and is also short-lived. It generally means a volume 
equivalent to one to six months production, although it de-
pends on the type of mining performed. The models devel-
oped for daily ore/waste selection and weekly mine plans are 
always called here short-term or grade control models.

M. E. Rossi, C. V. Deutsch, Mineral Resource Estimation, DOI 10.1007/978-1-4020-5717-5_13,
© Springer Science+Business Media Dordrecht 2014
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13.2  Medium- and Short-term Modeling

Updating the long-term resource model using in-fill data 
implies repeating many of the steps described in previous 
Chapters. This is regardless of whether the task involves esti-
mation of values, estimation of distributions, or simulations. 
However, some special considerations are required, particu-
larly if production information is used.

One of the most difficult aspects of updating short-term 
models is updating the geologic model and estimation do-
mains using production data. In practice, face, bench, or 
stope mapping from underground workings and a descrip-
tion of blast hole cuttings or production drill holes may be 
available, but seldom used. This is partly due to data quality, 
and also to the tight timeframe involved.

The grade model can be updated using both infill drill 
hole data and production data. The use of blast holes can 
be controversial for several reasons, including perceived 
sampling quality, and discrepancies of its grade distribution 
compared to the exploration drill holes grade distribution. 
Despite the difference in quality of the individual samples 
(drill holes vs. blast holes), often the much larger number of 
blast holes available compensate for the poorer precision of 
the individual sample. The key to using blast hole samples is 
that there should be no significant bias.

A different issue is the estimation strategy. The imple-
mentation of any estimation method should consider the 
possibility of blast holes overwhelming the infill drill holes 
in certain areas; thus, an adequate estimation strategy should 
carefully consider how blast holes are used.

In all cases, the medium- or short-term block model 
should be updated only for the relevant portion of the de-
posit, for example, corresponding to the next three months 
of production. An example is given here of a medium-term 
model prepared for the Escondida copper mine in Northern 
Chile and courtesy of BHP Billiton. It illustrates a practical 
application of the process.

13.2.1  Example: Quarterly Reserve Model, 
Escondida Mine

At Minera Escondida in early 2002, medium-term 
 planning was required on 13-week intervals, since this 
was the forecast period used, and updated on a monthly 
basis. Therefore, the quarterly planning cycle was in 
fact a monthly moving-window that represented the 
planned mined volumes three months at a time. In order 
to  develop a practical methodology and demonstrate the 
usefulness of updating the long-term resource model, 
an initial study was developed that consisted of the 
following:

1. Develop a Sequential Gaussian conditional simulation 
model and comprising the volume corresponding to 
the previous year of production, FY01, (July 1, 2000–
June 30, 2001) was prepared. The simulation grid was 
1 × 1 × 15 m, and was used as a reference to compare the 
alternative models and methodology developed. The sim-
ulation model not only honored the histogram and vario-
gram models of the conditioning data, but reflected actual 
production figures. The simulated variables were Total 
Copper (TCu), Sulfuric acid-soluble Copper (SCu), Arse-
nic (As) and Total Iron (Fe). The conditional simulation 
model is not described here in detail, as it was only used 
as a reference.

2. The volume to be mined in the following quarter was 
defined, and a reserve block model is created within it. 
The blocks can be the same size as the long-term resource 
model blocks, or smaller if the additional infill and/or 
blast hole data justifies it. In the case of the initial study, 
for each month of the FY01 period, a quarterly model was 
defined based on actual mined out volumes.

3. The geologic model is updated monthly using informa-
tion from bench and face mapping, as well as blast hole 
cuttings. For example, when completing the quarterly 
model for the month of January, the planned mining vol-
umes corresponding to the months of February through 
April are considered, and the geologic information avail-
able up to December 31 is used.

4. The grade models (TCu, SCu, As, and Fe) were updated 
using infill drill holes and blast holes through the previ-
ous month. The same methodology as used for the long-
term resource model is applied, except that smaller blocks 
sizes were used as warranted by the additional drill holes 
available. The long-term block model is 25 × 25 × 15 m, 
while the quarterly model is based on 12.5 × 12.5 × 15 m 
blocks; therefore, within each block of the long-term 
model there are 4 blocks of the quarterly model. It is al-
ways convenient to define the quarterly block model in 
a manner consistent with the geometry of the long-term 
model, such that comparisons can be easily made.

5. The quarterly models are compared with the long-term 
resource model and with the reference simulation model 
to quantify the improvements obtained. In the case of the 
routine, operational procedure, the comparison is done 
against the monthly reconciliation figures for the prior 
months, such that a closer control of the long- and the 
medium-term models is maintained.

The long-term resource model historically underestimated 
mine production, particularly in-situ TCu grade. The resource 
estimation methodology was partly to blame, but even after 
improving the estimation methodology, the resource model 
still had a small TCu deficiency. This deficiency was traced 
to a lower-than-expected TCu grade in the exploration drill 
holes, mostly those drilled using conventional rotary tech-
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niques, but also present in reverse circulation holes and in, to 
a lesser degree, existing diamond drill holes.

The under-representation of TCu grades in the drill holes 
was explained by the loss of high grade chalcocite (copper 
sulfide), sometimes present in non-crystalline form, and easy 
to wash away during the drilling process. Shorter infill drill 
holes were less likely to loose such material, and so were the 
blast holes, because of their larger diameter, large numbers, 
and also awareness of the problem. To improve the short-
term grade and tonnage estimates, it was important to in-
corporate the most recent production information and local 
geologic mapping.

Another important requisite is that the quarterly model 
be obtained in a short time, hopefully in two or three days of 
work, and without requiring significant additional resources 
other than those already available. An additional require-
ment is the company’s goal: to obtain a model with ± 5 % 
accuracy on a monthly basis for both copper grades and ton-
nages above economic cutoff.

The database used for the study and quarterly model up-
dates is the same 15 m composites database used to estimate 
the long-term resource model. This included the more recent 
infill holes, and also the addition of the current blast hole 
database. The blast holes represent the grade of a full 15 m 
bench.

13.2.2  Updating the Geologic Model

Since the production geology (bench, face, and blast hole 
cuttings mapping) was done by a different group of geolo-
gists than those that map the exploration and infill drill holes, 
a prior step of consolidating and homogenizing nomencla-
tures and coding was required.

The lithology, alteration, and mineralization type models 
were updated from the existing geologic model (used to esti-
mate the long-term resource model) only within the volume 
corresponding to the next three months of production. An 
additional area surrounding this volume was also re-modeled 
to allow the “tie-in” of the long-term geologic model with 
the more detailed Short-term model. The updating of the 
geologic model was done by modifying the existing inter-
pretation from the long-term resource model on plan view. 
The polygons were adjusted bench by bench, from which 
three-dimensional solids were created. It is not necessary to 
apply the same level of detail as for the long-term model (see 
Chap. 3), since the update is an adjustment of a prior inter-
pretation. If unexpected geologic features are encountered, 
then it would be necessary to review the original geologic 
interpretation.

Figure 13.1 shows an example of the resulting Total cop-
per (TCu) estimation domains for Bench 2845. The larger 
blocks are the long-term resource model blocks, the smaller 

ones correspond to the same definition of estimation do-
mains, but after updating for the quarterly model. The area 
shown is the complete volume planned to be mined in this 
bench in the period considered. Note that there is generally 
good agreement between the two models of estimation do-
mains, although there are differences near contacts.

The TCu, SCu, Fe and As grades were estimated using 
the same methodology as used in the long-term resource 
model, i.e., ordinary kriging, and using the same kriging 
plans. The data used was all data available, including blast 
holes. The estimation was done on three different estimation 
passes, which helped control the influence of each data type. 
Blast holes were used only in the first pass, using the small-
est search neighborhood and more data restrictions before a 
block could be estimated. This restricted the influence of the 
more abundant blast hole data.

Figure 13.2 shows for the same area in bench 2845 the 
estimated TCu grades for both the long-term and quarterly 
block models. Grades are color-coded according to the leg-
end shown. Note that there are some differences which are 
significant for short-term planning, and mostly near con-
tacts. The differences are both gains and losses. The quar-
terly model better delineates areas of high and low grades. 
For example, observe at the northern tip of the area shown 
(North of coordinate 108,000N) where the quarterly model 
predicts a NW-trending higher-grade narrow structure higher 
than 3 % TCu, and shown in orange. This high grade corridor 
was not predicted by the long-term resource model.

Overall, results from the medium-term model are as ex-
pected. The use of infill drilling and blast hole increases the 
grade and metal content of the reserve model, and also in-
creases its variability. The local definition of geology and 
grade increases also the confidence level in the estimated 
values. The Quarterly model is less smoothed than the long-
term model.

Figure 13.3 shows the comparison of the grade-tonnage 
curves of the long-term (LT) and quarterly (QT) models. 
Note how both models have very similar tonnages above 
cutoff, but the QT model presents slightly higher grades for 
most cutoffs. The cutoffs of interest are 0.7 % TCu (direct 
mill feed) and 0.3 % TCu (marginal stockpile).

Figure 13.4 shows the grades for the two models by bench 
averages, for the Quarterly period beginning February 2002. 
Note that most benches have very similar estimated grades, 
although there are some where the overall average is some-
what different. This is particularly the case for Bench 2845, 
the grades shown also in Fig. 13.2.

Figure 13.5 shows the comparison of the relative differ-
ences of monthly TCu grade averages of the LT and QT mod-
els for the three-month period beginning in February 2002. 
They are compared to the conditional simulation reference 
model, which was calibrated to production data. Negative 
errors imply underestimation of TCu grades for the month. 
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Note how the QT model monthly averages approximate 
much better the corresponding grades predicted by the refer-
ence model for most months. Although the reference model 
is only another model (based on a single conditional simula-
tion), by construction represents well the production grades 
from previous periods. The QT model, based partly on blast 
holes, is also expected to be a better predictor of production 
grades.

13.3  Selection of Ore and Waste

The process of ore/waste selection at a mine, or grade con-
trol, whether underground or open pit, is the most geological 
important decision at the mine. The final, irreversible deci-
sion as to what is ore and what is waste is made. In open pit 
mines, the decision is generally made on a daily basis, and 
commonly based on sampled blast hole information. In the 
case of underground mines, the process may be based on in-
fill drilling and completed at the time of defining the stopes 

to be mined (short-term mine planning) as usually the com-
plete stope is classified as either ore or waste. Any mistakes 
that may occur at this decision point are not only irreversible, 
but also cannot be compensated by other types of errors, as is 
sometimes the case with resource estimation.

Grade control is key to the mine’s profitability because 
the resource is finite, and the time of selection is the last op-
portunity that the mining company has to realize its expected 
revenue. It is also used to maximize resource recovery, or 
more frequently in the Western world to optimize recovered 
dollar value. Also, the processing plant usually works better 
when a constant grade is fed to it. Sometimes stockpiling is 
necessary to avoid fluctuating grades. There are four areas 
of interest in grade control: classification, cutoff grade, loss 
functions for grade control, and the consideration of non-free 
selection.

Classification is the process of deciding where to send 
the mined out material. A block is selected as ore if the rev-
enue from processing it as ore exceeds the cost of mining 
it as waste. As discussed in Chap. 7, the calculation of cut-

Fig. 13.1  TCu Estimation 
Domains for the long-term and 
quarterly models, Bench 2845, 
Escondida Mine
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off grades may be complex and site specific. Many different 
costs and variables may come into play. One possible defini-
tion of a processing (also called marginal or in-pit) cutoff 
grade is:

where ct is the unit treatment (milling) cost; co is the unit ore 
mining cost; cw is the unit waste mining cost; r is the metal 
recovery factor; p is the unit metal price; and zc is the grade 
that makes revenue nil. In this marginal cutoff equation, 
costs such as General and Administration (G&A) and mining 
costs are not considered, only the additional costs that may 
exist when mining ore as opposed to waste. This cutoff grade 
is applicable when the operation has already committed to 
moving the material. The only remaining decision is whether 
it is sent to the waste dumps, stockpiled, or processed.

Grade control attempts to minimize miss-classification. 
The basic issue is shown in Figure 13.6, where a scatterplot 
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of unknown true values for each block are plotted against the 
corresponding estimated grades. The most important task in 
grade control is to avoid as much as possible sending mate-
rial to the wrong destination.

Chapter 7.4 discussed the issue from the point of views 
of the Information Effect, including perfect and imperfect 
selection. In traditional geostatistical literature the term im-
perfect selection is used to signify that the decision is based 
on estimates of grade, and without the knowledge of the true 
values. Perfect selection is thus impossible, because we can 
never know the true in-situ grades.

Another consideration is that free selection is impossible. 
Ore and waste blocks cannot be selected independently of 
each other during mining. This causes dilution and ore loss. 
There are also other practical (operational) factors affecting 
the decision, including how exactly the ore/waste markers 
have been laid out in the extraction area; a certain amount of 
unavoidable dilution (unplanned operational dilution); and 
mistakes made at the time of extraction, including some as 
simple as sending the loaded truck to the wrong destination.

Fig. 13.2  TCu grades for the 
long-term and quarterly models, 
Bench 2845, Escondida Mine

.
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In general, sampling errors, estimation errors, limited in-
formation, and operational constraints result always in ore 
loss and waste dilution, which in turn leads to economic loss-
es. These losses can be serious enough to make the operation 
unprofitable.

One example was the Hartley platinum mine in Zimba-
bwe, which produced its first concentrate in 1997 and closed 
in 1999 after what were deemed to be insoluble geologic 
problems and low mine productivity (Matthey 2001). Hart-

ley is located within the Great Dyke, a geological feature 
running roughly north-south through the heart of Zimbabwe 
for about 550 km. The platinum group minerals occur in a 
layer known as the Main Sulphide Zone, which is typically 
about 3 m thick. However, the economic mining width may 
be as little as 1 m, depending on grade, metal prices and the 
chosen mining method. The reef is difficult to mine because 
it is not visible to the naked eye. This can lead to significant 
unplanned dilution and ore loss, which reduces head grades.

Fig. 13.4  Total copper grades by 
Bench, 2001 Long-term (LT) and 
February 2002 Quarterly (QT) 
resource models

 

Fig. 13.3  Grade-Tonnage curves, 2001 Long-term (LT) and February 2002 Quarterly (QT) resource models. Note how the QT model has higher 
grade and less tonnage than the LT model for most cutoffs
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Grade control methods should attempt to minimize all 
possible sources of error, and not just the error prediction of 
the in-situ grade. Grade control should always be viewed as a 
complex process in which at least three basic aspects must be 
considered: data collection and quality; grade control model 
to determine ore and waste boundaries; and operational pro-
cedures and constraints, including mining methods, mining 
practices, and operational culture.

Firstly, data collection and data quality are always im-
portant, but it becomes even more critical when operational 
constraints limit the time and availability of sampling crews. 
Thus, the quality of the samples used to make the decision 
is impacted. Secondly, the samples are modeled to provide a 

prediction of grades, block dollar values, and other impor-
tant attributes. The actual selection of ore and waste is based 
in those estimates. And third, all related operational proce-
dures should be considered and controlled. The grade control 
method should consider the type and limitations of available 
sample data, the geotechnical and blasting conditions, and 
also the operational constraints that may render certain grade 
control practices non feasible.

Data collection and quality is highly dependent on the 
mining method, and to some extent the geometry of the 
orebody being mined. In open pit mines, blast holes are the 
most common source of data for grade control. Ocassion-
ally, reverse circulation (RC) grade control drilling is done. 

Fig. 13.5  Relative errors, Long-
term (LT) and Quarterly (QT) 
models vs. Reference model 
calibrated with production data

 

Fig. 13.6  Miss-classification in 
grade control
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The additional cost of the dedicated RC drilling should be 
paid for by the increased economic benefit of the improved 
grade control, since almost always blast holes still need to 
be drilled for blasting. Grade control using RC drilling is a 
fairly common practice in gold mines in Western Australia 
and parts of Africa. It is generally applicable if the ore is 
of high intrinsic value (such as high grade Au) and if the 
higher-grade distribution is sub-vertical. Unfortunately, not 
all operations perform a detailed cost-benefit analysis of the 
use of RC drilling for grade control. The costs of using RC 
drilling may be higher than the economic benefits derived 
from the improved grade control.

In the case of underground mines, mining methods are 
much less flexible and therefore there is generally little or 
no opportunity for ore and waste selection at the time of ex-
traction. When a stope is defined as being ore, typically the 
complete stope is considered ore (with the planned and un-
planned dilution as encountered). This implies that the grade 
control data is actually the data used to design the stopes dur-
ing short-term planning. In such case, infill drilling is used to 
decide what is ore and waste. The challenge for underground 
mines is thus greater, because generally infill (or production) 
data spacing is less than the equivalent blast hole grids in 
open pit mines.

The modeling of grade control or infill data can be ac-
complished using conventional or geostatistical methods. 
Among the latter, conditional simulations is usually the bet-
ter option, since ore/waste selection is dependent more on 
the variability of the grade distribution than on its average 
grade. Kriging-based methods can very easily fail (as can 
the more conventional methods) because of its characteris-
tic smoothing effect which can lead to miss-classification. 
Additionally, using minimum-variance estimation methods 
imply penalizing the over- and underestimation errors equal-
ly, i.e., a symmetric Loss Function (Journel 1988; Srivastava 
1987). This is generally inappropriate for mining scenarios, 
since sending waste to the plant generally has a different cost 
compared to sending ore to the waste dump.

Grade control models are dependent on mining practices 
and methods. It is possible that more detailed and sophisti-
cated grade control methods can provide a better ore/waste 
selection, but the mining method has to able to capitalize on 
that opportunity. It may be an overkill to develop and im-
plement a sophisticated grade control method if the  mining 
method and operational practices are not good enough to 
take advantage of the additional level of detail.

13.3.1  Conventional Grade Control Methods

Conventional methods used for grade control include blast 
hole averaging, inverse distance methods, and nearest-
neighbor-based methods. For the mathematical description 

of the methods the reader is referred to Chap. 8. Here the 
more common industry practices are discussed.

Unfortunately, even after major technological advances in 
many aspects of grade control including geostatistical model-
ing, most operations still do not fully appreciate the impor-
tance of grade control, and devote insufficient resources and 
thought to this task. The flexibility that open pit mines gener-
ally enjoy is not always fully utilized. Many operations work 
with very simple methods that are not optimal. This is also 
true for underground mines. Indeed, it is more difficult to per-
form effective grade control in underground mines because 
of operational constraints, but still, too few operations have 
profited from modeling advances over the last 20 or 30 years.

In open pit mines, probably the most commonly used 
method to predict in-situ grades is a simple arithmetic aver-
age of the available blast holes. A block model is defined, 
generally with the block size similar to the blast hole spac-
ing, and the predicted block grade is the arithmetic average 
of the blast holes that fall within the block. Multiple vari-
ants exist, as for example the “four-corner” average method, 
popular in some gold mines in Northern Nevada (Douglas 
et al.1994), whereby the average of the four blast holes at the 
corners is the block grade estimate.

Other commonly used methods include the nearest-
neighbor method and inverse-distance methods, implemented 
in a number of variants. In all cases, the main characteristics 
of the methods are that (a) a simple estimator is used to assign 
grades to blocks, and (b) the blocks are relatively large with 
respect to the average distance between sample points. The 
second characteristic is unjustifiably common, and a major 
source of inaccuracies, since the data density is generally 
sufficient to justify much smaller blocks. Smaller blocks 
would lead to better definitions of ore and waste boundaries.

13.3.2  Kriging-based Methods

Kriging-based grade control became popular in open pit 
mines during the 1980s. Different types of kriging algo-
rithms were used, but most commonly ordinary and indicator 
kriging were applied, for example in gold mines in Northern 
Nevada.

In the case of ordinary kriging, the application of the method 
is similar to those described as conventional methods above. 
Ordinary kriging is used to provide an estimate of grades, 
based on which the selection panels are drawn. The advan-
tages of kriging over other estimation methods were discussed 
in Chap. 8 and include the minimization of the estimation 
variance. In practice, kriging has been only marginally more 
successful at grade control compared to conventional methods 
because of the inherent smoothing and the use of inadequate 
kriging plans. Also, the minimization of the estimation vari-
ance is not optimal for grade control (Srivastava 1987).



23113.3  Selection of Ore and Waste

Multiple variants of the indicator kriging approach have 
been used. A common application considers a single indica-
tor estimated at the ore/waste boundary of interest, thus pro-
viding the probability of any block or point within the blast 
being ore or waste. Generally point kriging is performed, 
usually at a larger-than necessary grid spacing. Occasionally, 
block kriging may be done, ignoring the fact that the aver-
age of estimated probabilities within a block is not the same 
as the point probability derived from the ore/waste indica-
tor (Chap. 9). Nonetheless, the practice is to analyze equal-
probability contour lines for several values and decide based 
on visual observations which one adjusts better to prior pro-
duction. Commonly, in gold operations that use this method, 
probabilities of being ore of about 30–40 % are used to define 
ore/waste boundaries.

A method that has proven successful in several operations 
is the “Breakeven Indicator Method” (BEI), as described 
in Douglas et al. (1994). It was implemented first at Inde-
pendence Mining Company’s Jerritt Canyon, north of Elko, 
Nevada, in the early 1990s.

The BEI grade control method uses a combination of both 
indicator and grade kriging. An ore/waste indicator vari-
able is used to predict the probability of ore occurrence at 
a given location Po( x), which is obtained by kriging the ore/
waste indicator variable. The ore-grade blast holes are then 
used to krige an ore grade Zo( x) for the location x. Similarly, 
the waste-grade blast holes are used to krige a waste grade, 
Zw( x), for the same location. Then, the expected revenue 
is estimated from the kriged probability Po( x) and ore and 
waste grades:

 (13.1)

The revenue function is traditionally calculated as

where “costs” generally imply metallurgical processing costs 
only. The method offers the flexibility of adding additional 
costs if desired, to work on what would amount to a higher 
ore/waste cutoff grade.

If the expected revenue from Eq. 13.1 is negative, the 
material at the location is waste. If the expected revenue is 
positive, the material at the location is ore. If the grade of ore 
is high, the corresponding revenue will be high, allowing for 
a block with a low probability of being ore to be sent to the 
mill. In this case, the ore pays for large amounts of waste, 
which ensures all high grade ore is recovered. Alternatively, 
if the ore grade is low, the revenue will tend to zero and the 
estimated probability of ore will have to be close to 1: the 
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lower grade ore will not pay for much overbreak. Thus, the 
method requires that the low grade be most surely higher 
than the economic cutoff. This can be seen by calculating 
the probability that corresponds to the economic breakeven 
cutoff, E( R) = 0:

 (13.2)

The method should be applied on small blocks, one third to 
one half of the blast hole spacing, allowing the grade con-
trol engineer to define dig lines based on revenues. The BEI 
method is designed to improve grade control performance 
most along contacts of ore/waste zones. If the panels to be 
mined are very large (wide), the ratio of contact surface area 
per ton of ore is small. The opposite is true for panels that 
are narrow for which this method would provide the most 
improvements.

If compared to the single indicator kriging method out-
lined before, the BEI is equivalent to working on a variable 
probability of being ore, which is dependent on the revenue 
function defined.

13.3.3  Example: Grade Control Study

A comparison of several grade control methods was per-
formed for the copper-molybdenum Ujina open pit mine in 
Northern Chile. It is summarized here, courtesy of Compa-
ñía Minera Doña Inés de Collahuasi (CMDIC). The company 
mines a Cu-Mo porphyry deposit with a significant Cu enrich-
ment blanket, which was the main target of mining at the time. 
As a massive, disseminated-type deposit, it could have been 
assumed that grade control is a simple process; however, there 
are factors that made grade control at Ujina a complex process.

The differences observed among the methods tested will be 
larger if the grade distributions being modeled are more vari-
able. Also, if there are many different possible destinations 
for ore and waste, the grade control process is more compli-
cated: the grade ranges that are used to separate the material 
become narrower. Table 13.1 shows the possible destinations 
for ore coming out of the Ujina pit at the end of 1999.

A quick inspection of Table 13.1 suggests that a large 
degree of accuracy and precision is required of the grade 
control method, since the mining method and metallurgical 
processing requirements are very specific.

The methods tested included the inverse distance cubed 
(ID3) as used at the time by the mine; ordinary kriging (OK); 
the breakeven indicator method described above (BEI); and 
the maximum revenue method, based on conditional simula-
tions and loss functions as described further below. Only a 
short summary of a long and detailed study is presented here 
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to illustrate the performance of different grade control meth-
ods, even in deposits with relatively low variability.

Figure 13.7 shows a small area of Bench 4270 with the 
Total Copper (TCu) blast hole grades and selection panels as 
defined by ID3, which was the method used by the operation. 
Figure 13.8 shows the same area with panels as defined by 
the BEI method. And finally, Fig. 13.9 shows the comparison 

of the panels defined based on these two methods. In this 
area only sulfide material was present, corresponding to des-
tinations (Stocks) 1 through 6 in Table 13.1. These figures 
demonstrate that, locally, the differences among the different 
grade control methods can be significant.

The comparison among the four methods tested was made 
against a reference model corresponding approximately to 

Fig. 13.7  Blast holes, color- and 
shape coded by destination, and 
grade control panels based on 
ID3 interpolation. Blast hole 
spacing is approximately 8 × 8 m, 
and the area is 250 m per side. 
Blast holes and panel hatching 
represents Stocks 1 through 6 in 
Table 13.1

 

Material Type Dispatch Code Destination Description 
High-grade sulfide  SAL Stock 1 TCu >= 2.0% 

Medium-grade sulfide SME Stock 2 1.0% =< TCu < 2.0% 

Low-grade sulfide SBA Stock 5 0.8% =< TCu < 1.0% 

Marginal-grade sulfide SMR Stock 4 0.4% =< TCu < 0.8% 

Sub-marginal grade sulfide SSM Stock 6 0.2% =< TCu < 0.4% 

High As sulfide SAS Stock 3 As > 100 ppm y  
TCu >= 1.0% 

High-grade Oxides OXA Stock 10 TCu >= 1.0% 

Medium-grade Oxides OXM Stock 12 0.6% =< TCu < 1.0% 

Low-grade Oxides OXB Stock 11 0.3% =< TCu < 0.6% 

Low-Oxi OXL Stock 30 TCu >= 0.2%, with clays and 
Fe oxides 

Mixed MIX Stock 13 Mixed, TCu > 0.7% 

Waste Rock Types IGS, IGC, RIO, SUE, PLR, 
OTR 

Waste dumps Waste, TCu < 0.2% 

Table 13.1  Material type classifications as of December 1999, Ujina 
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two years production from the open pit. The reference model 
is a single realization of a Sequential Gaussian simulation 
for all variables involved, and adjusted to production data. 
The same areas were re-modeled based on the available blast 
hole database, and selection panels for each destination re-

drawn according to the results of each method tested. The 
study involved development of an appropriate revenue func-
tion, consideration of mining practices and constraints, and 
compared alternative methods to the actual grade control 
panels developed by the mine using ID3.

Fig. 13.8  Blast holes, color- and 
shape coded by destination, and 
grade control panels based on 
the BEI method. Same area as 
Fig. 13.7

 

Fig. 13.9  Comparison of grade 
control panels according to 
the ID3 used by the mine and 
the BEI methods, same area as 
Figs. 13.7 and 13.8. Note the 
sometimes very different selec-
tion panels

 

13.3  Selection of Ore and Waste
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Only the results for the ID3 and BEI methods are present-
ed here. The simulation-based method produced similar and 
slightly better results compared to the BEI method, but it is 
more complicated and slower to implement. The OK method 
produced marginally worse results.

Tables 13.2 and 13.3 show the relative performance of 
the ID3 and BEI methods with respect to the reference model 
for tonnages, TCu grade, Cu metal content, and revenues. 
The closer the value to 1.0, the better the method reproduces 
the to reference model, and, by extension and within the ap-
proximations of the reference model calibrations, actual pro-
duction. A factor greater than 1 implies overestimation with 
respect the reference model. The destinations corresponding 
to waste, SSM, and OXM are not shown due to the low ton-
nages produced within the evaluation period. The overall 
ore and marginal ore production for the period was about 
59.5 million tons, so the statistical mass available for com-
parison is significant.

Note how for most destinations and variables considered, 
the BEI method is superior. Recall that a 1 % difference 
between the two methods represents close to 600,000 met-
ric tons of ore, or about 10,000 metric tons of contained Cu. 
Considering the depressed Cu prices at the time, a 1 % differ-
ence in contained Cu represented about US$ 16 million. At 
2013 copper prices, the dollar value of the difference would 
be between US$ 70 and 80 million. In most cases, even 
though the differences in percentage points may be small, 

they represent significant economic improvements given the 
size of the operation.

 The added economic benefit of the BEI method 
results from virtually no additional expenditure, since all 
operational practices remain the same. Also, the panel 
drawing process is facilitated by the use of smaller blocks 
and less sharp corners (Figs. 13.6 and 13.7). This in turn 
results in less unplanned operational dilution, because the 
shovels will extract the material following more faithfully 
the delineated zones. Although real, this effect is more 
difficult to quantify.

13.4  Selection of Ore and Waste:  
Simulation-based Methods

The objective of the simulation-based methodologies is to 
optimally select ore from waste according to different op-
timality criteria. Also, it provides more flexibility to handle 
several destinations for recoverable material, including ore 
blending with different metallurgical responses. Minimum-
variance algorithms such as kriging have traditionally been 
the optimization criteria in most geostatistical applications, 
but are not always appropriate (Srivastava 1987).

In open pit and underground grade control,  optimization 
should always be based on maximizing the economic 
value of the recovered material. The material selected for 

Destination Tonnage 
(Dest./Reference)  

TCu Grade 
(Dest./Reference)  

Cu Metal Content Cu 
(Dest./Reference) 

SAL  1.10 0.92 1.00 
SME  1.09 1.00 1.09 
SBA  0.45 1.01 0.45 
SMR  0.43 1.01 0.44 
SAS  0.87 0.95 0.82 
OXA  1.13 0.93 1.05 
OXB  1.98 0.98 1.94 
OXL  1.49 1.41 2.10 
MIX  0.71 0.78 0.55 

TOTAL 1.11 0.89 0.99 

Table 13.3  TCu performance factors of the BEI method by destination relative to the SGS reference model

Destination Tonnage 
(Dest./Reference)  

TCu Grade 
(Dest./Reference)  

Cu Metal Content Cu 
(Dest./Reference) 

SAL 1.10 0.91 0.99 
SME  1.16 1.06 1.22 
SBA  0.18 1.15 0.21 
SMR  0.50 1.36 0.68 
SAS  0.55 1.02 0.56 
OXA 1.29 0.85 1.10 
OXB  1.16 1.08 1.25 
OXL  0.44 1.54 0.68 
MIX  0.52 0.90 0.47 

TOTAL 1.16 0.84 0.98 

Table 13.2  TCu performance factors of the ID3 method by destination relative to the SGS reference model
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 metallurgical processing should provide the maximum 
 possible economic benefit given all operational constraints. 
Other possible optimization criteria, such as maximizing 
 resource utilization, is not applicable in the case of grade 
control, since the decision is short-term in nature, and aims 
at making the most out of the current operation on a daily 
basis.

Loss Functions can be used to optimize based on 
 pre-determined functions that assign value to estimates, 
or equivalently, costs to mistakes. They were described in 
Chap. 12, and further reading can be found in Journel (1988), 
Isaaks (1990), and Goovaerts (1997). Conditional simulation 
is used to provide a model of uncertainty that can be used 
to optimize grade control. One alternative is the Minimum 
Loss/Maximum Profit method as presented below, which 
has been implemented with success in several open pit 
 operations. The expected profit calculation is

13.4.1  Maximum Revenue Grade Control 
Method

The Maximum Revenue grade control method is a two-step 
procedure, first outlined by Isaaks (1990), and applied with 
success at some mine operations, for example Aguilar and 
Rossi  (1996). Initially, a set of conditional simulations is ob-
tained from the blast hole data available. These conditional 
simulations provide an uncertainty model for grades at any 
specific point within the blast. Second, an economic optimi-
zation process is implemented using loss functions to obtain 
the optimal ore/waste selection. The Loss Function quanti-
fies the economic consequences of each possible decision.

The simulations are used to build models that reproduce 
the histogram and spatial continuity of the conditioning 
data. By honoring the histogram, the model correctly rep-
resents the proportion of high and low values, the mean, 
the variance, and other statistical characteristics of the data. 
By honoring the variogram, it correctly portrays the spatial 
complexity of the orebody, and the two-point connectivity 
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of low and high grade zones. These are critical variables for 
the optimization of ore/waste selection because it depends 
on accurately predicting the variability of high to medium to 
waste grade transitions.

Typical grade control simulation grids can be 1 m by 1 m 
by bench height (corresponding to the sampled blast hole 
column). These are used directly in obtaining the uncertainty 
model for ore/waste selection panels. Larger grid sizes may 
be used and sometimes required because of time or general 
computer hardware limitations, still providing reasonable es-
timates when enough simulated points are included within 
the selection panels.

Given that conditional simulation models are sensitive to 
departures from its stationarity assumption, it is critical that 
they be controlled by geologic models. The use of geologic 
boundaries may introduce issues of ergodicity, which should 
be carefully handled. A constantly updated geologic model, 
in addition to constant geologic control at the pit is required 
to ensure that the uncertainty models derived from the con-
ditional simulations are realistic and also representative of 
local geology.

Other important aspects include the behavior of the 
high-grade population, which is required to control the sim-
ulated high grades, see Parker (1991) and Rossi and Parker 
(1993). Issues such as limiting the maximum simulated 
grade should be carefully considered, since it may signifi-
cantly impact the selection panels. The issue should be re-
solved through calibration with existing production data.

A small number of realizations, perhaps 20 or 30, are 
typically used. This reflects practical limitations, since grade 
control is a process that has to be completed in a short period 
of time; but it may also be a sufficient number of simulations 
to adequately describe the model of uncertainty, given the 
data density available.

Recall that the model of uncertainty provides the prob-
ability of that node in the grid of being above (or below) any 
grade z:

 (13.3)

where F( z;x|( n)) is the cumulative frequency distribution 
curve for each point x of the simulated grid and obtained 
using the ( n),∀ = 1,…, n conditioning blast holes.

In grade control, the selection decision (which material is 
ore and which is waste) has to be based on grade estimates, 
z*( x), while still attempting to minimize miss-classification. 
Since the true grade value at each location is not known, an 
error can and will likely occur. The loss function attaches an 
economical value (impact or loss) to each possible error, as 
described in Chap. 12.

The minimum expected loss can be found by calcu-
lating the conditional expected loss for all possible val-
ues for the grade estimates, and retaining the estimate 

{ }( ; | ( )) Pr ( ) | ( ), 1,...,F z x n ob Z x z n nα= ≤ =
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that minimizes the expected loss. In grade control, the 
expected conditional loss is a step function whose value 
depends on the operating costs (Isaaks 1990). This im-
plies that the expected conditional loss depends only 
on the classification of the estimate z*( x), not on the 
estimated value itself. For example, the loss incurred 
when a block of leach ore is sent to the mill is a func-
tion of the difference in processing costs related to both 
leach and mill; it will, of course, also depend on the 
true block grade, but not on the estimated block grade 
value itself.

13.4.2  Multivariate Cases

Grade control in the presence of multiple variables intro-
duces additional challenges that can be easily handled. The 
Ujina open pit example briefly discussed above is in fact a 
multivariate grade control issue. There are multiple variables 
that add to the value of each parcel of material (copper and 
molybdenum), and also multiple variables that detract from 
its worth, such as Arsenic or the presence of clays. The mul-
tiple variables can all be mine products, or a combination 
of mine products, metallurgical performance variables, and 
contaminants in general.

In cases where there are spatial relationships between 
the variables of interest, then either co-estimation or co-
simulation (Chaps. 8–10) can be performed. This is most 
important when simulating for grade control, since modeling 
relationships among different variables is consequential. In 
Chap. 14 two multivariate simulation case studies are pre-
sented.

13.5  Practical and Operational Aspects  
of Grade Control

There are many operational aspects that need to be considered 
for an effective grade control. The most important are (a) the 
relationships between the grade control activity and mine plan-
ning; (b) the practicality of obtaining representative samples; 
(c) time constraints, always present in any operation; the daily 
production target is the operation’s main driver which does not 
allow for detailed modeling and planning work; (d) the gath-
ering and use of geologic data; (e) the appropriate staking of 
the ore/waste zones; (f) the control of the mining process; (g) 
the destination of each truck or load of material; and (h) the 
accounting of material movement and overall reconciliations.

Each one of the aspects mentioned deserves detailed dis-
cussions and are outside the scope of this book. However, 
they are highlighted here to remind the reader that adequate 
grade control involves multiple areas of an operation, and 
cannot be developed in isolation from other aspects of the 

mine. Issues related to material accounting, particularly vol-
umes or tonnages extracted and mine-to-mill reconciliations 
are among the most important. As argued in Chap. 11, they 
can also be the basis for model performance evaluations.

Operational details, sometimes seemingly trivial, can have 
a significant impact on the bottom line. Without pretending 
to be exhaustive, some illustrative examples mostly appli-
cable to open pit mines are:
• Sufficient laboratory capacity to provide the assays’ 

results in the required amount of time, usually 24 h or less 
for 200 to 300 samples or more;

• Traffic and destination control in the pit, particularly if 
truck dispatch systems are not available; in areas where 
manual labor is relative cheap, it is common practice to 
place an individual at the pit exit to verify that trucks go 
to the correct destination;

• Truck weighing, as a control to truck factors and volumet-
ric measurements;

• If visual indicators of ore are available (such as green 
or blue oxide Cu minerals), mine geologists should visit 
daily the waste dumps, to ensure that the operation is not 
misplacing the ore loads; also, a 24-h operation should 
have adequate artificial lighting in the pit, more so when 
visual aids are used in grade control.

• The amount of broken ore in the pit should be sufficient to 
feed the mill for a few days; an operation where loading is 
always pressuring for more blasting goes counter to good 
grade control practices.

• Confirm the in-situ bulk density of material loaded; 
the operation should monitor in situ density variations, 
sometimes taking bulk samples from the pit. Also, con-
sider the estimate of humidity in the rock, which is gen-
erally a simple global estimate. These estimated values 
affect the conversion of volumes into tonnages, with a 
direct impact in the accounting of metal moved.

 Semi-Automatic Dig Lines Definition A computational 
algorithm can be used to develop semi-automatically dig 
lines (Neufeld et al. 2005). While it is unlikely that all issues 
will be solved, always presenting the optimal solution, the 
process of defining dig lines can be sped up. It is expected, 
though, that a degree of manual intervention and validation 
will always be required.

The process of automatically defining dig limits is 
based on pre-defined operational and selection criteria. 
Figure 13.10 shows two cases for dig limits. The model used 
to define the ore/waste selection panels is the same in both 
cases; the difference is how much one dig limit considers the 
ability of the mining equipment to mine to the exact limits 
defined.

The optimal dig limits can be posed as an optimization 
problem. Sequential annealing (see Chap. 10) can be applied 
by defining the objective function as:
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The initial profit is calculated as the sum of all fractional 
blocks that are considered ore (profitable):

where P represents the profit assigned to each block in the 
model, and “frac” represents the volume within each profit-
able block.

The initial digability is calculated based on the character-
istics of the mining equipment, taken for example from an 
equipment curve, and interpreted as the sum of the penalties 
for each angle in the ore/waste polygon, see Fig. 13.11:

Using simulated annealing, the vertices and angles can be 
moved within a small circle (tolerance) to change the angle 
that it defines, and thus changing the penalty and overall 
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profitability. A vertex is randomly selected and moved with-
in a small distance (see Fig. 13.12). New profit and penal-
ties are calculated, and the new objective function obtained. 
The results are sorted into accepted or rejected perturbations 
based on its impact on the objective function, and the process 
is iterated until convergence is achieved.

The dig limit selection algorithm can be made semi-auto-
matic if the option of an additional constraint is added manu-
ally, allowing for the technician to account for the limitations 
of mining equipment and the value of the material. The dig 
limit algorithm works by systematically giving up ore or tak-
ing in additional waste to pay for the increased digability, 
i.e., less sharp angles defining the corners of the ore/waste 
selection panels.

13.6  Summary of Minimum, Good and Best 
Practices

At a minimum, all short-term models should be updated to 
include new data that becomes available. Proper procedures 
for validation and checking should be in place, and the com-
plete sequence of updating the model should take less than a 

Fig. 13.11  Example of an ore 
polygon, with 5 vertices and 
affecting 19 blocks. The penalty 
assigned is a function of the angle 
of operation of the shovel

 

Fig. 13.10  Comparison of two 
ore/waste dig limits. The left 
option is more precise, but less 
realistic, and impossible for 
the shovel to dig to. Therefore, 
a large amount of unplanned 
dilution would be expected. The 
right option is a smoother dig 
limit, easier to dig for the shovel, 
but that it may be sub-optimal, 
depending on the characteristics 
of the mining equipment
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week of work. The ore/waste selection process will normally 
be based on a conventional method, perhaps some form of 
Kriging duly restricted with geology. Blast hole sampling 
should routinely provide acceptable samples for ore/waste 
selection. Information from relevant prior blasts should 
be used in defining current dig lines. Geologic mapping 
should aid in the daily task of defining the dig lines, which 
is generally a manual operation. Proper material accounting, 
reconciliation procedures, and constant presence and con-
trol by the mine geologist in the field should minimize the 
probability of making gross mistakes.

Good practice of medium- and short-term modeling 
requires a well defined and consistent methodology for up-
dating the resource model, satisfying both the needs of short-
term mine planning department and the short-term prediction 
of metallurgical performance. A sufficiently detailed study 
would have determined all the important implementation 
parameters and methodological details, including the proce-
dures required to update the geologic model. The short-term 
models should be produced at regular time intervals, be al-
ways reconciled with recent past production, and compared 
against the original long-term resource model for the same 
areas. The model updating process should be semi-automat-
ic, although always fully validated. Good practice in ore/
waste selection requires the recognition of the limitation 
of selecting on grade, and therefore the use of an optimal 
selection method, with consideration of the basic economic 
parameters. Dig lines are usually hand drawn, and control 
and accounting procedures are strict. Reconciliation is usu-
ally kept on a blast-by-blast basis, and reported monthly.

Best practice in medium- and short-term modeling, in ad-
dition to the above, involves using conditional simulation 
models to provide for the uncertainty model and the risk as-
sessment that short-term mine planners need. Other aspects 
of the model updating should be similar to what is defined 
as good practice, but the models are more likely to be sim-
ulation models. Similarly, the ore/waste selection should 
have been fully optimized, including the possibility of 
automatically drawing dig lines on a daily basis. In all cases, 
reconciliation procedures should be in place, and should be 

used to feed back and maintain an optimum implementation 
of the method as mine conditions change.

In addition, best practice in long- and medium-term mod-
eling involves the development of dynamic models, which 
are constantly updated, not only in terms of grade estimation, 
but most importantly in terms of the geologic model. Pro-
duction data and infill drilling are used with production map-
ping (drift or bench) to update on a regular basis portions of 
the long-term model that is therefore constantly up to date. 
It amounts to merging the medium and long-term model into 
a single model, updated, for example, on a monthly basis.

13.7  Exercises

The objective of this exercise is to review some concepts 
related to grade control. Some specific (geo)statistical soft-
ware may be required. The functionality may be available 
in different public domain or commercial software. Please 
acquire the required software before beginning the exercise. 
The data files are available for download from the author’s 
website—a search engine will reveal the location.

Consider the molybdenum data in bh-data.dat. You 
will be asked to conduct a full geostatistical study from his-
tograms through simulation. The exercise will go quickly be-
cause the data are closely spaced and reasonably well behaved.
Question 1: Plot a location map and histogram of the Mo 

data. Comment on the spacing of the data. Your 
final estimation/simulation model should be at 
a spacing of about 1/3 to 1/2 of the blasthole 
spacing. We will not consider any volume aver-
aging in the simulation. Decluster the data if 
you consider it necessary.

Question 2:  Calculate and fit the variograms of the molyb-
denum grade and estimate a model with ordi-
nary kriging. Perform cross validation if time 
permits and ensure that no conditional bias 
exists in the estimates.

Question 3:  Calculate and fit the variograms of the normal 
scores transforms of molybdenum.

Fig. 13.12  A vertex is randomly 
selected and moved, a new shape 
obtained and new profit and 
penalties obtained
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Question 4: Simulate 100 realizations of the grade. Plot the 
average grade and four realizations to verify 
that the simulated realizations are reasonable. 
The average grade model should look very 
close to the kriged model created previously.

Question 5:  Calculate the expected profit assuming a cost/
price/recovery structure that will give about 
50 % ore in the model area.

Question 6: Establish initial polygon limits for an ore/
waste interface. Optimize the dig limits for 
different digability settings.
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14Case Studies

Abstract

This chapter presents a few real-life examples of different types of Mineral Resource Es-
timation and Geostatistical studies. They are intended to illustrate some of the techniques 
described in the book, but are not exhaustive in scope or content.

14.1  The 2003 Cerro Colorado Resource 
Model

The Cerro Colorado Mine is located at an elevation of 
2,500 m, on the western slopes of the Andes in Northern Chile. 
The mine is located about 120 km east of the city of Iquique 
(Fig. 14.1), on the western edge of the Domeyko Cordillera.

The Cerro Colorado mine is a bio-heap leach, solvent 
extraction-electro winning (SX-EW) copper operation, has 
been in production since 1994. It started up as a small open 
pit operation, producing in the order of 20,000 t of cathode 
copper. As of 2003, and after several expansions, the mine 
was producing about 120,000 t of cathode copper per annum. 
Originally operated by the Rio Algom mining company, later 
became part of the assets transferred to the Billiton min-
ing company as part of its merger with Rio Algom, and in 
2001 became part of the BHP-Billiton base metals group. 
Figure 14.2 shows an aerial view as of 1999 of the mine op-
eration. The overall drill hole spacing at the time of prepar-
ing this resource model was a nominal 100 × 100 m, with 
some areas infilled to 50 × 50 m.

The work described in this section was completed in con-
junction with Cerro Colorado Geologists., Chief Geologist, 
and Mine Superintendent. The BHP-Billiton Base Metals 
organization is gratefully acknowledged for support and per-
mission to publish this work.

14.1.1  Geologic Setting

The Cerro Colorado deposit is located within a north-trend-
ing belt of Eocene to Oligocene-age porphyry Cu deposits 
(Cepeda et al. 1982; Campbell 1994). A thick sequence of 
Cretaceous andesite tuffs, flows and agglomerates of the 

Cerro Empexa Formation underlies most of the Cerro Colo-
rado region. Multiple phases of tonalite, granite and quartz 
monzonite porphyry were emplaced into the volcanic rocks 
in late Cretaceous and early Tertiary time. Copper miner-
alization is related to late-stage intrusives of tonalite and 
quartz monzonite microbreccia. Andesites and intrusives are 
covered by a locally thick sequence of Pliocene ignimbrites 
and gravels of the Altos de Pica Formation.

Copper occurs in a series of sub-horizontal layers of su-
pergene oxide minerals and supergene sulfides. Mineral-
ization occurs in andesite and porphyry along an east-west 
to northeast trend. Copper mineralization extends at least 
2,000 m East-West and from 1,000 to 2,000 m North-South. 
The orebody is covered by post-mineral gravels and ignim-
brites of the Altos de Pica Formation, except for some oxide 
ore exposed in a nearby gully (Quebrada de Parca).

Mineralization is thickest in two distinct areas, forming 
the West and East deposits. Mineralization in the West de-
posit is generally centered along the southern margin of an 
east-west trending body of porphyry where elongate fingers 
of microbreccia are developed in porphyry and andesite. The 
East deposit is located along the southern flank of a north-
east-trending body of quartz monzonite microbreccia. The 
deposit is centered in an area where abundant, small apophy-
ses of porphyry intrude andesitic tuffs and porphyritic flows.

14.1.2  Lithology

The present mapping and logging system uses five litho-
logical codes: Colluvium, Ignimbrite, Porphyry, Breccia, 
and Andesite. No distinction is made of the different por-
phyries that have been identified in the deposit. Colluvial 
boulder and conglomerate deposits of recent age overlay 
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volcanic ignimibrite (ash-flow tuff). The total thickness of 
 un-mineralized cover, including conglomerate, ignimbrite 
and colluvium deposits, varies from 30 m over the east half 
of the East deposit to more than 100 m over the West depos-
it, with an average thickness of post-mineral cover of about 
60 m.

The andesites consist of lithic, lapilli tuff, porphyritic 
flows and coarse, flow breccias and agglomerates. Volca-
nic rocks dip to the south at a low angle. Quartz monzonite, 
quartz-monzonite microbreccia and tonalite porphyry form 
complex bodies intruding andesites in the West and East de-
posits. Above an elevation of about 2,600 m, quartz mon-

zonite and quartz-monzonite microbreccia are present as 
large east-west trending bodies in the West deposit and as 
northeast-trending shapes in the East deposit. Breccia bodies 
coalesce below an elevation of 2,550 m, forming a northeast-
trending body extending from the western edge of the West 
deposit to the northeast end of the East Deposit, surrounded 
by numerous apophyses of tonalite porphyry. The number 
and extent of tonalite porphyry intrusives increases with 
depth, eventually merging below an elevation of 2,450 m 
to form a large stock surrounded by smaller apophyses of 
porphyry and intermixed with bodies of quartz-monzonite 
microbreccia.

Fig. 14.1  Location map of the Cerro Colorado Mine in northern Chile. Courtesy of Compañía Minera Cerro Colorado S.A.
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Mineralization principally occurs in andesite, tonalite 
porphyry and within small breccia bodies. The margins of 
larger breccia bodies may be preferentially mineralized. The 
siliceous cores of breccia units are normally weakly mineral-
ized. It is believed that intense hydrothermal alteration and 
brecciation of the quartz monzonite culminated with deposi-
tion of Cu mineralization.

14.1.3  Alteration

Several hypogene alteration phases have been identified: po-
tassic, phyllic and propyllitic alteration zones. There is also 
silicification of quartz-monzonite microbreccia and the mar-
gins of intrusive bodies, which may have preceded Cu miner-
alization, as well as supergene alteration. Potassic hypogene 
minerals are preserved generally below the 2,450 m eleva-
tion where supergene leaching is less advanced, and is more 
evident in quartz monzonite, quartz-monzonite microbreccia 
and tonalite porphyry in the East deposit compared to the 
West deposit. Andesite, quartz monzonite, microbreccia and 
tonalite are altered to sericite/muscovite, quartz and pyrite in 
the phyllic zone. Phyllic alteration overprints earlier potassic 
alteration and is overprinted itself by the formation of kaolin-
ite and alunite during later supergene leaching. Propyllitic al-
teration is evident in outcrops within the Quebrada de Parca 
and in some the outermost drill holes. Andesites are the most 
common rock affected. The andesite is strongly chloritized 
and contains disseminated and veinlet epidote. The ground-
mass of quartz-monzonite microbreccia is strongly silicified 
locally. Silicification of andesite is also evident along con-
tacts with tonalite porphyry and quartz monzonite. Silicified 
units could be weakly or strongly mineralized.

14.1.4  Mineralization Types

Supergene alteration formed during leaching of sulfide-rich 
rock. Acids generated by the interaction of ground water 
and sulfides leached Cu from sulfides and re-deposited it as 
oxide Cu minerals above the water table and as supergene Cu 
sulfides below the water table. The resulting rock is relative-
ly soft and commonly has vuggy veinlets of quartz, kaolinite, 
alunite, limonite and jarosite.

Hypogene mineralization (HYP) is represented by pyrite 
accompanied by chalcopyrite and bornite. Hypogene sul-
fides are deposited in all rock types as disseminations or in 
veins and veinlets with quartz-feldspar-biotite, but are best 
preserved under the base of the supergene layers or in vein-
lets in the transition zone between supergene sulfides and 
hypogene. The average Cu grade of HYP is from 0.20 to 
0.30 % (Campbell 1994).

Supergene alteration and mineralization occurs in four 
main zones, consisting generally from top to bottom of: (a) 
leached zone (LIX) in which acid leaching has removed 
most or all Cu mineralization; (b) oxide mineralization con-
sisting almost entirely of oxide Cu minerals (OX); (c) super-
gene Cu sulfide mineralization, dominated by the presence 
of chalcocite and lesser covellite (S); and (d) a transitional 
zone consisting of a mixture of supergene Cu sulfides and 
hypogene Cu sulfides (MSH).

Supergene oxide and sulfide mineralization occur in mul-
tiple, sub-horizontal layers and vertical pods that extend over 
a total distance of about 2,700 m East-West and 2,000 m 
North-South. The top of the largest layers of oxide mineral-
ization is at an average elevation of 2,500 m, or from 50 to 
200 m below the surface. Smaller, less continuous pods of 
oxide mineralization are present above this elevation. The 
leach cap above Cu oxides is 25–75 m thick.

Oxide (OX) is defined as material in which the ratio of 
sulfuric acid-soluble Cu (SCu) to total Cu (TCu) is 0.5 or 
greater. Chrysocolla is pervasive in the oxide Cu zone and 
forms the dominant ore mineral. Brochantite, libethenite, 
malachite, pseudomalachite, paratacamite, cuprite and teno-
rite can also be present (Cepeda et al. 1982).

Supergene sulfide (S) is defined as material for which 
the ratio of sequential Cu (sulfuric acid-soluble plus cyanide 
acid-soluble) to total Cu is 0.8 or greater; and the ratio of 
sulfuric acid-soluble to total Cu (SCu/TCu) is less than 0.3. 
Chalcocite and lesser covellite replace or occur as coatings 
of hypogene pyrite, chalcopyrite and bornite.

The transition zone (MSH) is defined as mineralization 
with a ratio of sequential Cu to total Cu of from 0.5 to 0.8. 
Cu is present as chalcocite, covellite, chalcopyrite and born-
ite. Chalcocite and covellite are preferentially present in 
veins and fractures, but can occur as disseminations.

Fig. 14.2  Aerial view towards the N-NE of the Cerro Colorado opera-
tion, January 1999. Courtesy of Compañía Minera Cerro Colorado S.A.
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Figure 14.3 shows a picture of the upper section of the open 
pit wall, with elevations, main lithology zones, mineralization 
types (LIX and OX), and some structural features annotated.

14.1.5  Structural Geology

Cepeda et al. (1982) identified numerous, northwest-trend-
ing, post-mineral faults in surface mapping and exploration 
adits and cross TCus. These generally strike N60 to 70W 
and dip vertical to 70 ° east. No orebody displacement is ap-
parent. The northeast elongation of the East deposit suggests 
that northeast-trending pre-mineral faults may have been 
present. Abrupt contacts between leach, oxide and sulfide 
bodies also suggest that northwest-trending faults or fracture 
zones may have influenced the development of these units.

14.1.6  Database

The database includes a mixture of older holes used for the 
original feasibility study and later in-fill and short-term drill 
holes, intended to support detailed Mine Planning. Blast hole 
data were used in a limited fashion for calibration and recon-
ciliation of the resource model to past production. Through 
statistical analyses, the different data types and sources were 
shown to be consistent.

The database contains 1,575 drill holes, including Reverse 
Circulation (RC) and Diamond Drill Hole (DDH) types. 
Sampled intervals are generally 2 m, except in overburden, 
where no sample is taken. The sample’s lithology, alteration, 
and mineralization type is logged from the samples. Total Cu 
(TCu) and Soluble Cu (SCu) are assayed. Some older holes 
do not have geologic information.

There are a total of 56,018 sample intervals with TCu 
grade. Figure 14.4 shows the histogram of the TCu sample 

values, while Figs. 14.5 and 14.6 show the distribution of 
TCu grades in oxide and supergene sulfide mineralization, 
respectively. Note that the overall average of the TCu val-
ues in the database is 0.62 % TCu; the overall average of the 
oxide grades is 0.88 % TCu and represent about 30 % of the 
total dataset; for sulfide samples, the average is even higher 
(1.20 % TCu), representing about 21 % of the total number of 
samples. Other sulfide mineralization, such as hypogene (or 
primary) mineralization, has much lower grade (0.33 % TCu, 
almost 15 % of the database). At Cerro Colorado, primary 
mineralization has no economic significance, since the op-
eration only processes leachable mineralization, i.e., oxides 
and supergene sulfides.

Tables 14.1, 14.2 and 14.3 show the basic statistics 
for TCu samples by lithology, mineralization type, and 
 alteration, respectively. Finally, Table 14.4 shows the basic 
statistics for SCu according to mineralization type.

The following conclusions can be drawn from the tables 
above:
• There are 1,991 samples without TCu values and with-

out mineralization type; there are also 311 samples that 
have no lithology, and 2,571 samples for which there is 
no alteration available.

• Most of the TCu grade exists in porphyry, andesites, and 
breccias. There is very little mineralization in gravels, 
ignimbrites, and dikes.

• The Leach mineralization type is essentially barren, with 
an average TCu grade of 0.1 %, although there are iso-
lated high values, up to 3.74 % TCu. These high grades 
are attributed to oxide mineralization that cannot be 
recovered in the mine’s SX-EW plant, generally called 
“black” oxides, and include minerals such as cuprite, 
native Cu, and Cu Wad.

• The overwhelming majority of samples present phyllic 
alteration. There will be limited use for alteration as a 
mineralization control.

Fig. 14.3  Photograph show-
ing some of the rock types and 
oxide mineralization, along with 
contacts and some local faulting. 
Benches are 10 m high
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• From Table 14.4, it can be seen that the oxide and sulfide 
mineralization are the only two types that have significant 
soluble Cu (SCu) grades.

14.1.7  Estimation Domain Definition

The definition of the grade estimation domains was done fol-
lowing the general guidelines suggested in Chap. 4. In the 
case of Cerro Colorado, the estimation domains (or geologic 
units, “UGs”) are based on a combination of mineralization 
type, lithology, and alteration, and are intended to capture the 
mineralization controls. It was recognized that mineraliza-
tion type is the major mineralization control and introduces 
mineral processing considerations in the resource model. For 
example, hypogene mineralization with Supergene Sulfide 
mineralization have different ore genesis, spatial distribu-

tions, and they will be treated separately in the mine plan. 
The final estimation domains used are constrained by the 
amount of information available, which requires that some 
data be grouped. The main estimation domains defined are:
1. Domain = 0 (leach) includes all samples mapped as min-

eralization type “leach”, and also all other samples that 
are mapped as gravels or ignimbrites. This is waste mate-
rial.

2. There are three oxide domains. The first has better oxide 
grades with phyllic, argillic, and silicified alterations, and 
within intrusive rocks (porphyries and breccias).

3. A second oxide grade spatial distribution is found within 
the andesites. These have lower, but still interesting Cu 
grades.

4. The third oxide domain is a lower grade domain, and cor-
responds to all oxide mineralization with potassic and 
cloritic alterations. This mineralization is located on the 
fringes of the deposit, and is volumetrically disjointed and 
overall small in comparison to the two previous domains.

5. The fourth and fifth domains are supergene sulfide min-
eralization mapped with phyllic, silicified, and argillic al-
terations. The porphyries have better grades and are spa-
tially distinct from the breccias located in the central and 
southern areas of the East sector of the deposit.

6. Supergene sulfides with phyllic alteration in andesites 
tend to have low grades, and are found towards the edge 
of the deposit, around the rocks that intruded them. This is 
also true of the supergene sulfide mineralization that has 
potassic and cloritic alteration, and thus they are grouped 
in a single domain.

7. The mixed sulfide-hypogene mineralization was estimat-
ed separately, despite being a set of spatially disjointed 
bodies and with small overall volume. This is necessary 
because this transition zone is distinct from either sulfide 
or hypogene mineralizations.
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8. All hypogene mineralization was grouped into the final 
estimation domain. This was done so because the mine 
treats this material as waste.

The set of estimation domains are presumed stationary, and 
form the basis of the TCu and SCu grade estimation.

14.1.8  Database Checking and Validation

The database was thoroughly checked and validated. After 
an initial spot check, it was determined that the database 

required full validation. To fully check the Cerro Colorado 
database, a surface 80 m above the pit’s topography as of 
January 2003 was obtained and used to select the data lying 
below the surface. Samples 80 m above current topography 
will not have any significant impact in the resource model, 
and so were deemed lower priority. The following approach 
was taken:
1. The complete list of intervals to be checked consisted of 

286 drill holes, or 60 % of the database. For each one of 
these drill holes, the computerized assay information was 
checked against the original laboratory certificates. If the 

Table 14.1  TCu samples statis-
tics by lithology

Table 14.4  SCu samples statis-
tics by mineralization type

Table 14.3  TCu samples statis-
tics by alteration

Table 14.2  TCu samples statis-
tics by mineralization type
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laboratory certificate did not exist or was lost, the check 
was done against the interval grade value annotated on 
the log sheet. The checks also included comparing the 
computerized lithology, alteration, and mineralization 
type against the original log sheet. The drill hole collar 
coordinates and down-the-hole survey information were 
also checked. This check was done for over 30,000 inter-
vals, taking about one calendar month for three people.

2. All information related to each drill hole was placed in 
a binder, and the binder catalogued and stored for future 
reference. The binder also included a summary of the 
drill hole’s existing information, as well as the missing 
information. This was done to ensure that future changes 
and additions to the database could be easily tracked and 
documented, also leaving the proper audit trail for future 
third parties’ reviews.

3. Besides checking against the original laboratory and log 
sheets, other consistency checks were completed:
a. Checking that the Soluble Cu was not greater than the 

Total Cu (SCu ≤ TCu, if not, SCu = TCu).
b. Checking whether duplicate intervals were present 

(these are sometimes generated at the time of data input).
c. The “from” and “to” metrage of each down-the-hole 

interval has to be consistent with adjacent samples.
d. The names of the drill holes have to be exactly the 

same in all data tables, so that information can be cor-
rectly linked.

e. Duplicate collar coordinates are only allowed for those 
drill holes that were started with one drilling method, 
and were completed with another. Typically, the RC 
method is used in the upper portion of the drill hole, 
before entering significant mineralization, and then 
converted to a diamond drill hole, thus obtaining core 
in mineralized intervals.

f. Two drill holes were discarded because their collar co-
ordinates were clearly erroneous, and no information 
was available to verify their exact location.

g. The coordinate system used for the drill holes was also 
checked; the older drill holes were located using local 
mine coordinates, while later drill holes were located 
using truncated UTM coordinates.

h. The values assigned to intervals with missing Cu as-
says, non-sampled intervals, and with Cu values below 
laboratory detection limit were also checked.

This checklist serves as an illustration of the type of work 
involved in ensuring database integrity, which in some cases 
could entail a significant amount of time. Each project will 
be different, with the corresponding database will have its 
own peculiarities; this list does not include all possible as-
pects that should be validated.

In addition to the validation work described above, the 
database was also modified because a significant number 
of older drill holes were remapped from the samples still 
available in the core shack. This remapping effort was 

intended to unify the logging criteria used earlier in the 
project’s life, thus making the geologic information more 
consistent with the current geologic understanding of the 
deposit. The remapping was specifically focused on the 
lithology and alteration information, since they are often 
difficult to map consistently.

14.1.9  Comparison of Drill Hole Types

Another aspect of the database validation relates to the dif-
ferent quality of information obtained from different drill 
hole types. For any given interval, Reverse Circulation (RC) 
drilling may result in a different grade than would have been 
obtained from diamond drilling. This relates to the drilling 
method, the sampling method, and to different drill hole di-
ameters (support) involved.

Another concern is the different drilling campaigns per-
formed at different times. The differences may result from a 
combination of different factors:
4. Changes in drill hole type. Initial campaigns generally 

use faster and cheaper drilling methods than those that 
are intended for resource delineation, that require more 
accurate samples. This also occasionally applies to the 
laboratory techniques used in the early sampling. Exam-
ples of these differences are abundant across the mining 
industry, as for example the use of percussion holes in the 
San Gregorio Au vein-type deposit (Uruguay), or the use 
of a rotary, open drill rig mounted on a tractor in the case 
of the Michilla Mine, used to detect satellite mineraliza-
tion away from the main deposit.

5. Differences in personnel involved. Classically, different 
geologists will see and map differently the same drill hole, 
sometimes resulting in geologic descriptions that are sig-
nificantly different. This was the case at Cerro Colorado.

6. If there is a significant time lag between the different 
campaigns, then the technology for drilling, sampling, 
sample preparation, and assaying could change. This is 
typical of projects that have been known for a number of 
years, but that, for whatever reason, have not been devel-
oped in a timely manner. Again, there are many examples 
in industry, including the Pueblo Viejo Au deposit (Do-
minican Republic), or CODELCO’s Radomiro Tomic Cu 
deposit in northern Chile, originally drilled in the 1950s, 
and eventually put into production in the mid-1990s.

7. Geologic knowledge about a deposit naturally evolves 
with time, as more information becomes available. This 
is another common source of discrepancies between ear-
lier exploration and development geologic work and the 
understanding of the deposit geology after the mine enters 
production. This is also the case at Cerro Colorado, as 
well as many other mines around the world.

An important issue was the systematic higher grades ob-
served from production information compared to prior re-
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source models obtained from exploration drill holes. It 
was hypothesized that there may be differences in the Cu 
grades obtained by drill holes form the earlier exploration 
campaigns (pre-operation), approximately to a 100 × 100 m 
grid, compared to later in-fill drill holes, used for detailed 
mine planning and budgeting, and drilled approximately on 
a 50 × 50 m grid.

Since there were no twinned exploration holes, it is diffi-
cult to perform a statistical comparison that would unequivo-
cally indicate whether older drill holes are biased with re-
spect to newer information. Globally within each estimation 
domain, however, it is evident that the initial drill holes (on 
a 100 × 100m grid) reported higher Cu grades than the in-fill 
drill holes. Figures 14.7 and 14.8 show the Quantile-Quan-
tile (Q-Q) plots for the two TCu grade distributions of the 
most important oxide and sulfide domains. On the X-axis the 
grade distributions from the original exploration drill holes 

is shown, while the distribution of the TCu grades from the 
in-fill drill holes is shown in the Y-axis.

No corrections of any type were performed, since it is not 
clear which of the two drill campaigns tend to be closer to 
the true in situ grade. Several options were available, but in 
general it would be expected that infill drilling is potentially 
less accurate, because it is faster and the samples may be of 
lesser quality. This has not been demonstrated, but if it were 
the case, then using infill drilling provides a degree of con-
servatism to the overall estimate.

14.1.10  Laboratory Quality Assurance–Quality 
Control (QA-QC)

A complete QA-QC follow-up of the laboratory assays was done 
as the drilling campaign progressed. Details of this QA-QC pro-
gram are not given here, but it followed the concepts discussed 
in Chap. 5. In general, TCu analyses are more accurate and pre-
cise than SCu assays, due to the nature of the assaying methods 
involved. In both cases, however, the results were satisfactory 
and within acceptable standards for this type of deposit.

14.1.11  Topography

The topography used in the model is based on an aerial pho-
togrammetric survey, which was tied to control points in the 
field. It is considered that the topographic surface is accurate 
to ±2 m, both in the horizontal and the vertical directions.

Additionally, the pit surface as of January 31, 2003, was 
taken as the actual pit surface for calculation of remaining 
resources. This is in addition of the already mentioned aux-
iliary surface created 80 m above current pit surface, used to 
select drill holes and blast holes for various data validation 
exercises, model calibrations, and reconciliations.

14.1.12  Density

The density database available consists of 1,591 samples 
taken from drill hole data, and tested for density in sev-
eral campaigns during the late 1990s. Table 14.5 shows 

Table 14.5  Density values used in prior resource models
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the arithmetic average of the density values for each unit 
described, which approximately coincides with the esti-
mation domains defined above. Using arithmetic averages 
by geologic unit is a standard procedure in mining, par-
ticularly in circumstances where there are relatively few 
density values available. Also, density should not vary 
abruptly in space. Spatial coverage of the density values 
has to be fairly uniform and different grade ranges need to 
be sampled to capture the variations in density values as 
a function of grade. Additional density data would allow 
proper domaining and estimation using Ordinary Kriging, 
for example.

14.1.13  Geologic Interpretation and Modeling

Some of the considerations that affected the choice of mod-
eling methodology included:
a) The software used in the modeling, which required the 

use of solids, obtained through either wireframing tech-
niques or extrusions of sectional polygons.

b) The bench height, set at 10 m, which is also the height of 
the blocks of the resource model.

c) The time and human resources available to execute the 
work, which led to simplifying the methodology for the 
least important geologic variables.

Only those geologic variables with significant potential im-
pact on the resource model and volumetric representation in 
the database were modeled. Considering the lesser impor-
tance of lithology and alteration, compared to mineralization 
type, as mineralization controls, a more detailed modeling 
process was used for the latter. The following steps were 
used to build the geologic model:
 1. Development of E-W cross sections, spaced 50 m apart, 

and posting all available drill hole samples that exist 
within ± 25 m of the section plane. This was done for 
each variable separately.

 2. Interpretation of the drill hole intercepts as sectional 
polygons.

 3. Extrusion of the interpreted alteration and lithology 
polygons to obtain solids, and then cutting these solids 
with orthogonal constant-elevation planes, correspond-
ing to mid-bench elevations. In the case of mineral-
ization type, the orthogonal planes used corresponded 
to N-S longitudinal sections every 50 m, again with a 
± 25 m tolerance. This added interpretation step was 

done because of the importance of mineralization type 
as mineralization control.

4. For alteration and lithology, the bench polygons result-
ing from cutting the E-W solids were re-interpreted using 
the 10 m composite intercepts available. Additionally, 
where available, pit and blast hole was used to refine 
in detail the interpreted polygons. These final polygons 
were then extruded in the vertical direction to produce 
the final solids.

5. The last step of the interpretation of mineralization type 
was similar to Step 4 above, obtaining the final inter-
preted solids from refined mid-bench polygons, in turn 
obtained from the polygons cut from N-S sections, and 
refined using drill hole composites and production map-
ping for the final interpretation.

The upper portion of the Leach unit was not explicitly mod-
eled. It was left as the by-default unit, and then overprinted 
with the other modeled units. There were, however, a num-
ber of leached bodies internal to other units that had to be 
modeled explicitly.

14.1.14  Volumetric and Other Checks

Two different comparisons were made to check whether the 
interpreted volumes were globally unbiased.

The block model assignments of each geologic variable 
were checked on screen and on paper (sections and plan 
views plotted at a 1:500 scale) against the interpreted solids. 
The second check is a comparison between the volume of 
the solids and the representation (relative percentage) in the 
database of each unit. There should be no significant volu-
metric bias after interpretation. Drill hole clustering and sub-
jectiveness in the mapping and logging process may render 
the geologic data less reliable.

Table 14.6 shows, as an example, the relative percentage 
in drill holes (logged meters vs. total meters) for each miner-
alization type (main mineralized units), compared to the total 
and relative percentages of the corresponding interpretation. 
Results are quite satisfactory.

The 2003 interpretation was compared to the previous 
geologic model. Figure 14.9 shows the interpreted mineral-
ization type for Section 82230N, where the different units 
are color-coded (brown = leached; green = oxide; red = sul-
fide; yellow = MSH, and purple = hypogene). The 2003 
model units are represented with the dotted fill, while the 

Table 14.6  Relative percentage 
comparison in drill holes vs. 
interpreted model, mineralization 
type
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2000 model units do not have any fill. By observing simulta-
neously both models, the impact of the new drilling and the 
quality of the interpretation work can be assessed.

14.1.15  Exploratory Data Analysis

14.1.15.1  Compositing

The original samples were composited down-the-hole at a 
nominal 10 m interval. Down-the-hole composites were cho-
sen because some of the drill holes are inclined 60 ° or less 
and bench compositing is not appropriate.

The original samples were back-tagged with the modeled 
geology, and the 10 m composites obtained by breaking the 
composites at the estimation domain contacts (UGs). This 
resulted in a total 11,809 10 m composites, of which about 
12 % are less than 10 m in length. After statistically verifying 
that the length of the composite is not correlated with grade, 
only 88 composites less than 2 m were discarded from the 
database.

Histograms and basic statistics were obtained for TCu 
and SCu for the different estimation domains. Figures 14.10 
and 14.11 show that the grade distributions are fairly typical 
of porphyry copper deposits.

The corresponding probability curves are shown in 
Figs. 14.12 and 14.13 respectively. Note that both curves 
show breaks and departures from a straight-line fit, which 
may imply multiple populations.

14.1.15.2  Declustering
The drill hole data are spatially clustered as a result of the 
historic drilling campaigns, and also due to the presence of an 
underground tunnel, from which several holes were drilled. 
Declustering techniques were applied (see Chap. 2) to obtain 
an unbiased prediction of the global mean and also to estimate 
the expected SMU-support grade–tonnage curves for each do-
main. The cell declustering method (Deustch 1989) was ap-

plied to the 10 m composites for each estimation domain. After 
analyzing the results for multiple cell sizes, a 100 × 100 × 30 m 
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cell was chosen as the optimal one for declustering, since it 
corresponds to the initial pseudo-regular drilling grid.

Figures 14.14 and 14.15 show declustered histograms of 
TCu for oxides (UG 1) and sulfides (UG 2) respectively. Note 
how, in both cases, the statistics have changed significantly. 
The declustered TCu mean of the first oxide unit (Domain 1)  

is 0.77 % (Fig. 14.14), compared to 0.86 % TCu for the non-
declustered data. In the case of the first sulfide unit (Domain 
4), the declustered TCu mean is 0.96 % (Fig. 14.15), while 
the non-declustered mean is 1.20 % TCu. Generally, the 
higher the grade of the estimation domain (UG), the more 
severe the impact of clustering is. Logically, the high grade 
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areas are of interest for infill drilling. The lower grade, mar-
ginal mineralization and waste units are more likely to be 
drilled only in the initial drilling campaigns, which are more 
regular.

14.1.16  Comparison Between Composites  
and Blast Hole Data

Blast hole data are used to select ore and waste and are sam-
pled on 10 m benches. There are several statistical tools that 
can be used to compare two distributions (Chap. 2); howev-
er, the first major decision is which data should be compared. 
A set of paired (“twins”) data was obtained by searching in 
three dimensions for composites that are located a maximum 
distance of 4 m from a blast hole. The resulting pairs can be 
compared with a Q-Q plot.

Different types of drill hole data were compared separately 
to blast holes, since the database contains diamond drill holes 
(DDH), reverse circulation holes (RC), and open percussion 
holes (DTH). Additionally, the analysis was done separating 
oxide and sulfide mineralization. Three examples of the com-
parisons are shown in Figs. 14.16–14.18. Blast hole data tend 
to have higher grades, although the differences are small.

14.1.17  Contact Analysis

The analysis of grade profiles across boundaries between 
estimation domains is often referred to as contact analysis. 
Its purpose is to understand which contacts are hard, in the 
sense that grades on either side of the contact are very dif-
ferent, or soft, where the grade transition from one domain 
to the next is smooth. An example of a hard contact in por-
phyry-type deposits is typically the interface of the leached 
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(barren) cap with the oxidized mineralized zones. Within 1 
or 2 m in the vertical direction, grades can change from bar-
ren (<0.1 % TCu) to 1 %. Soft contacts may exist between 
high and low secondary enrichment units, where the grade 
transition is much smoother, to the point that, based on grade 
alone, it is difficult to define the contact itself.

Figure 14.19 shows an example of a soft contact. The 
grade profile corresponds to two sulfide estimation domains, 
and shows the average grade of all composites in each side of 
the contact by class distance, in this case 20 m. Figure 14.19 
shows that, despite the fact that the overall averages are dif-
ferent, locally and near the contact the grades are similar and 
also somewhat depleted with respect to the global average. 
Therefore, for these estimation units, it is reasonable to use 
composites across the contact to estimate the grades of either 
unit within a limited distance.

14.1.18  Correlogram Models

The correlogram function (Srivastava and Parker 1988) was 
chosen to characterize spatial continuity at Cerro Colorado 
because experience has shown it to be more robust than the 
traditional variogram with respect to outliers and trends, 
being therefore generally easier to model. Correlograms 
were calculated for TCu and SCu in each Domain using 
10 m composites and blast hole concurrently. Down-the-
hole correlograms were used to define the nugget effect and 
short scale continuity of the correlogram models. Experi-
mental correlograms were obtained in 37 directions using 
SAGE2001 (Isaaks 1999). Some observations from the cor-
relogram models were:
• Three rotation angles were used to define the directions 

of anisotropy. In this particular case, there is sufficient 
information (drill holes and blast holes) to warrant such 
detailed correlogram models.

• The models were discussed with the local geologists, who 
reconciled them with their own experience and knowl-
edge of the deposit. The main directions of continuity 
confirm current geologic knowledge. In addition, for 
most Domains there is evidence of a short-scale anisot-
ropy that has a different direction than the longer-scale 
continuity. This is interpreted as a mixture of geologic 
controls (structures) at different scales, as confirmed by 
local geologists.

Figure 14.20 shows the experimental correlograms and 
models for Domain 1, for three directions that are close to 
the main directions of anisotropy. As shown, two exponen-
tial structures have been modeled with an anisotropy ratio 
of 5:1 in the N-S direction compared to the E-W direction, 
and even slightly more anisotropic with respect to the verti-
cal direction. For this particular Domain, the first structure 
showed slightly more continuity on a direction dipping ap-
proximately 20°, while the second structure did not show a 
dip. Shallow-angle, cross cutting structures explained the 
slightly different anisotropy direction of the first structure.

 14.1.19  Change of Support to Estimate  
Internal Dilution

The Cerro Colorado open pit mine works on a 10 m-bench 
height and uses large equipment, such that the accepted se-
lective mining unit (SMU) is 20 × 20 × 10 m. This SMU size 
defines, in theory, the target distribution of estimated grades 
that should be achieved to accurately estimate recoverable 
resources and reserves. Although the SMU is a convenient 
concept, it is important to not lose sight of its limitations, 
recall the discussion in Chap. 7.

The coefficient of variation (CV = σ/m) is a useful measure 
of variability that can be used to characterize the variability 
of the SMU distribution. This theoretical SMU distribution 
can be used as a reference distribution and compared to the 
estimated block model grades. A calibration of the estimated 
grade distribution can be performed to better match the theo-
retical SMU distribution.

The dispersion variance is found for the assumed SMU 
through either (i) the correlogram or variogram models de-
veloped for each Domain; or, (ii) as an “experimental” dis-
persion variance. For the second option, blast holes or other 
production data should exist at a grid sufficiently smaller 
than the SMU defined. If so, the available grades are simply 
averaged into the SMU sizes.

The Discrete Gaussian (DG) method was used at Cerro 
Colorado to derive a SMU distribution of TCu grades for 
each Domain. The method was mentioned in Chap. 7, and 
is described in detail in Journel and Huijbregts (1978). The 
three elements that are needed for the DG model to pre-
dict a grade-tonnage curve for any SMU are (i) the cor-
relogram models for TCu and for each Domain; (ii) the 
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definition of the SMU size, in the case of Cerro Colorado 
as a 20 × 20 × 10 m block, for which, and based on the cor-
relogram models, a dispersion variance and a VCF can be 
obtained; and (iii) the declustered 10 m composite database 
for each Domain.

Table 14.7 shows the predicted CV (or target CV) for 
each Domain and 20 × 20 × 10 m SMU size. Table 14.7 also 
shows the dispersion variance of the blocks and the CV of 
the original declustered 10 m composites.

As expected, the predicted CV corresponding to the SMU 
distribution is lower for every Domain compared to the orig-
inal composites. For Domain 3, low-grade oxide mineraliza-
tion, the predicted SMU CV is lower, but fairly similar to 
the original CV, an indication that there is little mixture of 
grades within that Domain, evidenced by a highly continu-
ous correlogram model. The opposite can be said about the 
higher grade units, such as Domain 4.

14.1.20  Predicted Grade-Tonnage Curves  
for TCu, Cerro Colorado

The predicted grade-tonnage curves from the DG-corrected 
distribution were obtained for the mineralized units shown in 
Table 14.7. If these curves are similar to those obtained from 
the estimated resource model, then it can be said that the 
estimates incorporate an appropriate amount of volume-vari-
ance correction. However, it should always be remembered 
that the within-block mixing of grades is only one source of 
dilution and ore loss.

Figure 14.21 shows the grade-tonnage curve for the pre-
dicted SMU distribution and the original 10 m declustered 
composites for Domain 1, higher-grade oxides. Note that the 
tonnage above cutoff is expressed as a percentage of the total 
meters of drilling above cutoff, such that a comparison can 
be made. For a 0.5 % TCu cutoff, the DG model predicts 

Fig. 14.19  Average grade profile at the contact between Domains 4 and 5

 

Table 14.7  Parameters of the 
predicted SMU distribution for 
the main units, discrete Gaussian 
model
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Fig. 14.20  Three experimental 
correlograms and their models, 
TCu, Domain 1
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a relative loss in grade of about 6 % (from 1.104 % TCu to 
1.045 % TCu), and a gain of about 0.5 % in tons.

14.1.21  The Cerro Colorado 2003 Resource 
Block Model

The resource block model defined is 3,600 m long in the 
East-West direction, 2,200 m long in the North-South direc-
tion, and 710 m deep. A limiting lower surface was devel-
oped based on current drill hole depth, extending on cross 
sections the end points of drill holes between 20 and 30 m. 
This lower surface ensures that all drill holes are contained 
within the model, and also avoids undue extrapolation of 
drill hole grades at depth. A block size of 20 × 20 × 10 m was 
deemed appropriate for the available drill hole spacing. Ac-
cording to Journel and Huijbregts (1978), block size should 
correspond to approximately 1/3 to 1/2 of the average drill 
hole spacing, which is about 50 × 50 m after infill drilling is 
completed.

To incorporate geologic contact dilution, a partial block 
definition was implemented. An auxiliary variable-block 
size model was first defined, and geologic attributes as-
signed to each block in this auxiliary model. Then, the vari-
able-block size model was re-blocked to the 20 × 20 × 10 m 
block model defined above, and percentages of Domains 
were calculated for each large block. Thus, a detailed defi-
nition of the local geologic contacts is obtained, with the 
final grade of the block estimated based on a weighted 
average of the estimated grades for each Domain. In this 

manner, geologic contact dilution is incorporated into the 
resource model.

14.1.22  The Grade Model

Ordinary Kriging (Chap. 8) was used to estimate the grade 
for each Domain, using the corresponding correlogram mod-
els and applying kriging plans and criteria derived from the 
statistical analyses described above.

The kriging process was implemented in three estimation 
passes, each with varying restrictions in the kriging plan. In 
the more restrictive pass (Pass 1), shorter search radii were 
used along with a relatively large minimum number of com-
posites; the second and third passes progressively relax these 
conditions, although in all cases a minimum of two drill holes 
is required for any block to be estimated. The purpose of these 
passes is to (a) estimate the blocks that are well informed with 
more local information, while the opposite is true for blocks 
in outer areas of the deposit. This results in a block model dis-
tribution with higher variance than otherwise, and thus pro-
vides better control over the smoothing effect of kriging; and 
(b) to provide an initial indicator for resource classification, 
since the kriging plan provides the summary of all parameters 
required to estimate each block, and it is domain-specific, 
which implies that the local geology is taken into consid-
eration. This is accomplished by storing a flag in the block 
model indicating in which pass the block was estimated.

The kriging plans were the result of a calibration or cross 
validation exercise using production date. The existing blast 

Fig. 14.21  Predicted Grade-Tonnage curve, 10 m declustered composites vs. SMU (from the DG model), TCu, Domain 1 (Oxides)
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holes within a pre-defined volume representing approxi-
mately the last two years of production where averaged into 
20 × 20 × 10 m blocks. These same blocks were re-estimated 
iteratively, using alternative kriging plans, until a reasonable 
match between kriged estimates and block-averaged blast 
holes was achieved. It is advisable to validate the kriging 
plans any time that a reference grade distribution is avail-
able, which is different than using geostatistical cross vali-
dation methods. Classical cross-validation methods do not 
directly validate block estimates, and have been questioned 
as tools for validation of kriging parameters (Davis 1987; 
Solow 1990).

Block kriging was performed by discretizing the block 
with 4 × 4 × 1 points. Note that, in the vertical dimension, no 
discretization is necessary because 10 m composites were 
used to estimate 10-m high blocks. Octant searches were 
used, this to aid kriging in the declustering process. The 
search ellipsoids were oriented according to the correlogram 

models, although the search anisotropies were less marked. 
This is done to ensure using composites from directions of 
lesser continuity, which contribute useful information and 
could be discarded if a very strong anisotropic search is used. 
The variable orientations of the search ellipsoids correspond 
to the orientations of the correlogram model structures. This 
is because it is assumed that the anisotropy observed in the 
first correlogram structures is mostly influenced by superim-
posed short-scale controls, such as cross faulting. Therefore, 
the kriging passes with smaller search radii are influenced by 
the first structure of the correlogram model, while the krig-
ing passes that use longer search radii are mostly influenced 
by the second structure.

The estimation parameters used for each Domain for TCu 
are shown in Table 14.8. In most cases, all boundaries be-
tween Domains were treated as hard boundaries, using only 
composites from that domain to estimate within the domain 
(see last column in Table 14.8). However, there were some 

Table 14.8  TCu Kriging plans, by domain, 2003 resource model, final iteration
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exceptions. The rotation angles used to specify the search 
ellipsoids are given according to the following convention:
• Θ1 = left-hand rotation of the X-Y axes about the Z-axis, 

clockwise is positive (azimuth).
• Θ2 = right-hand rotation of the Y′-Z′ axes about the X′-

axis, positive is up (dip).
• Θ3 = left-hand rotation of the X′-Z′ axes about the Y′-axis, 

positive is down (plunge).
Figure 14.22 shows a partial view of the estimated grades for 
Bench 2,440 m, in the southern area of the deposit. Note in 
this view a NNE-trending zone of higher grades (in red and 
blue, TCu > 1.50 %), which corresponds to one of the major 
structural controls in the deposit.

14.1.23  Resource Classification

The method used to classify resources is based initially on 
the kriging passes described above. These passes provide 
a measure of the quantity and quality of information used 
to estimate each block. If a block has been estimated in the 

more restrictive kriging pass, then it has closer and better 
information than any block estimated during the second or 
third passes. If the passes (kriging plans) are related to and 
influenced by geologic knowledge, then they can be inter-
preted in the same general sense that is required by current 
resource classification systems. Additional aspects to con-
sider are:
• If the kriging passes are to be used as the basis for resource 

categorization, then basic geologic and geostatistical cri-
teria must be met. In the case of Cerro Colorado, this is 
the case because the search radii used in pass is related 
to the correlogram ranges and anisotropies. The kriging 
passes are different for each Domain (just as the correlo-
gram models are), and therefore they reflect the different 
geologic characteristics of each Domain.

• The use of kriging passes as a basis for resource catego-
rization implies more complexity than most of the other 
options used in practice. Criteria such as the minimum 
distance or the kriging estimation variance are simpler, in 
the sense that they rely on a smaller number of variables 
to determine the category of each block. Also, it is some-

Fig. 14.22  Partial view of estimated TCu grades, Bench 2440
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times difficult to relate kriging estimation variance val-
ues to specific geologic or distance factors. Interestingly 
enough, the conceptually more complex (and complete) 
kriging passes scheme is much easier to implement.

• Regardless of whether kriging passes, kriging estimation 
variance, or any other method is used, it is not recom-
mended that the initial determination of the resource cate-
gorization be its final version. A posterior semi-automatic 
processing of the initial category can be used to smooth 
out locally patterns of categorization that are not sensible. 
At the same time, it allows to impose additional con-
straints.

The post-processing of the initial resource categories was 
done based on the kriging passes by manual interpretation 
on bench maps. The purpose is to smooth out areas with high 
mixtures of categories. This process injected a degree of geo-
logical continuity into the categorization pattern, and also 
allowed for addition of special constraints. For example, the 
mixed sulfide-hypogene unit (MSH) is very small and shows 
very limited geological continuity. All MSH blocks initially 
estimated in the first kriging pass were re-categorized as “in-
dicated”. Another specific, somewhat arbitrary, constraint 
was that all mineralization below the 2,200 m elevation was 
categorized as inferred, given the few drill holes that reach 
that deep in the deposit.

Figure 14.23 shows the resource classification of the 
blocks in Bench 2,440. The red envelope encloses the mea-
sured blocks; the green polygon encloses the indicated 
blocks; and the remaining blocks are inferred.

The resource tabulation for the block model just de-
scribed is shown in Table 14.9, for total and soluble Cu (TCu 
and SCu).

14.1.24  Estimation of Geometallurgical Units

The geometallurgical units (GMUs) represent volumes of 
expected similar response to metallurgical treatment. The 
GMUs were defined as a combination of mineralization 
types and alteration types. These are the two most important 
factors in predicting recovery by bioleaching, the metallurgi-
cal process used at Cerro Colorado.

The estimation of the GMUs is based on assigning the ma-
jority code of the alteration and mineralization types to each 
block, in addition to an indicator-based estimation of Point 
Load values. This hybrid method was applied as follows:
1. Initially, the GMUs corresponding to Waste, Hypogene, 

and MSH were defined based on the majority code of the 
mineralization type in each block.

2. Oxides and supergene sulfides were subdivided accord-
ing to the presence or not of argillic alteration.

14.1.25  Estimation of OXSI/OXSA  
and of SNSI/SNSA

OXSI and OXSA are the two GMUs defined for oxides, with 
and without argillic alteration, respectively, while SNSI and 
SNSA are the codes given to the two corresponding super-
gene sulfide subpopulations.

The presence or absence of argillic alteration for each 
oxide and supergene sulfide block was estimated from the 
original database instead of direct geologic interpretation. 
Two indicator variables were defined, one for oxides and 
the other for supergene sulfides, see Eqs. 14.1 and 14.2. The 
indicator variable takes the value of 1 if there is no argillic 
alteration (hard rock, OXSI and SNSI), and 0 if the material 
has argillic alteration (softer rock, OXSA and SNSA).

The estimation of the two indicators is done independently 
using ordinary kriging of the indicator variable, and applying 
the corresponding indicator variograms. The oxide blocks 
are kriged using only the oxide data, while the sulfide blocks 
are kriged using only the sulfide data. The kriged value for 
each variable and for each block will be between 0 and 1, 
which can be interpreted equally as a proportion of the block 
or a probability of the block being one or the other category. 

1 if z( )
( ; )

0 if z( )OX

x OXSI
I x z

x OXSA

 ∈
=  ∈

1 if z( )
( ; )

0 if z( )OX

x OXSI
I x z

x OXSA

 ∈
=  ∈

Table 14.9  Global resources, 
oxides, supergene sulfides and 
MSH only
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Each block is coded as OXSI or OXSA if oxide, and SNSI 
or SNSA if sulfide, if the estimated indicators is greater or 
equal to 0.5 (hard rock, no argillic alteration), or less than 0.5 
(soft rock, with argillic alteration), respectively.

14.1.26  Estimation of Point Load

The Point Load test measures resistance of the rock (drill 
hole diamond core) to axial compression. There is known 
relationship between Point Load and the Geometallurgical 
Unit, demonstrated by tests from production areas, where 
samples are taken and its Point Load determined. These 
values have been used to date mostly to determine optimal 
parameters and design of the blast patterns, sequences and 
timing, explosive charges, etc.

There were 1,591 Point Load values available in the drill 
hole database to build this model, the same intervals for 
which specific gravity was determined. There is a very good 
correlation between Point Load and the presence of argillic 
alteration, which allows for an indicator model to be used to 
ensure consistency. Figures 14.24 and 14.25 show the values 

of Point Load for drill hole intervals logged as OXSI and 
OXSA, respectively.

Limiting values describing the relationship between Point 
Load and the GMUs were defined based on field experience:

Fig. 14.23  Resource classification, Bench 2440m
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1. OXSI should not have Point Load values less than 0.8.
2. OXSA should not have Point Load values greater than 

1.3.
3. SNSI should not have Point Load values less than 0.9.
4. SNSA should not have Point Load values greater than 1.0.
Figures 14.26 and 14.27 show the GMU final model (after 
correction for the estimated Point Load values) and Point 

Load model itself for Bench 2400, respectively. Observe 
how both models share the same general spatial distribution 
and trends, imposed by the variograms of the OXSI/OXSA 
and SNSI/SNSA indicators and the corresponding Point 
Load, respectively.

14.1.27  Resource Model Calibration

Resource Model calibration of the estimation process is 
intended to reproduce, as closely as possible, past produc-
tion data. In this sense, it is a form of cross validation, since 
“known” values are used as reference to improve the resource 
model. The reference is a block model obtained from blast 
hole information for a pre-determined production period.

A calibration volume was established based on a surface 
approximately 80 m above the current topography (as of 
01/31/03). Blocks corresponding to extraction periods from 
02/01/02 through 01/31/03 were flagged from available tri-
angulations. Thus, all blocks within the calibration model 
could be identified by month, year, and within the calibra-
tion volume.

The calibration volume was estimated using only the 
10 m drill hole composites (no blast hole data) and kriging 
plans defined previously. Estimation “errors” were obtained 
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Fig. 14.26  GMU final model, Bench 2400m
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from comparing the two models by periods (month, year, and 
global within the 80 m extraction volume). Based on these 
comparisons, certain kriging parameters were modified, and 
the resource model re-estimated. A number of iterations were 
completed until it was decided that no further optimization 
of the resource model was possible.

An assumption is made that blast holes models provide 
a reasonable reference model for calibration. It can be ar-
gued that individual blast holes are less reliable than indi-
vidual composite samples, but in the case of a block model 
this problem diminishes (as long as there are no significant 
biases), due to the averaging of the individual blast holes.

Another important aspect of the calibration process is to 
decide what an acceptable match of the reference model is. 
In the case of Cerro Colorado, the following acceptance cri-
teria were used:
1. For comparisons on a monthly basis, at least 10 of the 12 

months had to be within 10 % relative to the reference 
model for tonnage and grade above economic cutoffs. For 
these same months, variations of 5 % or smaller for metal 
content were required as well.

2. For comparing the annual volume, the accepted devia-
tion was 5 % (relative) with respect to tonnage, grade, and 
metal content above economic cutoffs, and applied on an 
individual estimation domain (Domains) basis.

3. For the overall production volume, up to 5 % deviation 
for tonnages and grades were defined as acceptable, while 

metal content was required to be within 3 % for all and 
each of the main mineralized units (Domains).

Table 14.10 shows, as an example, the annual comparisons 
for each Domain for iteration #5 of the 2003 resource model. 
The table shows grade, tonnage, and metal content of the Re-
source Model (“Model”), grade, tonnage, and metal content 
of the blast hole model (“Reference”), and the relative differ-
ences, which are positive if the resource model is larger than 
the reference model (overestimation). Observe how most of 
the criteria described are met for the economic cutoffs. Some 
of the Domains show very good comparisons (1 and 4, in 
particular). The largest relative differences are found in Do-
main 6 (medium to low grade sulfides), but largely due to a 
total of only 200,000 tons produced in the year, equivalent 
to less than 2 weeks production, or about 20 blocks in the 
resource model.

An important conclusion from this calibration exercise is 
that it is possible to re-estimate immediate past production to 
an acceptable precision with drill hole data only.

14.1.28  Statistical Validation of the Resource 
Model

Whenever production data is available, validation of the 
block model generally requires that (a) the resource model 
is consistent with the assumptions and parameters applied, 

Fig. 14.27  Point load model, Bench 2400m
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i.e., it is internally consistent, and that (b) the model predicts 
reasonably well past production, which is defined by accep-
tance criteria such as the ones described above.

The resource model should be internally consistent: The 
estimated block values should behave as expected, with no 
anomalous values and consistent with the methodology applied.

The resource model should be unbiased: The global 
grade averages for each Domain (at a 0.0 % TCu cutoff) 
should be similar to the declustered means of the cor-
responding 10 m drill hole composites. For example, 
Fig. 14.28 shows the histogram of TCu estimated block 
values for Domain = 1 (Oxides) of the resource model, 
which should be compared to Fig. 14.14 (histogram of 
the declustered 10 m Domain 1 composites). The resource 
model for Domain 1 is unbiased, with a global mean aver-
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Table 14.10  Iteration #5, annual comparison, by domains 
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age of 0.773 % TCu, compared to 0.771 % TCu for the 
declustered composites (Fig. 14.29).

Swath or Drift (trend) plots  is a one-dimensional graph 
that shows average grades of the block model and of the 
declustered composites in certain directions of interest. 

In practice, for deposits that are massive such as Cerro 
Colorado (porphyry copper) drift analysis is performed 
along the three Cartesian coordinates. For a vein- or reef-
type deposit, the directions of interest could be along strike 
and down dip. In the case of Cerro Colorado, the drift in the 
Easting, Northing, and Elevation directions were analyzed 

Fig. 14.29  Drift analysis, Resource Model 2003 vs. declustered 10 m composites, vertical direction

 

Fig. 14.30  Grade-tonnage curves, 2003 Resource Model vs. DG-predicted SMU Model, all sulfides
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by obtaining the average TCu grade in 100 m slices defined 
in each horizontal direction, and 20 m (two benches) in the 
vertical direction. This was done both for the blocks and for 
the declustered 10 m composites. Figure 14.29 shows the 
drift of all the estimated block grades in the vertical direc-
tion, which compare well with the corresponding declus-
tered composites.

Volume-variance check: The grade-tonnage (GT) curves 
from the resource model were checked against the expected 
GT curves, as predicted by the DG model, and correspond-
ing to the SMU-size blocks. Figure 14.30 shows the GT 
curves for the resource model and for the DG-predicted 
SMU model, for all the sulfide units combined (Domains 
4–6). The correspondence is good, showing that, at a 0.5 % 
TCu cutoff, the resource model has 5 % more tons and 9 % 
less grade (is more diluted than predicted by the DG model). 
A perfect match is not desirable, since the volume-variance 
correction includes only internal dilution, and the expected 
grade-tonnage curve is just another model. The resource 
model should include more dilution than what is predicted 
by the volume-variance correction, specifically geologic 
contact dilution and some additional operational (planned 
and unplanned) dilution.

Software check: The software used for kriging, regardless 
of whether it is a commercial package or an in-house devel-
oped software, should be checked in detail, to ensure that the 
program actually does what it advertises. For example, an 
alternative kriging program can be used to estimate several 
blocks of the most important estimation domains, applying 
the same correlogram models and kriging plans as used in 
the resource model. Often this check is performed by third-
party reviewers and auditors, but it should be part of the vali-
dation protocol of every mining company.

14.1.29  Visual Validation of the Resource Model

The resource model should be checked visually to ensure 
that there are no inconsistencies in the estimation process 
or other evident errors or omissions. Each estimated grade 
in the blocks should be explained by composites surround-
ing the block, the correlogram models, and the kriging plan 
used. When performing this check, it is advisable to keep in 
mind the definition of the estimation domains, and whether 
soft or hard boundaries where used.

To perform this check, several sets of plan views and cross 
sections were plotted, showing the estimated TCu and SCu 
grades for each block, the resource classification code, the 
composites used in the estimation, and the three-dimensional 
solids that represent the estimation domains. After complet-

ing these checks, the full annotated sets of plan and sectional 
views should be left as an historic backup, and for third par-
ties to analyze if needed.

This case study represents a very classical application 
of the principles of mineral resource estimation docu-
mented in this book. The following case studies illustrate 
complementary and different techniques for special appli-
cations.

14.2  Multiple Indicator Kriging, São Francisco 
Gold Deposit

The São Francisco gold deposit is currently owned by Aura 
Minerals, Inc., and is located in the State of Matto Grosso, ap-
proximately 560 km west of Cuiabá, in South-Central Brazil. 
It is one of several gold deposits on an N-S trending belt.

The São Francisco (SF) deposit occurs in the Fortuna For-
mation of the Aquapei Group, which is composed of fine- to 
coarse-grained meta-arenites, with meta-pelites, and occa-
sionally meta-conglomerates. The rocks in the area are fold-
ed, faulted, sheared and fractured within a series of broads 
anticlines and synclines that can be traced over several ki-
lometers, with fold axes striking on a northwest-southeast 
direction, and gently plunging north 5–10°.

Gold mineralization occurs in epigenetic quartz-filled 
shear zones generally along the foliation that is oriented par-
allel or sub-parallel to the axes of the folds. It also occurs 
in later, flat to shallow dipping quartz veins filling fracture 
zones and cutting bedding and primary foliation of the host 
rocks. Gold is frequently coarse, with nuggets several mil-
limeters in diameter in quartz veins. It also occurs within 
limonite boxworks after pyrite and arsenopyrite. High-grade 
gold mineralization also occurs where narrow 1–5 cm long 
quartz veining is intense and it crosscuts bedding, producing 
a type of stockwork mineralization.

14.2.1  Database and Geology

As of December 2001, the database consisted of over 460 
inclined and vertical surface drill holes. The sampling inter-
val is mostly 2 m down the hole, with some of the drill holes 
inclined about 60° to the Northeast, while others are inclined 
60° to the Southwest.

The geologic logging system implemented at São Fran-
cisco include descriptions for lithologies, sulfide content, 
presence of quartz veins and sericitic bands, presence or ab-
sence of kaolin, hematite, gold nuggets, and the degree of si-
licification. The most significant characteristic is hydrother-
mal alteration, which is the basis for the geologic envelope 
defined (HAZ envelope). Mineralization occurs when the 
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rock has been logged as altered, but it is only a necessary, not 
sufficient, condition for ore grade mineralization to occur.

Two-meter down-the-hole composites were generated 
without restriction to lithology or alteration. Short compos-
ites may preserve better the high grade tail of the distribu-
tion, and thus are preferred in this case to avoid as much as 
possible grade smearing and dilution when compositing.

14.2.2  Geologic Modeling

The São Francisco geologic model is used to define estima-
tion domains, and consists of three main elements, as delin-
eated by three-dimensional wireframes: the high-grade alter-
ation envelope (HAZ-Hi), a low-grade envelope (HAZ-Lo), 
and the saprolite (SAP) zone, which was interpreted from 
drill hole logs.

The definition of the HAZ-Hi envelope was based on 
certain indicators of mineralization as described in the geo-
logic logs, which are: (1) medium to high (>50 %) content 
of quartz, (2) medium to high (>50 %) sulfide (pyrite) con-
tent, (3) gold assay greater or equal than 0.40 g/t (this value 
corresponds to the 60 % cumulative probability of the entire 
Au distribution), (4) the presence of coarse gold (nugget), 
kaolin, or hematite, and (5) the intercept length.

The following criteria must be met for any interval to be 
defined as part of the HAZ-Hi zone:
1. Three samples or 6 m length minimum with two or more 

acceptable indexes (one if it is high sulfide or high gold 
grade), in a mineralized zone which has at least 2 inter-
cepts at maximum 35 m apart. The structural orientation 
of the mineralized zones must be shallow dipping to NE 
in the open pit mineralization (extensional veins zone) or 
steeply dipping to NE in the Deep South mineralization 
(extensional + shear veins zone).

2. Six samples or 12 m length minimum with two or more 
acceptable indexes (one if it is high sulfide or high gold 
value) to create discontinuous ore zone. Discontinuous 
ore zones may be extruded to half distance to the next 
section. Structural orientation must be the same as for the 
continuous mineralized zone defined above.

The following criteria must be met for any interval to be de-
fined as part of the low-grade (HAZ-Lo) alteration zone:
1. Metasandstone lithology with pellite lenses.
2. In the conglomerate and basement lithologies the altera-

tion boundary must be defined by the presence of sulfide. 
The low grade mineralization envelope must contain all 
the high HAZ zones. Low HAZ envelope boundaries 
must be steeply dipping or vertical.

3. Intercept length must be three samples or 6 m with one 
or more acceptable index (metasandstone lithology with 
pellite lenses, or presence of sulfide).

Figure 14.31 shows the histogram and basic statistics for all 
2 m Au composites, as well as the defined domains. There are 
30,546 2 m Au composites in the database, with a positively 
skewed Au distribution and few samples representing a sig-
nificant high-grade population. The average overall Au grade 
is 0.260 g/t, with a standard deviation of 2.78 g/t, and a coef-
ficient of variation (CV) of 7.88. Approximately 75 % of the 
composite data is below 0.21 g/t (which is below the projected 
economic cutoff), and only 10 % of the data is above 0.573 g/t.

The HAZ-hi envelope has an average grade of 0.81 g/t, 
although with still a significant proportion of low grade com-
posites, while the SAP zone shows a lower average grade at 
0.47 g/t Au, but a larger proportion of medium- and high-
grade composites, and therefore a lower CV. Finally, the 
HAZ low-grade envelope shows an even higher CV, with a 
0.23 g/t Au average grade, and only 10 % of the composites 
above 0.37 g/t Au.

Figure 14.32 shows a cross section with interpreted al-
teration envelopes and corresponding drill holes. The 2 m 
composites within these wireframes were used in grade es-
timation.

14.2.3  Class Definition for Multiple Indicator 
Kriging

The definition of the thresholds (or indicators) and corre-
sponding classes chosen to perform the MIK varied accord-
ing to the estimation domain considered. Table 14.11 shows 
the class defined by the Au Indicators, the corresponding de-

Table 14.11  Indicator classes and class mean, Haz-Hi, Haz-Lo, and SAP domains
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clustered class means, and the percentage of total contained 
metal for each class with respect to the total quantity of metal 
(QM) in the database, expressed as (g/t)*l, where g/t is the 
Au grade, and l is the composite length. Note how the high-
est grade classes defined for all three domains contain a sig-
nificant percentage of the total metal in the zone.

The cell-declustering technique (Deustch 1989) was 
used to assess the degree of clustering in the deposit. Fig-
ure 14.33 shows the histogram and basic statistics of the 
cell-declustered 2 m composites for the Haz-Hi zone, and 
should be compared to Fig. 14.31. The clustering effect is 
significant, particularly for the higher grade units.

14.2.4  Indicator Variograms

The indicator thresholds were used to define the correspond-
ing set of indicator variograms. In most cases, a total of 37 
experimental variograms were obtained for each indicator 

threshold, although for some of the very high thresholds, 
with few composites in the class, the variogram model was 
assumed to be a pure nugget effect.

Since there is a large number of indicator variogram mod-
els to consider, one for each threshold of each estimation 
domain, only a few model summaries are shown here as ex-
amples. The main conclusions are:
1. As expected, variograms are more continuous for lower 

indicators, with lower nugget effects.
2. Nugget effects increase and ranges decrease with increas-

ing thresholds, i.e., there is de-structuring of the vario-
gram for higher thresholds.

3. Indicator variograms at the 3.0 g/t or 5.0 g/t thresholds 
show an almost pure nugget effect, and therefore all var-
iogram models for higher thresholds are assumed to be 
also pure nugget effects. It should be noted that these in-
dicator thresholds are important, even though their vario-
gram models are pure nugget effect, because they provide 
critical control of very high-grade values.

Fig. 14.31  Histogram and basic statistics. All 2 m Au composites ( top left); High-grade HAZ zone ( top right); Low-grade HAZ zone ( bottom 
left); and SAP zone ( bottom left)
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Fig. 14.33  Histogram and basic 
statistics, declustered 2 m com-
posites, Haz-Hi zone

 

Fig. 14.32  SF cross section showing interpreted alteration envelopes and drill holes
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Fig. 14.34  Three main directions 
of anisotropy, Indicator Vario-
gram Model, 0.2 g/t Au, HAZ-Hi. 
The directions are N30W ( top), 
N60E ( middle), and vertical 
( bottom). Note that the relative 
nugget plus the first structure 
represent over 93 % of the total 
variance, which means that the 
range at which kriging will be 
effective is much smaller than the 
range of the variogram model

 

14.2  Multiple Indicator Kriging, São Francisco Gold Deposit
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4. There is a change in continuity and orientation at or about 
the 0.8–1.2 g/t thresholds, particularly for mineralization 
within the Haz-Lo envelope. It is likely that it corresponds to 
the mixture of populations within the Haz-Lo, which would 
include a more disseminated or stockwork-style zone, with 
the occasional presence of the narrow veining characteristic 
of the higher-grade central portion of the orebody (Haz-Hi).

5. For most thresholds, 70–80 % of the total variability is 
reached at or less than 30–40 m. This implies that for any 
kind of kriging, the weights assigned to data beyond this 
distance will be minor, and approximately the same in all 
directions.

Figure 14.34 shows, as an example, the directional fits for 
the three main directions of anisotropy for the 0.2 g/t Au in-
dicator variogram, HAZ-Hi domain.

The indicator models (all exponential structures) behave 
as expected, confirming general directions of anisotropy ex-
pected from geologic knowledge and also consistent with 
those developed in prior resource models. The 0.2 g/t Au in-
dicator shows the general N-W trend of the data, while cross-
cutting features drive the 3.0 g/t indicator model (for the first 
variogram model structure), while the much less important 
(in terms of contribution to the overall sill) second model 
structure following the general N-W trend as well.

14.2.5  Volume-Variance Correction

Consideration of a volume-variance correction is necessary 
because ore will be mined on volumes different than the 
volume of the composites used in grade estimation, and in 
general also different than the volume of each block in the 
resource model.

The Selective Mining Unit (SMU) for the operation is 
expected to be 10 × 10 × 5 m (500 m3). This is based on the 
equipment size and characteristics of the open pit operation. In 
order to achieve the expected volume-variance correction, two 
approaches can be considered: (a) implement a more restric-
tive estimation, whereby the smoothing of the block model 
grades is controlled through the kriging plan; the e-type esti-
mates are thus used without further corrections; and (b) an af-

fine correction applied to the estimated distribution quantiles. 
This is done prior to deriving the e-type point estimates.

The first approach assumes that if the variance of the dis-
tribution of estimates is similar to the predicted variance of 
the SMU distribution, then an appropriate amount of internal 
dilution has been incorporated into the resource model. If 
so, the grade-tonnage curves obtained from the block model 
will approximate the expected grade-tonnage curves of the 
SMUs. The second approach relies on a direct correction of 
the estimated quantiles. This approach was not attempted 
here, mostly because of the lack of production data to help in 
the calibration of the method.

The Discrete Gaussian method (DG) was used to obtain 
the theoretical (target) grade-tonnage curves from the 2 m 
composites. Using the appropriate correlogram models, and 
considering the 10 × 10 × 5 m SMU, block variances were 
found to be 20.9 % for SAP, 25 % for Haz-Hi, and 17.1 % 
for Haz-Lo, respectively, of the original composite varianc-
es. These values imply that the variance reduction is very 
significant, which makes the accurate prediction of diluted 
resources and reserves difficult, particularly for small vol-
umes. For example, in the case of HAZ-Hi, at an Au cutoff of 
0.4 g/t the expected internal dilution (from a 2 m composite 
to a 10 × 10 × 5 m block) is about 35 % in grade and 17 % in 
tonnage, while for HAZ-Lo the expected grade dilution is 
about 12 %, with a slight increase in tonnage. The expected 
internal dilution is more significant at higher cutoffs.

14.2.6  Block Model Definition and Multiple 
Indicator Kriging

The block size chosen for the São Francisco resource block 
model was 10 × 10 × 5 m, intended to reflect the drill hole 
spacing available. It is considered adequate for the available 
drill hole spacing, and a reasonable compromise between 
drilling density and model resolution. It happens to be also 
the assumed size for the SMU block, but in fact there need 
not be any relationship between the two.

The resource model is defined by the three triangulations 
that represent the estimation domains (HAZ-Hi, HAZ-Lo, 

Table 14.12  MIK kriging plans by estimation domain, São Francisco

Estimation 
domain

Pass Rotated Y 
search (m)

Rotated X 
search (m)

Rotated Z 
search (m)

Min no. comps Max no. comps Rotation angles 
(after rotation) 
Θ1/Θ2/Θ3

HAZ-Hi 1  20 10  20 5  8 −30/−60/0
2  40 20  40 4  8 −30/−60/0
3 130 65 130 3 10 −30/−60/0

SAP 1  20 10  20 5  8 −30/0/0
2  40 20  40 4  8 −30/0/0
3 130 65 130 3 10 −30/0/0

HAZ-Lo 1  20 10  20 5  8 −30/−60/0
2  40 20  40 4  8 −30/−60/0
3 150 75 150 3 10 −30/−60/0
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and SAP). The Haz-Lo triangulation constrains extrapola-
tion towards the edges of the deposit. The block model was 
built using sub-blocks to better adjust the model to the in-
terpreted wireframes. The edge blocks can be as small as 
5 × 5 × 2.5 m. After grade estimation, re-blocking incorpo-
rates geologic contact dilution in the model, which is sig-
nificant when a Haz-Hi block is in contact with a Haz-Lo 
block.

The Multiple Indicator Kriging method, described in 
Chap. 9, estimates a distribution of possible values (a cumu-
lative conditional distribution function) based on the indica-
tor thresholds defined above. The point conditional distribu-
tion is obtained by kriging each indicator independently, and 
is later post-processed to provide a block estimate. The block 
estimate is the sum-product of the estimated probability for 
each class multiplied by the declustered average grade for 
each class. For the São Francisco block model, the average 
grade was obtained for each discretization point within each 
10 × 10 × 5 m block, and then averaged up to provide the es-
timated block grade. This is known as the “e-type” estimate, 
which is obtained as follows:

Here z*(u) represents the block estimate, pi(u) represents the 
probability for each class defined, and ci represents the mean 
grade assigned to that class. Note that the MIK model con-
structed in this way does not have any explicit allowance for 
the volume-variance effect. This is approximated using the 
constrained kriging methodology described above.

14.2.7  MIK Kriging Plans and Resource 
Categorization

The kriging plan implemented for the MIK model has the 
following characteristics:
• Three passes were implemented to estimate each of the 

three domains. Table 14.12 shows the details for each 
domain. The search radii was defined according to 
resource classification criteria, see discussion below.

*
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• The minimum and maximum number of samples required 
for estimation varied according to the pass, as this was 
one parameter used to control smoothing.

• An octant search was used in all cases, since it aids in 
declustering the estimated values.

• The anisotropic search ellipsoids used varied according 
to the estimation domain. The search ellipsoids approxi-
mately follow the general orientation of each Domain. 
The rotation convention used is a left hand (LH) rotation 
around the Z-axis first, then a right hand (RH) rotation 
around X ′, and finally a RH rotation around Y  ′.

The resources of the São Francisco deposit were classified 
on a block-by-block basis, using as basis the defined kriging 
passes (Table 14.12), which indicate the configuration and 
quantity of information used to estimate each block. A flag 
is stored in the block model indicating whether the block 
was estimated on the first, second, or third pass, and this flag 
thus corresponds to the measured, indicated, and inferred 
categories. No further correction was required, since the ge-
ometry of the deposit and the geologic domains resulted in a 
smoothly varying resource class.

Blocks estimated within a 20 m-search radius in the strike 
and down-dip directions and 10 m in the across-strike direc-
tions were classified as measured. Blocks estimated with a 
40 m search radius in the strike and down-dip directions and 
20 m in the across-strike directions were classified as indi-
cated. Finally, all other estimated blocks beyond 40 m are 
classified as inferred. Figure 14.35 shows a cross-sectional 
view of the estimated grades in the model.

14.2.8  MIK Resource Model: Grade-Tonnage 
Curves

Table 14.13 shows the estimated resources by category and 
for several cutoffs as of December 2001. At a 0.4 g/t Au 
cutoff, the measured plus indicated diluted resource stands 
at 32.5 million tons at a 1.23 g/t average grade, for about 
1.288 million ounces of contained gold. There are an addition-
al 57.4 million tons in between the 0.13 g/t and the 0.40 g/t 
Au cutoffs which is considered Run of Mine (ROM) material.

Table 14.13  Total resource by category, MIK Model, São Francisco 

14.2  Multiple Indicator Kriging, São Francisco Gold Deposit
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Several statistical and visual checks were performed 
on the resource model. The block model was reviewed on 
sections and plans, looking at estimated block grades, the 
composite data, and the envelopes used to define the volume 
within which the interpolation took place. The intent of the 
check is to ensure that every block grade can be explained 
as a function of the surrounding composites, the variogram 
models used, and the kriging plan applied.

There is significant mineralization at lower elevations, 
even below the current pit limit. This is considered a signifi-
cant risk factor because the optimized pit may reach greater 
depths based on higher-grade ore with less drill hole infor-
mation. It is necessary to confirm this mineralization with 
further drilling.

The smoothing effect of kriging can change significantly 
the shape of the optimal pits, providing a falsely optimistic 
or pessimistic picture of grade continuity. Proper consider-
ation of high-grade continuity and the volume-variance ef-
fect at São Francisco is extremely important. Figure 14.36 
shows that the reblocked MIK model is more diluted com-
pared to the predicted Discrete Gaussian model, tracking the 
SMU grade-tonnage curves by cutoff region. The differences 
observed are partly due to the resource model including not 
only internal dilution, as the predicted SMU distribution 
does, but also geologic dilution. Nonetheless, there is a clear 
indication of the difficulties of adequately estimating the in-
ternal dilution for this deposit.

Other statistical checks not presented here indicate that the 
MIK model behaves as expected, is internally consistent with 
the assumptions and data used to build the model, and has no 
obvious anomalous values. It is globally unbiased compared 

to the declustered composites, and internally consistent with 
the data and correlogram models used to create it.

14.3  Modeling Escondida Norte’s Oxide Units 
with Indicators1

The Escondida Norte deposit is owned by BHP-Billiton, and 
is located 5 miles north of the main Escondida mine and mills. 
Geologically, the Escondida Norte deposit is the eastern por-
tion of the Zaldívar deposit, currently mined by Compañía 
Minera Zaldívar (100 % owned by Barrick Gold, Fig. 14.37).

A Porphyry copper deposit such as the Escondida Norte 
deposit has, characteristically, an oxide zone above the en-
riched sulfide zones, often separated into high enrichment 
and low enrichment blankets. This zonation of mineralogy 
zones stems from the position of the water table which con-
trols supergene mineralization events. A description of this 
type of deposit and mineralization zones can be found in 
Guilbert and Park (1985).

Some mineralization units of the Escondida Norte deposit 
are small relative to the drill hole spacing available, and thus 
difficult to model using traditional interpretations based on 
cross sections and plan views. This is the case for the oxides 
and other units above the Top of Sulfides (TOS) surface. The 
TOS surface separates the oxidized portion of the deposit, 
above where acid-soluble copper grades (SCu) are signifi-

1 BHP-Billiton is gratefully acknowledged for allowing publication of 
this case study. Geologists R. Preece (BHP-Billiton) and J.L. Céspedes 
(independent consultant) were responsible for large part of the work 
described here.

Fig. 14.35  Cross-sectional view of the MIK grade model with 2 m composites used for grade estimation. Warm colors represent higher-grade 
mineralization
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Fig. 14.36  Grade-tonnage comparison, MIK Model vs. Theoretical SMU Model, HAZ-Hi domain

 

Fig. 14.37  Aerial view of the 
Escondida Norte Deposit, and the 
Escondida and Zaldívar (CMZ) 
mines, looking towards the 
South-South West
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cant, from the sulfide-rich secondary enrichment blanket 
below. The TOS surface can be defined in absolute terms, 
i.e., there are no sulfide mineralization above it; or it can 
be defined in relative terms, i.e., there are very few sulfide 
minerals above it, generally either mixed with oxide miner-
als or with minerals characteristic of the leached zone. This 
last definition is the one that was applied at Escondida Norte.

For the 2002 Escondida Norte Resource Model, all min-
eralization units above the TOS surface were modeled using 
an indicator Kriging technique. These included:
• Leach cap;
• Oxide mineralization;
• Mixed mineralization, where both oxide and sulfide min-

erals are observed in the core; and,
• Partial leach mineralization, where both sulfide minerals 

and evidence of leaching of Cu minerals is observed.
These units are usually no more than a few tens of meters 
across in diameter with very erratic, structurally controlled 
limits. Even on a 50 m drill hole spacing the accurate inter-
pretation and modeling of these units is difficult. Therefore, 
an indicator approach can be used to estimate the likelihood 
that each block contains a particular mineralization unit. The 
main phases of the work are:
1. Database confirmation: a comparison was made between 

the logged information available in the database (from 
geologic mapping) and the definition of oxide, mixed, 
and sulfide mineralization resulting from the chemical 
analyses of Total and Soluble Copper (TCu and SCu). 
This comparison is intended to ensure the consistency 
between geologic mapping and sample chemical assays. 
In the case on Escondida Norte, the agreement was good, 
such that the logged mineralization units were partially 
used to define mineralization units.

2. Definition of estimation units: the second stage involves 
the definition of the estimation domains (Chap. 4). This 
process defines the areas that are considered homogenous 
for the purposes of estimating oxide and sulfide indicators.

3. EDA and variogram models: all necessary statistics and 
variography was performed for each of the indicators de-
fined (Chaps. 2 and 6).

4. Block model definition: a block model covering the neces-
sary volume with an appropriate block size was chosen.

5. Indicator Kriging and final mineralization unit assignment: 
the indicators defined on the available drill hole data were 
used to krige the probability of each mineralization unit.

6. Model checks and validations: significant checking and 
validation was performed before accepting the proposed 
probabilistic mineralization model.

The comparison of logged oxidation units from visual obser-
vations and chemical SCu/TCu ratios was performed using 
original samples. For each sampled interval in the drill holes 
there will be a logged mineralization unit and a correspond-
ing SCu/TCu ratio. The mineralization units were re-defined 
combining the assayed values and the logged information 

according to the criteria shown in Table 14.14. In this table, 
“CHMIN” signifies the chemically defined mineralization 
unit while “LOGMIN” is the logged mineralization unit. 
Table 14.14 shows, for example, that oxide mineralization 
is defined as a soluble Cu grade greater or equal than 0.2 %, 
and the ratio of SCu to TCu is greater than 50 %. The limits 
on the SCu/TCu ratio are derived from definitions used by 
the processing plant.

The basic statistics of the leach, partial leach, and oxide 
material are similar, except that the ratio of the chemically 
defined oxides has a sharp boundary at 50 %, while there are 
samples geologically described as oxides with a ratio of less 
than 50 %. The largest difference between the two is in the 
mixture of oxide and sulfide minerals. There are significantly 
more mixed samples chemically defined than there are logged. 
This is explained by the geologist’s natural tendency to clas-
sify as mixed those samples with approximately the same 
number of oxide and sulfide particles. If one or the other is 
clearly prevalent, then the geologist will probably classify the 
unit as oxides or sulfides, according to the majority observed.

Given that the distributions of both SCu/TCu ratios can 
be considered similar, the decision was made to use the 
logged database, relying on the geological definition of the 
mineralization units.

The next step was the definition of the estimation do-
mains, a process similar to what was described in Chap. 4. 
The estimation domains result from a combination of lithol-
ogy and alteration units, as well as structural zones within 
the deposit. Figure 14.38 shows the structural zones defined 
in the Escondida Norte deposit. Table 14.15 shows the defi-
nitions in terms of oxide and sulfide indicators. The com-
bined indicators define the unit in question: for leach, both 
indicators have to be 0, i.e., there are no sulfide or oxide 
minerals; while for mixed, both types of minerals need to be 
present. There are a total of 5 oxides and 3 sulfide Domains.

After defining the estimation domains, the exploratory 
data analysis and variography was completed for each indi-
cator and for each domain. This defined the estimation strat-
egy and the indicator kriging estimation plans for each unit.

Indicator kriging was completed using the oxide and sul-
fide indicators defined in the database, i.e., a weighted linear 
combination of zeros and ones that result in estimated values 
between 0 and 1. These interpolated values can be interpret-
ed either as the probability of each estimated block of having 

Table 14.14  Definition of mineralization units

Condition CHMIN 
Code

Mineralization 
unit

LOGMIN = “LEACH” & TCu < 0.2 % 1 Leach
LOGMIN ≠ “LEACH” & TCu < 0.1 % 1 Leach
SCu ≥ 0.2 % & SCu/TCu > 0.5 2 Oxide
CHMIN > 1 & SCu/TCu ≤ 0.15 4 Partial leach
CHMIN ≠ 1,2, or 4, & SCu/TCu > 0.0 5 Mixed 

oxide-sulfide
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oxide or sulfide minerals or as the proportion of the blocks 
with oxide or sulfide mineralization.

For simplicity, a single mineralization unit code was as-
signed to each estimated block above the top of sulphides 
(TOS) surface. Therefore, after the kriging runs were com-
pleted, a set of rules for assigning the final mineralization 
unit to the block was enforced. Table 14.16 shows these rules 
used to define the final mineralization unit in each block 
above the TOS in the Escondida Norte deposit.

IKOX and IKSUL represent the interpolated value of the 
oxide and the sulfide Indicators, respectively. If both values 
are below 50 % (simultaneously), then the block is defined as 
leached material. If both values are equal or above 50 %, then 
the probability of the block having both (simultaneously) 
oxides and sulfides minerals is high enough for that block 

to be defined as mixed mineralization. If one of the indica-
tors is above 50 % and the other one below, then the block is 
defined as either oxide or partial leach, depending on which 
indicator is higher. Several comments are relevant:
1. The rules in Table 14.16 are subjective; although logical 

and based on the most favorable likelihood for defining 
the mineralization units, it is still imperfect, since the 
indicator kriging model will tend to smooth out sharp 
variations and geological transitions.

2. The indicators are treated independently. This is a limita-
tion of the method, since it is known that the presence of 
sulfide and oxide minerals above the secondary enrich-
ment blanket are controlled by similar geological factors, 
most importantly the position of the water table through 
time. A better alternative may be to use multiple indica-
tor kriging (MIK). In MIK all indicators would be kriged 
simultaneously and no decision regarding the sequencing 
of estimation would be needed.2

3. The comparison of the average of the estimated indicators 
and the average resulting from a nearest-neighbor assign-
ment show an acceptable agreement with the exception of 
one domain of the oxide indicator model.

Figure 14.39 shows a perspective view of the resulting oxide 
mineralization model, along with the structural domains de-
fined. This example illustrates one possible methodology 
for developing geologic models in circumstances where 
(a) the drill hole geologic information is too sparse to be 

2 In subsequent years this modeling methodology was upgraded to a 
full MIK estimation of the above-TOS units.

Table 14.15  Oxide and sulfide indicators

Indicator Leach Oxide Partial 
leach

Mixed

Oxide 0 1 0 1
Sulfide 0 0 1 1

Table 14.16  Rules for assigning mineralogy units to estimated blocks

Condition Numeric 
code

Mineralization 
unit

IKOX < 0.5 y IKSUL < 0.5 1 Leach
IKOX ≥ 0.5 y IKSUL < 0.5 2 Oxide
IKOX < 0.5 y IKSUL ≥ 0.5 4 Partial leach
IKOX ≥ 0.5 y IKSUL ≥ 0.5 5 Mixed

14.3  Modeling Escondida Norte’s Oxide Units with Indicators

Fig. 14.38  Structural domains 
for the Escondida Norte deposit. 
Some estimated oxide bodies are 
also shown (in purple)
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confidently used to build a deterministic modeling through 
direct interpretation; and, (b) a simple probability-based es-
timate of presence/absence of a given unit suffices for grade 
estimation and resource modeling.

14.4  Multivariate Geostatistical Simulation  
at Red Dog Mine3

The Red Dog mine is the world’s largest Zn producer. The 
deposit consists of sulphide ore zones in sedimentary exhala-
tive deposits, with several payable metals and multiple ore 
types. Zinc recovery is sensitive to deleterious elements such 
as Ba and Fe. An important goal of the study is to improve 
the understanding of the complex relationships between 
these key elements.

Red Dog is located in the DeLong Mountains of the 
Brooks Range, approximately 90 miles north of Kotzebue, 
Alaska, USA. The property is owned by the Northwest 
Alaska Native Association (NANA) Regional Corpora-
tion, and the mine is operated by Teck Cominco Limited. 
There are five known deposits in the Red Dog District. Four 
(Main, Aqqaluk, Paalaaq and Qanaiyaq) occur in the im-
mediate vicinity of the original discovery; while Aŋarraaq 

3 Teck Cominco Limited is gratefully acknowledged for allowing the 
publication of this case study. This case study is based on the paper 
“Multivariate Geostatistical Simulation at Red Dog Mine, Alaska, 
USA”, by Leuangthong, O., Hodson, T., Rolley, P., and Deutsch, C., 
originally published in the CIM Bulletin, May 2006. The Canadian In-
stitute of Mining, Metallurgy, and Petroleum (CIM) is also gratefully 
acknowledged for allowing partial reproduction of the paper.

is approximately 7 miles to the north. The mine assays for 
as many as 10 variables; the four primary ones being Zn, 
Pb, Fe and Ba.

This study characterizes seven different elements: zinc 
(Zn), lead (Pb), iron (Fe), barium (Ba), soluble lead (sPb), 
silver (Ag), and total organic content (TOC), within eight 
different domains using a joint simulation approach based 
on stepwise conditional transformation (SCT). The SCT 
transform is a multivariate data transformation technique 
that partitions the data into several classes and transforms 
each class to a standard normal distribution. Geostatistical 
models were constructed for each variable within the eight 
domains, and subsequently assembled to give 40 realizations 
for six 25 ft benches. Gaussian simulation permits reproduc-
tion of the input data, original histogram and variogram of 
the transformed scores; the benefit of using SCT is that the 
resulting models also respect multivariate relations locally 
and globally.

Recovery is adversely affected by the presence of high 
barite and other deleterious minerals and ore textures. The 
existing long term resource model was constructed by inde-
pendently kriging the four main variables. The purpose of 
using a multivariate approach to jointly model the key ele-
ments is to improve the prediction of Zn recovery and to 
understand the spatial variability of the important variables.

In this case study, the stepwise conditional transformation 
(SCT) (Leuangthong 2003; Leuangthong and Deutsch 2003) 
was chosen to model those inter-relationships among the 
different variables, because of its flexibility and its ability 
to model non-linear features in bivariate relationships. SCT 
produces Gaussian variables that are uncorrelated.

Fig. 14.39  Perspective view of the probabilistic oxide mineralization model, shown with the structural domains
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14.4.1  Geology and Database

The Red Dog deposits are SEDEX, zinc-lead-silver deposits 
hosted in Mississippian- to Pennsylvanian-age black shale. 
The deposits are found in the De Long Mountains, which are 
made up of eight stacked and folded allochthons, sedimen-
tary material that has been moved (thrusted) from its original 
position. The six structurally lowest allochthons are com-
posed of Devonian through to Cretaceous clastic and chemi-
cal sedimentary rocks, while the two upper allochthons are 
of Jurassic and older age and are made of mafic to ultramafic 
igneous sequences (Moore et al. 1986).

Mineralization is found in the second lowest allochthon 
hosted by black siliceous shale and chert of the Ikalukrok 
unit of the Kuna Formation. The stratigraphic footwall is an 
interbedded, light gray, calcarenite and dark gray calcare-
ous shale, the Kivalina unit. The deposits themselves are a 
strata-bound accumulation of siliceous rock, barite and sul-
fides. The hanging wall unit to the mineralization is a silica- 

and sulfide-poor barite of the lower Siksikpuk Formation of 
Pennsylvanian to Permian age (Moore et al. 1986). A strati-
graphic section and geologic map can be seen in Fig. 14.40.

The main deposit is a nearly flat, elongated stack of three 
significantly mineralized lenses. It extends 1,600 m in a 
northwest direction, varies in width from 150 m to 975 m 
and is up to 135 m thick. The main deposit consists of two 
major and one minor mineralized plates and their associ-
ated overlying waste rocks. The upper plate is a flat-lying 
sheet of Kivalina unit limestone and shale, Ikalukrok unit 
siliceous shale and sulfide-bearing barite rock. The median 
plate contains most of the resources in this zone and con-
sists of a sequence of massive to semi-massive sulfide rock, 
sulfide-bearing silica rock and sulfide-bearing barite rock. 
The mineralized portion of the median plate is capped with 
a sequence of shale and chert of Siksikpuk, Otuk and Okpi-
kruak units. The lower plate mineralization in the Main de-
posit consists of sulfide-veined, silicified, Ikalukrok shale, 
semi-massive to massive sulfides, and sulfide-bearing bar-
ite rock.

Fig. 14.40  Stratigraphic section of the Red Dog sequence (left) and bedrock geology for the Main and Qanaiyaq (Hilltop) deposits (right). (Moore 
et al. 1986)
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This case study is limited to eight geological domains 
corresponding to four different ore type units in the Upper 
and Median plates. These were chosen because they corre-
spond to a volume that includes both recently mined material 
and material that will be mined in the near future.

The existing grade models were independently kriged 
onto 25 × 25 × 25 ft blocks. The geostatistical models were 
simulated at 12.5 × 12.5 × 12.5 ft resolution, and later up-
scaled to 25 ft blocks. The simulation is on a point-scale sup-
port. Thus, simulating at a finer resolution and then averag-
ing to larger blocks shows the variability of the block grades 
more accurately; change of support is addressed numerically.

The six modeled benches span a volume that is 4,500 ft 
wide (Easting) by 4,500 ft long (Northing) by 150 ft in the 
vertical direction. The model consists of a total of 1,555,200 
grid points. The simulations were be constructed on a by 
rock type basis, and then merged. All comparisons shown 
are global, corresponding to all domains combined.

Two types of data were used: composited drillhole data 
and blasthole data. The simulations were done using 12.5 ft 
composites. The geology model, originally coded on the 
25 ft blocks, was recoded into the 12.5 ft model.

There were a total of 9,847 12.5 ft composites available 
for the eight domains of interest. The term drillhole (DH) 
refers to the 12.5 ft composites. DH data are at a nominal 
100 × 100 ft spacing. For these same domains, there were 
58,566 blasthole (BH) data available for model validation. 
BH data are spaced data 10 × 12 ft spacing, and represent the 
entire 25 ft bench.

14.4.2  Multivariate Simulation Approach

Conditional simulations were performed for seven variables: 
Zn, Pb, Fe, Ba, sPb, Ag, and TOC. These seven variables 
were modeled for each rock type using Gaussian simulation 
with stepwise conditionally transformed variables. The main 
steps of the simulation are:
1. Data declustering to obtain representative distributions 

for each variable.
2. Transform data with SCT (Leuangthong 2003; Leuangth-

ong and Deutsch 2003; Luster 1985; Rosenblatt 1952) to 
obtain independent Gaussian variables.

3. Calculate and model the directional variograms for each 
of the transformed variables within each rock type.

4. Independently simulate transformed variables via sequen-
tial Gaussian simulation (Isaaks 1990).

5. Back transform the simulated values (back-SCT) to return 
to original units.

6. Validation of simulation results to confirm data, histo-
gram and variogram reproduction.

Once all variables within all domains were modeled, the 
block models were merged to form multiple realizations 
of the study area for uncertainty assessment and post-pro-
cessing. The methodology described differs only from the 
common geostatistical Gaussian simulation in the use of the 
stepwise conditional transformation (SCT), in place of the 
conventional normal score transform. SCT is a multivari-
ate Gaussian transformation approach whereby the prima-
ry variable is transformed to a standard normal; all subse-
quent variables are successively conditioned to the previous 
variable(s) based on probability binning.

The transform applies to collocated multivariate data 
making them independent prior to simulation. Cross vario-
grams between transformed variables should be checked to 
verify that spatial correlations are approximately zero. After 
such verification, independent Gaussian simulation can pro-
ceed. Back transformation restores the complex relation-
ships between the multivariate data.

The need to consider seven variables simultaneously for 
any one rock type poses a practical problem. The multivari-
ate stepwise conditional transform would require 107 com-
posites in order to have a minimum of 10 data per probability 
class. To overcome this problem, a nested application of the 
stepwise conditional transformation was implemented. Infer-
ence of a trivariate distribution would require approximately 
103 or 1,000 data to define the conditional distributions with 
a minimum of 10 data. This is more reasonable given the 
number of composites available.

The transformation ordering for the stepwise conditional 
transform will affect the reproduction of the variogram of the 
simulated values. Thus, the most important variable or the 
most continuous variable should be chosen as the primary 
variable (Leuangthong and Deutsch 2003), which, for Red 
Dog, is Zn. To account for the other six variables, sets of 
transformations were proposed (see Table 14.17).

Table 14.17  Stepwise condi-
tional transformations for Red 
Dog
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The transformation order reflects the significance of each 
variable. All variables other than Zn (main variable) and Pb 
(main secondary variable) were transformed conditional to 
either Zn and Pb or Zn and Fe. The choice of the second-
ary variable in each transform order reflects the relationship 
between the secondary and tertiary variable. This is not mea-
sured by the correlation coefficient alone; non-linearities and 
constraint features (if present) need to be examined as well in 
crossplots between the different elements. The determination 
of the secondary and tertiary variable was based on careful as-
sessment of the relevant bivariate and trivariate distributions.

Declustering was performed to compensate for prefer-
ential drilling. Given the multivariate nature of this dataset 
and the intended application of a multivariate transforma-
tion technique, declustering must be consistent between all 
variables. Declustering was performed within domains, and 
the declustered Zn distribution obtained using the accumu-
lated weights from kriging within a rock type. This approach 
considers drill hole data redundancy through the spatial vari-
ability model and by domain.

Secondary variables were declustered through a bivari-
ate calibration of the Pb distribution using both the repre-
sentative distribution of Zn and the crossplot of Zn and Pb. 
Specifically, the declustered Zn distribution is divided into 
a series of classes and the corresponding conditional distri-
butions of Pb are determined. The declustered Pb distribu-
tion is then constructed by accumulating all the conditional 
distributions weighted by the declustered Zn probability for 
the corresponding class (see Fig. 14.41). For all tertiary vari-
ables, the same rationale was applied, and the declustered 
distributions for Fe through TOC were determined using the 
declustered distributions of the two dependent variables plus 
the trivariate calibration data.

The Stepwise Conditional Transformation was then per-
formed on the declustered distributions. Figure 14.42 shows 

the scatterplots of the variables resulting from the first trans-
form sequence of Zn, Pb and Fe (see Table 14.17). The trans-
formed variables are independent and multiGaussian, which 
translates to a circular shape in the crossplot. From Fig. 14.42, 
crossplots with the third variable (Fe, in this case) show some 
banding; however this is simply a numerical artefact of hav-
ing many classes and consequently fewer data within each 
class (Leuangthong 2003). This banding does not impact 
data reproduction. Independence of the transformed variables 
means that each variable can be simulated independently.

Variograms were then calculated and modeled for each of 
the transformed variables. Figure 14.43 shows an example 
of the horizontal and vertical variogram models for the step-
wise conditionally transformed Zn, Pb, Fe and Ba for one 
rock type. Note that secondary and tertiary variables exhibit 
relatively high nugget effect; this is explained by the inde-
pendence imposed by transforming each class separately 
(Leuangthong and Deutsch 2003).

Sequential Gaussian simulation was then independently 
performed for the seven transformed variables. A total of 40 
realizations were generated for each variable within each do-
main. Only those blocks belonging to the specific rock type 
were simulated. Each realization was then back transformed 
to the original units of the data. The back transformation for 
each simulated realization is also conditional. For example, 
the back transform of Fe is conditional to the simulated val-
ues for Zn and Pb.

The simulations were thoroughly checked to ensure re-
production of (1) the composite values at their respective lo-
cations, (2) the histogram and associated summary statistics, 
and (3) the variograms in Gaussian space of the stepwise 
transform scores. For this multivariate simulation, the mul-
tivariate relations were also checked. The simulated models 
were then upscaled to 25 × 25 × 25 ft blocks to compare to the 
existing long term model.

Fig.  14.41  Schematic illustration showing multivariate calibration 
data, declustered Zn and Pb histograms to be determined (left). The 
division of multivariate calibration data into multiple classes, with dis-
tributions on the right representing the conditional distribution of Pb 

for each class (right). Weights applied to conditional Pb distribution all 
shown in light blue, gray, and orange shaded regions of the Zn histo-
grams (Leuangthong et al. 2006)
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Figure 14.44 shows a comparison of the crossplot re-
production from simulation to those crossplots from 25 ft 
composites and the existing long term resource model. In 
general, the simulated realizations reproduce the trivariate 
relations with comparable variability to the 25 ft compos-
ites; the corresponding plots from the existing long term 
model shows similar bivariate relations but with notice-
ably reduced variability. Recall that it is this variability 
between the multiple elements that was impacting the Zn 
recovery, and provided the motivation to undertake such a 
case study.

Once all simulated models were generated and vali-
dated by rock type, a single realization for each variable 
was obtained by merging the simulated properties from 
each rock type. With these multiple realizations (see 
Fig. 14.45), the uncertainty at any location and/or region 
can be assessed.

14.4.3  Profit Comparison

In practice, multiple variables are estimated independently 
with ordinary kriging. It is interesting to address the impact 
of the multivariate simulation approach using the stepwise 
conditional transform relative to the conventional practice 
of kriging. Note that this exercise is for illustrative purposes 
only, prices and recovery functions have been greatly simpli-
fied for this specific comparison.

The idea is to apply a profit function to obtain a true profit 
dataset for Red Dog. A subset of the reference data will be 
extracted and used to model grades using both kriging and 
simulation. The profit function will be applied to these grade 
models. Based on the expected profit from each approach, 
each location within the model will be classified as either 
ore or waste. The true profit at each location is known, so the 
profit differential from each model can be calculated.
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Fig. 14.42  Crossplot between stepwise conditionally transformed variables for Zn, Pb, and Fe. Zn was transformed first, then Pb was transfor med 
conditional to Zn, and finally Fe was transformed conditional to both Zn and Pb (Leuangthong et al. 2006)
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14.4.4  Profit Function

A simple profit function was developed to account for Zn 
and Pb grades, recovery functions and metal prices. Penalty 
functions to account for the impact of Ba and Fe on Zn re-
covery were incorporated. Pb recovery was considered con-
stant.

The kriging and simulation models provide the metal 
grades. The metal recoveries for both Zn and Pb were calcu-
lated as Red Dog’s five year average recovery (1998–2002) 
based on Teck Cominco’s financial report (Teck Cominco 
2003). These were 83.6 % Zn recovery and 58.7 % Pb recov-
ery. The penalty functions, constructed to mimic the impact 
of Fe and Ba on Zn recovery (decreasing functions on a scale 

Fig. 14.43  Horizontal (left) and 
vertical (right) variograms for 
stepwise conditionally trans-
formed Zn, Pb, Fe, and Ba for 
one domain
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Fig. 14.44  Comparison of multivariate features reproduction for Zn-Pb (top row), Zn-Fe (second row), Pb-Fe (third row), and Zn-Ba (bottom 
row). Cross-plots using 25ft composites are shown on the left column; from the upscaled simulations are shown in the middle; and from the avail-
able long term resource model are shown in the right column

 

of 0 to 1.0), were used to determine a multiplicative factor 
for the maximum Zn recovery of 83.6 %; in this way, high 
Fe or Ba content would result in reduced Zn recovery. The 
price for Zn was chosen to be $ 680/ton of Zn, and the price 
for Pb was chosen as $ 380/ton of Pb; both prices were ap-
proximated based on the metal prices from the London Metal 
Exchange in 2003. In order to yield approximately 50 % ore 
and 50 % waste classification, the cost per ton mined was 
chosen arbitrarily.

14.4.5  Reference Data

The density and number of BH data is sufficient to be consid-
ered as a reference data set. Only a small area was modeled, 
chosen to be in a marginal zone, where ore/waste classifica-
tion based on the models would have the largest impact.

Figure 14.46 shows the available BH data in the chosen 
region of 400 × 400 ft in the Bench 850, and the subset of 
data extracted from this region. The available data consists 
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Fig. 14.45  Simulated realizations of Zn at 12.5 ft grid resolution
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of 532 BH samples of Zn, Pb, Fe and Ba. From this dataset, 
25 samples separated at a nominal 100 × 100 ft spacing were 
chosen to represent exploration data, consistent with the DH 
data available for Red Dog. This subset of data was used as 
conditioning data for kriging and simulation.

14.4.6  Model Construction

The model grid was chosen to be 10 × 10 × 25 ft, which is 
similar to the 10 × 12 × 25 ft spacing of the BH data. A total 
of 1,600 grid points were modeled. Further, variograms for 
both approaches were calculated and fitted using the refer-
ence 532 BH data. This filtered out the influence of poor 
variogram inference due to scarce data.

The variograms for kriging were calculated for the original 
data, and the variograms for simulation were calculated and 
fitted for the stepwise conditionally transformed data. In both 
sets of variograms, a trend was apparent from the experimen-
tal points extending beyond the sill of 1.0. This was not sur-
prising given that the area was purposely chosen to be in the 
transition zone between ore and waste, hence a trend from low 
to high grades was expected. Trend modeling was not per-
formed for this exercise because of the relatively small area.

For kriging, each variable was estimated independently 
using ordinary kriging. For simulation, the stepwise condi-
tionally transformed variables were independently simulated 
using sequential Gaussian simulation to generate 100 real-
izations of the grades and subsequently back transformed to 
the original units of the data.

Fig. 14.47  Profit maps for ore/waste classification from kriging (left) and simulation (right)

 

Fig. 14.46  Location map of reference BH data (left) and sampled BH data (right) for use in comparing model approaches
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14.4.7  Results

These grade models were then processed by applying the 
profit function at each location within the model. Although 
100 realizations of profit were available from simulation, 
the ore/waste classification was based on the expected profit 
map obtained by calculating the expected value of profit at 
each location. Figure 14.47 shows the profit map obtained 
from simulation and kriging.

Although 1,600 locations were modeled, only the 532 
points corresponding to locations where true data were avail-
able can be compared. At these locations, the true profit was 
known. The profit model from kriging and expected profit 
model from simulation were used to classify the 532 loca-
tions as either ore or waste. Figure 14.48 shows the com-

parison of the ore/waste classification of the 532 locations 
from the true reference data to the kriging and the simulation 
approaches. Overall, both approaches clearly show the waste 
and ore regions; relatively few blocks were misclassified.

Table 14.18 shows the summary of the ore/waste clas-
sification from both kriging and simulation relative to the 
true classification. Table 14.18 shows that the kriging ap-
proach resulted in a total 7 % of blocks that were misclassi-
fied, compared to the 6 % misclassified by simulation. From 
the true profit, 251 blocks (47 % of the true data) were clas-
sified as ore; simulation correctly classified ore for 98 % of 
those blocks while kriging correctly classified 90 % of those 
blocks.

For those blocks classified as ore, the profit of ore mined 
as a result of the classification from each method was com-

14.5  Uncertainty Models and Resource Classification: The Michilla Mine Case Study

Fig. 14.48  Comparison of true ore/waste classification (top) and the classification from kriging (bottom left) and simulation (bottom right) at 
data locations
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pared with the true profit of $ 7.89 M. The results from such 
a comparison showed that the simulation approach yielded 
$ 7.28 M while kriging yielded $ 7.06 M in profit. Although 
these profit values appear high for the relatively small area 
of a single bench, the relative percentage increase in profit is 
the key result. Multivariate simulation resulted in 92 % of the 
true profit relative to the 89 % yielded by kriging. In practice, 
this 3 % difference may translate to several millions of dol-
lars in increased profit if a larger area and multiple benches 
are considered.

Conventional Gaussian cosimulation approaches are suf-
ficient for straightforward multivariate problems; however, 
for the complexity of the Red Dog deposit, these common 
approaches are inadequate. The availability of multiple 
metal grades within multiple domains warrants some con-
sideration of the relationship between these grades, and how 
these relationships change from one rock type to the next. 
The approach shown here was designed to explicitly address 
this key issue. Consequently, the resulting models not only 
reproduce the univariate data and its spatial variability, but 
taken together, they also honour the multivariate relations 
between the different metals/minerals within the different 
domains.

14.5  Uncertainty Models and Resource 
Classification: The Michilla Mine  
Case Study

Geostatistical simulation provides a model of uncertainty at 
different stages of a mining project and for different types 
of risk assessment. Simulation has been used for grade con-
trol in daily operations, to assess the uncertainty of minable 
reserves at the project’s feasibility stage, and to assess min-
eralization potential in certain settings. Other applications 
include assessment of recoverable reserves, resource and re-
serve classification, and drill hole spacing optimization stud-
ies. All large-scale applications of conditional simulations 
intend to benefit from a model of uncertainty that describes 
the variability observed in the data and its impact on the pro-
cess assessed.

In this case study, a resource classification derived through 
more conventional methods is compared to probability inter-

vals that result from the simulation model. Resource clas-
sification is an exercise intended for public disclosure and 
thus considers large volumes. It is global in nature. They 
should not be used to provide a technical answer on a local 
scale, such as risk assessment of mine schedules. This case 
study considers two different mining methods (open pit and 
underground), which implies that recoverable reserves are 
assessed based on different Selective Mining Units (SMUs). 
Probability intervals derived for these different SMUs are 
contrasted to the uncertainty model developed from the clas-
sification scheme used by the operation to report resources 
and reserves. The study assesses the risk of not achieving 
predicted tonnages and grades within a mine plan, which is 
based on selecting measured and indicated blocks only.

There are several aspects of resource classification 
schemes that should be emphasized to better understand the 
motivation for this case study:
1. Resource classification is intended to provide some mea-

sure of the degree of confidence in the resource state-
ments. In this sense, it is a global uncertainty model. The 
same can be obtained deriving probability intervals from 
the conditional simulation models.

2. Internally, mining companies sometimes misuse resource 
classifications as risk assessment tools, although the 
manner in which this is done varies widely among geolo-
gists, mine planners, and mine management. This stems 
from the temptation to use resource classification codes 
on a block by block basis, or at a more local scale than 
warranted.

3. Despite the existence of codes and guidelines that may 
give the appearance of objectivity to the process of re-
source classification, Competent Persons would use dif-
ferent resource classification schemes for any given de-
posit. Management’s perception of risk is likely to be dif-
ferent. Technical personnel will generally disagree about 
the application of the Resource Classification scheme 
used, and how to inject the different levels of confidence 
into the mine plan and projected cash flow.

This general lack of understanding of the purpose and mean-
ing of resource classification schemes can be mitigated by 
using a geostatistical model of uncertainty. Although they 
are not objective, a more detailed description of the pre-
dicted uncertainty for each particular block, phase, zone, or 

Table 14.18  Ore/waste classification summary of kriging (left) and simulation (right) relative to true ore/waste classification 
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geologic region of the deposit allows for a better understand-
ing and use of the classification scheme implemented.

In addition, basic questions such as “how different is 
measured from indicated?”, or “does measured mean 0 % 
error?”, or “how different is measured in Zone A compared 
to measured in Zone B?” can have a quantitive answer, as 
provided by the simulation model.

14.5.1  The Lince-Estefanía Mine

The Lince-Estefanía mine is located within the district of the 
same name, some 120 km to the north of Antofagasta, Chile. The 
mine is operated by Minera Michilla S.A., producing 50,000 t 
of cathode Cu per year from both an open pit (Lince, using a 

10 m bench height) and an underground mine (Estefanía, most-
ly cut-and-fill with 5 m lifts) as of 1999. The mine is located 
approximately at 900 m above sea level. Figure 14.49 shows 
the location of the district in northern Chile.

The district geology shows a very significant strato-vol-
canic sequence, called La Negra Formation, regionally dip-
ping 30 ° to the NW, and composed of a series of andesites 
and volcanic breccias of different characteristics. The andes-
ites vary from afanitic to porphyritic, intermixed with the 
volcanic breccias. Mineralization is hosted in this volcanic 
sequence, where the porous breccias are the most favorable 
mineralization hosts (Ferraris and Di Biase 1978).

The resulting mineralized bodies (“mantos”) are ellipsoi-
dal in shape, of variable dimension and grades, and gener-
ally concordant with stratification. It is difficult to predict 
the existence and the size of each manto, as well as its grade 
distribution. Generally, the mantos are small, 4–5 m thick, 
with length and widths of up to 40 or 50 m, and many being 
less than 25 m. Mineralization is mostly Atacamite, a Cu hy-
droxide, with some Chrysocola, as well as sulfide Cu miner-
alization at depth: chalcocite, covellite, bornite, and chalco-
pyrite. Grades within the mantos are typically 1 to 5 % Total 
Cu (TCu), with up to 10 % TCu. The cathode plant receives 
a head grade of 1.6 % Cu. Declared resources in late 1999 
were, at a 0.5 % Cu cutoff, approximately 63 million tons 
with a 1.44 % TCu and 0.86 % Soluble Cu (SCu) grades. This 
is distributed in various zones and at different depths, and 
includes all drill-indicated resources to that date.

The main subzones within the deposit are separated into 
amenable to open pit (Lince), or underground (Estefanía). 
In addition, within the open pit mine there are several min-
ing areas, such as Lince, D4 Zone, and Hilary; within the 
underground mine, zones are delimited by mining extraction 
sequence, and are named using letters and numbers, such as 
A1, B2, D3, and so forth. There are at least 17 areas of inter-
est within the open pit and underground mines. Resources 
were classified following the guidelines of the 1999 JORC 
Code, and result in about 21 % of the total resources being 
classified as measured, 64 % classified as indicated, and the 
remaining 15 % classified as inferred.

In early 2000 an infill drilling campaign was completed, 
and the existing drillhole database updated. The geologic 
model was updated, and a new resource block model was 
obtained. The grade model was obtained using multiple in-
dicator kriging, and providing an e-type estimate for each 
block. Following the completion of the Resource Model and 
its classification into Measured, Indicated, and Inferred, a 
conditional simulation model was implemented to assess un-
certainty and risk. This conditional simulation model was a 
Sequential Indicator Simulation (SIS, Alabert 1987) model.

The simulation model focused on areas and phases to be 
mined in the upcoming 5 years (both from the open pit mine 
and for the underground mine). The simulated realizations 

Fig. 14.49  Location map of the Michilla district and mines
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were reblocked and assigned to the same blocks used in the 
Resource Model. This allows for a direct comparison be-
tween the two models, and to assign an uncertainty model to 
the predicted grade. Figure 14.50 is a schematic representa-
tion of the general work flow at Minera Michilla.

14.5.2  Developing the Model of Uncertainty

The geologic model includes the definition of a mineralized 
envelope, defined at 0.1 % TCu. The purpose of the mineral-
ized envelope is to define the volume within which miner-
alization can exist; outside this volume, there is no mineral-
ization. In this sense, this is a geochemical-type boundary, 
whose purpose is to avoid overestimation of the kriging pro-
cess into barren areas. This is necessary because mineral-
ized bodies can abruptly end due to a post-mineral fault, or 
without any obvious reasons. This same envelope was used 
as an external hard limit to define the overall volume of the 
simulation model.

In addition, there are three major geologic units (GUs) 
defined (in fact, lithological groupings), which are used to 
define estimation domains at the time of grade estimation. 
The units are volcanic breccias (generally mineralized), an-
desites (could be mineralized, but generally barren or poorly 
mineralized mantos), and intrusives (including tectonic brec-
cias), which are mostly barren, but could occasionally pres-
ent significant mineralization.

Five-meter down-the-hole composites were used for both 
estimating and simulating the resources. The composites are 
tagged according to the interpreted geologic units, and the 
length is chosen due to the selectivity required in both the 
underground and open pit mines. In the case of the open pit, 
even though the nominal bench height is 10 m, the opera-
tion works by cleaning out areas of waste surrounding the 
mantos, and sometimes mining partial, 5 m benches where 
deemed necessary. Blast holes are sampled at half-benches, 
that is, there are two 5 m blast hole sample for every hole 
drilled to the 10 m bench. These 5 m blast hole data were 
used in the open pit area (Lince) to improve the definition 
of the variogram models and to better condition the simula-
tion in mined-out areas and close to the current topographic 
surface at the time.

The SIS technique requires the definition of indicator 
thresholds in order to discretize the original grade distribu-
tion. The definition of these indicators was identical for the 
estimation and the simulation models, and included the fol-
lowing indicator classes: from 0.0 to 0.19 % TCu; from 0.2 
to 0.49 % TCu; from 0.5 to 0.79 % TCu; from 0.8 to 0.99 % 
TCu; from 1.0 to 1.19 % TCu; from 1.2 to 1.49 % TCu; from 
1.5 to 1.99 % TCu; from 2.0 to 2.99 % TCu; from 3.0 to 
4.99 % TCu; from 5.0 to 6.99 % TCu; from 7.0 to 9.99 % 
TCu; and greater than 10.0 % TCu. The corresponding de-
clustered class means were obtained for each class, using the 
median of the last class to avoid over-estimation of the high 
grade portion (outlier control).

Fig. 14.50  Schematic work flow, 
Lince-Estefanía
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14.5.3  Indicator Variograms for TCu  
and by Geologic Unit

The indicator method requires that an indicator variogram 
model be obtained for each of the 11 thresholds defined 
above. In addition, there should be one set of indicator mod-
els per GU considered, and per subzone or area in the depos-
it. So in total 33 indicator variogram models are required per 
subzone of the deposit. In addition, three major zones were 
defined for the purpose of variogram modeling (Lince, D4 
and Hilary combined, and Estefanía), resulting in a total of 
99 variogram models for the resource estimation and condi-
tional simulation model. Some observations regarding these 
variogram models:
• The variogram models used for the resource estimation 

are the same as those required for the conditional simu-
lation model. That is, this part of the work (as all other 
required statistical work) is only done once, and used for 
both the resource estimation and the conditional simula-
tion models.

• As expected, the variogram models for lower indicator 
thresholds (waste or low grade) are more continuous than 
the higher grade thresholds.

• As the indicator thresholds are increased, the overall 
spatial correlation decreases, evidenced, for example, by 
the increase of the nugget effect. This corresponds to the 
intuitive notion that higher grade mineralization has less 
spatial correlation than the more pervasive, lower grade 
mineralization.

• There can be differences in anisotropy angles and ranges 
for different grade ranges, as is the case for Lince-Este-
fanía. This is explained by different geologic controls 
affecting parts of the grade distribution differently, for 
example with a specific set of structures controlling the 
higher grade mineralization. Therefore, modeling dif-

ferent anisotropies for different grade ranges is entirely 
appropriate, since they have been validated with geologic 
knowledge, ascribing them to different mineralization 
controls.

14.5.4  Conditional Simulation Model

The conditional simulation model was obtained on a 
5 × 5 × 5 m grid, and the volume modeled is such that it re-
sults in a model with more than 40 million nodes. Although 
not every simulated node is retained in the end, the model 
was run for the complete grid, although including the restric-
tion that at least one real 5 m composite is in the neighbor-
hood of the node before the simulated value can be obtained. 
After the simulated model is obtained, it is restricted to the 
areas where the 0.1 % TCu mineralized envelope exists, as 
mentioned above. In this exercise, and largely due to time 
constraints, 10 grade realizations were run.

The model is based on a two-stage simulation. First, the 
geologic model was simulated using SIS on the categorical 
variables that define the lithology package (Volcanic Brec-
cias, Andesites, or Intrusives). The output from this stage 
is a model representing the probability that each unit exists 
at a given node. Due to logistics and time constraints, the 
simulated lithology was used as prior probability distribution 
to condition grade estimation (as opposed to use as a direct 
conditioning of the grade simulation).

The purpose of this first stage is to inject into the model 
the relationship between grade and lithology. For example, 
a node with a high probability of being a Volcanic Breccia 
is more likely to have better grades than one with a high 
probability of being an Andesite. This relationship between 
lithology and grade is input into the grade simulation as prior 
distributions of possible Cu grades for each node simulated. 
The local declustered statistics of the 5 m composites were 
used to derive these prior probability models for each area 
within the deposit. For example, for Lince, the 5 m compos-
ites tagged as volcanic breccias indicate that a node simulat-
ed as volcanic breccia has a 57 % probability of having less 
than 0.2 % TCu in grade. For Andesites, the same probability 
is 64 %, while for those simulated as Intrusives it is 71 %. 
Also, there is a 10 % probability that the nodes simulated as 
volcanic breccias have a grade greater than 3 % TCu, while 
this percentage is 3.2 % and 2.8 % for Andesites and Intru-
sives, respectively. This information is compiled for each 
threshold used, and used as soft information in the form of 
prior probability distributions.

The second step necessary to obtain the final simulated 
model is to use the prior grade distributions assigned to each 
node, as well as the 5 m composites themselves to simulate a 
Cu grade in each node. The SIS model used a search ellipsoid 
with a nominal 25 m search radius, with anisotropic ranges 

Fig. 14.51  Comparison of simulated values vs. 5 m composites and 
blast holes, TCu, Lince
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corresponding to the same orientation of the median indica-
tor variogram, and applying an octant search. A minimum of 
2 composites were required to simulate a node, using a maxi-
mum of 10 composites and 10 previously simulated nodes.

These and other parameters are adapted to the character-
istics of each area simulated within the deposit. Therefore, 
each simulation model reflects the different geologic char-
acteristics of each subzone of the deposit, through the use 
of different indicator variogram models and simulation pa-
rameters.

After obtaining the simulation models, several checks are 
required in order to ensure that the simulated values obtained 
have the expected characteristics. It is important, for exam-
ple, to verify that the distribution of the simulated values is 
similar to the distribution of the original 5 m composites, 
in average grade, variability, etc. Figure 14.51 shows as an 
example a quantile-quantile graph of the 5 m composites 
vs. the simulated nodes for Lince. Since the points approxi-
mately align on the 45 ° line, then the composites and the 
simulated values have very similar distributions. Other sta-
tistical checks include histograms, and reproduction of the 
variogram models used.

It is also important to check that the simulation model 
represents well the spatial distribution of grade, much like it 
is done for kriged resource models. Simple visual inspection 
of sections and plans of the output simulation model should 
show whether the composite grades and its patterns of grade 
distributions are reproduced as expected. Figure 14.52 shows 
a cross section looking NE (Cross Section #8), where current 

pit is shown in black. The geometry of the 0.1 % TCu enve-
lope used as a hard limit that defines the simulation volume 
is clearly visible in both Figures, as is the definition of the 
cross sections used to interpret the envelope in the plan view. 
Simulated nodes can only occur inside the interpreted en-
velope, which defines the possible presence of mineralized 
mantos, and thus the simulation appears spotty, with signifi-
cant areas without any TCu grades (grey in Fig. 14.52).

14.5.5  Probability Intervals by Area

After validating and checking the simulations, the models 
were reblocked and assigned to the same blocks of the re-
source models, in order to obtain the probability intervals 
for the corresponding resource estimates by areas. The 
block size for the open pit areas (Lince, D4, and Hilary) 
is 10 × 10 × 10 m, while the block size for the underground 
mine (Estefanía) is 10 × 10 × 5 m, these sizes corresponding 
to the nominal SMU size of each operation. Each block of 
the resource model has a classification code (measured, in-
dicated, or inferred).

The model was evaluated for the 17 different subzones 
within Lince and Estefanía, corresponding to different pro-
duction areas (current or planned for production within the 
next five years). For each of these subzones, an estimated 
grade was obtained from the block model average, as well 
as the average from the 10 simulated values for each block 
within the subzone. Note that the definition of these sub-

Fig. 14.52  Cross Section #8, simulation no. 1, Lince-Estefanía
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Fig. 14.53  Measured (top), indicated 
(middle) and inferred (bottom) resources, 
Area Phase 7 (Lince)
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Fig. 14.54  Measured (top), indicated 
(middle) and inferred (bottom) 
resources, Area D4 (Lince)
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Fig. 14.55  Measured (top), 
indicated (middle) and inferred 
(bottom) resources, Area D1/D2 
(Estefanía, Cut and Fill)
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Fig. 14.56  Measured (top), indicated 
(middle) and inferred (bottom) resourc-
es, Area A1 (Estefanía, Cut and Fill)
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zones within the deposit correspond to tonnages and grades 
planned to be extracted according to an existing mine sched-
ule. In this sense, the set of 10 simulated values for each area 
is used to provide a risk assessment on the existing mine 
schedule and predicted cash flows, as well as comparing it 
with the more traditional resource classification scheme.

Only 4 of the 17 areas are discussed here, 2 open pit areas 
and 2 underground areas corresponding to a medium-term 
planning horizon. The open pit areas are the D4 and Mining 
Phase 7 within the Lince pit. The underground areas shown 
are the A1 and the D1/D2 combined area. For convenience, 
each of these areas was represented in the computer with a 
three-dimensional solid, such that these solids can be used 
to select the blocks of interest and calculate tonnages and 
grades.

There are several options available to both process the in-
formation and perform the mining risk analysis and to pres-
ent the model of uncertainty. The following information is 
presented here:
• Average of the area according to the Resource Block 

Model (“Ave. Res. Model” on the graphs).
• Average of the area according to the simulated values 

(“Ave. Sims” on the graphs).
• Lower Probability Limit, defined as the 15th percentile 

of the distribution from the simulation model (“Lower 
Limit” on the graphs).

• Upper Probability Limit, defined as the 85th percentile of 
the distribution of possible values for each block (“Upper 
Limit” on the graphs).

The results are presented for four different cutoff grades: 0 % 
TCu (or global), 0.5 % TCu, 1.0 % TCu, and 1.2 % TCu. The 
results are expressed in % TCu, and the Upper and Lower 
Probability Limits are such that there is a 70 % probability 
that the true value is within those limits. In addition, for 
each area, the results are presented by Resource Classifica-
tion categories (measured and indicated), in addition to total 
resources (which includes inferred as well as the previous 
two). Figures 14.53–14.56 present these results.

The results were obtained using volume weighing for 
each area; in other words, the metal content for each cutoff 
and classification category were first obtained, and from that 
the grades presented in Figs. 14.53–14.56 were derived.

14.5.6  Results

In addition to specific conclusions for each Area described 
below, the following are some of the more important general 
observations and conclusions:
1. The average grade of the simulations is somewhat differ-

ent than the average grade from the resource model for 
most areas. This is a consequence of the differences in the 
internal dilution incorporated into each model; note how 

the averages at a 0 % cutoff are more similar. The issue 
of recoverable reserves is best addressed through condi-
tional simulations, not a more traditional change of sup-
port model applied to the MIK model (Chap. 7, and also 
Journel and Kyriakidis 2004; Rossi and Alvarado 1998).

2. The simulation model results in probability intervals that 
are not symmetric with respect to the expected value. 
There is no reason why the probability of error on one 
side of the expected value has to be identical to the prob-
ability of error of the opposite side.

3. It is possible that the expected value (according to the 
Resource Model) falls outside the probability limits 
( P85–P15) defined; this can happen because the simulation 
model is obtained independently of the estimation model 
(even if applying the same random function), and is more 
likely when cutoff grades (conditional statistics) are con-
sidered.

4. The probability intervals are different for each cutoff 
grade analyzed. It is also different from measured to in-
dicated to inferred resources. In general, higher cutoff 
grades result in wider probability intervals (higher uncer-
tainty and risk, as expected), and the same can be said for 
the difference between measured, indicated, and inferred 
resources.

5. The measured, indicated, and inferred classes are not very 
useful when analyzing uncertainty and risk within local 
areas. For example, the measured category in one area 
will have a different uncertainty than the same measured 
category in a different area. The reason is that the resource 
classification scheme is usually developed on a global 
basis, and at best only appropriate for long-term risk as-
sessments. The conditional simulation model shows that 
it is not appropriate to use the resource classification 
schemes for local risk assessment. That is, a certain block 
can be classified as measured within the long-term con-
text, but it may not be even indicated when shorter term 
production periods are considered.

6. The resource classification categories for different areas 
show significant variability when described in terms 
of probabilities. For example, the measured resources 
for Phase 7 Expansion (for the 0.5 % TCu cutoff) show 
that  the  70 %  probability  interval  is within + 16 %/− 8 % 
(24 % total width) of the resource model grade, while 
the same “measured” resources for Area D1/D2 is with-
in + 8 %/− 20 %  of  the  resource  model  grade.  What  is 
called measured in one area with a given probability in-
terval may have significantly different probability inter-
vals in another area, but still be called “measured”. This 
is to be expected, due to local geologic differences, ad-
ditional complexities of the mineralization controls, and 
local differences in drill hole coverage.

Additional area-specific comments are:
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• Area Phase 7 (Lince, Fig. 14.5a–c): the simulation 
model predicts that the block model is conservative (i.e., 
there is upside potential) for cutoffs below 0.7 % TCu, 
which is the cutoff of interest, while the opposite is true 
for 1.0 % TCu cutoff and above. This is true for each clas-
sification category considered, although more so for the 
inferred resources. At the 0.5 % TCu cutoff, blocks cat-
egorized as Measured are within +16 %/– 8 % of the pre-
dicted Resource Model grade, while Indicated resources 
are within +30 %/–0 % of the expected grade. The Lower 
and Upper probability limits for the Inferred resources 
are within +12 %/+39 % of the expected resource model 
grade. The grade-tonnage curve for the simulated model 
was at the time a major concern, because it appeared as 
if the Resource Model was predicting much higher grade 
material at higher cutoffs. The issue was eventually 
resolved through infill drilling, and indeed the high grade 
distribution flattened as predicted by the conditional sim-
ulation model.

• Area D4 (Open Pit, Fig. 14.6a–c): the simulation model 
predicts for all cutoffs that the block model is conserva-
tive, although clearly not as much for the higher cutoffs. 
There is a clear difference in the width of the upper and 
lower limits between the measured and the indicated cat-
egories (Fig. 14.6a, b), and more so with respect to the 
inferred resources (Fig. 14.6c).

• Area D1/D2 (Underground, Fig. 14.7a–c): In the under-
ground areas, the cutoff grade to be considered is the 
higher 1.0 % TCu. Therefore, the resource model appears 
optimistic, contrary to the open pit areas. At the time of 
this study, most of the resources in this area were clas-
sified as indicated, and prior to significant infill drilling 
already planned. The probability intervals for these indi-
cated resources at the 1.0 % TCu cutoff is – 17 %/+6 %, 
i.e., the actual grade can be up to 17 % lower and 6 % 
higher than the predicted grade, according to the simula-
tion model.

• Area A1 (Underground, Fig. 14.8a–c): In this area the 
average of the simulation model predicts a lower grade 
for all classes (at a 1.0 % TCu). Note that the grades in 
this area are generally higher, compared to the other areas 
discussed, noting also that most of the resources in this 
area are indicated. However, the probability intervals are 
+3 %/–12 % of the predicted resource model grade for the 
indicated category, which implies a less variable grade 
distribution in this area compared to the other three areas.

The amount of information that can be derived from a simu-
lation model is significantly larger than what has been pre-
sented here. As a consequence of a similar analysis to the one 
presented here, infill drilling campaigns, mine call factors, 
and other risk mitigation measures were taken to ensure that 
the predicted ore through the plant is achieved.

In addition, technical personnel and management have a 
tool to better understand the consequences of the resource 

classification schemes, and their significance. None of this 
detailed analysis is possible with traditional resource clas-
sifications, so it is reasonable to back up the traditional re-
source classification with a probabilistic analysis based on a 
conditional simulation model.

14.6  Grade Control at the San Cristóbal Mine

The most important task in daily life of an open-pit mining 
operation is to select ore and waste. This grade control pro-
cess can be a simple ore/waste decision or a more compli-
cated process because there may be different destinations or 
stockpiling and blending requirements.

Perfect selection, that is, making no mistakes in decid-
ing the destination of every ton of material mined out, is 
impossible. Sampling errors, estimation errors, limited or 
bad information, and operational constraints and mistakes 
always result in ore loss and dilution, which in turn lead to 
economic losses. In extreme cases, these losses can be seri-
ous enough to compromise the profitability of the operation. 
Poor grade control may cause an operation to fail, such as 
the São Vicente mine in Brazil’s Matto Grosso in the mid-
1990s. Studies on mine failures and not realizing expecta-
tions have been completed be several researchers, for ex-
ample Burmeister (1998) in Australia, and Knoll (1989) and 
Clow (1991) for Canadian operations. In many cases, the 
failures to meet expectations have been attributed to poor re-
source estimation and lack of grade control. Minimizing ore 
loss and dilution is critical to a successful operation, since 
every mistake made detracts from the maximum amount of 
ore that could, theoretically, be recovered from the pit. The 
San Cristóbal mine discussed here was on its way to join the 
unpleasant list of failed operations, until improvements in 
grade control turned around the mine.

In open-pit mines it is often difficult to define accurately 
the position of the dig boundaries prior to loading, particular-
ly where there are few or no visual markers. Commonly used 
grade control methods include simple visual observations of 
the blast holes grades, some form of blast hole averaging into 
panels of arbitrary shape, or polygonal methods. In more re-
cent years, several forms of kriging have gained acceptance, 
including ordinary and indicator kriging. Even more recently, 
grade control methods based on conditional simulations and 
economic optimization have gained some popularity.

Conditional simulation-based methods may be better than 
more traditional grade control methods, including kriging, 
when (a) ore and waste populations are intermixed, making 
it difficult to identify ore pods without leaving ore blast holes 
unrecovered; similarly, the recognizable ore pods may have 
significant amounts of waste within; (b) no visual markers 
are available; even if higher-grade controlling structures are 
identified, there is never assurance that they are mineralized; 
and (c) grade variability is significant.
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The San Cristóbal case presented here illustrates some 
of the practical aspects of implementing a simulation-based 
grade control method (Isaaks 1990; Aguilar and Rossi 1996; 
Rossi 1999). The benefits of the method are evaluated based 
on production data, mine and mill reconciliation data, and 
cash flow analysis. San Cristóbal is a now-exhausted me-
dium-sized open pit gold and silver mine, which processed 
about 10,800 metric tons daily of ore grading approximately 
1 g/t Au and between 4 g/t and 6 g/t Ag. The mine operated 
on 5 m benches, and blast holes were used for breakage and 
to obtain grade samples from the pit, spaced at about 4.5 m 
and sampled over the entire 5 m bench height. Blast holes 
were drilled, sampled, and loaded with explosives on a daily 
basis, typically one blast of 300–400 holes per day. The ore, 
after being crushed in three stages, was heap-leached, and 
Au and Ag were recovered by passing the enriched solu-
tion through six activated carbon columns. Finally, an Au 
and Ag doré was produced with approximately 27–30 % Au. 
Up until the introduction of a new grade control method, the 
mine produced about 65,000 ounces of Au per year.

14.6.1  Geologic Setting

Gold mineralization is very erratic, with a highly skewed 
distribution that makes grade modeling and resource/reserve 
prediction difficult at any scale. Gold and silver minerals are 
associated to a sub-volcanic intrusion, mainly consisting of 
rhyolite, breccia, quartz-feldspar porphyries, and occasional 
dacitic dikes. Alteration is typical of porphyry intrusions, 
zoning from a central potassic alteration to an intermediate 
alteration zone characterized by actinolite and epidotes, and 
to an external halo of propyllitic alteration. Superimposed to 
these alterations a different sericite-quartz alteration has been 
identified, associated to veining and significant shearing.

Mineralization occurs within discontinuous structures, 
oriented North to NW-SE, within a dilational zone limited to 
the north and south by two shear zones. The structures host-
ing the mineralization are typically 0.1–1.0 m in width. Gold 
is present in a quartz-pyrite association. When the structures 
intercept more favorable lithologies, such as breccias, gold 
mineralization appears also disseminated into the host rock.

The geology is well understood but provides few markers 
with no visual indicators for the occurrence of gold and silver 
mineralization. The presence of veins does not ensure the oc-
currence of gold, and not all of the gold is strictly confined to 
the stockwork-like fractures. The short- and long-term pro-
duction reconciliations obtained from 1991 (when the mine 
began operations) until mid-1994 were poor. Estimation 
methods for long-term mine planning were originally ordi-
nary kriging estimates, controlled by the use of geologic and 
grade envelopes. A significant improvement was achieved 
by using Multiple Indicator Kriging instead of Ordinary 
kriging, still constrained by a low-grade envelope. But it was 

also determined that the grade control method used was los-
ing significant quantities of gold and processing waste. This 
was because of the difficulty in drawing panels containing 
homogeneous ore zones. In an effort to remedy the situation, 
a conditional simulation method combined with economic 
optimization was designed, tested, and implemented.

14.6.2  Maximum Revenue (MR) Grade Control 
Method

Conditional simulations provide conditional probability 
distributions which, in conjunction with relevant economic 
parameters, can be used to minimize losses caused by im-
perfect selection. Imperfect pit selection and misclassifica-
tion will always occur. The main objective of the method is 
to minimize economic losses. This optimization is achieved 
based on a set of economic parameters and the probability of 
occurrence of ore for every node within a blast. The maxi-
mum revenue grade control method (MR) uses loss func-
tions as a basic tool for decision-making. The MR method 
requires two basic steps:
1. A set of conditional simulations is obtained, providing 

an uncertainty model about the grade at a specific point 
within the blast.

2. An economic optimization process using Loss Functions 
is implemented. It is designed to obtain the economically 
optimal ore/waste selection. The loss function quanti-
fies the economic consequences of each possible deci-
sion, minimizing losses, see Chaps. 12 and 13 and Isaaks 
(1990).

The simulation model is based on blast holes, and the pro-
cess is run on a daily basis. Quality of blast hole sampling, 
sample preparation and assaying had been addressed before 
the implementation of the MR method with a detailed sam-
pling heterogeneity study (Pitard 1995). The procedures and 
protocols implemented were deemed to achieve a targeted 
15 % fundamental sampling error variance for the blast holes.

The conditional simulations for the San Cristóbal open 
pit were built on a 1 m × 1 m × 5 m grid using the Sequential 
Indicator method. Shifts in the attitude of the ore controlling 
structures required the separation of the data into different 
populations. Evaluation of high-grade populations was re-
quired to control extreme grades in the simulation and cor-
rectly reproduce the observed variability (Parker 1991; Rossi 
and Parker 1993).

Indicator variograms were modeled from blast hole data, 
and a number of simulation parameters were optimized. This 
included minimum and maximum data value used; maxi-
mum simulated value allowed; maximum number of con-
ditioning data to be used; and anisotropic search distances. 
The conditional simulation models were validated against 
original data. Figure 14.57 shows four conditional simula-
tions obtained for Level 2,345 m.
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In grade control, the selection decision (which material 
is ore and which is waste) has to be based on grade esti-
mates, z*(u). Since the true grade value at each location is 
not known, an error can and will likely occur. The loss func-
tion L(e) attaches an economical value to each possible error. 
The expected conditional loss can be found by applying a 
loss function to a set of equi-probable simulated grade values 
(conditional probability function) at each simulated node.

The minimum expected loss can then be found by simply 
calculating the conditional expected loss for all possible val-
ues for the grade estimates, and retaining the estimate that 
minimizes the expected loss. As described in Isaaks (1990), 
in grade control the expected conditional loss is a step func-
tion whose value depends on the operating costs, and the 
relative costs of miss-classification. This implies that the 
expected conditional loss depends only on the classification 
of the estimate z*(x), not on the estimated value itself. For 

example, the loss incurred when a block of leach ore is sent 
to the mill is a function of the difference in processing costs 
related to both leach and mill; it will, of course, also depend 
on the true block grade, but not on the estimated block grade 
value itself.

Minimizing the loss in such a way can be related to mini-
mizing Type I (false positive) and Type II (false negative) 
errors (Fig. 14.58). In positively-skewed distributions, which 
are characteristic of minerals of high intrinsic value, such 
as precious and base metals, only a small proportion of the 
rock mass is economic. This implies that it is not the same to 
make a Type I (the material is thought to be ore, when it is 
in fact waste) or a Type II error (the material is thought to be 
waste, and in fact it is ore). The key difference in this method 
is that the process does not necessarily minimize grade esti-
mation errors, but minimizes the economic consequences of 
such errors.

Fig. 14.57  Conditional simulations, San Cristóbal, Bench 2,345
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14.6.3  Implementation of the MR Method

The work summarized here was initiated because the opera-
tion achieved poor grade and tonnage reconciliations for a 
number of years. The block model used for long-term mine 
planning was blamed for the problem. Several attempts were 
made to improve the resource model, and in the end the MIK 
model was believed to be as good a model as the drill hole 
data and the geologic knowledge would allow. Then, atten-
tion was turned to grade control, since the mineralization’s 
variability at San Cristóbal was a significant challenge to the 
day-to-day operation, determining its operating profitability.

The existing grade control method was based on assign-
ment of blast hole grades to panels. The blast holes were plot-
ted on scaled maps; mine technicians would then draw poly-
gons based on the observed grades at each blast hole; and then 
visually define areas of ore to be extracted. These maps with 
the polygons were passed on to the surveyors, who would 
then stake on the pit the ore and waste areas for the operators 
to load. The predicted average grade of the panel was calcu-
lated as a simple arithmetic average of all blast hole grades 
within the panel. A dilution band of 1 or 2 m. was added, 
estimating its grade by averaging surrounding blast holes. 
Then, the overall grade of the polygon was estimated as an 
area-weighted average of the ore zone and the dilution zone.

The case study described here details the changes intro-
duced in the grade control method over a 13-month evalu-
ation period from March 1995 to March 1996. All other 
aspects of grade control, including blast hole sampling, da-
tabase creation, blasting practices, field demarcation, and 
operating practices were not affected by the change in grade 
control method.

The MR method is based on using blast hole data to ob-
tain blast simulations. These simulations are processed using 
a loss function defined in terms of the operating profit as:

The revenue equation, usually expressed on per ton of ore 
basis, is given by:

The revenue function should include at least processing costs, 
and general and administration costs (G/A) assigned to the 
operation. Some mining companies assign to the mine other 
costs such as capital replacement and depreciation costs, or 
brownfield or greenfield exploration costs. This artificially in-
creases the breakeven cutoff, which may be appropriate if the 
mill capacity is limited. In general, mining costs should not be 
included, since the blasted material will have to be moved re-
gardless of its destination, that is, it is a sunk cost. Only if there 
are differences in transportation costs for different destinations 
(waste and ore) a differential mining cost term should appear.

A matrix can be built based on the alternative material 
destinations. In this case, only waste and leach ore have been 
considered; therefore, a 2 × 2 loss function matrix is obtained. 
Extending this matrix to multiple destinations, such as mill 
and stockpiles, is straightforward. The miss-classification 
matrix quantifies the cost in dollars of each possible mis-
take. Table 14.19 presents the simplest possible Loss Func-
tion corresponding to ore and waste destinations, which was 
used at San Cristóbal.

The diagonal cells in Table 14.19 are 0 because in those 
cases the right decision is made, i.e., there is no loss. Cell 
A21 represents the loss incurred when waste material is sent 
to the processing facility, in this case the leach pad. The po-
tential benefit is negative (since the true grade is waste), the 
only cost that should have been incurred into is the G/A cost 
of operating the mine; a loss is added to the potential operat-
ing profit, stemming from the processing of waste material. 
Cell A12 presents the case where material that is ore is sent 
to the waste dump. The potential benefit is the revenue that 
would have been achieved if the right decision was made. 
The resulting loss in both cases is a negative dollar amount 
taking into account the actual and the opportunity costs.

The MR grade control method as implemented at San 
Cristóbal consists of the following steps:
1. Conditional simulations were obtained based on nearby 

blast holes. These conditional simulations provide the 
probability for each specific block to be either ore or waste.

2. Apply the loss function as defined in Table 14.19. The 
blocks were assigned a series of codes (waste or ore) rep-
resenting the optimal selection in an economic sense.

Loss Actual Potential= −

( ) ( ) ( )
( )

Profit = Price Metallurgical Recovery Au grade

Treatment Costs + G&A Costs

• •
−

Fig. 14.58  Misclassification in grade control
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3. The codes within each blast were visualized on screen 
and a polygon is drawn to define areas of ore and waste. 
This polygon was drawn manually by the grade control 
technician following operational constraints.

4. The MR grade control method was based on a geological 
model. This is necessary because the conditional simu-
lations do not capture sharp mineralogical or structural 
transitions. The MR method is no different than any other 
grade control method in that it will only produce good 
results if properly controlled with in-pit mapping and a 
geologic model.

5. An estimate is generally required for the tons and grade 
to be recovered from each blast. At San Cristóbal the av-
erage grade of the simulations was used as the estimated 
grade for each panel.

Note that the decision of where to send each block or portion 
of the blast is made before any actual estimate of the grade 
is obtained. The decision only depends on the relative prob-
abilities of each block of belonging to either the ore or waste 
category, and the potential cost of making a mistake.

14.6.4  Results

From March 1995 through March 1996 the operation imple-
mented in parallel the existing polygonal and the new MR 
methods, allowing for a direct comparison based on produc-
tion. The comparison demonstrated the remarkable improve-
ment achieved by the MR method.

An F1 factor is defined to compare block model results 
to grade control results. An F2 factor is used to compare 
“loaded to heap” material to grade control predictions, as 
proposed by Parker (Rossi and Parker 1993). The F3 factor 
(F3 = F1 * F2) is used to compare tons and grade predicted by 
the long-term block model (MIK) to tons and grade loaded 
to heaps.

Figure 14.59 shows the F1 factors for the period, on a 
monthly basis; the introduction of the maximum revenue 
grade control method is evident. This was the only change 
introduced in the operation at the time. Table 14.20 shows the 
improvements achieved with the MR method. It compares 
over a 13-month period the tonnages, grades, and ounces 
predicted by the MIK block model to the tonnages, grades 
and ounces selected by the two grade control methods.

The F2 factors averaged for the 13-month period in 
Table 14.20 reflect tonnages actually selected and loaded to 
the plant using the conditional simulation method. A 10 % un-
planned dilution in ounces in an operation with an extremely 
erratic mineralization is quite reasonable. Polygonal-based 
method results in dig panels that make loading and selection 
in the pit much more difficult, which would make the result-
ing F2 factors for the polygonal method even worse. The fine 
grid used by the MR method allows for an operational cut 
that incorporates less dilution. Another important conclusion 
is that in reality the Long-term block model (MIK) was con-
servative in tons and about unbiased in grade, and most of its 
perceived shortcomings were not in fact an issue.

Fig. 14.59  Comparison of grade 
control to Resource Model ( F1 
factors), San Cristóbal, August 
1994–March 1996

 

Table 14.19  Loss function, in $/ton

True grade is waste True grade is leach ore
Estimated grade is waste A11 = 0 A12 = –G/A Costs -{Leach Revenues—Proc. 

Costs}
Estimated grade is leach ore A21 = {Waste Revenues—Proc. Costs}—G/A 

Costs
A22 = 0
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Table 14.20 can be translated into economic gains. For 
this particular operation, the MR method resulted in 34 % 
more available in-situ tons, a 10 % increment of available in-
situ grade, for a net increment of 48 % in-situ metal. These 
results had a major impact in the company’s cash flows, oper-
ating revenues, and costs. Overall in-situ revenues increased 
by US$ 11.2 million in 13 months, and the net increase in 
cash flow was US$ 4.8 million, or a monthly average of 
US$ 370,000, without including gains in diminished strip-
ping cost. Recall that the pit shape was unchanged. Overall 
gold production jumped from approximately 65,000 ounces 
annually to about 80,000 ounces. As a reference, during the 
13-month period, gold prices fluctuated between US$ 370 
and US$ 415 per ounce.

Aided by an improved knowledge of the geology at San 
Cristóbal, the shortcomings of previously used methods for 
grade estimation were better understood. The implementa-
tion of the MR method resulted in production records and 
significant economic improvements to the operation. Not 
only higher recovery of ore and a better ore/waste selection 
overall was achieved, but there were also other operational 
improvements, allowing for a reduction of the unplanned di-
lution. The MR grade control method was implemented such 
that technicians with little geostatistical background can 
operate and control the system. The method was in use at 
San Cristóbal from February 1995 until the operation closed 
down in the late 1990s.

14.7  Geometallurgical Modeling at Olympic 
DAM, South Australia4

Conventional resource estimation is focused on one or a few 
metals that will be sold at a profit. Increasingly, however, 
it is becoming important to understand many other charac-
teristics of the ore that affect processing performance and 

4 BHP Billiton—Uranium is gratefully acknowledged for allowing the 
publication of this case study. This case study is based on the paper 
“Geometallurgical Modeling at Olympic Dam”, by Boisvert, J., Rossi, 
M. Ehrig, K., and Deutsch, C., accepted for publication in Mathemati-
cal Geosciences, 2013.

recovery. The detailed spatial distribution of these variables 
permits a more holistic optimization of the mining operation. 
This case study relates to BHP Billiton’s Olympic Dam proj-
ect in South Australia. Two important topics are addressed 
with the wealth of measurements taken at Olympic Dam: 
(1) recovery and other performance variables are related to 
measured rock properties through a multivariate regression 
model; and (2) geostatistical models of the key rock proper-
ties are constructed by simulation.

14.7.1  Part I: Hierarchical Multivariate 
Regression for Mineral Recovery  
and Performance Prediction

Mineral recovery and expected plant performance are dif-
ficult to predict because they are influenced by a large num-
ber of variables such as mineralogy, grade, grain size, plant 
operation parameters, etc. Often constant recovery factors 
and plant efficiencies are assumed for a given mine based 
on past experience and empirical rules. Such methods are 
acceptable during the feasibility stages of mineral explora-
tion; however, when results of pilot plant trials are available, 
statistical methods can be utilized to better predict recovery 
and plant performance. In this case study, 841 bulk samples 
from flotation and leach tests are used for the calibration of 
a predictive model. The result is a model that can be used to 
predict recovery and plant performance based on available 
geometallurgical data.

Over 200 variables are available to develop a regression 
model. A danger with this many variables is that the relation-
ship to recovery and plant performance variables would be 
over fit. Steps must be taken to avoid over fitting. Redundant 
and unimportant variables are identified and removed from 
the modeling process, reducing the number of variables to 
112. Through a sequence of hierarchical variable amalgama-
tion steps the variables are condensed into four major sub-
categories. A linear model based on these four amalgamated 
variables provides a predictive model that is used to estimate 
potential mineral recovery and plant performance over the 
entire deposit. Minerals of interest in this mine include cop-
per, uranium, gold, and silver.

Plant performance is dependent on a large number of 
variables, such as (1) plant feed (2) operational parameters 
(3) equipment efficiencies (4) and equipment repairs. The 
purpose of this case study is to relate available geometal-
lurgical data to plant performance. This is done by corre-
lating the available data to pilot plant trials. A total of 841 
pilot runs are available with associated plant feed mineral-
ogy, head assays and mineral association data; the data is 
described in Table 14.21. Important plant performance in-
dicators include recovery of Cu and U3O8, acid consump-
tion (used in the leaching process), net recovery, drop weight 
index (DWi) and bond mill work index (BMWi); using the 

Table 14.20  Comparison of the MIK long-term block model, MR 
grade control method, and polygon-based grade control method, 
March 1995–March 1996

Tons 
of ore

Au 
grade

Ounces

F1 (polygonal grade control/MIK) 0.91 0.94 0.86
F2 (plant/polygonal grade control) 1.34 0.82 1.10
F3 = F1 * F2 (plant/MIK, polygonal GC) 1.22 0.77 0.95
F1 (MR grade control/MIK) 1.13 1.00 1.13
F2 (plant/MR grade control) 1.01 0.89 0.90
F3 = F1 * F2 (plant/MIK, MR grade control) 1.14 0.89 1.02
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data in Table 14.21 as input to a regression model, these six 
plant performance variables can be predicted at all locations 
in the deposit.

14.7.2  Methodology

A linear regression model is used to predict the plant per-
formance variables. One drawback with a linear regression 
model is that all input variables are required for prediction. 
Thus, if a single input variable is missing from a sample, the 
regression model cannot be applied. For this reason, three 
regression models are generated (Table 14.22). Each model 
represents a decreasing number of input parameters. For ex-
ample, for locations in the deposit where association data is 
not known the “full model” cannot be applied and the “typi-
cal model” would be appropriate.

The regression models are based on a large set of input 
variables. The variables are merged into super secondary 
variables based on the correlations between variables. This 
is done because there are too few sample data available to ac-
curately determine regression coefficients for the 204 input 
variables available. The final model is a linear regression on 
four super secondary variables. The methodology consists 
of six steps:
1. Normal score the input variables.
2. Merge the variables (level 1). This step reduces the 112 

input variables to 23 merged variables.

3. Merge the variables (level 2). This step reduces the 23 
merged variables to 4.

4. Regression on the four variables.
5. Back transform the estimated variables (DWi, BMWi, Cu 

recovery, U3O8 recovery, acid consumption and net re-
covery).

6. Determine uncertainty in the model.

Step 1: Normal Score Data First, the number of variables 
must be reduced. Variables are removed from the analysis 
because (1) they have a low correlation to the six output 
variables or (2) they are highly redundant with one of the 
other input variables. A variable was considered to have a 
low correlation if the maximum correlation to any of the out-
put variables was less than 0.13. A variable was considered 
redundant with another input variable if it had a correlation 
greater than 0.94. This reduces the number of input variables 
to 112.

There are a total of 841 samples available for modeling; 
however, not all samples contain all 112 variables used in the 
calibration of this model. Due to the nature of a regression 
model, it is necessary that all 112 variables be present for a 
sample to be used for calibration. Of the 841 samples, 328 
samples were retained for modeling. More data are available 
if the mineral associations are ignored (for example, if using 
the “typical” model).

All 118 variables (112 input + 6 output) are indepen-
dently normal score transformed. A visual assessment of the 

Table 14.21  Data available

Data type Description Notes
Head assays This data contains the % content of various important elements, 

including: Co, As, Mo, Ni, Pb, Zn, Zr, Sr, Bi, Cd, Cs, Ga, In, Sb, 
Se, Te, Th, Tl

This data is compositional in nature

Mineralogy A total of 10 identified minerals and minestals set make up the 
bulk of the deposit. These include: brannerite, coffinite, urani-
nite, pyrite, chalcopyrite, bornite, chalcocite, other sulphides, 
acid soluble gangue and acid insoluble gangue

This data is also compositional in nature

Association data A number of thin sections are available. These have been analyzed 
and the complete matrix of associations between minerals is 
available. This describes the contact area between two adjacent 
minerals within a single grain of crushed material

This data is also compositional in nature

Table 14.22  Description of predictive models generated

Model Input variables Output Comments
Full model Head assays (i.e. %cu, %U …)

10 Mineralogy
10 × 11 matrix of associations
Specific gravity

Cu, U, Au, Ag recoveries
Acid consumption
Net recovery (U)
BMWi and DWi

This model represents the maximum data 
available

Typical model Head assays (i.e. %cu, %U …)
10 Mineralogy
Specific gravity

Cu, U, Au, Ag recoveries
Acid consumption
Net recovery (U) 
BMWi and DWi

This is the base case model. Field data will 
most likely contain all these variables

Limited model Limited head assays
7 Mineralogy variables
Specific gravity

Cu, U, Au, Ag recoveries
Acid consumption
Net recovery (U)
BMWi and DWi

Only head assays that have many samples 
in the available database are considered
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bivariate relationships between the input data indicated very 
few non-linear relationships; therefore, stepwise conditional 
transformations are not considered.

Step 2: Merge variables—reduce 112 input variables to 
23 merged super secondary variables There is a danger 
of over fitting the available calibration data if a regression 
model is constructed on all 112 input variables. Therefore, 
subsets of the input data were amalgamated to construct 
super secondary merged variables. These merged variables 
are linear combinations of a subset of variables and signifi-
cantly reduces the dimensionality of the problem while also 
reducing the risk of over fitting. The selection of subsets is 
based on the nature of the measurements; similar rock mea-
surements are kept together.

The merged “super secondary” variables are generated by 
assigning weights to each variable:

where n is the number of variables to be merged based on 
the weights from a likelihood calculation. These weights 
are generated by solving the corresponding matrix for each 
merged variable and for each of the six output variables:

The right-hand side of this equation contains the correlation 
between one of the variables of interest and the n input vari-
ables to be merged, while the left hand side is the correlation 
between all n variables to be merged.
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These correlation matrices may be poorly conditioned 
with few data. Poorly conditioned matrices are the cause of 
extreme weights (λi) and introduce unwarranted noise in the 
predictions. To prevent this, the correlation matrices are fixed 
to improve their stability. This correction is accomplished by 
decreasing the values of the off diagonal elements of the ma-
trix, which increases the value of the smallest eigenvalue for 
the matrix and increases stability. The minimum eigenvalue 
for the correlation matrices was set to 0.05. Twenty-four of 
the correlation matrices for the full model required a cor-
rection, 18 of the correlation matrices for the typical model 
required a correction and 12 of the correlation matrices for 
the limited model required a correction.

The merged variables are a linear combination of N(0,1) 
variables. Thus, the mean of the merged variables will be 
0 but the variance will not be 1. The merged variables are 
standardized by the standard deviation determined from the 
following classical relationship:

Thus, the final merged variable becomes:

Step 3: Merge variables—reduce 23 input variables to 
4 merged variables for regression There are two levels 
of variable amalgamation. The first level grouped related 
variables into 16 merged variables and retains 7 additional 
variables for a total of 23 variables. Figure 14.60 shows the 
variables used in the limited model, while Fig. 14.61 shows 
the variables used in the regression models.
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Fig. 14.60  Variables used in the limited model. A total of 28 input variables are considered
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Fig. 14.61  Variables used in the regression models
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The second level groups the variables into the final 4 
super-secondary variables used for regression:
A. Retained variables
B. Head assays
C. Mineralogy
D. Associations

 Step 4: Regression The typical and limited models are gen-
erated by regression on variables A, B, and C while the full 
model considers variables A–D. Regression is performed 
with both linear and quadratic terms. However, through 
cross validation it was found that increasing the number of 
terms beyond the linear coefficients resulted in little consis-
tent gain and the linear model is sufficient. Thus, the final 
model becomes:

Step 5: Back Transformation Once the predictions are 
made in normal units for each of the six output variables, 
they must be transformed back into original units using the 
original transformation tables.

Step 6: Determine Uncertainty in the Model When a 
prediction is made, the uncertainty in that prediction is also 
determined. The uncertainty is obtained by examining the 
distribution of true values for a given estimate. Consider the 
difference in making an acid consumption prediction of 60 
vs. 220 kg/ton (Fig. 14.62). There is more uncertainty in the 

1 2 3 4Prediction av bv cv dv= + + +

estimate of 220 kg/ton. The measure of uncertainty used is 
the spread of the true values around the estimate.  In this 
case, the p90-p10 range was chosen.

14.7.3  Analysis

All samples were used to generate the regression models 
with the above methodology. High correlation between the 
estimate and the truth is desirable. Rather than show the 768 
coefficients for variable merging and the 24 regression coef-
ficients, a tornado chart (Fig. 14.63) is used to illustrate the 
influence of each of the 112 variables on the overall model. 
The lower limit is determined by selecting the p10 value for 
the input variable of interest and setting all remaining 111 
variables to their p50 value. An estimate is made for each of 
the six output variables, giving the lower limit on the tornado 
chart. Similarly, the p90 value is selected for the variable of 
interest to generate the upper limit on the tornado chart. A 
short horizontal line to the left of the variable indicates that 
the variable is negatively correlated with the output vari-
able. Bars are shaded based on the origin of the variable: 
White—head assays; Gray—associations; Red—mineral-
ogy; Black—specific gravity.

Figure 14.64 shows the models built on all possible data 
points available for the different models. Some interesting 
relationships were discovered in the cross plots and the tor-
nado charts: 
• Na is a significant contributor for DWi/BMWi—indicates 

different mineralogy.
• SG is important for DWi but not BMWi—this is expected 

as it matters whether the rock is brittle or not, and this 
is related to the ratio of iron/silica content in the rock 
matrix.

• BMWi is heavily influenced by the head assays (top 6 
variables contributing to BMWi are from head assays).

• Individual mineralogy variables have little significance 
(Cu recovery is the exception).

• Presence of Chalcopyrite and acid insoluble gangue are 
critical to Cu recovery.

• Cu wt% has a large effect on U3O8 recovery but little 
effect on Cu recovery. This is because Cu recovery is 
approximately constant for the high Cu grades found in 
the deposit.

• Based on the tornado charts, associations are important 
for DWI, Cu recovery, acid consumption and net recov-
ery. This is also seen in the comparison of the typical and 
full models (Fig. 14.64) as the BMWi and U3O8 recovery 
predictions are not significantly altered by removing the 
association data.

• Recoveries are the most difficult variables to predict 
(lowest correlation on Fig. 14.64). This is expected, as 
recovery is dependent on a large number of complex 
interactions.

Fig. 14.62  The uncertainty in an estimate of 60 vs. 220 kg/ton.  
There is more uncertainty at 220 kg/ton
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Fig. 14.63  Full model Tornado charts for DWi, BMWi and Cu recovery ( top) as well as U3O8 recovery, acid consumption and net recovery  
( bottom). White: head assays; Gray: associations; Red: mineralogy; Black: SG
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Fig. 14.64  Cross plots of the truth/estimated values based on the full model (top) and the typical model (middle) and the limited model (bottom)
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Fig. 14.64 (continued)
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Fig. 14.64 (continued)
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There are a number of opportunities for potential improve-
ment on the modeling methodology presented in this case 
study: (1) optimize the merging of the variables at the two 
different levels. The merging of the variables was done using 
logical groupings of the 112 variables. An optimization pro-
cedure could be developed to select ideal subsets of variables 
to increase the predictive power of the regression model. 
(2) Improve the selection of the set of variables to use for 
each variable predicted. In this work, all 112 variables were 
used for all 6 output variables. Eliminating some of the less 
significant variables may reduce noise and increase model 
accuracy.

 14.7.4  Part II: Multivariate Compositional 
Simulation of Non-additive 
Geometallurgical Variables

As shown, recovery and plant performance outcomes are 
influenced by a large number of variables, including head 
assays, mineralogy and mineral associations. Models that 
utilize all these variables outperform models based on head 
assays alone. The compositional nature of the variables must 
be accounted for, and many of the variables are correlated. 
In the proposed methodology, data transformations are 
used to maintain the compositional nature of the variables 
and PCA analysis is used to decorrelate the relationships 
between variables to make geostatistical modeling more 
straightforward.

Modeling methodologies are developed for a total of 135 
variables, separated into three groups: head grade assay val-
ues; grain size measurements; and mineral associations. Sig-
nificantly more samples exist for the head grade variables, 
therefore they are modeled first. The grain size and associa-
tion variables are modeled using the head grade realizations 
as secondary information. This ensures that the spatial dis-
tribution of these variables are consistent with the deposit 
overall.

The head grade and mineral association data are consid-
ered compositional, that is, they are non-negative and sum to 
100 %. A logarithmic transform is used to deal with this con-
stant sum constraint. Normally, these variables would then 
be co-simulated with sequential Gaussian simulation (SGS; 
Isaaks 1990); however, the large number of variables avail-
able and the large grid size makes this procedure too compu-
tationally intensive. An alternative is to perform a principal 
component (PCA) transform on the logarithmic data to gen-
erate uncorrelated variables. SGS is then preformed on the 
uncorrelated PCA values. The values are back-transformed 
into original units to generate the realizations. This proce-
dure is used to model the head grade and mineral association 
data. The grain size data, which are not compositional, are 

modeled using sequential Gaussian co-simulation for the p20, 
p50 and p80 values of each mineral.

14.7.5  Modeling 23 Head Grade Variables

The plant performance modeling requires 23 head grade 
variables for input into the linear regression models: Cu, 
U3O8, Ag, Au, Co, Mo, Pb, Zn, Ba, Fe, Al, Si, K, Ca, S, 
Co2, La, Mg, Mn, Na, P, Ti, Ce. These 23 variables are simu-
lated on a grid with the following dimensions: xmin = 56,105; 
ymin = 30,515; zmin = –1932.5; xsiz = 10; ysiz = 10; zsiz = 15; 
nx = 360; ny = 624; nz = 119. There are a total of 111,572 head 
assay samples used in the modeling. The K:AL ratio and 
BadjS are also required, but are simply calculated from the 
realizations of K, Al, Ba, and S.

The head grade variables are considered composi-
tional because all chemical and mineral rock components 
must sum to 100 %. Because not all elements in a sample 
are assayed, the sum of the head grades is always less 
than 100 %. However, in geostatistical modeling if this 
constraint is not explicitly imposed it can be violated in 
some areas of the model. For this reason a logarithmic 
transform of 24 head grade variables is considered, with 
the 24th variable imposing the 100 % constant sum (23 
variables listed above + 1 filler variable). The logarithmic 
transform is:

where yi is the new variable to be modeled and xi are each of 
the 23 variables to be modeled. This transformation requires 
that there are no zero values for any variable as ln(0) is un-
defined. The back transformation is

There are now 23 logarithmic transformed variables. 
There are complex relationships among these 23 variables 
(Fig. 14.65). It would be difficult to reproduce all these re-
lationships with traditional SGS. The PCA transform is used 
to generate 23 new uncorrelated variables. These variables 
are linear combinations of the 23 logarithmic variables but 
are uncorrelated. An assumption of independence between 
the 23 variables is then made and all 23 PCA variables are 
modeled independently with SGS. This ensures good repro-
duction of the correlation between the 23 variables in the 
final realizations.
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An overall summary of the transformations used is shown 
below:

This methodology assumes that the normal score val-
ues of the principal components are independent. The PCA 
transform ensures that the components are uncorrelated, but 
they may not be independent. Poor histogram reproduction is 
seen in original units due to this lack of independence. There 
are a large number of head assay samples which makes the 
input histogram reliable; they should be reproduced in the 
simulation. To obtain reasonable histogram reproduction the 
final simulations are post processed to better match the de-
clustered input histogram (Fig. 14.66). This has little effect 
on the correlations between variables and individual variable 
variograms, but improves histogram reproduction.

14.7.6  Details of the Sequential Gaussian 
Simulation

Implementation of SGS requires the use of variograms for 
each PCA variable as well as a number of other important 
parameters. For all variables considered in this case study, 
simulation was performed with 50 nearby data (25 data and 
25 previously simulated nodes). Parameters for each var-
iogram can be found in Table 14.23. Because of the large 
number of variables, variogram fitting software was used 
with a visual assessment to locate any major inconsistencies 
with data.

Declustering was used on the 23 PCA variables to obtain 
global histograms. A locally varying mean was used in the 

Table 14.23  Variograms for the normal score of the PCA head grade variables. A nugget (C0) and two spherical structures (C1 and C2) were 
used with no plunge angle
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Fig. 14.66  Histogram reproduction for 25 head grade variables after post processing. Black: 3 realizations; Red: Input histogram with 7038 data
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simulation to consider the non-stationary present throughout 
the deposit. The mean for each PCA was determined using a 
moving window average with a radius of 400 m in the hori-
zontal direction and 50 % anisotropy in the vertical direction.

14.7.7  Modeling Nine Grain Size Variables

There are three Uranium minerals of interest: Brannerite, 
Coffinite and Uraninite. The p20, p50 and p80 grain size for 
each mineral has been measured at 497 locations. The cor-
relation between the percentiles of each grain size is repro-
duced by co-simulating the three percentiles, see Fig. 14.67.

The densely sampled 23 head grade values is used to sup-
plement the lack of information for the grain size variables 
by considering a super secondary variable which is the amal-
gamation of the 23 PCA head grade variables. This super 
secondary variable is created differently for each mineral 
because the correlations between the mineral grain sizes and 
the PCA head grade variables differ. To generate this super 
secondary variable, a linear combination of the PCA head 
grades is determined from the following equations:

The right-hand side of this equation contains the correlation 
between one of the grain size variables and the 23 input head 
grade variables to be merged. The left hand side is the cor-
relation between all 23 PCA head grade variables; note that 
the left hand side contains 1.0 on the diagonal and 0.0 for 
all off diagonal terms because the PCA values are uncor-
related. This is done for the p50 value for each mineral and 
the same super secondary variable is used for modeling the 
p20, p50 and p80. This single super secondary variable allows 
for the cosimulation of the three percentiles and only one ex-
haustive secondary variable. Without merging all secondary 
variables into a super secondary, the grain size simulations 
would have to consider 23 separate secondary variables 
in order to use all the available information from the head 
grade variables.
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Fig. 14.67  Correlation between 
the grain size variables. Minerals 
are simulated independently 
because of the small correlation 
between minerals
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The super secondary variable is used as a collocated sec-
ondary variable for each of the grain size models. Note that 
for the grain size variables neither a logarithmic nor a PCA 
transformation is considered because there are only three 
variables (p20, p50 and p80) for each mineral. Cosimulation of 
three variables can be accomplished in a reasonable amount 
of CPU time. This procedure is repeated for brannerite, coffi-
nite and uraninite. This includes building a new super second-

ary variable for each mineral. Figure 14.68 shows the correla-
tions between grain size variables for each uranium mineral.

Very few data exist for the grain size variables and the var-
iograms are unstable, and so the same variograms are used 
for the p20, p50 and p80 of each mineral. The spatial structure 
for the p20, p50 and p80 are similar, with the small differences 
likely due to lack of data. Parameters for the variograms used 
are shown in Table 14.24.

Fig. 14.68  Correlation between the grain size variables. Above: correlations from 497 data to the super secondary variables; below: correlations 
from one grain size simulation

Table 14.24  Variograms for the 
grain size data. A nugget (C0) 
and two spherical structures 
(C1 and C2) were used with no 
plunge/dip angle and no horizon-
tal anisotropy
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14.7.8  Modeling 100 Association Matrix 
Variables

Modeling the association matrix utilizes a combination of 
the techniques previously discussed. The matrix is a 10 × 11 
matrix where each row sums to 1.0 (or 100 %). Consider one 
particular sample:

Each element in the matrix represents the % surface area 
of interaction between minerals determined from mineral 
liberation analysis. Each row sums to 1.0; however, each 
column does not sum to a constant value as the values are 
standardized by the proportions. There are a total of 100 
elements in the matrix to be modeled, ignoring the diago-
nals. An assumption that the rows are independent is made 
to reduce the problem to simulating 10 independent sets 
(rows) of 10 dependent variables (columns). To maintain 
the constant sum constraint the logarithmic transformation 
is applied to each row resulting in the need to model 9 
logarithmic variables. The PCA transformation is applied 
to reproduce the correlation between variables in each row. 
The principal components of each row are normal score 
transformed and then simulated with SGS. There are a total 
of 490 data available for simulation of association vari-
ables.

As with the grain size variables, the head grade simu-
lations provide a super secondary variable to use in col-
located SGS. There are a total of 23 (normal score PCA) 
head grade simulations to be combined into a single super 
secondary variable for each of the 100 elements in the as-
sociation matrix. The PCA transform is done in such a way 
that the amount of data explained by each principal com-
ponent can be measured. Some components ‘contain’ more 
information than others. In this case the first five compo-
nents of the head grade realizations contain over 75 % of 
the information in the original head grades. Only the first 5 
principal components generated in the head grade modeling 
are combined into the super secondary variable to reduce the 
computational requirements of the methodology. Moreover, 
the super secondary variable is only used for the first 4 of the 
9 principal components of the association variables. Because 
there are 100 association variables to model, CPU time be-
comes an issue.

A variogram is required for each of the 90 principal com-
ponents (10 sets/rows with 9 principal components in each). 
As with the head grade variables these variograms were fit 
with automatic variogram fitting software and visually in-
spected for inconsistencies.

14.7.9  Special Considerations  
for the Association Data

Missing or “null” values always pose a problem in composi-
tional data modeling. In this instance there are some entries 
that are missing because a particular mineral does not appear 
in a given sample. For rows that have some missing values 
but still sum to 1.0, the missing values are reset to 0.0001 or 
0.01 %. In some cases there are entire rows that are missing. 
This is because the mineral does not appear at that location; 
however, in these cases all values cannot be set to a small 
value as they would not sum to 1.0. The solution undertaken 
in this study was to remove the samples where the entire row 
was missing.

When performing SGS at this location the values in that 
particular row are simulated as if the data did not exist (in 
fact this data does exist and has a value of zero). The mis 
match between the missing values at this location and the 
simulated values given the surrounding data can be fixed by 
assigning a 0.0 proportion to the missing minerals, and the 
mismatched association values can be ignored.

14.7.10  Histogram/Variogram Reproduction

There are 135 variables modeled in total. The histograms and 
variograms reproduction for the first 3 realizations have been 
analyzed. The following discussion compares the input his-
tograms and variograms to the realization outputs.

14.7.10.1  Head Grade Variables
The head grade variables reproduce the histogram quite 
well (Fig. 14.69) because of post-processing. Variogram re-
production is checked in normal score units of the principal 
components.
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pendence of the principal components, and (b) influence of 
the super secondary attributes on the models.

14.8  Conclusions

Three linear regression models for the prediction of plant 
performance from head assay, mineralogy and association 
variables. This case study presented a methodology for 
the spatial modeling of these variables. The intention is to 
use the regression model with the spatial model to predict 
plant performance. The cost of obtaining samples of plant 
performance (i.e. pilot plant runs) is very high. Building 
models based on the sparse sampling of mineral recovery, 

14.7.10.2  Grain Size Variables
Histogram and variogram reproduction is heavily influenced 
by the secondary variables as there was very little grain size 
data. For this reason the histogram and variogram reproduc-
tion for the grain size variables does not exactly match the 
input. Moreover, the grain size variables are sparsely sam-
pled suggesting that the input histogram and variogram may 
be unreliable. Some deviation from the input parameters due 
to the secondary information is warranted.

14.7.10.3  Association Matrix Variables
There are a total of 100 association variables. Histogram re-
production is not perfect. The resulting histograms and var-
iograms deviate from the input because of (a) lack of inde-

Fig. 14.70  Brannerite, − 450 m elevation Fig. 14.71  Coffinite, − 450 m elevation
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Fig. 14.72  Uraninite, − 450 m elevation

Fig. 14.73  Cu recovery, − 450 m elevation

acid consumption and work indexes allows for the map-
ping of these variables for all locations in the deposit. This 
provides a prediction of complex process-based variables 
that rarely have sufficient data density to generate appro-
priate variograms and prove difficult to effectively model. 
Figures 14.70, 14.71, and 14.72 show plan views at − 450 m 
elevation of the three main Uranium minerals (brannerite, 
coffinite, and uraninite, respectively), while Figs. 14.73 and 
14.74 show the predicted overall copper and uranium recov-
eries, respectively.

Fig. 14.74  Uranium recovery, − 450 m elevation
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15Conclusions

Abstract

Significant decisions are made on the basis of mineral resource estimates. There is sig-
nificant uncertainty associated with mineral resources because we sample a relatively 
small amount of the deposit. The framework, techniques and numerical/statistical tools 
that have evolved to address resource estimation in presence of sparse data and significant 
uncertainty are summarized.

15.1  Building a Mineral Resource Model

This section includes a summary of the steps involved in 
building a block model, as discussed throughout the book. 
A typical work flow is summarized. The summary also 
includes a review of the applications described, emphasiz-
ing the practical usefulness of the tools described, and the 
(potential) benefits obtained by the owner/company.

More time is spent on getting ready to do resource model-
ing than on actually applying specific geostatistical tools. It 
takes significant time to understand the geological setting, 
the data, the study objectives and ensure that the modeling 
workflow is designed to meet those objectives. Cleaning the 
data takes a great deal of time. Often, the data are not dirty 
or incorrect, but the format is different and inconsistent, there 
is missing data, there are different vintages of data, different 
companies involved and so on. Preparing the site specific data 
takes significant time. Understanding the geological context 
of the data is essential to supplement sparse data and to make 
good choices of model setup and modeling workflow.

Sufficient time must be allocated to sort out the study ob-
jectives, site specific data, analogue data and a conceptual 
understanding of the site. Of course, time must be left to per-
form the geostatistical study and meet the study objectives. 
Often, some data must be left out, some risk of error in the 
database must be accepted and an incomplete understand-
ing of the geological context must also be accepted. Care-
ful documentation must be assembled of the data inventory 
and the limitations that exist in the database and conceptual 
understanding. There must be a balance between satisfying 

prerequisites and getting on with the resource estimation to 
meet the study objectives.

Most geostatistical studies are repeated as more data 
become available or the objectives change. It is rare that a 
particular geostatistical study is the first analysis of com-
pletely new data for a site that has never been modeled 
before. It is important to assemble and review all relevant 
prior work such as reports, maps, models, and data files. 
Those that have studied the site in the past should be con-
tacted to avoid making preventable mistakes and to address 
improvements that previous studies never had the time, data 
or resources to address.

A generic workflow for geostatistics could be summa-
rized by eight steps. (1) Specify the goals of the study and 
take inventory of the available measurements and concep-
tual data. (2) Divide the area/volume of interest into subsets 
that are relevant for the specific situation. (3) Choose how 
the mean of each variable depends on location within each 
chosen subset. (4) Infer all required statistical parameters for 
creating spatial models of each variable within each subset. 
(5) Estimate the value of each variable at each unsampled 
location. (6) Thoroughly validate the estimated model, en-
suring that the geologic and grade models are consistent with 
the assumptions, data, domaining geology, and methodology 
used in the estimation. (7) Simulate multiple realizations 
to assess joint uncertainty at different scales. Finally, (8) 
Post process the statistics, estimated models and simulated 
realizations to provide decision support information. The 
detailed implementation of these steps will depend on the 
purpose of the study.
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First: the goals of the study must be specified to deter-
mine the work effort required for the study, the variables to 
be predicted, the scale relevant for evaluation and the spe-
cific estimation, simulation and post processing steps. A data 
inventory must be taken to review all available measured 
data from drillholes, other sampling and historical produc-
tion data. The numerical models should reproduce all of 
these measured data within the scale and accuracy of the 
data. Conceptual data must also be assembled including a 
geological understanding of the spatial distribution and ana-
logue data. The conceptual model expressed in this first step 
may include schematic pictures and illustrations of the fea-
tures that should be contained in the final model.

Second: the entire volume being modeled will not be 
combined and modeled with one technique and set of param-
eters. There are logical subsets based on geological zones 
and rock types. The estimation domains will define rock vol-
umes that genetically belong together. The domains must be 
large enough to contain sufficient data for reliable statistics, 
yet small enough to isolate geological features for local ac-
curacy. A hierarchical system may be used where large scale 
zones are modeled first, then smaller scale geological units, 
then continuous grades within the final domain definition.

Third: the mean value of each variable may depend on lo-
cation within the chosen estimation domains. There are often 
significant trends in the distribution of rock types. These 
trends are understood even with few data. Continuous grade 
variables may also have local variations that are important. 
The results of the second step (subsets of the volume for 
geostatistical analysis) and third step (modeling the location 
dependence of the mean) are collectively known as the deci-
sion of stationarity.

Fourth: infer all required statistical parameters. The re-
quired statistical parameters will depend on the chosen 
technique that, in turn, depends on the conceptual model 
chosen for each stationary subset of the domain. Almost al-
ways, there will be a need to infer the univariate proportions 
and histograms of each grade variable within each domain. 
These univariate distributions are computed from the data 
and calculated to be representative of the entire subset. Some 
measures of spatial variability must also be inferred. In tra-
ditional Matheronian geostatistics (Matheron 1971), vario-
grams are the measures that quantify the spatial variability of 
each category and rock property. In presence of sparse data, 
these statistical parameters are considered uncertain and a 
number of scenarios are documented.

Fifth: calculate an estimate of each variable at each un-
sampled location. These estimates are based on the data and 
do not involve any random numbers. The estimation is com-
monly a form of kriging considering indicators, data transfor-
mation, cokriging, and/or locally varying means as required. 
Whenever possible, the uncertainty is estimated directly with 

indicators for categorical variables and normal scores in a 
multivariate Gaussian context for continuous variables. This 
provides a single best estimate at each unsampled location 
together with a measure of uncertainty. This is based entirely 
on the data and decisions taken in the first four steps. The 
results are useful for resource assessment and checking.

Sixth: thorough validation of the estimated values is 
necessary. Often, the effort involved in validating and even 
calibrating a model is under-appreciated. Model calibration 
implies running multiple iterations of the estimation pro-
cess, varying some specific parameters, in order to repro-
duce a certain reference (for example, a blast hole model). 
Validations are done to ensure the internal consistency of 
the model; that is, the estimated values are consistent with 
all assumptions, data, and geologic model used to build it. 
Comparisons with previous models are made also, and if 
available, against a production or reference model deemed 
to be a reasonably accurate representation of true grades and 
tonnages in the deposit.

Seventh: multiple realizations of all surfaces, rock types 
and grades could be obtained to quantify joint uncertainty 
and to provide a model of variability suitable for the assess-
ment of dilution and recoverable reserves. The simulation 
techniques are often closely linked to the estimation tech-
niques. The estimation results are used for checking the 
realizations and for a first estimate of the resource/reserve. 
Uncertainty over a large volume depends on the simultane-
ous uncertainty at many locations; simulating multiple re-
alizations is the only practical approach to quantify such 
large-scale uncertainty. Also, the details of the geological 
heterogeneity may have a large influence on recovery and 
reserve calculations.

Eighth: post-process all of the model results. Sometimes, 
the statistical parameters from Steps 3 and 4 are useful in 
themselves; variogram ranges may be used to understand 
data spacing and expected length scales of geological fea-
tures. The estimated model provides expected results at un-
sampled locations and measures of local uncertainty that are 
useful for data collection and management. Models of differ-
ent grades must be combined and important resource vari-
ables calculated. The simulated models provide large scale 
uncertainty and input to subsequent engineering design.

These eight steps provide an overview of the workflow 
of resource estimation and geostatistics to address specific 
study objectives. Some of the details have been explained 
in preceding chapters; other details are inevitably learned 
by tradecraft, other textbooks, technical papers and software 
user’s guides. Invariably, many assumptions are made during 
the course of a resource estimation study. The consequenc-
es of these assumptions and the limitations of the resulting 
models must be understood by the modeler and those using 
the resulting estimates.



32315.3  Documentation and Audit Trail Required

15.2  Assumptions and Limitations  
of the Models Used

Healthy skepticism is encouraged. One illogical extreme 
viewpoint would be to accept resource models at face value 
since best practices were followed and significant cost was 
incurred for professionals and software. Another illogical 
extreme viewpoint would be to dismiss the resource models 
because of the large number of assumptions required. The fa-
mous statistician George E.P. Box wrote that “essentially all 
models are wrong, but some are useful.” Healthy skepticism 
must be maintained while constructing the best resource 
models possible, and then using them for engineering design 
as required.

An important assumption relates to the reasonableness 
and correctness of the available data. There will be a variety 
of QA/QC procedures in place, but there are many possible 
sources of bias and error that may not be fully considered 
or accounted for. Moreover, we would assume that there is 
some geological continuity of those data values. We also 
assume that our geologic models are reasonable represen-
tations of the in-situ geology. And that based on the geo-
logic model, the (stationary) domains defined are adequate 
for grade estimation. The geologic continuity is related to 
grade continuity, which we assume it is adequately captured 
with our variogram models. Most of our estimation/kriging 
techniques smooth the data and create models with relatively 
large areas of high and low grades. We assume that the data 
used to predict the degree of variability in the mineralization 
is adequate, and realistically represents for each domain the 
local and global variances. The engineers will assume that 
these models reasonably represent the reality and plan the 
details of a mining method; we assume that the final achieved 
ore/waste limits are similar in character to those predicted by 
early resource models. Of course, the local details are not as 
important as the overall assessment of dilution, lost ore and 
continuity.

Also, more detailed descriptions of the degree of check-
ing should be made. Also, mining engineers and manage-
ment should pre-define expected uncertainty (errors) in the 
predictions. For example, it is appropriate to define an ac-
ceptable error margin for the ore resource model for speci-
fied volumes, for example yearly or quarterly. All validation, 
checking, and reconciliation of the model can then refer back 
to the expected error for those volumes.

15.3  Documentation and Audit Trail Required

A major typical shortcoming in most resource models is lack 
of, or poor, documentation. It is significant because resource 
modeling can be a long and complex process, with many 
subjective decisions made along the way. The reserve model 

is in fact the most important asset on which the mining com-
pany bases its value. By extension, the resource model from 
which the reserves are obtained is the single most important 
asset a mining company has. As such, they are always sub-
ject to scrutiny.

Auditors are not the only ones that benefit from good doc-
umentation. The project or mine owner does as well, since 
the lessons learned from one modeling exercise can be better 
applied in future resource modeling iterations. But above all, 
ethics and transparency, as required by the current Reporting 
Standards, necessitate that all relevant aspects of the work 
be laid down in a comprehensive resource model report. The 
report must discuss and document what was done, the limita-
tions of the work, and the degree of detail achieved.

Any auditor will strictly follow basic steps in checking 
a resource model. The resources estimator is well advised 
to be aware of them, and anticipate the documentation that 
will be required at a later date. The auditor’s duty is to find 
flaws, errors, and inadequacies, which is the reason for an 
often intense level of scrutiny. The checks may include from 
the simplest graphical checks to verification of the database 
against original data collection/compilation documents, run-
ning an alternative check model, and bench-marking the 
software used in modeling against other software, often the 
auditor’s own programs.

To cover (and pass) all possible checks, no assumptions 
can be made. H.M. Parker’s basic auditing axioms simply 
and eloquently state the concept: (1) Trust no one; (2) As-
sume nothing; (3) Check everything.

A characteristic of resource estimation work is that it 
can be organized in modular form, since it a serial process. 
Therefore, documentation can also be arranged in such a 
way, and developed as work progresses. Assuming that the 
database has already been validated in its original reposi-
tory, the process may begin with (1) loading the data into the 
modeling software; then, (2) data checks to ensure that the 
loading process was correct; then (3) geological interpreta-
tion and modeling takes place; (4) exploratory data analysis 
follows; (5) domain definition; (6) construction of the block 
model; (7) variography; (8) grade estimation; (9) resource 
classification; (10) resource validation; and finally (11) re-
source reporting.

A good practice is to lay down the procedure on a flow-
chart, which specifies the inputs and outputs of each step, 
and also the documentation required. The data files ma-
nipulation should be detailed, including the fields, and the 
associated scripts, run files, and programs that are used in 
each procedure. In those instances where the runs are for 
checking or validation purpose, both runs and run specifica-
tions (parameters and other input files) need to be preserved 
and archived.

All relevant variables need to be stored. If the kriging 
variance is used for resource classification, or the krig-
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ing pass, or the number of composites used, and so on. All 
scripts, legends, and data should be available for easy plot-
ting to compare original data with estimated block grades. It 
is still important to have, on a large scale map, key sections 
and plans, properly signed by the operator, the internal qual-
ity control person, and the auditor.

For each general task in the resource modeling process, 
the following suggested audit trail and documentation can 
be considered adequate to satisfy an auditor in its request for 
data and documentation.

Database: Description of data fields and tables; descrip-
tion of prior audits and reviews; description of procedures, 
checks, validations (maintenance) that jointly ensure that the 
database is kept clean, and that new data is incorporated with 
the same standards.

Loading Data Into Modeling Software: Scripts or run 
files used to upload; is it an OBDC connection? Document 
the connection setup, the fields and files manipulation; and 
how the data is selected from the database.

Checking the Loaded Data: Document what checks have 
been made; why are they sufficient to ensure correct loading?

Geologic Modeling: Document and describe rationale 
for methodology chosen. Is it appropriate for this type of 
deposit? What criteria have been used to interpret geology? 
What checks have been made to ensure the quality of the 
output models?

Exploratory Data Analysis: Easy to access, organized 
archive of parameter files, run files, and plots. Use backup 
binders, not just electronic files. Document the assumptions 
and conclusions reached.

Estimation Domain Definition: Justification for logic; 
description of the process; supporting geology and statistical 
evidence; description of the sensitivities, if possible. Checks 
performed to confirm the decision.

Block Model: Documentation and description of model lim-
its; block size(s), with partial or whole blocks; is it rotated? 
Was it built using a coordinate rotations and transformation? 
Project and world coordinates. How was the geology and 
estimation domains assigned?

Variography: Documentation of the estimators used; data 
transformations? Document parameters for obtaining the 
directional variograms, and the criteria used in modeling 
them. Document any data selection. By domain, or have 
domains been combined for practical reasons? Document all 
other assumptions made.

Grade Estimation: Document the method, with the param-
eters files used, and validations performed. Maintain all 
relevant files and ensure that the block model has all the nec-
essary variables for checking.

Resource Classification: Document methodology. What 
criteria were used? How was it implemented? Document the 
checks performed.

Resource Validation: Document in detail, summarizing 
all the checks performed, and explaining why the resource 
model is deemed adequate for its objective. Include state-
ments regarding the main assumptions, limitations, and risk 
areas perceived. What are the recommended risk mitigation 
procedures?

Resource Reporting: Document in detail the checks per-
formed that the reported tonnages and grades correspond to 
the estimated model. Use appropriate number of significant 
digits. Include comparisons with previous models, and with 
reference (production models), and explain the reasons for 
the observed differences.

In summary, the audit trail has to demonstrate to third par-
ties that each step of the process was completed with appro-
priate methodology, which was implemented correctly, and 
was thoroughly validated.

15.4  Future Trends

Trained professionals for resource estimation are hard to 
come by. The cyclic nature of the mining industry means that 
a relative lack of staff today likely means a glut tomorrow; 
however, it is still a general trend that there are relatively few 
highly trained people for resource estimation. In the last few 
years, during the recent and unprecedented non-renewable 
resources boom, this has become a major hurdle in project 
development. The larger mining companies are likely to out-
source more work to consulting companies, but consulting 
companies also have challenges finding and retaining pro-
fessionals. Moreover, there are few undergraduate programs 
that teach geostatistics or resource estimation; new profes-
sionals are not always willing to make the sacrifices that 
a solid professional development would require, and if so, 
much of the training is done on the job through postgraduate 
courses and mentoring.

There will be a trend toward increasing automation of 
many steps in resource estimation. This has many advan-
tages including less professional time required, repeatability, 
transparency and easy updating with additional drilling. This 
also has many disadvantages. It will be easier to make mis-
takes, create models that are not geologically realistic and 
portray a false sense of confidence in the models because 
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they appear realistic and appear to have used the latest avail-
able methodology and software. Senior professionals and 
gatekeepers in various organizations will guard against this 
and promote better work practices.

Regarding the data for resource estimation, it is likely 
that there will be improved use of secondary data coming 
from geophysical measurements of less expensive drilling 
and sampling techniques. Cokriging and other techniques 
to simultaneously use high quality data together with lower 
quality data will be developed and implemented in the wide-
ly used commercial software.

The use of multiple point statistics and advanced multivar-
iate methods will be increased to permit improved realism in 
the spatial distribution of the models and capture the com-
plex mineralogical relationships present in most of our 
deposits. Challenges posed by incomplete sampling of all 
the data and local variations in data quality will be met with 
improved techniques for data imputation and dealing with 
non-stationarity.

The longstanding challenge of non-stationarity will not 
go away, but improved techniques will become available 
to help subset the data appropriately, model the chosen do-
mains, understand and quantify the nature of contacts and 
consider trends in the important variables.

We also feel that professionals (and the available soft-
ware tools) will become better equipped to manage the high 
degree of uncertainty associated with resource estimation. 
Probabilistic models, scenarios, risk assessment and simula-
tion techniques will become more commonplace and less in 
the hands of a few specialists.
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Spatial data analysis, 18, 19, 21
Spatial entropy, 169
Spatial variability, see Variogram
Spherical variogram model, 63, 106–110
Stationarity, 3, 4, 11, 12, 22, 51, 98, 103
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