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Preface

’’. . . was it heavy? Did it achieve total heaviosity?’’

—Alvie (Woody Allen) to Annie (Diane Keaton) in Annie Hall, 1977.

Heavy-tail analysis is a branch of extreme-value theory devoted to studying phe-

nomena governed by large movements rather than gradual ones. It encompasses both

probability modeling as well as statistical inference. Its mathematical tools are based

on regular variation, weak convergence of probability measures and random measures

and point processes. Its applications are diverse, including the following:

• data networks, where the presence of heavy-tailed file sizes on network servers leads

to long range dependence in the traffic rates;

• finance, where financial returns are heavy tailed and thus risk management calcula-

tions of value-at-risk require heavy-tailed methods;

• insurance, where the field of reinsurance is, by its nature, obsessed with very large

values.

The structure of the book

There is an introductory chapter to describe the flavor and applicability of the subject.

Then there are two chapters termed crash courses: one on regular variation and the other

on weak convergence. These chapters contain essential material that could have been

relegated to appendices; however, you should go through them where they are placed

in the book. If you know the material, move quickly. Otherwise, pay some attention to

style and notation. In particular, note what goes on in Sections 3.4–3.6. Such chapters

are, inevitably, a compromise between wanting the book to be self-contained and not

wanting to duplicate at length what is standard in other excellent references.
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Chapter 4 gets you into the heart of inference issues fairly quickly. The approach to

inference is semiparametric and asymptotic in nature. This leads to a statistical theory

that is different from classical contexts. We assume there is some structure out there

at asymptopia and we are trying to infer what it is using a pitiful finite sample whose

true model has not yet converged to the asymptotic model. Thus, maximum likelihood

methods are not really available unless we simply assume from some threshold onwards

that the asymptotic model holds. We give some diagnostics that help decide on values

of parameters and when a heavy-tail model is appropriate.

Chapter 5 begins the probability treatment which is geared towards a dimensionless

theory. It focuses on the Poisson process and stochastic processes derived from the

Poisson process, including Lévy and extremal processes. We also give an introduction

to data network modeling. Chapter 6 gives the dimensionless treatment of regular

variation and its probabilistic equivalents. We survey weak convergence techniques

and discuss why it is difficult to bootstrap heavy-tail phenomena. Chapter 7 exploits

the weak convergence technology to discuss weak convergence of extremes to extremal

processes and weak convergence of summation processes to Lévy limits. Special cases

include sums of heavy-tailed iid random variables converging to α-stable Lévy motion.

We close the chapter with a unit on how weak convergence techniques can be used

to study various transformations of regularly varying random vectors. We include

Tauberian theory for Laplace transforms in this discussion.

Applied probability takes center stage in Chapter 8 which uses heavy-tail techniques

to learn about the properties of three models. Two of the models are for data networks

and the last one is a more traditional queueing model. We return to statistical issues in

Chapter 9, discussing asymptotic normality for estimators and then moving to inference

for multivariate heavy-tailed models. We include examples of analysis of exchange rate

data, Internet data, telephone network data and insurance data. Finally, we close the

chapter with a discussion of the much praised and vilified sample correlation function.

There are some appendices devoted to notational conventions and a list of symbols and

also a section which timidly discusses some useful software.

Each chapter contains exercises. Ignoring the exercises guarantees voyeur status.
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1

Introduction

1.1 Welcome

This is a survey of some of the mathematical, probabilistic and statistical tools used in

heavy-tail analysis as well as some examples of their use. Heavy tails are characteristic

of phenomena where the probability of a huge value is relatively big. Record-breaking

insurance losses, financial log-returns, file sizes stored on a server, transmission rates

of files are all examples of heavy-tailed phenomena. The modeling and statistics of

such phenomena are tail dependent and much different than classical modeling and

statistical analysis, which give primacy to central moments, averages, and the normal

density, which has a wimpy, light tail.

An oversimplified view of heavy-tail analysis is that it rests on three subjects:

• Mathematics: The theory of regularly varying functions [26, 90, 102, 135, 144, 220,

260, 275] provides the right mathematical framework for heavy-tail analysis.

• Probability theory and stochastic processes: Heavy-tail analysis is a heavy consumer

of weak convergence techniques [22, 23, 25, 301] since an organizing theme is that

many limit relations giving approximations can be viewed as applications of almost

surely continuous maps. It also requires knowledge of stochastic processes, such as

point processes and random measures [65, 180, 230, 260], Brownian motion, Lévy

processes, and stable processes [4, 19, 273, 274].

• Statistics: Are the data heavy tailed? Is a heavy-tailed model appropriate? How do

you fit such a model to the data? Specialized techniques overlapping extreme-value

theory [16, 90, 129, 260] are needed.

1.2 Survey

Heavy-tail analysis is an interesting and useful blend of mathematical analysis, proba-

bility, and stochastic processes and statistics. Heavy-tail analysis is the study of systems
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whose behavior is governed by large values which shock the system periodically. This

is in contrast to many systems exhibiting stability whose behavior is determined largely

by an averaging effect. In heavy-tailed analysis, typically the asymptotic behavior of

descriptor variables is determined by the large values or merely a single large value.

Roughly speaking, a random variable X has a heavy (right) tail if there exists a

positive parameter α > 0 such that

P [X > x] ∼ x−α, x → ∞. (1.1)

(Note that here and elsewhere that we use the notation

f (x) ∼ g(x), x → ∞,

as shorthand for

lim
x→∞

f (x)

g(x)
= 1,

for two real functions f , g. Similarly, f (x) ∼ g(x), x → 0, means the ratio approaches

1 as x → 0.) Examples of such random variables are those with Cauchy, Pareto, t , F ,

or stable distributions. Stationary stochastic processes, such as the ARCH, GARCH,

EGARCH, etc., which have been proposed as models for financial returns, typically

have marginal distributions satisfying (1.1). It turns out that (1.1) is not quite the right

mathematical setting for discussing heavy tails (that pride of place belongs to regular

variation of real functions) but we will get to that in due course.

An elementary observation is that a heavy-tailed random variable has a relatively

large probability of exhibiting a really large value, compared to random variables,

which have exponentially bounded tails such as normal, Weibull, exponential, or gamma

random variables. For a N(0, 1) normal random variable N , with density n(x), we have

by Mill’s ratio that

P [N > x] ∼ n(x)

x
∼ 1

x
√

2π
e−x2/2, x → ∞,

which has much weaker tail weight than suggested by (1.1).

There is a tendency to sometimes confuse the concept of a heavy-tail distribution with

the concept of a distribution with infinite right support. (For a probability distribution

F , the support is the smallest closed set C such that F(C) = 1. For the exponential

distribution with no translation, the support is [0,∞) and for the normal distribution,

the support is R.) The distinction is simple and exemplified by comparing a normally

distributed random variable with one whose distribution is Pareto. Both have positive

probability of achieving a value bigger than any preassigned threshold. However, the



1.3 Context and examples 3

Pareto random variable has, for large thresholds, a much bigger probability of exceeding

the threshold. One cannot rule out heavy-tailed distributions by using the argument that

everything in the world is bounded unless one agrees to rule out all distributions with

unbounded support.

Much of classical statistics is often based on averages and moments. Try to imagine

a statistical world in which you do not rely on moments since if (1.1) holds, moments

above the αth do not exist! This follows since

∫ ∞

0

xβ−1P [X > x]dx ≈
∫ ∞

1

xβ−1x−αdx

{
< ∞ if β < α,

= ∞ if β ≥ α,

where (in this case) ∫
f ≈

∫
g

means both integrals either converge or diverge together. Much stability theory in

stochastic modeling is expressed in terms of mean drifts, but what if the means do not

exist. Descriptor variables in queueing theory are often in terms of means, such as mean

waiting time, mean queue lengths, and so on. What if such expectations are infinite?

1.3 Context and examples

In this section, we outline scenarios where heavy-tailed analysis is used. The books [1,

16, 50, 90, 129, 209, 218, 238] contain other examples and application areas.

1.3.1 Data networks

Measurements on data networks often show empirical features that are surprising by the

standards of classical queueing and telephone network models. Measurements often

consist of data giving bitrate or packet rates. This means that a window resolution is

selected (for example, 10 seconds, 1 second, 10 milliseconds, 1 millisecond, . . . ) and

the number of bits or packets in adjacent time windows or slots is recorded. Significant

examples include [118, 203, 305, 306].

Certain distinctive properties are common to many different data studies and such

properties are termed invariants by network engineers. (In finance, the phrase stylized
fact seems to be a synonym for invariant.) Here are some examples of invariants for

network data:

• Heavy tails abound [204, 303, 304, 307] for such things as file sizes [6, 242], trans-

mission rates, transmission durations [215, 267].
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• The number of bits or packets per slot exhibits long-range dependence across time

slots (e.g., [203, 305]). There is also a perception of self-similarity as the width of

the time slot varies across a range of time scales exceeding a typical roundtrip time.

See Section 5.2.3 (p. 126).

• Network traffic is bursty with rare but influential periods of very high transmission

rates punctuating typical periods of modest activity.

Having observed empirical phenomena, there is an obligation to uncover relation-

ships that explain the phenomena. An accepted network paradigm is that long-range

dependence in traffic per time slot is caused by heavy tails of the file sizes of files stored

on servers. This is discussed in Section 5.2 (p. 123), where a modeling explanation is

provided for the relationship between long-range dependence and heavy tails.

An idealized data transmission model of a source destination pair is an alternating

renewal on/off model, where constant-rate transmissions alternate with off periods. The

on periods are random in length with a heavy-tailed distribution, and this leads to occa-

sional large transmission lengths. Note that the constant transmission rate assumption

means the transmission length is proportional to the size of the file being transmitted.

This model provides one explanation of perceived long-range dependence in measured

traffic rates. A competing model, which to some tastes is marginally more elegant, is

the infinite-source Poisson model, to be discussed in Section 5.2.4 (p. 127).

Example 1.1. The Boston University study [52, 53, 63], now considered a classic, sug-

gests self-similarity of web traffic stems from heavy-tailed file sizes. This means that we

treat files as being randomly selected from a population and if X represents a randomly

selected file size, then the hypothesis of a heavy tail is

P [X > x] ∼ x−α, x → ∞, α > 0, (1.2)

where α is a shape parameter that must be statistically estimated. The BU study re-

ports an overall estimate for a five-month measurement period (see [63]) of α = 1.05.

However, there is considerable month-to-month variation in these estimates and, for

instance, the estimate for November 1994 in room 272 places α in the neighborhood

of 0.66. Figure 1.1 gives the QQ and Hill plots [17, 165, 191, 252] of the file-size data

for the month of November in the Boston University study. These are two graphical

methods for estimating α and will be discussed in more detail in Section 4.6.1 (p. 97)

and Section 4.4.2 (p. 85).

Extensive traffic measurements of on periods are reported in [305], where measured

values ofα were usually in the interval (1, 2). Studies of sizes of files accessed on various

servers by the Calgary study [6] report estimates of α from 0.4 to 0.6. So evidence exists

which suggests values of α outside the range (1, 2) should be considered. Also, as user
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Fig. 1.1. QQ and Hill plots of November 1994 file lengths.

demands on the web grow and access speeds increase, there may be a drift toward heavier

file-size distribution tails. However, this is a hypothesis that is currently untested.

1.3.2 Finance

In the study of financial returns of risky assets, it is empirically observed that “returns’’

possess notable features, which in the finance culture are termed stylized facts. This is

similar to what we observed about network data sets, and stylized facts are to finance

what invariants are to data networks.

What is a “return’’? Suppose {Si} is the stochastic process representing the price of

a speculative asset (stock, currency, derivative, commodity (corn, coffee, etc.)) at the

ith measurement time. The return process is

R̃i := (Si − Si−1)/Si−1;

that is, the process giving the relative difference of prices. If the returns are small, then

the differenced log-price process approximates the return process

Ri := log Si − log Si−1 = log
Si

Si−1
= log

(
1 +
(

Si

Si−1
− 1

))

≈ Si

Si−1
− 1 = R̃i

since for |x| small,
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log(1 + x) ∼ x, x → 0,

by l’Hôpital’s rule. So instead of studying the returns process {R̃i}, the differenced

log-price process {Ri} is studied, and henceforth we refer to {Ri} as the returns process.

Recall that transforming a data set of positive observations by taking logarithms and then

differencing is a common and comfortable procedure from time-series analysis [31],

one which is often used to transform a nonstationary sequence to one that is plausibly

modeled as stationary.

Empirically, the returns process often exhibits notable properties:

1. Heavy-tailed marginal distributions (but usually α > 2, so the mean and variance

exist).

2. Little or no correlation. However, by squaring or taking absolute values of the

returns, one gets a highly correlated, even long-range-dependent process.

3. Dependence. (If the random variables were independent, so would the squares be

independent, but squares are typically correlated.)

Hence one needs to model the data with a process that is stationary and has heavy-tailed

marginal distributions and a dependence structure. This leads to the study of specialized

models in economics with lots of acronyms like ARCH and GARCH. Estimation of the

marginal distribution’s shape parameter α is made more complex due to the fact that

the observations are dependent.

Given S0, there is a one-to-one correspondence between

{S0, S1, . . . , ST } and {S0, R1, . . . , RT }

since

T∑

t=1

Rt = (log S1 − log S0) + (log S2 − log S1)

+ · · · + (log ST − log ST−1)

= log ST − log S0 = log
ST

S0
,

so that

ST = S0e
∑T

t=1 Rt . (1.3)

So why deal with returns rather than with the price process? Here are some reasons:

1. The returns are scale free and thus independent of the units as well as the size of

the initial investment.
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2. Returns have more attractive statistical properties than prices such as stationarity.

Econometric models sometimes yield nonstationary price models but stationary

returns.

Why deal with {Rt } rather than {R̃t }?

1. The process {Rt } is nicely additive over time. It is easier to construct models for

additive phenomena than for multiplicative ones (such as 1 + R̃t = St/St−1). One

can recover ST from the returns by what is essentially an additive formula (1.3).

(Additive is good!) Also, the T -day return process

RT − R1 = log ST − log S0

is additive. (Additive is good!)

2. The daily values of R̃t = St/St−1 − 1 satisfy

St

St−1
− 1 ≥ −1,

and for statistical modeling, it is a bit unnatural to have the variable bounded below

by−1. For instance, one could not model such a process using a normal or two-sided

stable density.

3. Certain economic facts are easily expressed by means of {Rt }. For example, if St is

the exchange rate of the US dollar against the British pound and Rt = log(St/St−1),

then 1/St is the exchange rate of pounds to dollars, and the return from the point of

view of the British investor is

log
1/St

1/St−1
= log

St−1

St

= − log
St

St−1
,

which is minus the return for the American investor.

4. As mentioned, the operations of taking logarithms and differencing are standard

time-series tools for coercing a data set into looking stationary. Both operations,

as indicated, are easily undone. So there is a high degree of comfort with these

operations.

Classical extreme-value theory, which subsumes heavy-tail analysis, uses tech-

niques to estimate value-at-risk (or VaR), which is an extreme quantile of the profit-

and-loss density, once the density is estimated. This is discussed further in Section 1.3.2

(p. 9) after Example 1.2 and also in Section 4.7 (p. 111).

Example 1.2 (Standard & Poors 500). We consider the data set fm-poors.dat in the

package Xtremes [238], which gives the Standard & Poors 500 stock market index.

The data, although somewhat old, are absolutely typical of many finance data sets; it

is daily data from July 1962 to December 1987 but, of course, does not include days
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Fig. 1.2. Time-series plot of S&P 500 data (left) and log(S&P) (right).
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Fig. 1.3. Time-series plot of S&P 500 return data (left) and the sample autocorrelation function

(right).

when the market is closed. In Figure 1.2, we display the time-series plots of the actual

data for the index and the log of the data. Only someone delusional would conclude

that these two series were stationary. On the left side of Figure 1.3, we exhibit the 6410

returns {Rt } of the data by differencing at lag 1 the log(S&P) data. On the right side

is the sample autocorrelation function. There is a large lag 1 correlation but otherwise

few spikes are outside the 95% confidence window.

For a view of the stylized facts about these data, and to indicate the complexities of

the dependence structure, we exhibit the autocorrelation function of the squared returns
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autocorrelation function of the absolute values of the returns (right).

in Figure 1.4 (left), and on the right, the autocorrelation function for the absolute value

of the returns. Although there is little correlation in the original series, the iid hypothesis

is obviously false.

One can compare the heaviness of the right and left tail of the marginal distribution

of the process {Rt } even if we do not believe that the process is iid. A reasonable

assumption seems to be that the data can be modeled by a stationary, uncorrelated

process, and we hope the standard exploratory extreme-value and heavy-tailed methods

developed for iid processes still apply. We apply the QQ plotting technique to the data.

(See Sections 4.6 (p. 97) and 11.1.2 (p. 366).) After playing a bit with the number of

upper-order statistics used, we settled on k = 200 order statistics for the positive values

(upper tail) which gives the slope estimate of α̂ = 3.61. This is shown in the left side

of Figure 1.5. On the right side of Figure 1.5 is the comparable plot for the left tail;

here we applied the routine to abs(returns[returns < 0]), that is, to the absolute value

of the negative data points in the log-return sample. After some experimentation, we

obtained an estimate α̂ = 3.138 using k = 150. Are the two tails symmetric, which is

a common theoretical assumption? Unlikely!

Value-at-risk

Extreme-value theory and heavy-tail analysis use techniques to estimate value-at-risk
(VaR), which is an extreme quantile of the profit-and-loss density, once the density is

estimated. Here is a rapid overview.
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Financial institutions have to meet standards set by regulatory bodies designed

to prevent overexposure to risks. Sufficient capital is required to withstand sudden

dramatic unfavorable shifts in the market. A commonly used risk metric is value-at-
risk (VaR), which is the point that is exceeded by a loss for the portfolio only with a

specified low probability. This will just be a quantile of the loss distribution, which can

be estimated from observable data.

The risk analysis is done in two stages:

• Express profit-and-loss in terms of returns.

• Statistically model the returns and compute the appropriate quantile.

Representing market value in terms of returns. Let {St } be the price process of an asset

such as a stock. Suppose at time 0 a decision is made to hold h shares for the time

horizon t = 0, . . . , T . Then the market value of the asset at time t is

Vt = hSt , t = 0, . . . , T .

So V0 is the initial value and VT is the final value at the end of the time horizon. The

loss variable is the “loss’’ expressed in positive units:

Lt = −(Vt − V0) =
{
|Vt − V0| if Vt − V0 < 0,

−|Vt − V0| if Vt − V0 > 0.

So if Lt is negative, there is a profit.
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We express this in terms of the return process {Rt } defined in (1.3). Multiplying

(1.3) by h, we have the T -period loss is

LT = −h(ST − S0) = −h
(
S0e
∑T

i=1 Ri − S0

)

= −hS0

(
e
∑T

i=1 Ri − 1
)

= V0

(
1 − e

∑T
i=1 Ri

)
(1.4)

≈ V0

(
−

T∑

i=1

Ri

)
, (1.5)

where the last approximation is tolerable provided |
∑T

i=1 Ri | is small.

Multivariate version. Portfolios rarely contain a single asset, and typically diversifica-

tion leads to portfolios being dependent on a large-dimensional vector of diverse asset

returns. This is one reason for the increasing interest in multivariate heavy tails, which

is the focus of this book.

Suppose a portfolio consists of d assets with prices at time t equal to St,1, . . . , St,d ,

t = 1, . . . , T . Let hj be the number of shares owned in asset j during the period of

observation so that the value of the j th asset at time t is

Vt,j = hjSt,j , j = 1, . . . , d; t = 0, . . . , T .

The value of the total portfolio at t is

Vt =
d∑

j=1

Vt,j , t = 0, . . . , T .

Let {Rt,j , t ≥ 0} be the return process for the j th asset. Also, we write

Wj = V0,j

V0
= hjS0,j∑

l hlS0,l

to indicate how the portfolio is balanced at time 0. Define

LT = −(VT − V0) = −
d∑

j=1

(VT ,j − V0,j )

= −
d∑

j=1

(
V0,je

∑T
t=1 Rt,j − V0,j

)
= −V0

d∑

j=1

V0,j

V0

(
e
∑T

t=1 Rt,j − 1
)
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= V0

d∑

j=1

Wj

(
1 − e

∑T
t=1 Rt,j

)
(1.6)

≈ V0

d∑

j=1

Wj

T∑

t=1

(−Rt,j )

= V0(W1, . . . , Wd)

⎛
⎜⎝

∑T
t=1(−RT ,1)

...∑T
t=1(−RT ,d)

⎞
⎟⎠ . (1.7)

Definition and computation of VaR. The value-at-risk, VaR(T , q), for the period T is

the qth quantile of the loss distribution defined by

P [LT ≤ VaR(T , q)] = q. (1.8)

For a single asset this is computed as follows. Define

FT (x) = P

[
−

T∑

t=1

Ri ≤ x

]
,

which is basically the left tail of the T -period return variable. We claim

VaR(T , q) = V0(1 − e−F←
T (q)), (1.9)

which assumes V0 is nonrandom and known. The reason for (1.9) is that

P [LT ≤ V0(1 − e−F←
T (q))] = P

[
V0

(
1 − e

∑T
t=1 Rt

)
≤ V0(1 − e−F←

T (q))
]

= P
[
e
∑T

t=1 Rt ≥ e−F←
T (q)
]
= P

[
T∑

t=1

Rt ≥ −F←
T (q)

]

= P

[
−

T∑

t=1

Rt ≤ F←
T (q)

]
= q.

Note that if we use the approximation 1 − e−F←
T (q) ≈ F←

T (q), then

VaR(T , q) ≈ V0F
←
T (q).

However, this overestimates VaR since for x > 0, 1 − e−x ≤ x.

The statistical problem is to estimate VaR(T , q) based on a sample of T -period

returns. The empirical distribution function of the sample of T -period returns is an
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Fig. 1.6. Danish data (left) and QQ plot.

approximation of the true distribution of returns which is reasonably accurate in the

center of the distribution. However, to estimate an extreme quantile such as VaR, we

need a reasonable estimate not just in the center of the distribution but in the extreme

tail. Thus extrapolation methods using peaks-over-threshold methods and asymptotic

theory based on extreme-value and heavy-tail analysis must be used. See [50, 90, 129,

209, 218, 238]. We return to this point in Section 4.7 (p. 111).

1.3.3 Insurance and reinsurance

The general theme here is to model insurance claim sizes and frequencies so that pre-

mium rates may be set intelligently and risk to the insurance company quantified.

Smaller insurance companies sometimes pay for reinsurance or, more particularly,

excess-of-loss (XL) insurance to a bigger company like Munich Re, Swiss Re, or Lloyd’s

of London. The excess claims over a certain contractually agreed threshhold are covered

by the big insurance company. Such excess claims are by definition very large, so heavy-

tail analysis is a natural tool to apply. What premium should the big insurance company

charge to cover potential losses?

To convince you this might make a difference to somebody, note [129] that from

1970–1995, the two worst cumulative losses world wide were Hurrricane Andrew (my

wife’s cousin’s yacht in Miami wound up on somebody’s roof 30 miles to the north)

and the Northridge earthquake in California. Losses in 1992 dollars were $16,000 and
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$11,838 million dollars, respectively. (Note the unit is “millions of dollars.’’) The tally

from Hurricane Katrina will undoubtedly exceed both these prior disasters.

As an example of data you might encounter, consider the Danish data on large fire

insurance losses [219, 263]. Figure 1.6 gives a time-series plot of the 2156 Danish

data consisting of losses of over one million Danish krone (DKK) and the right-hand

plot is the QQ plot of these data, yielding a remarkably straight plot. The straight-line

plot indicates the appropriateness of heavy-tail analysis. The data were collected from

1980–1990 inclusive and values adjusted for inflation to 1985 values.
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Crash Course I: Regular Variation

The next two chapters are rapid overviews of two essential subjects: regular variation

and weak convergence. This kind of material is sometimes relegated to appendices,

which is an unloved practice requiring much paging forward and back. Readers who

are familiar with these subjects will find these chapters reassuring collections of notation

and basic results. Those readers with less familiarity should read through the chapters

to gain some functionality with the topics without worrying about all details; they can

return later to ponder details, get further references, and improve mastery as time and

circumstances allow. Other treatments and more detail can be found in [26, 90, 102,

144, 260, 275].

The theory of regularly varying functions is the appropriate mathematical analysis

tool for proper discussion of heavy-tail phenomena. We begin by reviewing some results

from analysis starting with uniform convergence.

2.1 Preliminaries from analysis

2.1.1 Uniform convergence

If {fn, n ≥ 0} are real-valued functions on R (or, in fact, any metric space), then fn

converges uniformly on A ⊂ R to f0 if

sup
x∈A

|f0(x) − fn(x)| → 0 (2.1)

as n → ∞. The definition would still make sense if the range of fn, n ≥ 0, were a

metric space, but then |f0(x) − fn(x)| would have to be replaced by d(f0(x), fn(x)),

where d(·, ·) is the metric. For functions on R, the phrase local uniform convergence
means that (2.1) holds for any compact interval A.

A very useful fact is that monotone functions converging pointwise to a continuous

limit converge locally uniformly. (See [260, p. 1] for additional material.)
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Proposition 2.1. Suppose Un, n ≥ 0, are nondecreasing, real-valued functions on R

and that U0 is continuous. If for all x,

Un(x) → U0(x) (n → ∞),

then Un → U0 locally uniformly; i.e., for any a < b,

sup
xǫ[a,b]

|Un(x) − U0(x)| → 0.

Proof. One proof of this fact is outlined as follows: If U0 is continuous on [a, b],
then it is uniformly continuous. From the uniform continuity, for any x, there is an

interval-neighborhood Ox on which U0(·) oscillates by less than a given ǫ. This gives

an open cover of [a, b]. Compactness of [a, b] allows us to prune {Ox, x ∈ [a, b]} to

obtain a finite subcover {(ai, bi), i = 1, . . . , K}. Using this finite collection and the

monotonicity of the functions leads to the result: Given ǫ > 0, there exists some large

N such that if n ≥ N , then

max
1≤i≤K

(
|Un(ai) − U0(ai)|

∨
|Un(bi) − U0(bi)|

)
< ǫ (2.2)

(by pointwise convergence). Observe that

sup
x∈[a,b]

|Un(x) − U0(x)| ≤ max
1≤i≤K

sup
x∈[ai ,bi ]

|Un(x) − U0(x)|. (2.3)

For any x ∈ [ai, bi], we have by monotonicity

Un(x) − U0(x) ≤ Un(bi) − U0(ai)

≤ U0(bi) + ǫ − U0(ai) (by (2.2))

≤ 2ǫ,

with a similar lower bound. This is true for all i, and hence we get uniform convergence

on [a, b]. ⊓⊔

2.1.2 Inverses of monotone functions

Suppose H : R �→ (a, b) is a nondecreasing function on R with range (a, b), where

−∞ ≤ a < b ≤ ∞. With the convention that the infimum of an empty set is +∞, we

define the (left-continuous) inverse H← : (a, b) �→ R of H as

H←(y) = inf {s : H(s) ≥ y}.

See Figure 2.1.
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H(s)

y

s

Fig. 2.1. The inverse at y is the foot of the left dotted perpendicular.

In case the function H is right continuous, we have the following desirable proper-

ties:

A(y) := {s : H(s) ≥ y} is closed, (2.4)

H(H←(y)) ≥ y, (2.5)

H←(y) ≤ t iff y ≤ H(t). (2.6)

For (2.4), observe that if sn ∈ A(y) and sn ↓ s, then y ≤ H(sn) ↓ H(s), so

H(s) ≥ y and s ∈ A(y). If sn ↑ s and sn ∈ A(y), then y ≤ H(sn) ↑ H(s−) ≤ H(s)

and H(s) ≥ y, so s ∈ A(y) again and A(y) is closed. Since A(y) is closed, inf A(y) ∈
A(y); that is, H←(y) ∈ A(y) which means H(H←(y)) ≥ y. This gives (2.5). Lastly,

(2.6) follows from the definition of H←.

2.1.3 Convergence of monotone functions

For any function H denote

C(H) = {x ∈ R : H is finite and continuous at x}.

A sequence {Hn, n ≥ 0} of nondecreasing functions on R converges weakly to H0 if as

n → ∞, we have

Hn(x) → H0(x)

for all x ∈ C(H0). We will denote this by Hn → H0. No other form of convergence

for monotone functions will be relevant. If Fn, n ≥ 0, are probability distributions



20 2 Crash Course I: Regular Variation

on R, then a myriad of names give equivalent concepts: complete convergence, vague

convergence, weak∗ convergence, narrow convergence. If Xn, n ≥ 0, are random

variables and Xn has distribution function Fn, n ≥ 0, then Xn ⇒ X0 means Fn → F0.

For the proof of the following, see [24], [260, p. 5], [264, p. 259].

Proposition 2.2. If Hn, n ≥ 0, are nondecreasing functions on R with range (a, b) and
Hn → H0, then H←

n → H←
0 in the sense that for t ∈ (a, b) ∩ C(H←

0 ),

H←
n (t) → H←

0 (t).

2.1.4 Cauchy’s functional equation

Let k(x), x ∈ R, be a function that satisfies

k(x + y) = k(x) + k(y), x, y ∈ R.

If k is measurable and bounded on a set of positive measure, then k(x) = cx for some

c ∈ R. (See [275], [26, p. 4].)

2.2 Regular variation: Definition and first properties

The theory of regularly varying functions is an essential analytical tool for dealing with

heavy tails, long-range dependence and domains of attraction. Roughly speaking, reg-
ularly varying functions are those functions which behave asymptotically like power

functions. We will deal currently only with real functions of a real variable. Consid-

eration of multivariate cases and probability concepts suggests recasting definitions in

terms of vague convergence of measures, but we will consider this reformulation in

Chapter 3.6 (p. 61) and Section 6.1.4 (p. 172).

Definition 2.1. A measurable function U : R+ �→ R+ is regularly varying at ∞ with

index ρ ∈ R (written U ∈ RVρ) if for x > 0,

lim
t→∞

U(tx)

U(t)
= xρ .

We call ρ the exponent of variation.

If ρ = 0, we call U slowly varying. Slowly varying functions are generically

denoted by L(x). If U ∈ RVρ , then U(x)/xρ ∈ RV0, and setting L(x) = U(x)/xρ ,

we see it is always possible to represent a ρ-varying function as xρL(x).
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Example 2.1. The canonical ρ-varying function is xρ . The functions log(1 + x),

log log(e + x) are slowly varying, as is exp{(log x)α}, 0 < α < 1. Any function

U such that limx→∞ U(x) =: U(∞) exists positive and finite is slowly varying. The

following functions are not regularly varying: ex, sin(x+2). Note that [log x] is slowly

varying, but exp{[log x]} is not regularly varying.

In probability applications, we are concerned with distributions whose tails are

regularly varying. Examples are

1 − F(x) = x−α, x ≥ 1, α > 0,

and the extreme-value distribution

�α(x) = exp{−x−α}, x ≥ 0.

�α(x) has the property

1 − �α(x) ∼ x−α as x → ∞.

A stable law (to be discussed later in Section 5.5.2 (p. 154)) with index α, 0 < α < 2

has the property

1 − G(x) ∼ cx−α, x → ∞, c > 0.

The Cauchy density f (x) = (π(1 + x2))−1 has a distribution function F with the

property

1 − F(x) ∼ (πx)−1.

If N(x) is the standard normal distribution function, then 1 − N(x) is not regularly

varying nor is the tail of the Gumbel extreme-value distribution 1 − exp{−e−x}.
The definition of regular variation can be weakened slightly (cf. [102, 135, 260]).

Proposition 2.3.

(i) A measurable function U : R+ �→ R+ varies regularly if there exists a function h

such that for all x > 0,

lim
t→∞

U(tx)/U(t) = h(x).

In this case h(x) = xρ for some ρ ∈ R and U ∈ RVρ .
(ii) A monotone function U : R+ �→ R+ varies regularly provided there are two

sequences {λn}, {bn} of positive numbers satisfying

bn → ∞, λn ∼ λn+1, n → ∞, (2.7)

and for all x > 0,

lim
n→∞

λnU(bnx) =: χ(x) exists positive and finite. (2.8)

In this case χ(x)/χ(1) = xρ and U ∈ RVρ for some ρ ∈ R.
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We frequently refer to (2.8) as the sequential form of regular variation. For proba-

bility purposes, it is most useful. Typically, U is a distribution tail, λn = n, and bn is a

distribution quantile.

Proof.

(i) The function h is measurable since it is a limit of a family of measurable functions.

Then for x > 0, y > 0,

U(txy)

U(t)
= U(txy)

U(tx)
· U(tx)

U(t)
,

and letting t → ∞ gives

h(xy) = h(y)h(x).

So h satisfies the Hamel equation, which by change of variable can be converted to

the Cauchy equation. Therefore, the form of h is h(x) = xρ for some ρ ∈ R.

(ii) For concreteness assume U is nondecreasing. Assume (2.7) and (2.8), and we show

regular variation. Since bn → ∞, for each t there is a finite n(t) defined by

n(t) = inf {m : bm+1 > t}

so that

bn(t) ≤ t < bn(t)+1.

Therefore, by monotonicity for x > 0,

(
λn(t)+1

λn(t)

)(
λn(t)U(bn(t)x)

λn(t)+1U(bn(t)+1)

)

≤ U(tx)

U(t)
≤
(

λn(t)

λn(t)+1

)(
λn(t)+1U(bn(t)+1x)

λn(t)U(bn(t))

)
.

Now let t → ∞ and use (2.7) and (2.8) to get limt→∞
U(tx)
U(t)

= 1χ(x)
χ(1)

. Regular

variation follows from part (i). ⊓⊔

Remark 2.1. Proposition 2.3(ii) remains true if we only assume (2.8) holds on a dense

set. This is relevant to the case where U is nondecreasing and λnU(bnx) converges

weakly.
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2.2.1 A maximal domain of attraction

Suppose {Xn, n ≥ 1} are iid with common distribution function F(x). The extreme is

Mn =
n∨

i=1

Xi = max{X1, . . . , Xn}.

One of the extreme-value distributions is

�α(x) := exp{−x−α}, x > 0, α > 0.

What are conditions on F , called domain of attraction conditions, so that there exists

bn > 0 such that

P [b−1
n Mn ≤ x] = F n(bnx) → �α(x) (2.9)

weakly? How do you characterize the normalization sequence {bn}?
Set x0 = sup{x : F(x) < 1} which is called the right endpoint of F . We first check

that (2.9) implies x0 = ∞. Otherwise, if x0 < ∞, we get from (2.9) that for x > 0,

bnx → x0; i.e., bn → x0x
−1. Since x > 0 is arbitrary, we get bn → 0, whence x0 = 0.

But then for x > 0, F n(bnx) = 1, which violates (2.9). Hence x0 = ∞.

Furthermore, bn → ∞ since otherwise on a subsequence n′, bn′ ≤ K for some

K < ∞. Then, since F(K) < 1,

0 < �α(1) = lim
n′→∞

F n′
(bn′) ≤ lim

n′→∞
F n′

(K) = 0,

which is a contradiction.

In (2.9), take logarithms to get for x > 0, limn→∞ n(− log F(bnx)) = x−α . Now

use the relation − log(1 − z) ∼ z as z → 0 and (2.9) is equivalent to

lim
n→∞

n(1 − F(bnx)) = x−α, x > 0. (2.10)

From (2.10) and Proposition 2.3, we get

1 − F(x) ∼ x−αL(x), x → ∞ (2.11)

for some α > 0. To characterize {bn}, set U(x) = 1/(1 − F(x)), and (2.10) is the

same as

U(bnx)/n → xα, x > 0;
inverting, we find via Proposition 2.2 that

U←(ny)

bn

→ y1/α, y > 0. (2.12)
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So U←(n) = (1/(1 − F))←(n) ∼ bn, and this determines bn by the convergence-to-

types theorem. See [135, 260, 264].

Conversely, if (2.11) holds, define bn = U←(n) as previously. Then

lim
n→∞

1 − F(bnx)

1 − F(bn)
= x−α,

and we recover (2.10) provided 1−F(bn) ∼ n−1 or what is the same provided U(bn) ∼
n, i.e., U(U←(n)) ∼ n. Recall from (2.6) that z < U←(n) iff U(z) < n, and setting

z = U←(n)(1 − ε) and then z = U←(n)(1 + ε), we get

U(U←(n))

U(U←(n)(1 + ε))
≤ U(U←(n))

n
≤ U(U←(n))

U(U←(n)(1 − ε))
.

Let n → ∞, remembering U = 1/(1 − F) ∈ RVα . Then

(1 + ε)−α ≤ lim inf
n→∞

n−1U(U←(n)) ≤ lim sup
n→∞

U(U←(n)) ≤ (1 − ε)−α,

and since ε > 0 is arbitrary, the desired result follows.

2.3 Regular variation: deeper results; Karamata’s theorem

There are several deeper results that give the theory power and utility: uniform conver-

gence; Karamata’s theorem, which says that a regularly varying function integrates the

way you expect a power function to integrate; and finally the Karamata representation

theorem.

2.3.1 Uniform convergence

The first useful result is the uniform convergence theorem.

Proposition 2.4. If U ∈ RVρ for ρ ∈ R, then

lim
t→∞

U(tx)/U(t) = xρ

locally uniformly in x on (0,∞). If ρ < 0, then uniform convergence holds on intervals
of the form (b,∞), b > 0. If ρ > 0, uniform convergence holds on intervals (0, b]
provided U is bounded on (0, b] for all b > 0.

If U is monotone the result already follows from the discussion in Section 2.1.1,

since we have a family of monotone functions converging to a continuous limit. For

detailed discussion, see [26, 102, 144, 275].
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2.3.2 Integration and Karamata’s theorem

The next set of results examines the integral properties of regularly varying functions

[26, 102, 181, 183, 275]. For purposes of integration, a ρ-varying function behaves

roughly like xρ . We assume all functions are locally integrable, and since we are

interested in behavior at ∞, we assume integrability on intervals including 0 as well.

Theorem 2.1 (Karamata’s theorem).

(a) Suppose ρ ≥ −1 and U ∈ RVρ . Then
∫ x

0 U(t)dt ∈ RVρ+1 and

lim
x→∞

xU(x)∫ x

0 U(t)dt
= ρ + 1. (2.13)

If ρ < −1 (or if ρ = −1 and
∫∞
x

U(s)ds < ∞), then U ∈ RVρ implies that∫∞
x

U(t)dt is finite,
∫∞
x

U(t)dt ∈ RVρ+1, and

lim
x→∞

xU(x)∫∞
x

U(t)dt
= −ρ − 1. (2.14)

(b) If U satisfies

lim
x→∞

xU(x)∫ x

0 U(t)dt
= λ ∈ (0,∞), (2.15)

then U ∈ RVλ−1. If
∫∞
x

U(t)dt < ∞ and

lim
x→∞

xU(x)∫∞
x

U(t)dt
= λ ∈ (0,∞), (2.16)

then U ∈ RV−λ−1 .

What Theorem 2.1 emphasizes is that for the purposes of integration, the slowly

varying function can be passed from inside to outside the integral. For example, the

way to remember and interpret (2.13) is to write U(x) = xρL(x) and then observe that
∫ x

0

U(t)dt =
∫ x

0

tρL(t)dt;

now pass the L(t) in the integrand outside as a factor L(x) to get

∼ L(x)

∫ x

0

tρdt = L(x)xρ+1/(ρ + 1)

= xxρL(x)/(ρ + 1) = xU(x)/(ρ + 1),

which is equivalent to the assertion (2.13).
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Proof.
(a) For certain values of ρ, uniform convergence suffices after writing, for instance,

∫ x

0 U(s)ds

xU(x)
=
∫ 1

0

U(sx)

U(x)
ds.

If we wish to proceed using elementary concepts, consider the following approach,

which follows [102].

If ρ > −1, we show that
∫∞

0 U(t)dt = ∞. From U ∈ RVρ , we have

lim
s→∞

U(2s)/U(s) = 2ρ > 2−1

since ρ > −1. Therefore, there exists s0 such that s > s0 necessitates U(2s) >

2−1U(s). For n with 2n > s0, we have

∫ 2n+2

2n+1
U(s)ds = 2

∫ 2n+1

2n

U(2s)ds >

∫ 2n+1

2n

U(s)ds,

and so setting n0 = inf {n : 2n > s0} gives

∫ ∞

s0

U(s)ds ≥
∑

n:2n>s0

∫ 2n+2

2n+1
U(s)ds >

∑

n≥n0

∫ 2n0+2

2n0+1
U(s)ds = ∞.

Thus for ρ > −1, x > 0, and any N < ∞, we have

∫ t

0

U(sx)ds ∼
∫ t

N

U(sx)ds, t → ∞,

since U(sx) is a ρ-varying function of s. For fixed x and given ε, there exists N such

that for s > N ,

(1 − ε)xρU(s) ≤ U(sx) ≤ (1 + ε)xρU(s),

and thus

lim sup
t→∞

∫ tx

0 U(s)ds
∫ t

0 U(s)ds
= lim sup

t→∞

x
∫ t

0 U(sx)ds
∫ t

0 U(s)ds

= lim sup
t→∞

x
∫ t

N
U(sx)ds

∫ t

N
U(s)ds

≤ lim sup
t→∞

xρ+1(1 + ε)

∫ t

N
U(s)ds

∫ t

N
U(s)ds

= (1 + ε)xρ+1.
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An analogous argument applies for lim inf , and thus we have proved

∫ x

0

U(s)ds ∈ RVρ+1

when ρ > −1.

In case ρ = −1, then either
∫∞

0 U(s)ds < ∞, in which case
∫ x

0 U(s)ds ∈
RV−1+1 = RV0, or

∫∞
0 U(s)ds = ∞ and the previous argument is applicable. So

we have checked that for ρ ≥ −1,
∫ x

0 U(s)ds ∈ RVρ+1.

We now focus on proving (2.13) when U ∈ RVρ , ρ ≥ −1. Define the function

b(x) := xU(x)/

∫ x

0

U(t)dt, (2.17)

so that integrating b(x)/x leads to the representations

∫ x

0

U(s)ds = c exp

{∫ x

1

t−1b(t)dt

}
,

U(x) = cx−1b(x) exp

{∫ x

1

t−1b(t)dt

}
. (2.18)

We must show b(x) → ρ + 1. Observe first that

lim inf
x→∞

1/b(x) = lim inf
x→∞

∫ x

0 U(t)dt

xU(x)

= lim inf
x→∞

∫ 1

0

U(sx)

U(x)
ds.

Now make a change of variable s = x−1t , and by Fatou’s lemma this is

≥
∫ 1

0

lim inf
x→∞

(U(sx)/U(x))ds

=
∫ 1

0

sρds = 1

ρ + 1
,

and we conclude that

lim sup
x→∞

b(x) ≤ ρ + 1. (2.19)

If ρ = −1, then b(x) → 0 as desired, so now suppose ρ > −1.

We observe the following properties of b(x):

(i) b(x) is bounded on a semi-infinite neighborhood of ∞ (by (2.19)).
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(ii) b is slowly varying since xU(x) ∈ RVρ+1 and
∫ x

0 U(s)ds ∈ RVρ+1.

(iii) We have

b(xt) − b(x) → 0

as x → ∞, and the convergence is uniformly bounded for t in finite intervals.

The last statement follows since by slow variation,

lim
x→∞

(b(xt) − b(x))/b(x) = 0

and the denominator is ultimately bounded.

From (iii) and dominated convergence

lim
x→∞

∫ s

1

t−1(b(xt) − b(x))dt = 0,

and the left side may be rewritten to obtain

lim
x→∞

{∫ s

1

t−1b(xt)dt − b(x) log s

}
= 0. (2.20)

From (2.18)

c exp

{∫ x

1

t−1b(t)dt

}
=
∫ x

0

U(s)ds ∈ RVρ+1,

and from the regular variation property

(ρ + 1) log s = lim
x→∞

log

(∫ xs

0 U(t)dt∫ x

0 U(t)dt

)

= lim
x→∞

∫ xs

x

t−1b(t)dt = lim
x→∞

∫ s

1

t−1b(xt)dt;

combining this with (2.20) leads to the desired conclusion that b(x) → ρ + 1.

(b) We suppose (2.15) holds and check U ∈ RVλ−1. Set

b(x) = xU(x)/

∫ x

0

U(t)dt,

so that b(x) → λ. From (2.18)

U(x) = cx−1b(x) exp

{∫ x

1

t−1b(t)dt

}

= cb(x) exp

{∫ x

1

t−1(b(t) − 1)dt

}
,

and since b(t) − 1 → λ − 1, U satisfies the definition of being (λ − 1)-varying as can

be checked from the definition. (See Corollary 2.1.) ⊓⊔
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2.3.3 Karamata’s representation

Theorem 2.1 leads in a straightforward way to what has been called the Karamata
representation of a regularly varying function.

Corollary 2.1 (the Karamata representation).

(i) The function L is slowly varying iff L can be represented as

L(x) = c(x) exp

{∫ x

1

t−1ε(t)dt

}
, x > 0, (2.21)

where c : R+ �→ R+, ε : R+ �→ R+, and

lim
x→∞

c(x) = c ∈ (0,∞), (2.22)

lim
t→∞

ε(t) = 0. (2.23)

(ii) A function U : R+ �→ R+ is regularly varying with index ρ iff U has the represen-
tation

U(x) = c(x) exp

{∫ x

1

t−1ρ(t)dt

}
, (2.24)

where c(·) satisfies (2.22) and limt→∞ ρ(t) = ρ. (This is obtained from (i) by
writing U(x) = xρL(x) and using the representation for L.)

Proof. If L has a representation (2.21), then it must be slowly varying since for x > 1,

lim
t→∞

L(tx)/L(t) = lim
t→∞

(c(tx)/c(t)) exp

{∫ tx

t

s−1ε(s)ds

}
.

Given ε, there exists t0 by (2.23) such that

−ε < ε(t) < ε, t ≥ t0,

so that

−ε log x = −ε

∫ tx

t

s−1ds ≤
∫ tx

t

s−1ε(s)ds ≤ ε

∫ tx

t

s−1ds = ε log x.

Therefore, limt→∞
∫ tx

t
s−1ε(s)ds = 0 and limt→∞ L(tx)/L(t) = 1.

Conversely, suppose L ∈ RV0. In a matter similar to (2.17), define

b(x) := xL(x)/

∫ x

0

L(s)ds,
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and by Karamata’s theorem, b(x) → 1 as x → ∞. Note that

L(x) = x−1b(x)

∫ x

0

L(s)ds.

Set ε(x) = b(x) − 1, so ε(x) → 0 and

∫ x

1

t−1ε(t)dt =
∫ x

1

(
L(t)/

∫ t

0

L(s)ds

)
dt − log x

=
∫ x

1

d

(
log

∫ t

0

L(s)ds

)
− log x

= log

(
x−1

∫ x

0

L(s)ds/

∫ 1

0

L(s)ds

)
,

whence

exp

{∫ x

1

t−1ε(t)dt

}
= x−1

∫ x

0

L(s)ds/

∫ 1

0

L(s)ds

= L(x)/

(
b(x)

∫ 1

0

L(s)ds

)
, (2.25)

and the representation follows with

c(x) = b(x)

∫ 1

0

L(s)ds. ⊓⊔

Example 2.2. The Cauchy density

F ′(x) = 1

2π

(
1

1 + x2

)
, x ∈ R,

satisfies

F ′(x) ∼ 1

2π
x−2, x → ∞,

and hence

1 − F(x) ∼ 1

2π
x−1, x → ∞.

2.3.4 Differentiation

The previous results describe the asymptotic properties of the indefinite integral of a

regularly varying function. We now describe what happens when a ρ-varying function

is differentiated.
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Proposition 2.5. Suppose U : R+ �→ R+ is absolutely continuous with density u so that

U(x) =
∫ x

0

u(t)dt.

(a) (von Mises [293]) If
lim

x→∞
xu(x)/U(x) = ρ, (2.26)

then U ∈ RVρ .

(b) (Landau [196]) If U ∈ RVρ, ρ ∈ R, and u is monotone, then (2.26) holds, and if
ρ �= 0, then |u|(x) ∈ RVρ−1. (See [260, 275] and [102, pp. 23 and 109].)

Proof.

(a) Set

b(x) = xu(x)/U(x)

and as before we find that

U(x) = U(1) exp

{∫ x

1

t−1b(t)dt

}

so that U satisfies the representation theorem for a ρ-varying function.

(b) Suppose u is nondecreasing. An analogous proof works in the case u is nonincreas-

ing. Let 0 < a < b and observe that

(U(xb) − U(xa))/U(x) =
∫ xb

xa

u(y)dy/U(x).

By monotonicity we get

u(xb)x(b−a)/U(x) ≥ (U(xb)−U(xa))/U(x) ≥ u(xa)x(b−a)/U(x). (2.27)

From (2.27) and the fact that U ∈ RVρ , we conclude that

lim sup
x→∞

xu(xa)/U(x) ≤ (bρ − aρ)/(b − a) (2.28)

for any b > a > 0. So let b ↓ a, which is tantamount to taking a derivative. Then

(2.28) becomes

lim sup
x→∞

xu(xa)/U(x) ≤ ρaρ−1 (2.29)

for any a > 0. Similarly, from the left-hand equality in (2.27) after letting a ↑ b,

we get

lim inf
x→∞

xu(xb)/U(x) ≥ ρbρ−1 (2.30)

for any b > 0. Then (2.26) results by setting a = 1 in (2.29) and b = 1 in

(2.30). ⊓⊔



32 2 Crash Course I: Regular Variation

2.4 Regular variation: Further properties

For the following list of properties, it is convenient to define rapid variation or regular

variation with index ∞. We say U : R+ �→ R+ is regularly varying with index ∞
(U ∈ RV∞) if for every x > 0,

lim
t→∞

U(tx)

U(t)
= x∞ :=

⎧
⎪⎨
⎪⎩

0 if x < 1,

1 if x = 1,

∞ if x > 1.

Similarly, U ∈ RV−∞ if

lim
t→∞

U(tx)

U(t)
= x−∞ :=

⎧
⎪⎨
⎪⎩

∞ if x < 1,

1 if x = 1,

0 if x > 1.

The following proposition, modeled after [102] (see also [90]), collects useful prop-

erties of regularly varying functions.

Proposition 2.6.

(i) If U ∈ RVρ , −∞ ≤ ρ ≤ ∞, then

lim
x→∞

log U(x)/ log x = ρ

so that

lim
x→∞

U(x) =
{

0 if ρ < 0,

∞ if ρ > 0.

(ii) (Potter bounds) Suppose U ∈ RVρ, ρ ∈ R. Take ε > 0. Then there exists t0 such
that for x ≥ 1 and t ≥ t0,

(1 − ε)xρ−ε <
U(tx)

U(t)
< (1 + ε)xρ+ε. (2.31)

(iii) If U ∈ RVρ, ρ ∈ R, and {an}, {bn} satisfy 0 < bn → ∞, 0 < an → ∞, and
bn ∼ can as n → ∞ for 0 < c < ∞, then U(bn) ∼ cρU(an). If ρ �= 0, the result
also holds for c = 0 or ∞. Analogous results hold with sequences replaced by
functions.

(iv) If U1 ∈ RVρ1 and U2 ∈ RVρ2, ρ2 < ∞, and limx→∞ U2(x) = ∞, then

U1 ◦ U2 ∈ RVρ1ρ2 .
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(v) Suppose U is nondecreasing, U(∞) = ∞, and U ∈ RVρ, 0 ≤ ρ ≤ ∞. Then

U← ∈ RVρ−1 .

(vi) Suppose U1, U2 are nondecreasing and ρ-varying, 0 < ρ < ∞. Then for 0 ≤
c ≤ ∞,

U1(x) ∼ cU2(x), x → ∞,

iff

U←
1 (x) ∼ c−ρ−1

U←
2 (x), x → ∞.

(vii) If U ∈ RVρ, ρ �= 0, then there exists a function U∗ that is absolutely continuous,
strictly monotone, and

U(x) ∼ U(x)∗, x → ∞.

Proof.

(i) We give the proof for the case 0 < ρ < ∞. Suppose U has Karamata represen-

tation

U(x) = c(x) exp

{∫ x

1

t−1ρ(t)dt

}
,

where c(x) → c > 0 and ρ(t) → ρ. Then

log U(x)/ log x = o(1) +
∫ x

1

t−1ρ(t)dt/

∫ x

1

t−1dt → ρ.

(ii) Using the Karamata representation,

U(tx)/U(t) = (c(tx)/c(t)) exp

{∫ x

1

s−1ρ(ts)ds

}
,

and the result is apparent since we may pick t0 so that t > t0 implies that ρ − ε <

ρ(ts) < ρ + ε for s > 1.

(iii) If c > 0, then from the uniform convergence property in Proposition 2.4,

lim
n→∞

U(bn)

U(an)
= lim

n→∞
U(an(bn/an))

U(an)
= lim

t→∞
U(tc)

U(t)
= cρ .

(iv) Again by uniform convergence, for x > 0,

lim
t→∞

U1(U2(tx))

U1(U2(t))
= lim

t→∞
U1(U2(t)(U2(tx)/U2(t)))

U1(U2(t))

= lim
y→∞

U1(yxρ2)

U1(y)
= xρ2ρ1 .
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(v) Let Ut (x) = U(tx)/U(t), so that if U ∈ RVρ and U is nondecreasing, then

(0 < ρ < ∞)

Ut (x) → xρ, t → ∞,

which implies by Proposition 2.2 that

U←
t (x) → xρ−1

, t → ∞;

that is,

lim
t→∞

U←(xU(t))/t = xρ−1
.

Therefore,

lim
t→∞

U←(xU(U←(t)))/U←(t) = xρ−1
.

This limit holds locally uniformly since monotone functions are converging to

a continuous limit. Now U ◦ U←(t) ∼ t as t → ∞, and if we replace x by

xt/U ◦ U←(t) and use uniform convergence, we get

lim
t→∞

U←(tx)

U←(t)
= lim

t→∞
U←((xt/U ◦ U←(t))U ◦ U←(t))

U←(t)

= lim
t→∞

U←(xU ◦ U←(t))

U←(t)
= xρ−1

,

which makes U← ∈ RVρ−1 .

(vi) If c > 0, 0 < ρ < ∞, we have for x > 0,

lim
t→∞

U1(tx)

U2(t)
= lim

t→∞
U1(tx)U2(tx)

U2(tx)U2(t)
= cxρ .

Inverting, we find for y > 0,

lim
t→∞

U←
1 (yU2(t))/t = (c−1y)ρ

−1
,

and so

lim
t→∞

U←
1 (yU2 ◦ U←

2 (t))/U←
2 (t) = (c−1y)ρ

−1
,

and since U2 ◦ U←
2 (t) ∼ t ,

lim
t→∞

U←
1 (yt)/U←

2 (t) = (c−1y)ρ
−1

.

Set y = 1 to obtain the result.
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(vii) For instance, if U ∈ RVρ , ρ > 0, define

U∗(t) =
∫ t

1

s−1U(s)ds.

Then s−1U(s) ∈ RVρ−1, and by Karamata’s theorem,

U(x)/U∗(x) → ρ.

U∗ is absolutely continuous, and since U(x) → ∞ when ρ > 0, then U∗ is

ultimately strictly increasing. ⊓⊔

2.5 Problems

2.1. Suppose

U(x) = 2 log x + sin(log x), x > e.

Is U(·) regularly varying? If so, what is the index? What is the Karamata representation?

2.2. Give an example of a slowly varying function L(x) such that limx→∞ L(x) does

not exist. (Would the Karamata representation be helpful?)

2.3. Verify that the following functions are slowly varying and give the Karamata rep-

resentation:

1. (1 + x−1) log x; x > e.

2. exp{(log x)α}, x > e, 0 < α < 1.

3. 2 + sin(log log x); x > ee.

4.
∑[x]

k=1 1/k; x ≥ 1.

2.4. Check that the following functions are not regularly varying:

1. 2 + sin(log x); x > e.

2. exp{[log x]}; x > e.

3. 2 + sin x, x > 0.

Regarding item 2, is ∫ x

u=e

exp{[log u]}du

regularly varying?
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2.5 (Variant of Karamata’s theorem). Suppose F is a distribution on R+ and

1 − F(x) ∼ x−αL(x), x → ∞.

1. For η ≥ α, show by integrating by parts or using Fubini’s theorem that

lim
x→∞

∫ x

0 uηF(du)

xη(1 − F(x))
= α

η − α
.

2. For η > 0, show that

lim
x→∞

∫∞
x

u−ηF(du)

x−η(1 − F(x)
= α

α + η
.

2.6 (Variant of Potter’s inequality [255]). Let Z be a nonnegative random variable

with distribution F such that 1−F is regularly varying with index −α, α > 0. If ǫ > 0

is given, there exist constants x0 = x0(ǫ), K = K(ǫ) > 0 such that for any c > 0, we

have the following:

(i) Tail ratio result:

1 − F(x/c)

1 − F(x)
≤
{

(1 + ǫ)cα+ǫ if c ≥ 1, x/c ≥ x0,

(1 + ǫ)cα−ǫ if c < 1, x ≥ x0.

(ii) Expectation result:

E(cZ ∧ x)α+ǫ ≤
{

Kcα+ǫxα+ǫ(1 − F(x)) if c ≥ 1, x/c ≥ x0,

Kcα−ǫxα+ǫ(1 − F(x)) if c < 1, x ≥ x0.

2.7. Suppose {Nn, n ≥ 1} is a sequence of nonnegative random variables such that

Nn

n

P→ N.

Assume a(·) ∈ RVρ and P[N > 0] = 1. Prove that

a(Nn)

a(n)

P→ Nρ .

2.8. Prove that L is slowly varying iff for all x > 1,

lim
t→∞

L(tx)

L(t)
= 1.

If L is monotone, it is enough to check the limit for one positive x �= 1.
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2.9 (Relative stability of sums). Prove the following are equivalent for iid nonnegative

random variables {Xn, n ≥ 1}.

1. There exist constants bn → ∞ such that as n → ∞,

b−1
n

n∑

i=1

Xi
P→ 1.

2. The Laplace transform

φ(λ) := E(e−λX1), λ > 0,

satisfies
1 − φ(τ−1)

τ−1
∈ RV0;

that is,
1 − φ(τ)

τ
=
∫ ∞

0

e−τx
P[X1 > x]dx

is slowly varying at 0.

3. The function

U(x) =
∫ x

0

P [X1 > s]ds

is slowly varying at ∞. (This requires the use of a Tauberian theorem. See Sec-

tion 7.3.3.)

Characterize the constant bn in terms of φ. Verify that bn can also be characterized

as follows: Set H(x) = x/U(x) and then set

bn = H←(n),

where H← is the inverse function of H satisfying H(H←(x)) ∼ x.

2.10 (�-variation). A measurable function U : (0,∞) �→ (0,∞) is called �-varying

(written U ∈ �) [26, 102] if there exists g ∈ RV0 such that for all x > 0,

lim
t→∞

U(tx) − U(t)

g(t)
= log x. (2.32)

Call g the auxiliary function. Sometimes we then write U ∈ �(g).
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(a) Suppose

U(x) =
∫ x

0

u(s)ds, x > 0, u(·) ∈ RV−1 .

Show that U ∈ � [104].

(b) Suppose U is nondecreasing. Show that U ∈ � iff there exists a(n) → ∞ and

n

a(n)
U(a(n)·) v→ L(·),

where L is the measure satisfying L(a, b] = log b/a, 0 < a < b < ∞ [259].

2.11 (More on �-variation [96]).

(a) Show that U ∈ �(g) iff U ◦ r ∈ � for every r ∈ RV1. The auxiliary function of

U ◦ r is g ◦ r .

(b) If (2.32) holds except that the limit is − log x, say, U ∈ �−, and if (2.32) holds,

say, U ∈ �+, show that U ∈ �+(g) iff 1/U ∈ �−. The auxiliary function of 1/U

is g/U2.

(c) If U ∈ �(g) and L0 ∈ RV0, then the product U · L0 ∈ � iff

(
L0(tx)

L0(t)
− 1

)
U(t)

g(t)
→ 0 (t → ∞)

for all x > 0.
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Crash Course II: Weak Convergence; Implications for

Heavy-Tail Analysis

Asymptotic properties of statistics in heavy-tailed analysis are clearly understood with

an interpretation which comes from the modern theory of weak convergence of prob-

ability measures on metric spaces, as originally promoted in [22] and updated in [25].

Additionally, utilizing the power of weak convergence allows for a rather unified treat-

ment of the one-dimensional and higher-dimensional cases of heavy-tailed phenomena.

3.1 Definitions

Let S be a complete, separable metric space with metric d and let S be the Borel σ -

algebra of subsets of S generated by open sets. Suppose (�, A, P) is a probability space.

A random element X in S is a measurable map from such a space (�, A) into (S, S).

With a random variable, a point ω ∈ � is mapped into a real-valued member of R.

With a random element, a point ω ∈ � is mapped into an element of the metric space

S. Some common examples of this paradigm are given in Table 3.1.

Given a sequence {Xn, n ≥ 0} of random elements of S, there is a corresponding

sequence of distributions on S,

Pn = P ◦ X−1
n = P[Xn ∈ ·], n ≥ 0.

Pn is called the distribution of Xn. Then Xn converges weakly to X0 (written Xn ⇒ X0

or Pn ⇒ P0) if whenever f ∈ C(S), the class of bounded, continuous, real-valued

functions on S, we have

Ef (Xn) =
∫

S

f (x)Pn(dx) → Ef (X0) =
∫

S

f (x)P0(dx).

Recall that the definition of weak convergence of random variables in R is given

in terms of one-dimensional distribution functions, which does not generalize nicely to
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Metric space S Random element X is a…

R random variable

R
d random vector

R
∞ random sequence

C[0,∞), the space of real-valued continu-

ous functions on [0,∞)

random process with continuous paths

D[0,∞), the space of real-valued, right-

continuous functions on [0,∞) with finite

left limits existing on (0,∞)

right-continuous random process with jump

discontinuities

Mp(E), the space of point measures on a

nice space E

stochastic point process on E

M+(E), the space of Radon measures on a

nice space E

random measure on E

Table 3.1. Various metric spaces and random elements.

higher dimensions. The definition in terms of integrals of test functions f ∈ C(S) is

very flexible and well defined for any metric space S.

3.2 Basic properties of weak convergence

3.2.1 Portmanteau theorem

The basic Portmanteau theorem [22, p. 11], [25] says the following are equivalent:

Xn ⇒ X0. (3.1)

lim
n→∞

P[Xn ∈ A] = P[X0 ∈ A] ∀A ∈ S such that P[X0 ∈ ∂A] = 0. (3.2)

Here ∂A denotes the boundary of the set A.

lim sup
n→∞

P[Xn ∈ F ] ≤ P[X0 ∈ F ] ∀ closed F ∈ S. (3.3)

lim inf
n→∞

P[Xn ∈ G] ≥ P[X0 ∈ G] ∀ open G ∈ S. (3.4)

Ef (Xn) → Ef (X0) ∀f that are bounded and

uniformly continuous. (3.5)

Although it may seem comfortable to express weak convergence of probability

measures in terms of sets, it is mathematically simplest to rely on integrals with respect

to test functions as given, for instance, in (3.5).
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3.2.2 Skorohod’s theorem

Skorohod’s theorem [23, Proposition 0.2] is a nice way to think about weak convergence

since, for certain purposes, it allows one to replace convergence in distribution with

almost sure convergence. In a theory which relies heavily on continuity, this is a big

advantage. Almost sure convergence, being pointwise, is very well suited to continuity

arguments.

Let {Xn, n ≥ 0} be random elements of the metric space (S, S), and suppose the

domain of each Xn is (�, A, P). Let

([0, 1], B[0, 1], LEB(·))

be the usual probability space on [0, 1], where LEB(·) is Lebesgue measure or length

and B[0, 1] is the Borel subsets of [0, 1]. We call this space the uniform probability

space. Skorohod’s theorem expresses that Xn ⇒ X0 iff there exist random elements

{X∗
n, n ≥ 0} in S defined on the uniform probability space, such that

Xn
d= X∗

n for each n ≥ 0

and

X∗
n → X∗

0 a.s.

The second statement means

LEB

{
t ∈ [0, 1] : lim

n→∞
d(X∗

n(t), X
∗
0(t)) = 0

}
= 1.

Almost sure convergence always implies convergence in distribution, so Skorohod’s

theorem provides a partial converse. To see why almost sure convergence implies weak

convergence is easy. With d(·, ·) as the metric on S, we have d(Xn, X0) → 0 almost

surely, and for any f ∈ C(S), we get by continuity that f (Xn) → f (X0) almost surely.

Since f is bounded, by dominated convergence we get Ef (Xn) → Ef (X0).

Recall that in one dimension, Skorohod’s theorem has an easy proof. If Xn ⇒ X0

and Xn has distribution function Fn, then

Fn → F0, n → ∞.

Thus, by Proposition 2.2, F←
n → F←

0 . Then with U , the identity function on [0, 1] (so

that U is uniformly distributed),

Xn
d= F←

n (U) =: X∗
n, n ≥ 0,
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and

LEB[X∗
n → X∗

0] = LEB{t ∈ [0, 1] : F←
n (t) → F←

0 (t)]
≥ LEB(C(F←

0 )) = 1,

since the set of discontinuities of the monotone function F←
0 (·) is countable and hence

has Lebesgue measure 0.

The power of weak convergence theory comes from the fact that once a basic

convergence result has been proved, many corollaries emerge with little effort, often

using only continuity. Suppose (Si, di), i = 1, 2, are two metric spaces and h : S1 �→ S2

is continuous. If {Xn, n ≥ 0} are random elements in (S1, S1) and Xn ⇒ X0, then

h(Xn) ⇒ h(X0) as random elements in (S2, S2). Justification is straightforward: Let

f2 ∈ C(S2), and we must show that Ef2(h(Xn)) → Ef2(h(X0)). But f2(h(Xn)) =
f2 ◦h(Xn), and since f2 ◦h ∈ C(S1), the result follows from the definition of Xn ⇒ X0

in S1.

If {Xn} are random variables that converge, then letting h(x) = x2 or arctan x or

. . . yields additional convergences for free.

3.2.3 Continuous mapping theorem

The function h used in the previous paragraphs need not be continuous everywhere,

and, in fact, many of the maps h that we will wish to use are definitely not continuous

everywhere. For a function h : S1 �→ S2, define the discontinuity set of h as

D(h) := {s1 ∈ S1 : h is discontinuous at s1}.

Similarly, define

C(h) =: {s1 ∈ S1 : h is continuous at s1}.

Theorem 3.1 (continuous mapping theorem). Let (Si, di), i = 1, 2, be two metric
spaces, and suppose {Xn, n ≥ 0} are random elements of (S1, S1) and Xn ⇒ X0. If
h : S1 �→ S2 satisfies

P[X0 ∈ D(h)] = P[X0 ∈ {s1 ∈ S1 : h is discontinuous at s1}] = 0,

then

h(Xn) ⇒ h(X0)

in S2.
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Proof. For a traditional proof, see [22, p. 30]. This result is an immediate consequence

of Skorohod’s theorem. If Xn ⇒ X0, then there exist almost surely convergent random

elements of S1 defined on the unit interval, denoted X∗
n, such that

X∗
n

d= Xn, n ≥ 0.

Then it follows that

LEB[h(X∗
n) → h(X∗

0)] ≥ LEB[X∗
0 /∈ D(h)].

Since X0
d= X∗

0 , we get

LEB[X∗
0 /∈ D(h)] = P[X0 /∈ D(h)] = 1,

and therefore h(X∗
n) → h(X∗

0) almost surely. Since almost sure convergence implies

convergence in distribution, h(X∗
n) ⇒ h(X∗

0). Since for every n ≥ 0, we have h(Xn)
d=

h(X∗
n), the result follows. ⊓⊔

3.2.4 Subsequences and Prohorov’s theorem

Often to prove weak convergence, subsequence arguments are used and the follow-

ing is necessary. A family � of probability measures on a complete, separable metric

space is relatively compact or sequentially compact if every sequence {Pn} ⊂ � con-

tains a weakly convergent subsequence. Note that the family of all measures can be

metrized so that this notion of relative compactness coincides with the metric defini-

tion and expresses the Bolzano–Weierstrass equivalence of compactness and sequential

compactness. See [25].

Relative compactness is theoretically useful but hard to check in practice, so we

need a workable criterion. Call the family � tight (and by abuse of language we will

refer to the corresponding random elements also as a tight family) if for any ε, there

exists a compact Kε ∈ S such that

P(Kε) > 1 − ε for all P ∈ �.

This is the kind of condition that precludes probability mass from escaping from the

state space. Prohorov’s theorem [25] guarantees that when S is separable and complete,

tightness of � is the same as relative compactness. Tightness can be checked, although

it is seldom easy.
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3.3 Some useful metric spaces

It pays to spend a bit of time remembering details of examples of metric spaces that

will be useful. To standardize notation, we set

F(S) = closed subsets of S,

G(S) = open subsets of S,

K(S) = compact subsets of S.

3.3.1 R
d , finite-dimensional Euclidean space

We set

R
d := {(x1, . . . , xd) : xi ∈ R, i = 1, . . . , d} = R × R × · · · × R.

The metric is defined by

d(x, y) =

√√√√
d∑

i=1

(xi − yi)2

for x, y ∈ R
d . Convergence of a sequence in this space is equivalent to componentwise

convergence.

Define an interval

(a, b] = {x ∈ R
d : ai < xi ≤ bi, i = 1, . . . , d}.

A probability measure P on R
d is determined by its distribution function

F(x) := P(−∞, x],

and a sequence of probability measures {Pn, n ≥ 0} on R
d converges to P0 iff

Fn(x) → F0(x) ∀x ∈ C(F0).

Note that this statement equates convergence in distribution of a sequence of random

vectors with weak convergence of their distribution functions. While this is concrete, it

is seldom useful since multivariate distribution functions are usually awkward to deal

with in practice.

Also, recall K ∈ K(Rd) iff K is closed and bounded.
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3.3.2 R
∞, sequence space

Define

R
∞ := {(x1, x2, . . . ) : xi ∈ R, i ≥ 1} = R × R × · · · .

The metric can be defined by

d(x, y) =
∞∑

i=1

(|xi − yi | ∧ 1)2−i,

for x, y ∈ R
∞. This gives a complete, separable metric space where convergence of a

family of sequences means coordinatewise convergence; that is,

x(n) → x(0) iff xi(n) → xi(0)∀i ≥ 1.

The topology G(R∞) can be generated by basic neighborhoods of the form

Nd(x) =
{

y :
d∨

i=1

|xi − yi | < ǫ

}

as we vary d , the center x, and ǫ.

A set A ⊂ R
∞ is relatively compact iff every one-dimensional section is bounded,

that is, iff for any i ≥ 1,

{xi : x ∈ A} is bounded.

For more details, see [25, 106, 116].

3.3.3 C[0, 1] and C[0, ∞), continuous functions

The metric on C[0, M], the space of real-valued continuous functions with domain

[0, M] is the uniform metric

dM(x(·), y(·)) = sup
0≤t≤M

|x(t) − y(t)| =: ‖x(·) − y(·)‖M ,

and the metric on C[0,∞) is

d(x(·), y(·)) =
∞∑

n=1

dn(x, y) ∧ 1

2n
,

where we interpret dn(x, y) as the C[0, n] distance of x and y restricted to [0, n]. The

metric on C[0,∞) induces the topology of local uniform convergence.
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For C[0, 1] (or C[0, M]), we have that every function is uniformly continuous

since a continuous function on a compact set is always uniformly continuous. Uniform

continuity can be expressed by the modulus of continuity, which for x ∈ C[0, 1] is

defined by

ωx(δ) = sup
|t−s|<δ

|x(t) − x(s)|, 0 < δ < 1.

Then uniform continuity means

lim
δ→0

ωx(δ) = 0.

The Arzelà–Ascoli theorem [106, 280] expresses the fact that a uniformly bounded

equicontinuous family of functions in C[0, 1] has a uniformly convergent subsequence;

that is, this family is relatively compact or has compact closure. Thus a set A ⊂ C[0, 1]
is relatively compact iff

(i) A is uniformly bounded; that is,

sup
0≤t≤1

sup
x∈A

|x(t)| < ∞, (3.6)

and

(ii) A is equicontinuous; that is,

lim
δ↓0

sup
x∈A

ωx(δ) = 0.

Since the functions in a compact family vary in a controlled way, (3.6) can be

replaced by

sup
x∈A

|x(0)| < ∞. (3.7)

Compare this result with the compactness characterization in R
∞, where relative

compactness meant that each one-dimensional section was bounded. Here, a family A of

continuous functions is relatively compact if each one-dimensional section is bounded

in a uniform way and equicontinuity is present.

3.3.4 D[0, 1] and D[0, ∞)

Start by considering D[0, 1], the space of right-continuous functions on [0, 1) that have

finite left limits on (0, 1]. Minor changes allow us to consider D[0, M] for any M > 0.

In the uniform topology, two functions x(·) and y(·) are close if their graphs are

uniformly close. In the Skorohod topology on D[0, 1], we consider x and y close if

after deforming the time scale of one of them, for example, y, the resulting graphs are

close. Consider the following simple example:
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xn(t) = 1[0, 1
2+

1
n
)
(t), x(t) = 1[0, 1

2 )
(t). (3.8)

The uniform distance is always 1, but a time deformation allows us to consider the

functions to be close. (Various metrics and their applications to functions with jumps

are considered in detail in [301].)

Define time deformations

� = {λ : [0, 1] �→ [0, 1] : λ(0) = 0, λ(1) = 1,

λ(·) is continuous, strictly increasing}. (3.9)

Let e(t) ∈ � be the identity transformation and denote the uniform distance between x

and y as

‖x − y‖ := sup
0≤t≤1

|x(t) − y(t)|.

The Skorohod metric d(x, y) between two functions x, y ∈ D[0, 1] is

d(x, y) = inf {ǫ > 0 : ∃λ ∈ � such that ‖λ − e‖ ∨ ‖x − y ◦ λ‖ ≤ ǫ},
= inf

λ∈�
‖λ − e‖ ∨ ‖x − y ◦ λ‖.

Simple consequences of the definitions:

1. Given a sequence {xn} of functions in D[0, 1], we have d(xn, x0) → 0 iff there

exist λn ∈ � and

‖λn − e‖ → 0, ‖xn ◦ λn − x0‖ → 0. (3.10)

2. From the definition, we always have

d(x, y) ≤ ‖x − y‖, x, y ∈ D[0, 1]

since one choice of λ is the identity, but this may not give the infimum. Therefore,

uniform convergence always implies Skorohod convergence. The converse is false;

see (3.8).

3. If d(xn, x0) → 0 for xn ∈ D[0, 1], n ≥ 0, then for all t ∈ C(x0), we have pointwise

convergence,

xn(t) → x0(t).

To see this, suppose (3.10) holds. Then

‖λn − e‖ = ‖λ←
n − e‖ → 0.
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Thus

|xn(t) − x0(t)| ≤ |xn(t) − x0 ◦ λ←
n (t)| + |x0 ◦ λ←

n (t) − x0(t)|
≤ ‖xn ◦ λn − x0‖ + o(1)

since x is continuous at t and λ←
n → e.

4. If d(xn, x0) → 0 and x0 ∈ C[0, 1], then uniform convergence holds.

If (3.10) holds, then as in item 3 we have for each t ∈ [0, 1],

|xn(t) − x0(t)| ≤ ‖xn ◦ λn − x0‖ + ‖x0 − x0 ◦ λn‖ → 0,

and hence

‖xn(t) − x0(t)‖ → 0.

The space D[0, ∞). Denote the restriction of x ∈ D[0,∞) to the interval [0, s] by

rsx(·), where

rsx(t) = x(t), 0 ≤ t ≤ s.

Let ds be the Skorohod metric on D[0, s] and define d∞, the Skorohod metric on

D[0,∞), by

d∞(x, y) =
∫ ∞

0

e−s(ds(rsx, rsy) ∧ 1)ds.

The impact of this is that Skorohod convergence on D[0,∞) reduces to convergence on

finite intervals since d∞(xn, x0) → 0 iff for any s ∈ C(x0), we have ds(rsxn, rsx0) → 0.

For more detail, see [25, 208, 260, 300, 301].

3.3.5 Radon measures and point measures; vague convergence

Spaces of measures

Suppose E is a nice space. The technical meaning of nice is that E should be a locally

compact topological space with countable base; often it is safe to think of E as a finite-

dimensional Euclidean space or R
d . The case d = 1 is important but d > 1 is also

very useful. When it comes time to construct point processes, E will be the space in

which our points live. We assume E comes with a σ -field E , which can be the σ -field

generated by the open sets or, equivalently, the rectangles of E.

How can we model a random distribution of points in E? One way is to specify

random elements {Xn} in E and then to define the corresponding stochastic point process

to be the counting function whose value at the region A ∈ E is the number of random

elements {Xn} that fall in A. This is intuitively appealing but has some technical
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drawbacks, and it is mathematically preferable to focus on counting functions rather

than on points.

A measure μ : E �→ [0,∞] is an assignment of positive numbers to sets in E

such that

1. μ(∅) = 0 and μ(A) ≥ 0 for all A ∈ E ;

2. if {An, n ≥ 1} are mutually disjoint sets in E , then the σ -additivity property holds:

μ

( ∞⋃

i=1

Ai

)
=

∞∑

i=1

μ(Ai).

The measure μ is called Radon if

μ(K) < ∞ ∀K ∈ K(E).

Thus compact sets are known to have finite μ-mass. Knowing where the measure is

required to be finite helps us to keep track of infinities in a useful way and prevents

illegal operations like ∞ − ∞.

Define

M+(E) = {μ : μ is a nonnegative measure on E and μ is Radon}. (3.11)

The space M+(E) can be made into a complete separable metric space under what

is called the vague metric. For now, instead of describing the metric, we will describe

the notion of convergence consistent with the metric.

Convergence concept

The way we defined convergence of probability measures was by means of test functions.

We integrate a test function that is bounded and continuous on the metric space, and if the

resulting sequence of numbers converges, then we have weak convergence. However,

with infinite measures in M+(E), we cannot just integrate a bounded function to get

something finite. However, we know our measures are also Radon, and this suggests

using functions that vanish on complements of compact sets. So define

C+
K(E) = {f : E �→ R+ : f is continuous with compact support}.

For a function to have compact support means that it vanishes off a compact set.

The notion of convergence in M+(E): If μn ∈ M+(E) for n ≥ 0, then μn converges

vaguely to μ0, written μn
v→ μ0, if for all f ∈ C+

K(E), we have

μn(f ) :=
∫

E

f (x)μn(dx) → μ0(f ) :=
∫

E

f (x)μ0(dx)

as n → ∞.
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Example 3.1 (trivial but mildly illuminating example). Suppose E is some finite-

dimensional Euclidean space with metric d(·, ·), and define for x ∈ E and A ∈ E ,

ǫx(A) =
{

1 if x ∈ A,

0 if x ∈ Ac.

Then

μn := ǫxn

v→ μ0 := ǫx0

in M+(E) iff

xn → x0

in the metric on E.

To see this, suppose that xn → x0 and f ∈ C+
K(E). Then

μn(f ) = f (xn) → f (x0) = μ0(f ),

since f is continuous and the points are converging. Conversely, suppose that xn �→ x0.

Define φ : R �→ [0, 1] by

φ(t) =

⎧
⎪⎨
⎪⎩

1 if t < 0,

1 − t if 0 ≤ t ≤ 1,

0 if t > 1.

There exists a subsequence {n′} such that d(xn′, x0) > ǫ. Define

f (y) = φ(d(x0, y)/ǫ),

so that f ∈ C+
K(E). Then

|f (xn′) − f (x0)| = |0 − 1| �→ 0,

and then we have μn(f ) �→ μ0(f ).

Point measures. A point measure m is an element of M+(E) of the form

m =
∑

i

ǫxi
. (3.12)

Built into this definition is the understanding that m(·) is Radon: m(K) < ∞ for

K ∈ K(E). Think of {xi} as the atoms and m as the function that counts how many

atoms fall in a set. The set Mp(E) is the set of all Radon point measures of the form

(3.12). This turns out to be a closed subset of M+(E).
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The vague topology; more on M+(E) (and hence, more on Mp(E))

We can specify open sets, a topology (a system of open sets satisfying closure properties),

and then a notion of “distance’’ in M+(E). Define a basis set to be a subset of M+(E)

of the form

{μ ∈ M+(E) : μ(fi) ∈ (ai, bi), i = 1, . . . , d} , (3.13)

where fi ∈ C+
K(E) and 0 ≤ ai ≤ bi . Now imagine varying the choices of the integer d ,

functions f1, . . . , fd , and endpoints a1, . . . , ad; b1, . . . , bd . Unions of basis sets form

the class of open sets constituting the vague topology.

The topology is metrizable as a complete, separable metric space, and we can put

a metric d(·, ·) on the space, which yields the same open sets. The metric d(·, ·) can

be specified as follows: There exists some sequence of functions fi ∈ C+
K(E) and for

μ1, μ2 ∈ M+(E),

d(μ1, μ2) =
∞∑

i=1

|μ1(fi) − μ2(fi)| ∧ 1

2i
. (3.14)

An interpretation: If μ ∈ M+(E), then μ is determined by our knowledge of

{μ(f ), f ∈ C+
K(E)}. This may seem reasonable, and we will see why this is true shortly

in Lemma 3.1 (p. 52). Think of μ as an object with components {μ(f ), f ∈ C+
K(E)},

where we imagine μ(f ) as the f th component of μ. Then (3.14) indicates, in fact, that

it is enough to have a countable set of components to determine μ, and we can think

about μ being represented as

μ = {μ(fi), i ≥ 1}. (3.15)

So we measure distance in M+(E) as if the objects were in R
∞.

This analogy makes plausible the following characterization of compactness: A

subset M ⊂ M+(E) is vaguely relatively compact iff

sup
μǫM

μ(f ) < ∞ ∀f ∈ C+
K(E). (3.16)

To show compactness implies that (3.16) is easy and helps us digest the concepts.

Suppose M is relatively compact. For f ∈ C+
K(E), define the projection onto the f th

component Tf : M+(E) �→ [0,∞) by

Tf (μ) = μ(f ).

Then Tf is continuous since μn
v→ μ implies that

Tf (μn) = μn(f ) → μ(f ) = Tf (μ).
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For fixed f ∈ C+
K(E), we note that

sup
μ∈M

μ(f ) = sup
μ∈M

Tf (μ) = sup
μ∈M−

Tf (μ)

since the supremum of a continuous function on M must be the same as the supremum

on the closure M−.

If M is relatively compact, then the closure M− is compact. Since Tf is continuous

on M+(E), Tf (M−) is a compact subset of [0,∞). (Continuous images of compact

sets are compact.) Compact sets in [0,∞) are bounded, so

∞ > sup Tf (M−) = sup{Tf (μ), μ ∈ M−} = sup
μ∈M−

{μ(f )}.

Why emphasize integrals of test functions rather than measures of sets? Proofs are

a bit simpler with this formulation and it is easier to capitalize on continuity arguments.

One can always formulate parallel definitions and concepts with sets using a variant of

Urysohn’s lemma. See [116, p. 47], [280, p. 135], [180], [260, p. 141].

Lemma 3.1.

(a) Suppose K ∈ K(E). There exists Kn ∈ K(E), Kn ↓ K , and there exist fn ∈ C+
K(E)

with {fn} nonincreasing such that

1K ≤ fn ≤ 1Kn ↓ 1K . (3.17)

(b) Suppose G ∈ G(E), and G is relatively compact. There exist open, relatively
compact Gn ↑ G and fn ∈ C+

K(E) with {fn} nondecreasing such that

1G ≥ fn ≥ 1Gn ↑ 1G. (3.18)

From Lemma 3.1, comes a Portmanteau theorem.

Theorem 3.2. Let μ, μn ∈ M+(E). The following are equivalent:

(a) μn
v→ μ.

(b) μn(B) → μ(B) for all relatively compact B satisfying μ(∂B) = 0.

(c) For all K ∈ K(E), we have

lim sup
n→∞

μn(K) ≤ μ(K),

and for all G ∈ G(E) that are relatively compact, we have

lim inf
n→∞

μn(G) ≥ μ(G).
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3.4 How to prove weak convergence

We outline some tools useful for proving weak convergence.

3.4.1 Methods in spaces useful for heavy-tail analysis

Here is an outline of what it takes to prove weak convergence in some spaces of imme-

diate interest:

1. In R
d , we can show that random vectors {Xn, n ≥ 0} converge weakly,

Xn ⇒ X0,

by any of the following methods:

(a) Show convergence of the finite-dimensional distributions

P[Xn ≤ x] → P[X0 ≤ x]

at continuity points of the limit. Sometimes this can even be done by showing

convergence of the joint densities when they exist.

(b) Show convergence of the characteristic functions

Eeit ·Xn → Eeit ·X0

for t ∈ R
d .

(c) Reduce the problem to one dimension and prove that

t · Xn ⇒ t · X0,

which works because of item 1(b). This is called the Cramér–Wold device

[24, 25].

(d) If Xn ≥ 0, show that Laplace transforms converge,

Ee−λ·Xn → Ee−λ·X0

for λ > 0. See [135, 302].

2. In R
∞, random sequences {Xn, n ≥ 0} of the form

Xn = (X(1)
n , X(2)

n , . . . )

satisfy
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Xn ⇒ X0

if we show for any d > 0 that

(X(1)
n , X(2)

n , . . . , X(d)
n ) ⇒ (X

(1)
0 , X

(2)
0 , . . . , X

(d)
0 )

in R
d .

3. In M+(E), random measures {ξn(·), n ≥ 0} converge weakly,

ξn ⇒ ξ0,

iff for any family {hj } with hj ∈ C+
K(E), we have

(ξn(hj ), j ≥ 1) ⇒ (ξ0(hj ), j ≥ 1)

in R
∞. It would suffice to prove this for the family of functions alluded to in (3.14)

(p. 51). In practice, one assumes a sequence {hj } and proves R
∞ convergence;

this reduces to proving R
d -convergence by item 2, and often this can be reduced to

one-dimensional convergence.

3.4.2 Donsker’s theorem

The most famous result in the basic theory of weak convergence is Donsker’s theorem,

which informs us that a random walk with suitable time and space scaling looks roughly

like a Brownian motion. There are many results that can be based on Donsker’s theorem

using methods outlined in the next section. For a classical proof of Donsker’s theorem

using convergence of the finite-dimensional distributions plus tightness, see [23, 25].

Theorem 3.3. Suppose {ξj , j ≥ 1} are iid random variables satisfying

E(ξj ) = 0 and Var(ξj ) = 1.

Define

S0 = 0, Sn =
n∑

i=1

ξi, n ≥ 1.

Then in D[0,∞),
S[n·]√

n
⇒ W(·),

where W(·) is a standard Brownian motion, that is, a continuous path process with
stationary independent increments, W(0) = 0, and W(1) has a standard normal dis-
tribution.
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3.5 New convergences from old

Since proving tightness is no picnic, when one has a basic weak convergence result, it

is desirable to milk it for all its worth. The continuous mapping theorem is one way to

accomplish this, but there are other ways to do this as well. The Slutsky or converging
together lemmas are a simple approximation method. The idea is that we want to prove

that {Yn} converges. If we already know that some approximation {Xn} converges and

{Yn} is close to {Xn}, then it should be the case that {Yn} also converges. A second

theme is to build convergence in a product space from convergences in factor spaces.

3.5.1 Slutsky approximations

There are two approximation results.

Theorem 3.4 (Slutsky’s theorem). Suppose {X, Xn, Yn, n ≥ 1} are random elements

of a metric space (S, S) with metric d(·, ·). If Xn ⇒ X and d(Xn, Yn)
P→ 0, then

Yn ⇒ X.

Proof. Let f : S �→ R be real-valued, bounded, and uniformly continuous; this will be

sufficient by (3.5) (p. 40). Define the modulus of continuity

ωδ(f ) = sup
d(x,y)≤δ

|f (x) − f (y)|.

Because f is uniformly continuous,

ωδ(f ) → 0, δ → 0. (3.19)

From the Portmanteau theorem (Section 3.2 (p. 40)), it suffices to show that Ef (Yn) →
Ef (X). To do this, observe that

|Ef (Yn) − Ef (X)|
≤ |Ef (Yn) − Ef (Xn)| + |Ef (Xn) − Ef (X)|
= E|f (Yn) − f (Xn)|1[d(Yn,Xn)≤δ]

+ 2 sup
x

|f (x)|P[d(Yn, Xn) > δ] + o(1),

where the o(1) term results from Xn ⇒ X. The above is bounded by

≤ o(1) + ωδ(f ) + (const)P[d(Yn, Xn) > δ].

The last probability goes to 0 by assumption. Let δ → 0 and use (3.19). ⊓⊔
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Slutsky’s theorem is sometimes called the first converging together result. Here is

the generalization that is especially useful for truncation arguments.

Theorem 3.5 (second converging together theorem). Suppose that {XMn, XM , Yn, X;
n ≥ 1, M ≥ 1} are random elements of the metric space (S, S) and are defined on a
common domain. Assume for each M , as n → ∞,

XMn ⇒ XM ,

and as M → ∞,

XM ⇒ X.

Suppose further that for all ǫ > 0,

lim
M→∞

lim sup
n→∞

P[d(XMn, Yn) > ǫ] = 0. (3.20)

Then as n → ∞, we have
Yn ⇒ X.

Proof. For any bounded, uniformly continuous function f : S �→ R, we must show that

lim
n→∞

Ef (Yn) = Ef (X).

Without loss of generality, we may, for the sake of neatness, suppose that

sup
x∈S

|f (x)| ≤ 1.

Now write

|Ef (Yn) − Ef (X)| ≤ E|f (Yn) − f (XMn)| + |Ef (XMn) − f (XM)|
+ |Ef (XM) − f (X)|,

so that

lim sup
n→∞

|Ef (Yn) − Ef (X)|

≤ lim
M→∞

lim sup
n→∞

E|f (Yn) − f (XMn)| + 0 + 0

≤ lim
M→∞

lim sup
n→∞

E|f (Yn) − f (XMn)|1[d(Yn,XMn)≤ǫ]

+ lim
M→∞

lim sup
n→∞

E|f (Yn) − f (XMn)|1[d(Yn,XMn)>ǫ]

≤ sup{|f (x) − f (y)| : d(x, y) ≤ ǫ}
+ lim

M→∞
lim sup
n→∞

2P[d(Yn, XMn) > ǫ]

≤ ωǫ(f ) + 0 → 0

as ǫ → 0. ⊓⊔
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3.5.2 Combining convergences

For scaling arguments involving random change of time, we need the following simple

result. It is indicative of a body of results that allow conclusion of joint convergence

from existence of marginal convergences.

Proposition 3.1. Let E and E
′ be two complete separable metric spaces, and suppose

{ξn, n ≥ 0} and {ηn, n ≥ 0} are random elements of E and E
′, respectively, defined on

the same probability space. Suppose

ξn ⇒ ξ0

in E and
ηn

P→ e′0,

where e′0 is a fixed point of E
′; that is, e′0 is nonrandom. Then we have jointly in E×E

′,

(ξn, ηn) ⇒ (ξ0, e
′
0)

as n → ∞.

Remark 3.1. Weak convergence on product spaces E × E
′ deserves some comments.

(Full treatment is found, for example, in [25, 301].) If E and E
′ are complete, separable

metric spaces with metrics d and d ′, then E × E
′ is a complete, separable metric space

with metric (for example)

dprod((e1, e
′
1), (e2, e

′
2)) = d(e1, e2) + d ′(e′1, e

′
2).

Proof. Referring to Slutsky’s theorem, Theorem 3.4 (p. 55), set

Xn := (ξn, e
′
0) ∈ E × E

′,

and

Yn := (ξn, ηn) ∈ E × E
′.

Then

dprod(Xn, Yn) = d(ξn, ξn) + d ′(ηn, e
′
0)

P→ 0.

Furthermore, suppose f ∈ C(E × E
′) is bounded and continuous on E × E

′. We have

as n → ∞,

|E(f (Xn)) − E(f (ξ0, e
′
0))| = |E(f (ξn, e

′
0)) − E(f (ξ0, e

′
0))| → 0

since f (·, e′0) ∈ C(E). Thus Xn ⇒ (ξ0, e
′
0) and the desired conclusion follows from

Slutsky’s theorem, Theorem 3.4. ⊓⊔
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3.5.3 Inversion techniques

There are two convenient results for getting new convergences from old when the

converging processes are nondecreasing. We outline these in a form that will be needed.

More detailed results are contained in, for example, [300, 301].

Remark 3.2. Asmall technical point that we intend to overlook: In the next two sections,

we will consider the map

x �→ x←,

where x(·) is a nondecreasing function in D[0,∞). Since inverses were defined to be

left-continuous in Section 2.1.2 (p. 18), we have x← ∈ Dleft[0,∞), the space of left-

continuous functions on [0,∞) with finite right limits on (0,∞). The space Dleft[0,∞)

can be metrized by the Skorohod metric, just as we did with D[0,∞). We will allow

ourselves the luxury of ignoring the difference between D[0,∞) and Dleft[0,∞).

Inverses

Proposition 3.2.

(a) If xn ∈ D[0,∞) is nondecreasing, xn(0) = 0 and xn → x0 in D[0,∞), where x0

is continuous, strictly increasing, then

x←
n → x←

0

locally uniformly and in D[0,∞).

(b) Suppose ξn is a stochastic process with nondecreasing paths in D[0,∞) such that
ξn(0) = 0, and

ξn
P→ ξ0, (3.21)

in D[0,∞). If almost all paths of ξ0 are continuous and strictly increasing, then

ξ←
n

P→ ξ←
0 . (3.22)

The result holds true if
P→ is replaced by ⇒, and then, in fact, we have

(ξn, ξ
←
n ) ⇒ (ξ0, ξ

←
0 ) (3.23)

in D[0,∞) × D[0,∞).
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Proof.

(a) We have

x←
n (t) → x←

0 (t)

pointwise by inversion. This gives monotone functions converging to a continuous

limit and hence convergence is locally uniform. Local uniform convergence implies

convergence in the Skorohod metric.

(b) Let d(·, ·) be the Skorohod metric on D[0,∞) and (3.21) expresses the fact that

d(ξn, ξ0)
P→ 0; (3.24)

we need to show that

d(ξ←
n , ξ←

0 )
P→ 0. (3.25)

We use the subsequence characterization of convergence in probability (see [264,

Section 6.3] or [24]). Given a subsequence {n′′}, it suffices to find a further subse-

quence {n′} ⊂ {n′′} such that

d(ξ←
n′ , ξ←

0 )
a.s.→ 0.

From (3.24), pick {n′} such that

d(ξn′, ξ0)
a.s.→ 0.

Then for almost all ω,

ξn′(t, ω) → ξ0(t, ω) ∀t ≥ 0,

and so by inverting the monotone functions

ξ←
n′ (t, ω) → ξ←

0 (t, ω) ∀t ≥ 0.

Since ξ←
n′ (t, ω) is monotone in t and ξ←

0 (t, ω) is continuous in t , the convergence

is locally uniform in t , as required. ⊓⊔

Vervaat’s lemma

The next little gem is useful when considering asymptotic normality of estimators.

See [289, 290].

Proposition 3.3.

(a) Suppose for each n that xn ∈ D[0,∞) is a nondecreasing function and, furthermore,
that x0 ∈ C[0,∞). If cn → ∞ and
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cn(xn(t) − t) → x0(t) (n → ∞) (3.26)

locally uniformly, then also

cn(x
←
n (t) − t) → −x0(t) (n → ∞) (3.27)

locally uniformly.
(b) Suppose Xn is a sequence of D[0,∞) valued random elements and X0 has contin-

uous paths. Denote the identity by e(t) = t . If Xn has nondecreasing paths and if
cn → ∞, then

cn(Xn − e) ⇒ X0 (n → ∞)

in D[0,∞) implies that

cn(X
←
n − e) ⇒ −X0 (n → ∞)

in D[0,∞). In fact, we also have

cn(Xn − e, X←
n − e) ⇒ (X0,−X0) (3.28)

in D[0,∞) × D[0,∞).

Proof.

(a) Suppose (3.26) holds. Since cn → ∞, we have pointwise convergence xn(t) → t .

Due to Proposition 2.2 (p. 20), x←
n (t) → t , and applying Proposition 2.1 (p. 18),

we conclude that convergence is locally uniform.

For the purpose of getting a contradiction, suppose (3.27) fails. Then there exist

T > 0, ǫ > 0, and n′ → ∞ such that

sup
0≤t≤T

|cn′(x←
n′ (t) − t) + x0(t)| > 2ǫ,

so that there exist {tn′} ⊂ [0, T ] satisfying

|cn′(x←
n′ (tn′) − tn′) + x0(tn′)| > ǫ.

Either

(a) cn′(x←
n′ (tn′) − tn′) + x0(tn′) > ǫ

or

(b) cn′(x←
n′ (tn′) − tn′) + x0(tn′) < −ǫ, that is, cn′(tn′ − x←

n′ (tn′)) − x0(tn′) > ǫ.
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If (b) is true (otherwise, a similar argument applies), examine (3.26) on a subse-

quence {x←
n′ (tn′)} and write the inequality using (2.5) (p. 19) as

cn′(xn′(x←
n′ (tn′)) − x←

n′ (tn′)) − x0(x
←
n′ (tn′))

≥ cn′(tn′ − x←
n′ (tn′)) − x0(tn′) + x0(tn′) − x0(x

←
n′ (tn′))

≥ ǫ + o(1).

This is a contradiction to the local uniform convergence in (3.26).

(b) Since

ξn := cn(Xn − e) ⇒ X0

in D[0,∞), we have from Skorohod’s theorem (see Section 3.2.2 (p. 41)) that there

exist ξ̃ , X̃0 defined on [0, 1] and

ξ̃n
a.s.→ X̃0

in D[0,∞). Define

X̃n := ξ̃n

cn

+ e.

Then X̃n is almost surely nondecreasing since Xn
d= X̃n. Since

cn(X̃n − e)
a.s.→ X̃0,

we get from part (a) that

cn(X̃
←
n − e)

a.s.→ −X̃0,

and, in fact, in D[0,∞) × D[0,∞)

cn(X̃n − e, X̃←
n − e)

a.s.→ (X̃0,−X̃0).

The rest follows since for each n

cn(Xn − e, X←
n − e)

d= cn(X̃n − e, X̃←
n − e)

and

(X0,−X0)
d= (X̃0,−X̃0). ⊓⊔

3.6 Vague convergence and regular variation

Regular variation of distribution tails can be reformulated in terms of vague conver-

gence and with this reformulation, the generalization to higher dimensions is effortless.

Here we discuss the reformulation in one dimension. We will see implications of the

reformulation in Chapter 4.
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Vague convergence on (0, ∞]

Theorem 3.6. Suppose X1 is a nonnegative random variable with distribution function
F(x). Set F̄ = 1 − F . The following are equivalent:

(i) F̄ ∈ RV−α, α > 0.

(ii) There exists a sequence {bn} with bn → ∞ such that

lim
n→∞

nF̄ (bnx) = x−α, x > 0.

(iii) There exists a sequence {bn} with bn → ∞ such that

μn(·) := nP

[
X1

bn

∈ ·
]

v→ να(·) (3.29)

in M+(0,∞], where να(x,∞] = x−α.

Remark 3.3. Here are three remarks on Theorem 3.6.

(a) If any of (i), (ii), or (iii) is true, we may always define

b(t) =
(

1

1 − F

)←
(t) = F←

(
1 − 1

t

)
(3.30)

and set bn = b(n). The quantity b(t) is just a large quantile; it is the high level

such that there is only probability 1/t that X1 exceeds the level. Observe that if (i)

holds, then

F̄ ∈ RV−α implies
1

1 − F
∈ RVα implies b(·) =

(
1

1 − F

)←
(·) ∈ RV1/α .

(b) Note in (iii) that the space E = (0,∞] has 0 excluded and ∞ included. This is

required since we need neighborhoods of∞ to be relatively compact. Vague conver-

gence only controls setwise convergence on relatively compact sets (with no mass

on the boundary). With the usual topology on [0,∞), sets of the form (x,∞) are

not bounded; yet consideration of nF̄ (bnx) = nP [X1/bn > x] requires consider-

ing exactly such sets. We need some topology which makes semi-infinite intervals

compact. More on this later when we discuss the one-point uncompactification in

Section 6.1.3 (p. 170). If it helps, think of (0,∞] as the homeomorphic stretching

of (0, 1] or as the homeomorphic image of [0,∞) under the map x �→ 1/x, which

takes [0,∞) �→ (0,∞].
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(c) Preview of things to come: Note that if {Xj , j ≥ 1} is an iid sequence of nonnegative

random variables with common distribution F , then the measure μn defined in (3.29)

is also the mean measure of the empirical measure

μn(·) = E

(
n∑

i=1

ǫXi/b(n)(·)
)

.

of the scaled sample. The convergence of μn is equivalent to convergence of the

sequence of empirical measures to a limiting Poisson process.

Proof. The equivalence of (i) and (ii) is part (ii) of Proposition 2.3 (p. 21).

(ii) → (iii). Let f ∈ C+
K((0,∞]) and we must show that

μn(f ) := nEf

(
X1

bn

)
=
∫

f (x)nP

[
X1

bn

∈ dx

]
→ να(f ).

Since f has compact support, the support of f is contained in (δ,∞] for some δ > 0.

We know that

μn(x,∞] → x−α = να(x,∞] ∀x > 0. (3.31)

On (δ,∞], define

Pn(·) = μn

μn(δ,∞] (3.32)

so that Pn is a probability measure on (δ,∞]. Then for y ∈ (δ,∞],

Pn(y,∞] → P(y,∞] = y−α

δ−α
.

In R, convergence of distribution functions (or tails) is equivalent to weak convergence,

so {Pn} converges weakly to P . Since f is bounded and continuous on (δ,∞], we get

from weak convergence that

Pn(f ) → P(f );
that is,

μn(f )

μn(δ,∞] → να(f )

δ−α
.

In light of (3.31), this implies

μn(f ) → να(f ),

as required.

(iii) → (ii). Since

μn
v→ να,



64 3 Crash Course II: Weak Convergence; Implications for Heavy-Tail Analysis

we have

μn(x,∞] → να(x,∞] ∀x > 0

since (x,∞] is relatively compact and

να(∂(x,∞]) = να({x}) = 0. ⊓⊔

3.7 Problems

3.1. Suppose for n ≥ 0 that μn ∈ M+(E). Show that μn
v→ μ0 in M+(E) iff for all

f ∈ C+
K(E),

μn(1 − e−f ) → μ0(1 − e−f ).

3.2. Suppose {ξn, n ≥ 0} are random elements of M+([0,∞)) and that

ξn ⇒ ξ0.

If t satisfies

P [ξ0({t}) = 0] = 1,

does

ξn[0, t] ⇒ ξ0[0, t]
in [0,∞)?

Hint: Is the map Tt : M+[0,∞) �→ R+ defined by

Tt (μ) = μ[0, t]

continuous? Almost surely continuous?

3.3. Show that the transformations in (a) and (b) are vaguely continuous:

(a) T1 : Mp(E) × Mp(E) �→ Mp(E) defined by

T1(m1, m2) = m1 + m2.

(b) T2 : M+(E) × (0,∞) �→ M+(E) defined by

T2(μ, λ) = λμ.

Define the scaling function T3 : M+((0,∞]) × (0,∞) �→ M+(0,∞] by

T3(μ, λ) = μ(λ(·)).

Is T3 continuous?
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3.4. Suppose xn, n ≥ 0, are points of E and cn, n ≥ 0, are positive constants. Then

cnǫxn

v→ c0ǫx0

as n → ∞ iff

cn → c0 and xn → x0.

3.5. In M+[0,∞), prove that

1

n

∞∑

i=1

ǫi/n
v→ LEB(·).

3.6. If K ∈ K(E) is compact, prove that

{μ ∈ M+(E) : μ(K) < t}

is open in M+(E).

3.7. Assume that Ei , i = 1, 2, are two nice spaces and that E2 is compact. Suppose for

n ≥ 0 that mn ∈ Mp(E1 × E2) and mn
v→ m0 in Mp(E1 × E2). Conclude that

mn(· × E2)
v→ m0(· × E2)

in Mp(E1).

3.8. Suppose E and E
′ are two nice spaces with E compact and suppose T : E �→ E

′

is continuous on an open subset G of E. Then if m ∈ Mp(E) is a point measure with

support contained in G, the mapping T̂ : Mp(E) �→ Mp(E′) defined by

T̂

(∑

i

ǫxi

)
=
∑

i

ǫT xi

is continuous at m [76].

3.9. Suppose E1, E2, E
′
2 are nice spaces with E2 compact. Assume that T : E2 �→ E

′
2

is continuous on an open subset G2 of E2. If m ∈ Mp(E1 × E2) has the property

m(E1 × Gc
2) = 0, then

T̂ : Mp(E1 × E2) �→ Mp(E1 × E
′
2),

defined by

T̂

(∑

i

ǫ(ti ,xi)

)
=
∑

i

ǫ(ti ,T xi),

is continuous at m [76].
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3.10. (a) Suppose the random vectors Xn and Y n in R
d are independent for each n and

that Xn ⇒ X and Y n ⇒ Y . Show that in R
2d , we have

(Xn, Y n) ⇒ (X, Y ),

where X, Y are independent.

(b) Show also that

Xn + Y n ⇒ X + Y

in R
d .

3.11. Let {Xn} be a sequence of random variables such that EXn = m and Var(Xn) =
σ 2

n > 0 for all n, where σ 2
n → 0 as n → ∞. Define

Zn = σ−1
n (Xn − m),

and let f be a function with nonzero derivative f ′(m) at m.

1. Show that Xn − m ⇒ 0.

2. If

Yn = f (Xn) − f (m)

σnf ′(m)
,

show that Yn − Zn ⇒ 0.

3. Show that if Zn converges in probability or in distribution, then so does Yn.

4. If Sn is binomially distributed with parameters n and p and f ′(p) �= 0, use the

preceding results to determine the asymptotic distribution of f (Sn/n).

3.12. If f is bounded and upper semicontinuous, show that Pn ⇒ P implies that

lim sup
n→∞

Pn(f ) ≤ P(f ).

3.13. Suppose the family of measures � is defined by

� = {ǫx(·), x ∈ A},

where A ⊂ S and

ǫx(B) =
{

1 if x ∈ B,

0 if x ∈ Bc.

Show � is relatively compact iff A− is compact in S.
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3.14. If the sequence of random variables {|Xn|δ} is uniformly integrable for some

δ > 0, then {|Xn|} is tight. In particular, the condition

sup
n

E(|Xn|δ+η) < ∞

for some η > 0 is sufficient for tightness.

3.15 (Second-order regular variation [90, 101, 235]). A function U : (0,∞) �→
(0,∞) is second-order regularly varying with first-order parameter γ > 0 and second-

order parameter ρ ≤ 0 (written U ∈ 2 RV(γ, ρ)) if there exists a function A(t) → 0

which is ultimately of constant sign, and such that

lim
t→∞

U(tx)
U(t)

− xγ

A(t)
= cxγ

(
xρ − 1

ρ

)
, x > 0, ρ ≤ 0, c �= 0. (3.33)

Now suppose F is a distribution on [0,∞), and define

U =
(

1

1 − F

)←
= F←

(
1 − 1

t

)
.

Show using Vervaat’s lemma (Proposition 3.3 (p. 59)) that U ∈ 2 RV(γ, ρ) is equiva-

lent to

lim
t→∞

F̄ (tx)

F̄ (t)
− x−1/γ

A
(

1
1−F(t)

) = c′x−1/γ

(
xρ/γ − 1

ργ

)
, c′ �= 0, x > 0. (3.34)

3.16 (More on second-order regular variation). Verify the second-order regular vari-

ation for the following examples:

1. Suppose

1 − F(x) = x−1/γ + cx−1/δ,

where c > 0, 1/δ > 1/γ ; that is, γ > δ [155, 297].

2. Cauchy:

F ′(x) = 1

π(1 + x2)

or

F(x) = 1

2
+ 1

π
arctan x, x ∈ R.

(Consider working with U = (1/(1 − F))← rather than 1 − F , but feel free to

experiment.)
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3. Stable, for which you will need a series expansion. (See [135], for example.)

4. Log-gamma: An example of a log-gamma distribution is constructed by taking

X1, X2 iid with standard exponential density and computing the distribution of

exp{X1 + X2}. For x > 1,

P [exp{X1 + X2} > x] = P [X1 + X2 > log x]
= exp{− log x} + exp{− log x} log x

= x−1(1 + log x) := 1 − F(x).

For this example, we have α = 1, ρ = 0.

Finally, verify (quickly) that the Pareto is not second-order regularly varying. (This is

more of an observation than anything else.)

3.17 (Even more 2 RV). Let Z1, Z2 be nonnegative iid random variables with common

distribution F satisfying 1 − F ∈ 2 RV(−α, ρ). Then for x > 0,

lim
t→∞

P [Z1∨Z2>tx]
1−F(t)

− 2x−α

A(t)
= 2H(x) − lx−2α,

where H(x) = cx−α
∫ x

1 uρ−1du, x > 0, c > 0, if

lim
t→∞

1 − F(t)

A(t)
= l, |l| < ∞,

and if |l| = ∞,

lim
t→∞

P [Z1∨Z2>tx]
1−F(t)

− 2x−α

1 − F(t)
= −x−2α.

(See [146] for this and harder results.)

3.18. Suppose {Xk, k ≥ 0} is a Markov chain with state space {0, 1, 2, . . . } and transi-

tion matix P = (pij ). Assume that

π ′P = π ′ and p
(n)
ij → πj .

Show in R
∞ that as n → ∞,

{Xk, k ≥ n} ⇒ {X#
k , k ≥ 0},

where {X#
k , k ≥ 0} is a stationary Markov chain with transition matrix P and initial

distribution π .
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3.19 (Second continuous mapping theorem). Suppose S and S
′ are two complete,

separable metric spaces and that we are given measurable maps hn : S �→ S
′. Let D be

the set of x ∈ S such that hn(xn) �→ h(x) for some sequence {xn} converging to x. If

Pn, n ≥ 0, are probability measures on (S, S), and Pn ⇒ P0, then

Pn ◦ h−1
n ⇒ P0 ◦ h−1

0 ,

provided P0(D) = 0 [25, p. 79]. (Hint: Modify the proof of Theorem 3.1 (p. 42).)

3.20 (Combining independent convergences). Let E and E
′, be two complete separa-

ble metric spaces and suppose {ξn, n ≥ 0} and {ηn, n ≥ 0} are random elements of E

and E
′, respectively, defined on the same probability space. Suppose further, for each

n ≥ 1, that ξn and ηn are independent. Assume

ξn ⇒ ξ0

in E and

ηn ⇒ η0

in E
′. Then jointly in E × E

′ we have as n → ∞ that the distribution of (ξn, ηn)

converges to a product measure whose factor distributions are the distributions of ξ0

and η0.

3.21 (The supremum map). Prove that the map

x �→ sup
0≤s≤1

x(s)

is continuous from D[0, 1] �→ R.

3.22 (Impossibility of Skorohod convergence). Suppose that Xn ∈ C[0, 1] and that

X∞ ∈ D[0, 1] \C[0, 1] and that the finite-dimensional distributions of Xn converge to

those of X∞. Argue that it is impossible for Xn ⇒ X∞ in the Skorohod topology.
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Dipping a Toe in the Statistical Water

This material is designed to give immediate payoff for the previous two chapters. We

give some estimators of the tail index, prove consistency, and evaluate the effectiveness

of the estimation. We will return to statistical inference problems on several occasions,

and the present chapter is a first experience with the statistical side of the subject.

In particular, we will return to issues of asymptotic normality of the estimators in

Chapter 9.1.

4.1 Statistical inference for heavy tails: This is a song about α

How does one go about devising and using statistical methods for heavy tails? For

the simplest formulation, suppose that one-dimensional data have been collected, and

that fortune has smiled on us in that the data look stationary and even independent and

identically distributed (iid).

The following are the initial steps in any heavy-tailed statistical analysis of one-

dimensional data that are at least stationary:

• decide that a heavy-tailed model is appropriate, and then

• estimate the tail index α of the marginal distribution.

Various graphical and estimation techniques exist to help accomplish these steps:

QQ estimation and plotting, Hill estimation and plotting, and Pickands estimation,

to name just a few. There are also many techniques applicable from extreme-value

methods [16, 50, 90, 129, 197, 238].

Suppose X, X1, . . . , Xn have the same distribution F(x) and that inference is to

be based on X1, . . . , Xn. There are at least two competing heavy-tailed models and

philosophies—although similar, they differ in important ways:
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• Assume that F has a Pareto right tail from some point on. This means that there

there exist some xl > 0, c > 0, and α > 0 such that

P[X > x] = cx−α, x > xl . (4.1)

So we assume an exact Pareto tail from xl onwards. The form of the tail for x < xl

may or may not be specified in this approach, depending on the purpose of the

analysis.

• Assume that F has a regularly varying right tail with index −α,

P[X > x] = 1 − F(x) = F̄ (x) = x−αL(x), x > 0. (4.2)

For the most part, we will assume the semiparametric assumption (4.2) of regular

variation and focus on the problem of estimating the index of regular variation α. The

Hill estimator is a popular, though troubled, estimator of 1/α and has a voluminous

literature. A partial list of references is [57, 72, 100, 112, 155, 165, 212, 236, 252]. The

Hill estimator is defined as follows: Assume for simplicity that observations X1, . . . , Xn

are nonnegative. For 1 ≤ i ≤ n, write X(i) for the ith largest value of X1, X2, . . . , Xn,

so that

X(1) ≥ X(2) ≥ · · · ≥ X(n).

Then Hill’s estimator of 1/α based on k upper-order statistics is defined as

Hk,n := 1

k

k∑

i=1

log
X(i)

X(k+1)

. (4.3)

The theory is most easily developed for the case in which {Xj , j ≥ 1} is iid,

although applications often do not provide us with independent observations but rather

with dependent, stationary data. So attention needs to be paid to applying the Hill

estimator in non-iid cases.

4.2 Exceedances, thresholds, and the POT method

Why does the Hill estimator make intuitive sense? Suppose, temporarily, that instead

of the semiparametric assumption (4.2), we assume that we have data from the more

precisely specified iid Pareto parametric family

F̄ (x) := P[Xi > x] = x−α, x > 1, α > 0. (4.4)

Thus F is a Pareto distribution with support [1,∞). Then the maximum-likelihood

estimator of 1/α is
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α̂−1 = 1

n

n∑

i=1

log Xi .

This follows readily since {log Xi, 1 ≤ i ≤ n} is a random sample from the distribution

with tail

P[log X1 > x] = P[X1 > ex] = e−αx, x > 0,

which is the exponential distribution tail. The mean of this exponential distribution is

α−1 and the MLE is X̄, which in this case is the given estimator.

But what if (4.4), a rather strong assumption, is implausible? A somewhat weaker

assumption is to assume a Pareto tail from some point onwards, as in (4.1), rather than

the exact model. This leads to the peaks-over-threshold (POT) method discussed in

Section 4.2.3 (p. 77). First, some background.

4.2.1 Exceedances

Consider a precise definition of an exceedance. Given observations x1, . . . , xn and a

threshold u, we call an observation xj an exceedance over u if xj > u. In this case,

xj − u is the excess.

Let X1, . . . , Xn be iid random variables and set

Kn =
n∑

j=1

1(u,∞)(Xj ) = # of exceedances of u in the first n variables.

This is a binomial random variable with success probability p = P[X1 > u].

4.2.2 Exceedance times

Suppose {Xn, n ≥ 1} are iid and u is a threshold. Define the exceedance times
{τj , j ≥ 1} by

τ1 = inf {j ≥ 1 : Xj > u},
τ2 = inf {j > τ1 : Xj > u},
...

...

τr = inf {j > τr−1 : Xj > u}.

The sequence {Xτr , r ≥ 1} are the exceedances.
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Subsequence principle

If {Xn, n ≥ 1} is iid with common distribution F , then {Xτj
, j ≥ 1} is also iid, and

P[Xτj
> x] = F̄ [u](x) := P[X > x|X > u]

=
{

F̄ (x)

F̄ (u)
for x > u,

1 for x ≤ u.
(4.5)

Note that F [u](·) is the conditional distribution of X given that X > u. We sometimes

write informally

Xτj

d= X1|X1 > u

to mean just this. Furthermore,

τ1, τ2 − τ1, τ3 − τ2, . . .

are iid with

P[τ1 > k] = P[X1 ≤ u, . . . , Xk ≤ u] = (F (u))k

and

P[τ1 = k] = P[X1 ≤ u, . . . , Xk−1 ≤ u, Xk > u] = F k−1(u)F̄ (u).

So τ1 has a geometric distribution with

P[τ1 = k] = qk−1p, k = 1, 2, . . . , (4.6)

where

p = F̄ (u), q = 1 − p = F(u).

Where does the distribution of {Xτj
, j ≥ 1} come from? This is a special case of an

old result dating to P. Lévy and is sometimes called the Découpage de Lévy (see [260]

and Problem 4.4). To quickly obtain the flavor of a partial proof, consider Xτ1 . For

x > u,

P[Xτ1 > x] =
∞∑

k=1

P[τ1 = k, Xτ1 > x] =
∞∑

k=1

P[τ1 = k, Xk > x]

=
∞∑

k=1

P[X1 ≤ u, . . . , Xk−1 ≤ u, Xk > u, Xk > x],

and for x > u this is (with q = F(u))
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=
∞∑

k=1

qk−1F̄ (x) = F̄ (x)

1 − q
= F̄ (x)

F̄ (u)
.

The moments of τ1 are easy to compute since τ1 is a geometrically distributed random

variable. For threshold u,

E(τ1) = 1

p
= 1

1 − F(u)
, (4.7)

and likewise,

Var(τ1) = q

p2
= F(u)

(F̄ (u))2
.

4.2.3 Peaks over threshold

Suppose the model (4.1) is assumed in which the distribution tail is Pareto beyond xl .

Consider exceedances over level xl or the peaks over the threshold xl . Then from (4.1)

and (4.5), we have for x > xl ,

P[Xτ1 > x] = F̄ (x)

F̄ (xl)
= cx−α

cx−α
l

=
(

x

xl

)−α

,

so that for y > 1

P

[
Xτ1

xl

> y

]
= y−α, y > 1. (4.8)

Conclusion: Assuming that the distribution of the iid sample satisfies (4.1), that is,

the distribution has a Pareto tail from xl onwards, means that the relative exceedances

{
Xτj

xl

, j ≥ 1

}

are an iid sample from a Pareto distribution with parameter α and support [1,∞).

Assuming the {Xn} are iid, applying the argument of Section 4.2 (p. 74) makes the Hill

estimator the MLE estimator applied to the relative exceedances of level xl = X(k+1),

where we assume k-exceedances of level xl = X(k+1). Relying on exceedances is the

peaks-over-threshold (POT) method.

What is possible if we assume only the regular variation assumption (4.2)? Relative

exceedances of xl now have the distribution tail (cf. (4.8))

P

[
Xτ1

xl

> y

]
= F̄ (xly)

F̄ (xl)
≈ y−α, y > 0, xl large, (4.9)
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which is only approximately a Pareto tail. One way to proceed is to pretend the ap-

proximate equality given by (4.9) is an actual equality. This has the advantage that the

method of maximum-likelihood estimation is available, and this method is a powerful,

off-the-shelf technology. However, there is no obvious way to quantify the errors in-

troduced by a misspecified model if one assumes (4.1) when it is false. The other way

to proceed is to prove asymptotic properties of estimators based on regular variation

assumptions and refinements.

Exceedances and the POT method will be revisited again from the point of view of

point processes.

4.3 The tail empirical measure

The following describes a one-dimensional result, but after converting regular variation

to vague convergence as in Section 3.6, the result is really dimensionless. Considering

the possibility of doing inference with multidimensional data suggests a broader point

of view that is fruitful even in one dimension.

Reviewing the equivalences in Theorem 3.6 (p. 62) suggests that instead of estimat-

ing the parameter α, we could estimate the measure να on (0,∞], which would yield

the required information.

Suppose {Xj , j ≥ 1} is a sequence of random variables with common one-

dimensional marginal distribution F , which has regularly varying tail probabilities

F̄ (x) := 1 − F(x) = P[X1 > x] = x−αL(x), α > 0. (4.10)

For convenience, assume that the variables are nonnegative. A useful scaling quantity

is the quantile function b(t) defined by

b(t) =
(

1

1 − F

)←
(t) = F←

(
1 − 1

t

)
. (4.11)

The tail empirical measure is defined as a random element of M+(0,∞], the space of

nonnegative Radon measures on (0,∞], by

νn := 1

k

n∑

i=1

ǫXi/b( n
k
). (4.12)

The new feature here is the presence of k, which represents the number of upper-

order statistics that we think or guess are relevant for estimating tail probabilities. We

emphasize that the notation νn suppresses the dependence on k but that the k is critical.

The tail empirical measure is used in a variety of inference contexts, but note that, as
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defined, its statistical use needs to overcome the fact that in a data-driven context, where

F is unknown, b(·) is also unknown.

When {Xn} are iid, νn approximates να .

Theorem 4.1. Suppose that {Xj , j ≥ 1} are iid, nonnegative random variables whose
common distribution has a regularly varying tail (4.10), which implies (see Theo-
rem 3.6) that

n

k
P

[
X1

b(n/k)
∈ ·
]

v→ να(·) (4.13)

in M+(0,∞] as n → ∞ and k = k(n) → ∞ with n/k → ∞. Then in M+(0,∞],

νn ⇒ να, (4.14)

where
να(x,∞] = x−α, x > 0, α > 0.

Remark 4.1. More general versions of this result are possible but await further proba-

bility developments in the next chapter. The reason for the odd form of the asymptotics

(n → ∞, k → ∞, n/k → ∞) is that we will estimate b(n/k) by X(k), and the

condition on k = k(n) forces X(k)
P→ ∞. (See Problem 4.3 (p. 115).)

Proof. We use some of the methods outlined in Section 3.4.1 (p. 53). It suffices to show

for a sequence hj ∈ C+
K(0,∞] that in R

∞,

(νn(hj ), j ≥ 1) ⇒ (να(hj ), j ≥ 1) (n → ∞).

Convergence in R
∞ reduces to convergence in R

d for any d, so it suffices to show that

(νn(hj ), 1 ≤ j ≤ d) ⇒ (να(hj ), 1 ≤ j ≤ d) (n → ∞).

To show this, we can show the joint Laplace transforms converge so we assume λj > 0,

j = 1, . . . , d, and show that

Ee
−
∑d

j=1 λj νn(hj ) → Ee
−
∑d

j=1 λj να(hj )
.

However,
d∑

j=1

λjνn(hj ) = νn

⎛
⎝

d∑

j=1

λjhj

⎞
⎠ ;

similarly for να substituted for νn. Since
∑d

j=1 λjhj ∈ C+
K(0,∞], it suffices to show

for any h ∈ C+
K(0,∞] that
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Ee−νn(h) → Ee−να(h), (4.15)

which is a reduction of the original task to a one-dimensional chore. The left side of

(4.15) is

Ee
− 1

k

∑n
j=1 h(Xj /b(n/k)) =

(
Ee−

1
k
h(X1/b(n/k))

)n

=
(

1 −
∫

(0,∞]

(
1 − e−

1
k
h(x)
)

P

[
X1

b(n/k)
∈ dx

])n

=

⎛
⎝1 −

∫
(0,∞]

(
1 − e−

1
k
h(x)
)

nP

[
X1

b(n/k)
∈ dx

]

n

⎞
⎠

n

,

and this converges to e−να(h) since

∫

(0,∞]

(
1 − e−

1
k
h(x)
)

nP

[
X1

b(n/k)
∈ dx

]
≈
∫

(0,∞]
h(x)

n

k
P

[
X1

b(n/k)
∈ dx

]
→ να(h),

where the approximate equivalence in the previous line can be justified by writing upper

and lower bounds resulting from expanding the term (1 − e−
1
k
h(x)) to get upper and

lower bounds. Gory details are provided later in Theorem 5.3 (p. 138). See especially

the material following (5.18) (p. 140). ⊓⊔

4.4 The Hill estimator

Recall the definition of the Hill estimator Hk,n given in (4.3) (p. 74) for estimating 1/α.

Suppose at a minimum that {Xn} is a sequence of random variables having the same

marginal distribution function F and where F̄ := 1 − F is regularly varying at ∞ and

satisfies (4.10). The quantile function (4.11) is b(t). The random measure νn given

in (4.12) is a random element of M+(0,∞] and is assumed to be a vaguely consistent

estimator of the measure να ∈ M+(0,∞], provided n → ∞ and k/n → 0. However,

because b(·) is unknown, b(n/k) will be estimated by a consistent estimator, b̂(n/k),

to be specified. We set

ν̂n =: 1

k

n∑

i=1

ǫ
Xi/b̂(n/k)

. (4.16)

We know from Theorem 4.1 that (4.14) is satisfied if {Xj } is iid with common

distribution F , where 1 − F ∈ RV−α , satisfying (4.10). We emphasize in this section

that the standing assumption is consistency of the tail empirical measure, a point of

view promoted in [252].



4.4 The Hill estimator 81

4.4.1 Random measures and the consistency of the Hill estimator

Consistency of the tail empirical measure given in (4.14) implies consistency of the Hill

estimator for 1/α.

Theorem 4.2. If (4.14) holds, then as n → ∞, k → ∞, and k/n → 0,

Hk,n
P→ 1

α
.

Proof. The proof proceeds by a series of steps.

Step 1. Consistency of the empirical measure given in (4.14) implies

X(k)

b(n/k)

P→ 1 (4.17)

as n → ∞, k → ∞ and k/n → 0. This allows us to consider X(k) as a consistent

estimator of b(n/k).

To see this, write

P

[∣∣∣∣∣
X(k)

b
(

n
k

) − 1

∣∣∣∣∣ > ε

]
= P

[
X(k) > (1 + ε)b

(n
k

)]
+ P

[
X(k) < (1 − ε)b

(n
k

)]

≤ P

[
1

k

n∑

i=1

ǫXi/b( n
k )

(1 + ε,∞] ≥ 1

)

+ P

[
1

k

n∑

i=1

ǫXi/b( n
k )
[1 − ε,∞] < 1

]
.

But (4.14) implies that

1

k

k∑

i=1

ǫXi/b( n
k )

(1 + ε,∞] P→ (1 + ε)−α < 1,

and

1

k

k∑

i=1

ǫXi/b( n
k )
[1 − ε,∞] P→ (1 − ε)−α > 1,

and therefore (4.17) follows. ⊓⊔
Bonus. In fact, more is true. We have that (4.14) implies
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X(⌈kt⌉)
b(n/k)

P→ t−1/α in D(0,∞], (4.18)

where ⌈kt⌉ is the smallest integer greater than or equal to kt . We prove this more

muscular version (4.18) as follows: The map from M+(0,∞] �→ D[0,∞) defined by

μ �→ μ(t−1,∞], t ≥ 0,

is continuous at measures μ such that μ(t,∞] is continuous, strictly decreasing in t .

So we have from (4.14) and the continuous mapping theorem, Theorem 3.1 (p. 42), that

νn(t
−1,∞] P→ tα, t ≥ 0, (4.19)

in D[0,∞). From inversion and Proposition 3.2 (p. 58), we get that inverses also

converge in probability

(νn((·)−1,∞])←(t)
P→ t1/α, t ≥ 0, (4.20)

as functions in Dl[0,∞), where Dl[0,∞) are the real, left-continuous functions on

[0,∞) with finite right limits on (0,∞). We now unpack the inverse and see what

we get:

(νn((·)−1,∞])←(t) = inf {s : νn(s
−1,∞] ≥ t}

= inf

{
s :

n∑

i=1

ǫXi/b(n/k)(s
−1,∞] ≥ kt

}

= inf

{
y−1 :

n∑

i=1

ǫXi/b(n/k)(y,∞] ≥ kt

}

=
(

sup

{
y :

n∑

i=1

ǫXi/b(n/k)(y,∞] ≥ kt

})−1

=
(

X(⌈kt⌉)
b(n/k)

)−1

.

So (
X(⌈kt⌉)
b(n/k)

)−1

⇒ t1/α

in D[0,∞), and therefore we conclude that

X(⌈kt⌉)
b(n/k)

P→ t−1/α
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in Dl(0,∞]. ⊓⊔
Henceforth, set

b̂(n/k) = X(k).

Step 2. The following results from (4.14): In M+(0,∞],

ν̂n
P→ να, (4.21)

as n → ∞, k → ∞, and k/n → 0. This is proved by a scaling argument. Define the

operator

T : M+((0,∞]) × (0,∞) �→ M+((0,∞])
by

T (μ, x)(A) = μ(xA).

From (4.14) and Proposition 3.1 (p. 57), we get joint weak convergence

(
νn,

X(k)

b
(

n
k

)
)

⇒ (να, 1) (4.22)

in M+(0,∞] × (0,∞). Since

ν̂n(·) = νn

(
X(k)

b
(

n
k

) ·
)

= T

(
νn,

X(k)

b
(

n
k

)
)

,

the conclusion will follow by the continuous mapping theorem, provided we prove the

continuity of the operator T at (να, 1). If you are anxious to get on with the story, skip

to Step 3.

In fact, we prove the continuity of the operator at (να, x), where x > 0. Towards

this goal, let μn
v→ να and xn → x, where μn ∈ M+(0,∞], and xn, x ∈ (0,∞). It

suffices to show for any f ∈ C+
K(0,∞] that

∫

(0,∞]
f (t)μn(xndt) =

∫

(0,∞]
f (y/xn)μn(dy) →

∫

(0,∞]
f (y/x)να(dy). (4.23)

Write
∣∣∣∣
∫

(0,∞]
f (y/xn)μn(dy) −

∫

(0,∞]
f (y/x)να(dy)

∣∣∣∣

≤
∣∣∣∣
∫

(0,∞]
f (y/xn)μn(dy) −

∫

(0,∞]
f (y/x)μn(dy)

∣∣∣∣

+
∣∣∣∣
∫

(0,∞]
f (y/x)μn(dy) −

∫

(0,∞]
f (y/x)να(dy)

∣∣∣∣
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≤
∫

(0,∞]
|f (y/xn) − f (y/x)|μn(dy) + o(1),

where the second difference goes to 0 because f ( ·
x
) ∈ C+

K(0,∞]. To see that the

first difference can be made small, note the supports of f ( ·
x
) and f ( ·

xn
) for large n are

contained in [δ0,∞] for some δ0. Since f is continuous with compact support, f is

uniformly continuous on (0,∞]. To get an idea what this means, metrize (0,∞] by the

metric (s, t ∈ (0,∞])
d(s, t) = |s−1 − t−1|;

then uniform continuity means

sup
d(u,v)<δ

|f (u) − f (v)| δ↓0→ 0.

Then

d(y/xn, y/x) = y−1|xn − x| < δ

if y > δ0 and n is large, and therefore for any ǫ > 0, we can make

sup
y≥δ0

|f (y/xn) − f (y/x)| < ǫ.

Since μn(δ0,∞] is bounded, this completes the proof of continuity of the scaling map.

⊓⊔
Step 3. Integrate the tails of the measures against x−1dx. The integral functional is

continuous on [1, M] for any M , and so it is only on [M,∞] that care must be exercised.

By the second converging together theorem, Theorem 3.5 (p. 56), we must show that

lim
M→∞

lim sup
n→∞

P

[∫ ∞

M

ν̂n(x,∞]x−1dx > δ

]
= 0. (4.24)

Recall b̂(n/k) = X(k). Decompose the probability as

P

[∫ ∞

M

ν̂n(x,∞]x−1dx > δ

]

≤ P

[∫ ∞

M

ν̂n(x,∞]x−1dx > δ,
b̂(n/k)

b(n/k)
∈ (1 − η, 1 + η)

]

+ P

[∫ ∞

M

ν̂n(x,∞]x−1dx > δ,
b̂(n/k)

b(n/k)
/∈ (1 − η, 1 + η)

]

= I + II.
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Note that

II ≤ P

[∣∣∣∣∣
b̂(n/k)

b(n/k)
− 1

∣∣∣∣∣ ≥ η

]
→ 0

by (4.17). We have that I is bounded above by

P

[∫ ∞

M

νn((1 − η)x,∞]x−1dx > δ

]
= P

[∫ ∞

M(1−η)

νn(x,∞]x−1dx > δ

]
,

and the above probability has a bound from Markov’s inequality

δ−1E

(∫ ∞

M(1−η)

νn(x,∞]x−1dx

)

= δ−1

∫ ∞

M(1−η)

n

k
P[X1 > b(n/k)x]x−1dx

n→∞→ δ−1

∫ ∞

M(1−η)

x−α−1dx = (const)M−α,

where we applied Karamata’s theorem, Theorem 2.1 (p. 25). This bound goes to 0 as

M → ∞, as required. ⊓⊔
Step 4. We have proved that

∫ ∞

1

ν̂n(x,∞]x−1dx
P→
∫ ∞

1

να(x,∞]x−1dx = 1/α.

So
∫∞

1 ν̂n(x,∞]x−1dx is a consistent estimator of 1/α, and we just need to see that

this is indeed the Hill estimator, as defined in (4.3). This is done as follows:

∫ ∞

1

ν̂n(x,∞]x−1dx =
∫ ∞

1

1

k

n∑

i=1

ǫ
Xi/b̂(n/k)

(x,∞]x−1dx

= 1

k

n∑

i=1

∫ Xi/b̂(n/k)∨1

1

x−1dx,

which is equivalent to Hk,n defined in (4.3). ⊓⊔

4.4.2 The Hill estimator in practice

In practice, the Hill estimator is used as follows: We make the Hill plot of α,

{(k, H−1
k,n), 1 ≤ k ≤ n},
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Fig. 4.1. Time-series and Hill plots for Pareto (left) and call-holding (right) data.

and hope the graph looks stable so you can pick out a value of α.

Sometimes this works beautifully and sometimes the plots are not very revealing.

Consider Figure 4.1, which shows two cases where the procedure works gratifyingly

well. The top row are time-series plots. The top left plot is 4045 simulated observa-

tions from a Pareto distribution with α = 1, and the top right plot is 4045 telephone

call-holding times indexed according to the time of initiation of the call. The range

of the Pareto data is (1.0001, 10206.477), and the range of the call-holding data is

(2288, 11714735). The bottom two plots are Hill plots {(k, H−1
k,n), 1 ≤ k ≤ 4045},

the bottom left plot being for the Pareto sample and the bottom right plot for the call-

holding times. After settling down, both Hill plots are gratifyingly stable and are in

a tight neighborhood. The Hill plot for the Pareto seems to estimate α = 1 correctly,

and the estimate in the call-holding example seems to be between .9 and 1. (So in

this case, not only does the variance not exist but the mean appears to be infinite as

well.) The Hill plots could be modified to include a confidence interval based on the

asymptotic normality of the Hill estimator. McNeil’s Hillplot function does just this.

See the comments on p. 363.

The Hill plot is not always so revealing. Consider Figure 4.2, one of many Hill

Horror Plots. The left plot is for a simulation of size 10,000 from a symmetric α-stable
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Fig. 4.2. A Hill Horror Plot.

distribution with α = 1.7. One would have to be paranormal to discern the correct

answer of 1.7 from the plot. The middle plot is for a simulated iid sample of size

10,000, called perturb, from the distribution tail

1 − F(x) ∼ x−1(log x)10, x → ∞,

so that α = 1. The plot exhibits extreme bias and comes nowhere close to indicating

the correct answer of 1. The problem, of course, is that the Hill estimator is designed for

the Pareto distribution and thus does not know how to interpret information correctly

from the slowly varying factor (log x)10. It merely readjusts its estimate of α based

on this factor rather than identifying the logarithmic perturbation. The third plot is

783 real data called packet, representing interarrival times of packets to a server in a

network. The problem here is that the graph is volatile and it is not easy to decide what

the estimate should be. The sample size may just be too small.

A summary of difficulties when using the Hill estimator include the following:

1. One must get a point estimate from a graph. What value of k should one use?

2. The graph may exhibit considerable volatility and/or the true answer may be hidden

in the graph.
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Fig. 4.3. Lack of location invariance.

3. The Hill estimator has optimality properties only when the underlying distribution

is close to Pareto. If the distribution is far from Pareto, there may be outrageous

error.

4. The Hill estimator is not location invariant. A shift in location does not theoretically

affect the tail index but may throw the Hill estimate way off.

The lack of location invariance means the Hill estimator can be surprisingly sensitive

to changes in location. Figure 4.3 illustrates this. The top plots are time-series plots of

5000 iid Pareto observations where the true α = 1. The two right plots on top have the

Pareto observations shifted by 1 and then 2. The bottom two plots are the corresponding

Hill plots. Shifting by larger and larger amounts soon produces a completely useless plot.

For point 1, several previous studies advocate choosing k to minimize the asymptotic

mean squared error of Hill’s estimator [155, 235]. In certain cases, the asymptotic

form of this optimal k can be expressed, but such a form requires one to know the

distribution rather explicitly, and it is not always clear how to obtain finite sample

information from an asymptotic formula. There are adaptive methods and bootstrap

techniques [66, 108, 145] that try to overcome these problems; it remains to be seen if
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they will enter the applied research community’s toolbox. Bootstrapping heavy-tailed

systems presents special problems [9, 10, 79, 88, 133, 189, 313]. See also Section 6.4.

For point 2, there are simple smoothing techniques that can help to overcome the

volatility of the plot; plotting on a different scale can sometimes overcome the difficulty

associated with the stable example. These techniques are outlined next in Section 4.4.3.

4.4.3 Variants of the Hill plot

Some simple techniques of smoothing and rescaling of the Hill plot sometimes are

revealing.

The smooHill plot

The Hill plot often exhibits extreme volatility, which makes finding a stable regime in

the plot more guesswork than science. To counteract this, Resnick and Stărică [252]

developed a smoothing technique yielding the smooHill plot: Pick an integer r (usually

2 or 3) and define

smooHk,n = 1

(r − 1)k

rk∑

j=k+1

Hj,n. (4.25)

This is also a consistent estimate of 1/α; see [252]. To see this is relatively straight-

forward (modulo some details). We modify the proof of the consistency of the Hill

estimator given in Theorem 4.2 (p. 81). In place of (4.22), we use (4.18) coupled with

Theorem 4.1 (p. 79) via Proposition 3.1 (p. 57) to get

(
1

k

n∑

i=1

ǫXi/b(n/k),
X(⌈kt⌉)
b(n/k)

)
⇒ (να, t−1/α) (4.26)

in M+(0,∞] × D(0,∞]. Follow the pattern of Theorem 4.2: Compose the two com-

ponents in (4.26), evaluate the resulting measures on (x,∞], integrate this function

against dx
x

(that this is continuous in the right topology needs a verification), and we get

1

k

n∑

i=1

log

(
Xi

X(⌈kt⌉)
∧ 1

)
= ⌈kt⌉

k
H⌈kt⌉,n ⇒ t

α

in D[0,∞). Dividing both sides by t leads to

H⌈kt⌉,n ⇒ 1

α

in D(0,∞). Therefore, for any integer r ,
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1

r − 1

∫ r

1

H⌈kt⌉,ndt = 1

k(r − 1)

∫ kr

k

H⌈s⌉,nds

= 1

k(r − 1)

kr∑

j=k+1

Hj,n

⇒ 1

α
.

The stochastic process (H⌈kt⌉,n, t > 0) was named the Hill process, studied first

in [211] and used in [252].

Changing the scale, Alt plotting

As an alternative to the Hill plot, it is sometimes useful to display the information

provided by the Hill or smooHill estimation as

{(θ, H−1
⌈nθ ⌉,n), 0 ≤ θ ≤ 1},

where we write ⌈y⌉ for the smallest integer greater than or equal to y ≥ 0. We call this

plot the alternative Hill plot, abbreviated altHill. The alternative display is sometimes

revealing since the initial order statistics are shown more clearly and cover a bigger

portion of the displayed space. Unless the distribution is Pareto, the altHill plot spends

more of the display space in a small neighborhood of α than in the conventional Hill

plot [110].

Figure 4.4 compares several Hill plots for 5000 observations from a stable distribu-

tion with α = 1.7. Plotting on the usual scale is not revealing and the alt plot is more

informative.

A Hill plot was given (p. 5) for file lengths downloaded in BU web sessions in

November 1994 in a particular lab under study. The Danish fire insurance data were

introduced on p. 13. In Figure 4.5, we have a Hill, an altHill, and a smooHill plot of the

Danish data. The altHill plot is not advantageous, probably because the data are well

modeled by Pareto.

4.5 Alternative estimators I: The Pickands estimator

There are a myriad of other estimators for α. We particularly mention the moment

estimator of [85–87, 90, 251], the Pickands estimator [85, 112, 235, 236], and the QQ

estimator [17, 191]. Here we focus on the Pickands and QQ estimators. Interestingly,

a study by de Haan and Peng [93, 235] shows that from the point of view of asymptotic

variance, no one estimator dominates the others in the group studied. So it is difficult to



4.5 Alternative estimators I: The Pickands estimator 91

0 1000 2000 3000 4000 5000

0
.5

1
.5

Hill plot

number of order statistics

H
il

l 
es

ti
m

at
e 

o
f 

al
p
h
a

0.2 0.4 0.6 0.8 1.0

0
.5

1
.5

altHill

theta

H
il

l 
es

ti
m

at
e 

o
f 

al
p
h
a

Fig. 4.4. Hill and altHill plot for Stable, α = 1.7.

imagine one estimator being preferred in all contexts; a sensible practice is not to restrict

analysis to one procedure but rather to check that several procedures point toward the

same conclusion.

4.5.1 Extreme-value theory

The extreme-value distributions can be defined as a one-parameter family of types

Gγ (x) = exp{−(1 + γ x)−1/γ }, γ ∈ R, 1 + γ x > 0. (4.27)

Define

E
0
γ = {x : 1 + γ x > 0}

and observe that

E
0
γ =

⎧
⎪⎪⎨
⎪⎪⎩

(
− 1

γ
,∞
)

if γ > 0,

(−∞,∞) if γ = 0,(
−∞, 1

|γ |

)
if γ < 0.

The heavy-tailed case corresponds to γ > 0, and then γ = 1/α. For γ = 0, we interpret

− log Gγ (x) = e−x . See [16, 50, 102, 129, 238, 260].
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Fig. 4.5. Hill, altHill, and smooHill plots for Danish data.

Suppose {Zn, n ≥ 1} is iid with common distribution F . The distribution F is in

the domain of attraction of the extreme-value distribution Gγ , written F ∈ D(Gγ ), if

there exist a(n) > 0, b(n) ∈ R such that

P

[∨n
i=1 Zi − b(n)

a(n)
≤ x

]
→ Gγ (x) (4.28)

for x ∈ Eγ as n → ∞. Equivalently, we have as n → ∞ that

nP[Z1 > a(n)x + b(n)] → − log Gγ (x) (4.29)

for x ∈ Eγ .

Note that (4.29) is a vague convergence statement about mean measures converging

and mimicking the proof of Theorem 4.1 (p. 79) yields

1

k

n∑

i=1

ǫZi−b(n/k)

a(n/k)

⇒ ν(γ ) (4.30)
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on M+(Eγ ), where Eγ is E
0
γ plus the right endpoint of the interval and ν(γ )(x,∞] =

− log Gγ (x). Repeating the procedure that yielded (4.18) gives the equivalent statement

Z(⌈k/y⌉) − b(n/k)

a(n/k)
→ yγ − 1

γ
, 0 ≤ y < ∞, (4.31)

in D[0,∞).

Another interpretation of (4.29) is that it gives the limit distribution of excesses,

where an excess is the exceedance minus the threshold. We may always take the

sequence bn as the quantile function of F , the common distribution of {Zn}, so that

P[Z1 > bn] ∼ 1/n. Then we have for x > 0,

nP[Z1 > anx + bn] ∼
P[Z1 − bn > anx]

P[Z1 > bn]
= P[Z1 − bn > anx|Z1 > bn].

Referring to (4.5) (p. 76), this is

= P[Zτ1 − bn > anx] → − log Gγ (x).

For a large threshold, the excess (the exceedance minus the threshold) has a limit

distribution whose tail is − log Gγ (x) for values of x such that 0 ≤ − log Gγ (x) ≤ 1.

The class of limit distributions is called generalized Pareto. The interpretation is that

for a large threshold u,

P[Zτ1 − u > x] ≈ − log Gγ (βx) (4.32)

for a scale parameter β. The POT method assumes the distribution of the excess is

exactly the limit distribution and then performs maximum-likelihood estimation on the

two parameters (γ, β) to fit the distribution.

4.5.2 The Pickands estimator

The Pickands estimator [85, 112, 235, 236], like the moment estimator [85–87, 90, 251]

discussed briefly inAppendix 11.1.3 (p. 369), is a semiparametric estimator of γ derived

under the sole condition that F ∈ D(Gγ ). The Pickands estimator of γ uses differences

of quantiles and is based on using three upper-order statistics, Z(k), Z(2k), Z(4k), from

a sample of size n. The estimator is

γ̂
(Pickands)
k,n =

(
1

log 2

)
log

(
Z(k) − Z(2k)

Z(2k) − Z(4k)

)
. (4.33)

Properties of the Pickands estimator include the following:
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1. The Pickands estimator is a consistent estimator for γ ∈ R and does not require the

assumption γ > 0, as does the Hill estimator. The consistency holds as n → ∞,

k → ∞, and n/k → ∞.

We can check consistency easily using (4.31). We have

Z(k) − Z(2k)

Z(2k) − Z(4k)

=
(Z(k)−b(n/k))

a(n/k)
− (Z(2k)−b(n/k))

a(n/k)

(Z(2k)−b(n/k))

a(n/k)
− (Z(4k)−b(n/k))

a(n/k)

P→

⎛
⎜⎝

0 − γ−1
((

1
2

)γ
− 1
)

γ−1
((

1
2

)γ
− 1
)
− γ−1

((
1
4

)γ
− 1
)

⎞
⎟⎠

= 2γ .

Taking logarithms and dividing by log 2 gives convergence in probability of the

estimator to γ .

2. Usually (under second-order regular variation conditions, which are difficult to

check in practice), if k → ∞ and k/n → 0, we have asymptotic normality,

√
k(γ̂

(Pickands)
k,n − γ ) ⇒ N(0, v(γ )),

where

v(γ ) = γ 2(22γ+1 + 1)

(2(2γ − 1) log 2)2
. (4.34)

More on asymptotic normality later in Chapter 9.1.

3. Unlike the Hill estimator, the Pickands estimator is location invariant. It is also

scale invariant.

4. Good plots may require a large sample of the order of several thousand.

5. In terms of asymptotic mean squared error, the Pickands estimator sometimes is

preferred over the moment estimator and Hill estimator (where comparable because

you know γ > 0) and sometimes not. See [93, 235].

6. One can make a Pickands plot consisting of the points {(k, γ̂
(Pickands)
k,n ), 1 ≤ k <

n/4}. Choice of k and volatility of the plots are issues as they were with the Hill

and moments estimators.

7. The Pickands plot often does a good job of warning that a heavy-tail model is

inappropriate by indicating γ ≤ 0. In circumstances where this is the case, the Hill

plot is frequently uninformative.
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Fig. 4.6. Pickands plots of 10,000 simulated Pareto random variables with α = 1 (left) and with

the same data but multiplied by 50 and shifted by 50.
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Fig. 4.7. Pickands plots of the Danish data (left), where the estimate of γ ≈ 0.71 was obtained

from other methods.

Consider Figure 4.6, which is the Pickands estimator applied to 10,000 simulated

Pareto random variables with α = 1. The Pickands plot on the left picks up the correct

value of α = 1 quite well. In contrast to the degradation in the Hill plots when the data

were shifted (recall Figure 4.3 (p. 88)), the Pickands plot is unaffected.

Earlier (see Figure 4.5 (p. 92)), we found α ≈ 1.4 for the Danish data. The Pickands

plot in Figure 4.7 is not very informative even after accounting for the relation between

α and γ and taking reciprocals 1/1.4 = 0.71.
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Fig. 4.8. Pickands plot (left) for 1000 iid unit exponential variables vs. the Hill plot (right).
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Fig. 4.9. Pickands plot (left) for 5000 iid variables from a t-density with 4 degrees of freedom

vs. the Hill plot (right).

To illustrate why the Pickands plot is useful in deciding on the appropriateness of

a heavy-tail model, consider Figure 4.8. On the left is the Pickands plot for 1000 unit

exponential variates, which does a reasonable job of identifying a value of γ near 0.

The Hill plot on the right is not informative.

The last set of plots in Figure 4.9 compares the Pickands plot and the Hill plot for

5000 realizations of the t-density with 4 degrees of freedom. Here α = 4, so γ = 0.25.

The Pickands plot seems reasonable, but the Hill plot is uninformative.
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Fig. 4.10. altHill plot of 5000 t4 variates.

However, the altHill plot is more stable but not particularly close to the true value.

4.6 Alternative estimators II: QQ plotting and the QQ estimator

QQ plotting and similar techniques are diagnostic and exploratory methods to graphi-

cally assess the goodness-of-fit of a model for data. Suppose we have data x1, . . . , xn

that could plausibly be a random sample from some distribution F(x); that is, we be-

lieve there are iid random variables X1, . . . , Xn with common distribution F(x) and

x1, . . . , xn is a realization of X1, . . . , Xn. If we are interested in obtaining such things

as high quantile estimates, as is done, for example, in value-at-risk estimates, we must

find F(x) which provides a good fit in the tail.

4.6.1 Quantile-quantile or QQ plots: Preliminaries

Suppose that we have a provisional or null hypothesis that the true distribution function

producing the data is F(x). The QQ plot provides a somewhat informal but convenient

way to test this hypothesis. The method is empirical process based, and frequently it is

convenient to have notation for order statistics indexed from smallest to largest as well

as the reverse already introduced. Recall that for a sample X1, . . . , Xn, we set

X(1) ≥ X(2) ≥ · · · ≥ X(n)

for the order statistics indexed largest to smallest. For the indexing from smallest to

largest, we write
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X1:n ≤ X2:n ≤ · · · ≤ Xn:n,

so that X(i) = Xn−i+1:n. For the empirical distribution of the sample X1, . . . , Xn,

we write

F̂n(x) = 1

n

n∑

i=1

1[Xi≤x] =
1

n

n∑

i=1

ǫXi
((−∞, x]).

4.6.2 QQ plots: The method

Plot the theoretical quantiles of F vs. the sample quantiles. If the null hypothesis is true,

then the result should fall roughly on the straight line {(x, x) : x > 0}. More precisely,

we plot

{(
F←
(

i

n + 1

)
, F̂←

n

(
i

n + 1

))
, 1 ≤ i ≤ n

}

=
{(

F←
(

i

n + 1

)
, Xi:n

)
, 1 ≤ i ≤ n

}
. (4.35)

If the plot looks roughly linear, there is no evidence against the null hypothesis.

The rationale: We know the empirical distribution F̂n(x) ≈ F(x) and hope that

F̂←
n (q) ≈ F←(q).

Some potential problems with this procedure:

1. For certain common distributions, for example, the normal or gamma, the distribu-

tion is not in a closed, convenient form, and hence the inverse or quantile function

F←(q) is not in closed form either. Statistics packages typically provide routines

to do QQ plots for common densities such as the normal.

2. When does the phrase “roughly linear’’become obvious and clear? When in doubt, a

common technique for trying to assess variability is as follows: Make your QQ plot.

Then simulate 100 data sets from the null distribution F . Make each simulation run

the size of the original sample. Then superimpose (in a different color) on your QQ

plot the 100 QQ plots corresponding to the 100 simulated data sets. The 100 QQ

plots of the simulated data sets will form a band around the QQ plot of the real data,

and if the real QQ plot does not stick out of the band, you are within acceptable

variability.

Remark 4.2. Note that

F̂←
n

(
i

n + 1

)
= Xi:n, 1 ≤ i ≤ n.
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The reason for this is that F̂←
n (q) is left-continuous and we know that

F̂←
n (q) = Xi:n for

i − 1

n
< q ≤ i

n
.

Since F̂←
n ( i

n
) = Xi:n, we need only check that

i

n
− i

n + 1
<

1

n
, (4.36)

since F̂←
n (·) is constant on ( i−1

n
, i

n
].

A modest point: Why are we plotting the points in (4.35) and not the points

{(
F←
(

i

n

)
, F̂←

n

(
i

n

))
, 1 ≤ i ≤ n

}
?

The reason is partly historical, stemming from the following argument: Suppose

U1, . . . , Un are iid with common U(0, 1) distribution. Sort the random variables to

get the order statistics

U1:n ≤ U2:n ≤ · · · ≤ Un:n.

Set U0:n = 0 and Un+1,n = 1. Call the differences

Ui+1:n − Ui:n, i = 0, 1, . . . , n,

the spacings; by symmetry the spacings should be identically distributed and hence

have the same mean. Since

n∑

i=0

(Ui+1:n − Ui:n) = 1,

we have

1 = E

(
n∑

i=0

(Ui+1:n − Ui:n)

)
= (n + 1)E(Ui+1:n − Ui:n),

and hence the expected spacing is

E(Ui+1:n − Ui:n) = 1

n + 1
.

Therefore,

E(Ui:n) = i

n + 1

since it is a sum of i consecutive spacings. We hope that
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{(
i

n + 1
, Ui:n

)
, 1 ≤ i ≤ n

}

will be roughly linear and fall on the line {(x, x), 0 ≤ x ≤ 1}. (This hope is dependent

on i/(n + 1) = E(Ui:n) ≈ Ui:n.)

Recall that if X1, . . . , Xn are iid with distribution F(x), then Xi
d= F←(Ui), which

means that {(
F←
(

i

n + 1

)
, F←(Ui:n)

)
, 1 ≤ i ≤ n

}

should be roughly linear and so should
{(

F←
(

i

n + 1

)
, Xi:n

)
, 1 ≤ i ≤ n

}
.

4.6.3 QQ plots and location-scale families

Suppose we (null) hypothesize that X1, . . . , Xn are iid from the location-scale family

Fμ,σ (x) = F0,1

(
x − μ

σ

)
, (4.37)

where F0,1 is specified. An example is that F0,1 is the standard normal. Invert (4.37)

to get

F←
μ,σ (q) = μ + σF←

0,1(q).

The analysis using QQ plots can be adapted to provide estimates of μ and σ . Here is

how this is done: Since we assume that F0,1(x) is known, we can plot
{(

F←
0,1

(
i

n + 1

)
, Xi:n

)
, 1 ≤ i ≤ n

}
. (4.38)

If the null hypothesis is true,
{(

μ + σF←
0,1

(
i

n + 1

)
, Xi:n

)
, 1 ≤ i ≤ n

}

should be on the line with angle 45 degrees {(x, x), x > 0}. Thus

μ + σF←
0,1

(
i

n + 1

)
≈ Xi:n,

and therefore

F←
0,1

(
i

n + 1

)
≈ Xi:n − μ

σ
.

So the points plotted in (4.38) should be on the line {( z−μ
σ

, z), z > 0} or, equivalently,

the line {(x, σx +μ), x > 0}, and the slope of the fitted (by, for instance, least squares)

line is an estimator of σ and the intercept is an estimate of μ.
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4.6.4 Adaptation to the heavy-tailed case: Are the data heavy tailed?

Suppose that the null hypothesis is that for some xl > 0 and random variable X, the

distribution of X satisfies for some xl > 0 and α > 0,

P[X > x] =
(

x

xl

)−α

, x > xl . (4.39)

Comparing this with (4.1) (p. 74) and referring to (4.5) (p. 76), we see that (4.1) implies

that exceedances above threshold xl have Pareto distribution (4.39) with left endpoint xl .

Thus this assumption (4.39) is consistent with the POT method, where the approximate

distribution of the large values relative to a threshold is replaced by the limiting Pareto

distribution.

Assumption (4.39) means that X/xl is Pareto with left endpoint 1 and shape param-

eter α, and for y > 0,

P

[
α log

X

xl

> y

]
= P

[
X

xl

> ey/α

]
= e−y .

So α log X
xl

is exponential with parameter 1. Therefore,

P [log X > y] = P

[
log X − log xl

α−1
>

y − log xl

α−1

]

= P

[
α log

X

xl

>
y − log xl

α−1

]

= e−(y−log xl)/α
−1).

If W1(x) = 1 − e−x , x > 0, then

P [log X > y] = W̄1

(
y − log xl

α−1

)
,

which is a location-scale family with location parameter μ = log xl and scale parameter

σ = α−1.

What are the quantiles of W1? Solve

W1(x) = 1 − e−x = q,

to get

W←
1 (q) = − log(1 − q).

We conclude that we should plot



102 4 Dipping a Toe in the Statistical Water

{(
− log

(
1 − i

n + 1

)
, log Xi:n

)
, 1 ≤ i ≤ n

}
, (4.40)

and if the null hypothesis (4.39) is correct, or at least approximately correct, the plot

should be roughly linear with slope α−1 and intercept log xl .

Example 4.1 (Internet response data). This is an Internet measurement study that mea-

sured the number of bytes per request transferred from a web server to a browser in

response to a request from the browser. The study was conducted around 1997 at

the University of North Carolina Computer Science Department under the guidance of

Donald Smith. The data were presented with the question, Are the data heavy tailed?

Some typical diagnostics like the Hill estimator fail miserably for these data but the QQ

method works pretty well. In Figure 4.11, we give the time-series plot of the data on the

left and the QQ plot of the log transformed data matched against exponential quantiles

on the right. Clearly, we should be looking at exceedances, as not all the data fall on

the line.

The slope of the fitted line to the QQ plot of the exceedances gives an estimate of

α−1 (see the discussion in Sections 11.1.2 (p. 366) and 4.6.6 (p. 106)); the estimate

is sensitive to the choice of exceedance threshold. Instead of looking at exceedance

thresholds, we can choose a number of upper-order statistics and only use those to

fit the line. This is demonstrated in the three plots in Figure 4.12. The data set has

131,943 data points. We show the plots obtained by choosing 10,000, 20,000, and

50,000 upper-order statistics.

Just for comparison, Figure 4.13 presents the Hill and the altHill plots for these

data. The plots are not stunningly easy to interpret, although after comparison with the

QQ plots, one is increasingly confident of an estimate of α ∈ (1, 2). Interestingly, the

Pickands plot Figure 4.14 for these data looks decent.

4.6.5 Additional remarks and related plots

Here are some additional remarks and notes.

Diagnosing deviations from the line in the QQ plot

If the hypothesized distribution Fhyp(x) is far from the true underlying distribution

Ftrue(x), then the QQ plot will simply look awful. If the QQ plot is not very linear, the

deviations from linearity can sometimes indicate what the problem might be.

What if points of the QQ plot are below the line y = x, for example, at the right

end. Then for q near 1, the points (F←
hyp(q), F̂←

n (q)) are below the diagonal line. This

means that
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Fig. 4.11. Time-series plot of the Internet response data (left); the vertical axis units are millions

and the horizontal axis units are 10,000s. QQ plot for all Internet response data (right).

Fig. 4.12. Fitting the QQ line to (a) 10K, (b) 20K, and (c) 50K upper-order statistics.
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Fig. 4.13. Hill and altHill plots for Internet response data.
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Fig. 4.14. Pickands plot for Internet response data.

F←
hyp(q) > F̂←

n (q) for q near 1,

or

Fhyp(x) < F̂n(x) for large x,

or

1 − Fhyp(x) > 1 − F̂n(x) for large x.

Since, presumably, 1 − F̂n(x) ≈ 1 − Ftrue(x), this means that the hypothesized tail is

heavier than the true tail.

A related plot: The PP plot

This is a plot of the points

{(
i

n + 1
, Fhyp(Xi:n)

)
, i = 1, . . . , n

}
.

This is obviously a variant of the QQ plot.

Another variant: The tail plot for heavy tails

Essentially this is a plot of the tail empirical distribution function in log–log scale.

Suppose that
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Fig. 4.15. Danish data: Tail empirical plot (left) and QQ plot (right).

P [X > x] ∼ x−α, x > 0, α > 0.

Then

− log P [X > x] ∼ α log x,

so plotting

{(log x,− log P [X > x]), x > 0}
should, at least for large x, give a line of slope α. Since we are not sure about the form

of the distribution of X, plot instead

{(log x,− log(1 − F̂n(x)), x > 0}

or

{(log Xi:n,− log(1 − F̂n(Xi:n)), i = 1, . . . , n}
or {(

log Xi:n,− log

(
1 − i

n

))
, i = 1, . . . , n

}
.

We see this is not much different from the QQ plot. It is customary to plot without the

minus sign in the second component and talk piously about plotting in log–log scale.

The McNeil function emplot in the Splus add-on WINEVIS or the R package EVIR

performs this neatly.

Example 4.2 (Danish data).As in Section 1.3.3 (p. 13), we consider the 2167 Danish fire

claim exceedances. The plot of {x, 1 − F̂n(x), x > 0} looks terrific. For comparison,

the QQ plot with the least-squares line is also given in Figure 4.15. The estimate of α is

1.39, so the mean of the fitted distribution will be finite but the second moment infinite.
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Fig. 4.16. Danish data: Hill and altHill plots.

For comparison, Figure 4.16 gives the Hill and altHill plot of the Danish data. Note

that the alt plot is not particularly useful here, probably because the data are actually

from a distribution that is either Pareto or close to Pareto.

Recall for comparison that the Pickands plot looked poor for the Danish data. See

Figure 4.7 (p. 95).

4.6.6 The QQ estimator

In this section, we formalize the idea that the slope of the least-squares line fitted to

the QQ plot is an estimate of 1/α. We proceed under the regular variation assumption

(4.2), rather than (4.39) or (4.1). This means that we will not put the least-squares line

through all the pairs in (4.40), but only through pairs corresponding to k upper-order

statistics.

If {(xi, yi), 1 ≤ i ≤ n} are n points in the plane, a standard textbook calculation

yields that the slope of the least-squares line through these points is

SL({(xi, yi), 1 ≤ i ≤ n}) = S̄xy − x̄ȳ

S̄xx − x̄2
, (4.41)

where we use standard notation:

Sxy =
n∑

i=1

xiyi, Sxx =
n∑

i=1

x2
i ,

and “bar’’ indicates mean.
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If X1, . . . , Xn is a random sample from the Pareto distribution

1 − Fα(x) = x−α, α > 0, x ≥ 1,

then the slope of the least-squares line through the points of (4.40) (p. 102) gives, with

xi = − log

(
1 − i

n + 1

)
, yi = log Xi:n,

an estimator of α−1

α̂−1 =
∑n

i=1 − log
(

i
n+1

) {
n log Xn−i+1:n −

∑n
j=1 log Xn−j+1:n

}

n
∑n

i=1

(
− log

(
i

n+1

))2
−
(∑n

i=1 − log
(

i
n+1

))2

=
∑n

i=1 − log
(

i
n+1

) {
n log X(i) −

∑n
j=1 log X(j)

}

n
∑n

i=1

(
− log

(
i

n+1

))2
−
(∑n

i=1 − log
(

i
n+1

))2
. (4.42)

We call this estimator the QQ estimator.

With only the regular variation assumption (4.2), we modify (4.42) using the POT

philosophy, and it is reasonable to define the QQ estimator based on the k upper-order

statistics to be

α̂−1 = α̂−1
k,n = SL

({(
− log

(
1 − i

k + 1

)
, log

(
Xn−k+i:n
Xn−k:n

))
, 1 ≤ i ≤ k

})

= SL

({(
− log

(
i

k + 1

)
, log

(
X(i)

X(k+1)

))
, 1 ≤ i ≤ k

})
. (4.43)

Some modest simplification of (4.43) is possible if we note the following readily

checked properties of the SL function: For any real numbers a, b, we have

SL({(xi, yi), 1 ≤ i ≤ n}) = SL({(xi + a, yi + b), 1 ≤ i ≤ n}). (4.44)

Thus (4.43) simplifies to

α̂−1 = SL

({(
− log

(
1 − i

k + 1

)
, log Xn−k+i,n

)
, 1 ≤ i ≤ k

})

= SL

({(
− log

(
i

k + 1

)
, log X(i)

)
, 1 ≤ i ≤ k

})
. (4.45)

We could also drop division by k + 1 in the first component for the same reason.
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In practice, we would make a QQ plot of all the data and choose k based on visual

observation of the portion of the graph that looked linear. Then we would compute

the slope of the line through the chosen upper k-order statistics and the corresponding

exponential quantiles. Choosing k is an art as well as a science, and the estimate of α is

usually rather sensitive to the choice of k. Alternatively, plot {(k, α̂−1
k,n), 1 ≤ k ≤ n}

and look for a stable region of the graph as representing the true value of α−1. This is

analogous to what is done with the Hill estimator of α−1,

Hk,n = 1

k

k∑

i=1

log

(
X(i)

X(k+1)

)
. (4.46)

The QQ plot will typically look smoother than the Hill plot.

Choosing k is still the Achilles heel of many of these procedures.

Consistency of the QQ estimator

Now we prove the weak consistency of the QQ estimator. In view of (4.43), (4.44),

and (4.46), we may write the estimator α̂−1 as

=
1
k

∑k
i=1

(
− log

(
1 − i

k+1

))
log
(

Xn−k+i,n

Xn−k,n

)
− 1

k

∑k
i=1

(
− log

(
1 − i

k+1

))
Hk,n

1
k

∑k
i=1

(
− log

(
1 − i

k+1

))2
−
(

1
k

∑k
i=1

(
− log

(
1 − i

k+1

)))2

=
1
k

∑k
i=1

(
− log

(
i

k+1

))
log
(

X(i)

X(k+1)

)
− 1

k

∑k
i=1

(
− log

(
i

k+1

))
Hk,n

1
k

∑k
i=1

(
− log

(
i

k+1

))2
−
(

1
k

∑k
i=1

(
− log

(
i

k+1

)))2
. (4.47)

Theorem 4.3. Suppose X1, . . . , Xn are a random sample from F , a distribution with
regularly varying tail satisfying (4.2). Then the QQ estimator α̂−1 given in (4.47) is
weakly consistent for 1/α:

α̂−1 P→ α−1

as n → ∞, k = k(n) → ∞ in such a way that k/n → 0.

Proof. Write the denominator in (4.47) as

1

k
Sxx −

(
1

k
Sx

)2

,

where as n → ∞,
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1

k
Sxx = 1

k

k∑

i=1

(
− log

(
i

k + 1

))2

∼
∫ 1

0

(− log x)2dx

=
∫ ∞

0

y2e−ydy = 2 (4.48)

and

1

k
Sx = 1

k

k∑

i=1

(
− log

(
i

k + 1

))
∼
∫ 1

0

(− log x)dx

=
∫ ∞

0

ye−ydy = 1. (4.49)

Furthermore, as n → ∞, k → ∞, n/k → ∞,

1

k

k∑

i=1

(
− log

(
i

k + 1

))
Hk,n ∼

∫ 1

0

(− log x)dxHk,n
P→ α−1

by the weak consistency of the Hill estimator. So for consistency of the QQ estimator,

it suffices to show that

An := 1

k

k∑

i=1

(
− log

(
i

k + 1

))
log

(
X(i)

X(k+1)

)
P→ 2

α
. (4.50)

Recall from (4.18) (p. 82) that

X(⌈kt⌉)
b
(

n
k

) ⇒ t−1/α

in D(0,∞]. Now write

An = k + 1

k

∫ 1

0

− log

(⌈(k + 1)t⌉
k + 1

)
log

(
X(⌈(k+1)t⌉)

X(k+1)

)
dt.

We claim this converges in probability to

P→
∫ 1

0

− log t · (log t−1/α)dt

= 1

α

∫ 1

0

(− log t)2dt = 2

α
. (4.51)
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The convergence near zero in (4.51) is a problem since (4.18) holds in D(0,∞] and

hence does not cover neighborhoods of zero. So we have to use a converging together

argument based on Theorem 3.5 (p. 56). Convergence of the integral in (4.51) over

the region (δ, 1) is guaranteed by the fact that (4.18) is tantamount to local uniform

convergence away from zero, and hence on (δ, 1) there is uniform convergence. So it

suffices to show that

lim
δ↓0

lim sup
k→∞

P

[∫ δ

0

− log t · log

(
X(⌈(k+1)t⌉)

X(k+1)

)
dt > η

]
= 0. (4.52)

We do this by using Potter’s inequalities and Rényi’s representation of order statistics

(see Problem 4.1 (p. 114)). Recall that Potter’s inequalities (2.31) take the following

form: Since 1/(1−F) is regularly varying with index α, the inverse b = (1/(1−F))←

is regularly varying with index 1/α, and for ǫ > 0, there exists t0 = t0(ǫ) such that if

y ≥ 1 and t ≥ t0,

(1 − ǫ)yα−1−ǫ ≤ b(ty)

b(t)
≤ (1 + ǫ)yα−1+ǫ . (4.53)

We now rephrase this in terms of the function

R = − log(1 − F) = log b←.

Then b = R← ◦ log; taking logarithms in (4.53) and then converting from a multiplica-

tive to an additive form yields that

log(1−ǫ)+(α−1−ǫ)y ≤ log R←(s+y)−log R←(s) ≤ log(1+ǫ)+(α−1+ǫ)y (4.54)

for s ≥ log t0 and y ≥ 0.

The reason for introducing the R function is that if E1, E2, . . . , En are iid unit

exponentially distributed random variables, then

(X1, X2, . . . , Xn)
d= (R←(Ej ); j = 1, . . . , n).

The Rényi representation gives for the spacings of exponential order statistics,

(E1,n, E2,n − E1,n, . . . , En,n − En−1,n)
d=
(

En

n
,
En−1

n − 1
, . . . ,

En

1

)

(E(1) − E(2), E(2) − E(3), . . . , E(n−1) − E(n), E(n))
d=
(

E1

1
,
E2

2
, . . . ,

En

n

)
. (4.55)

Now we have
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P

[∫ δ

0

− log t · log

(
X(⌈(k+1)t⌉)

X(k+1)

)
dt > η

]

= P

[∫ δ

0

− log t · log

(
R←(E(⌈(k+1)t⌉) − E(k+1) + E(k+1))

R←(E(k+1))

)
dt > η

]

≤ P

[∫ δ

0

− log t · log

(
R←(E(⌈(k+1)t⌉) − E(k+1) + E(k+1))

R←(E(k+1))

)
dt > η,

eE(k+1) > t0

]
+ ok(1)

since E(k)
P→ ∞ by Problem 4.3 (p. 115). Ignore the term ok(1) since it goes to zero

with k. Apply (4.54) and we get the upper bound

≤ P

[∫ δ

0

− log t · [(1 + ǫ) + (α−1 + ǫ)(E(⌈(k+1)t⌉) − E(k+1))]dt > η

]

and for some small η′ > 0 this is bounded by

≤ P

[∫ δ

0

− log t · (E(⌈(k+1)t⌉) − E(k+1))]dt > η′
]

.

Apply Markov’s inequality to get the upper bound

≤ 1

η′

∫ δ

0

− log t · E(E(⌈(k+1)t⌉) − E(k+1))dt

= 1

η′

∫ δ

0

− log t ·
k+1∑

l=⌈(k+1)t⌉

1

l
dt;

as k → ∞, this is asymptotic to 1
η′
∫ δ

0 − log t (− log t)dt , and as δ ↓ 0, this is asymptotic

to 1
η′ δ(log δ)2 → 0. ⊓⊔

4.7 How to compute value-at-risk

Review the definitions and discussion in Section 1.3.2 (p. 9), the material on peaks over

threshold and exceedances in Section 4.2 (p. 74), and the discussion of the generalized

Pareto class in Section 4.5.1 (p. 91).

Computing VaR, requires a good estimate of the tail of the loss distribution. The

POT method suggests a solution. Suppose X is a random variable with distribution
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F ∈ D(Gγ ). Interest in the heavy-tailed case suggests restricting interest to γ > 0.

For a threshold u and x > u, write

F̄ (x) = P[X > x] = P[X > x|X > u]P[X > u]
= F̄ (u)F̄ [u](x)

(where F [u](x) is the notation in (4.5) (p. 76) for the exceedance distribution)

≈ F̄ (u)

(
1 + γ

β
(x − u)

)−1/γ

. (4.56)

Here we replaced F̄ [u](x) by its two-parameter generalized Pareto approximation dis-

cussed in (4.32) (p. 93).

In practice, our estimate of the tail probabilities will require F̄ (u) to be replaced

by the empirical tail probability ̂̄F(u), the fraction of the observed sample exceeding u

and the parameters (γ, β) will be replaced by maximum-likelihood estimators (γ̂ , β̂)

based on the subsample of excesses relative to u.

From (4.56), we get an estimate of the qth-order quantile by setting the expression

in (4.56) equal to 1 − q yielding

u + β̂

γ̂

⎛
⎝
(

1 − q

̂̄F(u)

)−γ̂

− 1

⎞
⎠ . (4.57)

How do we apply this to VaR? Refer to (1.4) (p. 11) to get with T = 1,

L1

V0
= 1 − eR1, (4.58)

expressing the one period loss L1 in terms of V0, the initial asset value, and the one

period return. The quantity L1/V0 is the relative loss after one period assuming V0 is

known. Observing a sequence of one period returns from a stationary process amounts

to observing observations of relative losses. The tail of the relative loss distribution

can be estimated along with its quantiles; this coupled with observed asset values in the

prior time period allow for computation of VaR.

Example 4.3 (MSFT ). We consider 2363 daily closing values of Microsoft’s stock from

January 11, 1993 to March 4, 2003. The time-series plots of the closing values and the

returns are given in Figure 4.17. Corresponding to (4.58), we compute relative losses

by the transformation x �→ 1 − ex . Summary statistics for the nonnegative values are

given in Table 4.1.
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Fig. 4.17. Time-series plots of daily closing values of MSFT from January 11, 1993 to March 4,

2003 (left) and the corresponding return series (right).

Minimum First quarter Median Mean Third quarter Maximum

0.000379 0.006536 0.014000 0.017670 0.024350 0.156100

Table 4.1. Summary statistics for the nonnegative values of relative loss.
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Fig. 4.18. Time-series plots of daily relative losses of MSFT (left) and the sample autocorrelation

plot of the relative losses (right).

We also check for dependence of the relative losses by computing the sample auto-

correlation plot, and this shows surprisingly little correlation. See Figure 4.18.
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Fig. 4.19. Fitted excess distribution and the empirical distribution (left) and QQ plot for fitted

model against exponential quantiles.

p Quantile

0.900 0.0355

0.990 0.0743

0.999 0.1411

Table 4.2. Quantiles of the relative loss distribution.

Now we take one of the extreme value software packages out for a test ride. We

use EVIR (see the discussion in the appendix in Chapter 11 (p. 363)). We fit a general-

ized Pareto distribution (see (4.32) (p. 93)) by maximum likelihood to the nonnegative

excesses of relative losses based on the threshold 0.0289 using the 200 largest-order

statistics, yielding α̂ = 1/γ̂ = 4.242. The fitted distribution function for relative losses

corresponding to (4.56) is shown on the left side in Figure 4.19, and the QQ plot of the

fitted model is shown on the right. Neither diagnostic reveals a problem with the fit.

Table 4.2 exhibits extreme quantiles of the relative loss distribution. If V0 = 1 and the

number of shares stays constant, these quantiles would represent the VaR values.

4.8 Problems

4.1 (Rényi representation). Suppose E1, . . . , En are iid exponentially distributed ran-

dom variables with parameter λ > 0, so that

P [E1 ≤ x] = 1 − e−λx, x > 0.
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Let

E1,n ≤ E2,n ≤ · · · ≤ En,n

be the order statistics. Prove that the n spacings

E1,n, E2,n − E1,n, . . . , En,n − En−1,n

are independent exponentially distributed random variables, where Ek+1,n − Ek,n has

parameter (n − k)λ.

Intuitively, this results from the forgetfulness property of the exponential distribu-

tion. See [90, 135, 239, 240, 262].

4.2. Suppose that X1, . . . , Xn are iid from a common continuous distribution F(x)

and that

X(1) ≥ X(2) ≥ · · · ≥ X(n)

are the order statistics. Prove that conditionally onX(k+1), the familyX(1), X(2), . . . , X(k)

are distributed as the order statistics from a sample of size k from the conditional dis-

tribution of

X|X > X(k+1),

where X(k+1) is treated as a constant in the conditioning. (You might want to use

Problem 4.1.) Furthermore, show that (X(n), X(n−1), . . . , X(1)) is a continuous state-

space Markov chain.

4.3. For the order statistics E(1), . . . , E(n) of an iid sample of size n from the unit

exponential distribution, show that

E(k)
P→ ∞

iff k → ∞, n → ∞, n/k → ∞.

4.4 (Découpage de Lévy). Suppose {Xn, n ≥ 1} are iid random elements of the metric

space S with Borel σ -field S. Fix a set B ∈ S such that P[X1 ∈ B] > 0. Let τ±
0 = 0, and

τ+
i = inf {j > τ+

i−1 : Xj ∈ B} for i ≥ 1. The family {τ−
j , j ≥ 0} is defined similarly,

with Bc playing the role of B. Define the counting function Kn = sup{i : τ+
i ≤ n}.

Show that {Xτ+
j
}, {Xτ−

j
}, {Kn} are independent with

P[Xτ+
1

∈ A] = P[X1 ∈ A|X1 ∈ B], A ⊂ B,

P[Xτ−
1

∈ A] = P[X1 ∈ A|X1 ∈ Bc] A ⊂ Bc.

Furthermore, {Kn} is a renewal counting function, E(Kn) = nP[X1 ∈ B], and {Xτ±
j
}

is iid.
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4.5 (For the probabilistically adventurous). For QQ estimation in the heavy-tailed

case, consider the n bivariate pairs consisting of theoretical quantiles paired with sample

quantiles for the log-transformed data. Does this set (or a subset of this set corresponding

to the k upper quantiles), considered as a random closed subset of the first quadrant,

converge in any sense to a limit random set? This limit set is presumably a line and

so is not random. Convergence could be in the space of random closed subsets of R
2
+

metrized by, say, the Hausdorff metric.

Is the functional

LS : {closed sets} �→ R+

defined by

LS(F ) = slope of the LS line through the closed set F

continuous in the space of closed subsets of R
2
+, or continuous, at least, at any useful

elements of the domain?
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The Poisson Process

There are many fascinating and useful connections between heavy tails and the Pois-

son process, some of which we begin to describe here. Many heavy-tailed models are

constructed from Poisson processes, which are the most tractable models of point sys-

tems. Some of these contructions give paradigms in the theory and some are elegant

abstractions of applied systems.

I learned much about this subject from [33–37, 43, 180, 230].

5.1 The Poisson process as a random measure

Throughout this discussion, it is enough to assume the state spaces of our random

measures and point processes are nice; see Section 10.2 (p. 360) if you need a more

precise definition.

5.1.1 Definition and first properties

Let N : (�, A) �→ (Mp(E), Mp(E)) be a point process with state space E, where

Mp(E) is the Borel σ -algebra of subsets of Mp(E) generated by open sets. The Borel

subsets of E are denoted by E . (If necessary, review Section 3.3.5 (p. 51).)

Definition 5.1. N is a Poisson process with mean measure μ or, synonomously, a Pois-
son random measure (PRM(μ)), if we have the following:

1. For A ∈ E ,

P [N(A) = k] =

⎧
⎨
⎩

e−μ(A)(μ(A))k

k! if μ(A) < ∞,

0 if μ(A) = ∞.
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2. IfA1, . . . , Ak are disjoint subsets of E inE , thenN(A1), . . . , N(Ak) are independent

random variables.

So N is Poisson if the random number of points in a set A is Poisson distributed with

parameter μ(A) and the number of points in disjoint regions are independent random

variables.

Property 2 is called complete randomness. When E = R, it is called the independent
increments property since for any t1 < t2 < · · · < tk , (N((ti, ti+1]), 1 = 1, . . . , k − 1)

are independent random variables. When the mean measure is a multiple of Lebesgue

measure (that is, length when E = [0,∞) or R, area when E = R
2, volume when

E = R
3, etc.), we call the process homogeneous. Thus in the homogeneous case, there

is a parameter λ > 0 such that for any A, we have N(A) Poisson distributed with

mean EN(A) = λ LEB(A), where LEB(A) is the Lebesgue measure of A. When

E = [0,∞), the parameter λ is called the rate of the (homogeneous) Poisson process.

When E = [0,∞), epochs of a pure renewal process in (0,∞) whose interarrival

density is exponential is a homogeneous Poisson process. It can be surprisingly tricky

to prove this. We just state the result. See [107, 260, 262].

Proposition 5.1. Let {Ej , j ≥ 1} be iid random variables with a standard exponential
distribution. Define Ŵn =

∑n
i=1 Ei to be the renewal epochs of the renewal process,

and set N =
∑∞

n=1 ǫŴn . Then N is a homogeneous Poisson process on [0,∞) with
unit rate λ = 1; that is, N satisfies Definition 5.1, and the mean measure is LEB(·).

5.1.2 Point transformations

Useful results are connected with a circle of ideas about what happens to a Poisson

process under various types of transformations. The first result, although very elemen-

tary, is enormously useful in understanding inhomogeneity. To prepare for this result,

suppose
∑

n ǫXn is a Poisson process with state space E and mean measure μ. Suppose

T is some transformation with domain E and range E
′, where E

′ is another nice space;

that is,

T : E �→ E
′.

The function T defines a set mapping of subsets of E
′ to subsets of E, defined for

A′ ⊂ E
′ by

T −1(A′) = {e ∈ E : T (e) ∈ A′}.

Thus T −1(A′) is the preimage of A′ under T ; that is, it is the set of points of E that T

maps into A′.
As an example, suppose E = (0,∞), E

′ = (−∞,∞), T (x) = log x. If a < b and

A′ = (a, b), then we have
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T −1((a, b)) = {x > 0 : T (x) ∈ (a, b)}
= {x > 0 : log x ∈ (a, b)}
= {x > 0 : x ∈ (ea, eb)}.

Given the measures N, μ defined on subsets of E, we may use T to define induced

measures N ′, μ′ on subsets of E
′. For A′ ⊂ E′, define

N ′(A′) = N(T −1(A′)), μ′(A′) = μ(T −1(A′)).

So to get the measure of A′, we map A′ back into E and take the measure of the preimage

under T . Also, if N has points {Xn}, then N ′ has points {X′
n} = {T (Xn)}.

The next result asserts that if N is a Poisson process with mean measure μ and with

points {Xn} living in the state space E, then N ′ = N(T −1(·)) is a Poisson process with

mean measure μ′ and with points {T (Xn)} living in the state space E
′.

Proposition 5.2. Suppose
T : E �→ E

′

is a measurable mapping of one nice space E into another E
′ such that if K ′ ∈ K(E′)

is compact in E
′, then so is T −1K ′ := {e ∈ E : T e ∈ K ′} ∈ K(E). If N is PRM(μ) on

E, then N ′ := N ◦ T −1 is PRM(μ′) on E
′, where μ′ := μ ◦ T −1.

Remember that if N has the representation

N =
∑

n

ǫXn,

then

N ′ =
∑

n

ǫT (Xn),

and the result says that if you transform the points of a Poisson process, you still have

a Poisson process.

Proof. We have

P[N ′(B ′) = k] = P[N(T −1(B ′)) = k] = e−μ(T −1(B))(μ(T −1(B)))k/k!,

so N ′ has Poisson distributions. It is easy to check the independence property since if

B ′
1, . . . , B

′
m are disjoint, then so are T −1(B ′

1), . . . , T
−1(Bm), whence

(N ′(B ′
1), . . . , N

′(B ′
m)) = (N(T −1(B ′

1), . . . , N(T −1(B ′
m))

are independent. Thus requirements 1 and 2 in the definition of a Poisson process

(Definition 5.1) are satisfied. ⊓⊔
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Example 5.1. Consider three easy examples. For each, let N =
∑∞

n=1 ǫŴn be a ho-

mogeneous Poisson process with rate λ = 1 on the state space E = [0,∞). The

mean measure μ is Lebesgue measure so that μ(A) = LEB(A) and, in particular,

μ([0, t]) = t .

1. If T (x) = x2, then
∑

n ǫŴ2
n

is PRM and the mean measure μ′ is given by

μ′[0, t] = μ{x : T (x) ≤ t} = μ
[
0,

√
t
]
=

√
t .

Note that μ′ has a density

g(t) = d

dt

√
t = 1

2
t−1/2.

2. If T : E �→ E × E via T (x) = (x, x2), then
∑

n ǫT (Ŵn
) =
∑

n ǫ(Ŵn,Ŵ2
n) is Poisson

on E × E. The mean measure concentrates on the graph {(x, x2) : x ≥ 0}.

3. Given a homogeneous Poisson process
∑

n ǫŴn on [0,∞),
∑

n ǫ
Ŵ−1

n
is Poisson on

(0,∞] with mean measure μ′ given by (x > 0)

μ′(x,∞] = μ{t ≥ 0 : t−1 ≥ x} = μ[0, x−1) = x−1.

The topology on E
′ induced by the map x �→ x−1 makes the bounded sets of E

′ the

sets bounded away from 0; that is, the bounded sets are neighborhoods of ∞. μ′

has a density

g(t) = − d

dt
t−1 = t−2.

As we will see in Sections 5.5.2 (p. 154) and 5.6 (p. 160), Poisson processes with

this mean measure μ′ are particularly important in the theory of stable processes and in

extreme-value theory.

5.1.3 Augmentation or marking

Given a Poisson process, under certain circumstances it is possible to enlarge the di-

mension of the points and retain the Poisson structure. One way to do this was given in

item 2 of Example 5.1 of the previous section, but the enlargement of dimension was

illusory since the points concentrated on a graph {(x, x2) : x > 0}. The result presented

here allows independent components to be added to the points of the Poisson process.

This proves very useful in a variety of applications. We present here the simplest state-

ment of this result. A more sophisticated version will be presented after a discussion of

the Laplace functional.
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Proposition 5.3. Suppose {Xn} are random elements of a nice space E1 such that
∑

n

ǫXn

is PRM(μ). Suppose {Jn} are iid random elements of a second nice space E2 with
common probability distribution F , and suppose the Poisson process and the sequence
{Jn} are defined on the same probability space and are independent. Then the point
process on E1 × E2, ∑

n

ǫ(Xn,Jn),

is PRM with mean measure μ × F .

So if Ai ⊂ Ei , i = 1, 2, are Borel sets, then

μ × F(A1 × A2) = μ × F({(e1, e2) : e1 ∈ A1, e2 ∈ A2}) = μ(A1)F (A2).

Often this procedure is described by saying we give to point Xn the mark Jn. Think

about a picture where the points of the original Poisson process {Xn} appear on the

horizontal axis and the marked points appear in the E1 × E2 plane.

The proof is deferred. For now, note the mean measure is correct since for a rectangle

set of the form A1 × A2 = {(e1, e2) : e1 ∈ A1 ⊂ E1, e2 ∈ A2 ⊂ E2}, we have

E
∑

n

ǫ(Xn,Jn)(A1 × A2) =
∑

n

P [(Xn, Jn) ∈ A1 × A2]

=
∑

n

P [Xn ∈ A1]P [Jn ∈ A2]

since {Jn} is independent of the Poisson process. Since {Jn} are iid random variables

this is the same as

=
∑

n

P [Xn ∈ A1]P [J1 ∈ A2]

= E

(∑

n

ǫXn(A1)

)
P [J1 ∈ A2]

= μ(A1)P [J1 ∈ A2].

5.2 Models for data transmission

The infinite-node Poisson model is a simple (probably too simple) model that explains

long-range dependence in measured Internet traffic. The simple explanation is based

on properties of a Poisson process.
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5.2.1 Background

The story begins around 1993 with the publication of what is now known as the Bell-

core study [118, 203, 305]. Traditional queueing models had thrived on assumptions

of exponentially bounded tails, Poisson inputs, and lots of independence. Collected

network data studied at what was then Bellcore (now Telcordia) exhibited properties

that were inconsistent with traditional queueing models. These anomalies were also

found in World Wide Web downloads in the Boston University study [51–56, 63]. The

unusual properties found in the data traces included:

• self-similarity and long-range dependence (LRD) of various transmission rates:

– packet counts per unit time,

– www bits/time.

• heavy tails of quantities such as

– file sizes,

– transmission rates,

– transmission durations,

– CPU job completion times,

– call lengths.

The Bellcore study in the early 1990s resulted in a paradigm shift worthy of a

sociological study to understand the frenzy to jump on and off various bandwagons, but

after some resistance to the presence of long-range dependence, there was widespread

acceptance of the statement that packet counts per unit time exhibit self similarity and
long-range dependence. Research goals then shifted from detection of the phenomena

to greater understanding of the causes. The challenges were the following:

• Explain the origins and effects of long-range dependence and self-similarity.

• Understand some connections between self-similarity, long-range dependence, and

heavy tails. Use these connections to find an explanation for the perceived long-

range dependence in traffic measurements.

• Begin to understand the effect of network protocols and architecture on traffic. This

is an ambitious goal, since the simplest models, such as the featured infinite-source

Poisson model, pretend protocols, and controls are absent.
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5.2.2 Probability models

Attempts to explain long-range dependence and self-similarity in traffic rates centered

around the paradigm heavy-tailed file sizes cause long-range dependence in network
traffic. Specific models must be used to explain this and the two most effective and

simple models were the following:

• Superposition of on/off processes [158, 159, 176, 222, 225, 233, 285, 288, 305]:

This is described as follows: Imagine a source/destination pair. The source sends at

unit rate for a random length of time to the destination and then is silent or inactive

for a random period. Then the source sends again and when finished is silent. And

so on. So the transmission schedule of the source follows an alternating renewal

or on/off structure. Now imagine the traffic generated by many source/destination

pairs being superimposed, which yields the overall traffic.

• The infinite-node Poisson model [153, 160, 175, 177, 222, 234, 242, 254]: This is

sometimes referred to as the M/G/∞ input model. Imagine infinitely many potential

users connected to a single server that processes work at constant rate r . At a Poisson

time point, some user begins transmitting work to the server at constant rate which,

for specificity, we take to be rate 1. The length of the transmission is random with

heavy-tailed distribution. The length of the transmission may be considered to be

the size of the file needing transmission.

Both models have their adherents and the two models are asymptotically equivalent

in a manner nobody (to date) has made fully transparent. We will focus on the infinite-

source Poisson model.

Some good news about the model:

• It is somewhat flexible and certainly simple.

• Since each node transmits at unit rate, the overall transmission rate at time t is simply

the number of active users M(t) at t . From classical M/G/∞ queueing theory, we

know that M(t) is a Poisson random variable with mean λμon, where λ is the rate

parameter of the Poisson process and μon is the mean file size or mean transmission

length. This is reviewed in Section 5.2.5 (p. 130).

• The length of each transmission is random and heavy tailed.

• The model offers a very simple explanation of long-range dependence being caused

by heavy-tailed file sizes.

• The model predicts traffic aggregated over users and accumulated over time [0, T ]
is approximated by either a Gaussian process (fractional Brownian motion, or FBM)
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or a heavy-tailed stable Lévy motion [222]. Thus the two approximations are very

different in character, but at least both are self-similar.

Some less good news about the model:

• The model does not fit collected data traces all that well.

– The constant transmission rate assumption is clearly wrong. Each of us knows

from personal experience that downloads and uploads do not proceed at con-

stant rate.

– Not all times of transmissions are Poisson. Identifying Poisson time points in the

data can be problematic. Some are machine triggered and these will certainly

not be Poisson. While network engineers rightly believe in the invariant that

behavior associated with humans acting independently can be modeled as a

Poisson process, it is highly unlikely that, for example, subsidiary downloads

triggered by going to the CNN website (imagine the calls to DoubleClick’s ads)

would follow a Poisson pattern.

• There is no hope that this simple model can successfully match fine time scale

behavior observed below, say, 100 milliseconds.

• The model does not take into account admission and congestion controls such as

TCP (transmission control protocol). How can one incorporate a complex object

like a control mechanism into an informative probability model?

5.2.3 Long-range dependence

There is no universal agreement about how to define long-range dependence, but prob-

ably most people associate the term with slow decay of the correlation function as a

function of the lag between time points. For us, the most functional definition is this:

A stationary L2 sequence {ξn, n ≥ 1} possesses long-range dependence (LRD) if

Cov(ξn, ξn+h) ∼ h−βL(h), h → ∞, (5.1)

for 0 < β < 1 and L(·) slowly varying [18]. Set γ (h) = Cov(ξn, ξn+h) and

ρ(h) = γ (h)/γ (0) for the covariance and correlation functions of the stationary process

{ξn}. For other authors, long-range dependence is sometimes taken to mean that co-

variances are not summable:
∑

h |γ (h)| = ∞, whereas short-range dependence means

that
∑

h |γ (h)| < ∞. Traditional time-series models, such as ARMA models [31],

have covariances that go to zero geometrically fast as a function of the lag h. Long-

range dependence, like the property of heavy tails, has acquired a mystical, almost
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religious, significance and generated controversy. Researchers argue over whether it

exists, whether it matters if it exists or not, or whether analysts have been fooled into

mistaking some other phenomena like shifting levels, undetected trend [193], or nonsta-

tionarity for long-range dependence. Discussions about this have been going on since

(at least) the mid-1970s in hydrology [20, 27, 28, 32, 270–272], finance [224, 226],

and data network modeling [39, 40, 117, 141, 164, 202, 232]. Think of it as one more

modeling decision that needs to be made. Since long-range dependence is an asymp-

totic property, models that possess long-range dependence presumably have different

asymptotic properties than those models in which long-range dependence is absent,

although even this is sometimes disputed.

Simple minded detection of long-range dependence using the sample acf plot

Sophisticated methods for detecting long-range dependence exist. However, the most

common, ubiquitous, quick, and dirty method to detect long-range dependence (as-

suming that you are convinced the data comes from a stationary process) is to graph

the sample autocorrelation function (acf) {ρ̂(h), h = 1, 2, . . . , N}, where N is a large

number but not a significant proportion of the whole sample size. The sample acf at lag

h corresponding to observations x1, . . . , xn is defined as

ρ̂(h) =
∑n−h

i=1 (xi − x̄)(xi+h − x̄)
∑n−h

i=1 (xi − x̄)2
.

The plot should not decline rapidly. Classical time-series data that one encounters

in ARMA (Box–Jenkins) modeling exercises has a sample acf that is essentially zero

after a few lags, and acf plots of financial or teletraffic data are often in stark contrast.

Example 5.2 (Company X ). This trace is packet counts per 100 milliseconds = 1/10

second for Financial Company X’s wide-area network link, including USA–UK traffic.

It consists of 288,009 observations corresponding to 8 hours of collection from 9am–

5pm. Figure 5.1 shows the time-series plot of a segment.

Figure 5.2 shows the acf plot for 2000 lags. There is little hurry for the plot to

approach zero. (Don’t try to model this with ARMA.)

5.2.4 The infinite-node Poisson model

Understanding the connection between heavy tails and long-range dependence requires

a context. For the simplest explanations, one can choose either the superposition of

on/off processes or the infinite-node Poisson model, and our preference is for the latter.

In this model, there are potentially an infinite number of sources capable of sending

work to the server. Imagine that transmission sources turn on and initiate sessions
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Fig. 5.1. Time-series plot for Company X data giving first 50,000 observations.
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Fig. 5.2. Sample autocorrelation plot for Company X data for 2000 lags.

or connections at homogeneous Poisson time points {Ŵk} with rate λ. The lengths of

sessions {Ln} are iid nonnegative random variables with common distribution Fon, and

during a session, work is transmitted to the server at constant rate. As a normalization,

we suppose the transmission rate is 1. Assume that

1 − Fon(t) := F̄on(t) = t−αL(t), t → ∞. (5.2)

In practice, empirical estimates of α usually range between 1 and 2 [204, 305]. (How-

ever, there are studies of file sizes [7, 242] that report measurements of α < 1.) The
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assumption of a fixed unit transmission rate is obviously an idealization. The model

can be modified for greater realism by assuming that either

(i) transmission rates are random and possibly dependent on the size of the file to be

transmitted or on the transmission duration [38, 68, 215]

or

(ii) it is assumed that cumulative input from a source follows a random process [194,

216].

For the sake of simplicity and tractability, the fixed unit transmission rate will be as-

sumed.

Note that in the case 1 < α < 2, the second moment of Fon is infinite, but

μon = E(L1) =
∫ ∞

0

F̄on(t)dt < ∞.

The processes of primary interest for describing this system are the following:

M(t) = number of sessions in progress at t (5.3)

= number of busy servers in the M/G/∞ model

=
∞∑

k=1

1[Ŵk≤t<Ŵk+Lk]

and

A(t) =
∫ t

0

M(s)ds = cumulative input in [0, t], (5.4)

r = release rate or the rate at which the server (5.5)

works off the offered load.

Note that expressing A(t) as an integral gives M(t) the interpretation of “instantaneous

input rate at time t .’’ So realizations of M(t) correspond to data traces of “packet counts

per unit time.’’ So we seek within the model an explanation of why {M(t)} possesses

long-range dependence.

Stability requires us to assume that the long-term input rate should be less than the

output rate, so we require that

λμon < r.

This means the content or buffer level process {X(t), t ≥ 0} satisfies

dX(t) = M(t)dt − r1[X(t)>0]dt,

is regenerative with finite mean regeneration times, and achieves a stationary distribu-

tion.
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5.2.5 Connection between heavy tails and long-range dependence

The common explanation for long-range dependence in the total transmission rate by

the system is that high variability causes long-range dependence, where we understand

high variability means heavy tails. The long-range dependence resulting from the

heavy-tailed distribution Fon can be easily seen for the infinite-node Poisson model.

Assume that 1 < α < 2. To make our argument transparent, we consider the

following background. For each t , M(t) is a Poisson random variable. Why? When

1 < α < 2, M(·) has a stationary version on R, the whole real line. Assume that

∑

k

ǫŴk
= PRM(λ LEB)

is a homogeneous Poisson random measure on R with rate λ. Then using augmentation,

ξ :=
∑

k

ǫ(Ŵk,Lk) = PRM(λ LEB×Fon) (5.6)

is a two-dimensional Poisson random measure on R × [0,∞) with mean measure

λdt × Fon(dx), and

M(t) =
∑

k

1[Ŵk≤t<Ŵk+Lk]

= ξ({(s, l) : s ≤ t < s + l} = ξ(B)

is Poisson because it is the two-dimensional Poisson process ξ evaluated on the region

B. See the gorgeous Figure 5.3. Note that B is the region in the (s, l)-plane to the left

of the vertical line through t and above the −45 degree line through (t, 0). The mean

of ξ(B) is

E(ξ({(s, l) : s ≤ t < s + l}) =
∫∫

{(s,l):s≤t<s+l}
λdsFon(dl)

=
∫ t

s=−∞
F̄on(t − s)λds = λμon. (5.7)

Understanding the relation between {M(t)} and the random measure ξ allows us to

easily compute the covariance function. Refer to Figure 5.4. Recall that M(t) corre-

sponds to points to the left of the vertical through (t, 0) and above the −45-degree line

through (t, 0) with a similar interpretation for M(t + τ). The process {M(t), t ∈ R} is

stationary with covariance function

Cov(M(t), M(t + τ)) = Cov(ξ(A1) + ξ(A2), ξ(A2) + ξ(A3)),
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Fig. 5.4. The regions A1, A2, A3.

and because ξ(A1) and ξ(A3) are independent, the previous expression reduces to

= Cov(ξ(A2), ξ(A2)) = Var(ξ(A2)).

For a Poisson random variable, the mean and the variance are equal, and therefore the

above is

= E(ξ(A2)) =
∫ t

u=−∞
λduF̄on(t + τ − u)
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= λ

∫ ∞

τ

F̄on(v)dv ∼ cτ−(α−1)L(τ).

Note that we used Karamata’s theorem to evaluate the integral of the regularly vary-

ing tail.

To summarize, we find that

Cov(M(t), M(t + τ)) = λ

∫ ∞

τ

F̄on(v)dv

= (const)τ−(α−1)L(τ)

= (const)τ F̄on(τ ), τ → ∞. (5.8)

The slow decay of the covariance as a function of the lag τ characterizes long-range
dependence.

5.3 The Laplace functional

The Laplace functional is a convenient transform technique that is helpful for manipu-

lating distributions of point processes and random measures. When applied to Poisson

processes and empirical measures, algebraic manipulations become familiar to ones

used with either characteristic functions or Laplace transforms applied to sums of iid

random variables.

5.3.1 Definition and first properties

For a nonnegative, bounded measurable function f : E �→ R+ and for μ ∈ M+(E),

we use the notation

μ(f ) =
∫

x∈E

f (x)μ(dx).

For m =
∑

i ǫxi
∈ Mp(E),

m(f ) =
∑

i

f (xi).

A guiding principle is that integrals of measures with respect to arbitrary test functions

contain as much information as evaluating the measures on arbitrary sets.

Definition 5.2 (Laplace functional). Suppose B+ are the nonnegative, bounded, mea-

surable functions from E �→ R+ and let

M : (�, A, P) �→ (M+(E), M+(E))
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be a random measure (that is, a random element of M+(E)). The Laplace functional of

the random measure M is the nonnegative function on B+ given by

�M(f ) = E exp{−M(f )} =
∫

�

exp{−M(ω, f )}dP(ω)

=
∫

M+(E)

exp{−μ(f )}P ◦ M−1(dμ).

Note that if P is a probability measure on M+(E), its Laplace functional is
∫

M+(E)

exp{−μ(f )}P(dμ), f ∈ B+. (5.9)

Proposition 5.4. If M is a random measure on E, the Laplace functional �M(f ),

f ∈ C+
K(E), of M uniquely determines the distribution of M .

Proof. The distribution of M is the measure P ◦ M−1 on M+(E), the Borel σ -algebra

generated by the open subsets of M+(E). Recall (p. 51) that G(M+(E)), the class of

open subsets of M+(E), is generated by the class C of basis sets, given in (3.13), which

has a typical member,

{μ ∈ M+(E) : μ(fi) ∈ (ai, bi), i = 1, . . . , d} (5.10)

for fi ∈ C+
K(E), i = 1, . . . , d. The class C has the property that it is closed under finite

intersections and hence is a �-system generating the Borel σ -algebra; so it suffices

(see, for example, [24, 264]) by Dynkin’s π -λ theorem to show the Laplace functional

uniquely determines probabilities on C. Since

P ◦ M−1{μ ∈ M+(E) : μ(fi) ∈ (ai, bi), i = 1, . . . , d}
= P[M(fi) ∈ (ai, bi), i = 1, . . . , d],

it suffices to show �M(·) determines the joint distribution of

(M(f1), . . . , M(fd)).

This joint distribution is determined by its Laplace transform

E exp

{
−

d∑

i=1

λiM(fi)

}
, λi > 0, i = 1, . . . , d.

However, this is equal to

E exp

{
−M(

d∑

i=1

λifi)

}
= �M

(
d∑

i=1

λifi

)
.

Since
∑d

i=1 λifi ∈ C+
K(E), knowledge of {�M(f ); f ∈ C+

K(E)} is determining. ⊓⊔
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Example 5.3. Consider the following easy examples, which will have subsequent im-

portance:

1. For μ0 ∈ M+(E), define the probability measure P on M+(E) by

P = ǫμ0 .

This probability measure concentrates all mass at one point and corresponds to the

random measure which is identically μ0. According to (5.9), the Laplace functional

at f ∈ B+ is ∫

M+(E)

exp{−μ(f )}P(dμ) = e−μ0(f ).

2. Empirical measure: Suppose X1, . . . , Xn are iid random elements in E and define

the random point measure

M =
n∑

i=1

ǫXi
.

Its Laplace functional is

E exp{−M(f )} = Ee−
∑d

i=1 f (Xi) =
(

Ee−f (X1)
)n

=
(

1 −
∫

E

(1 − e−f (e))P[X1 ∈ de]
)n

.

3. Poissonized empirical measure: Suppose {Xi, i ≥ 1} are iid random elements of E

and τ is a Poisson random variable with parameter λ that is independent of {Xi}.
Define

M =
τ∑

i=1

ǫXi
,

and on [τ = 0] we understand M ≡ 0. The Laplace functional is obtained by

conditioning on τ :

E exp{−M(f )} = Ee−
∑τ

i=1 f (Xi) = E((Ee−f (X1))τ )

= exp

{
−
∫

E

(1 − e−f (e))λP[X1 ∈ de]
}

. (5.11)

5.3.2 The Laplace functional of the Poisson process

Recall the definition of the Poisson process given in Definition 5.1 and parts 1 and 2 of

the definition given on p. 120.

The next result shows that the Poisson process can be identified by the characteristic

form of its Laplace functional.
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Theorem 5.1 (Laplace functional of PRM). The distribution of PRM(μ) is uniquely
determined by 1 and 2 in Definition 5.1. Furthermore, the point process N is PRM(μ)

iff its Laplace functional is of the form

�N (f ) = exp

{
−
∫

E

(1 − e−f (x))μ(dx)

}
, f ∈ B+. (5.12)

Proof. We first show 1 and 2 imply (5.12).

Step 1. If f = λ1A, where λ > 0, then because N(f ) = λN(A) and N(A) is Poisson

with parameter μ(A), we get

�N (f ) = Ee−λN(A) = exp{(e−λ − 1)μ(A)}

= exp

{
−
∫

E

(1 − e−f (x))μ(dx)

}
,

which is the correct form given in (5.12).

Step 2. Next, suppose f has a somewhat more complex form

f =
k∑

i=1

λi1Ai
,

where λi ≥ 0, Ai ∈ E , 1 ≤ i ≤ k, and A1, . . . , Ak are disjoint. Then

�N (f ) = E exp

{
−

k∑

i=1

λiN(Ai)

}

=
k∏

i=1

E exp{−λiN(Ai)} from independence

=
k∏

i=1

exp

{
−
∫

E

(1 − e−λi1Ai
(x))μ(dx)

}
from the previous Step 1

= exp

{∫

E

k∑

i=1

(1 − e−λi1Ai
(x))μ(dx)

}

= exp

{∫

E

(
1 − e−

∑k
i=1 λi1Ai

(x)
)

μ(dx)

}

= exp

{∫

E

(1 − e−f (x))μ(dx)

}
,

which again verifies (5.12).
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Step 3. Now the last step is to take general f ∈ B+ and verify (5.12) for such f . We

may approximate f from below by simple fn of the form just considered in Step 2. We

may take, for instance,

fn(x) =
n2n∑

i=1

i − 1

2n
1[ i−1

2n , i
2n )

(f (x)) + n1[n,∞)(f (x))

so that

0 ≤ fn(x) ↑ f (x).

By monotone convergence N(fn) ↑ N(f ), and since e−f ≤ 1, we get by dominated

convergence that

�N (f ) = lim
n→∞

�N (fn).

We have from the previous step that

�N (fn) = exp

{
−
∫

E

(1 − e−fn(x))μ(dx)

}
.

Since

1 − e−fn ↑ 1 − e−f ,

we conclude by monotone convergence that
∫

E

(1 − e−fn(x))μ(dx) ↑
∫

E

(1 − e−f (x))μ(dx),

and thus we conclude that (5.12) holds for any f ∈ B+. Since the distribution of N is

uniquely determined by �N , we have shown that 1 and 2 in Definition 5.1 determine

the distribution of N .

Conversely, if the Laplace functional of N is given by (5.12), then N(A) must be

Poisson distributed with parameter μ(A) for any A ∈ E , which is readily checked by

substituting f = λ1A in (5.12) to get a Laplace transform of a Poisson distribution.

Furthermore, if A1, . . . , Ak are disjoint sets in E and λ1, . . . , λk are positive and f =∑k
i=1 λi1Ai

, then substituting in (5.12) gives

Ee−
∑k

i=1 λiN(Ai) = exp

{
−
∫

E

(
1 − e−

∑k
i=1 λi1Ai

)
dμ

}

= exp

{
−
∫

E

k∑

i=1

(1 − e−λi1Ai )dμ

}

=
k∏

i=1

exp{−(1 − e−λi )μ(Ai)}
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=
k∏

i=1

Ee−λiN(Ai),

and so the joint Laplace transform of (N(Ai), 1 ≤ i ≤ k) factors into a product of

Laplace transforms, which shows independence. ⊓⊔

5.4 See the Laplace functional flex its muscles!

This section discusses why the Laplace functional is such a useful theoretical tool.

5.4.1 The Laplace functional and weak convergence

We can test for weak convergence of a sequence of random measures in M+(E) by

showing for f ∈ C+
K(E) that the Laplace functionals of the random measures converge.

To do this, we will rely on the criterion 3 of Section 3.4.1 (p. 54). For more detail,

see [260, Section 3.5] or [180, 230].

Theorem 5.2 (convergence criterion). Let {ηn, n ≥ 0} be random elements of M+(E).
Then

ηn ⇒ η0 in Mp(E),

iff
�ηn(f ) = Ee−ηn(f ) → Ee−η0(f ) = �η0(f ) ∀f ∈ C+

K(E). (5.13)

So weak convergence is characterized by convergence of Laplace functionals

on C+
K(E).

Proof. Suppose ηn ⇒ η0 in M+(E). The map M+(E) �→ [0,∞) defined by μ �→ μ(f )

is continuous, so the continuous mapping theorem gives ηn(f ) ⇒ η0(f ) in R. Thus

e−ηn(f ) ⇒ e−η0(f ),

and by Lebesgue’s dominated convergence theorem,

Ee−ηn(f ) → Ee−η0(f ),

as required. This was straightforward.

Conversely, suppose (5.13) holds. According to criterion 3 of Section 3.4.1 (p. 54),

we have to prove for any family {hj } ⊂ C+
K(E) that

(ηn(hj ), j ≥ 1) ⇒ (η0(hj ), j ≥ 1)
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in R
∞, and for this it suffices to prove for any integer d that

(ηn(hj ), 1 ≤ j ≤ d) ⇒ (η0(hj ), 1 ≤ j ≤ d),

in R
d . So it suffices to show multivariate Laplace transforms converge. Set λi > 0 for

i = 1, . . . , d, and we have

E exp

{
−

d∑

i=1

λiηn(hi)

}
= E exp

{
−ηn

(
d∑

i=1

λihi

)}

and because
∑d

i=1 λihj ∈ C+
K(E) and (5.13) holds, we get

→ E exp

{
−η0

(
d∑

i=1

λihi

)}

= E exp

{
−

d∑

i=1

λiη0(hi)

}
,

as required. ⊓⊔

Convergence of empirical measures

We will give extensive applications of Theorem 5.2 in the next chapter. For now, we

indicate why the criterion provides a natural way to consider weak convergence of

empirical measures.

We now give two convergence results. One gives necessary and sufficient conditions

for empirical measures to converge to a Poisson random measure limit, and the other

discusses convergence to a constant limit measure. The first is the basis for manipulating

iid random elements with regularly varying tails by means of the Poisson transform, and

the second is the basis for consistency of estimates of heavy-tailed parameters, which

has already been considered in Theorem 4.1 (p. 79).

Theorem 5.3 (basic convergence). Suppose that for each n ≥ 1, we have that
{Xn,j , j ≥ 1} is a sequence of iid random elements of (E, E). Let ξ be PRM(μ)

on Mp(E), that is, the Poisson random measure with mean measure μ.

(i) We have
n∑

j=1

ǫXn,j
⇒ ξ = PRM(μ) (5.14)

on Mp(E) iff
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nP[Xn,1 ∈ ·] = E

⎛
⎝

n∑

j=1

ǫXn,j
(·)

⎞
⎠ v→ μ (5.15)

in M+(E).

(ii) Suppose additionally that 0 < an ↑ ∞. Then for a measure μ ∈ M+(E), we have

1

an

n∑

j=1

ǫXn,j
⇒ μ (5.16)

on M+(E) iff

n

an

P [Xn,1 ∈ ·] = E

⎛
⎝ 1

an

n∑

j=1

ǫXn,j
(·)

⎞
⎠ v→ μ (5.17)

in M+(E).

Remark 5.1. Note that the mean measure of
∑n

j=1 ǫXn,j
is nP[Xn,1 ∈ ·], and likewise,

the mean measure of 1
an

∑n
j=1 ǫXn,j

is n
an

P [Xn,1 ∈ ·].

Proof.
(i) We compute Laplace functionals of the empirical measures and decide when they

converge. As in part 2 of Example 5.3 (p. 134), for f ∈ C+
K(E),

Ee
−
∑n

j=1 ǫXn,j
(f ) = Ee

−
∑n

j=1 f (Xn,j ) = (Ee−f (Xn,1))n

=
(

1 − E(n(1 − e−f (Xn,1)))

n

)n

=
(

1 −
∫

E
(1 − e−f (x))nP [Xn,1 ∈ dx]

n

)n

,

and this converges to

exp

{∫

E

(1 − e−f (x))μ(dx)

}
,

the Laplace functional of PRM(μ), iff

∫

E

(1 − e−f (x))nP [Xn,1 ∈ dx] →
∫

E

(1 − e−f (x))μ(dx).

This last statement is equivalent to vague convergence in (5.15). (See Problem 3.1 (p. 64.))

(ii) Here again we prove the result by showing that Laplace functionals converge.

We compute the Laplace functional for the quantity on the left side of (5.16):
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Ee
− 1

an

∑n
i=1 ǫXn,1

(f ) =
(

Ee
− 1

an
f (Xn,1)

)n

=

⎛
⎜⎝1 −

∫
E

(
1 − e

− 1
an

f (x)
)

nP[Xn,1 ∈ dx]
n

⎞
⎟⎠

n

,

and we claim that this converges to e−μ(f ), the Laplace functional of μ, iff

∫

E

(
1 − e

− 1
an

f (x)
)

nP [Xn,1 ∈ dx] → μ(f ). (5.18)

We show that (5.18) is equivalent to (5.17) as follows: Suppose (5.17) holds. On

one hand,

∫

E

(1 − e−f (x)/an)nP[Xn,1 ∈ dx] ≤
∫

E

f (x)
n

an

P [Xn,1 ∈ dx] → μ(f ),

so

lim sup
n→∞

∫

E

(1 − e−f (x)/an)nP [Xn,1 ∈ dx] ≤ μ(f ).

On the other hand,

∫

E

(1 − e−f (x)/an)nP [Xn,1 ∈ dx]

≥
∫

E

f (x)
n

an

P [Xn,1 ∈ dx] −
∫

E

f 2(x)

2an

n

an

P [Xn,1 ∈ dx]

= I + II.

Now I → μ(f ) from (5.17), and since f 2 ∈ C+
K(E), we have

II ∼ μ(f 2)

2an

→ 0

since an ↑ ∞. So

lim inf
n→∞

∫

E

(1 − e−f (x)/an)nP [Xn,1 ∈ dx] ≥ μ(f ),

providing the other half of the sandwich.

Conversely, let f ∈ C+
K(E), and suppose that f ≤ 1. Assuming that (5.18) is true,

we get

f/an ≥ 1 − e−f/an,
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leading to

lim inf
n→∞

∫

E

f (x)
n

an

P [Xn,1 ∈ dx] ≥ μ(f )

and
f

an

− f 2

2a2
n

≤ 1 − e−f/an,

so

lim sup
n→∞

∫

E

(
f (x)

an

− f 2(x)

2a2
n

)
nP[Xn,1 ∈ dx] ≤ μ(f ).

As before, we may show that

∫

E

f 2(x)

2a2
n

nP [Xn,1 ∈ dx] → 0. ⊓⊔

Preservation of weak convergence under mappings of the state space

Consider two nice state spaces E1 and E2 with a mapping T : E1 �→ E2 from one into

the other. A measure μ on (E1, E1) has an image T̂ (μ) on (E2, E2) given by the map

T̂ (μ) = μ ◦ T −1.

If T is a continuous point transformation, is T̂ : M+(E1) �→ M+(E2) continuous?

Note that if m ∈ Mp(E) is a point measure of the form
∑

i ǫxi
, then

T̂ (m) = m ◦ T −1 =
∑

i

ǫT (xi).

Continuity of T does not guarantee continuity of T̂ without a condition. We call con-

dition (5.19) the compactness condition.

Proposition 5.5. Suppose T : E1 �→ E2 is a continuous function such that

T −1(K2) ∈ K(E1) ∀K2 ∈ K(E2). (5.19)

(a) If μn
v→ μ0 in M+(E1), then

T̂ (μn) = μn ◦ T −1 v→ μn ◦ T −1 = T̂ (μ0) (5.20)

in M+(E2).
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(b) Furthermore, if T is continuous and (5.19) holds, if {ηn(·), n ≥ 0} is a family of
random measures in M+(E1) such that

ηn ⇒ η0,

then
T̂ (ηn) ⇒ T̂ (η0) (5.21)

in M+(E2).

Remark 5.2. If T is continuous and E1 is compact, then (5.19) is automatically satisfied.

In cases where E1 is not compact, a commonly employed strategy for constructing proofs

is to truncate E1 to a compact set, apply Proposition 5.5 to the convergence restricted

to the compact set, and then use a Slutsky argument to remove the truncation level.

Proof.

(a) Suppose μn
v→ μ0. Let f2 ∈ C+

K(E2). We must show that

μn ◦ T −1(f2) → μ0 ◦ T −1(f2). (5.22)

Unpack the notation:

μn ◦ T −1(f2) =
∫

E2

f2(e2)μn ◦ T −1(de2)

and using the change of variable formula or transformation theorem for integrals

[264, p. 135], this is

=
∫

E1

f2(T (e1))μn(de1).

What remains is to show that f2 ◦T ∈ C+
K(E1). Now f2 and T are both continuous,

so f2 ◦ T is continuous. Since f2 ∈ C+
K(E2), there exists K2 ∈ K(E2) such that

f2(e2) = 0 if e2 /∈ K2. So

f (T (e1)) = 0 if T (e1) /∈ K2,

that is,

f (T (e1)) = 0 if e1 /∈ T −1(K2).

From the hypothesis (5.19), T −1(K2) ∈ K(E1). So this says that f2 ◦ T is null off

a compact set. Thus f2 ◦ T ∈ C+
K(E1), and since μn

v→ μ0 in M+(E1), we have
∫

E1

f2(T (e1))μn(de1) →
∫

E1

f2(T (e1))μ0(de1),

which gives (5.22).
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(b) For f2 ∈ C+
K(E2), it is enough to show that Laplace functionals converge:

E(e−ηn◦T −1(f2)) → E(e−η0◦T −1(f2)). (5.23)

Again, we unpack the notation

E(e−ηn◦T −1(f2)) = E(e−ηn(f2◦T )),

and as in (a), the fact that f2 ◦ T ∈ C+
K(E1) and ηn ⇒ η0 imply convergence on

C+
K(E1) of the Laplace functionals. Thus

E(e−ηn(f2◦T )) → E(e−N0(f2◦T )) = E(e−N0◦T −1(f2)),

which is (5.23). ⊓⊔

5.4.2 A general construction of the Poisson process

Here is a general scheme for constructing a Poisson process with given mean measure μ.

Start by supposing that μ(E) < ∞. Define the probability measure F ,

F(dx) = μ(dx)/μ(E),

on E . Let {Xn, n ≥ 1} be iid random elements of E with common distribution F , and

let τ be independent of {Xn} with a Poisson distribution with parameter μ(E). Define

N =
{∑τ

i=1 ǫXi
if τ ≥ 1,

0 if τ = 0.

Then N is PRM(μ) since its Laplace functional is given in (5.11) with λ = μ(E), which

is of the correct form (5.12).

When the condition μ(E) < ∞ fails, we make a minor modification in the foregoing

construction: Decompose E into disjoint sets E1, E2, . . . so that E = ∪iEi , where each

Ei satisfies μ(Ei) < ∞ for each i. Let μi(dx) = μ(dx)1Ei
(x), let Ni be PRM(μi)

on E (do the construction just outlined), and arrange things so the collection {Ni} is

independent. Define N :=
∑

i Ni . N is PRM(μ) since

�N (f ) =
∏

i

�Ni
(f )

=
∏

i

exp

{
−
∫

Ei

(1 − e−f (x))μi(dx)

}
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= exp

{
−
∑

i

∫

E

(1 − e−f (x))μi(dx)

}

= exp

{
−
∫

E

(1 − e−f (x))
∑

i

μi(dx)

}

= exp

{
−
∫

E

(1 − e−f (x))μ(dx)

}

since
∑

i μi = μ. This completes the construction.

5.4.3 Augmentation, location-dependent marking

Given a Poisson process, recall that one can enlarge the dimension of the points by

appending independent marks and that this retains the Poisson structure in a product

space. In fact, the marks need not be independent of the Poisson points.

Proposition 5.6. Suppose
∑

n ǫXn is PRM(μ) on Mp(E1). Suppose we have a second
nice space (E2, E2) and K : E1 × E2 �→ [0, 1] is a transition function. This means
that K(·, A2) is a measurable function of the first variable for every fixed A2 ∈ E2, and
for every x ∈ E1, we have K(x, ·) is a probability measure on E2. Let {Ji} be random
elements of E2 that are conditionally independent given {Xn}; that is,

P[Ji ∈ A2|Xi, {Xj , j �= i}, {Jj , j �= i}] = K(Xi, A2), (5.24)

so that only Xi is relevant in the conditioning. Then the point process on E1 × E2,
∑

n

ǫ(Xn,Jn),

is PRM with mean measure

μ1(dx, dy) = μ(dx)K(x, dy).

So it is not necessary for {Jn} to be independent of {Xn}. Conditional independence

will do. If the distribution of Jn depends on the {Xi}, it must do so only through Xn

and not the other Xs.

Proof. We begin by first proving Proposition 5.3, which is the case in which the marks

{Jn} are independent of the points so that K(x, ·) = F(·), F being the distribution

of the J s. Assume initially that μ is finite. From the construction in Section 5.4.2,

we may, without loss of generality, assume that the PRM(μ) is of the form
∑τ

i=1 ǫYi
,

where τ , {Yn}, and {Jn} are independent, τ is a Poisson random variable with parameter
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μ(E1), and {Yn} are iid with common distribution μ(dx)/μ(E1). Then it follows that

{(Yn, Jn)} is iid in E1 × E2 with common distribution

μ(·)
μ(E1)

× F.

So from the construction of Section 5.4.2,

∑

n

ǫ(Xn,Jn)
d=

τ∑

i=1

ǫ(Yi ,Ji)

is PRM with mean measure μ(E1)μ(·)/μ(E1) × F = μ × F(·), as required.

If μ is not finite, then as in the construction of Section 5.4.2, we patch things together

by repeating the argument of the previous paragraph on partition sets of E1 where μ is

finite. We need an at most countable number of such partition sets that are disjoint and

exhaust E1.

Now for the proof of general case stated in Proposition 5.6. Write

K(x, A2) = P[J1 ∈ A2|X1 = x]

for the conditional distribution of J1. It is always possible to realize a distribution as a

function of a uniform random variable (see, for example, [23]). That is, there exists a

function, say, g(x, u), such that

K(x, A2) = P[g(x, U1) ∈ A2],

where we suppose that {Un} are iid U(0, 1) random variables, independent of {Xn}.
The impact of this transformation is that

{(Xn, Jn)} d= {Xn, g(Xn, Un)}.

We know from the proof of Proposition 5.3 that

∑

n

ǫ(Xn,Un)

is PRM with mean measure μ(dx) × LEB(dy)1[0,1](y). Therefore, from Proposi-

tion 5.2, we get that ∑

n

ǫ(Xn,Jn)
d=
∑

n

ǫ(Xn,g(Xn,Un))

is PRM(μ1). To compute μ1, define T : E1 × [0, 1] �→ E1 × E2 via T (x, u) =
(x, g(x, u)). Then the mean measure μ1 is (A1 ∈ E1, A2 ∈ E2)
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μ1(A1 × A2) = (μ × LEB) ◦ T −1(A1 × A2)

=
∫

[x∈A1]
μ(dx) LEB{u ∈ [0, 1] : g(x, u) ∈ A2}

=
∫

[x∈A1]
μ(dx)P [g(x, U1) ∈ A2]

=
∫

A1

K(x, A2)μ(dx). ⊓⊔

There are alternative proofs using Laplace functionals and induction. See [260,

p. 135].

5.5 Lévy processes

Poisson processes serve as the building blocks for many heavy-tailed models, and pride

of place goes to the Itô construction of Lévy processes discussed in this section. The

next section will discuss extremal processes. Crudely speaking, Lévy processes can be

considered as summation functionals applied to PRMs, while extremal processes can

be considered as maximal functionals applied to PRMs.

I learned much about the Itô construction from [172–174]. Other fine references

include [4, 19, 273, 274].

5.5.1 Itô’s construction of Lévy processes

We work in the space E = R
d \ {0} with generic element u = (u(1), . . . , u(d)) and use

the Euclidean metric

‖u‖ =

√√√√
d∑

i=1

(u(i))2, u ∈ E.

Lévy measure

We begin by assuming that ν is a measure on E satisfying the following:

(i) For every x > 0,

ν{u ∈ E : ‖u‖ > x} < ∞. (5.25)

(ii)
∫

0<‖x‖≤1 ‖x‖2ν(dx) < ∞.

In fact, combining the two properties allows recasting of (ii) as
∫

0<‖x‖≤c

‖x‖2ν(dx) < ∞ ∀c ∈ (0,∞). (5.26)
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Measures on E satisfying (i) and (ii) are called Lévy measures. When d = 1, if

ν(−∞, 0) = 0, the resulting process that we will construct will be called totally skewed
to the right, while if ν(0,∞) = 0, the resulting process is called totally skewed to
the left.

Let N be PRM(LEB×ν) on [0,∞) × E. Represent N as

N =
∑

k

ǫ(tk,j k)
.

In the simplest cases, we can define a Lévy process

X(t) = (X(1)(t), . . . , X(d)(t))

by

X(t) :=
∑

tk≤t

j k, t ≥ 0,

but in general, we have to be careful to first center the summands to zero expectation

in order for the infinite sum to converge.

Compound Poisson representations

Fix t and let I ⊂ E be a set bounded away from 0. Define

SI (t) =
∑

tk≤t
j k∈I

j k =
∫∫

[0,t]×I

uN(ds, du).

From the construction of a PRM with finite mean measure as a sprinkling of a Poisson

number of iid random elements into the space E, we have the restriction of N to [0, t]×I ,

representable as

N∣∣[0,t]×I

d=
τ∑

1

ǫ(Tk,J k), (5.27)

where

(i) {(Tk, J k), k ≥ 1} are iid pairs,

(ii) Tk and J k are independent of each other,

(iii) Tk is uniformly distributed on (0, t), and J k has distribution ν
ν(I )

restricted to I .

(iv) τ is independent of {(Tk, J k)}, and τ is a Poisson random variable with parameter

tν(I )).
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It follows from representation (5.27) that

SI (t)
d=

τ∑

1

J k (5.28)

is a compound Poisson random vector and

E(SI (t)) = E(τ )E(J 1) = tν(I )

∫

I

x
ν(dx)

ν(I )
,

that is,

E(SI (t)) = t

∫

I

xν(dx), (5.29)

which is finite. Furthermore, the characteristic function can be computed: For ζ ∈ R
d

and x ∈ R
d , write ζ · x =

∑d
i=1 ζ (i)x(i). Then we have from (5.28),

Eeiζ ·SI (t) = Eei
∑τ

k=1 ζ ·J k =
∞∑

j=0

(Eeiζ ·J 1)jP(τ = j)

= exp{tν(I )(Eeiζ ·J 1 − 1)}

= exp{tν(I )

∫

I

(eiζ ·x − 1)ν(dx)/ν(I )},

and so we get

Eeiζ ·SI (t) = exp

{
t

∫

I

(eiζ ·x − 1)ν(dx)

}
. (5.30)

Variance calculations

Suppose, in addition to being bounded away from 0, I also satisfies

I ⊂ {x : ‖x‖ ≤ c}

for some c > 0. Recalling (5.26) and again using (5.28), we have, for l = 1, 2, . . . , d,

Var(S
(l)
I (t)) = Var

(
τ∑

i=1

J
(l)
i

)
= E(τ )E(J

(l)
1 )2 (5.31)

= tν(I )

∫

I

(x(l))2ν(dx)/ν(I )

= t

∫

I

(x(l))2ν(dx), (5.32)



5.5 Lévy processes 149

which results from a standard fact about compound Poisson random variables. The

calculation used to verify (5.31) is reviewed in the next lemma, which can be skipped

by the impatient or the knowledgeable. Note that

∫

I

(x(l))2ν(dx) ≤
∫

I

‖x‖2ν(dx) ≤
∫

{x:‖x‖≤c}
‖x‖2ν(dx) < ∞ (5.33)

from assumption (5.26).

Lemma 5.1. Suppose τ is a Poisson distributed random variable with parameter λ that
is independent of the iid random variables {Jk, k ≥ 1}. Then

Var

(
τ∑

k=1

Jk

)
= λE(J 2

1 ).

Proof. This is a standard calculation using the formula

Var

(
τ∑

k=1

Jk

)
= Var

(
E

(
τ∑

i=1

Jk|τ
))

+ E

(
Var

(
τ∑

i=1

Jk|τ
))

and the fact that for a Poisson distributed τ , the mean and variance are the same.

Alternatively, one can compute E(
∑τ

k=1 Jk)
2 by opening the square into a double sum

over i, j , separating the double sum into terms where i = j and i �= j and then condition

on τ . ⊓⊔

Process definition

Suppose we have a sequence εn ↓ 0 such that 1 = ε0 > ε1 > ε2 > . . . . Define

Ij+1 := {x ∈ E : εj+1 < ‖x‖ ≤ εj }, j = 0, 1, 2, . . . ,

and the stochastic process

Xj+1(t) := SIj+1(t) − E(SIj+1(t))

=
∫∫

0≤s≤t
u∈Ij+1

uN(ds, du) − t

∫

u∈Ij+1

uν(du). (5.34)

Note from (5.32) that for l = 1, 2, . . . , d,

Var(X
(l)
j+1(t)) = t

∫

Ij+1

(u(l))2ν(du).
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Also, for l = 1, . . . , d,

∞∑

j=0

Var(X
(l)
j+1(t)) ≤ t

∫

{u:‖u‖≤1}
‖u‖2ν(du) < ∞

from (5.33). Recall the Kolmogorov convergence criterion [24], [264, Section 7.3] for

sums of independent random variables: If {ηk} are independent random variables such

that
∑

k Var(ηk) < ∞, then
∑

k(ηk − E(ηk)) converges almost surely.

Finally, set

X0(t) =
∑

tk≤t

j k1[‖j k‖ > 1] =
∫∫

[0,t]×{x:‖x‖>1}
uN(ds, du).

Note this is a finite sum since

E(N([0, t] × {x : ‖x‖ > 1})) = tν{x : ‖x‖ > 1} < ∞,

and hence N([0, t] × {x : ‖x‖ > 1}) < ∞ almost surely.

We define

X(t) = X0(t) +
∞∑

j=0

Xj+1(t) (5.35)

=
∫∫

s≤t
‖u‖>1

uN(ds, du) +
∞∑

j=0

[∫∫
s≤t

u∈Ij+1

uN(ds, du) −
∫∫

s≤t
u∈Ij+1

udsν(du)

]

and call (X(t), t ≥ 0) a Lévy process with Lévy measure ν. Note the series converges

because of the Kolmogorov convergence criterion.

The equivalent representation,

X(t) =
∫∫

s≤t
‖u‖>1

uN(ds, du)

+ lim
ǫ↓0

[∫∫
s≤t

‖u‖∈(ǫ,1]
uN(ds, du) −

∫∫
s≤t

‖u‖∈(ǫ,1]
udsν(du)

]
, (5.36)

is sometimes called the Itô representation of the Lévy process.

5.5.2 Basic properties of Lévy processes

In this section, we survey some basic properties of Lévy processes that come from the

construction in a fairly straightforward manner.



5.5 Lévy processes 151

The characteristic function of X(t)

To compute the characteristic function of X(t), note that all the summands in (5.35) are

independent, and therefore for ζ ∈ R
d ,

Eeiζ ·X(t) = Eeiζ ·X0(t)

∞∏

j=0

Eeiζ ·Xj+1(t);

using (5.30), we get

= exp

{
t

∫

‖x‖>1

(eiζ ·x − 1)ν(dx)

}

×
∞∏

j=0

exp

{
t

∫

Ij+1

(eiζ ·x − 1)ν(dx) − i

∫

Ij+1

xν(dx)

}

= exp

⎧
⎨
⎩t

∫

‖x‖>1

(eiζ ·x − 1)ν(dx) + t

∞∑

j=0

∫

Ij+1

(eiζ ·x − 1 − iζ · x)ν(dx)

⎫
⎬
⎭

= (φ(ζ ))t ,

where

φ(ζ ) = Eeiζ ·X(1)

= exp

{∫

‖x‖>1

(eiζ ·x − 1)ν(dx) +
∫

‖x‖∈(0,1]
(eiζ ·x − 1 − iζ · x)ν(dx)

}
. (5.37)

Independent increment property of X(t)

The process {X(t), t ≥ 0} has independent increments that means that for 0 < s ≤ t ,

X(t) − X(s) is independent of the σ -algebra generated by {X(v), v ≤ s}.
The reason for the independent increment property is that the Poisson random mea-

sure on which X(·) is built has the independence property of complete randomness

given in item 2 on p. 120. Denote the σ -algebra generated by a collection of random

elements {ξt , t ∈ T } by σ(ξt , t ∈ T ), and let E be the σ -algebra of Borel subsets of E.

The independence property of PRM N means that

σ {N((s1, s2] × A), 0 ≤ s1 < s2 ≤ s, A ∈ E}

and

σ {N([t1, t2] × B), s < t1 ≤ t2 ≤ t, B ∈ E}
are independent. The variable X(t) − X(s) is measurable with respect to the second

σ -algebra, and σ(X(v), v ≤ s) is a sub-σ -algebra of the first.
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Stationary increment property

The process {X(t), t ≥ 0} has stationary increments; that is, for s > 0,

{X(t + s) − X(s), t ≥ 0} d= {X(t), t ≥ 0},

where
d= means equality of the finite-dimensional distributions. Recall that the distri-

bution of a PRM is only dependent on the mean measure. Define Tt : [0,∞) × E �→
[t,∞) × E by

Tt (s, x) = (s + t, x),

and define

Nt = N ◦ T −1
t .

If N =
∑

k ǫ(tk,j k)
is PRM(LEB×ν) in Mp([0,∞) × E), then Nt =

∑
k ǫ(tk+t,j k)

is PRM(LEB×ν) in Mp([t,∞) × E). This follows from Lebesgue measure being

translation invariant. Now

X(t + s) − X(s) =
∫∫

‖u‖>1
τ∈(s,s+t]

uN(dτ, du)

+ lim
ε↓0

⎡
⎣
∫∫

‖u‖∈(ε,1]
τ∈(s,s+t]

uN(dτ, du) − t

∫

ε<‖u‖≤1

uν(du)

⎤
⎦

=
∫∫

‖u‖>1
τ∈(0,t]

uN(dτ + s, du)

+ lim
ε↓0

⎡
⎣
∫∫

‖u‖∈(ε,1]
τ∈(0,t]

uN(dτ + s, du) − t

∫

ε<‖u‖≤1

uν(du)

⎤
⎦

d=
∫∫

‖u‖>1
τ∈[0,t]

uN(dτ, du)

+ lim
ε↓0

⎡
⎣
∫∫

‖u‖∈(ε,1]
τ∈(0,t]

uN(dτ, du) − t

∫

ε<‖u‖≤1

uν(du)

⎤
⎦

= X(t).

Stochastic continuity of X(·)

Stochastic continuity means that if sn → t , then X(sn)
P→ X(t). To show this, it

suffices to show that X(t) − X(sn)
P→ 0. Suppose for simplicity that t > sn. Then

because of stationary increments,
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Eeiζ ·(X(t)−X(sn)) = Eeiζ ·X(t−sn) = (φ(ζ ))t−sn

→ (φ(ζ ))0 = 1 (n → ∞),

and hence by the continuity theorem for characteristic functions, X(t) − X(sn)
P→ 0

[24, 264].

Subordinators

If ν satisfies the stronger condition

∫

‖x‖≤1

‖x‖ν(dx) < ∞ (5.38)

rather than just
∫
‖x‖≤1 ‖x‖2ν(dx) < ∞, as required by the definition of a Lévy mea-

sure, then

X0(t) +
∞∑

j=0

SIj+1(t)

converges absolutely almost surely without centering, since by the triangle inequality

∞∑

j=0

E‖SIj+1(t)‖ ≤
∞∑

j=0

E
∑

tk≤t

‖j k‖1[‖j k‖ ∈ Ij+1]

=
∞∑

j=0

t

∫

Ij+1

‖x‖ν(dx) = t

∫

(0,1]
‖x‖ν(dx) < ∞.

In this case,

Ee
iζ ·(X0(t)+

∑∞
j=0 SIj+1

(t)) = exp

{
t

∫

‖x‖>0

(eiζ ·x − 1)ν(dx)

}
.

If the dimension d = 1 and ν(−∞, 0) = 0, so that all jks are positive, then

∞∑

j=0

SIj+1(t) + X0(t)

is nondecreasing and is called a subordinator or an increasing Lévy process.
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Stable Lévy motion

Suppose d = 1, 0 < α < 2, 0 ≤ p ≤ 1, and q = 1 − p, and define the Lévy measure

να(dx) = pαx−α−1dx1(0,∞)(x) + qα|x|−α−1dx1(−∞,0). (5.39)

The Lévy process with this Lévy measure is called stable Lévy motion and is denoted

by Xα(·).
Stable Lévy motion has the self-similarity property that for any c > 0,

X(c·) d= c1/αX(·), (5.40)

where equality in distribution means equality of finite-dimensional distributions.

To verify the self-similarity, we suppose that

∑
ǫ(tk,jk) = PRM(LEB×να).

For c > 0, ∑
ǫ
(
tk
c
,jk)

= PRM(c LEB×να),

but so is ∑
ǫ(tk,c

1/αjk)
= PRM(c LEB×να),

and therefore ∑

k

ǫ
(
tk
c
,jk)

d=
∑

k

ǫ(tk,c
1/αjk)

.

X(c·) is built on the first Poisson process and c1/αX(·) on the second, so that (5.40)

follows.

Symmetric α-stable Lévy motion

A special case of Section 5.5.2 is called symmetric α-stable motion: If p = q = 1/2,

then να given in (5.39) is symmetric, which means that

να(a, b] = να([−b,−a)), 0 < a < b.

The characteristic function is real, and therefore X(t)
d= −X(t) and

φα(ζ ) = EeiζXα(t) = e−ct |ζ |α , ζ ∈ R, (5.41)

for some c > 0.

We verify (5.41). For ζ > 0, we get from (5.37) that twice the log characteristic

function of Xα(t) is (remember that p = q = 1
2 )
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2

[∫

|x|>1

(eiζx − 1)να(dx) +
∫

0<|x|≤1

(eiζx − 1 − iζx)να(dx)

]

=
∫ ∞

x=1

(eiζx − 1)αx−α−1dx +
∫ −1

x=−∞
(eiζx − 1)α|x|−α−1dx

+
∫

0<x≤1

(eiζx − 1 − iζx)αx−α−1dx

+
∫

−1≤x<0

(eiζx − 1 − iζx)α|x|−α−1dx

=
∫ ∞

1

(eiζx + e−iζx − 2)αx−α−1dx +
∫ 1

0

(eiζx + e−iζx − 2)αx−α−1dx.

Making the change of variable y = ζx, we get

= ζα

∫ ∞

0

(eiy + e−iy − 2)αy−α−1dy

= ζα

∫ ∞

0

2(cos y − 1)αy−α−1dy = −cζα.

5.5.3 Basic path properties of Lévy processes

Let D([0,∞), R
d) be the space of R

d -valued functions on [0,∞) that are right contin-

uous and have finite left-hand limits on (0,∞). Also, recall that two R
d -valued random

processes X(·) and Y (·) are versions if

P[X(t) = Y (t)] = 1 for all t .

This, of course, assumes that X(·) and Y (·) are defined on the same probability space.

Theorem 5.4. If X(·) is a Lévy process in R
d with Lévy measure ν, there is a version

Y (·) with almost all paths in D([0,∞), R
d).

To prove this, it suffices to suppose that d = 1, work in D[0,∞), and prove that the

infinite series used in the definition of the Lévy process converges almost surely in a

stronger sense than previously considered in (5.35) (p. 150), which was only for a fixed

time point t . The stronger sense is uniform convergence on compact t-sets. To review:

For functions fn : [0,∞) �→ R, we say that fn converges uniformly on compact sets,

denoted by fn
uc→f0, if for any k,

sup
0≤x≤k

|fn(x) − f0(x)| → 0.

This is also called local uniform convergence.

The next result shows D[0,∞) is closed under local uniform convergence.
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Lemma 5.2. Suppose for each n ≥ 1 that xn(·) ∈ D[0,∞) and that xn
uc→x0. Then it

follows that x0 ∈ D[0,∞).

Proof. Start by assuming tj ↓ t . Then for any m,

|x0(tj ) − x0(t)| ≤ |x0(tj ) − xm(tj )| + |xm(tj ) − xm(t)| + |xm(t) − x0(t)|,

and for k > t , this is eventually bounded above by

≤ 2 sup
0≤s≤k

|x0(s) − xm(s)| + |xm(tj ) − xm(t)|.

Given ε > 0, choose m0 so large that

2 sup
0≤s≤k

|x0(s) − xm0(s)| ≤ ε/36.

This is possible by local uniform convergence. Then having chosen m0, and using the

fact that xm0 ∈ D[0,∞), we may pick j0 such that for j ≥ j0,

|xm0(tj ) − xm0(t)| ≤ ε/36,

which means that for j ≥ j0,

|x0(tj ) − x0(t)| ≤ ε/18.

Thus x0(·) is right continuous.

If tj ↑ t , a similar argument shows that {x(tj )} is Cauchy and hence convergent.

The limit is x(t−) by definition. ⊓⊔

To prove Theorem 5.4, define for k = 2, 3, . . . ,

Tk(t) =
∫∫

|u|> 1
k

0≤s≤t

uN(ds, du) − t

∫

1
k
<|u|≤1

uν(du). (5.42)

The construction of the Lévy process proved that for each t , as k → ∞,

lim
k→∞

Tk(t) = X(t)

almost surely in R. The following result proves Theorem 5.4.

Proposition 5.7. For a Lévy process X(·) in R built from the PRM(LEB×ν),

N =
∑

k

ǫ(tk,jk);

the approximation (5.42) has the following properties:
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Property 1. Tk(·) has almost all paths in D[0,∞).

Property 2. There exists T∞(·) with almost all paths in D[0,∞) such that for any
positive K ,

lim
k→∞

sup
0≤s≤K

|Tk(s) − T∞(s)| = 0,

almost surely.

This T∞(·) is the desired version of X(·) in D[0,∞).

Proof of Property 1. Obviously, t
∫

1
k
<|u|≤1 uν(du) is continuous in t and hence in

D[0,∞), so we only have to show for k fixed that
∫∫

|u|>1/k
0≤s≤K

uN(ds, du) =
∑

tk≤t

jk1[|jk |>k−1] =: Vk(t)

is a nice function of t . For any n ≥ 1,

P [N [0, n] × {y : |y| > k−1} < ∞] = 1,

and therefore

�n = {ω : the set {(tk(ω), jk(ω)) : tk(ω) ≤ n, |jk(ω)| > k−1} is finite}

has probability 1. For ω ∈ �n,

Vk(t, ω) ∈ D[0, n],

and P(�n) = 1. So P(∩n�n) = 1, and for ω ∈ ∩n�n,

Vk(t, ω) ∈ D[0,∞). ⊓⊔

Proof of Property 2. Recall Kolmogorov’s inequality [24]. If {ξj } are independent ran-

dom variables, with Var(ξj ) < ∞, then for any ε > 0 we have

P

⎡
⎣ sup

j≤N

∣∣∣∣∣∣

j∑

i=1

ξi − E

⎛
⎝

j∑

i=1

ξi

⎞
⎠
∣∣∣∣∣∣
> ε

⎤
⎦ ≤

Var
(∑N

1 ξi

)

ε2
. (5.43)

We need the following simple variant.

Lemma 5.3 (continuous version of Kolmogorov’s inequality). Let {Z(t), t ≥ 0} be
a Lévy process with almost all paths in D[0,∞) and satisfying Var(Z(1)) < ∞. Then
for any N and any ε > 0, we have

P

[
sup

0≤t≤N

|Z(t) − E(Z(t))| > ε

]
≤ Var(Z(N))

ε2
.
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Proof. Think of Z(
jN
2n ), j = 1, . . . , 2n, as successive sums of independent random

variables. Then we have

P

[
sup

0≤j≤2n

∣∣∣∣Z
(

jN

2n

)
− EZ

(
jN

2n

)∣∣∣∣ > ε

]
≤ Var(Z(N))

ε2
. (5.44)

Let n → ∞. The left side of (5.44) converges upward to

P

[
sup

0≤s≤N

|Z(s) − E(Z(s))| > ε

]
.

Note we used that E(Z(s)) is continuous in s, which follows from the fact that

E(Z(s)) = sE(Z(1)),

which is a consequence of the stationary, independent increments. We also have

Var(Z(N)) = N Var(Z(1))

for the same reason. ⊓⊔

We continue with the proof of Property 2 of Proposition 5.7. We seek a set �

with P(�) = 1 such that if ω ∈ �, then for any K , the sequence {Tk(·, ω), k ≥ 1} is

Cauchy with respect to uniform convergence on [0, K]. If we find such a �, we have

limk→∞ Tk(·, ω) exists uniformly on compacta for ω ∈ �, which is the desired result.

For x ∈ D[0,∞), write ‖ x ‖K= sup0≤s≤K |x(s)|.
Pick and fix K . To show the Cauchy property, we prove that

YN = sup
m≥N
n≥N

‖ Tm − Tn ‖K
a.s.→ 0, (5.45)

as N → ∞. Since {YN } is nonincreasing, it suffices to show that YN
P→ 0 [24, 264],

so we aim to show that

lim
N→∞

P

⎡
⎢⎣ sup

m≥N
n≥N

‖ Tm − Tn ‖K> ε

⎤
⎥⎦ = 0. (5.46)

This is the same as showing that

lim
N→∞

lim
M→∞

P

⎡
⎢⎣ sup

M≥m≥N
M≥n≥N

‖ Tm − Tn ‖K> ε

⎤
⎥⎦ = 0, (5.47)
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and since

‖ Tm − Tn ‖K≤‖ Tm − TN ‖K + ‖ TN − Tn ‖K ,

it suffices to show that

lim
N→∞

lim
M→∞

P

[
sup

M≥n≥N

‖ Tn − TN ‖K> 2ε

]
= 0. (5.48)

The triangle inequality implies that

‖ TM − TN ‖K≥‖ Ti − TN ‖K − ‖ TM − Ti ‖K ,

and hence

M⋃

i=N+1

⎡
⎣

i−1∨

j=N

‖Tj − TN‖K ≤ 2ε, ‖Ti − TN‖K > 2ε, ‖TM − Ti‖K ≤ ε

⎤
⎦

⊂ [‖TM − TN‖K > ε].

Note that the union is a disjoint union since we decompose according to the first index

where a difference exceeds 2ǫ. Therefore,

P[‖ TM − TN ‖K> ε] (5.49)

≥
M∑

i=N+1

P

⎡
⎣

i−1∨

j=N

‖Tj − TN‖K ≤ 2ε, ‖Ti − TN‖K > 2ε, ‖TM − Ti‖K ≤ ε

⎤
⎦

=
M∑

i=N+1

P

⎡
⎣

i−1∨

j=N

‖Tj − TN‖K ≤ 2ε, ‖Ti − TN‖K > 2ε

⎤
⎦P[‖TM − Ti‖K ≤ ε].

Note that we have used the fact that for m > N ,

Tm(t) − TN (t) =
∫

1
m

<|u|≤ 1
N

0≤s≤t

uN(ds, du) − t

∫

1
m

<|u|≤ 1
N

uν(du),

so TN+1 − TN , . . . , Ti−1 − TN , Ti − TN involve points in the horizontal strip with

boundaries at (1
i
, 1

N
], while TM − Ti uses points in the disjoint strip ( 1

M
, 1

i
]; therefore

TM − Ti is independent of TN+1 − TN , . . . , Ti − TN .

Finally, we have

P[‖ TM − Ti ‖K≤ ε] = 1 − P[‖ TM − Ti ‖K> ε]

≥ 1 − Var(TM(K) − Ti(K))

ε2
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(by Kolmogorov’s inequality as given in Lemma 5.3 (p. 157))

= 1 − Kε−2

∫

1
M

<|u|< 1
i

u2ν(du)

≥ 1 − Kε−2

∫

1
M

<|u|≤ 1
N

u2ν(du)

≥ 1 − Kε−2

∫

0<|u|≤ 1
N

u2ν(du) → 1 (N → ∞)

since
∫
|u|∈(0,1] u

2ν(du) < ∞. Pick N0 so large that for N ≥ N0, we have that for

N ≤ i ≤ M

P[‖ TM − Ti ‖K≤ ε] ≥ 1

2
.

From (5.49)

2P[‖ TM − TN ‖K> ε]

≥
M∑

i=N+1

P

⎡
⎣

i−1∨

j=N

‖Tj − TN‖K ≤ 2ε, ‖Ti − TN‖K > 2ε

⎤
⎦

= P

⎡
⎣

M∨

n=N+1

‖Tn − TN‖K > 2ε

⎤
⎦ ,

and again applying Kolmogorov’s inequality, we get

P

⎡
⎣

M∨

n=N+1

‖Tn − TN‖K > 2ε

⎤
⎦ ≤ 2P[‖TM − TN‖K > ε]

≤ 2

ε2
Var(TM(K) − TN (K)) = 2K

ε2

∫

1
M

<|u|≤ 1
N

u2ν(du).

This gives (5.48) and (5.45) follows. Let �K be the set of probability 1 on which (5.45)

holds. Then � =
⋂

K∈Z+ �K is a set of probability 1 on which ‖ Tm − Tn ‖K→ 0

as m, n → ∞ for any K and therefore on which uniform convergence takes place for

any K . ⊓⊔

5.6 Extremal processes

Extremal processes are another simple class of processes derived from Poisson random

measures.

References for this section include [11, 82–84, 119–122, 244–247, 257–260, 276–

278, 291, 294–296].
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5.6.1 Construction

In what follows, vector notation relies on the convention that operations on vectors are

performed componentwise. Usage should be self-explanatory; Appendix 10 (p. 359)

collates conventions and notations.

For simplicity, take E = [0,∞)d . Let ν be a measure on E satisfying

ν{x ∈ E : ‖x‖ > δ} < ∞ (5.50)

for any δ > 0. Suppose that

N =
∑

k

ǫ(tk,j k)

is PRM(LEB×ν) on [0,∞) × E, and define the extremal process generated by N as

Y (t) =
∨

tk≤t

j k, t > 0. (5.51)

Then for x ≥ 0, x �= 0, and any t ≥ 0,

P[Y (t) ≤ x] = P[N((0, t] × [0, x]c) = 0] = e−tν([0,x]c)

=: F t (x). (5.52)

Notice that for ‖x‖ > 0, ν([0, x]c) < ∞ from (5.50), and so F is not identically 0 and

converges to 1 as ∧d
i=1x

(i) → ∞.

The distribution F(x) constructed this way is max-infinitely divisible, which means

that for any t , F t is a multivariate distribution function [11, 260]. The measure ν is

called the exponent measure. (Conversely, any max-infinitely divisible distribution has

an exponent measure.)

5.6.2 Discussion

The extremal process Y (·) given by (5.51) is a stochastically continuous Markov jump

process that is constant between jump times. It is nondecreasing in each component,

and as constructed in (5.51), the paths are almost surely in D([0,∞), R
d).

When d = 1 and F(x) given in (5.52) is continuous, much is known about the

structure of the process. For instance, we have the following:

1. Jump times of the process form a Poisson process with mean measure having density

x−1dx, x > 0.

2. The range of the process is also a Poisson process with mean measure having

distribution function V (x) := − log(− log F(x)), so that the mean measure of the

interval (a, b] is V (b) − V (a).
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3. Y←(x), x > 0 is a process with independent increments.

For details, see, for example, [260, Chapter 4.3].

One final comment: When d = 1 and the exponent measure is να for some α > 0

given by

να(x,∞] = x−α, x > 0,

we have

F(x) = exp{−x−α} = �α(x), x > 0.

This is the Fréchet distribution, one of the classical extreme-value distributions given

in Section 2.2.1 (p. 23).

5.7 Problems

5.1 (Thinning). Suppose
∑

n ǫXn is a Poisson process on the state space E with mean

measure μ. Suppose we inspect each point independently of others and decide with

probability p to retain the point and with probability 1 − p = q to delete the point.

Let Nr be the point process of retained points and Nd be the point process of deleted

points. Then Nr , Nd are independent Poisson processes with mean measures pμ and

qμ, respectively. Analyze this using augmentation by iid Bernoulli random variables

having values {±1} with probabilities p, q.

Generalize: Previously, we categorized or marked the points in two ways: retained

or deleted. However, we could just as well randomly assign the points to any of

d > 1 categories, thereby splitting a Poisson input stream into d independent Poisson

substreams. The Bernoulli random variables need to be replaced by multinomial random

variables with d cells.

5.2 (The order statistics property). The construction in Section 5.4.2 proves that

PRM(μ) exists and also gives information about the distribution of the points: Condi-

tional on there being n points in a region A with μ(A) < ∞, these points are distributed

as n iid random elements of A with common distribution F(dx) = μ(dx)/μ(A). Show

that when E = [0,∞), this yields the order statistics property for a homogeneous Pois-

son process: If N =
∑∞

n=1 ǫŴn is a homogeneous Poisson process on [0,∞) with rate

λ, then conditional on

[N((0, t]) = n],
the points of N in [0, t] in increasing order are distributed as the order statistics from a

sample of size n from the uniform distribution U(0, t) on [0, t]; that is,

(Ŵ1, . . . , Ŵn|N [0, t] = n)
d= (U1:n, . . . , Un:n).
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5.3 (Weak convergence of Poisson random measures). Suppose for each n ≥ 0 that

Nn is PRM(μn) on E, where μn is a Radon measure on E. Then as n → ∞,

Nn ⇒ N0

if and only if

μn
v→ μ0

in M+(E). (Laplace functionals make short work of this.)

5.4. Suppose ν is a measure on R with

Q(x) := ν(x,∞) < ∞ ∀x ∈ R.

Define for y > 0,

Q←(y) = (1/Q)←(y−1).

Suppose {Ŵn, n ≥} are successive sums of iid unit exponential random variables.

1. Show that ∑

n

ǫQ←(Ŵn)

is PRM(ν) on R. What is the distribution of the largest point of the point process?

2. Suppose {Un, n ≥ 1} are iid U(0, 1) random variables that are independent of

{Ŵn, n ≥}. Show that ∑

n

ǫ(Un,Q←(Ŵn))

is PRM(LEB×ν) on [0, 1] × R. Give a representation of the extremal process

generated by this Poisson process.

5.5.

(a) Suppose
∑∞

i=1 ǫyi
∈ Mp(E). Let {ξi, i ≥ 1} be iid Poisson random variables, each

with mean 1 . Compute the Laplace functional of

∑

i

ξiǫyi
.

This is the point process in which, for each i, a Poisson number of points is assigned

to location yi



164 5 The Poisson Process

(b) Now suppose
∑

i ǫYi
is PRM(ν) on E, and let {ξi, i ≥ 1} be iid Poisson random

variables, each with mean 1, and independent of {Yi}. Compute the Laplace func-

tional of ∑

i

ξiǫYi
.

5.6 (Variant). As a variant of Problem 5.5, suppose that

m =
∑

i

ǫyi
∈ Mp(E)

and that {ξn} are iid nonnegative integer-valued random variables with Laplace trans-

form

φ(λ) = Ee−λξ1, λ > 0.

Compute the Laplace functional at f for

∑

i

ξiǫyi
,

and express the answer in terms of φ, f , and m.

5.7 (Largest-jump functional [247]). Suppose {X(t), t ≥ 0} is a one-dimensional

Lévy process with Lévy measure ν and paths in D[0,∞). Define

Y (t) = sup{X(s) − X(s−) : s ≤ t;X(s) − X(s−) > 0}

to be the largest positive jump of X(·) in [0, t]. Show that Y (·) is an extremal process,

and compute P[Y (t) ≤ x] for x > 0.

5.8 (Cluster processes). Let {Ŵj , j ≥ 1} be the points of a homogeneous Poisson

process on R+, and suppose {Y (k)
i , i ≥ 1, k ≥ 1} are iid, nonnegative random variables

independent of {Ŵj , j ≥ 1}. Set S
(k)
0 = 0 and

S(k)
n =

n∑

i=1

Y
(k)
i , n ≥ 1.

Finally, let {τ (k), k ≥ 1} be iid nonnegative integer-valued random variables indepen-

dent of {Ŵi} and {Y (k)
i }.

A Poisson cluster process consists of points determined by Poisson “centers’’ and

points sprinkled around a Poisson center according to some rule.
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1. Define

N1 =
∞∑

k=1

τ (k)∑

n=0

ǫ
Ŵk+S

(k)
n

consisting of Poisson points trailed by a renewal process terminated at a random

index. Compute the Laplace functional. (Here we count the Poisson points.)

2. Define the Neyman–Scott model (see [231] for background) by

N2 =
∞∑

k=1

τ (k)∑

n=1

ǫ
Ŵk+Y

(k)
n

consisting of Poisson points trailed by order statistics. (Here we do not count the

Poisson points.) Compute the Laplace functional; presumably the answer comes

out in terms of the generating function of the τ s.
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Multivariate Regular Variation and the Poisson Transform

This chapter discusses the relationship between (multivariate) regular variation and the

Poisson process. We begin with a survey of multivariate regular variation as it applies

to distributions. The goal is to make the results of Theorem 3.6 applicable to higher

dimensions.

For other treatments and additional material, see [13, 90, 220, 308–312].

6.1 Multivariate regular variation: Basics

We begin by discussing regular variation of functions and then move to measures.

6.1.1 Multivariate regularly varying functions

A subset C ⊂ R
d is called a cone if whenever x ∈ C, then also tx ∈ C for any t > 0. A

function h : C �→ (0,∞) is monotone if it is either nondecreasing in each component

or nonincreasing in each component. For h nondecreasing, this is equivalent to saying

that whenever x, y ∈ C and x ≤ y, we have h(x) ≤ h(y).

Suppose h ≥ 0 is a measurable function defined on C. Suppose 1 = (1, . . . , 1) ∈ C.

Call h multivariate regularly varying with limit functionλ, providedλ(x) > 0 forx ∈ C,

and for all x ∈ C, we have

lim
t→∞

h(tx)

h(t1)
= λ(x). (6.1)

More properly, this should be called regular variation at ∞. Note that λ(1) = 1. Fix

x ∈ C and define U : (0,∞) �→ [0,∞) by U(t) = h(tx). For any s > 0,

lim
t→∞

U(ts)

U(t)
= lim

t→∞
h(tsx)

h(tx)
= lim

t→∞
h(tsx)

h(t1)
/
h(tx)

h(t1)
= λ(sx)

λ(x)
.
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From Proposition 2.3, we have for some ρ(x) ∈ R that U ∈ RVρ(x) and

λ(sx)

λ(x)
= sρ(x).

In the next paragraph, we verify that ρ does not depend on x, and thus we conclude

from this simple scaling argument that λ(·) is homogeneous:

λ(sx) = sρλ(x), s > 0, x ∈ C. (6.2)

Why is ρ(x) constant in x? For x, y ∈ C, we have for any s > 0,

sρ(y) = lim
t→∞

h(tsy)

h(ty)
= lim

t→∞

h(tsy)
h(tsx)

h(ty)
h(tx)

· h(tsx)

h(tx)

=
λ(y)
λ(x)

λ(y)
λ(x)

· sρ(x) = sρ(x).

This is true for any s > 0, and hence

ρ(x) = ρ(y).

Thus reassured, we note that (6.1) could be rephrased as h is multivariate regularly
varying with limit function λ if there exists V : (0,∞) �→ (0,∞) with V ∈ RVρ for

some ρ ∈ R such that

lim
t→∞

h(tx)

V (t)
= λ(x) ∀x ∈ C. (6.3)

6.1.2 The polar coordinate transformation

It is frequently convenient when considering multivariate regular variation to transform

the state space using a generalized polar coordinate transformation. After the trans-

formation, the homogeneity property (6.2) in Cartesian coordinates becomes a product

property in polar coordinates. We soon state equivalences for multivariate regular vari-

ation for the distribution of a random vector, where this will be particularly convenient.

A norm on R
d is a mapping ‖ · ‖ : R

d �→ [0,∞) such that

1. ‖x‖ ≥ 0 for all x ∈ R
d , and ‖x‖ = 0 iff x = 0.

2. ‖cx‖ = |c|‖x‖ for all x ∈ R
d and c ∈ R.

3. The triangle inequality holds: For x, y ∈ R
d , we have

‖x + y‖ ≤ ‖x‖ + ‖y‖.
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Examples of norms are the following:

• The usual Euclidean norm:

‖x‖ =

√√√√
d∑

i=1

(x(i))2.

• The Lp-norm:

‖x‖ =
(

d∑

i=1

|x(i)|p
)1/p

, p ≥ 0.

• The L∞-norm:

‖x‖ =
n∨

i=1

|x(i)|.

Given a chosen norm ‖ · ‖, the unit sphere is

ℵ := {x : ‖x‖ = 1}.

Note that for the Euclidean norm, the unit sphere is really a sphere in the conventional

sense. If d = 2, the “unit sphere’’ in the L1-norm is a diamond, and the “unit sphere’’

in the L∞-norm is a square.

A norm always defines a distance on R
d by

d(x, y) = ‖x − y‖.

Norms on R
d are all topologically equivalent in that convergence in one norm implies

convergence in another. This follows from the fact that for any two norms ‖·‖i , i = 1, 2,

some constants c > 0 and C > 0 exist such that

c‖x‖1 ≤ ‖x‖2 ≤ C‖x‖1.

Fix a norm. (Theoretically, it does not matter which norm is chosen, but for con-

sidering particular examples, some norms are more appropriate and convenient.) We

want to define the polar coordinate transform of a vector x ∈ R
d as

x �→
(
‖x‖, x

‖x‖

)
=: (r, a).

This obviously creates difficulties if ‖x‖ = 0, so due to property 1 in the property

list for norms, we exclude 0 ∈ R
d , and we define the polar coordinate transformation

T : R
d \ {0} �→ (0,∞) × ℵ by
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T (x) =
(
‖x‖, x

‖x‖

)
=: (r, a).

This has inverse transformation T ← : (0,∞) × ℵ �→ R
d \ {0} given by

T ←(r, a) = ra.

Think of a ∈ ℵ as defining a direction and r as telling how far in direction a to proceed.

Both T and T ← are continuous bijections when we exclude 0.

When d = 2, it is customary, but not obligatory, to write

T (x) = (r cos θ, r sin θ),

where 0 ≤ θ < 2π , rather than the more consistent notation T (x) = (r, (cos θ, sin θ)).

For a random vector X in R
d , we sometimes write

T (X) = (R, �).

The problem with all this is that for multivariate regular variation of tail probabilities,

we have to deal with a punctured space such as [0, ∞] \ {0}. (See Section 6.1.3.)

The polar coordinate transformation is not defined on the lines through ∞, so when

discussing multivariate regular variation, some sort of restriction argument is necessary

to get around this.

6.1.3 The one-point uncompactification

In reformulating the function-theory concept of regularly varying functions into a

measure-theory concept, there is continual need to deal with sets that are bounded

away from the origin. Such sets need to be regarded as “bounded’’ in an appropriate

topology so sequences of measures of such sets can converge nontrivially. This is ne-

cessitated by focusing on tail probabilities or exceedance probabilities, which naturally

consider probabilities of sets in a neighborhood of infinity. A convenient way to think

about this is by means of the one-point uncompactification. We have already seen an

example of this in Section 3.6 (p. 62).

Let (X, T ) be a nice topological space; X is the set and T is the topology, that is, a

collection of subsets of X designated as open, satisfying the following:

(i) Both ∅ ∈ T and X ∈ T .

(ii) The collection T is closed under finite intersections and arbitrary unions.
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X X \ {x} Uses

compact set punctured version

[0,∞] [0,∞] \ {0} = (0,∞] extremes

positive jump Lévy processes

[−∞,∞] [−∞,∞] \ {0} Lévy processes

stable processes

[0,∞]d = [0, ∞] [0, ∞] \ {0} multivariate exceedances

R
d -valued positive jump processes

[−∞,∞]d = [−∞, ∞] [−∞, ∞] \ {0} multivariate Lévy processes

multivariate stable processes

Table 6.1. Compact spaces, their punctured modifications and their uses.

(For example, X could be a subset of Euclidean space.) Consider a subset D ⊂ X,

define

X
# = X \ D = X ∩ D

c,

and give X
# the relative topology

T # = T ∩ D
c = T ∩ X

#.

So a set is open in X
# if it is an open subset of X intersected with X

#.

We need to identify the compact sets of X
#. This is done next.

Proposition 6.1. Suppose, as usual, the compact subsets of X are denoted by K(X).
Then

K(X#) = {K ∈ K(X) : K ∩ D = ∅}
are the compact subsets of X

#.

The compact sets of X
# are the original compact sets of X, provided they do not

intersect the piece D chopped away from X to form X
#.

Specialize this to the one-point uncompactification: Suppose X is a compact set and

x ∈ X. Give X\{x} the relative topology consisting of sets in X\{x} of the form G\{x},
where G ∈ G(X), the open subsets of X. The compact sets of X\{x} are those compact

subsets K ⊂ X such that x /∈ K . Thus the one-point uncompactification describes the

compact sets of a compact space punctured by the removal of a point.

Special cases, each of which will be of use, are summarized in Table 6.1, which

lists compact spaces, the one-point uncompactified versions, and intended uses.

Proof of Proposition 6.1. Begin by assuming that

K ∈ K(X), K ∩ D = ∅;
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we show that K ∈ K(X#). Let

{G#
γ = Gγ ∩ X

#, γ ∈ �}

be some arbitrary cover of K by open subsets of X
#, where Gγ ∈ G(X) and � is some

index set. So

K ⊂
⋃

γ∈�

Gγ ∩ X
# ⊂
⋃

γ∈�

Gγ .

Since K ∈ K(X), there is a finite subcollection indexed by �′ ⊂ � such that K ⊂⋃
γ∈�′ Gγ . Since K ∩ D = ∅,

K ⊂
⋃

γ∈�′
Gγ ∩ X

#.

Therefore, any cover of K by open subsets of X
# has a finite subcover, and thus K is

compact in X
#. Thus

{K ∈ K(X) : K ∩ D = ∅} ⊂ K(X#).

The converse is quite similar. ⊓⊔

6.1.4 Multivariate regular variation of measures

The equivalences in Theorem 3.6 (p. 62) suggest a way to proceed with a definition of

multivariate regular variation that is useful for probability and statistics. We assume

that Z ≥ 0 is a d-dimensional random vector that takes values in the nonnegative

quadrant [0, ∞). (Extensions to positive and negative components are straightforward

and discussed later in Section 6.5.5 (p. 201).) Suppose the distribution of Z is F . We

could say that F has a regularly varying tail if there exist bn → ∞ and a limit measure

ν(·) on the Borel subsets of the quadrant such that

nF(bn·) = nP

[
Z

bn

∈ ·
]

v→ ν(·) (6.4)

in M+([0, ∞] \ {0}). This is the correct analogue of (3.29); it is more fully developed

in the next theorem.

To deal with multivariate regular variation of tail probabilities, we work in the

punctured space with a one-point uncompactification E = [0, ∞] \ {0}. Equivalent

formulations in terms of polar coordinates then have to deal with the fact that the

polar coordinate transformation is not defined on the lines through ∞, so some kind of

restriction argument is necessary. For a somewhat different treatment, see [13, 15, 227].

Set ℵ+ = ℵ ∩ E. Continue to denote vague convergence of measures by
v→.
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Theorem 6.1 (multivariate regularly varying tail probabilities). The following state-
ments are equivalent. (In each, we understand the phrase Radon measure to mean a
Radon measure that is not identically zero and that is not degenerate at a point. Also,
repeated use of the symbols ν, b(·), {bn} from statement to statement does not require
these objects to be exactly the same in different statements. See Remark 6.1 after
Theorem 6.1.)

1. There exists a Radon measure ν on E such that

lim
t→∞

1 − F(tx)

1 − F(t1)
= lim

t→∞
P
[
Z
t
∈ [0, x]c

]

P
[
Z
t
∈ [0, 1]c

] = ν([0, x]c) (6.5)

for all points x ∈ [0, ∞) \ {0} which are continuity points of the function ν([0, ·]c).

2. There exists a function b(t) → ∞ and a Radon measure ν on E, called the limit

measure, such that in M+(E),

tP

[
Z

b(t)
∈ ·
]

v→ ν, t → ∞. (6.6)

3. There exists a sequence bn → ∞ and a Radon measure ν on E such that in M+(E),

nP

[
Z

bn

∈ ·
]

v→ ν, n → ∞. (6.7)

4. There exists a probability measure S(·) on ℵ+, called the angular measure, and a
function b(t) → ∞ such that for (R, �) = (‖Z‖, Z

‖Z‖), we have

tP

[(
R

b(t)
, �

)
∈ ·
]

v→ cνα × S (6.8)

in M+((0,∞] × ℵ+) for some c > 0.

5. There exists a probability measure S(·) on ℵ+ and a sequence bn → ∞ such that
for (R, �) = (‖Z‖, Z

‖Z‖), we have

nP

[(
R

bn

, �

)
∈ ·
]

v→ cνα × S (6.9)

in M+((0,∞] × ℵ+) for some c > 0.
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Remark 6.1. Normalization of all components by the same function means that marginal

distributions are tail equivalent; that is [256, 260],

lim
x→∞

P [Z(i) > x]
P [Z(j) > x] =: rij ∈ [0,∞],

for 1 ≤ i, j ≤ d . For theoretical considerations, it is best to avoid cases where some

marginal tails are heavier than others, corresponding to rij = 0 or∞ for some (i, j), and

therefore it is frequently assumed that all components {Z(i), 1 ≤ i ≤ d} are identically

distributed. In practice, of course, the tails rarely look the same. More on this later in

Section 6.5.6 (p. 203).

When b(t) = t or bn = n, we are in the standard case [95, 260] and all marginal

distributions are tail equivalent to a standard Pareto distribution with α = 1. In general,

the possible choices of b(t) include the following:

(i) b(t) = ( 1
1−F(1)

)←(t), where F(1)(x) = P [Z(1) ≤ x] is the one-dimensional

marginal distribution. This choice is sensible if the components of the vector are

identically distributed.

(ii) b(t) = ( 1
1−FR

)←(t), where FR(x) = P [R ≤ x] is the distribution of ‖Z‖. Note

that this choice of b(·) depends on the choice of norm ‖ · ‖.

Different choices of b(·) may introduce different constants c in the limit statements.

The following lemma facilitates the proof of Theorem 6.1. Continue to assume that

E = [0, ∞] \ {0}.

Lemma 6.1. Suppose for n ≥ 0 that μn ∈ M+(E). Then

μn
v→ μ0 in M+(E) (6.10)

iff
μn([0, x]c) → μ0([0, x]c) (6.11)

for x ∈ [0, ∞) \ {0}, which are continuity points of the limit μ0([0, ·]c).

Proof. Theorem 3.2 (p. 52) shows that (6.10) implies (6.11), so assume (6.11) and we

must prove (6.10). Let f ∈ C+
K(E). Then the support of f is contained in [0, x]c for

some continuity set [0, x]c, and since we have convergence on this, set

sup
n

μn(f ) ≤ sup
x∈E

f (x) · sup
n

μn([0, x]c) < ∞.

This is true for any f ∈ C+
K(E), so {μn} is relatively compact from (3.16) (p. 51). If

μ and μ′ are two subsequential limits, then by (6.11) μ and μ′ agree on the continuity
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sets [0, x]c. Now argue that μ and μ′ must agree on the π -system of rectangles whose

vertices are continuity points of μ0 and which are bounded away from 0, and hence

μ = μ′ on E. ⊓⊔

Proof of Theorem 6.1.
1 → 2: Condition 1 says that F̄ := 1 − F is a multivariate regularly varying

function on the cone [0, ∞) \ {0}, and therefore F̄ (t1) is a regularly varying function

of t :

F̄ (t1) ∈ RV−α for some α > 0.

Define b(t) to satisfy

F̄ (b(t)1) ∼ t−1, t → ∞.

Then replacing t by b(t) in 1 yields

tP

[
Z

b(t)
∈ [0, x]c

]
→ ν([0, x]c).

Lemma 6.1 gives (6.6).

2 → 3: Obvious. Replace t by n.

3 → 1: There exists a function b(t) ∈ RV1/α such that b(n) = bn. To see this,

use marginal convergence: The assumed vague convergence in (6.7) allows us to insert

into (6.7) relatively compact sets (the sets are bounded away from 0) of the form

[0,∞] × · · · × (x,∞] × [0,∞] × · · · × [0,∞].

When we do this, we get marginal convergence:

nP

[
Z(i)

bn

> x

]
→ ν([0,∞] × · · · × (x,∞] × [0,∞] × · · · × [0,∞]).

Provided the limit is nonzero, which it must be for some i, we get that the marginal tail

satisfies the sequential form of regular variation (see Proposition 2.3 (p. 21)). Hence

the marginal tail is regularly varying and the quantile function b(t), by inversion, is

regularly varying. (See Proposition 2.6(v) (p. 32).) We can set b(n) = bn.

Now for x a continuity point of ν([0, ·]c), we have by Theorem 3.2 (p. 52) or

Lemma 6.1 that

nP

[
Z

bn

∈ [0, x]c
]
→ ν([0, x]c).

For any t , there exists an integer n(t) such that

bn(t) ≤ t < bn(t)+1,
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and so

b←(t)P

[
Z

t
∈ [0, x]c

]
≤ b← ◦ b(n(t) + 1)P

[
Z

b(n(t))
∈ [0, x]c

]

∼ n(t)P

[
Z

b(n(t))
∈ [0, x]c

]

→ ν([0, x]c).

A similar argument gives a lower bound, which gives 1 since b←(·) is regularly varying.

Recall that the rephrasing of the definition of regular variation given in (6.3) allows

normalization by any regularly varying function.

We summarize what we have proved so far: 1 ↔ 2 ↔ 3. Assuming any one of

these, the measure ν places no mass on the lines through ∞,

ν(E \ ([0, ∞) \ {0})) = 0.

Reason: If there were mass on a line through ∞, one of the one-dimensional marginals

would have mass at ∞. This, however, is impossible since

ν(E \ ([0, ∞) \ {0}))

≤ lim
x→∞

d∑

i=1

ν([0,∞] × · · · × (x,∞] × [0,∞] × · · · × [0,∞])

= lim
x→∞

d∑

i=1

cix
−α = 0.

The equivalence of 4 and 5 is similar to the equivalence of 2 and 3 and is omitted.

It remains to show 3 ↔ 5 and we content ourselves with showing 3 → 5 since the

converse is very similar. We proceed in a series of steps.

Step 1: Restrict the space to the natural domain of the polar coordinate transformation.

We claim that (6.7) implies convergence on a smaller domain:

nP

[
Z

bn

∈ ·
]

v→ ν in M+([0, ∞) \ {0}). (6.12)

To verify the claim (6.12), let f ∈ C+
K([0, ∞) \ {0}) and suppose K ∈ K([0, ∞) \ {0})

is the compact support. Then K is also compact in E by Proposition 6.1. Extend f to

a function f̃ on E by

f̃ (x) =
{

f (x) if x ∈ K,

0 if x ∈ E \ K.
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Then f̃ ∈ C+
K(E). Now 3 implies that

nEf̃

(
Z

bn

)
→ ν(f̃ ),

which is the same as

nEf

(
Z

bn

)
→ ν(f ),

which implies (6.12).

See also Problem 6.3 (p. 206) for alternatives using the restriction functional.

Step 2: Apply the polar coordinate transform T ; check the compactness criterion. In

the restricted space [0, ∞)\{0}, we may now apply the polar coordinate transformation

T (x) = (r, a) =
(
‖x‖, x

‖x‖

)
.

Note that

T : [0, ∞) \ {0} �→ (0,∞) × ℵ+.

Let K2 ∈ K((0,∞) × ℵ+). Then K2 is closed and contained in a set of the form

{(r, a) : δ ≤ r ≤ M, a ∈ ℵ+}

for small δ > 0 and large M . Since T is continuous, T −1(K2) is closed and contained in

T −1{(r, a) : δ ≤ r ≤ M, a ∈ ℵ+} = {x ∈ E : δ ≤ ‖x‖ ≤ M},

which is compact in [0, ∞) \ {0}. So T −1(K2), being a closed subset of a compact

set, is compact. Thus the compactness criterion of Proposition 5.5 (p. 141), is satisfied.

Apply Proposition 5.5 to the convergence in (6.12), and we get

nP

[(
R

bn

, �

)
∈ ·
]

v→ ν ◦ T −1(·) in M+((0,∞) × ℵ+). (6.13)

What is the form of ν ◦ T −1(·)? From (6.5) we have that ν([0, x]c) is the limit

function in the definition of multivariate regular variation, and hence ν([0, x]c) has a

scaling property

ν([0, sx]c) = s−αν([0, x]c).

So for any rectangle I bounded away from 0, we have

ν(sI ) = s−αν(I ).
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The class of rectangles is closed under finite intersections and generates the Borel σ -

algebra E , so by Dynkin’s π − λ theorem [264], for any A ∈ E , we have

ν(sA) = s−αν(A).

This means that for any t > 0 and measurable set � ⊂ ℵ+, we have

ν

{
x ∈ [0, ∞) \ {0} : ‖x‖ > t,

x

‖x‖ ∈ �

}
= ν

{
x : ‖t−1x‖ > 1,

t−1x

‖t−1x‖ ∈ �

}

= ν

{
ty : ‖y‖ > 1,

y

‖y‖ ∈ �

}

= t−αν

{
y : ‖y‖ > 1,

y

‖y‖ ∈ �

}

=: t−αcS(�).

So homogenity implies the product form when the measure is applied to a pizza slice

shaped polar set. Thus on (0,∞) × ℵ+,

ν ◦ T −1 = cνα × S. (6.14)

Step 3: Extend to bigger space, where boundaries at infinity are included . We now

extend the convergence in (6.13) to M+((0,∞] × ℵ+). To economize on notation for

the proof, suppose the constant c in (6.14) is 1. Let f ∈ C+
K((0,∞] × ℵ+) and set

‖f ‖ = sup(r,θ)∈(0,∞]×ℵ+ f (r, θ) < ∞. To relate this function f to one defined on

C+
K((0,∞) × ℵ+), we perform a smooth truncation using the function

φ+δ,M(t) =

⎧
⎪⎨
⎪⎩

1 if 0 < t ≤ M,

0 if t = M + δ,

linear interpolation if M < t ≤ M + δ,

and we define

fM,δ(r, θ) = f (r, θ)φ+δ,M(r) ∈ C+
K((0,∞) × ℵ+).

We have
∣∣∣∣nEf

(
R

bn

, �

)
− να × S(f )

∣∣∣∣

≤
∣∣∣∣nEf

(
R

bn

, �

)
− nEfM,δ

(
R

bn

, �

)∣∣∣∣
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+
∣∣∣∣nEfM,δ

(
R

bn

, �

)
− να × S(fM,δ)

∣∣∣∣+ |να × S(fM,δ) − να × S(f )|

= A + B + C.

Since fM,δ ∈ C+
K((0,∞) × ℵ+), we have limn→∞ B = 0 from (6.13). The term C is

bounded by

∫
|f (r, θ)|1 − φ+,M(r)|να(dr)S(dθ) ≤ ‖f ‖να(M,∞] = ‖f ‖M−α,

which can be made arbitrarily small by a suitable choice of M . The term A is handled

similarly after taking lim sup on n. This gives (6.9). ⊓⊔

Remark 6.2. We call the measure ν in, say, (6.6) the limit measure. The probability

measure S on ℵ+ is called the angular measure. Theorem 6.1 shows that for a given α,

the class of limit measures is large since the class is in 1–1 correspondence with the set of

probability measures onℵ+. If we take an independent pair (R, �) on (0,∞]×ℵ+ with

P[R > r] = r−α, r > 1, P[� ∈ ·] = S(·),

then

tP

[
R

t1/α
> r, � ∈ �

]
= t (t1/αr)−αS(�) = να × S((r,∞] × �).

So any probability measure S on ℵ+ is a possible angular measure.

6.2 The Poisson transform

Multivariate regular variation of the probability distributions as given in the equiva-

lences of Theorem 6.1 in either Cartesian or polar coordinates is equivalent to induced

empirical measures weakly converging to Poisson random measure limits. We state the

result next.

Theorem 6.2. Suppose {Z, Z1, Z2, . . . } are iid; after transformation to polar coordi-
nates, the sequence is {(R, �), (R1, �1), (R2, �2), . . . }. Any of the equivalences in
Theorem 6.1 (p. 173) is also equivalent to the following:

6. There exists bn → ∞ such that

n∑

i=1

ǫZi/bn ⇒ PRM(ν) (6.15)

in Mp(E).
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7. There exists a sequence bn → ∞ such that

n∑

i=1

ǫ(Ri/bn,�i) ⇒ PRM(cνα × S) (6.16)

in Mp((0,∞] × ℵ+).

These conditions imply that for any sequence k = k(n) → ∞ such that n/k → ∞,

we have the following:

8. In M+(E),

1

k

n∑

i=1

ǫZi/b( n
k
) ⇒ ν (6.17)

and

9. In M+((0,∞] × ℵ+),

1

k

n∑

i=1

ǫ(Ri/b( n
k
),�i) ⇒ cνα × S, (6.18)

and 8 or 9 is equivalent to any of 1–7, provided k(·) satisfies k(n) ∼ k(n + 1).

Proof. The bridge between the lists of equivalences in Theorems 6.2 and 6.1 is Theo-

rem 5.3 (p. 138). ⊓⊔

Thus multivariate regular variation has an exact probabilistic equivalence in terms

of convergence of empirical measures to a limiting Poisson random measure.

The following variant is needed for proving weak convergence of partial sum pro-

cesses or maximal processes in the space D[0,∞).

Theorem 6.3. Suppose {Z, Z1, Z2, . . . } are iid random elements of [0, ∞). Then mul-
tivariate regular variation of the distribution of Z in E = [0, ∞] \ {0},

nP

[
Z

bn

∈ ·
]

v→ ν,

is also equivalent to ∑

j

ǫ
(
j
n
,Zj /bn)

⇒ PRM(LEB×ν) (6.19)

in M+([0,∞) × E).
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Proof. We proceed in a series of steps to prove that regular variation implies (6.19).

The converse is clear, for example, from Problem 3.7 (p. 65).

Step 1. It suffices to prove (6.19) in M+([0, T ] × E) for any T > 0. To see this,

observe that for f ∈ C+
K([0,∞)×E), with compact support in [0, T ]×E, the Laplace

functional of a random measure M at f is the same as the restriction of the random

measure to [0, T ] × E evaluated on the restriction of f to [0, T ] × E.

For convenience, we restrict our attention to proving convergence in M+([0, 1]×E).

Step 2. Suppose U1, . . . , Un are iid U(0, 1) random variables with order statistics

U1:n ≤ U2:n ≤ · · · ≤ Un:n,

which are independent of {Zj }. We claim that

n∑

j=1

ǫ(Uj :n,Zj /bn) ⇒ PRM(LEB×ν) (6.20)

in M+([0, 1] × E). A more general result is explored in Problem 6.7, but we can prove

the simple result (6.20) as follows. First, we have, from the independence of {Uj } and

{Zn}, that
n∑

j=1

ǫ(Uj :n,Zj /bn)
d=

n∑

j=1

ǫ(Uj ,Zj /bn)

as random elements of M+([0, 1] × E). Thus we need to prove

n∑

j=1

ǫ(Uj ,Zj /bn) ⇒ PRM(LEB×ν) (n → ∞),

in M+([0, 1] × E). However, because of independence,

nP

[(
U1,

Z1

bn

)
∈ ·
]
= LEB×nP

[
Z1

bn

∈ ·
]
⇒ LEB×ν,

and therefore, from Theorem 5.3 (p. 138), the result follows.

Step 3. Let d(·, ·) be the vague metric (cf. (3.14) (p. 51)) on M+([0, 1] × E). From

Slutsky’s Theorem, Theorem 3.4 (p. 55), Step 2 implies the desired result if we prove that

d

⎛
⎝

n∑

j=1

ǫ
(
j
n
,Zj /bn)

,

n∑

j=1

ǫ(Uj :n,Zj /bn)

⎞
⎠ P→ 0 (6.21)
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as n → ∞. From the definition of the vague metric in (3.14) (p. 51), it is enough to

prove for h ∈ C+
K([0, 1] × E) that

∣∣∣∣∣∣

n∑

j=1

h

(
j

n
, Zj/bn

)
−

n∑

j=1

h(Uj :n, Zj/bn)

∣∣∣∣∣∣
P→ 0 (6.22)

in R. Suppose the compact support of h is contained in [0, 1]× {x : ‖x‖ > δ} for some

δ > 0. Then the difference in (6.22) is bounded by

n∑

j=1

∣∣∣∣h
(

j

n
, Zj/bn

)
− h(Uj :n, Zj/bn)

∣∣∣∣ 1[‖Zj‖/bn>δ]

≤ ωh

(
sup
j≤n

|j
n
− Uj :n|

)
n∑

j=1

1[‖Zj‖/bn>δ],

where, as usual, ωh(η) is the modulus of continuity of the uniformly continuous func-

tion h:

ωh(η) := sup
‖x−y‖≤η

|h(x) − h(y)|.

Now we know from Theorem 6.2 (p. 179) that

n∑

j=1

1[‖Zj‖/bn>δ] =
n∑

j=1

ǫZj /bn({x ∈ E : ‖x‖ > δ})

converges and hence is stochastically bounded. So it is enough to prove that

sup
j≤n

∣∣∣∣
j

n
− Uj :n

∣∣∣∣
P→ 0 (n → ∞). (6.23)

However, from the Glivenko–Cantelli theorem [264, Section 7.5], [24],

sup
0≤x≤1

∣∣∣∣∣
1

n

n∑

i=1

1[Uj≤x] − x

∣∣∣∣∣
a.s.→ 0,

and hence, by inversion (see Proposition 3.2), inverses converge uniformly almost surely

as well, which gives (6.23). ⊓⊔

A slightly more general formulation of Theorem 6.3 using the language of Theo-

rem 5.3 is possible. The proof is the same.
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Corollary 6.1. Suppose for each n = 1, 2, . . . that {Xn,j , j ≥ 1} are iid random
elements of a nice space (E, E) such that

nP [Xn,1 ∈ ·] v→ ν.

Then in Mp([0,∞) × E), we have

∑

i

ǫ(i/n,Xn,i) ⇒
∑

i

ǫ(ti ,j i)
= PRM(LEB×ν)

as n → ∞.

6.3 Multivariate peaks over threshhold

The previous two sections described the connection between multivariate regular varia-

tion and Poisson processes and random measures. This connection leads to a dimension-

less view of the peaks-over-threshold (POT) method in statistics. Assuming multivariate

regular variation, the POT method assumes that the actual distribution of observations

larger than a fixed threshold is the limit distribution if we send the threshold to infinity.

Here are more details.

Suppose the multivariate regular variation condition of Theorem 6.1 holds. Set

E
> := {x ∈ E : ‖x‖ ≤ 1}c = {x ∈ E : ‖x‖ > 1}.

Apply the restriction functional (see Problem 6.3 (p. 206)) to (6.15) in Theorem 6.2

(p. 179). So we restrict points to E
>, which yields

n∑

i=1

ǫZi/bn(E
> ∩ ·) =

n∑

i=1

1[‖Zi‖/bn>1]ǫZi/bn

⇒ N∞(E> ∩ ·) = PRM(ν(E> ∩ ·)), (6.24)

where N∞(·) is the limiting PRM in (6.15). The limiting point process in (6.24) is a

Poisson random measure on E
> that has a finite total mean measure ν(E>). Hence by

the construction in Section 5.4.2 (p. 143), this limit can be constructed as follows. Let

ξ be a Poisson random variable with parameter ν(E>) independent of the iid random

vectors {Xi, i ≥ 1}, which have common distribution ν(E> ∩ ·)/ν(E>). Then

N∞(E> ∩ ·) d=
ξ∑

i=1

ǫXi
.
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Peaks over threshold. Consider the observations falling in E
> as the thresholded sam-

ple. The number of thresholded observations is approximately Poisson distributed with

parameter ν(E>). These big observations relative to the threshold are approximately

iid with distribution ν(E> ∩ ·)/ν(E>). The POT philosophy treats this approximate

limit distribution as the actual distribution. In one dimension, this allows the use of the

likelihood method.

Recall the procedure from Section 4.2 when d = 1: Assuming bn is the quantile

function (which needs to be replaced by an order statistics estimator), the limit measure

is να , so να(1,∞] = 1, and the exceedances {Xi, i ≥ 1} are iid Pareto random variables

on [1,∞) independent of the Poisson random variable ξ with parameter να(1,∞] = 1.

Thus, in one dimension, the POT method for estimating α would be as follows: Pick

a threshold T (which plays the role of bn), look at the observations larger than T ,

and regard these observations normalized by T as a random sample from the Pareto

distribution with parameter α. Use maximum likelihood to estimate α.

For higher dimensions, this methodology can be mimicked if one assumes the limit

measure ν is a member of a parametric family.

6.4 Why bootstrapping heavy-tailed phenomena is difficult

Sometimes, when estimating parameters in a complex model, one is confronted by the

difficulty that the limit distribution of the centered estimator vector either is unknown,

is too complicated to calculate explicitly, or, if known, still depends on the unknown

parameters of the model. This prevents easy construction of confidence regions for

the parameters. In classical contexts, the bootstrap [123–125, 166] was designed to

overcome these difficulties. For heavy-tailed phenomena, the bootstrap has complexi-

ties preventing easy application. The root of the complexity is the distinction between

(6.15) and (6.17) (p. 179). In (6.15), the limit is random, and in (6.17), the limit is

deterministic. This subtlety distinguishes the bootstrap for heavy-tailed phenomena

from classical problems.

6.4.1 An example to fix ideas

As an example which will fix ideas, suppose we have the stationary autoregressive
process of order p, denoted by AR(p), with nonnegative innovations {Zt } and with

autoregressive coefficients φ1, . . . , φp, φp �= 0. These processes are defined by the

following relation:

Xt =
p∑

k=1

φkXt−k + Zt ; t = 0,±1,±2, . . . , (6.25)
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where we assume that {Zt } is an independent and identically distributed (iid) sequence

of nonnegative random variables with P[Z1 > x] ∈ RV−α , α > 0. Assume that the

order p is known. Based on observation of {X1, . . . , Xn}, the task is to estimate the

parameters.

The usual, classical method of estimating φ = (φ1, . . . , φp), is the Yule–Walker

method (see, for example, [31] for an excellent discussion of required background and

[134] for the heavy-tailed case). However, one can sometimes do better by exploiting

the special nature of the innovations. This was the motivation behind other methods

discussed, for instance, in [2, 3, 67, 69, 131–133, 188, 221]. See also [129, Chapter 7],

[192, 237].

Assuming the model is correct (a big assumption), the new estimators have excellent

properties. Let φ̂(n) be an estimator of the vector of autoregressive coefficients; it is

typical that r(n)(φ̂(n) − φ) has a limit distribution for an appropriate choice of {r(n)}.
However, this limit distribution may have the unfortunate characteristic that it depends

on the unknown parameters φ and α, especially when α < 2. For inference purposes,

this is a serious difficulty, which we can try to overcome by using the bootstrap.

For the autoregressive model, a bootstrap procedure can be constructed as follows:

1. Assume we observe X1, . . . , Xn from the autoregressive model (6.25).

2. Use your favorite method (Yule–Walker, linear programming, periodogram) to es-

timate the autoregressive coefficients and obtain a vector of estimates φ̂(n).

3. Use these estimates φ̂(n) to estimate the residuals

Ẑt (n) = Xt −
p∑

i=1

φ̂i(n)Xt−i; t = 1, . . . , n.

4. Form the empirical measure generated by the estimated residuals

F̂ resid
n = 1

n

n∑

i=1

ǫ
Ẑi(n)

.

5. Resample: Draw an iid (bootstrap) sample {Z∗
t (n); t = 1, . . . , m} from the distri-

bution F̂ resid
n .

6. Construct a bootstrap time series {X∗
t (n); t = 1, . . . , m} by setting X∗

0(n) = · · · =
X∗

−p+1(n) = 0 and then using the recursion

X∗
t (n) =

p∑

i=1

φ̂i(n)X∗
t−i(n) + Z∗

t (n).
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7. Based on the bootstrapped time-series sample {X∗
t (n); t = 1, . . . , m}, estimate

autoregressive coefficients again; call these estimators φ̂
∗
(n).

8. The ideal bootstrap distribution is the sampling distribution (known in principle),

conditional on F̂ resid
n , of

r(m)(φ̂
∗
(n) − φ̂(n)).

It is difficult to compute the ideal bootstrap distribution, so, in practice, Monte Carlo is

necessary. Also, a modification of this method is necessary to account for the fact that

r(m) is unknown. Assuming these hurdles are overcome, a confidence region for the

parameters can be constructed.

However, the important issue is that in step 5, heavy-tail asymptotics require the

bootstrap sample size to satisfy m = m(n) → ∞, but m/n → 0 as n → ∞. Why? In

connection with bootstrapping extremes and heavy-tailed phenomena, several authors

have noticed that if the original sample is of size n, in order for the bootstrap asymptotics

to work as desired, the bootstrap sample size should be of smaller order. See, for

example, [9, 10, 79, 133, 147, 156, 185, 189, 205] and [21, Section 6].

6.4.2 Why the bootstrap sample size must be carefully chosen

We now now discuss understanding bootstrapping of heavy-tailed phenomena in the

context of Theorems 6.1 and 6.2. We assume that {Z, Z1, Z2, . . . } are iid random

elements of [0, ∞) satisfying the regular variation condition (6.4) or one of its equiva-

lent forms.

The bootstrap procedure

Assume we observe Z1, . . . , Zn. The empirical distribution of the observed sample is

F̂n = 1

n

n∑

i=1

ǫZi
.

Sample m times to get a bootstrap sample Z∗
1, . . . , Z

∗
m. For bootstrap asymptotics

to work, we want the statistical characteristics of Z∗
1, . . . , Z

∗
m to mimic those of the

original sample. We take this to mean that the distribution of

m∑

i=1

ǫZ∗
i /q(m)
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for some scaling function q(m) > 0 should be close to the distribution of PRM(ν),

according to (6.15) and Theorem 6.2. This will be the case only when m = m(n) → ∞
and m/n → 0.

So what makes the bootstrap procedure problematic in the heavy-tail case is the

need to choose m. This can be as tricky as choosing a threshold or choosing k, the

number of upper-order statistics used in, say, Hill estimation.

What exactly is the bootstrap procedure?

Suppose we have the iid sequence {Zn, n ≥ 1} defined on some probability space

(�, A, P). Assume that the probability space is rich enough to support an array

{(I (n)
1 , . . . , I

(n)
m ), n ≥ 1} that is independent of {Zn, n ≥ 1} and has the property that

for each n = 1, 2, . . . , I
(n)
1 , . . . , I

(n)
m are iid and uniformly distributed on {1, . . . , n}.

We imagine repeated multinomial trials, and

Pj (n) :=
m∑

i=1

1[I (n)
i =j ], j = 1, . . . , n,

is a multinomial random vector corresponding to m trials and possible outcomes

1, . . . , n.

A bootstrap sample Z∗
1, . . . , Z

∗
m of size m is obtained by sampling with replacement

m times from the population 1, . . . , n. If the ith sample yields j , then Z∗
i = Zj . Another

way to think about this is

Z∗
i = Z

I
(n)
i

, i = 1, . . . , m,

and then for a scaling function q(m),

m∑

i=1

ǫZ∗
i /q(m) =

n∑

j=1

(
m∑

i=1

1[I (n)
i =j ]

)
ǫZj /q(m) =

n∑

j=1

Pj (n)ǫZj /q(m). (6.26)

Let PR(S) be the set of all probability measures on the Borel σ -algebra S of subsets

of the complete, separable metric space S. There is a notion of convergence, namely

weak convergence, in PR(S), and this convergence concept is compatible with a metric

that turns PR(S) into a complete, separable metric space [25, p. 72]. In particular, we

need PR(M+(E)) and PR(Mp(E)) because bootstrap asymptotics are usually consid-

ered conditional on the sample. So we will consider

P

[
m∑

i=1

ǫZ∗
i /bm

∈ · | Z1, . . . , Zn

]
,

which is a random element of PR(Mp(E)).
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When bootstrap asymptotics work

If m = m(n) → ∞ and m/n → 0, then bootstrap asymptotics work in the sense given

in the next propositon.

Proposition 6.2. Suppose m(n) → ∞, m/n → 0 as n → ∞. Then as n → ∞,

P

[
m∑

i=1

ǫZ∗
i /bm

∈ · | Z1, . . . , Zn

]
P→ P[PRM(ν) ∈ ·]

in PR(M+(E)). Hence, taking expectations,

P

[
m∑

i=1

ǫZ∗
i /bm

∈ ·
]

⇒ P[PRM(ν) ∈ ·]

in PR(M+(E)), that is, the distribution of
∑m

i=1 ǫZ∗
i /bm

converges weakly to PRM(ν).

Proposition 6.2 provides us with the motivation to subsample—only then will the

bootstrap distribution of the point process approximate the true asymptotic distribution

of the original point process.

Proof. First, observe using (6.26) that

E

(
m∑

i=1

ǫZ∗
i /bm

|Z1, . . . , Zn

)
=

n∑

j=1

E

(
m∑

i=1

1[I (n)
i =j ]

)
ǫZj /b(m)

= m

n

n∑

j=1

ǫZj /b(m)
P→ ν

from (5.16) of Theorem 5.3 (p. 139) or (6.17) of Theorem 6.2 (p. 179), with k playing

the role of n/m.

For any subsequence {n′′} of {n}, choose a further subsequence {n′} along which

E

⎛
⎝

m(n′)∑

i=1

ǫZ∗
i /bm(n′) | Z1, . . . , Zn′

⎞
⎠ a.s.→ ν.

Therefore, for almost all ω, mean measures converge to ν in M+(E) and by Theo-

rem 5.3(i) (p. 138), we conclude that for such ω,

P

⎡
⎣

m(n′)∑

i=1

ǫZ∗
i /bm(n′) ∈ · | Z1, . . . , Zn′

⎤
⎦⇒ P[PRM(ν) ∈ ·]
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weakly. By the usual subsequence argument for convergence in probability, we con-

clude that

P

[
m∑

i=1

ǫZ∗
i /bm

∈ · | Z1, . . . , Zn

]
P→ P[PRM(ν) ∈ ·] in PR(Mp(E)),

as required. ⊓⊔

When bootstrap asymptotics do not work

What happens in the limit to the full-sample bootstrap random point process∑n
i=1 ǫZ∗

i /bn
? We give the answer in the next result, which shows that the empirical

measure of the scaled bootstrap sample is not approximated by the limiting PRM(ν);

the limit is a random measure.

Proposition 6.3. Assume the regular variation condition, say, (6.4), holds with limit
measure ν. Suppose we represent PRM(ν) as N∞ :=

∑
i ǫJ i

. (For instance, when d =
1 and ν = να, we could represent PRM(να) as

∑
i ǫ

Ŵ
−1/α
i

, where {Ŵi} are homogeneous,

unit rate, Poisson points.) Let {ξi, i ≥ 1} be iid, unit mean, Poisson random variables
that are independent of {J i}. Then in PR(Mp(E)),

P

[
n∑

i=1

ǫZ∗
i /bn

∈ · | Z1, . . . , Zn

]
⇒ P

[∑

i

ξiǫJ i
∈ · | J i, i ≥ 1

]
,

and taking expectations,

P

[
n∑

i=1

ǫZ∗
i /bn

∈ ·
]

⇒ P

[∑

i

ξiǫJ i
∈ ·
]

.

Remark 6.3. We emphasize that the conditional probability is a random element of

PR(Mp(E)). Also, the limit is not PRM(ν), even unconditionally, since it represents a

cluster process. We confirm this by computing the Laplace functional of the limit. For

f ∈ C+
K(E),

E

(
exp

{
−
∑

i

ξif (J i)

})
= E

(
E

(
exp

{
−
∑

i

ξif (J i)

}
| J i, i ≥ 1

))

= E
∏

i

E(exp{−f (J i)ξ1} | J i, i ≥ 1)

= E
∏

i

exp{e−f (J i) − 1}
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= E exp

{
−
∫

E

(1 − e−f (x))N∞(dx)

}
(6.27)

= E exp{−N∞(1 − e−f )}

= exp

{
−
∫

E

(1 − e−(1−e−f (x)))ν(dx)

}
,

where in the last step, we used the fact that the Laplace functional of N∞ at the function

1 − e−f has a known form given by (5.12) (p. 135).

Proof. For 1 ≤ n ≤ ∞, let M
(n)
p (E) ⊂ Mp(E) be point measures on E having n points:

M(n)
p (E) = {m ∈ Mp(E) : m(E) = n}.

With m = n in (6.26), recall that Pj (n) :=
∑n

i=1 1[I (n)
i =j ] is the multinomial number

of js sampled in n trials. Define hn : M
(n)
p (E) �→ PR(Mp(E)) by

hn

(
n∑

i=1

ǫ
y

(n)
i

)
= P

[
n∑

i=1

Pi(n)ǫ
y

(n)
i

∈ ·
]

.

The map hn is well defined. Similarly, define h : M
(∞)
p (E) �→ PR(Mp(E)) by

h

(∑

i

ǫ
y

(∞)
i

)
= P

[∑

i

ξiǫy
(∞)
i

∈ ·
]

,

where {ξi, i ≥ 1} are iid Poisson random variables with parameter 1.

For mn =
∑n

i=1 ǫ
y

(n)
i

∈ M
(n)
p (E), 1 ≤ n ≤ ∞, we claim that if mn

v→ m∞, then

hn(mn) ⇒ h(m∞) (6.28)

in PR(Mp(E)); that is, weak convergence of the probability measures takes place. To

prove this, we may show that the Laplace functional of the probability measure on the

left in (6.28) converges to the Laplace functional of the probability measure on the right.

Thus we write (f ∈ C+
K(E))

∫

Mp(E)

e−m(f )
P

[
n∑

i=1

Pi(n)ǫ
y

(n)
i

∈ dm

]

= E exp

{
−

n∑

i=1

Pi(n)f (y
(n)
i )

}
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= E exp

⎧
⎨
⎩−

n∑

j=1

(
n∑

i=1

1[I (n)
j =i]f (y

(n)
i )

)⎫⎬
⎭

=
(

E exp

{
−
(

n∑

i=1

1[I (n)
1 =i]f (y

(n)
i

)})n

=
(

E exp

{
−f (y

(n)

I
(n)
1

)

})n

,

and remembering that I
(n)
1 is uniform on 1, . . . , n, this is

=
(

1 −
∑n

i=1[1 − e−f (y
(n)
i )]

n

)n

=
(

1 −
∫

E
[1 − e−f ]dmn

n

)n

→ exp

{
−
∫

E

[1 − e−f ]dm∞

}

=
∫

Mp(E)

e−m(f )
P

[∑

i

ξiǫy
(∞)
i

∈ dm

]
,

which is the Laplace functional ofh(m∞). (See the calculation leading to (6.27) (p. 190).)

Now we know from (6.15) (p. 179) that

Mn :=
n∑

i=1

ǫZi/bn ⇒ M∞ :=
∑

i

ǫJ i

in Mp(E). Therefore, by the second continuous mapping theorem (see Problem 3.19

(p. 69)), replacing mn by Mn in (6.28) yields

hn(Mn) = P

[
n∑

i=1

ǫZ∗
i /bn

∈ · | Z1, . . . , Zn

]

⇒ h(M∞) = P

[∑

i

ξiǫJ i
∈ · | J i, i ≥ 1

]

in PR(Mp(E)), as asserted. ⊓⊔

6.5 Multivariate regular variation: Examples, comments, amplification

Here we give some examples and further information about the concept of multivariate

regular variation of distribution tails.
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6.5.1 Two examples

Consider the following two cases, which represent opposite ends of the dependence

spectrum.

Independence and asymptotic independence

Suppose {Zn, n ≥ 1} are iid random vectors in R
d
+ such that for each n, the vector

Zn = (Z
(1)
n , . . . , Z

(d)
n ) consists of iid nonnegative components with

F̄(1)(x) := P[Z(1)
1 > x] ∼ x−αL(x), x → ∞, α > 0.

Then the vector Z1 has multivariate regularly varying tail probabilities. Define

bn =
(

1

1 − F(1)

)←
(n).

Then we have

nP

[
Z1

bn

∈ ·
]

v→ ν, (6.29)

and ν(·) is given by

ν(dx(1), . . . , dx(d))

=
d∑

j=1

ǫ0(dx(1)) × · · · × ǫ0(dx(j−1)) × να(dx(j)) × · · · × ǫ0(dx(d)). (6.30)

That is, for any δ > 0,

ν

⎛
⎝⋃

i �=j

{x ∈ E : x(i) ∧ x(j) > δ}

⎞
⎠ = 0.

The measure ν spreads mass onto each axis according to the one-dimensional measure

να but assigns no mass off the axes.

To see this, it suffices by Lemma 6.1 to show that for x > 0 (if one or more

components of x are 0, a slightly different argument is needed),

nP

[
Z1

bn

∈ [0, x]c
]
→ ν([0, x]c) =

d∑

i=1

(x(i))−α (6.31)

for x ∈ [0, ∞) \ {0}. We do this readily using inclusion/exclusion. Write
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nP

[
Z1

bn

∈ [0, x]c
]
= nP

⎧
⎨
⎩

d⋃

j=1

[
Z

(j)

1

bn

> x(j)

]⎫⎬
⎭

=
d∑

j=1

nP

[
Z

(j)

1

bn

> x(j)

]
−
∑

1≤i<j≤d

nP

[
Z

(i)
1

bn

> x(i),
Z

(j)

1

bn

> x(j)

]

+
∑

1≤i<j<k≤d

nP

[
Z

(i)
1

bn

> x(i),
Z

(j)

1

bn

> x(j),
Z

(k)
1

bn

> x(k)

]

− · · · (−1)d+1nP

{
d⋂

i=1

[
Z

(i)
1

bn

> x(i)

]}
.

All terms but the first go to zero. For the first,

nP

[
Z

(j)

1

bn

> x(j)

]
→ (x(j))−α,

and other terms are bounded by an expression of the form (i �= j)

nP

[
Z

(i)
1

bn

> x(i),
Z

(j)

1

bn

> x(j)

]
= nP

[
Z

(i)
1

bn

> x(i)

]
P

[
Z

(j)

1

bn

> x(j)

]

∼ (x(i))−α
P

[
Z

(j)

1

bn

> x(j)

]
→ 0.

What is the form of the angular measure S? Let

ei = (0, . . . , 1, . . . , 0), i = 1, . . . , d,

be the basis vectors and suppose the norm is defined so that

‖ei‖ = 1, i = 1, . . . , d.

This amounts to a normalization. Then ν concentrates on the lines

d⋃

i=1

{tei, t > 0}

and

ν

(
E \

d⋃

i=1

{tei, t > 0}
)

= 0.
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We know that ν ◦ T −1 = cνα × S, where T is the polar coordinate transformation, and

S = ν ◦ T −1((1,∞] × ·)
ν ◦ T −1((1,∞] × ℵ+)

.

Call the denominator 1/c. For a measurable set � ⊂ ℵ+, we have

S(�) = cν

{
x : ‖x‖ > 1,

x

‖x‖ ∈ �

}

= c

d∑

i=1

ν

({
x : ‖x‖ > 1,

x

‖x‖ ∈ �

}
∩ {tei : t > 0}

)

= c
∑

i:ei∈�

ν({tei : t > 1}).

So S concentrates on {ei, i = 1, . . . , d}, and S is of the form

S =
d∑

i=1

piǫei
,

where (p1, . . . , pd) is a probability vector whose components sum to 1.

The equivalence for (6.29) in terms of convergence to a Poisson process is as follows:

We have
n∑

i=1

ǫZi/bn ⇒ N = PRM(ν).

The limiting PRM has all its points on the axes and can be represented as a superposition.

Let

Ni =
∑

k

ǫjk(i), i = 1, . . . , d,

be d iid PRM(να). Then we have

N
d=

d∑

i=1

∑

k

ǫjk(i)ei
.

All the points of N lie on the axes, and the way we construct N is to go to the first

axis and drop down Poisson points, then go to the second axis and drop an independent

collection of Poisson points, and so on.
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Asymptotic independence. Suppose Z is a random vector in R
d
+ with distribution tail

that is regularly varying and that (6.29) and (6.30) (p. 192) hold even though we do

not assume that Z has independent components. Then we say Z possesses asymptotic
independence.

One reason for the name is that for d = 2, observe that

lim
t→∞

P[Z(2) > t |Z(1) > t] = lim
t→∞

P[Z(1) > t, Z(2) > t]
P[Z(1) > t]

= lim
n→∞

P[Z(1) > bn, Z
(2) > bn]

P[Z(1) > bn]
= lim

n→∞
cnP[Z(1) > bn, Z

(2) > bn]

= cν(1, ∞] = 0

for some positive constant c. This follows because the ν in (6.30) puts zero mass in the

interior of the positive quadrant. Asymptotic independence means that if one component

is large, there is negligible probability of the other component also being large.

Another motivation for the definition comes from classical extreme-value theory.

See [260, p. 296] and [90].

Repeated components and asymptotic full dependence

Now suppose that {Zn, n ≥ 1} are iid random vectors in R
d
+ such that for each n, we

have that Zn = (Z
(1)
n , . . . , Z

(1)
n ) is a vector with each component the same random

variable. Assume

F̄(1)(x) = P[Z(1)
1 > x] ∼ x−αL(x), x → ∞, α > 0.

Then Z1 has multivariate regularly varying tail probabilities. Define

bn =
(

1

1 − F(1)

)←
(n).

Then with f ∈ C+
K(E) and the support of f in [0, δ1]c, for some δ > 0, we have

nEf

(
Z1

bn

)
=
∫

f (x, . . . , x)P

[
Z

(1)
1

bn

∈ dx

]
=
∫

f (x1)nP

[
Z

(1)
1

bn

∈ dx

]
,

and since f (x1) ∈ C+
K(0,∞], this converges to

→
∫

f (x1)να(x) =
∫

E

f (z)ν(dz),
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where ν concentrates on {t1, t > 0}. This means that

ν([0, x]c) = ν

(
d⋃

i=1

{y : y(i) > x(i)}
)

= ν

(
d⋃

i=1

{y : y(i) > x(i)} ∩ {t1 : t > 0}
)

= ν

(
d⋃

i=1

{t1 : t > x(i)}
)

= ν

{
t1 : t >

d∧

i=1

x(i)

}

= να

(
d∧

i=1

x(i),∞
]

=
(

d∧

i=1

x(i)

)−α

. (6.32)

What will be the angular measure S in this case? It is the measure concentrating all

mass on 1/‖1‖.

The limiting Poisson process for the empirical measure has all its points on the

diagonal and has the following structure. Let
∑

k

ǫjk

be PRM(να) on (0,∞]. Then

n∑

i=1

ǫZi/bn ⇒
∑

k

ǫjk1.

Asymptotic full dependence. Suppose Z is a random vector whose distribution con-

centrates on the positive quadrant, and suppose Z does not consist of only repeated

components. If the distribution tail is regularly varying with limit measure ν of the

form (6.32) then the distribution possesses asymptotic full dependence. This concept

is appropriate, for instance, for modeling insurance claims for house structural damage

and personal property damage per fire incident. One expects the components to be

highly dependent.

6.5.2 A general representation for the limiting measure ν

The limit measure ν in the definition of regular variation has the following representation

in terms of the angular measure S [95].
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Proposition 6.4. Suppose that E = [0, ∞] \ {0}. As before, suppose that T is the polar
coordinate transformation and

ν ◦ T −1 = cνα × S,

where να(x,∞] = x−α, x > 0, and S is a probability measure on ℵ+. Then for
x ∈ [0, ∞) \ {0},

ν([0, x]c) = c

∫

ℵ+

d∨

i=1

(
x(i)

a(i)

)−α

S(da). (6.33)

Proof. We have

ν([0, x]c) = ν ◦ T −1(T ([0, x]c)).

Now

T ([0, x]c) = T {y ∈ [0, ∞) \ {0} : y(i) > x(i) for some i}
= {(r, a) ∈ (0,∞) × ℵ+ : (ra)(i) > x(i) for some i}

=
{

(r, a) : r >
x(i)

a(i)
for some i

}

=
{

(r, a) : r >

d∧

i=1

x(i)

a(i)

}
.

Thus

ν([0, x]c) = ν ◦ T −1

{
(r, a) : r >

d∧

i=1

x(i)

a(i)

}

= cνα × S

{
(r, a) : r >

d∧

i=1

x(i)

a(i)

}

=
∫

a∈ℵ+

[∫

[r>∧d
i=1

x(i)

a(i)
]
να(dr)

]
S(da)

=
∫

a∈ℵ+

(
d∧

i=1

x(i)

a(i)

)−α

S(da) =
∫

a∈ℵ+

d∨

i=1

(
x(i)

a(i)

)−α

S(da). ⊓⊔

6.5.3 A general construction of a multivariate regularly varying distribution

Suppose R > 0 is a nonnegative random variable with a regularly varying tail
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nP[R > bnx] → x−α, x > 0, α > 0.

Suppose further that � is a random element of ℵ+ with distribution S and independent

of R. Then X = R� is multivariate regularly varying with limit measure ν given by

(6.33) since

nP

[(
R

bn

, �

)
∈ ·
]
= nP

[
R

bn

∈ ·
]

P[� ∈ ·] v→ να × S.

This follows from the equivalence of (6.7) and (6.9) in Theorem 6.1 (p. 173).

Example 6.1 (bivariate Cauchy density). Consider the bivariate Cauchy density

F ′(x, y) = 1

2π
(1 + x2 + y2)−3/2, (x, y) ∈ R

2,

of a random vector X. Transforming to the usual polar coordinates,

r2 = x2 + y2, θ = arctan(y/x),

we get

P [‖X‖ ∈ dr, �(X) ∈ dθ ] = F ′(r cos θ, r sin θ) = r(1 + r2)−3/2dr
1

2π
dθ.

Therefore, �(X) is uniform on [0, 2π), and

P[‖X‖ > r] = (1 + r2)−1/2 ∼ r−1, r → ∞,

so P[X‖ > r] is regularly varying with index −1. Furthermore, R = ‖X‖ and �(X)

are independent.

Note this gives multivariate regular variation on the cone R
2, and

nP

[(‖X‖
n

, �(X)

)
∈ ·
]

v→ ν1 × U,

where U is uniform on [0, 2π) and ν1(x,∞] = x−1, x > 0. This limit has a density

r−2dr
dθ

2π
= r−3rdr

dθ

2π
, r > 0, θ ∈ [0, 2π),

and so the limit measure ν has density

(x2 + y2)−3/2dxdy, (x, y) ∈ R
2.
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6.5.4 Regularly varying densities

As suggested by Example 6.1, most multivariate distributions are specified by densities,

not distribution functions. It would be convenient to have workable criteria guaranteeing

that regular variation of a multivariate density implies regular variation of the probability

distribution tail.

When d = 1, regular variation of the density implies the distribution tail is a

regularly varying function because of Karamata’s theorem. This is not always true in

higher dimensions and some regularity is needed. Intricacies are discussed in [91, 92, 97,

98]. Roughly speaking, multivariate regular variation knits together one-dimensional

regular variation along rays but does not control what happens as we hop from ray to

ray. Imposing a uniformity condition as we move across rays overcomes this difficulty.

It is convenient to return to the assumption that E = [0, ∞] \ {0}.

Theorem 6.4 ([98]). Suppose F is a probability distribution on E with density F ′ that
is regularly varying with the limit function λ(·) on [0, ∞) \ {0}. That is, we suppose for
some regularly varying function V (t) ∈ RVρ, ρ < 0, we have for x ∈ [0, ∞) \ {0},

lim
t→∞

F ′(tx)

t−dV (t)
= λ(x) > 0. (6.34)

Necessarily λ satisfies λ(tx) = tρ−dλ(x) for x ∈ [0, ∞) \ {0}. Further, suppose that
λ is bounded on ℵ+ and that the following uniformity condition holds:

lim
t→∞

sup
x∈ℵ+

∣∣∣∣
F ′(tx)

t−dV (t)
− λ(x)

∣∣∣∣ = 0. (6.35)

It then follows that for any δ > 0,

lim
t→∞

sup
‖x‖>δ

∣∣∣∣
F ′(tx)

t−dV (t)
− λ(x)

∣∣∣∣ = 0. (6.36)

Furthermore, λ(·) is integrable on [0, x]c for x > 0 and 1 − F is a regularly varying
function on (0, ∞), which takes the form

lim
t→∞

1 − F(tx)

V (t)
=
∫

[0,x]c
λ(y)dy. (6.37)

Example 6.2. Consider the following examples:

1. Two-dimensional Cauchy density: Return to Example 6.1,

F ′(x, y) = 1

2π
(1 + x2 + y2)−3/2, (x, y) ∈ R

2.
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Let the norm be the usual Euclidean norm

‖(x, y)‖ =
√

x2 + y2.

Then the density is, for x ∈ E,

F ′(x) = 1

2π
(1 + ‖x‖2)−3/2, x ∈ R

2.

Therefore, as t → ∞,

F ′(tx)

F ′(t1)
= (1 + t2‖x‖2)−3/2

(1 + 2t2)−3/2

∼ t−3(‖x‖)−3

2−3/2t−3

→ 23/2‖x‖−3 =: λ(x).

The uniformity condition (6.35) is easy to check since

sup
x:‖x‖=1

∣∣∣∣
F ′(tx)

F ′(t1)
− λ(x)

∣∣∣∣ =
∣∣∣∣∣

(
1 + t2

1 + 2t2

)−3/2

− 23/2

∣∣∣∣∣→ 0

as t → ∞.

2. The bivariate t-density: On E define

F ′(x, y) = c(1 + x2 + 2ρxy + y2)−2, (x, y) ∈ E, −1 < ρ < 1.

Define the norm (cleverly)

‖(x, y)‖2 = x2 + 2ρxy + y2 = (x + ρy)2 + (1 − ρ2)y2.

Then the density is of the form

F ′(x) = c(1 + ‖x‖2)−2, x ∈ E,

and we may proceed to check the conditions of Theorem 6.4 as in the bivariate

Cauchy case.

Note this method works whenever the density is of the form

F ′(x) = c(1 + ‖x‖γ )−β, x ∈ E.
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What suggested the form of the norm for the bivariate t-density? If F ′ is regularly

varying with limit function λ, then

λ(tx) = t−αλ(x), x > 0,

so that

λ−1/α(tx) = tλ−1/α(x),

which is the scaling a norm should have. So we could try and set

‖x‖ = λ−1/α(x)

and hope this defines a norm.

For the proof of Theorem 6.4, see [98] or [260, p. 284].

6.5.5 Beyond the nonnegative orthant

Up to now, we have typically assumed the state space was the nonnegative orthant.

However, for certain problems, the natural state space is not the nonnegative orthant.

This is true for weak convergence problems for partial sums and applications in finance,

where negative values of returns are important since they indicate losses. In extreme-

value theory, the natural state space is typically a rectangle of the form [xl, xr ] \ {xl},
where −∞ ≤ xl < xr ≤ ∞.

If E is a closed cone in [−∞, ∞]\{0}, the most useful examples are E = [0, ∞]\{0},
as we have already considered, and E = [−∞, ∞] \ {0}. Item 1 of Theorem 6.1

(p. 173), in terms of multivariate regular variation of functions, no longer has an easy

analogue, except in d = 1. One could express the correct analogue of item 1 in terms

of the multivariate distribution function tail of the positive and negative parts of the

components of Z by considering the regular variation of the 2d-dimensional vector

((Z
(1)
1 )+, (Z

(1)
1 )−, (Z

(2)
1 )+, (Z

(2)
1 )−, . . . , (Z

(d)
1 )+, (Z

(d)
1 )−),

but this would be awkward and not very elegant.

There is no trouble extending items 2–7 of Theorem 6.1 to the more general

cone, provided one works with measures and ℵ+ is replaced by ℵ ∩ E. If E =
[−∞, ∞] \ {0}, then

ℵ ∩ E = {x ∈ R
d : ‖x‖ = 1}.

If d = 1, then

nP

[
Z1

bn

∈ ·
]

v→ ν in M+([−∞,∞] \ {0}) (6.38)
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is the basic condition. This means that for x > 0,

nP

[
Z1

bn

> x

]
→ ν(x,∞] (n → ∞), (6.39)

which is sequential regular variation, so

ν(x,∞] = c+x−α, c+ ≥ 0.

Also, for x > 0,

nP

[
Z1

bn

< −x

]
= nP

[−Z1

bn

> x

]
→ ν[−∞,−x) (n → ∞), (6.40)

and again by sequential regular variation of functions, we get

ν[−∞,−x) = c−x−α, c− ≥ 0.

The α for the right tail must be the same as for the left tail since the same bn successfully

scales both tails and bn relates to α through the fact that bn = b(n), where the function

b(·) ∈ RV1/α . (See, for example, Proposition 2.6 (p. 32) or (2.12) (p. 23).) We therefore

conclude that

ν(dx) = c+αx−α−1dx1(0,∞](x) + c−α|x|−α−1dx1[−∞,0)(x).

Sometimes (6.39) and (6.40) are written together as

P [|Z1| > x] ∈ RV−α,

along with the tail-balancing condition (0 ≤ p ≤ 1)

P[Z1 > x]
P[|Z1| > x] → p,

P[Z1 < −x]
P[|Z1| > x] → 1 − p =: q

as x → ∞.

For this d = 1 case,

ℵ = {−1, 1}

and

S({1}) = c+
c+ + c−

, S({−1}) = c−
c+ + c−

.
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6.5.6 Standard vs. nonstandard regular variation

The phrasing of the regular variation condition in Theorem 6.1 assumes tail equivalence

for the distribution tails of the components. The requirement that

nP

[
Z1

bn

∈ ·
]

v→ ν in M+(E)

implies that

nP

[
Z

(i)
1

bn

∈ ·
]

v→ ciνα in M+((0,∞])

for ci ≥ 0 and i = 1, . . . , d. We have not ruled out the possibility that for some (but

not all) i, ci could be zero. For those components with ci > 0, the αs are the same

because bn = b(n) and b(·) ∈ RV1/α . The marginal convergences with the same scaling

function bn, in turn, imply that for 1 ≤ i < j ≤ d,

lim
x→∞

P[Z(i)
1 > x]

P[Z(j)

1 > x]
= ci

cj

.

However, in practice, one rarely observes components having the same tail indices

and one needs a broader understanding of multivariate heavy tails.

Example 6.3. Let P be a nonnegative random variable with unit Pareto distribution and

consider Z = (P, P 2). If in the definition of regular variation we insist on normalizing

both components with the same scaling, then

nP

[(
P

n2
,
P 2

n2

)
∈ ·
]

v→ ǫ0 × να.

A more subtle normalization would reveal more structure; in particular,

nP

[(
P

n
,
P 2

n2

)
∈ ·
]

v→ να ◦ T −1
1,12,

where T1,12 : (0,∞] �→ (0,∞] × (0,∞] and is defined by T1,12(x) = (x, x2).

In heavy-tail analysis, one wishes to rule out degeneracies coming from a one-

dimensional marginal distribution that is not heavy tailed. However, the degeneracy of

Example 6.3 is fairly natural. When estimating the αs of heavy-tailed multivariate data,

one never gets equal αs for all the components. Examples include the following:

• exchange rate returns of Germany, France, and Japan against the US dollar;
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• heavy-tailed Internet data of the form {(Lj , Fj , Rj ), 1 ≤ j ≤ n}, where

Lj = download time of j th file,

Fj = size of j th file,

Rj = transferred rate of j th file.

(See p. 238.) So, while the theory is most elegantly developed using the single nor-

malization of Theorem 6.1, in practice this is not adequate and sensitivity to tails with

different weights is needed. The next result shows that a broader definition is possible

but that a monotone transformation brings the broader definition back to what we call

the standard case [95, 260], which is the case of Theorem 6.1 with bn = n. Eventually,

we will address how to deal with this in a statistical context.

Theorem 6.5. As usual, assume Z = (Z(1), . . . , Z(d)) is a vector with nonnegative
components and E = [0, ∞] \ {0}. Suppose for 1 ≤ i ≤ d that there exist sequences
{b(i)

n , n ≥ 1}, with limn→∞ b
(i)
n = ∞, i = 1, . . . , d, such that we have the following:

(i) Marginal regular variation: For each i = 1, . . . , d,

nP

[
Z(i)

b
(i)
n

∈ ·
]

v→ ναi
, αi > 0, (6.41)

in M+(0,∞]
and

(ii) Nonstandard global regular variation: There exists a measure ν on Borel subsets of
E such that

nP

[(
Z(i)

b
(i)
n

, i = 1, . . . , d

)
∈ ·
]

v→ ν (6.42)

in M+(E).

Let F̄(i)(x) = P[Z(i) > x] be the ith marginal distribution tail, and from (6.41),

we can define

b(i)(x) =
(

1

1 − F(i)(·)

)←
(x), x > 1,

and set b
(i)
n = b(i)(n). Then we have the following:

(i) Standard global regular variation:

nF∗(n·) := nP

[(
(b(i))←(Z(i))

n
, i = 1, . . . , n

)
∈ ·
]
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v→ ν∗(·) in M+(E), (6.43)

where
ν∗(t ·) = t−1ν∗(·) (6.44)

on Borel subsets of E,

and

(ii) Standard marginal convergence: For i = 1, . . . , d,

nP

[
(b(i))←(Z(i))

n
> x

]
→ x−1, x > 0. (6.45)

The marginal condition (6.41) rules out tails that are not heavy. The global condition

(6.42) describes dependence among the components. The standard case is where we

have tail-equivalent marginal tails, each of which is regularly varying with index −1

and normalization by the same constant b(n) = n is adequate.

Proof. Observe that

nP

{[
(b(i))←(Z(i))

n
≤ x

]c}
= nP

{[
Z ≤ (b(i)(nx(i)), i = 1, . . . , d)

]c}

= nP

{[
Z(i)

b
(i)
n

≤ b(i)(nx(i))

b(i)(n)
, i = 1, . . . , d

]c}
.

Since
b(i)(nx(i))

b(i)(n)
→ (x(i))1/αi ,

we get, as n → ∞,

nP

{[
(b(i))←(Z(i))

n
≤ x

]c}
→ ν

([
0,

(
lim

n→∞
b(i)(nx(i))

b(i)(n)
, i = 1, . . . , d

)]c)

= ν([0, x1/α]c) =: ν∗([0, x]c). (6.46)

This completes the proof and defines ν∗ appearing in (6.43). ⊓⊔

Note the relation between ν and the standardized ν∗ given in (6.46). How to trans-

form to the standard case in a statistical context is a significant problem that we will

discuss in Chapter 9.
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6.6 Problems

6.1 (Deleting axes). As another use of Proposition 6.1, suppose X = [0, ∞] \ {0}, and

define the cone X
0 by

X
0 := {s ∈ X : for some 1 ≤ i < j ≤ d, s(i) ∧ s(j) > 0},

where we write the vector s = (s(1), . . . , s(d)). An alternative description: For i =
1, . . . , d, define the basis vectors

ei = (0, . . . , 0, 1, 0, . . . , 0),

so that the axes originating at 0 are Li := {tei, t > 0}, i = 1, . . . , d. Then we also have

X
0 = X \

d⋃

i=1

Li .

If d = 2, we have X
0 = (0,∞]2. What are the relatively compact subsets of X

0? (Such

a space is useful in consideration of asymptotic independence. See [217].)

6.2 ([77]). Suppose Y1, . . . , Yk are nonnegative random variables (but not necessarily

independent or identically distributed). If Y1 has distribution F satisfying F̄ ∈ RV−α

and if as x → ∞,
P [Yi > x]
1 − F(x)

→ ci, i = 1, . . . , k,

and
P [Yi > x, Yj > x]

1 − F(x)
→ 0, i �= j,

then

P
[∑k

i=1 Yi > x
]

1 − F(x)
→ c1 + · · · + ck.

6.3 (The restriction functional [130]). Suppose E
′ is a measurable subset of E, and

give E
′ the relative topology inherited from E. For a set B ⊂ E

′, denote by ∂E′B the

boundary of B in E
′, and denote by ∂EB the boundary of B in E.

(a) Define

T̂ : M+(E) �→ M+(E′)

by

T̂ μ = μ(· ∩ E
′).

If μ ∈ M+(E) and μ(∂EE
′) = 0, then T̂ is continuous at μ, so that if μn

v→ μ in

M+(E), then T̂ μn
v→ T̂ μ in M+(E′).
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(b) The same conclusion holds if we define T̂ the same way but consider it as a mapping

T̂ : M+(E) �→ M+(E).

(c) Conversely, suppose that μn ∈ M+(E) for n ≥ 0 and that μn
v→ μ0 in M+(E′). If

μn((E
′)c) = 0, n ≥ 0,

and μ0(∂EE
′) = 0, then μn

v→ μ0 in M+(E) as well.

6.4 (Stochastic analogue of Karamata’s theorem [133]). Suppose {Zn, n ≥ 1} are

iid nonnegative random variables with common distribution F satisfying F̄ ∈ RV−α .

Then in C[0,∞) we have for any β > α, as m = m(n) → ∞, m/n → 0,

∫ x

0

m

n

n∑

t=1

ǫZt/b(m)(u,∞]uβ−1du
P→
∫ x

0

να(u,∞]uβ−1du = xβ−α

β − α
.

6.5 (Regular variation at 0 [133]). Suppose {Zn, n ≥ 1} are iid random vectors in

[0,∞)d and the distribution function of Z1 is regularly varying at 0. Formulate this as

vague convergence of measures and verify the analogue of Theorem 6.2.

Suppose d = 1 and P [Z1 ≤ x] ∈ RVα at 0. Then in C[0,∞), we have for

appropriately chosen scaling constants a(m) and β > α,

∫ x

0

m

n

n∑

t=1

ǫZt/a(m)[0, u−1)uβ−1du
P→
∫ x

0

ν[0, u−1)uβ−1du = xβ−α

β − α
.

6.6 (�-variation [104, 259]). A measurable function U : (0,∞) �→ (0,∞) is called

�-varying (written U ∈ �) [26, 90, 102, 144, 260] if there exists g ∈ RV0 such that

for all x > 0,

lim
t→∞

U(tx) − U(t)

g(t)
= log x. (6.47)

1. Suppose

U(x) =
∫ x

0

u(s)ds, x > 0, u(·) ∈ RV−1 .

Show that U ∈ �.

2. Suppose U is nondecreasing. Show U ∈ � iff there exists a(n) → ∞ and

n

a(n)
U(a(n)·) v→ L(·),

where L is the measure satisfying L(a, b] = log b/a, 0 < a < b < ∞.
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3. Suppose U is nondecreasing and

∑

k

ǫ(tk,uk)

is PRM(LEB×U). U ∈ � iff there exists a(·) ∈ RV1 such that

1

a(n)

∑

k

ǫ(ntk,uk/a(n)) ⇒ LEB×L.

4. Suppose U is nondecreasing and

∑

k

ǫ(tk,uk)

is PRM(LEB×U). U ∈ � iff there exists a(·) ∈ RV1 such that

∑

k

ǫ(n−1a(n)tk,uk/a(n)) ⇒ PRM(LEB×L).

6.7 ([259]). Suppose {Yn,k} are random elements of a nice space E and

n∑

k=1

ǫYn,k
⇒ PRM(μ)

in Mp(E), where μ ∈ M+(E). If {Xk} is an iid sequence of random elements of a nice

space E
′, and for each n the families {Xk} and {Yn,k, k ≥ 1} are independent, then

n∑

k=1

ǫ(Yn,k,Xk) ⇒ PRM(μ × P[X1 ∈ ·])

in Mp(E × E
′).

6.8 ([13]). Suppose Z ∈ R
d
+ is a random vector. Show that it has a distribution with a

regularly varying tail iff for some α > 0 and some random vector � ∈ ℵ+, we have

for all x > 0,

P

[
‖Z‖ > tx, Z

‖Z‖ ∈ ·
]

P[‖Z‖ > t]
v→ x−α

P[� ∈ ·]

as t → ∞, where vague convergence is in M+(ℵ).
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6.9. Suppose {Zn, n ≥ 1} are iid random vectors in [0,∞)d with a distribution satisfying

the standard form of regular variation (see (6.43) (p. 205)). Then

lim
n→∞

P

[
n∨

i=1

Zi

n
≤ x

]
= G(x), x ≥ 0,

weakly, where G is a product probability distribution iff the distribution of Z1 exhibits

asymptotic independence. (See, for example, [260, p. 296] and [90].)

6.10 ([89]). Let U be uniform on (0, 1). Prove that

Z =
(

1

U
,

1

1 − U

)

possesses asymptotic independence.

6.11 (Normal dependence model [260, p. 297], [90, 279]). Suppose (N1, N2) is a

normal random vector with zero means, unit variances and correlation ρ < 1. Define

Z =
(

1

�(N1)
,

1

�(N2)

)
,

and show that Z possesses asymptotic independence.

6.12 (Pairwise asymptotic independence [260, p. 296], [95, 140, 142, 143, 210]).

Suppose Z is a R
d
+-valued vector with a regularly varying distribution tail. Prove that

Z possesses asymptotic independence iff for any i �= j , the pair (Z(i), Z(j)) possesses

asymptotic independence.

6.13 (Sample range [103]). Suppose {Zi, i ≥ 1} are iid with common distribution F

satisfying regular variation on [−∞,∞] \ {0}; that is,

nP

[
Z1

bn

∈ ·
]

v→ ν(·)

in M+([−∞,∞] \ {0}) as in (6.38), (6.39), (6.40). Prove that
(

b−1
n

n∨

i=1

Zi, b
−1
n

n∧

i=1

Zi

)

has a limit distribution, and hence so does the sample range

Rn := b−1
n

(
n∨

i=1

Zi −
n∧

i=1

Zi

)
.

Are Z1 and −Z1 asymptotically independent using some sensible definition?
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6.14 (Binding vectors). Suppose X and Y are independent random vectors with non-

negative components defined on the same probability space. If X is regularly varying

in Ed1 with limit measure ν1, and Y is regularly varying in Ed2 with limit measure ν2,

show that (X, Y ) is regularly varying in Ed1+d2 . What is the limit measure? (If you

need help, peek ahead to Lemma 7.2.)

6.15 (Continuity of the limit function [97, 284]). Suppose f : [0, ∞) �→ (0,∞) is

nondecreasing and regularly varying on the cone (0, ∞) with limit function λ. Show

that λ(·) is continuous on (0, ∞).

6.16 (m-dependence and the Poisson transform). The Poisson transform given

in (6.15) also applies to m-dependent stationary sequences whose one-dimensional

marginal distributions are regularly varying. Suppose that {Xn} are m-dependent ran-

dom elements of a nice space E, in the sense that random variables more than m apart

in the sequence are independent. More precisely, let

Bk
j = σ(Xj , . . . , Xk)

be the σ -algebra generated by Xj , . . . , Xk for k ≤ j . Assume B
k1
j1

, . . . , B
kl

jl
are in-

dependent if ki−1 + m < ji for i = 2, . . . , l. (Independent random variables are

0-dependent.)
Now assume that for each n = 1, 2, . . . , the array {Xn,i, i ≥ 1} are stationary and

m-dependent and that

nP[Xn,1 ∈ ·] v→ ν (6.48)

for a Radon limit measure ν and

lim
k→∞

lim sup
n→∞

n

[n/k]∑

i=2

E(g(Xn,1)g(Xn,i)) = 0 (6.49)

for any g ∈ C+
K(E), g ≤ 1.

Prove that [76]
n∑

i=1

ǫXn,i
⇒ PRM(ν).

Hint: Use the big block–little block method and Laplace functionals. Examples of

the big block–little block method are in [197, 264].

6.17 (Basic convergence with a time coordinate). Theorem 6.3 (p. 180) extends (6.15)

(p. 179) of Theorem 6.2. Provide a similar extension of (6.17) (p. 180).
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Weak Convergence and the Poisson Process

This chapter exploits connections between regular variation and the Poisson process

given in Theorems 6.2 (p. 179) and 6.3 (p. 180) to understand several limit theorems

and also to understand how regular variation of distributions of random vectors is

transmitted by various transformations on the vectors. The fundamental philosophy is

that we should capitalize on the equivalence between the analytical concept of regular

variation and the probabilistic notion of convergence of empirical measures to limiting

Poisson random measures.

7.1 Extremes

Regular variation is equivalent to scaled extremes converging weakly. If necessary,

vector notation may be reviewed in Appendix 10 (p. 359). Remember that maxima of

collections of vectors are taken componentwise. Suppose {Zn, n ≥ 1} are iid random

vectors in [0,∞)d with common distribution F . We take E = [0, ∞] \ {0}. Theo-

rems 6.1 (p. 173) and 6.2 (p. 179) state the regular variation condition in its equivalent

forms. The representation of the limit measure in the definition of regular variation in

terms of the angular measure is given in Proposition 6.4 (p. 197).

7.1.1 Weak convergence of multivariate extremes: The timeless result

Here is the equivalence between regular variation and convergence of extremes.

Proposition 7.1. Suppose {Zn, n ≥ 1} are iid random vectors in E. Then regular
variation of the distribution of Z1 with limit measure ν,

nP

[
Z1

bn

∈ ·
]

v→ ν
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in M+(E), is equivalent to
n∨

i=1

Zi

bn

⇒ Y 0, (7.1)

where Y 0 is a random vector with distribution F0 given by

F0(x) := e−ν([0,x]c), x ≥ 0.

Proof. Given the multivariate regular variation condition, write (6.15) as

Nn =
n∑

i=1

ǫZi/bn ⇒ N0 =
∑

k

ǫj k
= PRM(ν) (7.2)

in Mp(E). Write

P

[
n∨

i=1

Zi

bn

≤ x

]
= P[Nn([0, x]c) = 0] → P[N0([0, x]c) = 0] = e−ν([0,x]c),

since N0([0, x]c) is a Poisson random variable.

Conversely, if (7.1) holds, we have

F n(bnx) → e−ν([0,x]c),

and using the same argument that led to (2.10) (p. 23), we get

nF̄ (bnx) = nP

[
Z1

bn

∈ [0, x]c
]
→ ν([0, x]c).

Finish using Lemma 6.1 (p. 174). ⊓⊔

Variants of this result can be constructed for weak convergence of the (largest,

second largest, . . . , kth largest) of the sample.

7.1.2 Weak convergence of multivariate extremes: Functional convergence to

extremal processes

Suppose that

N#
0 =
∑

k

ǫ(tk,j k)
= PRM(LEB×ν)

is a Poisson random measure on [0,∞) × E with mean measure LEB×ν. As in

Section 5.6.1 (p. 161), we define the extremal process
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Y 0(t) =
∨

tk≤t

j k, t ≥ 0.

So Y 0(t) looks at points whose time coordinate is prior to t and then takes the biggest

j satisfying the time constraint. Its marginal distribution is given by (5.52) (p. 161).

Recall that Theorem 6.3 (p. 180) gave a point process equivalence to regular varia-

tion that added a time coordinate: As n → ∞, the regular variation condition

nP

[
Z1

bn

∈ ·
]

v→ ν

is equivalent to

N#
n :=

∞∑

i=1

ǫ
( i
n
,Zi/bn)

⇒ N#
0 :=

∑

i

ǫ(ti ,j i)
= PRM(LEB×ν), (7.3)

in Mp([0,∞) × E).

Proposition 7.2 (weak convergence to extremal processes). Suppose {Zn, n ≥ 1}
are iid nonnegative random vectors. The multivariate regular variation condition is
equivalent to

Yn(·) :=
[n·]∨

i=1

Zi

bn

⇒ Y0(·) =
∨

tk≤·
j k (7.4)

in D([0,∞), [0, ∞)), the space of functions whose domain is [0,∞) and range is
[0, ∞), that are right continuous, and that possess finite left limits on (0,∞).

Proof. Define the almost surely continuous functional

χ# : Mp([0,∞) × E) �→ D([0,∞), [0, ∞))

by

χ

(∑

k

ǫ(tk,xk)

)
(t) =

∨

tk≤t

xk.

Apply this and the continuous mapping theorem to (7.3). ⊓⊔

The unchecked claim is the statement that χ# is almost surely continuous. We

will prove something similar in connection with weak convergence of partial sums to

Lévy processes, so we defer to that section. The impatient may wish to consult [260,

p. 214]. Proposition 7.2 was originally proved for d = 1 by Lamperti [195] with

a traditional finite-dimensional convergence plus tightness proof. The connection to

weak convergence of point processes is in [258, 296]. Applications of the result in one

dimension using the structure of extremal processes and records are in [258, 260].
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7.2 Partial sums

We now explore ideas which lead to weak convergence of partial sum processes to the

limiting jump Lévy processes constructed in Section 5.5 (p. 146). This will also allow

approximation of partial sums of heavy-tailed iid random variables by the stable Lévy

motions discussed in Section 5.5.2 (p. 154).

For this section, we need the definitions of D([0,∞), R
d), the space of functions

on [0,∞) with range R
d that are right continuous and with finite left limits. Review the

Skorohod metric from Section 3.3.4 (p. 46). In particular, we need that if xn, n ≥ 0 are

functions in D([0,∞), R
d), then xn → x0 in the Skorohod metric on D([0,∞), R

d),

if xn → x0 in the Skorohod metric on D([0, T ], R
d) for any T which is a continuity

point of the limit. Recall the Skorohod metric on [0, T ] is a uniform metric after small

deformations of the time scale and that local uniform convergence implies Skorohod

convergence (see p. 47).

7.2.1 Weak onvergence of partial sum processes to Lévy processes

Theorem 7.1 is flexible enough for many purposes. For this d-dimensional result, set

E = [−∞, ∞] \ {0}. The argument is adapted from [241]. As usual, we denote random

vectors by X = (X(1), . . . , X(d)).

Theorem 7.1. Suppose for each n ≥ 1 that {Xn,j , j ≥ 1} are iid random vectors
such that

nP[Xn,1 ∈ ·] v→ ν(·) (7.5)

in M+(E), where ν is a Lévy measure (see Section 5.5.1 (p. 146)), and suppose further
that for each j = 1, . . . , d,

lim
ε↓0

lim sup
n→∞

nE((X
(j)

n,1)
21[|X(j)

n,1|≤ε]) = 0. (7.6)

Define the partial sum stochastic process based on the nth row of the array by

Xn(t) :=
[nt]∑

k=1

(Xnk − E(Xn,k1[‖Xn,k‖≤1])), t ≥ 0.

Then (7.5) and (7.6) imply that
Xn ⇒ X0,

in D([0,∞), R
d), where X0(·) is a Lévy jump process with Lévy measure ν, as con-

structed in Section 5.5 (p. 146).
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Proof. We break the proof into several steps. The idea of each step is simple. Several

of the steps involve assertions that certain functionals are continuous, and to promote

flow, we delay proofs of continuity.

Step 1. From the variant of the basic convergence, Corollary 6.1 (p. 183), we know

that (7.5) implies that

∞∑

k=1

ǫ
( k
n
,Xn,k)

⇒
∑

k

ǫ(tk,j k)
= PRM(LEB×ν) (7.7)

in Mp([0,∞) × E). Here and in the rest of the discussion, we always assume ε is

chosen so that ε is not a jump of the function

τ(t) = ν{x : ‖x‖ > t}.

Later, when ε ↓ 0, we assume convergence to 0 is through a sequence of values {εℓ} that

are also not jumps of this function. Since τ(·) has only a countable number of jumps,

this can be arranged. For convenience, we assume 1 is not a jump of τ(·).
Step 2. Two continuity assertions:

(i) The restriction map defined by

m �→ m|[0,∞)×{x:‖x‖>ε}

is almost surely continuous from Mp([0,∞)×E) �→ Mp([0,∞)×{x : ‖x‖ > ε})
with respect to the distribution of PRM(LEB×ν). (See Problem 6.3 (p. 206).)

(ii) The summation functional defined by

∑

k

ǫ(τk,J k) →
∑

τk≤(·)
J k

is almost surely continuous from Mp([0,∞) × {x : ‖x‖ > ε}) �→ D([0, T ], R
d)

(see Section 7.2.3 (p. 221)) with respect to the distribution of PRM(LEB×ν).

Step 3. From the first continuity assertion in Step 2, the convergence statement in

Step 1, and the continuous mapping theorem, Theorem 3.1 (p. 42), we get the restricted

convergence ∑

k

1[‖Xn,k‖>ε]ǫ( k
n
,Xn,k)

⇒
∑

k

1[‖j k‖>ε]ǫ(tk,j k)
(7.8)

in Mp([0,∞) × {x : ‖x‖ > ε}). From the second continuity assertion in Step 2, we

get from (7.8) that



216 7 Weak Convergence and the Poisson Process

[n·]∑

k=1

Xn,k1[‖Xn,k‖>ε] ⇒
∑

tk≤(·)
j k1[‖j k‖>ε] (7.9)

in D([0, T ], R
d). Similarly, we get

[n·]∑

k=1

Xn,k1[ε<‖Xn,k‖≤1] ⇒
∑

tk≤(·)
j k1[ε<‖j k‖≤1]. (7.10)

Step 4. In (7.10), take expectations and apply (7.5) to get

[n·]E(Xn,11[ε<‖Xn,1‖≤1]) → (·)
∫

{x:ε<‖x‖≤1}
xν(dx) (7.11)

in D([0, T ], R
d). To justify this, observe first for any t > 0 that

[nt]E(Xn,11[ε<‖Xn,1‖≤1]) = [nt]
n

∫

{x:‖x‖∈(ε,1]}
xnP[Xn,1 ∈ dx]

→ t

∫

{x:‖x‖∈(ε,1]}
xν(dx)

since nP[Xn,1 ∈ ·] v→ ν(·) and ε and 1 are not jumps of τ(·). Convergence is locally

uniform in t and hence convergence takes place in D([0, T ], R
d).

Step 5. Difference (7.9)–(7.11). The result is

X(ε)
n (·) =

[n·]∑

k=1

Xn,k1[‖Xn,k‖>ε] − [n·]E(Xn,11[ε<‖Xn,1‖≤1])

⇒ X
(ε)
0 (·) :=

∑

tk≤·
j k1[‖j k‖>ε] − (·)

∫

{x:‖x‖∈(ε,1]}
xν(dx). (7.12)

(One must check that in D([0,∞), R
d), differencing is almost surely continuous.) From

the Itô representation of a Lévy process (see Section 5.5.3 (p. 155)), for almost all ω,

as ε ↓ 0,

X
(ε)
0 (·) → X0(·)

locally uniformly in t . Let d(·, ·) be the Skorohod metric on D[0,∞). Since local

uniform convergence implies Skorohod convergence, we get

d
(
X

(ε)
0 (·), X0(·)

)
→ 0
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almost surely as ε ↓ 0, and hence, since almost sure convergence implies weak conver-

gence,

X
(ε)
0 (·) ⇒ X0(·).

in D([0,∞), R
d).

Step 6. By the second converging together theorem, Theorem 3.5 (p. 56), it suffices to

show that

lim
ε↓0

lim sup
n→∞

P[d(X(ε)
n , Xn) > δ] = 0.

To prove convergence in D([0,∞), R
d), it is sufficient to prove Skorohod convergence

in D([0, T ], R
d) for any T , and since the Skorohod metric on D([0, T ], R

d) is bounded

above by the uniform metric on D([0, T ], R
d), it suffices to show that

lim
ε↓0

lim sup
n→∞

P

[
sup

0≤t≤T

‖X(ε)
n (t) − Xn(t)‖ > δ

]
= 0

for any δ > 0. Recalling the definitions, we have

‖X(ε)
n (t) − Xn(t)‖ =

∥∥∥∥∥

[nt]∑

k=1

Xn,k1[‖Xn,k‖≤ε] − [nt]E(Xn,11[‖Xn,1‖≤ε])

∥∥∥∥∥

=
∥∥∥∥∥

[nt]∑

k=1

(
Xn,k1[‖Xn,k‖≤ε] − E(Xn,k1[‖Xn,k‖≤ε])

)
∥∥∥∥∥ ,

so

P

[
sup

0≤t≤T

‖X(ε)
n (t) − Xn(t)‖ > δ

]

≤ P

[
sup

0≤t≤T

∥∥∥∥∥

[nt]∑

k=1

(
Xn,k1[‖Xn,k‖≤ε] − E(Xn,k1[‖Xn,k‖≤ε])

)
∥∥∥∥∥ > δ

]

= P

⎡
⎣ sup

0≤j≤nT

∥∥∥∥∥∥

j∑

k=1

(
Xn,k1[‖Xn,k‖≤ε] − E(Xn,k1[‖Xn,k‖≤ε])

)
∥∥∥∥∥∥

> δ

⎤
⎦ .

Now using the fact that ‖x‖ ≤ d ∨d
i=1 |x(i)|, we get the bound

≤
d∑

i=1

P

⎡
⎣ sup

0≤j≤nT

∣∣∣∣∣∣

j∑

k=1

(
X

(i)
n,k1[‖Xn,k‖≤ε] − E(X

(i)
n,k1[‖Xn,k‖≤ε])

)
∣∣∣∣∣∣
>

δ

d

⎤
⎦ ;
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and by Kolmogorov’s inequality (see (5.43) (p. 157), Lemma 5.3 (p. 157), or [24]), this

has upper bound

≤ (δ/d)−2
d∑

i=1

Var

([nT ]∑

k=1

X
(i)
n,k1[‖Xn,k‖≤ε]

)

= (δ/d)−2
d∑

i=1

[nT ]Var(X
(i)
n,11[‖Xn,1‖≤ε])

≤ (δ/d)−2
d∑

i=1

[nT ]E
(
(X

(i)
n,1)

21[|X(i)
n,1|≤ε]

)
.

Taking limε↓0 lim supn→∞, we easily get 0 by (7.6). ⊓⊔

7.2.2 Weak convergence to stable Lévy motion

Although we focus on d = 1 for the following functional limit theorem, versions of this

result in D([0,∞), R
d) are easy based on the work of the previous section. Conditions

for convergence of sums of iid heavy-tailed random vectors were first formulated in

[269]. See also [241] and Problem 7.6 (p. 248).

For this result

E = [−∞,∞] \ {0}.
Recall from Section 6.5.5 (p. 201) that (7.15), regular variation of the tail probabilities

on the cone R \ {0}, is equivalent to

lim
x→∞

P[Z1 > x]
P[|Z1| > x] = p, lim

x→∞
P[Z1 ≤ −x]
P[|Z1| > x] = q,

and

P[|Z1| > x] ∈ RV−α .

Corollary 7.1. Consider the special case where {Zn, n ≥ 1} are iid random variables
on R, and set Xn,j = Zj/bn for some bn → ∞. Define ν for x > 0 and 0 < α < 2 by

ν((x,∞]) = px−α, ν((−∞,−x]) = qx−α, (7.13)

where 0 ≤ p ≤ 1 and q = 1 − p. Then

[n·]∑

j=1

Zj

b(n)
− [n·]E

(
Z1

b(n)
1[| Z1

b(n)
|≤1]

)
⇒ Xα(·), (7.14)



7.2 Partial sums 219

in D[0,∞), where the limit is α-stable Lévy motion with Lévy measure ν, iff

nP

[
Z1

bn

∈ ·
]

v→ ν (7.15)

in M+(E).

Proof.

Sufficiency. Given the regular variation of the Zs, it is clear that (7.5) is satisfied with

the limit measure given in (7.13). For the truncated second moment condition (7.6),

we have

nE

((
Z1

b(n)

)2

1[| Z1
b(n)

|≤ε]

)
→
∫

[|x|≤ε]
x2ν(dx) (n → ∞)

= pαε2−α

2 − α
+ qαε2−α

2 − α
= (const)ε2−α

by Karamata’s theorem, and as ε → 0, we have ε2−α → 0, as required for the partial

sum process to converge to the Lévy process.

Necessity. Conversely, suppose (7.14) holds.

We begin by observing that if (7.14) holds, then it is also true that

[n·]∑

j=1

Zj

b(n)
− (n·)E

(
Z1

b(n)
1[| Z1

b(n)
|≤1]

)
⇒ Xα(·), (7.16)

where the centering is now a continuous function. To verify this, we take the difference

between the centering in (7.16) and the one in (7.14) and show that this goes to zero

in D[0,∞). It suffices to show that the difference converges to zero locally uniformly.

For any T > 0, we observe that

sup
0≤s≤T

|[ns] − ns| ≤ 1,

and hence it suffices to show that

E

(
Z1

bn

1[|Z1|≤bn]

)
→ 0.

We have

E

( |Z1|
bn

1[|Z1|≤bn]

)
=
∫ 1

x=0

(∫ x

y=0

dy

)
P

[∣∣∣∣
Z1

bn

∣∣∣∣ ∈ dx

]
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=
∫ 1

y=0

(∫ 1

x=y

P

[∣∣∣∣
Z1

bn

∣∣∣∣ ∈ dx

])
dy

=
∫ 1

0

(
P

[∣∣∣∣
Z1

bn

∣∣∣∣ > y

]
− P

[∣∣∣∣
Z1

bn

∣∣∣∣ > 1

])
dy.

The last integrand is bounded by 2 and goes to zero as n → ∞ since bn → ∞. Hence

by dominated convergence, the integral converges to 0.

Define the functionals T ±, T abs from D[0,∞) �→ R by

T +(x) = sup
0≤t≤1

{(x(t) − x(t−))1(0,∞)(x(t) − x(t−))},

T −(x) = sup
0≤t≤1

{|x(t) − x(t−)|1(−∞,0)(x(t) − x(t−))},

T abs(x) = sup
0≤t≤1

{|x(t) − x(t−)|}.

So T +(x) is the maximal positive jump of the function x in [0, 1] and T abs is the maximal

absolute value of the jumps in [0, 1]. These are almost surely continuous functionals

with respect to the distribution of the stable Lévy motion. Applying these functionals

to the convergence in (7.16) yields

T +

⎛
⎝

[n·]∑

j=1

Zj

b(n)

⎞
⎠ = 1

bn

n∨

j=1

Zj 1(0,∞)(Zj ) ⇒ T +(Xα),

T −

⎛
⎝

[n·]∑

j=1

Zj

b(n)

⎞
⎠ = 1

bn

n∨

j=1

|Zj |1(−∞,0)(Zj ) ⇒ T −(Xα),

T abs

⎛
⎝

[n·]∑

j=1

Zj

b(n)

⎞
⎠ = 1

bn

n∨

j=1

|Zj | ⇒ T abs(Xα).

Now

T +(Xα) =
∨

tk≤1

j+
k ,

and hence for x > 0,

P[T +(Xα) ≤ x] = P[N([0, 1] × (x,∞]) = 0] = e−px−α ;

similarly for the other two functionals. If 0 < p < 1, use the equivalence of regular

variation and weak convergence of normalized maxima of iid random variables (see

Proposition 7.1 (p. 211)) to get that
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P[|Z1| > x], P[Z1 > x], and P[Z1 ≤ −x]

are all regularly varying with equivalent tails. If p = 1, apply this argument using

T + and T abs. If p = 0, apply the argument using T − and T abs. This proves the con-

verse. ⊓⊔

7.2.3 Continuity of the summation functional

The proof of Theorem 7.1 (p. 214) about weak convergence of partial sums to Lévy

processes was dependent on the continuity of the summation functional (see p. 215),

and we discuss this point in more detail here. We restrict attention to the case d = 1

and so assume E = [−∞,∞] \ {0}.
Let N be PRM(LEB×ν) and assume ν ∈ M+(E) and ν{±∞} = ν{±ε} = 0. Set

E
>ε = {x ∈ E : |x| > ε},

and define the map

χ : Mp([0,∞) × E) �→ D[0,∞)

by

χ

(∑

i

ǫ(τi ,yi)

)
(t) = χ

(∑

i

ǫ(τi ,yi)(([0,∞) × E
>ε) ∩ ·)

)
(t)

=
∑

τi≤t

yi1[|yi |>ε]. (7.17)

Note this is a finite sum since [0, t]×E
>ε is a relatively compact subset of [0,∞)×E.

Equivalently, one can regard χ as a mapping with domain Mp([0,∞) × E
>ǫ).

Fix some T > 0. We will show that if m1, m2 ∈ Mp([0,∞) × E) are close, then

χ(m1) andχ(m2) are close as functions inD[0, T ]. Define the subset of Mp([0,∞)×E)

by (refer to Figure 7.1)

� := {m ∈ Mp([0,∞) × E) : m([0,∞) × {±ε}) = 0,

m([0,∞) × {±∞}) = 0,

m({0} × E
>ε) = m({T } × E

>ε) = 0,

m{[0, T ] × E
>ε} < ∞, and

no vertical line contains two points of m(([0, T ] × E
>ε) ∩ ·)}.

We make two claims.

Claim (1). P[N ∈ �] = 1.
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T

t

(∞,∞)

(-∞,-∞)

e

0

-e

Fig. 7.1. The region [0, T ] × {x : |x| > ǫ}. Dotted lines indicate an open boundary.

Claim (2). If m ∈ �, then χ is continuous at m as a function into D[0, T ], and therefore

χ is almost surely continuous with respect to P ◦ N−1, the distribution of N .

Why is Claim (1) true? We analyze � as an intersection of several sets and show

that each of the intersecting sets has probability 1.

(a) First, we have that

E(N [0, T ] × E
>ε) = T ν(E>ε) < ∞,

so

P[N([0, T ] × E
>ε) < ∞] = 1.

(b) Second, we have that

LEB×ν({0} × E
>ε) = LEB{0} · ν(E>ε) = 0,

so

E(N({0} × E
>ε)) = 0,

and therefore

P[N({0} × E
>ε) = 0] = 1.

Similarly, we have

P[N({T } × E
>ε) = 0] = 1.
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(c) Next, we show that

P{no vertical line contains two points of N(([0, T ] × E
>ε) ∩ ·)} = 1. (7.18)

Pick any M > 0. We can represent

N(([0, T ] × E
>ε) ∩ ·) =

ξ∑

1

ǫ(Ui ,Vi)(·),

where ξ is a Poisson random variable with parameter T ν(E>ε), {Ui, i ≥ 1}
are iid uniformly distributed on (0, T ), and {Vi, i ≥ 1} are iid with distribution

ν(E>ε ∩ ·)/ν(E>ε). Then

P{some vertical line contains two points of N([0, M] × E
>ε ∩ ·)}

= P

⎧
⎨
⎩
⋃

1≤i<j≤ξ

[Ui = Uj ]

⎫
⎬
⎭

=
∞∑

n=0

P

⎧
⎨
⎩
⋃

1≤i<j≤n

[Ui = Uj ]

⎫
⎬
⎭P[ξ = n]

≤
∞∑

n=0

(
n

2

)
P[U1 = U2]P[ξ = n]

=
∞∑

n=0

(
n

2

)
· 0 · P[ξ = n] = 0.

This gives (7.18).

Why is Claim (2) true on p. 222? Suppose m ∈ � and mn
v→ m. We show, for

any T > 0, that χmn → χm in D[0, T ]. This argument is based on the following

lemma [230], which describes what it means for two point measures m1 and m2 to be

close: In any compact region of the state space, the finite number of points of m1 are

close in location to the finite number of points of m2. In Lemma 7.1, X is any nice

state space.

Lemma 7.1. Suppose mn, n ≥ 0, are point measures in Mp(X) and mn
v→ m0. For

K ∈ K(X), such that m0(∂K) = 0, we have for n ≥ n(K) a labeling of the points of
mn and m0 in K such that

mn(· ∩ K) =
P∑

i=1

ǫ
x

(n)
i

(·), m0(· ∩ K) =
P∑

i=1

ǫ
x

(0)
i

(·),
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and in E
P ,

(x
(n)
i , 1 ≤ i ≤ P) → (x

(0)
i , 1 ≤ i ≤ P)

as n → ∞.

Proof. Write

m0(· ∩ K) =
s∑

r=1

crǫyr (·),

where y1, . . . , ys are the atoms of m in K0 and c1, . . . , cs are integers giving multiplic-

ities.

For each yr , choose a neighborhood Gr ⊂ K0 and with G1, . . . , Gs disjoint and

satisfying m0(∂Gr) = 0, so that the neighborhoods do not intersect and do not go

outside K0, and so boundaries of the neighborhoods contain no points of m0. Then

mn(Gr) → m0(Gr) (see Theorem 3.2 (p. 52)). Because the counting measures are

integer valued, a converging sequence actually equals its limit from some point on. So

for n sufficiently large, say, n ≥ n(K),

mn(Gr) = m0(Gr), 1 ≤ r ≤ s,

and also mn(K) = m0(K). Labeling points properly now gives the result. ⊓⊔

Back to the discussion of Claim (2): There exist nonnegative integers k0 and n0

such that for n ≥ n0,

mn([0, T ] × E
>ε) = m0([0, T ] × E

>ε) = k0.

For n ≥ n0, write

mn(([0, T ] × E
>ε) ∩ ·) =

k0∑

i=1

ǫ
(τ

(n)
i ,y

(n)
i )

(·),

where, since m0 ∈ �,

0 = τ0 < τ1 < · · · < τk0 < T < τk0+1.

Pick δ so small that

τ1 − δ > δ, τi + δ < τi+1 − δ, i = 1, . . . , k0 − 1, τk0 + δ < T − δ.

There exists n1 ≥ n0 such that for n ≥ n1,

(τ
(n)
i , y

(n)
i ) ∈ (τ

(0)
i − δ, τ

(0)
i + δ) × (y

(0)
i − δ, y

(0)
i + δ), 1 ≤ i ≤ k0.
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Define homeomorphisms λn : [0, T ] �→ λn[0, T ] by

λn(0) = 0, λn(T ) = T ,

λn(τ
(n)
i ) = τ

(0)
i , i = 1, . . . , k0;

between these points, λn(·) is defined by linear interpolation. Then writing ‖x(·)‖[0,T ]
for the sup-norm of the function x(·) on [0, T ], we have

‖χ(mn) ◦ λ−1
n − χ(m0)‖[0,T ] = sup

0≤t≤T

∣∣∣∣∣∣∣

∑

τ
(n)
k ≤λ−1

n (t)

y
(n)
k −

∑

τ
(0)
k ≤t

y
(0)
k

∣∣∣∣∣∣∣

= sup
0≤t≤T

∣∣∣∣∣∣∣

∑

λn(τ
(n)
k )≤t

y
(n)
k −

∑

τ
(0)
k ≤t

y
(0)
k

∣∣∣∣∣∣∣

= sup
0≤t≤T

∣∣∣∣∣∣∣

∑

τ
(0)
k ≤t

y
(n)
k −

∑

τ
(0)
k ≤t

y
(0)
k

∣∣∣∣∣∣∣

≤
∑

τ
(0)
k ≤T

|y(n)
k − y

(0)
k |

≤ k0δ. (7.19)

Also, we claim (recall that e(t) = t)

‖λn − e‖[0,T ] ≤ 3δ. (7.20)

To see this, write

‖λn − e‖[0,T ] =
k0∨

i=0

∨

s∈[τ (n)
i ,τ

(n)
i+1]

|λn(s) − s|.

For the first interval,

sup

0≤s≤τ
(n)
1

|λn(s) − s| = sup

0≤s≤τ
(n)
1

∣∣∣∣∣
τ

(0)
1

τ
(n)
1

s − s

∣∣∣∣∣ = sup

s≤τ
(n)
1

∣∣∣∣∣
τ

(0)
1

τ
(n)
1

− 1

∣∣∣∣∣ s

≤
∣∣∣∣∣
τ

(0)
1

τ
(n)
1

− 1

∣∣∣∣∣ τ
(n)
1 = |τ (0)

1 − τ
(n)
1 | ≤ δ.
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On [τ (n)
i , τ

(n)
i+1], i = 1, . . . , k0, we have (with obvious abbreviations)

λn(s) =
τ

(0)
i+1 − τ

(0)
i

τ
(n)
i − τ

(n)
i

s + τ
(0)
i −

(
τ

(0)
i+1 − τ

(0)
i

τ
(n)
i+1 − τ

(n)
i

)
· τ (n)

i

= �τ (0)

�τ (n)
s + τ

(0)
i − �τ (0)

�τ (n)
· τ (n)

i

and

sup

τ
(n)
i ≤s≤τ

(n)
i+1

∣∣∣∣∣
�τ (0)

�τ (n)
s + τ

(0)
i − �τ (0)

�τ (n)
· τ (n)

i − s

∣∣∣∣∣ .

Setting y = s − τ
(n)
i , we have

= sup
0≤y≤�τ (n)

∣∣∣∣∣
�τ (0)

�τ (n)
(y + τ

(n)
i ) + τ

(0)
i − �τ (0)

�τ (n)
· τ (n)

i − (y + τ
(n)
i )

∣∣∣∣∣

= sup
0≤y≤�τ (n)

∣∣∣∣∣

(
�τ (0)

�τ (n)
− 1

)
y + (τ

(0)
i − τ

(n)
i )

∣∣∣∣∣

≤ sup
0≤y≤�τ (n)

(∣∣∣∣∣
�τ (0)

�τ (n)
− 1

∣∣∣∣∣�τ (n) + |τ (0)
i − τ

(n)
i |
)

≤ |�τ (0) − �τ (n)| + δ = |τ (0)
i+1 − τ

(0)
i − (τ

(n)
i+1 − τ

(n)
i )| + δ

≤ δ + |τ (0)
i+1 − τ

(n)
i+1| + |τ (0)

i − τ
(n)
i | ≤ 3δ.

If d[0,T ] is the Skorohod metric on D[0, T ], we get from (7.19) and (7.20) that

d[0,T ](χmn, χm0) ≤ k0δ ∨ 3δ = (k0 ∨ 3)δ

if n ≥ n1. Since δ is arbitrarily chosen we get

d[0,T ](χmn, χm0) → 0,

so χ is continuous at m. ⊓⊔

7.3 Transformations

There are several useful results describing how regular variation of a distribution of

a random vector is affected by various transformations of that random vector. This

section presents a sample of results with the goal of illustrating a variety of techniques.
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7.3.1 Addition

Here are some results about how regular variation of the distribution tail of a vector is

affected by addition of components.

Linear combinations of components of a random vector

Given a random vector Z with a regularly vary tail, what happens if we sum the com-

ponents of Z or, more generally, take linear combinations? For t ∈ R
d , define

t · Z =
d∑

i=1

t (i)Z(i).

Proposition 7.3. Suppose, as usual, that E = [0, ∞] \ {0} and that Z satisfies the
regular variation condition

nP

[
Z

bn

∈ ·
]

v→ ν

in M+(E). Then for any t > 0, we have

nP[t · Z > bnx] → cx−α (n → ∞),

where c = ν{y ∈ E : t · y > 1}.
In particular, suppose the components of Z are iid, and bn is chosen so that for each

i ∈ {1, . . . , d}, we have

nP[Z(i) > bnx] → x−α = να(x,∞] (n → ∞).

Then for t > 0, as x → ∞,

P[t · Z > x] ∼
d∑

i=1

(t (i))αP[Z(1) > x].

Proof. This is the polar coordinate transformation (Section 6.1.2 (p. 168)) in disguise.

Fix t > 0, and define the norm on R
d by

‖x‖ =
d∑

i=1

t (i)|x(i)|.

From the polar coordinate transformation (see (6.15) (p. 179)), we know that

nP[t · Z > bnx] = nP[‖Z‖ > bnx] → cx−α
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as n → ∞, where

c = ν{y : ‖y‖ > 1} = ν{y : t · y > 1}.
For the iid case, ν concentrates mass on each axis according to the measure να , and

we get

ν{y : t · y > 1} =
d∑

i=1

να{w : t (i)w > 1}

=
d∑

i=1

(t (i))α. ⊓⊔

The converse to this problem is still not completely settled, although important

progress has been achieved: If t · Z is regularly varying for every t , does this imply

regular variation of the distribution tail of Z? In general, the answer is negative for αs

that are integers. See [13, 170, 184, 220].

Adding independent vectors

If X and Y are independent random vectors each of whose distributions have regularly

varying tails, does the sum X + Y preserve the regular variation? A qualified yes can

be given to this question. See [168, 171, 207, 259, 260].

For this investigation, it is convenient to have the notation

Ed = [0,∞]d \ {0}

for the d-dimensional compactified nonnegative orthant punctured by removal of the

origin.

Lemma 7.2 (binding). Suppose X ∈ R
d1
+ and Y ∈ R

d2
+ are defined on the same proba-

bility space, independent, and satisfy the regular variation conditions (n → ∞)

nP

[
X

bn

∈ ·
]

v→ νX(·) in M+(Ed1), (7.21)

nP

[
Y

bn

∈ ·
]

v→ νY (·) in M+(Ed2), (7.22)

with the same sequence bn → ∞. Then the distribution tail of (X, Y ) is also regularly
varying:

nP

[(
X

bn

,
Y

bn

)
∈ ·
]

v→ ν in M+(Ed1+d2), (7.23)

where
ν(dx, dy) = νX(dx)ǫ0(dy) + ǫ0(dx)νY (dy). (7.24)
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Proof. Suppose f ∈ C+
K(Ed1+d2). We first prove that

nEf

(
X

bn

,
Y

bn

)
− nEf

(
X

bn

, 0

)
− nEf

(
0,

Y

bn

)
→ 0. (7.25)

Since (7.21) implies that

nEf

(
X

bn

, 0

)
→
∫

Ed1

f (x, 0)νX(dx)

with a similar statement for Y , (7.25) implies (7.23).

It is convenient to use the L∞-norm. For fixed d , set

‖x‖∞ =
d∨

i=1

|x(i)|, x ∈ R
d .

(Note that this notation will be used even when the dimension of the vector changes.

This abuse of notation should not cause confusion.) There exists a fixed δ > 0 such

that the support of f is contained in {x ∈ Ed1+d2 : ‖x‖∞ > δ}. So

nEf

(
X

bn

,
Y

bn

)
= nEf

(
X

bn

,
Y

bn

)
1[‖X‖∞∨‖Y‖∞>bnδ]

= nEf

(
X

bn

,
Y

bn

) (
1[‖X‖∞>bnδ,‖Y‖∞≤bnδ]

+ 1[‖X‖∞≤bnδ,‖Y‖∞>bnδ] + 1[‖X‖∞>bnδ,‖Y‖∞>bnδ]
)

= A + B + C.

Now

|C| ≤ (const)nP[‖X‖∞ > bnδ, ‖Y‖∞ > bnδ]
= (const)(nP[‖X‖∞ > bnδ])P[‖Y‖∞ > bnδ]
→ (const)′δ−α · 0 = 0

since bn → ∞.

Pick any η < δ. The same argument used for C gives for A,

A = nEf

(
X

bn

,
Y

bn

)
1[‖X‖∞>bnδ,‖Y‖∞≤bnδ]

= nEf

(
X

bn

,
Y

bn

)
1[‖X‖∞>bnδ,‖Y‖∞≤bnη] + o(1).
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Inspecting the right side, apart from o(1), gives Y close to 0, so it makes sense to

compare this with nEf (b−1
n X, 0). We have

∣∣∣∣nEf

(
X

bn

,
Y

bn

)
1[‖X‖∞>bnδ,‖Y‖∞≤bnη] − nEf

(
X

bn

, 0

)∣∣∣∣

=
∣∣∣∣nEf

(
X

bn

,
Y

bn

)
1[‖X‖∞>bnδ,‖Y‖∞≤bnη] − nEf

(
X

bn

, 0

)
1[‖X‖∞>bnδ]

∣∣∣∣

=
∣∣∣∣nEf

(
X

bn

,
Y

bn

)
1[‖X‖∞>bnδ,‖Y‖∞≤bnη]

− nEf

(
X

bn

, 0

)
1[‖X‖∞>bnδ,‖Y‖∞≤bnη]

∣∣∣∣+ o(1)

≤ ωf (η)nP

[∥∥∥∥
X

bn

∥∥∥∥
∞

> δ

]
P

[∥∥∥∥
Y

bn

∥∥∥∥
∞

≤ η

]
+ o(1)

→ ωf (η)δ−α(const),

where recall that ωf (η) is the modulus of continuity of f . We can manipulate the free

parameter η. If η → 0, then ωf (η) → 0, which finishes showing that the difference

converges to 0. The term B is handled similarly. ⊓⊔

We now consider addition of independent random vectors, and for this the only

reasonable assumption is d1 = d2 = d .

Proposition 7.4. Suppose X and Y satisfy the assumptions of Lemma 7.2 with the re-
striction that d1 = d2 = d. Then

nP

[
X + Y

bn

∈ ·
]

v→ νX + νY (7.26)

in M+(Ed).

Proof. Define the map SUM : Ed × Ed → Ed by

SUM(x, y) = x + y.

Provided the compactness condition (5.19) (p. 141) is satisfied, the result follows from

Proposition 5.5 (p. 141) since applying SUM to (7.23) gives

nP ◦ SUM−1

[(
X

bn

,
Y

bn

)
∈ ·
]
= nP

[
X + Y

bn

∈ ·
]

v→ ν ◦ SUM−1 = νX + νY .

Thus it remains to show (5.19) in the form
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SUM−1(K(Ed)) ⊂ K(E2d).

Suppose Kd ∈ K(Ed). Since SUM is continuous, SUM−1(Kd) is closed in E2d . Also,

there exists δ > 0 such that

Kd ⊂ {x ∈ Ed : ‖x‖∞ ≥ δ}.

Now

SUM−1({z ∈ Ed : ‖z‖∞ ≥ δ}) = {(x, y) ∈ E2d : ‖x + y‖∞ ≥ δ}
⊂ {(x, y) ∈ E2d : ‖x‖∞ ∨ ‖y‖∞ ≥ δ/2}.

The last set is closed and, being bounded away from the origin, is also compact in E2d .

So {(x, y) ∈ E2d : ‖x + y‖∞ ≥ δ} is compact, and so is SUM−1(Kd), being a closed

subset of a compact set. ⊓⊔

7.3.2 Products

Here we take a random vector Z with a regularly varying tail, multiply by a scalar

random variable, and examine the tail of the product. We consider two cases, (i) where

the multiplier has a relatively thin tail and (ii) where the multiplier is jointly regularly

varying with Z but not asymptotically independent of Z. The second result receives a

direct analytic treatment, and to illustrate alternative probabilistic methods, we prove

the first result, Breiman’s theorem, by the point process method, which parallels the

analytic proof given in [30].

We revert to our notation E = [0, ∞] \ {0}.

Breiman’s theorem: A factor has a relatively thin tail

Proposition 7.5 (Breiman’s theorem). Suppose Z is a nonnegative random vector
satisfying the usual multivariate regular variation condition with exponent −α:

nP

[
Z

bn

∈ ·
]

v→ ν.

Suppose further that Y ≥ 0 is a random variable with a moment greater than α. This
is equivalent to the existence of ǫ > 0, such that

E(Y α(1+2ǫ)) < ∞. (7.27)

Then
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nP

[
YZ

bn

∈ ·
]

v→ E(Y α)ν.

In particular, if d = 1, we have that

lim
x→∞

P[YZ > x]
P[Z > x] = E(Y α).

Remark 7.1. The result for d = 1 was first proved by Breiman [30]. A result requiring

asymptotic independence ofY andZ instead of independence is in [215]. The case where

Z is a d-dimensional vector is from [259]. A result where Y is a matrix independent of

Z is considered in [14, see Proposition A.1 (p. 113) and Corollary A.2 (p. 114)]. For a

nice application of the multivariate Breiman result to solutions of stochastic differential

equations, see [169]; see also [5]. For d = 1, a refinement which drops (7.27) in favor

of a condition that P [Y > x] = o(P [Z > x]) is given in [128]. A product result in [44],

quoted in [75, p. 542], of a slightly different character describes the case in d = 1 of

Y
d= Z, Y, Z independent, P [Z > x] ∈ RV−α , α > 0, and EZα = ∞.

Breiman’s theorem has a straightforward analytic proof using dominated conver-

gence outlined in Problem 7.10 (p. 251); see [30]. The Breiman proof requires judicious

carving up of the region of integration arising from the distribution of the product of

Y and Z. Our proof, based on the Poisson transform, offers an indication of how to

decompose the region of integration as the decomposition is guided by the necessity to

truncate the state space to get a compact set.

Proof. Suppose {Zn, n ≥ 1} are iid copies of Z. The regular variation condition is

equivalent to (Theorem 6.2 (p. 179))

n∑

i=1

ǫZi/bn ⇒
∑

k

ǫj k
= PRM(ν)

in Mp(E). Now let {Yj } be iid copies of Y that are independent of {Zn} as well as

independent of {j k}. It follows that in Mp(E × (0,∞)),

n∑

i=1

ǫ(Zi/bn,Yi) ⇒
∑

k

ǫ(j k,Yk) = PRM(ν × P[Y ∈ ·]). (7.28)

See Problem 6.7 (p. 208) or the argument leading to (6.20) (p. 181). Note infinities are

included in E and so 0 is excluded from (0,∞) to avoid the potential problem of 0 ·∞
when we take products.

Define the product map PROD : E × (0,∞) �→ E by PROD(z, y) = yz. The

compactness condition (5.19) (p. 141) fails (see Figure 7.2), so truncation of the state
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xy > 1

Fig. 7.2. The region {(x, y) : xy ≥ 1} is not compact in E× (0,∞), pictured for the case d = 1.

Dotted lines indicate an open boundary.

space is necessary, followed by an application of the second converging together method

of Theorem 3.5 (p. 56). We proceed in steps.

Step 1: Restrict the state space to a compact set. Consider the compact subset of

E × (0,∞)

�δ := {(z, y) ∈ E × (0,∞) : ‖z‖ ≥ δ1+ǫ, y ∈ [δ, δ−1]}.

Applying the restriction functional (Problem 6.3 (p. 206)) to (7.28) yields

n∑

i=1

ǫ(Zi/bn,Yi)(�δ ∩ ·) ⇒
∑

k

ǫ(j k,Yk)(�δ ∩ ·) (7.29)

in Mp(�δ).

Step 2: Apply the functional PROD. From (7.29) we get by applying PROD that

n∑

i=1

1�δ

(
Zi

bn

, Yi

)
ǫYiZi/bn ⇒

∑

k

1�δ (j k, Yk)ǫYkj k
(7.30)

in Mp(E).

Step 3: The limit in the restricted convergence converges to the desired limit when
the restriction evaporates. Take the limit point process in (7.30) and let δ ↓ 0 to get

pointwise
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∑

k

1�δ (j k, Yk)ǫYkj k

δ→0→
∑

k

ǫYkj k
,

vaguely Mp(E).

Step 4: Show what you want to converge is close to what you know converges. With

ρ(·, ·) the vague metric on Mp(E), we need to show that for any η > 0,

lim
δ↓0

lim sup
n→∞

P

[
ρ

(
n∑

i=1

1�δ

(
Zi

bn

, Yi

)
ǫYiZi/bn,

n∑

i=1

ǫYiZi/bn

)
> η

]
= 0. (7.31)

The expression (7.31) is true, provided that for any f ∈ C+
K(E), we have

lim
δ↓0

lim sup
n→∞

P

[∣∣∣∣∣

n∑

i=1

1�δ

(
Zi

bn

, Yi

)
f (YiZi/bn) −

n∑

i=1

f (YiZi/bn)

∣∣∣∣∣ > η

]

= lim
δ↓0

lim sup
n→∞

P

[
n∑

i=1

1�c
δ

(
Zi

bn

, Yi

)
f (YiZi/bn) > η

]
= 0. (7.32)

Unpacking the definition of �c
δ , it is enough to verify the following:

lim
δ↓0

lim sup
n→∞

P

[
n∑

i=1

f (YiZi/bn)1[Yi∈[δ,δ−1],‖b−1
n Zi‖<δ1+ǫ ] > η1

]
= 0, (7.33)

lim
δ↓0

lim sup
n→∞

P

[
n∑

i=1

f (YiZi/bn)1[Yi /∈[δ,δ−1]∩[‖b−1
n Zi‖≥δ1+ǫ ] > η2

]
= 0, (7.34)

lim
δ↓0

lim sup
n→∞

P

[
n∑

i=1

f (YiZi/bn)1[Yi /∈[δ,δ−1]∩[‖b−1
n Zi‖<δ1+ǫ ] > η3

]
= 0 (7.35)

for ηi > 0, i = 1, 2, 3.

Suppose the support of f is in {x ∈ E : ‖x‖ ≥ ξ} for some ξ > 0. The conditions

in the indicator in (7.33) imply that

‖YiZi/bn‖ ≤ δ−1δ1+ǫ = δǫ < ξ,

if δ is sufficiently small. Thus, for small δ, we have the probability in (7.33) equal to 0.

For (7.34), it is enough to show that

lim
δ↓0

lim sup
n→∞

P

[
n∑

i=1

f (YiZi/bn)1[Yi<δ]∩[‖b−1
n Zi‖≥δ1+ǫ ] > η21

]
= 0, (7.36)
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lim
δ↓0

lim sup
n→∞

P

[
n∑

i=1

f (YiZi/bn)1[Yi>δ−1]∩[‖b−1
n Zi‖≥δ1+ǫ ] > η22

]
= 0 (7.37)

for η21 > 0, η22 > 0. The probability in (7.36) is bounded by

P

{
n⋃

i=1

[
‖YiZi/bn‖ ≥ ξ,

‖Zi‖
bn

≥ δ1+ǫ, Yi < δ

]}

≤ nP

[
‖Y1Z1/bn‖ ≥ ξ,

‖Z1‖
bn

≥ δ1+ǫ, Y1 < δ

]

≤ nP

[
‖Z1/bn‖ ≥ ξδ−1

∨
δ1+ǫ
]

→
(
ξδ−1

∨
δ1+ǫ
)−α

(n → ∞),

= ξ−αδα → 0 (δ ↓ 0).

The probability in (7.37) is bounded by

P

{
n⋃

i=1

[‖YiZi/bn‖ ≥ ξ, Yi > δ−1, ‖b−1
n Zi‖ ≥ δ1+ǫ]

}

≤ nP[‖Y1Zi/bn‖ ≥ ξ, Y1 > δ−1, ‖b−1
n Z1‖ ≥ δ1+ǫ]

≤ nP[‖b−1
n Z1‖ ≥ δ1+ǫ, Y1 > δ−1]

= nP[‖b−1
n Z1‖ ≥ δ1+ǫ]P[Y1 > δ−1]

∼ δ−(1+ǫ)α
P[Y1 > δ−1] (n → ∞),

and applying the Chebychev inequality to the tail probability for Y1 gives the bound

≤ δ−(1+ǫ)αEY
(1+2ǫ)α
1 δ(1+2ǫ)α

→ 0 (δ → 0).

Finally, we show (7.35). First, for small δ > 0,

nP[Y1‖Z1/bn‖ > ξ, Y1 ≤ δ, ‖b−1
n Z1‖ < δ1+ǫ] = 0,

as for (7.33). For the other case, we have, using Karamata’s theorem (p. 25),

nP[Y1‖Zn/bn‖ > ξ, Y1 > δ−1, ‖Z1/bn‖ < δ1+ǫ]
= nP[Y11[Y1>δ−1] · ‖Zn/bn‖1[‖Z1/bn‖<δ1+ǫ ] > ξ ]

≤ n

ξα+ǫ
E(Y α+ǫ

1 )E(‖Z1/bn‖α+ǫ1[‖Z1/bn‖<δ1+ǫ ])
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→ (const)

∫ δ1+ǫ

0

zα+ǫαz−α−1dz (n → ∞)

= (const)

∫ δ1+ǫ

0

zǫ−1dz = (const)(δ1+ǫ)ǫ → 0 (δ → 0).

Step 5: Wrap-up. We conclude that

n∑

i=1

ǫYiZi/bn ⇒
∑

k

ǫYkj k

in Mp(E). The result follows by another application of Theorem 6.2 (p. 179). ⊓⊔

Products of heavy-tailed random variables which are jointly regularly varying

The product of two random variables that are not asymptotically independent, but whose

tails satisfy multivariate regular variation, offers contrasting behavior to the case just

considered. We consider (Y, Z), which satisfy the nonstandard form of regular varia-

tion (p. 204).

Proposition 7.6. Suppose Y is a nonnegative random variable satisfying, for some
αY > 0,

P[Y > ·] ∈ RV−αY
(7.38)

with quantile function bY (·) ∈ RV1/αY
. Let Z be a R

d
+-valued random vector, defined

on the same probability space as Y , whose distribution tail is regularly varying with
index αZ > 0,

tP

[
Z

bZ(t)
∈ ·
]

v→ νZ(·) (t → ∞) (7.39)

in M+(Ed), where Ed = [0,∞]d \ {0}. This means that bZ(t) is regularly varying
with index 1/αZ . Suppose further that (Y, Z) is multivariate regularly varying in the
sense that

tP

[(
Y

bY (t)
,

Z

bZ(t)

)
∈ ·
]

v→ ν(·) �≡ 0 (t → ∞) (7.40)

on Ed+1, ν concentrates on [0,∞)d+1 \ {0}, and there exists δ > 0 such that

ν{(y, z) : |y| ∧ ‖z‖ > δ} > 0. (7.41)

Then YZ has a regularly varying distribution tail with index− αY αZ
αY+αZ

, a scaling function
bY (·)bZ(·), and limit measure

ν{(y, z) : yz ∈ ·}. (7.42)
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Remark 7.2. The condition (7.41) prevents the limit measure in (7.42) from being trivial.

Proof. We first give the proof assuming d = 1. Fix x > 0, and define for any positive

number K ,

AK,x := {(y, z) : yz > x, y ≤ K, z ≤ K}.
Then

tP

[
YZ

bY (t)bZ(t)
> x

]
≥ tP

[(
Y

bY (t)
,

Z

bZ(t)

)
∈ AK,x

]
.

Next, let t converge to ∞ first, and then let K go to ∞ through a sequence so that AK,x

is a ν-continuity set. This results in

lim inf
t→∞

tP

[
YZ

bY (t)bZ(t)
> x

]
� ν({(y, z) : yz > x}).

On the other hand, we have

tP

[
YZ

bY (t)bZ(t)
> x

]
� tP

[(
Y

bY (t)
,

Z

bY (t)

)
∈ AK,x

]

+ tP

[
Y

bY (t)
> K

]
+ tP

[
Z

bZ(t)
> K

]
.

Now, from the regular variation of the tails of Y and Z, the last two terms converge to

K−αY and K−αZ , respectively, as t → ∞. Then letting K go to ∞ through a sequence

so that AK,x is a ν-continuity set, both terms go to zero. Hence

lim sup
t→∞

tP

[
YZ

bY (t)bZ(t)
> x

]
� ν({(y, z) : yz > x}).

Thus

tP

[
YZ

bY (t)bY (t)
> z

]
→ ν({(x, y) : xy > z}).

Then since bY bZ is a regularly varying function of index αY+αZ

αY αZ
and since

ν({(y, z) : yz > x}) > 0 for some x > 0, we have

P[YZ > ·] ∈ RV− αY αZ
αY +αZ

.

For d > 1, define the map

IDPOLAR : (y, z) =
(

y, ‖z‖, z

‖z‖

)
.

Using the method that showed the equivalences in Theorem 6.1 (p. 173), we get from

(7.40) that
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tP

[(
Y

bY (t)
,
‖Z‖
bZ(t)

,
Z

‖Z‖

)
∈ ·
]

v→ ν ◦ IDPOLAR−1(·). (7.43)

Define

PRODID(y, r, a) = (yr, a);
applying this to (7.43) yields

tP

[(
Y‖Z‖

bY (t)bZ(t)
,

Z

‖Z‖

)
∈ ·
]
= tP

[(
Y‖Z‖

bY (t)bZ(t)
,

YZ

‖YZ‖

)
∈ ·
]

v→ ν ◦ IDPOLAR−1 ◦PRODID−1(·).

This gives regular variation of YZ in polar coordinate form. ⊓⊔

In Proposition 7.6, if αY and αZ are between 1 and 2, i.e., Y and ‖Z‖ have finite

mean but infinite variance, then the product YZ has a regularly varying tail of index

− αY αZ
αY+αZ

∈ (1
2 , 1); i.e., the product has a much heavier tail with infinite mean. This result

contrasts with Breiman’s theorem (Proposition 7.5), where the product of asymptotically

independent random variables has tail behavior similar to the factor with the heavier tail.

Internet data

Recall the Boston University study, mentioned in Example 1.1 (p. 4) and Section 5.2.2

(p. 125). This was a study of World Wide Web downloads in sessions initiated by logins

at a Boston University computer laboratory. The study kept track of

F = the file size of the requested document,

L = the duration of the download,

R = throughput of the request = F/L.

Empirical evidence indicates all three quantities have heavy tails. Table 7.1 gives

empirical estimates for the tail parameters for F , R, and L for the BU measurements

arrived at by a combination of QQ plotting and Hill plotting.

α α̂F α̂R α̂L

estimated value 1.15 1.13 1.4

Table 7.1. Tail parameter estimates.

What conclusions can we make about the dependence structure of (F, R, L)? Since

F = LR, the tail parameters (αF , αR, αL) cannot be arbitrary. Consider the following

two possibilities:
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• Proposition 7.6 (p. 236) is applicable for L, R. This means that (L, R) possess a

jointly regularly varying tail but are not asymptotically independent. The conclusion

from Proposition 7.6 is that

α̂F = α̂Lα̂R

α̂L + α̂R

= .625 �= 1.15.

Unfortinately, the empirical estimates do not match the theoretical predictions, in-

dicating that the model posed by Proposition 7.6 is unlikely to be correct.

• Proposition 7.5 (p. 231) applies. This would be the case if (L, R) were indepen-

dent or if [215] (L, R) obey some form of asymptotic independence. In this case,

Proposition 7.5 predicts that

αF = αR ∧ αL,

assuming that αR �= αL. In our example,

1.15 ≈ 1.13 ∧ 1.4.

So for the BU data, evidence seems to support some form of independence for

(R, L). Interestingly, for other data sets (see [38]), large values of R and F are in-

dependent. Input models taking account of F , R, L will differ in their predictions

depending on what is assumed about the dependence of these three quantities. See [68].

7.3.3 Laplace transforms

Suppose U is a Radon measure on [0, ∞) = [0,∞)d , written U ∈ M+[0, ∞), whose

Laplace transform Û exists:

Û (λ) = Û (λ(1), . . . , λ(d)) =
∫

[0,∞)

exp

{
−

d∑

i=1

λ(i)x(i)

}
U(dx) (7.44)

=
∫

[0,∞)

e−λ·xU(dx) < ∞ (λ > 0). (7.45)

Let U(x) = U [0, x] be the distribution function of the measure U , and assume

that U(x) satisfies the regular variation condition (6.1) (p. 167). We assume that U(x)

is regularly varying on the cone (0, ∞) and that there exists a function g(t) ∈ RVρ ,

ρ > 0, and a limit measure V ∈ M+[0, ∞) with distribution function V (x) = V [0, x],

lim
t→∞

Ut (x) := lim
t→∞

U(tx)

g(t)
= V (x), x ∈ (0, ∞), (7.46)
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at points of continuity of the limit. This means that

Ut
v→ V (t → ∞) (7.47)

in M+[0, ∞).

Assume that V �≡ 0, and as a normalization, suppose V (1) = 1. The argument

given on p. 167 shows that

V (cx) = cρV (x), c > 0, x > 0,

and the argument following (6.13) (p. 177) gives

V

{
x ∈ [0, ∞) : ‖x‖ ≤ r,

x

‖x‖ ∈ �

}
= rρS(�), r > 0, � ⊂ ℵ+,

where � is a Borel set.

The Laplace transform of V exists since, if λ > 0 is fixed, we may define the norm

‖x‖ =
d∑

i=1

λ(i)|x(i)|, x ∈ R
d ,

so that if x ≥ 0, then ‖x‖ = λ · x. Write

V̂ (λ) =
∫

[0,∞)

e−λ·uV (du) =
∫

[0,∞)

e−‖u‖V (du)

=
∫∫

a∈ℵ+,s>0

e−sρsρ−1dsS(da)

= S(ℵ+)

∫ ∞

0

e−sρsρ−1ds < ∞

for ρ > 0.

Recall our convention from Appendix 10 (p. 359) that operations should be inter-

preted componentwise, so that, for instance,

1

x
=
(

1

x(1)
, . . . ,

1

x(d)

)
,

but keep in mind that λ · x =
∑d

i=1 λ(i)x(i). Similarly, we recall that

x/y = (x(1)/y(1), . . . , x(d)/y(d)).

Now suppose that
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∑

k

ǫ
u

(t)
k

= PRM(Ut ),
∑

k

ǫvk
= PRM(V )

with state space [0, ∞). Then from Problem 5.3 (p. 163), (7.47) is equivalent to

∑

k

ǫ
u

(t)
k

⇒
∑

k

ǫvk

in Mp[0, ∞). Define

{En = (E(1)
n , . . . , E(d)

n ); n ≥ 1}

to be iid d-dimensional random vectors each of whose components are iid unit expo-

nential random variables. Set

EXP(·) = P[E1 ∈ ·]

for the joint distribution of a d-dimensional vector of iid unit exponential random vari-

ables. Assuming {Ek} independent of both {u(t)
k } and {vk}, we get from augmentation

(Proposition 5.3 (p. 123)) that

Nt :=
∑

k

ǫ
(u

(t)
k ,Ek)

= PRM(Ut × EXP)

and

N∞ :=
∑

k

ǫ(vk,Ek) = PRM(V × EXP),

each with state space [0, ∞) × (0, ∞] and

Nt ⇒ N∞ (7.48)

in Mp([0, ∞) × (0, ∞]). Apply the map

RATIO : [0, ∞) × (0, ∞] �→ [0, ∞)

defined by

RATIO(u, e) = (u/e).

We hope Proposition 5.2 (p. 121) is applicable (almost—we have not checked the

compactness condition in Proposition 5.2) so that Nt ◦ RATIO−1 is a Poisson process.

The mean measure (z ∈ (0, ∞)) is
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E(Nt ◦ RATIO−1([0, z])

=
∫∫

{(x,y):x/y≤z}
Ut (dx) EXP(dy) =

∫

[0,∞)

d∏

i=1

e−x(i)/z(i)

Ut (dx)

=
∫

[0,∞)

d∏

i=1

exp

{
−x(i)

z(i)

}
1

g(t)
U(tdx) = 1

g(t)
Û

(
1

tz

)
. (7.49)

Condition (7.45) forces a finite expectation, and (7.49) shows that Û (1
z
), z ∈ (0, ∞) is

the distribution function of a measure in M+[0, ∞).

We now state the multidimensional Tauberian theorem. The result is from an unpub-

lished technical report by Stam [284]; the approach is from [261]. See also [281–283].

Proposition 7.7. If U ∈ M+[0, ∞) has a finite Laplace transform given in (7.45) and
its distribution function U(x) satisfies (7.46), then the distribution function Û (1/x) is
also regularly varying on the cone (0, ∞),

1

g(t)
Û

(
1

tx

)
→ V̂

(
1

x

)
, x ∈ (0, ∞). (7.50)

The limit function of Û (1/x) is V̂ (1/x).

For discussion of the case in which d = 1, see, for instance, [26, 135]. The converse

is also true, but it would take us a bit further afield. See [261, 284].

Proof. Given (7.46), if we did not have to worry about whether the map RATIO satisfies

the compactness condition (5.19) (p. 141), then (7.48) would imply convergence of

Poisson processes

Nt ◦ RATIO−1 ⇒ N∞ ◦ RATIO−1

in Mp[0, ∞), which would imply the mean measures converge. Hence, from Prob-

lem 5.3 (p. 163), we could conclude that for z > 0,

E(Nt ◦ RATIO−1([0, z]) = 1

g(t)
Û

(
1

tz

)

→ E(N∞ ◦ RATIO−1([0, z]) = V̂

(
1

z

)
, (7.51)

which gives the result. How do we fill the gap in this outline?

Reviewing Remark 5.2 (p. 142) suggests truncating the state space [0, ∞)× (0, ∞)

to the compact set

KM := {(u, y) ∈ [0, ∞) × (0, ∞) : ‖u‖ ≤ M, M−11 ≤ y ≤ M1}.
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Applying the restriction functional (Problem 6.3 (p. 206)) to (7.48), we get

NM
t := Nt (· ∩ KM) ⇒ N∞(· ∩ KM) =: NM

∞

in Mp([0, ∞) × (0, ∞)); then, using the fact that RATIO is continuous, we get from

Remark 5.2 (p. 142) that

N
M,R
t := Nt (· ∩ KM) ◦ RATIO−1 ⇒ N∞(· ∩ KM) ◦ RATIO−1 =: NM,R

∞ .

Unpacking this result gives, as t → ∞,

∑

k

1[(u(t)
k ,Ek)∈KM ]ǫu

(t)
k /Ek

⇒
∑

k

1[(vk,Ek)∈KM ]ǫvk/Ek
.

As M → ∞, we have vague convergence in Mp(0, ∞),

NM,R
∞ :=

∑

k

1[(vk,Ek)∈KM ]ǫvk/Ek
→ NR

∞ :=
∑

k

ǫvk/Ek
.

We are now prepared for an application of the second converging together theorem,

Theorem 3.5 (p. 56). With

NR
t =

∑

k

ǫ
u

(t)
k /Ek

,

it suffices to show that for any η > 0 and d(·, ·) the vague metric,

lim
M→∞

lim sup
t→∞

P[d(N
M,R
t , NR

t ) > η] = 0, (7.52)

since then the second converging together theorem plus the fact that PRMs converge iff

their mean measures converge (Problem 5.3 (p. 163)) justifies the desired result (7.51).

The proof of (7.52) follows the usual pattern. Suppose h ∈ C+
K [0, ∞); it then

suffices to show for any such h that for δ > 0,

lim
M→∞

lim sup
t→∞

P[|NM,R
t (h) − NR

t (h)| > δ] = 0. (7.53)

Now h has compact support, so suppose for convenience that the support of h is con-

tained in [0, c1] for some c > 0; for typographical ease, just set c = 1. Observe

|NM,R
t (h) − NR

t (h)| =
∣∣∣∣∣
∑

k

1[(u(t)
k ,Ek)∈KM ]h

(
u

(t)
k

Ek

)
−
∑

k

h

(
u

(t)
k

Ek

)∣∣∣∣∣

=
∣∣∣∣∣
∑

k

1[(u(t)
k ,Ek)∈Kc

M ]h

(
u

(t)
k

Ek

)∣∣∣∣∣ ,
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and therefore, by Chebychev’s inequality,

P[|NM,R
t (h) − NR

t (h)| > δ]

≤ δ−1E

(∑

k

1[(u(t)
k ,Ek)∈Kc

M ]h

(
u

(t)
k

Ek

))

= δ−1

∫∫

{(u,y):(u,y)∈Kc
M }

h(u/y)Ut (du) EXP(dy)

≤ δ−1 sup
x

h(x)

∫∫

{(u,y):(u,y)∈Kc
M ,u/y≤1}

Ut (du) EXP(dy),

where the last inequality takes into account the compact support of h.

Now we deal with the double integral. Note first that

Kc
M = {(u, y) : ‖u‖ > M} ∪ {(u, y) : ‖u‖ ≤ M, y > M1}

∪ {(u, y) : ‖u‖ ≤ M, y ≤ M−11}. (7.54)

Because the region of integration is compact,
∫∫

{u/y≤1,‖u‖>M}
Ut (du) EXP(dy)

→
∫∫

{u≤y,‖u‖>M}
V (du) EXP(dy) (t → ∞)

=
∫

{‖u‖>M}

d∏

i=1

e−u(i)

V (du)

=
∫

{‖u‖>M}
e−1·uV (du)

→ 0 (M → ∞),

since the Laplace function V̂ (λ) exists.

Now consider the last set in the decomposition of KM given in (7.54). We have
∫∫

{‖u‖≤M,y≤M−11}
Ut (du) EXP(dy)

≤ (1 − e−M−1
)dUt ({u : ‖u‖ ≤ M})

→ (1 − e−M−1
)dV ({u : ‖u‖ ≤ M}) (t → ∞)

= Mρ(1 − e−M−1
)dV ({u : ‖u‖ ≤ 1})

→ 0 (M → ∞).

The rest is very similar. ⊓⊔
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Special case for d = 1: Karamata’s Tauberian theorem

Suppose d = 1 in Proposition 7.7. Then if U ∈ RVρ , ρ > 0, we have

U(tx)

U(t)
→ xρ =: V (x), x > 0, t → ∞,

and g(t) = U(t). It follows that, as t → ∞, (7.50) becomes

Û
(

1
tx

)

U(t)
→
∫ ∞

0

e−x−1sρsρ−1ds = Ŵ(ρ + 1)xρ . (7.55)

When we set x = 1, we get

Û

(
1

t

)
∼ U(t)Ŵ(ρ + 1) (t → ∞). (7.56)

We have not proved converses here, but they hold as well. See [26, 135, 182].

Renewal theory

Consider an ordinary renewal process {Sn, n ≥ 0} such that

S0 = 0, Sn =
n∑

i=1

Xi, n ≥ 1,

and {Xn, n ≥ 1} is a sequence of iid nonnegative random variables with common

distribution F . The function that counts renewals is

N =
∞∑

n=0

ǫSn, (7.57)

so that

N(t) := N([0, t]) =
∞∑

n=0

1[Sn≤t], t > 0. (7.58)

The renewal function [135, 262] is

U(t) := EN(t) =
∞∑

n=0

P[Sn ≤ t] =
∞∑

n=0

F n∗(t), (7.59)

where F n∗ is the nth convolution power of F .



246 7 Weak Convergence and the Poisson Process

Suppose

1 − F(t) = t−αL(t) ∈ RV−α, t → ∞, 0 < α < 1. (7.60)

What is the asymptotic form of U?

Set

H(x) =
∫ x

0

(1 − F(s))ds,

and by Karamata’s theorem (Theorem 2.1 (p. 25)),

H(x) ∼ xF̄ (x)

1 − α
∈ RV1−α (x → ∞). (7.61)

From (7.56), we conclude that

Ĥ

(
1

t

)
∼ H(t)Ŵ(2 − α). (7.62)

However, by integrating by parts, one quickly sees that

Ĥ (λ) = 1 − F̂ (λ)

λ
, λ > 0. (7.63)

Put (7.61)–(7.63) into the blender, and out comes

1 − F̂

(
1

t

)
∼ F̄ (t)Ŵ(1 − α). (7.64)

From the definition of U(t), the transform satisfies

Û (λ) = 1

1 − F̂ (λ)
, λ > 0.

Again from (7.56),

Û

(
1

t

)
= 1

1 − F̂
(

1
t

) ∼ U(t)Ŵ(1 + α);

(7.64) gives the final alchemy:

U(t) ∼ 1

1 − F(t)

1

Ŵ(1 − α)Ŵ(1 + α)
=: c(α)

1 − F(t)
, t → ∞. (7.65)
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7.4 Problems

7.1 ([42, 259]). In the context of Corollary 7.1 (p. 218), prove that

([n·]∨

i=1

Zi

bn

,
S[n·]
bn

− [n·]E
(

Z1

bn

1[|Z1/bn|≤1]

))
⇒ (Yα(·), Xα(·))

in D([0,∞), R
2), where {Yα(t), t ≥ 0} is an extremal process and {Xα(t), t ≥ 0} is a

stable Lévy motion.

7.2. In Theorem 7.1 (p. 214) and Corollary 7.1 (p. 218), the partial sums are centered by

truncated first moments since no assumption is made about existence of first moments.

What if you knew the first moments were finite. Could these be used for centering?

7.3 (Convergence to stable subordinators). Suppose {Xi, i ≥ 1} are iid, nonnegative

random variables and

F̄ (x) = P[X1 > x] ∈ RV−α

for 0 < α < 1. As usual, let b(t) be the quantile function

b(t) = 1

1 − F
(t).

Show that

1

b(n)

[nt]∑

i=1

Xi ⇒ Xα(t)

in D[0,∞), where Xα(·) is a stable subordinator.

7.4 (Bootstrap the sample mean [10]). Review Corollary 7.1 (p. 218) and Proposi-

tions 6.2 (p. 188) and 6.3 (p. 189). For 1 < α < 2, assume that {Zi, i ≥ 1} are iid with

a common distribution in the domain of attraction of a stable law of index α; that is, the

global regular variation of Corollary 7.1 holds.

Suppose Z1, . . . , Zn are observed with sample mean Z̄n, and then a bootstrap sample

Z∗
1 , . . . , Z∗

n is drawn, which has sample mean Z̄∗
n. Prove that for x1, . . . , xl fixed, that

as n → ∞,

(
P

[
n

bn

(Z̄∗
n − Z̄n) ≤ xi | Z1, . . . , Zn

]
, i = 1, . . . , l

)

converges to a random distribution limit evaluated at x1, . . . , xl . To eliminate the

unknown bn, prove that the same conclusion holds for
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(
P

[
n∨n

j=1 Zj

(Z̄∗
n − Z̄n) ≤ xi | Z1, . . . , Zn

]
, i = 1, . . . , l

)
.

What if the bootstrap sample size is reduced to m, where m = m(n) = o(n)?

7.5 (Karamata’s theorem). Suppose U : [0,∞) �→ [0,∞) is nondecreasing. Suppose

∑

k

ǫ(tk,uk) = PRM(LEB×U)

is Poisson on Mp([0,∞) × [0,∞)).

1. U ∈ RVα , α > 0, iff there exists a sequence of constants bn → ∞ such that

Nn :=
∑

k

ǫ(ntk,uk/bn) ⇒ PRM(LEB×μα),

where μα[0, x] = xα .

2. Consider the map T : (0,∞) × [0,∞) �→ (0,∞) × [0,∞) defined by

T (t, x) = (t, x/t).

Check that T −1([a, b] × [0, y]) is compact for 0 < a < b < ∞ and y > 0. From

this, conclude that T −1(K) is compact whenever K ⊂ (0,∞)×[0,∞) is compact.

3. From these facts, prove Karamata’s theorem, that

lim
x→∞

∫ x

0 U(s)ds

xU(x)
= 1

α + 1
.

7.6 (Convergence of sums in the nonstandard case [241]). Suppose we have iid

vectors {Zn = (Z
(1)
n , Z

(2)
n ), n ≥ 1} in R

2 such that for i = 1, 2,

nP

[
Z

(i)
1

b
(i)
n

∈ ·
]

v→ νi

in M+([−∞,∞]\{0}); that is, marginally we have regular variation. Suppose that b
(i)
n

is the restriction to the integers of a regularly varying function with index 1/αi , where

0 < αi < 2, i = 1, 2,

but that it is not necessarily the case that α1 = α2. Assume the two-dimensional global

condition
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nP

[(
Z

(1)
1

b
(1)
n

,
Z

(2)
1

b
(2)
n

)
∈ ·
]

v→ ν,

in M+([−∞, ∞] \ {0}), where ν is a Lévy measure, that is, a Radon measure on

[−∞, ∞] \ {0} satisfying

∫

{x:‖x‖≤1}
‖x‖2ν(dx) < ∞.

Show that the sequence of processes

{( [nt]∑

i=1

Z
(1)
i

b
(1)
n

,

[nt]∑

i=1

Z
(2)
i

b
(2)
n

)
, t ≥ 0

}

converges weakly as n → ∞, after suitable centering, in D([0,∞), R
2), the space

of right-continuous functions with domain [0,∞) and range R
2. Describe the limit

process.

7.7 (Sample variance [259]). Suppose {Zn, n ≥ 1} are iid with a distribution F . Sup-

pose for simplicity that Zi ≥ 0 and 1 − F ∈ RV−α and suppose 0 < α < 1.

1. Show that the sequence of processes

{{( [nt]∑

i=1

Zi,

[nt]∑

i=1

Z2
i

)
, t ≥ 0

}
, n ≥ 1

}

converges weakly in D([0,∞), R
2) after centering and scaling. Describe the limit

process.

2. Set

Z̄n := 1

n

n∑

i=1

Zi, Sn = 1

n

n∑

i=1

(Zi − Z̄n)
2.

Show that the sequence of processes

{{(Z̄[nt], S[nt]), t ≥ 0}, n ≥ 1}

converges weakly in D([0,∞), R
2) after suitable centering and scaling of the com-

ponents. Describe the limit process. (The normalization by 1
n

is traditional but

inappropriate in the heavy-tailed case.)
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7.8 (More products [44, 75]). Suppose Z1, Z2 are iid, nonnegative random variables

with P [Zi > x] ∈ RV−α , α > 0, and EZα
i = ∞. Show that P [Z1Z2 > x] ∈

RV−α and

lim
x→∞

P[Z1Z2 > x]
P[Z1 > x] = ∞.

7.9 (Partial converse of Breiman’s theorem [217]). Suppose ξ and η are two indepen-

dent, nonnegative random variables, and ξ has a Pareto distribution with parameter 1:

P[ξ > x] = x−1, x ≥ 1.

(a) We have

P[ξη > x] ∈ RV−α, α < 1,

iff

P[η > x] ∈ RV−α,

and then
P[ξη > x]
P[η > x] → 1

1 − α
.

(b) If P[ξη > x] ∈ RV−1 and ξη has a heavier tail than ξ , meaning that

P[ξη > x]
P[ξ > x] =

∫ x

0

P[η > y]dy → ∞,

i.e., E[η] = ∞, then ∫ x

0

P[η > s]ds =: L(x) ↑ ∞

is slowly varying. If, in addition, L(x) ∈ �, the de Haan function class � (see

Problems 2.10 (p. 37) and 2.11 and [26, 90, 102, 144, 260]), then

P[η > x] ∈ RV−1

and
L(x)

xP[η > x] = P[ξη > x]
P[η > x] → ∞.

As an example, consider

P[η > x] = e log x

x
, x > e

and show that

P[ξη > x] ∼ 1

2
ex−1(log x)2, x → ∞.
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7.10 (Analytic proof of Breiman’s theorem). Review the statement of Breiman’s the-

orem in Proposition 7.5. Proceed as follows to construct an analytic proof:

1. Assume that d = 1. Write P[YZ > u] as an integral on [0,∞) with respect to the

distribution of Y . Divide through by P[Z > u].

2. Split the region of integration [0,∞) = [0, u/M]∪[u/M,∞]. On [0, u/M], bound

the ratio integrand with a uniform bound using Potter’s bounds.

3. On [u/M,∞), bound the ratio integrand by P[Y > u/M]/P[Z > u]. The asymp-

totic behavior of this ratio is controlled by (7.27).

4. Apply dominated convergence to get P[YZ > u]/P[Z > u] to converge to the

desired limit.

5. For d > 1, let K ∈ K(E) be compact in E. Then for some δ > 0, K ⊂ {z : ‖z‖ > δ}.
Bound nP[YZ/bn ∈ K] ≤

∫
nP[y‖Z‖/bn > δ]P[Y ∈ dy], and apply Fatou to get

a E(Y α)ν(K) is an upper bound to the lim sup of nP[YZ/bn ∈ K]. Construct a

lower bound to the lim inf similarly after changing K to a relatively compact open

set. Apply Theorem 3.2 (p. 52).

7.11 (Choice theory [243, 244]). Suppose Y∞ is the limit random vector given in (7.1)

(p. 212). The limit measure is ν and the angular probability measure is S. Define

E
1> =

{
x ∈ E : x(1) >

d∨

i=2

x(i)

}

and

ℵ1> = ℵ ∩ E
1>.

Prove that

P

[
Y (1) >

d∨

i=2

Y (i)

]
= S(ℵ1>).

Furthermore, for y > 0,

P

[
Y (1) >

d∨

i=2

Y (i),

d∨

i=1

Y (i) ≤ y

]
= S(ℵ1>)e−y−1

.

7.12 (Convex hulls [78, 228]). Let K[0, ∞) be the compact sets of [0, ∞) metrized

by the Hausdorff metric [214, 228]. Suppose {Z1, . . . , Zn} are iid random vectors

in [0, ∞) with common distribution F satisfying the regular variation condition with

scaling function bn = b(n). Prove the convex hull of {Z1/bn, . . . , Zn/bn} converges

weakly in K[0, ∞) to a limit which is the convex hull of the points of the limiting

Poisson point process associated with (7.2) (p. 212).





8

Applied Probability Models and Heavy Tails

This chapter uses the heavy-tail machinery in service of various applied probability

models of networks and queuing systems.

8.1 A network model for cumulative traffic on large time scales

The simple infinite-node Poisson based model discussed in Section 5.2.2 (p. 125) and

formalized in Section 5.2.4 (p. 127) offers a compelling explanation of how heavy-

tailed file sizes induce long-range dependence in the traffic rates. To decide if our

model is an accurate enough reflection of reality, however, we need to see how well

data measurements fit the model. So we require a partial catalogue of features of the

model to see if such features are found in data measurements. In this section, based

on [222, 267], we analyze what the model predicts about the cumulative traffic process

over large time scales. An alternate approach [68, pp. 373–404], based on small time

scales more consistent with empirical observations of burstiness, examines cumulative

traffic in small time slots as slot length goes to zero.

8.1.1 Model review

The infinite-node Poisson model with heavy-tailed file sizes allows cumulative traffic

at large time scales to look either heavy tailed or Gaussian, depending on whether the

rate at which transmissions are initiated (crudely referred to as the connection rate)

is moderate or quite large. Here we discuss why stable Lévy motion is a possible

approximation.

The process describing offered traffic is A(t), the cumulative input in [0, t] by

all sources. Recall from (5.3) and (5.4) (p. 129) that the model assumes unit rate

transmissions, and A(t) is the integral of M(s) over [0, t]. For large T , we think
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of (A(T t), t ≥ 0) as the process on large time scales. The results show that if the

connection rate λ(·) is allowed to depend on T in such a way that it has a growth rate in

T that is moderate (in a manner to be made precise), then A(T ·) looks like an α-stable

Lévy motion, while if the connection rate grows faster than a critical value, A(T ·)
looks like a fractional Brownian motion. These statements can be made precise by

adopting a heavy-traffic outlook. We imagine a family of models indexed by T , where

the T th model has connection rate λ(T ) and file size distribution Fon. Depending on

growth rates, the T th model is approximated by either Lévy stable motion or fractional

Brownian motion [178, 222].

As in Section 5.2.5 (p. 130), let (Ŵk,−∞ < k < ∞) be the points of the rate λ

homogeneous Poisson process on R, and now label the points so that Ŵ0 < 0 < Ŵ1,

and hence {−Ŵ0, Ŵ1, (Ŵk+1 − Ŵk, k �= 0)} are iid exponentially distributed random

variables with parameter λ. The random measure that counts the points is denoted by∑∞
k=−∞ ǫŴk

and is a Poisson random measure with mean measure λ LEB, where LEB

is Lebesgue measure. The network has an infinite number of nodes or sources, and

at time Ŵk a connection is made and some node begins a transmission at constant rate

to the server. As a normalization, this constant rate is taken to be unity. The lengths

of transmissions are random variables Lk . Assume that Lon, L1, L2, . . . are iid and

independent of {Ŵk}, and

P(Lon > x) = F̄on(x) = x−αL(x), x > 0, 1 < α < 2, (8.1)

where L is a slowly varying function. Since α ∈ (1, 2), the variance of Lon is infinite

and its mean μon is finite. We will need the quantile function

b(t) = (1/F̄on)
←(t) =: inf

{
x : 1

1 − Fon(x)
≥ t

}
, t > 0, (8.2)

which is regularly varying with index 1/α. Recall the two-dimensional Poisson random

measure ξ defined by (5.6), which is a counting function on R × [0,∞] corresponding

to the points {(Ŵk, Lk)} and has mean measure λ LEB×Fon; cf. [260].

To remind us we consider the T th model, we sometimes subscript quantities by

T . For example, the number of active sources at t or the overall transmission rate at t

is denoted by either M(t) or MT (t). We will consider a family of Poisson processes

indexed by the scaling parameter T > 0 such that the intensity λ = λ(T ) goes to infinity

as T → ∞. The intensity λ = λ(T ) will be referred to as the connection rate for the

T th model.

Recall that heavy-tailed transmission times Lk induce long-range dependence in M;

the precise expression of this is (5.8) (p. 132). High variability in transmission times

causes long-range dependence in the rate at which work is offered to the system.
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8.1.2 The critical input rate

Recall that λ = λ(T ) is the parameter governing the connection rate in the T th model,

and suppose λ = λ(T ) is a nondecreasing function of T . We phrase our condition first

in terms of the quantile function b defined in (8.2). The asymptotic behavior of AT (·)
depends on whether

Condition 1 (slow-growth condition): lim
T→∞

b(λT )

T
= 0

or

Condition 2 (fast-growth condition): lim
T→∞

b(λT )

T
= ∞

holds. Notice that b(·) is regularly varying with index 1/α.

There is an alternative, more intuitive, way to express the conditions.

Lemma 8.1. Assume that Fon satisfies (8.1). In the T th model, assume that the Poisson
process of session initiations is constructed on R and MT (·) is a stationary process on
R. Note that MT (t) represents the number of active sources at time t in the T th model.

1. The slow-growth condition (Condition 1) is equivalent to either of the following two
conditions:

lim
T→∞

λT F̄on(T ) = 0 or lim
T→∞

Cov(MT (0), MT (T )) = 0. (8.3)

2. The fast-growth condition (Condition 2) is equivalent to either of the following two
conditions:

lim
T→∞

λT F̄on(T ) = ∞ or lim
T→∞

Cov(MT (0), MT (T )) = ∞. (8.4)

If we think of the model with time scaled by T , the covariance appearing in (8.3)

and (8.4) is the lag 1 covariance. As we proceed through our family of models indexed

by T , under slow growth, the lag 1 covariance is diminishing at large scales, and under

fast growth, the lag 1 covariance is getting very strong.

Proof. In the case of Condition 1, there exists a function 0 < ǫ(T ) → 0 such that

T ǫ(T ) → ∞ and b(λT ) = T ǫ(T ). Thus, by inversion,

λT ∼ 1/F̄on(T ǫ(T )). (8.5)

Therefore, Condition 1 implies that
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λT F̄on(T ) ∼ F̄on(T )/F̄on(T ǫ(T )) → 0. (8.6)

Conversely, if δ(T ) := λT F̄on(T ) → 0, then using b←(T ) ∼ 1/F̄on(T ), we get

b(λT )

T
∼ b(δ(T )b←(T ))

b(b←(T ))
→ 0,

and so Condition 1 and (8.6) are equivalent. Similarly, Condition 2 is the same as

λT F̄on(T ) → ∞. (8.7)

To get the equivalence in terms of the covariances, use (5.8) (p. 132). ⊓⊔

The following fact expedites proofs in subsequent sections.

Lemma 8.2. If Condition 1 holds, then

lim
T→∞

λT 2F̄on(T )

b(λT )
= 0, (8.8)

and if Condition 2 holds, this limit is infinite.

Proof. Assume that Condition 1 holds. As with (8.5), set ǫ(T ) = b(λT )/T → 0, so

that ǫ(T )T → ∞. Denoting the ratio in (8.8) by r(T ), we see that

r(T ) ∼ F̄on(T )

ǫ(T )F̄on(T ǫ(T ))
,

and using the Karamata representation of a regularly varying function (see Section 2.3.3

(p. 29) and (2.24) (p. 29)), we obtain

r(T ) ∼ [ǫ(T )]−1 exp

{
−
∫ T

T ǫ(T )

u−1α(u)du

}
(8.9)

for some function α(u) → α as u → ∞. Since 1 < α < 2, we may pick δ so small that

α − δ > 1. Since T ǫ(T ) → ∞, we have, for T sufficiently large, that the right-hand

side in (8.9) is bounded from above by

[ǫ(T )]−1 exp{−(α − δ) log(1/ǫ(T ))} = [ǫ(T )]α−δ−1,

and the right-hand side converges to zero as T → ∞. The proof of an infinite limit

under Condition 2 is similar. ⊓⊔
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8.1.3 Why stable Lévy motion can approximate cumulative input under slow

growth

We now assume that Condition 1 holds and show why at large time scales, the process A

is approximately an α-stable Lévy motion. The following is the result under the slow-

growth condition. We will not discuss the fractional Brownian motion limit obtained

under fast growth or the intermediate cases. A skillful overview is given in [178]. See

also [139, 179].

Theorem 8.1. If Condition 1 holds, then the process (A(T t), t ≥ 0) describing the total
cumulative input in [0, T t], t ≥ 0, satisfies the limit relation

X(T )(·) := A(T ·) − T λμon(·)
b(λT )

fidi→ Xα(·), (8.10)

where Xα(·) is an α-stable Lévy motion. Here
fidi→ denotes convergence of the finite-

dimensional distributions.

Remark 8.1. The mode of convergence cannot be extended to J1 convergence in the

Skorohod space D[0,∞). This follows, for example, from Konstantopoulos and

Lin [190], who show that a sequence of processes with a.s. continuous sample paths

cannot converge in distribution in (D[0,∞), J1) to a process with a.s. discontinuous

sample paths. A thorough discussion of this phenomena is in [301]; see also [254] and

Problem 3.22 (p. 69).

Here is a discussion of the proof.

The basic decomposition

We start by giving a useful decomposition of the random variable A(T ) corresponding

to a decomposition of (−∞, T ] × [0,∞):

R1 := {(s, y) : 0 < s ≤ T , 0 < y, s + y ≤ T },
R2 := {(s, y) : 0 < s ≤ T , T < s + y},
R3 := {(s, y) : s ≤ 0, 0 < s + y ≤ T }, (8.11)

R4 := {(s, y) : s ≤ 0, T < s + y}

(see Figure 8.1). Compare this decomposition to the one used in Figure 5.3 (p. 131).

Rewrite A(T ) using (5.4) as
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R4

R3

R2

R1

T0

Fig. 8.1. The regions R1, R2, R3, R4.

A(T ) =
∑

k

Lk1[(Ŵk,Lk)∈R1] +
∑

k

(T − Ŵk)1[(Ŵk,Lk)∈R2]

+
∑

k

(Lk + Ŵk)1[(Ŵk,Lk)∈R3] +
∑

k

T 1[(Ŵk,Lk)∈R4] (8.12)

=: A1 + A2 + A3 + A4.

Recall the definition of the PRM ξ from (5.6) (p. 130) with mean measure λ LEB×Fon.

Note that Ai is a function of the points of ξ in region Ri , and since the Ris are disjoint,

Ai , i = 1, . . . , 4, are mutually independent. Calculating as in (5.7) (p. 130) and using

Karamata’s theorem, we get that as T → ∞,

λm1 := Eξ(R1) = λ

∫ T

0

Fon(T − s)ds ∼ λT ,

λm2 := Eξ(R2) = λ

∫ T

0

F̄on(T − s)ds ∼ λμon, (8.13)

λm3 := Eξ(R3) = λ

∫ 0

s=−∞
(Fon(T + |s|) − Fon(|s|))ds ∼ λμon,

λm4 := Eξ(R4) = λ

∫ 0

s=−∞

∫ ∞

y=−s+T

Fon(dy)ds = λ

∫ ∞

T

F̄on(u)du,

∼ λT F̄on(T )/(α − 1) → 0.

So the mean measure Eξ(·) restricted to Ri is finite for i = 1, . . . , 4, which implies

that the points of ξ
∣∣
Ri

can be represented as a Poisson number of iid random vectors

(see Section 5.4.2 (p. 143)):
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ξ
∣∣
Ri

d=
Pi∑

k=1

ǫ(tk,i ,jk,i), i = 1, . . . , 4, (8.14)

where Pi is a Poisson random variable with mean λmi , which is independent of the iid

pairs (tk,i, jk,i), k ≥ 1, with common distribution

λ LEB(ds)Fon(dy)

λmi

∣∣∣∣
Ri

= LEB(ds)Fon(dy)

mi

∣∣∣∣
Ri

, (8.15)

for i = 1, . . . , 4. Notice that the distributions of ((tk,i, jk,i)) are independent of λ,

which only enters into the specification of the mean of Pi , i = 1, . . . , 4. This means

that for fixed T , we can represent the Ais as sums of a Poisson number of iid random

variables,

A1
d=

P1∑

k=1

jk,1, A2
d=

P2∑

k=1

(T − tk,2),

A3
d=

P3∑

k=1

(jk,3 + tk,3), A4
d=

P4∑

k=1

T = T P4.

(8.16)

One-dimensional convergence

We show under Condition 1 or (8.3) that A(T ) is asymptotically an α-stable random

variable by showing that A1(T ) = A1 is asymptotically stable and Ai(T ) = Ai ,

i = 2, 3, 4, are asymptotically negligible.

It is relatively easy to see that

Ai/b(λT )
P→ 0, i = 2, 3, 4. (8.17)

Here is a sample calculation for the case i = 2; a similar argument works for i = 3, 4.

We write

E(A2) = E(P2)E(T − tk,2) = [λm2]E(T − tk,2),

and from (8.15), this is

= λm2

∫∫
0≤x≤T
s+y>T

(T − s)ds
Fon(dy)

m2

= λ

∫ T

0

F̄on(T − s)(T − s)ds
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= λ

∫ T

0

sF̄on(s)ds.

Therefore, from Karamata’s theorem (p. 25),

λm2E(T − tk,2)

λT 2F̄on(T )
=
∫ T

0 sF̄on(s)ds

T 2F̄on(t)

→
∫ 1

0

s · s−αds = 1

2 − α
.

Then Lemma 8.2 (p. 256) and, in particular, (8.8) give

E(A2) = o(b(λT )),

as desired.

Thus it remains to consider A1. The representation of A1 given in (8.16) yields the

decomposition

A1 − λμonT =
P1∑

k=1

(jk,1 − E(jk,1)) + E(jk,1)[P1 − E(P1)] + [E(A1) − λμonT ]

= A11 + A12 + A13.

It is readily checked that Ejk,1 ∼ μon since

lim
T→∞

E(jk,1) ∼ lim
T→∞

∫∫
0≤s≤T

0≤s+y≤T

yds
Fon(dy)

T

= lim
T→∞

1

T

∫ T

s=0

(∫ T−s

y=0

yFon(dy)

)
ds

= lim
T→∞

1

T

∫ T

s=0

(∫ s

y=0

yFon(dy)

)
ds

= lim
T→∞

∫ T

0

yFon(dy) = μon.

Furthermore, P1 is Poisson with mean λm1 → ∞, so it satisfies the central limit

theorem, i.e.,

[λm1]−1/2[P1 − λm1] ⇒ N(0, 1). (8.18)

Since λm1 ∼ λT , we conclude that

A12 = OP ([λT ]1/2) = oP (b(λT )), (8.19)
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since

lim
T→∞

√
λT

b(λT )
= lim

s→∞
s1/2

b(s)
= lim

s→∞
s1/2−1/α/L(s),

and 1 < α < 2 implies that 1
2 < 1

α
< 1.

By (8.16) and (8.18), A11 is a sum of approximately λm1 ∼ λT iid summands.

Under Condition 1 or (8.3), b(λT )/T → 0, so that for any x > 0 fixed, we eventually

have T − b(λT )x > 0. Therefore, from (8.15), as x → ∞,

λT P(jk,1 > b(λT )x)

= λT

∫∫
0≤s≤T

0≤s+y≤T
y>b(λT )x

dsFon(dy)

m1

= λT

∫ T−b(λT )x

s=0

(∫ T−s

y=b(λT )x

Fon(dy)

m1

)
ds

= λT

[
1

m1
F̄on(b(λT )x)(T − b(λT )x) − 1

m1

∫ T−b(λT )x

s=0

F̄on(T − s)ds

]

∼
(

1 − b(λT )x

T

)
λT F̄on(b(λT )x) − b(λT )

T

∫ T/b(λT )

x

λT F̄on(b(λT )s)ds

∼ x−α. (8.20)

From this, we would like to conclude by Theorem 7.1 (p. 214) that

Y (T )(·) := (b(λT ))−1
[λT ·]∑

k=1

(jk,1 − E(jk,1)) ⇒ Xα(·) (8.21)

in D[0,∞), where the limit is a totally skewed α-stable Lévy random motion (p = 1,

q = 0). However, Theorem 7.1 requires us to check (7.6) (p. 214), which controls the

truncated second moment. The condition (7.6) becomes, for our case,

lim
δ→0

lim sup
T→∞

λT E

((
jk,1

b(λT )

)2

1[|jk,1|≤b(λT )δ]

)
= 0. (8.22)

Verifying this is an easy application of Karamata’s theorem, as given in Problem 2.5

(p. 36). The left side of (8.22) is asymptotic to

λT

∫∫
0≤x≤T

0≤y≤T−s

(
y

b(λT )

)2

1[y≤b(λT )δ]ds
Fon(dy)

T
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= λT

∫ T

s=0

(∫ T−s

y=0

(
y

b(λT )

)2

1[y≤b(λT )δ]
Fon(dy)

T

)
ds

= λT

∫ 1

s=0

(∫ T s

y=0

(
y

b(λT )

)2

1[y≤b(λT )δ]Fon(dy)

)
ds

= λT

∫ 1

s=0

(∫ T s/b(λT )

y=0

y21[y≤δ]Fon(b(λT )dy)

)
ds

≤
∫ 1

s=0

(∫ T/b(λT )∧δ

y=0

y2λT Fon(b(λT )dy)

)
ds,

and because of the slow-growth condition, this is ultimately

≤
∫ δ

0

y2λT Fon(b(λT )dy)

→
∫ δ

0

y2αy−α−1dy = α

2 − α
δ2−α (Karamata’s theorem)

→ 0 (δ → 0).

This establishes (8.21) in D[0,∞). By independence, we may couple (8.18) and

(8.21) to get joint convergence:

(
Y (T )(·), P1

λT

)
⇒ (Xα(·), 1)

in D[0,∞)×R. Using composition and the continuous mapping theorem, one obtains

A11

b(λT )
= Y (T )

(
P1

λT

)
= (b(λT ))−1

P1∑

i=1

(jk,1 − E(jk,1)) ⇒ Xα(1). (8.23)

Finally, we need to consider A13. Write

A13 = E(A1) − λμonT = E(jk,1)E(P1) − λT μon

= λ

∫ T

0

[∫ s

0

yFon(dy) − μon

]
ds = −λ

∫ T

0

∫ ∞

s

yFon(dy)ds

∼ −(const)λT 2F̄on(T ) = o(b(λT )), (8.24)

where we applied Karamata’s theorem and (8.8). Combining the limit relations (8.17),

(8.19), (8.23), and (8.24) gives the desired α-stable limit for A(T ).
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Finite-dimensional convergence

We restrict ourselves to showing convergence of the two-dimensional distributions. The

general case is analogous but notationally more cumbersome. First, observe that for

t > 0,

A(T t) − λμonT t

b(λT )
= A(T t) − λμonT t

b(λT t)
· b(λT t)

b(λT )
⇒ Xα(1) · t1/α d= Xα(t).

Next, suppose t1 < t2. The same arguments as for the one-dimensional convergence

show that it suffices to consider the joint convergence of

[b(λT )]−1(A1(T ti) − λT tiμon), i = 1, 2,

since the rest will be op(1). We can write

A1(T t2) = A1(T t1) +
∑

T t1<Ŵk≤T t2

Lk1[Ŵk+Lk≤T t2] +
∑

0<Ŵk≤T t1

Lk1[T t1<Ŵk+Xk≤T t2]

=: A1(T t1) + A21 + A22.

The terms A1(T t1) and A21 are independent. Also, we have

A21
d= A1(T (t2 − t1)).

To see this, set Ŵ̃k = Ŵk − T t1 and note that
∑

k ǫŴ̃k
is PRM(λ LEB), so

∑

T t1<Ŵk≤T t2

Lk1[Ŵk+Lk≤T t2] =
∑

0<Ŵ̃k≤T t2−T t1

Lk1[Ŵ̃k+Lk≤T t2−T t1]
d= A21.

Hence the proof of the convergence of bivariate distributions follows from the one-

dimensional convergence if one can show that

[b(λT )]−1A22
P→ 0.

However,

E(A22) = E

(∫∫

0≤s≤T t1,T t1<s+u≤T t2

uξ(ds, du)

)

=
∫∫

0≤s≤T t1,T t1<s+u≤T t2

uλdsFon(du)

= λ

∫ T t1

s=0

(∫ T t2−s

u=T t1−s

uFon(du)

)
ds
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= λT 2F̄on(T )

∫ t1

0

(∫ t2−s

u=t1−s

u
Fon(T du)

F̄on(T )

)
ds

∼ λT 2F̄on(T )

[∫ t1

0

α

α − 1
((t1 − s)−(α−1) − (t2 − s)−(α−1))ds

]

= o(b(λT ))

by Lemma 8.2. This concludes the proof of Theorem 8.1. ⊓⊔

8.2 A model for network activity rates

This section is based on [223]. Consider an ordinary renewal process {Sn, n ≥ 0}
such that

S0 = 0, Sn =
n∑

i=1

Xi, n ≥ 1,

and {Xn, n ≥ 1} is a sequence of iid nonnegative random variables with common

distribution F . At time point Sn, an event begins of duration Ln, where we assume

{Ln, n ≥ 0} is a sequence of iid nonnegative random variables with common distribution

Fon and {Ln} is independent of {Xn}. The event that was initiated at Sn terminates at

Sn+Ln. In a data network context, Sn would be the time a user initiates a file download

and Ln is the download time. In an insurance context, Sn is the time of a disaster

or accident and Ln is the length of time during which all insurance claims from this

incident are received, so that Sn +Ln is the latest time a claim from the nth accident is

received. Note that in contrast with the infinite-source Poisson model of Sections 5.2.4

(p. 127) and 8.1 (p. 253), we do not assume that event initiation times are Poisson but

only form a renewal sequence.

We focus our attention on

M(t) =
∞∑

n=1

1[Sn≤t<Sn+Ln], t > 0, (8.25)

the number of active downloads at time t or the number of active claims at time t . In

Section 5.2.4 (p. 127), the variable M(t) was Poisson distributed for each t , but that is

not the case here, and the asymptotic behavior of M(t) will vary depending on different

heavy-tail assumptions on F̄ and F̄on. A fairly complete analysis is in [223]; we give a

sample here to illustrate some heavy-tail methodology for applied probability modeling.

Consider the very heavy-tailed cases when for 0 ≤ α, β ≤ 1,

F̄ (x) = 1−F(x) ∼ x−αLF (x), F̄on(x) = 1−Fon(x) ∼ x−βLon(x), x → ∞,

for some slowly varying functions LF , Lon.
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8.2.1 Mean value analysis when α, β < 1

Karamata’s Tauberian theorem applied to the renewal function was discussed in Sec-

tion 7.3.3 (p. 245) and yields the mean-value asymptotic behavior of M(t). The renewal

function is given by (7.59), and its asymptotic behavior described by (7.65) (p. 246).

Therefore, as t → ∞,

E(M(t)) =
∫ t

0

F̄on(t − x)U(dx) =
∫ 1

0

F̄on(t (1 − s))

F̄on(t)

U(tds)

U(t)
(F̄on(t)U(t))

∼ c(α)

∫ 1

0

(1 − s)−βαsα−1ds
F̄on(t)

F̄ (t)
= c′(α)

F̄on(t)

F̄ (t)
. (8.26)

Thus if

F̄ (t)/F̄on(t) → c > 0, then E(M(t)) → c′(α)c−1;
F̄ (t)/F̄on(t) → 0 then E(M(t)) → ∞;
F̄ (t)/F̄on(t) → ∞ then E(M(t)) → 0.

In the last case, E(M(t)) → 0 and hence M(t)
L1→ 0, and so it is of lesser interest,

corresponding to the case in which renewals are so sparse relative to event durations

that at any time there is not likely to be an event in progress.

8.2.2 Behavior of N(t), the renewal counting function when 0 < α < 1

The counting function N(t) =
∑∞

n=0 ǫSn[0, t] was defined in Section 7.3.3 (p. 245).

Note that N(x) = S←(x), where S(t) = S[t] for t ≥ 0. Let
∑

k ǫ(tk,jk) be

PRM(LEB×να) on

E = [0,∞) × (0,∞].

The process Xα(t) =
∑

tk≤t jk , t ≥ 0, is α-stable Lévy motion with Lévy measure

να; see Section 5.5.2 (p. 153) and Problem 7.3 (p. 247). Define, as usual, the quantile

function of F :

b(t) =
(

1

1 − F

)←
(t).

When α > 0, we can always choose b as a continuous and strictly increasing function;

see Proposition 2.6(vii) (p. 32).

Renewal epochs are asymptotically stable (Section 7.2.2 (p. 218)). If

X(s)(t) = S[st]
b(s)

, t ≥ 0,
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then in D[0,∞), we have as s → ∞,

X(s) ⇒ Xα. (8.27)

Furthermore, the inverse processes also converge in D[0,∞):

(X(s))← ⇒ X←
α .

Unpacking this last result, we get

N(b(s)·)
s

⇒ X←
α (·) (8.28)

in D[0,∞) or, equivalently, F̄ (s)N(s·) ⇒ X←
α (·) or, equivalently,

1

s

∞∑

n=0

ǫ Sn
b(s)

⇒ X←
α

in M+[0,∞), where we have used X←
α to indicate both the monotone function and the

measure. Note that the simple reasoning that gave us Proposition 3.2 (p. 58) does not

suffice for justifying the inversion since the limit is not a continuous process. The more

sophisticated arguments used in [300] must be employed.

8.2.3 Activity rates when α, β < 1 and tails are comparable

Consider the case F̄ (t) ∼ F̄on(t), where the tails of F and Fon are asymptotically

equivalent.

Counting function of {(Sk, Tk), k ≥ 0}

Suppose D↑[0,∞) are the nondecreasing functions in D[0,∞). Define the mapping

T : D↑[0,∞) × M+(E) �→ M+(E) by

T (x, m) = m̃, (8.29)

where m̃ is defined by

m̃(f ) =
∫∫

f (x(u), v)m(du, dv), f ∈ C+
K(E).

This means that T replaces the usual time scale of m by one determined by the function

x. If m is a point measure with representation m =
∑

k ǫ(τk,yk), then

T (x, m) =
∑

k

ǫ(x(τk),yk).
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Proposition 8.1. Suppose that as t → ∞,

F̄ (t) ∼ F̄on(t) ∈ RV−α, 0 < α < 1.

Assume that N∞ =
∑

k ǫ(tk,jk) is PRM(LEB×να). Set E = [0,∞) × (0,∞]. Then in
Mp(E), as s → ∞,

N∗
s =

∞∑

k=0

ǫ
(

Sk
b(s)

,
Lk
b(s)

)
⇒ N∗

∞ = T (Xα, N∞) =
∑

k

ǫ(Xα(tk),jk). (8.30)

Proof. Begin with the statement (Theorem 6.3 (p. 180))

∞∑

k=0

ǫ
( k

s
,

Lk
b(s)

)
⇒ N∞ (s → ∞)

in Mp(E). Since {Sk} is independent of {Lk}, we use Problem 3.20 (p. 69) (or [24, p. 23])

to get joint convergence in D[0,∞) × Mp(E), using (8.27),

(
S[s·]
b(s)

,

∞∑

k=0

ǫ
( k

s
,

Lk
b(s)

)

)
⇒ (Xα, N∞).

The function T is a.s. continuous at (Xα, N∞). Hence

T

(
S[s·]
b(s)

,

∞∑

k=0

ǫ
( k

s
,

Lk
b(s)

)

)
=

∞∑

k=0

ǫ
(
S[sk/s]

b(s)
,

Lk
b(s)

)
=

∞∑

k=0

ǫ
(

Sk
b(s)

,
Lk
b(s)

)
⇒ T (Xα, N∞). ⊓⊔

Number of active sources when tails are comparable

Proposition 8.1 leads to the result about M , the number of active sources or events.

Corollary 8.1. The finite-dimensional distributions of the counting function M(t) de-
fined in (8.25) satisfy, as s → ∞,

M(st) =
∞∑

k=0

1[ Sk
s
≤t<

Sk+Lk
s

] ⇒ M∞(t) =
∑

k

1[Xα(tk)≤t<Xα(tk)+jk].

Conditionally on X←
α , the limit M∞(t) is Poisson with mean

�(t) =
∫ t

0

(t − u)−αdX←
α (u),

and hence the generating function of M∞(t) is

E(τM∞(t)) = E exp{(τ − 1)�(t)}, τ ∈ (0, 1).
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Proof. Fix t > 0. An important observation is that �(t) < ∞ almost surely. To see

this, note that

EX←
α (u) = uα

E(X−α
α (1)) = dαuα.

This results from the self-similar scaling of the Lévy process Xα:

EX←
α (u) =

∫ ∞

0

P[X←
α (u) > x]dx =

∫ ∞

0

P[u > Xα(x)]dx

=
∫ ∞

0

P[u > x1/αXα(1)]dx = uαE(X−α
α (1)) = dαuα.

The quantity dα is finite; see [314].

We prove that �(t) < ∞ a.s. for t = 1 as an example of the method. Writing

f (u) = (1 − u)−α , 0 < u < 1, and observing that f (0) = 1, we have

∫ 1

0

f (u)dX←
α (u) − X←

α (1) =
∫ 1

0

(f (u) − f (0))dX←
α (u)

=
∫ 1

0

∫ u

0

f ′(s)dsdX←
α (u)

=
∫ 1

0

(∫ 1

s

dX←
α (u)

)
α(1 − s)−α−1ds

= α

∫ 1

0

(X←
α (1) − X←

α (s))(1 − s)−α−1ds.

Taking expectations, we have

E

(∫ 1

0

f (u)dX←
α (u)

)
= dα + αdα

∫ 1

0

(1 − sα)(1 − s)−α−1ds.

Now, apart from constants, the second term is
∫ 1

0 (1− (1− s)α))s−α−1ds. The problem

for integrability is near 0. However, as s ↓ 0, the integrand is asymptotic ∼ αs−α ,

which for 0 < α < 1 is integrable. This verifies that �(1) < ∞ with probability 1.

Next, we prove that M(b(s)t) ⇒ M∞(t) for fixed t > 0. As before, we choose

t = 1 in order to demonstrate the method. For positive ǫ, let
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Bǫ = {(u, v) : u ≤ 1 < u + v, v > ǫ},

which is relatively compact in E. By virtue of Proposition 8.1, N∗
s (Bǫ) ⇒ N∗

∞(Bǫ).

Also, by monotone convergence and using �(1) < ∞, with probability 1,

N∗
∞(Bǫ) ↑ N∗

∞(B0) = M∞(1) < ∞.

From the second converging together theorem, Theorem 3.5 (p. 56), it suffices to show

that for any δ > 0,

lim
ǫ→0

lim sup
s→∞

P[|N∗
s (Bǫ) − N∗

s (B0)| > δ] = 0. (8.31)

Observe that

N∗
s (B0) − N∗

s (Bǫ) =
∑

k

1[Sk≤b(s)<Sk+Lk,Lk≤ǫb(s)].

By Chebyshev’s inequality, it suffices to show that the expectation of this last quantity

has a double limit that is zero. We have
∑

k

P[Sk ≤ b(s) < Sk + Lk, Lk ≤ ǫb(s)]

=
∫ 1

1−ǫ

∑

k

F k∗(b(s)dx)P[1 − x < Lk/b(s) ≤ ǫ]

=
∫ 1

1−ǫ

U(b(s)dx)[F̄on(b(s)(1 − x)) − F̄on(b(s)ǫ)]

=
∫ 1

1−ǫ

F̄on(b(s)(1 − x)) − F̄on(b(s)ǫ)

F̄on(b(s))

U(b(s)dx)

U(b(s))
U(b(s))F̄on(b(s))

→ c(α)

∫ 1

1−ǫ

[(1 − x)−α − ǫ−α]dxα as s → ∞

→ 0 as ǫ ↓ 0.

Thus we proved that M(b(s)t) ⇒ M∞(t) for fixed t > 0. The convergence of the

finite-dimensional distributions follows analogously by an application of Theorem 8.1.

Since b can be chosen continuous and strictly increasing, we may rephrase the latter

limit relation as M(st) ⇒ M∞(t). ⊓⊔

8.2.4 Activity rates when 0 < α, β < 1, and Fon has a heavier tail

Now we assume 0 < β ≤ α < 1, and if 0 < α = β, then F̄ (t)/F̄on(t) → 0 as t → ∞.

Recall the definition of the measure να given by να(x,∞] = x−α for x > 0, some

α > 0.
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As with Proposition 8.1 (p. 267), we first prove a limit result for the point process

generated by the scaled points (b(s))−1(Sk, Lk). Then we use this result to derive a

distributional limit for M(s) as s → ∞.

Proposition 8.2. Assume that 0 < α, β < 1, and F̄ (t)/F̄on(t) → 0 as t → ∞. Then
in M+(E), we have

F̄ (b(s))

F̄on(b(s))

∞∑

k=0

ǫ
(

Sk
b(s)

,
Lk
b(s)

)
⇒ T (Xα, LEB×νβ), (8.32)

where T was defined in (8.29).

Note that the normalization in (8.32) for both Sk and Lk is by the quantile function

b(s) = (1/F̄ )←(s) for the lighter-tailed distribution function. Since this is inappropriate

for Lk , premultification by the ratio of the tails (which goes to 0) is necessary for

convergence.

Proof. Begin by observing that

sF̄ (b(s))

F̄on(b(s))
F̄on(b(s)·) v→ νβ

in M+(0,∞]. Hence, from Theorem 5.3 and especially (5.16) (p. 139), we get

F̄ (b(s))

F̄on(b(s))

[s]∑

k=0

ε Lk
b(s)

⇒ νβ .

This may be extended as we did in Theorem 6.3 (p. 180) (see also Problem 6.17 (p. 210))

to show that in M+(E),

F̄ (b(s))

F̄on(b(s)

∞∑

k=0

ε
( k

s
,

Lk
b(s)

)
⇒ LEB×νβ .

From independence we get the joint convergence in D[0,∞) × M+(E),

(
S[s·]
b(s)

,
F̄ (b(s))

F̄on(b(s))

∞∑

k=0

ε
( k

s
,

Lk
b(s)

)

)
⇒ (Xα, LEB×νβ).

Now apply the a.s. continuous map T (see (8.29)) to get (8.32). ⊓⊔
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Number of active sources when F̄on is heavier

From this result, we get the desired result about M , the number of active sources or

events.

Corollary 8.2. The finite-dimensional distributions of the counting function M defined
in (8.25) satisfy, as s → ∞,

F̄ (s)

F̄on(s)
M(st) ⇒

∫ t

0

(t − u)−βdX←
α (u). (8.33)

For any fixed t ,

∫ t

0

(t − u)−βdX←
α (u)

d= t−βα

∫ 1

0

(1 − u)−βdX←
α (u).

Proof. We again consider the case of a fixed t > 0; the convergence of the finite-

dimensional distributions is analogous. We evaluate the convergence in (8.32) on the

set {(u, v) : 0 ≤ u ≤ t < u + v}. After a truncation and the Slutsky argument outlined

in the proof of Corollary 8.1 (p. 267), we get

F̄ (b(s))

F̄on(b(s))
M(b(s)t) ⇒ T (Xα, LEB×νβ)(f ), (8.34)

where T is the mapping defined in (8.29) and f (u, v) = 1[u≤t<u+v]. Evaluating the

right side, we find

T (Xα, LEB×νβ)(f ) =
∫ ∫

f (Xα(v), x)dvdνβ(x) =
∫ X←

α (t)

0

(t − Xα(v))−βdv

=
∫ t

0

(t − v)−βdX←
α (v),

which is the convolution of the measure νβ and the nondecreasing function X←
α . The

integral also equals

t−β

∫ 1

0

(1 − v)−βdX←
α (tv)

d= t−βα

∫ 1

0

(1 − v)−βdX←
α (v).

Since b can be chosen continuous and strictly increasing, the M(b(s)t) in (8.34) may

be replaced by M(st). This concludes the proof. ⊓⊔
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8.3 Heavy traffic and heavy tails

Heavy-traffic limit theorems were devised to study the behavior of complex networks

that for economic reasons are heavily loaded, so that system parameters are near the

boundary of the set of parameters that make the system stable. By studying a sequence of

normalized systems when system parameters approach the stability boundary, a heavy-

traffic approximation provides various approximations for performance measures.

Original work assumed the component random variables of the model all had finite

variance. This research originated with [186, 187] and was nicely surveyed and updated

in [298, 299]. See also the summaries in [8] and [262]. This early work served as a

foundation for J. M. Harrison, who with coworkers started the subject of diffusion

process approximations [157], which is still a subject of active research.

The classical work on heavy-traffic approximations has little methodological rele-

vance to models depending critically on heavy-tailed distributions. The present section,

based on [250], was stimulated by investigations by Boxma and Cohen [29, 45–47],

who based their attack on Laplace transforms.

Assume we have a sequence of GI/G/1 queuing models, which are sometimes called

Lindley queues. The sequence of models is indexed by k. For each model, interarrival

times of customers form an iid sequence with common distribution, and the service

lengths of each customer are iid with a service length distribution. Each model is

stable, but as k → ∞, the models become unstable in the sense that the net drift

(expected service time minus expected interarrival time) tends to zero. The service

length distribution for the kth model, as a first approximation, can be thought to be

independent of k and heavy tailed. The interarrival time distribution in the kth model is

lighter than the service time distribution. Since the kth model is assumed to be stable,

there is a stationary waiting-time distribution. Let W (k) be a random variable with the

stationary waiting-time distribution in the kth model. For large k, W (k) properly scaled

has an approximate Mittag–Leffler distribution. This is a distribution with an explicit

series representation and a simple Laplace transform. See (8.50), (8.51), and [137, 138].

An instructive way to understand this result is as follows. For the kth model, W (k)

has a standard interpretation [8, 262] as the maximum of a negative-drift random walk,

which has a natural association to the kth model. Under the assumptions that make

our Mittag–Leffler distribution approximation valid, scaled and time-dilated versions

of this sequence of random walks converge weakly in the sense of stochastic processes

to a limiting stable Lévy motion with negative drift. This means that a scaled version of

W (k), interpreted as the all time maximum of the kth random walk, has approximately

the same distribution as the all time maximum of the negative-drift stable Lévy motion.

The distribution of this maximum is known from the work of [137, 138] and [315].

Roughly stated, the conclusion is that the Mittag–Leffler distribution is an approx-

imation to the equilibrium waiting-time distribution of a heavily loaded GI/G/1 system
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whose service time distribution has finite mean, infinite second moment and heavy tail.

More details follow.

8.3.1 Crash course on waiting-time processes

We now give some standard background, abstracted from [262], for the waiting-time

process of the G/G/1 queue. The symbols G/G/1 stand for general input (arrivals occur

according to a renewal process), general service times (service times of successive

customers are iid), and 1 (one) server.

As a convention suppose customer number 0 arrives at time 0. Let σn+1 be the

interarrival time between the nth and the (n + 1)st arriving customer. Assume σn,

n ≥ 1, are iid with finite mean. Let tk be the time of arrival of customer k, k ≥ 0, so

that t0 = 0, tk = σ1 + · · · + σk , k ≥ 1.

Let τn be the service time of the nth arriving customer and suppose {τn, n ≥ 0} is

iid with a finite mean. Define the traffic intensity ρ by

ρ = Eτ0/Eσ1 = (Eσ1)
−1/(Eτ0)

−1, (8.35)

so that ρ is the ratio of the arrival rate to the service rate. If ρ < 1, then on the

average, the server is able to cope with his load. Assume {τn} and {σn} are independent.

(Sometimes it suffices that {(τn, σn+1), n ≥ 0} be iid.)

We assume there is one server and that he serves customers on a first-come–first-

served basis. A basic process is Wn, the waiting time of the nth customer until his

service commences. This is the elapsed time between the arrival of the nth customer

and the beginning of his service period. A basic recursion for Wn is

W0 = 0, Wn+1 = (Wn + τn − σn+1)
+, n ≥ 0, (8.36)

where x+ = x if x ≥ 0 and= 0 if x < 0. Aprocess satisfying (8.36) is sometimes called

a Lindley process [206]. Why is the recursion true? There are two possible scenarios.

For the first, Wn + τn > σn+1, and then the waiting time of the (n + 1)st customer is

positive and equal to Wn + τn − σn+1. The second scenario is when Wn + τn ≤ σn+1.

In this case, the (n + 1)st customer enters service immediately upon arrival and has

no wait.

For n ≥ 0, define

Xn+1 = τn − σn+1 (8.37)

so that {Xn, n ≥ 1} is iid. With this notation,

Wn+1 = (Wn + Xn+1)
+,
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and {Wn} is a random walk with a boundary at 0, that is, a partial sum process prevented

from going negative.

Denote the random walk by {Sn, n ≥ 0}, where Sn = X1 + · · · + Xn. Note that if

μ = EX1, then

μ < 0 if and only if ρ < 1,

μ = 0 if and only if ρ = 1,

μ > 0 if and only if ρ > 1.

Proposition 8.3. For the waiting time Wn of the G/G/1 queuing model, we have

Wn = max

{
0, Xn, Xn + Xn−1, . . . ,

n∑

i=2

Xi, Sn

}
(8.38)

d=
n∨

j=0

Sj . (8.39)

Proof. Proceed by induction: The equality (8.38) is trivially true for n = 0 and n = 1.

Assume that it holds for n. Then by the induction hypothesis,

Wn+1 = (Wn + Xn+1)
+

=
(

max

{
0, Xn, Xn + Xn−1, . . . ,

n∑

i=1

Xi

}
+ Xn+1

)+

=
(

max

{
Xn+1, Xn+1 + Xn, . . . ,

n+1∑

i=1

Xi

})+

= max

{
0, Xn+1, Xn+1 + Xn, . . . ,

n+1∑

i=1

Xi

}
.

So if (8.38) holds for n, then it holds for n + 1.

To prove the equality in distribution Wn
d= ∨n

j=0Sj , we observe that

(X1, . . . , Xn)
d= (Xn, . . . , X1)

since both vectors consist of iid random variables. Therefore,

Wn = max

{
0, Xn, Xn + Xn−1, . . . ,

n∑

i=2

, Sn

}
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d= max

{
0, X1, X1 + X2, . . . ,

n−1∑

i=1

Xi, Sn

}
=

n∨

j=0

Sj . ⊓⊔

This simple result allows us to calculate the asymptotic distribution of {Wn}. We

are interested in the stable case when ρ < 1.

Proposition 8.4. For the waiting time Wn of a G/G/1 queuing model, the following is
true: If ρ < 1, then W∞ := ∨∞

j=1Sj < ∞ and

P[Wn ≤ x] → P[W∞ ≤ x].

Proof. We use the critical fact that Wn
d= ∨n

j=0Sj . Since ρ < 1, we have μ = E(X1) <

0, so by the strong law of large numbers, Sn → −∞ almost surely. Thus W∞ < ∞ and

P[Wn ≤ x] = P

⎡
⎣

n∨

j=0

Sj ≤ x

⎤
⎦→ P

⎡
⎣

∞∨

j=0

Sj ≤ x

⎤
⎦ . ⊓⊔

8.3.2 Heavy-traffic approximation for queues with heavy-tailed services

To state the approximation result precisely, we construct a sequence of Lindley queu-

ing models. Suppose {τ (k)
i , i ≥ 1} is a nonnegative iid sequence (of service lengths)

with common distribution B(k)(x) and {σ (k)
i , i ≥ 1} is an independent sequence of non-

negative iid interarrival times with common distribution A(k)(x). We assume the means

of A(k)(x) and B(k)(x) are finite, and that for each k, {τ (k)
n , n ≥ 0} and {σ (k)

n , n ≥ 1} are

independent. The delay or waiting-time process of the kth Lindley queue is given by

W
(k)
0 = 0, W

(k)
n+1 =

(
W (k)

n + τ (k)
n − σ

(k)
n+1

)+
, n ≥ 0.

The traffic intensity for the kth model is

ρ(k) = E
(
τ

(k)
1

)
/E
(
σ

(k)
1

)
.

For the heavy-traffic approximation to hold, we need the following conditions.

Condition (A). Suppose there exists a distribution function F concentrating on [0,∞)

such that F̄ := 1 − F ∈ RV−α , 1 < α < 2. The quantile function

b(t) =
(

1

1 − F

)←
(t) (8.40)

is regularly varying with index 1/α. Suppose further that B(k)(x) satisfies
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lim
x→∞

¯B(k)(x)

F̄ (x)
= 1 (8.41)

uniformly in k = 1, 2, . . . . This means that given δ > 0, there exists x0 = x0(δ)

independent of k such that for x > x0 and all k, we have

1 − δ <
¯B(k)(x)

F̄ (x)
≤ 1 + δ. (8.42)

Condition (B). The tails of the distribution of σ
(k)
1 are always lighter than the tail of

F . A convenient way we ensure this is by assuming that there exists η > α such that

c∨ := sup
k≥1

E
(
σ

(k)
1

)η
< ∞. (8.43)

Condition (C). Assume

0 > m(k) := E
(
τ

(k)
1

)
− E
(
σ

(k)
1

)
→ 0 (8.44)

as k → ∞. Set

X
(k)
i :=

τ
(k)
i − σ

(k)
i+1

b(d(k))
, i ≥ 1, (8.45)

where the specification of d(k) is given below. We think of {X(k)
i , i ≥ 1} as steps of

the kth random walk. The step mean is

μ(k) =
E
(
τ

(k)
1

)
− E
(
σ

(k)
1

)

b(d(k))
= m(k)

b(d(k))
.

We interpret (8.44) as meaning that the kth random walk has negative drift so that the

kth Lindley queue is stable but that as k increases, the random walk drift becomes more

and more negligible so that the associated Lindley models become less and less stable.

Hence the need for scaling by b(d(k)).

Definition of d(k). In order for the random walks with negative drift to be approxi-

mated by stable Lévy motion with drift −1, the function d(k) must satisfy

d(k)μ(k) := d(k)m(k)

b(d(k))
→ −1

as k → ∞. The function

H(t) := t

b(t)
∈ RV1− 1

α
(8.46)
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grows like a power function with exponent 1 − α−1 > 0 and has an asymptotic inverse

H← ∈ RVα/(α−1) .

The sequence d(k) must satisfy

H(d(k)) ∼ 1

|m(k)| .

Therefore, we choose the sequence {d(k)} to be any sequence satisfying

d(k) ∼ H←
(

1

|m(k)|

)
, (8.47)

where H is specified in (8.46).

We now state the approximation theorem.

Theorem 8.2. Assume Conditions (A)–(C) hold. Then with {X(k)
i , i ≥ 1} defined by

(8.45) and {d(k)} satisfying (8.47), we have in D[0,∞),

Y (k)(t) :=
[d(k)t]∑

i=1

X
(k)
i = 1

b(d(k))

[d(k)t]∑

i=1

(
τ

(k)
i − σ

(k)
i+1

)
⇒ Y (∞)(t), (8.48)

where the limit Y (∞)(t) = ξ (∞)(t)− t and ξ (∞)(t) is a totally skewed to the right, zero
mean, α-stable Lévy motion.

Furthermore, the sequence of stationary waiting times indexed by k converges in
distribution in R:

1

b(d(k))
W (k) =

∞∨

n=0

1

b(d(k))

n∑

i=1

(
τ

(k)
i − σ

(k)
i+1

)
⇒ W (∞) =

∞∨

t=0

Y (∞)(t). (8.49)

Remark 8.2. The distribution of the maximum W (∞) of a negative-drift α-stable Lévy

motion has been computed in [137, 138] using work of [315]. The limit distribution

is a Mittag–Leffler distribution. Thus a queuing system with heavy-tailed service re-

quirements under heavy load has an equilibrium waiting-time distribution which is

approximated by the Mittag–Leffler distribution. See, e.g., [137, (3.20)].

We have the following corollary.

Corollary 8.3. Suppose the assumptions of Theorem 8.2 hold. Then for every t > 0,

P (W (k)/b(d(k)) ≤ t) → P(W (∞) ≤ t) = 1 −
∞∑

n=0

(−a)n

Ŵ(1 + n(α − 1))
tn(α−1), (8.50)
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where a = (α − 1)/Ŵ(2 − α), and for every λ ≥ 0,

Ee−λW (k) → Ee−λW (∞) = a

a + λα−1
. (8.51)

Example 8.1. Consider a GI/G/1 queue with service times {τi, i ≥ 1} having the Pareto

distribution

F(x) = 1 − x−3/2, x ≥ 1,

and interarrival times {σi, i ≥ 1} having the Gamma(β, λ) distribution. Assume that

ρ = E(τ1)/E(σ1) < 1,

but not by much. One can get approximate values of the probabilities that the stationary

waiting time in the system exceeds a given level by thinking, for example, about the

scaling setup of Problem 8.3 (or any other setup, e.g., shift setup) as follows. We have

b(t) = t2/3 for t ≥ 1

by (8.40) and

m(k) = −(1 − ρ)E(τ1) = −2(1 − ρ)

by (8.44). The argument k does not make sense here, but we are sticking with the

terminology of this section.

The function H in (8.46) is, in this case, given by

H(t) = t1/3 for t ≥ 1,

and its inverse is

H←(u) = u3 for u ≥ 1.

Suppose that relation (8.47) is an equality; we then have

d(k) = 1

8
(1 − ρ)−3.

With W (∞) having the Mittag–Leffler distribution (8.50), our approximation is then

P(W > t) ≈ P(W (∞) > t/b(d(k))) = P(W (∞) > 4(1 − ρ)2t).

For example, the approximate values for P(W > t) for t = 250, 1000, and 4000

are, correspondingly, .459, .281, and .153 for ρ = .9, are .644, .459, and .281 for

ρ = .95, and are .907, .827, and .697 for ρ = .99. ⊓⊔
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8.3.3 Approximation to a negative-drift random walk

We now proceed to an understanding of the heavy-traffic approximation. Since the

stationary waiting-time distribution in a stable Lindley queue can be expressed as the

distribution of the supremum of a negative-drift random walk, we begin by studying

weak convergence of a sequence of negative-drift random walks. In this section, we

assume that for each k = 1, 2, . . . , {X(k)
i , i ≥ 1} are iid random variables. The kth

random walk is

S
(k)
0 = 0, S(k)

n =
n∑

i=1

X
(k)
i , n ≥ 1,

so that the kth random walk has steps X
(k)
i , i = 1, 2, . . . .

We need to make the following assumptions.

Assumption 1. There exists a nonnegative sequence of integers d(k) → ∞ such that

νk(·) := d(k)P
[
X

(k)
1 ∈ ·

]
v→ ν(·), (8.52)

vaguely in [−∞,∞] \ {0}, where ν is a measure on [−∞,∞] \ {0} satisfying

(a) ν is a Lévy measure (cf. Section 5.5.1 (p. 146)),

(b) ν(−∞, 0) = 0,

(c)
∫∞

1 xν(dx) < ∞.

Assumption 2. How much mass is allowed near 0 is controlled by the condition that

for any M > 0,

lim sup
k→∞

d(k)E

((
X

(k)
1

)2
1[|X(k)

1 |≤M]

)
< ∞ (8.53)

and

lim
ǫ↓0

lim sup
k→∞

d(k)E

((
X

(k)
1

)2
1[|X(k)

1 |≤ǫ]

)
= 0. (8.54)

Assumption 3. We assume each X
(k)
i has a finite negative mean μ(k) satisfying

lim
k→∞

d(k)μ(k) = −1,

which implies 0 > μ(k) → 0 as k → ∞.

Assumption 4. Just assuming ν is a Lévy measure does not provide sufficient control

near infinity, so we assume further that
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lim
M→∞

lim sup
k→∞

d(k)E
(∣∣∣X(k)

i

∣∣∣ 1[|X(k)
i |>M]

)
= 0. (8.55)

With these assumptions in place, we state and prove the first result about how a

sequence of negative-drift random walks can be approximated by a negative-drift Lévy

process.

Proposition 8.5. Assume that Assumptions 1–4 hold. Define the random element of
D[0,∞) as

Y (k)(t) = S
(k)
[d(k)t], t ≥ 0,

for k = 1, 2, . . . . Let {ξ (∞)(t), t ≥ 0} be a totally skewed to the right zero mean Lévy
process with Lévy measure ν and set Y (∞)(t) = ξ (∞)(t) − t , t ≥ 0. Then in D[0,∞),

Y (k)(·) ⇒ Y (∞)(·).

Proof. Use Theorem 7.1 (p. 214) to conclude that

X(k)(·) :=
[d(k)·]∑

i=1

(
X

(k)
i − E

(
X

(k)
i 1[|X(k)

k |≤1]

))
⇒ X(∞)(·) (8.56)

in D[0,∞), where

X(∞)(·) := lim
δ↓0

⎛
⎝∑

tk≤(·)
jk1[jk>δ] − (·)

∫

δ<x≤1

xν(dx)

⎞
⎠

= lim
δ↓0

⎛
⎝∑

tk≤(·)
jk1[jk∈(δ,1]] − (·)

∫

δ<x≤1

xν(dx)

+
∑

tk≤(·)
jk1[jk>1] − (·)

∫

x>1

xν(dx) + (·)
∫

x>1

xν(dx)

⎞
⎠

= ξ (∞)(·) + (·)
∫

x>1

xν(dx),

and ξ (∞)(t) is totally skewed to the right and has Lévy measure ν and zero mean.

Now center (8.56) to zero expectations. We have

d(k)
(
μ(k) − E

(
X

(k)
1 1[|X(k)

1 |≤1]

))
= d(k)E

(
X

(k)
1 1[|X(k)

1 |>1]

)

and
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d(k)E
(
X

(k)
1 1[|X(k)

1 |>1]

)
→
∫

x>1

xν(dx),

since the absolute value of the difference can be bounded by

∣∣∣∣d(k)E
(
X

(k)
1 1[1<|X(k)

1 |≤M]

)
−
∫ M

1

xν(dx)

∣∣∣∣+ d(k)E
(
X

(k)
1 1[|X(k)

1 |>M]

)
+
∫ ∞

M

xν(dx)

= I + II + III

for an arbitrary M chosen to avoid the atoms of ν. As k → ∞, I → 0 by vague

convergence (8.52). We can make II as small as desired by (8.55) of Assumption 4, and

III is made small by Assumption 1(c). We therefore conclude that

[d(k)t]∑

i=1

X
(k)
i − [d(k)t]μ(k) ⇒ X(∞)(t) − t

∫ ∞

1

xν(dx)

in D[0,∞) and, furthermore, that

Y (k)(t) = S
(k)
[d(k)t] ⇒ X(∞)(t) − t

∫ ∞

1

xν(dx) − t = Y (∞)(t)

in D[0,∞), where we have used Assumption 3. This completes the proof. ⊓⊔

8.3.4 Approximation to the supremum of a negative-drift random walk

The supremum of a negative-drift random walk is of interest because of its relation to

the equilibrium waiting time of GI/G/1 queuing models. In this section we discuss how

the approximation of Section 8.3.3 to the negative-drift random walk implies an ap-

proximation to the supremum. We continue using the notation defined in Section 8.3.3.

Proposition 8.6. Assume Assumptions 1–4 of Section 8.3.3 (p. 279) hold. Define

W (k) :=
∞∨

t=0

Y (k)(t) =
∞∨

n=0

S(k)
n .

Then in R, we have the convergence in distribution, as k → ∞,

W (k) ⇒ W (∞) :=
∞∨

t=0

Y (∞)(t) =
∞∨

t=0

(ξ (∞)(t) − t),

where we recall that ξ (∞)(·) is the zero mean Lévy process of Theorem 8.5.
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Proof. We use a method learned from [8] for the finite variance case. For any T > 0,

the map x �→
∨T

s=0 x(s) from D[0,∞) �→ R is continuous (cf. Problem 3.21 (p. 69)).

So from Theorem 8.5, we have

T∨

s=0

Y (k)(s) ⇒
T∨

s=0

Y (∞)(s)

in R. The desired result will be proven using the second converging together theorem,

Theorem 3.5 (p. 56), provided we can show for any η > 0 that

lim
T→∞

lim sup
k→∞

P

⎡
⎣ ∨

j≥d(k)T

S
(k)
j > η

⎤
⎦ = 0. (8.57)

To prove (8.57), we observe that for any suitably chosen M > 0,

P

⎡
⎣ ∨

j≥d(k)T

S
(k)
j > η

⎤
⎦

≤ P

⎡
⎣ ∨

j≥d(k)T

S
(k)
j

j
> 0

⎤
⎦

≤ P

⎡
⎣ ∨

j≥d(k)T

⎛
⎝j−1

j∑

i=1

X
(k)
i 1[|X(k)

i |≤M] + j−1

j∑

i=1

X
(k)
i 1[|X(k)

i |>M]

⎞
⎠ > 0

⎤
⎦

= P

⎡
⎣ ∨

j≥d(k)T

⎛
⎝j−1

j∑

i=1

(
X

(k)
i 1[|X(k)

i |≤M] − E
(
X

(k)
1 1[|X(k)

1 |≤M]

))

+ j−1

j∑

i=1

(
X

(k)
i 1[|X(k)

i |>M] − E
(
X

(k)
1 1[|X(k)

1 |>M]

))
⎞
⎠ > |μ(k)|

⎤
⎦

≤ P

⎡
⎣ ∨

j≥d(k)T

j−1

j∑

i=1

(
X

(k)
i 1[|X(k)

i |≤M] − E
(
X

(k)
i 1[|X(k)

i |≤M]

))
> |μ(k)|/2

⎤
⎦

+ P

⎡
⎣ ∨

j≥d(k)T

j−1

j∑

i=1

(
X

(k)
i 1[|X(k)

i |>M] − E
(
X

(k)
i 1[|X(k)

i |>M]

))
> |μ(k)|/2

⎤
⎦

= I + II.
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The centered sample averages are reversed martingales, so we may apply Kolmogorov’s

inequality [24, 264]. We will use the fact that from Assumption 3, d(k) ∼ 1/|μ(k)| as

k → ∞. For I, we have

I ≤ (μ(k)/2)−2 Var

⎛
⎝ 1

[d(k)T ]

[d(k)T ]∑

i=1

X
(k)
i 1[|X(k)

i |≤M]

⎞
⎠

≤ 4
[d(k)T ]
[d(k)T ]2

1

(μ(k))2
Var
(
X

(k)
1 1[|X(k)

1 |≤M]

)
.

Using (d(k)μ(k))2 → 1, as k → ∞, this is

∼ 1

T
d(k) Var

(
X

(k)
1 1[|X(k)

1 |≤M]

)
.

This converges to 0 as T → ∞ due to (8.53). To kill II, we write, using the martingale

maximal inequality [24, 229, 264],

II ≤ 2

|μ(k)|E

∣∣∣∣∣∣
1

[d(k)T ]

[d(k)T ]∑

i=1

(
X

(k)
i 1[|X(k)

i |>M] − E
(
X

(k)
i 1[|X(k)

i |>M]

))
∣∣∣∣∣∣

≤ 2

|μ(k)|E
∣∣∣X(k)

1 1[|X(k)
1 |>M] − E

(
X

(k)
1 1[|X(k)

1 |>M]

)∣∣∣

∼ 2d(k)E

∣∣∣X(k)
1 1[|X(k)

1 |>M] − E
(
X

(k)
1 1[|X(k)

1 |>M]

)∣∣∣

≤ 4d(k)E
(∣∣∣X(k)

1

∣∣∣ 1[|X(k)
1 |>M]

)
.

From (8.55) of Assumption 4, if we choose M sufficiently large, we can guarantee that

lim supk→∞ II can be made as small as desired. This completes the proof. ⊓⊔

8.3.5 Proof of the heavy-traffic approximation

This section gives the proof of Theorem 8.2 and Corollary 8.3.

Proof. Both assertions in the statement of the theorem will be proven if we verify that

Conditions (A)–(C) and the definition of d(k) given in (8.47) imply Assumptions 1–4.

We begin by showing that Assumption 1 is valid with

ν(dx) = να(dx) = αx−α−1dx1(0,∞)(x).

On one hand, we have for x > 0,
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d(k)P
[
X

(k)
1 > x

]
≤ d(k)P

[
τ

(k)
1 > b(d(k))x

]
→ x−α

and on the other, for any δ > 0,

d(k)P
[
X

(k)
1 > x

]
≥ d(k)P

[
τ

(k)
1 − σ

(k)
2 > b(d(k))x, σ

(k)
2 ≤ δb(d(k))

]

≥ d(k)P
[
τ

(k)
1 > b(d(k))(x + δ), σ

(k)
2 ≤ δb(d(k))

]

= d(k)P
[
τ

(k)
1 > b(d(k))(x + δ)

]

− d(k)P
[
τ

(k)
1 > b(d(k))(x + δ), σ

(k)
2 > δb(d(k))

]

→ (x + δ)−α − 0 (k → ∞),

where the last 0 results from

lim
k→∞

d(k)P
[
σ

(k)
2 > δb(d(k))

]
≤ lim

k→∞
d(k)

b(d(k))ηδη
E
(
σ

(k)
2

)η

≤ lim
t→∞

c∨
t

b(t)ηδη
= 0 (8.58)

since η/α > 1. Thus, since δ > 0 is arbitrary, we conclude that for x > 0,

d(k)P[X(k)
1 > x] → να(x,∞].

For x < 0, note that

d(k)P
[
X

(k)
1 < x

]
= d(k)P

[
σ

(k)
2 − τ

(k)
1 > b(d(k))|x|

]

≤ d(k)P
[
σ

(k)
2 > b(d(k))x

]
→ 0

due to (8.58). This verifies that Assumption 1 holds.

To check that Assumption 2 is valid, observe that we have, after integration by parts,

d(k)E

((
X

(k)
1

)2
1[|X(k)

1 |≤ǫ]

)
≤ 2d(k)

∫ ǫ

0

xP

[∣∣∣X(k)
1

∣∣∣ > x
]
dx

≤ 2d(k)

∫ ǫ

0

xP

[
τ

(k)
1 > b(d(k))x

]
dx + 2d(k)

∫ ǫ

0

xP

[
σ

(k)
1 > b(d(k))x

]
dx

=: I + II.

For I, we have with x0 and δ as in Condition (A) (see (8.42)),

I = 2d(k)

∫ x0/b(d(k))

0

xP

[
τ

(k)
1 > b(d(k))x

]
dx
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+ 2d(k)

∫ ǫ

x0/b(d(k))

xP

[
τ

(k)
1 > b(d(k))x

]
dx

≤ d(k)

(
x0

b(d(k))

)2

+ 2(1 + δ)d(k)

∫ ǫ

x0/b(d(k))

xF̄ (b(d(k))x)dx

≤ d(k)

b(d(k))2
(const) + 2(1 + δ)

∫ ǫ

0

1[x>x0/b(d(k))]xd(k)F̄ (b(d(k))x)dx

= Ia + Ib.

Since t/b2(t) → 0, we have Ia → 0 with k → ∞. By Karamata’s theorem, Theo-

rem 2.1 (p. 25), we have Ib → 2(1 + δ)(2 − α)−1ǫ2−α as k → ∞, which goes to 0 as

ǫ → 0. To verify the limit for Ib, note that for every fixed x > 0,

d(k)F̄ (b(d(k))x) = d(k)F̄ (b(d(k)))
F̄ (b(d(k))x)

F̄ (b(d(k)))
→ x−α

as k → ∞ by regular variation, and note that there is are α < β < 2 and C > 0

such that
F̄ (b(d(k))x)

F̄ (b(d(k)))
≤ Cx−β

for all ǫ > x > x0/b(d(k)) and k large enough. (This is a modification of the Potter

bounds (2.31) (p. 32); see Problem 2.6 (p. 36).) Hence Ib → 2(1 + δ)(2 − α)−1ǫ2−α

as k → ∞ by the dominated convergence theorem. We therefore conclude that

lim
ǫ→0

lim sup
k→∞

I = 0.

For II, note that

II ≤ 2d(k)

∫ ǫ

0

xE
(
σ

(k)
2

)η
x−ηdx/b(d(k))η

≤ (const)
d(k)

b(d(k))η
ǫ2−η.

This goes to 0 as k → ∞ since η/α > 1. This completes the verification that Assump-

tion 2 holds.

The reason that Assumption 3 holds is clear, so we turn to verifying why Assump-

tion 4 holds. Referring to the form of Assumption 4 in (8.55), we see that

d(k)E
(∣∣∣X(k)

i

∣∣∣ 1[|X(k)
i |>M]

)

≤ d(k)E

(∣∣∣∣∣
τ

(k)
1

b(d(k))

∣∣∣∣∣ 1[τ (k)
1 >b(d(k))M]

)
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+ d(k)E

(∣∣∣∣∣
σ

(k)
2

b(d(k))

∣∣∣∣∣ 1[σ (k)
2 >b(d(k))M]

)

= d(k)

∫ ∞

M

P

[
τ

(k)
1

b(d(k))
> x

]
dx + d(k)MP

[
τ

(k)
1

b(d(k))
> M

]

+ d(k)

∫ ∞

M

P

[
σ

(k)
2

b(d(k))
> x

]
dx + d(k)MP

[
σ

(k)
2

b(d(k))
> M

]
;

again using the definition of x0 and δ from (8.42) of Condition (A), we have the bound,

for large M ,

≤ (1 + δ)

∫ ∞

M

d(k)F̄ (b(d(k))x)dx + (1 + δ)d(k)MF̄ (b(d(k))M)

+ c∨
d(k)

b(d(k))η

∫ ∞

M

x−ηdx + o(1)

using (8.58). As k → ∞, this is asymptotic to

∼ (1 + δ)

∫ ∞

M

x−αdx + (1 + δ)MM−α = O(M−α+1),

which converges to 0 as M → ∞. This verifies that Assumption 4 holds and completes

the proof of Theorem 8.2. ⊓⊔

8.4 Problems

8.1. A propos of Corollary 8.2 (p. 271), verify that if 0 = β < α < 1, we get

F̄ (s)

F̄on(s)
M(st) ⇒ X←

α (t).

Therefore, taking into account (8.28) (p. 266), conclude that as s → ∞,

M(s)

N(s)
∼ F̄on(s)

P→ 0.

8.2. Evaluate the function d(k) given in (8.47) (p. 277) for the case in which F̄ is a pure

Pareto, so that

F̄ (x) = x−α, x > 1.

Verify that
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b(t) = t1/α, t > 1,

H(t) = t1−1/α,

H←(t) = tα/(α−1)

d(k) ∼
(

1

|m(k)|

)α/(α−1)

, k → ∞.

8.3. Suppose {τi, i ≥ 1} are iid nonnegative random variables with common distribution

F , where F̄ satisfies the regular variation assumptions of Condition (A). Similarly,

suppose {σi, i ≥ 1} are iid nonnegative random variables with common distribution

A(x). Both τ1 and σ2 are assumed to have finite means with E(τ1) < E(σ2), and

E(σ2)
η < ∞ for some η > α. Define

X
(k)
i = τi − θkσi+1

b(d(k))
,

and assume that

θk = E(τ1)

E(σ2)
(1 + ǫk),

where ǫk > 0 and ǫk → 0 as k → ∞. Verify that Conditions (A)–(C) (p. 275) hold for

this setup.

8.4. Show that the distribution of N∗
∞ in (8.30) (p. 267) can be specified by its Laplace

functional

E(e−N∗
∞(f )) = E

(
exp

{
−
∫∫

E

(1 − e−f (Xα(s),y))dsνα(dy)

})
, f ∈ C+

K(E).





9

Additional Statistics Topics

This chapter surveys some additional statistical topics and presents analysis of several

data sets to illustrate the techniques. One focus is multivariate inference: We consider

methods for estimating the limit measure ν and the angular measure S. These meth-

ods require statistical techniques for transforming the multivariate data to the standard
case. We also consider the coefficient of tail dependence and an elaborating concept

called hidden regular variation, which aid in considering models possessing asymp-

totic independence. Finally, we consider a standard time-series tool called the sample
correlation function and discuss its properties in the case of a stationary time series with

heavy-tailed marginal distribtions.

First, we consider in one dimension the asymptotic normality of estimators of the

tail index of regular variation.

9.1 Asymptotic normality

A key inference issue is to estimate the index of a distribution F satisfying F̄ ∈ RV−α

based on a random sample from the distribution. To prove asymptotic normality of

estimators, we follow the approach of Section 4.3 (p. 78) and first prove asymptotic

normality of the tail empirical measure; then from this we extract asymptotic normality

for estimators.

9.1.1 Asymptotic normality of the tail empirical measure

As in Section 4.3, suppose {Xj , j ≥ 1} are iid, nonnegative random variables with

common distribution F(x), where F̄ ∈ RV−α for α > 0. Continue with the notation in

(4.10)–(4.12) (p. 78). Define the tail empirical process,
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Wn(y) =
√

k

(
1

k

n∑

i=1

ǫXi/b(n/k)(y
−1/α,∞] − n

k
F̄ (b(n/k)y−1/α)

)
(9.1)

=
√

k(νn(y
−1/α,∞] − E(νn(y

−1/α,∞])), y ≥ 0.

Theorem 9.1. Suppose (4.10)–(4.12) (p. 78) hold. Then as n → ∞, k = k(n) → ∞,

n/k → ∞,

Wn ⇒ W

in D[0,∞), where W is Brownian motion on [0,∞).

Remark 9.1. Note that, because of regular variation, as n → ∞, k/n → 0,

Eνn(y
−1/α,∞] = n

k
F̄ (b(n/k)y−1/α) → (y−1/α)−α = y. (9.2)

For applications to such things as the asymptotic normality of the Hill estimator and other

estimators derived from the tail empirical measure, we would prefer the centering in

(9.1) be y. However, to make this substitution in (9.1) requires knowing or assuming that

lim
n→∞

√
k
(n

k
F̄ (b(n/k)y−1/α) − y

)
(9.3)

exists and is finite. This is one of the origins of the need for second-order regular
variation. See Problems 3.15–3.17 (p. 67ff) as well as [90, 101, 109, 111–115, 136,

149–152, 235].

Remark 9.2. The proof to follow is based on Donsker’s theorem, Theorem 3.3 (p. 54),

given in Section 3.4.2. Other proofs have been given in [252] and related material and

proofs considered earlier in [58–61, 80, 81, 126, 211, 213].

Proof. The proof uses Donsker’s theorem and then Vervaat’s lemma (p. 59), especially

(3.28). We proceed in a series of steps.

Step 1: Renewal theory. Suppose {Yn, n ≥ 1} are iid, nonnegative random variables

with E(Yj ) = μ, and Var(Yj ) = σ 2. Set Sn =
∑n

i=1 Yi . Then from Donsker’s theorem,

S[nt] − [nt]μ
σ
√

n
⇒ W(t)

in D[0,∞), where W(·) is a standard Brownian motion. Since for any M > 0,

sup
0≤t≤M

|ntμ − [nt]μ|√
n

→ 0,

it is also true that in D[0,∞)



9.1 Asymptotic normality 293

S[nt] − ntμ

σ
√

n
⇒ W(t).

In preparation for applying Vervaat’s lemma, divide the numerator and denominator by

nμ to get

cn(Xn(t) − t) :=

(
S[nt]
nμ

− t
)

σn−1/2/μ
⇒ W(t).

This implies the result for X←
n (·) and we need to evaluate this process:

X←
n (t) = inf {s : Xn(s) ≥ t}

= inf {s : S[ns]/nμ ≥ t} = inf {s : S[ns] ≥ tnμ}

= inf

{
j

n
: Sj ≥ tnμ

}
= 1

n
N(tnμ),

some version of the renewal counting function. (Truth in labeling: This N(t) could

differ by 1 from the N(t) defined in (7.57) and (7.58) (p. 245), but we ignore this.) The

conclusion from Vervaat’s lemma is

√
n
μ

σ

(
1

n
N(nμt) − t

)
⇒ W(t) (in D[0,∞))

or, changing variables s = μt ,

√
n
μ

σ

(
1

n
N(ns) − s

μ

)
⇒ W

(
s

μ

)
d= 1

√
μ

W(s).

Cleaning this up just a bit gives

√
n
μ3/2

σ

(
1

n
N(ns) − s

μ

)
⇒ W(s) in D[0,∞). (9.4)

As a special case, consider the homogeneous Poisson process on [0,∞). Let

Ŵn = E1 + · · · + En

be a sum of n iid standard exponential random variables. In this case, μ = σ = 1 and

√
k

(
1

k
N(ks) − s

)
⇒ W(s) (k → ∞) (9.5)

in D[0,∞).

Step 2: Approximation. The definition of N(t) in (7.58) (p. 245) is in terms of an

infinite series. For the Poisson process special case, we want to truncate the infinite
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series to a finite sum. Toward this end, we prove that for any T > 0, as n → ∞,

k → ∞, and k/n → 0,

sup
0≤s≤T

√
k

∣∣∣∣∣
1

k

∞∑

i=1

1[Ŵi≤ks] −
1

k

n∑

i=1

1[Ŵi≤ks]

∣∣∣∣∣
P→ 0. (9.6)

The idea is that Ŵi is localized about its mean, and any term with i too far from k is

unlikely; also, i > n gives a term that is negligible. More formally, the difference in

(9.6) is

sup
0≤s≤T

1√
k

∞∑

i=n+1

1[Ŵi≤ks] ≤
1√
k

∞∑

i=n+1

1[Ŵi≤kT ]

= 1√
k

∞∑

i=1

1[Ŵn+Ŵ′
i≤kT ],

where Ŵ′
i =
∑i

l=1 El+n. Now for any δ > 0,

P

[
1√
k

∞∑

i=1

1[Ŵn+Ŵ′
i≤kT ] > δ

]
≤ P [Ŵn ≤ kT ] = P

[
Ŵn

n
≤ k

n
T

]

and since k/n → 0, for any η > 0, we ultimately have this last term bounded by

≤ P

[
Ŵn

n
≤ 1 − η

]
→ 0

by the weak law of large numbers.

Conclusion: Combining (9.6), the definition of N , and (9.5), we get

√
k

(
1

k

n∑

i=1

1[Ŵi≤ks] − s

)
⇒ W(s) (k → ∞) (k/n → 0) (9.7)

in D[0,∞).

Step 3: Time change. Define

φn(s) = n

k
F̄ (b(n/k)s−1/α)

Ŵn+1

n
, s > 0,

so that from regular variation and the weak law of large numbers,

sup
0≤s≤T

|φn(s) − s| P→ 0 (9.8)
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for any T > 0. Therefore, using Proposition 3.1 (p. 57), joint convergence holds in

D[0,∞) × D[0,∞):

(
√

k

(
1

k

n∑

i=1

1[Ŵi≤k·] − (·)
)

, φn(·)
)

⇒ (W, e) (e(t) = t).

Applying composition, we arrive at

√
k

(
1

k

n∑

i=1

1[Ŵi≤kφn(s)] − φn(s)

)
⇒ W(s) (9.9)

in D[0,∞).

Step 4: Probability integral transform. The Ŵs have the property that

(
Ŵ1

Ŵn+1
, . . . ,

Ŵn

Ŵn+1

)
d=
(

1 − Ŵn

Ŵn+1
, . . . , 1 − Ŵ1

Ŵn+1

)
d= (U1:n, . . . , Un:n),

where

U1:n ≤ · · · ≤ Un:n

are the order statistics in increasing order of n iid U(0, 1) random variables U1, . . . , Un.

(A proof is in [135, 262].)

Consider the normalized sum from (9.9):

1

k

n∑

i=1

1[Ŵi≤kφn(s)] =
1

k

n∑

i=1

1[Ŵi
k
≤ 1

k
F̄ (b(n/k)s−1/α)Ŵn+1]

= 1

k

n∑

i=1

1[ Ŵi
Ŵn+1

≤F̄ (b(n/k)s−1/α)] =
1

k

n∑

i=1

1[F(b(n/k)s−1/α)≤1− Ŵi
Ŵn+1

]

= 1

k

n∑

i=1

1[b(n/k)s−1/α≤F←(1− Ŵi
Ŵn+1

)]
d= 1

k

n∑

i=1

1[b(n/k)s−1/α≤F←(Ui:n)]

= 1

k

n∑

i=1

1[b(n/k)s−1/α≤F←(Ui)]
d= 1

k

n∑

i=1

1[b(n/k)s−1/α≤Xi ]

= 1

k

n∑

i=1

1[ Xi
b(n/k)

≥s−1/α] = νn[s−1/α,∞],

where the equality in distribution is in D[0,∞).

Also,
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√
k sup

0≤s≤T

∣∣∣∣
n

k
F̄ (b(n/k)s−1/α)

Ŵn+1

n
− n

k
F̄ (b(n/k)s−1/α

∣∣∣∣

= sup
0≤s≤T

n

k
F̄ (b(n/k)s−1/α)

√
k

∣∣∣∣
Ŵn+1

n
− 1

∣∣∣∣

= O(1)

√
k

n

∣∣∣∣
Ŵn+1 − n√

n

∣∣∣∣ = O(1)o(1)Op(1),

from the central limit theorem, and this
P→ 0.

This proves the desired result by appeal to (9.9) since the last statement removes

the difference between φn(s) and E(νn[s−1/α,∞]). ⊓⊔

From this result we can recover Theorem 4.1 (p. 79) and its consequences.

9.1.2 Asymptotic normality of the Hill estimator

Recall that the Hill estimator Hk,n was given in (4.3) (p. 74), and its relation to the

tail empirical measure as an integral of the measure in (4.16) (p. 80) was discussed in

Theorem 4.2 (p. 81).

What implications can be drawn for the Hill estimator from the asymptotic normality

of the tail empirical measure given in Theorem 9.1? We continue to suppose only that

F̄ ∈ RV−α . Centering the tail empirical measure to zero expectation results in a

centering for the Hill estimator which is not the desired centering 1/α. The following

is adapted from [100]. Another formulation with a random center is in [58].

Proposition 9.1. Suppose, as in Theorem 9.1, that F̄ ∈ RV−α . Then in R,

√
k

(
Hk,n −

∫ ∞

X(k)

n

k
F̄ (s)

ds

s

)
⇒
∫ ∞

1

W(x−α)
dx

x
= 1

α

∫ 1

0

W(s)
ds

s
. (9.10)

Proof. For typing ease, set γ = 1/α. Write (9.1) as

√
k
(
νn

(
(x−γ ,∞]) − n

k
F̄
(
b
(n

k

)
x−γ
)))

⇒ W(x) (9.11)

in D[0,∞) and set

Vn(x) := n

k
F̄
(
b
(n

k

)
x−γ
)

,

so that Vn is nondecreasing and Vn(x) → x and V ←
n (x) → x locally uniformly as

n → ∞. We have √
k(νn((V

←
n (y))−γ ,∞] − y) ⇒ W(y) (9.12)
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in D[0,∞). Applying Vervaat’s lemma (p. 59), we get by inversion that

√
k((νn(V

←
n (y))−γ ,∞])← − y) ⇒ −W(y) (9.13)

in D[0,∞). Evaluating the left side of (9.13) yields

√
k
(n

k
F̄ (X([kx])) − x

)
⇒ −W(x) (9.14)

in D[0,∞) and, in fact (see (3.28) (p. 60)), the convergence in (9.1) and (9.14) are joint

in D(0,∞] × D[0,∞). Observe that (9.14) implies that

n

k
F̄ (X([kx])) ⇒ x

in D[0,∞) and from this or (4.18), we get

X([kx])
b(n/k)

⇒ xγ . (9.15)

Note that (9.1), written with a change of variable, and (9.15) with x = 1 hold jointly:

(
√

k

(
1

k

n∑

i=1

ǫXi/b(n/k)(x,∞] − n

k
F̄ (b(n/k)x)

)
,

X(k)

b(n/k)

)

⇒ (W(x−α), 1).

Apply the composition map (x(t), p) �→ x(tp) to get

√
k

(
1

k

n∑

i=1

ǫXi/X(k)
(x,∞] − n

k
F̄ (X(k)x)

)
⇒ W(x−α). (9.16)

The final step is to justify application of the map

x �→
∫ ∞

1

x(s)
ds

s
. (9.17)

If this application can be justified, we get

√
k

(
Hk,n −

∫ ∞

X(k)

n

k
F̄ (s)

ds

s

)
⇒
∫ ∞

1

W(x−α)
dx

x
, (9.18)

as desired. ⊓⊔
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Blood and guts

We now justify use of the map (9.17) to get the conclusion (9.18). The argument is

based on the second converging together theorem, Theorem 3.5 (p. 56) and is adapted

from [252].

Pick M large. In (9.16), apply the map

x �→
∫ M

1

x(s)
ds

s
. (9.19)

Since the integration is over a finite region, this is a continuous map, and applying it to

(9.16) gives

√
k

(∫ M

1

1

k

n∑

i=1

ǫXi/X(k)
(s,∞]ds

s
−
∫ M

1

n

k
F̄ (X(k)s)

ds

s

)
⇒
∫ M

1

W(s−α)
ds

s
.

Now, as M → ∞, ∫ M

1

W(s−α)
ds

s
⇒
∫ ∞

1

W(s−α)
ds

s
.

It remains to verify (3.20) (p. 56). This translates to showing, for any δ > 0, that

lim
M→∞

lim sup
n→∞

P

[
√

k

∣∣∣∣∣

∫ ∞

M

1

k

n∑

i=1

ǫXi/X(k)
(s,∞]ds

s
−
∫ ∞

M

n

k
F̄ (X(k)s)

ds

s

∣∣∣∣∣ > δ

]
= 0.

Rewrite the probability as

P

[
√

k

∣∣∣∣∣

∫ ∞

M

1

k

n∑

i=1

(ǫXi/X(k)
(s,∞] − F̄ (X(k)s))

ds

s

∣∣∣∣∣ > δ

]

≤ P

[
√

k

∫ ∞

M

∣∣∣∣∣
1

k

n∑

i=1

ǫXi/X(k)
(s,∞] − n

k
F̄ (X(k)s)

∣∣∣∣∣
ds

s
> δ

]
.

Make the change of variable u = sX(k)/b(n/k) and we get

= P

[
√

k

∫ ∞

MX(k)/b(n/k)

∣∣∣∣∣
1

k

n∑

i=1

ǫXi/b(n/k)(u,∞] − n

k
F̄ (b(n/k)u)

∣∣∣∣∣
du

u
> δ

]
. (9.20)

Pick some small η > 0 and decompose the probability according to whether

|X(k)/b(n/k) − 1| > η occurs or not. The former has probability going to zero as

n → ∞ from (4.53). So an upper bound for the probability in (9.20) is
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≤ P

[
√

k

∫ ∞

M(1−η)

∣∣∣∣∣
1

k

n∑

i=1

ǫXi/b(n/k)(u,∞] − n

k
F̄ (b(n/k)u)

∣∣∣∣∣
du

u
> δ

]
+ o(1).

Neglect the o(1) term. Setting M ′ = M(1 − η), we get from Chebychev’s inequality

the upper bound

≤ k

δ2
E

(∫ ∞

M ′

∣∣∣∣∣
1

k

n∑

i=1

[ǫXi/b(n/k)(u,∞] − F̄ (b(n/k)u)]
∣∣∣∣∣
du

u

)2

.

Moving the square inside the integral, we get the further bound

≤ k

δ2
E

∫ ∞

M ′

(
1

k

n∑

i=1

[ǫXi/b(n/k)(u,∞] − F̄ (b(n/k)u)]
)2

du

u
,

and moving the expectation inside the integral yields

≤ k

δ2

∫ ∞

M ′

1

k2
n Var(ǫXi/b(n/k)(u,∞])du

u

≤ 1

δ2

∫ ∞

M ′

n

k
F̄ (b(n/k)u)

du

u

→ 1

δ2

∫ ∞

M ′
u−α−1du = (const)(M ′)−α (n → ∞),

where we used Karamata’s theorem, and as M → ∞, this converges to 0. ⊓⊔

Removing the random centering

The convergence in (9.10) is a consequence of Theorem 9.1 and requires only that F̄

is regularly varying. How do we replace this random centering
∫∞
X(k)

n
k
F̄ (s)ds

s
with a

deterministic centering? Since

X(k)/b(n/k)
P→ 1,

we hope we can replace the random centering with
∫∞
b(n/k)

n
k
F̄ (s)ds

s
in (9.10). In order

to replace the random centering by this deterministic one, we thus need

√
k

(∫ ∞

X(k)

n

k
F̄ (s)

ds

s
−
∫ ∞

b(n/k)

n

k
F̄ (s)

ds

s

)
⇒ V (9.21)
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for some limit V . We can achieve (9.21) in a variety of ways [100], and we only cite

the simplest method [72, 100, 213], which assumes a smoother and slightly stronger

form of regular variation, namely the von Mises condition. See (2.26) (p. 31), as well

as [90, 105, 260, 292, 293].

Proposition 9.2. Suppose F̄ ∈ RV−α, α > 0, and, additionally, the von Mises condi-
tion

lim
t→∞

α(t) := lim
t→∞

tF ′(t)

1 − F(t)
= α (9.22)

holds, where F ′ is the density of F . Then we have

√
k

(∫ ∞

X(k)

n

k
F̄ (s)

ds

s
−
∫ ∞

b(n/k)

n

k
F̄ (s)

ds

s

)
⇒ − 1

α
W(1), (9.23)

and thus

√
k

(
Hk,n −

∫ ∞

b(n/k)

n

k
F̄ (s)

ds

s

)

⇒
∫ ∞

1

W(s−α)
ds

s
− 1

α
W(1)

d= 1

α
W(1), (9.24)

so that Hk,n is asymptotically normal with asymptotic mean
∫∞
b(n/k)

n
k
F̄ (s)s−1ds and

variance γ 2 = 1/α2.

Proof. If we show that the difference in (9.21) converges to −W(1)/α, then the fact

that (9.14) is jointly convergent with (9.18) will yield the conclusion expressed in terms

of the Brownian motion. So we concentrate on showing that (9.22) implies that the

difference in (9.21) converges to −W(1)/α.

The idea is this: If the von Mises condition (9.22) holds, then we get for the difference

√
k

∫ b(n/k)

X(k)

n

k
F̄ (s)

ds

s
∼

√
k

α

∫ b(n/k)

X(k)

n

k
F ′(s)ds

=
√

k

α

(n
k
F̄ (X(k)) −

n

k
F̄ (b(n/k))

)

=
√

k

α

(n
k
F̄ (X(k)) − 1

)

⇒ − 1

α
W(1)

from (9.14).
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More precisely, proceed as follows: First, observe that

[X(k) > b(n/k)] =
[n
k
F̄ (X(k)) − 1 ≤ 0

]
,

and recall that F ′ ≥ 0. Then we write

√
k

∫ b(n/k)

X(k)

n

k
F̄ (s)

ds

s
=

√
k

∫ b(n/k)

X(k)

n

k
F̄ (s)

ds

s
1[X(k)≤b(n/k)]

+
√

k

∫ b(n/k)

X(k)

n

k
F̄ (s)

ds

s
1[X(k)>b(n/k)]

≤
√

k
(n

k
F̄ (X(k) − 1

) ∨

s∈[X(k),b(n/k)]

1

α(s)
1[X(k)≤b(n/k)]

+
√

k
(n

k
F̄ (X(k) − 1

) ∧

s∈[b(n/k),X(k)]

1

α(s)
1[X(k)>b(n/k)]

⇒ −W(1)

α
1[−W(1)≥0] +

−W(1)

α
1[−W(1)<0]

= −W(1)

α
.

A lower bound can be constructed in the same way.

The equality in distribution assertion in (9.24) is covered by the next lemma. ⊓⊔

Lemma 9.1. The random variable
∫ 1

0

W(s)
ds

s
− W(1)

is N(0, 1).

Proof. The integral is a Gaussian random variable (it is a limit of linear combinations

of Gaussian random variables), so we just calculate the variance: We use

E(W(s)W(t)) = s ∧ t.

Then

E

(∫ 1

0

W(s)
ds

s
− W(1)

)2

= E

(∫ 1

0

W(s)
ds

s

∫ 1

0

W(u)
du

u
− 2

∫ 1

0

W(s)W(1)
ds

s
+ W(1)2

)
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= 2

∫∫

0≤s<u≤1

(s ∧ u)
ds

s

du

u
− 2

∫ 1

0

s
ds

s
+ 1

= 2

∫ 1

u=0

(∫ u

s=0

s
ds

s

)
du

u
− 2 + 1 = 1. ⊓⊔

Centering by 1/α

Equation (9.24), giving asymptotic normality for the Hill estimator is difficult to apply.

For one thing, the limit depends on the unknown parameter α, but even more seriously,

the centering depends on n and does not suggest any sort of confidence interval for α.

To remedy this, the concept of second-order regular variation is typically used. See

Problems 3.15–3.17 (p. 67) and [90, 101, 136, 150, 151, 235]. We only present a result

that is readily proven.

Proposition 9.3. Suppose that F̄ ∈ RV−α and, additionally, assume that

lim
n→∞

√
k
(n

k
F̄ (b(n/k)y) − y−α

)
= 0 (9.25)

locally uniformly in (0,∞] and

lim
n→∞

√
k

∫ ∞

1

(n
k
F̄ (b(n/k)s) − s−α

) ds

s
= 0. (9.26)

Then
√

k

(
Hk,n − 1

α

)
⇒ 1

α

[∫ 1

0

W(s)
ds

s
− W(1)

]
d= 1

α
W(1). (9.27)

Remark 9.3. Conditions (9.25) and (9.26) can be more elegantly subsumed under a

single second-order regular variation condition. However, no matter how phrased, the

conditions involve assumptions about detailed tail information in excess of what is

likely to be known in practice.

Proof. First, condition (9.25) allows one to rephrase the result of Theorem 9.1 as

√
k(νn(y

−γ ,∞] − y) ⇒ W(y−γ )

in D[0,∞). Follow the steps using Vervaat’s lemma, which led to (4.53), but this time,

due to the different centering, we obtain

√
k

((
X(k)

b(n/k)

)−α

− 1

)
⇒ −W(1), (9.28)
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and after an application of the delta method, this becomes

√
k

(
X(k)

b(n/k)
− 1

)
⇒ 1

α
W(1). (9.29)

Now (9.26) implies that

√
k

(∫ ∞

b(n/k)

n

k
F̄ (s)

ds

s
− 1

α

)
→ 0,

so if we can prove (9.21) with the right limit, then we will be done since we can then

replace the centering in (9.23) with 1/α, as desired.

The difference in (9.21) is

√
k

∫ b(n/k)

X(k)

n

k
F̄ (s)

ds

s
=

√
k

∫ 1

X(k)/b(n/k)

n

k
F̄ (b(n/k)s)

ds

s

=
√

k
n

k
F̄ (b(n/k)s(n))

(
− log

X(k)

b(n/k)

)
,

where s(n) is between X(k)/b(n/k) and 1, so that s(n)
P→ 1. This implies that

n
k
F̄ (b(n/k)s(n)

P→ 1. Furthermore,

√
k

(
− log

X(k)

b(n/k)

)
=

√
k

(
− log

(
1 −
(

1 − X(k)

b(n/k)

)))

=
√

k

(
1 − X(k)

b(n/k)

)
+ op(1).

Applying (9.29) gives convergence in distribution to − 1
α
W(1). ⊓⊔

Conclusions

Here is a brief summary:

• With just the assumption of regular variation, the Hill estimator requires a random

centering to become asymptotically normal.

• With just a bit more than the assumption of regular variation, such as the von Mises

condition, the Hill estimator centered by a deterministic function of the sample size

becomes asymptotically normal.
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• With regular variation and conditions akin to second-order regular variation (here

expressed via (9.25) and (9.26)) to control departure of the tail empirical mean

measure from a Pareto function,

√
k

(
Hk,n − 1

α

)
⇒ N

(
0,

1

α2

)
.

Using the delta method, this last result implies that

√
k(H−1

k,n − α) ⇒ N(0, α2).

• Addendum: When phrased correctly, consistency of the Hill estimator is equivalent

to regular variation of the distribution tail, as astutely noted by Mason [212]. Prop-

erly phrased, asymptotic normality of Hill’s estimator is equivalent to second-order

regular variation [146].

9.2 Estimation for multivariate heavy-tailed variables

We now consider some aspects of inference in the multivariate heavy-tailed case. Typ-

ically, one-dimensional marginal distributions will not be tail equivalent. One can

estimate tail indices of the one-dimensional marginal distributions relatively easily, but

it is much more difficult to obtain information about the dependence structure.

9.2.1 Dependence among extreme events

Given multivariate heavy-tailed data, how do we assess independence? How do we

decide if the data come from a model with asymptotic independence or asymptotic

dependence? If neither extreme case holds, can we estimate the angular measure and

generate useful estimates of probabilities of extreme events or remote failure regions?

One of the ways to assess dependence is with sample (cross-)correlations. In heavy-

tailed modeling, there is no guarantee that theoretical moments such as correlations

exist, but sample versions will always exist. However, correlation is a somewhat crude

summary of dependence that is most informative only between jointly normal variables.

It is simple but not subtle. It is a meat cleaver that does not distinguish between the

dependence between large values and the dependence between small values. We will

seek alternative methods while later inquiring in Section 9.5 (p. 340) if the sample

correlation function has useful time-series implications for heavy-tailed time series.
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Fig. 9.1. Scatter plot of daily absolute log-returns of the French franc against the German

deutschmark.

Example: Modeling of exchange rates

The file fm-exch1.dat included with the program Xtremes [238], gives daily spot ex-

change rates of the currencies of France, Germany, Japan, Switzerland, and the UK

against the US dollar over a period of 6041 days from January 1971 to February 1994.

For what follows, we emphasize that the reference currency is the US dollar.

Figure 9.1 gives a scatter plot of the daily absolute log-returns for the French franc

against the daily absolute log-returns for the German mark. Observe that small absolute

log-returns for one currency are matched by a wide range of values for the other currency.

However, visually, dependence increases as the size of the absolute log-returns for the

pair increases. Even more pronounced effects of this sort are visible for three-hour

returns.

The pattern varies, however, between different exchange rate processes. For exam-

ple, the dependence among large daily absolute log-returns between Japan and Germany

is much less pronounced than between France and Germany. Similar patterns hold if

daily absolute log-returns are replaced by squared log-returns.
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Fig. 9.2. Scatter plot of daily absolute log-returns of the Japanese yen against the German mark.

These plots offer more information than the crude numerical summaries, such as

correlations. The cross-correlations are summarized in Table 9.1.

absresidFr absresidGer absresidJap

absresidFr 1.0000000 0.8323291 0.4411682

absresidGer 0.8323291 1.0000000 0.4553256

absresidJap 0.4411682 0.4553256 1.0000000

Table 9.1. Cross-correlations between the daily absolute log-returns of the French franc, German

mark, and Japanese yen.

The crude nature of the correlation summaries is emphasized by the fact that if

we compute correlation of only those (franc, mark) return pairs corresponding to an

absolute log franc return < .005, we get a value of 0.480, as opposed to the correlation

of all the pairs of 0.832.

We look at the tails of the squared log-returns for France and Germany individually.

The reason for looking at squared log-returns is that log-returns are frequently modeled
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Fig. 9.3. QQ plot fitting of α to squared log-returns for French exchange rates (left) and German

exchange rates.

as ARCH or GARCH processes of the vector form

Rt =
√

V tǫt , t ≥ 1,

where in the d-dimensional case, Rt = (Rt1, . . . , Rtd) are the returns and ǫt =
(ǫt1, . . . , ǫtd) are iid vectors of iid N(0, 1) random variables. Also, V t is a conditional

covariance matrix that is modeled in various ways. Assuming that ARCH or GARCH

modeling is justified leads to the theoretical conclusion that tails are asymptotically pure

Pareto. See [14, 70, 94, 148, 184].

Based on a combination of QQ plots and Hill plots, we conclude that squared log-

returns of France and Germany are each heavy tailed with

αGermany2 = 1.98, αFrance2 = 1.75.

The QQ plots are given in Figure 9.3. These values are consistent with usual finance

estimates of α, which range in the parameter region (2, 4) since if (αGermany2, αFrance2) =
(1.98, 1.75), then (αGermany, αFrance) = 2(1.98, 1.75) = (3.96, 3.50).

9.2.2 Estimation in the standard case

Let {Zj , 1 ≤ j ≤ n}be a random sample of nonnegative random vectors whose common

distribution F is multivariate regularly varying. We assume that each component can be

scaled with the same function. From Theorem 6.1 (p. 173), multivariate regular variation

is equivalent to the existence of b(t) → ∞ and a Radon measure ν on E = [0, ∞] \ {0}
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such that tP[ Z1
b(t)

∈ ·] v→ ν. From (6.17) of Theorem 6.2 (p. 179), this implies that as

n → ∞, k → ∞, k/n → 0,

1

k

n∑

i=1

ǫZi/b(n/k) ⇒ ν. (9.30)

In polar coordinate form, this is (see (6.18) (p. 180))

1

k

n∑

i=1

ǫ(Ri/b( n
k
),�i) ⇒ cνα × S. (9.31)

If we ignore the fact that b(·) is unknown, then the left side of (9.30) could be regarded

as a consistent estimator of the limit measure ν. Likewise, (9.31) provides a way to get

a consistent estimator of the angular probability measure S, since
∑n

i=1 ǫ(Ri/b(n/k),�i)([1,∞] × ·)∑n
i=1 ǫRi/b(n/k)[1,∞] ⇒ S(·). (9.32)

What can we do about the fact that b(·) is unknown? Evaluating (9.31) along the

marginal of R by inserting ℵ+, we get

1

k

n∑

i=1

ǫRi/b( n
k
) ⇒ cνα,

and the method of Theorem 4.2 (p. 81) gives

R(k)/b(n/k)
P→ 1,

where R(k) is the kth largest among R1, . . . , Rn. So a suitable choice of b̂(n/k) would

be R(k). This allows us to replace b(n/k) with b̂(n/k) in (9.31) and hence in (9.32),

which rids us of the unknown b(n/k). A scaling argument justifies the substitution as,

for instance, in (4.22) (p. 83). See [99] for other details.

If we truly knew we were in the standard case, then Theorem 6.5 (p. 204) permits

b(t) = t , and the problem of estimating b(·) disappears. In practice, where the standard

case assumption might be approximately but not exactly true, it usually works better to

scale with R(k) rather than n/k.

Recall that the ability to scale each component by the same function b(t) in (9.30)

means that for j = 1, . . . , d,

P[Z(j)

1 > x] ∼ c(j)x−αL(x),

and for those j such that c(j) > 0, we have comparable tails. This is a rather special

situation. In practice, we suspect that jointly multivariate regularly varying tails will

never have the same αs, and so we need a strategy for this more realistic case.
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9.2.3 Estimation in the nonstandard case

In practice, it is unusual to conclude for multivariate heavy-tailed data that the αs of

each component are the same; recall for the exchange-rate return data that

αGermany2 = 1.98, αFrance2 = 1.75.

So suppose the nonstandard regular variation conditions (6.41) and (6.42) of Theo-

rem 6.5 (p. 204) hold. For convenience, here are the conditions again: The global

condition (6.42), with b(t) = (b(1)(t), . . . , b(d)(t)), is

tP

[
Z1

b(t)
∈ ·
]

v→ ν, (9.33)

where we recall that our convention that division of one vector by another means the

vector of ratios of corresponding components. The marginal condition (6.41) is stated,

assuming we have chosen b(j)(t) so that

tP[Z(j)

1 > b(j)(t)x] = x−αj , x > 0; j = 1, . . . , d. (9.34)

How do we deal with this realistic case? There are several possible strategies.

Live with diversity

Define

b̂(j)(n/k) = Z
(j)

(k) , j = 1, . . . , d

the kth largest of the j th components in the sample of sizen. Using (4.17) of Theorem 4.2

(p. 81), we have

b̂(j)(n/k)

b(j)(n/k)

P→ 1, j = 1, . . . , d. (9.35)

The nonstandard regular variation conditions (9.33) and (9.34), along with (5.16) of

Theorem 5.3 (p. 138), give

1

k

n∑

i=1

ǫZi/b(n/k) ⇒ ν. (9.36)

Combining (9.35) and (9.36) and the scaling argument coupled with Lemma 6.1,

then gives

1

k

n∑

i=1

ǫ
Zi/b̂(n/k)

⇒ ν. (9.37)

This removes the unknown function b(·) and allows estimation with the left side of

(9.37) as the surrogate of ν. However, it does not permit estimation of the angular

measure S, which first requires standardization.
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Be crude!

Are you ever tempted to give up a night at the opera in favor of reruns of The Simpsons?

Then this method may be for you, and it works pretty well. A way to make the tails of

the marginal distributions roughly the same is to assume for j = 1, . . . , d that the j th

marginal tail is asymptotically equivalent to a Pareto tail with index αj (so assume there

is no annoying slowly varying perturbation) and then take appropriate powers of the

component random variables so that the result of this operation is that each transformed

component has regular variation index with α = 1. The idea is that if X is a random

variable whose tail is asymptotically Pareto, that is,

P[X > x] ∼ x−α, x → ∞,

then

P[Xα > x] = P[X > x1/α] ∼ x−1, x → ∞.

So the assumption that slowly varying functions are absent from the marginal tail ex-

pressions allows us to hope that

1

k

n∑

i=1

ǫ
((Z

(j)
i /b̂(j)(n/k))αi ;j=1,...,d)

(9.38)

is estimating a standard limit measure ν∗ (see (6.44) (p. 205)), and this would give

us a method to estimate the angular measure S associated with ν∗. In practice, α =
(α1, . . . , αd) is replaced by estimates α̂, obtained from the one-dimensional marginal

data. This has the potential to introduce significant errors and is a drawback.

The form of (9.38) is not the obvious one, which would use the points

{((Z(j)
i )αi/(n/k); j = 1, . . . , d); 1 ≤ i ≤ n}. However, the form given in (9.38)

seems more robust to departures from the assumptions of approximate Pareto tails and

works better in practice where marginal αs need to be estimated. Typically, the division

by the order statistics b̂(j)(n/k) does a better job of scaling the sample.

A strong defense of this method is that it is not really different from the multivariate

peaks-over-threshold philosophy (Section 6.3 (p. 183)), which assumes that all large

observations are distributed by the limit distribution. In the heavy-tailed case, this

philosophy forces us to believe that marginally, each component has a Pareto tail from

some point thereafter, which is exactly what the method of this section assumes. So

maybe this method, while mathematically simple, is not so crude after all!

The ranks method

Amethod based on ranks (see [38, 89, 161, 167, 268]) overcomes some of the drawbacks

of the previous multivariate methods. The ranks method does not require estimation of
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the marginal αs, yet it achieves transformation to the standard case, allowing estimation

of the angular measure. It is simple to program. The drawback is that the transformation

destroys the iid property of the sample, and asymptotic analysis is sophisticated.

Continue to suppose the global and marginal conditions (9.33), (9.34), so that

νn(·) = 1

k

n∑

i=1

ǫ
(

Z
(1)
i

b(1)(n/k)
,...,

Z
(d)
i

b(d)(n/k)
)

(·) ⇒ ν(·) (9.39)

in M+(E), where E = [0, ∞] \ {0}. From marginal regular variation (9.34), we know

from (4.18) (p. 82) that for each j ,

Z
(j)

(⌈kt (j)⌉)
b(j)(n/k)

P→ (t (j))−1/αj

in D(0,∞]. Because convergence is to a constant limit, we may append this to (9.39)

to get

⎛
⎝νn,

⎛
⎝

Z
(j)

(⌈kt (j)⌉)
b(j)(n/k)

; j = 1, . . . , d

⎞
⎠
⎞
⎠⇒ (ν, ((t (j))−1/αj ; j = 1, . . . , d)) (9.40)

in M+(E) × D(0,∞] × · · · × D(0,∞].
Recall from (6.46) (p. 205) that

ν([0, x1/α]c) =: ν∗([0, x]c) (9.41)

is standard with ν∗(t ·) = t−1ν∗(·). Assume that t is a continuity point of ν([0, ·]c), and

apply the continuous map

(ν, t) �→ ν([0, t]c)

to (9.40) to get

νn

⎛
⎝
⎡
⎣0,

⎛
⎝

Z
(j)

(⌈kt (j)⌉)
b(j)(n/k)

; j = 1, . . . , d

⎞
⎠
⎤
⎦

c⎞
⎠⇒ ν([0, t−1/α]c). (9.42)

Unpack the left side of (9.42). We have

νn

⎛
⎝
⎡
⎣0,

⎛
⎝

Z
(j)

(⌈kt (j)⌉)
b(j)(n/k)

; j = 1, . . . , d

⎞
⎠
⎤
⎦

c⎞
⎠
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= 1

k

n∑

i=1

1⎡
⎣

Z
(j )

i

b(j )(n / k)
≤

Z
(j )

( kt (j ) )

b(j )(n / k)
; j = 1, . . . , d

⎤
⎦

c = 1

k

n∑

i=1

1
Z

(j )

i ≤ Z
(j )

( kt (j ) )
; j = 1, . . . , d

c . (9.43)

The indicated set on the right side of (9.43) says that for each j , the number of Z
(j)
l s,

for 1 ≤ l ≤ n, that are at least Z
(j)
i is at least kt (j). For each fixed j , define the rank

(some traditions would vote, with justification, for the name antirank) of Z
(j)
i ,

r
(j)
i =

n∑

l=1

1[
Z

(j)
l ≥Z

(j)
i

], j = 1, . . . , d, (9.44)

as the number of j th components bigger than Z
(j)
i . Rephrase (9.43) as

1

k

n∑

i=1

1[
r
(j)
i ≥kt (j);j=1,...,d

]c .

Change variables

s �→ t−1

to get from (9.43)

1

k

n∑

i=1

1[
r
(j)
i ≥k(s(j))−1;j=1,...,d

]c ⇒ ν([0, s1/α]c)

or
1

k

n∑

i=1

1[
k

r
(j)
i

≤ (s(j)); j = 1, . . . , d

]c ⇒ ν([0, s1/α]c)

or, applying Lemma 6.1 (p. 174),

1

k

n∑

i=1

ǫ(
k

r
(j)
i

; j = 1, . . . , d

)⇒ ν∗ (9.45)

in M+(E).

We summarize.

Proposition 9.4. Suppose Z1, . . . , Zn are an iid sample whose common distribution
satisfies the marginal and global regular variation conditions (9.33) and (9.34). Then
(9.45) holds with ν∗ being standard and satisfying (9.41).

The vectors of ranks are not independent, and this makes obtaining asymptotic

distributions more difficult. See [127].
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Estimation of the angular measure

Once we have transformed to the standard case, we can use the methods of Section 9.2.2.

For estimating the angular measure S using the ranks method, we proceed as follows:

• Transform the data using the rank transform (9.44):

(Z1, . . . , Zn) �→ {(r(j)
i ; j = 1, . . . , d); 1 ≤ i ≤ n}

= {r i, 1 ≤ i ≤ n}. (9.46)

• Apply the polar coordinate transformation

POLAR

(
k

r
(j)
i

; j = 1, . . . , d

)
= (Ri,k, �i,k),

and then from (9.45), we get

1

k

n∑

i=1

ǫ(Ri,k,�i,k) ⇒ cν1 × S.

• Consequently,

1

k

n∑

i=1

ǫ(Ri,k,�i,k)((1,∞] × ·) ⇒ cS,

and we estimate S with

Ŝn(·) =
∑n

i=1 ǫ(Ri,k,�i,k)((1,∞] × ·)∑n
i=1 ǫRi,k

((1,∞]) ⇒ S. (9.47)

The interpretation of (9.32) and (9.47) is that the empirical probability measure of

those �s whose radius vector is greater than 1 approximates S. Apart from normaliza-

tion of the plot, if we consider the points

{�i,k : Ri,k > 1}

and make a density plot, we should get an estimate of the density of S(·). A notable

mode in the density at π/4 reveals a tendency toward dependence. Modes at 0 and π/2

show a tendency toward independence, or at least asymptotic independence. Of course,

since we do not know that S has a density, we could proceed by making plots for the

distribution function S[0, θ ], 0 ≤ θ ≤ π/2. However, often density estimate plots are

striking and show qualitative behavior effectively.
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9.2.4 How to choose k; the Stărică plot

A famous Yiddish haiku poet once wrote

Oy Vay!

How do we choose k?

So far in this chapter, we have ignored the problem of threshold selection or, equiv-

alently, the criteria for choosing the kth largest radius vector of the polar transformed

data, which serves as the threshold. The Achilles heel of many heavy-tailed methods

is the choice of k. A scaling method suggested by C. Stărică [286, 287] can help with

the selection of k. The method does not have a strong theoretical base, but it seems

useful. It is readily programmed, and using either visual inspection or automation, it

can produce a k value as input to another program.

Imagine that we have transformed to the standard case by one of the methods outlined

in Section 9.2.3. Suppose ν∗ is a standard limit measure with the scaling property (6.44)

(p. 205). Suppose ν̂∗,n is the estimator of ν∗. This estimator is dependent on k. We pick

k so that ν∗,n mimics the scaling. We try to use the set

ℵ> = {x ∈ E : ‖x‖ ≥ 1},

thinking that such a set encompasses information from all directions. So for a fixed k,

we graph {
uν̂∗,n(uℵ>)

ν̂∗,n(ℵ>)
, u ≥ 0.1

}
, (9.48)

which we call the Stărică plot. The idea [286] is the that ratio should be roughly constant

and equal to 1 for u in a neighborhood of 1 if k is chosen wisely so that ν̂∗,n is close to

ν∗. If u is too small, we are using too many small observations from the center of the

distribution, which are not likely to carry accurate information about the tail.

In practice, we make the Stărică plot (9.48) for various values of k and choose

the k that seems to have the plot most closely hugging the horizontal line at height 1.

Alternatively, one could do a search procedure through various values of k to find the

optimal choice in the sense of minimizing distance of the ratio from 1 or maximizing

the occupation time of the ratio curve in a neighborhood of 1.

To illustrate this method, suppose we estimate ν∗ with

ν̂∗,n := 1

k

n∑

i=1

ǫ
Zi/b̂(n/k)

.

Make the Stărică plot as follows. Evaluate (9.48):
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Fig. 9.4. Four views of the Stărică plot for 5000 simulated Pareto independent pairs, each with

α = 1.

uν̂∗,n(uℵ>)

ν̂∗,n(ℵ>)
=

u1
k

∑n
i=1 ǫ

Zi/b̂(n/k)
(uℵ>)

1
k

∑n
i=1 ǫ

Zi/b̂(n/k)
(ℵ>)

,

where b̂(n/k) = R(k), which is the kth largest value in the one-dimensional set

{‖Zi‖, 1 ≤ i ≤ n}. Since the sum in the denominator of the ratio is k, if we set

u = R(j)/b̂(n/k), we get for the ratio
R(j)

R(k)
· j

k
. So, to get the Stărică plot, we graph

{(
R(j)

R(k)

,
R(j)

R(k)

· j

k

)
, 1 ≤ j ≤ n

}
. (9.49)

But look closely at values of the abscissa in a neighborhood of 1. The plots will look

different for various values of k, and either some experimentation can be done to visually

choose a good value of k or the procedure can be automated by searching for k which

optimizes a distance measure.

Figure 9.4 gives four views of a Stărică plot for 5000 independent pairs

of iid observations simulated from a Pareto distribution with α = 1 and using

k = 1000, 2000, 3000, 3500. The choices k = 1000, 2000 are inferior, and k = 3000

seems to be a good choice. Note that the scaling plot is for one-dimensional data as the

method reduces the problem to one dimension by focusing on radius vectors.

If we use the ranks method and approximate ν∗ by the left side of (9.45) (p. 312),

then we choose a k, compute Ri,k with order statistics

R(1),k ≥ R(2),k ≥ · · · ≥ R(n),k,
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and then plot {(
R(j),k,

R(j),kj∑n
i=1 1[Ri,k≥1]

)
, j = 1, . . . , n

}
.

9.3 Examples

Here we offer some examples illustrating strong qualitative differences in the properties

of our data. Recall that when viewing the density plots of the angular measure, a notable

mode in the density at π/4 reveals a tendency toward dependence, while modes at 0

and π/2 show a tendency toward independence, or at least asymptotic independence.

(Review Section 6.5.1 (p. 192).) Additional analyses of the type presented here are

in [64].

9.3.1 Internet data

This section continues the discussion begun in Sections 1.3.1 (p. 3) (especially Exam-

ple 1.1) and 7.3.2 (p. 238).

Internet file transfers are subject to delays, and although one expects larger file trans-

fers to encounter more delays, this is overly simplistic [38]. Large file transfers, while

comparatively rare, comprise a significant fraction of all the bytes transferred on the

Internet and hence are important for understanding the impact of diverse networking

technologies such as routing, congestion control, and server design on end-user per-

formance measures. For HTTP (web browsing) responses, the joint behavior of large

values of three variables—size of response (abbreviated F ), time duration of response

(L), and throughput (syonym: rate = size/time and abbreviated R)—can be consid-

ered. All three quantities are typically heavy tailed, but for some data sets, for example,

the BU data, rate and duration tend to be asymptotically independent, and for others size

and rate tend to be asymptotically independent. See also [215, 267]. For applied prob-

ability models of network inputs, the assumptions made about the dependence structure

of (F, L, R) will dramatically affect model properties [68].

Boston University data

In Section 7.3.2 (p. 238), we studied trivariate data (F, L, R) of download file sizes,

download durations, and download rates obtained from a measurement study at Boston

University [51, 53, 54, 63]. The evidence presented in Section 7.3.2 supported some

form of asymptotic independence for the pair (L, R). We see this supported by the

estimate of the angular measure after the rank transform takes the two heavy-tailed

variables to the standard case. Figure 9.5 shows an estimate for the density of S with
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Fig. 9.5. BU: Estimate of the angular density (left) and Stărică plot (right) for the k chosen by

optimization.

most mass concentrated near 0 and π/2 ≈ 1.57. The right plot shows the Stărică plot

for the value of k = 122 chosen by minimizing a distance measure for the scaling plot

as a function of k.

Internet HTTP response data

This data set consists of HTTP response data describing Internet transmissions observed

during a four-hour period from 1:00pm–5:00pm on April 26, 2001 at the University

of North Carolina. The data set consists of responses (bytes) in the stated time period

whose size is in excess of 100,000 bytes coupled with the time required for transmission

(seconds). There were 21,829 such transmissions. The data sets were obtained from

the University of North Carolina Computer Science Distributed and Real-Time Systems

Group, which was then under the direction of Don Smith and Kevin Jeffay. As mentioned

in Section 7.3.2 (p. 238), this data set offers contrasting behavior to what was observed

in the previous discussion of the Boston University data.

To confirm the heavy-tailed nature of the marginal distributions, we estimated the

marginal αs for the transmission rate and size variables. A combination of Hill, altHill,

and QQ plots were used and we chose values of k = 150, 250 for the size and rate

variables, respectively. Estimates of α were relatively stable around the values of

αR = 1.8 and αF = 2.1
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Fig. 9.6. UNC: Estimates corresponding to different thresholds of the angular measure density

for the Internet transmission size and rate data. The horizontal axis represents angle normalized

to [0, 1].

in the ranges of k in [50, 3000] and [50, 400], respectively. Figure 9.6 presents the

estimates of the density of the angular measure S using the rank-transform method

for various choices of k. The plots are rather stable against the choice of k, and each

indicates a piling of mass at the extreme points.

9.3.2 Exchange rates

Figure 9.7 shows the angular density estimate for the German and French exchange

rate returns relative to the US dollar using ranks. Based on the Stărică plot applied to

the points in (9.45), we used k = 4500. Note the mode at approximately π/4, which
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Fig. 9.7. Returns from the German mark vs. French franc relative to the US dollar: Stărică plot

(left) and angular density estimation.

is indicated by the vertical line. This bears out the promise of the plot in Figure 9.1,

where apparently large values seemed to be highly dependent.

Contrast this with the returns from the German mark jointly with those of the

Japanese yen. Large values are much less dependent and, in fact, appear to exhibit

asymptotic independence. Figure 9.8 shows the Stărică plot that helps in choosing

k = 1000, and on the right there is the density estimate that shows a clear tendency

towards having two modes at 0 and π/2.

9.3.3 Insurance

An insurance company keeps records of auto and fire claims per windstorm over the

period January 1, 1990–December 31, 2000; the data set consists of 736 records. The

left side of Figure 9.9 shows a scatter plot of the (auto, fire) claim data. The range of

the data is quite broad, as shown in Table 9.2, so it is not surprising that the scatter plot

is relatively uninformative. The right side of Figure 9.9 shows the scatter plot after a

logarithmic transform of each component.

Marginal analysis: The marginal tails are rather heavy for these data, and a combi-

nation of QQ and Hill plotting gives the estimates

αAUTO = .92 (k = 200), αFIRE = .70 (k = 100),
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Fig. 9.8. Returns from the German mark vs. Japanese yen: Stărică plot (left) and angular density

estimation.
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Fig. 9.9. Insurance data: Scatter plot of the auto-fire claim data in (left) natural scale and (right)

logarithmic scale.

with the accompanying Hill plots in Figure 9.10.

The estimate of the angular density given in Figure 9.11 indicates a bimodal density

with modes in the interior of (0, π/2). The asymptotic dependence presumably reflects

the fact that both auto and fire claims are affected by the severity of the windstorm.
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Min. First quarter Median Mean Third quarter Max.

Auto 1052 7685 19910 121500 51310 18740000

Fire 1.022e+03 2.549e+04 9.780e+04 3.869e+06 4.976e+05 1.041e+09

Table 9.2. Summary statistics for each marginal data set.
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Fig. 9.10. Hillplots of the auto (left) and fire (right) claims data.
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9.4 The coefficient of tail dependence and hidden regular variation

This section builds on information about asymptotic independence contained in Sec-

tion 6.5.1 (p. 192) and Problems 6.9–6.12 (p. 209).

By now, it should be clear that semiparametric statistical analysis of the tails of

multivariate heavy-tailed probability distributions relies on asymptotic regular varia-

tion arguments, which force us into the distributional tails. Regular variation methods

provide a large class of models that in standard form is indexed by the set of probability

measures on the unit sphere. However, the methods have difficulty in distinguishing

between asymptotic independence and exact independence and, in the presence of ei-

ther, may fail to provide satisfactory estimates of probabilities of remote critical sets,

such as failure regions (reliability), overflow regions (networks or hydrology), out-of-

compliance regions (environmental protection).

To illustrate the problem, consider the following scenario, which requires estimation

of the probability of noncompliance.

Example 9.1 (estimate the probability of noncompliance). Supppose that the vector

Z = (Z(1), . . . , Z(d)) represents concentrations of a specific pollutant at d locations,

or Z could represent concentations of different pollutants at a single site. Environmen-

tal agencies set standards by requiring that critical levels t0 = (t
(1)
0 , . . . , t

(d)
0 ) not be

exceeded at each of the d sites, so that noncompliance is represented by the event

[noncompliance] = [Z ≤ t0]c =
d⋃

j=1

[Z(j) > t
(j)

0 ].

Noncompliance results in a fine or withdrawal of government support; it has various

economic and political implications, none of which is desirable. How do we estimate

the probability of noncompliance? Suppose, for simplicity, that d = 2.

Assume only that the distribution of Z satisfies (perhaps nonstandard) regular vari-

ation with limit measure ν and that asymptotic independence is present. For estimation,

we would proceed as follows: The probability of noncompliance is

P

⎧
⎨
⎩

2⋃

j=1

[Z(j) > t
(j)

0 ]

⎫
⎬
⎭ =

2∑

j=1

P [Z(j) > t
(j)

0 ] − P[Z(1) > t
(1)
0 , Z(2) > t

(2)
0 ]. (9.50)

Assuming only asymptotic independence is present, one would be inclined to neglect

the joint probability on the right since it is negligible compared with the univariate

probabilities. However, just neglecting the joint probability seems rather crude, and

one would prefer a refinement that allows estimation of what to subtract. ⊓⊔
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In response to this weakness, Ledford and Tawn [198–201] developed theory and

models offering a richer description of asymptotic independence behavior, which led

to the concept of the coefficient of tail dependence. See also [49]. These ideas were

repackaged into a construct consistent with regular variation in [161, 217, 266].

9.4.1 Hidden regular variation

Recall that in Section 6.1.1, we emphasized that the definition of regular variation for

functions was most naturally formulated on cones. Although most applications use the

cone [0, ∞] \ {0}, which was the setting of Section 6.1.4, we have had occasion to use

the cone [−∞, ∞] \ {0}. Now we make use of other cones.

Suppose, as usual, that Z is a d-dimensional random vector satisfying the reg-

ular variation condition given in one of its equivalent forms in Theorem 6.1 on

E = [0, ∞] \ {0}. So Z satisfies

tP

[
Z

b(t)
∈ ·
]

v→ ν, (9.51)

where the scaling function b(t) ↑ ∞, with b(·) ∈ RV1/α , and the nonnegative, nonzero

limit measure ν has the scaling property

ν(c·) = c−αν(·), c > 0, (9.52)

on E.

Hidden regular variation allows for another regular variation property on a subcone.

Although not the only choice, the most useful subcone is E
0 defined as

E
0 := {s ∈ E : for some 1 ≤ i < j ≤ d, s(i) ∧ s(j) > 0}, (9.53)

that is, points of E such that at most d − 2 coordinates are 0. For i = 1, . . . , d, define

the basis vectors

ei = (0, . . . , 0, 1, 0, . . . , 0),

so that the axes originating at 0 are Li := {tei, t > 0}, i = 1, . . . , d. Then

E
0 = E \

d⋃

i=1

Li .

If d = 2, we have E
0 = (0,∞]2. Since E

0 ⊂ E, the compact subsets of E
0 are specified

by Proposition 6.1 (p. 171).
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Definition of hidden regular variation

The random vector Z has a distribution possessing hidden regular variation on E
0

if, in addition to (9.51), there exists a nondecreasing function b0(t) ↑ ∞ such that

b(t)/b0(t) → ∞, and there exists a measure ν0 �= 0 that is Radon on E
0 and such that

tP

[
Z

b0(t)
∈ ·
]

v→ ν0 (9.54)

on the cone E
0. Then there exists α0 ≥ α such that b0 ∈ RV1/α0 and ν0 and α0 satisfy

the analogue of (9.52) on E
0.

The definition can be reformulated in terms of polar coordinates. The reformulation

of (9.51) is (6.8) (p. 173), where S, the angular measure, is a probability measure on

ℵ+ = E ∩ [0, ∞). In polar form, (9.54) becomes

tP

[(
R

b0(t)
, �

)
∈ ·
]

v→ να0 × S0 (9.55)

in M+((0,∞] × ℵ0) and

ℵ0 := ℵ ∩ E
0.

An important point is that ℵ0 is not compact and therefore S0, the angular measure, is

not necessarily finite. We can only guarantee that it is Radon.

Topology is destiny

The reason for the name hidden regular variation is that the relatively crude normal-

ization necessary for convergence on the axes is too large to get things correct in the

interior of the cone and obliterates or hides the fine structure that may be present in

the interior. A normalization of smaller order, namely b0(·), is necessary on the cone

E
0. The definition of compactness on E

0 makes [Z(i) > b0(t), Z(j) > b0(t)] a typical

relatively compact set, and because at least two conditions are required, probabilities

tend to be relatively small; hence b0(t) should be relatively small. By contrast, the

topology on E makes [Z(1) > b(t)x] relatively compact without a second condition.

So b(t) must be relatively big to accomodate the relatively big marginal probability of

the event [Z(1) > b(t)x].
Note that if both (9.51) and (9.54) hold, then for any 1 ≤ i < j ≤ d and δ > 0,

we have

tP[Z(i) > b(t)δ, Z(j) > b(t)δ] = tP

[
Z(i) ∧ Z(j)

b0(t)
>

b(t)

b0(t)
δ

]
→ 0
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as t → ∞, since b(t)/b0(t) → ∞. This means that ν concentrates on the axes⋃d
i=1 Li originating at 0 and ν(E0) = 0, which is exactly the condition for asymptotic

independence.

Property 9.1. Thus if the distribution of Z possesses hidden regular variation, then

asymptotic independence is present as well.

Remark 9.4. Here are some comments on the definition:

• The normalization in (9.54) of each component of the random vector is by the same

function. One could allow different normalizations b0
i (t), i = 1, . . . , d, provided

b(t)/b0
i (t) → ∞ for i = 1, . . . , d. The case of different normalizing functions can

be reduced to (9.54) by monotone transformations. For the time being, we continue

with the standard case. This issue is considered again in Section 9.4.4 (p. 332).

• Another choice of subcone of E is [0,∞]d−1 × (0,∞]. This is used in [162].

• The definition of hidden regular variation uses two cones. In principle, one could

have more cones E ⊃ E
0 ⊃ E

1 ⊃ · · · ⊃ E
k with regular variation of progressively

smaller order present in each. A simple example in which d = 3 = k is given in

Problem 9.3.

9.4.2 A simple characterization

Define

e−1
i = (∞, . . . ,∞, 1,∞, . . . ,∞)

for the vector whose ith component is 1 and whose other components are ∞, and set

(E0)−1 = (0, ∞] \
d⋃

i=1

{te−1
i , 0 < t ≤ ∞}.

So (E0)−1 consists of points all of whose components are positive and such that at least

two components are finite.

We may characterize hidden regular variation by using max- and min-linear com-

binations of the form
d∨

i=1

siZ
(i) and

d∧

i=1

aiZ
(i)

for s ∈ [0, ∞) \ {0} and a ∈ (E0)−1. This will provide a diagnostic for statistically

identifying when hidden regular variation is present.
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Proposition 9.5. Suppose b(·) ∈ RV1/α and b0(·) ∈ RV1/α0, 0 < α ≤ α0, are func-

tions such that b(t)/b0(t) → ∞ as t → ∞. Suppose, in addition, that the marginal
distributions of the random vector Z ≥ 0 satisfy

lim
t→∞

tP

[
Z(i)

b(t)
> x

]
= x−α, x > 0.

Then Z has a distribution possessing hidden regular variation iff we have the following:

(i) For all s ∈ [0, ∞) \ {0}, we have

lim
t→∞

tP

[∨d
i=1 s(i)Z(i)

b(t)
> x

]
= c(s)x−α, x > 0, (9.56)

for some function c(s) > 0.

(ii) For all a ∈ (E0)−1, we have

lim
t→∞

tP

[∧d
i=1 a(i)Z(i)

b0(t)
> x

]
= d(a)x−α0

, x > 0. (9.57)

The hidden regular variation of the distribution of Z takes the following form:

(a) As t → ∞,

tP

[
Z

b(t)
∈ ·
]
→ ν(0)(·) (9.58)

in M+(E), where ν(0) �= 0 and ν(0) concentrates on the axes through 0 in the
sense that

ν(0)(E
0) = 0.

(Note that, apart from constants, ν(0) is the limit measure identified in Section 6.5.1

(p. 192) for asymptotic independence.)
(b) As t → ∞,

tP

[
Z

b0(t)
∈ ·
]
→ ν0(·) �= 0 (9.59)

in M+(E0).

Remark 9.5.

(1) The proof shows that ν(0) in (9.58) is

ν(0)([0, x]c) =
d∑

i=1

c(ei)(x
(i))−α.
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Also, we obtain for ν0 in (9.59),

ν0(x, ∞] = d(x−1).

(2) Hidden regular variation requires that for every s ≥ 0, s �= 0,
∨d

i=1 s(i)Z(i) has

a distribution with a regularly varying tail of index α, and for every a ∈ (E0)−1,∧d
i=1 a(i)Z(i) has a regularly varying distribution tail of index α0. In particular,

when d = 2, hidden regular variation means that both Z(1) ∨ Z(2) and Z(1) ∧ Z(2)

have regularly varying tail probabilities.

(3) Ledford and Tawn [198–201] call η = 1/α0 the coefficient of tail dependence and

consider it as a measure of dependence in asymptotic independence.

Proof. Assume (i) and (ii). Let s = ei = (0, . . . , 1, . . . , 0), and apply (9.56) to get

tP

[
Z(i)

b(t)
> x

]
→ c(0, . . . , 1, . . . , 0)x−α, x > 0.

Then for x > 0,

t

d∑

i=1

P

[
Z(i)

b(t)
> x(i)

]
≥ tP

{[
Z

b(t)
≤ x

]c}
= tP

{
d⋃

i=1

[
Z(i)

b(t)
> x(i)

]}

≥ t

d∑

i=1

P

[
Z(i)

b(t)
> x(i)

]
− tP

⎧
⎨
⎩
⋃

1≤i<j≤d

[
Z(i)

b(t)
> x(i),

Z(j)

b(t)
> x(j)

]⎫⎬
⎭; (9.60)

both extremes in the inequalities converge to

→
d∑

i=1

c(ei)(x
(i))−α + 0.

The reason for convergence to 0 in the second term of the right side of (9.60) is that

tP

⎧
⎨
⎩
⋃

1≤i<j≤d

[
Z(i)

b(t)
> x(i),

Z(j)

b(t)
> x(j)

]⎫⎬
⎭

≤ t
∑

1≤i<j≤d

P

[
Z(i)

b(t)
> x(i),

Z(j)

b(t)
> x(j)

]

= t
∑

1≤i<j≤d

P

[
Z(i)

b0(t)
>

b(t)

b0(t)
x(i),

Z(j)

b0(t)
>

b(t)

b0(t)
x(j)

]
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= t
∑

1≤i<j≤d

P

[
(x(i))−1Z(i) ∧ (x(j))−1Z(j)

b0(t)
>

b(t)

b0(t)

]

→ 0

using (9.57) and the fact that b(t)/b0(t) → ∞.

From (9.60), we identify the limit measure

ν(0)([0, x]c) =
d∑

i=1

c(ei)(x
(i))−α,

and ν(0) concentrates on E \ E
0. To identify ν0, note that for 0 < x < ∞,

tP

[
Z

b0(t)
> x

]
= tP

[
∧d

i=1(x
(i))−1Z(i)

b0(t)
> 1

]
;

using (9.57), this converges to d(x−1). This identifies

ν0(x, ∞] = d(x−1).

Conversely, if (a) and (b) hold, then for s ∈ [0, ∞) \ {0} and x > 0, we have

tP

[∨d
i=1 s(i)Z(i)

b(t)
> x

]
= tP

{
d⋃

i=1

[
Z(i)

b(t)
> (s(i))−1x

]}

= tP

{[
Z

b(t)
≤ xs−1

]c}

→ ν(0)([0, xs−1) = x−αν(0)([0, s−1)

= c(s)x−α.

Also for a ∈ (E0)−1 and x > 0, we get

tP

[∧d
i=1 a(i)Z(i)

b0(t)
> x

]
= tP

[
Z

b0(t)
> xa−1

]

→ ν0(xa−1, ∞] = x−α0
ν0(a−1, ∞]

= d(a−1)x−α0
. ⊓⊔

When the one-dimensional components ofZ are tail equivalent with each component

having regularly varying tail probabilities, multivariate regular variation on E
0 implies

regular variation on E and hence hidden regular variation.
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Corollary 9.1. Suppose for α0 > 0 that (9.54) holds in M+(E0) and b0 ∈ RV1/α0 .
Suppose further that for each i = 1, . . . , d,

lim
t→∞

tP

[
Z(i)

b(t)
> x

]
= x−α, x > 0,

for 0 < α ≤ α0 and some b ∈ RV1/α with b(t)/b0(t) → ∞. Then hidden regular
variation holds; that is, (9.51) holds with ν = ν(0) on E.

Proof. For a ∈ (E0)−1 and x > 0,

tP

[∧d
i=1 a(i)Z(i)

b0(t)
> y

]
= tP

[∧
i:a(i)<∞ a(i)Z(i)

b0(t)
> y

]

→ ν0

⎧
⎨
⎩x ∈ E

0 :
∧

i:a(i)<∞
a(i)x(i) > y

⎫
⎬
⎭

= y−α0
ν0

{
x ∈ E

0 :
d∧

i=1

a(i)x(i) > 1

}
= d(a)y−α0

.

So (9.57) holds. For (9.56), we have for s ∈ [0, ∞) \ {0} and x > 0,

tP

[
d∨

i=1

s(i) Z
(i)

b(t)
> x

]
= tP

⎡
⎣ ∨

i:s(i)>0

s(i) Z
(i)

b(t)
> x

⎤
⎦

≤ t
∑

i:s(i)>0

P

[
Z(i)

b(t)
> x(s(i))−1

]

→ t
∑

i:s(i)>0

(x(s(i))−1)−α = x−α

d∑

i=1

(s(i))α.

To verify that this upper bound is indeed the limit, observe that for s(i) > 0, s(j) > 0,

tP

[
Z(i)

b(t)
> x(s(i))−1,

Z(j)

b(t)
> x(s(j))−1

]

= tP

[
Z(i)

b0(t)
>

b(t)

b0(t)
x(s(i))−1,

Z(j)

b0(t)
>

b(t)

b0(t)
x(s(j))−1

]
→ 0,

since b(t)/b0(t) → ∞.

The result follows from Proposition 9.5. ⊓⊔



330 9 Additional Statistics Topics

9.4.3 Two examples

The following examples illustrate methods for obtaining hidden regular variation by

means of independence and mixtures and also clarify that ν0 may be finite or infinite

on {x ∈ E
0 : ‖x‖ > 1}. This means that S0 may be finite or infinite on ℵ0.

Example 9.2. Let d = 2. Define on [0,∞)2,

LEB((0, x]) = x(1)x(2);

that is, LEB is Lebesgue measure. Apply the transform T1 : x �→ x−1 to get the

measure ν0 on (0,∞]2 given by

ν0[x, ∞] = LEB ◦ T −1
1 ([x, ∞]) = (x(1)x(2))−1, x > 0,

and ν0 has density

f 0(x) = (x(1)x(2))−2, x > 0.

Define Z = (Z(1), Z(2)) iid and Pareto distributed with

P [Z(1) > x] = x−1, x > 1, i = 1, 2.

Set

b(t) = t, b0(t) =
√

t,

so that b(t)/b0(t) → ∞. Then on E,

tP

[
Z

b(t)
∈ ·
]

v→ ν(0),

the measure giving zero mass to the interior of E. On E
0,

tP

[
Z

b0(t)
∈ ·
]

v→ ν0.

To check this last statement, note for x > 0 and large t that

tP

[
Z

b0(t)
> x

]
= tP

[
Z(1) >

√
tx(1), Z(2) >

√
tx(2)
]

=
√

t
(√

tx(1)
)−1 √

t
(√

tx(2)
)−1

= (x(1)x(2))−1 = ν0[x, ∞].

In this case, ν0 is infinite on {x ∈ E
0 : ‖x‖ > 1} since for any δ > 0,

ν0({x ∈ E
0 : ‖x‖ > 1}) ≥ ν0([2,∞] × [δ,∞]) = 2−1δ−1 → ∞

as δ → 0. ⊓⊔
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Example 9.3. Assume d = 2 and consider three independent random quantities B, Y ,

U . Suppose B is a Bernoulli random variable with

P [B = 0] = P [B = 1] = 1/2

and Y = (Y (1), Y (1)) is iid with common standard Pareto distribution

P [Y (1) > x] = x−1, x > 1.

Set b(t) = t . Suppose U has a multivariate regularly varying distribution on E and that

there exist α0 > 1 and b0(t) ∈ RV1/α0 and a nonzero measure ν0 that is Radon on E

such that

tP

[
U

b0(t)
∈ ·
]
→ ν0 �= 0.

Define

Z = BY + (1 − B)U . (9.61)

For x > 0,

tP [Z > b0(t)x] = t

2
P [Y > b0(t)x] + t

2
P [U > b0(t)x]

= I + II.

Now for II we have

II → 1

2
ν0((x, ∞]).

For I, from the fact that Y is iid Pareto, we get that

I = t

2
(b0(t))−2 1

x(1)x(2)

converges to 0 iff t/(b0(t))2 → 0. This will be the case if 1 < α0 < 2.

Each one-dimensional marginal distribution tail is regularly varying with index −1,

which follows from

P [Z(1) > x] = 1

2
P [Y (1) > x] + 1

2
P [U (1) > x].

For x > 0, the first term on the right of the equality is in RV−1 and the second term is

in RV−α0 . The second term decays more quickly, and therefore for i = 1, 2,

P [Z(i) > x] ∈ RV−1 .

From Corollary 9.1 (p. 329), Z possesses hidden regular variation.

So on the cone E, Z is regularly varying with limit measure ν(0) and on E
0, the

hidden measure is ν0.

Note for this example that ν0 is finite on {x ∈ E
0 : ‖x‖ > 1}. ⊓⊔
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Remark 9.6. With the proper notion of a multivariate version of tail equivalence [256],

any distribution possessing hidden regular variation is tail equivalent to a mixture as in

Example 9.3. See [217].

9.4.4 Detection of hidden regular variation

Can one statistically detect the phenomenon of hidden regular variation? One point

to this inquiry is that a technique that detects hidden regular variation also confirms

asymptotic independence.

A first step

Proposition 9.5 suggests a data diagnostic, which increases our confidence that hidden

regular variation is present. Follow these steps: Assuming the data are from the iid

model, do the following:

• Perform the rank transform (9.46) given on p. 313. This converts the problem to

standard form and α = 1.

• As suggested by Proposition 9.5, for the resulting data vectors, take the minimum

component of each vector.

• If these are data from a heavy-tailed distribution with index α0 > 1 = α, there is

no evidence against the hypothesis of hidden regular variation and hence against the

hypothesis of asymptotic independence.

How does this work in practice? See Figure 9.12 for two examples in which hidden

regular variation seems to be present. The left plot of Figure 9.12 is a Hill plot for the

minimum component of the rank-transformed (buL, buR) data. The right plot is the Hill

plot for the minimum component for the rank-transformed HTTP response (size, rate)

data.

In contrast, we see in Figure 9.13 for the insurance data that a Hill plot of the

component minima after the rank transform does not indicate an α0 distinguishable

from 1. This is expected since we did not believe asymptotic independence was present

for these data.

But wait! Why does the rank transform preserve hidden regular variation?

The outline in the previous section is simple, but it requires an explanation of why the

rank transform preserves hidden regular variation. The definition of hidden regular
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Fig. 9.12. Left: Estimate of α0 for buL vs. buR indicating an estimate of α0 = 2.3. Right:

Estimate of α0 for HTTP response size vs. response rate indicating an α0 of about 1.8.
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Fig. 9.13. Hill and altHill plots for the rank-transformed auto and fire claim data confirms the

earlier impression of lack of asymptotic independence.

variation, given in Section 9.4.1 (p. 324), assumes that regular variation scaling is iden-

tical for each component. This is the correct assumption for theoretical developments

but not for applications.
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So start from the broader definition of regular variation, allowing unequal scaling

in each component, which is discussed in Section 6.5.6 (p. 203). Theorem 6.5 (p. 204)

discusses the simple theory of how to convert the unequal scaling to the standard case.

We assume that there exist functions b(j)(t) ↑ ∞ as t → ∞, such that for a Radon

measure ν on E,

tP

[(
Z(j)

b(j)(t)
, j = 1, . . . , d

)
∈ ·
]

= tP

[
Z

b(t)
∈ ·
]

v→ ν (9.62)

on E. Also suppose that the marginal convergences satisfy

tP

[
Z(j)

b(j)(t)
> x

]
→ να(j)(x,∞] = x−α(j)

, (9.63)

where α(j) > 0, j = 1, . . . , d. Then b(j)(t) ∈ RV1/α(j) , and we can and do assume that

each b(j)(t) is continuous and strictly increasing. (See Proposition 2.6(vii) (p. 32).)

We say that the distribution of Z has hidden regular variation if in addition to (9.62)

or (6.43) (p. 205), we have the following property after transforming to the standard

case: There must exist a function b0(t) ∈ RV1/α0 with b0(t) ↑ ∞, α0 ≥ 1 and

lim
t→∞

t

b0(t)
= ∞, (9.64)

such that on E
0,

tP

[(
b(j)←(Z(j))

b0(t)
, j = 1, . . . , d

)
∈ ·
]

v→ ν0(·) (9.65)

for some Radon measure ν0 on E
0. Note that (9.65) is equivalent to

tP

[(
Z(j)

b(j)(b0(t))
, j = 1, . . . , d

)
∈ ·
]

v→ ν̃0(·) (9.66)

on E
0, where ν0 and ν̃0 are related by

ν̃0(x, ∞] = ν0(xα, ∞], x ∈ E
0. (9.67)

The measure ν0 is also homogeneous on E
0,

ν0(t ·) = t−α0
ν0(·),
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but ν0 can be either finite or infinite on E0 (see Section 9.4.3 (p. 330)), and when we

transform ν0 to polar coordinates, we get

ν0

{
x ∈ E : ‖x‖ > r,

x

‖x‖ ∈ ·
}

= r−α0
S0(·), (9.68)

where S0 is a Radon measure on Borel subsets of

ℵ0 = ℵ ∩ E
0.

The hidden angular measure S0 is not necessarily finite. Since the region

ℵinv :=

⎧
⎨
⎩x ∈ E

0 :
d∧

j=1

x(j) ≥ 1

⎫
⎬
⎭

is a compact subset of E
0 and hence will always have finite hidden measure, we can

(and do) always choose b0(t) so that

ν0(ℵinv) = 1. (9.69)

How can we use the rank transform to estimate the hidden measure S0? To find the

hidden angular measure, we expect we have to use points
{(

k

r
(j)
i

; j = 1, . . . , d

)
; i = 1, . . . , n

}

thresholded at a lower level than in (9.47) (p. 313). Since b0(t)/t → 0, it seems

plausible to use the points
⎧
⎨
⎩

⎛
⎝

k

r
(j)
i

b0(n/k)/(n/k)
; j = 1, . . . , d

⎞
⎠ ; i = 1, . . . , n

⎫
⎬
⎭

=
{(

n/r
(j)
i

b0(n/k)
; j = 1, . . . , d

)
; i = 1, . . . , n

}
.

This scheme yields the hidden measure [161].

Proposition 9.6. Assume that Z1, . . . , Zn is an iid sample from a distribution on
[0,∞)d that possesses both regular and hidden regular variation, so that (9.62) and
(9.65) hold. Then we have

1

k

n∑

i=1

ǫ(
n/r

(j)
i

b0(n/k)
; j = 1, . . . , d

)⇒ ν0 (9.70)

in M+(E0), where we recall that ν0 is given in (9.65).
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Proof. The argument mimics the proof of Proposition 9.4 (p. 312) for estimating ν or

S. Observe for x ∈ E
0 that

1

k

n∑

i=1

ǫ(
n/r

(j)
i

b0(n/k)
; j = 1, . . . , d

)[x, ∞] = 1

k

n∑

i=1

1[
n(x(j))−1b0(n/k)−1≥r

(j)
i ;j=1,...,d

]

= 1

k

n∑

i=1

1⎡
⎣

Z
(j)

i

b(j)(b0(n/k))
≥

Z
(j)

(⌈n(x(j)b0(n/k))−1⌉)
b(j)(b0(n/k))

; j = 1, . . . , d

⎤
⎦
.

We claim (see p. 336 for the proof) that for each j = 1, . . . , d,

Z
(j)

(⌈n(x(j)b0(n/k))−1⌉)
b(j)(b0(n/k))

P→ (x(j))1/α(j)

. (9.71)

Using this to scale the convergence in (9.66), we get from the Theorem 5.3 (p. 138) that

1

k

n∑

i=1

ǫ(
n/r

(j)
i

b0(n/k)
; j = 1, . . . , d

)[x, ∞] ⇒ ν̃0[x1/α, ∞] = ν0[x, ∞],

where we used (9.67) for the last equality. This suffices to prove the result modulo the

claim. ⊓⊔

Claim. Assume that Z1, . . . , Zn is an iid sample from a distribution on [0,∞)d that

possesses both regular and hidden regular variation, so that (9.62) and (9.65) hold. Then

(9.71) holds in D[0,∞) for each j = 1, . . . , d.

Proof. We have, for each j = 1, . . . , d,

b0(n/k)

n

n∑

i=1

ǫ
Z

(j)
i /b(j)(b0(n/k))

⇒ να(j)

in M+(0,∞] using Theorem 5.3 (p. 138) (see (5.16)). In particular,

b0(n/k)

n

n∑

i=1

ǫ
Z

(j)
i /b(j)(b0(n/k))

(x−1,∞] ⇒ xα(j)

in D[0,∞). This is a sequence of nondecreasing functions converging to a continuous

limit, and so the inverse functions converge as well. This yields the claim statement. ⊓⊔
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Estimating the hidden angular measure

If one converts (9.70) to polar coordinates in order to estimate S0, one gets the analogue

of (9.47) (p. 313). Transform this way: Apply the polar coordinate transformation

POLAR

(
1

r
(j)
i

; j = 1, . . . , d

)
= (Ri, �i).

Then, assuming S0 is finite (otherwise one has to restrict �i to a compact subset of ℵ0),

∑n
i=1 1[Ri≥n−1b0(n/k)]ǫ�i∑n

i=1 1[Ri≥n−1b0(n/k)]
⇒ S0 (9.72)

in M+(E0). Since b0(n/k) is unknown for statistical purposes, it must be estimated

before we can regard (9.72) as a suitable estimate of S0.

Recall that

ℵinv :=

⎧
⎨
⎩x ∈ E

0 :
d∧

j=1

x(j) ≥ 1

⎫
⎬
⎭

is the set of vectors all of whose components are at least 1. Define

mi =
d∧

j=1

1

r
(j)
i

, i = 1, . . . , n,

and further suppose that

m(1) ≥ m(2) ≥ · · · ≥ m(n)

is the ordering of m1, . . . , mn with the biggest first. The next result removes the un-

known b0(n/k) and replaces it by a statistic.

Proposition 9.7. Assume Z1, . . . , Zn is an iid sample from a distribution on [0,∞)d

that possesses both regular and hidden regular variation, so that (9.62) and (9.65) hold
and continue to assume that ν0(ℵinv) = 1. Then we have in M+(E0),

ν̂0 := 1

k

n∑

i=1

ǫ(
1/r

(j)
i

m(k)

, 1 ≤ j ≤ d

)⇒ ν0. (9.73)

Proof. On D[0,∞), we have from Proposition 9.6 and continuous mapping that

ηn(t) := 1

k

k∑

i=1

ǫ n

b0(n/k)
∧d

j=1
1

r
(j)
i

(t−1,∞] ⇒ ν0
{
x : ∧d

j=1x
(j) ≥ t−1

}
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= tα
0
ν0(ℵinv) = tα

0 =: η∞(t).

Therefore, we also have in D[0,∞) that the inverse processes converge:

η←
n (s) ⇒ η←

∞ (s) = s1/α0
.

Unpack the left-hand side. We have

η←
n (s) = inf {u : ηn(u) ≥ s}

= inf

{
u :

n∑

i=1

ǫ n

b0(n/k)
mi

(u−1,∞] ≥ ks

}

=
(

sup

{
v :

n∑

i=1

ǫ n

b0(n/k)
mi

(v,∞] ≥ ks

})−1

= b0(n/k)

n

(
sup

{
w :

n∑

i=1

ǫmi
(w,∞] ≥ ks

})−1

= b0(n/k)

n
m−1

([ks]).

Therefore, we see that
n

b0(n/k)
m([ks]) ⇒ s−1/α0

(9.74)

in D(0,∞].
The rest is a scaling argument. Couple (9.74) with s = 1 with (9.70) and compose

to get in D(E0),

1

k

n∑

i=1

ǫ(
n/r

(j)
i

b0(n/k)
, j = 1, . . . , d

)
[

n

b0(n/k)
m(k)x, ∞

]

= 1

k

n∑

i=1

ǫ(1/r
(j)
i

m(k)

, j = 1, . . . , d

)[x, ∞] ⇒ ν0(x, ∞],

as required. ⊓⊔

This suggests a way forward around the problem of the unknown function b0(n/k)

in (9.72): We replace n−1b0(n/k) with m(k). We can then write the analogue of (9.72).

If ν0 is infinite, letℵ0(K) be a convenient compact subset ofℵ0. For d = 2, whereℵ can

be parameterized as ℵ = [0, π/2] and ℵ0 = (0, π/2), we can set ℵ0(K) = [δ, π/2− δ]
for some small δ > 0. Then we have from Proposition 9.7 that
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∑n
i=1 1[Ri≥m(k),�i∈ℵ0(K)]ǫ�i∑n

i=1 1[Ri≥m(k),�i∈ℵ0(K)]
⇒ S0

(
·
⋂

ℵ0(K)
)

. (9.75)

If ν0 is finite, we can replace ℵ0(K) with ℵ0, as was done in (9.72).

Thus, to summarize, we proceed as follows when estimating S0:

1. Replace the heavy-tailed multivariate sample Z1, . . . , Zn with the n vectors of

antiranks r1, . . . , rn, where

r
(j)
i =

n∑

l=1

1[Z(j)
l ≥Z

(j)
i ]; j = 1, . . . , d; i = 1, . . . , n.

2. Compute the normalizing factors

mi =
d∧

j=1

1

r
(j)
i

; i = 1, . . . , n,

and their order statistics

m(1) ≥ · · · ≥ m(n).

3. Compute {(Ri, �i); i = 1, . . . , n}, which are the the polar coordinates of

{(1/r
(j)
i ; j = 1, . . . , d); i = 1, . . . , n}.

4. Estimate S0 using the �i corresponding to Ri ≥ m(k).

This is rather ambitious for a statistical procedure and results may be no more than

suggestive. One obvious problem is choice of k. If a particular choice of k is good for

estimating S, is it also a good choice for estimating S0?

To see how this might work in practice, consider again the HTTP response data

discussed in Section 9.3.1 (p. 317). Following the outline above, we plot the estimated

hidden measure for k = 1000, 1150, 1200, and 1250 in Figure 9.14. These plots show

stability of the estimated measure for these values of k. The L1-norm has been used

in the polar coordinate transformation and the range of �i is [0, 1]. Again, since the

measure may be infinite, we have bounded the interval on which we estimate the measure

away from 0 and 1 and show the kernel density estimate on the interval [0.1, 0.9]. An

edge correction has been applied so that the density integrates to 1 on this interval. All

plots show the hidden measure to be bimodal with peaks around 0.2 and 0.85.
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Fig. 9.14. Density estimates of the hidden angular measure S0 for the Internet transmission size

and rate data.

9.5 The sample correlation function

9.5.1 Overview

There are numerous data sets from the disciplines of data networks, finance, and eco-

nomics, subsets of which appear to be stationary and compatible with the assumption of

heavy-tailed marginal distributions. A key question, of course, is how to fit time-series

models to data that require heavy-tailed marginal distributions. In the traditional setting

of a stationary time series with finite variance, every purely nondeterministic process
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can be expressed as a linear process driven by an uncorrelated input sequence. Brock-

well and Davis [31] ably summarize the conventional wisdom. For such time series,

the autocorrelation function (acf) can be well approximated by that of a finite-order

ARMA(p, q) model. In particular, one can choose an autoregressive model of order

p (AR(p)) such that the acf of the two models agree for lags 1, . . . , p [31, p. 240].

So when finite variance models are considered from a second-order point of view, lin-

ear models are sufficient for data analysis. The sample acf has traditionally been an

important tool for analyzing linear time series.

In the heavy-tailed case, we have no such confidence that linear models are suffi-

ciently flexible and rich enough for modeling purposes. Many theoretical attempts to

study heavy-tailed time-series models have concentrated effort on ARMA models or

infinite-order moving averages, despite little evidence that such models would actu-

ally fit heavy-tailed data. Understandably, these attempts are motivated by the desire

to see how well classical ARMA models and methods perform in the new context of

heavy-tailed modeling.

So what place does the sample autocorrelation have in heavy-tailed modeling? Its

use is pervasive and almost reflexive. It is programmed into all respectable statistics

packages. The acf is often plotted with 95% confidence windows computed on the pos-

sibly erroneous assumption that the sample acf is asymptotically normally distributed.

In the non-Gaussian modeling world, the case for the sample autocorrelation as a

model selection tool is weak, and, in fact, its use for heavy-tailed model selection can be

quite deceptive and can lead to erroneous conclusions. This has been richly documented

by many authors. See [12, 48, 70, 71, 77, 134, 224, 227, 248, 249, 253, 265, 267]. Al-

though there are many pitfalls associated with using the sample autocorrelation function

for non-Gaussian data, it is still a most common method for checking for independence.

In this section we will outline how the acf can be used for this purpose.

The sample acf of the stationary sequence X1, X2, . . . based on observing

X1, . . . , Xn is defined as

ρ̂(h) =
∑n−h

i=1 (Xi − X̄)(Xi+h − X̄)
∑n

i=1(Xi − X̄)2
, h = 0, 1, 2, . . . , n − 1, (9.76)

where X̄ is the sample mean. The independence test consists of plotting ρ̂(h) for

various lags h and checking if the values are all close to 0. Typically, we plot at lags

h = 1, . . . , 25, which should be adequate to uncover evidence against independence. Of

course, it is essential to give precision to the phrase close to 0. Asymptotic distributions

for (ρ̂(n), 1 ≤ n ≤ h) help provide some needed precision.

Consider the following two cases:

(a) The variances are finite. Then standard L2 theory applies, and Bartlett’s formula

from classical time-series analysis [31] provides asymptotic normality for ρ̂(h);
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under the null hypothesis of independence, one constructs for each ρ̂(h) a 95%

confidence interval. This leads to the window that many mature statistical packages,

such as Splus or R, automatically plot. If the acf spikes at various lags protrude

from the window for less than 5% of the lags, we shrug comfortably and think so

far, so good. No evidence against independence has turned up using this technique.

(b) The variances are infinite. If the data are heavy tailed with infinite variance, the

mathematical correlations do not exist. However, under the null hypothesis of

independence, formulas of Davis and Resnick [31, 73–75] provide for asymptotic

distributions of ρ̂(h) given by the distribution of the ratio of stable random variables.

The distribution cannot be calculated explicitly, but percentiles of the distribution

can be simulated and incorporated into a routine. Then a window is plotted and the

procedure outlined in (a) can be carried out with this new window.

When heavy tails are present, and especially when the data are positive, as is fre-

quently the case, it makes little sense to center at X̄, and the following heavy-tailed

version is used:

ρ̂H (h) =
∑n−h

t=1 XtXt+h∑n
t=1 X2

t

. (9.77)

We now outline how to use ρ̂(h) and ρ̂H (h) as a diagnostic for detecting departures

from the iid assumption.

We assume the stationary sequence {Xt } is {Zt }, an iid sequence of random variables

satisfying the global regular variation assumptions as discussed in (6.38)–(6.40) (p. 202).

This means that

P [|Z1| > x] = x−αL(x) (x → ∞), (9.78)

P [Z1 > x]
P [|Z1| > x] → p (x → ∞), (9.79)

and α > 0, L is slowly varying, and 0 ≤ p ≤ 1. Note that if Z1 ≥ 0, then p = 1. If

α < 2, there is no finite second moment, and hence the mathematical correlations of

the Zs do not exist. We assume 0 < α < 2 as our standing assumption for this section.

9.5.2 Limit theory

Preliminaries

We add an additional assumption that

E(|Z0|α) = ∞. (9.80)

Refer to Problem 7.8 (p. 250). It follows from (9.80) and global regular variation that

Z0Z1 also satisfies global regular variation with index −α:
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P[|Z0Z1| > x] = x−αL̃(x) (x → ∞), (9.81)

P[Z0Z1 > x]
P[|Z0Z1| > x] → p̃ := p2 + (1 − p)2 (x → ∞) (9.82)

with p given by (9.79). Define the quantile functions

bn = b(n) =
(

1

P[|Z0| > ·]

)←
(n), b̃n = b̃(n) =

(
1

P[|Z0Z1| > ·]

)←
(n).

Because of (9.80), Z0Z1 has a heavier tail than Z0:

P[|Z0Z1| > t]
P[|Z0| > t] → ∞ (t → ∞), (9.83)

since

P[|Z0Z1| > t]
P[|Z0| > t] ≥ P[|Z0| > t/|Z1|, 0 < |Z1| ≤ M]

P[|Z0| > t]

=
∫ M

0

P[|Z0| > t/y]
P[|Z0| > t] P[|Z1| ∈ dy].

From Fatou’s lemma and the previous line,

lim inf
t→∞

P[|Z0Z1| > t]
P[|Z0| > t] ≥

∫ M

0

yα
P[|Z1| ∈ dy]

for any M . Letting M → ∞ and using the assumption E(|Z0|α) = ∞ gives (9.83).

Taking inverses, we get

lim
n→∞

b̃n

bn

= ∞. (9.84)

Point process limits

For d ≥ 1, define the vector

Xn,i = (b−1
n Zi, b̃

−1
n ZiZi+1, . . . , b̃

−1
n ZiZi+d),

and based on these vectors, define the random point measures

Nn =
n∑

i=1

ǫXn,i
, n ≥ 1,

in Mp(E), where E = [−∞,∞]d+1 \ {0}. If {Nn} has a point process limit N∞, it is

clear the points of this limit must lie on the axes, since for any M , x > 0, y > 0, and

all large n,
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nP[|Z1| > bnx, |Z1Z2| > b̃ny]
≤ nP[|Z1| > bnM] + nP[|Z1| ≤ bnM, |Z1| > bnx, |Z1Z2| > b̃ny]

≤ M−α + o(1) + nP[|Z1| > bnx]P
[
|Z2| >

b̃ny

bnM

]

→ M−α + x−α · 0 (n → ∞)

→ 0 (M → ∞), (9.85)

where we applied (9.84). On the other hand, for any M > 0 and x > 0, y > 0,

nP[|Z1Z2| > b̃nx, |Z2Z3| > b̃ny]
≤ nP[|Z2| > bnM] + nP[|Z2| ≤ bnM, |Z1Z2| > b̃nx, |Z2Z3| > b̃ny]

≤ M−α + o(1) + nP[|Z1Z2| > b̃nx]P
[
|Z3| >

b̃ny

bnM

]

→ M−α (n → ∞)

→ 0 (M → ∞). (9.86)

This shows that any limit point measure must have an expected number of points in

regions away from the axes equal to 0. Note where the assumption E(|Z1|α) = ∞
was used.

We now show that Nn has a weak limit, which we call N∞. The description of N∞
is as follows: Let

N (i)
∞ =

∑

k

ǫ
j

(i)
k

; i = 0, . . . , d,

be d + 1 independent Poisson processes on [−∞,∞]\ {0}. The mean measure of N
(0)
∞

has density

αpx−α−11(0,∞)(x) + α(1 − p)|x|−α−11(−∞,0)(x),

corresponding to (9.78), (9.79). The mean measures of the iid Poisson processes N
(i)
∞ ,

i = 1, . . . , d, are all equal to the measure with density

αp̃x−α−11(0,∞)(x) + α(1 − p̃)|x|−α−11(−∞,0)(x),

corresponding to (9.81), (9.82). Let ei , i = 0, . . . , d, be the (d + 1)-dimensional basis

vectors with 0s everywhere except one slot in which there is a 1. Define

N∞ =
∑

k

d∑

i=0

ǫ
j

(i)
k ei

,

which results from taking the points of N
(i)
∞ and laying them on the ith axis. N∞ is a

Poisson process with all points on the axes.



9.5 The sample correlation function 345

Proposition 9.8. Under the described conditions,

Nn ⇒ N∞ (9.87)

in Mp(E).

Proof. Our experience with the proof of Lemma 7.2 (p. 228) will be helpful here, as will

Problem 6.16 (p. 210), since for each n, the family {Xn,i, i ≥ 1} is (d + 1)-dependent.

According to Problem 6.16, there are two conditions to verify. The first is (6.48)

(p. 210); that is, as n → ∞,

nP[Xn,1 ∈ ·] v→ E(N∞(·)). (9.88)

Let f ∈ C+
K(E). As with Lemma 7.2, we use (9.85) and (9.86) to show that for any

f ∈ C+
K(E),

nEf (Xn,1) = nEf (b−1
n Z1, b̃

−1
n Z1Z2, . . . , b̃

−1
n Z1Z1+d)

= nEf (b−1
n Z1e0) +

d∑

l=1

nEf (b̃−1
n Z1Z1+lel) + o(1).

Now apply the global regular variation conditions (9.78) and (9.79) for Z1 and the

comparable conditions (9.81) and (9.82) for Z1Z2 to get (9.88).

The second condition from Problem 6.16 is

lim
k→∞

lim sup
n→∞

n

[n/k]∑

i=2

E(g(Xn,1)g(Xn,i)) = 0 (9.89)

for g ∈ C+
K(E), g ≤ 1. We have

n

[n/k]∑

i=2

E(g(Xn,1)g(Xn,i))

= n

d+1∑

i=2

E(g(Xn,1)g(Xn,i)) + n

[n/k]∑

i=d+2

E(g(Xn,1)g(Xn,i)) = A + B,

and because of (d + 1)-dependence,

B ≤ n[n/k](E(g(Xn,1)))
2

∼ 1

k
(nE(g(Xn,1)))

2 → 1

k
(E(N∞(g)))2 (n → ∞)

→ 0 (k → ∞).

The remaining term A → 0 since each term in the finite sum is dominated by either a

term governed by (9.85) or by (9.86). ⊓⊔
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Summing the points

Modify (9.87) to get

n∑

i=1

ǫ
(b−2

n Z2
i ,b̃−1

n ZiZi+1,...,b̃
−1
n ZiZi+d )

⇒
∑

k

ǫ
(j

(0)
k )2e0

+
∑

k

d∑

i=1

ǫ
j

(i)
k ei

. (9.90)

Apply the summation functional and the converging together technique explained in

Section 7.2. Keep in mind that

P [Z2
1 > x] ∈ RV−α/2, 0 <

α

2
< 1,

so that by Problem 7.3, no centering is needed for
∑n

i=1 Z2
i . The result of this technique

applied to (9.90) is

(∑n
i=1 Z2

i

b2
n

,

∑n
i=1(ZiZi+1 − μn)

b̃n

, . . . ,

∑n
i=1(ZiZi+d − μn)

b̃n

)
⇒ (S0, S1, . . . , Sd),

(9.91)

where

μn = E
(
Z1Z21[|Z1Z2|≤b̃n]

)

and S1, . . . , Sd are independent stable random variables constructed in Section 5.5.1

(p. 149). Because α/2 < 1, S0 is stable with index α/2, obtained without needing

centering, and has representation
∑

k(j
(0)
k )2. (See Section 5.5.2 (p. 153).) The presence

of the centering μn in (9.91) is a nuisance we have to deal with. For now, divide the

first component into the others to get

b2
n

b̃n

(
ρ̂H (j) − μn∑n

i=1 Z2
i

; j = 1, . . . , d

)
⇒
(

Sj

S0
; j = 1, . . . , d

)
, (9.92)

where ρ̂H (j) was defined in (9.77).

How do we cope with the centering and make something useful out of this limit

theory?

9.5.3 The heavy-tailed sample acf; α < 1

If we assume that α < 1, then the centering by μn is not necessary, and (9.91) becomes

(∑n
i=1 Z2

i

b2
n

,

∑n
i=1 ZiZi+1

b̃n

, . . . ,

∑n
i=1 ZiZi+d

b̃n

)
⇒ (S0, S̃1, . . . , S̃d), (9.93)
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where S̃1, . . . , S̃d are independent stable subordinator random variables constructed in

Section 5.5.2 (p. 153). Divide the first component into the others to get

b2
n

b̃n

(ρ̂H (j); j = 1, . . . , d) ⇒
(

S̃j

S0
; j = 1, . . . , d

)
. (9.94)

So in the very heavy-tail case (E(|Z1|) = ∞), we use the heavy-tailed acf.

9.5.4 The classical sample acf: 1 < α < 2

For the case 1 < α < 2, the limit theory is more amenable to using the classical sample

acf defined in (9.76) (p. 341). We proceed in a series of steps to redo the results leading

to (9.91).

Step 1. Since the mean μ := E(Z1) exists, we may recenter (9.91) so that the last

d-components are centered to zero mean. This yields

(∑n
i=1 Z2

i

b2
n

,

∑n
i=1(ZiZi+1 − μ2)

b̃n

, . . . ,

∑n
i=1(ZiZi+d − μ2)

b̃n

)
⇒ (S0, S

0
1 , . . . , S0

d),

(9.95)

where (S0
1 , . . . , S0

d) are iid, zero mean, stable random variables.

Step 2. We claim, as n → ∞,

b−2
n

n∑

i=1

Z2
i − b−2

n

n∑

i=1

(Zi − Z̄)2 P→ 0. (9.96)

To verify this, use the identity

n∑

i=1

(Zi − Z̄)2 =
n∑

i=1

Z2
i − nZ̄2,

so that the difference in (9.96) is nZ̄2/b2
n. Because α > 1, E(|Z1|) < ∞ and Z̄2 P→

(E(Z1))
2 < ∞. So Z̄2 is stochastically bounded. However, n/b2

n ∈ RV1−2/α , and

since 2/α > 1, we get n/b2
n → 0, proving the assertion (9.96).

By Slutsky’s theorem, Theorem 3.4 (p. 55), (9.96) allows us to modify (9.91) to get

(∑n
i=1(Zi − Z̄)2

b2
n

,

∑n
i=1(ZiZi+1 − μ2)

b̃n

, . . . ,

∑n
i=1(ZiZi+d − μ2)

b̃n

)

⇒ (S0, S
0
1 , . . . , S0

d), (9.97)
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Step 3. We claim, for each l = 1, . . . , d, that as n → ∞,

1

b̃n

n∑

i=1

(ZiZi+l − μ2) − 1

b̃n

n∑

i=1

(Zi − Z̄)(Zi+l − Z̄)
P→ 0. (9.98)

To see this, write

1

b̃n

n∑

i=1

(Zi − Z̄)(Zi+l − Z̄) = 1

b̃n

(
n∑

i=1

ZiZi+l − Z̄

n∑

i=1

Zi+l

)

= 1

b̃n

n∑

i=1

(ZiZi+l − μ2) − 1

b̃n

(
Z̄

n∑

i=1

Zi+l − nμ2

)
.

Now

1

b̃n

(
Z̄

n∑

i=1

Zi+l − nμ2

)
=

n∑

i=1

(Zi+l − μ)

bn

Z̄
bn

b̃n

+ nμZ̄ − nμ2

b̃n

= A + B.

For A, observe that Z̄ converges to the mean and is stochastically bounded,

b−1
n

∑n
i=1(Zi+l − μ) converges to a stable law and is hence stochastically bounded,

and bn/b̃n → 0. This drives A to zero. Write B as

μ
bn

b̃n

(∑n
i=1(Zi − μ)

bn

)
P→ 0

as n → ∞. This yields (9.98) and allows us to rewrite (9.97) as

(∑n
i=1(Zi − Z̄)2

b2
n

,

∑n
i=1(Zi − Z̄)(Zi+1 − Z̄)

b̃n

, . . . ,

∑n
i=1(Zi − Z̄)(Zi+d − Z̄)

b̃n

)

⇒ (S0, S
0
1 , . . . , S0

d). (9.99)

Dividing the first component into the others, yields the following result.

Proposition 9.9. If 1 < α < 2,

b2
n

b̃n

(ρ̂(1), . . . , ρ̂(d)) ⇒
(

S0
1

S0
, . . . ,

S0
d

S0

)

in R
d , where (S0

1 , . . . , S0
d) are iid, zero mean, stable random variables with index α and

S0 is independent of the rest and has index α/2.
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9.5.5 Suggestions to use

Here are suggestions for how to use this theory in practice. With a null hypothesis that

the data comes from an iid heavy-tailed model with 0 < α < 2, do the following:

1. Estimate α. If α < 1, use ρ̂H (l), l = 1, . . . , d. If 1 < α < 2, use the classical

ρ̂(l), l = 1, . . . , d. With a reasonably sized data set (say, > 3000), d = 25 usually

provides enough lags.

2. If 1 < α < 2, find a quantile q satisfying

P

[∣∣∣∣
b2
n

b̃n

ρ̂(1)

∣∣∣∣ ≤ q

]
≈ P

[∣∣∣∣∣
S0

1

S0

∣∣∣∣∣ ≤ q

]
= 0.95.

If α < 1, find a quantile q satisfying

P

[
b2
n

b̃n

ρ̂H (1) ≤ q

]
≈ P

[
S̃1

S0
≤ q

]
= 0.95.

3. Plot either ρ̂H (l) or ρ̂(l), depending on the case, for l = 1, . . . , d. Depending on

the case, if

ρ̂H (l) >
b̃n

b2
n

q

or

|ρ̂(l)| >
b̃n

b2
n

q

for more than 5% of the values of l, be suspicious of the iid assumption.

In practice, one will not know bn or b̃n. If tails are close to pure Pareto, as suggested

in Problem 9.13 (p. 356), then b2
n/b̃n ∼ (n/ log n)1/α . Replace α with its estimate.

Also, one can only get q by simulation. This is easier said than done, because one

must simulate the random variables given in (9.94) or Proposition 9.9. In principle, this

is straightforward, but there are a gazillion parameterizations of stable laws; and each

package has its own simulation method. So some patience is needed to get the correct

values.

Example 9.4 (call holding). This data set consists of 4045 telephone call-holding times

indexed according to the time of initiation of the call. The data set is about 15 years

old, and it presumably reflects a time when telephone modem calls were common; the

data are surprisingly heavy tailed. Figure 9.15 gives a time-series plot and a Hill plot

for these data. The Hill plot is gratifyingly stable.
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Fig. 9.15. Time-series and Hill plots for call-holding data.

The estimate of α in the call-holding example is between .9 and 1, and with a

combination of QQ plotting and more careful examination, we settled on an estimated

value of α̂ = 0.97.

Figure 9.16 shows the classical acf for the call-holding data side by side with the

heavy-tailed modification. Because of the many exceedances of the quantile line on the

right of Figure 9.16, one should have reservations about modeling these data as iid.

9.6 Problems

9.1 (Asymptotic normality of the Pickands estimator). State and derive asymptotic

normality for the Pickands estimator (review Section 4.5.2 (p. 93)) for positive γ .

Compare asymptotic variances between the Hill and the Pickands estimators. (The

asymptotic variance is given in (4.34) (p. 94).)

9.2 (Asymptotic normality of the smooHill estimator). Assuming iid nonnegative

observations from a distribution with a regularly varying tail, state and derive asymptotic

normality of the smooHill estimator discussed in Section 4.4.3 (p. 89).

9.3 ([217]). Suppose that d = 3 and Z(1), Z(2), Z(3) are iid Pareto random variables

with parameter 1. Set E
1 = (0, ∞]. Verify that hidden regular variation takes place on

E ⊃ E
0 ⊃ E

1 with α = 1, α0 = 2, and α1 = 3.
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Fig. 9.16. Classical (left) and heavy-tailed (right) acf plots for call holding.

9.4 ([49, 163, 217]). Suppose that d = 2 and hidden regular variation holds; that is,

(9.51) and (9.54) hold. Show that

χ̄ := lim
t→∞

2 log P [Z(1) > t]
log P [Z(1) > t, Z(2) > t] − 1 = 2α − α0

α0
.

9.5 (Tail equivalence [217]). Suppose Y and Z are [0, ∞)-valued random vectors with

distributions F and G, respectively. F and G (or, by abuse of language, Y and Z) are
tail equivalent on the cone C ⊂ E if there exists a scaling function b(t) ↑ ∞ such that

tP

[
Y

b(t)
∈ ·
]
= tF (b(t)·) v→ ν and tP

[
Z

b(t)
∈ ·
]
= tG(b(t)·) v→ cν (9.100)

in M+(C) for some constant c ∈ (0,∞) and nonzero Radon measure ν on C. We

shall write

Y
te(C)∼ Z.

Prove: If {Y n, n ≥ 1} is an iid sample from F and {Zn, n ≥ 1} is an iid sample

from G, then

n∑

i=1

ǫY i/b(n) ⇒ PRM(ν) iff

n∑

i=1

ǫZi/b(n) ⇒ PRM(cν) (9.101)

in Mp(C), the space of Radon point measures on C.



352 9 Additional Statistics Topics

9.6 (Finite hidden measure [217]). Suppose that V is regularly varying on E
0 with

index α0, scaling function b0(t), limit measure ν0, angular measure S0 on ℵ0. The

following are equivalent:

(i) S0 is finite on ℵ0.

(ii) There exists a random vector V ∗ defined on E such that

V ∗
te(E0)∼ V ,

and for i = 1, . . . , d,

tP[V (i)
∗ > b0(t)x] → cx−α0

, t → ∞,

for some c > 0, so that each component V
(i)
∗ has regularly varying tail probabilities

with index α0.

(iii) There exists a random vector V ∗ defined on E such that

V ∗
te(E0)∼ V ,

and V ∗ is regularly varying on the full cone E with scaling function b0(t), limit

measure ν, and

ν|E0 = ν0;
that is, the restriction of ν to E

0 is ν0.

(iv) There exists a random vector V ∗ defined on E such that

V ∗
te(E0)∼ V ,

such that for any s ∈ [0, ∞) \ {0} and any a ∈ (0, ∞] \
⋃d

i=1{te−1
i : 0 < t < ∞},

d∨

i=1

siV
(i)
∗ and

d∧

i=1

aiV
(i)
∗

are tail equivalent on [0,∞) and have regularly varying tail probabilities of in-

dex α0. (Recall that e−1
i = (∞, . . . ,∞, 1,∞, . . . ,∞) is the vector whose ith

component is 1 and whose other components are ∞.)

9.7 ([217]). Suppose that Z is a random vector of dimension d > 2, which is multivari-

ate regularly varying on E with hidden regular variation on E
0, having limit measures

ν, ν0. Define Ẽ and Ẽ
0 to be the spaces corresponding to E and E

0 in two dimensions;

that is,
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Ẽ = [0,∞]2 \ {(0, 0)}; Ẽ
0 = (0,∞]2.

Then for some pair 1 ≤ i < j ≤ d, necessarily

ν0({x ∈ E
0 : x(i) > 0, x(j) > 0}) �= 0, (9.102)

and for all such pairs, we must have (Z(i), Z(j)) to be multivariate regularly varying on

Ẽ with hidden regular variation on Ẽ
0. Also, the hidden angular measure of Z is finite

iff for all pairs 1 ≤ i < j ≤ d, satisfying the condition (9.102), the hidden angular

measure of (Z(i), Z(j)) is finite.

9.8 ([217]). Suppose Ui , i = 1, 2, 3, are iid Pareto random variables on [1,∞) with

parameter 1. Let Bi , i = 1, 2, be iid Bernoulli random variables with

P [Bi = 0] = P [Bi = 1] = 1

2
,

and {Bi} and {Ui} are independent. Define

W = (1 − B1)U3, Z = B2(U1, 0, W) + (1 − B2)(0, U2, W).

Then

Z(1) = B2U1, Z(2) = (1 − B2)U2, Z(3) = W

are identically distributed, and each random variable has a distribution that has an atom

of size 1
2 at 0 and a Pareto density with parameter 1 and total mass 1

2 on [1,∞). The

distribution of Z is supported on the planes where either of the first two coordinates

vanish. Prove that Z is multivariate regularly varying on E with α = 1 and b(t) = t

and that has hidden regular variation on E
0 with α0 = 2 and b0(t) =

√
t . However,

ν0({x : x(1) > 0, x(2) > 0}) = 0. So hidden regular variation is not possible for the

marginal distribution of (Z(1), Z(2)). We have hidden regular variation on E
0 but not

E
00 = (0, ∞]. So regular variation on E

0 and E
00 can be quite different.

9.9 ([217]). Suppose Z is a d-dimensional random vector defined on [0, ∞) that is mul-

tivariate regularly varying on E and has hidden regular variation on E
0 with limit

measure ν0. Then ν0 has finite angular measure iff for all pairs (i, j), i �= j , the

function

Ḡi,j (s) := ν0

({
x ∈ E

0 : x ≥ 1,
x(i)

x(j)
> s

})

satisfies ∫ ∞

1

sα0−1Ḡi,j (s)ds < ∞.
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9.10 (Examples where the hidden angular measure is infinite [217]). Let d = 2.

Suppose that R is a Pareto random variable on [1,∞) with parameter 1 and � is a

random vector living on {x ∈ E : x(1)∧x(2) = 1}, and for some probability distribution

G concentrating on [1,∞), we have

P[� ∈ {1} × (s,∞]] = P[� ∈ (s,∞] × {1}] = 1

2
Ḡ(s), s ≥ 1. (9.103)

Suppose R and � are independent. Define

V = R · �. (9.104)

Verify that by (9.103), we have for s > 1,

P[�(1) > s] = P[� ∈ (s,∞]×{1}] = 1

2
Ḡ(s) = P[� ∈ {1}×(s,∞]] = P[�(2) > s],

so that the marginals of � are the same.

With V as specified, V is regularly varying on E
0 with index α0 = 1. Verify that

the hidden limit measure ν0 has infinite angular measure iff
∫ ∞

1

Ḡ(s)ds = ∞. (9.105)

Furthermore, if (9.105) holds, we have the following:

(i) V is regularly varying on E with index α < 1 (and hence possesses hidden regular

variation with infinite hidden angular measure) iff

1 − G ∈ RV−α .

In this case, for i = 1, 2, we have

P[V (i) > x] ∼ 1

2(1 − α)
Ḡ(x), x → ∞.

(ii) V is regularly varying on E with index α = 1 and possesses hidden regular variation

with infinite hidden angular measure iff

L(x) :=
∫ x

0

Ḡ(s)ds ∈ RV0 and L(x) ↑ ∞.

A sufficient condition is Ḡ ∈ RV−1 with
∫∞

0 Ḡ(s)ds = ∞, in which case

lim
x→∞

P[V (i) > x]
P[R > x] = lim

x→∞
P[V (i) > x]
P[�(i) > x] = ∞

for i = 1, 2.
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9.11 ([162]). Suppose (U, V ) has a distribution that is standard regularly varying on

[0,∞)2, which means that there is a limit measure ν on E such that

tP

[(
U

t
,
V

t

)
∈ ·
]

v→ ν

in M+(E). Suppose (Ui, Vi), i = 1, 2, are iid copies of (U, V ), and we define

(X, Y ) = B(U1, h(V1)) + (1 − B)(h(U2), V2), (9.106)

where h ∈ RVp, h(t)/t → 0, B is a Bernoulli random variable independent of

{(Ui, Vi); i = 1, 2}, and

P[B = 0] = P[B = 1] = 1

2
.

Then (X, Y ) is standard regularly varying and asymptotically independent and

tP

[(
X

h(t)
,
Y

t

)
∈ ·
]

v→ μ(·), (9.107)

where μ is given by

μ([0, x] × (y,∞]) =: 1

2
ν([0, x1/p] × (y,∞]).

The condition h(t)/t → 0 is necessary and sufficient for (X, Y ) to be asymptotically

independent.

9.12 (Different cone; products [215]). Define the cone D := (0,∞]×[0,∞]. Assume

that X and Y are strictly positive, finite random variables. Suppose that

tP[X > bX(t)] → 1 (t → ∞).

Verify that the following are equivalent:

(i) tP[( X
bX(t)

, Y ) ∈ ·] v→ (να×G)(·) on D for some α > 0 and G a probability measure

satisfying G(0,∞) = 1.

(ii) tP[ (X,XY)
bX(t)

∈ ·] v→ ν(·) on D, where ν({(x, y) : x > u}) > 0 for all u > 0.

In fact, ν is homogeneous of order −α, i.e., ν(u·) = u−αν(·) on D, and is given by

ν =
{

(να × G) ◦ θ−1 on (0,∞) × [0,∞),

0 on D \ ((0,∞) × [0,∞)),
(9.108)

where θ(x, y) = (x, xy), if (x, y) ∈ D \ {(∞, 0)} and θ(∞, 0) is defined arbitrarily.
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9.13 (Form of bn, b̃n). Suppose that

P[|Z1| > x] ∼ x−α (x → ∞).

Then with reference to Section 9.5.2 (p. 342), verify the following:

P[|Z1Z2| > x] ∼ x−α(1 + α log x), x → ∞,

bn ∼ n1/α, b̃n ∼ (n log n)1/α,

b2
n

b̃n

∼
(

n

log n

)1/α

.

9.14. Suppose that (Z1, Z2) is standard bivariate normal with correlation ρ, and suppose

for α > 0 that W is a nonnegative random variable with P[W > x] ∈ RV−α . Consider

the distribution of
√

WZ and show that it possesses hidden regular variation in the first

quadrant. If ρ = −1, the coefficient of tail dependence is 0, and if ρ = 1, it is 1;

otherwise, it is strictly between 0 and 1.

Apply this to the multivariate t-density [218, p. 211].
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Notation and Conventions

10.1 Vector notation

Vectors are denoted by bold letters, uppercase for random vectors and lowercase for

nonrandom vectors. For example, x = (x(1), . . . , x(d)) ∈ R
d . Operations between

vectors should be interpreted componentwise, so that for two vectors x and z,

x < z means x(i) < z(i), i = 1, . . . , d, x ≤ z means x(i) ≤ z(i), i = 1, . . . , d,

x = z means x(i) = z(i), i = 1, . . . , d, zx = (z(1)x(1), . . . , z(d)x(d)),

x ∨ z = (x(1) ∨ z(1), . . . , x(d) ∨ z(d)),
x

z
=
(

x(1)

z(1)
, . . . ,

x(d)

z(d)

)
,

and so on. Also, define

0 = (0, . . . , 0), 1 = (1, . . . , 1),

ei = (0, . . . , 1, . . . , 0), e−1
i = (∞, . . . , 1, . . . ,∞),

where in ei and e−1
i , the “1’’ occurs in the ith spot. For a real number c, write

cx = (cx(1), . . . , cx(d)), as usual. We denote the rectangles (or the higher-dimensional

intervals) by

[a, b] = {x ∈ R
d : a ≤ x ≤ b}.

Higher-dimensional rectangles with one or both endpoints open are defined analogously,

for example,

(a, b] = {x ∈ R
d : a < x ≤ b}.

Suppose E = [0, ∞] \ {0}. Complements are taken with respect to E, so that for

x > 0,
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[0, x]c = E \ [0, x] =
{

y ∈ E :
d∨

i=1

y(i)

x(i)
> 1

}
.

The axes originating at 0 are Li := {tei, t > 0}, i = 1, . . . , d. Then define the cone

E
0 = E \

d⋃

i=1

Li = {s ∈ E : for some 1 ≤ i < j ≤ d, s(i) ∧ s(j) > 0}.

If d = 2, we have E
0 = (0,∞]2. The cone E

0 consists of points of E such that at most

d − 2 coordinates are 0.

10.2 Symbol shock

Here is a glossary of miscellaneous symbols, in case you need a reference guide.

C+
K(S) The space of continuous functions on the metric space S with compact

support equipped with the uniform topology.

B+ Positive, bounded, measurable functions.

D[0,∞) The Skorokhod space of real-valued càdlàg functions on [0,∞) equip-

ped with the J1-topology.

D([0,∞), R
2) The Skorokhod space of R

2-valued càdlàg functions on [0,∞) equip-

ped with the J1-topology.

D([0,∞) × S) Same as above, but the range is the metric space S.

D↑[0,∞) The subspace of D[0,∞) containing the nondecreasing functions f

such that f (0) = 0 and f (∞) = limx→∞ f (x) = ∞.

C[0,∞) The continuous functions on [0,∞).

ǫx The probability measure consisting of all mass at x.

f ← The left-continuous inverse of a monotone function f defined by

f ←(x) = inf {y : f (y) ≥ x}.
LEB Lebesgue measure.

E Usually [0,∞]d \ {0}, except when it isn’t.

M+(E) The space of nonnegative Radon measures on E.

Mp(E) The space of Radon point measures on E.

να A measure on (0,∞] given by να(x,∞] = x−α , α > 0, x > 0.

PRM(μ) Poisson random measure on E with mean measure μ.

⇒ Convergence in distribution.

Nice Locally compact with countable base. “Nice’’ sounds less ferocious.

K(S) The compact subsets of the metric space S.

G(S) The open subsets of the metric space S.
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F(S) The closed subsets of the metric space S.

b(t) The quantile function of a distribution function F(x), defined by b(t) =
F←(1 − 1

t
).

‖x‖p (
∑d

i=1 |x(i)|p)1/p, 1 ≤ p.

‖x‖∞ ∨d
i=1|x(i)|.

Ŵk kth Poisson point; sum of k iid unit exponential random variables.

ℵ The unit sphere with respect to a chosen norm.

C(f ) The points at which the function f is continuous.

D(f ) The points at which the function f is discontinuous.

PR(S) The metric space of probability measures on the Borel σ -algebra S of

subsets of the metric space S metrized by weak convergence.
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Software

Here we collect some general comments about software and visualization tools useful

for exploring data from heavy-tailed models. The software world changes rapidly and

there is no guarantee that these comments are accurate by the time you read this.

Splus or R are convenient environments for graphical and exploratory data analysis.

We will give some routines which reflect the way we think about heavy-tailed analysis.

These have been written for R but should run in Splus. The routines are only intended

to be an outline of the logic behind the semiparametric analysis of heavy-tailed data.

Other software that is helpful comes from the extreme-value world. Alexander

McNeil (http://www.ma.hw.ac.uk/˜mcneil/) has a very professional com-

pilation of Splus routines for performing extreme-value analysis that can be adapted to

heavy-tailed analysis. A version is now marketed as part of the Finmetrics module by

Insightful. A port for R called EVIR, by Alec Stephenson, is available at http://
cran.r-project.org/src/contrib/Descriptions/evir.html. As of

this writing, McNeil advertises on his web site a package called QRMlib for risk anal-

ysis, which incorporates the extreme values routines; the package is intended for use

with [218].

Stuart Coles has notes explaining his Splus routines currently linked to http://
homes.stat.unipd.it/coles/public_html/ismev/summary.html.

His routines are used in his interesting extreme-values book [50]. There is a

menu-driven program called XTREMES that R. Reiss and M. Thomas packaged

with the book [238], and more information is available at www.xtremes.math.
uni-siegen.de.

Warning: When I was an undergraduate, Queens College did not have a single com-

puter and I did not absorb computing with mother’s milk. A charitable characterization

of my programming skills would be “primitive.’’ If one of the routines looks somewhat

polished, it was probably written by a valued and skilled coworker such as Paul Feigin,

Catalin Stărică, Krishanu Maulik, or Jan Heffernan.
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11.1 One dimension

11.1.1 Hill estimation

We give three plots corresponding to the Hill, altHill, and smoothed Hill plot. Because of

the difficulty of choosing k, the number of upper-order statistics used in the estimation,

we have not included confidence intervals in the plots but this could be done based on

the asymptotic normality of the estimators. (See Proposition 9.3 (p. 302) and also [58,

59, 62, 72, 90, 113, 154, 155].) The packages listed above typically do include normal

confidence intervals and XTREMES even includes parametric bootstrap confidence

intervals.

Hillalpha

The routine Hillalpha(x), where x is the name of the data set, produces the Hill plot for

estimating α.

Hillalpha<-function(x)
{
ordered <- rev(sort(x))
ordered <- ordered[ordered[] > 0]
n <- length(ordered)
loggs <- log(ordered)
hill <- cumsum(loggs[1:(n - 1)])/(1:(n - 1)) - loggs[2:n]
hill <- 1/(hill)
plot(1:length(hill), hill, type = "l",

xlab = "number of order statistics",
ylab = "Hill estimate of alpha", main="Hill plot")

}

altHillalpha

The routine altHillalpha(x, theta1, theta2), where x is the name of the data set, produces

the Hill plot for estimating α, but on a logarithmic scale. The plot is for the points

{(
log i

log n
, Hi,n

)
; ntheta1 ≤ i ≤ ntheta2

}
.

Parameters theta1 and theta2 can be invoked to eliminate estimates based on very small

or very large numbers of order statistics which would distort the vertical scaling of the

plot and produce uninformative pictures.
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altHillalpha<-function(x,theta1, theta2)
{

ordered <- rev(sort(x))
ordered <- ordered[ordered[] > 0.]
n <- length(ordered)
loggs <- log(ordered)
hill <- cumsum(loggs[1.:(n - 1.)])/(1.:(n - 1.))

- loggs[2.:n]
hill <- 1./hill
s<-log((1:(n-1)))/log(n-1)
plot(s[nˆtheta1:nˆtheta2], hill[nˆtheta1:nˆtheta2],

type ="l", xlab = "theta",
ylab = "Hill estimate of alpha",
main="altHill")

}

Of course, the two Hill plots can be displayed side by side for comparison which is

what twoHillalpha accomplishes.

twoHillalpha<-function(x,theta1,theta2)
{

par(mfrow=c(1,2))
Hillalpha(x)
altHillalpha(x,theta1,theta2)
par(mfrow=c(1,1))

}

smooHillalpha

This function computes the estimates smooHk,n of (4.25) and then plots the vector

corresponding to 1/smooHk,n. For this function x is the data set, r is the amount of

smoothing to be applied, (l, up) restrict the plot to serial indices between these bounds.

smooHillalpha<-function(x,r,l,up)
{
ordered <- rev(sort(x))
ordered <- ordered[ordered[] > 0]
n <- length(ordered)
loggs <- log(ordered)
hill <- cumsum(loggs[1:(n - 1)])/(1:(n - 1)) - loggs[2:n]
smoo<-hill[1]
for(k in (1:floor(n/r))){smoo=c(smoo,mean(hill[k+1:r*k]))}
plot((1:length(smoo))[l:up],1/smoo[l:up],type="l",xlab="",

ylab="smoo est of alpha", main="smooHill")
}



366 11 Software

The three plots can be combined into the Hill, altHill, and smooHill plots.

threeHillalpha<-function(x,theta1,theta2,r,l,up)
{
par(mfrow=c(1,3))
Hillalpha(x)
altHillalpha(x,theta1,theta2)
smooHillalpha(x,r,l,up)
par(mfrow=c(1,1))
}

11.1.2 QQ plotting

When the data from some point on are approximately a realization from a Pareto dis-

tribution, one takes logarithms to convert from Pareto to exponential distributions and

then computes the slope of the least-squares line through a user-specified number of

order statistics to estimate and report on the estimate of α. One has to confirm that the

data are approximately Pareto beyond a threshold and then decide on the threshold.

pppareto

To decide that approximate Pareto is the right choice past a threshold, one can match

all the sample quantiles of the log-transformed data with theoretical quantiles of the

exponential density. The plot should look linear from some point onwards. This gives an

idea of how many upper-order statistics to use when fitting the LS line (or, equivalently,

what threshold to pick if you are a POT head). This was how Figure 4.11 was produced

and it used the routine pppareto. In this function x = the data set.

pppareto<-function(x)
{
l <- length(x)
s <- seq(1./(l + 1.), l/(l + 1.), length = l)
y <- - log(1. - s)
plot(y, log(sort(x)), pch = ".",

xlab = "quantiles of exponential",
ylab = "log-sorted data")

}

parfit

The R function parfit applied to approximate Pareto data takes logarithms to convert from

Pareto to exponential distributions and then computes the slope of the least-squares line
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through a user-specified number of order statistics to estimate and report on the estimate

of α. Using pppareto helps decide on the user-specified number of order statistics. This

function was used to produce Figure 4.12. The function takes as inputs x, the name of

the data, and k, the number of order statistics or that part of the plot to which lsfit fits a

line and computes the slope. Outputs include the estimate of α which is the reciprocal

slope and the intercept.

Here is the text of parfit:

parfit<-function(x, k)
{
l <- length(x)
s <- seq(1/(l + 1), l/(l + 1), length = l)
y <- - log(1 - s)
plot(y[(l - k + 1):l], log(sort(x)[(l - k + 1):l]), pch ="*",

xlab = "quantiles of exponential",
ylab = "log-sorted data")

coeffs <- lsfit(y[(l - k + 1):l],
log(sort(x)[(l - k + 1):l]))$coef

abline(coeffs[1], coeffs[2])
names(coeffs) <- NULL
list(logxl = coeffs[1], alpha = 1/coeffs[2],
bn = exp(coeffs[1] + log(l) * coeffs[2]))
}

QQ estimator plot

The QQ estimator of Section 4.6.6 computes an estimate of α based on k order statistics.

This represents the reciprocal slope in parfit. To assess the sensitivity to the choice of k,

it is wise to plot the estimates as a function of k to check the stability of the plot. This

is performed by qqest. Generally this plot looks smoother than the Hill plot.

qqest<-function(y, list = F)
{

n <- length(y)
x <- - log((1.:n))
z <- rev(sort(log(y)))
sumx <- cumsum(x)
sumz <- cumsum(z)
sumxz <- cumsum(x * z)
sumxx <- cumsum(xˆ2.)
alphainv <- ((1.:n) * sumxz - sumx * sumz)/
((1.:n) * sumxx - (sumx)ˆ2.)

alpha <- 1./alphainv
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plot((5:n),alpha[5:n],type="l",
xlab="number of order statistics",
ylab="qq est of alpha",
main="QQ estimator")

if(list) {
alpha[50.:n]

}
}

Comparison with the Hill plot is easy with qqHill.

qqHill<-function(x)
{

par(mfrow = c(1., 2.))
Hillalpha(x)
qqest(x)
par(mfrow = c(1., 1.))

}

11.1.3 Estimators from extreme-value theory

As discussed in Section 4.5, estimators from extreme-value theory are useful for rejecting

the suitability of a heavy-tail model. In our experience, two in particular have been

helpful: the Pickands estimator [85, 112, 235, 236] and the moment estimator [85–87,

90, 251] of Dekkers, Einmahl, and de Haan.

The Pickands estimator

The Pickands plots in Section 4.5 were produced with the R function Pickands, which

estimates γ = 1/α. The function requires x, the data set, as input.

pickands<-function(x)
{
ordered <- rev(sort(x))
n <- length(ordered)
ordered2k <- ordered[seq(2, (n/4), by = 2)]
ordered4k <- ordered[seq(4, (n/4), by = 4)]
l <- length(ordered4k)
gammak <- (1/log(2)) * log((ordered[1:l] - ordered2k[1:l])/(
ordered2k[1:l] - ordered4k[1:l]))
plot(1:length(gammak), gammak, type = "l", xlab =
"number of order statistics", ylab =
"Pickands estimate of gamma")
}
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The moment estimator

Ignoring location and scale, the extreme-value distributions [41, 102, 197, 260] can be

parameterized as a one-parameter family

Gγ (x) = exp{−(1 + γ x)−γ−1}, γ ∈ R, 1 + γ x > 0.

The moment estimator γ̂ (moment) [85–87] is designed to estimate γ for a random sample

in the domain of attraction of Gγ . When γ > 0, this is the same thing as estimating

γ = 1/α. Recall that the exponential, normal, log-normal, gamma densities, and many

other distributions with exponentially bounded tails are in the D(G0), the domain of

attraction of the Gumbel distribution G0(x) = exp{−e−x}, x ∈ R. In cases where one

is deciding whether heavy-tailed analysis is appropriate, this estimator provides another

method for deciding when a distribution is heavy tailed or not. If γ̂ is negative or very

close to zero, there is considerable doubt that heavy-tailed analysis should be applied.

The moment estimator is defined as follows: Let X1, . . . , Xn be the sample and let

X(1) ≥ X(2) ≥ · · · ≥ X(n) be the order statistics. Define for r = 1, 2,

H
(r)
k,n = 1

k

k∑

i=1

(
log

X(i)

X(k+1)

)r

,

so that H
(1)
k,n is the Hill estimator. Define

γ̂ (moment)
n = H

(1)
k,n + 1 − 1/2

1 − (H
(1)
k,n)2

H
(2)
k,n

. (11.1)

Then assuming F ∈ D(Gγ ), we have consistency

γ̂n
P→ γ,

as n → ∞ and k/n → 0. Furthermore, under an additional condition and a further

restriction on k, √
k(γ̂ − γ ) ⇒ N,

where N is a normal random variable with 0 mean and variance

σ(γ ) =
{

1 + γ 2 if γ ≥ 0,

(1 − γ )2(1 − 2γ )
(

4 − 8 1−2γ

1−3γ
+ (5−11γ )(1−2γ )

(1−3γ )(1−4γ )

)
if γ < 0.

The asymptotic variance of the moment estimator exceeds that of the Hill estimator

when γ > 0, so from the point of view of asymptotic variance, there is no reason to
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prefer it. However, the moment estimator discerns a light tail more effectively than the

Hill estimator, and thus it is often useful to apply the moment estimator to see if γ ≤ 0,

which would rule out heavy-tail analysis.

The moment estimator may be plotted to make a plot as a function of the number

of upper-order statistics used. This is comparable to the Hill plot and the Pickands plot.

The following R routine does this, taking as input the name of the data set. The output

is the plot of the estimate of γ as a function of k, the number of upper-order statistics

used in the estimation. Recall that if γ > 0, then γ = 1/α.

moment<-function(x)
{
ordered <- rev(sort(x))
ordered <- ordered[ordered[] > 0]
n <- length(ordered)
loggs <- log(ordered)
sqloggs <- ((loggs)ˆ2)
hill <- cumsum(loggs[1:(n - 1)])/(1:(n - 1)) - loggs[2:n]
one <- cumsum(sqloggs[1:(n - 1)])/(1:(n - 1))
two <- (2 * loggs[2:n] * cumsum(loggs[1:(n - 1)]))/(1:(n -
1))
three <- sqloggs[2:n]
square <- one - two + three
gammahat <- hill[2:(n - 1)] + 1 - (0.5)/(1 - ((hill[2:(n -
1)])ˆ2)/square[2:(n - 1)])
plot(5:length(gammahat), gammahat[5:length(gammahat)],

type = "l",
xlab = "number of order statistics",
ylab = "Moment estimate of gamma",
main= "Moment")

}

The plot can also be smoothed as with the smooHillalpha plot. See [251].

11.2 Multivariate heavy tails

Analysis of multivariate data involves the one-dimensional techniques to estimate

marginal parameters. Dependence structure can be obtained by trying to estimate the

angular measure after transformation to the standard case.

11.2.1 Estimation of the angular distribution

After transforming to the standard case to get ν∗, we estimate the angular distribution S

or assume S has a density and do a density estimation.
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Rank transform

This is simple enough that there may be a temptation to avoid a separate subroutine.

This routine carries out the transformation of Section 9.2.3 (p. 310). Note the k in (9.45)

is omitted.

ranktransform<-function (x)
{
tr<-(length(x)-rank(x)+1)ˆ(-1)
#invisible(list(tr=tr))
}

Estimate the angular density using ranks

There are two routines for estimating the angular density. The first uses the rank trans-

form and the norm is the L2-norm.

angulardensityrank<-function(x, y, k)
{
#x <- x-vector
#y <- y-vextor
#k <- no of upper order statistics to be used
n <- min(length(x), length(y))
rx <- n - rank(x[1:n])+1 #compute anti ranks
ry <- n - rank(y[1:n])+1
theta <- atan(rx, ry)
rad <- k * sqrt((rx)ˆ(-2) + (ry)ˆ(-2))
plot(density(theta[rad > 1]), type = "b",

xlab = "theta", ylab = "angular measure density")
abline(v = pi/4.)
}

Estimate the angular density using power transforms

This method uses the technique of powering up components to achieve the standard case

as in Section 9.2.3 (p. 310). Inputs include two data vectors, choice of k and estimates

of αs.

angulardensityEstAlpha<-function(x, y, k, alpha1, alpha2)
{
n <- min(length(x), length(y))
x <- (x/(rev(sort(x)))[k])ˆ(alpha1)
y <- (y/(rev(sort(y)))[k])ˆ(alpha2)
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r <- sqrt(xˆ2. + yˆ2.)
theta <- atan(x, y)
plot(density(theta[r > 1.]), type = "b",
xlab = "theta", ylab = "angular measure density")
abline(v = pi/4.)
}

Estimate the angular distribution using the rank transform

If one is skeptical that a density exists, or skeptical of density estimation, one can

estimate S[0, θ ] as a distribution function.

angularDF<-function(x, y, k)
{
#x <- x-vector
#y <- y-vector
#k <- no of upper order statistics to be used
if((n <- length(x)) != length(y)) {
stop("The lengths of the data vectors do not match")
}
rx <- n - rank(x)
ry <- n - rank(y)
theta <- atan(rx, ry)
ord <- order(theta)
l <- rx[ord] < k | ry[ord] < k
stheta <- theta[ord]
cl <- cumsum(l)
sl <- sum(l)
plot(stheta[l], cl[l]/sl, xlim = c(0., pi/2.),

ylim = c(0., 1.), type = "l",
xlab = "theta\n\t\t", ylab = "S(theta)",
main = "Spectral Distribution Function",
sub = paste(
"number of upper order statistics used",
as.character(k)), font.sub = 3.)
abline(h = 0.5, lty = 3.)
points(stheta[l], rep(0.5, sl), pch = "+")
}

11.2.2 The Stărică plot

The following function takes bivariate vectors (x, y) = {(xi, yi), 1 ≤ i ≤ n} from

a distribution F whose tail satisfies standard regular variation, performs the power

transform to approximate the standard case (see Section 9.2.3 (p. 310)), computes the
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radius vectors, and then creates the Stărică plot with a user-specified value of k. The

plot draws horizontal and vertical lines through (1, 1). Abscissa values are restricted

to being less than 10. This scheme is outlined in Section 9.2.4. The user can choose

between the L1- and L2-norms.

Norms

L1norm<-function (x)
{

sum(x)
}

L2norm<-function (x)
{

sqrt(sum(xˆ2))
}

Stărică plot using the power transform

Starica2dPlot<-function (x, y, k, PlotIt = TRUE, norm = L1norm)
{

if (length(x) != length(y)) {
stop("x and y different lengths\n")

}
n <- length(x)
alpha1 <- 1/EstimateEtaHills(k = k, data = x)
alpha2 <- 1/EstimateEtaHills(k = k, data = y)
x <- (x/rev(sort(x))[k])ˆ(alpha1)
y <- (y/rev(sort(y))[k])ˆ(alpha2)
r <- apply(cbind(x, y), 1, norm)
u <- rev(sort(r))
ratio <- (u * (0:(n - 1)))/(length(r[r > 1]))
if (PlotIt) {

plot(u[u < 10], ratio[u < 10], xlim = c(0.1, 10),
type = "l",

xlab = "scaling constant", ylab = "scaling ratio",
col = "blue")

abline(h = 1, col = "red")
abline(v = 1, lty = 2, lwd = 0.5, col = "red")
title(paste("k =", k))

}
invisible(list(r = u, ratio = ratio, k = k, norm = norm))

}
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Stărică plot using the rank transform

The following function uses the rank method. It requires user inputs of two data sets

x, y and a value of k and produces the Stărică plot.

Starica2dplotrank<-function (x, y, k, PlotIt=TRUE,
norm=L1norm)

{
if (length(x) != length(y)) {

stop("x and y different lengths\n")
}
n <- length(x)

rx<-ranktransform(x)
ry<-ranktransform(y)
R <- apply(cbind(k*rx, k*ry), 1, norm)
u <- rev(sort(R))

ratio <- (u * (1:n))/(length(R[R > 1]))
if (PlotIt) {

plot(u[u < 5], ratio[u < 5], xlim = c(0.1, 5),
type = "l",

xlab = "scaling constant", ylab = "scaling ratio",
col = "blue")

abline(h = 1, col = "red")
abline(v = 1, lty = 2, lwd = 0.5, col = "red")
title(paste("k =", k))

}
invisible(list(r = u, ratio = ratio, k = k, norm = norm))

}

Allowing the Stărică plot to choose k

This routine uses the rank transform and then computes the distance of the points to the

horizontal line. It then cycles through k and chooses the k which achieves minimum

distance. The procedure allows the distance to be computed between two abscissa values

(Lower, Upper). It is sometimes finicky and sometimes gives ridiculously low values

of k.

ChooseKrank<-function (x, y, PlotIt = TRUE, norm = L2norm,
Lower,Upper)
{

if (length(x) != length(y)) {
stop("x and y different lengths\n")

}
n <- length(x)
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rx<-ranktransform(x)
ry<-ranktransform(y)
R<-apply(cbind(rx,ry),1,norm) #norms of pairs

#after rank transform
R <- rev(sort(R)) #ordered norms; biggest first
nk <- min(c(500, ceiling(.5*n)))
Kseq <- (1:nk) #round(exp(seq(log(10), log(n/2), len = nk)))
dist<-rep(0,nk) #vector of length nk of zeros
for (i in 1:nk) {
dist[i]<-L2norm(
( i*(1:n)*R/length(i*R[i*R>=1]) )*(i*R>Lower & i*R <=Upper)-
(i*R>Lower & i*R <=Upper)
)
}
k <- (Kseq[dist == min(dist)])
if (PlotIt) {
u <- k*R
ratio <- k*R*(1:n)/length(k*R[k*R>=1])

plot(u[u <= Upper & u>Lower], ratio[u <= Upper & u>Lower],
type = "l", xlab = "scaling constant", ylab = "scaling ratio",
col="blue")

abline(h = 1,col="red")
abline(v = 1,lty=2,lwd=0.5,col="red")
title(paste("k =",k))

}
k
}
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[59] S. Csörgő, E. Haeusler, and D. M. Mason, The asymptotic distribution of extreme sums,

Ann. Probab., 19-2 (1991), 783–811.
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[226] T. Mikosch and C. Stărică, Change of structure in financial time series and the GARCH

model, REVSTAT Statist. J., 2 (2004), 16–41.

[227] T. Mikosch, Modeling dependence and tails of financial time series, in B. Finkenstadt

and H. Rootzén, eds., SemStat: Seminaire Europeen de Statistique: Extreme Values in
Finance, Telecommunications, and the Environment, Chapman and Hall, London, 2003,

185–286.

[228] I. Molchanov, Theory of Random Sets, Probability and Its Applications, Springer-Verlag,

London, 2005.

[229] J. Neveu, Discrete-Parameter Martingales, North-Holland Mathematical Library, Vol. 10,

North-Holland, Amsterdam, 1975 (translated from the French by T. P. Speed).

[230] J. Neveu, Processus ponctuels, in École d’Été de Probabilités de Saint-Flour VI—1976,

Lecture Notes in Mathematics, Vol. 598, Springer-Verlag, Berlin, 1977, 249–445.

[231] J. Neyman and E. L. Scott, Statistical approach to problems of cosmology, J. Roy. Statist.
Soc. Ser. B, 20 (1958), 1–43.

[232] K. Park and W. Willinger, Self-similar network traffic: An overview, in K. Park and

W. Willinger, eds., Self-Similar Network Traffic and Performance Evaluation, Wiley–

Interscience, New York, 2000, 1–38.

[233] M. Parulekar and A. M. Makowski, Tail probabilities for a multiplexer with a self-similar

traffic, in Proceedings of the 15th Annual IEEE INFOCOM , IEEE Press, Piscataway, NJ,

1996, 1452–1459.

[234] M. Parulekar and A. M. Makowski, Tail probabilities for M/G/∞ input processes I:

Preliminary asymptotics, Queueing Systems Theory Appl., 27-3–4 (1997), 271–296.

[235] L. Peng, Second Order Condition and Extreme Value Theory, Ph.D. thesis, Tinbergen

Institute, Erasmus University, Rotterdam, 1998.

[236] J. Pickands, Statistical inference using extreme order statistics, Ann. Statist., 3 (1975),

119–131.
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